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    In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using 

sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-

path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband 
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spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due 

to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number 

of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved 

using the low-rank matrix completion technique involving matrix nuclear-norm minimization. 

Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum 

sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead 

of low-rank matrix completion to promote the joint sparsity among the column vectors of the 

spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-

norm minimization approach outperforms the low-rank matrix completion based approach, in 

terms of the PU detection performance. Further we used mixed-norm minimization model in multi 

time frame detection. Simulation results shows that increasing the number of time frames will 

increase the detection performance, however, by increasing the number of time frames after a 

number of times the performance decrease dramatically. 
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CHAPTER ONE 

INTRODUCTION 

1.1 INTRODUCTION 

With an ever-increasing number of wireless users and devices, the radio frequency spectrum 

becomes a more and more scarce resource. On the other hand, a large percentage of spectrum 

resources are underutilized by the licensed primary users (PUs). Therefore, the cognitive radio 

(CR) system has the potential to take full advantage of the underutilized spectrum resources by 

allowing unlicensed usage of vacant spectrum. For CR systems, spectrum sensing is a key step to 

detect spectrum holes/vacancies which can be used by secondary users (SUs) without causing any 

interference to PUs.  

We focused our research on wideband spectrum sensing in CR networks using sub-Nyquist 

sampling and sparse signal processing techniques. To mitigate multi-path fading, we assume that 

a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine the 

spectrum holes and identify potential transmission opportunities for SUs. In some state-of-the-art 

approaches [1,2], multiple spatially dispersed SUs have been used to mitigate wireless fading 

effects, and the low-rank matrix completion technique involving convex optimization has been 

applied to reconstruct a low-rank spectrum matrix, and determine whether or not a certain channel 

has been occupied by a PU. The spectrum is usually under-utilized, and the spectrum matrix has 

the spectrum vectors at different SUs as its columns. As a result, the spectrum matrix has only a 

small number of non-zero rows, meaning that it is low-rank. To reduce the burden on the analog-

digital converter and the sensing cost, sub-Nyquist sampling and compressive sensing have been 

applied.  
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Due to the underutilization of the spectrum resource, we found that the spectrum matrix is not 

only low-rank, but also sparse. This motivates us to propose a spectrum sensing approach based 

on minimizing a 
2 1/l l mixed-norm of the spectrum matrix to promote joint sparsity among the 

columns of the spectrum matrix, instead of low-rank matrix completion. We investigated the 

performance of our model by performing detection in multiple time frames using mixed-norm 

minimization model. Experiment results based simulation demonstrate that the proposed new 

approach outperforms the low-rank matrix completion based approach in higher SNRs, Also, the 

Detection performance will increase by increasing the number of time frames through the 

comparison of the receiver operating characteristic (ROC) curves.  

1.2 THESIS STRUCTURE 

In Chapter Two, we will give general background on cognitive radio networks and spectrum 

sensing, and an overview on cooperative spectrum  sensing. Then an overview of low rank matrix 

completion model and joint sparse matrix reconstruction will be provided.  

In Chapter Three we will go through the system model and discussion of the problem and our 

solutions to the problem using low rank matrix completion and mixed norm matrix reconstruction 

models. We compare the results of two proposed model and at the end we explain the system 

model on multi time frame detection using mixed norm minimization. In Chapter four we will give 

a brief conclusion and we will review our future work in using Mixed Norm Matrix Completion 

model based sequential detection, we will discuss our expected results and our current results. 
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CHAPTER TWO 

BACKGROUND 

2.1 COGNITIVE RADIO 

National regulatory bodies such as FCC are in control of usage of radio spectrum resources 

and the regulation of radio emissions. FCC assigns spectrum to licensed users or primary users on 

a long-term basis for large geographical regions. However, due to inefficient usage of the limited 

spectrum, a large portion of the assigned spectrum remains under-utilized. Therefore, the 

development of dynamic spectrum access techniques is becoming necessary. Dynamic access 

techniques refer to the case where non-licensed users or the secondary users, are allowed to 

temporarily use the unused part of the licensed spectrum. Cognitive radio is the next generation 

communication network solution, also known as dynamic spectrum access (DSA) networks, to 

make the use of spectrum more efficient in an opportunistic way without interfering with the 

primary users.  

Cognitive radio is an intelligent wireless communication system which uses its cognitive 

capability to become aware of its surrounding environment and by learning from environment can 

identify the available spectrum and adapt its internal states to achieve the optimal performance. 

Cognitive radio should adaptively modify its state and spectrum access to assure that primary user 

reclaims spectrum usage right. In this chapter recent research on cognitive radios will be reviewed. 

We overview the basics of cognitive radio technology, architecture, and its applications,  and we 

talk about spectrum sensing, types of detection methods, and cooperative spectrum sensing. 

Finally, we discuss low rank matrix completion and joint sparse matrix reconstruction models as 

two reconstruction methods for spectrum sensing. 
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2.2 COGNITIVE RADIO BASICS: 

Cognitive radio (CR) is the next generation of communications and networking that can 

adapt its operating parameters to utilize the limited network resources in a more efficient and 

flexible way. Two major functionalities of CRs are cognitive capability and reconfigurability. 

Before adapting their operating parameters CRs use their cognitive capability to gather information 

about the channel and make a decision accordingly. Cognitive capability is the ability of the 

cognitive radio transceiver to gather information from radio environment, and accordingly decide 

which spectrum band(s) to be used and the best transmission method to be adopted. 

Reconfigurability is the use of the information from the radio environment and change of CRs 

parameters to achieve optimal performance. 

A typical duty cycle of CR includes:  

 Spectrum sensing 

Spectrum sensing is the ability of a CR to measure the activities of the radio transmissions over 

different spectrum bands and to capture the parameters related to such bands (e.g., power levels, 

user activities, etc.). Spectrum sensing is one of the most critical functions of a cognitive radio as 

it provides the awareness of the spectrum usage in the surrounding environment. Existing spectrum 

sensing techniques focuses on detecting the activities of the primary users. Such methods are  based 

on  matched filter detection, energy detection, feature detection, and interference temperature 

measurement, respectively. 
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 Spectrum Analysis  

Spectrum analysis is to infer if a primary user is occupying the band at a certain time and 

geographic area. Such a definition covers only three dimensions of the spectrum space: frequency, 

time, and space. Other dimensions of a given spectrum can be exploited. 

 Spectrum Access Decisions 

The last step of the cognition cycle of a cognitive radio is to decide the set of transmission actions 

to be taken based on the outcome of the spectrum sensing and analysis procedures. More 

specifically, a cognitive radio utilizes the information gathered regarding the spectrum bands 

identified as available spectral opportunities to define the radio transceiver parameters for the 

upcoming transmission(s) over such frequency bands. The set of transceiver parameters to be 

decided depends on the underlying transceiver architecture.  

2.3 NETWORK STRUCTURE 

In a CR network architecture, since secondary users who are not authorized with 

spectrum usage rights can utilize the temporally unused licensed bands owned by the primary 

users, the components include both a secondary network and a primary network. 

A secondary network refers to a network composed of a set of secondary users with/without 

a secondary base station. Secondary users can only access the licensed spectrum when it is 

not occupied by a primary user. The opportunistic spectrum access of secondary users is 

usually coordinated by a secondary base station, which is a fixed infrastructure component 

serving as a hub of the secondary network. Both secondary users and secondary base stations 

are equipped with CR functions.  
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A primary network is composed of a set of primary users and one or more primary base 

stations. Primary users are authorized to use certain licensed spectrum bands under the 

coordination of primary base stations. Their transmission should not be interfered by 

secondary networks. Primary users and primary base stations are in general not equipped 

with CR functions. Therefore, if a secondary network share a licensed spectrum band with a 

primary network, besides detecting the spectrum white space and utilizing the best spectrum 

band, the secondary network is required to immediately detect the presence of a primary user 

and direct the secondary transmission to another available band so as to avoid interfering 

with primary transmission. 

Since CRs are able to sense, detect, and monitor the surrounding RF environment such as 

interference and access availability, and reconfigure their own operating characteristics to 

best match outside situations, cognitive communications can increase spectrum efficiency 

and support higher bandwidth service. Moreover, the capability of real-time autonomous 

decisions for efficient spectrum sharing also reduces the burdens of centralized spectrum 

management. As a result, CRs can be employed in many applications. 

As a CR can recognize spectrum availability and reconfigure itself for much more 

efficient communication, this provides public safety personnel with dynamic spectrum 

selectivity and reliable broadband communication to minimize information delay. Moreover, 

CR can facilitate interoperability between various communication systems. Through adapting 

to the requirements and conditions of another network, the CR devices can support multiple 

service types, such as voice, data, video, etc. 
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2.4 SPECTRUM SENSING ANALYSIS: 

As mentioned, spectrum sensing detects the primary user’s activity based on the local 

measurements of secondary users. The following are the most common spectrum sensing 

techniques: 

1) Energy Detector: Ease of implementation and no need of any prior knowledge of primary user’s 

signal have made  energy detection the most common type of spectrum sensing. 

0

1

: ( ) ( ),

: ( ) ( ) ( )

H y t n t

H y t hx t n t



 
                                              (2.1) 

in which ( )x t is the primary user’s signal received at the local receiver of a secondary user, ( )n t  is 

the additive white Gaussian noise, h  is the channel gain from the primary user’s transmitter to the 

secondary user’s receiver. 
0H  is a null hypothesis, meaning there is no primary user present in the 

band, 
1H  means the primary user’s presence.  

The detection statistic of the energy detector is the average (or total) energy of N  observed 

samples, 

2

1

1
| y(t) |

N

t

T
N 

                                                        (2.2) 

By comparing the detection statistic T , with a predetermined threshold   the decision on 

occupancy of the channel is made. 

 The performance of the detector is characterized by two probabilities:  

 The probability of false alarm 
FP  (the probability that the hypothesis test decides

1H  while 

it is 
0H )  
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0( | )rFP P T H                                                                 (2.3) 

 The probability of detection 
DP  (the probability that the test correctly decides H1).  

 

1( | )rDP P T H                                                       (2.4) 

 

A good detector should ensure a high detection probability and a low false alarm, or it should 

optimize the spectrum usage efficiency.  

The region of convergence (ROC) curve is  typically used to show the relationship between 

FP  and
DP . Cognitive radio with more efficient detection will have a ROC curve  closer to the up-

left corner and further away from the  45-degree line.  

Choosing a right detection approach has an important role in minimizing spectrum sensing 

error, improving the spectrum utilization, and protecting the PU from interference from the SUs. 

By utilizing the spectrum sensing error function an optimal adaptive threshold level can be 

developed [9-10].   

Besides its low computational and implementation complexity and short detection time, 

there are some challenges in designing a good energy detector.  

 Noise power might change over time and precise measurement of it can be difficult in 

real time. The detection threshold depends on the noise power and in the cases where 

the noise power is very high (low signal-to-noise ratio (SNR)), reliable identification 

of a primary user is even impossible[8]. 
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 An energy detector determines primary user’s presence only by comparing the received 

signal energy with a threshold. As a result, it cannot differentiate the primary user from 

other unknown signal sources, a situation that can trigger false alarm frequently. 

2) Feature Detector: (cyclostationary features) There are specific features associated with the 

information transmission of a primary user. For instance, the statistics of the transmitted signals in 

many communication paradigms are periodic because of the inherent periodicities such as the 

modulation rate, carrier frequency, etc. Such features are usually viewed as the cyclostationary 

features, based on which a detector can distinguish cyclostationary signals from stationary noise. 

In a more general sense, features can refer to any intrinsic characteristics associated with a primary 

user’s transmission, as well as the cyclostationary features.  

For example, center frequencies and bandwidths extracted from energy detection can also be used 

as reference features for classification and determining a primary user’s presence. In this section, 

we will introduce the cyclostationary feature detection followed by a generalized feature detection. 

Cyclostationary feature [6]: as in most communication systems, the transmitted signals are 

modulated signals coupled with sine wave carriers, pulse trains, hopping sequences, or cyclic 

prefixes, while the additive noise is generally wide-sense stationary (WSS) with no correlation. 

Cyclostationary feature detectors can be utilized to differentiate noise from primary users’ signal 

and distinguish among different types of transmissions and primary systems.  

Unlike energy detector which uses time-domain signal energy as test statistics, a 

cyclostationary feature detector performs a transformation from the time-domain into the 

frequency feature domain and then conducts a hypothesis test in the new domain. Cyclic 

autocorrelation function (CAF) of the received signal y(t) is defined by, 
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2[ ( ) *( ) ]j t
yR E y t y t e                                           (2.5) 

Where [.]E  is the expectation operation, *  denotes complex conjugation, and   is the cyclic 

frequency. Since periodicity is a common property of wireless modulated signals, while noise is 

WSS, the CAF of the received signal also demonstrates periodicity when the primary signal is 

present. If we can represent the CAF using its Fourier series expansion, we will have the cyclic 

spectrum density (CSD) function, expressed as,  

2( , ) ( ) j f
yS f R e  



 






                                            (2.6) 

The CSD function have peaks when the cyclic frequency α equals to the fundamental frequencies 

of the transmitted signal ( )x t , i.e. ( / )xk T  , with xT  is the period of ( )x t  . Under 
0H  the CSD 

function does not have any peaks since the noise is non-cyclostationary. A peak detector or a 

generalized likelihood ratio test can be further used to distinguish between the two  hypotheses. 

Different primary communication systems using different air interfaces (modulation, multiplexing, 

coding, etc.) can also be differentiated by their different properties of cyclostationarity.  

However, when frequency-division multiplexing (FDM) becomes the air interface, 

identification of different systems may become an issue, since the features due to the nature of 

OFDM signaling are likely to be close or even identical. To address this problem, particular 

features need to be introduced to OFDM-based communications. The OFDM signal is configured 

before transmission so that its CAF outputs peaks at certain pre-chosen cycle frequencies, and the 

difference in these frequencies is used to distinguish among several systems under the same OFDM 

air interface.  
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Compared to energy detectors that are prone to high false alarm probability due to noise 

uncertainty and unable to detect weak signals in noise, cyclostationary detectors become good 

alternatives because they can differentiate noise from primary users’ signal and have better 

detection robustness in low SNR regime. 

Generalized feature detection refers to detection and classification that extracts more 

feature information other than the cyclostationarity due to the modulated primary signals, such as 

the transmission technologies used by a primary user, the amount of energy and its distribution 

across different frequencies, channel bandwidth and its shape, power spectrum density, center 

frequency, idle guard interval of OFDM, FFT-type of feature, etc. By matching the features 

extracted from the received signal to the a priori information about primary users’ transmission 

characteristics, primary users can be identified.  

Location information of the primary signal is also an important feature that can be used to 

distinguish a primary user from other signal sources.  

3) Matched Filtering and Coherent Detection: If secondary users have information about a primary 

user’ signal a priori, then the optimal detection method is the matched filter, since a matched filter 

can correlate the already known primary signal with the received signal to detect the presence of 

the primary user and thus maximize the SNR in the presence of additive stochastic noise. The merit 

of matched filtering is the short time it requires to achieve a certain detection performance such as 

low probabilities of missed detection and false alarm, since a matched filter needs less received 

signal samples. However, the required number of signal samples also grows as the received SNR 

decreases, so there exists a SNR wall for a matched filter. In addition, its implementation 

complexity and power consumption is too high, because the matched filter needs receivers for all 

types of signals and corresponding receiver algorithms to be executed. 
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Matched filtering requires perfect knowledge of the primary user’s signal, such as the 

operating frequency, bandwidth, modulation type and order, pulse shape, packet format, etc. If 

wrong information is used for matched filtering, the detection performance will be degraded a lot.  

Even though perfect information of a primary user’s signal may not be attainable, if a 

certain pattern is known from the received signals, coherent detection (a.k.a. waveform-based 

sensing) can be used to decide whether a primary user is transmitting or not. [16] 

4) Other Techniques: There are several other spectrum sensing techniques proposed in recent 

literature, and some of them are variations inspired by the above-mentioned sensing: 

 Statistical Covariance-Based Sensing: The difference of statistical covariance matrices of 

the received signal and noise is used to differentiate the desired signal component from 

background noise [11-12]. Filter-Based Sensing: filter banks are used for multicarrier 

communications in CR networks, and  spectrum sensing can be performed by only 

measuring the signal power at the outputs of subcarrier channels with virtually no 

computational cost [13] . 

 Fast Sensing: Quickest detection performs a statistical test to detect the change of 

distribution in spectrum usage observations as quickly as possible. The unknown 

parameters after a primary user appears can be estimated using the proposed successive 

refinement, which combines both generalized likelihood ratio and parallel cumulative sum 

tests. 

 Learning/Reasoning-Based Sensing: optimal detection strategy is obtained by solving a 

Markov decision process (MDP).  
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2.5 COOPRATIVE SENSING 

The performance of spectrum sensing is limited by noise uncertainty, shadowing, and multi-

path fading effect. In Low SNR cases, a hidden primary user problem occurs where secondary 

users cannot detect the primary transmitter, when the primary user is occupying the channel, 

therefore the primary user will be interfered. To solve this issue the advantage of the independent 

fading channels (i.e., spatial diversity) and multiuser diversity has been considered and cooperative 

spectrum sensing is proposed to improve the reliability of spectrum sensing, increase the detection 

probability to better protect a primary user, and reduce false alarm to utilize the idle spectrum more 

efficiently. 

Centralized cooperative spectrum sensing: a central controller, e.g., a secondary base station, 

collects local observations from multiple secondary users, decides the available spectrum channels 

using some decision fusion rule, and informs the secondary users which channels to access.  

Distributed cooperative spectrum sensing: secondary users exchange their local detection results 

among themselves without requiring a backbone infrastructure with reduced cost. Relays can also 

be used in cooperative spectrum sensing, where the cognitive users operating in the same band 

help each other relay information using amplify-and-forward protocol.  

Challenges on cooperative spectrum sensing come from the limitation of the secondary 

users. Since SRs can be low-cost devices only equipped with a limit amount of power, they cannot 

employ very complicated detection hardware with high computational complexity.  In wideband 

cooperative sensing, multiple secondary users have to scan a wide range of spectrum channels and 

share their detection results. This results in a large amount of sensory data exchange, high energy 

consumption, and an inefficient data throughput.  
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1) User Selection: Due to secondary users’ different locations and channel conditions 

involving all the secondary users in spectrum sensing is not efficient, and cooperating more 

efficient approach is to select only a group of users who have higher SNR of the received primary 

signal. 

Since detecting a primary user costs battery power of secondary users, and shadow fading 

may be correlated for nearby secondary users, an optimal selection of secondary users for 

cooperative spectrum sensing is desirable. If a secondary user cannot distinguish between the 

transmissions of a primary user and another secondary user, it will lose the opportunity to use the 

spectrum. The presence/absence of possible interference from other secondary users is the main 

reason of the uncertainty in primary user detection, and coordinating with nearby secondary users 

can greatly reduce the noise uncertainty due to shadowing, fading, and multi-path effects. A good 

degree of coordination should be chosen based on the channel coherent times, bandwidths, and the 

complexity of the detectors.  

2) Decision Fusion: Different decision fusion rules for cooperative spectrum sensing have 

been studied in the literature.  An optimal way to combine the received primary signal samples in 

space and time is to maximize the SNR of local energy detectors. In general, cooperative sensing 

is coordinated over a separate control channel, so a good cooperation scheme should be able to use 

a small bandwidth and power for exchanging local detection results while maximizing the 

detection reliability. An efficient linear cooperation framework for spectrum sensing is proposed 

in [7], where the global decision is a linear combination of the local statistics collected from 

individual nodes using energy detection. Compared to the likelihood ratio test, the proposed 

method has lower computational complexity, closed-form expressions of detection and false alarm 

probabilities, and comparable detection performance. 
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3) Efficient Information Sharing: In order to coordinate the cooperation in spectrum 

sensing, a lot of information exchange is needed among secondary users, such as their locations, 

estimation of the primary user’s location and power, which users should be clustered into a group, 

which users should perform cooperative sensing at a particular time epoch, and so on. Such a large 

amount of information exchange brings a lot of overhead to the secondary users, which necessitates 

an efficient information sharing among the secondary users.  

In order to reduce the bandwidth required by a large number of secondary users for reporting their 

sensing results, only users with reliable information will send their local observations, i.e., one-bit 

decision 0 or 1, to the common receiver.  

4) Distributed Cooperative Sensing: Cooperative spectrum sensing has been shown to be 

able to greatly improve the sensing performance in CR networks. However, if cognitive users 

belong to different service providers, they tend to contribute less in sensing in order to increase 

their own data throughput. Using replicator dynamics, the evolutionary game modeling provides 

an excellent means to address the strategic uncertainty that a user may face by exploring different 

actions, adaptively learning during the strategic interactions, and approaching the best response 

strategy under changing conditions and environments. 
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2.6 LOW RANK MATRIX COMPLETION: 

In this section, we introduce low rank matrix completion model and the properties of a low 

rank measurement matrix. In the next chapter, we use the low rank properties of the measurement 

matrix formed by measurement vectors from multiple cooperative CRs. Capitalizing on such a 

nice property, we then develop a multiple reaction monitoring (MRM)based cooperative support 

detection algorithm. To perform cooperative support detection from multiple measurements we 

make an important observation that these measurement vectors permit sparse representations due 

to low spectrum utilization of the primary system, and that these sparse representations jointly 

possess a desired low-rank property. 

2.6-1 MOTIVATION 

We have an 
1n  by 

2n  array of real numbers and that we are interested in knowing the value of each 

of the 
1n 2n  entries in this array. However, we only get to see a small number of the entries so that 

most of the elements about which we wish information are simply missing.  

Now the question is if we are able to reconstruct the matrix from the existing entries?  

This problem is now known as the matrix completion problem. In mathematical terms, the problem 

may be posed as follows: 

We have a data matrix 1 2n nM R   which we would like to know as precisely as possible. However, 

the only information available about M  is a sampled set of entries , (i, j)ijM  , where   is a 

subset of the complete set of entries 
1 2[ ] [ ]n n . (Here and in the sequel, [ ]n  denotes the list {1,..., }n

.) In order to reconstruct the matrix M  from its partial entries a few assumptions about the matrix 

M  is needed. 
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2.6-2 Model description  

Here, we are concerned with the theoretical underpinnings of matrix completion and more 

specifically in quantifying the minimum number of entries needed to recover a matrix of rank r  

exactly. This number generally depends on the matrix we wish to recover.  

Let us assume that the unknown rank- r  matrix M  is n n . Then it is not hard to see that matrix 

completion is impossible unless the number of samples m is at least 22nr r , as a matrix of rank 

r  depends on these many degrees of freedom. The singular value decomposition (SVD),  

*

[r]
k k k

k

M u v


                                                      (2.7) 

Where 
1,..., 0r    are the singular values, and the singular vectors 1

1,...,
n n

ru u R R   and 

2

1,...,
n n

ru u R R   are two sets of orthonormal vectors, is useful to reveal these degrees of 

freedom. Informally, the singular values 
1 ... r    depend on r  degrees of freedom, the left 

singular vectors 
ku on (n 1) (n 2) ... (n ) (r 1) / 2r nr r          degrees of freedom, and 

similarly for the right singular vectors
kv . If 22m nr r  , no matter which entries are available, 

there can be an infinite number of matrices of rank at most r  with exactly the same entries, and 

so exact matrix completion is impossible. In fact, if the observed locations are sampled at random, 

we will see later that the minimum number of samples is better thought of as being on the order of 

lognr n rather than nr .  

let : n n n nP R R 

   be the orthogonal projection onto the subspace of matrices which 

vanish outside of   ( ( , )i j  if and only if ijM is observed) that is, ( )Y P X  is defined as, 
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𝑌𝑖𝑗 = {
𝑋𝑖𝑗 ,            (𝑖, 𝑗)𝜖Ω

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                                     (2.8) 

                                                    

so that the information about M  is given by ( )P X
.The matrix M  can be, in principle, recovered 

from ( )P X
if it is the unique matrix of rank less or equal to r  consistent with the data. In other 

words, if M  is the unique solution to, 

minimize          rank( )

subject to         ( ) ( )

X

P X P M 
                                (2.9) 

Knowing when this happens is a delicate question which shall be addressed later. For the moment, 

note that attempting recovery via rank minimization is not practical as rank minimization is in 

general an NP-hard problem for which there are no known algorithms capable of solving problems 

in practical time once, say, 10n  . 

In [4], it was proved that:  

1) matrix completion is not as ill-posed as previously thought. 

2) exact matrix completion is possible by convex programming. 

The author of [4] proposed recovering the unknown matrix by solving the nuclear norm 

minimization problem, 

*minimize        || ||

subject to         ( ) ( ),

X

P X P M 
                                  (2.10) 

where the nuclear norm 
*|| ||X   of a matrix X  is defined as the sum of its singular values, 
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*|| || : ( )i
i

X X                                                       (2.11) 

It is proved that if   is sampled uniformly at random among all subset of cardinality m  and M  

obeys a low coherence condition which we will review later, then with a large probability, the 

unique solution to nuclear norm minimization problem is exactly M , provided that the number of 

samples obeys, 

6/5 logm Cn r n                                                      (2.12) 

(To be completely exact, there is a restriction on the range of values that r  can take on). The 

number of samples per degree of freedom is not logarithmic or polylogarithmic in the dimension, 

and one would like to know whether better results approaching the lognr n  limit are possible.  [4] 

provides a positive answer. In details, this work develops many useful matrix models for which 

nuclear norm minimization is guaranteed to succeed as soon as the number of entries is of the form 

log( )nrpoly n . 

2.7 JOINTLY SPARSE SIGNALS AND MIXED NORM MINIMIZATION MATRIX 

RECONSTRUCTION  

Over the last few years, sparsity has emerged as a general principle for signal modeling. 

Many signals of interest often have sparse representations, meaning that the signal is well 

approximated by only a few nonzero coefficients in a specific basis. Compressive sensing (CS) 

has recently emerged as an active research area which aims to recover sparse signals from 

measurement data [14-15].  

In the basic CS, the unknown sparse signal is recovered from a single measurement vector, 

this is referred to as a single measurement vector (SMV) model. In our study, we consider the 
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problem of finding sparse representation of signals from multiple measurement vectors, which is 

known as the MMV model. In the MMV model, signals are represented as matrices and are 

assumed to have the same sparsity structure. Specifically, the entire rows of signal matrix may be 

0. 

Most sparsity based approaches start by expanding signals on a given waveform family 

(basis, frame, dictionary . . .), and process the coefficients of the expansion individually. Therefore, 

an assumption on the coefficients independence is implicitly done.  

Sparse expansion methods explicitly introduce a notion of structured sparsity. Our 

approach is based on mixed norms, which may be introduced whenever signal expansions on 

doubly labeled families are considered. S is a sparse expansion of signal . 

,
ij ij

i j

S                                                               (2.13) 

Where { }ij  are the waveforms of a given basis or frame.  

Considering the mixed norm pq , 

1/
/

|| || | |

q
q p

p
pq ij

i j

 
  
      

                                                  (2.14) 

We shall be mainly concerned with the regression problem, 

                                                                                                                                                                                                                                    

  

 (2.15) 

2

,
2

min s || ||qij ij pq
i j


   

 
 
 
 

 
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With 0   a fixed parameter. 

When { }ij  is a basis, we give practical estimates for the regression coefficients
ij , obtained by 

generalized soft thresholding. This former case is well adapted when the observation of the signal 

is noisy. 
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CAHPTER THREE  

SYSTEM MODEL AND SOLUTION 

3.1 DISCUSSION OF THE  PROBLEM 

When channel state information (CSI) from PU transmitters to CR receivers is available, the 

CRs can jointly estimate the common transmitted spectrum of the primary system from their 

individually received measurement vectors, which is the widely studied cooperative estimation 

problem. However, when the CSI is unavailable, CRs can only decide the spectrum occupancy of 

the PU systems, indicated by the nonzero support of the  

Transmitted spectrum. This becomes a cooperative support detection problem, which is more 

challenging than cooperative estimation.  In the cooperative multiple nodes, the signals received 

at SUs exhibit a sparsity property that yields a low-rank spectrum matrix of compressed 

measurements at the fusion center. We propose an approach to take advantage the sparsity property 

of the spectrum matrix at the fusion center. 

With Adopting a system model from [1], let us assume that a wideband PU system spans 

over a total of B Hz, and the overall frequency band is divided into N non-overlapping bins of 

equal bandwidth B/N Hz, which are termed as channels and indexed by n ∈ [0, 1, ..., N − 1]. There 

are J spatially distributed CRs that cooperate during the sensing stage and are indexed by j ∈ [1, 

2. . . J].  Each CR senses only a small spectrum segment of bandwidth M(B/N), so that the Nyquist 

sampling rate per CR is reduced by M/N, compared to that for monitoring the entire wideband 

spectrum. Further, it is assumed that the J CRs monitors different yet overlapping segments of the 
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entire spectrum.  Namely, the j th CR monitors M channels with channel indices from ( 1)j    

to ( 1) 1j M   , where 0   is an integer denoting the shift between the channel assignments 

of two adjacent CRs. When1 M   , and ( 1)J M N   , each channel is guaranteed to be 

covered by at least one CR. A scenario for 1   and 4M  is illustrated in Figure 1.  

 

 

 

 

 

 

 

Figure 1.  A cooperative spectrum sensing system with multiple CRs 

Let 
fs denote the unknown spectrum of the wideband signals transmitted by the PU. The sparsity 

of the transmitted spectrum is ||Sf||0 = I , which is the 
0l -norm of the spectrum vector and 

measures the size of the nonzero support of Sf.  Let us assume that at the j th CR, we have a 

spectrum vector which is a faded version of Sf, 

j j fr H s                                                                (3.1) 
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where N N

j C H is a diagonal channel matrix, whose diagonal elements are the independent 

fading coefficients of the corresponding channels. 

Note that in the cooperative spectrum sensing system, each CR only monitors M out of N channels, 

and the actual received spectrum after passing through a selective filter becomes, 

,s j j jr B r                                                                   (3.2) 

where {0,1}M N

j

B  is the channel selection matrix of the j th CR. 
jB  is obtained from a  N N

identity matrix by keeping only those M rows corresponding to the channel subset of the j th CR. 

When Nyquist-rate sampling is adopted at each CR, the j th CR collects discrete-time sample 

vector 
jx  in the form of, 

1
,j s j

x F r                                                                 (3.3) 

where F  is the square discrete Fourier transform (DFT) matrix. When compressive sensing is 

used, 
jx  can be pre-multiplied by a random sensing matrix 

K M

j C Φ to collect compressive 

linear projections from the filtered waveform 
jx  [3], where /K M is the compression ratio. In the 

presence of channel noise, the compressed sample vector at the j th CR can be modeled as,  

1
,j j s j j

 x Φ F r w                                                         (3.4) 

jx is a 1K   vector, which corresponds to a sampling rate of ( / )( / ) /K M MB N KB N , and 

can be generated by an analog sampler [3].  

By defining 
1

j j j

A Φ F B , (3.4) can be re-written as, 
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j j j j x A r w                                                              (3.5) 

Our goal is to infer the binary occupancy state of each channel, defined as a spectrum state vector 

{0,1}N

f d , [ ] 1f i d  when [ ]f is  is nonzero; otherwise, [ ] 0f i d . Therefore, the goal is to find 

the support of the spectrum vector
fs , when multiple measurements  

1

J

j j
x are available. 

3.2 METHODOLOGY 

3.2-1  LOW-RANK MATRIX COMPLETION BASED SPECTRUM SENSING 

A low-rank matrix completion based spectrum sensing approach was proposed in [1]. This work 

was motivated by the observation that only a small percentage of the channels are occupied by the 

PUs. As a result, if one defines the spectrum matrix as,  

1 2, , ..., Jf   R r r r                                                            (3.6) 

Then there will be only a small number of nonzero rows in
f

R , making it a low-rank matrix. 

First, let us assume that all the measurements  
1

J

j j
x are stacked as a single ( ) 1JK   vector 

1[ , , ]T T T

t Jx x x , and all the measurement noise vectors  
1

J

j j
w are stacked as a single ( ) 1JK   

vector 
1[ , , ]T T T

t Jw w w . Next, the spectrum matrix 
fR  is vectorized column-wise, namely,  

1( ) [ , , ]T T T
Jf fvec r R r r                                             (3.7) 

Further let us define 
~

1 2
{ , ,..., }

J
diagΑ Α Α Α  , which is a block diagonal matrix with the 

diagonal blocks consist of  1}J

j j{Α .  With these notations and considering the low-rank property 
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of
fR ,  

fR  can be estimated based on all the measurements by solving the following matrix rank 

minimization problem:  

   
~

2
2min || ||

f
tf fRank vec 

R
R x Α R                             (3.8) 

The second term in (3.8) penalizes the model fitting error, and   is the Lagrangian parameter 

which provides the relative emphases on the low-rank property of 
fR  and the tolerance on 

measurement model errors.   

Note that ( 3.8) is an intractable optimization problem since the combinatorial nature of the rank 

of a matrix. Therefore, rank function can be replaced by its convex surrogate [4], the nuclear norm 

function, denoted as ||.||*. The nuclear norm of a matrix is the sum of all the singular values of the 

matrix.  As a result, the optimization problem in (8) becomes 

 
~

2
2

*
min || ||

f
tf fvec 

R
R x Α R                                     (3.9) 

In [1], it was shown that a spectrum sensing approach based on the nuclear norm minimization 

provides very good detection performance.  

3.2-2 SPECTRUM SENSING BASED ON MIXED-NORM MINIMIZATION 

Taking a closer look at (3.6), one can find that 
fR  has a small number of non-zero rows, 

implying that it is not only low-rank but also sparse, which means it has a small number of non-

zero elements. More particularly, the columns in fR , namely
1 2
, , ..., Jr r r , share the same support, 

and are jointly sparse. This motivates us to explore spectrum sensing algorithm based on matrix 

mixed-norm minimization.  
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We are particularly interested in  
2 1/l l  norm of a matrix, defined as, 

2
,2,1|| || | A |i j

i j

A                                                  (3.10) 

Which is the sum of the 
2l  norms of the rows of matrix A . Minimizing the 

2 1/l l  norm of a matrix 

will promote the joint-sparsity among its columns.  Here, replacing the nuclear norm in (3.9) with 

the 
2 1/l l  norm, we have the following convex optimization problem,  

 
~

2
2

2,1
min || ||

f
tf fvec 

R
R x Α R                                   (3.11) 

 

3.3  SPECTRUM SENSING DECISION MAKING 

Once the estimated spectrum matrix  ˆ
fR  is found by solving (3.9) or (3.11), the fusion center can 

make a decision on whether or not a particular channel has been occupied by a PU.  More 

specifically, the fusion center first calculates the energy in the i th channel, averaged over J  CRs, 

which is then compared to a threshold to make a decision:  

^
2 2

1

1
ˆ[ ] | [ ] |

J

f j
j

i i
J




 
  
 

 d r                                                   (3.12) 

3.4 NUMERICAL RESULTS FOR SIGNALS IN SINGLE TIME FRAME 

In the simulations, we choose the following parameters for the cooperative spectrum sensing 

network: N = 20, I = 2, J = 20, M = 4, K=5, 1  . So as illustrated in Figure. 1, on the average 

each channel is monitored by 4 CRs. Both the nuclear norm minimization problem as described in 

(3.9) and the 
2 1/l l  mixed norm minimization problem defined in (3.11) are solved by the CVX 
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package [5], with the Lagrangian coefficient   being set as 5 in both optimization problems, 

respectively. The signal-to-noise ratio (SNR) is defined to be the total signal power over the entire 

spectrum, normalized by the power of the white noise.   

Given the true channel state vector
fd , the probabilities of detection and false alarm are defined 

as, 

ˆ( )T
f f f

d T
f

P E
 
 
 
  




d d d

1 d
                                                       (3.13) 

ˆ( ) ( )T
f f f

f T
f

P E
N

 
 
 
  

 




1 d d d

1 d
                                               (3.14) 

Respectively, where 1 denotes an all-one vector.  

The ROC curves for the two approaches based on nuclear norm minimization and 
2 1/l l  

mixed norm minimization are obtained from 1000 Monte-Carl trials and provided in Figure 2 for 

different SNR values. It is clear that as SNR increases, the performance for detecting the PUs is 

improved. Further, the approach based on matrix mixed norm minimization provides a better 

detection performance in higher SNR, since it takes advantage of the sparse property of the 

spectrum matrix, instead of merely its low-rank property. However, as SNR decrease we observe 

that increasing the noise level has more effect on sparsity of a matrix than its low rank property. 

As we can see from the result, by reducing SNR from 10 dB to 0 dB, the matrix rank minimization 

approach has better detection performance in lower fP  values, but as fP  increases the mixed norm 

approach shows a better result. At lower SNR such as -5 dB, both approaches have approximately 

the same  detection performance. 
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Figure 2. ROC curves for spectrum sensing approaches based on nuclear norm minimization and 

mixed 
2 1/l l  norm minimization. 
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3.5 Spectrum Sensing over Multiple Time Frames  

So far, we have assumed that the occupied channels are sparse, now we want to add the 

time dimension to our assumptions and detect the PUs using signals over multiple time-frames.  

Let us assume that channel occupancy remains the same at each time frame, however the 

energy of the occupied sub-channels will change over the time. We start with the following 

assumptions to model our new system. 

Fading in the channel, 

 is not changing over time 

 over frequency it is changing independently  

 the changes over the space are not our concerns 

With these assumptions, over time the same number of channels are occupied but their energy will 

change. We will add time index to our model meaning that we study the channel over multiple 

time frames. 

3.6 SYSTEM MODEL 

Let us add a time index k to the unknown spectrum of the wideband signal transmitted by the PU 

at time k , namely Sfk. Define the fading coefficient matrix at time k  and sensor j  as  Hjk, then ( 

3.1) becomes, 

rjk = Hjk Sfk                                                        (4.1) 

Since fading is not changing over time we can rewrite the equation as follows, 
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jjk fkr H S                                                             (4.2) 

At sensor j , using time-invariant channel selection matrix
jB and random sensing matrix 

j , then we have the compressed sample vector at the j th CR as, 

1
j jjk jk jk

j jk jk

X F B r W

A r W

  

 
                                                  (4.3) 

Where 
jkW is an additive noise at time k and CR j . 

 

3.7 METHODOLOGY: MIXED NORM MINIMIZATION BASED SOLUTION 

Now if we define spectrum matrix at each time frame as follows, 

1 2[r , r , , r ]fk k k jkR                                                           (4.4) 

Let us assume that we have z  number of time frames, let us stack all the spectrum matrices 

1}{ Z

fk kR   in one large matrix RF . 

1 2[R ,R , ,R ]f f fZRF                                                      (4.5) 

Let us assume that all the measurements 1{x }J
jjk   are stacked as a single ( ) 1JK   vector 

1 2[X ,X , ,X ]T T T T

tk k k JkX   and all the measurement noise vectors 1{W }J

jk j  are stacked 
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As a single ( ) 1JK  vector 
1 2[ , , , W ]T T T T

tk k k JkW W W . Now we wat to vectorize all the stacked 

vectors of 1{x }Z
tk k  to a single vector of ( ) 1JKZ   and the same for stacked vectors of noise

1{W }Z

tk k

. 

1 2[X ,X , ,X ]T T T T
tZt tXT                                          (4.6) 

1 2[ , , ,W ]T T T T
tZt tWT W W                                         (4.7) 

Next, we want to vectorize the spectrum matrix, we start by vectorizing 
1{ }Z

fk kR 
 to a ( ) 1NJZ 

vector 1 2(R ) [ , , , ]T T T T

fk fk k k Jkr Vec r r r   then we stack all 
1{r }Z

fk k
 to a single vector, 

1 2(RF) [ , , , ]T T T T
f f fZVec r r r                                       (4.8) 

With these notations and considering its joint-sparse property, RF can be estimated based on all 

the measurements by solving the following matrix mixed norm minimization problem, 

min
RF

 
2,1

~
2
2|| || || XT Vec(RF) ||RF                                 (4.9) 

Where 
~

  is the diagonal matrix of 11}{{ } Z

jk k

J
jA  . However, we know that 

jkA  does not change 

over time.  Therefore, 
~

   will be as follows, 

 

~

1 2 1 2 1 2
1 2

{ , , ..., , , , ..., , , , , ..., }J J J
k k k Z

diag
  

Α Α Α Α Α Α Α Α Α Α                     (4.10) 
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3.8 Numerical Results for Signals over Multiple Time Frames  

In the simulations, with the same parameters for the cooperative spectrum sensing network as 

before, the ROC curves for the approach based on 
2 1/l l  mixed norm minimization are obtained 

from 1000 Monte-Carl trials and provided in Figure 3 for different number of time frames. It is 

shown that as number of time frames increases from one to two, the performance for detecting the 

PUs is improved.  

 

Figure 3. ROC curves for spectrum sensing based on mixed 
2 1/l l  norm minimization approach. 
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CHAPTER 5  

Conclusion 

In this  thesis, the problem of wideband spectrum sensing in CR networks using sub-

Nyquist sampling and sparse signal processing techniques was investigated. To mitigate multi-

path fading, we assumed that a group of spatially dispersed SUs collaborate for wideband spectrum 

sensing, to determine whether or not a channel is occupied by PUs. Due to the underutilization of 

the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In some 

existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank 

matrix completion technique involving matrix nuclear norm minimization. Motivated by the 

observation that the spectrum matrix is not only low-rank, but also sparse, we proposed a spectrum 

sensing approach based on minimizing the 
2 1/l l  mixed-norm of the spectrum matrix to promote 

joint sparsity among the spectrum matrix’s columns, instead of low-rank matrix completion. 

Experiment results based simulation showed that the proposed new approach outperforms the low-

rank matrix completion based approach, through the comparison of the ROC curves. In practice 

channels are steady over time.  Therefore, by adding time index, we proposed  a spectrum sensing 

approach based on mixed 
2 1/l l  norm minimization over multiple time frames. In our model, we 

assumed that channel occupancy remains the same at each time frame but the energy of the 

occupied sub-channels will change over the time. We showed that increasing the number of time 

frames from one to two will improve the detection performance. However, our observation showed 

that increasing the number of time frames from two to three will have less efficient detection. This 

issue guides us to our next step of the study and in our future works we plan to research and explain 

this phenomenon. 
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