
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2017

Computational Fluid Dynamics in a Terminal Alveolated Computational Fluid Dynamics in a Terminal Alveolated

Bronchiole Duct with Expanding Walls: Proof-of-Concept in Bronchiole Duct with Expanding Walls: Proof-of-Concept in

OpenFOAM OpenFOAM

Jeremy Myers
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Numerical Analysis and Computation Commons, Numerical Analysis and Scientific

Computing Commons, Partial Differential Equations Commons, and the Respiratory System Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5011

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/919?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5011?utm_source=scholarscompass.vcu.edu%2Fetd%2F5011&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Copyright ©2017 by Jeremy Moulton Myers
All rights reserved

Computational Fluid Dynamics in a Terminal

Alveolated Bronchiole Duct with Expanding Walls:
Proof-of-Concept in OpenFOAM

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

by

Jeremy Moulton Myers
B.S. Virginia Commonwealth University, 2014

B.A. James Madison University, 2009

Director: Dr. Rebecca Segal, Associate Professor
Department of Mathematics and Applied Mathematics

Virginia Commonwealth University
Richmond, Virginia

August 2017

iii

Acknowledgements

I would like to thank all the people who contributed in some way to the success of this

thesis. Foremost, I would like to express great thanks to my thesis advisor, Dr. Rebecca

Segal, for an invaluable learning experience that has set my life on a new and interesting

trajectory. I want to thank Dr. Laura Ellwein-Fix for serving on my thesis committee,

treating me as a peer in our working group in parameter estimation, and advancing

my interest in numerical linear algebra. I also want to thank Dr. Angela Reynolds for

serving as an unofficial advisor and also as a peer in our parameter estimation working

group. I have thought of these three as my mentors for the past year and I look forward

to staying in touch for years to come. Special thanks goes to Dr. Rebecca Heise for

serving on my thesis committee.

I would like to thank my parents for encouraging me to keep pushing myself.

Last, I would like to thank Tori Hovater for supporting me, keeping my sanity, and

showing endless patience. And thanks to our dogs, Briggs and Pungo!

iv

Table of Contents

Acknowledgements iii

List of Figures ix

List of Tables x

Abstract xi

1 Introduction and Overview 1

1.1 Research Summary . 3

1.2 Literature Review . 3

1.2.1 Lung Physiology . 3

1.2.2 Geometric Lung Models . 5

1.2.3 In-Vitro Modeling . 6

1.2.4 Computational Modeling . 7

1.3 Overview . 8

2 The Mathematics of Fluid Mechanics and Numerical Analysis 10

2.1 Navier-Stokes Equations . 11

2.1.1 Reynolds Number . 12

2.2 The Finite Element Method . 13

2.2.1 The Weak form of a Boundary Value Problem 13

v

2.2.2 The Galerkin Method . 18

2.2.3 The Galerkin Finite Element Method 20

2.2.4 Solving KU = F with a Krylov method 22

2.3 Finite Volume Method . 23

2.4 Numerical Algorithms for Solving the Navier-Stokes Equations 25

2.4.1 SIMPLE . 26

2.4.2 PISO . 26

3 Methods 28

3.1 OpenFOAM for Computational Fluid Dynamics 29

3.1.1 Overview . 29

3.1.2 OpenFOAM as a General Computational Engine 30

3.1.3 OpenFOAM Case File Structure . 31

3.2 Case Models . 33

3.2.1 Duct Models . 34

3.2.2 Airway Flow Models . 35

3.3 Mesh Generation with Gmsh . 39

3.4 Post-Processing in ParaView . 43

4 Results 44

4.1 Duct Model . 44

4.1.1 Case A: Steady-State Flow and Case B: Constant Transient Flow . . 44

4.1.2 Case C: Oscillating Transient Flow . 44

4.2 Airway Model . 47

4.2.1 Case D: Steady-State Flow and Case E: Constant Transient Flow . . 47

4.2.2 Case F: Oscillating Transient Flow . 48

4.2.3 Case G: Transient Flow with Expanding Boundary 50

vi

5 Discussion 54

5.1 Airway Model Comparisons . 55

5.1.1 Steady State vs. Transient Flow . 55

5.1.2 Transient Flow With and Without Periodic Boundary Conditions . . 56

5.1.3 Pressure-Driven Flow with Moving Boundary 58

5.2 Challenges . 60

5.3 Future Work . 63

5.4 Conclusions . 64

Bibliography 66

A OpenFOAM Code 70

A.1 Case A . 70

A.1.1 /0 . 70

A.1.2 /constant . 74

A.1.3 /system . 76

A.2 Case B . 80

A.2.1 /0 . 80

A.2.2 /constant . 82

A.2.3 /system . 83

A.3 Case C . 87

A.3.1 /0 . 87

A.3.2 /constant . 89

A.3.3 /system . 90

A.4 Case D . 94

A.4.1 /0 . 94

A.4.2 /constant . 99

A.4.3 /system . 100

vii

A.5 Case E . 105

A.5.1 /0 . 105

A.5.2 /constant . 108

A.5.3 /system . 108

A.6 Case F . 113

A.6.1 /0 . 113

A.6.2 /constant . 115

A.6.3 /system . 116

A.7 Case G . 120

A.7.1 /0 . 120

A.7.2 /constant . 124

A.7.3 /system . 126

B Gmsh Code 132

B.1 Duct . 132

B.2 Airway-1 . 133

B.3 Airway-2 . 134

Vita 135

viii

List of Figures

1.1 Bronchi, Bronchial Tree, and Lungs, by Arcadian, 2006. Public Domain. [2] 4

1.2 Alveolar Sac Model with 13 alveoli used by Harding and Robinson [16].

Duct diameter, DD, is 0.23 mm. Sac length is 0.816 mm. 8

3.1 OpenFOAM case file structure for each solver type used in this thesis. . . . 32

3.2 Structured meshes generated in Gmsh by transfinite interpolation for the

current study. 41

3.3 Airway Model Variants . 42

4.1 Velocity profiles for 2D pipe flow. (a) The steady state solution using

simpleFoam converged in 45 iterations. (b) Fully developed flow after 0.1

seconds using icoFoam. (c) - (f) Directed flow profiles for the 2D duct

with a sinusoidal periodic boundary conditions at the inlet using icoFoam;

frequency f = 2 Hz, amplitude A = 0.069542 m/s. 46

4.2 Steady state solution for the idealized terminal alveolated airway using

simpleFoam. The steady state solution converged in 72 iterations. 48

4.3 Transient laminar solutions on the idealized terminal alveolated Airway-

1 Model using icoFoam. The inlet velocity is uniform 0.0575 m/s in the

x-direction. 49

ix

4.4 Transient laminar solutions with periodic boundary conditions defined

on the inlet for the idealized terminal alveolated Airway-1 Model using

icoFoam. The inlet velocity vector was sinusoidal: (0.0575 0 0) m/s with

frequency f = 100 Hz. 51

4.5 Transient laminar solutions on the idealized terminal alveolated airway

with moving boundary using pimpleDyMFoam. The walls of the alveolar sac

stretch outward with sinusoidal cell displacement equivalent to a 15.6%;

frequency f = 10 Hz, amplitude A = 2.34× 10−5mm. The inlet and outlet

were defined on the same edge. Neither inlet nor outlet was provided an

initial condition for flow; flow was driven by wall expansion. 53

5.1 Recirculation zones for airway model in the duct center. The vector fields

of the transient solution at t = 0.01s (b) and the steady state solution (c)

are highly similar. 56

5.2 Flow patterns in the alveolus and traveling wavefronts for the steady-state

(a) and transient (b)-(f) solutions. The steady-state wavefront of ”brack-

ish” fluid can be seen in 5.2(a) at the bottom and top left of the sac bound-

ary. The wavefront is seen only in the bottom of the duct in (c) and (d).

It approaches the alveolus boundary at each additional time step. The

wavefront is then visible in the upper portion of (e). Chaotic recirculation

is observed for the transient solutions (c)-(f). A saddle point is observed

in the center of the sac in (e). 57

5.3 A detailed view of the fluid dynamics at final time t = 0.025s in the ex-

panding sac airway model. 59

5.4 Sample error messages, which are frequently uninformative. 62

x

List of Tables

3.1 Summary of simulations performed in this thesis. 34

3.2 Geometry specifications for the Duct and Airway Models. Model dimen-

sions are rounded to simplify mesh construction from Harding and Robin-

son’s Alveolar Sac Model [16]. 40

3.3 Mesh details for Duct and Airway Models. 41

Abstract

Computational Fluid Dynamics in a Terminal Alveolated Bronchi-
ole Duct with Expanding Walls: Proof-of-Concept in OpenFOAM

by Jeremy M. Myers, M.S.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virgina Commonwealth University, 2017.

Director: Dr. Rebecca Segal, Associate Professor
Department of Mathematics and Applied Mathematics

Mathematical Biology has found recent success applying Computational Fluid Dynam-
ics (CFD) to model airflow in the human lung. Detailed modeling of flow patterns in the
alveoli, where the oxygen-carbon dioxide gas exchange occurs, has provided data that
is useful in treating illnesses and designing drug-delivery systems. Unfortunately, many
CFD software packages have high licensing fees that are out of reach for independent
researchers. This thesis uses three open-source software packages, Gmsh, OpenFOAM,
and ParaView, to design a mesh, create a simulation, and visualize the results of an
idealized terminal alveolar sac model. This model successfully demonstrates that Open-
FOAM can be used to model airflow in the acinar region of the lung under biologically
relevant conditions.

Chapter 1

Introduction and Overview

There is much in our physical world where an elegant mathematical description remains

to be found. Frequently, these arenas are complex systems with high nonlinearity and

many degrees of freedom. We are required to create models and develop techniques that

allow us to approximate the world around us. Although these models may be simpli-

fications: idealized and generalized, both physically and conceptually, they can be very

accurate on a human scale. Techniques are built around these simulation frameworks

with specific instructions so that we can have an answer within an efficient amount of

time; it does no service to receive a disorganized solution in one hundred years, let alone

one billion.

There is one area in particular where an incomplete mathematical theory compounded

by urgent human need drives modeling by approximation and algorithm: fluid dynam-

ics. Fluid dynamics governs complex and chaotic systems and since the mathematics

that underlies fluid dynamics–the Navier-Stokes equations–remains incomplete, math-

ematicians and other researchers work actively to develop the methods by which we

analyze these systems. For example, one method may be a scaled mock-up made of

plastic, submerged in water, with the fluid flow analyzed by observing a dye and tak-

ing photographs–e.g. particle image velocimetry (PIV). Computational Fluid Dynamics

1

(CFD) is the set of methods where a computer model is created, subdivided into a finite

collection of elements or cells, and a routine of computer operations solves the govern-

ing equations for each cell and for each time point. The set of solutions at each point

in time and space (collectively, ”the solution”) provides a wealth of data to be analyzed:

the magnitudes of pressure and momentum, flux, divergence, and more at each point.

We can use this data to visualize our results, as well as to determine the quality and

usefulness of the methods themselves, typically by calculating the error, among other

measures.

The scientific discipline that lies at the intersection of CFD and mathematical biology

has rich and interesting applications in human physiology. Beginning in the 1960s,

researchers, in medicine and mathematics alike, have studied airflow in the human lung.

What this thesis demonstrates is that a free and open-source CFD software package

can be used with other free and open-source geometry-meshing and post-processing

software to build and test a human lung model computationally with accurate results.

Mathematicians that might contribute greatly to lung physiology research may be

otherwise hindered by the high monetary cost of commercial CFD licenses. Since lung

physiology is small subfield in mathematical biology, demonstrating that a functional,

scaled model can be created and tested with free and open-source software is essential

to opening up research to a broader class of new researchers. Demonstrating that mod-

eling of this kind can be performed without expensive commercial software is important

because it may lead to a surge in research into this area.

Before any discussion of the modeling in this thesis, I provide a literature review as

a window into the current state of mathematical models of the human lung, with an

emphasis toward CFD. I used dimensions from the work of Harding and Robinson [16]

to construct the models detailed in Chapter 3, with results of my simulations in Chapter

4.

2

1.1 Research Summary

In this thesis, I first used Gmsh [10] to create a geometry and mesh of an idealized ter-

minal alveolar sac with dimensions taken from the literature. An overview of lung

physiology follows below in Section 1.2.1. Two geometric models served 1) to test

the capabilities of the software with a simple two-dimensional pipe featuring varying

boundary conditions and 2) extend the tests to an idealized lung geometry. I used

OpenFOAM [14] to develop seven cases featuring varied boundary conditions to model

the physical breathing process computationally. Finally, flow patterns in the geome-

tries were analyzed visually using ParaView [1]. The performance of OpenFOAM was

assessed using built-in functions.

1.2 Literature Review

Modeling of the human lung began in 1963 with the Type A model of Ewald R. Weibel,

MD, a symmetric tree geometry with 23 generations of bronchiole ducts [30]. Modeling

has since pursued two different paths: computational models and in-vitro experiments.

In this chapter I will give an overview of human lung physiology with attention paid

to the pulmonary acinus. Then I will outline past efforts which informed the modeling

decisions taken in this thesis. I will describe various model geometries of the pulmonary

acinus, the region where lung branching terminates and gas enters and exits the blood.

Lastly, I will discuss experimental techniques that have developed our insight into air-

flow in the lungs.

1.2.1 Lung Physiology

This overview of human lung physiology follows from Cotes’s Lung Function: Physiol-

ogy, Measurement, and Application in Medicine [6]. The respiratory system begins with

3

Figure 1.1: Bronchi, Bronchial Tree, and Lungs, by Arcadian, 2006. Public Domain. [2]

the upper airways: the nose, the nasopharynx, and the oropharynx. The goal of these

structures is to condition inhaled air. This includes warming the air to near body temper-

ature before air reaches the trachea and filtering out contaminants. Inspired air travels

from the upper airway down to through the trachea and into the lungs. The trachea

divides into the primary right and left bronchi, a pattern referred to as branching. Each

bronchus subdivides further for a total of 23 generations in a so-called respiratory tree.

See Figure 1.1.

The upper lung (generations 0-16) serve to transport air; the lower lung (generations

17-23) is where the oxygen-carbon dioxide gas exchange takes place. The lower lung

is comprised of respiratory bronchioles, alveolated bronchiole ducts, and alveoli. The

alveolated bronchiole ducts are covered by 10-30 roughly hexagonal alveoli and terminal

alveolar ducts have a single spherical alveolus on the end. On average, a single alveolus

is 0.25 mm in diameter and there are (200−600)×106 alveoli in the average human lung.

4

Respiration is controlled by the respiratory muscles, principally the diaphragm. As

the diaphragm contracts, the rib cage expands. At the same time, the intercostal muscles

pull the rib cage up, allowing the rib cage to further expand. The expansion of the rib

cage causes a pressure drop which draws air into the lungs. Air travels down through

the trachea and bronchi to the respiratory bronchioles, alveolated bronchiole ducts, and

alveoli of the lower lung. The alveoli are naturally compliant and the alveoli expand as

they are filled with air. During inhalation, oxygen particles cross the alveoli walls to enter

the bloodstream. During exhalation, this process is reversed. Carbon dioxide particles

cross the alveoli walls from the bloodstream and exit the alveolar sacs due to contraction.

This contraction of the alveolar sacs is caused by expansion of the diaphragm, which

contracts the rib cage, drawing air out of the lungs.

1.2.2 Geometric Lung Models

Accurately modeling fluid flow in the terminal bronchiole ducts and alveoli has great

implications for human health. Modeling may help researchers understand how lung

diseases develop and progress, like emphysema and chronic obstructive pulmonary dis-

order (COPD). Furthermore, researchers may develop more effective drug delivery meth-

ods by analyzing particle deposition patterns in the alveoli based on better models.

Geometric models of alveolated ducts fall into two general types: (1) bronchiole ducts

with a single terminal alveolar sac and (2) bronchiole ducts covered with multiple alveoli.

Geometry plays an important role for flow patterns inside the alveolus. A circular alveo-

lus was found to be preferred in early works [29]. Several three-dimensional geometries

types have been explored more recently: truncated octahedral [18], dodecahedral [9], 19

face polyhedron [23], and spherical [4, 16].

5

1.2.3 In-Vitro Modeling

Ma et. al [22] validate CFD models with in-vitro experiments in three-dimensional bi-

furcated and alveolated airways. Their predictions from CFD match the measurements

obtained from particle image velocimetry and particle tracking velocimetry.

Chhabra and Prasad [4] address the fluid mechanics of the acinar region consisting

of alveolated airways (previous, upper (non-alveolated) bifurcating airways) using mea-

surements of flow and dispersion in in-vitro models. Here, they investigate an idealized

geometry of a single alveolus mounted on a respiratory bronchiole. Their study assumes

that the bronchioles are unlikely to experience expansion and are kept rigid relative to

expansion of the alveolus, in contrast to past studies. Their experiment uses an in-vitro

model of a single alveolus, expanding and contracting in phase with oscillatory flow

through the bronchiole with five distinct cases of increasing complexity. The in-vitro

model was a cylindrical tube with a single hole on the top; a thin layer of latex is stretch

over this hole. The whole tube was submerged in fluid inside a sealed box. A syringe

pump oscillated flow into and out of the bronchiole tube while a separate syringe pump

drew fluid from the box to create a negative pressure differential. In this study, the sy-

ringes oscillated in phase. Six cases were considered: three combinations of bronchiole

flow (no flow, steady unidirectional flow, oscillating flow); and, two options of wall con-

dition (non-deforming and oscillating). The no flow, non-deforming case is considered

trivial; data was collected for the remaining cases. To measure velocity fields, particle im-

age velocimetry (PIV) was employed. This paper focuses on dispersion and deposition

of massless particles within the alveolus. The main result is for oscillating bronchiole

flow over oscillating alveolus: primary and secondary vortices appear, as well as a shear

layer at the alveolus mouth. The authors discuss recirculation, convective mixing, and

particle deposition for each of the five nontrivial cases. A final observation is that par-

ticle transport to the alveolar wall is possible only when the alveolar wall expands and

contracts.

6

1.2.4 Computational Modeling

Harding and Robinson [16] simulated airflow in an expanding terminal alveolar sac.

The common theme of this work is to find convective mixing and recirculation patterns

in the terminal pulmonary region by matching simulation parameters to physical mea-

surements; model dimensions were taken from human lung casts and breathing cycles

measured from a human volunteer. The geometry, referred to as the Alveolar Sac Model,

is representative of those found in generations 19 and below: 12 truncated spherical alve-

olar sacs spaced evenly but asymmetrically along a duct with a single terminal alveolus

added to the end. To solve the Navier-Stokes equations, the authors used a PISO solver*

since the flow is driven by a pressure differential due to the expanding walls (duct kept

stationary). For each time step, a user-defined function iteratively expanded the walls to

achieve desired volumes; this time step was optimized to agree with the breathing curve

of a human volunteer measured in vivo. The authors chose to expand their terminal

alveolar sac by 15.6% based on a 500-ml tidal volume (TV) and a 3200-ml functional

residual capacity (FRC). The expansion was calculated by measuring flow rate, integrat-

ing to obtain the change in volume with respect to time, and then scaled. This expansion

rate is used in case G in Section 3.2.2. The importance of flow rate ratio in determining

recirculation patterns is highlighted.

Muller et. al [23] employ a novel CFD approach to quantify convective mixing. An

irreversible flow – a fluid particle entering an alveolus during inhalation does not follow

the same path during exhalation – impacts how long a particle remains in the alveo-

lus, which in turn impacts particle deposition. An irreversible and chaotic flow is seen

as an efficient feature of convective mixing. This novel technique employs an Eulerian

scalar field to track this phenomenon numerically. An Eulerian approach marks an ini-

tial volume of fluid numerically, like with a dye. The marked particles are then tracked

through the flow. The model geometry is a cylindrical bronchiole duct with a single

*Pressure-Implicit Splitting of Operators. This algorithm is detailed in Section 2.4.2

7

polyhedral alveolus. Both the bronchiole and alveolus walls are deformed uniformly

with the amplitude of the deformation calculated from breathing parameters. The flow

rate is assumed to be sinusoidal and in-phase with the wall deformations. The ratio of

flow rate in the alveolus to flow rate in the duct has been considered as characterizing

alveolar flow, and great attention is paid to quantifying the effects of this ratio. Experi-

ments are run for both single and multiple breath analyses. An advantage cited is that

the Eulerian approach minimizes numerical errors.

Figure 1.2: Alveolar Sac Model with 13
alveoli used by Harding and Robinson [16].
Duct diameter, DD, is 0.23 mm. Sac length
is 0.816 mm.

Li and Kleinstreuer simulate transient

laminar two-dimensional airflow using

an in-house validated lattice-Boltzmann

method. A CFD method developed to

solve the lattice-Boltzmann equation, a

lattice-Boltzmann method is a formulation

of fluid flow problems that is an alterna-

tive to the Navier-Stokes equations which

are the classical governing equations in

fluid mechanics [21]. The authors in their

study varied two different cases: (1) alve-

olus shape with a moving boundary; and,

(2) asymmetric alveolated duct flow on straight and branching ducts. Geometric asym-

metry greatly impacts flow patterns in the alveolar region; in particular, asymmetric

alveolus pairing and asymmetric alveolated branching greatly impacts air flow patterns.

1.3 Overview

In Chapter 2 I summarize the mathematics of the field. I provide the mathematical foun-

dation for approximating solutions to the Navier-Stokes equations via the finite volume

8

method. This discussion starts by constructing a weak form of the boundary value prob-

lem for Poisson’s equation. The argument extends to the Navier-Stokes equations. Then,

I explain the theory and implementation of the Galerkin method and I show it is the best

approximation to the solution. This leads to a generalization called the finite element

method (FEM). When blended with several other concepts, FEM results in the more com-

plex, three-dimensional analogue, the finite volume method (FVM). I conclude Chapter

3 with a discussion of the SIMPLE and PISO algorithms, the workhorses of FVM, for

solving the Navier-Stokes equations.

In Chapter 4 I give the details of the methods used in this work. First, I discuss

the two model geometries that I constructed for this work. Second, I detail the different

numerical experiments that I conducted. I explain how I created the meshes using Gmsh.

Next, I give an overview of OpenFOAM for scientific computation. The majority of the

chapter is dedicated to describing the set up for each case modeled. I conclude Chapter 4

by briefly discussing ParaView, the software used for visualization and post-processing.

In Chapter 5 I discuss the results of the modeling. Much of the discussion focuses on

the validity of the solutions calculated by OpenFOAM and assessment of the accuracy.

Finally, in Chapter 6 I compare results for one model across cases. Additionally, I

discuss challenges with using OpenFOAM and where future work is headed.

9

Chapter 2

The Mathematics of Fluid Mechanics

and Numerical Analysis

The equations that govern fluid flow are commonly represented by the Navier-Stokes

equations, which are discussed in the following section. To date, existence and smooth-

ness of solutions to the Navier-Stokes equations has not been proven. Purely mathe-

matical research is very active–the Clay Mathematical Institute offers a $1,000,000 prize

for a proof or disproof of the existence and smoothness of solutions [8]. Despite this,

the Navier-Stokes equations are useful for describing a variety of phenomena in science

and engineering and mathematicians have developed advanced methods to approximate

solutions to the Navier-Stokes equations based on powerful mathematical concepts.

In this chapter, I derive a current method used widely by the CFD community for ap-

proximating solutions to the Navier-Stokes equations: the Finite Volume Method (FVM).

This discussion follows Gockenbach’s Understanding and Implementing the Finite Element

Method [11].

The Navier-Stokes equations are a special case of Poisson’s equation. Converting

Poisson’s equation to a weak form permits an unique solution by bounding the domain.

The Galerkin Method can be thought of as the computation of an approximation to the

10

true weak form solution to this boundary value problem; the theory guarantees that

this is in fact the best approximation. By extension, the Galerkin Method produces the

best approximation to the true strong form solution of Poisson’s equation. The Galerkin

Method is the conceptual basis for the Finite Element Method (FEM), which uses a col-

lection of piecewise polynomials to subdivide the bounded domain and approximate

the integrals and gradients in each subdomain. The above process is demonstrated in

Section 2.2. The Finite Volume Method, described in Section 2.3, is an extension of FEM.

The Finite Volume Method approximates the flux into and out of each discretization of

the domain. In Section 2.4, I outline two current numerical algorithms that use FEM and

FVM to approximate solutions to the Navier-Stokes equations in two and three dimen-

sions. This chapter represents the theoretical framework in which OpenFOAM operates.

OpenFOAM solvers are written to solve many different CFD cases and OpenFOAM

employs libraries of secondary solvers to calculate each piece of the CFD puzzle.

To start the discussion, let’s take a quick look at the basics of fluid flow as governed

by the Navier-Stokes equations.

2.1 Navier-Stokes Equations

The Navier-Stokes equations are the partial differential equations

∂u

∂t
+ (u · ∇)u− ν∇2u = −∇w (2.1)

∂p

∂t
+∇ · (pu) = 0 (2.2)

11

where

u is flow velocity,

ν is kinematic viscosity,

p is pressure,

ρ0 is uniform density, and

w =
p

ρ0
.

Equation 2.1 is commonly known as the momentum equation. The term (u · ∇)u is

the convective or inertial term, which describes the flow of the fluid as a whole; the

ν∇2u term is the diffusive term, the random motion of the fluid due to spreading [15].

The kinematic viscosity ν is the ratio of dynamic viscosity µ to (uniform) density ρ0.

Equation 2.2, commonly known as the continuity equation, determines compressibility

of a fluid.* For a complete derivation of the Navier-Stokes equations, see Chorin and

Marsden’s A Mathematical Introduction to Fluid Mechanics [5].

When solving a partial differential equation analytically or numerically, it is necessary

to specify boundary conditions. This ensures that an unique solution exists and that it

depends continuously on the initial and boundary conditions. A common boundary

condition is u = 0 on the solid boundary at rest. This is referred to as a ”no-slip”

boundary condition and it requires that the velocity of the flow field tangent to the wall

is zero.

2.1.1 Reynolds Number

In the field of fluid mechanics, there are several dimensionless values that allow us to

compare different fluid flow systems. One important characteristic value is the dimen-

sionless Reynolds number.

*For incompressible flow, ∂p
∂t

= 0.

12

For the geometry of interest, define L to be the characteristic length (e.g. maximum

radius or diameter), U to be the characteristic–maximum–velocity of the system. The

Reynolds number is

Reynolds number ≡ Re = LU

ν

the ratio of inertial and viscuous forces. The Reynolds number is useful for making a

distinction between laminar (Re < 1200) and turbulent (Re > 2000) flow. Laminar flow is

characterized by smooth flow and corresponds to low Reynolds number. Turbulent flow

produces chaotic mixing and unstable flow patterns.

With the basics of fluid mechanics in place, I turn to the theory of approximating

solutions to the Navier-Stokes equations.

2.2 The Finite Element Method

As mentioned above, FEM uses a weak form of Poisson’s equation to find a best approx-

imation to the true solution of the PDE, which can be extended to solving the Navier-

Stokes equations.

2.2.1 The Weak form of a Boundary Value Problem

Consider Poisson’s equation with the solution defined on the boundary:

−∇ · (κ∇u) = f in Ω (2.3)

u = 0 on ∂Ω (2.4)

where Ω is a bounded domain in R2 and ∂Ω is the boundary of Ω. If f is continuous,

then u must have two continuous derivatives defined in the closure of Ω: u ∈ C2
D(Ω̄),

where D denotes a Dirichlet problem. Further, if u is a solution to Equation 2.3 in the

13

bounded domain Ω, then for any function v defined on Ω,

−∇ · (κ∇u)v = f v in Ω.

This implies that the integral equation also holds:

ˆ
Ω

−∇ · (κ∇u)v =
ˆ
Ω

f v.

The function v is known as a test function and defines a weight for determining the

average of the PDE over Ω.

Using Green’s identity and the divergence theorem,

ˆ
Ω

−∇ · (κ∇u)v =
ˆ
Ω

κ∇u · ∇v−
ˆ
∂Ω

κ v
∂u

∂n

=

ˆ
Ω

κ∇u · ∇v.

The term
´
∂Ω
κ v ∂u

∂n
disappears since u = 0 on the boundary ∂Ω.

The weak form of Equation 2.3 is

ˆ
Ω

κ∇u · ∇v =
ˆ
Ω

f v, (2.5)

which holds for some u ∈ C2
D(Ω̄) if and only if u satisfies Equations 2.3–2.4.

The presence of the Laplacian in Equation 2.3 implies that the solution u should

have two partial derivatives–i.e. u should be twice differentiable.* However, in the weak

formulation only one partial derivative is necessary.

Toward a definition of a weak partial derivative for a function u, define the support of u

*The term ν∇2u requires the second derivative of u, which increases the number of initial conditions
from one to two.

14

as the closure of the set on which u is nonzero:

supp(u) = {(x,y) ∈ R2 : u(x,y) 6= 0}.

If u is defined on Ω and the support of u is a compact–closed and bounded–subset, then

u is compactly supported in Ω.

Suppose that u is a real-valued function defined on Ω ⊂ R2 and that u is integrable

over every compact subset of Ω. Let C∞0 (Ω) denote the space which is the set of all

functions that are infinitely differentiable on Ω and compactly supported in Ω. If there

exists another locally integrable function g, in addition to u, defined on Ω such that

ˆ
Ω

g v = −

ˆ
Ω

u
∂v

∂x
for all v ∈ C∞0 (Ω)

then u is weakly differentiable with respect to x and g is defined as the weak partial derivative

with respect to x.

The motivation for defining the weak partial derivatives of umay not be immediately

clear. It is important to say that it is done with the goal of ”relaxing” Equation 2.3 so

that the assumptions are as weak as possible. In turn, the ”relaxed” PDE is more general

and encompasses many more cases, one of which is the Navier-Stokes equations for

incompressible flow.

What is important theoretically is that the conditions necessary for a solution to the

weak form determine a Sobolev space. Recall that the Euclidean L2 space is a vector

space defined as

L2(Ω) = {v : Ω→ R |

ˆ
Ω

v2 <∞}.

If both v and its derivative v ′ are vectors in L2, then

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂x
,
∂v

∂y
∈ L2(Ω)

}

15

is a Sobolev space.* For the Dirichlet problem, the constraints on Equations 2.3–2.4 result

in the space

H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Therefore, the weak form boundary value problem of Equations 2.3–2.4 is given as

Find u ∈ H1
0(Ω) such that

ˆ
Ω

κ∇u · ∇v =
ˆ
Ω

f v for all v ∈ H1
0(Ω). (2.6)

Existence and Uniqueness of Solutions to the Weak Boundary Value Problem

Here I introduce some definitions necessary for proving that unique solutions to the

weak boundary problem 2.6 exist.

Definition 1 If V is a vector space with a norm, then a linear functional ` on V is a real-valued

function that is linear; i.e. `(αu+ βv) = α`(u) + β`(v), for all u, v ∈ V and α,β ∈ R.

Definition 2 The functional ` is continuous at u ∈ V if

lim
v→u

`(v) = `(u) or ‖`(u) − `(v)‖ → 0 as ‖u− v‖ → 0.

In other words, it is necessary that the operation of the functional ` converges to the

solution as the solution itself converges.

Since the linear functional ` is defined on the vector space V , it is natural to define a

norm for `:

Definition 3 The norm of the linear functional ` is defined as

‖`‖ ≡ least upper bound
‖`(u)‖
‖u‖

.

It is now possible to define the dual space of V :

*Each function v is mapped to a real number using an integral calculation which must be finite.

16

Definition 4 The set of all continuous linear functionals on V forms a normed vector space

called the dual space V∗, and

‖`‖V∗ = supremum {|`(u)| : u ∈ V , ‖u‖ 6 1}.

The Riesz Representation Theorem provides the necessary conditions for existence and

uniqueness of solutions to the weak boundary value problem.

Theorem 1 (Riesz Representation Theorem) Suppose V is a complete normed vector space.

The dual space V∗ can be identified with V as follows:*

1. For each vector u ∈ V , the linear function ` defined by `(v) = (u, v) belongs to V∗ and

‖`‖V∗ = ‖u‖V ;

2. For each ` ∈ V∗, there exists an unique u ∈ V such that ‖`‖V∗ = ‖u‖V and `(v) = (u, v)

for all v ∈ V .

Suppose the term
´
Ω
κ∇u · ∇v on the left hand side of Equation 2.5 is treated as an

operator.

Define

a(u, v) =

ˆ
Ω

κ∇u · ∇v.

Assume the operator a(·, ·) satisfies the following:

1. a(u, v) = a(v,u). [a is symmetric]

2. a(αu,βv) = αa(u) + βa(v). [a is linear]

3. a(u,u) > 0 (a(u,u) = 0 if and only if u = 0. [a is positive definite]

4. There exists α > 0 such that a(u,u) > α‖u‖2 for all u ∈ V . [a is elliptic]

*Part 1 of Theorem 1 provides a connection between the operations and functions on which the oper-
ations are being used. Part 2 proposes that an unique solution exists.

17

5. There exists β > 0 such that a(u, v) 6 β‖u‖‖v‖ for all u, v ∈ V . [a is bounded]

If a(·, ·) satisfies (1 - 5) above, then a(u, v) = `(v) satisfies the Riesz Representation

Theorem for all v ∈ V and the solution u exists and is unique. For a complete proof,

see [11].

2.2.2 The Galerkin Method

The Galerkin Method is a way to compute the best approximation to the true solution

u from a given finite-dimensional space. Let’s start organizing this method with the

following theorem:

Theorem 2 (Galerkin Theorem) Suppose V is an inner product space with u ∈ V and W is

a finite-dimensional subspace of V .

Then

1. There exists an unique w ∈W such that ‖u−w‖ < ‖u− z‖ for all z ∈W and z 6= w;

2. A vectorw is the best approximation to u from the subspaceW if and only if (u−w, z) = 0

for all z ∈W.

The Galerkin Theorem says that there is a projection of u onto W, that is closest to u in

W. Part 2 of Theorem 2 says that w is the best approximation to u if and only if u−w is

orthogonal to z: that is, the error of the approximate solution to the true solution is zero.

It is a standard result in linear algebra that if W is finite dimensional, then it has a

basis {w1, . . . ,wn} and u ∈ W can be represented by w =
∑n
j=1 αjwj. If we know the

basis w, we can find the αj’s and construct the projection w on u.

From Part 2 in Theorem 2 let z = wi for each i.

18

For i = 1, . . . ,n,

0 =

(
(u−

n∑
j=1

αjwj),wi

)
(orthogonality)

0 = (u−wi) −

n∑
j=1

αj(wj,wi) (linearity)

So, (u,wi) =
∑n
j=1(wj,wi)αj.

Let be the Gram matrix Gij = (wi,wj) of inner products, bi = (u,wi), and, if w =

{w1, . . . ,wn} is an orthonormal basis, αi = (u,wi)
(wi,wi)

. Then the normal equations which

minimize u−w are the solutions of Gα = b.

The above can be summarized in the following theorem:

Theorem 3 Let W be a finite dimensional subspace of V with a basis {w1, . . . ,wn}. Then the

best approximation of u ∈ V is the solution of Gα = b, where Gij = (wi,wj) and bi = (u,wi).

Since we are solving for u, the bi’s are unknown. It is convenient to recast the problem

Gα = b using the energy inner product KU = F, where K = a(wj,wi) is the stiffness

matrix and F = a(u,wi) = `(wi) is the load vector. Hinting toward the finite element

method, the goal is to find U and use the solution to find the bi’s. With w =
∑n
i=1 viwi

as the solution and a(w, vi) = a(u,wi) = `(wi), the original problem 2.6 is now:

Find w ∈W such that a(w, v) = `(v) ∀ v ∈W.

To summarize, w ∈ W is the best approximation of u. If u solves the PDE 2.6,* then

w ∈ W ⊂ V implies that a(u, v) = `(v) for all w ∈ W. So, the projection w ∈ W satisfies

a(w, v) = `(v) for all v ∈W. In turn,

a(u, v) − a(w, v) = 0 ∀v ∈W

a(u−w, v) = 0 ∀v ∈W.

*That is, a(u, v) = `(v) for all v ∈W

19

Therefore, w = projWu is the best approximation of u under the inner product a(·, ·)

since the error of the approximation to the true solution is zero.

2.2.3 The Galerkin Finite Element Method

The Galerkin Finite Element Method is the Galerkin Method on a subspace,W, of piecewise

polynomials, defined on subdomains ofΩ. The collection of subdomains is called a mesh.

Triangular mesh elements do a good job of fitting a given space. When working with

fluid flow however, the triangle faces may not match the direction of flow.

Let T be the interior of a triangular mesh element with its boundary and τh be a

triangulation–a division of the space into triangles–with max triangle diameter h. It is

possible to define a function on each triangle: e.g. ai + bix + ciy is a piecewise linear

function of degree 1. For a triangle, let zi = (xi,yi) for i = 1, ..., 3 represent its corner

coordinates in R2. On each Ti ∈ τh it is possible to uniquely determine values for ai,bi, ci

using the function values zi. If each element of τh has N vertices, written NV , then the

space P1h is the set of continuous linear functions on τh and is a finite dimensional vector

space with dimension NV . Furthermore, each function v ∈ P1h can be represented by a

vector d = [ai bi ci]
T ∈ RNV consisting of the function values at each node.

The space P1h satisfies the conditions of the Riesz Representation Theorem, which

implies one can find an unique solution.*

Define a basis for P1h:

v =

NV∑
i=1

diΨi(xj,yj) = v(xj,yi) = dj for Ψi(xj,yj) =

1 i = j

0 i 6= j

where Ψ is a Lagrange or nodal basis that is ”on” at nodes and ”off” at other points. These

nodal basis functions contribute information only locally, so the stiffness matrix K is

*Part 2 of Theorem 1

20

sparse and computationally inexpensive to solve.

Recall that K = a(wi,wj). To construct the sparse matrix, convert the shape func-

tion, which interpolates the nodes, into the contribution from each basis function: wi =∑
diΨi.

For example, let’s look at triangles T1, T2. For node z1 = (x1,y1), the support of the

basis function Ψ1 is T1 ∪ T2. Ψ1 will contribute information only to triangles T1, T2. By the

definition K = a(wi,wj) the inner products for i, j ∈ NV will be mostly zeros, producing

sparse K:

Kij =

ˆ
Ω

κ∇Ψi · ∇Ψj =
t∑
k=1

ˆ
Tk

κ∇Ψi · ∇Ψj,

where T1, . . . , Tt is supp(Ψi) ∪ supp(Ψj) and κ is a scalar. Build K by iterating over the

triangles. The load vector F is computed similarly:

Fi =

ˆ
Ω

fΨi =

t∑
k=1

ˆ
Tk

fΨi.

Gaussian quadrature is an approach to numerically approximate an integral given some

sample data points–or, ”abscissa”–where a smart choice of abscissa and weights provides

the highest degree of precision possible [3]. It is natural that more sample points provide

a more accurate approximation assuming the quadrature rule fits the problem. Guassian

quadrature rules are derived by requiring exact integration of a polynomial up to some

degree n.

For the problem KU = F, it is necessary then to have a quadrature rule to approximate

the integral over each Tk and the gradient of each Ψi. Since

∇Ψi =

∂Ψi∂x
∂Ψi
∂y

 =

bi
ci

21

the gradient of each Ψi is constant on each TK and

ˆ
TK

κ∇Ψi · ∇Ψj = (∇Ψi · ∇Ψj)
ˆ
TK

κdA.

Approximating the integral for each triangle,

ˆ
TK

κdA ≈ AKκ(x̄K, ȳK)

where AK is the area of TK and (x̄K, ȳK) is the centroid of triangle TK. The load vector is

approximated similarly: ˆ
TK

fΨi ≈ AKf(x̄K, ȳK).

The stiffness matrix K and load vector F are constructed by iterating over the triangles

and nodes, respectively, and accumulating the results in K and F.

2.2.4 Solving KU = F with a Krylov method

The construction of K can be done in a smart way that makes K symmetric. This allows

the solution of KU = F to be approximated efficiently using an iterative Krylov method.

These methods calculate an initial residual r0 = F − KU0–a proxy for the error to the

true solution U∗ based on an initial guess U0–and multiply it against successive powers

of a matrix: the Krylov sequence is {r0, r0K,K2r0, . . . ,Kk−1r0} and the kth Krylov subspace

is the span of this sequence. The residual is then minimized over the Krylov subspace,

resulting in the approximate solution to F− KU∗ = 0.

Definition 5 A matrix A is said to be symmetric if A = AT and positive-definite if xTAx > 0

for all x 6= 0, x ∈ A.

Since K is constructed to be symmetric, it is only necessary that K be positive-definite for

use with the Conjugate Gradient (CG) method. If K is not symmetric, then one should

use the Generalized Minimal Residual (GMRES) method or a preconditioner on K.

22

Definition 6 For a sequence {pn} that converges to a number p, a quadrature rule converges

quadratically if there exists positive constant λ such that

lim
n→∞

|pn+1 − p|

|pn − p|2
= λ.

The condition that K be positive-definite is ensured by the choice of a quadrature rule

that converges quadratically for the integrals over TK. For details about Krylov subspace

methods and an in-depth analysis on CG, GMRES, and other methods and their exten-

sions to nonlinear problems, see C. T. Kelley’s Iterative Methods for Linear and Nonlinear

Equations [20].

2.3 Finite Volume Method

The Finite Volume Method (FVM) is best thought of as a hybrid of finite difference and

finite element methods.*

Assuming conservation of mass, the finite volume problem is to solve

0 =

¨
∆C

∇ · (κ∇u)dA (2.7)

where ∆C is the change over a cell C. A description of the method follows in two-

dimensions but FVM naturally extends to three-space.

Let p be a point in the x − y plane. Define the space in the positive x direction as

East, the space in the negative x direction as West, the space in the positive y direction

as North, and the space in the negative y direction as South.

*A finite difference method is a pointwise approximation of the derivative on a regular, orthogonal
grid.

23

Then

0 =

¨
∆C

∇ · (κ∇u)dA

=

¨
∂

∂x
κ
∂u

∂x
dxdy+

¨
∂

∂y
κ
∂u

∂y
dxdy (2.8)

The first term of 2.8 describes the flux in and out of the cell in the x (E-W) directions.

The
´
dy component equals AE = AW , the areas of the east and west faces, respectively.

Similarly, the second term of 2.8 describes the flux in and out of the cell in the y (N-S)

directions. The
´
dx component equals AN = AS, the ares of the north and south faces,

respectively. It is possible to write the terms in 2.8 as

¨
∂

∂x
κ
∂u

∂x
dxdy = κEAE

(
∂u

∂x

)
E

− κWAW

(
∂u

∂x

)
W¨

∂

∂y
κ
∂u

∂y
dxdy = κNAN

(
∂u

∂y

)
N

− κSAS

(
∂u

∂y

)
S

where the flux across each cell face is approximated by

(
∂u

∂x

)
E

=
uE − uP
∂xEP

(
∂u

∂x

)
W

=
uP − uW
∂xPW(

∂u

∂y

)
N

=
uN − uP
∂yPN

(
∂u

∂y

)
S

=
uP − uS
∂ySP

So 2.8 is equivalent to

0 = κEAE
uE − uP
∂xEP

− κWAW
uP − uW
∂xWP

+ κNAN
uN − uP
∂yNP

− κSAS
uP − uS
∂ySP

Grouping the terms,

(
κEAE

∂xEP
+
κWAW

∂xWP
+
κNAN

∂yNP
+
κSAS

∂ySP

)
uP =

κEAE

∂EP
uE +

κWAW

∂WP
uW +

κNAN

∂xNP
uN +

κSAS

∂ySP
uS

24

is equivalent to the linear system

αPuP = aEuE + aWuW + aSuS + aNuN for each p, (2.9)

where a∗ = κ∗A∗
∂∗P

. To solve the system, find the solution uP at each node.

FVM converges quadratically at best. Approximating the flux across each cell face has

limitations; it is not guaranteed that a regular or uniform discretization can be generated

that would allow for higher order estimates of ∂u
∂x

, ∂u
∂y

. Compared with the finite element

method, FVM is relatively fast and flexible but does not allow much control over the

accuracy of the scheme. It is flexible in the sense that it can approximate accurately

highly irregular domains but does not handle discontinuous solutions very well. In

general, it is recommended for flow simulations where the viscosity is not a dominant

force. For three-dimensional problems, FEM may provide more accurate solutions but

is computationally more expensive. On the other hand, FVM will work faster on 3D

problems at the expense of a more accurate solution, though this is typically acceptable.

2.4 Numerical Algorithms for Solving the Navier-Stokes

Equations

Recall that FVM uses flux equations to discretize a PDE and create finite differences to

approximate the solution. Focusing on the Navier-Stokes equations, there are options

for solving Equations 2.1-2.2, like pressure-based solvers for incompressible flow and

density-based solvers for compressible flow. A general algorithm to solve Equations 2.1-

2.2 works as follows: on each cell, (1) start with an initial guess for pressure, (2) solve for

velocity, and then (3) correct for pressure; then, iterate on each cell at each time step until

the approximate solution converges to the true solution within an acceptable tolerance.

Two numerical algorithms are widely in use in the CFD community today: the SIM-

25

PLE (Semi-Implicit Method for Pressure-Linked Equations) and PISO (Pressure-Implicit

with Splitting of Operators) algorithms. The SIMPLE algorithm is employed for steady-

state problems and the PISO algorithm is used for calculating transient flow problems.

2.4.1 SIMPLE

The SIMPLE algorithm, a heuristic, is quoted from its creator, Suhas Patankar [27]:

1. Guess the Pressure field p∗.

2. Solve the (discretized) Momentum equation 2.1 to obtain u∗.

3. Solve for the Pressure correction p ′.

4. Calculate Pressure p from p∗ and p ′.

5. Use u∗ to update Momentum u.

6. Solve for other values that may impact the flow: e.g. Temperature, Concentration, Turbu-

lence.

7. Set Pressure p = p∗, return to step 2, and repeat the whole procedure until a converged

solution is obtained.

Step 2 first requires that the internal velocity field be computed from the boundary

conditions. Then the mass fluxes at each cell face are approximated and the solution u∗

of Equation 2.9 is computed for each cell. Step 5 corrects the mass fluxes at each cell face

from the pressure update. Momentum is updated with this information.

2.4.2 PISO

The PISO algorithm, developed by Raad Issa [19], follows the SIMPLE algorithm with

added corrector steps:

26

1. Do SIMPLE algorithm steps 1-3.

2. Repeat steps 4-5 for a prescribed number of times.

3. Do SIMPLE algorithm steps 6-7.

The PISO algorithm is more effective for turbulent flow problems, in general.

27

Chapter 3

Methods

This chapter focuses on the methods used to 1) design and construct a computational

mesh, 2) develop a case file for a CFD simulation, and 3) visualize the results of an ideal-

ized terminal alveolar bronchiole duct with expanding alveolar wall. Each of the above

tasks was completed using freely-available open-source software: Gmsh for mesh gener-

ation, OpenFOAM for CFD simulation, and ParaView for post-processing/visualization.

Designing a work flow that incorporates disparate software packages is akin to as-

sembling a 3D puzzle. A small change in one part of the pipeline may require an entire

segment to be reworked. Therefore, several cases of increasing complexity were devel-

oped to test each mesh type and computational solver culminating in a coherent model

that simulates airflow in a terminal alveolar bronchiole duct with biological accuracy.

In Section 3.1, I give a detailed description of OpenFOAM and its use as a general en-

gine for solving a variety of computational problems, including fluid flow. Furthermore,

I explain the development of the simulations that model steady-state, uniform, and oscil-

lating flow in the Duct and Airway-1 Models and flow in an expanding Airway-2 Model.

(See Section 3.3 below for details about the Duct, Airway-1, and Airway-2 Models). The

simulations are summarized in Table 3.1.

In Section 3.3, I provide an overview of Gmsh and give details about the two idealized

28

mesh models designed for verification and simulation: a simple, 2D bronchiole ”Duct

Model” and a 2D bronchiole duct with a single terminal alveolus ”Airway Model”. Two

variants of the Airway Model (Airway-1 and Airway-2) are described in Section 3.3.

In Section 3.4 I briefly discuss the post-processing tools of ParaView used in this

thesis.

3.1 OpenFOAM for Computational Fluid Dynamics

3.1.1 Overview

OpenFOAM (”Open source Field Operation And Manipulation”) is a free and open-

source software toolbox written in C++ for the development of numerical solvers and

pre- and post-processing of solutions to continuum mechanics problems, especially prob-

lems in computational fluid dynamics (CFD). OpenFOAM derives its enormous potential

from the variety of complex solvers, the ability to create new solvers, and its generality.

Many solvers and example cases are fluid flow problems in mechanical and aerospace

engineering; examples include compressible and incompressible flow, Newtonian and

non-Newtonian fluids, stress analysis, and heat transfer. Beyond these conventional ap-

plications, OpenFOAM has been developed and cases have been created for combustion,

electromagnetics, and financial mathematics problems.

For this project, OpenFOAM version 4.1 was run using the Docker open-platform,

version 17.03. Pre-compiled OpenFOAM distributions run in Docker containers have all

of the libraries and source code required to run simulations and can therefore be run

natively on the common Windows and Mac OSX operating systems.

The main modeling goal was to generate an idealized bronchiole duct with terminal

alveolar sac that expands and contracts. Physiologically, the expansion and contraction

causes a pressure change that forces the flow of air into and out of the alveoli. As a

CFD modeling approach, this type of problem is generally referred to as fluid-surface

29

interaction (FSI). Two examples include the immersed boundary and the lattice Boltz-

mann methods. While FSI solvers for OpenFOAM have been developed by independent

authors, they are nonstandard and are not distributed with version 4.1. As will be

discussed below, this makes the modeling of biological and physiological fluid flow in

OpenFOAM a challenge with limited results.

3.1.2 OpenFOAM as a General Computational Engine

OpenFOAM comes out of the box with many solvers designed for ordinary differential

equations including Euler methods, Rosenbrock methods, Runge-Kutta methods, mid-

point and trapezoid-rule methods, and adaptive solvers, although its strength comes

from the many libraries written to solve partial differential equations. The PDE solvers

in OpenFOAM allow a great deal of user control in approximating the solution for a

given problem. The built-in solvers fall into several broad categories: time discretiza-

tion schemes, field operator schemes (e.g. derivative, gradient, flux, etc.), interpolation

schemes, and meshing schemes.

Time discretization of partial differential equations can be tricky. In all but the sim-

plest cases (steady-state flow), one must be careful when choosing an explicit time dis-

cretization technique.

The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for the stabil-

ity of any difference scheme that features advection [3]. Informally, the CFL condition

requires that size of the time step, ∆t, be chosen small enough relative to the size of the

spatial discretization, ∆x. This ensures that the material under transport progress no

more than one computational cell per time step. This is measured with the dimension-

less Courant number. In one dimension, the Courant number is

C =

∣∣∣∣u∆t∆x
∣∣∣∣ 6 Cmax,

30

where u is the magnitude of the velocity. In practice, Cmax = 1. OpenFOAM reports

the Courant number by default at each time step, valuable information that lets the user

witness the stability of the scheme to allow for adjustments in real-time.

General solvers for field schemes also vary. While there is only one solver to calcu-

late the Laplacian and another to calculate divergence, many options for approximating

the gradient are built into OpenFOAM. In particular, there are several flavors each of

least-squares methods, Gauss-Newton methods, and a class of surface-normal gradient

methods. Additionally, OpenFOAM calls interpolation schemes for general use in mesh-

ing and applying the above solvers. Furthermore, OpenFOAM has solvers to calculate

curl, flux, surface and volume integrals, averaging functions, compute cell reduction,

and smoothers.

Linear solvers also form a core component of a finite volume computation to solve for

pressure p and velocity u. Four main types are built-in: pre-conditioned (bi-)conjugate

gradient (PCG/BiPCG), explicit diagonal, geometric-algebraic multi-grid (GAMG), and

smooth solvers. Among theses options, a user can specify preconditioner, solution tol-

erance, iteration limits, and over-/under-relaxation. These solvers are wrapped into the

OpenFOAM implementation of the PISO and SIMPLE algorithms. For practical pur-

poses, OpenFOAM only distinguishes between the variants of these algorithms by the

number of corrector steps and update loops specified using the built-in linear solvers.

3.1.3 OpenFOAM Case File Structure

Solving a CFD problem in OpenFOAM is done by defining a case directory. There are

three required subdirectories in each case file: 1) /0, the initial and boundary conditions;

2) /constant, which contains mesh information and other physical properties; and 3)

/system, which allows the user to define simulation controls. See Figure 3.1 for each

case file structure diagram, classified by solver.

A case requires the initial and boundary conditions for pressure and velocity to be

31

simpleFoam

0

nut

nuTilda

p

polyMesh

U

constant

polyMesh

transportProperties

turbulenceProperties

system

controlDict

fvSchemes

fvSolution

refineMeshDict

icoFoam

0

p

polyMesh

U

constant

polyMesh

transportProperties

system

controlDict

fvSchemes

fvSolution

refineMeshDict

pimpleDyMFoam

0

p

pointDisplacement

polyMesh

U

constant

dynamicMeshDict

polyMesh

transportProperties

turbulenceProperties

system

controlDict

fvSchemes

fvSolution

refineMeshDict

Figure 3.1: OpenFOAM case file structure for each solver type used in this thesis.

defined in the /0 folder.* These files allow the user to define initial conditions for the

internal mesh field(s) and the boundary conditions on each patch face. A comprehensive

list of standard boundary conditions are found in Appendix A.4 of [25].

The /constant folder defines the way OpenFOAM interprets the internal and bound-

ary meshes. OpenFOAM populates this directory with geometry information that is in-

dexed and stored through a user-specified OpenFOAM mesh conversion function. The

following are currently supported for mesh conversion: ANSYS, CFX 4, DAT, Fluent,

*For complicated flow simulations, like those featuring transient or turbulent flow, the /0 directory
may require additional boundary files. For example, the steady state laminar flow solver, simpleFoam,
requires definitions for turbulent viscosity even when used for laminar flow problems.

32

Gambit, Gmsh, I-Deas, KIVA3v, msh, Netgen, pro-STAR, tetgen, VTK, and OBJ. Open-

FOAM is also supplied with a generic mesh generator, blockMesh, which can be used to

generate simple graded and curved meshes. This mesh generator is used in conjunction

with the snappyHexMesh function to convert a generic geometry file. For this project, I

used the conversion utility gmshToFoam to convert Gmsh .msh files to OpenFOAM for-

mat.* Once a mesh file has been converted in OpenFOAM, the /constant folder tells

OpenFOAM how to treat specific points and boundaries. It is essential to classify the

type for each face, wall, and set of points, and to specify how each wall corresponds to

its neighbors. Much of this work is performed by the mesh conversion tool, though the

user usually must examine the output and make adjustments. Additionally, parameter

values for fluid properties, like transport and turbulence, are specified in this directory.

For all cases, the /system folder requires three dictionaries: controlDict for data

input/output control; fvScheme for numerical algorithms; and fvSolution for solution

control.

3.2 Case Models

In this section, I detail the specific cases used in this project. The OpenFOAM code for

each case can be found in Appendix A.

I employed three standard solvers for incompressible flow: simpleFoam is a steady-

state solver for turbulent flow, using the SIMPLE algorithm; icoFoam is a transient

PISO solver for Newtonian fluids; and pimpleDyMFoam–”PISO-SIMPLE Dynamic Mesh”–

a transient solver for turbulent flow of a Newtonian fluid on a moving mesh.

For each of the cases below, kinematic viscosity of air was taken at the body tempera-

ture of 37◦C, which corresponds to a value of ν = 16.69× 10−6 m2/s, from [21]. For each

case, default discretization schemes were used for time, gradient, divergence, Laplacian,

*A full list of standard mesh conversion utilities can be found in Section 3.6.3 of [14].

33

Table 3.1: Summary of simulations performed in this thesis.

Case Model Flow Boundary Conditions Solver

A Duct Steady-State Uniform Inlet simpleFoam

B Duct Transient Uniform Inlet icoFoam

C Duct Transient Oscillating Inlet icoFoam

D Airway-1 Steady-State Uniform Inlet simpleFoam

E Airway-1 Transient Uniform Inlet icoFoam

F Airway-1 Transient Oscillating Inlet icoFoam

G Airway-2 Transient Expanding Alveolus Wall pimpleDyMFoam

interpolation, and surface-normal gradient. The tolerances for the solutions were set to

10−4. For those cases where inlet velocity is defined, the velocity was calculated to force

Reynolds number Re = 1. This choice is supported in the literature: in their in-vitro

experiments, Chhabra and Prasad [4] used Re = 0.1 and Ma et al. [22] used Re = 0.13;

Muller et al. [23] gave a range of Re = 5 × 10−3 − 0.5 in the acinar region; and, Li and

Kleinstreuer [21] considered a Reynolds number range in the the alveolar region to be

0 < Re 6 11.

3.2.1 Duct Models

Case A: Steady-State Flow

To compute the steady-state solution in the Duct Model, the simpleFoam solver was used.

Turbulence parameters, turbulent kinematic viscosity nut and turbulence field variable

nuTilda, from the Spalart-Allmaras [28] model, must be specified since simpleFoam ac-

counts for turbulence. The parameters were set to 0 for laminar flow and turbulence

was explicitly defined as ’laminar’ in the turbulenceProperties file in the /constant

subdirectory. Pressure was supplied with an initial value of atmospheric pressure at the

outlet, zero gradient at the inlet, and no-slip boundaries on the walls. Momentum was

provided a uniform inlet flow vector (0.069542 0 0) m/s. At the outlet, initial momentum

is set to zero gradient; on the walls, momentum is given a no-slip boundary condition.

34

Since simpleFoam is a steady-state solver and does not use time information, ∆T = 1s

and the maximum number of iterations was 1000.

Case B: Constant Transient Flow

For constant transient flow, the icoFoam solver was used. For this solver, it is only

necessary to set boundary conditions for pressure and momentum. Pressure was defined

with zero gradient at the inlet, atmospheric pressure at the outlet, and no-slip boundary

conditions on the walls. Momentum was defined with uniform inlet velocity vector

(0.069542 0 0) m/s, zero gradient flow at the outlet, and no-slip boundary conditions on

the walls. The case was run for 0.1 seconds, ∆t = 10−6. The solution was written every

1000 time-steps.

Case C: Oscillating Transient Flow

For the case with periodic boundary conditions, most of the parameters were inherited

from the above case. The necessary changes were written to the momentum file: the inlet

was supplied with a periodic boundary condition defined as a uniform fixed value by a

uniform sine wave across the boundary. The case was run for 1 second with ∆t = 10−6.

The velocity amplitude vector was (0.069542 0 0) m/s and the frequency was 2 Hz,

which corresponds to a half-second breathing cycle, which was chosen to accelerate

computation time due to the small time step. The solution was written every 1000 time-

steps.

3.2.2 Airway Flow Models

Case D: Steady-State Flow

I used simpleFoam with the Airway-1 Model to compute a steady-state solution. Mo-

mentum was provided a fixed inlet vector (0.0575 0 0) m/s with zero gradient at the

35

outlet. Pressure was set with zero gradient at the inlet and fixed atmospheric pressure

at the inlet. The walls were supplied with a no-slip boundary condition. The maximum

iteration count was 10,000 iterations. ∆ = 1.

Case E: Constant Transient Inlet Flow with Fixed Boundary

The icoFoam solver was used with the Airway-1 Model for unidirectional, laminar flow.

Uniform inlet flow was set as a fixed velocity vector (0.0575 0 0) m/s. With velocity

defined at the inlet, it is standard practice to specify pressure at the outlet; here, pressure

at the outlet was set to atmospheric. No-slip boundary conditions were specified for the

walls of the geometry.

The case was run for 0.01 seconds, ∆t = 10−8. The solution was written every 10 time-

steps. In controlling the PISO algorithm, 2 corrector steps for pressure and momentum

were used, as well as 2 explicit non-orthogonal correctors of the Laplacian term in the

pressure updates.

Case F: Oscillating Transient Inlet Flow with Fixed Boundary

All of the settings for the case of oscillating inlet flow for Airway-1 Model with static

boundary were identical to those in case E. The exception is in the definition of the

momentum boundary conditions. Here, the inlet velocity was defined as a uniform fixed

value across the inlet, where the fixed value was calculated as a sine wave with amplitude

vector (0.0575 0 0) m/s. Due to the slow speed of calculation, the case was run for 0.01

seconds. Thus, frequency was set to f = 100 Hz to calculate one complete instance of

inflow with returning outflow due to the small time step required for numerical stability.

Case G: Transient Flow with Moving Boundary

This model features the idealized airway model wherein the boundaries of the alveolus

sac oscillate and the duct walls remain fixed. This case was run with the Airway-2 Model.

36

The boundary of the alveolus mesh was divided into four parts: top, right, and bottom,

were defined as moving walls; the left alveolus wall was treated as a zeroGradient patch

so that no flux is calculated at any point on that wall; fluid simply passes through. The

left wall of the duct was left as one continuous wall, defined later as an inlet/outlet

patch.

What differentiates this case from all others is the moving boundary. The alveolus

wall expands at a prescribed rate along an input vector to cause a pressure-drop that

draws fluid into the geometry. Therefore, it is essential to define how the mesh moves.

This is done by specifying: 1) mesh motion type; 2) the solver of the cell motion equa-

tions; and 3) the case-specific initial conditions that determine direction and magnitude

of cell motion.

Mesh motion was defined using the dynamicMeshDict dictionary located in the /constant

subdirectory. The natural choice for the mesh solver is displacementLaplacian of the

dynamicMotionSolverFvMesh class. This solves the Laplacian on each cell center to cal-

culate motion displacement. (An alternative is to solve the Laplacian for motion velocity,

but the input parameters are very sensitive and tuning is difficult.) The coefficients of the

Laplacian are calculated for each of the three expanding alveolus faces using diffusion.

Here, quadratic inverseDistance was chosen as a robust method, though in future ap-

plications directional diffusivity could be used to incorporate the surface normal for

each face.

I used the cellDisplacement solver in the fvSolution dictionary, located in /system

subdirectory to solve the mesh motion equations. The default option is to use a precon-

ditioned conjugate gradient (PCG) method with a Simplified Diagonal-based Incomplete

Cholesky (DIC) preconditioner. Here I should mention that the tolerance for this solver

as well as for p, p correctors, U, and UFinal were all set to 10−4, also defined in the

fvSolution dictionary.

The initial conditions for the solver are defined in the pointDisplacement file lo-

37

cated in the /0 subdirectory. This file provides input to the displacementLaplacian

solver, which then computes motion by the quadratic inverseDistance method men-

tioned above. Here, the specific alveolus wall motion is defined. I chose the type

oscillatingDisplacement; the displacement oscillates by d = A sin(ωx), where A is

the amplitude of the displacement wave and ω = 2πf, with f the frequency in Hz.

An amplitude corresponding to a 15.6% increase in alveolar sac area was chosen to be

consistent with [16], which saw a 15.6% expansion of the alveolar sac volume. See Sec-

tion 1.2.4 above for details. ω was set to 62.8318, corresponding to a 0.1s breathing cycle.

Although this is not biologically accurate, it was chosen to speed up computation.

The internal pressure field was set to 0 relative to the atmosphere. The inlet/outlet

was given the pressure boundary condition inletOutlet from Appendix A.4 of standard

boundary conditions in the OpenFOAM User Guide [14]:

This boundary condition provides a generic outflow condition, with specified

inflow for the case of return flow.

In practice, it is typical to define pressure 0 relative to atmospheric for generic outflow

condition, and specify 0 relative pressure for inflow. The remaining walls were given a

zeroGradient boundary condition. Momentum U was initialized with uniform velocity

vector (0 0 0) m/s. The inlet/outlet patch is defined with type pressureInletOutletVelocity;

again from Appendix A.4 in [14]:

This velocity inlet/outlet boundary condition is applied to pressure bound-

aries where the pressure is specified. A zero-gradient condition is applied for

outflow (as defined by the flux); for inflow, the velocity is obtained from the

patch-face normal component of the internal-cell value.

The alveolar walls are of type movingWallVelocity, a no-slip boundary condition for

moving walls. This was done to ensure that the fluid is pulled in by the wall movement

38

as it would happen physiologically. The top and bottom duct walls are given a no-slip

boundary condition.

The solver pimpleDyMFoam is a variant of the pimpleFoam solver, an incompressible,

transient solver with generic turbulence modeling. Then turbulenceProperties is set

to laminar; no turbulence variables need definition. The dictionary fvSolution specifies

the solvers for the components of the PISO-SIMPLE algorithm. For the PISO-SIMPLE

algorithm, nCorrectors sets the number of times the pressure and momentum com-

ponents are corrected for each time step. In this case, nCorrectors was set to 2. The

non-orthogonal correction of the Laplacian was set to 2 correctors. Lastly, the number of

times the solver loops over the entire system per time-step is set by nOuterCorrectors;

here it was 2. Case controls are stipulated in controlDict. The case was run for 0.025

seconds, ∆t = 10−8. The solution was written every 1000 time steps.

3.3 Mesh Generation with Gmsh

Gmsh is a free and open-source three-dimensional finite element mesh generator with

built-in pre- and post-processing facilities [10]. Gmsh provides users the option to build

geometries and generate meshes either via a simple graphical user interface or by editing

text files written in the Gmsh scripting language. A major advantage of the scripting lan-

guage approach is that geometries can be drafted quickly with place-holders for certain

dimension values and rescaled easily by quick changes to the code. Elementary objects

like points, lines, and arcs are used to define surfaces which are in turn used to define

volumes to be meshed. The default mesh generator produces unstructured meshes com-

posed of triangles in two dimensions and a combination of tetrahedra and hexahedra in

three dimensions using the Delaunay triangulation algorithm [7]. Structured meshes are

generated by transfinite interpolation algorithm [12].

In this work, (2) two-dimensional structured meshes were created using Gmsh 2.16.0.

39

Table 3.2: Geometry specifications for the Duct and Airway Models. Model dimensions
are rounded to simplify mesh construction from Harding and Robinson’s Alveolar Sac
Model [16].

Current Study Literature Comparison

Duct Model Pipe Model Alveolar Sac Model (2010)

Duct Length (mm) 0.58 0.58 0.583
Duct Diameter (mm) 0.24 0.24 0.23
Alveolus Radius (mm) – 0.15 0.145

The first, a pipe-like bronchiole Duct Model, was constructed to show that meshes cre-

ated in Gmsh can be used with several different OpenFOAM case solvers: simpleFoam

for steady-state flow and icoFoam for transient laminar flow with periodic boundary

conditions. In order to test model parameters, case set up, and the effect of different

OpenFOAM solvers, a simple 2D duct geometry was constructed and a structured mesh

generated. The Airway Model was created as an idealized terminal alveolated bron-

chiole duct and a structured mesh was generated. The dimensions of the Duct and

Airway Models are rounded from the dimensions of Harding and Robinson’s Alveo-

lar Sac Model [16]. The dimensions of the current study compared to the Alveolar Sac

Model are given in Table 3.2.

The Duct Model is a vertical cross section of an axisymmetric pipe representing a

bronchiole duct with patch faces ”inlet”, ”outlet”, ”top” and ”bottom”, and ”frontAnd-

Back”. Since OpenFOAM is a FVM solver, it was necessary to extrude both models

by some small amount to create a volume. The ”frontAndBack” patch therefore refers

to the two patch faces in the z-plane with depth 0.01 mm. Specifications made in the

OpenFOAM case file signal that this patch can be ignored so that flow is solved in 2D.

The Airway Model was constructed as an idealized terminal alveolated airway, an

extension of the Duct Model. This geometry was built for use with three solvers:

simpleFoam for steady-state flow, icoFoam for constant and periodic transient flow, and

pimpleDyMFoam for pressure-driven transient flow with a moving boundary. This model

40

(a) Duct Model. (b) Airway Model.

Figure 3.2: Structured meshes generated in Gmsh by transfinite interpolation for the
current study.

features a structured mesh on a polar coordinate system. This construction was observed

to tolerate larger time steps than the unstructured prism-based meshes. The geometry

was constructed starting with the alveolus such that the right edge of the duct is a con-

cave arc.

A summary of mesh details is given in Table 3.3.

Table 3.3: Mesh details for Duct and Airway Models.

Model Points Surface Faces Internal Faces Hexahedral Elements

Duct 1,482 2,792 1,312 684
Airway 1,406 2,646 1,242 648

Airway Model Variants

Two variants of the Airway Model were created. In the first variant, Airway-1 (Fig-

ure 3.3a), used with cases D-F, the inlet was divided into three sections covering approx-

imately 25%, 50%, and 25% of the area, respectively. The middle half defined as the inlet

and the top and bottom quarters defined as the outlet. Mass must be conserved in the

system, so it is necessary to define explicit inlet and outlet patches to allow pressure to

equilibrate. Otherwise, the OpenFOAM solver will crash. The second variant, Airway-

2 (Figure 3.3b), used with case G, features one edge defined as both inlet and outlet.

41

The Airway-2 Model takes advantage of a standard OpenFOAM boundary condition

(a) Airway-1 Model. The left face is subdi-
vided into three separate patches: the mid-
dle defined as the inlet and the top and bot-
tom both defined as the outlet.

(b) Airway-2 Model has only
one face. When used with the
pressureInletOutletVelocity boundary
condition, OpenFOAM calculates which
patch face cells are inlet and outlet.

Figure 3.3: Airway Model Variants

pressureInletOutletVelocity where the boundary is treated as either inlet or outlet

depending on the neighboring cells:

This velocity inlet/outlet boundary condition is applied to pressure bound-

aries where the pressure is specified. A zero-gradient condition is applied for

outflow (as defined by the flux); for inflow, the velocity is obtained from the

patch-face normal component of the internal-cell value [25].

The meshes built in Gmsh were imported to OpenFOAM using the gmshToFoam util-

ity. The mesh was refined in the x − y direction using the refineMesh utility. By de-

fault, refineMesh is three directional. Bi-directional refinement requires definition in

a special refineMeshDict dictionary, located in the /system subdirectory. The com-

mand transformPoints -scale ’(0.001 0.001 0.001)’ scales the mesh to millimeters.

42

A mesh check was performed on both the pipe and airway models using checkMesh, re-

turning an OK check.

OpenFOAM-Specific Meshing Considerations

Special consideration was taken when making the alveolated terminal airway mesh

for use with the OpenFOAM dynamic mesh solver, pimpleDyMFoam. In this case, an

OpenFOAM dictionary, dynamicMeshDict, specifies how the mesh is manipulated in

two ways: manipulation where the mesh topology is changed and manipulation where

it is not. The dynamicFvMesh solvers are used in those cases where the mesh topol-

ogy is left unchanged; e.g. translation, rotation, stretching and compressing cells. The

topoChangerFvMesh solvers are used in those cases where the mesh topology is changed;

e.g. cases of sliding mesh interfaces, cell addition and subtraction. Here, the mesh topol-

ogy was left unchanged and a dynamicFvMesh solver was employed. During mesh design

of the Airway Models, the alveolar surface was subdivided into four subregions: three

boundary arcs on the top, bottom, and right of the sac were provided parameter defini-

tions for expansion and contraction; the remaining patch region was incorporated into

the main duct upon meshing and patch definition. This allowed the dynamicMeshDict to

be written in a way that permitted the outward expansion and contraction of the alveolar

surface and it was done in order to prevent divergence in the dynamicFvMesh solver.

3.4 Post-Processing in ParaView

Post-processing for this project was done using ParaView 5.3.0. ParaView is a general

open-source visualization toolkit developed by Kitware, Inc., Los Alamos National Lab-

oratory, and Sandia National Laboratory, with funding from the Department of Energy.

ParaView supports dozens of file types and is notable for its flexibility across scientific

disciplines. The Glyph Vector option was used to show the direction of flow.

43

Chapter 4

Results

4.1 Duct Model

4.1.1 Case A: Steady-State Flow and Case B: Constant Transient Flow

For modeling the steady-state solution in the duct, the SIMPLE solution converged

in 45 iterations. The parabolic flow velocity profile seen in Figure 4.1(a) verifies that

OpenFOAM calculates the solution correctly; parabolic duct flow was observed in [16]

and [22]. The one-directional transient laminar case demonstrates the same pattern: after

0.1 seconds, the flow profile is identical to the steady state solution. This solution was

calculated in 30.93 seconds. The maximum Courant number was 0.0679313.

4.1.2 Case C: Oscillating Transient Flow

For the case of oscillating transient flow through the duct, see Figures 4.1(c)-(f). The

solution was computed for one second to simulate two complete breathing cycles with

flow coming from only one opening, as it would in a bronchiole duct. The solution was

computed in 317.38 seconds. The Courant number never grew larger than 2.12587×10−6.

At time 0.125s, the flow is fastest in the positive x-direction. The magnitude in that

44

direction decreases and at 0.25s the direction changes. It can be seen at in 4.1(d) & (f)

that the flow profile is not uniform across the geometry when the direction changes.

Flow separates into distinct channels: one through the center and channels along the

top and bottom duct walls that flow opposite of the center channel. Recirculation was

observed in two zones near the inlet above and below the middle stream. At 0.375s, the

magnitude of the velocity profile is the greatest in the negative x-direction.

One might expect that if Figure 4.1(c) were flipped across the y-axis, then the result

should look like the outflow when the magnitude is the greatest in the negative direction.

Looking closely at Figure 4.1(e), the characteristic diffusion of the velocity seen in the

heat map of right-left flow is in the same place as the left-right flows; Figure 4.1(e) is

not mirror symmetric as expected. My proposed explanation: whereas the boundary

condition on the inlet is given a specific value at each time step, the condition on the

outlet is unassuming. Velocity at the outlet is defined as ”zero gradient”, from Appendix

A.4 in [14]:

This boundary condition applies a zero-gradient condition from the patch

internal field onto the patch faces.

That is, at 0.375s the inward velocity into the right hand side is taken from internal patch

faces, so the diffusion witnessed on the left hand side of Figure 4.1(c) is absent from the

right hand side of Figure 4.1(e). The diffusion on the left hand side of Figure 4.1(e)

comes from the flow moving to the external geometry where no boundary conditions

are defined. Figure 4.1(f) shows the start of recirculation and also a divided profile

similar to Figure 4.1(d) at 0.5 seconds as the sinusoidal velocity vector changes sign to

point in the positive x-direction.

45

(a) Converged SIMPLE solution on the 2D
pipe.

(b) Fully developed velocity profile at 0.1s in
the 2D pipe using the icoFoam solver.

(c) 0.125s. (d) 0.25s.

(e) 0.375s. (f) 0.5s.

Figure 4.1: Velocity profiles for 2D pipe flow. (a) The steady state solution using
simpleFoam converged in 45 iterations. (b) Fully developed flow after 0.1 seconds using
icoFoam. (c) - (f) Directed flow profiles for the 2D duct with a sinusoidal periodic bound-
ary conditions at the inlet using icoFoam; frequency f = 2 Hz, amplitude A = 0.069542
m/s.

46

4.2 Airway Model

To compute the steady-state solution of flow into the airway model, mesh Model 2-1,

with separate inlet and outlet, was employed. Attempts at a steady-state solution using

the same geometry with differently defined inlets and outlets caused OpenFOAM to

diverge or crash.

4.2.1 Case D: Steady-State Flow and Case E: Constant Transient Flow

For steady-state flow, the simpleFoam solver was used. The SIMPLE algorithm converged

in 72 iterations in 0.46 seconds. The greatest velocity magnitude was observed on the left

hand side at the transitions between inlet and outlet. At the inlet, inward flow pressing

against the internal field caused the fluid to turn back toward the outlets to conserve

momentum and pressure. To the left of the middle of the duct, flow moved outward

before turning inward from the top and bottom walls, forming two recirculation zones

in the middle of the duct. Straight through the centerline of the geometry, toward the

alveolar sac, flow moved uniformly in the x-direction. At the transition from duct to

alveolus, some recirculation was observed. Toward the top and bottom edges of the sac,

flow is pushed outward as it approaches the fixed boundary. The glyph vectors illustrate

that low-magnitude flow pushed against the alveolar sac flows, practically demanding

expansion of the walls.

For the case of transient flow into the airway model, the icoFoam solver was used. Im-

mediately after the case-start, flow in the airway appeared similar to Figure 4.2, though

no recirculation in the alveolar sac was observed. The flow entered at the inlet and the

greatest velocity magnitude was observed at the transition to the outlet. For each of Fig-

ure 4.3(a)-(e), recirculation zones in the center of the duct were observed. Recirculation

in the alveolar sac is best described as chaotic; no eddies or pattern-like recirculation

was observed. The icoFoam solver required 968.62 seconds to compute the solution. The

47

Figure 4.2: Steady state solution for the idealized terminal alveolated airway using
simpleFoam. The steady state solution converged in 72 iterations.

Courant number never exceeded maximum value 0.000972216.

4.2.2 Case F: Oscillating Transient Flow

The patterns in the airway model were more complex when the boundary conditions

were periodic. The solution was computed using icoFoam. After only 0.0001 seconds,

the beginnings of recirculation can be seen throughout the geometry. At 0.0025 seconds,

the peak of inflow, the flow was similar to the simpleFoam and unidirectional icoFoam

solutions. At time 0.005 seconds, when the direction of flow is zero, the velocity profile

becomes more interesting. Recirculation was observed near the inlet/outlets, near the

center of the airway duct, and in the alveolar sac. From left to right, The first recirculation

zones were symmetric across the centerline. Recirculation in the alveolus appears more

chaotic. At 0.0075 seconds, the reverse flow profile was fully developed: outflow from

the ”inlet” and inward through the ”outlets”. The normal recirculation zones found

48

(a) 0.0001s (b) 0.0025s

(c) 0.005s (d) 0.0075s

(e) 0.01s

Figure 4.3: Transient laminar solutions on the idealized terminal alveolated Airway-1
Model using icoFoam. The inlet velocity is uniform 0.0575 m/s in the x-direction.

49

in the center of the airway duct, also seen in Figures 4.2 and 4.3(a)-(e) were observed

here. At 0.01 seconds, multiple recirculation zones were observed, as in 4.4(c): near the

inlet/outlets, to the left of the middle of the duct, and in the alveolar sac. These last two

recirculation zones appear to be closer to axisymmetric than in 4.4(c). The solution was

computed in 875.49 seconds. The Courant number never exceeded 3.99728× 10−07.

4.2.3 Case G: Transient Flow with Expanding Boundary

The case of flow into 2D airway with moving boundary was computed using the pimple-

DyMFoam solver. The alveolar sac walls were expanded 15.6% using the displacement-

Laplacian function. At 0.0001 seconds, when the rate of expansion of the alveolus was

greatest, the largest magnitude of velocity was observed, as seen in Figure 4.5(a). As

the sac expansion slows down, the fluid enters the airway at a decreasing rate, as seen

in Figures 4.5(b)-(f). For each of Figures 4.5(a)-(e), flow into the airway was uniform

in the x-direction throughout the duct. In the sac, the fluid moves outward toward

the expanding walls. Due to the mesh construction, the expansion of the cells by the

dynamic mesh motion solvers warped the mesh around the vertices used to construct

the mesh. Since a circular/spherical model was one geometry option among several

polyhedral-based models (see [21], [16], [4], [23], and [22]), this pinched circular

geometry, which enjoyed the macroscopy of a general lung model but also the local flare

of a biological alveolus at simulation end-time, was deemed acceptable for the case.

At the latest time in Figure 4.5(f), 0.025 seconds, the alveolus walls stopped expanding

and fluid striking the alveolar sac walls began to recirculate in the sac. Fluid in the duct

separated into two distinct flow directions: in the top and bottom of the duct, fluid

pointed outward; in the middle of the duct, fluid pointed toward the alveolus sac. For

this case, the pimpleDyMFoam solver required 6020.94 seconds. The maximum Courant

number was 3.02816× 10−8.

Unidirectional wall expansion was the only case for which a solution could be found.

50

(a) 0.0001s (b) 0.0025s

(c) 0.005s (d) 0.0075s

(e) 0.01s

Figure 4.4: Transient laminar solutions with periodic boundary conditions defined on
the inlet for the idealized terminal alveolated Airway-1 Model using icoFoam. The inlet
velocity vector was sinusoidal: (0.0575 0 0) m/s with frequency f = 100 Hz.

51

I attempted to define the inlet and outlets in such a way that would permit the fluid to

flow out of the airway when the sac compressed and also attempted the simulation with

the Airway-1 Model, but each trial resulted in divergence. Typically, the Courant num-

ber grew exponentially and pimpleDyMFoam crashed at 0.025004 seconds; the computed

velocity diverged to infinity.

52

(a) 0.0001s (b) 0.005s

(c) 0.01s (d) 0.015s

(e) 0.02s (f) 0.025s

Figure 4.5: Transient laminar solutions on the idealized terminal alveolated airway with
moving boundary using pimpleDyMFoam. The walls of the alveolar sac stretch outward
with sinusoidal cell displacement equivalent to a 15.6%; frequency f = 10 Hz, amplitude
A = 2.34 × 10−5mm. The inlet and outlet were defined on the same edge. Neither inlet
nor outlet was provided an initial condition for flow; flow was driven by wall expansion.

53

Chapter 5

Discussion

A growing body of research modeling airflow into the lungs greatly motivates the need

for free and open-source software that is widely distributed and easy to implement. This

would democratize research and accelerate the pace of discovery. Many researchers,

scientists, and engineers in the developing world use OpenFOAM for their work.* Many

key advancements to OpenFOAM are coming from researchers in Europe, India, and

China.† While many users are solving problems in mechanical or aerospace engineering,

popularizing the use of OpenFOAM for problems in biomathematics and mathematical

physiology is central to the development of new cases, solvers, and distributions for easy

use.

In this chapter, I will compare results in the airway model, discuss some issues with

OpenFOAM that must be addressed for widespread use to occur, and outline future

avenues of development of and research using OpenFOAM.

*This was determined by extensive searching through the online CFD community websites; e.g. the
user forum of cfd-online.com.

†The online comments/contributions of Bernhard Gschaider, Hrvoje Jasak, and Bruno Santos on cfd-
online.com and the course site of CFD with OpenSource Software by Hakan Nilsson (Chalmers University of
Technology, http://www.tfd.chalmers.se/~hani/kurser/OS CFD/) were useful.

54

5.1 Airway Model Comparisons

5.1.1 Steady State vs. Transient Flow

Comparing the steady-state solution and the transient solutions for the airway model,

there is strong agreement in the recirculation patterns in the main duct. Flow near the

inlet and outlets agree for both the steady-state solution and all transient solutions.

At t = 0.0001s, the recirculation zones are axisymmetric across the centerline. Flow

in the duct and in the alveolus are pointed back toward the recirculation zones except

for an outward bulge in lower right quadrant of the alveolus. This is possibly due to

numerical errors associated with the relatively low tolerances that were used to allow

for the solution to be computed quickly.

After t = 0.0001s, the recirculation zones are fixed and symmetric across the center-

line axis. Between the recirculation zones and the left boundary of the alveolar sac, fluid

moves inward from the walls to broadly recirculate down the centerline. The interac-

tion of fluid in the duct with the fluid at the left boundary of the alveolus–similar to a

brackish confluence–determines the chaotic nature of flow in the alveolus.

The change in the curl of the vector field, where inflow in the duct meets outflow from

the alveolus, was witnessed between time steps as a traveling wavefront. This wavefront

can be seen along the lower wall of the duct at times t = 0.0025s and t = 0.005s, moving

closer to the left boundary of the alveolus. No wavefront is observed along the upper

wall of the duct. In these time-steps, the recirculation pattern in the alveolus is chaotic.

At t = 0.0075s, flow in the alveolus appears to be a saddle node with the unstable

equilibrium located at the center of the alveolus. Inward flow originates from the upper

left and lower right quadrants of the alveolar sac walls, the wavefront along the top

wall of the duct now visible. In the final time-step, the wavefront is again visible on

the bottom; both the top and bottom wavefronts appear to move away from the left

sac boundary. Flow inside the sac is again chaotic, similar to times t = 0.0025s and

55

(a) t = 0.0001s. (b) t = 0.01s. (c) Steady state.

Figure 5.1: Recirculation zones for airway model in the duct center. The vector fields of
the transient solution at t = 0.01s (b) and the steady state solution (c) are highly similar.

t = 0.005s. The steady state solution shows wavefronts on along both top and bottom of

the duct in roughly the same position as at time t = 0.01s.

5.1.2 Transient Flow With and Without Periodic Boundary Conditions

It is important to compare the behavior of the solver icoFoam on the airway model with

uniform inlet flow (Figure 4.3, case E) and sinusoidal inlet flow (Figure 4.4, case F). The

maximum velocity between both cases is equal while the minima of the two cases are

not the same: 1.892 × 10−11 for oscillating flow versus 1.852 × 10−13 for constant flow.

Making a side-by-side comparison of (a)-(e) in Figures 4.3 and 4.4, it is clear that the

flow in the alveolus in case F is less chaotic.

At t = 0.0001s, flow inside the alveolus of case E (Figure 4.3(a)) is near zero, pointed

outward from the sac. In case F (Figure 4.4, recirculation patterns are immediately

apparent on the interior and the top and bottom of the left boundary of the alveolus.

On the other hand, recirculation in the duct is only observed in case E. Flow in the

duct of case F is laminar, symmetric across the x-axis. A likely explanation is that the

uniform inlet flow hits a wall of zero velocity fluid, causing recirculation in the duct.

Sinusoidal inlet flow permits smoother flow through the centerline with recirculation

observed nearer to the boundaries, especially around the alveolus.

56

(a) Steady-state. (b) t = 0.0001s. (c) t = 0.0025s.

(d) t = 0.005s. (e) t = 0.0075s. (f) t = 0.01s.

Figure 5.2: Flow patterns in the alveolus and traveling wavefronts for the steady-state
(a) and transient (b)-(f) solutions. The steady-state wavefront of ”brackish” fluid can be
seen in 5.2(a) at the bottom and top left of the sac boundary. The wavefront is seen only
in the bottom of the duct in (c) and (d). It approaches the alveolus boundary at each
additional time step. The wavefront is then visible in the upper portion of (e). Chaotic
recirculation is observed for the transient solutions (c)-(f). A saddle point is observed in
the center of the sac in (e).

57

At t = 0.0025s, flow in the duct is identical for cases E and F. The confluence observed

in the lower portion of the duct in Figure 4.3(b) is observed in both the upper and lower

portions of the duct in case F. As mentioned above, recirculation in the alveolus in case

E is chaotic. Case F demonstrates more obvious pattern behavior: flow in the alveolus

is largely unaffected by changes in velocity. At t = 0.005s, recirculation in the alveolus

of case E is chaotic. In case F, two recirculation zones are visible in the duct: one

immediately after the inlet/outlet and a second closer to the middle of the duct. Flow

out of the alveolus moves down the centerline. Flow enters the alveolus from the top

and bottom of the duct. Recirculation occurs when the flow that follows the top and

bottom outer boundaries of the sac meet at the middle of the right wall of the alveolus.

For times t = 0.0075s and 0.01s, the comparisons of cases E and F are similar to those at

times t = 0.0025s and 0.005s, though the direction of flow for case F is reversed: chaotic

recirculation is observed in case E; smooth, laminar recirculation is observed in case F.

5.1.3 Pressure-Driven Flow with Moving Boundary

It is important to note that the case of flow in the airway due to expanding alveolar

sac walls has the least maximum velocity of any case examined, 2.685× 10−3 m/s. This

directly impacts the Reynolds number. Since the characteristic diameter of the mesh

is 0.30mm, the diameter of the sac, this momentum corresponds to Reynolds number

Re = 0.04826. This value agrees with the Reynolds numbers mentioned in the literature

in Section 3.2: the Reynolds number falls within the ranges of Muller et al. [23] and Li

and Kleinstreuer [21].

For all time-steps during alveolus wall expansion, fluid enters and passes through the

duct uniformly. Flow in the sac moves outward directly toward the expanding segments

of wall. See Figures 4.5(a)-(d).

Through the course of the simulation, the magnitude of the velocity field decreases

at each point. At t = 0.025s, the alveolus reached its maximum size. The magnitude

58

(a) OpenFOAM dynamic mesh solver auto-
matically calculates the boundary type along
the left patch faces as either inlet or outlet.

(b) Recirculation in the airway model terminal
sac. Inflow comes down the centerline through
the duct, spreads to the outer walls, and flows
out through channels at the top and bottom of
the duct-sac boundary.

Figure 5.3: A detailed view of the fluid dynamics at final time t = 0.025s in the expanding
sac airway model.

59

of the velocity field at each point is near zero, though one can see the direction of the

velocity vector at each point: fluid enters the mesh uniformly through the inlet down

the centerline of the duct, continuing to the right boundary of the alveolus. At the right

boundary, fluid begins to recirculate, diverging from the center to follow the boundary

edge around the top and bottom of the alveolus. See Figure 5.3b. The velocity field

then flows along the top and bottom of the duct outward through the outlet. Recall that

the left edge of the mesh is defined as type pressureInletOutletVelocity: the solver

calculates if a given cell face is an inlet or outlet; the type is not pre-determined.

In an actual human lung, airflow in a bronchiole duct diffuses along a concentration

gradient caused by the uptake of oxygen (O2) and the expiration of carbon dioxide (CO2),

resulting in bi-directional flow in the duct [17]. In evaluating the use of OpenFOAM for

modeling lung physiology, it is of central importance that the software automatically

computes bi-directional flow for the alveolus with moving wall, in addition to unidirec-

tional flow when the wall is only expanding. Here, approximately 2/3 of the left patch

faces are calculated as the outlet; the remaining 1/3 of patch faces are calculated as the

inlet. See Figure 5.3a. Since OpenFOAM calculates bi-directional flow in addition to uni-

directional flow under expanding wall, it has been shown that OpenFOAM can model

physiologically realistic flow in simplified and idealized geometries.

5.2 Challenges

The potential of using OpenFOAM for mathematical physiology is bounded by its ac-

cessibility. The learning curve is very steep: documentation is poor and very disjointed.

Error messages are frequently uninformative.

While the simpleFoam and icoFoam solvers are well-documented, documentation for

the pimpleDyMFoam solver and necessary files was sparse at best and misleading at worst.

To illustrate my point, consider dynamicMotionSolverFvMesh, the dynamic mesh engine

60

that calculates mesh motion and provides feedback to the solver for simulation whose

only documentation comes from OpenFOAMWiki, a community development site run

by Bernhard Gschaider of HFD Research:

dynamicMotionSolverFvMesh–This solver morphs the mesh around a speci-

fied set of boundaries. The meshing motion is calculated based on the pres-

sures on those boundaries. In turn, the dynamicMotionSolverFvMesh provides

feedback to the fluid simulation. It alters the velocity boundary conditions (U

field) on the included boundaries to specify the local velocity of the defined

body. This local velocity includes coupled translation and rotational motions,

if permitted. This mesh control is almost exclusively used to solve problems

involving rigid body motion. [26]

The above description initially suggests that the solver is well-suited for the pur-

poses of pressure-driven flow in an expanding terminal alveolar sac. However, the last

sentence may mislead a new user to find some other method if the problem is not a

rigid body problem. To highlight this point, the tutorial associated with this focuses

exclusively on a six degree-of-freedom rigid body problem and is narrowly written, as

though the solver could only be used for any other purpose. The solver that is detailed is

sixDoFRigidBodyMotion and the sixDoFRigidBodyMotionCoeffs field defines mesh mor-

phing control, six degrees of freedom solver control, body, force, and motion definitions,

and output control. Neither the documentation nor tutorial describe the general solvers

included in the general mesh motion solver library, which currently contains 10 classes

of mesh motion solvers that are not Six Degrees of Freedom solvers. Additionally, the

documentation and tutorial do not direct the user to define a solver in the fvSolution

dictionary, located in /system, a necessary step.

This example demonstrates a disadvantage that pervades OpenFOAM: much of the

documentation and many of the tutorials are written narrowly. This may convince new

users that their problem is out of the reach of the current distribution of OpenFOAM.

61

0 Foam::error::printStack(Foam::Ostream&) at ??:?

1 Foam::sigFpe::sigHandler(int) at ??:?

2 ? in "/lib/x86_64-linux-gnu/libc.so.6"

3 Foam::GAMGSolver::scale(Foam::Field<double>&,

Foam::Field<double>&, Foam::lduMatrix const&,

Foam::FieldField<Foam::Field, double> const&,

Foam::UPtrList<Foam::lduInterfaceField const> const&,

Foam::Field<double> const&, unsigned char) const at ??:?

4 Foam::GAMGSolver::Vcycle(Foam::PtrList<Foam::lduMatrix::smoother> const&,

Foam::Field<double>&, Foam::Field<double> const&,

Foam::Field<double>&, Foam::Field<double>&, Foam::Field<double>&,

Foam::Field<double>&, Foam::Field<double>&,

Foam::PtrList<Foam::Field<double> >&,

Foam::PtrList<Foam::Field<double> >&, unsigned char) const at ??:?

5 Foam::GAMGSolver::solve(Foam::Field<double>&,

Foam::Field<double> const&, unsigned char) const at ??:?

6 Foam::fvMatrix<double>::solveSegregated(Foam::dictionary const&) at ??:?

7 Foam::fvMatrix<double>::solve(Foam::dictionary const&) at ??:?

8 ? at ??:?

9 __libc_start_main in "/lib/x86_64-linux-gnu/libc.so.6"

10 ? at ??:?

Figure 5.4: Sample error messages, which are frequently uninformative.

While a determined user may find success getting results despite this deficiency, a more

general approach is essential for new users.

Error messages in OpenFOAM can be notoriously cryptic, and even useless. This

can make debugging very challenging. For example, consider a case mentioned in 4.2.3.

There, I explained that no solution could be found for the case where the alveolar sac

contracted after expansion. When the pimpleDyMFoam solver crashed, it was preceded by

exponential growth in the Courant number. The error message:

Line 1 says that a floating point error occurred; i.e. the solver divided by 0 at that

moment in the calculation. Lines 3-5 say that the geometric-algebraic multigrid (GAMG)

solver crashed. Since this solver was used in the pressure-corrector step, it gives the hint

that pressure is poorly defined. Lines 6-7 suggest the solver crashed during some matrix

calculation. Lines 8-10 are unintelligible output. Error messages like this are typical.

62

While some information can be gleaned that tells the user there is an issue in a general

case setup, all details must be inferred. One might conclude that the boundary condi-

tions on pressure should be reworked. There are many standard boundary conditions

that could be used for situations when pressure is specified at the inlet or outlet. But

valuable time may be spent testing out dozens of options that may not be applicable

even though a generic description–e.g. Appendix A.4 [25]–suggests it is. On the other

hand, the model geometry may be poorly constructed or patch faces poorly defined

and, as a result, do not work with the case solver. Finding the perfect balance between a

properly-constructed mesh and a correctly-defined case file, often with little help from

the User Guide [14] or the online OpenFOAM community, could sidetrack a new user

indefinitely.

5.3 Future Work

This project serves as a proof-of-concept of the use of OpenFOAM for physiology mod-

eling. Further research into computational fluid dynamics problems in mathematical

biology/physiology will drive the need for inexpensive software solutions. Before that

happens, several milestones must be reached.

Detailed tutorials are needed and in particular, an in-depth tutorial of the airway

model with expanding boundary is necessary. A tutorial should include general param-

eter settings and solver definitions necessary to build a case with expanding boundary

using pimpleDyMFoam. It is also essential to create a template for a moving boundary

case where the topology is left unchanged. Modeling of the lung in OpenFOAM, as well

as the heart, would greatly benefit from a general template.

Documentation must be brought to the level of other open-source mathematical lan-

guage/software, e.g. Octave, R, Sage, and others. The lack of advanced documentation

is a great disadvantage when considering OpenFOAM versus proprietary alternatives.

63

Finally, OpenFOAM must move from the command line to a graphical user interface.

More rapid development will likely come on the heels of a system that attracts users.

This may sound like too much emphasis is placed on aesthetic but is a valid reason new

users may reach for FLUENT or MATLAB when developing CFD cases, especially those

with moving boundary or fluid-surface interaction.

5.4 Conclusions

In this work, I used three open-source software packages to:

1. Create two-dimensional meshes of a duct and idealized terminal alveolar airway.

2. Construct fluid flow cases for testing the OpenFOAM software.

3. Successfully tested the capability of OpenFOAM to model an idealized lung model

where fluid flow is induced by a pressure-drop, similar to the actual biological

process.

4. Visualized the results with a post-processor.

The geometries and meshes were created in Gmsh; I utilized both the built-in script-

ing language and the graphical user interface to construct structured meshes similar in

dimension to actual lung models found in the literature. The fluid flow cases–steady-

state flow, constant transient flow, oscillating transient flow, and pressure-driven flow

with moving boundary–were written as text files and run with three flow solvers in

OpenFOAM. Results were visualized in ParaView; Glyph Vectors were used to demon-

strate velocity field profiles detailing the flow structure through the different meshes.

The primary goal of this project was proof-of-concept. The final result was achieved:

an idealized terminal alveolar sac airway model was developed and an OpenFOAM case

file was written wherein the expanding alveolar sac boundary caused fluid to be drawn

into the alveolus with no inlet or outlet velocity specified. Though the model only works

64

for expansion and not contraction, the freeze-frame solution of the model at the moment

of change from expansion to contraction indicates that the OpenFOAM solver calculated

which cells to consider as inlet and which to consider as outlet and that separate flow

channels arise naturally. In conclusion, OpenFOAM can effectively run two-dimensional

computational models of the lung on the scale of 800 µm, where an expanding boundary

induces bi-directional flow that is similar to flow patterns in the human lung.

65

Bibliography

[1] Ahrens, J., Geveci, B., Law, C. (2005). ParaView: Paraview: An end-user tool for large

data visualization. The Visualization, Handbook, 717.

[2] Arcadian. (Artist). (2006). Bronchi, Bronchial Tree, and

Lungs [Digital Image]. Retrieved on 6 August 2017 from

https://commons.wikimedia.org/wiki/File:Illu bronchi lungs.jpg

[3] Bradie, B. (2006). A Friendly Introduction to Numerical Analysis. New York City:

Pearson.

[4] Chhabra, S. & Prasad, A. (2010). Flow and particle dispersion in a pulmonary alveo-

lus – Part I: Velocity measurements and convective particle transport. J. Biomechanical

Eng. 132(5), 051009-1–051009-12.

[5] Chorin, A. J. & J. E. Marsden, J.E. (1990). A Mathematical Introduction to Fluid

Mechanics. Berlin: Springer-Verlag.

[6] Cotes, J. E. (2009). Lung Function: Physiology, Measurement, and Application in

Medicine. Hoboken: Wiley.

[7] Delaunay, B. (1934). Sur la sphère vide. Bulletin de l’Académie des Sciences de l’URSS,

Classe des sciences mathématiques et naturelles, 6, 793–800.

66

[8] Fefferman, C. L. (2017). Existence and Smoothness of the Navier-Stokes

Equation. Clay Mathematical Institute. Retrieved on 10 July 2017 from

http://www.claymath.org/sites/default/files/navierstokes.pdf

[9] Freed, A. D., Einstein, D. R., Carson, J. P., & Jacob, R. E. US Department

Of Energy. (2012). Viscoelastic Model for Lung Parenchyma for Multi-Scale

Modeling of Respiratory System Phase II: Dodecahedral Micro-Model. Pacific

Northwest National Laboratory, Report No. PNNL-21287. Retrieved on 10 June 2017

from http://www.pnnl.gov/main/publications/external/technical reports/pnnl-

21287.pdf.

[10] Geuzaine, C. & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. International Journal

for Numerical Methods in Engineering, 79(11), 1309-1331.

[11] Gockenback, M. S. (2006). Understanding and Implementing the Finite Element

Method. Philadelphia: SIAM.

[12] Gordon, W. & Hall, C. (1973). Construction of curvilinear coordinate systems and

application to mesh generation. International Journal for Numerical Methods in Engineer-

ing, 7, 461–477. doi:10.1002/nme.1620070405.

[13] Greenshields, C. J. (2015). OpenFOAM Programmer’s Guide version 3.0.1.

The OpenFOAM Foundation, CFD Direct Ltd.. Retrieved on 24 April 2017 from

https://cfd.direct/openfoam/user-guide/

[14] Greenshields, C. J. (2016). OpenFOAM User Guide version 4.0. The

OpenFOAM Foundation, CFD Direct Ltd.. Retrieved on 24 April 2017 from

https://cfd.direct/openfoam/user-guide/

67

[15] Hall, N. (Ed.). (2015). Gas properties definitions. Glenn Research Center,

National Aeronautics and Space Administration. Retrieved 26 April 2017 from

https://www.grc.nasa.gov/WWW/k-12/airplane/gasprop.html

[16] Harding, E. M. & Robinson, R. J. (2010). Flow in a terminal alveolar sac model

with expanding walls using computational fluid dynamics. Inhalation Toxicology, 22(8),

669–678.

[17] Hogg, J. C., Paré, P. D., Hackett, T.-L. (2017). The contribution of small airway

obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev,

97, 529–552. DOI: 10.1152/physrev.00025.2015

[18] Hofemeier, P. & Sznitman, J. (2015). Revisiting pulmonary acinar particle transport:

convection, sedimentation, diffusion and their interplay. Journal of Applied Physiology.

DOI: 10.1152/japplphysiol.01117.2014

[19] Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by

operator-splitting. Journal of Computational Physics, 62(1), 40–65.

[20] Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. Philadel-

phia: SIAM.

[21] Kleinstreuer, C. & Li, Z. (2011). Airflow analysis in the alveolar region using the

lattice-Boltzmann method. Med. Biol. Eng. Comput., 49, 441–451.

[22] Ma, B. et al. (2009). CFD simulation and experimental validation of fluid flow and

particle transport in a model of alveolated airways. J. Aerosol Science, 40, 403–414.

[23] Muller, P. et al. (2014). Maximal efficiency of convective mixing occurs in mid acinus:

A 3D-numerical analysis by an Eulerian approach. J. Aerosol Science, 76, 163–174.

68

[24] OpenFOAM (®) Extended Code Guide. (2017). OpenCFD Ltd., ESI Group.

Retrieved 27 May 2017 from http://www.openfoam.com/documentation/cpp-

guide/html/openfoam-guide.html/

[25] OpenFOAM (®) Documentation: User Guide. (2016). OpenCFD Ltd., ESI Group. Re-

trieved 27 May 2017 from http://www.openfoam.com/documentation/user-guide/

[26] Parameter Definitions - dynamicMotionSolverFvMesh (21 Oc-

tober 2016). In OpenFOAMWiki. Retrieved 5 June 2017

from https://openfoamwiki.net/index.php/Parameter Definitions -

dynamicMotionSolverFvMesh/

[27] Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. USA: Hemisphere.

[28] Spalart, P. R. & Allmaras, S. R. (1994). A One-Equation Turbulence Model for Aero-

dynamic Flows. Recherche Aerospatiale, 1, 1994, 5–21.

[29] Tsuda, A., Butler, J. P. , Fredberg, J. J. (1994). Effects of alveolated duct structure on

aerosol kinetics I. Diffusional deposition in the absence of gravity. J. Applied Physiology,

76, 2497–2509.

[30] Weibel, E. R. (1963). Morphometry of the Human Lung. Heidelberg: Springer Berlin

Heidelberg.

69

Appendix A

OpenFOAM Code

This chapter includes the case files written for cases A-G. The code is organized by the

three main subdirectories in each case file: /0, constant, & /system.

This section only includes user-defined files. Files generated by OpenFOAM utilities

like gmshToFoam are not included. Files in the following subdirectories of each case were

excluded: /0/polyMesh and /constant/polyMesh.

A.1 Case A

A.1.1 /0

/nut

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object nut;

70

14 }
15 // * //
16

17 dimensions [0 2 -1 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 0;
27 }
28

29 outlet
30 {
31 type fixedValue;
32 value uniform 0;
33 }
34

35 walls
36 {
37 type fixedValue;
38 value uniform 0;
39 }
40

41 frontAndBack
42 {
43 type empty;
44 }
45 }
46

47 // *** //

/nuTilda

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;

71

13 object nuTilda;
14 }
15 // * //
16

17 dimensions [0 2 -1 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 0;
27 }
28

29 outlet
30 {
31 type fixedValue;
32 value uniform 0;
33 }
34

35 walls
36 {
37 type fixedValue;
38 value uniform 0;
39 }
40

41 frontAndBack
42 {
43 type empty;
44 }
45 }
46

47 // *** //

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;

72

12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36 frontAndBack
37 {
38 type empty;
39 }
40 }
41

42 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //

73

16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform (0.069542 0 0); // DD = 0.24mm
27 }
28

29 outlet
30 {
31 type zeroGradient;
32 }
33

34 walls
35 {
36 type noSlip;
37 }
38 frontAndBack
39 {
40 type empty;
41 }
42 }
43

44 // *** //

A.1.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;

74

15 }
16 // * //
17

18 transportModel Newtonian;
19

20 rho [1 -3 0 0 0 0 0] 1;
21

22 nu [0 2 -1 0 0 0 0] 16.69e-6;
23

24 // *** //

/turbulenceProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object turbulenceProperties;
15 }
16 // * //
17

18 simulationType laminar;
19

20 RAS
21 {
22 RASModel SpalartAllmaras;
23

24 turbulence off;
25

26 printCoeffs off;
27 }
28

29 // *** //

75

A.1.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application simpleFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 1000;
27

28 deltaT 1;
29

30 writeControl timeStep;
31

32 writeInterval 100;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

76

46 runTimeModifiable true;
47

48

49 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default steadyState;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 default none;
31 div(phi,U) bounded Gauss linearUpwind grad(U);
32 div(phi,nuTilda) bounded Gauss linearUpwind grad(nuTilda);
33 div((nuEff*dev2(T(grad(U))))) Gauss linear;
34 }
35

36 laplacianSchemes
37 {
38 default Gauss linear corrected;
39 }
40

41 interpolationSchemes
42 {

77

43 default linear;
44 }
45

46 snGradSchemes
47 {
48 default corrected;
49 }
50

51 wallDist
52 {
53 method meshWave;
54 }
55

56

57 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver GAMG;
23 tolerance 1e-03;
24 relTol 0.1;
25 smoother GaussSeidel;
26 }
27

28 U
29 {
30 solver smoothSolver;
31 smoother GaussSeidel;

78

32 nSweeps 2;
33 tolerance 1e-03;
34 relTol 0.1;
35 }
36

37 nuTilda
38 {
39 solver smoothSolver;
40 smoother GaussSeidel;
41 nSweeps 2;
42 tolerance 1e-03;
43 relTol 0.1;
44 }
45 }
46

47 SIMPLE
48 {
49 nNonOrthogonalCorrectors 0;
50 pRefCell 0;
51 pRefValue 0;
52

53 residualControl
54 {
55 p 1e-03;
56 U 1e-3;
57 nuTilda 1e-3;
58 }
59 }
60

61 relaxationFactors
62 {
63 fields
64 {
65 p 0.3;
66 }
67 equations
68 {
69 U 0.7;
70 nuTilda 0.7;
71 }
72 }
73

74

75 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |

79

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

A.2 Case B

A.2.1 /0

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |

80

5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36

37 frontAndBack
38 {
39 type empty;
40 }
41 }
42

43 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/

81

8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23

24 inlet
25 {
26 type fixedValue;
27 value uniform (0.069542 0 0);
28 }
29 outlet
30 {
31 type zeroGradient;
32 }
33 walls
34 {
35 type noSlip;
36 }
37 frontAndBack
38 {
39 type empty;
40 }
41 }
42

43 // *** //

A.2.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/

82

8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //
17

18 nu [0 2 -1 0 0 0 0] 16.69e-6;
19

20

21 // *** //

A.2.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application icoFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime .1;
27

28 deltaT 1e-5;
29

83

30 writeControl timeStep;
31

32 writeInterval 1000;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 3;
45

46 runTimeModifiable true;
47

48

49 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }

84

27

28 divSchemes
29 {
30 default none;
31 div(phi,U) Gauss limitedLinearV 1;
32 }
33

34 laplacianSchemes
35 {
36 default Gauss linear corrected;
37 }
38

39 interpolationSchemes
40 {
41 default linear;
42 }
43

44 snGradSchemes
45 {
46 default corrected;
47 }
48

49

50 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver PCG;

85

23 preconditioner DIC;
24 tolerance 1e-3;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;
32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-03;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 nCorrectors 2;
46 nNonOrthogonalCorrectors 2;
47 }
48

49

50 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

86

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

A.3 Case C

A.3.1 /0

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

87

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36

37 frontAndBack
38 {
39 type empty;
40 }
41 }
42

43 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23

88

24 inlet
25 {
26 type uniformFixedValue;
27 uniformValue sine;
28 uniformValueCoeffs
29 {
30 frequency 2;
31 amplitude 0.069542;
32 scale (1 0 0);
33 level (0 0 0);
34 }
35 }
36 outlet
37 {
38 type zeroGradient;
39 }
40 walls
41 {
42 type noSlip;
43 }
44 frontAndBack
45 {
46 type empty;
47 }
48 }
49

50 // *** //

A.3.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //

89

17

18 nu [0 2 -1 0 0 0 0] 16.69e-6;
19

20

21 // *** //

A.3.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application icoFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 1;
27

28 deltaT 1e-5;
29

30 writeControl timeStep;
31

32 writeInterval 1000;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;

90

39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 3;
45

46 runTimeModifiable true;
47

48

49 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 default none;
31 div(phi,U) Gauss limitedLinearV 1;
32 }
33

34 laplacianSchemes
35 {

91

36 default Gauss linear corrected;
37 }
38

39 interpolationSchemes
40 {
41 default linear;
42 }
43

44 snGradSchemes
45 {
46 default corrected;
47 }
48

49

50 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-3;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;

92

32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-03;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 nCorrectors 2;
46 nNonOrthogonalCorrectors 2;
47 }
48

49

50 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions

93

28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

A.4 Case D

A.4.1 /0

/nut

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object nut;
14 }
15 // * //
16

17 dimensions [0 2 -1 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 0;
27 }
28 outlet
29 {

94

30 type fixedValue;
31 value uniform 0;
32 }
33 alv1
34 {
35 type nutUSpaldingWallFunction;
36 value uniform 0;
37 }
38 alv2
39 {
40 type nutUSpaldingWallFunction;
41 value uniform 0;
42 }
43 alv3
44 {
45 type nutUSpaldingWallFunction;
46 value uniform 0;
47 }
48 walls
49 {
50 type nutUSpaldingWallFunction;
51 value uniform 0;
52 }
53 frontAndBack
54 {
55 type empty;
56 }
57 defaultFaces
58 {
59 type zeroGradient;
60 }
61 }
62

63 // *** //

/nuTilda

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;

95

13 object nuTilda;
14 }
15 // * //
16

17 dimensions [0 2 -1 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 0;
27 }
28 outlet
29 {
30 type fixedValue;
31 value uniform 0;
32 }
33 walls
34 {
35 type fixedValue;
36 value uniform 0;
37 }
38 alv1
39 {
40 type fixedValue;
41 value uniform 0;
42 }
43 alv2
44 {
45 type fixedValue;
46 value uniform 0;
47 }
48 alv3
49 {
50 type fixedValue;
51 value uniform 0;
52 }
53 frontAndBack
54 {
55 type empty;
56 }
57 defaultFaces
58 {
59 type zeroGradient;
60 }
61 }

96

62

63 // *** //

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36 alv1
37 {
38 type zeroGradient;
39 }
40 alv2
41 {
42 type zeroGradient;
43 }
44 alv3

97

45 {
46 type zeroGradient;
47 }
48 frontAndBack
49 {
50 type empty;
51 }
52 defaultFaces
53 {
54 type zeroGradient;
55 }
56 }
57

58 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform (0.0575 0 0);
27 }
28 outlet
29 {
30 type zeroGradient;
31 }
32 walls

98

33 {
34 type noSlip;
35 }
36 alv1
37 {
38 type noSlip;
39 }
40 alv2
41 {
42 type noSlip;
43 }
44 alv3
45 {
46 type noSlip;
47 }
48 frontAndBack
49 {
50 type empty;
51 }
52 defaultFaces
53 {
54 type zeroGradient;
55 }
56 }
57

58 // *** //

A.4.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //
17

99

18 transportModel Newtonian;
19

20 rho [1 -3 0 0 0 0 0] 1;
21

22 nu [0 2 -1 0 0 0 0] 16.69e-6;
23

24 // *** //

/turbulenceProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object turbulenceProperties;
15 }
16 // * //
17

18 simulationType laminar;
19

20 RAS
21 {
22 RASModel SpalartAllmaras;
23

24 turbulence off;
25

26 printCoeffs off;
27 }
28

29 // *** //

A.4.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

100

4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application simpleFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 10000;
27

28 deltaT 1;
29

30 writeControl timeStep;
31

32 writeInterval 5000;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

101

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default steadyState;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 default none;
31 div(phi,U) bounded Gauss linearUpwind grad(U);
32 div(phi,nuTilda) bounded Gauss linearUpwind grad(nuTilda);
33 div((nuEff*dev2(T(grad(U))))) Gauss linear;
34 }
35

36 laplacianSchemes
37 {
38 default Gauss linear corrected;
39 }
40

41 interpolationSchemes
42 {
43 default linear;
44 }
45

46 snGradSchemes
47 {
48 default corrected;

102

49 }
50

51 wallDist
52 {
53 method meshWave;
54 }
55

56

57 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver GAMG;
23 tolerance 1e-04;
24 relTol 0.1;
25 smoother GaussSeidel;
26 }
27

28 U
29 {
30 solver smoothSolver;
31 smoother GaussSeidel;
32 nSweeps 2;
33 tolerance 1e-04;
34 relTol 0.1;
35 }
36

37 nuTilda

103

38 {
39 solver smoothSolver;
40 smoother GaussSeidel;
41 nSweeps 2;
42 tolerance 1e-04;
43 relTol 0.1;
44 }
45 }
46

47 SIMPLE
48 {
49 nNonOrthogonalCorrectors 0;
50 pRefCell 0;
51 pRefValue 0;
52

53 residualControl
54 {
55 p 1e-4;
56 U 1e-4;
57 nuTilda 1e-4;
58 }
59 }
60

61 relaxationFactors
62 {
63 fields
64 {
65 p 0.3;
66 }
67 equations
68 {
69 U 0.7;
70 nuTilda 0.7;
71 }
72 }
73

74

75 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile

104

9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

A.5 Case E

A.5.1 /0

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;

105

11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36 alv1
37 {
38 type zeroGradient;
39 }
40 alv2
41 {
42 type zeroGradient;
43 }
44 alv3
45 {
46 type zeroGradient;
47 }
48 defaultFaces
49 {
50 type zeroGradient;
51 }
52 frontAndBack
53 {
54 type empty;
55 }
56 }
57

58 // *** //

106

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value (0.0575 0 0);
27 }
28 outlet
29 {
30 type zeroGradient;
31 }
32 walls
33 {
34 type noSlip;
35 }
36 alv1
37 {
38 type noSlip;
39 }
40 alv2
41 {
42 type noSlip;
43 }
44 alv3
45 {
46 type noSlip;
47 }
48 frontAndBack

107

49 {
50 type empty;
51 }
52 defaultFaces
53 {
54 type zeroGradient;
55 }
56 }
57

58 // *** //

A.5.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //
17

18 nu [0 2 -1 0 0 0 0] 16.69e-6;
19

20

21 // *** //

A.5.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |

108

6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.01;
27

28 deltaT 1e-7;
29

30 writeControl timeStep;
31

32 writeInterval 1000;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |

109

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 default none;
31 div(phi,U) Gauss limitedLinearV 1;
32 }
33

34 laplacianSchemes
35 {
36 default Gauss linear corrected;
37 }
38

39 interpolationSchemes
40 {
41 default linear;
42 }
43

44 snGradSchemes
45 {
46 default corrected;
47 }
48

49

50 // *** //

110

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-03;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;
32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-03;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 pRefCell 0;
46 pRefValue 0;
47 nCorrectors 2;
48 nNonOrthogonalCorrectors 2;

111

49 }
50

51

52 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

112

A.6 Case F

A.6.1 /0

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 inlet
24 {
25 type zeroGradient;
26 }
27 outlet
28 {
29 type fixedValue;
30 value uniform 0;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36 alv1
37 {
38 type zeroGradient;
39 }
40 alv2
41 {
42 type zeroGradient;

113

43 }
44 alv3
45 {
46 type zeroGradient;
47 }
48 defaultFaces
49 {
50 type zeroGradient;
51 }
52 frontAndBack
53 {
54 type empty;
55 }
56 }
57

58 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 inlet
24 {
25 type uniformFixedValue;
26 uniformValue sine;
27 uniformValueCoeffs
28 {
29 frequency 100;
30 amplitude 0.0575;

114

31 scale (1 0 0);
32 level (0 0 0);
33 }
34 }
35 outlet
36 {
37 type zeroGradient;
38 }
39 walls
40 {
41 type noSlip;
42 }
43 alv1
44 {
45 type noSlip;
46 }
47 alv2
48 {
49 type noSlip;
50 }
51 alv3
52 {
53 type noSlip;
54 }
55 frontAndBack
56 {
57 type empty;
58 }
59 defaultFaces
60 {
61 type zeroGradient;
62 }
63 }
64

65 // *** //

A.6.2 /constant

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile

115

9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //
17

18 nu [0 2 -1 0 0 0 0] 16.69e-6;
19

20

21 // *** //

A.6.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.01;
27

28 deltaT 1e-7;
29

30 writeControl timeStep;

116

31

32 writeInterval 1000;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

117

28 divSchemes
29 {
30 default none;
31 div(phi,U) Gauss limitedLinearV 1;
32 }
33

34 laplacianSchemes
35 {
36 default Gauss linear corrected;
37 }
38

39 interpolationSchemes
40 {
41 default linear;
42 }
43

44 snGradSchemes
45 {
46 default corrected;
47 }
48

49

50 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;

118

24 tolerance 1e-03;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;
32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-03;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 pRefCell 0;
46 pRefValue 0;
47 nCorrectors 2;
48 nNonOrthogonalCorrectors 2;
49 }
50

51

52 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;

119

18

19 coordinateSystem global;
20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

A.7 Case G

A.7.1 /0

/p

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object p;
14 }
15 // * //
16

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;

120

20

21 boundaryField
22 {
23 inOut
24 {
25 type inletOutlet;
26 //type outletInlet;
27 //inletValue uniform 0.01;
28 //value 0;
29 inletValue $internalField;

30 value $internalField;
31 }
32 walls
33 {
34 type zeroGradient;
35 }
36 alv1
37 {
38 type zeroGradient;
39 }
40 alv2
41 {
42 type zeroGradient;
43 }
44 alv3
45 {
46 type zeroGradient;
47 }
48 frontAndBack
49 {
50 type empty;
51 }
52 defaultFaces
53 {
54 type zeroGradient;
55 }
56 }
57

58 // *** //

/U

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |

121

7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volVectorField;
13 object U;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 inOut
24 {
25 type pressureInletOutletVelocity;
26 value uniform (0 0 0);
27 }
28 walls
29 {
30 type fixedValue;
31 value uniform (0 0 0);
32 }
33 alv1
34 {
35 type movingWallVelocity;
36 value uniform (0 0 0);
37 }
38 alv2
39 {
40 type movingWallVelocity;
41 value uniform (0 0 0);
42 }
43 alv3
44 {
45 type movingWallVelocity;
46 value uniform (0 0 0);
47 }
48 frontAndBack
49 {
50 type empty;
51 }
52 defaultFaces
53 {
54 type zeroGradient;
55 }

122

56 }
57

58 // *** //

/pointDisplacement

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class pointVectorField;
13 object pointDisplacement;
14 }
15 // * //
16

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 alv1
24 {
25 type oscillatingDisplacement;
26 value uniform (0 0 0);
27 amplitude (0 -0.0000113 0);
28 omega 62.8318;
29 }
30 alv2
31 {
32 type oscillatingDisplacement;
33 value uniform (0 0 0);
34 amplitude (0.0000113 0 0);
35 omega 62.8318;
36 }
37 alv3
38 {
39 type oscillatingDisplacement;
40 value uniform (0 0 0);
41 amplitude (0 0.0000113 0);
42 omega 62.8318;
43 }

123

44 wall
45 {
46 type fixedValue;
47 value uniform (0 0 0);
48 }
49 inOut
50 {
51 type fixedValue;
52 value uniform (0 0 0);
53 }
54 frontAndBack
55 {
56 type fixedValue;
57 value uniform (0 0 0);
58 }
59 defaultFaces
60 {
61 type zeroGradient;
62 }
63 }
64

65 // *** //

A.7.2 /constant

/dynamicMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object dynamicMeshDict;
15 }
16 // * //
17

18 dynamicFvMesh dynamicMotionSolverFvMesh;
19

20 motionSolverLibs ("libfvMotionSolvers.so");
21 //solver velocityLaplacian;

124

22 //velocityLaplacianCoeffs
23

24 solver displacementLaplacian;
25 displacementLaplacianCoeffs
26 {
27 diffusivity quadratic inverseDistance (alv1);
28 diffusivity quadratic inverseDistance (alv2);
29 diffusivity quadratic inverseDistance (alv3);
30 }

/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object transportProperties;
15 }
16 // * //
17

18 transportModel Newtonian;
19

20 nu [0 2 -1 0 0 0 0] 16.69e-6;
21

22 // *** //

/turbulenceProperties

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;

125

12 class dictionary;
13 location "constant";
14 object turbulenceProperties;
15 }
16 // * //
17

18 simulationType laminar;
19

20 // *** //

A.7.3 /system

/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * //
17

18 application pimpleDyMFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.025;
27

28 deltaT 1e-7;
29

30 writeControl timeStep;
31

32 writeInterval 1000;
33

34 purgeWrite 0;

126

35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48 adjustTimeStep no;
49

50 maxCo 0.2;
51

52 // *** //

/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes

127

29 {
30 default none;
31

32 div(phi,U) Gauss linear;
33 div((nuEff*dev2(T(grad(U))))) Gauss linear;
34 }
35

36 laplacianSchemes
37 {
38 default Gauss linear corrected;
39

40 laplacian(diffusivity,cellDisplacement/*cellMotionU*/) Gauss linear uncorrected;
41 }
42

43 interpolationSchemes
44 {
45 default linear;
46 }
47

48 snGradSchemes
49 {
50 default corrected;
51 }
52

53

54 // *** //

/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * //
17

18 solvers
19 {
20

128

21 p
22 {
23 solver GAMG;
24 tolerance 0;
25 relTol 0.01;
26 smoother GaussSeidel;
27 cacheAgglomeration no;
28 }
29

30 pFinal
31 {
32 $p;
33 tolerance 1e-03;
34 relTol 0;
35 }
36

37 pcorr
38 {
39 $p
40 tolerance 1e-3;
41 relTol 0;
42 }
43

44 U
45 {
46 solver smoothSolver;
47 smoother symGaussSeidel;
48 tolerance 1e-03;
49 relTol 0.1;
50 }
51

52 UFinal
53 {
54 $U;
55 tolerance 1e-03;
56 relTol 0;
57 }
58

59 cellDisplacement
60 {
61 solver PCG;
62 preconditioner DIC;
63 tolerance 1e-03;
64 relTol 0;
65 }
66 /*
67 cellMotionU
68 {
69 solver PCG;

129

70 preconditioner DIC;
71 tolerance 1e-03;
72 relTol 0;
73 }
74 */
75 }
76

77 PIMPLE
78 {
79 correctPhi yes;
80 nOuterCorrectors 2;
81 nCorrectors 2;
82 nNonOrthogonalCorrectors 2;
83 pRefCell 0;
84 pRefValue 0;
85 }
86

87 relaxationFactors
88 {
89 equations
90 {
91 "U.*" 1;
92 }
93 }
94

95

96 // *** //

/refineMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 4.1 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object refineMeshDict;
14 }
15 // * //
16

17 set fluid;
18

19 coordinateSystem global;

130

20

21 globalCoeffs
22 {
23 tan1 (1 0 0);
24 tan2 (0 1 0);
25 }
26

27 directions
28 (
29 tan1
30 tan2
31);
32

33 useHexTopology true;
34

35 geometricCut false;
36

37 writeMesh false;

131

Appendix B

Gmsh Code

This chapter includes the .geo files written for the Duct, Airway-1, and Airway-2 Mod-

els.

B.1 Duct
1 p = 0.58;
2 DD = 2*0.12;
3 sac = 0.82;
4 d1 = DD*0.25;
5 d2 = DD*0.75;
6

7 Point(1) = {0, 0, 0, 0};
8 Point(2) = {p, 0, 0, 0};
9 Point(3) = {p, DD, 0, 0};

10 Point(4) = {0, DD, 0, 0};
11

12 Line(1) = {1, 2};
13 Line(2) = {2, 3};
14 Line(3) = {3, 4};
15 Line(4) = {4, 1};
16

17 Transfinite Line {1, 3} = 20 Using Progression 1;
18 Transfinite Line {2, 4} = 10 Using Progression 1;
19 Line Loop(10) = {1, 2, 3, 4};
20

21 Plane Surface(11) = {10};
22

23 Transfinite Surface {11} = {1, 2, 3, 4};
24

132

25 Recombine Surface{11};
26

27 Extrude {0, 0, .01} {
28 Surface{11};
29 Layers{1};
30 Recombine;
31 }
32

33 Transfinite Volume{1} = {1,2,3,4,5,6,10,14};
34

35 Physical Surface("inlet") = {32};
36 Physical Surface("outlet") = {24};
37 Physical Surface("walls") = {20,28};
38 Physical Surface("frontAndBack") = {11,33};
39 Physical Volume("fluid") = {1};

B.2 Airway-1
1 p = 0.58;
2 DD = 2*0.12;
3 sac = 0.82;
4 d1 = DD*0.25;
5 d2 = DD*0.75;
6

7 Point(1) = {0, 0, 0, 0};
8 Point(2) = {p, 0, 0, 0};
9 Point(3) = {p, DD, 0, 0};

10 Point(4) = {0, DD, 0, 0};
11 Point(6) = {0.67, 0.12, 0, 0};
12 Point(7) = {0.76,0,0,0};
13 Point(8) = {0.76,DD,0,0};
14 Point(9) = {0,d2,0,0};
15 Point(10) = {0, d1, 0, 0};
16

17 Line(1) = {1, 2};
18

19 Circle(2) = {2, 6, 7};
20 Circle(3) = {7, 6, 8};
21 Circle(4) = {8,6,3};
22 Circle(5) = {3, 6, 2};
23

24 Line(6) = {3, 4};
25 Line(7) = {4, 9};
26 Line(8) = {9,10};
27 Line(9) = {10,1};
28

29 Transfinite Line {1, 6} = 20 Using Progression 1;

133

30 Transfinite Line {5, 2, 3, 4} = 18 Using Progression 1;
31 Transfinite Line {8} = 10 Using Progression 1;
32 Transfinite Line {7, 9} = 5 Using Progression 1;
33

34 Line Loop(10) = {1, -5, 6, 7, 8, 9};
35 Plane Surface(11) = {10};
36

37 Line Loop(12) = {5, 2, 3, 4};
38 Plane Surface(13) = {12};
39

40 Transfinite Surface {11} = {1, 2, 3, 4};
41 Transfinite Surface {13} = {2, 7, 8, 3};
42

43 Recombine Surface{11, 13};
44

45 Extrude {0, 0, .01} {
46 Surface{11, 13};
47 Layers{1};
48 Recombine;
49 }
50

51 Transfinite Volume{1} = {1, 2, 3, 4, 11, 12, 17, 21};
52 Transfinite Volume{2} = {2, 7, 8, 3, 12, 37, 42, 17};
53

54 Physical Surface("inlet") = {40};
55 Physical Surface("outlet") = {36,44};
56 Physical Surface("walls") = {24,32};
57 Physical Surface("alv1") = {58};
58 Physical Surface("alv2") = {62};
59 Physical Surface("alv3") = {66};
60 Physical Surface("frontAndBack") = {11,45};
61 Physical Volume("fluid") = {1,2};

B.3 Airway-2
1 p = 0.58;
2 DD = 2*0.12;
3 sac = 0.82;
4

5 Point(1) = {0, 0, 0, 0};
6 Point(2) = {p, 0, 0, 0};
7 Point(3) = {p, DD, 0, 0};
8 Point(4) = {0, DD, 0, 0};
9 Point(6) = {0.67, 0.12, 0, 0};

10 Point(7) = {0.76,0,0,0};
11 Point(8) = {0.76,DD,0,0};
12

134

13 Line(1) = {1, 2};
14

15 Circle(2) = {2, 6, 7};
16 Circle(3) = {7, 6, 8};
17 Circle(4) = {8,6,3};
18 Circle(5) = {3, 6, 2};
19

20 Line(6) = {3, 4};
21 Line(7) = {4, 1};
22

23 Transfinite Line {1, 6} = 10 Using Progression 1;
24 Transfinite Line {7} = 10 Using Progression 1;
25 Transfinite Line {5, 2, 3, 4} = 10 Using Progression 1;
26

27 Line Loop(8) = {7, 1, -5, 6};
28 Plane Surface(9) = {8};
29

30 Line Loop(10) = {5, 2, 3, 4};
31 Ruled Surface(11) = {10};
32

33 Transfinite Surface {9} = {1, 2, 3, 4};
34 Transfinite Surface {11} = {2, 7, 8, 3};
35

36 Recombine Surface {9,11};
37

38 Extrude {0, 0, 0.01} {
39 Surface{9, 11};
40 Layers{1};
41 Recombine;
42 }
43

44 Transfinite Volume{1} = {1, 2, 3, 4, 10, 14, 19, 9};
45 Transfinite Volume{2} = {2, 7, 8, 3, 14, 27, 32, 19};
46

47 Recombine Volume {1,2};
48

49 Physical Surface("inOut") = {20};
50 Physical Surface("walls") = {24,32};
51 Physical Surface("alv1") = {46};
52 Physical Surface("alv2") = {50};
53 Physical Surface("alv3") = {54};
54 Physical Surface("frontAndBack") = {9,33};
55 Physical Volume("fluid") = {1,2};

135

Vita

Jeremy Myers was born in 1986 at the Portsmouth Naval Hospital in Portsmouth, Vir-

ginia. He was very interested in science as a youngster, fascinated by space exploration

and the cosmos, attending various science camps throughout his early teens.

In high school, he showed an aptitude for foreign languages and pursued this path

as an undergraduate at James Madison University, where he graduated in 2009 with a

B.A. in International Affairs and minors in Russian Studies and Economics.

He returned to his childhood science and enrolled at Virginia Commonwealth Uni-

versity in 2011. He became a full-time student in 2013 in the Mathematics Department.

During a study abroad opportunity with the ”Math in Moscow” program, Jeremy de-

cided to pursue his Master’s degree in mathematics at VCU and to focus in computa-

tional mathematics.

In the fall of 2017, Jeremy began Ph.D studies in Computer Science at the College of

William and Mary.

136

	Computational Fluid Dynamics in a Terminal Alveolated Bronchiole Duct with Expanding Walls: Proof-of-Concept in OpenFOAM
	Downloaded from

	tmp.1502305980.pdf.SLO1m

