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The method development process in liquid chromatography (LC) involves optimization of 

a variety of method parameters including stationary phase chemistry, column temperature, initial 

and final mobile phase compositions, and gradient time when gradient mobile phases are used. 

Here, a general simulation program to predict the results (i.e., retention time, peak width and peak 

shape) of LC separations, with the ability to study various complex chromatographic conditions is 

described. The simulation program is based on the Craig distribution model where the column is 

divided into discrete distance (Δz) and time (Δt) segments in a grid and is based on parameterization 

with either the linear solvent strength or Neue-Kuss models for chromatographic retention.  This
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algorithm is relatively simple to understand and produces results that agree well with closed form 

theory when available. The set of simulation programs allows for the use of any eluent composition 

profile (linear and nonlinear), any column temperature, any stationary phase composition (constant 

or non-constant), and any composition and shape of the injected sample profile. The latter addition 

to our program is particularly useful in characterizing the solvent mismatch effect in 

comprehensive two-dimensional liquid chromatography (2D-LC), in which there is a mismatch 

between the first dimension (1D) effluent and second dimension (2D) initial mobile phase 

composition. This solvent mismatch causes peak distortion and broadening. The use of simulations 

can provide a better understanding of this phenomenon and a guide for the method development 

for 2D-LC. Another development that is proposed to have a great impact on the enhancement of 

2D-LC methods is the use of continuous stationary phase gradients. When using rapid mobile 

phase gradients in the second dimension separation with diode array detection (DAD), refractive 

index changes cause large backgrounds such as an injection ridge (from solvent mismatch) and 

sloping baselines which can be problematic for achieving accurate quantitation. Use of a stationary 

phase gradient may enable the use of an isocratic mobile phase in the 2D, thus minimizing these 

background signals. Finally, our simulator can be used as an educational tool. Unlike commercially 

available simulators, our program can capture the evolution of the chromatogram in the form of 

movies and/or snapshots of the analyte distribution over time and/or distance to facilitate a better 

understanding of the separation process under complicated circumstances. We plan to make this 

simulation program publically available to all chromatographers and educators to aid in more 

efficient method development and chromatographic training. 



 
 

1 
 

Chapter 1: Overview and Objectives 

 

 

 

 

Liquid chromatography (LC) is an important part of analytical science and a very powerful 

separation technique. It is a versatile technique which allows for variations in experimental 

conditions to achieve fine-tuned separation of mixture of interest. The process of finding the best 

separation conditions involves optimization of variety of separation parameters such as solvent 

composition, column type, and temperature. The optimization process by conventional trial-and-

error approach in LC method development can be time consuming. The conventional trial-and-

error approach in LC method development usually results in significant experimental time and 

resources. Naturally chromatographers have sought out fast and accurate retention prediction 

which has been a driving force for innovations in computer simulators (based on theoretical studies 

of band propagation). Currently available simulators, although useful, are expensive and lack 

flexibility. Here we describe the development of a general simulation program which is simple to 

understand with several added capabilities not offered by commercially available simulators. 

There were three reasons for pursuing the development of our own LC simulation program: 

(1) to save time and money involved in conventional method development; (2) to produce more 

reliable and accurate results with the flexibility to handle a variety of different separation 

conditions; and (3) to offer an easy to use simulation tool free of charge for the purpose of 

education and research. In the next five chapters we will explore the theoretical basis for liquid
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chromatography, the development and extension of our simulation program, and further 

acceleration of retention prediction process. Chapter 2 explains the basics of LC and introduces 

two-dimensional liquid chromatography (2D-LC). Chapter 3 describes all theoretical equations 

used as the bases for the development of the simulation program. 

The work presented here was motivated by four major goals which are discussed in detail 

in the following chapters. First, we wanted to support conventional LC method development with 

a simulation program with more flexibility and accuracy compared to what is offered by existing 

simulators. The simulation algorithm is based on the Craig distribution model where the column 

is divided into discrete distance and time segments. Equilibration occurs at each position and time, 

and the concentration at the end of the column is recorded. Chapter 4 discusses the creation of the 

simulation program and each extension made to improve its flexibility. Although 2D-LC offers 

increased separation power, its lower detection sensitivity compared to one-dimensional LC has 

been a limitation.  This is believed to be due to difficulties in controlling the conditions that the 

analytes experience when they are transferred from the first to the second dimension. Upon 

successful simulation of conventional mobile phase gradients and validation of the simulation 

program against a well-known theory (Linear Solvent Strength), our second goal was to extend 

the simulation program capability to accurately predict the effect of common conditions used in 

2D-LC method development. 

The third goal of this work was to accelerate the simulation process along with full 

automation. Our simulation program is shown to provide accurate retention prediction with ability 

to monitor the band propagation, which can be captured as snapshots or movies. Although it is 

faster than a trial-and-error approach in method development, the exhaustive search for the most 

optimal separation condition is limited by the need to calculate the retention factor stepwise at 



 
 

3 
 

every position and time. Chapter 5 presents a convolution approach applied to chromatographic 

retention prediction to speed up this process. Under the convolution approach, full simulation is 

required for a shorter length of the column and retention on the remainder of the column is 

predicted by closed form calculation. A six-fold speed increase with utilization of convolution 

approach compared to full simulation for 854 conditions clearly illustrate its potential for 

exhaustive search for optimal separation condition.  

Our fourth and final goal was to further extend the capabilities of the simulation program 

to support the development of continuous stationary phase gradients. The simulator can provide a 

better understanding of the effects of the placement of different functionalities on column 

selectivity. Chapter 6 describes additional adaptation of the simulator to include retention 

prediction on a non-uniform stationary phase column under isocratic and gradient elution 

conditions. This extension in the simulation program was validated by comparing retention 

prediction of ten amphetamines to experimental data acquired on a commercially available 

discontinuous stationary phase system. In collaboration with the Collinson lab, we successfully 

synthesized continuous amine gradient columns, which resulted in a change in selectivity 

compared to bare silica and uniform amine columns. Comparison of simulation retention 

prediction for probe compounds to the experimental data revealed possible neighboring ligand 

effect present in the continuous amine gradient column. We believe that the following chapters 

will clearly show the usefulness of our simulation program in LC method development and that it 

will prove to be a great educational tool. 
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Chapter 2: Introduction 

 

 

 

 

2.1. Liquid Chromatography 

 

 

Liquid chromatography (LC) is a physical separation technique that utilizes two phases – 

a liquid mobile phase and a solid or liquid stationary phase. Separation is achieved based on the 

difference in the degree of interaction of each analyte to both phases through a partition or 

adsorption mechanism. The interactions can be based on polarity, electrical charge, and molecular 

size [1]. This dissertation focuses on LC separations based on polarity. Two different types of 

bonded phase LC separations are available where polarity of the stationary and mobile phases are 

changed to separate mixtures. The stationary phase is polar and the mobile phase is non-polar in 

normal phase liquid chromatography (NPLC), whereas the opposite is true for reversed phase 

liquid chromatography (RPLC). RPLC is the most widely used technique and therefore discussions 

in this work will focus on this mode of separation with the exception of hydrophilic interaction 

liquid chromatography (HILIC), which is discussed in section 6.5. HILIC is a form of normal 

phase chromatography when water is one of the components of the mobile phase. Stationary phases 

under RPLC conditions are hydrophobic in nature and are usually chemically bonded to the surface 

of a silica particle supports. Some of the most commonly used stationary phases are alkyl chains 

(C18, C8, C4), phenyl, cyano and amino. The rate at which each analyte moves through the system

                                                           
 High performance or high pressure liquid chromatography (HPLC) uses high-pressure to move mobile phase 
through the stationary phase and is simply referred to as LC throughout this dissertation. 
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depends on its interaction with each phase. If the analyte has no interaction with the mobile phase, 

then it will stick to the stationary phase and never elute. On the other hand, if there is no interaction 

with the stationary phase, the analyte will move through the column at the same rate as the mobile 

phase. The degree of the solute’s affinity to the stationary phase is known as the retention factor 

(k) and is simply defined as the ratio of moles of analyte in the stationary phase (ns) to moles of 

analyte in the mobile phase (nm). Or, it can also be calculated from experimental data: 

s R M

m M

n t t
k

n t


                                                             (2.1) 

where tR is the retention time of the analyte and tM is the column dead time or retention time of an 

un-retained compound. The higher the k value, longer the retention and slower the elution. 

The separation between two peaks can be quantified by the term known as resolution (Rs): 

1

4 1
s

k
R N

k

 


 
                                                     (2.3) 

There are three factors that contribute to resolution: retention (k), selectivity (α), and efficiency 

(N). Selectivity is directly related to the quality of chromatographic separation and is defined as 

the ratio of the retention factors of two analytes: 

2

1

k

k
                                                                 (2.2) 

Since k2 > k1, the selectivity is always greater than one by definition. 

The column efficiency is directly related to resolution and inversely related to the plate height (H): 

L
N

H
                                                                (2.4) 

where L is the column length. In order to increase resolution or improve separation, we can 

increase N, which decreases the peak widths, or increase α by increasing the space between two 

peaks. As shown in Figure 2.1, α has the greatest impact on improving resolution. Usually it is 
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necessary to increase retention of analytes in order to increase selectivity. However, longer 

analysis time is not desirable and therefore, the preferred approach historically is to improve the 

column efficiency.  

 

 

Figure 2.1. The impact of selectivity, efficiency and retention on resolution (Rs). Fixed values: α = 1.05, N 

= 5000, and k = 5. Figure recreated from [2,3]. 

 

The impact of column efficiency on separation performance can be represented by the peak 

capacity (nc). It is defined as the maximum number of Gaussian peaks which can fit within the 

separation window with Rs = 1. At a resolution smaller than 1, analysis of peaks becomes difficult 

and is considered to be an inadequate separation. 

The column efficiency can be enhanced by controlling three phenomena in 

chromatography. The van Deemter equation defines theoretical plate height, H, as a sum of these 

three factors: 

m

m

B
H A Cu

u
                                                            (2.5) 
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The first term, A, is eddy dispersion and it explains the peak broadening caused by the different 

paths the analyte can take down the column length. Non-uniform packing of the particles in the 

column bed causes more dispersion. The second term, B, is the longitudinal diffusion along the 

column. This term is inversely related to the mobile phase velocity, um. In other words, the analyte 

has more time to diffuse, resulting in a broader peak at slower mobile phase velocities. The last 

term, C, is the resistance to mass transfer and its contribution is directly related to the mobile phase 

velocity. The faster the flow rate, less time for analyte to partition between the two phases. When 

we plot equation 2.5, we can find the optimum mobile phase velocity, uopt, which results in 

minimum H value as shown in Figure 2.2. Although this is the mobile phase velocity that will 

provide the best efficiency, it often is slower than the desired analysis speed. Therefore, linear 

velocities faster than the optimal velocity are often used, with careful consideration of the effect 

of C term on the resulting separation. 

 

 

Figure 2.2. Van Deemter plot. The minimum plate height (Hmin) and optimum linear velocity (uopt) is 

indicated by the dashed line. 

 

Each of these van Deemter terms can be minimized with careful selection of separation conditions 

and improvement in column technology, resulting in improve separation efficiency. Continuous 
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efforts have been made in the advancement of stationary phase particles and packing over the years. 

In the early 2000s small sub-2 μm particles were introduced along with ultra-high pressure liquid 

chromatography (UPLC) [4]. These small particles provide increased efficiency with an increase 

in surface area and a decrease in eddy dispersion (A term) due to tighter and more uniform packing. 

Also, flow rates above the optimal velocity do not cause much loss in efficiency due to a decreased 

C term allowing for faster analysis. However, increased flow rate inherently causes increase in 

back pressure. The progression of particles from sub-2 μm fully porous particles to a 2.7 μm 

superficially porous or core shell particles in 2007 has provided similar efficiencies along with 

much lower back pressure allowing for the use of traditional LC systems [5].  

It is evident that the above-mentioned advancements in chromatographic technologies have 

provided higher peak capacities. However, improvement in column efficiency is not enough to 

solve separation issues for co-eluting compounds such as isomers with similar chemical properties. 

Under these conditions it is also necessary to change chromatographic selectivity to achieve further 

separation between two peaks. In practical sense this change in selectivity can be obtained by 

utilizing more than one stationary phase chemistry. Mixed mode columns provide two different 

mode of separation simultaneously on a single column (e.g., the combination of RPLC with ion 

chromatography [6]). Simply connecting multiple columns with different stationary phase 

chemistry also allows for changes in selectivity. However, the use of tubing for connection of 

columns introduces dead volume which leads to peak broadening. Although a commercially 

available serially coupled column system known as POPLC claims to eliminate dead volumes with 

a patented segment technology, experimental data prove otherwise [7]. This is also confirmed in 

our own study discussed in Chapter 6. An alternate approach is the use of multidimensional 
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separations. Under two-dimensional liquid chromatography (2D-LC), two ‘orthogonal’ columns 

are coupled to achieve separations with increased peak capacities. 

 

2.2. Two-Dimensional Liquid Chromatography (2D-LC) 

 

 

A highly complex mixture can result in an inadequate separation even with extended 

analysis times when using one-dimensional (1D) LC methods. Use of more than one separation 

mechanism simultaneously, as in two-dimensional liquid chromatography (2D-LC), can provide 

increased separation power [8,9]. The two dimensions of separation are coupled with sampling 

valve which collects and delivers a preset volume of effluent from the first dimension (1D) to the 

second dimension (2D). The sampling can either be done for only regions of interest from the 1D 

as in a heart-cutting method or for the entirety of the 1D effluent as in a comprehensive method 

[10,11]. Figure 2.3 shows the instrumental set-up for comprehensive 2D-LC (LC x LC). 

 

 

Figure 2.3. Typical setup for LC x LC with a 10-port/2-position valve and two sample loops: loop 1 (orange) 

and loop 2 (green). The dilution pump is optional along with the possible addition of second diode array 

detector (DAD) between the first dimension column outlet and the sampling valve. Figure recreated from 

[12]. 



 
 

10 
 

The 2D-LC technique possesses increased peak capacity resulting in more potential for 

better resolution compared to 1D-LC. The theoretical total peak capacity in 2D-LC is equal to the 

product of the peak capacities in the first and second dimensions [8,13,14]:  

1 2

,2c D c cn n n                                                             (2.6) 

However, the peak capacity obtained in reality is much lower than this theoretical value due to 1D 

undersampling and correlated retention between the columns in the first and second dimensions. 

The sampling rate of first dimension effluent is determined by the rate of second dimension 

separation, which means at slower 2D separation speeds, fewer data points are available to 

represent the 1D peak. This leads to broadening of the peak and loss of peak capacity from the 1D. 

This broadening effect has been studied extensively in the past [15–17]. An average 1D peak 

broadening correction factor <β> determined from simulation studies [18] can be incorporated to 

correct for the loss of peak capacity due to 1D undersampling: 

1
1 0.21 st 

     
 

                                                       (2.7) 

where ts is the sampling time and 1σ is the peak width before sampling. 

The second contributing factor in the observed decrease in peak capacity is correlation of 

retention in the two dimensions. In order to utilize the largest amount of the separation space that 

is available, the retention mechanisms in two dimensions must be as different as possible. This is 

known as “orthogonality.” Completely uncorrelated or orthogonal separations result in even 

distribution of peaks in the 2D separation space (Figure 2.4C), whereas completely correlated 

separations result the analytes appearing only along a diagonal line in the separation space (Figure 

2.4A). 
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Figure 2.4. Comparison of the degree of separation correlation: (A) strong correlation; (B) moderate 

correlation; and (C) no correlation. Figure adapted from [19]. 

 

Under popular RP x RP separation conditions, it is impossible to achieve complete 

orthogonality and therefore the 2D separation space is only partially utilized (Figure 2.4B). This 

partial coverage is called the fractional coverage (fcoverage) and is directly related to the overall peak 

capacity.  

1 2

,2

1
c D c c Coveragen n n f   

  
                                            (2.8) 

The low fractional coverage is usually caused by the similarity of retention in the two dimensions.  

When using two different separation mechanisms it is important to consider mobile phase 

compatibility. The use of gradient elution in both dimensions usually results in a first dimension 

effluent in that has a high organic composition compared to the initial mobile phase conditions in 

the second dimension. This is referred to as solvent mismatch, and it results in peak distortion and 

broadening. A common practice to overcome this issue is to dilute first dimension effluent with 

weaker solvent (aqueous) to match the initial mobile phase composition in the second dimension. 

However, dilution results in a large injection volume, and therefore large injection band. It has 

been shown that dilution of the first dimension effluent to weaker composition than the initial 

mobile phase composition of second dimension can focus the injection band on column [8,11]. 

Another approach developed by Weber et al. is the use of temperature in place of solvent to 
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encourage focusing of analyte bands [20–22]. Although this approach has shown great promise, it 

is currently only applicable to capillary column formats. Another approach to eliminate the solvent 

mismatch issue in LC x LC is to use a stationary phase gradient that provides increased separation 

selectivity and therefore allowing for elimination of mobile phase gradient in the first dimension. 

It is clear that rapid and accurate retention prediction of a variety of different separation conditions 

by computer simulation is highly desirable, in order to effectively explore the effectiveness of 

these different solutions to the solvent mismatch problem. 

 

2.3. Simulators 

 

 

The method development process in LC involves the optimization of method parameters 

such as the stationary phase, column dimensions, initial and final mobile phase compositions, as 

well as gradient time when gradient elution is used [23]. Computer simulation can aid in the 

optimization of separation methods, which can save time and money as compared to trial-and-

error approaches [23–31]. In the past, several different methods for solving the mass transport 

equations defining the evolution of chromatographic peaks have been used, including the Craig 

distribution model (based on the concept of theoretical plates) and mass balance equations (based 

on obtaining elution profiles through numerical integration) [32–40]. There are also several 

commercially available simulation software packages that use linear solvent strength (LSS) theory 

or linear free energy-type relationships such as DryLab (Molnar-Institute) [24,25,28,41], LC&GC 

Simulator (ACD/Labs) [31,42] and ChromSword Offline (Merck KGaA) [27,43]. The 

ChromSword offline program builds a physico-chemical retention model based on the structural 

formulae of the compounds, the type of column, and the type of organic solvent [27]. The 

simulation result achieved by this method of retention modeling becomes the initial starting point 
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for method optimization. Several method conditions can be varied once a few experimental data 

are entered. The ACD/Labs package uses either a database of experimental chromatograms or 

physico-chemical parameters such as logP, logD, and pKa to model chromatograms and to predict 

optimal separation conditions. This simulator provides different models for separations such as 

HILIC and virtually any pH system can be simulated for method optimization [42]. The ACD/Labs 

also offers ChromGenius which predicts retention under standard analytical method conditions 

and allows for selection of best separation conditions [44]. DryLab predictions are based on LSS 

theory and are initiated solely by experimental data obtained from training separations [45,46]. 

Kaliszan et al. compared the performance of two of these programs and concluded that the 

structure-based predictions by ChromSword offline were less accurate compared to the retention 

measurement-based simulations of DryLab [28,47]. The limitations of these methods result from 

the lack of flexibility in modeling unusual gradient shapes and realistic injection profiles. As an 

example, these methods do not allow for the characterization of the effect of solvent mismatch 

between the sample solvent and the eluent. 

A number of reports in the literature have described methods for chromatographic 

simulations using a variety of numerical methods to solve the mass transport equations [29,33–

35,37,39,40,48–52]. These methods vary in terms of accuracy, speed and complexity. In the 

following chapters we present a general simulation program to predict the results of LC separations 

using a Craig-type simulation where the analyte propagates through a discretized space and time 

grid [29,32]. While this algorithm can be slow because of the necessity of calculating results at 

each point in time and space, it is relatively simple to understand and as we will show, produces 

results that agree well with closed form theory, when available. Our program incorporates pre-

elution of weakly retained compounds before the gradient reaches the head of the column. In 
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addition, it can be easily adapted to any eluent composition profile (not just a linear profile) [53,54], 

any stationary phase composition (constant or non-constant) [55], and any composition and shape 

of the injected sample profile [56]. Therefore, these simulations can be particularly useful in 

characterizing the solvent mismatch effect in comprehensive two-dimensional liquid 

chromatography, where the sample solvent frequently differs in strength or polarity and causes 

peak distortion (broadening) [57–59] and for supporting the synthesis of novel continuous 

stationary phase gradient for liquid chromatography. 



 
 

15 
 

Chapter 3: Theory 

 

 

This chapter has been adapted, with permission, from L.N. Jeong, R. Sajulga, S.G. Forte, D.R. 

Stoll, S.C. Rutan, J. Chromatogr. A. 1457 (2016) 41–49. 

 

 

 

 

3.1. Craig distribution model 

 

 

The Craig model explains the chromatographic process as a series of  pseudo counter-

current distributions between two immiscible liquids [32]. In an actual Craig counter-current 

extraction experiment, the sample mixture is introduced into liquids with different densities and 

undergoes equilibration between the two phases. The mobile phase is moved to the next tube while 

fresh mobile phase is introduced into the first tube. Equilibration occurs in each tube and the 

concentration of solute in the last tube is monitored. This concept can be applied to 

chromatography by dividing the column into discrete distance segments to represent tubes. This is 

one of the simplest, yet physically reasonable finite-difference strategies for the numerical solution 

of the differential equation shown by equation A1 (see Appendix). According to Czok and 

Guiochon, the Craig distribution model can be used to explain the continuous chromatographic 

process by replacing a column with segments of distance (Δz) and time (Δt) in a grid [32]. Here, 

we assume Δz is equal to the plate height (H) for the chromatographic system under study. As 

shown in Figure 3.1, at every time interval, part of the analyte mass from initial position, z-1,
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Figure 3.1.  Propagation of the analyte through a time-distance grid in the Craig distribution model. 

Adapted from [60]. 

 

travels to the next cell downstream (z, t), while the remaining mass stays at the initial position, (z-

1, t). The fraction of mass that travels to the next position in the column (z, t) is equal to , which 

is the peak velocity normalized to mobile phase velocity or simply the solute mobility, where k is 

the chromatographic retention factor (see equation 3.1). 

1

1
 

k
                                                               (3.1) 

Alternatively, one can view  as the fraction of analyte in the mobile phase, while 1- represents 

the fraction remaining in the stationary phase, which is also called the analyte immobility, . The 

analyte mass is moved from one cell to the next, one step at a time. Therefore, the mass (m) at 

particular position (z) and at time (t) can be calculated using equation 3.2: 

, , 1 1, 1    z t z t z tm m m                                                   (3.2) 

Finally, the last row of the grid (where z equals the column length, L) contains the numerical mass 

of analyte that has exited the column as a function of time – in other words, plotting the masses at 
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z = L as a function of time gives the analyte elution profile, or the chromatogram, that we are most 

familiar with. 

 

3.2. Linear solvent strength (LSS) theory 

 

 

3.2.1. Retention time prediction.  

 

 

According to the LSS model of Snyder et al., the retention of an analyte separated under 

conditions where a linear mobile phase gradient is used can be predicted based on measurements 

of isocratic retention factor (k) as a function of solvent concentration () [45]. 

ln ln  wk k S                                                           (3.3) 

where S is the slope of a plot of isocratic ln k values versus , and kw is the retention factor for the 

solute in a purely aqueous phase. A graphical representation of equation 3.3 is shown in Figure 

3.2. 

 

Figure 3.2. LSS plot: linear dependence of ln k on  
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The analyte retention time (tR) under gradient elution conditions can be predicted using the 

LSS model, which includes a pre-elution phase that exists when there is a non-zero gradient delay 

time (tD) [45,61,62]: 

ln 1 1m D
R o M D

M o

t t
t k b t t

b t k

    
       
     

                                       (3.4) 

Here, tM is the void time, k0 is the initial retention factor at the start of the gradient, calculated as  

0

 S

wk k e , and b is the intrinsic, dimensionless gradient steepness that can be expressed as 

M M

G G

V S t S
b

t F t

 
                                                         (3.5) 

If a linear gradient is simulated with the Craig model using the assumptions of LSS, the closed 

form expression given in equation 3.4 can be used to validate the retention times of the analyte 

obtained by the simulation code. 

 In order to ensure the mass balance conservation for the gradient chromatography 

simulations (where the retention factor k depends on both time and position), the mass profile 

equation must be derived from the time and distance dependent retention factor k (see Appendix 

A). The following equation (equation 3.6) differs from the equation given by Czok and Guiochon 

due to the fact that the analyte velocity is dependent on position inside the column. According to 

Blumberg [48], the velocity of the analyte, not just its dispersion, must be a function of position to 

ensure mass conservation of a gradient system. Therefore, the differential of analyte velocity must 

be taken over the position (see Appendix A). 

, , 1 , 1 1, 1 1, 1       z t z t z t z t z tm m m                                        (3.6) 

A shortcoming of the Craig model is that it does not accurately account for peak broadening. 

However, as mentioned by Czok and Guiochon [32], this can be addressed empirically by 
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assuming that the extra peak broadening can be treated as a dispersion process where the extent of 

the dispersion is estimated using Fick’s second law. The additional dispersion (Dz) each peak 

experiences depends on the local retention factor [32,46,63] . Fick’s second law states the 

following: 

2

2

 


 
z

m m
D

t z
                                                           (3.7) 

Or, in other words, the analyte at position mz,t is redistributed to the previous, current, and next 

positions to simulate kinetic broadening of the analyte zone: 

, 1 , 1, , 1,

2

2z t z t z t z t z t

z

m m m m m
D

t z

    


 
                                          (3.8) 

The effective dispersion coefficient, Dz, is calculated at the local k value [32]: 

2

2

, 1

1

2( 1)




 
z

z t

z
D

k t
                                                         (3.9) 

Note that in the present work we have assumed that the z is constant along the column length.  In 

gradient separations, the peak width (determined by the efficiency) is linked to the choice of z.  

The effect of the change of analyte velocity during the course of the mobile phase gradient is 

captured by equation 3.9 by adjusting the peak width according to the local retention factor. The 

more subtle effect on the plate height caused by changes in the analyte diffusion coefficient in the 

mobile phase, as the mobile phase composition varies, is not accounted for here.  

In order to accurately assess the degree of band broadening  the mass of solute present at 

position, z, and time, t, along the column is first determined using equation 3.6, and then equation 

3.8 is used to add the additional broadening by adding the following differential mass to mz,t: 

 1, , 1, 1 , ,2
2  


 


  z z t tt zz tz zt

t
D m m mm

z
m                                    (3.10) 
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This results in the final simulated chromatogram exhibiting a peak width corresponding to H = z. 

Finally, because the amount detected by the detector, md, is the analyte mass in the mobile phase, 

the simulated total mass profile (mL,t) has to be corrected using the retention factor at the elution 

point, ke (see Appendix A, equations A8 and A9). If this is not done, the area of the peak at the 

column outlet is dependent on retention factor, which is physically unreasonable. 

,

1

L t

d

e

m
m

k



                                                                   (3.11) 

 

3.2.2. Peak width prediction 

 

 

The widths of simulated peaks can be validated by considering the effect of a negative 

solvent strength gradient through the column on peak widths [45]. In the case of a significant 

gradient delay time, the analyte experiences an isocratic mobile phase during its travel through the 

first section of the column (C1 in Figure 3.3), followed by a solvent of changing composition as it 

travels through the rest of the column (C2). Therefore, one can view the broad peak from section 

C1 as a non-ideal sample injection into section C2.  
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Figure 3.3. Simulation of an analyte with high initial retention factor under conditions where there is a 

significant gradient delay, t
D
. The total column length = C1 + C2. During the gradient delay time, the analyte 

experiences isocratic condition (C1), whereas a changing solvent strength is experienced when the mobile 

phase gradient catches up with the analyte (C2).  Simulation conditions: z = 0.01 cm; t = 0.06 s; 
o
 = 

0.02;  = 0.8; k
w 

= 100; S = 100; t
G
 = 5 min; t

D 
= 3.5 min; L = 5 cm. Under these conditions, the gradient 

catches up with the analyte peak after 3.76 min, at a distance 2.59 cm down the column. The profile at 2 

cm occurs at 2.9 min and the profile at 3.9 cm occurs at 4.1 min. 

 

The total peak variance is the sum of the variance that develops in section C2 ( 2 grad
) and the 

variance developed during travel through C1 ( 2 iso
). The increase in solvent strength over time at 

all positions in the column under gradient conditions accelerates band migration, resulting in a 

substantial decrease in the peak retention times and widths [23,32]. In addition to that, the front of 

the band moves slower than its tail, resulting in relatively minor additional peak width reductions 

[32]. The gradient band compression factor describing this effect can be written as 

* *2 2

*

1 1
1

1 3
bR o o

o

G b b
b

    
 

                                          (3.12) 
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where the fraction of solute in the stationary phase at the beginning of the gradient is indicated as 

ωo (solute initial immobility). The fraction of solute in the mobile phase (solute mobility) as the 

band elutes (µR) can be expressed in terms of ω0 and the dimensionless gradient steepness [63]: 

1

o
o

o

k

k
 


                                                              (3.13) 
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
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                                                         (3.14) 

The peak width developed due to injecting a finite bandwidth (σb) onto the column can be 

calculated as [63]: 

*(1 )

M b
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t

L b


 

  
                                                     (3.15) 

The dimensionless gradient slope, b*, is only applicable over the section of the gradient that the 

analyte experiences. Therefore, the void time used in this equation must be a fractional tM (i.e., 

tM,grad) for the gradient section only: 

,* M grad
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t S
b

t


                                                          (3.16) 
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                                                 (3.17) 

The total peak variance on column when there is significant pre-elution caused by a finite tD is 

finally calculated as 

2 2 2    col iso grad
                                                     (3.18) 
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3.3. Non-LSST gradient retention model (Neue and Kuss) 

 

 

An alternative description of the retention factor dependence on the mobile phase 

composition has been proposed by Neue and Kuss, which takes into account the fact that the 

variation of the logarithm of retention factor as a function of the solvent strength is actually 

nonlinear and has a curved relationship [64,65]: 

2 1
2

2

(1 ) exp
1

  
    

  
w

S
k k S

S
                                             (3.19) 

where S1 and S2 are parameters describing the slope and the curvature of the ln k vs.  plot, 

respectively. The graphical representation of equation 3.19 is shown in Figure 3.4. 

 

 

Figure 3.4. NK plot: non-linear dependence of ln k on  

 

The parameters kw, S1 and S2 can be extracted by fitting experimental retention factors from 

isocratic elution experiments to equation 3.19, and then retention times can be predicted using 

)G e o
R M D

t
t t t
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where the organic composition at elution (e) can be expressed as [65,66]: 
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                      (3.21) 

(Note that this equation is given in the supporting material of reference [65] as equation S21.) The 

extracted Neue-Kuss parameters can also be used to calculate retention times and peak widths in 

simulations of mobile phase gradients with or without sample/eluent solvent mismatch conditions. 

 

3.4. Sample/eluent solvent mismatch theory 

 

 

3.4.1. Peak width prediction. 

 

 

The width of peaks injected under conditions of sample volume overload with a 

mismatched sample solvent can be estimated using a similar analysis to that used to estimate the 

peak width under gradient conditions. The total peak width (σtot) can be described as the 

combination of peak width caused by the column (σcol) and the broadening (Δσinj) caused by non-

ideal sample injection. 

2 2 2  tot col inj
                                                     (3.22) 

There is a deviation in peak variance due to the injected sample when the composition of the 

sample solvent and mobile phase is different and the sample volume is large. This variance due to 

the injected sample/eluent solvent mismatch and sample volume overload can be estimated as 

follows [67] 
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where kmp and kss are the retention factors of the analyte in the mobile phase and the sample solvent, 

respectively, and Vinj and F are injection volume and flow rate, respectively. This equation is 

obtained by simplification of the expression given by Raglione et al. for a system comprised of an 

analytical column coupled to an accelerator column [67]. This equation can be simplified further 

to give  

2 2

2

212

  
      

   

mp inj

inj

ss

k V

k F
                                                  (3.24) 

 

which assumes a rectangular injection pulse.  The contribution to the total peak variance due to 

dispersion inside the column is calculated from the expected plate number (N) and retention time 

(tR) 

2
2  R
col

t

N
                                                            (3.25) 

It should be noted that when the injection peak width is larger than the column peak width, as in 

the case of sample/eluent solvent mismatch and injection volume overload conditions, the resulting 

peak is not Gaussian. Therefore, the retention time and peak variance cannot be reliably estimated 

from the max position and full width at half maximum, which are based on the assumption of a 

Gaussian peak shape. The correct retention time and peak variance must be calculated using the 

first and second central moment of the peak, respectively. 
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Chapter 4: Development of Simulation Program 

 

 

This chapter has been adapted, with permission, from L.N. Jeong, R. Sajulga, S.G. Forte, D.R. 

Stoll, S.C. Rutan, J. Chromatogr. A. 1457 (2016) 41–49. 

Section 4.4 has been adapted, with permission, from D.R. Stoll, R.W. Sajulga, B.N. Voigt, E.J. 

Larson, L.N. Jeong, S.C. Rutan, J. Chromatogr. A, in press. 

 

 

 

4.1. Introduction 

The goal of the work in this chapter was to design and implement a simple algorithm for 

simulation of liquid chromatographic separations that allows for characterization of the effect of 

(1) the mobile phase gradient; (2) injection solvent mismatch and injection solvent volume 

overload; (3) temperature; and (4) both experimental and rectangular injection profiles. The 

simulations yield full analyte profiles during solute migration and at elution, which enable a 

thorough physical understanding of the effects of method variables on chromatographic 

performance. The Craig counter-current distribution model (the plate model) is used as the basis 

for simulation. The algorithm, which is an adaptation of an approach originally described by Czok 

and Guiochon [60], is sufficiently flexible to allow the use of either linear (LSS [45]) or non-linear 

(NK [64]) models of solute retention. In this study, both types of models were used. The simulation 

program was validated first by comparison of simulated retention times and peak widths for five 

amphetamines to predictions obtained using LSS theory, and to results from experimental 
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separations of these compounds. Secondly, the program was evaluated for simulating the case 

where there is a compositional mismatch between the mobile phase at the column inlet and the 

injection solvent (i.e., the sample matrix) under isocratic or gradient elution conditions with 

rectangular or experimental injection profiles.  

 

4.2. Simulation of simple mobile phase gradient conditions 

 

 

4.2.1. Isocratic experiments 

 

 

Isocratic retention data were collected for the alkylbenzenes methylbenzene (AB1), 

ethylbenzene (AB2), propylbenzene (AB3), butylbenzene (AB4), and pentylbenzene (AB5) using 

a system composed of a binary pump, autosampler, column thermostat, and diode-array UV 

detector, all from the 1290 Infinity series from Agilent Technologies (Santa Clara, CA). The 

column used for this experiment was Zorbax Stablebond C18 (50 x 4.6 mm, 3.5µm, Agilent). This 

specific column and particle size was selected so that measured peak variances would be minimally 

affected by peak dispersion outside of the column. Retention times were measured at 40 °C in 

mobile phases between 10% and 90% (v/v) acetonitrile (ACN) in steps of 10% for solute/eluent 

pairs that gave retention factors less than 50. The column dead volume was measured using uracil 

in a mobile phase of 50/50 ACN/water, and the extra-column volume was determined under the 

same conditions, but with the column replaced with a zero dead volume union. The Neue-Kuss 

parameters were extracted from this data set by fitting to equation 3.19, and the resulting 

parameters are given in Table 4.1. These parameters were used to simulate both isocratic (see 

section 4.3.2) and gradient (see section 4.2.4) separations of the alkylbenzenes, and the retention 
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times and peak widths resulting from simulations of gradient separations of the alkylbenzenes were 

then compared to experimental results. 

 

Table 4.1. Neue-Kuss parameters for the alkylbenzenes 

Solute S1
a S2

a kw
a nb sR

c Nd 

AB1 
18.59 

(0.41) 

1.044 

(0.032) 

1011 

(48) 

7 0.0290 7000 

AB2 
24.0 

(2.6) 

1.24 

(0.15) 

5300 

(1800) 

6 0.0765 6900 

AB3 
20.0 

(2.6) 

0.92 

(0.15) 

6200 

(2700) 

5 0.0526 6800 

AB4 
16.8 

(3.6) 

0.65 

(0.22) 

8000 

(5400) 

5 0.148 6650 

AB5 
14.7 

(2.7) 

0.49 

(0.16) 

9300 

(5600) 

4 0.0616 6500 

aStandard errors of the parameters are given in parenthesis. bNumber of points fit to equation 3.19.  

Composition values () started at 0.9 and were reduced at 0.1 until the number of points shown was 

reached. cStandard error of the fit to k. dEfficiency value used for simulations. 

 

4.2.2. Gradient experiments  

 

 

Gradient elution separations of alkylbenzenes were carried out using the Agilent 1290 

Infinity system and Stablebond C18 column described above in section 4.2.1. The flow rate was 

2.0 mL/min, the column temperature was 40 °C, the injection volume was 1 L, and a gradient 

from 50-90% ACN over 2.25 min was used for elution.  

A group of five amphetamines was selected to characterize the performance of simulations 

of gradient elution separations. The structures, names, and abbreviations for these compounds are 

shown in Figure 4.1. The gradient data were collected on a system composed of binary pump, 

autosampler, column thermostat, and diode array detector (DAD) from the HP 1090 system 

(Agilent). The column was an Accucore Phenyl-Hexyl column (100 x 2.1 mm, 3 µm, Thermo 

Scientific), and the mobile phases were 10 mM potassium phosphate buffer at pH 2.5 and ACN. 
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The S and kw values were estimated using nonlinear least squares regression using equations 3.4 

and 3.5 and fitting to the different experimental gradient retention times as a function of the 

gradient times (tG) and initial mobile phase compositions (o). These S and kw values were used to 

simulate the retention of amphetamines under various gradient conditions, and these parameters 

are given in Table 4.2. The retention times and peak widths resulting from simulations of gradient 

elution separations of these compounds were compared to both predictions based on LSS theory, 

and to experimental results.  

 

 

Amphetamine (Amp)  

 

3,4-Methylenedioxymethamphetamine (MDMA) 

 

4-Bromo-2,5-methylenedioxyethylamphetamine 

(Bromo) 

 

3,4-Methylenedioxyethylamphetamine (MDE) 

 

Benzphetamine (BP) 

Figure 4.1. Structures and abbreviations for five amphetamines. 

 

 

4.2.3. Simulation codes 

 

 

All simulation codes were written in the Matlab program (Mathworks, Natick, MA) version 

R2013a. Non-linear regression to obtain the parameters necessary to implement  
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Table 4.2. LSS parameters for the amphetamines 

Solute Sa kw
a nb sR (min)c 

Amp 
20.8 

(2.4) 

11.5 

(1.3) 

5 0.0801 

MDMA 
22.0 

(3.8) 

22.5 

(5.2) 

5 0.117 

MDE 
20.3 

(4.0) 

32.0 

(9.2) 

5 0.134 

Bromo 
16.6 

(1.6) 

68.2 

(12) 

5 0.0868 

BP 
16.0 

(1.1) 

167 

(28) 

5 0.0794 

aStandard errors of the parameters are given in parenthesis. bNumber of points fit to equations 3.4 and 3.5. 

Conditions were (1) 0 =0.02, tG = 14 min; (2) 0 =0.02, tG = 18 min; (3) 0 =0.02, tG = 22 min; (4) 0 =0.05, 

tG = 14 min; (5) 0 =0.05, tG = 22 min; for all conditions f =0.35; tm = 0.5946 min; tD = 0.795 min.  cStandard 

error of the fit to tR. 

 

simulations was accomplished using the function lsqnonlin found in the Matlab Optimization 

Toolbox. 

 

4.2.4. Prediction of alkylbenzene retention under gradient elution conditions using Neue-

Kuss parameters determined from isocratic retention data 

 

 

Simulation of gradient elution separations of alkylbenzenes were performed using the 

extracted Neue-Kuss parameters and plate numbers shown in Table 4.1, assuming a linear change 

in solvent composition with time.  Figure 4.2 shows a qualitative comparison of experimental and 

simulated chromatograms collected for gradient separations of alkylbenzenes AB1-5 for a solvent 

gradient with a o of 0.50 and a Δ of 0.40 over a tG of 2.25 min. Table 4.3 summarizes the 

comparison of experimental and simulated retention times and peak widths. Predicted retention 

times were accurate to within 1.5 %, and predicted peak widths were accurate to within 6.0 %. The 

simulated data compare well with the experimental data even though no correction of the simulated 
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results has been made to account for increases in retention time and peak dispersion caused by 

extra-column volume. 

 

Figure 4.2. Experimental (bottom) and simulated (top) chromatograms collected for gradient separations 

of alkylbenzenes AB1-5. The solvent gradient was 50-90% ACN from 0-2.25 min, and injection volume 

was 1 µL. The measured gradient delay time of 0.055 min was used in the simulation. 

 

 

Table 4.3. Experimental and simulated retention data for AB1-5 separated under 

gradient elution conditionsa 

 
 

 

 

 

 

 

 

 

 

 

 

aThe solvent gradient was 50-90% ACN from 0-2.25 min, and injection volume 

was 1 µL. The measured gradient delay time of 0.055 min and a rectangular 

injection profile were used for the simulations. b (sim exp)
% difference *100

exp


  

 

 

 

 Retention Time (min) Peak Width (w1/2, min) 

Solute Experiment % Difference 

(Simulation – 

Experiment)b 

Experiment % Difference 

(Simulation – 

Experiment)b 

AB1 0.939 -1.3 0.0198 -4.9 

AB2 1.169 -1.2 0.0217 -4.9 

AB3 1.451 -1.0 0.0233 -5.3 

AB4 1.736 -0.5 0.0242 -5.7 

AB5 2.012 -0.8 0.0244 -5.8 
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4.2.5. Prediction of amphetamine retention under gradient elution conditions using LSS 

parameters determined from gradient retention data 

 

 

The Neue-Kuss parameters could not be extracted from the gradient experimental data for 

the amphetamine-class compounds since the system is ill-conditioned. This was because a limited 

experimental data set was available. This means that a wide range of Neue-Kuss parameters 

predicted experimental gradient retention times with very similar values. For gradients with 

shallower slopes, the linear model resulted in better predictions [65]. Therefore, the linear 

parameters S and kw were extracted from the gradient data for the amphetamine-class compounds. 

The simulation results were then validated with LSS theory, as discussed below. The simulated 

results were also compared to the experimental data, and these comparisons are also shown in 

Figure 4.3 and Table 4.4. The retention time predictions agreed to within 2.5 %. The experimental 

peak width comparisons are also quite reasonable. This level of agreement indicates that the LSS 

model for these parameters is adequate for generating reasonable predictions for retention behavior.  
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Figure 4.3. Experimental (bottom) and simulated (top) chromatograms collected for gradient separations 

amphetamines. The solvent gradient was 5-35% ACN from 0-18 min. The measured gradient delay time of 

0.795 min was used in the simulation. The heights of simulated peaks are scaled to the heights of the 

experimental peaks. The gaps in the baseline of the experimental chromatograms are due to the fact that the 

compounds were injected in different samples. 

 

Table 4.4. Comparison of retention time and peak width prediction of simulation, LSS and 

experiments for amphetaminesa 

 

 Retention Time (min) Peak Width (w1/2, min) 

Solute LSSb % 

Difference 

(Simulation 

–LSS)c 

% Difference 

(Simulation –

Experiment)d 

LSS & 

Simulatione 

% 

Difference 

(Simulation 

– LSS)c 

% Difference 

(Simulation – 

Experiment)d 

Amp 2.6741 -0.016 1.49 0.1089 -0.017 7.51 

MDMA 3.7052 -0.018 1.96 0.1250 -0.011 -12.9 

MDE 4.7021 -0.019 2.20 0.1430 -0.0074 21.2 

Bromo 7.6523 -0.017 1.07 0.1882 -0.00036 46.5 

BP 10.9164 -0.014 0.51 0.2091 -0.0050 41.0 
 

aThe solvent gradient was 5 – 40 % ACN from 0-18 min. The measured gradient delay time of 0.795 min 

and a rectangular injection profile were used for the simulations.   

bCalculated using equations 3.4-3.5.  

 
 

 

 

eCalculated using equations 3.12-3.18.  
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4.3. Solvent mismatch under isocratic conditions 

 

 

4.3.1. Experimental 

 

 

A second set of experimental data (retention times and peak widths) was collected for the 

alkylbenzenes under isocratic conditions, where the initial mobile phase and injection solvents 

were different (i.e., ‘solvent mismatch’ conditions). In this case a system composed of a pump and 

autosampler from the HP1050 series (Agilent), and column thermostat and diode-array UV 

detector from the Agilent 1100 series was used. This particular system was chosen for this 

experiment because the autosampler is equipped with a syringe and sample loop that allows 

injections of up to 100 µL. The Neue-Kuss parameters extracted previously (see section 4.2.1) 

were used to simulate separations under sample/eluent solvent mismatch conditions, and the 

resulting retention times and peak widths were compared to experimental results. 

 

4.3.2. Prediction of alkylbenzene retention with sample/eluent solvent mismatch under 

isocratic conditions 

 

 

There is a great interest in the peak distortion caused by a difference in the solvent 

composition of the sample and the eluent used in an LC method [58,68–72]. This may result from 

low solubility of the analyte in water, or be a consequence of other method development decisions 

in two-dimensional liquid chromatography (2D-LC). This is particularly problematic when the 

eluent from the first dimension contains more organic solvent than the initial eluent composition 

in the second dimension of 2D-LC under reversed-phase conditions [71–75]. Sample volume 

overload can also produce problematic peak shapes [21,70,76]. 
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In 2D-LC the first dimension (1D) effluent can be diluted to be more similar to the starting 

solvent composition when gradient elution is used in the second dimension. However, there are 

practical limits to how much the 1D effluent can or should be diluted [75]. Given the complexity 

associated with optimizing these conditions, it is of great interest to accurately simulate such large 

volume injection conditions to give a better understanding of analyte behavior under these 

conditions. Here, we investigate these effects under isocratic conditions, in which the retention 

times and peak widths are very sensitive to the volume and composition of the sample. Figures 4.4 

- 4.6 show comparisons of results obtained from experiments, simulations, and predictions based 

on theory. 

Figure 4.4 shows a qualitative comparison of experimental and simulated chromatograms 

obtained for isocratic separations at 70/30 ACN/water of alkylbenzenes AB1, AB3, and AB5 in 

samples with varying solvent composition. Simulations were based on rectangular injection 

profiles. The retention times, widths, and shapes of the simulated peaks are consistent with those 

observed in experiments. Figures 4.5A and 4.5B show comparisons of retention times extracted 

from the experimental or simulated chromatograms across the variable space studied (1-100 L 

injection volume; 50 or 90% ACN sample solvent).  We don’t show results for retention times 

calculated from theory in this figure, because no satisfactory closed form theory for this effect has 

been proposed in the literature. Figure 4.5A shows data for methylbenzene (AB1, k =1.67) and 

4.5B shows data for pentylbenzene (AB5, k = 7.81) when injected from samples containing either 

50 or 90% ACN. These figures show that retention times shift later with increasing volume of 

sample containing less ACN compared to the mobile phase, and shift to earlier times when 

increasing volume of sample containing more ACN compared to the mobile phase is injected. This 
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observation is as expected since the analyte peak elutes faster at the higher concentration of organic 

solvent, and the simulations accurately capture this effect. 

 

Figure 4.4. Experimental (black) and simulated (red) chromatograms collected for isocratic separations of 

alkylbenzenes AB1 (first peak), AB3, and AB5 (last peak). The eluent was 70% ACN, and injection volume 

was 100 L. Sample solvents were 50 (A), 70 (B), or 90 (C) % ACN. 
 

 

 
 

Figure 4.5. Comparison of experimental (black, open symbols) and simulated (red, closed symbols) 

retention times for sample/eluent solvent mismatch. Retention times for (A) methylbenzene (k = 1.67) and 

(B) pentylbenzene (k = 7.81) injected from either 50% (circles) or 90% (squares) ACN samples into an 

eluent containing 70% ACN. The percent difference between the experimental and simulated retention 

times was within 2.2% for AB1 and within 1.0% for AB5. 
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The peak shape is also distorted when the injection and eluent solvents are mismatched [71]. As 

mentioned before, this peak distortion is more pronounced when the injection solvent is stronger 

than the eluent solvent. The peak widths measured from simulations were validated by comparison 

with theoretical peak width calculations (equations 3.22 – 3.25). As shown in Figure 4.6B, as the 

sample injection volume increases, the peak tends to get broader due to the initial solute elution in 

the injection solvent before the peak is slowed down by weaker solvent. This peak broadening 

effect does not exist for samples with the weaker injection solvent due to the focusing achieved in 

the weaker mobile phase (Figure 4.6A). We attribute the slightly larger widths measured in 

experiments (Figure 4.6A) to peak tailing that is not accounted for in the simulations or predictions 

from theory, as well as the fact that the theory is only approximate. This is a subject of ongoing 

work that we will address in detail in the next section. Briefly, we now believe that most of the 

tailing observed in this case originates from the asymmetric profile of the injected sample as it 

exits the injection system and enters the column. The simulations carried out as described here 

have assumed that the sample enters the column as a perfectly rectangular pulse. Subsequent work 

will show that when an asymmetric profile that accurately reflects the way the sample actually 

enters column is used to introduce analyte mass into the simulated column the simulation produces 

tailed peaks that are more consistent with experimental results. 
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Figure 4.6. Percent increase in peak width for pentylbenzene (AB5) as a function of injection volume. 

Samples are in (A) 50% and (B) 90% (v/v) ACN for an eluent containing 70% (v/v) ACN. Black open 

circles are experimental, red open squares are for simulation and blue open diamonds are for theory 

(equations 3.22-3.25). 

 

 

4.4. Incorporation of experimental injection profiles and solvent mismatch under gradient 

conditions 

 

 

The work in this section explains the incorporation of experimentally acquired injection 

profiles in place of symmetric rectangular injection profiles. Also, we show extension of the 

previous effort by enabling simulation of separations under conditions involving both gradient 

elution and sample/mobile phase solvent mismatch, and variable sample loop filling. When a 

sample is injected, the material (analyte and solvent) begins entering the column in the first plate, 

during the first time step. As the simulation proceeds, more sample continues to enter the first plate 

until enough time has elapsed (tinj) such that: 

inj

inj

V
t

F
                                                       (4.1) 

where Vinj is the volume of sample that enters the column, and F is the flow rate of mobile phase 

through the column. This is straightforward in the case where a rectangular injection pulse is 
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assumed because the injection volume is well defined. In cases where more realistic injection 

profiles are used in the simulation (see Figure 4.7) equation 4.1 no longer applies, and we must 

consider the volume of solvent and moles of analyte injected as integrals over the entire profile; 

this is discussed in detail below. 

 

Figure 4.7. Experimentally measured injection profiles obtained from sample loops of different sizes, at 

different filling levels: (A) 0.4 µL; (B) 13.5 µL; (C) 20 µL; (D) 40 µL; (E) 60 µL; and (F) 80 µL. Filling 

levels were 25 (green), 50 (blue), 75 (red), and 100 (black) %, except for the 0.4 µL loop, which was filled 

to 200 %. Other conditions: Mobile phase, 50/50 ACN/water; injected sample was 10 µg/mL uracil in 

mobile phase; flow rate, 2.5 mL/min. 

 

The most important difference between the model used in this work and the one described 

previously in Chapter 3 lies in the construction of the solvent profiles shown in Figure 4.8. In our 

previous work, we assumed rectangular injection profiles in cases of mismatch between the sample 

organic solvent composition and the starting point in the mobile phase gradient. In Figure 4.8, this 

is shown as the green trace, for the case of 100 % filling of a 40 μL loop with a sample containing  
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Figure 4.8. Graphic showing piecewise construction of solvent profiles (at column inlet) used in this work 

(here, for the specific case of 100% filling of a 40 μL loop). The red trace shows a simple linear solvent 

gradient over a gradient time tG. The green and blue traces show rectangular or experimental injection 

profiles preceding the solvent gradient, respectively. The sample solvent is 20 % greater in organic 

composition relative to the initial mobile phase composition. 

 

50 % ACN. In contrast, the blue trace shows the real, measured injection profile that is relevant to 

these conditions.  

The overall solvent profile during the entire simulation, including injection (blue) and 

linear solvent gradient (red) is constructed as follows. First, we assume that the time required to 

travel the length of the sample loop (tD,loop) is simply: 

,

loop

D loop

V
t

F
                                             (4.2) 

where Vloop is the experimentally determined loop volume. This, combined with the experimentally 

measured gradient delay time of the pump (tD,pump) determines the total delay before the onset of 

the linear solvent gradient at the column inlet. During this pre-gradient period (tD,loop + tD,pump), the 

solvent composition is determined by the solvent composition of the sample, and the composition 

of the fluid that displaces the sample from the sample loop. The shape of this profile, t,injection, in 
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units of percent organic solvent composition, is calculated as follows. First, the appropriate 

injection profile, St,injection (in mAU) is selected from the profiles shown in Figure 4.6. The x-axis 

(in time units) is converted to volume units by multiplying by the flow rate to give SV,injection. The 

data are then interpolated to reflect the sampling interval, Vsim, for the simulation conditions, 

which is calculated as 

 /

M
sim

V
V

L z
 


                                               (4.3) 

Then, we calculate a  profile as a function of volume that gives the final mobile phase 

composition profile for the injection (V,injection): 

,

, ( )
v injection

V injection loop sample o o

v

S
V

A
                                (4.4) 

In doing so, the Sv,injection profile is normalized by the area under this profile, Av, which is in units 

of mAUmL. 

Finally, the x-axis for the V,injection profile is converted to time, by dividing by the flow 

rate to give the mobile phase composition profile as a function of time t,injection.  Note that 

because the (sample - o) term in equation 4.4 can be negative, this results in a ‘dip’ in the mobile 

phase composition profile during injection in cases where the sample contains less organic 

solvent than the starting point in the solvent gradient. From this point forward, we define the 

following 

sample sample o                                                       (4.5) 

The solvent composition due to the gradient is calculated as: 

 
 

, , ,

, , , ,

0                                                for t

             =       for t 

t gradient D loop D pump

f o

D loop D pump D loop D pump

G

t t

t t t t t
t



 

  


   

   (4.6) 



 
 

42 
 

These two profiles (t,injection and t,gradient) are then added together to produce the overall mobile 

phase composition profile shown in Figure 4.8. 

One final detail is important in the construction of these profiles. We have determined in 

other work not discussed here that when a sample of a known volume is pumped into a sample 

loop of known volume that some of the sample is lost out of the end of the loop when the filling 

level exceeds about 75 %. For example, if we push 40 μL of a sample from a syringe into a sample 

loop with a known volume of 40 μL (we refer to this as 100% filling), a fraction of the sample will 

be lost out of the end of the loop [77]. This is believed to be a result of axial dispersion of the 

leading edge of the solute band as it travels through the loop, such that some mass in the leading 

edge of the band leaves the end of the loop capillary before the entire sample volume has been 

pushed into the loop. It was determined that at 100 % filling, this loss is 7 %. At filling levels of 

25, 50, and 75 %, no measureable losses are observed. A normalization similar to that described 

above was used to calculate the analyte injection profile, mt,profile that describes the initial mass 

profile for the analyte as it enters the column. 

 

Figure 4.9. Structures and abbreviations for compounds used for the study discussed in section 4.4. 
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The plate numbers used for simulations were determined experimentally using isocratic 

conditions and a flow rate of 2.5 mL/min on a system with an extra-column variance of about 1 

μL2 (measured using a 150 nL injection of uracil, and peak width at half-height). A total of eight 

compounds were used in this study. The structures and abbreviations for these compounds are 

shown in Figure 4.9. The ACN/water composition of the mobile phase was adjusted to give a 

retention factor of about 2 for each compound, as this is close to the retention factor at the point 

of elution for the compounds and gradient conditions studied here. When the column was new the 

plate numbers for DiEtF and BzAlc were 1200, for the parabens (PB1, PB3, and PB4) 1350, and 

for the phenones (AP2, AP4, AP5) 1650. In the middle of the work to collect the experimental data 

under gradient elution conditions, and at the end, the column performance was re-evaluated under 

isocratic conditions. It was found that by the end of all of the gradient work the isocratic plate 

numbers had decreased by about 20 %. For the comparison of experimental and simulated retention 

times and peak widths (i.e., Table 4.6, and Fig. 4.11), the isocratic plate numbers for each set of 

experiments related to a particular loop volume were estimated, assuming a consistent degradation 

in column performance over time. So, the initial plate numbers were used for simulations at 0.4, 

13, and 20 μL. For the 40, 60, and 80 μL loop volumes, the plate numbers were 90, 85, and 80 % 

of the original plate numbers, respectively. Again, this was done to make the comparison of 

experimental and simulation results as fair as possible. Finally, simulations assumed a non-linear 

dependence of solute retention on organic solvent fraction of the mobile phase of the form 

described by Neue and Kuss [64] (see equation 3.19). Solute parameters for this dependence were 

determined experimentally, and are shown in Table 4.5. 
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Table 4.5. Neue-Kuss parameters for the solutes used in this work. 

Solute S1
a S2

a ln kw
a  sE

b nc 

DiEtF 27.36 (0.96) 2.772 (0.103) 3.132 (0.047) 7.61 x 10-3 4 

BzAlc 20.96 (0.54) 1.903 (0.064) 3.620 (0.030) 6.02 x 10-3 4 

PB1 26.95 (0.33) 1.955 (0.032) 5.150 (0.019)  3.75 x 10-3 4 

PB3 33.53 (2.49) 1.839 (0.138) 8.065 (0.260) 8.64 x 10-3 5 

PB4 34.57 (1.97) 1.694 (0.099) 9.290 (0.226) 1.17 x 10-2 5 

AP2 18.64 (0.43) 1.371 (0.041) 4.939 (0.035) 1.40 x 10-2 7 

AP4 22.73 (0.58) 1.239 (0.040) 7.624 (0.069) 3.14 x 10-3 4 

AP5 27.68 (3.69) 1.354 (0.186) 9.307 (0.527) 1.87 x 10-2 5 

 

a) Parameters obtained by fitting isocratic retention factors (k) to equation 3.19. Standard errors are 

given in parenthesis. Column - Zorbax SB-C18; Mobile phase – ACN/water; Temperature – 

40 °C. 

b) Standard error of the regression 

c) Number of experimental data points used in the fit to equation 3.19. 

 

4.4.1. Retention time and peak width 
 
 

Early in this work we realized that the shape of the sample input profile had a strong 

influence on the shape of the simulated peaks and their widths, particularly at the 4.4 % height 

where the width is much more sensitive to peak asymmetry than at half-height. Figure 4.10 shows 

an example of the impact of the input profile on the peak shape observed in simulated 

chromatograms. Use of the rectangular injection profile produces peak shapes that are simply 

unrealistic, and typically underestimate the experimental peak width, especially near the base of 

the peak. For this reason, we have exclusively used the real injection profiles shown in Figure 4.7 

for the simulations described in this section. We observe that using a rectangular input profile 

consistently leads to narrower, and therefore too optimistic, peak widths.  
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Figure 4.10. Comparison of the simulated chromatograms obtained for DiEtF using a rectangular (red) or 

experimental (black) injection profile. Conditions: Loop volume was 40 µL, with 100 % loop filling; 

injection of sample in 50/50 ACN/water. Other conditions: column, 30 mm x 2.1 mm i.d. Zorbax SB-C18, 

3.5 µm; flow rate 2.5 mL/min; temperature, 40 ºC; gradient elution from 30-65 % ACN from 0-0.25 min. 

 

Figure 4.11 shows a comparison of experimental and simulated chromatograms for 

separation of four of the eight test compounds (chosen simply to minimize peak overlap, while 

sampling the entire elution range), under three different test conditions that are more representative 

of those encountered in 2D-LC. In each case the loop volume was 40 µL, and the loop filling was 

100 %. The sample composition was varied relative to the starting eluent composition used in the 

gradient. Table 4.5 provides a summary of the differences between experimental and simulated 

retention times and peaks widths for all of the conditions studied in this work. Overall we see that 

the simulation accurately captures the variation in the experimental chromatograms across this set 

of conditions. Most notable are the significant tailing of early eluting peaks, even in the case where 

Δϕ is -0.2, and the ‘table-top’ shape of some of the severely broadened peaks (e.g., peak 3 in Figure 

4.11F). There are small differences in peak height between the experimental and simulated 

chromatograms. This is because in the simulations we assumed a uniform detector response 

independent of test solute chemistry, whereas these compounds have different molar absorption 
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Figure 4.11. Comparison of experimental (A-C) and simulated (D-F) separations of (1) diethylformamide, 

(2) methylparaben, (3) propylparaben, and (5) butyrophenone. Loop volume was 40 µL, with 100 % loop 

filling. Panels A and D correspond to injections of sample in 10/90 ACN/water; B and E, 30/70 ACN/water; 

C and F, 50/50 ACN/water. Other conditions are as in Fig. 4.10. Experimental signals are due to absorption 

of UV light at 210 nm. The scale of the signal axis for the simulated chromatograms is arbitrary. 

 

coefficients in real experiments. One noticeable difference between the experimental and 

simulated chromatograms, albeit mostly a difference in peak shape and not so much in peak width, 

is observed for peak 4 in Figures 4.11C and 4.11F. A second notable difference is in the shape of 

overlapped peaks 1 and 2 in Figures 4.11C and 4.11F.  The main reason for this shape difference 

is that the difference in the retention times between peaks 1 and 2 is more pronounced in the 

simulations as compared to the experiments, which gives rise to more distinct peaks in the 

simulated chromatogram. 
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Table 4.6. Comparisona of simulated and experimental retention times and peak widthsb at 100 % loop 

filling. 

 

Loop size 

(µL) 0.4 40 
∆ϕsample -0.2 -0.1 0 +0.1 +0.2 -0.2 -0.1 0 +0.1 +0.2 

t
R
 0.5 

0.7 
0.4 

0.7 
0.6       

0.7 
0.7  

  0.8 
0.4 
       0.6 

-4.1 
-2.0 

-4.0 
-1.8 

-3.9 
-1.8 

-1.9 
-0.7 

-0.8 
-1.2 

w
50
 4.4 

 2.2 
4.3  

2.6 
4.3   

2.4 
4.0 

  2.4 
3.5 

      2.1 
2.8 

1.7 
-0.9 

-2.1 
-5.1 

-4.6 
-11.1 

-9.3 
-3.8 

-9.1 

w
4.4

 -2.7 
-4.2 

-2.4 
-3.7 

-2.9 
  -4.0 

-3.2 
   -4.0 

-3.4 
     -3.1 

0.8 
-1.1 

-2.1 
-4.1 

-4.7 
-5.6 

-10.2 
-8.3 

-7.9 
-8.7 

  
Loop size 

(µL) 13 60 
∆ϕsample -0.2 -0.1 0 +0.1 +0.2 -0.2 -0.1 0 +0.1 +0.2 

t
R
 -3.8 

-1.0 
-3.8 

-1.0 
-3.8 

      -0.9 
-3.8  

  -1.1 
-4.0 

       -1.2 
-3.4 

-1.9 
-3.7 

-2.2 
-3.1 

-1.5 
-1.0 

-1.1 
-2.9 

-1.0 

w
50
 2.2 

 1.8 
2.5 

 2.5 
0.0  

  0.1 
-3.8 

  -2.8 
-6.5 

      -6.0 
-5.9 

-3.6 
-4.5 

-5.8 
-8.0 

-7.8 
-9.1 

-10.5 
8.8 

-11.9 

w
4.4

 -3.1 
 -4.3 

-3.4 
 -3.9 

-3.9 
  -5.1 

-5.9 
   -5.9 

-8.1  
     -7.1 

-11.0 
-7.5 

-8.3 
-8.1 

-12.4 
-11.2 

-12.4 
-12.4 

-11.0 
-12.3 

  
Loop size 

(µL) 20 80 
∆ϕsample -0.2 -0.1 0 +0.1 +0.2 -0.2 -0.1 0 +0.1 +0.2 

t
R
 -3.7 

-1.2 
-3.7 

-1.2 
-3.6 

-1.2 
-3.5 

-1.2 
-3.2 

-1.0 
-3.4 

-0.3 
-3.8 

-0.7 
-3.1 

-0.5 
-0.9 

0.4 
-2.9 

-0.3 

w
50
 -1.0 

-1.8 
-1.9 

-1.9 
-4.2 

-4.2 
-6.3 

-6.5 
-5.8 

-5.5 
-5.3 

-4.8 
-4.1 

-5.5 
-7.8 

-9.2 
-8.6 

-14.3 
9.4 

-14.9 

w
4.4

 -6.0 
-7.1 

-6.7 
-7.1 

-7.4 
-7.3 

-8.3 
-8.9 

-8.8 
-7.4 

-11.2 
-6.6 

-8.4 
-6.2 

-11.8 
-3.9 

-11.9 
-12.6 

-10.6 
-13.9 

 
a. Mean and median differences are the upper and lower values in each cell, respectively. Each mean 

and median is calculated for the set of eight test solutes under a particular set of conditions. Percent 

difference is calculated as: *100
Sim Exp

Exp

 
 
 

.  

b. Peak widths measured at half-height (w50) or 4.4 % height (w4.4). 
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4.4.2. Effect of dilution 

The simulation can also be used to inform 2D-LC method development decisions for 

targeted applications where detection sensitivity and/or resolution of critical pairs of peaks are the 

most important metrics of performance. In Figure 4.12 we plot average peak height for peaks 4 

and 5 (AP2 and PB3), and resolution of that peak pair, as ∆ϕsample and injection volume are changed. 

As expected, both the peak height and resolution decrease as the injection volume and ∆ϕsample are 

increased. The simulation in this case assumes a constant number of moles of solute injected, 

independent of injection volume. As the peaks broaden with larger injection volume and ∆ϕsample, 

the peak height decreases because peak area is conserved. These plots are very effective tools for 

understanding that the combination of the sample matrix (∆ϕsample level) and the injection volume 

affects both detection sensitivity and resolution of particular pairs of peaks. Increasing the organic 

content of the sample and/or the injection volume generally leads to broadening of the peaks and 

loss of resolution, and in turn a loss of peak height. In these plots we’ve highlighted the positive 

effect of diluting the organic content of the sample by calling out the two points with red circles. 

The point at the lower left corresponds to a 40 µL injection of a sample containing 40 % ACN 

(∆ϕsample = +0.1). The resolution of the 4/5 peak pair is about 3.2 and the average height is about 

0.0035 under these conditions. Now, if we simulate the dilution of this sample 1:1 with water, we 

know that the organic content will drop to 20 % ACN (∆ϕsample = -0.1), but in the process of doing 

so we also double the sample volume to 80 µL if we want to inject the same number of moles of 

analyte onto the column. The question, then, is how does the performance compare at this new 

condition, as measured by peak height and resolution? The arrows in the plots show that upon 

dilution we move from the purple point to the blue point, where the peak height has roughly  
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Figure 4.12. Peak height (A) and resolution (B) from simulation results vs. nominal loop volume (100% 

filling) for peaks 4 and 5 at different ∆ϕsample levels. The peak height is taken as the average height of peaks 

4 and 5. All other conditions are as in Figure 4.9. 
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Figure 4.13. Simulation of peaks 4 and 5 for (A) nominal loop volume of 40 µL (100% filling) at ∆ϕsample 

= +0.1 (B) nominal loop volume of 80 µL (100 % filling) at ∆ϕsample = -0.1. All other conditions are same 

as Figure 4.10. 

 

doubled, but at the same time the resolution has increased to about 4.6. The simulated 

chromatograms for each of these conditions are shown in Figure 4.13. This is a very powerful 

effect. In a practical application some of this resolution increase could be sacrificed for increased 

detection sensitivity by increasing the injection volume much further. 

 

4.5. Effect of temperature 

 

Along with mobile phase gradients, temperature is often controlled to further optimize the 

separation between analytes. The influence of temperature along with solvent composition on a 

chromatographic separation can be established by the use of the modified Neue-Kuss equation 

[64]: 
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                                (4.7) 

where T is the temperature in Kelvin, Dm,T is the diffusion coefficient, and kw,T and S1,T are 

temperature dependent variables analogous to kw and S1 in the original Neue-Kuss model (equation 

3.19). Diffusion coefficients at various temperatures and mobile phase compositions can be 

calculated based on the following empirical equation [78]: 

'
, , '

'

T
m T m T

T

T
D D

T

 
  

 

                                                      (4.8) 

where the diffusion coefficient Dm,T’ for the solute is known and the relationship of viscosity to 

mobile phase composition and temperature is defined as [79,80]: 

2 2[ 2.533 742/ 0.452 (235/ ) 1.573 (691/ ) ]10 T T T

T

                                   (4.9) 

Diffusion coefficients for solutes used in simulations are shown in Table 4.7. 

Table 4.7. Diffusion coefficients for solutes used in simulations 

Solute Abbreviation Dm,37 °C (cm2/s) 

Hydroxyacetophenone HP2 9.80×10-6 

Hydroxypropiophenone HP3 9.06×10-6 

Hydroxybutyrophenone HP4 7.04×10-6 

Methylparaben PB1 1.09×10-5 

Ethylparaben PB2 9.80×10-6 

Propylparaben PB3 9.06×10-6 

Butylparaben PB4 7.04×10-6 
ᵻDiffusion coefficient measured at 30 °C from references [81,82] converted to 37 °C using equation 4.8 [20]. 

 

Simply updating our existing simulation program with equation 4.7 allowed for retention 

prediction at a specified column temperature. The viscosity and diffusion coefficients at 70 ºC and 

ϕ = 0.242 (isocratic data from reference [22] Table S2) were calculated using equations 4.8 and 

4.9. The Δz for simulations was obtained from the plate height calculated using the reduced van 

Deemter parameters given in reference [22] Table S2 (A = 0.66; B = 10.2; C = 0.095). Figure 4.14  
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Figure 4.14. Experimental (A) and simulated (rectangular injection) (B) chromatograms collected for 

gradient separations of hydroxyphenones and parabens at 70 ºC. Conditions: capillary C18 column packed 

in-house (78 mm x 0.15 mm ID, 1.7 µm dp), injection volume of 1500 nL, mobile phase gradient 95:5 to 

55:45 10 mM H3PO4:ACN over 16 min at flow rate of 3.00 µL/min. Experimental data reproduced from 

[22], with permission. 

 

shows comparison of simulation results (B) to the experimental data (A) [22]. The overall peak 

shape, retention time and peak widths agreed with experimental data reasonably well. 

 

4.6. Conclusion 

 

 A finite difference scheme, based on the Craig model of chromatography, has been 

developed to solve the partial differential equations defining chromatographic elution for some 

specific systems of interest. It enables simulation of chromatographic peaks eluted under isocratic 

or gradient conditions including complex separation conditions where the mobile phase and 

sample solvents are not matched or where dilution causes increased injection volume. It also 
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possesses the versatility to use rectangular pulse or experimental injection profiles as well as 

different column temperatures. The analyte mass propagation down the column was calculated 

using estimates of local retention factor at regular spatial increments as the solute zone progresses 

along the column, as time increases. The approach is similar to that proposed by Czok and 

Guiochon [60] with an important distinction. The equations for non-steady state conditions in the 

original paper (applied to Langmuir isotherms) were in error and are corrected here and applied to 

both gradient mobile phase conditions and non-ideal injection conditions, which were not 

discussed in the original paper. 

 In this work, we have shown that both linear (LSS) and non-linear (Neue-Kuss) solvent 

strength models can be used to provide retention factors for the simulations. The accuracy of the 

simulation code was validated against LSS theory. The retention times obtained by simulation 

compared well to experimental results as well. Under sample/eluent solvent mismatch conditions 

(isocratic), the expected retention time trend was confirmed and the increases in the simulated peak 

widths were validated against predictions from theory. The simulation performance for linear 

mobile phase gradients with solvent mismatch was validated against experimental data. We have 

found that the injection profiles obtained from values in current use for 2D-LC are highly 

asymmetric. Therefore, it is necessary to use experimentally acquired injection profiles to achieve 

simulation prediction with accurate retention time, peak width and peak shape. Finally, the analysis 

of the simulation results yielded practical insights on the effect of dilution in 2D-LC method 

development. It was shown that detection sensitivity and resolution of peak pairs can increase with 

dilution of sample solvent to weaker composition compared to initial mobile phase composition 

despite the large injection volume. 
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The use of this simulation program can facilitate a deeper understanding of liquid 

chromatography and the development of new LC methods by reducing time-consuming trial-and-

error experiments. In next chapter, we will explore a convolution technique developed to further 

speed up the simulation process.
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Chapter 5: Convolution 

 

This chapter has been adapted from L.N. Jeong, D.R. Stoll, P.W. Carr, S.C. Rutan, in 

preparation for submission to J. Chromatogr. A. 

 

 

 

 

5.1. Introduction 

 

Although retention prediction using our simulation program is much faster than a trial-and-

error approach for exploring the effects of various perturbations on the separation quality, full 

simulation can be slow due to the necessity of calculating results at each point in time and space. 

This is particularly the case for complex LC conditions such as volume overload and solvent 

mismatch. In order to develop a useful and practical simulator for method development in 2D-LC, 

these computations must be accelerated. One way to achieve this is to use a simulation on a short 

length of column – just long enough for the peak to develop its shape – and then mathematically 

convolve the resulting peak with the known closed form solution for the remainder of the column 

[83]. In this chapter we present a convolution approach as a way to achieve faster retention 

prediction and show that this method also allows for automation with low prediction error. 

 

5.2. Closed form theory 

 

Elution parameters for an analyte band including retention time and peak width have been 

expressed mathematically in previous theoretical studies [46,84,85]. The use of the LSS and 
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NK models has been shown to give reasonably accurate predictions for linear mobile phase 

gradient conditions [53]. Although the effect of different solvent strengths on retention time and 

peak widths has been explored previously [67,86–91], a definitive solution to sample solvent 

mismatch conditions is not yet available. Here we propose closed form expressions for 

approximate retention time and peak width prediction under non-ideal solvent mismatch 

conditions. Our theory is based on the previous theoretical developments by Blumberg [46,63] and 

a simplified representation of how the solvent and analyte bands travel along the distance of the 

column. The derivations for retention time and peak width calculations for sample solvent 

mismatch conditions are described in detail in Appendix B. The need for these closed form 

expressions is two-fold. First, with the availability of the simulator, we can characterize the exact 

limitations of closed form expressions. Secondly, for cases where many conditions are simulated, 

closed form expressions can provide estimates for parameters, such as the total time needed for 

simulation, that allow for automation of the simulation process. 

 

5.2.1. Retention time calculation 

 

 

Retention prediction for linear gradient mobile phase conditions under ideal injection 

conditions using closed form expressions has been shown previously in section 3.3. This can be 

extended to non-ideal injection conditions where the sample solvent and initial mobile phase 

composition are mismatched. In the presence of solvent mismatch, there are three contributions to 

retention: (1) the time it takes for half of the injection band to be loaded on to the column; (2) the 

elution time for the analyte band while it is eluting in the sample solvent; and (3) the elution time 

for the analyte band under linear mobile phase gradient conditions.  

,1 ,2 ,3R R R Rt t t t                                                           (5.1) 
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Tables 5.1 shows summary of derived equations that represent each contribution to the retention 

time under solvent mismatch conditions. The derivations are described in detail in Appendix B. 

 

Table 5.1. Closed form equations for retention time calculations under solvent mismatch conditions 

 

Contribution Equation Equation number 

Injection ,1
2 2

inj inj

R

m

t z
t

u
   B4 

Elution in sample solvent ,2 ,2 (1 )R M sst t k   B9 

Elution in gradient 
0

,3 ,

( )G e
R M grad D

t
t t t

 
  


 B13 

 

5.2.2. Peak width calculation 

 

 

The peak width calculation is based on the previous expression of σ2 as a sum of variances 

from the injection band width (i.e., extra-column effects) and the isocratic parts of the separation 

[63]: 

2 2

tot grad                                                         (5.2) 

where Δσ is the variance due to the finite injection bandwidth, as well as the contribution while 

the analyte elutes within the sample solvent and within the dwell time and σgrad is the gradient peak 

width. 

In order to calculate Δσ, we must consider the total bandwidth before the analyte 

experiences the gradient: 

2 2 2 2

b inject sample D                                                      (5.3) 

where σinject, σsample, and σD are the bandwidths of the injection itself, the band broadening during 

elution while in the sample solvent and the band broadening during the elution while in the dwell 
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volume, respectively. The band broadening in the sample solvent, σsample, was not included in the 

total bandwidth given in Chapter 3 (equation 3.22). It also should be noted that equation 3.22 was 

for isocratic conditions. Tables 5.2 shows equations that represent each bandwidth contribution. 

 

Table 5.2. Closed form equations for calculation of bandwidth contributions before gradient 

Contribution Equation Equation number 

Injection 
 

 
1,1

1 12

o ss f

inject

ss o

k k z

k k






 B17 

Band broadening during 

elution in sample solvent 

 
2,sample mz z    B18 

Band broadening during 

dwell time D Dz z    B19 

 

The bandwidth σb conversion to peak width Δσ and calculation for the gradient peak width σgrad is 

similar to the closed form equations discussed in section 3.2.2. for LSS theory. All derivations for 

peak width calculation are described in detail in Appendix B.  

 

5.3. Conditions studied 

 

 

A large set of conditions were analyzed to compare the performance of closed form 

calculation and the convolution approach to full simulation. Retention prediction for eight 

compounds (structures and abbreviations shown in Figure 5.1) were studied. The sample solvent 

was either weaker, matching, or stronger (ϕ = 0.1, ϕ = 0.3, and ϕ = 0.5, respectively) compared to 

the initial mobile phase composition (ϕo = 0.3). Two different gradient times were used to produce 

shallow or steep gradient slopes (tG = 0.5 min and tG = 0.25 min, respectively). A set of 21 different 

injection volumes with corresponding injection profiles were used (rectangular injection profiles 

or experimental injection profiles obtained from different sample loops at different filling levels 
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as described in section 4.5). This resulted in 126 total condition combinations for each compound. 

With eight compounds, this results in a total of 1008 simulation conditions. Previous simulation 

vs. experimental data comparisons (Chapter 4) demonstrated accurate retention prediction using 

our simulation code. Therefore, closed form and convolution calculations were directly compared 

to the results from full simulation. 

 

Figure 5.1. Structures and abbreviations for compounds used in the convolution study 

 

5.4. Closed form retention predictions 

 

 

Closed form calculation provides fast, almost instantaneous, retention prediction. For 

simple linear mobile phase conditions under ideal injection conditions (i.e., rectangular injection 

with matching sample/eluent solvent composition), closed form predictions are reasonably 

accurate. As shown in Figure 5.2, for the 336 out of 1008 simulation conditions where the sample 

solvent and initial mobile phase composition are matching, the retention time and peak width 

prediction by closed form are in reasonable agreement with the full simulation results. Slight 
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deviations from the identity line for peak widths are observed for the largest injection volumes of 

the most weakly retained compounds (DiEtF and BzAlc). However, under non-ideal conditions 

with both solvent mismatch and volume overload, closed form prediction deviates from the 

simulation prediction. This is shown in Figure 5.3 where prediction results for all 1008 simulation 

conditions are compared. In general, the retention time predictions by closed form are shown to be 

reasonably accurate even for solvent mismatch conditions. However, the peak widths for first three 

eluting compounds under these conditions are predicted to be much broader than those predicted 

by simulation. 

 

Figure 5.2. Comparison of retention prediction by closed form to full simulation using rectangular injection 

profiles (A) retention time and (B) peak width. These correspond to cases where the sample solvent is the 

same as the solvent composition at the start of the gradient. 
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Figure 5.3. Comparison of retention prediction by closed form to full simulation using rectangular injection 

profiles (A) retention time and (B) peak width for all 1008 conditions. 

 

The closed form calculation does not consider the injection band shape and therefore worse 

performance was expected for experimental injection profiles where the injection band is 

asymmetrical; thus, this comparison is not shown here. There is a need for a rapid prediction 

technique that can provide more accurate retention prediction for both rectangular and 

experimental injection profiles. Here we propose a convolution approach to speed up simulations 

without compromising the quality of simulation and to retain the ability to capture the tailing 

shapes introduced by the experimental injection profiles. 

 

5.5. Convolution strategy 

 

 

A convolution is a mathematical function that expresses the overlap of one function, g, as 

it is shifted over another function, f. It “blends” the two functions together [92]. The resulting 

convoluted function, f*g, is a modified function of the original function, f.  
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( ) ( ) ( ) ( )f t g t f t g t







                                                    (5.4) 

For example, if we shift an exponential decay function g over a Gaussian function f, then we obtain 

an exponentially modified Gaussian function f*g as shown in Figure 5.4. 

 

Figure 5.4. Convolution of a Gaussian function with an exponential decay function to produce an 

exponentially modified Gaussian function 

 

For the purpose of chromatographic simulation, we adapt the convolution approach by dividing 

the column into two separate sections. As shown in Figure 5.5A, for the first section of the column 

C1, we perform a simulation. For the rest of the column length C2, we use a closed form calculation 

and produce a Gaussian peak from the calculated results. The obtained peaks are then convolved 

to give the expected chromatogram.  

Convolution of two peaks involves three steps: (1) Fourier transform of both peaks; (2) 

multiplication in Fourier domain; and (3) inverse Fourier transform to get the resulting 

chromatogram. It is important to note that the distance for which simulation is required must be 

long enough so that the sample solvent surpasses the analyte band. In other words, z2,f must be 

equal to the distance at which the front end of the analyte band meets the tail end of the sample 

solvent band (Figure 5.6). 
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Figure 5.5. Convolution method applied to LC. (A) Two column segments for convolution approach: a full 

simulation is performed for first segment C1 and the known closed form solution for second segment C2 is 

used to make a Gausssian peak (B) Stepwise schematic of the convolution approach. 

 

The time it takes for the tail end of the analyte band to travel from z1,f position to z2,f position 

(Figure 5.6A to 5.6B) is calculated as 

2, 2, 1,

2

f f f

m ss

z z z
t

u u


                                                  (5.5) 

Solving for z2,f after substituting for z1,f and uss using equations B5 and B6 yields 

2,

inj

f

ss

z
z

k
                                                          (5.6) 

In other words, z2,f is simply double z2,m (Figure 5.6C). 
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Figure 5.6. Relationship between z1,f (A), z2,f (B), and z2,m (C). Sample solvent band (blue), analyte band 

(red), and mobile phase gradient (green). 

 

5.5.1. Feasibility testing 

 

 

The feasibility of the convolution approach was determined by looking at a simple linear 

mobile phase gradient conditions without any solvent mismatch or volume overload. The retention 

of PEA on a 5 cm C18 column was simulated for a mobile phase gradient of 2 – 5 % ACN over 3 

minutes. In order to perform convolution, we first divided the column into two separate sections. 

As shown in Figure 5.5A, for the first section of the column C1, we performed simulation and for 

the rest of the column length C2, we used closed form calculation and produced a Gaussian peak 
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from the calculated results. It is important to note that the peak widths of the simulated peak from 

C1 must be corrected before performing convolution. This peak adjustment was performed using 

the series of peak width equations presented in Appendix B. 

First, it is important to recognize the initial mobile phase composition for C2 is equal to 

the mobile phase composition at elution from C1 (
,2 ,1o e   ). The remainder of the change in 

organic composition, the void time, and the gradient time (Δϕ2, tm,2, and tG,2, respectively) are 

calculated to produce the new dimensionless gradient slope b† for C2 

*

2 ,2†

2

,2

m

G

S t
b

t


                                                           (5.7) 

where S* is the slope of ln k vs ϕ plot at elution as defined in equation B25. 

The bandwidth ‘introduced’ into C2 is equal to the bandwidth contribution at the exit of 

C1, which is obtained from the conversion of simulated peak width (σt,1) with its elution velocity 

(ue) 

.2, ,1,b entrance t exit eu                                                               (5.8) 

This conversion was achieved by converting the time axis for C1 chromatogram to a distance axis 

for the introduction onto the C2 so that the simulated C1 chromatogram has the same axis as the 

C2 chromatogram. Subsequently, the peak width at the end of C2 is calculated by converting the 

band width at the C2 exit to a peak width by dividing by the elution velocity for C2 

,2,2

,2

b exit

eu



                                                             (5.9) 

It is essential to perform this step (σt,1 conversion to Δσ) to obtain the correct overall peak width 

prediction. 
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Once peaks from both column sections C1 and C2 are obtained, we can proceed with the 

convolution approach. As schematic in Figure 5.5B shows, we first perform Fourier transform on 

both peaks (blue and red peaks in Figure 5.7A), then multiply them together (point-wise), and 

finally the inverse Fourier transform returns the convoluted peak (the green peak in Figure 5.7A). 

The retention prediction with convolution is shown to have good agreement in retention 

time and peak width to the full simulation result, as shown in Figure 5.7. Because the convolution 

approach proved to provide accurate retention prediction for this simple linear mobile phase 

gradient condition, we believed that this approach had the potential to be applied to more 

complicated separation conditions faced in 2D-LC. We moved on to looking at the 1008 simulation 

conditions described in section 5.3. 

 

  
 

Figure 5.7. Comparison of (A) convolution to (B) full simulation in prediction of PEA retention on 5 cm 

C18 column under 2 % - 5 % ACN gradient over 3 minutes 
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5.5.2. Automated convolution approach 

 

 

Automation is key to a rapid simulation prediction. In order to automate the convolution 

method, the overall simulation time and column lengths were estimated for each condition using 

the closed form calculations. Since closed form predictions were shown to deviate significantly 

for solvent mismatch conditions (Figure 5.3), we estimated total simulation time and length to be 

5σ greater than retention time and distance at which the sample solvent escapes the analyte band:  

, 5sim R cf cft t                                                       (5.10) 

2, 5sim f bL z                                                       (5.11) 

where tR,cf and σcf are overall retention time and peak width prediction by closed form calculation, 

and z2,f is the position of the column when the front end of the analyte band meets the tail end of 

the sample solvent band (equation 5.6) and σb is overall band width calculated from equation 5.3. 

The convolution approach is useful because it reduces length and time required for simulation 

resulting in less overall computation time. The convolution approach does not provide any 

significant advantage over full simulation at Lsim lengths of greater than 90 % of the total column 

length. Therefore, we set a threshold for convolution program to only operate up to Lsim length of 

90 % of the total column length and suggest full simulation under any conditions which do not fit 

this criterion. 

We first tested the automated convolution approach performance using rectangular 

injection profiles. The comparison of 854 conditions (where convolution approach was deemed 

useful) with full simulation results show better agreement in retention time and peak width 

compared to closed form prediction (Figure 5.8). The greatest differences in retention time and 

peak widths for the rectangular injection profiles were 2.7 % and 9.4 %, respectively. Our 
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convolution method proved to be very effective even when asymmetric experimental injection 

profiles were used (Figure 5.9). All retention time and peak width predictions using convolution 

approach when using experimental injection profiles exhibited less than 5.5 % and 17 % difference 

compared to the full simulation results, respectively. The biggest difference resulted for earlier 

eluting compounds under stronger sample solvent conditions. We suspect that this is due to 

underestimation of Lsim by the closed form expressions. Despite this shortcoming, we believe that 

our fully automated convolution program will allow chromatographers to exhaustively search for 

the most optimal separation condition within reasonable amount of time. 

 

 

Figure 5.8. Comparison of retention prediction by convolution to full simulation (A) retention time and (B) 

peak width using rectangular injection profiles. Only the 854 conditions where convolution is useful are 

plotted. 
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Figure 5.9. Comparison of retention prediction by convolution to full simulation (A) retention time and (B) 

peak width using experimental injection profiles. Only the 854 conditions where convolution is useful are 

plotted. 

 

The computation times for the full simulation and the convolution approach for each 

condition were recorded for comparison. The average elapsed time for each compound when using 

the experimental injection profiles is shown in Table 5.3. The speed increase factor ranged from 

2.2 to 13 depending on the solute. Retention predictions for the 854 conditions were achieved in 

34 minutes with full simulation whereas prediction using the convolution approach was complete 

in 4.4 minutes, which is almost eight times faster than running full simulations. 

Table 5.3. Comparison of average computation time when using experimental injection profiles 

 

Compound Full simulation average 

elapsed time (s) 

Convolution average 

elapsed time (s) 

Increase factor 

DiEtF 1.0 0.47 2.2 

BzAlc 1.3 0.43 3.1 

PB1 1.5 0.36 4.1 

PB3 2.5 0.20 12 

PB4 3.0 0.26 11 

AP2 2.0 0.31 6.6 

AP4 3.2 0.29 11 

AP5 3.6 0.28 13 
*Computer used: Dell Precision T3600 with an Intel Xeon E5-1620 CPU at 3.60 GHz and 32.0 GB of RAM 
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5.6. Conclusion 

In this study, we have extended our simulation program with the capability to accelerate 

retention prediction. We have proposed a set of closed form equations to provide approximate 

retention prediction for gradient elution separations with large injection volumes that have solvent 

compositions that differ from the starting mobile phase compositions. Although these equations 

predicted retention time and peak width with reasonable accuracy under volume overload 

conditions, the results deviated significantly for solvent mismatch condition commonly faced in 

2D-LC separations.  

In this chapter we have described a convolution approach to speed up the simulation 

process without the loss of prediction accuracy in retention time, peak width and peak shape. This 

approach reduces the column length required for simulation and uses the known, closed form 

solution for retention prediction for the remainder of the column length. In turn, the overall 

computation time is decreased. Complete automation of this approach allowed for exploration of 

wide range of separation conditions and resulted in eight-fold speed increase compared to full 

simulation. Also, retention time predictions achieved by convolution resulted in small differences 

compared to full simulation (greatest difference 2.7 % for rectangular injections and 5.5 % for 

experimental injections). The convolution approach has a great potential for development and 

optimization of LC methods. 
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Chapter 6: Stationary Phase Gradients 

 

This chapter has been adapted from L.N. Jeong, S.G. Forte, S.C. Rutan, in preparation for 

submission to J. Chromatogr. A. 

Section 6.5 has been adapted, with permission, from V.C. Dewoolkar, L.N. Jeong, D.W. Cook, 

K.M. Ashraf, S.C. Rutan, M.M. Collinson, Anal. Chem. 88 (2016) 5941–5949. 

 

 

 

 

6.1. Introduction 

 

 

There is a great interest in the development of different stationary phases such as monoliths, 

superficially porous particles, and mixed mode materials to enhance the separation performance 

of liquid chromatography (LC) [6,93,94]. The majority of the current method development efforts 

for LC separation often involve selecting one stationary phase and optimization of the mobile 

phase. However, it has been shown that a change in ligand type or bonding density in stationary 

phase can also provide varied separation selectivity [95–98]. A stationary phase with a gradient 

(or multiple gradients) in ligand density could provide improved separation for mixtures difficult 

to separate with conventional methods by providing unique selectivity.  

The development of stationary phase gradients could also have a great impact on the 

development of comprehensive two-dimensional liquid chromatography (LCxLC). One of the 

issues in LCxLC method development is the existence of a solvent mismatch between the first  
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dimension (1D) effluent and second dimension (2D) initial mobile phase composition 

[71,74,75,99,100]. When using rapid gradients in the second dimension with a diode array detector 

(DAD), refractive index changes cause large backgrounds such as an injection ridge (from solvent 

mismatch) and sloping baselines, which can be problematic for achieving accurate quantitation 

[101,102]. Use of a stationary phase gradient may enable the use of an isocratic mobile phase in 

the 2D which could be very useful in minimizing these background signals.  

Stationary phase optimized selectivity liquid chromatography (SOSLC) is a technique to 

optimize separation selectivity by tuning stationary phase compositions [103,104]. The optimal 

stationary phase combination is determined by predicting the column combination that will result 

in highest degree of overall separation and shortest analysis time based on retention data for the 

mixture components on individual phases. This development has been commercialized as POPLC 

(Bischoff Chromatography) [105] and many studies have reported unique separation selectivity 

which resulted in improved separation [106–108]. However, these serially connected columns 

provide discontinuous step gradients with the possibility of void volumes between column sections 

which may cause peak broadening [109]. 

In recent studies, a simple and inexpensive method for preparation of continuous gradient 

on thin layer chromatography (TLC) plates was used to improve the separation of mixtures [96–

98]. The controlled rate infusion (CRI) method, in which a functionalizing reagent is infused in a 

time dependent manner across the plate, was employed to prepare gradients in amine and 

amine/phenyl concentration on silica TLC plates and improved resolution was seen, relative to a 

plain silica plate or a fully functionalized silica plate [96,97]. Additionally, the CRI method has 

recently been used to prepare LC stationary phases with a gradient in the density of amine 

functionality on silica monoliths [110]. Because there is the capability of tuning the gradient 
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preparation, it would be advantageous to simulate the chromatographic behavior of these gradient 

systems, in order to guide the synthesis of novel gradient stationary phases for LC separations. 

The SOSLC prediction algorithm assumes that the retention factors are additive for serially 

connected columns. In our algorithm, the local retention factor for specific combinations of 

stationary phase ligands is calculated for more accurate prediction of overall retention. In addition, 

our simulations allow for consideration of both stationary phase and mobile phase gradients. 

It is important to note that in this work we use Neue-Kuss theory to obtain parameters that 

should be able to predict retention for all mobile phase compositions on the corresponding 

stationary phase.  Then, in principle, we can use any type of mobile phase gradient or injection 

solvent mismatch profile we like, hence being able to explore many conditions not explicitly 

described by closed-form theory. Also, our program allows for the evolution of the chromatogram 

to be captured in the form of movies and/or snapshots of the analyte distribution over time and/or 

distance to facilitate a better understanding of the separation process under complicated 

circumstances. 

 

6.2. Stationary phase gradient theory 

 

 

Gritti and Guichon have developed a closed form theory for retention on a column with a 

linear gradient in the stationary phase retention factor, which results in the following prediction of 

the retention time [111]: 

1
2

R o

m

L L
t k a

u

 
   

 
       (6.1) 

where L is the column length, um  is the mobile phase velocity, ko is the retention factor at the start 

of the gradient and a is the slope of the linear stationary phase gradient defined as 
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( ) ok z k az       (6.2) 

Here, z is the incremental distance along the column length, so that k(z) represents the local 

retention factor as a function of column length. These authors also formulated an expression for 

the band width for a gradient stationary phase [111].  While the original paper included two 

expressions for the band width considering both the case for ‘band compression’ or with ‘no band 

compression’ [111], Blumberg has subsequently shown that only the ‘band compression’ equation 

is correct [112,113].  The band width for a linear stationary phase gradient is therefore given by 
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
    (6.3) 

where H is the plate height and p(L) is given by 

( )
1 o

aL
p L

k



               (6.4) 

The band width expressed by equation 6.3 can be converted to peak width by dividing by the band 

velocity at elution (ue = um/1+k(L)), which results in the following expression 
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 
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   (6.5) 

While we have designed our code to accommodate any type of stationary phase gradient (i.e., step, 

exponential or custom), the closed form solution for the linear gradient offers us a convenient 

means to validate our code. 

The simulation code was written based on the Craig model, where the continuous 

chromatographic process is explained by describing the separation process in terms of discrete 

distance and time segments. As discussed in Chapter 4, Czok and Guiochon’s approach was 
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adapted to simulate solute retention for linear (Linear Solvent Strength (LSS) theory [45]) and 

non-linear (Neue-Kuss [64]) models for the dependence of retention factor on solvent strength 

for linear mobile phase gradients. We present here an addition to the simulator’s capability with 

the development of simulations for customized stationary phase gradients.  

As illustrated before in Chapter 3, the local retention factor must be calculated for 

simulation of any LC conditions.  According to Neue-Kuss theory, the local retention factor (k) 

can be predicted as a function of mobile phase composition () (equation 3.19) [64]: 

2 1
2

2

(1 ) exp
1

w

S
k k S

S

  
    

  
                                               (6.6) 

where S1 is the slope of ln k versus , S2 is the curvature coefficient, and kw is the solute retention 

factor for a purely aqueous mobile phase. Ideally, the kw parameter in this relationship depends 

only on interactions of the selected solute with stationary phase, while the S1 and S2 parameters 

depend only on the interactions of the selected solute with the mobile phase.  While this is 

undoubtedly an oversimplification, in principle, this formula offers a convenient means of 

determining a local retention factor as a function of any mobile phase/stationary phase ligand 

concentration that should be at least approximately valid. 

The S1, S2, and kw for each solute must be experimentally determined independently for 

columns of each functionality.  In the present work, we accomplished this by using nonlinear least 

squares fitting of the isocratic retention times (tR) and mobile phase compositions () on columns 

with the corresponding stationary phases to equation 6.6. 

In order to perform stationary phase gradient simulations, common S1 and S2 values need 

to be obtained for each solute. While there are a number of reasons why the S1 and S2 values of a 

compound might differ significantly for two separate columns, one possible reason is a difference 
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in the stationary phase volumes. In order to adjust for this discrepancy, the gradient retention 

times on one column can be adjusted using the following relationship 

2

1, 1 1 2

1

( )
corr

stat

R R m m

stat

V
t t t t

V
                                        (6.7) 

where 2

1

stat

stat

V

V
  is the ratio of volumes of the stationary phases in the two columns. This relationship 

is optimized by finding a stationary phase volume ratio that produces the most similar S1 and S2 

values across all solutes. These corrected retention times can then be utilized to calculate a set of 

theoretical NK parameters (kw1, kw2, S1 and S2) that can be used to implement the simulations. 

By utilizing the NK parameters acquired by fitting the isocratic experimental data on the 

individual reference columns, gradient stationary phase simulations can be generated in an attempt 

to model the retention factors for this new method for selectivity adjustment [110]. As expected, 

we demonstrate that the application of the Craig model can accurately generate simulations that 

illustrate the potential of gradient stationary phases for the control of chromatographic selectivity. 

 

 

6.3. Validation of retention time and peak width for linear stationary phase gradients 

 

 

The theoretical predictions for the retention time (equation 6.1) and peak width (equation 

6.3) from the Gritti-Guiochon theory [111] were compared to our simulation results.  The 

simulation and calculations were carried out assuming a small molecule with S = 10 and the 

following parameters: um = 0.5 cm/s, L = 15 cm, H = 10 m, ko = 0 (retention factor at the beginning 

of the gradient) and kf = 2.4 (retention factor at the end of the gradient). The retention time from 

the simulation agreed to within 0.0038 % to the retention time from theory (tR = 1.100 min). The 
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simulated peak width (σ = 0.0094162 min) was in also in good agreement with the Gritti and 

Guiochon theory, as corrected by Blumberg (σ = 0.0094163 min) [111,112]. 

 

6.4. Phase-optimized liquid chromatography (POPLC) 

 

 

6.4.1. Experimental 

 

 

A group of ten amphetamines was selected to characterize the performance of the gradient 

simulations. The structures, names, and abbreviations for these compounds are shown in Figure 

6.1. Each of the amphetamine standards was purchased from Grace Discovery Sciences (Columbia, 

MD). The samples analyzed using LC were prepared at varying concentrations in order to reduce 

the magnitude of tailing and column overload. The isocratic data were collected on a system 

composed of a binary pump, an autosampler, a column thermostat, and a diode array detector 

(DAD) in an Agilent 1260 system (Agilent Technologies). The separations were carried out using 

a POPLC ProntoSil 100-3-C18 SH-2 column (80 x 4.6 mm, 3 µm) and a POPLC ProntoSil 100-3-

Phenyl-2 column (80 x 4.6 mm, 3 µm) with 10 mM potassium phosphate buffer at pH 2.5 and 

acetonitrile. The Neue-Kuss parameters S1, S2 and kw values were estimated using nonlinear least 

squares regression of the isocratic retention times obtained from the experimental data of each 

amphetamine on each column fit to equation 6.6. Common S1 and S2 values were determined by 

correcting the C18 column retention times by optimizing the ratio of the stationary phase volumes 

(equation 6.7). The retention of amphetamines under various isocratic and gradient conditions was 

simulated with these extracted parameters.  
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Figure 6.1. Structures and abbreviations for ten amphetamines 

 

 

 

6.4.2. Simulation codes 

 

 

All simulation codes were written in the Matlab program (Mathworks, Natick, MA) version 

R2016a. Non-linear regression to obtain the parameters necessary to implement simulations was 

accomplished using the function lsqnonlin found in the Matlab Optimization Toolbox. 
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6.4.3. Determination of Neue-Kuss Parameters 

 

 

 The Neue-Kuss (NK) parameters were calculated for each amphetamine from the 

experimental data. Initially, the NK parameters for each compound were calculated independently 

for each column. The S1 values should be indicative of the mobile phase – analyte interactions, 

therefore it is expected that the S1 and S2 values would remain constant between the two columns 

as long as the mobile phase was the same. However, the S1 values between the two columns 

differed by a significant amount. Although this observation was not surprising, due to the 

approximate nature of equation 6.6, one possible reason for this difference is differences in the 

stationary phase volumes due to the different stationary phase group sizes. Therefore, fits were 

carried out to achieve a common S1 value. Also, the S2 value represents the curved relationship of 

retention factor on organic composition and is expected to be common between two stationary 

phases. The retention times on the C18 column was corrected to match the same stationary phase 

volume of the phenyl column using the relationship shown by equation 6.7. The optimized 

common S1 and S2 values and kw values of each column were then calculated and are shown in 

Table 6.1. The kw values for each stationary phase were combined to give the kw for the gradient 

stationary phase using the following equation:  

18 18,w grad C w,C phen w,phenk f k f k                                               (6.8) 

where fC18 and fphen are the fractions of C18 and phenyl functional groups on the gradient column 

at a particular position, z, along the column, and kw,C18 and kw,phen are the solute retention factors 

for a purely aqueous mobile phase on the individual corresponding stationary phase columns. The 

local retention factor (i.e., at each position on the gradient column) for each solute was calculated 

using the fitted parameters shown in Table 6.1. 
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Table 6.1. Combined linear solvent-strength parameters for the amphetamine for C18 and phenyl based 

columns from fits to equation 6.7 

 

Number Amphetamine S1
a,b S2

a,b kw,phen
a kw,C18

a 

1 PE 8.20 

(1.1) 

-0.147 

(0.20) 

1.55 

(0.09) 

1.9 

(0.11) 

2 PPA 15.9 

(3.0) 

1.36 

(0.43) 

4.07 

(0.61) 

6.6 

(0.97) 

3 PEA 20.4 

(3.0) 

2.02 

(0.40) 

6.11 

(0.89) 

9.9 

(1.4) 

4 EP 25.4 

(3.9) 

2.47 

(0.45) 

9.11 

(1.6) 

15.0 

(2.6) 

5 PSE 29.1 

(4.3) 

2.83 

(0.48) 

11.4 

(2.1) 

18.1 

(3.4) 

6 Amp 25.9 

(4.0) 

2.30 

(0.47) 

13.3 

(2.4) 

25.0 

(4.5) 

7 MDA 30.3 

(4.4) 

2.58 

(0.48) 

22.9 

(4.4) 

39.3 

(7.6) 

8 Mamp 25.2 

(3.6) 

2.11 

(0.43) 

17.9 

(3.0) 

33.2 

(5.5) 

9 MDMA 28.8 

(4.3) 

2.46 

(0.46) 

34.5 

(6.5) 

64.0 

(12) 

10 Moxy 30.8 

(3.8) 

2.34 

(0.42) 

29.1 

(4.9) 

48.3 

(8.1) 
 

aStandard errors of the parameters are given in parentheses. Conditions to fit to equation 6.6 were ϕ = 0.1 

to 0.5 in 0.05 increments, tM = 0.6302 min. 

bCommon S1 and S2 values were achieved using the following stationary phase volume ratio: 

18

1.4
phenyl

C

V

V
  

6.4.4. Stationary phase gradient simulations 

 

 

Simulations for the retention of ten amphetamines were performed on three types of 

stationary phase gradients with an isocratic mobile phase ( = 0.10). The stationary phase gradient 

shapes used for the simulations are shown in Figure 6.2. The solid curve represents the relative 

concentration of the phenyl groups, and the dashed curve represents the relative concentration of 

the C18 groups on the stationary phase. Each of these gradients provides 50 % phenyl groups and 

50 % C18 groups for the solutes to interact with. The resulting simulated chromatograms were 

identical regardless of the gradient shape. Also, reversing the order of the gradient (i.e., reversing 
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the simulated flow direction) did not change the retention time or peak width. The invariance of 

the peak widths upon shift in flow direction was alluded to by Giddings as early as 1963 [114]. 

These results indicate that the retention of an analyte depends on the composition of stationary 

phase (i.e., how many of each functional group the analyte is exposed to), not the shape or the 

direction of the stationary phase gradient. This finding of a lack of peak compression on a 

stationary phase gradient with isocratic mobile phase is contradictory to the conclusions of Gritti 

et al. [28]. These authors concluded that the use of a stationary phase gradient alone can improve 

the resolution, meaning the directionality of the gradient will affect peak width. A closer 

examination of their conclusions, as prompted by Blumberg [112], reveals that their conclusions 

were based on band widths, not peak widths. Bassanese et al. [115] recently reported a successful 

gradient modification of a commercial monolithic silica column and claimed that the column 

efficiency depended on the flow direction. This conclusion was solely based on one gradient 

column. In contrast, our investigation of reversing the column direction by simulation showed no 

change in the retention time or peak widths. However, even with lack of peak compression, a 

separation improvement is still possible using a stationary phase gradient by providing a variation 

in chromatographic selectivity.  

The retention behavior of these compounds was further characterized using a set of nine 

different exponential stationary phase gradients (see for example Figure 6.2C), and the simulated 

chromatograms were compared to those obtained for the pure phenyl and pure C18 columns to 

determine the dependence of the chromatographic selectivity on the stationary phase composition. 

An exponential gradient shape was chosen because when controlled rate infusion is used to 

generate stationary phase gradients, the coupling of the functional groups is under kinetic 
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Figure 6.2. Relative concentration of phenyl (dashed curves) and C18 (solid curves) functional groups for 

simulated phenyl/C18 gradients: (A) linear gradient, (B) step gradient, and (C) exponential gradient. 

Resulting simulated chromatogram with isocratic mobile phase composition ( = 0.1) of each stationary 

phase gradient (D), (E), (F), respectively. Amphetamine elution order is as listed in Table 1. 

 

control, such that in some cases, exponential gradient shapes are observed [96]. The overall 

gradient composition varied from 10 % to 90 % phenyl at 10 % increments. The exponential 

coefficient needed to achieve each target composition was calculated using the vpasolve function 

in the Symbolic Math Toolbox in Matlab. The determination of the effect of a stationary phase 

gradient on the chromatographic selectivity was performed by looking specifically at the four 

peaks, as shown in Figure 6.3. The retention times of PSE and MDA were affected to a lesser 
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degree than those of EP and Mamp with an increase in phenyl content in the stationary phase. This 

resulted in increased resolution of the first pair (EP and PSE) and decreased resolution of  

 

 

Figure 6.3. Simulation of four amphetamines: 4. EP, 5. PSE, 7. MDA and 8. Mamp on 11 different 

stationary phases with isocratic mobile phase composition ( = 0.1) with varying C18/phenyl composition. 

The gradient columns were simulated to have exponential profiles.   

 

the second peak pair (MDA and Mamp) as the proportion of phenyl groups on the column 

increased. Figure 6.3 clearly shows the benefit of using a mixed mode stationary phase over a 

single column chemistry, phenyl or C18. The first peak pair (EP and PSE) is better separated on 

the phenyl column whereas the second peak pair (MDA and Mamp) is better separated on the C18 

column. The use of traditional phenyl and C18 columns for separation of this mixture will require  
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Figure 6.4. Predicted separation of ten amphetamines by varying stationary phase composition and . (A) 

Resolution map with optimum separation condition marked with a red square, (B) simulation using the 

optimum separation conditions 70 % phenyl gradient column and  = 0.1. The peak numbers correspond to 

the amphetamines shown in Figure 6.1. Resolution of the critical pair is marked with an arrow. 

 

two serially connected columns. However, the use of a gradient column with approximately 70 % 

phenyl allows for a separation on a single column with resolution greater than 0.5 for all peaks. 

It is evident that there must be an optimum condition for separation of these ten 

amphetamines. In order to investigate the effect of stationary phase and mobile phase composition 

on overall resolution, the retention of each compound for different combination of two parameters, 
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the stationary and mobile phase compositions, was calculated in Excel. Then the ‘critical’ pair (i.e., 

most overlapped peak pair) resolution values for each stationary phase and mobile phase 

composition combination were plotted to create the resolution map shown in Figure 6.4 to identify 

the conditions for maximum resolution. 

 

6.4.5. Comparison of simulation to experimental data 

 

 

The stationary phase gradient simulation program was validated against experimental data 

under isocratic and mobile phase gradient conditions. Retention predictions acquired by our 

simulation code were compared against the prediction from the POPLC optimization software and 

were shown to provide superior predictions for retention. The POPLC optimization software only 

takes a training set data for each column at the specific mobile phase condition to provide simply 

additive retention. On the other hand, our simulation program uses training set data collected for a 

range of mobile phase compositions and fits the NK parameters that best predict the retention time 

within this range. A comparison of the simulated and experimental chromatograms is given in 

Figure 6.5. Additionally, as shown in Table 6.2, the smallest percent difference for retention time 

achieved by POPLC optimization software (4.3 %) is approximately the largest percent difference 

achieved by our simulation code for an isocratic separation condition at ϕ = 0.2. 
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Table 6.2. Experimental and simulated retention data for amphetamines separated 

under isocratic elution conditionsa 

Solute tR,exp (min) Simulation  

% differenceb 

POPLC software  

% differenceb 

PE 1.682 2.2 11.2 

PPA 2.132 4.5 10.7 

PEA 2.342 3.5 8.0 

EP 2.390 3.3 7.9 

PSE 2.384 3.1 7.4 

Amp 2.750 2.3 6.9 

MDA 2.958 1.0 5.1 

Mamp 3.168 1.8 5.4 

MDMA 3.365 1.5 4.3 

Moxy 3.494 1.6 4.5 
aThe isocratic condition was 20 % ACN and injection volume was 5 µL.  

A rectangular injection profile were used for simulations.  
b (sim exp)

% difference *100
exp


  

 

 
Figure 6.5. Comparison of experimental (blue) and simulated (orange) separations of (A) PE, PEA, and 

MDA; (B) EP and Mamp; (C) PSE and MDMA; and (D) PPA, Amp, and Moxy. Isocratic separation 

condition at ϕ = 0.2. Experimental signals relative intensity. The scale of the signal axis for the simulated 

chromatograms is arbitrary. 
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The SOSLC method has been adapted to provide retention predictions for mobile phase 

gradients [116], the current version of POPLC optimization software provided with the column kit 

does not contain this feature. The optimization software for combined gradients can be obtained 

from the Bischoff website [117]. This software only provides the most optimal combination of 

column segments under a given mobile phase gradient. Therefore, the specific combined gradient 

condition tested in this study could not be simulated with the optimization software for comparison. 

Also, the linear gradient prediction algorithm by De Beer et al. [116] uses discrete isocratic stages 

to represent a linear gradient. This discontinuous approach is only applicable for segmented 

stationary phase gradients. As shown in Chapter 4, our simulation program offers the flexibility to 

simulate variety of different conditions from simple linear mobile phase gradients to gradients with 

large injection volume and mismatching solvent. Our program can easily simulate a mobile phase 

gradient applied to a stationary phase gradient column with any shape. Figure 6.6 shows 

comparison of this combined gradient simulation with experimental data. The greatest retention 

time difference was only 4.2 %. 

The peak width prediction with our simulation code was not as accurate as retention time 

prediction. Figure 6.5 and 6.6 shows the experimental peaks fronting overall. The use of 

rectangular injection profile which produces Gaussian peaks in our simulation are expected to have 

errors. However, even the use of experimental injection profile is not expected to completely 

resolve this issue. The fronting peaks are believed to be due to the nature of the POPLC connection 

with the PEEK cartridge segments. Even with careful handling, variation is introduced with every 

reassembly of the column configuration. In fact, every disassembly and reassembly resulted in 

significant difference in the measured tM (data not shown here). These fronting effects were 

confirmed to be due to void volumes present in POPLC in a previous study [7]. In this study, Ortiz-
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Bolsico et al. compared the connection of ACE columns with zero-dead-volume (ZDV) connectors 

to the column connectors used with the POPLC system and found that they could recreate the 

fronting peak shape obtained from the POPLC system by loosely connecting the ACE columns. 

Several other previous studies with the POPLC system have shown similar fronting peaks 

[118,119]. Discontinuous gradient assembly, which requires constant handling, causes 

inconsistencies between analysts and day-to-day analysis. Our lab, in collaboration with the 

Collinson lab, has been working on synthesizing continuous stationary phase gradients. Our 

simulation code can provide guidance for the selection of the stationary phase composition and 

shape along with insights into possible neighboring ligand effects that can arise from having 

multiple functionalities in close proximity to each other. In the next section, we explain the 

synthesis and characterization of continuous amine gradient column along with comparison of our 

simulation retention prediction to the experimental data. 

 

Table 6.3. Experimental and simulated retention data for amphetamines separated 

under gradient elution conditionsa 

 

Solute tR,exp (min) Simulation  

% differenceb 

PE 2.200 2.7 

PPA 3.304 4.0 

PEA 3.807 3.2 

EP 4.225 1.5 

PSE 4.329 1.0 

Amp 5.385 0.8 

MDA 6.394 -2.1 

Mamp 6.630 -1.0 

MDMA 7.749 -4.1 

Moxy 8.336 -4.2 

 
 

aGradient conditions: ϕo = 0.1 to ϕf = 0.15 over tG = 10 min, the injection volume 

was 5 µL, and the stationary phase gradient had a step profile. A rectangular 

injection profile were used for simulations. 
b (sim exp)

% difference *100
exp


  
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Figure 6.6. Comparison of experimental (blue) and simulated (orange) separations of (A) PE, PEA, and 

MDA; (B) EP and Mamp; (C) PSE and MDMA; and (D) PPA, Amp, and Moxy. Gradient separation 

condition: ϕo = 0.1 to ϕf = 0.15 over tG = 10 min. Experimental signals are relative intensity. The scale of 

the signal axis for the simulated chromatograms is arbitrary. 

 

 

6.5. In-house built continuous amine stationary phase gradients 

 

 

Since additional connections must be made, serially connected columns such as POPLC 

have issues with excess void volume. These discontinuous gradients also do not allow for 

cooperative interactions to take place with strategically positioned functional groups on a surface 

with complementary functional groups on the analytes. Recently, a few reports of continuous 
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gradient stationary phases have appeared in the literature as a means to improve the selectivity of 

separations. The Collinson group has demonstrated the usefulness of continuous stationary phase 

gradients in thin layer chromatography (TLC) plates via separation of mixtures of acids and bases, 

over the counter drugs, water and fat-soluble vitamins, and metal ions [95–97]. Gradient stationary 

phases have also been prepared on polymeric capillary monoliths for electrochromatography [119–

121]. These gradient stationary phases showed better performance and resolution of solutes 

compared to homogenously modified stationary phases. Bassanese et al. have recently reported 

the modification of a commercial silica monolithic column to form a gradient stationary phase, 

which they claimed gave different efficiencies, depending on the direction of the flow relative to 

the gradient direction [114]; however, this observation goes against well-established theory that 

peak compression should not occur on gradient stationary phases [111]. In this particular study, 

only one commercial column was modified, the results from the elemental characterization of the 

gradient profile were inconclusive, and no comparisons made to results obtained on uniformly 

modified columns. A peak parking method did give some indirect evidence of the presence of a 

gradient. Clearly, more in-depth studies with more replicates and controls need to be performed to 

confirm or deny the presence of this phenomenon and the usefulness of continuous gradient 

stationary phases in the field of chromatography. 

We have recently reported a successful creation of continuous amine gradient  on a 

monolithic silica column via controlled rate infusion (CRI) [109]. The amine gradient columns 

were carefully evaluated for their ability to alter analyte retention relative to a uniformly modified 

stationary phase. The presence of the amine and the gradient of its surface concentration changes 

along the length of the column were characterized using X-ray photoelectron spectroscopy (XPS). 

To demonstrate the application of these gradient stationary phases in the field of chromatography, 
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the stability, efficiency, and reproducibility associated with the separation of both nucleobases and 

weak acid/weak bases were established. Direct comparisons were made between the unmodified, 

uniformly modified, and gradient stationary phases, and the results demonstrate the promise that 

continuous gradient stationary phases have in separation science. 

 

6.5.1. Experimental LC conditions 

 

 

The synthesized monolithic column assembly was attached to an LC (HP1090, Hewlett 

Packard) via a reducing union. The analysis was done on three different types of columns: 

unmodified (bare silica columns), uniformly modified amine columns and amine gradient 

columns. Because the stationary phases consisted of silanol and amine functionalities, hydrophilic 

interaction liquid chromatography (HILIC) [122–126] was performed using 90 % ACN and 10 % 

aqueous buffer. For the separation of pyrimidine nucleobases consisting of uracil (40 µg/mL) and 

cytosine (200 µg/mL), an ammonium acetate buffer (10 mM; pH 3.64) was used. For the weak 

acid/weak base mixture consisting of benzoic acid, 3-aminobenzoic acid, 4-aminophenol and 2-

aminopyridine (each at 20 μg/ mL), the buffer was ammonium formate (20 mM; pH 3.08). The 

separation of the nucleobases was carried out in duplicate at flow rates from 0.1 mL/ min to 1 mL/ 

min to produce van Deemter curves. The separation of the weak acid/weak base mixture was 

performed in duplicate at a constant flow rate of 0.5 mL/min. The dead volume was determined 

for each individual column using toluene as a marker. The flow rate used for dead volume 

determination was 0.5 mL/ min. 
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6.5.2. LC data analysis 

 

 

Calculations of retention time and peak widths were performed using MATLAB version 

R2013a (Mathworks, Inc., Natick, MA). Data files were converted from Agilent .D files to 

MATLAB .mat files using ACD/Lab Spectrus Processor (Advanced Chemical Development, Inc., 

Toronto, Canada).  The individual analyte signals were separated from each other and from the 

background [127] using an in-house program to perform multivariate-curve resolution-alternating 

least squares (MCR-ALS). Briefly, MCR-ALS extracts pure contributions from the instrumental 

data (i.e., the pure chromatographic and spectral profiles of each analyte and the background) by 

taking advantage of the full spectral dimension in the data. For more information the reader is 

referred to a book chapter by Rutan, de Juan, and Tauler [128] and publications by Tauler et al. 

[129,130]. A MCR-ALS program with graphical user-friendly interface developed by Tauler et al. 

is available for download [131]. The pure chromatographic profiles of the analytes were then used 

for the calculation of retention time and peak width.  

Since the obtained chromatographic peaks were not Gaussian (i.e., they were asymmetric), 

the retention times were calculated using statistical moments calculation [132]. The first moments 

were used for determination of the retention factors, after correction of the extra column volume, 

Vext. The precision of second and higher moments suffer from inconsistent determination of 

baseline. Therefore, the efficiency of each monolithic column (Nsys) was determined using the 

Foley-Dorsey equation, which is based on the properties of a well-accepted peak model known as 

the exponentially modified Gaussian (EMG) function [133] 

2

1041.7( / )

/ 1.25

R
SYS
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N
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


                                                  (6.11)  
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where w10 is the width at 10 % of the maximum, tR is the retention time derived from the peak 

maximum, and B/A is the asymmetry factor at 10 % of peak maximum, where B>A.  Finally, van 

Deemter plots were generated by plotting the plate height (H = L/NSYS) versus linear velocity (um).  

 

6.5.3. LC characterization 

 

 

Two different mixtures were used to evaluate the chromatographic performance of the three 

different types of columns used in this work. One set of mixtures contained our first test 

compounds, uracil and cytosine, and the second set consisted of a mixture of four weak acids and 

bases, shown in Figure 6.7.  Collectively, these mixtures will establish the stability, degree of  

 

 

Figure 6.7. Structures and pKa’s of analyzed compounds [134] 
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retention, column efficiency, and reproducibility of an amine gradient stationary phase for LC and 

provide a proof-of-principle demonstration of its promise in controlling analyte retention. 

The first test mixture consisted of uracil and cytosine. HILIC conditions were employed 

for their separation due to the polar nature of these compounds, which show retention with both 

amine and silica functionalities under HILIC conditions. In this study, the mobile phase was 

acetonitrile: ammonium acetate buffer (10 mM; pH 3.64) (90:10 v/v). Chromatographic 

separations were carried out on multiple columns of each type: unmodified, uniformly modified 

and amine gradient. The reproducibility of column preparation was tested by carrying out 

separation at different times and on different days. A representative set of chromatograms for these 

two compounds on the three different monolithic columns is shown in Figure 6.8. 

 

Figure 6.8.  Stacked chromatograms of uracil (red) and cytosine (blue) standards on (A) unmodified, (B) 

gradient, and (C) uniformly modified monolithic columns. The chromatograms are normalized to represent 

a 5.8 cm column in each case. 
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Figure 6.8 A, B and C shows the chromatograms on unmodified, amine gradient and 

uniform columns, respectively. All three chromatograms for the three different columns showed 

the same pattern for elution of uracil and cytosine, which is in agreement with previous work using 

HILIC on commercial columns [135]. Both uracil and cytosine are weakly retained on these 

columns, and both compounds show distorted peak shapes, particularly fronting. The most likely 

explanation for this is small imperfections in the cladding that may result in non-uniform flow 

paths for the mobile phase and/or possible microscopic cracking of the monolithic bed. 

From the chromatograms, retention times were measured and the retention factor for each 

of the nucleobases calculated.  The chromatographic runs were undertaken on 11 amine gradient 

columns and 5 each of the unmodified and uniform monoliths. These values are shown in Figure 

6.9. Standard deviations in the retention factors ranged from 0.06 to 0.16 for uracil and cytosine. 

No significant differences in retention on the three different columns were noted.  The higher 

retention of cytosine on both the amine and silica phases as compared to uracil is consistent with 

literature reports using commercial columns [135,136].  

 

Figure 6.9. Retention factors for uracil and cytosine on unmodified (n = 5), gradient (n = 11), and uniformly 

modified monolithic columns (n = 5). 
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The efficiency of each column type (unmodified, uniformly amine modified and amine 

gradient monoliths) was determined using the uracil/cytosine mixture at a flow rate range from 0.1 

mL/min to 1.0 mL/min (0.1 mL/min increments) in replicates. The retention time of each peak was 

calculated using the first central moment and the plate number (NSYS) was calculated using the 

Foley-Dorsey equation (equation 6.12). The plate number was then converted to plate height, H, 

using each column length. The van Deemter plots for each column type were created by plotting 

H versus linear velocity, um, as shown in Figure 6. 

Overall, the van Deemter plots are flat and have no significant differences between plate 

heights over the entire range of linear velocities studied or between the gradient, uniform, and 

unmodified monolithic columns. The relatively flat shapes of the van Deemter plots are reasonable 

based on previous literature reports [137,138]. The flatter van Deemter curves are thought to be 

due to reduced C term mass transfer, which may result from the presence of more through pores 

in monolithic columns that reduces the amount of stagnant mobile phase [139].  

To evaluate whether peak compression influences the separation, we analyzed 3-aminobenzoic 

acid on an amine gradient column, reversing the column between runs. If peak compression occurs 

as a result of the stationary phase gradient, it is expected that the retention time and peak widths 

would show a difference when flow occurs from high amine to low amine concentration versus 

low to high amine concentration. No significant change in peak width was observed (p = 0.2). 

Differences in retention times (calculated by statistical moments) were found to be insignificant at 

a confidence level of 0.01, which was chosen due to the imperfect peak shapes as discussed in a 

previous section. Using replicates within and between different columns, the only observed 

differences can be attributed to errors introduced by the column fittings (data not shown). This 

agrees with Blumberg’s assertion, based on Giddings’ theory, that peak compression does not occur 



 
 

97 
 

in stationary phase gradients [111]; however, more thorough studies need to be performed in order 

to definitively determine the absence or presence of peak compression on stationary phase 

gradients.  

 

 

 

Figure 6.10. Van Deemter plots of uracil (blue circles) and cytosine (red squares) on unmodified, gradient 

and uniformly modified monolithic columns. 

 

Given no significant difference in retention was noted for the uracil/cytosine mixture, a 

second mixture was studied. This mixture consists of four acids and bases, Figure 6.7 B, which is 

the same mixture that was used to demonstrate the advantages of a gradient amine stationary phase 

for planar chromatography in previous work [95]. In that work, on TLC plates ABA and BA 
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showed the strongest retention while 2-APy was least retained. The compound that was most 

sensitive to the modification of the TLC plate was 2-APy, where it was most retained on the 

unmodified plate.  Complete separation was only achieved when the mixture was spotted on the 

low amine end of the gradient plate [95]. Figure 6.11 shows the stacked MCR-ALS resolved 

chromatograms of this mixture on unmodified, uniformly modified, and gradient monolithic 

columns. The time axis for uniform amine chromatogram was normalized to represent a 5.8 cm 

column for direct comparison to the other chromatograms. The mobile phase used was 

acetonitrile:ammonium formate buffer (20 mM; pH 3.08) 90:10 v/v. 

 

Figure 6.11. Stacked chromatograms resolved by MCR-ALS of 3-ABA (red), BA (black), 2-APy (blue) 

and 4-AP (green), on unmodified, gradient, and uniformly modified monolithic columns. The 

chromatograms are scaled to represent a 5.8 cm column in each case. 
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The chromatogram from the unmodified monolithic column in Figure 6.11 A shows two well 

separated peaks, with three of the four compounds (BA, 3-ABA and 4-AP) co-eluting. The most 

basic compound in this mixture, 2-APy, is partially retained due to interactions with the slightly 

acidic silanol groups. For the amine modified monolithic columns, Figure 6.11 B and C, however, 

the more acidic compounds (BA, 3-ABA) are retained presumably through hydrogen bonding 

interactions between the carboxyl and amine groups. Separation takes place between BA and 3-

ABA while 4-AP and 2-APy co-elute.  These results are consistent with that observed for TLC 

whereby 4-AP and 2-APy were not strongly retained on the amine modified stationary phases 

while BA and 3-ABA were. What is particularly noteworthy is that the retention of BA and 3-

ABA, in particular, is different for the uniformly modified vs. the gradient stationary phase. The 

acids exhibit greater retention on the uniformly modified column compared to that on the gradient 

column, consistent with the greater amount of amine on its surface. On the unmodified monolithic 

columns, neither compound was retained. Both BA and 3-ABA have acidic functionalities that can 

interact with the amine groups on the stationary phase. The small differences in retention between 

these two compounds on the gradient vs. uniformly modified monolith are attributed to the amine 

group on ABA, which is not present in BA. It is possible that the basic amine group in ABA 

interacts with the acidic silanol groups resulting in slightly greater retention. The retention factors 

for these data are shown in Figure 6.12. The chromatographic studies were done for 10 amine 

gradient, 5 unmodified and 3 uniformly modified columns. The standard deviations associated 

with the retention factors ranged from 0.2 to 0.5 for the acidic compounds on the amine modified 

columns, but were below 0.2 for the basic compounds and for all the compounds on the unmodified 

column. 
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Figure 6.12. Retention factor for BA, 3-ABA, 4-AP and 2-APy on unmodified (n=5), gradient (n=10), and 

uniform (n=3). 

 

6.5.4. Comparison of simulation to experimental data 

 

 

We further compared the experimental data obtained for the gradient amine column to our 

simulation retention prediction results. The XPS data were used to estimate the amine fraction on 

the gradient column and these fractions were then used to simulate retention on an amine gradient 

column. The average N1s area for the amine gradient columns were compared to that of fully 

functionalized amine and bare silica columns. The amine gradient columns were estimated to have 

65 % / 35 % of the characteristics of the fully functionalized amine column and bare silica column, 

respectively. This composition is denoted as 65 % amine and 35 % silica, from this point forward. 

The XPS data also indicated that the stationary phase gradient was linear along the length of the 

column, which dictated the shape of our simulated gradient. The retention factors of each 

compound were calculated from experimental retention factors measured on the bare silica and 

fully aminated monolithic columns using the following equation:  

grad silanol silanol amine aminek f k f k                                               (6.12) 

These values were then used to calculate local retention factor for each compound on a gradient 

column with overall 65 % amine functionality. The simulation predictions for solute retentions on 
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a 5 cm length column with a 65 % amine gradient were compared to experimental results, and the 

differences are shown in Table 6.4. 

As shown in Table 6.4, the simulation predictions were within the 95 % confidence interval 

of experimental retention data for most compounds. The simulation results fall outside of 95 % 

confidence intervals for 2-amino pyridine and cytosine. The simulated retention time for cytosine 

was slightly outside of the 95 % confidence interval; this result may be due to the fact all three 

types of columns (bare silica, fully aminated, and amine gradient) were found to provide cytosine 

with essentially the same retention. The greatest disagreement between experimental data and 

 

Table 6.4. Experimental and simulated retention data for weak acids separated under gradient stationary 

phase and isocratic mobile phase elution conditions* 

 Retention Time (min) Retention factor (k) 

Solute Experiment Simulation Experiment Simulation 

2-Amino pyridine 0.560 ± 0.030 0.758 0.655 ± 0.088 1.30 

4-Amino phenol 0.589 ± 0.035 0.611 0.742 ± 0.103 0.807 

Uracil 0.627 ± 0.028 0.610 0.854 ± 0.082 0.851 

Cytosine 0.899 ± 0.030 0.958 1.66 ± 0.09 1.91 

Benzoic acid 1.28 ± 0.06 1.25 2.77 ± 0.19 2.81 

3-Amino benzoic acid 1.50 ± 0.08 1.50 3.42 ± 0.22 3.56 
 

*The stationary phase gradient was estimated to be overall 65 % amine and 35 % silica. The mobile phase 

was 90 % acetonitrile mixed with acetate buffer (10 mM; pH 3.64) for uracil and cytosine; ammonium 

formate buffer (20 mM; pH 3.08) for weak acid/weak base mixture. The flow rate was 0.5 mL/min and 

the column length was 5 cm [110]. 95 % confidence intervals are shown.  

 

simulation prediction was found for 2-aminopyridine, which had significant retention on bare silica 

columns (slightly acidic silanol groups) and minimal retention on the aminated columns. The 

experimental retention results on gradient amine columns suggest possibility of electrostatic 

repulsion between amine functional groups on the column and 2-aminopyridine which inhibits it 

from interacting with the negatively charged silanol groups. A limitation of our simulation code in 

the present form is that it does not incorporate any possible neighboring ligand effects between the 
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different functionalities and the solutes, which would result in retention prediction errors. 

However, this limitation can also aid in discovery of synergistic effects which result from the use 

of gradients in chemical functionalities. Any large discrepancies between the simulation 

predictions and the experimental data would indicate the presence of these interactions. 

A resolution map as a function of percent amine functionality for the remaining compounds 

of mixture 2 (excluding 2-aminopyridine) is shown in Figure 6.13. As was observed in the 

experimental results, the best resolution was observed for the fully aminated column. Below 20 % 

amine concentration the resolution of all three compounds is not significantly different from zero. 

Despite the fact that a stationary phase gradient system did not show improved resolution in this 

case, these results demonstrate the feasibility of using stationary phase gradient simulations to 

predict the retention of compounds on lab-prepared gradient columns. Furthermore, this strategy 

can be used to aid in the design of future columns to ensure optimal separation conditions. 

 

 

Figure 6.13. Resolution of critical pair for gradient columns with varying composition of amine 

calculated at 10 % increment of amine concentration at 90:10 ACN:ammonium acetate buffer (10 mM; 

pH 3.64). 
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6.6. Conclusion 

 

 

 In previous chapters, a general purpose simulation code was developed based on Craig 

model of chromatography which enabled simulation of gradient and isocratic conditions with 

solvent mismatch [53]. Here, an extension to this program was successfully developed to include 

simulation of linear and non-linear stationary phase gradients. The simulation code was validated 

by comparing the retention time and peak width results to closed form theory developed by Gritti 

and Guiochon [111]. Simulation of three different shaped gradients (linear, step, and exponential) 

with same C18/phenyl composition resulted in identical chromatographic separations. The 

retention behavior of a solute depends on the total amount of each functional group it is exposed 

to and not the steepness or shape of the stationary phase gradient, in contrast to mobile phase 

gradients. Comparison of the chromatographic separation of ten amphetamines on eleven different 

C18/phenyl gradients, ranging from 0 % to 100 % C18 composition clearly showed the advantage 

of a mixed mode stationary phase using a stationary phase gradient to tune the selectivity of the 

chromatographic separation. While it was determined that the shape of the gradient did not affect 

the selectivity or efficiency of the gradient, the controlled rate infusion method is a simple means 

for achieving such a mixed mode stationary phase. 

The simulation code performance was tested through comparison of its retention prediction 

to experimental data of ten amphetamines on POPLC system consisting of C18 and phenyl 

functionalities. The retention time prediction errors for both isocratic and gradient elution were 

less than 5 % compared to the experimental data. The POPLC system produced fronting peaks 

which are attributed to introduction of additional void volume caused by difficult to control 

patented segmented PEEK connectors. Therefore, a greater difference was found for peak width 

prediction compared to experimental data. Despite these challenges with the POPLC system, our 
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simulation program displayed better retention prediction compared to the POPLC optimization 

software. Additionally, our simulator has the ability to simulate combined stationary phase and 

mobile phase gradients. 

The simulator performance was also tested through comparison of its retention prediction 

to experimental data for six weak acids and bases on a gradient column with approximately 65 % 

coverage relative to a maximally aminated monolithic column and the retention of four of the six 

compounds were found to be in good agreement. In the case of 2-aminopyridine, the gradient 

experimental data suggested that the presence of electrostatic interactions between the protonated 

amine functionality and the analyte prevented access to the silanol groups. Any deviations between 

the results from the simulations and experimental data serve as evidence for neighboring ligand 

effects resulting from the use of a stationary phase gradient. Our group, in collaboration with the 

Collinson group [110] is currently investigating possible neighboring ligand effects of different 

functionalities on multi-component stationary phase gradient columns. 
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Chapter 7: Summary and Conclusions 

 

 

 

 

As described in Chapter 1, a general purpose simulator was developed and improved with 

four goals in mind: (1) to support conventional LC method development with more flexibility and 

accuracy than currently available simulators; (2) to provide a better understanding of current 

problems faced in 2D-LC method development; (3) to automate and speed up simulation process; 

and (4) to support development of stationary phase gradient technology by providing a better 

understanding of how to tailor different separation selectivity. Chapters 4-6 have shown work 

completed towards achieving these goals. 

 

7.1. Reflections on Chapter 4 

 

 

The first and second goals were addressed in Chapter 4. A general purpose simulator was 

developed based on the Craig distribution model. According to Czok and Guiochon [32], the 

continuous chromatographic process can be discretized into distance and time segments, Δz and 

Δt, respectively. The retention factors for simulation are calculated at every position and time using 

linear (LSS) or non-linear (Neue-Kuss) solvent strength models. This allows for monitoring of 

mass propagation along the column. The simulation program was validated by comparison of the 

simulation results for five amphetamines under gradient elution to LSS theory calculations. The 

retention times and peak widths had good agreement with greatest difference of -0.019 % and -

0.017 %, respectively. Two sets of training experiments were performed. The alkylbenzenes
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were separated under isocratic conditions to extract Neue-Kuss model parameters for simulation. 

The amphetamines were separated under gradient conditions and LSS model parameters were 

extracted for simulation. It was found that training set for parameter extraction collected under 

gradient elution is ill-conditioned (i.e., too many possible solutions) for Neue-Kuss model. The 

simulation results for alkylbenzenes and amphetamines under gradient elution were compared to 

experimental data. The retention time and peak width values were in reasonable agreement. 

The simulation program capabilities were expanded by incorporation of a variety of 

different chromatographic conditions such as column temperature, large injection volume with 

sample solvent composition different from initial mobile phase condition, and the use of 

experimentally obtained injection profiles. These improvements were helpful in providing a better 

understanding of the effects of common separation conditions used in 2D-LC. It was found that 

the peak distortion and broadening resulting from large volume injection can be minimized when 

using a weaker sample solvent compared to the initial mobile phase condition. A weaker sample 

solvent encourages peak focusing and can provide increased sensitivity and resolution. This 

finding confirms current belief in 2D-LC method development. 

The use of the Craig model involves calculating the retention factor at every position and 

time during the separation. Therefore, the simulation program not only yields retention time and 

peak width prediction, but also allows for monitoring of the analyte band and mobile phase 

composition during the chromatographic separation. This visualization ability offers better 

understanding of the chromatographic processes taking place inside the column, which is 

especially helpful for unusual separation conditions mentioned in Chapter 4. Although this is 

undoubtedly very powerful, the price we pay for obtaining this additional information is 
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computation time. A mathematical convolution approach to improve separation speed was 

explored in Chapter 5. 

 

7.2. Reflections on Chapter 5 

 

 

 The third goal to accelerate the simulation program was addressed in Chapter 5. Due to the 

necessity of calculating the retention factor at each position and time, our simulation program can 

be slow. The convolution approach was applied to reduce the length of the column required for 

simulation. It was found that the analyte band stops developing its shape when the sample solvent 

band surpasses the analyte band. This distance was approximated using a set of closed form 

equations. The full simulation was performed for the first part of the column and the resulting peak 

was convolved with a known closed form solution for the remainder of the column length. Since 

the simulation program was validated and extensively evaluated in previous studies described in 

Chapter 4, the convolution prediction results were compared to full simulation results. The 

retention times and peak widths for full simulation vs. convolution were highly correlated. Since 

we made automation of the convolution approach possible by approximating simulation column 

length and time with closed form calculations, the correlation was worse when using experimental 

injection profile shapes. However, the retention time agreement was still within 5.5 %. 

 A comparison of the average computation time for each solute resulted in speed increase 

factors ranging from 2.2 to 13. Overall computation time for 854 simulations using convolution 

approach was almost eight times faster compared to performing full simulations. The decrease in 

computation time achieved by the convolution approach can provide a means to exhaustively 

search for the most optimal separation condition in a reasonable amount of time. 
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7.3. Reflections on Chapter 6 

 

 

 The fourth and final goal was addressed in Chapter 6. The simulation program was 

extended to simulate a non-constant stationary phase (i.e., stationary phase gradient). The purpose 

of this development was to assist in the development of continuous stationary phase gradient 

columns by providing a better understanding of separation selectivity changes due to variation in 

the density of functional groups along the column length. The simulation program was evaluated 

using commercially available discontinuous stationary phase gradient known as POPLC. The 

Neue-Kuss simulation parameters were extracted for each column using isocratic training set data. 

It was found that the parameters S1 and S2 differed significantly for the two columns. This was 

believed to be due to the difference in stationary phase volumes. An approximate stationary phase 

volume ratio was determined (Vphen/VC18 = 1.4) and common S1 and S2 values were determined by 

correcting the C18 column retention times with this ratio. The comparison of our simulation results 

for isocratic and mobile phase gradient conditions resulted in retention time differences that were 

no greater than 4.5 %. This performance was superior to isocratic retention prediction results 

obtained from the optimization software included in POPLC kit which resulted in retention time 

differences of up to 11.2 %. Although SOSLC was performed for mobile phase gradient elution 

previously [116], the current POPLC optimization software does not provide this feature. Despite 

the good agreement of simulation retention times to experimental data, the severe fronting peak 

shapes in POPLC system cannot be simulated. This fronting is believed to be due to the extra 

column volume resulting from imperfect connections of the POPLC column assembly. The 

patented PEEK cartridge segments produced inconsistent retention data with every disassembly 

and reassembly. Because these discontinuous segmented stationary phase gradient systems have 
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these above-mentioned disadvantages, we have collaborated with the Collinson lab to develop 

continuous stationary phase gradients. 

The Collinson lab was successful at reproducibly creating stable amine gradient columns 

using their controlled rate infusion method. These columns clearly showed a change in separation 

selectivity compared to bare silica and fully aminated columns. The gradient shape and 

composition was determined using XPS and was found to be approximately 65 % amine/ 35 % 

silica on average. Using this stationary phase composition, we were able to simulate the retention 

of six probe solutes. The simulation results were within the 95 % confidence interval of the 

experimental data for four out of six compounds studied. We believe that the disagreement 

displayed between simulation and experiments indicate possible neighboring ligand effect due to 

two functionalities located in close proximity to each other. 

 

7.4. Future work 

 

 

It is undeniable that the simulation program developed in this work has the potential to 

greatly impact the method development in LC. The simulation program is relatively simple to use 

following instructions provided in Appendix D of this dissertation. However, it may not be very 

intuitive for inexperienced scientists such as students. Therefore, future work should include the 

development of graphic user interface (GUI), which will display inputs and outputs in much user 

friendly way.  

A proof-of-concept study was presented in developing continuous stationary phase 

gradient for change in separation selectivity [110]. Currently our lab, in collaboration with the 

Collinson lab, are working on the development of continuous stationary phase gradients on packed 

columns using CRI in a constructive way and a destructive way using acid to cleave the functional 
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groups. Both studies have shown promising results, and we believe our simulation program can 

help in determining possible neighboring ligand effects on these gradient columns. 

Although there are several different types of liquid chromatography simulators available, 

we believe that our simulator provides more flexibility with capability to simulate 

chromatographic conditions current simulators cannot handle. The Stoll lab is currently working 

on incorporating the effect of injection of a much weaker solvent prior to sample injection. This is 

an extension of the effect of dilution study presented in Chapter 4. It is also desirable to obtain and 

incorporate distance and time dependent temperature profiles. This will allow us to simulate the 

effect of temperature-assisted on-column solute focusing [20–22], where temperature at the head 

of the column is controlled to achieve lower temperature upon sample injection to focus the analyte 

band. It will also provide visualization of the temperature effect on the analyte band as it travels 

through sections of the column with different temperatures. We believe that the possibilities for 

expansion of the simulation program are virtually limitless and its ability to calculate retention 

factor at every position and time makes modeling relatively easy to explore a variety of different 

separation conditions faced by chromatographers. 
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APPENDIX A 

 

 

 

 

Derivation of Craig model for time and distant dependent retention factors 

 

 

According to Blumberg [141,142], the change in total mass of an analyte in a non-uniform 

medium (i.e., a gradient) along the time domain can be expressed as the following differential 

equation with the analyte velocity and its dispersion both as functions of position 

   
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m
Dm u m

t z z

  
 

  
                                                     (A1) 

where m is the mass of analyte per unit length, t is time, z is distance, D is diffusivity and ua is the 

analyte velocity. With the assumption of no diffusion, the equation is simplified to 
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 
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u m
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                                                              (A2) 

where ua = um/(1+k). The mobile phase velocity, um, is assumed to be constant and is not included 

in the differential. 
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Because the retention factor remains in the differential, the effect of the change in analyte velocity 

along the column length is captured in this approach. The two differential terms are substituted 

with the following finite difference equations 
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Solving for mz,t  by letting um = Δz/Δt (uniform mobile phase velocity) and using retention factors 

specific for each time and position results in 
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This equation differs from that provided by Czok and Guiochon  
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    (A7) 

We believe this is because they did not account for the distance dependence of the analyte velocity 

in equation A2. While Czok and Guiochon’s formulation gave reasonable accuracy for peak 

retention times and widths, mass balance was not conserved with their formulation, and peak areas 

were incorrect, which caused us to investigate equation A7 in more detail, and to find the correct 

formulation, as represented by equation A6. Equation A6 gives accurate peak areas for all 

conditions tested by us to date. 

In the model used here, the time vector at z = L (from the time/space matrix) is taken as the 

time-based chromatogram, in the sense that each element of this vector at a given z,t coordinate 

contains the mass of analyte that passes to the detector. However, from a physical point of view, 

the only analyte mass that can pass to the detector (md) is the mass in the mobile phase (mm) – this 

is inconsistent with the fact that the model does not explicitly differentiate between the mass in the 

mobile and stationary phases (i.e., see the two components on the right-hand side of equation A6). 

Thus, the fraction of mass that is actually in the mobile phase at any time point in the 

chromatogram, mL,t, must be calculated to produce a chromatogram with accurate peak heights and 

areas. These ideas are expressed by equation A8, where we recognize that the total mass at any 
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mL,t is the sum of masses in the mobile (mm) and stationary (ms) phases (and that md = mm), and 

recognize that ms is the product of mm and the retention factor at elution (ke).  

, (1 )     L t m s d e d d em m m m k m m k                                  (A8) 
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APPENDIX B 

 

 

 

 

Derivation of the closed form expressions for sample solvent mismatch conditions 

 

 

B.1. Retention time calculation 

 

 

The retention prediction for linear gradient mobile phase condition under ideal injection 

conditions using closed form expressions has been shown previously in section 3.3. This can be 

extended to non-ideal injection conditions where the sample solvent and initial mobile phase 

composition are mismatched. In the presence of solvent mismatch, there are three contributions to 

retention: (1) the time it takes for half of the injection band to be loaded on to the column; (2) the 

elution time for the analyte band while it is eluting in the sample solvent; and (3) the elution time 

for the analyte band under linear mobile phase gradient conditions.  

,1 ,2 ,3R R R Rt t t t                                                           (B1) 

A derivation for each contribution is shown in detail below, and the different zone widths are 

illustrated in Figure B.1.  

First, the injection time is given by: 
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V
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F
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and the sample solvent injection band width is given by: 
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where um is the mobile phase velocity. 

The first contribution to the retention time, tR1, is equal to half the injection time or the time 

it takes for the midpoint of the band to reach the head of the column. 
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The width of the analyte band after injection has been completed (Figure B.1A) is calculated as 
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where uss is the velocity of the analyte in the sample solvent defined as 
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The midpoint of the analyte band is positioned at half way point 
1,

2

fz
. 

Next, the time it takes for the midpoint of the analyte band to travel from 
1,

2

fz
 to the 

position at which it lines up with the tail end of the sample solvent is calculated (Figure B.1B): 

1,

2,
2,

1
2

f

m
m

m ss

z
zz

t
u u



                                                           (B7) 

Solving for z2,m from equation B7 yields 
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Figure B.1. Three contributions to retention: (A) injection; (B) elution from sample solvent; (C) elution in 

gradient. Sample solvent band (blue), analyte band (red), and mobile phase gradient (green). 

 

The second contribution, the elution time of analyte band while in the sample solvent, is defined 

as 

,2 ,2 (1 )R M sst t k                                                              (B9) 

where tM,2 is the fractional tM corresponding to the distance z2,m 
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The third and final component contributing to retention is due toelution in the mobile phase 

gradient and it can be calculated from Neue-Kuss theory [64]. The mobile phase composition at 

elution is calculated as (equation 3.21) 
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where kw, S1 and S2 are parameters obtained from fitting retention time data to NK model (equation 

3.19) 
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The analogous expressions for LSS theory can be used instead of equations B11 and B12 if desired. 

The retention time for the gradient elution is calculated from ϕe, the initial organic composition of 

the gradient, ϕo, the gradient time, tG, the delay time, tD, and the change in mobile phase 

composition over tG, Δϕ, as [64] 
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where tM,grad is the remainder of the void time. 
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B.2. Peak width calculation 

 

 

The peak width calculation is based on previous expression of σ2 as a sum of variances 

from the injection band width (i.e., extra-column effects) and the isocratic parts of the separation 

[63]: 
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where Δσ is the variance due to the finite injection bandwidth, as well as the band broadening 

contribution while the analyte elutes within the sample solvent (σsample) and within the dwell time 

(σD) and σgrad is the gradient peak width. 

In order to calculate Δσ, we must consider the total band width before the analytes 

experiences the gradient: 

2 2 2 2

b inject sample D                                                      (B16) 

where σinject, σsample, and σD are the bandwidths of the injection itself, the band broadening during 

elution while in the sample solvent and the band broadening during the elution while in the dwell 

volume, respectively. The σinject can be estimated as [67]: 

 

 
1,1

1 12

o ss f

inject

ss o

k k z

k k






                                                    (B17) 

The σsample and σD contributions are estimated as 
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where zD is equal to 
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where uo is equal to the analyte velocity in the initial mobile phase composition and tM,D is given 

as 
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The Δσ is calculated as [63]: 
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or equivalently, 
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where ωo is the analyte immobility in the initial mobile phase composition (equation 3.13), 
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μR is the analyte mobility at elution (equation 3.14), 
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and b† is the dimensionless slope of the mobile phase gradient, analogous to the dimensionless 

slope as defined by Snyder for LSS theory [45], which is based on S (linear slope of ln k vs. ϕ plot). 

However, due to the curved nature of Neue-Kuss ln k vs. ϕ plot, we approximate the slope at elution 

by taking the derivative of ln k as a function of ϕ, and evaluate it at ϕe. This slope at elution is 

therefore given as: 
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Then b† can be calculated as 
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Finally, σgrad is calculated as 
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where ke is the retention factor at elution and tM,grad only, zgrad and G are defined as 
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APPENDIX C 

 

 All simulation codes presented here are located in Virginia Commonwealth University’s 

network R drive (R:\CHEM\Rutan_lab\Lena\Dissertation\Simulation package) and are reproduced 

here. 

 

 

C.1. Simulation parameter fitting 

The functions isotimefit_lss.m, isotimefit_nk.m, and gradtimefit_lss.m are used for parameter 

fitting when using only one stationary phase functionality. The functions isotimefit_lss_cS.m and 

isotimefit_nk_cBa.m are used for parameter fitting for stationary phase gradient with two different 

functionalities. These functions force the mobile phase dependent parameters to be common 

between the two columns. 

isotimefit_lss.m 

function [ferr]=isotimefit_lss(param,tm,phi,tr_exp) 
S=param(1); 
kw=param(2); 
for n=1:size(tr_exp,1) 
    logk=log(kw)-S*phi(n); 
    k=exp(logk); 
    tr_est(n)=tm*(k+1); 
end 
ferr=tr_exp-tr_est'; 

isotimefit_nk.m 

function [ferr]=isotimefit_nk(param,tm,phi,tr_exp) 
B=param(1); 
a=param(2); 
kw=param(3); 
for n=1:size(tr_exp,1) 
    logk(n)=log(kw)+2*log(1+a*phi(n))-(B*phi(n))/(1+a*phi(n)); 
    k(n)=exp(logk(n)); 
    tr_est(n)=tm*(k(n)+1); 
end 
ferr=tr_exp-tr_est'; 

gradtimefit_lss.m 

function [ferr]=gradtimefit_lss(param,tD,tM,phiinit,delphi,tG,tR) 
S=param(1); 
kw=param(2); 
for n=1:size(tR,1) 
    logko=log(kw)-S*phiinit(n); 
    ko=exp(logko);
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    b=tM(n)*delphi(n)*S/tG(n); 
    tRest(n)=(tM(n)/b)*(log(ko*b*(1-tD/(tM(n)*ko))+1))+tM(n)+tD; 
endferr=tR-tRest' 

isotimefit_lss_cS.m 

function [ferr]=isotimefit_lss_cS(param,tm_stat1,phi_stat1,... 
    tr_exp_stat1,tm_stat2,phi_stat2,tr_exp_stat2) 
S=param(1); 
kw_stat1=param(2); 
kw_stat2=param(3); 

  
for n=1:size(tr_exp_stat1,1) 
    logk_stat1=log(kw_stat1)-S*phi_stat1(n); 
    k_stat1=exp(logk_stat1); 
    tr_est_phen(n)=tm_stat1*(k_stat1+1); 
end 
ferr=tr_exp_stat1-tr_est_phen'; 

  
for n=1:size(tr_exp_stat2,1) 
    logk_stat2=log(kw_stat2)-S*phi_stat2(n); 
    k_stat2=exp(logk_stat2); 
    tr_est_stat2(n)=tm_stat2*(k_stat2+1); 
end 
ferr=[ferr; tr_exp_stat2-tr_est_stat2']; 

isotimefit_nk_cBa.m 

function [ferr]=isotimefit_nk_cBa(param,tm_stat1,phi_stat1,... 
    tr_exp_stat1,tm_stat2,phi_stat2,tr_exp_stat2) 
B=param(1); 
a=param(2); 
kw_stat1=param(3); 
kw_stat2=param(4); 

  
for n=1:size(tr_exp_stat1,1) 
    logk_stat1=log(kw_stat1)+2*log(1+a*phi_stat1(n))... 
        -(B*phi_stat1(n))/(1+a*phi_stat1(n)); 
    k_stat1=exp(logk_stat1); 
    tr_est_stat1(n)=tm_stat1*(k_stat1+1); 
end 
ferr=tr_exp_stat1-tr_est_stat1'; 

  
for n=1:size(tr_exp_stat2,1) 
    logk_stat2=log(kw_stat2)+2*log(1+a*phi_stat2(n))... 
        -(B*phi_stat2(n))/(1+a*phi_stat2(n)); 
    k_stat2=exp(logk_stat2); 
    tr_est_stat2(n)=tm_stat2*(k_stat2+1); 
end 
ferr=[ferr; tr_exp_stat2-tr_est_stat2']; 

C.2. Setting up simulation parameters 

The functions model_LSS.m and model_NK.m allows for importing of preset simulation 

parameters or manual input of new simulation parameters for either solvent strength model. 
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model_LSS.m 

function [model] = model_LSS(S,kw,compound,column) 

  
if exist('compound') 

    
    x={'PE'; 'PPA'; 'PEA'; 'EP'; 'PSE'; 'Amp'; 'MDA'; 'Mamp'; 'Moxy'; 

'MDMA'}; 
    S  = [15.044 22.146 19.415 24.403 26.401 21.971 24.336 21.794 24.232 

23.165]; 
    if isequal(column,'C18') 
    kw = [0.95856 4.7170 4.7543 8.7610 10.973 12.114 18.606 16.801 21.888 

23.986]; 
    elseif isequal(column,'Phen') 
    kw = [0.73760 4.0337 3.9340 7.1185 8.5123 9.9955 13.423 13.252 17.222 

16.547]; 
    else 
    error('Error: column not found'); 
    end 

     
    ind=strcmp(x,compound); 
if ~ind 
    error('Error: compound not found'); 
else 
    field1='S'; 
    value1=S(ind); 

     
    field2='kw'; 
    value2=kw(ind); 

     
end 

  
else 
field1='S'; 
value1=S; 

  
field2='kw'; 
value2=kw; 
end 
model=struct(field1,value1,field2,value2); 
end 

model_NK.m 

function [model] = model_NK(kw,B,a,compound) 

  
if exist('compound') 

    
    x={'AB1'; 'AB2'; 'AB3'; 'AB4'; 'AB5'; 'DiEtF'; 'BzAlc'; 'PB1'; 'PB3'; 

'PB4'; 'AP2'; 'AP4'; 'AP5'}; 
    kw = [1011         5314        6203      8004      9262   22.91977   

37.33757    172.4315     3181.156     10829.18    139.6305    2046.733   

11014.85]; 
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    B  = [18.59       23.97       19.95     16.82     14.71      27.36      

20.96       26.95        33.53        34.57       18.64       22.73      

27.68]; 
    a  = [1.0438      1.2379      0.9237    0.6486    0.4897     2.772      

1.903       1.955        1.839        1.694       1.371       1.239      

1.354]; 

    
    ind=strcmp(x,compound); 
if ~ind 
    error('Error: compound not found'); 
else 

  
    field1='kw'; 
    value1=kw(ind); 

     

    field2='B'; 
    value2=B(ind); 

     
    field3='a'; 
    value3=a(ind); 
end 

     
else 
field1='kw'; 
value1=kw; 

  
field2='B'; 
value2=B; 

  
field3='a'; 
value3=a; 
end 
model=struct(field1,value1,field2,value2,field3,value3); 
end 

C.3. Setting up simulation conditions 

The functions conditions_iso.m and conditions_lin.m allows for setting up of all separation 

conditions for isocratic or mobile phase gradient elution, respectively. The conditions_lin.m 

function also constructs the analyte injection band profile and the mobile phase gradient profile. 

conditions_iso.m 

function [conditions] = conditions_iso(delz,Vm,F,L,time,Vinj,sample,phi) 

  
%distance segment (equal to H) 
field1='delz'; 
value1=delz; 

  
%void volume 
field2='Vm'; 
value2=Vm; 
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%flow rate 
field3='F'; 
value3=F; 

  
%void time 
field4='tM'; 
tM=Vm/F; 
value4=tM; 

  
%column length 
field5='L'; 
value5=L; 

  
%time segment 
field6='delt'; 
delt=delz/(L/tM)*60; %in seconds 
value6=delt; 

  
%total time for simulation 
field7='time'; 
value7=time; 

  
%injection volume (uL) 
field8='Vinj'; 
value8=Vinj; 

  
%number of injection slices (unitless) 
field9='slices'; 
slices=floor(Vinj/1000/Vm*(L/delz)); 
value9=slices; 

  
%sample solvent composition 
field10='sample'; 
value10=sample; 

  
%mobile phase composition 
field11='phi'; 
value11=phi; 

  
conditions=struct(field1,value1,field2,value2,field3,value3,... 
    field4,value4,field5,value5,field6,value6,field7,value7,... 
    field8,value8,field9,value9,field10,value10,field11,value11) 
end 

conditions_lin.m 

function [conditions] = conditions_lin(delz,Vm,F,L,time,Vloop,fill,... 
    inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tD,Mgrad) 

  
%distance segment (equal to H) 
field1='delz';  
value1=delz; 

  
%void volume 
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field2='Vm';  
value2=Vm; 

  
%flow rate 
field3='F';  
value3=F; 

  
%void time 
field4='tM';  
tM=Vm/F; 
value4=tM; 

  
%column length 
field5='L';  
value5=L; 

  
%time segment 
field6='delt';  
delt=delz/(L/tM)*60; %in seconds 
value6=delt; 

  
%total time for simulation 
field7='time';  
value7=time; 

  
%loop size (mL) 
field8='Vloop';  
value8=Vloop; 

  
%filling level (fraction) 
field9='fill';  
value9=fill; 

  
%injection volume 
field10='Vinj';  
Vinj=Vloop*fill; 
value10=Vinj; 

  
%number of injection slices (unitless) 
field11='slices';  
slices=floor(Vinj/1000/Vm*(L/delz)); 
value11=slices; 

  
%sample solvent composition 
field12='sample';  
value12=sample; 

  
%initial mobile phase composition 
field13='phiinit';  
value13=phiinit; 

  
%difference between sample and phiinit 
field14='delphisam';  
delphisam=sample-phiinit; 
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value14=delphisam; 

  
%difference between final and initial mobile phase composition 
field15='delphi';  
value15=delphi; 

  
%gradient time 
field16='tG'; 
value16=tG; 

  
%delay time 
field17='tD';  
value17=tD+(Vloop/1000)/F; 

  
%rectangular injection=0; experimental injection=1 
field18='inj_exptl';  
value18=inj_exptl; 

  
%experimental injection profile; only used when inj_exptl=1 
field19='inj_prof';  
value19=inj_prof; 

  
%volume axis for experimental injection profile 
field20='Vaxis';  
value20=Vaxis; 

  
field21='Mgrad'; %mobile phase gradient profile 
field22='C_injProf'; %analyte injection profile 

  
if exist ('Mgrad'); 
    value21=Mgrad; 
else 
tottime=time*60; %converts time to seconds 
nt=floor(tottime/delt); %an integer number of time steps, rounding down 
phifinal=phiinit+delphi; %final mobile phase solvent composition 
mGradient=ones(1,nt)*phifinal; %initalizes mobile phase gradient profile 
tgsteps=floor(tG*60/delt); %number of time steps occupied by the gradient 
ntd=tD*60/delt; %number of time steps occupied by the void time 
slope=delphi/tgsteps; %slope of the gradient 
old_slice_axis=Vaxis/Vm*(L/delz); %converts volume axis to slice axis 
scale1=0.00625/60*F; %determines volume/point in the gradient profile 
scale2=L/(delz*Vm); %determines plates/void volume of column 
ndelt_spacing=size(Vaxis,1)-1; %number of points needed for interpolation 
new_points=floor(ndelt_spacing*scale1*scale2); %converts number of points  
%for interpolation into number of plates 
new_slice_axis=[1:new_points]; %new slice axis 
C_injProf=zeros(1,nt); %preset C_injProf with zeros 
for m=1:nt 
    if m<=slices 
        if inj_exptl==0 
        mGradient(1,m)=sample; 
        else 
        mGradient(1,m)=phiinit; 
        end 
    elseif m>slices && m<=slices+ntd 
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        mGradient(1,m)=phiinit; 
    elseif m>slices+ntd && m<=tgsteps+slices+ntd 
        mGradient(1,m)=slope*(m-(slices+ntd))+phiinit; 
        end 
end 
    if inj_exptl==1 
    %interpolation (old to new slice axis) 
    inj_prof_new=interp1(old_slice_axis,inj_prof,new_slice_axis);   
    inj_prof_new(isnan(inj_prof_new))=0; 
    %sample solvent profile 
    Minj_prof=inj_prof_new*delphisam;  
    %mobile phase gradient profile 
    mGradient(1,1:new_points)=mGradient(1,1:new_points)+Minj_prof;      
    %normalizes injection profile of the analyte 
    Cinj_prof=inj_prof_new/sum(inj_prof_new); 
    %analyte injection profile 
    C_injProf(1,1:new_points)=C_injProf(1,1:new_points)+Cinj_prof;  
    else 
        inj=1; 
        analyte=inj/slices; 
        C_injProf(1,1:slices)=analyte; 
    end 
value21=mGradient; 
value22=C_injProf; 
end 

  
conditions=struct(field1,value1,field2,value2,field3,value3,... 
    field4,value4,field5,value5,field6,value6,field7,value7,... 
    field8,value8,field9,value9,field10,value10,field11,value11,... 
    field12,value12,field13,value13,field14,value14,field15,value15,... 
    field16,value16,field17,value17,field18,value18,field19,value19,... 
    field20,value20,field21,value21,field22,value22); 
end 

C.4. Isocratic simulation 

The functions chromsim_isoLSS.m and chromsim_isoNK.m calls on previously constructed 

options structures model using models_LSS.m or models_NK.m and isocratic condition from 

conditions_iso.m to simulate a chromatogram. 

chromsim_isoLSS.m 

function [Cfinal,Mfinal,kp]=chromsim_isoLSS(model_LSS,conditions_iso) 
kw=model_LSS.kw; 
S=model_LSS.S; 
sample=conditions_iso.sample; 
slices=conditions_iso.slices; 
phi=conditions_iso.phi; 
tottime=conditions_iso.time*60; 
totdist=conditions_iso.L; 
u=totdist/conditions_iso.tM; 
delt=conditions_iso.delz/u*60; 
D1=0.5; 
nz=round(totdist/conditions_iso.delz); 
nt=floor(tottime/delt); 
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C1=zeros(nz,1); 
C2=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
M1=ones(nz,1)*phi; 
M1(1,1)=-D1*sample+D1*phi+sample; 
M1(2,1)=-2*D1*phi+D1*sample+D1*phi+phi; 
pkprime(1:nz,1)=kw*exp(-S*M1(1:nz,1)); 
kp(1)=pkprime(nz,1); 
inj=1; 
analyte=inj/slices; 
C_injProf=zeros(1,nt); 
for m=1:slices 
    C_injProf(1,m)=analyte; 
end 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 
for m=1:nt 
    if m<=slices 
        M2(1,1)=sample; 
    else 
        M2(1,1)=phi; 
    end 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=C_injProf(1,m); 
    kprime(1,1)=kw*exp(-S*M2(1,1)); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    if D(1,1)>0.5 D(1,1)=0.5; end; 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
    for n=2:nz 
        kprime(n,1)=kw*exp(-S*M2(n,1)); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    kp(1,m)=kprime(nz,1); 
    pkprime=kprime; 
    C1=C2; 
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    M1=M2; 
    Cfinal(1,m)=C1(nz,1); 
    Mfinal(1,m)=M2(nz,1); 
end 
Cfinal=Cfinal./(kp+1); 

chromsim_isoNK.m 

function [Cfinal,Mfinal,kp]=chromsim_isoNK(model_NK,conditions_iso) 
kw=model_NK.kw; 
B=model_NK.B; 
a=model_NK.a; 
sample=conditions_iso.sample; 
slices=conditions_iso.slices; 
phi=conditions_iso.phi; 
tottime=conditions_iso.time*60; 
totdist=conditions_iso.L; 
delz=conditions_iso.delz; 
tM=conditions_iso.tM*60; 
u=totdist/tM; 
delt=delz/u; 
D1=1/2; 
nz=round(totdist/delz); 
nt=floor(tottime/delt); 
C1=zeros(nz,1); 
C2=zeros(nz,1); 
pkprime=zeros(nz,1); 
kprime=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
M1=ones(nz,1)*phi; 
M1(1,1)=-D1*sample+D1*phi+sample; 
M1(2,1)=-2*D1*phi+D1*sample+D1*phi+phi; 
if isscalar(kw) 
    kw=kw*ones(nz,1); 
end 
pkprime(1:nz,1)=kw.*(1+a*M1(1:nz,1)).^2.*exp(-B*M1(1:nz,1)... 
    ./(1+a*M1(1:nz,1))); 
kp(1)=pkprime(nz,1); 
inj=1; 
analyte=inj/slices; 
C_injProf=zeros(1,nt); 
for m=1:slices 
    C_injProf(1,m)=analyte; 
end 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 
for m=1:nt 
    if m<=slices 
        M2(1,1)=sample; 
    else 
        M2(1,1)=phi; 
    end 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
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    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=C_injProf(1,m); 
    kprime(1,1)=kw(1,1)*(1+a*M2(1,1))^2*exp(-B*M2(1,1)/(1+a*M2(1,1))); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
    for n=2:nz 
    kprime(n,1)=kw(n,1)*(1+a*M2(n,1))^2*exp(-B*M2(n,1)/(1+a*M2(n,1))); 
    P(n,1)=1/(pkprime(n-1,1)+1); 
    P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
    D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
    C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    kp(1,m)=kprime(nz,1); 
    pkprime=kprime; 
    C1=C2; 
    M1=M2; 
    Cfinal(1,m)=C1(nz,1); 
    Mfinal(1,m)=M2(1,1); 
end 
Cfinal=Cfinal./(kp+1); 

C.5. Mobile phase gradient simulation 

The functions chromsim_lin_LSS.m and chromsim_lin_NK.m calls on previously constructed 

options structures model using models_LSS.m or models_NK.m and mobile phase gradient 

condition from conditions_lin.m to simulate a chromatogram. Both programs allow for an option 

of saving snapshots. 

chromsim_lin_LSS.m 

function[Cfinal,Mfinal,kp,time,Frames]=chromsim_lin_LSS(cond_lin,... 
    model_LSS,movie_tstep) 

  
kw=model_LSS.kw; 
S=model_LSS.S; 
slices=cond_lin.slices; 
tottime=cond_lin.time*60; 
totdist=cond_lin.L; 
delz=cond_lin.delz; 
delt=cond_lin.delt; 
phiinit=cond_lin.phiinit; 
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delphi=cond_lin.delphi; 
phifinal=phiinit+delphi; 
sample=cond_lin.sample; 
D1=1/2; 
nz=round(totdist/cond_lin.delz); 
nt=floor(tottime/delt); 
Vm=cond_lin.Vm; 
F=cond_lin.F; 
Vloop=cond_lin.Vloop; 
fill=cond_lin.fill; 
inj_exptl=cond_lin.inj_exptl; 
inj_prof=cond_lin.inj_prof; 
Vaxis=cond_lin.Vaxis; 
C1=zeros(nz,1); 
C2=zeros(nz,1); 
pkprime=zeros(nz,1); 
kprime=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
inj=1; 
analyte=inj/slices; 
C_injProf=zeros(1,nt); 
for m=1:slices 
    C_injProf(1,m)=analyte; 
end 
if isscalar(kw) 
    kw=kw*ones(nz,1); 
end 
M1=ones(nz,1)*phiinit; 
M1(1,1)=-D1*sample+D1*phiinit+sample; 
M1(2,1)=-2*D1*phiinit+D1*sample+D1*phiinit+phiinit; 
pkprime(1:nz,1)=kw.*exp(-S*M1(1:nz,1)); 
kp(1)=pkprime(nz,1); 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 

  
%establish movie time step 
if exist('movie_tstep') 
    mov=1; 
figure('units','inches','position',[1 1 8 6]); 
frvec=[1:movie_tstep:nt]; 
j=1; 
else 
    mov=0; 
end 

  
m=1; 
while m<=nt %time loop 
%call upon established mobile phase gradient profile 
M2(1,1)=cond_lin.Mgrad(1,m); 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
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    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=C_injProf(1,m); 
    kprime(1,1)=kw(1,1)*exp(-S*M2(1,1)); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
    for n=2:nz 
        kprime(n,1)=kw(n,1).*exp(-S*M2(n,1)); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    %k at elution is kprime at z=L 
    kp(1,m)=kprime(nz,1); 
    %reset previous time kprime equal to current kprime 
    pkprime=kprime; 
    %reset previous time analyte mass equal to current analyte mass 
    C1=C2; 
    %reset previous time mobile phase composition equal to  
    %current mobile phase composition 
    M1=M2; 
    %final chromatogram equals mass at the end of the column 
    Cfinal(1,m)=C2(nz,1); 
    %final mobile phase profile equals mass at the end of the column 
    Mfinal(1,m)=M2(nz,1);  
%continue simulation if not returned to baseline    
if m==nt 
    if Cfinal(1,m)>1e-10 
        time=(tottime+5)/60; 
        cond_lin=conditions_linn2(delz,Vm,F,L,time,Vloop,fill,... 
            inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
        nt=floor(time*60/delt); 
        disp('Not long enough simulation time, more time needed.') 
    end 
end 
%get frames for movie 
if mov==1 && ismember(m,frvec) 
zaxis=delz:delz:totdist; 
    subplot(2,1,1); plot(zaxis,M2,'LineWidth',2); 
    if phifinal==phiinit 
        phiflim=phiinit+0.1; 
    else 
        phiflim=phifinal; 
    end 
    set(gca, 'XLim',[0 L]); 
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    set(gca,'YLim',[sample phiflim]); 
    title(sprintf('time = %0.4f sec',delt*m)) 
    xlabel('Distance (cm)') 
    ylabel('\phi') 
    set(gca,'fontsize',18); 
    subplot(2,1,2); plot(zaxis,C2,'r','LineWidth',2); 
    set(gca,'YLim',[0 3*max(cond_lin.C_injProf)]); 
    xlabel('Distance (cm)') 
    ylabel('Analyte mass') 
    set(gca,'fontsize',18); 
    Frames(j)=getframe(gcf); 
    j=j+1; 
    elseif mov==0 
    Frames=struct([]); 
end 
    m=m+1; 
end 
Cfinal=Cfinal./(kp+1); %area correction; divide Cfinal by (k at elution+1) 

chromsim_lin_NK.m 

function[Cfinal,Mfinal,kp,time,Frames]=chromsim_lin_NK(model_NK,... 
    cond_lin,movie_tstep) 

  
kw=model_NK.kw; 
a=model_NK.a; 
B=model_NK.B; 
phiinit=cond_lin.phiinit; 
delphi=cond_lin.delphi; 
phifinal=phiinit+delphi; 
time=cond_lin.time; 
tottime=time*60; 
L=cond_lin.L; 
totdist=L; 
delz=cond_lin.delz; 
delt=cond_lin.delt; 
Vm=cond_lin.Vm; 
F=cond_lin.F; 
Vloop=cond_lin.Vloop; 
fill=cond_lin.fill; 
inj_exptl=cond_lin.inj_exptl; 
inj_prof=cond_lin.inj_prof; 
Vaxis=cond_lin.Vaxis; 
sample=cond_lin.sample; 
D1=1/2; 
nz=floor(totdist/delz); 
nt=floor(tottime/delt); 
phifinal=phiinit+delphi; 
tG=cond_lin.tG; 
tDm=cond_lin.tD-(Vloop/1000)/F; 
C1=zeros(nz,1); 
C2=zeros(nz,1); 
pkprime=zeros(nz,1); 
kprime=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
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Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
if isscalar(kw); 
    kw=kw*ones(nz,1); 
end 
M1=ones(nz,1)*cond_lin.phiinit; 
M1(1,1)=-D1*cond_lin.sample+D1*cond_lin.phiinit+cond_lin.sample; 
M1(2,1)=-

2*D1*cond_lin.phiinit+D1*cond_lin.sample+D1*cond_lin.phiinit+cond_lin.phiinit

; 
pkprime(1:nz,1)=kw.*(1+a*M1(1:nz,1)).^2.*exp(-

B*M1(1:nz,1)./(1+a*M1(1:nz,1))); 
kp(1)=pkprime(nz,1); 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 

  
%establish movie time step 
if exist('movie_tstep') 
    movie_tstep=floor(movie_tstep); 
    mov=1; 
figure('units','inches','position',[1 1 8 6]); 
frvec=[1:movie_tstep:nt]; 
j=1; 
else 
    mov=0; 
end 

  
m=1; 
while m<=nt %establish movie time step 
%call upon established mobile phase gradient profile 
    M2(1,1)=cond_lin.Mgrad(1,m); 
    %mobile phase compsition for every distance point with dispersion 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=cond_lin.C_injProf(1,m); 
    kprime(1,1)=kw(1,1)*(1+a*M2(1,1))^2*exp(-B*M2(1,1)/(1+a*M2(1,1))); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
    %analyte mass for every distance point with dispersion 
    for n=2:nz 
        kprime(n,1)=kw(n,1)*(1+a*M2(n,1))^2*exp(-B*M2(n,1)/(1+a*M2(n,1))); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
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        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 

  
     %k at elution is kprime at z=L 
    kp(1,m)=kprime(nz,1); 
    %reset previous time kprime equal to current kprime 
    pkprime=kprime; 
    %reset previous time analyte mass equal to current analyte mass 
    C1=C2; 
    %reset previous time mobile phase composition equal to  
    %current mobile phase composition 
    M1=M2; 
    %final chromatogram equals mass at the end of the column 
    Cfinal(1,m)=C2(nz,1); 
    %final mobile phase profile equals mass at the end of the column 
    Mfinal(1,m)=M2(nz,1);  

     
%continue simulation if not back down to baseline 
if m==nt 
    if Cfinal(1,m)>1e-10 
        time=(tottime+5)/60; 
        cond_lin=conditions_linn2(delz,Vm,F,L,time,Vloop,fill,... 
            inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
        nt=floor(time*60/delt); 
        disp('Not long enough simulation time, more time needed.') 
    end 
end 
%get frames for movie 
if mov==1 && ismember(m,frvec) 
    zaxis=delz:delz:totdist; 
    subplot(2,1,1); plot(zaxis,M2,'LineWidth',2); 
    if phifinal==phiinit 
        phiflim=phiinit+0.1; 
    else 
        phiflim=phifinal; 
    end 
    set(gca, 'XLim',[0 L]); 
    set(gca,'YLim',[sample phiflim]); 
    title(sprintf('time = %0.4f sec',delt*m)) 
    xlabel('Distance (cm)') 
    ylabel('\phi') 
    set(gca,'fontsize',18); 
    subplot(2,1,2); plot(zaxis,C2,'r','LineWidth',2); 
    set(gca,'YLim',[0 3*max(cond_lin.C_injProf)]); 
    xlabel('Distance (cm)') 
    ylabel('Analyte mass') 
    set(gca,'fontsize',18); 
    Frames(j)=getframe(gcf); 
    j=j+1; 
    elseif mov==0 
    Frames=struct([]); 
end 
    m=m+1;     
end 
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Cfinal=Cfinal./(kp+1); %area correction; divide Cfinal by (k at elution+1) 

C.6. Isothermal simulation 

The function model_NKT.m, conditions_lin_isotherm, and chromsim_lin_NK_isotherm 

incorporates the effect of temperature into simulation using NK model. 

model_NKT.m 

function [model] = model_NKT(kw,B,a,DT,DmTprime,compound) 

  
if exist('compound') 

    
    x={'HP2'; 'HP3'; 'HP4'; 'PB1'; 'PB2'; 'PB3'; 'PB4'}; 
    lnk0T = [4.60   4.26   4.07   4.62   4.30   4.24   4.30]; 
    BT  = [2.95   2.67   2.65   2.50   2.64   2.70   2.73]; 
    a  = [2.42   2.03   1.95   1.96   1.99   2.03   2.07]; 
    DT = [2559   2878   3260   2890   3271   3774   4323]; 
    %parameters from S.R. Groskreutz, S.G. Weber/ J.Chromatogr.A 1474  
    %(2016) 95-108 Table S2 
    DmTprime= [NaN      NaN      NaN   1.09E-5 9.80E-6 9.06E-6 7.04E-6]; 

     
    ind=strcmp(x,compound); 
if ~ind 
    error('Error: compound not found'); 
else 
    %nz=round(L/delz); 

     
    field1='lnk0T'; 
    %value1(1:nz,1)=kw(ind); 
    value1=lnk0T(ind); 

     
    field2='BT'; 
    value2=BT(ind); 

     
    field3='a'; 
    value3=a(ind); 

     
    field4='DT'; 
    value4=DT(ind); 

     
    field5='DmTprime'; 
    value5=DmTprime(ind); 
end 

     
else 
field1='kw'; 
value1=kw; 

  
field2='B'; 
value2=B; 

  
field3='a'; 
value3=a; 
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field4='DT'; 
value4=DT; 

  
field5='DmTprime'; 
value5=DmTprime; 
end 

  
model=struct(field1,value1,field2,value2,field3,value3,field4,value4,... 
    field5,value5); 

  
end 

 

conditions_lin_isotherm.m 

function [conditions] = conditions_lin_isotherm(delz,Vm,F,L,time,Vinj,... 
    inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tD,T,Mgrad) 

  
field1='delz'; %cm 
value1=delz; 

  
field2='Vm'; %mL 
value2=Vm; 

  
field3='F'; %mL/min 
value3=F; 

  
field4='tM'; %min 
tM=Vm/F; 
value4=tM; 

  
field5='L'; %cm 
value5=L; 

  
field6='delt'; %sec 
delt=delz/(L/tM)*60; 
value6=delt; 

  
field7='time'; %min 
value7=time; 

  
field8='Vinj'; %uL 
value8=Vinj; 

  
field9='slices'; 
slices=floor(Vinj/1000/Vm*(L/delz)); 
value9=slices; 

  
field10='sample'; 
value10=sample; 

  
field11='phiinit'; 
value11=phiinit; 
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field12='delphisam'; 
delphisam=sample-phiinit; 
value12=delphisam; 

  
field13='delphi'; 
value13=delphi; 

  
field14='tG'; %min 
value14=tG; 

  
field15='tD'; %min 
value15=tD; 

  
field16='inj_exptl'; 
value16=inj_exptl; 

  
field17='inj_prof'; 
value17=inj_prof; 

  
field18='Vaxis'; 
value18=Vaxis; 

  
field19='Mgrad'; 
field20='C_injProf'; 

  
if exist ('Mgrad'); 
    value19=Mgrad; 
else 
tottime=time*60; 
nt=round(tottime/delt); 
phifinal=phiinit+delphi; 
mGradient=ones(1,nt)*phifinal; 
tgsteps=round(tG*60/delt); 
ntd=tD*60/delt; 
slope=delphi/tgsteps; 
old_slice_axis=Vaxis/Vm*(L/delz); 
scale1=0.00625/60*2.5; 
scale2=L/(delz*Vm); 
ndelt_spacing=size(Vaxis,1)-1; 
new_points=floor(ndelt_spacing*scale1*scale2); 
new_slice_axis=[1:new_points]; 
C_injProf=zeros(1,nt); 
for m=1:nt 
    if m<=slices 
        if inj_exptl==0 
        mGradient(1,m)=sample; 
        else 
        mGradient(1,m)=phiinit; 
        end 
    elseif m>slices && m<=slices+ntd 
        mGradient(1,m)=phiinit; 
    elseif m>slices+ntd && m<=tgsteps+slices+ntd 
        mGradient(1,m)=slope*(m-(slices+ntd))+phiinit; 
        end 
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end 
    if inj_exptl==1 
    inj_prof_new=interp1(old_slice_axis,inj_prof,new_slice_axis); 
    inj_prof_new(isnan(inj_prof_new))=0; 
    Minj_prof=inj_prof_new*delphisam; 
    mGradient(1,1:new_points)=mGradient(1,1:new_points)+Minj_prof;     
    Cinj_prof=inj_prof_new/sum(inj_prof_new); 
    C_injProf(1,1:new_points)=C_injProf(1,1:new_points)+Cinj_prof; 
    else 
        inj=1; 
        analyte=inj/slices; 
        C_injProf(1,1:slices)=analyte; 
    end 
value19=mGradient; 
value20=C_injProf; 
end 

  
field21='T'; %K 
value21=T; 

  
conditions=struct(field1,value1,field2,value2,field3,value3,... 
    field4,value4,field5,value5,field6,value6,field7,value7,... 
    field8,value8,field9,value9,field10,value10,field11,value11,... 
    field12,value12,field13,value13,field14,value14,field15,value15,... 
    field16,value16,field17,value17,field18,value18,field19,value19,... 
    field20,value20,field21,value21); 
end 

 

chromsim_lin_isotherm.m 

function[Cfinal,Mfinal,kp]=chromsim_lin_NK_isotherm(model_NKT,cond_lin) 
lnk0T=model_NKT.lnk0T; 
T=cond_lin.T; 
DT=model_NKT.DT; 
lnkw=-lnk0T+DT/T; 
kw=exp(lnkw); 
a=model_NKT.a; 
BT=model_NKT.BT; 
B=(1+DT/T)*BT; 
sample=cond_lin.sample; 
slices=cond_lin.slices; 
phiinit=cond_lin.phiinit; 
delphi=cond_lin.delphi; 
tottime=cond_lin.time*60; %convert to sec 
totdist=cond_lin.L; %unit in cm 
u=totdist/cond_lin.tM; 
delt=cond_lin.delz/u*60; 
D1=1/2; 
nz=round(totdist/cond_lin.delz); 
nt=round(tottime/delt); 
ntd=(cond_lin.tD*60)/delt; 
tgsteps=round((cond_lin.tG*60)/delt); 
slope=cond_lin.delphi/tgsteps; 
phifinal=phiinit+delphi; 
C1=zeros(nz,1); 
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C2=zeros(nz,1); 
pkprime=zeros(nz,1); 
kprime=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
if isscalar(kw) 
    kw=kw*ones(nz,1); 
end 
M1=ones(nz,1)*cond_lin.phiinit; 
M1(1,1)=-D1*cond_lin.sample+D1*cond_lin.phiinit+cond_lin.sample; 
M1(2,1)=-2*D1*cond_lin.phiinit+D1*cond_lin.sample+D1*cond_lin.phiinit... 
    +cond_lin.phiinit; 
pkprime(1:nz,1)=kw.*(1+a*M1(1:nz,1)).^2.*exp(-B... 
    *M1(1:nz,1)./(1+a*M1(1:nz,1))); 
kp(1)=pkprime(nz,1); 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 
for m=1:nt 
    M2(1,1)=cond_lin.Mgrad(1,m); 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=cond_lin.C_injProf(1,m); 
    kprime(1,1)=kw(1,1)*(1+a*M2(1,1))^2*exp(-B*M2(1,1)/(1+a*M2(1,1))); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
    for n=2:nz 
        kprime(n,1)=kw(n,1)*(1+a*M2(n,1))^2*exp(-B*M2(n,1)/(1+a*M2(n,1))); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    kp(1,m)=kprime(nz,1); 
    pkprime=kprime; 
    C1=C2; 
    M1=M2; 
    Cfinal(1,m)=C1(nz,1); 
    Mfinal(1,m)=M2(nz,1); 
end 
Cfinal=Cfinal./(kp+1); 
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C.7. Stationary phase gradient simulation 

The function kspg_kw.m allows for setting up of different stationary phase gradient shapes and 

calculates kw along the distance of the column before running the simulation. 

function [kwgrad]=kspg_kw(cond_lin,shape,ratio,kw_stat1,kw_stat2) 

  
% ratio represents the fraction of stat2 (assuming total equals 1) 

  
delz=cond_lin.delz; % distance segment 
L=cond_lin.L; % total length of the column 
zz=delz:delz:L; % distance vector 

  
switch shape 
    case 'linear' 
        fstat1=2*ratio*zz/L; %fraction of stationary phase 1 
        fstat2=1-fstat1; %fraction of stationary phase 2 
        figure; plot(fstat2); hold on; plot(fstat1) 
    for n=1:size(zz,2) 
        logkwgrad(n,1)=log(kw_stat1*fstat1(1,n)+kw_stat2*fstat2(1,n)); 
    end 
    kwgrad=exp(logkwgrad); %kw vector for linear stationary phase gradient 

     
    case 'step' 
        fstat1(1:size(zz,2))=zeros; 
        fstat1(1:round(size(zz,2)*ratio))=1; 
        fstat2=1-fstat1; 
        figure; plot(fstat2); hold on; plot(fstat1) 
    for n=1:round(size(zz,2)*ratio) 
        logkwgrad(n,1)=log(kw_stat1); 
    end 
    for n=round(size(zz,2)*ratio)+1:size(zz,2) 
        logkwgrad(n,1)=log(kw_stat2); 
    end 
    kwgrad=exp(logkwgrad); %kw vector for step stationary phase gradient 

    
    case 'exponential' 
syms x 
coeff=eval(vpasolve(sum(exp(-x*zz))==round(size(zz,2)*ratio),x)); 
        fstat1=(1-exp(-coeff*zz)); 
        fstat2=exp(-coeff*zz); 
        figure; plot(fstat2); hold on; plot(fstat1) 
    for n=1:size(zz,2) 
        logkwgrad(n,1)=log(kw_stat1*fstat1(1,n)+kw_stat2*fstat2(1,n)); 
    end 
    kwgrad=exp(logkwgrad); %kw vector for exp stationary phase gradient 
    end 
    end 

 

The functions chromsim_smpg_LSS.m and chromsim_smpg_NK.m are simulation programs for 

stationary phase gradient. It is possible to simulate both isocratic and mobile phase gradient 

elution conditions. 
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chromsim_smpg_LSS.m 

function[Cfinal,Mfinal,kp,Frames]=chromsim_smpg_LSS(S,cond_lin,kp_spg,... 
    movie_tstep) 

  
phiinit=cond_lin.phiinit; 
delphi=cond_lin.delphi; 
phifinal=phiinit+delphi; 
sample=cond_lin.sample; 
tottime=cond_lin.time*60; 
totdist=cond_lin.L; 
delz=cond_lin.delz; 
delt=cond_lin.delt; 
D1=1/2; 
nz=floor(totdist/cond_lin.delz); 
nt=floor(tottime/delt); 
C1=zeros(nz,1); 
C2=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
M1=ones(nz,1)*phiinit; 
M1(1,1)=-D1*sample+D1*phiinit+sample; 
M1(2,1)=-2*D1*phiinit+D1*sample+D1*phiinit+phiinit; 
pkprime(1:nz,1)=kp_spg.*exp(-S*M1(1:nz,1)); 
kp(1)=pkprime(nz,1); 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 

  

%establish movie time step 
if exist('movie_tstep') 
    movie_tstep=floor(movie_tstep); 
    mov=1; 
figure('units','inches','position',[1 1 8 6]); 
frvec=[1:movie_tstep:nt]; 
j=1; 
else 
     mov=0; 
end 

  
m=1; 
while m<=nt %time loop 
%call upon established mobile phase gradient profile 
M2(1,1)=cond_lin.Mgrad(1,m);  
%mobile phase compsition for every distance point with dispersion 
    for n=2:nz 
        M2(n,1)=M1(n-1,1);  
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=cond_lin.C_injProf(1,m); 
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    kprime(1,1)=kp_spg(1,1)*exp(-S*M2(1,1)); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
%analyte mass for every distance point with dispersion 
    for n=2:nz 
        kprime(n,1)=kp_spg(n,1).*exp(-S*M2(n,1)); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    %k at elution is kprime at z=L 
    kp(1,m)=kprime(nz,1); 
    %reset previous time kprime equal to current kprime 
    pkprime=kprime; 
    %reset previous time analyte mass equal to current analyte mass 
    C1=C2; 
    %reset previous time mobile phase composition equal to  
    %current mobile phase composition 
    M1=M2; 
    %final chromatogram equals mass at the end of the column 
    Cfinal(1,m)=C2(nz,1); 
    %final mobile phase profile equals mass at the end of the column 
    Mfinal(1,m)=M2(nz,1);  
%continue simulation if not returned to baseline 
if m==nt 
    if Cfinal(1,m)>1e-10 
        time=(tottime+5)/60; 
        cond_lin=conditions_linn2(delz,Vm,F,L,time,Vloop,fill,... 
            inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
        nt=floor(time*60/delt); 
        disp('Not long enough simulation time, more time needed.') 
    end 
end 
%get frames for movie 
if mov==1 && ismember(m,frvec) 
    zaxis=delz:delz:totdist; 
    subplot(2,1,1); plot(zaxis,M2,'LineWidth',2); 
    if phifinal==phiinit 
        phiflim=phiinit+0.1; 
    else 
        phiflim=phifinal; 
    end 
    set(gca,'YLim',[phiinit phiflim]); 
    title(sprintf('time = %0.2f min',delt*m/60)) 
    xlabel('Distance (cm)') 
    ylabel('\phi') 
    set(gca,'fontsize',18); 
    subplot(2,1,2); plot(zaxis,C2,'r','LineWidth',2); 



 
 

158 
 

    set(gca,'YLim',[0 2*max(cond_lin.C_injProf)]); 
    xlabel('Distance (cm)') 
    ylabel('Analyte mass') 
    set(gca,'fontsize',18); 
    Frames(j)=getframe(gcf); 
    j=j+1;  
elseif mov==0 
    Frames=struct([]); 
end 
    m=m+1; 
end 
Cfinal=Cfinal./(kp+1); %area correction; divide Cfinal by (k at elution+1) 

chromsim_smpg_NK.m 

function[Cfinal,Mfinal,kp,Frames]=chromsim_smpg_NK(B,a,cond_lin,kp_spg,... 
    movie_tstep) 

  
phiinit=cond_lin.phiinit; 
delphi=cond_lin.delphi; 
phifinal=phiinit+delphi; 
sample=cond_lin.sample; 
tottime=cond_lin.time*60; 
totdist=cond_lin.L; 
delz=cond_lin.delz; 
delt=cond_lin.delt; 
D1=1/2; 
nz=floor(totdist/delz); 
nt=floor(tottime/delt); 
C1=zeros(nz,1); 
C2=zeros(nz,1); 
dM=zeros(nz,1); 
dC=zeros(nz,1); 
kp=zeros(1,nt); 
Mfinal=zeros(1,nt); 
Cfinal=zeros(1,nt); 
M1=ones(nz,1)*phiinit; 
M1(1,1)=-D1*sample+D1*phiinit+sample; 
M1(2,1)=-2*D1*phiinit+D1*sample+D1*phiinit+phiinit; 
pkprime(1:nz,1)=kp_spg.*(1+a*M1(1:nz,1)).^2.*exp(-B*M1(1:nz,1)... 
    ./(1+a*M1(1:nz,1))); 
kp(1)=pkprime(nz,1); 
D(:,1)=1./(2*(pkprime(:,1)+1).^2); 

  
%establish movie time step 
if exist('movie_tstep') 
    movie_tstep=floor(movie_tstep); 
    mov=1; 
figure('units','inches','position',[1 1 8 6]); 
frvec=[1:movie_tstep:nt]; 
j=1; 
else 
    mov=0; 
end 

  
m=1; 
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while m<=nt %establish movie time step 
%call upon established mobile phase gradient profile 
    M2(1,1)=cond_lin.Mgrad(1,m); 
%mobile phase compsition for every distance point with dispersion 
    for n=2:nz 
        M2(n,1)=M1(n-1,1); 
    end 
    dM(1)=-D1*M2(1,1)+D1*M2(2,1); 
    for n=2:nz-1 
        dM(n,1)=-2*D1*M2(n,1)+D1*M2(n-1,1)+D1*M2(n+1,1); 
    end 
    dM(nz,1)=-2*D1*M2(nz,1)+D1*M2(nz-1,1)+D1*M1(nz,1); 
    M2=M2+dM; 
    C2(1,1)=cond_lin.C_injProf(1,m); 
    kprime(1,1)=kp_spg(1,1)*(1+a*M2(1,1))^2*exp(-B*M2(1,1)/(1+a*M2(1,1))); 
    P1(1,1)=pkprime(1,1)/(pkprime(1,1)+1); 
    P(1,1)=1/(kprime(1,1)+1); 
    D(1,1)=1/(2*(pkprime(1,1)+1)^2); 
    C2(1,1)=P1(1,1)*C1(1,1)+C2(1,1); 
%analyte mass for every distance point with dispersion 
    for n=2:nz 
        kprime(n,1)=kp_spg(n,1)*(1+a*M2(n,1))^2*exp(-B*M2(n,1)... 
            /(1+a*M2(n,1))); 
        P(n,1)=1/(pkprime(n-1,1)+1); 
        P1(n,1)=pkprime(n,1)/(pkprime(n,1)+1); 
        D(n,1)=1/(2*(pkprime(n,1)+1)^2); 
        C2(n,1)=P1(n,1)*C1(n,1)+P(n,1)*C1(n-1,1); 
    end 
    dC(1)=-D(1,1)*C2(1,1)+D(2,1)*C2(2,1); 
    for n=2:nz-1 
        dC(n,1)=-2*D(n,1)*C2(n,1)+D(n-1,1)*C2(n-1,1)+D(n+1,1)*C2(n+1,1); 
    end 
    dC(nz,1)=-2*D(nz,1)*C2(nz,1)+D(nz-1,1)*C2(nz-1,1)+D(nz,1)*C1(nz,1); 
    C2=C2+dC; 
    %k at elution is kprime at z=L 
    kp(1,m)=kprime(nz,1); 
    %reset previous time kprime equal to current kprime 
    pkprime=kprime; 
    %reset previous time analyte mass equal to current analyte mass 
    C1=C2; 
    %reset previous time mobile phase composition equal to  
    %current mobile phase composition 
    M1=M2; 
    %final chromatogram equals mass at the end of the column 
    Cfinal(1,m)=C2(nz,1); 
    %final mobile phase profile equals mass at the end of the column 
    Mfinal(1,m)=M2(nz,1);  

  
%continue simulation if not back down to baseline 
if m==nt 
    if Cfinal(1,m)>1e-10 
        time=(tottime+5)/60; 
        cond_lin=conditions_linn2(delz,Vm,F,L,time,Vloop,fill,... 
            inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
        nt=floor(time*60/delt); 
        disp('Not long enough simulation time, more time needed.') 
    end 
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%get frames for movie 
if mov==1 && ismember(m,frvec) 
    zaxis=delz:delz:totdist; 
    subplot(2,1,1); plot(zaxis,M2,'LineWidth',2); 
    if phifinal==phiinit 
        phiflim=phiinit+0.1; 
    else 
        phiflim=phifinal; 
    end 
    set(gca,'YLim',[phiinit phiflim]); 
    title(sprintf('time = %0.2f min',delt*m/60)) 
    xlabel('Distance (cm)') 
    ylabel('\phi') 
    set(gca,'fontsize',18); 
    subplot(2,1,2); plot(zaxis,C2,'r','LineWidth',2); 
    set(gca,'YLim',[0 2*max(cond_lin.C_injProf)]); 
    xlabel('Distance (cm)') 
    ylabel('Analyte mass') 
    set(gca,'fontsize',18); 
    Frames(j)=getframe(gcf); 
    j=j+1; 
elseif mov==0 
    Frames=struct([]); 
end 
    m=m+1;   
end 
Cfinal=Cfinal./(kp+1); %area correction; divide Cfinal by (k at elution+1) 

C.8. Convolution 

The convolution program consists of a set of nested functions. The master convolution code is 

conv_tot_nk.m, which calls upon the functions conv_sim_nk.m and nkgrad_calc.m. The function 

conv_sim_nk.m simulates the elution from the first part of the column and the function 

nkgrad_calc.m calculates the retention time and peak width for the second part of the column. 

conv_tot_nk.m 

function [peak12,L_cf] = conv_tot_nk(model,conditions) 
delz=conditions.delz; 
Vm=conditions.Vm; 
F=conditions.F; 
tM=conditions.tM; 
L=conditions.L; 
Vloop=0; 
fill=0; 
inj_prof=[]; 
inj_exptl=0; 
Vaxis=conditions.Vaxis; 
tDm=conditions.tD-(conditions.Vloop/1000/conditions.F); 
time=conditions.time; 
delt=conditions.delt/60; 
t_axis=delt:delt:time; 
phiinit=conditions.phiinit; 
delphi=conditions.delphi; 
tG=conditions.tG; 
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tslices=conditions.slices*delt; 
B=model.B; 
a=model.a; 
kw=model.kw(1,1); 
ko=kw*(1+a*phiinit)^2*exp(-B*phiinit/(1+a*phiinit)); 
[C_convsim,M_convsim,kp_convsim,L_cf]=conv_sim_nk(model,conditions); 
if isnan(C_convsim) 
    peak12=NaN; 
else 
Vm_new=Vm*L_cf/L; 
tM_new=Vm_new/F; 
[area,position,sigma]=moments([1:size(C_convsim,2)],C_convsim); 
position_t=t_axis(1,round(position)); 
if position_t<tDm+tslices 
    tD_new=(tDm+tslices)-position_t; 
else 
    tD_new=0; 
end 
ko_new=kp_convsim(1,round(position)); 
phiinit_new=M_convsim(1,round(position)); 
delphi_new=phiinit+delphi-M_convsim(1,round(position)); 
tG_new=tG*delphi_new/delphi; 
condlin_new=conditions_lin(delz,Vm_new,F,L_cf,time,Vloop,fill,inj_exptl,... 
    inj_prof,Vaxis,phiinit_new,phiinit_new,delphi_new,tG_new,tD_new); 
[tR_new,sigma_new]=nkgrad_calc(model,condlin_new); 
C_convsim_pad(1,1:size(t_axis,2))=zeros; 
C_convsim_pad(1,1:size(C_convsim,2))=C_convsim; 
uo=delz/delt; 
velution=uo./(1+kp_convsim); 
t_axis_new=t_axis-position_t; 
d_axis_new=t_axis_new*velution(round(position)); 
phie=(phiinit_new+(1+a*phiinit_new)/B*log(delphi_new*kw*B/tG_new*... 
    (tM_new-tD_new/ko_new)*exp(-B*phiinit_new/(1+a*phiinit_new))+1))/... 
    (1-a*(1+a*phiinit_new)/B*log(delphi_new*kw*B/tG_new*... 
    (tM_new-tD_new/ko_new)*exp(-B*phiinit_new/(1+a*phiinit_new))+1)); 
Sstar=-(2*a/(1+a*phie)-(B/(1+a*phie)^2)); 
bstar=tM_new*Sstar*delphi_new/tG_new; 
omegao=ko_new/(1+ko_new); 
muR=1-(omegao/(1+omegao*bstar)); 
t_axis_new2=d_axis_new*(tM-tM_new)/((L-L_cf)*muR*(1+bstar*omegao)); 
t_axis_new2=t_axis_new2+position_t; 
C_interp=interp1(t_axis_new2,C_convsim_pad,t_axis,'spline'); 
sc_f=(t_axis(1,2)-t_axis(1,1))/(t_axis_new2(1,2)-t_axis_new2(1,1)); 
C_convsim_pad_af=C_interp*sc_f; 
peak1=C_convsim_pad_af; 
[peak2]=gausspeak(t_axis,tR_new,sigma_new); 
peak2=peak2/sum(peak2); 
Peak1=fft(peak1); 
Peak2=fft(peak2); 
Peak12=Peak1.*Peak2; 
peak12=ifft(Peak12); 
end 
end 

conv_sim_nk.m 

function [Cfinal,Mfinal,kp,L_cf,conditions] = conv_sim_nk(model,conditions) 
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Vm=conditions.Vm; 
F=conditions.F; 
tM=conditions.tM; 
tD=conditions.tD; 
tDm=tD-(conditions.Vloop/1000/conditions.F); 
time=conditions.time; 
phiinit=conditions.phiinit; 
slices=conditions.slices; 
L=conditions.L; 
delz=conditions.delz; 
delphi=conditions.delphi; 
tG=conditions.tG; 
sample=conditions.sample; 
B=model.B; 
a=model.a; 
kw=model.kw; 
ko=kw*(1+a*phiinit)^2*exp(-B*phiinit/(1+a*phiinit)); 
ksam=kw*(1+a*sample)^2*exp(-B*sample/(1+a*sample)); 
um=L/tM; 
va=um/(1+ko); 
vsam=um/(1+ksam); 
if abs(um-vsam) < 1e-6 
    zsam=L; 
else 
zsam=vsam*slices*delz/(um-vsam); 
end 
if ko == 0 
    tMiso=0; 
else 
    tMiso=tD/ko; 
end 
ziso=va*(tD+tMiso); 
sigma_col_sam=sqrt((zsam*delz)); 
sigma_col_iso=sqrt((ziso*delz)); 
band_width=slices*delz/(1+ksam); 
sigma_inj=ko*(ksam+1)/(ksam*(ko+1))*band_width/sqrt(12); 
sigma_init_b=sqrt(sigma_col_sam^2+sigma_inj^2+sigma_col_iso^2); 
Lsim=zsam+5*sigma_init_b; 
if Lsim<0.1*L 
    Lsim=0.1*L; 
end 
L_cf=L-Lsim; 
if Lsim>0.9*L 
    Cfinal=NaN; 
    Mfinal=NaN; 
    kp=NaN; 
else 
Vmsim=Vm*(Lsim/L); 
Vloop=conditions.Vloop; 
fill=conditions.fill; 
inj_exptl=conditions.inj_exptl; 
inj_prof=conditions.inj_prof; 
Vaxis=conditions.Vaxis; 
[conditions]=conditions_lin(delz,Vmsim,F,Lsim,time,Vloop,fill,... 
    inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
[tR_approx_1,sigma_approx_1] = nkgrad_calc(model,conditions); 
time1=tR_approx_1+5*sigma_approx_1; 
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scale1=0.00625/60*2.5; 
scale2=Lsim/(delz*Vmsim); 
ndelt_spacing=size(Vaxis,1)-1; 
new_points=floor(ndelt_spacing*scale1*scale2); 
delt=conditions.delt; 
if time1<new_points*delt/60 
    time1=new_points*delt/60; 
elseif time1>conditions.time 
    time1=conditions.time; 
end 
if time1>conditions.time 
    time1=conditions.time; 
end 
[conditions]=conditions_linn2(delz,Vmsim,F,Lsim,time1,Vloop,fill,... 
    inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tDm); 
[Cfinal,Mfinal,kp]=chromsim_lin_NK(model,conditions); 
end 

nkgrad_calc.m 

function [tR,sigma]=nkgrad_calc(model,conditions) 
tM=conditions.tM; 
phiinit=conditions.phiinit; 
sample=conditions.sample; 
slices=conditions.slices; 
L=conditions.L; 
delz=conditions.delz; 
delphi=conditions.delphi; 
tG=conditions.tG; 
tD=conditions.tD-(conditions.Vloop/1000/conditions.F); 
N=L/delz; 
B=model.B; 
a=model.a; 
kw=model.kw(1,1); 
ko=kw*(1+a*phiinit)^2*exp(-B*phiinit/(1+a*phiinit)); 
ksam=kw*(1+a*sample)^2*exp(-B*sample/(1+a*sample)); 
um=L/tM; 
va=um/(1+ko); 
vsam=um/(1+ksam); 
if abs(um-vsam) < 1e-6 
    zsam=L; 
else 
    zsam=vsam*slices*delz/(2*(um-vsam)); 
end 
if zsam>L 
    zsam=L; 
end 
tMsam=tM*(zsam/L); 
tRsam=tMsam*(1+ksam); 
tMgrad=tM-tMsam; 
phie=(phiinit+(1+a*phiinit)/B*log(delphi*kw*B/tG*(tMgrad-tD/ko)... 
    *exp(-B*phiinit/(1+a*phiinit))+1))/(1-a*(1+a*phiinit)/B*log(delphi... 
    *kw*B/tG*(tMgrad-tD/ko)*exp(-B*phiinit/(1+a*phiinit))+1)); 
tgrad=tG*(phie-phiinit)/delphi+tMgrad+tD; 
tR=tgrad+tRsam+slices*delz/(2*um); 
omega0=ko/(1+ko); 
if ko == 0 
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    tMiso=0; 
else 
    tMiso=tD/ko; 
end 
tMgradonly=tM-tMiso-tMsam; 
ziso=va*(tD+tMiso); 
zgrad=L-ziso-zsam; 
Sstar=-(2*a/(1+a*phie)-(B/(1+a*phie)^2)); 
ke=kw*(1+a*phie)^2*exp(-B*phie/(1+a*phie)); 
bstar=tMgradonly*delphi*Sstar/tG; 
muR=1-(omega0/(1+omega0*bstar)); 
G=1/(1+omega0*bstar)*sqrt(1+omega0*bstar+(1/3)*omega0^2*bstar^2); 
Ngrad=N*(zgrad/L); 
if zgrad==0 
    sigmagrad=0; 
else 
    sigmagrad=G*tMgradonly*(1+ke)*sqrt(delz/zgrad); 
end 
sigma_col_iso=sqrt((ziso*delz)); 
sigma_col_sam=sqrt((zsam*delz)); 
band_width=slices*delz/(1+ksam); 
sigma_inj=ko*(ksam+1)/(ksam*(ko+1))*band_width/sqrt(12); 
sigmab=sqrt(sigma_col_iso^2+sigma_col_sam^2+sigma_inj^2); 
delsigmaiso=tM*sigmab/(L*muR*(1+omega0*bstar)); 
sigma=sqrt(sigmagrad^2+delsigmaiso^2); 
end 

C.8. Finding retention time and width of a peak 

The function fwhm.m returns the peak width at half height. This should be only used if the 

simulated peak is perfectly Gaussian. 

fwhm.m 

function FWHM=fwhm(x,f) 
if nargin<2 
    f=x; 
    x=[1:length(f)]; 
end 
f1=f-0.5*max(f); 
ind=find(f1(1:end-1).*f1(2:end)<=0); 
FWHM=x(ind(2))-x(ind(1)); 

The function moments.m is used for asymmetric peaks. It returns peak area, retention time, peak 

width, and skew. 

moments.m 

function [area,position,sigma,skew]=moments(timeaxis,Cfinal) 
% calculate the moments of a peak 
area=sum(Cfinal); 
pr=Cfinal/area; 
position=pr*timeaxis'; 
sigma=(((timeaxis-position)).^2*pr')^0.5; 
skew=(((timeaxis-position)).^3*pr')^(1/3); 
end 
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The function fde.m consists of a set of Foley-Dorsey equations [134]. It returns the efficiency of 

the chromatography system, retention time (peak max), degree of peak asymmetry, and peak 

width at 10 % height. 

fde.m 

function [tr,width10,A,B,Nsys]=fde(x,f) 
[A,l]=max(f); 
tr=x(l); 
if nargin<2 
    f=x; 
    x=[1:length(f)]; 
end 
f1=f-0.1*max(f); 
ind=find(f1(1:end-1).*f1(2:end)<=0); 
width10=x(ind(2))-x(ind(1)); 
A=tr-x(ind(1)); 
B=x(ind(2))-tr; 
if A<=B 
Nsys=41.7*(tr/width10)^2/(B/A+1.25); 
else 
    Nsys=41.7*(tr/width10)^2/(A/B+1.25); 
end 
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APPENDIX D 

 

 

 

 

Simulation program instructions 

 

Table D1: Functions included in the simulation package 

 

Function Purpose 

isotimefit_lss Extract LSS parameters from isocratic data 

gradtimefit_lss Extract LSS parameters from gradient data 

isotimefit_lss_cS Extract LSS parameters from isocratic data with 

common S 

isotimefit_nk Extract NK parameters from isocratic data 

isotimefit_nk_cBa Extract NK parameters from isocratic data with 

common B and a 

model_LSS Select LSS model and set up parameters S and kw 

model_NK Select NK model and set up parameters kw, B, and a 

conditions_iso Establish chromatographic conditions (isocratic) 

conditions_lin Establish chromatographic conditions (gradient) 

chromsim_isoLSS Simulate using LSS parameters (isocratic) 

chromsim_isoNK Simulate using NK parameters (isocratic) 

chromsim_lin_LSS Simulate using LSS parameters (gradient) 

chromsim_lin_NK Simulate using NK parameters (gradient) 

kspg_kw Establish stationary phase gradient 

chromsim_smpg_LSS Simulate stationary phase gradient using LSS 

parameters 

chromsim_smpg_NK Simulate stationary phase gradient using NK 

parameters 

conv_tot_nk Master code for convolution 

conv_sim_nk Simulation of C1 (convolution) 

nkgrad_calc Closed form calculation for solvent mismatch condition 

under mobile phase gradient elution 

makevideo Create .avi movie file from saved frames 

Fwhm Calculate full width at half max 

moments Calculate moments of simulated peak 

Fde Calculate widths using Foley-Dorsey equations 

*Additional files included: mat file for experimental injection profiles (exp_inj_prof_new.mat) 
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D.1. Simulation of mobile phase gradient 

 

 

STEP 1: Select model for retention factor (k) calculation 

 

 

Linear Solvent Strength (LSS) 

 

ln ln  wk k S  

 

Neue-Kuss (NK) 

 

2 1
2

2

(1 ) exp
1

  
    

  
w

S
k k S

S
 

*NOTE: Simulation codes use B to represent S1 and a to represent S2. 

 

 

LSS input choices: 

 

Manual input: [model] = model_LSS (S, kw); 

Preset conditions: [model] = model_LSS([], [],'compound', 'column'); 

 

Table D2: Compounds with predetermined LSS parameters 

 

Compound code Compound name 

PE Phenylephrine 

PPA Phenylpropanolamine 

PEA Phenethylamine 

EP Ephedrine 

PSE Pseudoephedrine 

Amp Amphetamine 

MDA 3,4-Methylenedioxy-amphetamine 

Mamp Methamphetamine 

Moxy Methoxyamphetamine 

MDMA 3,4-Methylenedioxymethamphetamine 

 

Table D3: Columns tested for LSS parameter extraction 

 

Column code Column type Column dimension Mobile phase 

C18 Accucore C18 (Thermo 

Scientific) 

100 x 2.1 mm, 3 

μm 

10 mM potassium phosphate 

buffer pH 2.5 / Acetonitrile 

Phen Accucore Phenyl-

Hexyl (Thermo 

Scientific) 

100 x 2.1 mm, 3 

μm 

10 mM potassium phosphate 

buffer pH 2.5 / Acetonitrile 
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LSS example 

 

Input: [model_PEA_C18] = model_LSS([],[], 'PEA', 'C18'); 

Output:  model_PEA_C18 1x1 struct 

S 19.4150 

kw 4.7543 

 

NK input choices: 

 

Manual input: [model] = model_NK (kw, B, a, 'compound'); 

Preset conditions: [model] = model_NK([], [], [],'compound'); 

 

Table D4: Compounds with predetermined NK parameters 

 

Compound code Compound name 

AB1 Methylbenzene 

AB2 Ethylbenzene 

AB3 Propylbenzene 

AB4 Butylbenzene 

AB5 Pentylbenzene 

DiEtF Diethylformamide 

BzAlc Benzyl alcohol 

PB1 Methylparaben 

PB3 Propylbaraben 

PB4 Butylparaben 

AP2 Acetophenone 

AP4 Butyrophenone 

AP5 Valerophenone 

 

Table D5: Column tested for NK parameter extraction 

 

Column type Column dimension Mobile phase 

Zorbax SB C18 (Agilent 

Technologies) 

50 x 2.1 mm, 3.5 μm 

(for AB1-AB5) 

30 x 2.1 mm, 3.5 μm 

(rest of the compounds 

in Table 4) 

Water / Acetonitrile 

 

NK example 

 

Input: [model_DiEtF] = model_NK([], [], [],'DiEtF'); 

Output:  model_DiEtF 1x1 struct 

kw 22.9198 

B 27.3600 

a 2.7720 
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STEP 2: Establish simulation conditions 

 

 

Command: [conditions] = conditions_lin(delz,Vm,F,L,time,Vloop,fill,... 

    inj_exptl,inj_prof,Vaxis,sample,phiinit,delphi,tG,tD,Mgrad) 

 

*NOTE: Mgrad input is only necessary if you have specific mobile phase gradient profile you 

would like to simulate (i.e., unusual gradient shapes that cannot be calculated from given 

parameters), so in most cases leave out Mgrad input (see examples below). 

 

 

Table D6: Inputs for condition structure 

 

Input variable Official variable Units Definition 

delz Δz Cm Discrete distance segment 

(equal to plate height, H) 

Vm Vm mL Void volume 

F F mL/min Flow rate 

L L Cm Total column length 

time time min Total run time 

Vloop Vloop μL Sample loop volume 

fill N/A N/A Fractional loop filling 

inj_exptl N/A N/A Rectangular injection = 0 

Experimental injection = 1 

inj_prof N/A N/A Experimental injection 

profile 

Vaxis N/A mL Volume axis 

sample ϕsample Unit-less Sample solvent 

composition 

phiinit ϕinitial Unit-less Initial mobile phase 

composition 

delphi Δφ Unit-less Equal to ϕfinal – ϕinitial  for 

mobile phase gradient 

tG tG Min Gradient time 

tD tD Min Delay/dwell time 

Mgrad N/A N/A Manual input of mobile 

phase gradient 
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Table D7: Experimental injection profiles and corresponding injection volumes 

 

Profile No. Loop size (μL) Percent fill Actual injection volume (μL) 

1 0.4 200 0.4 

2 13.5 25 3.425 

3 13.5 50 6.85 

4 13.5 75 10.275 

5 13.5 100 13.7 

6 20 25 5.675 

7 20 50 11.35 

8 20 75 17.025 

9 20 100 22.7 

10 40 25 11.375 

11 40 50 22.75 

12 40 75 34.125 

13 40 100 45.5 

14 60 25 17.2 

15 60 50 34.4 

16 60 75 51.6 

17 60 100 68.8 

18 80 25 20.825 

19 80 50 41.65 

20 80 75 62.475 

21 80 100 83.3 

 

Example inputs: 

 

delz = 0.0025; 

Vm = 0.0525; 

F = 2.5; 

L = 3; 

time = 0.3; 

phiinit = 0.3; 

delphi = 0.35; 

tD = 0.027; 

tG = 0.25; 

sample = 0.3; 

 

Rectangular injection: 

 

Input: 

inj_exptl = 0; 

Vloop = 40; 

fill = 0.25; 
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[conditions_rec] = conditions_lin(delz,Vm,F,L,time,Vloop,fill,... 

inj_exptl,[],[],sample,phiinit,delphi,tG,tD); 

 

 

Plotting Mgrad and C_injProf: 

 

Make time axis 

delt = conditions_rec.delt; 

time = conditions_rec.time; 

timeaxis = delt/60:delt/60:time; 

 

plot(timeaxis,conditions_rec.Mgrad) 

plot(timeaxis,conditions_rec.C_injProf) 

 

 

 
 

Figure D.1. Rectangular injection – mobile phase gradient profile (Mgrad) 

 

 

 
 

Figure D.2. Rectangular injection – analyte injection profile (C_injProf) 
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Real/experimental injection: 

 

Input: 

inj_exptl = 1; 

 

load('exp_inj_prof_new.mat'); 

 

inj_prof_new: experimental injection profiles (see Table 7) 

Vaxis: corresponding volume axis for each profile 

 

Example: selecting 10th injection profile (40 μL loop at 25 % fill, see Table 7) 

prof_num=10; 

 

[conditions_real]=conditions_lin(delz,Vm,F,L,time,Vloop(prof_num,1),fill_all(prof_num,1),... 

inj_exptl,inj_prof{prof_num,1},Vaxis {prof_num,1},sample,phiinit,delphi,tG,tD); 

 

 

Plotting Mgrad and C_injProf: 

 

Make time axis 

delt = conditions_rec.delt; 

time = conditions_rec.time; 

timeaxis = delt/60:delt/60:time; 

 

plot(timeaxis,conditions_real.Mgrad) 

plot(timeaxis,conditions_real.C_injProf) 

 

 

 
 

Figure D.3. Real/experimental injection – mobile phase gradient profile (Mgrad) 
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Figure D.4. Real/experimental injection – Analyte injection profile (C_injProf) 

 

 

STEP 3: Run Simulation 

 

 

Command: 

 

[Cfinal,Mfinal,kp,time,Frames]=chromsim_lin_LSS(model_LSS,cond_lin,movie_tstep); 

or 

[Cfinal,Mfinal,kp,time,Frames]=chromsim_lin_NK(model_NK,cond_lin,movie_tstep); 

 

Inputs: 

 

model_LSS or model_NK from STEP1 (model_PEA_C18 or model_DiEtF) 

cond_lin from STEP2 (conditions_rec or conditions_real) 

 

Outputs: 

 

Cfinal: simulated chromatogram 

Mfinal: mobile phase composition at the end of the column 

kp: retention factor of given compound under Mfinal composition 

time: simulation time 

 

Movie option 

 

Input movie_tstep sets up how many frames you would get for your movie, it should be an 

integer. 

 

Example: movie_tstep = 25 means get every 25th frame 

 

If you do not wish to get frames to make movie, then leave out movie_tstep input. 
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[Cfinal,Mfinal,kp,time,Frames] = chromsim_lin_LSS(model_LSS,cond_lin); 

or 

[Cfinal,Mfinal,kp,time,Frames]=chromsim_lin_NK(model_NK,cond_lin); 

 

This should return: 

Frames  0x0 struct 

 

Or you could also choose not to return Frames output. 

 

[Cfinal,Mfinal,kp,time] = chromsim_lin _LSS(model_LSS,cond_lin); 

or 

[Cfinal,Mfinal,kp,time]=chromsim_lin _NK(model_NK,cond_lin); 

 

Plotting simulated chromatogram: 

Plot chromatogram 

plot(timeaxis,Cfinal); 

 

 

STEP 4: Play movie or create movie file from saved frames (optional) 

 

Option 1: Play movie from saved frames 

 

implay(Frames); 

 

Option 2: Create .avi movie file from saved frames 

 

[video]=makevideo('name' ,Frames); 
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D.2. Simulation of stationary phase gradient 

 

STEP 1: Predefine stationary phase gradient profile 

 

 

Command: [kprime] = kspg_kw(cond_lin,shape,ratio,kw_stat1,kw_stat2); 

 

Inputs: 

 

cond_lin: separation condition 

shape: stationary phase gradient shape (choices are linear, step, or exponential) 

kw_stat1 and kw_stat2: extracted kw values for different stationary phases 

 

Outputs: 

 

kprime: kw for stationary phase gradient 

Stationary phase gradient profile figure 

 

 

STEP 2: Run Simulation 

 

 

Command: 

 

[Cfinal,Mfinal,kp,Frames]=chromsim_smpg_LSS(S,cond_lin,kp_spg,movie_tstep); 

Or 

[Cfinal,Mfinal,kp,Frames]=chromsim_smpg_NK(B,a,cond_lin,kp_spg,movie_tstep); 

 

Inputs: 

 

S, B, and a: common parameters obtained from fitting isocratic retention data from training set 

using fitting codes isotimefit_cS.m or isotimefit_cBa.m 

cond_lin: separation conditions 

kp_spg: kprime of stationary phase gradient profile obtained from STEP1 

movie_tstep: optional movie time step 

 

Outputs: 

 

Cfinal: simulated chromatogram 

Mfinal: mobile phase composition at the end of the column 

kp: retention factor of given compound under stationary phase gradient and isocratic or mobile 

phase composition 
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D.3. Convolution 

 

The convolution program consists of a set of nested functions. The master convolution code is 

conv_tot_nk.m, which calls upon the functions conv_sim_nk.m and nkgrad_calc.m. The function 

conv_sim_nk.m simulates the elution from the first part of the column and the function 

nkgrad_calc.m calculates the retention time and peak width for the second part of the column. 

Operation of the convolution program is simple. It only involves running the master code. 

 

Master code command:  

 

[peak12,L_cf]=conv_tot_nk(model,conditions); 

 

Inputs: 

 

model: options structure from model_LSS.m or model_NK.m 

conditions: simulation conditions from conditions_linn2.m 

 

Outputs: 

 

peak12: convoluted peak 

L_cf: length of the column for closed form calculationi (C2) 
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