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"Plurality is not to be posited without necessity."

- William of Ockham
circa 1280 - 1349
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Abstract
ADJUSTING HOLT-WINTERS EXPONENTIAL SMOOTHING FOR EXTERNAL

INTERVENTION: A MATHEMATICAL TECHNIQUE FOR MAKING QUASI-
JUDRMENTAL ADJUSTMENTS FOR ANTICIPATED CHANGES

Daniel W. Williams, D.P.A.

Virginia Commonwealth Universtiy, 1994

Public administration data is sometimes extrapolated through
exponential smoothing. Sometimes such data may undergo a
level shift because of a policy decision. The slope of the
curve formed by connecting the periodic observations
increases or decreases significantly for a brief period,
thereafter returning to a slope similar to the slope
preceding the policy change. This discontinuity might be
called a ramp or a step. Forecasts made with exponential
smoothing immediately before, during, or immediately after
the ramp or step may be considerably inaccurate unless
adjusted. A technique called adjusted exponential smoothing
is proposed to reduce or eliminate the inaccuracy of
forecasts made under such circumstances when the ramp or
step arises from a planned policy decision. An empirical
study 1is conducted to determine whether the proposed
technique constitutes an improvement over other exponential
smoothing techniques. The empirical study shows that the
proposed technique improves the accuracy of forecasts when
planned level shifts subsequently actually occur.
Guidelines are provided for using the technique.

xii



CHAPTER 1: INTRODUCTION

In this chapter I will:

o} Provide a general introduction to this dissertation.

o Provide an overview of the following chapters.

General Introduction
Forecasting is an integral part of planning and
budgeting for many public administration activities. It is
used for revenue projections, planning for prisons,
budgeting for Medicaid expenditures, and numerous other

public administration planning and budgeting activities.

Forecasting techniques can be roughly classified as

simple, intermediate, and sophisticated.

o Simple techniques can be as simple as assuming that the
last observation will also be the next, which is
sometimes called the random walk or naive method.

Other simple techniques follow the random walk approach
after preprocessing data by such methods as
deseasonalizing it or adjusting for such factors as
inflation, sometimes this sort of preprocessing is
called "decomposition." Sometimes a simple trend is
added to the data; the trend may be the difference

1



between the last two observations or the ratio of the

last observation over the prior observation.

o Intermediate techniques include moving averages,
exponential smoothing, and the use of more complex
decomposition which may include building a model of the

process that is to be forecasted.

o Sophisticated techniques generally involve use of
single or multiple correlation techniques or the use of

complex forecasting algorithms such as ARIMA.

These labels do not necessarily capture the richness of
the variety of techniques, for example some moving average
techniques, like X11 (defined in Appendix I), may be very
complex. Empirical studies in forecasting do not
demonstrate that sophisticated techniques produce better
results than intermediate techniques. Exponential
smoothing, in particular, is often cited to be as effective

as more sophisticated techniques.

In this dissertation I examine a problem that arises
when forecasting with exponential smoothing. Data series
sometimes undergo shifts (see Figure 1) that make them

difficult to forecast. In data forecasted for public
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administration purposes, these shifts may arise because of
policy changes, so I call them policy changes or policy

shifts in this dissertation.

Data forecast for public administration frequently
contain policy changes. Decisions made by legislatures
often transform into changes in data series. For example,
the data series shown in the example is actual average
reimbursement per service unit for certain Medicaid
expenditures, the level shift reflects a legislative action.
The existence of level shifting data in revenue forecasting

is documented by Wilpen Gorr.!
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With techniques that use correlation based mathematics,
such as regression, historical level shifts generally can be
incorporated in the forecast model either by including
independent variables that undergo similar level shifts, or
by use of dummy variables. This approach is not available
to intermediate techniques such as exponential smoothing.
Techniques that are available for incorporating historical

level shifts are discussed in the literature review.

Additionally, there is no available technique for
integrating expectations of future policy changes into
exponential smoothing models. Such future policy changes,
especially those that have little historical precedence,
also pose a problem for more sophisticated techniques.
Somehow the level shift must be put into the model in order

to get it out of the model.

In this dissertation I propose a technique for
integrating independently developed estimates of policy
changes into exponential smoothing models to forecast
through future periods that have policy shifts. This method
consists of modifications of an exponential smoothing model
to incorporate the first differences of a policy change

estimate within the exponential smoothing model.



Two major hypotheses are examined:

1. The proposed technique provides forecasts that are more
accurate than are available from other exponential
smoothing techniques for the period beginning with the

onset of the actual level shifting data.

20 The proposed technique provides forecasts that are more
accurate and better fit than are available from other
exponential smoothing models for periods of time

following the period of a level shift.

These hypotheses are made more precise in Chapter 6.

The first hypothes*s is examined through 12 different
simulations of policy shifts over 20 data series. The
proposed technique, four other exponential smoothing
techniques, and the random walk approach are used to project
each data series through a period where a level shift is
anticipated. Hold out data is adjusted for simulated policy
changes. The forecasts are updated through six periods
under twelve scenarios of simulated actual level shifts.
Forecasts are compared with simulated actuals and errors are
calculated for up to fifteen periods subsequent to the six

update periods. The errors arising from various techniques



are compared across an array of statistics in the manner of

forecast competitions.

Descriptive statistics include three measures of Mean
Squared Error, three measures of Absolute Percent Error, a
measure of range of percent error and a measurement of rank
of absolute error. Each of these statistics is computed for
each series and then summarized for all twenty series. Four
summarizations are provided, the average of the twenty
series, the geometric mean of the twenty series, the average
ranks of the 11 scenarios for each of the twenty series, and
the summed Kruskal-Wallis ranks of the twenty series. Each
of these results is ranked among the 11 scenarios. The
average ranks and the Kruskal-Wallis ranks are tested for
statistical significance through two non-parametric tests,
the Kruskal-Wallis analysis an the Analysis of Variance by

Rank.

The second hypothesis is examined in a separate
forecast comparison. Twenty data series that are known to
have undergone previous level shifts are forecast using the
proposed technique in model fitting stage, and using four
other techniques. Magnitude of historical level shifts is
empirically estimated from the data. No simulated policy

changes are added to these data. Six updates are completed.



Hold out data is used to examine the accuracy of the
forecast as with the first hypothesis. Analysis of results

is as with the first hypothesis.

Overview of Chapters

In the second chapter I provide background related to
forecasting in public administration and background
discussion of forecasting in general and exponential
smoothing in particular. I describe Holt-Winters
exponential smoothing and discuss the relative worth of
exponential smoothing as a forecasting technique. In the
third chapter I provide a more complete discussion of the
problem proposed in this introductory chapter, specify the
research question for this dissertation, and discuss the
need for this study. In the fourth chapter I examine the
literature to determine what technigques might already exist
for addressing the proposed problem through exponential
smoothing. In the fifth chapter I propose an exponential
smoothing solution to the problem. In the sixth chapter I
examine the literature to determine various models of
forecasting research and examine appropriate models for
empirical evaluation of proposed forecasting techniques. I
provide more precise formulations of the hypotheses. In the
seventh chapter I define two research projects that are used

to examine these hypotheses. 1In the eighth chapter I



present the results of the two research projects. In the
ninth chapter I discuss results and draw conclusions. Terms
are defined in Appendix I. Appendix II includes formulas
for forecast techniques discussed. Appendix III includes
certain correlation matrices related to the data series used
in the research projects. Appendix IV contains tables
produced in the data analysis. Appendix V contains
information concerning the fit of the model in the second
research project. Appendix VI contains estimated level
shifts for the second research project. Appendix VII
contains formulas for the statistics demonstrated in

Appendix IV and certain other error statistics.

Summary

Forecasting is important for planning and budgeting,
two integral elements of public administration. Exponential
smoothing 1s a valuable forecasting technique. Level
shifting data is difficult to forecast whether through
exponential smoothing or other techniques. A method is
proposed for forecasting level shifting data. Two major
hypotheses concerning this technique are examined through

two research projects.



CHAPTER 2: BACKGROUND

In this chapter I:

Identify some uses of forecasting in public
administration.

Identify some occasions where a level shifting problem
arisefwith data forecasted for public administration.
This problem is discussed in more detail in chapter 3.
Discuss some general ideas regarding the display of
forecast data in graphs.

Discuss forecast techniques in general.

Discuss the use of a form of exponential smoothing
known as Simple Exponential Smoothing (SES) and two
variants known as Holt exponential smoothing and Holt-
Winters exponential smoothing.

Briefly explain why exponential smoothing is a useful

form of forecasting.

Forecasting in Public Administration
Some uses of forecasting in public administration are:
Revenue is forecast for budget planning and other

uses.?
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o Entitlement programs forecast enrollment and service
usage for budgeting and planning.*®
o Prison populations are forecast for budgeting and
planning.?
o Expenditures are forecast for budget planning.?*
o Special health care populations are forecast for

planning and other purposes.®

Many of these forecasts are made for budgetary and
planning purposes, and are intimately associated with the
analytic roles of such public administration professionals
as budget or policy analysts. Forecasting is an important
analytic tool for these public management and public
management support roles. Many techniques are used in the
practice of public administration. Publications and
entities that focus on public administration have sponsored

articles, chapters, or books concerning forecasting.®

Exponential smoothing, which is the specific
forecasting method studied in this dissertation, has been
suggested as a technique that would benefit local
governments in budget forecasting.’” This suggestion rests

in part on the simplicity of use. Further, 10% of municipal

*Known from my personal experience as the budget
director for the Department of Medical Assistance Services.
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governments us exponential smoothing for revenue forecasting
and 7% use it for expenditure forecasting.?®? Analysis of
exponential smoothing forecasting models has been accepted

as a dissertation topic in public administration.®

Governmental forecasting inaccuracy receives heavy
scrutiny even when estimates are extremely close.!® Both
revenue and expenditure forecasting receive close attention
in evaluating the fiscal status of the states.! 1In recent
yvears, evaluation of expenditure forecasting has

specifically focussed on Medicaid programs.?!?

Medicaid Forecasting

In Virginia, Medicaid general fund expenditures account
for 13% of all general fund expenditures in the Commonwealth
of Virginia for fiscal year 1994!® and is cited as among the
fastest growing components of the Commonwealth's budget.?*
Other states are experiencing similar growth in their
Medicaid programs and their Medicaid programs are of similar
magnitude within their state budgets.!® Medicaid
expenditures have been projected to climb to 25% of state
spending by 1995 (using a different measurement scale which
includes federal funds and has these expenditures at about

20% in 1994) .1°
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The Medicaid program is also a rapidly growing large
component of the federal budget, which currently consumes
about 6% of the total federal budget.!” Federal and state
spending on Medicaid overtook other public spending for the
poor in the early 1980s!® and is now the largest federal
grant program in state government, amounting to 35% of all
federal grants to states in 1991.° 1In 1991, federal
spending on Medicaid totalled $52.5 billion.?°® Medicaid is
overtaking the currently larger Medicare program which

accounts for 10% of the federal budget.?!

The Medicaid program is generally considered to be
uncontrollable. One of the components of the perception
this Medicaid is the fact that many states have had
difficulty forecasting their programs during a period of
significant policy change during the late 1980s.??* Federal
findings show state forecasting errors averaging 18% across
the country with Alabama underestimating its federal grant
by almost 90% for fiscal year 1991 (not all individual
states are reported);? however, the report leaves it
unclear as to how much error arises from actual forecast

error.

The federal government attributes a substantial portion

of the budget errors to "Substantial increases in inpatient
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hospital carel[,]...Increase numbers of beneficiaries, some
of whom now receive benefits as a result of post-1985
Congressional expansions of eligibility for Medicaidl[,
and] ... a generally unpredicted upturn in acute health care
costs."?* This is a not very clear attribution of a
substantial portion of these forecast errors to policy
changes, possibly as much as 41% (reporting categories are
not adequately clear to show a definite share). A recent
Health Care Financing Administration publication shows 39
"major" Medicaid expansions between 1986 and 1990.2° The
states have been complaining about federally driven Medicaid
expansions since at least 1988.%°® While exact attributions
of magnitude are not possible with this data, it is apparent
that it is difficult to forecast through periods of policy

change.

In this dissertation a technique is developed for
forecasting through periods of policy change when externally
developed estimates of the policy change are available. I
have developed this technique with the forecasting problems
of the Medicaid program in mind. It is not unreasonable to
expect that such estimates are often available.?” The
policy change problem is discussed in more depth in the next

chapter.
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Policy Changes Occurring Throughout Governmental Data
As discussed in the next chapter, the same problem

arises in the corrections environment. Corrections is
another significant area of state budgeting that is thought
to be out of control.?® 1In the corrections environment this
problem may be exacerbated by the fact that policy changes
may have extremely long lead times from policy decision to

impact on the data series.®

While the significance of the policy change problem is
not well documented in public administration literature, it
is not completely ignored. Wilpen Gorr has written on the
significance of tracking public policy factors in
governmental MIS systems for the purpose of using them to
explain forecast.?® A portion of his argument is that when
public planners forecast data series that have level shifts,
user confidence in the forecast depends, in part, on there
being adequate understanding of the reasons for those
shifts. He cites techniques such as those of Lewandowski
and of Makridakis and Carbone (reviewed in a Chapter 4
below) as potential methods for forecasting with data that

has such shifts.

°In a presentation to a forecasting technical panel in
July 1993, a Virginia Department of Corrections analyst
presented data that showed lead times of five or more years.
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Example Cartesian XY Graph
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Figure 2

Forecasting Background

Cartesian XY Graph

Forecast data is frequently displayed on a Cartesian XY
graph calibrating the X axis in roughly equal time units,
and the Y axis in the observation measurements of the data.
The data is usually displayed with the first available
observation at the Y axis and each subsequent observation
displayed one time unit to the right. Each observation is
located to the right of its Y measurement and above its X
axis time mark. By connecting these observations one
obtains a curve that follows this data across time.
Figure 2 shows a Cartesian XY graph. Throughout this

dissertation XY graphs are used in this manner.
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Forecasting Techniques
There are number of forecasting techniques ranging from
intuitive or judgmental to highly complex mathematical
approaches. 'In general these techniques rest on an estimate
of central tendency, such as an average, or its variate with
possible consideration of some predictable variation from

central tendency, such as seasonality.

Simple techniques generally treat a recent observation
(sometimes called the naive method’® or random walk®'), the
average, or a trend added back to one of these as a the
forecast. Simple trends include both differences between
recent observations (additive trend) and ratios between
recent observations (multiplicative trend). (Formulas that
demonstrate these trends and other forecasting methods

discussed in this dissertation can be found in Appendix II.)

Simple techniques can also involve data cleaning such
as adjusting data to remove the effects of general inflation
by converting nominal dollars to constant dollars.3? An
even simpler technique is the use of a known fixed number as
a forecast. Where the forecaster has good reason to believe
it is correct, no other forecast can compare with a fixed
number, for example, the number of days in any future week

in the relevant future can be reliably forecast to be 7.
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Intermediate levels of forecast techniques generally
include moving averages (defined in Appendix I) and
exponential smoothing.3®* There are several forms of
exponential smoothing, one that is frequently mentioned in
forecasting literature is called Holt or Holt-Winters
Exponential Smoothing. This technique forms the basis for

most of the discussion in this dissertation.

Two types of techniques that are more sophisticated
than exponential smoothing are ARIMA (Auto-Regressive
Integrated Moving Average) techniques, and correlation based
techniques.? ARIMA is a complex system of equations and
evaluation techniques that are similar to exponential
smoothing techniques, in fact, Holt exponential smoothing
can be shown to be a special case of ARIMA.3** Correlation
techniques generally involve determination of a causal
relationship between independent and dependent variables

through regression models or systems of regression models.?3®

These techniques account for a large share of forecast

7 and the more

techniques used in actual practice,’
sophisticated ones (including exponential smoothing) are

commonly included in forecasting texts.3®

*Multiplicative Holt-Winters is not reducible to an
ARIMA model.
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Exponential Smoothing
Exponential smoothing is a method of projecting serial
data into the future through a statistical evaluation of
forecast errors arising in the exponential smoothing model.
Single exponential smoothing (SES) is a moving average that
places more weight on recent observations. It is sometimes
called an exponentially weighted moving average. The
weights diminish exponentially as new observations are added
to the model, which fact gives this method the exponential
part of the name exponential smoothing.?®
The idea of SES is that more recent observations are é
better predictor of the future level of a series than are
older observations. Level refers to the central tendency of
a data series. Since every individual observation contains
some random noise, the latest observation by itself is not
the best predictor of the future series. By averaging in
older observations, this noise is smoothed away. However,
by weighting the observations towards the current period,

the model still reflects the current period information.

Exponential smoothing provides a summary of this data
through a curve that follows the data through the same time
period, but has less overall variation. The difference

between the model curve and the actual data is the known as
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residual noise, random variation or error. When the
observations are exhausted at the current period, SES
projects future values as the level calculated from the
error calculated with the last actual observation.

Figure 3 depicts a forecast made with SES.

Example of Simple Exponential Smoothing
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Figure 3
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SES is produced by the following formulas:*%%

= = P, —~ X,
F..i = F, + e,
Where,

er = Error of observation t,

X, = Observation t,

F, = Forecast of observation t,

O is a weight parameter subject to 0 a 1, and

t is an index of time.

To fit a model, the parameter o is fit to the curve
using an optimizing technique. The optimizing technique
generally involves reducing Root Mean Squared Error, Mean
Absolute Percent Error or some other loss function to a
minimum. A loss function is a statistic that represents the
cost of error in the forecast.!' Different types of loss
functions treat error differently. For example, loss
functions that square errors place greater emphasis on
reducing the largest errors, while absolute error loss

functions do not.

*Throughout this dissertation notation is adjusted from
that arising in source documents to increase the
consistency.
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The first forecast (F,) in the series can be zero, or
it can be initialized at some value that the forecaster
believes to be close to the initial level of the series. F,
is the model value for the first observation in the series,
that is, at the far left side of the graph; it is not the
first forecast after the end of the historical data. In the
graph the forecast is shown as a line with F, beginning at

the same point as the first actual observation, X,.

When o is set at zero, then F does not change from
period to period, so it remains the initial wvalue, F,. When
O is set at 1, F for periods beyond the current period are

identical to the current period X.

It is apparent in Figure 3 that the average of the
actual observations, 147, would be a considerably worse
predictor of the future value of the series than the SES
prediction of 279. However, it is also apparent that the
series is trending towards even higher numbers. SES is not
able to capture such a trend. A technique that can capture

a trend is Holt Exponential Smoothing.
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Holt exponential smoothing decomposes data into level

and trend.

Trend refers to the slope of a data series and

is the difference between two successive observations.?*

When the observations are exhausted at the current period,

the Holt model projects future values by repeatedly adding

back trend to the level to project the next level.

It is

explicitly defined through formulas*® which can be found in

Appendix II.

Example Holt Exponential Smoothing
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Figure 4

®Discussion of Holt and Holt-Winters exponential

smoothing closely follows Makridakis,

see endnote 12.

Wheelright,

and McGee,
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Holt exponential smoothing adds a P parameter for
trend. Both o and P are optimized subject to the
restriction ® = {,B), 0 & 1. This technique begins
with an exponentially weighted moving average, but also adds
an observed trend to the extrapolation. When the trend
elements of the Holt model are set to neutral values, Holt

exponential smoothing is equivalent to SES.

[Example Holt-winters |
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Holt-Winters Seasonal Exponential Smoothing
While Holt allows consideration of trend, it does not
help with seasonally fluctuating data. The following graph

demonstrates Holt model that also includes a Winters
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multiplicative seasonal component.*® Formulas are in

Appendix II.%®

On the XY graph, Holt-Winters makes the curve less
smooth by including expected seasonal variation through a
third parameter, y. The parameters, & = {a,B,Y)., are
optimized subject to the restriction, 0 & 1. Where data
is significantly seasonal, normal seasonal variation is
treated as expected rather than as error, so it does not
result in misleading forecast correction with each update.
When the seasonality component of Holt-Winters is set to

neutral values Holt-Winters is equivalent to Holt.

Predictable Variation

Seasonality is a form of predictable variation. Other
techniques are also available for reducing predictable
variation, e.g., data can be divided by the number of
trading days, ! before it is entered into the statistical
forecast model® and then readjusted after forecasting

through the model to produce a full forecast. Such

®In this study I use "forecast model" to refer to
statistical forecast models which are equations or systems
of equations that include parameterized evaluation of
forecast error. It is also possible to refer to any set of
equations that result in a forecast as a "forecast model."
Although either usage may be correct, I use the term to
refer to statistical models.
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adjusting and explaining involves attempts to reduce the
amount of variation that is left as residual noise. The use
of trading days is part of the broader approach of data
decomposition, where forecasters try to break down a series
into simpler component series before forecasting,?’ for
example, one may break down a forecast of expenditures for
health care services into a forecast of units (services
delivered) and a forecast of expenditure per unit, this
would be a multiplicative decomposition; alternatively, one
might break down a forecast of service units into service
units delivered to adults and service units delivered to

children, this would be an additive decomposition.

By decomposing data into simpler series, forecasters
have a better opportunity to determine the intuitive
reasonableness of forecast projections. This benefit arises
because homogeneous data series are more likely to have only
a few primary factors generating their trend; thus,
incongruous information is more obvious (e.g., a forecast of
gross expenditures may be allowed to grow because of "trend"
when a forecast of units of service would not be because the
forecaster knows that a regulated service capacity limit has
recently be exhausted). Thus, decomposition is closely

related to causal analysis.
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The SES formula presented here and related formulas
included in Appendix II are the error formulation of these
models.*® This formulation demonstrates the relationship
between the determined error (variation between forecast and
actual observation for any period t), and the projection for
the next period. Specifically, the forecast for the level
or trend components for period t + 1 is the forecast for
that component for period t plus a proportion of the error
in that forecast.?® 1In the case of seasonality the
interpretation is slightly more complicated but essentially

the same.

This proportion-of-error provides a common sense
interpretation of the parameter restriction, ® = {a,B,Y),
0 ¢ 1, as proportions are naturally limited between
none = 0 and all = 1. On this interpretation, error that is
highly likely to indicate change in a component should be
weighted highly, while error that is likely to be random
noise should be given limited weight. Thus, a parameter
approaching 1 indicates that, for the specific component,
forecast error can generally be taken to mean that there is
a change in the data, while a parameter approaching 0

indicates that error is best interpreted as random noise and
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the forecast performance is not significantly improved by

heavily considering the magnitude of the most recent error.

Exponential Smoothing And Sophisticated Techniques
While some of the discussion in later sections and
chapters addresses the presence¥ of a discontinuity problem

that is the subject of this dissertation when forecasting
with sophisticated techniques such as ARIMA, Kalman filters
(defined below on page 69), or regression, the objective of
this study is to examine the problem when forecasting with
exponential smoothing. In this dissertation the discussion
of both problem and solution focuses on exponential
smoothing. This should not be taken to imply that the
problem does not exist with other forecasting techniques,
nor that it cannot be addressed through those other

techniques.

A Valuable Alternative to Sophisticated Techniques
Regardless of potential benefits of sophisticated
techniques, exponential smoothing is a valuable forecasting

technique. It has some of the advantages of the less
sophisticated techniques and some of the advantages of the

more sophisticated techniques.
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Advantages as a Sophisticated Technique

Like the more sophisticated techniques exponential
smoothing is reasonably reliable.*® Sometimes regression
based techniques and ARIMA are assumed to be most reliable
forecasting techniques because they are the most
sophisticated. However, forecast literature tends to
support the view that simpler techniques, particularly
exponential smoothing, are more reliable.’® Armstrong has
argued that the persistent belief that the most
sophisticated techniques are the most reliable does not
reflect actual empirical evaluations of such techniques.®?
Some of the specific considerations about sophisticated
techniques involve forecast fitting, turning points, and

sophistication itself.

Forecast Fitting

It is sometimes thought that techniques that are more
effective in fitting data during the sample period also do a
better job in forecasting. This has not proved true.?>3
Sample period fit is considered an unreliable indicator of
forecast accuracy. Consequently, more sophisticated
techniques are not de facto better than exponential
smoothing solely because of any increased effectiveness in

sample period fitting.
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Turning Points

Turning points are points in a series where a trend
shifts. Simple extrapolative techniques like exponential
smoothing can discover turning points only after they have
occurred. Sometimes sophisticated techniques are thought to
be effective in predicting the turning points of economic
cycles; however, such techniques are not proved to be
effective.®® The point here is not that simple techniques
can predict turning points, but only that more sophisticated

ones are not particularly better at it.

Sophistication

A particular problem that arises with sophisticated
techniques is that sophistication can lead to error.?® This
problem arises because sophisticated technigques involve a
higher risk of confusing forecast noise (unexplained
variation) with information. As parameters or other
strategies for extracting information from varying data
increase, so too does the risk of finding a pattern that
appears to be meaningful when it is not.®® Simpler
techniques do not risk as much error of this sort because

they do not attempt to explain as much wvariation.
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Advantages as a Simple Technique

In the previous sections I reviewed reasons why simple
techniques such as exponential smoothing are often just as
accurate as more sophisticated forecasting techniques. 1In
that respect exponential smoothing has the same forecasting
benefit as sophisticated techniques. Even when exponential
smoothing may not be as accurate than these more
sophisticated techniques, it may be better because of its
advantages as a simple technique. These advantages include

lower cost and lack of dependence on exogenous data.

Lower Cost

A modest gain in forecast accuracy attained by using
more sophisticated techniques may not justify the cost in
analyst time and skill.®” Exponential smoothing is fairly
easy to learn and to apply.’® It is, therefore, useful when
the forecasting work force is not itself skilled in more
complex statistics. Also, it can be applied to a large
number of data series with a relatively small amount of
work. This advantage is in direct contrast to the need for
sophisticated skills and considerable analyst time for

applying correlation based technigques and ARIMA techniques.

This advantage should not be thought to imply that

exponential smoothing is associated with less capable
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analysts. Instead, the use of skills associated with
fitting sophisticated statistical models may consume time
and effort that may be better spent investigating the data
generating functions that produce the data series being
forecast.®® 1In an actual work environment as may arise in
public administration, the analyst must allocate an
appropriate level of time and effort to various tasks.
Exponential smoothing may allow the allocation of less time
to model fitting which, in turn, allows the allocation of

more time to other tasks.

Endogenous Data

Exponential smoothing does not require the availability
of data series and forecasts of data series that can be used
as exogenous (independent) variables. Correlation based
forecast techniques depend on the availability of forecasts
of independent variables which, in the end, must be
generated either from macro-economic models, judgement, or

® or which may not be available at

extrapolation techniques;®
all.®® As Vollmann, Berry, and Whybark put it, "In the
first place, in certain instances, we simply have no past
data [with which to develop correlation analysis]."® These
techniques are not appropriate where forecasts of causal

data is not available, "The [econometric] approach, even if

fundamental for policy analysis, is often inappropriate for
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very short-term predictions, first of all owing to the lack

of the relevant data on the exogenous variables."®

The mere fact that independent variables can be
correlated with the data that one wants to forecast in a
regression model is not sufficient for use of the
independent variables in forecasting, since the forecast of
the dependent variable can extend only so far into the
future as the availability of the independent variable
unless the model also provides for a forecast of the
independent variable. Extrapolation based techniques such

as exponential smoothing do not have this difficulty.

Even where forecasts of independent variables are
available, they may have too much variance to be useful for
forecasting. Richard Ashley has demonstrated that
correlation based forecasts that depend on forecasted
independent variables may be particularly inaccurate.® He
finds that when a regression based forecast depends on a
forecasted independent variable where the forecast of the
independent variable is subject to significant variance, it
is likely to be less accurate than a misspecified forecast
(one that ignores an obviously significant independent
variable). This finding casts considerable doubt on whether

correlation techniques (which include some more complex
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ARIMA techniques that are discussed in this dissertation)
are likely to be more beneficial in forecasting than simpler

extrapolation techniques such as exponential smoothing.

Causation

I am left with the idea that some people simply cannot
accept that forecasts that ignore regression and covariance
may be better than, or at least as good as, forecasts that
rely on extrapolation techniques. This remaining hesitancy
undoubtedly relates to the notion of causation. Although it
a tenant of research design that covariance does not, by

> covariance is commonly assumed to

itself, imply causation,®
be statistics' most powerful measure of causality. For the
moment I will set aside the philosophic problem of
induction® which is the root of the problem of covariance.
In practice causation is demonstrated by logically isolating
the relationship (or accounting for all important component
causes within the covariance structure), telling a good
story as to why there is causality, establishing temporal
order, and demonstrating covariance.®’ Regression gets only
the last of these. No amount of model fitting and
regression diagnostics i1s an adequate replacement for
following all of these steps. In practice, forecasters may

frequently find limited amounts of data that are available

for forecasting to the horizon they need. When faced with
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this condition and, perhaps, a false perception that a high
correlation coefficient is proof of a good model,
forecasters may turn to correlation maximizing techniques
such as stepwise regression®® rather than carefully
demonstrating causality. Even if they avoid the correlation
maximization error, they may not be afforded the luxury of
fully demonstrating causality. As compared with techniques
that carry such heavy baggage, it should not be surprising
that techniques that rely on much simpler assumptions
(essentially, that demographic or economic data does not
fluctuate widely over a short period of time) can produce

comparable forecasts.

Conclusions Regarding More Sophisticated Techniques
Exponential smoothing is a valuable forecasting
technique. In this dissertation it is considered worth
further examination and refinement. The possibility that
other more sophisticated techniques may provide alternative
solutions to the problem that is described in this
dissertation is not considered a reason why it is not worth
resolving the problem within exponential smoothing. In
particular, more sophisticated techniques may be considered
to exhibit problems that simpler techniques may avoid. If
the problem presented in this dissertation can be resolved

or ameliorated without significant loss of simplicity, it
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will be considered a worthwhile improvement, regardless of
whether the solution is the most accurate solution available
under ideal conditions for use of sophisticated techniques.
Actual forecasting may frequently occur under conditions

that are not ideal for use of sophisticated techniques.

Summary

Forecasting is an important analytic technique used by
public administrators for numerous public budgeting and
planning purposes. Forecasting is an accepted topic of
discussion in public administration literature. The level
shifting problem identified briefly here an discussed in
the next chapter arises in data that is forecast for
planning and budgeting in public administration. There are
various techniques for forecasting serial data, these range
from simple to sophisticated. Exponential Smoothing is at
the intermediate level of sophistication. Several versions
exist. Research indicates that exponential smoothing may be
as accurate in forecasting as more sophisticated techniques.
This dissertation focuses on the use of exponential
smoothing as a forecast technique. Discussion of problems
arising with this technique should not be taken as implying

that the same problems do not arise with other techniques.



CHAPTER 3: LEVEL SHIFTING DATA

In this chapter I will:

o Describe a problem that arises with level shifting data
series.
o Describe some simple approaches to coping with this

level shifting problem.

o Explain why these approaches should fail.
o Specify the research question of this dissertation.
o Show that additional research into the level shifting

problem is needed.

Level Shifting Data

A type of data series that is particularly difficult to
forecast is one that adjusts upwards or downwards reflecting
some external intervention.®® I generally refer to these
external interventions as‘&\policy changes or level shifts.
They may also be known by such terms as discontinuities,
exogenous events, externalities, interruptions,
irregularities, outliers, ramps, shifts, steps, transients,

70*

etc. These shifts constitute a significant source of

forecast failure.’?

‘These terms are fairly generic and may also refer to
events in data that are not associated with external
interventions.

36



37

In this study I am interested in interventions that
result in a permanent level shift in data. Level shifts
involve two nearly parallel slopes (trends) that are
connected by a ramp of two or more observations including
the end points of the ramp. A ramp is a series of
observations that has a steeper or less steep slope than the
slope of the periods immediately before or immediately
afterwards. When the ramp occurs in the slope between just

two end points, it may be called a step.’

Example Ramp
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‘These terms are being defined here, however, they are
consistent with uses that are common in forecast literature.
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Example Step
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Figure 7

Public administration related data is frequently
subject to interventions because of decisions made in the
policy making cycle; however, interventions can occur for
reasons other than policy making, such as changes in the
billing practices of government vendors, addition of
significantly large entities to tax or other revenue roles
or removal of the same, changes in the items counted in
data, re-categorization of data, changes in practices that

generate data, etc.

This study concerns level shifts that arise from

pPlanned policy changes, or other events that are similar to
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planned policy changes in that they can be anticipated in
advance. When such events occur, it is possible that the
magnitude of such events can be anticipated before they

occur. Following is an example of a planned policy

intervention.
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In the Medicaid program each service in a class of
services may be subject to a rate ceiling. A public policy
intervention may be to raise the ceiling to a new benchmark

level. 1In fact, in 1990 Virginia substantially raised its
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rate ceilings for physician services.” The impact of this
policy change on the data series can be seen in Figure 8. A
rate change amounting to over 30 percent of the prior level
occurs between the 18th and 23rd periods. The Department of
Medical Assistance Services anticipated this level shift in

the planning that went into setting the new rates.

Poor Performance

As a user of exponential smoothing,” I have found that
this technique performs poorly when data undergo the sorts
of adjustment described above. I have found three problems
of reliability and accuracy’’ associated with the three
locations in time where the current period might be in
relation to the level shift. The same sorts of problems

arise with more sophisticated techniques.’?

‘Information regarding the Virginia Medical Assistance
Program is known from the researcher's employment with this
program for 13 years.

“"This discussion reflects my experience as a user of
exponential smoothing and is consistent with the proportion-
of-error analysis as discussed beginning on page 26. While
the general problem of discontinuities is discussed in
forecasting literature (see endnote 82), it has not been
well analyzed. Thus, there is no precedence for this
description of this aspect of the problem.

***In this discussion a "reliable forecast" is one that
is not subject to vast variation from one update to the next
while an "accurate forecast®" is one that turns out to be
right.
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Reliability and Accuracy
Exponential smoothing forecasts of data that experience
level shifts are not reliable, that is, forecasts fluctuate
considerably as the forecast is updated, i.e., new
observations are added to the historical observations.
There are three phases to this aspect of the forecast

problem:

o Before the change exponential smoothing models do not

reliably project through the period of change.

o During the shift and immediately afterwards,
exponential smoothing models do not effectively respond

to the change.

o After the change exponential smoothing models be less
effective for a considerable number of updates while
waiting for the problems that arose during the shift to
clear up, or they become highly wvolatile reflecting the
undesirable effects of adjusting parameters to let the

forecast keep up with the change.

Future Level Shifts
Exponential smoothing forecast models are not

particularly good at forecasting through future periods
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during which such planned level shifts are anticipated.
Exponential smoothing models contain no information about
future level shifts in their historical data, have no other
source of information, and have no means of efficiently
using information that may be known to the forecaster, but
not found in the historical data.” As a result, they do not
forecast the level shift. When the actual level shift
occurs, data is considerably different than expected, so the
model must adjust. Earlier projections are replaced by

considerably different later projections.

Concurrent Level Shifts

D. W. Trigg and A. G. Leach describe the ineffective
response of exponential smoothing models, "With low values
of o the forecasting system will take an unacceptably long
time to home in to the new level; biased forecasts will

"73  This problem

occur and will continue for some time.
arises because of the proportion-of-error adjustment that
has been described. Under ordinary circumstances the

forecast has already explained most variation and the

remaining variation is noise. Consequently, the model tends

‘This assertion follows logically from the fact that
exponential smoothing models are fit to minimize a loss
function that measures historical errors; historical errors
are the only source of information for exponential smoothing
models.
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to avoid adding back a large proportion of error to the
previously existing forecast. However, when the level
shifts much more of the error is information. If the model
assumes that the error is noise, it will discount the error

too much, which leads to inaccurate forecasts.

Past Level Shifts

This ineffective response can continue for a long time
after the level shift occurs’ while the parameters continue
to sort out the forecast error into noise and information.
Alternatively, the forecaster may intervene by raising the
O parameter which may allow for more rapid sorting out of
noise and information in the level shifting period.
However, this may cause a loss of stability in the
underlying forecast, particularly where the underlying data

series is characterized by high variance.

Example Level Shift With Exponential Smoothing
The following graphs show the impact of the previous
level shift on a forecast made through a variant of the Holt

exponential smoothing model with parameters of o = 0.25 and

B = 0.01.



Forecast With Level Shift
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The movement of the partial line shows the updated actuals.

Initially the model contains
no information about the
policy change, it projects
the series without the
policy change. At this

point the forecaster can

lump on the estimated impact

SETREIRESBEORNRIRBUBAENSE
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Figure 9

of the policy change directly onto the results of the

statistical forecast model to get a forecast.

Second Update

As the policy change begins
to take effect, the
statistical forecast model
follows the policy but at a
rate that is discounted by
the amount of the

O parameter. At this point,
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TTTrT LV ETTT

TTTTET T Y

R

Figure 10

the forecaster must begin to estimate how much of the

policy

is "in" before he can lump on the remainder to make a whole

forecast.
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Third Update

As the policy ramp

EXAMPLE UPDATES

continues, the trend begins

oo
o

to respond to the policy

impact. Here, even if the

forecaster accurately

 Memts et O W et e

estimates how much the

. : . Figure 11
policy is "in, " he must e

also factor out how much the statistical forecast model is
overestimating before he can make an accurate whole
forecast. During this period, it is not possible to simply
add the lump sum value of the policy to the prior forecast,
because some of the impact of the policy is in the forecast.
The data associated with the policy change is beginning to
enter into the historical series, the forecast model is
adjusting the projected future level and trend - however
inaccurately - for this change. If the policy is added back
to the forecast, the overall estimate will be too large. If
it is not added back to the forecast, the overall estimate

will be too small (or large for negative changes). The only
option available is judgmentally adjust the lump sum amount

to add back to the forecast.



Fourth Update

While the policy change is
fully in effect, the
forecast errors remain
large. Both level and trend
continue to adjust upwards
reflecting the presence of
positive forecast errors.

At this stage, the forecaster

much the policy change is

with how much the statistical

the policy impact on the data.

Fifth Update

While the data series begins
to return to pre-policy
change patterns at a higher
level, the statistical
forecast model continues to
adjust upwards due to the
(In

large positive errors.

this actual data series other

trend just after the rate change.
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no longer worries about how
" Instead, his problem is

forecast model is affected by
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events led to an shift in the

Had this not occurred,

the overestimation of the trend would be even more extreme.)



Sixth Update

The actual data has returned
to the pre-change pattern,
but the forecast continues
to adjust upwards in both
level and trend. The short
term forecast is too low,

because the level 1is

underestimated.
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EXAMPLE UPDATES
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The longer term forecast is too high,

because of an overestimation of trend.

Seventh Update

As the positive errors
continue to raise the level
and trend, the forecast
begins to over estimate
most of the data series
while continuing to
underestimate the next few

observations.

EXAMPLE UPDATES
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Eighth Update

Since the short term

EXAMPLE UPDATES

forecast continues to
underestimate the next

observation, the level and
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trend continue to adjust

upwards, producing a severe

over estimate of the

intermediate and longer horizons.

Ninth Update

Ultimately the level catches

EXAMPLE UPDATES

up with the trend. At this
point, the short term

forecast may be reasonably

S8 EXTEEEREEENNLES
T T T

accurate for one to three

future periods. However,

. . ) Figure 17
the intermediate forecast 1is SIS

over estimated because of the trend adjustments and the

longer term forecast is severely over estimated.
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Ineffective Responses to Level Shifting
Following are some of the obvious ways that exponential
smoothing models can be used when the data they forecast
experience the sort of shift described above (these
approaches are presented to clarify the problem, other

approaches are reviewed in the next chapter):

Level Left Optimized

The level parameter can be left as optimized before the
shift and the forecaster can wait until the forecast model
ultimately becomes effective again after many periods of
ineffective forecasts.’” The forecasts will be ineffective

for two reasons:

o Since the forecast is optimized at a time when the data
does not experience such a massive shift, it will
consider a high proportion of the variation in the data
as random noise (i.e., the o value will be set at a low
number). Thus the information contained in the level
shift will be excessively discounted, and the level of
the forecast will fail to keep up with the more massive
shift associated with the policy intervention. Thus,

the near term periods of the forecast will be under
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estimate the level shift (become biased in the opposite

direction of the level shift).

o Since the level will fail to keep up with the shift,
the errors will become much larger than usual, and will
be highly autocorrelated, i.e., will repeatedly have a
positive or negative sign. This result will cause the
correctly estimated trend and seasonal factors to over
respond to the error and become incorrectly estimated.
After a few periods the forecast will severely over
estimate the change in trend with respect to the level
shift, thus the more distant horizons of the forecast
will be over project in the direction of the level
shift. Similar, but more complex, confusion will occur

with seasonality.

Adjust the Level

The level parameter can be adjusted (increased) to
allow the forecast to respond to the new level shifting
information.’® Since the level parameter is a proportion
that is multiplied against the error to produce a new level
estimate, the shift can be rapidly included in the forecast
by setting the a parameter very high. In this study, this

approach, when combined with adding in the lump sum value of
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the expected policy change, will be called the ad hoc

method.”

As seen in the following graphs, this approach also
produces an ineffective model. Although the model responds
to the level shift, thereby resolving, or at least
mitigating, the difficulties discussed above, it does not
restrict is response to that level shift. When the level
shift is over, it continues to respond just as rapidly to
random noise. Over time the forecast changes significantly
from period to period, making specific forecast results
unusable as it is difficult to determine which projection to
rely upon unless the forecast user is interested only in the

next future observation.

In the following graphs, the same data as shown in the
previous models is forecast with o = 0.8 and 3 = .01.
Selected updates from periods after the level shift are

shown to demonstrate the consequence of raising o to allow

"I have not found literature that demonstrates the use
of the ad hoc method; however, it is clearly the simplest
approach available. When I have discussed the technique
proposed in Chapter 5 with forecasters, I have been asked
how it differs from the ad hoc technique which is, by
implication, potentially adequate to meet the problem.



the policy change level shift

Level Shift o = 0.8

When the forecast parameter
is raised to reflect the
anticipation of a level
shift, the forecast catches
up with the level shift
after a fairly short lag.
This reduces, if not

eliminates the negative

impact on the forecasted trend.

Update with Variation
Afterwards, when the data
experiences significant
variation that is simply
unexplained noise, the
forecast level follows the
variation just as faithfully
as it follows the explained

level shift.

to rapidly come into the
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model.
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Second Update

This tracking of variation AP ETRBATER

produces a roller coaster
effect in the forecast.

Sometimes the forecast 1is

down as with the last graph

—— fendh i O W Ao

and some times it is up as

Figure 20
with this one. L

Third Update

The consequence of this
EXAMPLE UPDATES

roller coaster effect is

TTTTTT

that each update produces a

whole new forecast that is
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significantly different from

the previous forecast — o m—h——

Fi 2
update. The user does not ignEe 21

know which one represents the anticipated future. The
forecast is no longer an abstract summarization of the
historical data, it is instead a trend that takes off from a

point near the last actual observation.
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Updating
A topic that is not widely discussed in forecasting
literature is the matter of updating, for example while he
widely cites studies for almost all other assertions, J.
Scott Armstrong's discussion of updating exponential
smoothing models is limited to: ‘"Frequent updating is

*77 Many

important for accuracy [Italics in original].
organizations make periodic forecasts of the same data

series. When such reforecasting is made with the same or
similar models from time to time, such forecasting may be

called updating. In my practical forecasting experience,

updating is an important aspect of forecasting.

For intermediate and longer forecast horizons,
including many horizons of governmental forecasts, there are
two contrary needs with forecast updates. First, the
forecast should not experience high variability (bounce
around a lot), in other words, it should be reliable.’® If
updates are fregquent, say monthly, and the forecast
frequently changes by a significant amount, say 10 percent
of the incremental growth from a current year to a budget
yvear, the forecaster cannot have a lot of faith in the
current forecast as compared with the forecast from the most
recent previous update. On the next update it might bounce

back. Second, the forecast should change when there is a
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change, in other words, it should be accurate; that, it

would seems, is the point of updating.’

In part, the problem that is raised in this
dissertation is a problem of updating under conditions where
one of these two needs may not be met. If the forecaster
uses commonly accepted techniques to avoid excessive
variability, i.e., optimizes a forecast in the absence of
level shifts, the forecast likely will not change when the
level shift occurs. On the other hand, if the forecaster
adjusts the forecasts to recognize the level shift by
raising the level parameter to a high value (or, as will be
discussed later, by using an adaptive technique), the
forecast may respond not only to the level shift, but also

to every other event that might cause noise in the data.

Research Question Specified
In this dissertation I ask: Can a method be devised
to use prior knowledge of policy shifts to improve
performance of exponential smoothing forecasts? I compare
the performance of various simple exponential smoothing
models and approaches that might be used to forecast through
periods of level shifting. I examine whether any of the

methods considered is superior. Included among these
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methods is a method I have developed for use when policy
changes are anticipated (see Chapter 5). Two major

hypotheses are specified in Chapter 6.

Need for a Study

As a forecast practitioner for a public program I find
that policy changes pose significant difficulties for
forecasts. When I have information about prospective level
shifts, I have found it difficult to effectively use that
information. The approach I formerly used was to add back
the data in lump and let the forecasts adjust to the data as
policies went into place (the ad hoc method). This proved

unsatisfactory in practice because:

o Forecasts perform particularly poorly when the data
series they forecast are undergoing or have recently

undergone level shifts.

o It is difficult to account for out year consequences of
policy changes when they are added back in lump sums.
Typically in forecasting for the Virginia budget one
needs forecasts that address the current year and two
subsequent years. Lump sums that may reflect mid-year
policy start up are seldom of much use for any year but

the year that the policy is expected to go into effect.
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o It is difficult to work with lump sum amounts when
summing the forecast over various periods for various
purposes. The Medicaid forecast is summed over one
fiscal year for use in state budgeting and another
fiscal year for use in federal budgeting. Lump sum
policy estimates only add confusion under such

circumstances.

o Lump sum changes are particularly difficult to work
with when initial assumptions change due to the nature
of decisions that are made as the policies are put into

place.

o Once lump sum policy changes begin to become part of
the data series, there is little information available
to guide the judgements necessary to decide how much of

the policy is "in."

The practice of increasing the level parameter to allow
the policy change in quickly avoids some of the consequences
of the problem, although not all (e.g., it does not resolve
the question of how much of the policy is "in"). However,
it brings its own costs in terms of increased forecast

variation (see Figure 18 through Figure 21).
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In discussions with other practicing forecasters I have
found that they too have difficulty with policy changes.
For example, the Virginia Corrections forecast has
difficulty with accounting for the impact of new laws that
result in prison sentences on their forecast of new

commitments .8

As discussed by Fred Collopy and J. Scott Armstrong, !
the problem of ramps and steps is one of the more severe
unresolved problems in time series analysis. As discussed
above, these problems arise in data that is forecasted by
and for the public sector and are significant to planning
and budgeting for major public programs. It is, therefore,
useful to the practice of public administration to evaluate

a technique that may mitigate this problem.

Summary
Level shifting data poses a significant problem for
forecasting through exponential smoothing models. It can
cause an exponential smoothing model to experience a
considerable period of serially correlated errors. Such
errors may lead to inappropriate estimates of trend which
may continue for some time after level projection errors are

corrected. Adjustment of the o parameter may reduce these
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problems, but it can lead to instability (high variability)
in the forecast. When forecasters possess information about
prospective level shifts, exponential smoothing models do
not make optimal use of that information either in making
projections or in minimizing error in the model. With the
standard Holt-Winters type exponential smoothing models one
cannot simultaneously minimize variability of forecasts and
maximize response to anticipated level shifts. In this
dissertation various models are examined to determine
whether one is more effective than another in projecting
level shifting data. One model that is included in this
comparison has been developed explicitly for dealing with
this sort of data. Recent publications indicate that
forecasters consider the family of problems of which it is a
member, discontinuities, to be one of the more severe

problems presently unresolved in time series analysis.



CHAPTER 4: FORECAST LITERATURE CONCERNING LEVEL SHIFTS

In this chapter I will:

o Examine the forecasting literature regarding
discontinuities.

o Identify techniques used to identify level shifts.

o) Identify techniques used to adapt to level shifts.

o Identify techniques for forecasting where prospective

level shifts are anticipated.
o Briefly review literature regarding estimation of

prospective level shifts.

Literature Regarding Discontinuities

Fred Collopy and J. Scott Armstrong have recently
asserted, "[Time] series forecasting research and practice
have largely ignored abrupt changes."® They find this
particularly mysterious because they find that 92% of
forecasters consider this topic to be important in selection
of extrapolation methods, ranking it the third most
important feature examined.?® An examination of the
literature reveals that things are not as bleak as Collopy
and Armstrong assert. Three common approaches to
forecasting through periods of discontinuous data series are

techniques that:

60
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o Alert the forecaster to suspect that the model is

misfit at the point of update,

o Recognize the discontinuity and adapt to it, or
o Assist in fitting a model under conditions of
discontinuity.

Alerting the Forecaster to Discontinuities

A tracking signal is a statistic that is used to signal
the forecaster that something has occurred near the end of
the historical period that may result in the forecaster's
wanting to reconsider and replace the current forecast
model. Everette S. Gardner, Jr., identifies several
tracking statistics including the simple cusum, the backward
cusum, the smoothed error tracking signal, and the
autocorrelation tracking signal.®® These tracking signals
monitor forecast errors to determine whether the models are
in control, that is still reasonably well fit. They
demonstrate out of control conditions when they exceed
certain critical wvalues. The principal underlying these
methods is to establish a ratio related to the error term in
the forecast model. Critical values are values at which
these ratios indicate that the forecast is out of control,
for purposes of this study that would mean it had undergone
a level shift. Gardner's findings suggest that all these

methods are useful under appropriate conditions. John O.
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McClain has compared cusum with the smoothed error tracking
signal and found that the smoothed error tracking signal is
more effective for identifying out of control conditions

quickly.®

Lewis W. Coopersmith develops an alternative approach
that uses the F-statistic:

When a continuous model is assumed, a procedure
for detecting knots [Coopersmith's term for either
level or trend shifts]. . . . involves a search
over an interval which is first set small enough
so that it is unlikely that more than one knot
would occur. The point is determined which
maximizes the F-statistic used in testing for a
significant change in trend. If the maximum F-
statistic is not significant, the evaluation
interval is extended and testing is repeated. For
discontinuous models that include shifts, the
search is extended to determine the point where
the F-statistic which tests for the significance

of [ARIMA intervention] parameters . . . 1is
maximized. After the knots are determined, robust
procedures . . . are used to estimate the linear

pieces; the last piece is extended for use in

forecasting.®®

While Coopersmith's approach assumes that the forecast
technique is ARIMA oriented, it is readily generalizable to
other techniques so long as sums of squared errors can be
calculated in comparison between forecast models that do and

do not contain appropriate adaptation for discontinuities.

Vollmann, Berry, and Whybark suggest another a tracking

signal, Bias divided by Mean Absolute Deviation. They do
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not clearly define their measure of Bias; however, the
context suggests that they intend average error or the
smoothed error tracking signal. Thus, as they say, this

tracking signal is limited to:

-1 < Tracking Signal < 1

This tracking signal suggests a forecast out of control when

it approaches either 1 or -1.%

Some of these techniques, e.g., Coopersmith's
technique, require considerably more effort than others,
e.g., cusum, and may, for that reason, be more appropriate
for initial model identification than for a tracking signal
functions. All provide the possibility of identification of
points where a data series has experienced a discontinuity
and can, in principle, be used to identify out-of-control
conditions. However, the tracking signal approaches only
serve to signal the fact that discontinuities have occurred.
The forecaster must still intervene with the forecast model
to refit it under conditions of discontinuity. Also, these
techniques are not designed to provide for anticipation of

discontinuities. Problems related to forecasting through
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prospective periods of discontinuity are not addressed by

these techniques.

Recognizing Discontinuity and Adapting To It

A natural extension of the tracking signal is the use
of some signal in the data to adapt the forecast to the
conditions near to the end of the historical period. This
approach is sometimes called adaptive forecasting. There
are several forms of adaptive forecasting. D. W. Trigg and
A. G. Leach pioneered the approach of an adaptive
a parameter.® The tracking signal modifies the o parameter
so that it is large when the error is unusually large, i.e.,
the forecast is out of control, and small otherwise. A

commonly recognized Trigg-Leach model is as follows:®

Smoothed Error = E, = de, + (1-9)E.,
Smoothed Absolute Error = M, = ®le.| + (1-d)M.,

a, = Absolute Tracking Signal = T, = |E./M|

In the Trigg-Leach model, the o parameter automatically
adjusts with every update. Another approach is the Whybark
method® which adjusts parameters to preset adaptive levels

only when tracking signals exceed certain critical values.
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Independent Fit

T. M. Williams has improved the Trigg-Leach approach by
removing a source of confusion in the underlying Holt-
Winters model.®® Williams' idea is that the parameters of
the Holt-Winters model are not independent, so when the «
parameter is adjusted by the Trigg-Leach approach, the B and
Y parameters are incidentally also adjusted. He develops a
revised Holt-Winters model that does not have these
interactions, thereby allowing independent adaptive
modification of the o parameter. In Holt and Holt-Winters,
the level parameter, o, is fit to all three forecast
components, level, trend, and seasonality. In the Williams
modification, this parameter is not included in the fit of
the trend and seasonal components of the model. As a result
f and vy are allowed a broader range of possible fitted
values. Formulas are shown in Appendix II. Williams uses
the Trigg-Leach smoothing signal for calculating the

adaptive o parameter, %"

Because the parameters ® = {&,B,y} are restricted to

values of 0 < ® < 1 and because Williams modifies Holt and

"He actually presents a different formula, but his
formula makes no sense (it exponentiates out of control
under certain conditions). A careful review of his math and
his text shows that he erroneously substituted " «, = E.//A..
for "o, = |E./A|".
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Holt-Winters by dropping o from certain multiplications, the
result is to increase the effective magnitude of the [ or v
parameter by the size of o. In practice o is frequently
selected to be quite small, e.g., o =« 0.1, so to retain
roughly the same effect in a Williams model, the parameters

should be adjusted downwards by a factor of roughly 0.1.°%

While Williams makes these adjustments to allow for
less problematic adaptive forecasts, it is equally
reasonable where adaptive forecasting is not in use.
Williams' technique has been reinvented by Blyth C.
Archibald in 1990.°% The Williams model is used as a basis
of a proposed model in this dissertation and is referred to

as the Holt-Williams® or the Holt-Winters-Williams model.

The idea of these adaptive models are that a tracking
signal can automatically signal the o parameter to increase
or decrease as necessary to keep the forecast in control.
Thus, o is given a time index rather than being treated as
static across the whole model. The time indexed o is
increased when the model appears out of control and

decreased when the model is in control. Such increasing or

‘"Williams®" in these models refers to T. M. Williams,
not the current researcher.
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decreasing is intended to allow the forecast to remain
fairly steady during periods of stability yet respond

rapidly when the tracking signal detects instability.

The Williams article provides an extensive bibliography
of other adaptive models, including those by Eilon and
Elmaleh,® Steinar Ekern,’® Theil and Wage,® and Nerlove and
Wage,’® as well as many other citations.®® Adaptive ARMA
(autoregressive moving average models) have also been
developed.!® These articles generally discuss variations of
adaptive models, the generalization of adaptive models, and
the effectiveness of adaptive models which Ekern in
particular questions. It is generally accepted that
adaptive models are not satisfactory. Armstrong cites 12
studies that support the view that adaptive forecasting is

ineffective.!®

Autocorrelation

C. Chatfield proposes an exponential smoothing
technique where the forecast is adjusted by adding the
factor (e..; * Q.e-1). that is the autocorrelation of the
errors at time t-1 is multiplied by the error at time t-1
and added back to the forecast.!®® This factor is

exponentiated for periods beyond the end of the sample
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period. This technique is not specifically proposed for the
purpose of adaptive forecasting, but it can be seen to be a
variation of an adaptive technique. The factor will become
large where errors are autocorrelated and small where errors
are not autocorrelated. Autocorrelation may arise under
other situations, but should certainly arise when the
forecast systematically erroneous due to level shifts.

Later references to a Holt-Winters-Williams variation of
this model in this proposal will label it autocorrelation
corrected Holt-Winters-Williams. That model uses the
Williams correction to Holt-Winters and also uses the
Chatfield autocorrelation correction. This model is

demonstrated in Appendix II.

It should be apparent that all adaptive techniques
implicitly employ tracking signals. The Trigg-Leach method
employs the signal a smoothed error signal.!?? The Whybark
method employs information about the standard deviation.?!%

Chatfield employs autocorrelation of errors.!®

Like tracking signals, these techniques are designed
solely for dealing with level shifts that are identified
retrospectively through the data used to fit or update the
model. They have no method of efficiently using information

the forecaster may have concerning planned policy changes.
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While they may help a forecast catch up to a new level once
it is observed in the historical data, they do not
particularly help forecast and update through a period of

updating.

More Sophisticated Adjusting Models

Kalman Filters

The Kalman'’® filter approach optimizes meta-parameters
that allow for the forecast parameters to adjust with the
level of variation in the data series. P. J. Harrison and
C. F. Stevens have demonstrated that the Kalman filter
approach can be generalized to include both correlation
based models and time series extrapolation models. Kalman
filters are sometimes called state-space models or the use
of these models may be called Bayesian forecasting. Kalman
filters are not necessarily sensitive to level shifting
data, instead they allow self-adjusting parameters with

ordinary data.

Harrison and Stevens developed a multi-state model
which is specifically designed to allow Kalman filter

7 This multi-state

forecasts to respond to level shifts.?!®
model allows the forecaster to define multiple Kalman filter
models (they recommend four) which are designed to respond

to various specific types of data discontinuities (level
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shift, trend shift, outliers, and no discontinuity). The
multiple models are aggregated through an assignment of

probability to each of the various states.

Duk Bin Jun and Robert M. Oliver define another variate
of the Kalman filter which is designed specifically for
level shifting data.!°® This technique adds a dummy variable
to the Kalman filter model at the point in time where the
level shift is thought to occur. Duk Bin Jun also conducted
further analysis concerning statistics that assist with

t.!® This technique

identifying the period of the level shif
assumes that the level shift occurs over a single period.
While Jun an Oliver argue that this technigque should be

better than Trigg-Leach, they do not demonstrate comparative

effectiveness.

While the Kalman filters discussed here are variates of
exponential smoothing, they are not appropriately classified
as simple models. They are mathematically more complex than
exponential smoothing, particularly the multi-state model
that is most comparable to an adaptive exponential smoothing
technique, and they may require more sophistication for
model fitting. Also, these are most appropriately
classified as adaptive models, they do not provide for

anticipation of level shifts.
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Non-Gaussian Models
The non-Gaussian forecast model,!'® and closely

associated, approaches attempt to distinguish between
ordinary variance and level shifts through the use of
heavily weighted tails in the probability distribution
function surrounding the forecast. In effect, the forecast
shifts from one level to another when repeated observations
indicate a new mean. The use of non-Gaussian probability
density functions allow for smoother transition between
level estimates. Non-Gaussian models are, however, another
form of adaptive model that provides no opportunity for

anticipating change.

ARTMA

ARIMA provides three approaches to accounting for
externally driven data shifts. These are the transfer
function model, the intervention model, and the multivariate

time series model.!!!

o The transfer function model combines the features of a
univariate time series ARIMA model with features of a
regression model. It adjusts the autoregressive
results of an autoregressive univariate model to also
take into account the effects of a known causal

variable. If this causal wvariable can be made to
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change to reflect the policy change, it can be used to
include the policy effect in the forecast. If not,
then if the input variable changes naturally as the
policy changes, it can at least help the forecast keep

up with the policy change.

o The intervention model is a special case of the
transfer function model that uses a dummy variable.
The dummy variable is set at zero for periods during
which the policy (or other source of level shift) is
not in effect and 1 for periods during which the policy
is in effect. Use of dummy variables requires
knowledge that non-stationarity’ has occurred.!!?
Analysis of the data series should reveal the existence
of non-stationarity. However, this analysis is a major
component of the increased analyst cost for using ARIMA

type models.

""Non-Stationarity" refers to a condition of a time
series where the series does not have a constant mean and/or
variance Linearly trending data can be induced to be
stationary through differencing, so a data series that can
be fit to a Holt model is implicitly stationary. For the
purposes of this study it is adequate to assume that a data
series that can fit to a Winters model is also stationary.
There are many reasons why a data series may be non-
stationary, level shifts are only one form of non-
stationarity.
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o The multivariate ARIMA model is similar to the multiple
equation econometric regression model. It
simultaneously solves interrelated multiple time
series. Transfer function models and multivariate
ARIMA models can account for future policy changes by
including independent variables that contain
anticipated policy changes in the future period, if
such variables are also significantly related to
historical periods. However, to do so those
independent variables must themselves have forecasts

that reflect the prospective policy change.

Structural change non-stationarity can be classified
into five types, additive outliers, innovational outliers,
level changes, transient level shifts, and variance changes.
Ruey S. Tsay has developed specific procedures for
identifying each of these sorts of non-stationarity in
forecast data and identified specific ARIMA models that are
appropriate to each.!?® David J. Pack'!® has developed
theoretical ARIMA models that allow for modelling any sort

of non-stationarity.

The Pack models are designed to provide the forecaster
with precise techniques for modelling variation, including

any form of non-stationarity or intervention variation that
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might arise in the historical or sample data. However, they
provide no guidance for forecasting through prospective
shifts that are unrelated to historical variation. A
related model designed to suppress irrelevant outliers is
described by Steven Hillmer. This model prevents the
forecast from becoming biased when one time outliers

occur.?®

The foregoing discussion is not a comprehensive
review of ARIMA modelling; such a review is beyond the scope

of this dissertation.

In this study I am interested in level changes which
may or may not be preceded by innovational outliers. These
are the sorts of data series that reflect onset and
permanent change related to external causes. The
intervention ARIMA model provides for forecast model fitting
in the case that historical data reveals a level shift or
other non-stationarity. It is not designed to assist with
forecasting through future periods that include anticipated
non-stationarity. In fact, with ARIMA modelling it is
necessary to supplement the model fitting procedure with
other special non-stationarity identifying procedures to
achieve a similar level of effectiveness for dealing with
non-stationarity while updating as is available with other

models discussed in this section.
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Regression models are not discussed separately because
their use in forecasting of level shifts is generally
parallel to transfer function, intervention, and
multivariate ARIMA models. This brings us back to the
reason simple methods like exponential smoothing may be
better than more complex methods, "The approach . . . is
often inappropriate . . . first of all owing to the lack of

the relevant data on the exogenous variables."!1®

Summarizing Sophisticated Techniques

The techniques discussed in this section will not be
further examined in this study because they are not
associated with exponential smoothing techniques. They have
been examined to determine whether the problem identified in
the previous chapter is readily resolved with other
techniques. In general these techniques rest on the
assumption that level shifts are identified in the data that
is used to fit the forecast model rather than anticipated
before the fact. They do not employ information that may be
available to the forecaster concerning anticipated policy
changes. Even transfer function models require that the
independent variable that reflects the prospective level
shift must also be correlated with the historical data.
While these techniques may provide some solutions to level

shifting data, they do not provide so clear a solution as to
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rule out the potential benefit of identifying an exponential

smoothing solution to the level shifting data.

Models Targeting Level Shifts in the Horizon
Adaptive and intervention techniques are available for
forecast modelling under conditions of discontinuity when
the discontinuity is discovered in the history of the data.
In this section I discuss models that anticipate level

shifts in the forecast horizon.

An ARIMA Model

Victor M. Guerrero provides another use of ARIMA in

7

modelling level shifting data.!'” He begins with the

following problem:

Since some new economic policies were to be
implemented, a structural change on the behavior of IMP
was expected and a higher than usual rate of growth of
IMP was agreed upon. Then, a future monthly path,
consistent with the annual target and with the
[available] historical records, as well as tolerance
limits for the pay, were needed to determine whether
the observed behavior of IMP during the year should be
considered accurate.!!®

This problem involves an adjusting the forecast for
policy decisions. He reviews other articles and concludes,
"[None] of these papers considered the possibility of
structural changes during the forecast horizon."!*® He

identifies several formulae that can be used as follows:
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Zepv = Zp + Dp + Vg

Where, Z is the original time series (where this can be
understood as either Z, from formula 1 above or Y, from
formulas 2 or 3 above), D is the deterministic effect
of structural change, V is the stochastic effects of

structural change and F is the future period.

E(ZF,D,VIZO) = E(ZFIZO) + Dg

This formula can be understood to mean that the
expected value of the future series is the expected
value of the old series plus the deterministic effect

of the policy change.

While it appears that Guerrero is dealing with the
problem raised in this study, prospective structural shifts,
the actual results of the math he demonstrates allows for
estimating the interim values of a forecast when a plan of
action is assumed to achieve a certain end point. The
vectors for the deterministic and stochastic effects must be
estimated based on the anticipated value at the end point.
The point of his models is to determine how to estimate the
interim vectors and their variance so as to be able to track

actual interim performance and determine whether actual
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observations are leading to the anticipated end point. This
is significantly different than the problem posed in this
study, i.e., having prior knowledge of the deterministic
structural effect and needing to combine it with the
underlying series to achieve a full forecast. Guerrero's
main contribution to the objective of this dissertation is
further confirmation of the general absence of studies
focussed on "structural changes during the forecast

horizon."

When Patterms Change

Spyros Makridakis and Robert Carbone have developed a
forecasting approach that is particularly aimed for
forecasting when there are pattern changes that occur beyond
the period of the historical data.'?** This method
distinguishes between short and long term forecasts using
adaptive or responsive methods for forecasting the short
term while using less responsive methods for forecasting the
longer term. These forecasts are combined through weighted
averaging with the weight beginning in favor of the
responsive technique and shifting to the non-responsive
technique. The underlying idea of this approach is that
short term fluctuations may not reflect permanent changes
and, therefore, should not be allowed to excessively

influence the calculation of the longer term forecast. The
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Carbone and Makridakis approach allow the forecast to treat
these as trend shifts for the short term, thereby allowing
the forecast to follow their impact over the short term.
However, the technique returns the forecast to the
discipline of the more stable trend over the longer term,
preventing the longer term forecast from falling completely

off track.

This approach tends, implicitly, to support the
disposition that arises with many forecasters to prefer
setting extremely low forecast parameters.!'?! This
disposition can be understood to reflect an effort to avoid
excess influence of short term fluctuation in forecasting
the longer term. Where the forecaster is more concerned
about the shortest of the short term or about making a
forecast that captures a fluctuation that occurs near the
end of the historical period, this disposition to set low

2 The use of high forecast

parameters disappears.!?
parameters has the effect of allowing the forecast to
respond to new information in much the same way as adaptive
forecasting responds to such new information with the
difference being that adaptive forecasting adjusts the
amount of response such that it responds less where the

tracking signal indicates the variation should be counted as

noise rather than information. While such biases as a
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preference for low parameters may reduce forecast fitting
success, practical experience may support the use of such
strategies since optimal models established within the
sample period frequently are not the optimal models in the

forecast period.?!??

Repeating Historical Fluctuations
Wilpen L. Gorr has developed a protocol for

¢ Such data bases

establishing special event data bases.!?
provide for the possibility of retaining factors or other
information that can be used in forecasting through periods
where events have occurred. These factors might be additive
or multiplicative in classic decomposition models, or might
be other information. Gorr's articles look at this issue
not, primarily, from a forecasting point of view, but from
the perspective of information management. From this
perspective, it is crucial that special event information
should be retained in a manner that allows for use after
those who have first hand knowledge of the event have left
the organization. The exact use of the information in
forecast modelling or other analysis is not necessarily pre-
specified. While quantitative information is useful, this
approach also focusses on qualitative information that might

be used to understand discontinuities in data series.
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Gorr's articles point towards the work of Rudolf

125

Lewandowski whose technique, FORSYS, is identified as

exhibiting superior performance over longer time periods in

¢ Lewandowski

a frequently cited forecasting competition.??
describes a specific additive technique used to remove the
effects of special events from forecasts before
extrapolating them into the future. In addition, he asserts
that such special event information can be used by managers
to anticipate the effect of recurrences of the same special

events in the future. He describes two uses of this

technique:

o) Where special events are known to have occurred in the
past, he decomposes the data series by determining an
additive level shift that adjusts for the discontinuity

that occurred in the history of the data.'?’

o Where a special event has occurred in the past and is
anticipated to occur again in the future, the magnitude
of the past special event is used as a guide to gauging

the special event in the future.!?®

This second usage appears to partially address the
problem raised in this dissertation. Lewandowski is using

the prior temporary level shift as an estimator of the
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future temporary level shift (period by period).
Lewandowski's discussion shows that he uses this estimator
as an adjustment factor for the forecast in the future
periods where a similar special event is anticipated. He
explains this usage as accounting for such activities as a

sales promotional campaign.?!?®

Gorr also identifies the FUTURCAST software package of
R. Carbone and S. Makridakis as containing a multiplicative
technique associated with special events.!*° The
multiplicative special event factor is similar to a
multiplicative seasonal factor of a multiplicative Holt-
Winters forecast model. 1In effect, it estimates a percent
change from the underlying base line forecast associated
with the special event. This multiplicative factor allows
for modelling of future special events by analogy to prior
special events in a manner similar to Lewandowski's second
use of his special event factor. The analogical use of the
multiplicative factor may be more beneficial where the
underlying series has changed in magnitude between two

occasions of the special event.

While the special event factors of Lewandowski or
Carbone and Makridakis may be useful when there is a

temporary divergence from a normal condition, or perhaps a
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cyclical pattern that varies from an underlying linear
pattern, ! they are not the most parsimonious method of
representing permanent changes. The difficulty, in the case
of permanent changes, is that the special event factor
requires maintenance for each future period during which the
special event is in effect. If the event is permanently in
effect, the factor must be maintained for all future
periods. It would be more efficient to permanently adjust

the level of the model.

Another Repeating Model

Jose Juan Carreno and Jesus Madinaveitia developed a
modified Holt-Winters model that uses an index similar to a
seasonal index to forecast the impact of announced price

2 This index is a

increases on a forecasted time series.®?
set of multiplicative factors that are computed to reflect
the impact of the price increase over a cycle in the demand
series. The factors computed during one cycle are taken as
prior expectations during the next cycle after being re-
selected by the forecaster upon becoming aware of the
intention to announce the price increase. The error terms
occurring in the cycle adjust the factors for use in the
next cycle. They also develop a similar model that is a

modification of Brown's double exponential smoothing. They

demonstrate significant improvements using either of their
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techniques as compared with unadjusted double exponential
smoothing.!®® This approach is similar in concept to the
Lewandowski special event factors and especially the Carbone
and Makridakis special event factors, although their
citations do not indicate a familiarity with those
approaches. Like these other approaches, this model is
aimed at occasions of temporary interruption in trend and
level rather than permanent adjustments, and it rests on
data from similar historical events rather than estimates

supplied from external sources.

Conclusions Regarding the State of the Art

While there are many techniques available for
forecasting with discontinuous data, the recent survey by
Fred Collopy and J. Scott Armstrong suggests that these
techniques are not considered satisfactory. Since the late
1960's techniques have been proposed for identifying
discontinuity through the characteristics of the forecasted
data using tracking signals. Later techniques were proposed
that developed these tracking signals into forecast
parameters for adapting to discontinuous situations. Some
studies have indicated that these adaptive techniques have
been less than successful. Other techniques that have been
proposed, e.g., Kalman filters, non-Gaussian methods and

complex ARIMA models, have moved away from the simplicity of



85
exponential smoothing models. Often these more complex
techniques are explained and justified in the literature
based on their mathematical properties rather than on an
empirical evaluation of their performance in actual

forecasts.

These techniques are designed to identify level shifts
as they occur in the observed data. They react to the level
shift rather than forecast through level shifts, i.e.,
forecasting with a level shift in the prospective period.
Certain ARIMA models - intervention models - may be able to
forecast through level shifts, however, doing so depends on
the availability of an exogenous variable that contains a

forecast of the level shift.

In general, techniques do not exist for taking
advantage of knowledge a forecaster may have that a level
shift will occur in the future. There are a few exponential
smoothing techniques that do forecast through future level
shifts - actually, temporary interventions - when similar
interventions can be found in the history of the data.

These suggest a model for forecasting through a permanent
level shift where there is information available about the
magnitude of that level shift. The suggested technique

would allow the forecaster to adjust the forecast projection



86
by the level of an externally supplied estimate of the level
shift. This technique will be further developed in the next

chapter.

Estimation of Level Shifts
In parts of this dissertation I have suggested that
forecasters may have externally supplied information
concerning level shifts. Investigation of such methods is
not the objective of this dissertation. Nevertheless, in
anticipation of a technique that is proposed in the next
chapter, it is necessary to establish the credibility of the

assumption that such estimates may exist.

Forecast literature suggests a few techniques for
projecting relatively new things into the future.
Techniques that can be borrowed from new-product forecasting
includes subjective estimates, analogy, consumer-based
testing, extrapolation of early sales, and diffusion

models .3

Extrapolation generally refers to the use of time
series techniques. Analogy may refer to purely subjective
analogy, i.e., reasoning from one case to another and
borrowing information from the source case. Alternatively,
it may refer to use of mathematical techniques that rest, in

part, on analogy between a new case and old cases, e.g.,

regression or diffusion models. Subjective estimates
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generally refer to the use of expert or management guesses.
Consumer-based testing has its analogy in policy making
under the guise of pilot projects. Generally, this approach
involves trying something out on small scale before going
large scale. It can also involve surveying people's

interests.

Available cost oriented techniques include learning

135

curve models (which are sometimes included in the class of

diffusion models), econometric techniques, and engineering

¢ Learning curve models and their relatives

estimates.?®?
require considerable data from the new series for fitting,!?’
therefore, they are of little value in providing forecasts
of anticipated new series or level shifts in old series,
although they could be used heuristically for subjective

analogical models (there is no literature that suggests that

they are used in this manner) .

Econometric techniques can be taken to refer to
correlation based techniques, that is, regression. Where
appropriate, these techniques may provide for adequate
estimation of policy impacts. The use of an econometric
technique for estimating a policy impact does not guarantee
the availability of an econometric technique for

forecasting. Cross sectional models may reasonably estimate
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the impact of a policy, through analogy with other entities
that have implemented similar policies, without providing a
reliable estimate of the previously existing data generating
function. Thus, they may provide only the incremental

impact of the policy.

Armstrong, et. al., provide no further explanation of
the sort of thing they mean when they say that changes in
costs can be estimated through engineering estimates, except
that they characterize these techniques as "judgmental."!3®
However, it appears that they are referring to the use of
techniques which focus on costing out actual component cost
generating activities, building up the overall cost from

® In actually performing cost estimation

these components.?!?
functions for a government program, I frequently find this
approach to be the method of choice for costing out proposed
changes in governmental services. This approach may not
necessarily reflect the precision of engineering studies

applied in industrial settings. However, the conceptual

structure is similar with a focus on:

o Identifying the actual cost generating activities or
units,

o) Estimating the quantity of these units,
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o Determining reasonable estimates of cost associated

with these units, and

o Accounting for such factors as:
o start-up time,
o special start-up costs,
o collateral costs,
o offsetting savings, and
o time frame conversions between accrual of

liabilities and cash transactions.

The use of such costing out procedures frequently rests
on a combination of use of planned activities (decision
maker intentions), market information (current and projected
price information), and analogy (information regarding
service utilization, etc., borrowed from existing programs) .
This approach is similar in concept to the idea of
decomposition, focussing attention on individual components
of cost rather than sophistication of estimation technique.
Some forecasting literature supports the view that

understanding the process may be more important than use of

sophisticated techniques.!%®

This review in not a thorough review of the techniques
used to estimate prospective policy shifts. It is intended

solely to show that it is credible to conclude that such
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techniques may exist and may provide reasonably accurate
estimates. Actual results arising from the technique
proposed in the next chapter may depend on the which
techniques are actually used and how reliable their results

may be.

Summary

The problem of level shifts is recognized as
significant by a large number of forecasting practitioners.
Existing techniques include those that identify level shifts
(out of control conditions) through tracking signals, those
that incorporate tracking signal into the estimation of the
o parameter (or other parameters), those that provide other
methods for incorporating historically identified level
shifts into forecast models, and those that use historical
level shifts in analogy for anticipating new level shifts.
Three models that might provide some guidance for further
development are the Lewandowski additive model, the Carbone-
Makridakis multiplicative model and the Carreno-Madinaveitia
multiplicative model. Forecast literature supports the view
that there may be techniques available to estimate policy
changes although they are not serial estimates of whole data

series.



CHAPTER 5: A MODIFICATION OF EXPONENTIAL SMOOTHING

In this chapter I will:

o Propose a modification of Holt-Winters-Williams
exponential smoothing that might provide a specific
solution to this problem.

o Provide a theoretical justification of this solution.

o Specify some limitations of the proposed solution.

Need for a Technique

The techniques discussed in the last chapter allow the
forecaster to identify level shifts occurring in historical
data and to react to them. The reaction may be to refit a
model based on a tracking signal that indicates that the
model is no longer reliably fit, or it may be to use a
tracking signal or another similar statistic to fit a more
complex model. 1In any case it is still a reaction. Even
the best technique for reacting to a level shift only
follows the data as the data changes. In some spheres it is
thought that proactive approaches to future problems are

better than reactions, even good reactions.

When a policy decision is made, the data can be
expected to change even before it actually changes. Only
the undocumented ad hoc technique is available for including

91
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anticipated changes in the forecast projection unless the
anticipated change is simply a repetition of a previous
temporary level shift. A technique that allows the forecast
to include any anticipated changes may provide a more

realistic forecast.

In this chapter I propose a technique that allows the
forecaster to prospectively anticipate a level shift so that
the model does not need to react to it. 1In other words, the
technique includes the level shift in the forecast

projection.

Techniques that react to level shifts do not allow
the forecaster to take advantage of all of the information
that is available to them, particularly information that may
have been developed for the purpose of supporting policy
decisions that lead to level shifts. The technique proposed
in this chapter is particularly designed to take advantage
of externally supplied information that can be used to
anticipate the effect of a policy change. I anticipate that
by taking advantage of this information, a more accurate
forecast can be made. The study that is described in a
chapter 7 compares the technique proposed in this chapter
with some of the simple approaches for reacting to a level

shift identified in the previous chapter.
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A Proposed Exponential Smoothing Solution

The ad hoc method suggests that a policy change may be
included in a forecast model by adding the anticipated value
of the policy change to the forecast produced into the
forecast model. The Lewandowski method suggests a similar
addition when a historical fluctuation is expected to
repeat. When such additions are lumped onto the forecast
produced by the exponential smoothing model they may provide
for a more accurate ultimate forecast. However, they do not
correct for problems that may arise within the exponential
smoothing model itself. Also, these techniques require that
the adjustment be added to each projected observation
produced from the exponential smoothing model. While this
may be a suitable approach where a temporary level shift is
anticipated over a short period of time, it presents more
difficulty where the level shift is long lasting and where

multiple level shifts may arise over time.

To address these difficulties, I propose the following

modification to the Holt-Williams model:”

‘Numbering of these formulae continue the same series
as the Holt-Winters-Williams formulae.
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e, = Error at time t = X, - F.'
F.' = Adjusted Forecast at time t = F., + P,
F, = Initial Forecast at time t = S.; + Beg
Se = Level at time t = F.' + oae,
B, = Trend at time t = B..; + Pe,
A, = Adjustment factor at time t = P. - P,
P = A periodic estimate of a policy in a vector:
(...,0,0,0,a,b,c,...,n,n,n,...) where,
a, b, ¢, ..., n all have the same sign, and
lal| < |b|] < [e|] < ... In].

Other constraints are as with Holt-Williams as

described in Appendix II.
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These three comments serve to clarify these formulas

somewhat:

o The second restriction on the vector P is for practical
considerations only, to avoid use of this level
shifting technique in cases where the change under way
is actually a trend shift or a seasonality change.

When the user has knowledge that a complex level shift
is under way, as when a level adjustment is expected
for a specific time period only, this restriction can

be removed.

o Formula 2. can be restated as:
Fon = S + By * Feu, wmlBe)
Then the expression }..;, . (P.) can be simplified to:
A - A,
This formulation shows that the adjustments included in
the forecast model at time t are equal to full level
adjustment that would be added in the ad hoc adjustment

at time t.

o By subscripting P as P; where j is an index that is
associated with various policies and summing

appropriately, this formula can be generalized to
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account for multiple policy adjustments. In this case
formula 6 is modified to:

A, = Adjustment factor at time t = YAiPie = Pypy)

These formulas modify Holt-Williams; however, Holt-
Williams is very similar to SES, Holt, Winters, Holt-
Winters, and Holt-Winters-Williams. With appropriate
substitution of these other basic models, this policy
adjustment model can also modify these other exponential

smoothing models.

For ease of reference, I sometimes refer to this
technique as adjusted Holt-Williams (or adjusted Holt-
Winters-Williams). It may also be called the differences
technique because it adjusts a policy-adjustment-free-
forecast for the level impact of policies by adding the
first differences of an estimate of the policy change to the
unadjusted forecast. Since it adds these first differences
directly into the forecast model, it permanently shifts the
forecast upwards (or downwards in the case of negative
differences). Thus, the adjusted forecast permanently

includes the policy change.
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Making an adjustment in this manner results in the

following expected consequences:

1. When the policy occurs at approximately the time
expected in approximately the size expected, the
forecast is ready for the change and requires no
further adjustment. The forecast does not develop
large errors at the time of the policy change, so it is
not necessary to correct any of the forecast
parameters. Problems associated with large forecast

errors do not materialize.

2. When the technique is used to empirically fit
historical level changes that are known to have
occurred, exponential smoothing parameters can be

better fit to the remainder of the series.’

3. When the policy fails to occur at approximately the
time expected in approximately the size expected, the
forecast error increases. This increased error alerts

the forecaster to the fact that the policy change has

"This usage should be limited to cases where the
forecaster knows that there has been a level shift and knows
why the level shift occurred. If a data series has periodic
level shifts that are unexplained, the forecast parameter
needs to reflect this so that future occurrences arising for
the same unexplained reasons will not be ignored.
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not occurred, leading him to follow up with the people
who are responsible for the policy implementation in
order to determine what sort of change is required in
the adjustment. It also alerts management of the
implementation failure, leading to management use of

forecast information.

When the forecast is generated through the proposed
formulas, the whole forecast including the policy
change component is generated without additional
manipulation. So when results are tabulated, no
adjustments are required. Likewise, when the forecast
is used as input to other more complex forecasts, the
impact is automatically carried forward to those
forecasts. This is particularly beneficial when the
forecast is generated in an automated environment,
where other approaches may require manual intervention.
It can also be very beneficial where various summation

periods are required for different reporting purposes.

When, prior to the change in the policy, the forecaster
learns of revised assumptions about timing or
magnitude, the forecast assumptions can be adjusted by
revising the same assumptions within the forecast. For

example, the forecaster can shift the policy change
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forwards or backwards in time, or can increase or
decrease the magnitude of the adjustment. Consequences
for all future periods and all summation periods are
automatically adjusted. Such adjustments can also be
made when, empirically, it is demonstrated that the
policy change has impacts other than those

prospectively anticipated.

The empirical research in this dissertation examines
the first (the larger study) and second (the smaller study)
of these expected consequences and finds incidentally
relevant information for the third. The fourth and fifth
consequences are logical in nature and do not require

additional research to demonstrate their accuracy.

Theoretical Rationale

The proposed technique augments the use of information
in forecasting. Quantitative forecasting involves efforts
to extract information from sample data (the historical
period) that can be effectively generalized to the out-of-
sample data (extrapolated into the future). A difficulty
with sophisticated techniques is that they sometimes confuse
random or unexplained variation for information.!'*! The
proposed technique deals with the problem of information

about the future in a different way. It decomposes the
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forecasting problem into separate problems of forecasting
the underlying process and forecasting a prospective change
in the process, allows for quasi-judgmental forecasts of the
prospective change relying on policy maker intentions, and

finally reintegrates the results into a complete forecast.

Decomposition for Efficient Use of Information

J. Scott Armstrong argues that it is particularly
helpful to decompose a problem to help analyze it.'4?
Armstrong provides numerous citations that show that

decomposition improves forecasting. He argues:

Decomposition has a number of advantages. It allows
the forecast to use information in a more efficient
manner. It helps to spread the risk; errors in one
part of the problem may be offset by errors in another
part. It allows the researcher to split the problem
among different members of a research team. It makes
it possible for expert advice to be obtained on each
part. Finally, it permits the use of different methods
on different parts of the problem.®*?

This argument cites several specific advantages of
decomposition that are directly related to the proposed

technique. These include:

o The ability to split the problem up among different
members of the research team. The proposed technique

allows the forecaster to benefit from analyses
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completed by staff who have developed specific policy

cost analyses.

) The ability to obtain expert advice on each part. The
forecaster can separately seek out information about
each part of the forecast (at least prospectively) and
use the advantage of that information in making a

forecast.

o The ability to use different methods for different
parts of the problem. The proposed technique is
specifically oriented to using different methods in
making the forecast, while integrating the results into

the most effective combined forecast.

By breaking down the initial forecasting problem into
forecasting of the underlying process and estimating the
policy change, the proposed technique allows the forecaster
to use appropriate techniques and information for each
component of the forecasting problem, rather than forcing

the problem to fit the technique.

Judgmental Adjustments
The use of externally supplied estimates of policy

changes in the proposed technique is very similar to the use
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of judgmental forecasting based on policy maker intentions.
Armstrong cites numerous studies that show intentions

provide good predictions where matters are important.!**

Practicing forecasters commonly advocate adjusting
forecasts to account for externally available information.*4®
Such accounting is also the underlying purpose of
decomposition techniques in general. For example,
forecasters frequently adjust data to take into account
trading days!*® precisely because they anticipate that this
external factor will lead to predictable variation in the

data being forecasted.

Nevertheless, forecasting studies generally show that
judgmental adjustments of forecasts do not improve forecast
quality.?’ Still forecasters persist in believing that use
of knowledge about the data series, particularly about
future states of the data series, helps in forecasting the
data series. Vollmann, Berry, and Whybark offer a typical
discussion where they suggest that when a forecaster has
knowledge of external information he must chose between

adjusting the forecast and adjusting the forecast model.*®

Don Miller has conjectured that it is more effective to

use judgmental adjustments when the forecaster or other
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expert commits to the adjustment before the forecast is

made . '*°

The rationale for this conjecture is as follows:
When judgmental adjustments are committed to before the
forecast is made, they relate to the information underlying
the adjustment itself. This use restricts the role of
judgmental adjustments to that of including more information
in the forecast and may improve the forecast. However, when
judgmental adjustments are made as the last stage of the
forecasting, they are used to force the overall forecast to
the forecaster's subjective estimates. The second use

substitutes a subjective forecast for an extrapolation

forecast with an associated loss of accuracy.

The proposed technique may bridge between these
competing views on the advisability of including judgmental
adjustments in forecasts. It provides for clear quantified
forecast adjustments that rely on prior existence of
quantitative estimates of the factors that are expected to
lead to predictable variation in the data series. By
relying on the prior existence of gquantitative estimates,
the technique also follows the normative logic of Miller's
conjecture that the commitment should be made before the

unadjusted forecast is known.
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Integration

The math that allows for integration of the component
forecasts into one model is the heart of the proposed
technique. For the sort of problem for which this technique
has been developed some future event irreversibly combines
component data series into a single indistinguishable one.
Before they merge, one can forecast them separately and add
the results. Exponential smoothing can be used for the
series that has a reasonably long data history, but the
other component is not in that history so it must be
estimated in some other way. Neither component forecast
alone accounts for the future expectation. Together, they
make a more reasonable forecast.'®® After the data merges,
there is only one series to forecast. So, the first
differences of the policy change estimate are used to
permanently adjust the level of the exponential smoothing
forecast model, thereby aggregating the component forecasts
into an integrated whole just as the data series itself will

be integrated.

This process is a formalization of the ad hoc method
that forecasters might otherwise use when faced with policy
changes. Integrating forecasts that arise from various
sources may be considered an improvement over these separate

forecasts.’ When the policy change is known to occur far
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in the future, the forecaster could simply add the
consequences of the policy change to a forecast derived from
a statistical forecast model (the ad hoc technique).
Ignoring any dynamic aspects of the forecast, that approach
would have the same result as the proposed technique. The
summation of the periodic first differences used in the
proposed technique gets the forecasted data series to the
same level as would be attained through the ad hoc

technique.

The difference between the two techniques is not the
estimate that it produces, but the consequences of updating
with actual data. With the ad hoc technique, the data
associated with the policy change leads to large forecast
errors which throw the statistical forecast model into
confusion while data associated with failure to experience
the policy change does nothing at all. Neither of these
assist either the forecaster or the manager who uses the
forecast. In the proposed integrated technique, the
occurrence of the policy change minimally confuses the
forecast (the confusion is less as the estimate of the
impact of the policy change is better), while failure to
experience the policy change throws the statistical forecast
model into confusion. These consequences help both the

forecaster and the manager who uses the forecast regardless
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of whether the policy change occurs or not. The benefit
arises because the integrated technique can be expected to
have much smaller errors within the statistical forecast

model than the ad hoc method.

Limiting Factors For the Technique
There are factors that may interfere with anticipated

benefits of the proposed technique:

Independent Components

In part the anticipated benefits arise from the
assumption that the two series that are to be merged are
independent. If they are not independent, the combination
of the series is not best accomplished through simple
addition. A lack of independence might arise when the main
effect of a policy change is to change the level of a data
series, but an additional effect is to also change the trend
of that series. It is likely that this assumption of
independence will be violated with actual policy changes.
An important factor to examine is whether the technique is
robust to violations of this assumption. In the empirical
study, two simulated policy changes reflect a correct
estimate (scenarios 1 and 8) and two include both a level

change and a trend change (scenarios 2 and 9). The purpose
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of including these scenarios is to look at one sort of

violation of the assumption of independence.

Accurate Component Estimates

It is assumed that the two component series are
estimated through techniques that are reasonably reliable.
There is a higher risk that this will not be true for the
estimate of the policy change A policy estimate may be

substantially inaccurate in several ways:

o It may substantially over or under estimate the impact
of the policy. Where it underestimates the impact of
the policy it still should result in reducing the
overall bias of the forecast, that is, it should reduce
the size of the error that arises from using a model
that contains no information at all about the policy by
some portion of the difference between the unadjusted
model and the true data generating process. When it
overestimate the impact of the policy, there is no
guarantee that the policy-adjusted model will be more
accurate than the unadjusted model. 1In the study there
are two scenarios that simulate underestimated policy
changes (scenarios 3 and 10) and two scenarios that
simulate overestimated policy changes (scenarios 4

and 11).
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It may incorrectly estimate the nature of the impact,
that is, it may adjust the forecast to reflect a new
level and minimal impact on trend when just the
opposite occurs. In the study two scenarios simulate a
trend change instead of a level change (scenarios 5 and
12), one simulates no change at all (scenario 6) and
one simulates a variance change instead of a level

change (scenario 7).

It may place the policy at the wrong point in time,
either before or after the actual impact occurs. This

possibility is not examined in the empirical study.

It may predict the opposite of the actual impact, that
is, increase when decrease occurs or vice versa. This

possibility is not examined in the empirical study.

It may incorrectly account for the timing and length ¢
the ramp of the level shift, either by not accounting
for it at all (assuming a step) when, in fact, phase

up, or by assuming too short or too long a ramp. This

possibility is not examined in the empirical study.
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Trend, Seasonality, and Variance Shifts
The technique only addresses the case of a level shift.
Trend, seasonality, and variance shifts are not adjusted by
this technique. It is likely that a variation of the
technique would be available for trend shifts.” I am not
aware of a modification of the technique to adjust the

forecast for seasonality or variance shifts.

Competing Shifts

The proposed technique may lead the forecaster to
overlook a trend shift, seasonality shift, or other
unexplained level shift that occurs at the time of the
expected level shift. The large errors that may have caused
the forecast to adjust for either of these alternative types
of changes will be lost because the forecast is already

adjusted to reduce the size of these errors.

‘With the following modifications this technique can
also adjust for trend shifts:
3.5 B, = Trend at time t = B..; + Ye, + K,
8.5 K, = Trend Adjustment Factor = P, + P, , - 2P,

This places the second differences of the policy estimate
into the trend. It is likely that the forecaster would have
to make a judgement that the chief problem he/she has with a
particular policy is its impact on trend or its impact on a
policy and, then select which to modify. Modifying both may
be too aggressive.
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The forecaster is not relieved of this problem because
he fails to anticipate a policy change. If the policy
change is not included in the model through the proposed
technique and the forecast begins to perform poorly, the
forecaster will have to investigate the phenomena in order
to decide what sort of remedial action is required. Upon
finding an expected policy change it will be reasonable for
the forecaster to assume that a change occurring at the time
it is expected and in the order of magnitude expected is the
change that is expected. While this will occasionally
result in erroneous results, it is less likely than the
opposite assumption. Thus, the same result occurs whether
the policy change is accounted for in the model or not. 1In
either case, additional experience may correct the error

after more updates; however, there is no guarantee it will.

Shifts that are Too Small for Significance

The changes that this technique imports into the
forecast may be so small as to be of little consequence to
the forecast performance. This may be the case particularly
when the data series that is modified by the policy change
is subject to wide variation in the first place, or when the
estimate of the prospective policy change is subject to wide
variation. So, the technique may import a risk of error

without significantly improving the forecast. This is
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undoubtedly true for some applications. A forecast that
suggests an expenditure of $500 million a year may be
insignificantly impacted by a policy change that adjusts it
by $500,000 a year, since the confidence interval around the
$500 million forecast may be much larger than that. Yet,
ignoring the change would appear to bias the forecast,
assuming it was previously unbiased, since the estimated
impact of the program change implies that the expenditure
will be greater than the previously estimated central
tendency. So, as insignificant as the item is for the
effectiveness of the forecasting model, ignoring it creates

an underestimate.

More importantly, the forecaster should not overlook
practical forecasting consequences when deciding technical
factors. The acquisition of the funding for the policy that
cost $500,000 may not be inconsequential. By systematically
ignoring all such policy changes, it may well be that a
program creates unnecessary budgetary turmoil for itself by
first seeking budgetary approval for policy impacts, then
later seeking funds to support slight unexpected growth in
the forecast, when the growth in the forecast is merely the
forecast model's recognition of the policy that was

previously ignored.
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Explaining the Forecast

The use of this technique may reduce the forecaster's
ability to explain the forecast model to the forecast user.
When a forecast is adjusted through the ad hoc method, the
forecaster can tell the user the exact size of the policy
adjustment. When the adjustment is incorporated within the
forecast through the proposed technique and entered as a
component into a more complex forecast, the exact size of

the policy adjustment is no longer easy to state.

Summary
When forecasters have information about anticipated

policy changes, it may be effective to include that
information in the statistical forecast model. A technique
is defined to allow for a permanent inclusion of such
information. This technique makes sense because it simply
allows the forecaster to include information in the
statistical forecast model. This is a natural extension of

the decomposition approach to forecasting.



CHAPTER 6: VALIDATING FORECAST TECHNIQUES

In this chapter I will:

o Identify the criteria that are available for comparing
forecast techniques.

o Specify two major hypotheses (5 constituent hypotheses)
that are examined through empirical research which is

discussed in the final three chapters of this

dissertation.
o Identify the various types of forecast evaluations.
o Discuss the generally accepted approach to evaluating

forecast accuracy.
o Identify the range of statistics that are available for

evaluating forecast accuracy.

Forecast Criteria
To determine whether forecasts made using the proposed
technique are better, it is important to consider the

meaning of better. This term has been used with several

meanings among forecasters. Roughly, these include:
o Better fit in the sample period.!®?
o More accurate in the forecast period.?!s?
o Lack of bias.'®*
o Less expensive to use.!'®?

113
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o Easier to use.'®®

o Easier to understand.!

© Not having systematic errors.!®®

o Containing more information.'®’

o Providing more useful information to a forecast
user .1¢°

Also, I proposed two criteria in chapter 3, accuracy
and reliability. These criteria, beginning with the two I

proposed, are discussed below.

Accuracy
There is considerable dispute in the literature
regarding which statistic, if any, reliably measures the

! In addition,

relative accuracy of various forecasts.?®
studies indicate that forecast confidence intervals
calculated by standard statistical formulas are unduly

? which suggests that statistical comparisons between

narrow®
forecasts may not be reliable. Nevertheless, severely
inaccurate forecasts would seem to be pointless. So,
forecast accuracy is considered a criterion of forecast

model adequacy. Later in this chapter methods for

evaluating accuracy are reviewed more thoroughly.
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Reliability

Forecasting literature does not address the issue of
reliability as I have raised it. I use reliability to refer
to a lack of update driven fluctuation. Forecasts of more
than one period ahead are of little value when they change
significantly with every update. If the current forecast
and the last one are both the best made at the time, but the
current one is 10% more (or less) than the last one, and if
the forecast fluctuates this much with every update, how
does the user know which one is right? 1In the empirical

analysis a statistic is included to look at this issue.

Better Fit

It appears that the better fit in the sample period
criterion is a proxy for the more accurate in the forecast
period criterion. However, forecast literature does not
support the view that the one implies the other.!®”® In this
study accuracy will be measured more directly by looking at
the actual consequences of actual forecasts. Better fit

will not be a criterion of forecast model adequacy.

Lack of Bias
In estimation, bias arises when the expected value of
an estimator is not equal to the parameter it is used to

estimate.' It is, therefore, related to accuracy. In this
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study, concerns of bias will be subsumed under concerns of
accuracy. Nevertheless, Mean Deviation (a measure of bias)

will be considered in fitting of forecast models.

Less Expensive to Use

As has been cited elsewhere in this study (page 30), it
is commonly believe that exponential smoothing is a
relatively inexpensive forecasting technique. This view
rests on the fact that exponential smoothing calls on
relatively little data and can be taught to staff who have
little statistical or other high cost analytic skills. It
also requires only a moderate amount of computer time and
calls on formulas that are available in numerous computer
programs and which formulas are fairly easy to recreate when
off-the-shelf software is not available or desired. 1In the
usual case, interpretation of the results of exponential
smoothing models is not considered difficult. I have not
been able identify research that demonstrates these
assertions, but I assume from personal experience that they
are accurate. Another element of forecast cost is the cost
of wrong decisions due to forecast inaccuracy; however,

forecast accuracy is a separate criterion for this study.

If exponential smoothing is an inexpensive forecasting

technique, and if the proposed technique uses only
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information that is on hand requiring only a small amount of
effort to put in a usable format, the proposed technique
should remain inexpensive. The question whether the
proposed technique is less expensive than unadjusted
exponential smoothing rests on whether the value gained
through improved accuracy or other value added is greater
than the increased effort required for application of the
technique. I am not able to operationalize this gquestion

and do not propose evaluating it question in this study.

Easier to Use

It is widely held that exponential smoothing is a
relatively easy to use forecasting technique. Reasons for
this view are not widely discussed but, I assume, are
associated with the relatively simple math and the relative
ease of interpreting output in the usual case. The proposed
technique is a relatively simple extension of exponential
smoothing, requiring primarily that the forecaster grasp the
mathematical operationalization of a first difference.
Consequently, if exponential smoothing is relatively easy to

use, so too is the proposed technique.

Also, the proposed technique provides for several
efficiencies compared with its primary alternative, the ad

hoc approach. These are discussed beginning on page 97.
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One of the more important of these efficiencies is that, as
compared with the ad hoc technique, this technique has the
advantage that it is "more seamless," i.e., it allows for
the computerized forecast model to contain a level shift. A
forecast practitioner who wants to accomplish the same
results without the proposed technique makes a two stage
forecast, first he uses a computerized forecast model to
produce an initial forecast, then he takes the results of
the model and manually adds the ad hoc adjustment. With
each forecast update, the same two stage adjustment must be
made. Also, when more than one forecast horizon is
reported, the ad hoc adjustment must be included for each
reported horizon. The proposed technique minimizes the
number of adjustments made by permanently including the
adjustment in the forecast level and contains the
adjustments in the computerized forecast model, thereby

eliminating manual adjustments.

Easier to Understand

An easy to understand inaccurate forecast is of little
value. The ease of understanding criterion is, in the first
place, related to forecasts that are anticipated to be
accurate. At this point, the accuracy of the proposed
technique has not been evaluated. Thus, evaluation of the

ease of understanding criterion would be premature unless it
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can be included in the study of accuracy with minimal

additional impact.

I anticipate that, in fact, the proposed technique will
be somewhat less easy for the user to understand than is ad
hoc method. Under the ad hoc method, the user can see the
forecast from the statistical forecast model, see the policy
impact, and see the combination of these. In the proposed
technique, the policy change is mysteriously absorbed into

the statistical forecast model.

In the discussion above it is suggested that this ad
hoc method sometimes results in significant inaccuracies.
It is, therefore, important to separate the issue of
accuracy from the issue of understanding. If the study of
accuracy demonstrates significant gains, the issue of
understanding may become more significant for a separate

study.

There are two issues of ease of understanding:
(1) Whether the technique as described in this study can be
understood by forecasters and end users with relative ease.
(2) If not, whether an alternative description can be

articulated that will make the technique accessible to
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forecasters and end users. A negative finding on the first

issue does not settle the matter.

Absence of Systematic Errors

In his discussion of this issue, H. O. Stekler is
clearly interested in the issues of bias and accuracy.!®®
These are issues previously discussed above under separate
topical headings. In general, a systematic error is an
error that indicates the failure to take into account an
important explanatory variable. In causal or econometric
type forecasting, this would generally mean that the model
is missing an important explanatory variable. In Holt-
Winters-Williams models it may indicate a need to analyze
the decomposition of the data into the series that are being
forecast. For example a periodic up and down cycle in
monthly data may indicate that the data is inherently weekly
in nature with a special weekly end date, e.g., Fridays,
such that in months that have five Fridays (roughly one a
quarter) the series bumps up, in other months it bumps down.
This sort of decomposition analysis is another approach to

dealing with explanatory wvariables.

The proposed technique is developed specifically to
remove certain sorts of systematic error, it is designed to

remove the serial correlation that arises over a period of
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time during which an exponential smoothing forecast model is
behind the curve on a level shifting policy change.
Consequently, the evaluation of the relative accuracy of the
technique is also an implicit evaluation of its
effectiveness in removing systematic error from the

forecast.

Containing More Information

The proposed technique is specifically designed to
incorporate information known by the forecaster into the
statistical forecast model. With respect to the overall
forecast model, including non-statistical equations, the
forecast made in advance of the date of the policy change
using the proposed technique does not contain more
information that a forecast using the ad hoc method.
However, it is proposed that the statistical model in the
proposed technique does contain more information than the
statistical model used in the ad hoc technique. The
difference in the statistical models is that the proposed
technique uses the anticipation of a change to adjust the
number that is to be compared with the forecast error. As
the policy change unfolds, the errors computed in the
alternative statistical forecast models will be different.
In one case the statistical error reflects the anticipation

of a change, in the other it does not. In the proposed



122
technique the statistical error indicates a need to adjust
(and adjusts to the degree that the parameters allow) in the
case that the policy change fails to occur. It continues
without significant adjustment if the policy change occurs

as expected. In the ad hoc model, the reverse occurs.

While this difference is solely a difference in where
the information is stored before the policy change occurs
(within or outside of the statistical model), it becomes a
difference in information as the model is updated while
policy change is going into effect. The difference is found
in the error term of the statistical forecast model. Assume
that the estimate of the policy change is reasonably
accurate. In this case, the user of the proposed technique
continues to have available a statistical forecast that is
not affected by abnormal errors. The user of the ad hoc
technique, on the other hand, has a statistical forecast
that is not working because the statistical forecast model
is affected by abnormal errors. Once the policy change is
in effect and in the historical period of the data, the ad
hoc technique contains the information about the policy
change within the statistical forecast model in the
o parameter where it is at risk of confusing other

unexplained variation with policy changes while the proposed
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technique contains the information within a component of the
model that is targeted specifically to the specific policy
change and has no risk of confusing unexplained variation

with the policy change.

Moving to the assumption that the policy change does
not take place, the user of the proposed technique is free
to change the forecast model to exclude an unexperienced
adjustment, and would be ill advised to do otherwise. 1In
that case the forecast would contain the same information as

that used in the ad hoc method.

Consequently, it appears that the proposed technique
produces a forecast model that contains at least as much
information as the alternative technique, that it includes
more information in the statistical forecast model under
certain circumstances. While the discussion above asserts
such benefits based on the proposed rationale, an empirical
evaluation of the accuracy of the proposed technique also

constitutes the evaluation of this information strategy.

Providing More Useful Information to the User
It is possible that the proposed technique can be
further developed for use in evaluating or testing the

occurrence of the anticipated level shift, thereby providing
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useful information to the user. Such testing would consist
of considering a statistic that would behave differently
between models that have both anticipated and actual policy
changes and models that have anticipated policy changes that
do not materialize. Development and evaluation of this

statistic is beyond the scope of this dissertation

Summary of Criteria
a In this study the proposed technique is evaluated to
determine whether it meets the criterion that it is more

accurate and reliable than some comparative forecast in the

forecast period.

Hypotheses to Examine

In this dissertation I propose that a certain sort of
problem, level shifting, arises with serial data that may be
forecasted. In the ensuing discussion I examine various
approaches to forecasting data that experiences level
shifts. Considerable attention is given to data that has
level shifts during the forecast horizon. I discuss various
exponential smoothing techniques that may be used to
forecast through periods of level shifting data. I define a
specific forecasting technique that incorporates
independently developed estimates of policy changes into

exponential smoothing models. I discuss several sorts of
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problems that may arise with the proposed technique. This

discussion leads to the following hypotheses.

Accuracy when Forecasting Through Periods of Policy Change
There should be a significant variation in performance
of various exponential smoothing techniques in forecasting
through periods of level shifting policy changes. Some
methods perform should better than others. Where
anticipated policy changes materialize, Holt-Winters, Holt-
Winters-Williams, adaptive Holt-Winters-Williams, and
autocorrelation corrected Holt-Winters-Williams® used alone
or in combination with the ad hoc method (herein, the
alternative techniques)’ should not perform as well as the
proposed technique when the forecaster possesses reasonably
accurate information about the prospective level shifting
policy change. Where anticipated policy changes do not
materialize, only the models that completely ignore the

anticipated policy change should perform as well as or

‘These terms are used here to reflect a class of
models: SES, Holt-Williams, and multiplicative Holt-Winters-
Williams. Thus, it is asserted that adjusted-SES is more
effective than SES or adaptive SES, adjusted-Holt-Williams
is more effective than Holt-Williams or adaptive Holt-
Williams, and adjusted-Holt-Winters-Williams is more
effective than Holt-Winters-Williams or adaptive Holt-
Winters-Williams.

““These techniques represent a reasonably broad range
of those techniques that preserve the simplicity advantage
of exponential smoothing.
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accurate information about the prospective level shifting
policy change. Where anticipated policy changes do not
materialize, only the models that completely ignore the
anticipated policy change should perform as well as or
better than the proposed method, that is, the alternative
methods may perform better than the proposed method only
when the ad hoc adjustment is not used and the anticipated
policy change does not materialize. These expectations lead
to these hypotheses:

HYPOTHESIS la: The alternative techniques and the
proposed technique are not equally accurate in
forecasting through periods where policy shifts are
anticipated.

HYPOTHESIS 1lb: The proposed technique is more accurate
than the alternative techniques when used to forecast
through periods where policy shifts are anticipated and
such policy changes materialize.

HYPOTHESIS lc: The proposed technique is more accurate
than the subset of the alternative techniques that
include use of the ad hoc method when used to forecast

through periods where policy shifts are anticipated and
such policy changes fail to materialize.

Forecasting with Data that has Historical Policy Changes

There should be a significant variation in the
performance of forecasting models that are fit across
periods of level shifting data. Fitting sample period data
series that have explained level shifts (policy changes) 1in
the sample period through the proposed technigque should

produce more accurate forecasts than fitting such historical
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HYPOTHESIS 2a: The alternative techniques and the
proposed technique are not equally accurate when used
to fit data that has had a level shift in the
historical period.
HYPOTHESIS 2b: The proposed technique is more accurate

than the alternative techniques when used to fit data
that has had a level shift in the historical period.

Evaluating Forecast Methods
The hypotheses address whether, and under what
circumstances, forecasting with the proposed technique
provide better results than would occur in its absences.
What constitutes a reasonable study of such a question?
Forecasting literature suggests the following research

designs related to forecast techniques:

1. Examination of the mathematical validity of a proposed

technique. ¢

2 Examination of a mathematical model through the use of

simulated data.!®

3. Forecast competitions, generally involving the use of a
hand full of techniques applied to the same data

8 The most significant of these over the

series.!®
recent past have included the M-Competition and the M2-

Competition, both of which involved comparison of major
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forecasting techniques by highly recognized members of

the forecasting community.!®®

4. Review of the use of a technique on one or more data

series known by the researcher.!’®

5. Examination of cross sectional data, e.g., looking at
forecasting accuracy for techniques that are frequently

used by practitioners.!”?

6. Reexamination of published data and results.!”?

7. Survey research, e.g., into forecaster satisfaction

with methods.!”®

8. Forecast technique clarification through the

development of protocols for use of a technique.!’®

9. Study of psycho-social elements of forecasting.!”®

No single study could attempt to pursue all these
approaches to forecast adequacy. Instead, an actual study
should be comparable to one or several of these approaches
and should be designed to resolve specific questions raised

through specific hypotheses. The study design discussed in
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the next chapter reflects several of the types of studies
cited above. It includes a forecast competition (see bullet
3), using data that is known to the researcher (bullet 4),
and simulated policy changes (bullet 2). It is used to
determine under what circumstances the proposed technique
might be effective (bullet 8). Other designs mentioned

above are not included in this study.

N-Period Ahead Evaluations
Two aspects of an forecast update are the trace of each

forecast update and the n-period ahead point of repeated
forecasts.!” The trace is the forecast for periods t+m
through t+m+l where t is a time index, m is the number of
time periods before the period of interest, and 1 is the
number of time periods in the period of interest. The
trace, therefore, is a vector of forecasts:

F F

t+m/ t+m+17/ Ft+m+2 ’ . . . ’ Ft+m-¢~1

The n-period ahead point of repeated forecast updates
is the forecast at the observation at t;+n, where t is the
index of the last actual observation and updates by an
increment of 1 with each addition of 1 observation to the
history of the data, j is the index of the updates, and n is

the number of periods from t to the observation measured.
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The n-period ahead point of repeated forecast updates moves
to a later point in time by the number of additional actual
observations added to the history with each update. There
is one point observation from each jth update and it is
located one period later in time. These are further

demonstrated in the following table:

Table 1 Trace and N-Periods

Period
Update 1 2 3 4 5 6 7

1 Fi,1 F1,2 F1,3 F1,4 Fi,5 F1,6 F1,7
2 A2,0 F2,1 F2,2 F2,3 F2,4 F2,5 F2,6
3 A3, -1 A3,0 F3,1 F3,2 F3,3 F3,4 F3,5
4 A4,-2 A4,-1 A4,0 F4,1 F4,2 Fa,3 F4,4
5 As5,-3 A5,-2 A5, -1 A5,0 F5,1 F5,2 Fs5,3
6 A6,-4 A6,-3 A6,-2 A6,-1 A6,0 Fe6,1 Fe6,2
7 A7,-5 A7,-4 A7,-3 A7,-2 A7,-1 A7,0 F7,1

F = Forecast, A = Actual

First Subscript (i) = Update (row)

Second Subscript (j) = Periods before (negative) or after

(positive) the current observation (Ai,0 = Current Period)
i = Subscript of the Trace (row)
j = Subscript of the N-Period Ahead Forecast (diagonal from
left top to right bottom)

The most commonly accepted forecast evaluation design
is to compare forecasts based on the n-period ahead point
observation.!”” It is acknowledged that evaluation of n-
period ahead point accuracy may not fully evaluate trace
accuracy. This limitation arises because of the difference

between two of the major factors of a forecast, slope and

level.
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The difficulty of evaluating only the n-period ahead
observation is that two different forecasts may not be
distinguishable at n-periods ahead. In evaluating a
forecast at n-periods ahead, one is evaluating the level of
the forecast at that observation point. If two forecasts
have different levels at the end of the historical period of
a data series and also have different slopes they may
intersect at a certain point in the future, thereby having
no difference in level at that particular point. If this
point is near the n-period ahead observations, it may be
difficult to distinguish between these two forecasts at n-
periods ahead; they could be confused for two forecasts that
had the level at the end of the historical period and the
same slope thereafter, i.e., identical forecasts. It is
reasonable to assume that if the trace of one of these
forecasts is similar to the trace of the actual data series
as it unfolds, this forecast is the better forecast.
However, the n-period ahead evaluation may not reveal this

difference.

Unfortunately, observations of a forecast at wvarious
periods ahead are not independent of each other, so the
errors from the actual data series members are highly
correlated. This correlation invalidates the use of such

statistical procedures as ANOVA, t-tests, and regression
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coefficients when working with forecast traces.
Consequently, generally accepted forecast evaluation designs
do not provide for the evaluation of the trace of

comparative forecasts.!’®

Instead of comparing traces, the practice is to
evaluate forecasts at various horizons (n-periods ahead) to
determine which technique is more effective for forecasts at
each horizon. For example, this approach is the technique
used in a very widely recognized study known as the M-
Competition and a recent follow on to that study known as
the M2-Competition.!” Although this view is not commonly
articulated, it can be argued that a forecast technique that
produces effective forecasts at various horizons reasonably
must have a trace that is similar to the trace of the actual

data series.

Statistical Evaluation of Forecasts’
Various statistics have been proposed for evaluating
forecast accuracy. In general these are descriptive
statistics. The general practice with forecast competitions

is to demonstrate numerous tables of descriptive statistics

*Notation in formulae presented in this section may be
altered from the original for consistency within this
discussion.
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and to discuss these qualitatively. Statistics that have
been proposed for, or used in, forecast evaluation are

reviewed below.

Descriptive Statistics
Following is a review of various descriptive statistics

proposed for forecast evaluation.

M-Competitions

Two common forecast statistics are Mean Squared Error
(MSE) and Mean Absolute Percent Error (MAPE) .'®° These
statistics have been presented in both the M-Competition and
the M2-Competition and are commonly cited in other forecast
literature. Other statistics presented in the M-Competition
include Median MAPE (MdMAPE), Median Absolute Percent Error
MdAPE), Average Rank (between various methods used) and
comparative performance to Naive 1 (no change) or Naive 2

! The comparative

(seasonally adjusted Naive 1) .1°
performance statistics simply show the number of times that
Naive 1 or Naive 2 method out performs the alternative
technique. Other comparative performance statistics are

also presented. Makridakis, et. al. do not show why these

are preferable statistics.



134
The M2-Competition presents similar statistics include
average MAPE, ranking of all series, percent of time better
than Naive 2, difference of MAPE between Naive 2 and other
methods, Mean Percent Error (MPE), median MAPE divided by
MAPE of Naive 1 and median MAPE divided by MAPE of Naive
2.1®% The authors of this study remark, "This paper has
provided many tables (some complain too many) and used

several accuracy measures to report and compare results.

[Italics in original]"'®

Spyros Makridakis and Michele Hibon have published
another similar study in which they reported similar
statistics as well as reporting Theil's U-Coefficients.!®
Theil's U-Coefficient is a statistic that compares the
actual one step ahead forecasts produced in a forecast model
with the forecast sometimes known as Naive 1, a no change
forecast. A U-Coefficient less than 1 indicates that the
proposed technique is an improvement over Naive 1. However,

the statistic's distribution is unknown so statistical

significance cannot be established.?!®®

Robert McLaughlin
Robert McLaughlin!®® defines a statistic that he calls
the standardized realization percent (SR). He recommends

this statistic for the purpose of easy communication with
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management. The standardized realization percent is a

variant of MAPE.

Benito Flores

Benito Flores provides a general review of forecast
statistics and identifies defines a large number
including®®”®* Mean Error (ME), Mean Absolute Deviation
(MAD), Root Mean Squared Error (RMSE). These are absolute
statistics, that is, their magnitude is dependent on the
magnitude of the original data series. MSE and RMSE are
sometimes used as loss functions in optimizing forecasts,
but they place more weight on larger errors. Under some

circumstances this might not be desirable.

He also defines Percent Error (PE), Mean Percent
Error”™ (MPE), and a symmetrically adjusted MAPE (SMAPE)
statistic as follows.!®® He points out that MAPE is biased
in favor of underestimation because of a bias in the ratio

calculation when dividing by the actual. For example with

*Flores definitions of MSE and MAPE have been discussed
above.

“This formula is a correction of Flores published
number where he calculates the "* 100" against the average
PE,. He has already included this component of the standard
percentage formula in calculating PE;.
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two equally large errors, e.g., predicted 50 and actual 100

versus predicted 100 and actual 50, the first will be:

(|50-100]|/100) *100 = 50%,

While the second will be:

(]100-50|/50) *100 = 100%

These statistics (MPE, MAPE, and SMAPE) are
dimensionless in that they are divided by the data series or
some other quantity that is in the same order of magnitude
as the data series. Because of this dimensionless quality,
comparison between forecasts and communication with

management is enhanced.

Armstrong and Collopy

In a recent article Armstrong and Collopy define a
large number of error measures, including the following
which they recommend or are used in the calculation of those
they recommend:!®® Median APE (MdAPE), Relative Absolute
Error (RAE), Winsorized RAE ( WRAE), Geometric Winsorized
RAE (GMWRAE), Median RAE (MdRAE). They recommend the use of

GMWRAE for calibrating parameters, MdRAE for selecting among
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a small number of forecasts, and MJAPE for selecting among a
larger number of forecasts. They recommend against RMSE for
use 1in generalizing about the accuracy of forecasts because
of its low reliability. The recommend against the use of

MAPE because of its bias in favor of low forecasts.

Although their discussion does not recommend them they
also define other statistics including Cumulative RAE,
Geometric Cumulative RAE, Median Cumulative RAE, an
aggregate RMSE for multiple series, a generalized Theil's U
which they call Theil's U2, a Geometric U2, Percent Better,
and a statistic that summarizes six of these other
statistics which they label Consensus Rank. They do not
define inferential tests of statistical significance for

various error measures.

Patrick A Thompson

0

Patrick A. Thompson!'’® proposes the use of the log mean

squared error ratio for comparison of forecasts. This
statistic is defined as follows:

Let m;; denotes the mean squared forecast error of
techniques j on series i. For this series, define the
log mean squared error ratio as Ilmr;, = log(m;,/m;),
where m;, is the mean [squared] forecast error of some
benchmark technique. Computed with the benchmark MSE
in the numerator, a positive LMR indicates that
technique j had a smaller forecast MSE on this series
than the benchmark.!®
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Thompson goes on to argue that is permissible to
average LMR across series. The benchmark that Thompson uses

is Naive 2.

Robert Fildes

Several of the statistics defined by Armstrong and
Collopy involve the use of Geometric calibrations to
summarize across multiple series. Robert Fildes defines a
statistic he calls the Geometric Root Mean Squared Error
across time periods which he then uses in a ratio to compare
between two different forecast technigues and a more
generalized statistic called The Relative Geometric Root
Mean Squared Error ratio across time periods (TRGRMSE) .!%?
Fildes also defines an array of other statistics.
Ultimately he concludes that TRGRMSE or a relative Median
APE are preferable statistics for comparing methods. He
objects to MAPE because it is ineffective when actual
observations are near zero, which is similar to other

objections discussed above.

Inferential Statistics
In addition to these descriptive statistics the

following inferential statistics have been proposed:
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Benito Flores

In another article Flores discusses the use of the
Wilcoxon test of paired data to compare forecasting
methods.!® For n>10, the resulting quantity is compared
with the normal distribution for statistical significance.
For lesser n, the T, distribution is known. In his analysis
of this statistic, Flores recommends its use in combination
with other approaches to comparing forecasts, but does not
give it unqualified support.!®® It should be noted that the
Wilcoxon test is only appropriate for comparing two

forecasts with each other.

Kolb and Stekler

Kolb and Stekler!®® propose a method of comparing
forecasts by testing whether the differences in the mean
squared error of the forecasts is statistically significant.
They define a regression model that compares these means.
It should be noted that this regression requires a
reasonably large number of observations to provide an
adequate N. Use of multiple observations from the same
forecast trace encounters the covariance problem discussed

above.

H. O. Stekler
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H. O. Stekler identifies several inferential statistics

in a general review of forecast evaluation statistics:®®

The Analysis of Variance by rank (here in, Rank ANOVA)
computes relative ranks of forecasts for each trial, sums
those ranks for each model, and compares summed ranks using
a chi-squared goodness of fit test. This test is also
sometimes called the Friedman test. The Kruskal-Wallis test
is similar to the Rank ANOVA except that it ranks all
observations in one series rather than by trial. The
Kruskal-Wallis test also tests significance through chi
square. Because of the ranking technique, the Kruskal-
Wallis test is not valid when different trials naturally

differ in magnitude.

The Percent Better is the number of occasions where A
out performs B divided by the total number of trials. Where
n>40, this can be tested for significance using
Z,=(n,-n/2)/(n/4) where n, is the number of times the first

method is better and n is the total number of trials.

Stekler defines another test which is aimed at
determining whether on forecast contains more information

than another. Calculate the regression:
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A, = bP, + (1-b)P,

Where A is the actual and P is the predicted for two
different methods. Consider the null hypothesis b = 1. If
the test is significant, it is implied that one forecast
contains more information than the other. Again, the
independence of observations problem lurks in the

background.

Stekler discusses several other statistics which will
be omitted from this discussion. One, the Wilcoxon test, 1is

discussed above.

Optimization vs. Model Comparison

Before leaving this discussion of statistics, I want to
emphasize the difference between optimizing a single model
and comparing various models or methods. Many of these
statistics can be used for either of these purposes;
however, they may not perform equally well for each. This
review is aimed at finding a suitable method of comparing
results from various forecast models. Articles do not show
considerable fault with traditional approaches to
optimization. Results from recent analyses suggest that

most approaches to optimization have similar results.?!®’
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Selection of Approach for Comparison

These articles show that there is no consensus as to
which statistics are adequate for comparison of forecast
models. Several of the proposed statistics provided for
possible test of significance; however, there is no clear
consensus on which, if any, of these tests is appropriate.
Some may require more observations than may be available.
Others may have less than clear benefit in practice. There
is no evidence that any particular statistical test is
generally accepted as an appropriate test for forecast
accuracy or comparative forecast value. This study follows
the traditional approach of displaying and discussing
several descriptive statistics. Tables are used to display
a variety of statistics summarizing forecast performance.
This approach reflects the practice of major studies
including one that has been published within the past

year.1®

As an exploratory element of this dissertation three
non-parametric statistics are included for evaluation of the
descriptive statistics. These statistics are the Rank ANOVA
proposed by Stekler, the Kruskal-Wallis statistic also
suggested by Stekler, and the multiple treatment comparison
statistic for the Kruskal-Wallis test which is used to

identify which series are different when the Kruskal-Wallis
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statistic is significant.!®® These statistics are used to

evaluate the relative ranks of wvarious treatments.

It should be understood that these statistics are not
generally accepted as a basis for testing hypotheses about
forecast methods, thus, use in this dissertation is
exploratory, that is, other analyses will be conducted
regardless of the statistical significance of these tests.
Further, the Kruskal-Wallis test is sensitive to disparity
of magnitude among different series, that is, when the
series that are compared are significantly different in
magnitude in the first place the Kruskal-Wallis test will
likely test insignificant regardless of the variation of
effectiveness of the treatments (forecast methods). Thus,
the Kruskal-Wallis test is not valid for use with statistics
that retain the original magnitude of the data (i.e., the

Mean Squared Error statistics).

These tests are applied as follows: The descriptive
statistics selected in a later portion of this chapter are
arrayed using various series of data as trials and various
forecast modelling techniques as treatments. The
descriptive statistics are then ranked using either the Rank
ANOVA or Kruskal-Wallis ranking rules. These ranks are then

compared using the Rank ANOVA and Kruskal-Wallis statistics.
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Any statistics selected that are heavily influenced by the
magnitude of the original data series will be compared only
through the Rank ANOVA test as the Kruskal-Wallis test is
invalid. The Rank ANOVA and Kruskal-Wallis tests are
selected because they allow comparison of more than two
series, but they do not require the more complex assumptions
associated with parametric statistics. This part of this
dissertation is included as a trial of the possible benefit
of these non-parametric inferential statistics in comparison
of forecast models. As discussed in the earlier paragraph,
the primary design is a qualitative review based on display
of descriptive statistics. For all Rank ANOVA and Kruskal-

Wallis tests the null hypothesis is:

H,: Statistic, = Statistic, = ... = Statistic,

The alternative is that at least one statistic is not
equal to the others. Results will be compared with o = .05
level of significance. However, as these tests are being
included to explore their wvalue for this sort of analysis,
results will be considered and discussed even if
significance is not attained. If the null is rejected, the
multiple series comparison analysis associated with the

Kruskal-Wallis statistic is conducted to determine which
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specific model is distinct. The use of these tests is

further discussed in the next chapter.

Selected Statistics
Based on the previous review the following factors are
considered in selecting the descriptive statistics that are

compared in analysis of the empirical research:

(o) RMSE and MAPE are subject to biases and should be use
with caution if at all, nevertheless, these two
concepts form the basis of most statistics actually
proposed, so it may be desirable to represent each in
the selected statistics. Two possible statistics are

GRMSE and LMR.

o Variations of MAPE or APE that avoid the biases of MAPE
are generally considered good. Two possible variations

are MdAPE and SMAPE.

o Relative measures should be compared, absolute measures
do not have comparative meaning. Some possible
relative measures are LMR, Theil's U, GRMSE, RAE, and

RMdAPE.



146
o Aggregation across multiple series may be improved

through Geometric means.

The following statistics are selected for use in this

analysis.

i Geometric Root Mean Squared Error, GRMSE.

2. Log Mean Squared Error Ratio, LMR (as compared with
Naive 2).

3. Symmetrical Mean Absolute Percent Error, SMAPE.

4. Median Absolute Percent Error, MdMAPE.

Dige Average Rank.

In addition, because these statistics do not address
the reliability criterion discussed in the second section of

this chapter, the following statistic is added.

6.4 Range of percent error = largest positive percent error

minus largest negative percent error.

Also, because they are frequently cited in forecast
literature, Mean Absolute Percent Error (MAPE) and Root Mean

Squared Error (RMSE) will be displayed.
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In tables presented in chapter 8 and Appendix IV each
of these statistics is aggregated across multiple trials
through four different techniques: simple average, geometric
mean, average rank, and Kruskal-Wallis rank sum. The
average rank and Kruskal-Wallis rank sums relate to the

associated inferential statistics.

Summary

There are numerous criteria for evaluating forecast
models. The proposed technique can be expected to meet
criteria related to low cost and ease of use. An empirical
study is conducted to evaluate whether the proposed
technique meets criteria related to accuracy and
reliability. Two major hypotheses (5 constituent
hypotheses) are specified. Three constituent hypotheses
concern accuracy with prospective policy changes. Two
constituent hypotheses concern accuracy with retrospective
policy changes. Accuracy and reliability are measured
through an array of statistics focussing on squared error,
absolute error, and variation in error. Statistics are
aggregated across multiple series using geometric averaging

and other techniques.



CHAPTER 7: TWO RESEARCH PROJECTS (METHODOLOGY)

In this chapter I:
o Generally describe two proposed research projects.
o) Explain the methodology of a research project for
analysis of the first major hypothesis proposed above.
o Explain the methodology of a research project for

analysis of the second major hypothesis proposed above.

To examine the first major hypothesis (hypotheses 1la,
1b, and 1lc as specified on page 126), six forecast models
were built for each of 20 real data series from the Virginia
Medical Assistance Program. Two variant forecasts were
extracted from five of the models, resulting in a total of
eleven forecasts. The forecasts were made with the
assumption that the data series would undergo specific
policy changes in the horizon period. Various simulated
policy adjustments were added to the data series reflecting
accurate and inaccurate policy change assumptions. The
forecasts were updated through six updates. Accuracy is
evaluated for certain periods in the 15 periods subsequent

to the end of the six update periods.

To examine the second major hypothesis (hypotheses 2a
and 2b), six forecasts models were built for each of 20 real

148
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data series that have undergone real level shifts in the
observed (historical) period. All these data series are
also from the Virginia Medical Assistance Program. Accuracy
is evaluated for certain periods in the 15 periods

subsequent to the end of the six update periods.

Selection of Scope of the Study

Each study includes 20 data series in order to balance
between two objectives. The first is that the study be
sufficiently small that it can be completed within the scope
of a dissertation. The second objective is that the study
should be sufficiently large and general to eliminate the
realistic possibility that the findings arise because of
chance selection of data series. This need leads to the
selection of a larger number of series, even more than 20
may be desirable. For this same reason, different types of
data were used (units, cost per unit, enrolled Medicaid
eligibles, and gross dollar amounts). Also, data reflecting
different origination dates (July 1988 and July 1987) were

used.

In the literature review I did not find any standard
number of forecasts for empirical evaluation of a technique.
Actual empirical evaluations ranged in size from 1 to 1001

and from one organization to many. Limitation of the scope
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of this study to 20 series and to series originating from
the one organization reflect a reasonable compromise to
complete the project. As will be seen in further discussion
below, 12 different scenarios were compared for 7 updates
and a second study is conducted using 20 additional series
which were fit to 6 models and updated for 7 periods. The
total number of forecasts that were made (excluding those
for model fitting) will be 19,320 as shown in the following

table:

Table 2 Number of Forecasts

Study Series Updates Models Scenarios Total
1 20 7 11 12 18,480
2 20 7 6 1 840
Total 19,320

It seems likely that 20 series updated across 7 periods
should constitute an reasonable test of each method for each

specific scenario.

The First Major Hypothesis
To examine the first major hypothesis I compared
forecasts made with six types of forecast models. The six
types of models are Holt-Winters, Holt-Winters-Williams,
adaptive Holt-Winters-Williams, autocorrelation corrected

Holt-Winters-Williams, Naive 2, and adjusted Holt-Winters-
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Williams (the proposed technique). Only one forecast was
made using the proposed technique; however, two forecasts
were made using the other five techniques: one that uses
the ad hoc method of adding on a lump amount for the policy
change, and one that simply looks for the forecast to catch
up while completely ignoring any information that may be
available from the estimate of the policy change. In all
cases except with Naive 2, Holt-Winters refers to a
selection between four possible models: SES, Holt (i.e., a
model with trend calculated in the manner of Holt), Winters
(i.e., a model with multiplicative seasonality calculated in
the manner of Winters), or Holt-Winters. For the Naive 2
model Naive 1 was the alternative non-seasonal model.
Forecasts were made of data series with which I am familiar
having forecast this data for a government program. The
unadjusted version of Naive 2 (i.e., the one without the ad
hoc adjustment) was used as the benchmark model for LMR
statistic. In fact, in this study seasonal models were not

developed. This is explained in further discussion.

Selection of Models to Compare

The proposed technique, the naive model with and
without the ad hoc adaptation, and four alternative methods
with and without the ad hoc adaptation are compared. The

inclusion of the proposed technique is obvious. The naive
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model is included as a base line for the LMR statistic. The
ad hoc adaption is included because it appears to be the
most obvious technique that a forecaster might use in the
case that he had externally supplied information and did not
have a forecast model that could integrate this information
into the projection, which 1is the condition I believe
forecasters would normally be in. The four selected models
are included to represent a reasonable range of possible
techniques that forecasters might actually have available to
forecast using exponential smoothing when they anticipate
policy changes. The Holt-Winters model is included because
it is the most common standard exponential smoothing model.
The Holt-Winters-Williams model is included because the
arguments provided by T. M. Williams suggest that it may be
possible to optimize it beyond the degree that the standard
Holt-Winters model can be optimized. The adaptive Holt-
Winters-Williams model is included as a representative of
the adaptive technique using simple methods. The Chatfield
autocorrelation corrected model is included as an
alternative approach to adaptive modelling, still within the

realm of simple approaches.

Obvious models not included within the trial include
Kalman filter approaches and intervention based ARIMA

models. These are excluded because of the underlying
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assumption of the study, i.e., that forecasting with simple
methods is worthwhile and worth improving even if such
forecasting may be less accurate than may be achieved with

more complex methods.

The Data

The data are 20 monthly level (i.e., having one
observation value per month) data series selected from data
series used in budget forecasting for the Department of
Medical Assistance Services. Series that have obvious
problems unrelated to those under examination in this study,
e.g., those with observations with the value of zero, were
excluded from the selection. Nevertheless, a variety of
series, reflecting a variety of actual forecast conditions,
were selected. These series consist of monthly level units,
expenditure per unit, and gross dollar amounts for wvarious
service categories running from July 1988 through September
1993, and monthly level enrollment data running from July
1987 through September 1992. The following graphs show
these data series after certain preprocessing discussed

below.



154

Y-Ads
L.k
%Ss

FYRTTERTERTITTRRRTINIRITRSIRUIRNTIRITNIRUTRSIRRITRITRITERIIRINTI

X-Axs

et
N

FRTTRTRTRIRRIRTERIRIAR T eI IRTR R TR TeTRATRTRRTRITRTRTRTRATOINTI

X-Axs

Figure 23

Figure 247

Y-Axs
Thousands

3§38
7
'

FYTETITITRTETRTSTRTRTETRTTTRTITRTRTRTRTRTRTRTATRTSTUTITRINININT!

X-Axs

gj

CPU

Figure 25

Series 5

CPU

Y-Axs

\

460

TS ETTRTRITRRRR TR TV R R R TE R ITUTRTRRTUTRUR TR ETINTRTIRITRTATE

X-Ans

Figure 27

Series 7

cPu

a
8
T T

FTTRTRTTRTRTTR AR IR TR NTTRTRTTRTUIRUTRTARRTENTRTERANTORINUNT

X-Ans

Figure 29

s}
sil:
?m
ol
sl
.M X-Axs s
Figure 26
Series 6
cPU
ol
ot
.
S ———
Figure 28
Series 8
cPU
480|-
480

X-Axs

Figure 30




155

Series 9

ol

X-Ans

X-Ans

Figure 31

Series 11

CPU

Figure 32

Y-Axis
m
T

6}

FTSTERTRTRTTRCRERTRTIR IR R RIS RTRIRTUNRITR TR INTRTRTTNTRTATL

X-Axns

Figure 33

%

gl

X-Ans

Senes 13

Figure 34

Y-Ans

Thosends

E

Series 14

Gros §

FETETETRTRTE A TR TUTRTRTOTRTITETUTSTRTEVRTUTRTRTUTRTITRTRTIINTS

X-Axs

Figure 36

Gross $
o}
"
32 3 o
i
[
2|
PP T T T T T TP PP T P T P TP TP YT P TP P TP T T T TETTTTTTTTTTITTITIT
X-Ans
Figure 35
Series 15
Cams
3000
2500}
°
2 2000
ki
1500
1000}
B TP T T T TP TTT TR T T T TV TV TT P TTPTTETTRTTTTTTUITTTTUICTIToN

X-Axs

Figure 37

Series 16

Enraiment

Trassds
< -] e
T T T

Py YT R TR T NI YRR TUTRR TR TR TR UTUTRRTUTH TN TRTRUTETRUTRTEYONTIVOT

X-Ans

Figure 38



156

Series 17 Series 18
Enralment Enraiment
&l
ool
- 0] -
:é %
A5 ook
-
* X-Axs X-Ans
Figure 39 Figure 40
Series 19 Series 20
Enraltnent Enroment
200 12
3000~ 101
2 200~ 3 Ll
g X o
240 4
2w} 2k
P e
Figure 41 Figure 42
Independence

Because all series originate from a single organization
they may render the trial susceptible to some unique
condition arising within that organization. As there is a
variety of types of data arising within the organization and
as the data reaches the end of its fitting period on two
different dates that are a year apart, it is unlikely that
data would all reflect an undetected aberrance that would
render the trials irrelevant to other data. Nevertheless, a
correlation matrix was computed to determine whether the
series are unduly interdependent. It should be noted that

since many of these data series are trending in time they
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can be expected to reflect some correlation,?®® therefore,
correlation matrices were calculated for the first
differences of the data instead of the raw data. The data
considered in these correlation matrices were the first
differences of the pre-processed data described below.

Even so, the use of data from a single organization should
be considered a limitation that may justify additional
trials at a later date. A correlation matrix and a squared

correlation matrix are shown in Appendix III.

Inevitably, the calculation of a correlation matrix led
to selection of the series from the larger universe on the
basis of independence. I used the following procedure to
select uncorrelated data series from the larger set of all
series available for analysis: I calculated the correlatior
matrix and the squared correlation coefficient of all the
data series available. I then identified the two series
that had the highest squared correlation coefficient. I
eliminated the one of these two that had the highest average
squared correlation coefficient. I repeated the process
until only 20 series remained. An unexpected side effect of
selecting data out was that seasonal series, which are
somewhat more highly correlated with each other, were

essentially eliminated from the data selection. This result
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had the effect of eliminating consideration of the Winters

models.

Level Shifts

Graphs of the data series were visually inspected for
level shifts. Visual inspection was augmented through my
prior knowledge of the data series. Data series that
experience a prior level shift were excluded from this
portion of the analysis. These series are excluded to avoid
confusion between reasons for performance results. The
second study discussed below evaluates the application of

the technique in series that have historical level shifts.

Other Data Restrictions
Data series that include any of the following were not

included in this analysis:

o Data that has zero valued observations.
o Data that includes wide swings in variation.
o) Data that includes frequent trend shifts.

These data are excluded because it is my experience
that such data are difficult to forecast with any technique.
Results showing a preference for one technique rather than

another with respect to the anticipation of policy
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adjustments when forecasting through these sorts of data

series could not be ruled out as spurious.

Another restriction on the data series is that they
were all the same length, 63 observations including 15 hold
out observations, although some originate in July 1987 while
others originate in July 1986. There is nothing special
about the numbers 63 and 15. It was the number of
observations that were available for the majority of the
series included at the time that this study was completed.
The population based series are longer than this and are
restricted to 63 to be comparable in length to the other
series. These series are allocated to segments as follows:
the first 24 periods are allocated to initialization
(discussed below), the next 18 periods are allocated to
model fitting, the next 6 periods are allocated to
simulation of level shifts, and the last 15 periods are
allocated to ex ante model evaluation. This seems to be a

reasonable allocation of the available observations.

Hold Out Data
Twenty one months of data were held out from the
forecasts for use in simulated monthly updating and for

evaluation of the errors.
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Model Selection

One model was selected from each of the five types of
models for each data series based on optimizing loss
functions (producing one forecast for the proposed technique
and two forecasts each for the alternative methods).
Optimization was based on a grid of possible parameter
selections. The grid of parameters is:

Table 3 Grid of Parameters

.05 0.1 0.2
.0 0.001
.0

© oo

x =
p =
Y=

The settings P = 0.0 and v = 0.0 represent Winters and
Holt. Where both occur, the model is SES. 1In these cases
initialization of trend, seasonality, or both (discussed
below) is disregarded. For the non-adaptive models the a

fixed o = 0.8 was assumed to be optimal as discussed below.

The o values are selected because they represent a wide
range of possible values. Discussion in previous chapters
shows my rationale for keeping B and y fairly low, which is
that the Williams adjustment to Holt exponential smoothing
raises the implicit values of B and y by something
approaching a factor of 10. The values considered actually
represent a broader range than I usually consider while

forecasting to avoid overlooking legitimate models. As
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discussed in chapter 9, I considered a separate set of
models for one scenario when I began to suspect that the
large P values led to problems; however, the results were
not affected by this extra scenario. The lower limits
(other than zero) for B and y are selected based on my
experience that values below these tend to have little

impact on actual forecast models.

The adaptive model follows the same practice for P and
Y and calculates o following the Trigg-Leach formula while
using the Williams adjustment to Holt-Winters. In this

model the o grid values were used to fit ¢.

The loss functions that were optimized were SMAPE,
RMSE, SMPE. MAPE and RMSE were included as they are
commonly used loss functions that measure overall accuracy
of forecast. MPE was included to help eliminate models that
are consistently erroneous with the same sign as it is
assumed that consistently high or consistently low forecasts

are particularly undesirable.

I set control limits for SMAPE and SMPE, then minimize
RMSE. The control limits were 25% for SMAPE and * 5% for

SMPE. I have found no literature that supports specific
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control limits for MAPE or MPE (the symmetrical versions of
these statistics are not widely known). The specified
control limits are proposed based 6n two reasons. First,
symmetry corrected percent error and absolute percent error
are likely to be smaller than their non-symmetry corrected
versions because the non-symmetry corrected versions are
significantly affected by the occasional error where the
forecast is intensely higher than the actual. With such
small actuals as the denominator in the percent calculation,
the percent becomes very large. When the mean of the actual
and the forecast is used as the denominator, the calculated
percent declines immensely. It is, therefore, assumed that
reasonably low percents can be set. Second, reasonably low
percents are needed because forecasts that exceed such
control limits are likely to be of little value. The
specific percents selected are arbitrary and represent my
judgement of the point where forecasts begin to
significantly lose value due to the various forms of

inaccuracy.

The selected model was to be the model with the lowest
RMSE that also meets the control limit criteria for the
SMAPE and SMPE loss functions, if no model meets these

criteria, the model selected was to be the one with the
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lowest RMSE without regard to other criteria. In fact most

selected models meet all criteria.

Model Initialization’

I normally initialize level, trend, and seasonality of
exponential smoothing forecast models using the technique
described below which I first learned from Don Miller.
Forecast literature does not demonstrate a terrific

! Nevertheless, there is

advantage in model initialization.?°
likewise no evidence that initializing causes harm. Under
such circumstances, it would appear that the most important

consideration is in consistency of practice in comparing

models.

I use this initialization process because it seems
likely that uninitialized exponential smoothing models may
have biased parameters. This bias arises because
uninitialized models are actually initialized at zero for
level and trend and 1 for seasonality. These initial wvalues
guarantee high error values for the first few observations.
With guaranteed high error values for the first few
observations, uninitialized models are likely to require

large (responsive) parameters to self-initialize. As a

"This initialization process is similar to one
described to me by Don Miller.
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consequence, when the user fits the model to high
parameters, it is difficult to know how much the failure to
initialize contributed to this fit. The technigque described
bellow seems to offer a reasonable alternative to these

extremely unlikely initial values.

The first twenty four observations are linearlized by
subtracting the mean of the first 12 observations from the
mean of the second 12 and dividing by 12. The slope so
computed is the initial trend. This trend is backed off the
mean of the first 12 observations by 6.5 to obtain the
initial level. It is then be added back to the initial
level for twenty four iterations to establish an estimated
deseasonalized series for the first two years. While
initialization of seasonality was discussed in the proposal,
because of the incidental elimination of seasonal series
discussed above, seasonality was not a factor in the model

fitting.

Exclusion from Loss Functions
Because the first twenty four observations were used to
initialize the forecast, they were excluded from the

calculations of the loss function in model fitting.



165
Trading Days’

Because this data is known sometimes to be affected by
trading day information, (Fridays of the month or total days
of the prior month) the data series was adjusted (divided)
by these factors where it approved to reduce unexplained
variation. Use of trading day corrections is recommended by

Armstrong . 2%

Data Editing

J. Scott Armstrong advises that data series should be
cleaned of erroneous observations and irrelevant outliers.?®
In this study the data series was cleaned following
Armstrong's advice. Because I am familiar with the series,
I am aware that some of the series may undergo a low month
followed by a high month, or vice versa. These high/low or
low/high events are transitory and reflect short term
external events. These were adjusted by averaging the two
observations. Certain extreme outliers were edited out of
the series by replacing them average of the preceding and
following periods. I visually identification of these
observations bu inspecting graphs before forecasting data

or simulating policy shifts.

"This trading day analysis is similar to one described
to me by Don Miller.
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Simplification with Pre-processed Data

Pre-processed data was used to generate the input data
for the trials instead of using the preprocessing math to
build more complex models that reversed the preprocessing
stage as the last step. This was the principal I applied to
all data preprocessing in both experiments, e.g., editing
outliers or removing weekly variation from monthly level
data. This principal was used to simplify assumptions about
the end result, i.e., to allow the assumption that the
errors of the results arose from the exponential smoothing
models rather than from the combination of the exponential
smoothing models and the reversal of the preprocessing.
Since these forecasts were not generated for practical use,
it was not essential to produce a final forecast that was
comparable to the original raw series. Forecasters who make

practical forecasts are not afforded this convenience.

The Simulated Policy Adjustments

All models were developed as if they had an expected
level shift occurring beginning on the first month of the
forecast period. The prospective level shift is anticipated
at 30% of the average of the data series in the last 12
months of the historical period and is expected to phase in
(follow a ramp) over 3 months in equal increments. Both

positive and negative level shifts were considered for each
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series. For the model using the proposed technique, this
level shift was incorporated into the forecast. For the
other techniques, the statistical model was updated without
inclusion of policy adjusted information. However, for
those models two forecasts were calculated from the data.
One forecast included only the information from the
statistical forecast. The other included an ad hoc
adjustment added onto the forecast at the monthly level to
increase the forecast to a level similar to that of the

proposed technique.

For each series the following conditions were simulated
by adjusting the hold out data. These conditions allow for
consideration of some of the potential limitations of the

technique discussed on page 106.

Scenario 1: A level shift occurs exactly as anticipated,
beginning on the anticipated date and phasing in over 3

months and attaining 100% of the anticipated amount.

Scenario 2: Each level shift occurs as with scenario 1. 1In
addition, a trend shift of 10% of the average first
differences of the 6 periods prior to the level shift is

added to the data.



168
Scenario 3: The level change occurs as with scenario 1

except that it attains 25% of the anticipated policy change.

Scenario 4: The level change occurs as with scenario 1
except that it attains 200% of the anticipated policy

change.

Scenario 5: A positive trend shift occurs beginning in the
month of the anticipated level shift phase in date and

attaining a slope that is 50% of the slope of planned ramp.

Scenario 6: No change is added to the data series.

Scenario 7: No level shift or trend shift is added to the
data series; however the variation of the data series is be
increased by 100%. This increase is calculated by
determining the difference between the observation and a

3 period moving average. That difference is multiplied by 2
and then added back to the original moving average to create

a new observation at 100% greater variation.

Scenario 8: A negative level shift occurs exactly as

anticipated.
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Scenario 9: Each level shift occurs as with scenario 8. 1In
addition, a trend shift of 10% of the average first
differences of the 6 periods prior to the level shift is

added to the data.

Scenario 10: The level change occurs as with scenario 8

except that it attains 25% of the anticipated policy change.

Scenario 11: The level change occurs as with scenario 8
except that it attains 200% of the anticipated policy

change.

Scenario 12: A negative trend shift occurs beginning in the
month of the anticipated level shift phase in date and
attaining a slope that is 25% of the slope of planned ramp.
The 25% trend shift for negative cases is set so as to avoid
having the forecast series attain a level below zero in the

forecast horizon.

Simulated Scenarios Explained

These adjustments constitute twelve different scenarios
that may arise when data series are anticipated to have
level shifts. Scenarios 1 through 5 involve planned and

actual positive shifts. Scenarios 6 and 7 are planned
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positive shifts with no actual positive shift. Scenarios 8

through 12 are planned and actual negative shifts.

Scenarios 1 and 8 represents the situation for which
the proposed technique is designed. Consistent failure in
this scenario would suggest that the technique is of little
value. Scenarios 2 and 9 represents the condition for which
the technique should be robust. While the policy adjustment
is going into place the series also undergoes a significant
trend adjustment. The technique should not severely reduce
the exponential smoothing model's ability to respond to the
trend adjustment. In any case, the model should be expected

to perform at least as well as the alternative models.

Scenarios 3, 4, 10, and 11 reflect problems that the
forecaster may frequently face. It is not clear which
technique should be most accurate under these conditions.
Also, these are scenarios for which the forecaster may want
to be alerted to estimation failure through a signal such as

the smoothed error tracking signal.

Scenarios 5 and 12 should pose a significant problem
for the proposed technique since the model can be expected
to ignore the trend shift over the first few periods,

treating it as a level shift instead. This suggests that
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the alternative methods may perform better when such a shift
occurs. However, the scenario may also pose a significant

problem for the alternative methods.

Scenarios 6 and 7 challenge the proposed technique (and
the alternative techniques) to perform well in the absence
of the expected change. Scenario 7 introduces new confusing
information that may cause problems with all of the

techniques.

Updating

All forecasts were updated by adding one period of new
data to the historical series and recalculating the
projections. Parameters were not adjusted during the
updating process. For the standard Holt-Winters and Holt-
Winters-Williams models, the o parameter was raised to 0.8
before any updating occurs to allow for the anticipated
level shift, also the B and Yy parameters were changed to the
optimal B and Yy parameters for the subset of o = 0.8 models
tested. This rise in the o parameter reflects Armstrong's

recommendations following the previous advice of Brown.?2%

Six updates were completed for each series. Each

update was recorded with forecasts through the end of the



172
original 21 period horizon. The last fifteen observations,
adjusted to reflect each simulated policy adjustment, were

available solely for evaluation of the techniques.

Statistical Evaluation

Summarized statistics specified in the previous chapter
are displayed in tables for horizoms 1, 5, 10, and 15.
Models that have lower values for all statistics except LMR
are considered to perform better. For LMR, the higher wvalue
reflects better performance. All statistics except the
range of percent error are measurements of accuracy. The
range of percent error statistic is a measurement of
reliability. Because of the extensive nature of these
statistics, the tables displaying them are placed in
Appendix IV. That Appendix also includes tables that
display the results of the Rank ANOVA and Kruskal-Wallis

tests.

In the absence of consensus among forecasting experts
concerning what constitutes unequivocal success in a
forecast competition, the results are discussed
qualitatively rather than specifically compared to a
definite standard for acceptance or rejection of hypotheses.
The qualitative discussion addresses tendencies of

particular techniques to rank as more or less accurate than



173
other techniques, for example the tendency of the proposed
technique, or the proposed technique and the ad hoc adjusted
techniques to rank as more or less accurate than the
forecasts made with alternative techniques in which no
adjustment is made for policy changes. The discussion also
addresses the relative ranks within particular scenarios,
e.g., whether the proposed technique increases the risk of
forecast error when in actuality the policy leads to a
significant increase in variance rather than a level change,
which may allow a potential user of the technique to
evaluate whether the technique increases or decreases
potential forecast accuracy with respect to the particular
likely outcomes anticipated for a specific planned policy

change.

While qualitative results are discussed, I also
examine the results through Rank ANOVA and Kruskal-Wallis,
two non-parametric test of rank order. However, because of
the small sample size, 20 forecast series, and the lack of
general consensus on the applicability, these non-parametric
tests are not do not definitively evaluate the hypotheses.
As the analysis does not include definitive inferential
tests, the results should be considered to add to the
overall discussion of techniques appropriate to forecasting

discontinuous data.
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The Second Major Hypothesis
To evaluate the second major hypothesis (hypotheses 2a
and 2b) I made forecasts of 20 data series that have had
level shifts during the historical period. The six models
used to forecast series in the first analyses were used to

forecast the series in this analyses.

The Data

The data are 20 series selected from the Department of
Medical Assistance Services. Only series that have a level
shift before the beginning of the hold out data are used.

These data are shown in the following graphs:
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Independence

Correlation matrices were calculated as with the first
study. These are also demonstrated in Appendix III.
Because this series included level shifting data, the level
shifts added confusion to the correlation analysis. The
purpose of the correlation analysis was to validate that the
data were not correlated in general. Large level shifts
arising at the same time would tend to cause these series to
be spuriously correlated, while large level shifts arising
at different points in time could mask actual correlation in
the data. Consequently, the level shifts are averaged out
of the first differences before calculation of the
correlation matrices. There is some correlation between
some of series (R-squared = 0.3); however, in general the
series are independent. The universe from which these
series were drawn did not contain a sufficient number of
level shifting series to reduce all correlations further.
Two of the 20 selected series appeared to be seasonal. To
avoid confounding the results (since all other series were
non-seasonal) I deseasonalized these series and treated the
deseasonalized data as the pre-processed data as described

above.
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Forecast Procedures
Initialization and other forecast procedures were as

with the first analysis except as follows:

1. There were no artificial level shifts or scenarios.

Only the actual data series were forecast.

2. Where the level shift occurs before the end of the
initialization period, judgmental (eyeball) values were set

for initial trend and level.

3% The level shifting element of the proposed technique
was used to fit the historical level shifts in a manner
similar to an intervention variable. The historical level
shifts were "estimated" by identifying outlier. These first
differences were treated as the retrospective level shift

estimators. A table of these is shown in Appendix VI.

Updating and Statistical Analysis

The six models were updated for the same six periods as
with the first analysis. Forecasts and errors were
calculated for horizons 1, 5, 10 and 15 as with the first
analysis. The statistical analysis is conducted in the same
manner as with the first analysis. In the next two chapters

this second study is referred to as scenario 13. As
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discussed there, two variants of this study were conducted.
The second variant is called scenario 13b. Related tables

with those headings are shown in Appendix IV.

Limitations of the Research Projects

This study should be viewed as an exploratory analysis
of a new type of forecast model. This model is a hybrid of
an exponential smoothing model and simpler estimation
approaches. Most results are displayed in descriptive
statistics. While non-parametric inferential statistics are
presented, they are not widely used for comparing forecast
models and are included in part for consideration of whether
they may be useful in this sort of comparison. Also, both
the number of series evaluated, 20 for each of two projects,
and their origins from a single organization limit the
generalizability of this study. On the other hand,
correlation matrices presented in Appendix III show that the
series are independent, thus, it is reasonable to
tentatively consider generalizing results. Overall,
however, this study provides a preliminary analysis of the
proposed technique. Promising results suggest the need for

additional study.
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Summary

Two research projects were undertaken. In the first
project, 20 data series were forecast over 15 horizon
periods using 5 different techniques with two variants of
five of the techniques (for a total comparison of 11
models). Twelve policy change scenarios will be tested.
The series will be updated for 6 periods. Six summary
statistics will be calculated for each horizon to evaluate
the comparative effectiveness of the 9 models. 1In the
second project, 20 data series that have undergone a level
shift in the historical period were forecast over 15 horizon
periods using six different techniques. The series were
updated for 6 periods. Six summary statistics were
calculated for each horizon to evaluate the comparative
effectiveness of the six models. Because of cited

limitations, results should be considered preliminary.



CHAPTER 8: PRESENTATION AND ANALYSIS OF THE DATA

In this chapter I will:

o

Describe the research and the layout of the statistical
tables presented here.

Describe the results of each of the 12 scenarios
associated with the first empirical study.

Describe the results of the 1 scenario associated with

the second empirical study.

Results of Statistical Analysis

The statistical analysis is conducted primarily through

development of one table of twenty trials for each horizon

for each scenario for each descriptive statistic. These

tables are then summarized through the average, the

geometric mean, the average rank, and the Kruskal-Wallis

rank sums. As discussed below, some summary data is not

appropriate for some statistics. The summarized data is

presented in tables in Appendix IV. Following is a

descripiton of these tables.

The Tables

Tables demonstrating summary information from the 12

scenarios of the first study and two variates of the second

181
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study run eight pages in length each, for a total of 104
pages, so they are not displayed in the text of this
dissertation. These tables are included as Appendix IV.
For convenience of reference I label the 11 models generated
in the study as follows (The models that are marked with an
asterisk are not produced for the second study which is

labeled scenario 13):

Adjust The proposed method(or Adjusted).

HWW Holt-Winters-Williams.

HW Holt-Winters.

Adapt Holt-Winters-Williams with an adaptive O parameter

(or Adaptive) .
Auto Holt-Winters-Williams with the Chatfield

autocorrelation correction.

HWW* Holt-Winters-Williams with an ad hoc level shift.
HW* Holt-Winters with an ad hoc level shift.
Adapt* Holt-Winters-Williams with an adaptive O parameter

and an ad hoc level shift (or Adaptive?*).
Auto* Holt-Winters-Williams with the Chatfield
autocorrelation correction and an ad hoc level

shift.
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Each table contains four sub-tables for horizons 1, 5,
10 and 15. It summarizes one statistic, e.g., SMAPE, over
20 trials. Trial-by-trial results are not displayed due to
the magnitude of information. The different lines of each
sub-table reflect different ways of summarizing the
statistic. The tables are number X-Y where X is the
scenario number and Y is the table number. For each horizon
the following information is reported in tables X-1 through

X-8:

o The average value of the statistic across twenty trials
for each of the eleven alternative models. That is,
the basic statistic (error, squared error, absolute
error, etc.) is calculated for each of 7 updates for
each of 20 trials. It is summarized (averaged, summed,
ranked, or aggregated in whatever the appropriate
manner for the particular table) to one statistic for
each model for each trial. Then the 20 trials are

summarized to one average.

o The rank of the average values among the eleven models.

o The geometric mean of the statistic across twenty

trials for each of the eleven models.
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The rank of the geometric mean of the statistic among

the eleven models.

The average rank of the statistic by series across
twenty trials for each of eleven models, i.e., the rank

among the eleven models for each trial, averaged.

The rank of the average rank among the eleven models.

The rank sum as calculated in the Kruskal-Wallis
statistic (where all observations among the twenty

models are ranked in one set).

The rank of the Kruskal-Wallis Rank Sum.

The number of models that are statistically
distinguished from the reported model in the case that
the Kruskal-Wallis statistic is significant. The
Kruskal-Wallis statistics are reported in Tables X-9
through X-16. If these statistics are significant, the
number reported in this table shows how many of the
other models has a statistically significant
difference. If the Kruskal-Wallis statistic is not
significant, the number reported in this table is

irrelevant. When the Kruskal-Wallis statistic is
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significant and the number reported in this table is 10
(5 for Scenario 13), all the other models are

statistically distinct from this model.

For most of the statistics reported in tables X-1
through X-8 lower values are superior to higher values.
This is not true for the Log Mean Squared Error Ratio, where
the higher value is the superior result (in the tables, the
ranks reflect this fact). Also, the last row of data for
each sub-table implies no superiority for either higher or
lower numbers, instead, it shows how many of the other
models (models in other columns) are statistically distinct
from the reported model when the Kruskal-Wallis statistic is
significant. If this number is small compared with the
number of models reported, the other models with similar
Kruskal-Wallis Rank Sums cannot be statistically
distinguished from the reported model. Due to the quantity
of statistics calculated for this study, individual pairwise

comparisons are not reported.

For the Root Mean Squared Error and the Geometric Root
Mean Squared Error certain results are not valid because
problems associated with aggregating over data that is not
comparable in magnitude. The Geometric Mean is not a valid

mean for the Log Mean Error Ratio because negative logs
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imply that the mean error ratio is less than one, so the
technique is worse than the comparison naive model. Invalid

information is not reported.

Tables X-9 through X-16 show the results of two non-
parametric tests for significant differences of the ranks of
the reported statistic in . Thus, in Table X-10 the Rank
ANOVA and Kruskal-Wallis statistics for the ranks of the
SMAPEs for the twenty trials are shown for horizons 1, 5,
10, and 15. These statistics are reported under the Chi
Square Column as they are compared with the Chi Square
distribution for determination of significance. The next
column reports the degrees of freedom and the last column
reports the actual level of significance attained.
Traditionally, p values below o levels of 0.05 are

considered indication of statistical significance.

Description of the Data Collection and Analysis

I did the following (not necessarily in this sequence)
to generate each table (in this example I discuss
scenario 1, horizon 1, table 1-2, SMAPE): I fit the model
with the observations ending in December 1991 (or December
1990 if the data originated from population based series).

I collected the error for observation for January 1992 (or
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1991 as may be). I updated the model for the simulated
actual for the January observation and collected the error
for February, and continued through the seventh update
(counting the model fitting observation). I divided each of
the seven errors by the average of the observation and the
model projection for each of these seven periods to produce
a SMAPE for the period (or followed other procedures to
produce the relevant periodic statistic for the other
tables). I carried the average of the seven SMAPEs to a
table for comparison with the other 10 models and the other
19 trials. The average across all twenty trials is shown on
the first row (by the label "Average") on Table 1-2, and for
the proposed technique is 3.66%. The rank of the averages
is shown on the next line, etc. The table of Rank ANOVA and
Kruskal-Wallis statistics shows a Chi Squared value of 75.61
for the Rank ANOVA (p value 0.0000) and 42.55 for the
Kruskal-Wallis statistic (p value 0.0000) for the SMAPE
statistic and Horizon 1. These p values are, of course,

significant at the o = 0.05 level.

The two non-parametric tests were applied as follows:

o An array of the descriptive statistics were calculated

for each trial.
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(o) Ranks were then calculated among the descriptive
statistics. For Rank ANOVA, each trial was ranked
separately. For the Kruskal-Wallis statistic a table
of all the results for the twenty trials was ranked

from lowest to highest.

o) The Kruskal-Wallis statistic was reported only for
relatively dimensionless statistics (percents, ranks,

LMRs, etc.).

o Both the Kruskal-Wallis statistic and the Rank ANOVA
statistics were compared with the Chi Square

distribution for tests of statistical significance.

Material That is Presented

In this overview certain general results are observed.
I illustrate the forecasts made with the wvarious techniques
under the various conditions with graphs. These graphs are
a visual guide to the variation in both the trials and the
results; however, they do not necessarily demonstrate the
consequences of the various techniques for all twenty data
the series. For the first 12 scenarios, these graphs are
taken from the application of the techniques to Series 4.

Several series are demonstrated for scenario 13.
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The scenarios presented below are keyed to initial list
of scenarios. To maintain data integrity, this key was not
changed although scenarios are grouped in a different order
for this discussion. Also, the term unadjusted models will
be used to collectively refer to the five models that do not

take the anticipated level shift into account.

Scenarios 1 through 12 Discussed
The first twelve scenarios address hypothesis 1la:
The alternative techniques and the proposed technique
are not equally accurate in forecasting through periods
where policy shifts are anticipated.

The following eight scenarios also address

hypothesis 1b:
The proposed technique is more accurate than the
alternative techniques when used to forecast through
periods where policy shifts are anticipated and such
policy changes materialize.

In the first four scenarios presented, the simulated

actual level shift is equal to the planned level shift.

Scenario 1: Level Shift as Expected

In scenario 1 the simulated actual level shift is the
same as the planned level shift included in the forecast
model. In the following graphs, this can be seen with the

large level shift at the same point as the beginning of the
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updating period. To read these graphs, notice that the
bumpy line is the actual data, while the first update has

the longest forecast line.
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These graphs show a significant wvariation in the

results for the various models. Nevertheless, the specific

variation is relevant only for the example series. Tables
1-1 through 1-16 summarize the results for all 20 examined

series:
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When the planned level shift actually occurs, the
proposed method ranks superior to all other models.
This result holds for each of the four tested horizons

and for ‘all of the reported statistics.

The Kruskal-Wallis statistic and the Rank ANOVA show
statistical significance for these results with

p values ranging from 0.0000 to 0.0248.

The Kruskal-Wallis multiple series comparisons shows
that the proposed method can be statistically
distinguished from all other methods for all
comparisons for which it is wvalid (i.e., where this

result is reported).

The five other models that take the prospective policy
change into consideration, the ad hoc models (marked
with an asterisk), consistently perform better than the
five unadjusted models. However, patterns of results
(rank order of performance between these five models)

are not consistent across the various statistics.

The five unadjusted models are the worst performing
models. Among these, the adaptive, autocorrelation

corrected, and Holt-Winters models are frequently the
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worst performing models, with the Holt-Winters-Williams

and naive models performing somewhat better.

Among the models in which the prospective change is not
taken into consideration, the naive model is more
effective than the alternative models; however, the ad
hoc naive model is not superior to the other ad hoc

models.

Scenario 8, Negative Level Shift as Anticipated
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Following are the observed results:

o The proposed technique outperforms all other techniques
across all reported horizons and all reported

statistics.

o The ad hoc methods generally outperformed the

unadjusted models.

o The naive method generally outperformed the other
techniques that do not include an anticipated level

shift and frequently outperformed the ad hoc methods.

o The Kruskal-Wallis test is significant for all

statistics and all horizons.

o The proposed method can be distinguished from all other
models on the Kruskal-Wallis related multiple treatment
comparison analysis in all analyses for which the

Kruskal-Wallis test is wvalid.

o) The Rank ANOVA test is significant for all statistics
for horizon 1 and for all statistics except for the
average rank of the absolute error for horizon 5. It

is not significant for horizons 10 or 15.
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Scenario 2: Level and Trend Shift
In scenario 2, the simulated actual level shift is
equal to the planned level shift; however, an unanticipated
trend shift also occurs. The simulated trend shift is a 10%

increase of the trend over the
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The results of this scenario are similar to those of
scenario 1. These include:
o The proposed method ranks superior to all other models

for all reported statistics.
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The ad hoc techniques consistently rank superior to the

unadjusted models.

Among theée five unadjusted models, the least effective
models are the Holt-Winters, adaptive, and

autocorrelation corrected models.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it

is wvalid.

The proposed method can be distinguished from all other
models on the Kruskal-Wallis related multiple treatment
comparison analysis in all analyses for which the

Kruskal-Wallis test is wvalid.

The Rank ANOVA test is generally significant at the

o = 0.05 level of significance for all statistics and
horizons except it is not significant for horizons
greater than 1 for the range of percent error

measurement.
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Scenario 9, Negative Level and Trend Shift
Scenario 9 is like scenario 2 except that both the

expected and actual level
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Observed results are as follows:

Figure 106

The proposed technique is the most effective method

across all reported horizons and all reported

statistics.

In general the ad hoc techniques rank superior to the

unadjusted models.

The Kruskal-Wallis test is significant at the o

0.05

level of significance for all statistics for which it

is wvalid.
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o The proposed method can be distinguished from all other

models on the Kruskal-Wallis related multiple treatment
comparison analysis in all analyses for which the

Kruskal-Wallis test is wvalid.

o The Rank ANOVA test is significant at the o = 0.05
level of significance for horizon 1, has mixed results
at horizon 5 although it is usually significant, and
generally is not significant at the o = 0.05 level of
significance for horizons 10 and 15. It is not
significant at horizon 5 for the average rank of
absolute error and for the median absolute percent

error.

When the Level Shift is Larger or Smaller
In the next four models, the simulated actual level
shift occurs when planned, but is significantly different in

magnitude from the planned level shift.
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Scenario 3, Level shift at 25% of Anticipation

In scenario 3 a simulated

level shift occurs at the
anticipated time; however,

is only 25% as large as
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Results for this model are as follows:

The proposed technique consistently ranks tenth out of

the eleven series,

only the ad hoc Holt-Winters-

Williams method is less effective.

The unadjusted models generally outperform the others.

The autocorrelation corrected model tends to perform

the best.
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Both the Rank ANOVA and the Kruskal-Wallis test
significant at the o = 0.05 level of significance for

horizon 1, both test insignificant at horizon 15.

In general the Rank ANOVA tests insignificant at the
o = 0.05 level of significance for horizons 5 and 10
and the Kruskal-Wallis tests significant at those
horizons; however, the reader should consult the

tables.

Where the Kruskal-Wallis statistic tests significant,
the proposed method is distinguishable from the other
techniques with the multiple treatment comparison test,
so to is the aforementioned ad hoc Holt-Winters-
Williams model. However, the autocorrelation corrected
model generally is not distinguishable from some or all

of the other unadjusted models.



Scenario 10, 25% Level shift, Negative

Scenario 1

version of scenario 3.

expected level
negative. The
level shift is

expected level

0 is a negative
The
shift is
simulated actual
25% of the

shift.
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Following are observed results:
o The unadjusted models are more effective than the
others.
o In general, for the more distant reported horizons and

most reported statistics the autocorrelation corrected

model appears most effective.

entirely consistent.

This result is not

model for all reported horizons and all reported

statistics.

The Holt-Winters-Williams model is the least effective
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The proposed technique is generally the next least
effective model for all reported horizons and all

reported statistics.

The Kruskal-Wallis test is significant at the a = 0.05
level of significance for all statistics for which it

is valid.

The Rank ANOVA test is significant at the o = 0.05
level of significance for all statistics and all

horizons.

The multiple series comparison analysis shows the
proposed technique and the Holt-Winters-Williams
technique to be distinguishable from the other
techniques. In general, the autocorrelation corrected
model is not distinguishable from some or all of the
other models that do not take the planned level shift

into account.



Scenario 4, 200% Level Shift

In scenario 4, the

simulated level shift occurs at

the anticipated time,

it is 200% of the anticipated

level shift.

however,
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Following are the observed results:

o The ad hoc model using the Holt-Winters-Williams
technique has superior results for all horizons and

most statistics.

o The proposed technique generally performs among the
better performing models, with ranks ranging from 1 to

6 and frequently ranking 2.

o The unadjusted naive model has superior results with

the median absolute percent error for all horizons.
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In general, but not without exceptions, the models that
take the anticipated level shift into account perform
better than the unadjusted models. The exceptions are
that the ad hoc autocorrelation corrected model is a
fairly poor performer while the unadjusted naive model

is a fairly good performer.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it
is valid except for the log mean squared error ratio at

horizons 10 and 15.

The Rank ANOVA tests significant at the o = 0.05 level
of significance for all statistics for which it is
valid except for horizon 10 for the log mean squared
error ratio and the geometric root mean squared error,

and all horizons for the median absolute percent error.

All models test significantly different from each
other, sometimes excepting their nearest alternative by
rank or rarely their two nearest alternatives, for all
horizons and all statistics where the Kruskal-Wallis

statistic tested significant.



Scenario 11, Negative 200% Level Shift
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Scenario 1l is the negative equivalent to scenario 4.

Both the anticipated and
simulated actual level shifts
are negative. However, the
simulated actual level shift is

twice as large as anticipated.
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Following are the observed results:

The ad hoc Holt-Winters-Williams technique was clearly

superior to all other models.

The next four models tended to cluster in ranking with
the rank order dependent on the statistic presented.
These were: the proposed technique, ad hoc Holt-
Winters, ad hoc adaptive, and the unadjusted naive
technique. Of these, the proposed technique tended to

be rank the best, but not consistently.
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The ad hoc autocorrelation corrected model performed
very poorly as compared with other techniques that took

the anticipated level shift into account.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it
is valid with the following exceptions at horizon 1,
range of percent error; at horizon 105 log mean squared
error ratio and range of percent error; and at horizon
15, symmetrical mean absolute percent error, log mean

squared error ratio, and median absolute percent error.

The Rank ANOVA test is significant at the o = 0.05
level of significance except as follows: at horizon 1,
range of percent error; at horizon 10, median absolute
percent error; and at horizon 15, the test is only
significant for root mean squared error, range of

percent error, and mean absolute percent error.

The models are significantly different from 7 to 10 of

their alternatives in the multiple treament comparison.



When the Planned Shift Fails to Materialize

The next four scenarios address Hypothesis 1lc
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The proposed technique is more accurate than the subset
of the alternative techniques that include use of the
ad hoc method when used to forecast through periods
where policy shifts are anticipated and such policy

changes fail to materialize.

In these scenarios the proposed level shift does not

occur at all.

replaced by a simulated trend or variance shift or,

case,

Instead,

no simulated data at all is
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Following are the observed results:

No technique is particularly good across all horizons

and all reported statistics.

The proposed method is particularly ineffective for
horizon 1; however, it ranks about midway for the other

horizons for most statistics.

Other technigques that take anticipated level shifts
into account are, in general, more effective than the
techniques that do not across all horizons and most

statistics.

The naive technique is particularly ineffective,

ranking 11 for all horizons except horizon 1.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it
is valid except horizon 1 for symmetry adjusted mean
absolute percent error and range of percent error, and

horizon 5 for range of percent error.
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o The Rank ANOVA test is significant at the o = 0.05
level of significance except as follows: at horizon 1,
average rank of absolute error, symmetry adjusted mean
absolute percent error, and median absolute percent
error, mean absolute percent error; and all horizons

for range of percent error.

o All models test significantly different from each
other, sometimes excepting their nearest alternative by
rank or rarely their two nearest alternatives by rank,
for all horizons and all statistics where the Kruskal-

Wallis statistic tested significant.

Scenario 12, Negative Trend Shift

Scenario 12 is the
negative equivalent to :- ——
Scenario 5. At the time of an éz: f§§
anticipated negative level :: e
shift, a negative trend shift —

Figure 162
is simulated.
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Following are the observed results:

The proposed technique and the ad hoc Holt-Winters-
Williams technique perform the poorest for the shorter

horizons (periods 1 and 5).

For those same horizons, in general, the unadjusted

models perform better than the ad hoc models.

For longer horizons results are very mixed, although
the ad hoc adaptive technique does frequently appear to

be superior.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it
is valid except horizon 15 for the Median Absolute

Percent Error.
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The Rank ANOVA test is significant at the o = 0.05

level of significance for horizon 1. Results are very

mixed for other horizons.

In the multiple series comparison analysis, models test
different from 7 to 10 of the alternative models for
all comparisons where the Kruskal-Wallis result is

significant.

Scenario 6, No Change
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Following is a summary of the observed results:

The unadjusted models show superior performance across

all reported horizons and all reported statistics.

The rank order of the three most superior models 1is:
(1) the autocorrelation corrected model, (2) the
adaptive model, (3) the Holt-Winters models, across all

horizons and most statistics.

The proposed technique ranks tenth out of eleven, just
ahead of the ad hoc Holt-Winters-Williams model, across

all horizons and most statistics.

Among the ad hoc models, the naive technique generally
outperforms other naive techniques across all reported

horizons and most reported statistics.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it

is wvalid.
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The Rank ANOVA test is significant at the o = 0.05
level of significance for all statistics for which it

is wvalid.

In the multiple series comparison analysis, models test
out as different from 6 to 10 of the alternative models
for all comparisons where the Kruskal-Wallis result is

significant.

Scenario 7, Variance Shift

In scenario 7 a simulated
variance shift that is equal /::::: —
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B 2 Figure 184
level shift. No simulated
level shift is added to the data.
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Following are the observed results:

The unadjusted models are superior to those that
include an anticipated level shift across all horizons

most statistics.

The adaptive and the autocorrelation corrected models

are most effective.

The ad hoc Holt-Winters-Williams model and the proposed

technique are least effective.

In general the naive model is the least effective of
the unadjusted models, while the ad hoc naive model is
generally more effective than models that take

prospective level shifts into account.

The Kruskal-Wallis test is significant at the o = 0.05
level of significance for all statistics for which it

is valid.

The Rank ANOVA test is significant at the a = 0.05
level of significance for all statistics for which it

is valid for the horizon 1. Results are mixed for
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other horizons, with the test least frequently

significant at horizon 5.

o In the multiple series comparison analysis, models test
different from 7 to 10 of the alternative models for
all comparisons where the Kruskal-Wallis result is
significant except with the median absolute percent

error where it ranged to as few as 4.

Scenario 13 Discussed

Scenario 13 address Hypotheses 2a and 2b:

The alternative techniques and the proposed technique
are not equally accurate when used to fit data that has
had a level shift in the historical period.

The proposed technique is more accurate than the

alternative techniques when used to fit data that has

had a level shift in the historical period.

For the last scenario, similar tables are produced and
included in Appendix IV. These tables include a comparison
of only six models as the retrospective models do not
include ad hoc models. In this scenario series that have
historical level shifts are fit using the proposed technique
as a means of explicitly taking historical level shifts into

account in exponential smoothing models. These models do

not include simulated data. Series are fit through the
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December 1990 or 1991 as with other scenarios, using the
proposed technique during the model fitting stage for the
"Adjusted" model. The actual is then updated for six

periods.

Because of some of the results, I became concerned that
the beta parameter was allowed to be fit for too high a
value. I subsequently made a second trial (labeled Scenario
13b in Appendix IV) in which this parameter was restricted

to B < 0.02; however, the main results were not changed.

The following graphs demonstrate an example of

senario 13 (from level shift series 5):
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Following are the observed results:

For horizons 5, 10, and 15, the proposed technique

ranked superior for most statistics.

For horizon 1, the naive technique generally ranked

superior for most statistics.

There was no other discernable pattern of rank order

among the techniques.

The Kruskal-Wallis and Rank ANOVA results are not

statistically significant.

These results held for both the initial trial of
Scenario 13 and the revised trial with a more

restricted B parameter.
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Summary
In this chapter I have presented the results from the
actual analyses. Detailed tables supporting these results

are in Appendix IV.



CHAPTER 9: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In this chapter I will:

o Provide an overview of the study and its results.

o Provide a discussion of the results presented in last
chapter.

o Provide tentative recommendations related to the use of

the techniques studied in this dissertation for
forecasting when prospective level shifts are
anticipated.

o Provide a discussion of the use of the two inferential
statistics presented in this dissertation.

o Identify other interesting results of the study.

o Identify areas of needing further study.

An Overview of the Study and its Results
In this study I proposed a technique for incorporating

an exogenously estimated level shift into an exponential
smoothing model and I conducted two studies to determine
whether forecasts made using this technique are more
effective than those made with other similar exponential
smoothing models. In general, the proposed technique is
more effective than other techniques when a simulated actual
level shift occurs as expected, even if an unexpected trend
shift occurs at the same time. Results are mixed when a

230
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level shift occurs when expected, but at a considerably
different magnitude. The technique produces a considerably
worse result than most other techniques when the level shift
fails to occur or manifests itself in an unexpected form
such as a trend shift or increase in variability. In a
later section of this chapter I argue that this last result
can be viewed as a benefit of the technique if one considers
it important for the forecaster to be alerted to the fact
that the actual events are considerably different from those
that are anticipated; however, this benefit would be
dependent on further analysis that shows that this result is
sufficient to make a difference in the effect of the
forecast errors on tracking signals. Results from the
second study, which examined whether it is beneficial to use
the proposed technique to help fit data series that have
historical level shifts, is inconclusive. While the
proposed technique results in slightly better forecasts for
most statistical measures, actual variation in outcomes is
so slight as to cast doubt on whether the proposed technigque

provided any significant benefits.

Discussion of the Study Results
In the discussion that follows, I will focus on two

factors:
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o Whether the data analysis warrants some acceptance of
the hypothesis with respect to each of the specific
scenarios.
o) Whether there is a pattern with respect to which
scenarios lead to which outcomes such as might lend

itself to some guidance for use of these models.

HYPOTHESIS 1la

The alternative techniques and the proposed technique

are not equally accurate in forecasting through periods

where policy shifts are anticipated.

The results show that there is a difference in
performance between the models for the various scenarios.
The Kruskal-Wallis statistics and the Rank ANOVA tests
indicate that this difference is significant. For scenarios
1, 2, 8, and 9, i.e., the ones that reflect a simulated
actual level shift that compares with the anticipated level
shift, the proposed technique outperforms all other
techniques. In scenarios 5, 6, 7, and 12, which compare
with situations where the level shift does not occur at all
or is replaced by some change that is entirely different
from the anticipated change, the models that do not include
anticipated level shifts perform the best. In general, the
proposed method is either the least effective or among the

least effective methods under these circumstances. I
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discuss this further below at the heading "Additional

Finding."

The remaining four scenarios include the positive
(scenarios 3 and 4) and negative (scenarios 10 and 11) cases
where the level shift is considerably less (scenarios 3 and
10) or considerably more (scenarios 4 and 11) than expected.
For the scenarios where the level shift was significantly
underestimated the models that take an anticipated level
shift into account tended to outperform the unadjusted
models, although the proposed technique was not the best.
However, where the level shift was significantly

overestimated the unadjusted models were better.

With respect to the first hypothesis, results were very
clear that for each scenario the various models exhibited a
pattern of effectiveness, that is the proposed technique was
either very effective or very ineffective on all the
reported statistics and all the reported horizons. Also,
the models that took the prospective level shift into
account were all either more effective or less effective
than those that did not take prospective level shifts into

account.
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The general finding is that regardless of the statistic
used, the proposed technique differs in effectiveness from
the other technigques in a manner that is consistent across
various similar scenarios, is consistent with the variation
between effectiveness of other methods, i.e., usually
follows the same pattern as the difference between other
techniques that take anticipated changes into account as
compared with those that do no, and is consistent with the
common sense expectation of performance, i.e., the proposed
technique works when the anticipated change is simulated to
actually occur and fails when the anticipated change is
simulated to not occur or to vary significantly from the

anticipated change.

Nevertheless, with the scenarios that include a change,
but not the planned change, some of the results are mixed.
Various statistics suggest various techniques to be more
effective. Frequently these results are supported by the
inferential statistics even when they differ between the
various descriptive statistics. This consequence suggests
two conclusions: (1) Where significantly conflicting
results occur between different descriptive statistics, no
particular results should be accepted as superior. (2) It

is probably more effective to use multiple descriptive
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statistics in evaluating various models to avoid being

misled by the results of one or two measurements.

HYPOTHESIS 1b
The proposed technique is more accurate than the
alternative techniques when used to forecast through
periods where policy shifts are anticipated and such
policy changes materialize.
Among the 8 relevant scenarios there are two relevant
conditions. Scenarios 1, 2, 8, and 9 simulate accurate or
relatively accurate estimates of level shifts. Scenarios 3,

4, 10, and 11 simulate fairly inaccurate estimates of level

shifts.

The results are very clear for the accurate estimates
of level shifts. In all four of the relevant scenarios, the
proposed technique produces superior forecasts by whichever
statistic is used to measure accuracy for both near and
distant horizons. As examined by scenarios in 2 and 9, this
effect is not affected by simulated simultaneous trend
shifts as might be expected to arise with actual policy
driven level shifts. When this examination is supplemented
through the use of non-parametric rank order statistics,
extremely high chi squared values suggest that the effect is
strong. When there is a reasonable expectation that the

externally produced estimate of a level shift is reasonably
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accurate, the proposed technique can be expected to produce
a superior forecast as compared with any other technique

examined.

The results are less clear when the estimated level
shift is fairly inaccurate. When the simulated actual level
shift is twice as large as anticipated it is more effective
to use some model in which the level shift is anticipated;
however, the proposed method is not necessarily the best
model. Other effective models include the ad hoc Holt-
Winters-Williams model and the ad hoc naive model. However,
this result does not follow when the level shift is only one
fourth as large as expected. In that case, the models in

which no level shift is anticipated are the most effective.

HYPOTHESIS 1c
The proposed technique is more accurate than the subset
of the alternative techniques that include use of the
ad hoc method when used to forecast through periods
where policy shifts are anticipated and such policy
changes fail to materialize.
The data from scenarios 5, 6, 7, and 12 provide no
reasonable evidence that the proposed technique is more
accurate or, for the most part, even as accurate as the

other ad hoc techniques in forecasting through periods of

anticipated level shifts when those level shifts fail to



237
materialize. In general, where the statistics are in any
agreement at all, the proposed technique is among the least

accurate techniques under these conditions.

Additional Finding

One of the unanticipated results that has arisen is
that when the simulated actual data is considerably
different from the anticipated level shift, the proposed
technique is generally among the most inaccurate techniques,
except where the inaccuracy is in the form of an original
underestimation of the actual level shift. On reflection

this result is not particularly surprising for two reason:

1 When the level shift is considerably less than the
proposed level shift (less than 50% of the proposed
level shift), it is natural that the errors from the
forecasts that include the level shift would be greater
than the errors from the forecasts that do not include

the proposed level shift.

2. The parameter setting rules allowed the level parameter
for the proposed technique to be set quite low, so when
its errors became relatively large it still was not
necessarily able to rapidly correct in the direction of

the smaller level shift. Meanwhile the ad hoc
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adjustments were rapidly eliminated from the other
models with the first three updates allowing those
models to correct to the small level shift much more

rapidly.

These findings show that the proposed method is not the
most accurate technique when the level shift fails to
materialize or materializes in an unexpected way (much
smaller, trend shift, or variance shift). This result is
not necessarily undesirable. When these conditions arise,
there is truly an unexpected event underway. In a sense
there is something wrong with a forecast that is not
adversely affected by data that indicates the materializing
future is considerably different from the expected future.
This is not because the forecast is wrong, but because it is

inexplicably right.

While getting the future right is an objective of a
forecast, it should not be its only objective. At the very
least, the forecaster should want to be able to replicate
the success with additional forecasting. A forecaster
should want to know that the data that is being forecast is
not behaving as expected. He may be able to find this out
without depending on forecast errors (e.g., he may receive a

management report that says a policy implementation is
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delayed). However, it is also possible that he will be
dependent on the forecast model to alert him to such
unexpected outcomes. In fact, management may look to the
forecaster for signals that activities are off track,
particularly where there are a large number of activities
underway. If a forecast fails because expected events fail
to occur as expected, the objective of getting the future
right may have failed, but the objective of helping

management manage may still be met.

If the forecaster is dependent on the model itself to
alert him to the presence of unexpected events, large errors
or patterns in errors are desirable when such unexpected
events occur. In this case, the proposed method's
relatively poor results with descriptive statistics under
conditions where the expected level shift does not occur, or
is considerably different from the expected level shift, is
a benefit rather than a deficit. It suggests that the
proposed technique contains, and efficiently summarizes,
information that might be developed into a tracking signal
that would alert the forecaster to the failure for the
expected level shifting event to materialize. Other
techniques which fail to detect abnormal conditions, i.e.,

perform relatively well when, in fact, the expected future
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fails to materialize, are, on this view, relatively less

desirable.

HYPOTHESES 2a and 2b

The alternative techniques and the proposed technique

are not equally accurate when used to fit data that has

had a level shift in the historical period.

The proposed technique is more accurate than the

alternative techniques when used to fit data that has

had a level shift in the historical period.

In scenario 13, 20 data series are fit to each of the
six basic models across a period in which there is a
historical level shift. Because I suspected possible
distortions from the fitting of the [} parameter, I fit two
versions of scenario 13, in the first, I fit the model with
the same grid as with the other scenarios. In the second, I
restricted P to not greater than 0.02. Actual results from

both are demonstrated, in the Appendix IV; however, results

are very similar for the two versions.

The results weakly support the view that the proposed
technique can be used to assist in fitting data series that
have undergone level shifts, particularly where the
forecaster is interested in the longer horizons. The
inclusion of a level shift within the model has an effect

similar to an intervention variable in a regression or an
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ARIMA model. However, the results are not strong enough for
statistical significance in either of the non-parametric
comparisons. These statistical comparisons suggest that any
benefit from using the proposed technique in the model
fitting stage is at best relatively weak, particularly since
much more significant results were found in the first 12
scenarios. At worst, however, there is little evidence that
the proposed technique provides a worse result than do other

models.

An Interesting Result

This lack of statistical significance with scenario 13
where the proposed method is used to fit the data series is
perhaps the most surprising result of this study. It is
particularly surprising because the minimized root mean
squared error used in fitting the proposed model is
considerably smaller than the minimized root mean squared
error for the alternative model for most trials. The
selected parameters and model fitting statistics for this
study are shown in Appendix V which is summarized in the

Table 4 below.
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Table 4 Fit All Trials Geometric Geometric
Mean ---Average—-—- Mean
RMSE SPE SMPE SMPE
Adaptive 50.53 0.13% 5.93% 3.31%
Autocorrelation Corrected 52.67 0.80% 6.49% 3.52%
Holt-Winters ° 52.23 0.47% 6.53% 3.67%
Proposed Technique 24.51 -0.06% 4.85% 2.19%
Holt-Winters-Williams 52.28 0.49% 6.48% 3.64%

However, this result can be seen as consistent with

other findings in the literature:

o Everette Gardner and Spyros Makridakis??® find that
success at model fitting is not necessarily a good
indicator of forecast accuracy. In this study, the
small values of the minimized root mean squared errors
clearly shows the proposed technique leads to superior
results in model fitting. However, in this scenario,
no statistical difference could be found in forecast

accuracy with the seven updates.

o} Spyros Makridakis and Michele Hibon?°® find no
particular advantage in forecast model initialization.
The use of the proposed technique in model fitting has
a similar effect to model initialization, particularly
where the historical data stretches for a large number

of periods after the historical level shift. The
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natural tendency for the model to catch up to the level
may dominate when enough periods have passed between

the level shift and the end of the historical data.

Steven Hillmer?®’ finds that in exponential smoothing
models most of the effect of additive outliers occurs
in the next period after the outlier. In effect, the
effect exponentiates away for later periods. It seems
reasonable, particularly considering the Makridakis and
Hibon result, to expect a similar exponential decline
in the errors arising from a level shift. Thus, when
the level shift is not near the end of the historical

period, it has little influence on the forecast.

Spyros Makridakis, et. al., say: "As a rule of thumb 8

to 3(L) data points are adequate for initial estimation
purposes (where L is the length of seasonality) . "?°®
This result is consistent with Hillmer's result and

suggests that the main impact of the level shift is in

the first few periods after the shift.

George C. Canavos and Don M. Miller?®” demonstrate that
as o increases, the weight placed on older observations

declines dramatically in simple exponential smoothing.
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Where o is as great as 0.3, the entire weight placed on
all observations exceeding 6 periods (counting the
current period) less than 12%. Where «o is as great as
0.5, this weight declines to 1.5%. These numbers would
have to be adjusted for Holt type models, but they
represent the same basic phenomena. Consequently,
where the level shift is more than 6 periods old and «
is as great as 0.3, the level shift is discounted to a
proportionate share of about 12% or less of the overall
weighted average projected in the exponential smoothing
model. Thus, the use of the proposed technique is
unlikely to significantly impact the accuracy of a
forecast that has had a level shift 10 or 15 periods or
more before the updating period (future period), unless

the optimal o would be set particularly low.

When considered from this perspective, the lack of
significance in results of this scenario is not unusual.
These articles suggest that results might be significant for
forecast made soon after a level shift. In the following
graphs (level shift series 11), the level shift occurs
immediately before the updating period. While one series 1is
not sufficient to reach a conclusion, they are very

suggestive. It can be seen that the forecast from the
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proposed model is much more in line with the actual data
than the forecasts made with any of the alternative models.’

The only other model that comes close is the naive model.

Proposed Model
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‘The forecasts that go below zero most likely would be
dampened - see Appendix I - in practical forecasting
environments; however, to determine the size of the error
generated by the technique, they were allowed to go below
zero in this study.
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On the other hand, even a dramatic change in level may
have little impact after a considerable period has passed as

is shown in the following graphs (level shift series 15).
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Based on this review, the proposed technique will allow
the forecaster to achieve a better model fit; however, that
result may not significantly influence the projection of the

future. It appears that projections made shortly after the
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level shift are improved through the use of the proposed
technique while projections made well after the level shift

are not influenced as much.

Final Remarks about the Proposed Method
The proposed method seems to be a beneficial
modification of exponential smoothing forecast models for
forecasting when prospective level shifts are expected for

the following reasons.

o When the anticipated level shift occurs as expected,
the forecast made and updated using the proposed
technique is more accurate than forecasts made with

other techniques considered in this study.

o) When the anticipated level shift occurs, but not as
expected, there is little reason to suspect the
proposed technique is particularly worse than ad hoc
techniques considered in this study. The only severe
failure of the proposed technique arises when the level
shift is considerably smaller than anticipated;
however, all forecasts that anticipate level shifts

fail with that condition.
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When the anticipated level shift does not occur,

forecasts made and updated with the proposed method are

likely to have more dramatic errors than forecasts made
with other techniqgues considered in this study. This
may serve to alert the forecaster that the future being
experienced (at the time of the updates) is not the

future that was expected.

Forecasting with the proposed technique is preferable
to the ad hoc technique because of an efficiency it
produces. With the ad hoc technique the forecaster
makes a forecast with an exponential smoothing model,
in all likelihood using computerized software. He then
adds the ad hoc adjustment to the result to produce a
complete forecast. It is likely that the ad hoc
adjustment step involves a manual intervention into the
forecast, for example, the forecaster may make a
forecast using a computerized exponential smoothing
model, get a printout of the result, and key both the
result and the ad hoc adjustment into a spreadsheet to
get the final forecast. When the proposed technique is
used, the level shift is built into the computerized
exponential smoothing model thereby eliminating the

manual intervention step.
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The proposed technique also produces an efficiency as
compared with other forms of forecast intervention
models (e.g., ARIMA models with intervention variables,
Duk Bin's model, or the Carreno and Madinaveitia
model). This efficiency is found in the permanence of
the level shift achieved with the proposed technique.
For other intervention models, a level shift is
accomplished through the addition of a level shift
factor to the base line forecast level, sometimes
through the multiplication of a coefficient times a
dummy variable. The level shift stays with the
forecast only for so long as the addition occurs. To
make the level shift permanent, the level shift factor
must be individually added to each future observation
to the end of the forecast horizon. If more than one
level shift occurs, a separate factor must be carried
for each, which can lead to the development of fairly
complicated models if the data series is subject to

considerable policy intervention.

The proposed technique is much more mathematically
efficient. When a level shift occurs, the baseline
forecast level is adjusted by the magnitude of the
level shift. This new level then becomes the base line

level of the exponential smoothing model. The level
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shift stays in the forecast unless it is explicitly
taken out. No additional intervention is required to
keep the level at the higher (or lower) level for
future periods. Additional level shifts can be added
to the model in the same manner, adding complication
only for those periods during which there are expected
level shifts. Thus, the proposed technique provides a

comparatively simple intervention model.

o As shown with scenario 13, although there is no
requirement to keep the level shift in the model long
after the shift has occurred, there is no apparent
disadvantage in doing so. Thus, the model built with
the prospective level shift that later occurs as
expected, will, after enough updates, contain a
retrospective level shift that assists with model
fitting and may improve forecast accuracy. No
additional effort is required except where the level

shift does not occur as expected.

Recommendations for Forecasters
Where a forecaster who is using an exponential
smoothing model has a reasonably reliable externally
supplied estimate of an expected level shift, it would be

reasonable for him to modify his exponential smoothing model
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to apply the method proposed in this dissertation. This
application should result in a more accurate forecast as the
model is updated while the level shift takes place.

Further, the forecast should fail more dramatically should
the expected level shift fail to take place. This more
dramatic failure might provide the forecaster with a better
opportunity to discover that the expected change failed to

take place using the forecast errors as a tracking signal.

Where reliability of the externally supplied level
shift estimate is unknown or thought to be fairly low, the
forecaster may reasonably hesitate to use the proposed
technique as other techniques may be more effective. If the
forecaster suspects that the externally supplied estimate 1is
smaller than the level shift that may actually materialize,
either the proposed technique or the Holt-Winters-Williams
technique may be most effective. If he suspects that the
externally supplied estimate is significantly larger than
the level shift that will actually materialize, it may be
best to leave the level shift out of the model unless he
wants to use the model for the tracking signal effect

briefly mentioned in the last paragraph.

Guidelines

The following guidelines should assist the forecaster:
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. Prospectively:
1. If you are reasonably confident in the externmally
supplied estimate and that a level shift is the primary
consequence of the policy change, use the proposed

technique. It will result in a more accurate forecast.

2. If you are not confident in the externmally supplied
estimate, you must choose the technique you use based

on goals:

o If your goal is to have the most accurate forecast
at all times, you must consider what sort of

uncertainty you have:

o If you suspect that the policy change will
not occur at all or will materialize in an
unexpected manner, leave the forecast alone,
possibly after adjusting the level parameter

*w

to a high number such as o = 0.8.

"I did not examine the consequences of simply leaving
the model alone; however, it seems likely that raising the
level parameter is preferable unless the expected level
shift has an insignificant magnitude or has essentially no
chance of occurring.
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o If you suspect that the extermally supplied
estimate is significantly too large, do not
adjust the forecast for the anticipated level
change. Leave it alone, possibly after
raising the level parameter to a high number
such as o = 0.8. Alternatively, you may want
to correct the externally supplied estimate

and select the first option above.

o If you suspect that the externally supplied
estimate is much too small, adjust the
forecast using an ad hoc technique or the
proposed technique. Possibly you should also
raise the level parameter to a high number
such as o = 0.8. Alternatively, you may want
to correct the externally supplied estimate

and select the first option above.

o If you do not know what to suspect, see the

next goal.

If your goal is to monitor the data generating
function through the forecast as well as to

forecast accurately, use the proposed technique.
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If the forecast fails, it may be a signal that the

policy change did not take effect as expected.

Retrospectively:

If you are updating a model that used the proposed
technique to include an approximately accurate
historical level shift, leave it in. It may improve
the forecast if the level shift is recent, or if it
does not improve the forecast, there is no evidence

that it will make the forecast worse.

If you are fitting a forecast model to a data series

that has a historical level shift:

o If the level shift is relatively recent, include

the level shift through the proposed technique.

o If the level shift is relatively old, it is not
clear that including the level shift is beneficial
for forecasting, although it may improve the model
fit. On the other hand, the study does not show
that including the level shift will result in a

poorer forecast.
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o "Relatively recent" and "relatively old" are
largely dependent on the parameter selection which
is the objective of fitting the forecast. It will

be hard to make the judgement suggested above
without first fitting the forecast, thus, it may

be more effective to always include the level

shift in the initial fit of the data.

o The proposed technique affects the fit. Whatever
you do, do not confound the fitting issue by
including the level shift through the proposed
technique for some parameter combinations and

excluding it for others.

Kruskal-Wallis and Analysis of Variance by Rank

The two non-parametric statistical tests produced
overwhelmingly significant results except with scenario 13
where they proved not significant with all statistics and
all trials. This last result led me to suspect that there
might be something wrong with scenario 13 and after some
investigation I came to suspect either (a) the models in
scenario 13 were allowed to fit to excessive [} parameters,
or (b) that the statistics were sensitive to the number of

treatments (models) considered. I examined the first
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suspicion by reducing the possible B parameter range and
rerunning this trial. Results have been presented as
scenario 13b and are not significantly different from
scenario 13. I examined the second suspicion by excluding 5
non-ad hoc models from scenario 1 and calculating the
Kruskal-Wallis and Rank ANOVA statistics for the rank of
absolute error comparison (equivalent to Tables 1-1 and 1-9
in Appendix IV). These results are shown in tables 5 and 6.

Table 5 Inferential Statistics with Fewer Options

Period Adjust HWW* HW* Adapt* Auto* Naive*

1 Average Rank by Series 1.60 3.43 3.10 3.40 4.88 460
Rank of Average Rank 1 4 2 3 6 )
Kruskal-Wallis Rank Sum 372 1283 1069 1129 1709 1698
Rank of K-W Rank Sum 1 4 2 3 6 5
K-W Multi-Comparison Count* S 5 ] S 4 4

5 Average Rank by Series 1.75 283 3.80 3.98 4.80 3.85
Rank of Average Rank 1 2 3 5 6 4
Kruskal-Wallis Rank Sum 4155 903.5 13225 1402 17825 1434
Rank of K-W Rank Sum 1 2 3 4 6 5
K-W Multi-Comparison Count* <) 5 S 4 5 4

10  Average Rank by Series 1.55 2975 3825 4175 4.075 44
Rank of Average Rank 1 2 3 S 4 6
Kruskal-Wallis Rank Sum 3975 9465 13485 1494 15315 1542
Rank of K-W Rank Sum 1 2 3 4 5 6
K-W Multi-Comparison Count* S 5 ) 4 3 4

15  Average Rank by Series 1.58 275 3.70 3.98 468 4.33
Rank of Average Rank 1 2 3 4 6 5
Kruskal-Wallis Rank Sum 383 802 1340.5 14975 1712 1525
Rank of K-W Rank Sum 1 2 3 4 6 5
K-W Multi-Comparison Count* 5 5 5 4 5 4

Table 6 Rank Anova and Kruskal-Wallis Results

Period Chi Squared DF  pvalue
1 RANK ANOVA 14.52 19 0.7528
KRUSKAL-WALLIS 50.46 5 0.0000
5 RANK ANOVA 12.15 19 0.8789
KRUSKAL-WALLIS 47.63 S5 0.0000
10 RANK ANOVA 12.41 19 0.8674
KRUSKAL-WALLIS 43.10 S 0.0000
15 RANK ANOVA 13.96 19 0.7859

KRUSKAL-WALLIS 53.77 5 0.0000
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For the Kruskal-Wallis statistic the values of the
statistics change (which should be expected), but the
general results do not, that is, the statistics remained
significant at the o = 0.05 level. However, for the Rank
ANOVA test, the statistics are no longer significant. This
suggests that the significance of the previous results may
be partly attributable to the use of a large number of
treatments (forecast models). It is not clear whether this
arises because of an increased number of observations or
because of some unidentified bias that the tests bring into

the analysis.

Following these explorations, I again reviewed the
results of scenario 13 and found another reasonable
explanation, which is that the actual summarized statistical
results in scenario 13 did not vary very much. So, it seems
that the lack of significance in scenario 13 as compared
with the fairly strong statistical results in the other
scenarios could result from the obvious statistical reason,
that the different treatments in scenario 13 do not produce

particularly different results.
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Another problem with these statistics is that in some
of the trials rank order was strong, but inconsistent
between the various descriptive statistics. The non-
parametric tests were not sensitive to these inconsistent
results. The rank order results were statistically
significant with extremely low p values both when the
results were consistent between various descriptive
statistics and when they were not. This suggests that these
rank tests are not sufficient to distinguish superior and
inferior forecast models by themselves, but that they may be
useful as a supplement to the application of a battery of
descriptive statistics as presented in this dissertation.
If the results are consistent across a battery of
descriptive statistics and test significant with these
tests, the researcher has reason to accept that the
treatments are different. Statistical significance is a
weaker result while significance without consistency is

uninterpretable.

In this dissertation the examination of possible
statistical testing of forecast treatments through non-
parametric rank order tests was a secondary objective.

These results should be considered exploratory. However, it
appears that the application of either of these statistical

tests in the manner described in this section has some
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promise when applied across a battery of descriptive
statistics. Where results are consistent across the battery
of descriptive statistics and the results are significant
with one or both of these tests, as occurs with scenarios 1,
2, 8 and 9, it appears that the tests support each other and
strengthen the conclusion that the differences in forecast
treatments are more than just incidental. Where the results
are less consistent across the battery of descriptive
statistics, as with scenario 5, or where the statistical
tests are not significant, as with scenario 13, results are

not firmly supported by the study.

Areas Needing Further Study
I have brought up several topics in this dissertation

that need further study. These are:

In chapter 5 I proposed that the method introduced here
could be extended to applications with trend shifts using
second differences that adjust the trend component of the
model. Further examination of this extension seems
worthwhile. When a data series undergoes a trend shift, the
trend component must respond. However, if the trend
parameter is set high, the trend may respond to all the
noise in the data series. Since the trend iterates itself

for each future period, over-response is likely to lead to
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extreme variation in forecasts after a few periods.
Alternatively, if the parameters are set low, then the
models may ignore trend shifts even when they occur. A
modification of the proposed technique may allow for a
fairly low trend parameter that, nevertheless, does allow

for recognition of planned trend changes.

In this study it became apparent that the proposed
technique does not necessarily provide a benefit when it is
used to fulfill the intervention function for fitting
historical level shifts. However, this result may not be
universally correct. For example, the technique may be
beneficial when the level shift is near to the end of the
historical data series, when it is particularly large
compared with the prior level, or when it phases in over a
large number of periods (thereby emulating a trend shift).
Further analysis may provide more insight into why the study
of the proposed technique as an intervention variable led to

the counter-intuitive results that were achieved.

I have suggested that the forecaster should capitalize
on the proposed techniques relatively large errors where the
anticipated level shifts do not materialize. Under such
circumstances, the forecaster should be able to provide

feedback from the forecast to organizational management that
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the planned event that was expected to produce a level shift
is not occurring, or at least, it is not producing the
expected level shift. Further analysis is required to
determine whether existing tracking signals are adequate for
this purpose or whether alternative tracking signals are
needed. In particular, the researcher should be alert to
the possible problems that will arise when the level shift
occurs as expected, but not at precisely the right point in

time.

The results concerning simulated actual level shifts
that occur when expected but not to the degree expected
require further clarification. How accurate should the
externally supplied estimate be? How much error is too
much? Further study may allow for clarification as to when
the technique developed in this study is appropriate and

when it is not.

In this study I used two non-parametric statistical
tests to evaluate variation in descriptive statistics.
Results were promising. I proposed that these statistics
might be used in combination with a battery of descriptive
statistics as in this dissertation. Further refinement of

this approach would be worth pursuing.
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Summary

In this chapter I reviewed the results of
forecasting level shifting data with various forecast models
in 13 scenarios. The models do not produce equally
effective forecasts when level shifts are anticipated in the
forecast horizon. The proposed technique improves forecast
accuracy when the anticipated level shifts actually
materializes in the amount expected, even when an
unanticipated trend shift also materializes. The proposed
technique is among the superior methods when there is a
level shift, but it is considerably larger than anticipated.
The proposed technique does not produce a particularly
effective forecast when the planned level shift does not
materialize or materializes in an unexpected manner such as
a trend shift, a variance shift, or a considerably smaller
than planned level shift. In fact, it produces larger
errors than most other techniques in these circumstances.
These larger errors might be beneficial if they could be
captured for use in a tracking signal. I proposed
guidelines for use when prospective level shifts are
anticipated. I reviewed the benefits of using non-
parametric tests to evaluate forecast models and suggested
some further areas of study. In conclusion, the proposed
technique is a beneficial modification of exponential

smoothing when used according the proposed guidelines.
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APPENDIX I TERMS

Abnormal Errors - Errors that form an identifiable non-

random pattern.

Ad Hoc Method/Model - A forecast method that forecasts a

data series with a statistical forecast model then adds

on a lump sum amount to adjust the forecast for an

anticipated policy change.

Ad Hoc Technique - Same as the ad hoc method.

Adaptive Forecasting - Forecast models that use some

information about forecast error to adjust the value of

a forecast parameter.

Adaptive Holt-Winters-Williams - An exponential smoothing

forecast technique defined in Appendix II.

Adaptive Techniques - Same as adaptive forecasting.

Additive Seasonality - Seasonality factors that increase or

decrease the level by additive factors.
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Additive Trend - A trend calculated by adding an incremental

value back to a prior level.

Adjusted Holt-Winters-Williams - The forecast technique

proposed in this dissertation.

Autocorrelation Corrected Holt-Winters-Williams - A forecast
technique that uses the Holt-Winters-Williams
exponential smoothing model and also corrects for
autocorrelation following the method mentioned by

Chatfield.

Analogy - Reasoning from one case to another and borrowing
information from the source case, may be either
subjective or based on mathematical techniques that
rest, in part, on analogy between a new case and old

cases.

Analysis of Variance by Rank - See Rank ANOVA.

ARIMA - Autoregressive Integrated Moving Average, a

sophisticated use of differences and moving averages in

order to forecast data.
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Autocorrelation corrected Holt-Winters-Williams - A version
of exponential smoothing that uses autocorrelation as a

factor similar to a tracking signal.

Autocorrelation - Interdependence (correlation) between

observations in the same data series.

Average Percent Error - A relative statistic of bias.

Backward Cusum - A tracking signal.

Cartesian XY Graph - A graph that locates data defined by

two variables on a vertical axis and a horizontal axis.

Central Tendency - The average or another statistic that
estimates the center of a data series. For forecasts,

commonly the level.

Classic Decomposition Models - Forecast models that break
down data series by major sources of variation, rather

than forecasting aggregated data.

Correlation Based Techniques - Forecasting techniques that
use the correlation between two or more data series to

forecast one of these series, commonly regression.
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Current Period - The period (location on the X axis) of an

observation.

Curve - The line formed by connection the individual
observations of a series, may be applied to either raw
data or to a summarization, such as a forecast. 1In

this usage curves are not necessarily smooth.

Data Series - A set of observations that are organized in

order (e.g., over time).

Dampen - This is a forecast technique that makes the trend
parameter exponentiate to zero in future periods to

reflect an assumption that growth is not permanent.

Decompose - Break down a data series into components, may be

additive or multiplicative.

Deseasonalizing - Decomposing a data series by removing the
seasonal aspect of the series, may be additive or

multiplicative.

Differences - For serial data, the data series made of
subtracting the data series X, Xi.1-n, ZXte2-ns ... from

the series X., X¢.1, Xiw2s ..., such that D, = X, - X..,,
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etc. When the differences are calculated from raw
(undifferenced) numbers, the differences are called
first differences. When the series is calculated from
a differenced series of order m, it is called the m+l
differences, e.g., second differences are the
differences of first differences, etc. When n = 1, the
series 1is the differences of the first period, etc.

The first difference of the first period is normally

called the first difference.

Discontinuities - A general term referring to phenomena like

level shifts.

Dummy Variable - In correlation based techniques. a variable
that has either the value of 1 or 0, generally used to
account for a condition that is only sometimes present

with the series.

Econometric Techniques - Correlation based techniques,
generally referring to the more sophisticated of these

techniques.

Endogenous/Exogenous Variables - These terms denote the
dichotomy of variables that are both input and output

in a forecast model (endogenous variables) and
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variables that are only input in a forecast model
(exogenous variables). Forecast models can generate
their own future values of endogenous variables, but

are dependent on external sources for future values of

exogenous variables.

Engineering Estimates - Cost estimate based on costing out

actual component cost generating activities and

building up the overall cost from these components.

Error - Actual Observation minus Predicted Observation.

Exponential Smoothing - A forecast technique that
extrapolates a series of data through a weighted
averaging technique that places more weight on recent
data and less weight on older data. Several specific

versions of this technique are defined mathematically

in Appendix II.

Exponentiated - Generally, this term refers to a number that
is multiplied by itself over and over again. When a
number is less than 1 and is exponentiated, it soon
becomes insignificantly small. In forecasting serial
data, a number might be exponentiated as it moves away

from the last actual observation in a data series.
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Extrapolation - Forecasting by identifying factors like
level and trend and projecting them into the future,

generally refers to the use of time series techniques.

First Difference - See Difference.

Fit - Calibrate the parameters that best apply a forecast

model to a data series.

Forecast - This term may mean forecast model (see forecast
model), a projection (see projection) or the practice

of applying a model to make a projection.

Forecast Competition - A fairly common form of forecast
comparison in which a number of forecast technigques are
used to forecast the same data series to determine

whether any particular technique is more effective.

Forecast Horizon - The number of periods beyond the current

period for which a forecast is desired.

Forecast Model - A set of mathematical formulae that are

used to project future values of a data series.
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Forecasting - Using any technique to project serial numeric

data into the future.

Geometric Average - An average calculated by multiplying
observations and finding the root equal to the number

of multiplicands of the product.

Geometric Root Mean Squared Error - An error statistic

defined in Appendix VII.

Historical Period - For serial data, the period for which

there is data.

Hold Out Data - Serial data near the end of the historical
period which are not included when fitting forecast
model to a data series so that it can be used to

evaluate the effectiveness of the model that is fit.

Holt exponential smoothing - Trended exponential smoothing.

See formulas in Appendix ITI.

Holt-Winters exponential smoothing - Trended and
seasonalized exponential smoothing. See formulas in

Appendix II.
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Holt-Winters-Williams exponential smoothing - A modified
version of Holt-Winters as defined by T. M. Williams

and discussed in Appendix II.

Horizon - the period or periods ahead for which a projection

is desired from a forecast model.

Intervention Model - An ARIMA model that uses dummy

variables.

Judgmental Adjustments - Generally, correcting a the results
of a forecast model for information not included in the

data or model fitting.

Kalman Filter - A complex technique similar to adaptive

forecasting.

Kruskal-Wallis test - An inferential statistic used in this

study and defined in Appendix VII.

Lag - For serial data that is associated by correlation,
this term indicates an association that is not
concurrent, for example where one variable is located

at time t and the other is located at time t-1.



315

Level - The current period central tendency of a data
series. With many forecasting techniques the level is
time indexed. (Especially used in discussion of

exponential smoothing or moving averages) .

Level Shift - Within a data series, one or more observations
that change in level by more than the slope (trend) and

seasonality of the series.

Log Mean Squared Error Ratio - A statistic used for

comparing forecasts. See formulas in Appendix VII.

Loss Function - A statistic, or set of statistics, that is
(are) optimized in order to fit a model. A loss

function is a statistic that represents the cost of

error in the forecast.

Lump Sum Changes - A number that is added in lump to

judgmentally adjust a data series.

Mean Absolute Deviation - An error statistic.

Mean Absolute Percent Error - An error statistic. See

formulas in Appendix VII.
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Mean Deviation - Mean Error.

Mean Error - A statistic that may be a bias measure.

Mean Percent Error - An error statistic. See formulas in

Appendix VII.

Mean Squared Error - An error statistic. See formulas in

Appendix VII.

Median Absolute Percent Error - An error statistic. See

formulas in Appendix VII.

Method - See model.

Model - In this dissertation model, technique and method are
used interchangeably. All are used to refer to a means
of making a forecast or a set of formulas used to make

a forecast.

Moving Average - With N observations of serial data, one can
compute m + 1 averages each containing n = N - m serial
observations where, N > m. When m > 1 and the m + 1
averages are arranged in serial order, they are

referred to as a moving average.
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Multiplicative Seasonality - A seasonality factor that

adjusts level by multiplicative factors.

Multiplicative Trend - A trend calculated by multiplying a

ratio times a prior level.

N-Period Ahead Forecast - The forecast at the observation at
t;+n, where t is the index of the last actual
observation and updates by an increment of 1 with each
addition of 1 observation to the history of the data, 3
is the index of the updates, and n is the number of
periods from t to the observation measured. The n-
period ahead point of a repeated forecast updates moves
to a later point in time by the number of additional
actual observations added to the history with each
update. There is one point observation from each jth

update and it is located one period later in time.

Naive 1 - Same as the naive method, a forecast of no change.

Naive 2 - A seasonally adjusted version of Naive 1.

Naive Method - A forecast of no change.



318
Noise - (white noise) error that is not associated with
known causes and does not exhibit any observable

pattern.

Non-Stationary - The property of a data series of failing to
have either a constant mean or a constant variance, for
the purposes of this study, has experienced a level

shift.

Optimize - Bring a loss function as close as possible to a
desired value. In exponential smoothing, loss
functions are usually optimized by bringing them to a

minimum value.

Optimizing Technique - A method for bringing a loss function

as close as possible to a desired value.

Out of Control - For purposes of this study that would mean

it had undergone a level shift.

Outliers - Extraordinary observations, sometimes defined as
those observations that exceed 3 standard deviations
from some measure of central tendency such as the mean

or a moving average.
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Parameter - In exponential smoothing, a statistic that is

adjusted to optimize the model.

Percent Error - An error statistic.

Planned Policy Change - A level shift that can be
anticipated in advance, generally because it results
from intentional intervention into the data generating

function by a decision maker, also, see policy shift.

Policy Change - See planned policy change and policy shift.

Policy Shift - A portion of a data series that has a steeper
or less steep slope than the period before or
afterwards and which can be directly associated with an
external event, typically a policy decision, see
discussion in Chapter 2 regarding other labels that

might also be used.

Preprocessing - Adjusting data before forecasting

Prospective shift - See policy shift.

Projection - The values predicted by a forecast model, often

this is simply called a forecast.
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Ramp - A series of 2 or more data observations that have a
different slope from those of the surrounding

observations.

Random Noise - See noise.

Random Walk - (Naive Method, Naive 1) Forecasting on the
assumption that the next observation (or all future

observations) will be the same as the last observation.

Rank ANOVA - Analysis of Variance by Rank (the Friedman
Test). An inferential statistic used in this

dissertation and defined in Appendix VII.

Regression Models - Forecasts made by generating a
regression of the historical (sample) data and
extending it into the future by extending the input
data into the future (generally by using a forecast of
the input data, or sometimes by using lagged values of

the input data).

Relative Absolute Error - An error statistic.

Relative Geometric Root Mean Squared Error ratio across time

periods - An error statistic.
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Root Mean Squared Error - An error statistic.

Sample Data - Data used in fitting a forecast model (the

data from the historical period).

Seasonal Factors - Numbers that are used to adjust a
forecast for regular variation from the central
tendency. For example the observations arising in each
march might tend to be 20% greater than the average
over the year, or might have 20 extra units compared
with the average over the year. Factors can be
calculated to adjust a forecast to include these two
sorts of expectations. The first would lead to a
multiplicative seasonal factor (a number multiplied by
the deseasonalized data to get a large enough
forecast), the second would lead to an additive
seasonal factor (a number added to the data to get a

large enough forecast).

Serial Data - See data series.

Serially Correlated Errors - Errors (see errors) that have a

pattern. See autocorrelation.

Simple Cusum - A tracking signal.
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Simulated Policy Changes - Artificial data used to generate
level shifts that are similar to those described in

Chapter 3.

Single Exponential Smoothing - (SES) A weighted moving

average that places more weight on the more recent

observations, see exponential smoothing.

Slope - The difference between two successive observations

or projections.

Smoothed Error Tracking Signal - A time indexed error

statistic.

Smoothing Constant - A parameter for an exponential

smoothing model.

Special Events - See level shift or policy shift, as used

here, generally temporary in nature.

Standardized Realization Percent (SR) - An error statistic.

Stationary - The property of a data series of having has a

constant mean and a constant variance.
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Statistical Error - Error arising in a statistical
forecasting model, used in calculating future predicted

values.

Statistical Forecast Model - A forecast model that uses

information about errors (see error) in calculating

future predicted wvalues.

Step - A ramp that includes precisely two observations.

Subjective Estimates - Generally refer to the use of expert

or management guesses.

Symmetrically Adjusted MAPE (SMAPE) - An error statistic.

Technique - See model.

Three parameter exponential smoothing - Holt-Winters

exponential smoothing.

Theil's U-Coefficients - A statistic used to compare a
forecast with the forecast that would have been made

using the naive method.
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Trace - The forecast for periods t+m through t+m+l1 where t
is a time index, m is the number of time periods before
the period of interest, and 1 is the number of time
periods in the period of interest. The trace,
therefore, is a vector of forecasts F..., Feimersr Freomezs
o Bl
Tracking Signal - A statistic that is sensitive to the
errors near the end of the historical observations of a
time series which can be used to indicate that the

series is not well fit at that point in the series.

Trading Days - The number of days during which a forecasted
data series had an opportunity to occur, frequently the
number of business days in a week or the number of days

in a month.

Transfer function model - an ARIMA model that uses

correlation between data series in making a forecast.

Trend - The slope of a data series. With many forecasting

techniques the trend is time indexed.

Two Parameter Exponential Smoothing - Holt Exponential

Smoothing.
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Unadjusted Model - This term is used to refer to those
models included in this study which do not account for

prospective level shifts.

Updating - Adding a new period's observation to the

historical (observed) data and making a new forecast

projection.

Variability - The tendency for data to vary.

Variance - A measure of variation using squared errors.

Windsorize - A technique for adjusting away extraordinary

errors.

Winters - A seasonality technique for exponential smoothing.

X1l - A moving average technique developed by the Census

Bureau.
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Statistical Error - Error arising in a statistical
forecasting model, used in calculating future predicted

values.

Statistical Forecast Model - A forecast model that uses
information about errors (see error) in calculating

future predicted values.

Step - A ramp that includes precisely two observations.

Subjective Estimates - Generally refer to the use of expert

or management guesses.

Symmetrically Adjusted MAPE (SMAPE) - An error statistic.

Technique - See model.

Three parameter exponential smoothing - Holt-Winters

exponential smoothing.

Theil's U-Coefficients - A statistic used to compare a
forecast with the forecast that would have been made

using the naive method.
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Trace - The forecast for periods t+m through t+m+l where t
is a time index, m is the number of time periods before
the period of interest, and 1 is the number of time
periods in the period of interest. The trace,
therefore, is a vector of forecasts Fi.n, Fiimei: Frome2s

s Feome1-

Tracking Signal - A statistic that is sensitive to the
errors near the end of the historical observations of a
time series which can be used to indicate that the

series is not well fit at that point in the series.

Trading Days - The number of days during which a forecasted
data series had an opportunity to occur, frequently the
number of business days in a week or the number of days

in a month.

Transfer function model - an ARIMA model that uses

correlation between data series in making a forecast.

Trend - The slope of a data series. With many forecasting

techniques, the trend is time indexed.

Two Parameter Exponential Smoothing - Holt Exponential

Smoothing.
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Unadjusted Model - This term is used to refer to those

models included in this study which do not account for

prospective level shifts.

Updating - Adding a new period's observation to the

historical (observed) data and making a new forecast

projection.

Variability - The tendency for data to vary.

Variance - A measure of variation using squared errors.

Windsorize - A technique for adjusting away extraordinary

erETroON=S .

Winters - A seasonality technique for exponential smoothing.

X1l - A moving average technique developed by the Census

Bureau.



APPENDIX II FORMULAS

Holt-Williams Exponential Smoothing

= Forecast at time t+m = S + (B, * m)
Level at time t = F, + Oe,
Trend at time t = B..; + Pe,
Error at time t = X, - F,

Observation at time t

a level parameter subject to 0 < o < 1

a trend parameter subject to 0 < B < 1

a time index.

the number of periods between the current
observation period and a forecast period

(horizon) .

0, or alternatively an initialized value

derived from other techniques.

0, or alternatively an initialized wvalue

derived from other techniques.
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= Forecast at time t+m

Trend at time t

Seasonality factor at t

330

Holt-Winters-Williams Exponential Smoothing

[S.+(By *m)]*T 0,

Level at time t = (F, + 0e.) /I,

Bt—l + Bet:/It—L

Error at time t = X, - F,

It—L+Yet/ ( Se1+Bea )

Observation at time t

IA
Q
IA
=

a level parameter subject to 0

A

™
A
=

a trend parameter subject to 0
a time index.

the number of periods between the current
observation period and a forecast period
(horizon) .

0, or alternatively an initialized value
derived from other techniques.

0, or alternatively an initialized value
derived from other techniques.

a seasonality parameter subject to 0 < y < 1,
the length of the seasonality cycle, and

I, = . . . =1I_, =1, unless initialized by
some other technique, and for future periods

I, = L.
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Holt-Winters-Williams Adaptive

Holt-Winters-Williams Adaptive is identical with Holt-

Winters-Williams with the exception that o is subscripted

for time and selected using the following algorithm.

Smoothed Error = E, = ¢e, + (1-0)E.,

Smoothed Absolute Error = M, = ¢ | e, | + (1-0)M,,

a, = Absolute Tracking Signal = T, = | E./M, |

Holt-Winters-Williams Autocorrelation Corrected

1. F! = Autocorr. Corrected F = F+(ec; * Oe er-1)

1. E.a = Forecast at time t+m = (S¢+ B, *m) *I. ..
2. S, = Level at time t = (F.,'+ ae.) /I,

3. B, = Trend at time t = B.; + Be /I,

4. e, = Error at time t = X, - F.'

5. I, = Seasonality factor at t = I,..+ e/ (S¢a1 + Bey)



Holt-Williams Exponential Smoothing

Forecast at time t+m = S, + (By * m)
Level at time t = F. + e,
Trend at time t = B.., + PBe,
Error at time t = X, - F,

Observation at time t

a level parameter subject to 0 < a < 1

a trend parameter subject to 0 < B < 1

a time index.

the number of periods between the current
observation period and a forecast period
(horizon) .

0, or alternatively an initialized value
derived from other techniques.

0, or alternatively an initialized value

derived from other techniques.
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Proposed Technique

(Adjusting the Holt-Winters-Williams Model)

l.a F.' = Adjusted Forecast at time t=F, + P,
1. F, = Initial Forecast at time t =(S.3 # B 1) *Too
25 S, = Level at time t =(F,' + ae.) /I,
3. B, = Trend at time t = B,; + PBe /I,
4. e, = Error at time t = X, - F.'
5. b = Seasonality factor at t = I, +Ye./Se 1+ Bely)
6. A, = Adjustment factor at time t= P, - P,
7 P = A periodic estimate of a policy in a vector:
(...,0,0,0,a,b,c,...,n,n,n,...) where,
a, b, ¢, ..., n all have the same sign, and
la] < |b] < |c| < ... In|.

Other constraints are as with Holt-Winters-Williams.



334

Holt-Winters-Williams Adaptive

Holt-Winters-Williams Adaptive is identical with Holt-

Winters-Williams with the exception that o is subscripted

for time and selected using the following algorithm.

Smoothed Error = E, = ¢e, + (1-0)E,;

Smoothed Absolute Error = M, = ¢ | e, | + (1-0)M,,

A, = Absolute Tracking Signal = T, = | E./M, |

Holt-Winters-Williams Autocorrelation Corrected

1. F! = Autocorr. Corrected F = F+(€,.; * Qe er-1)

1. Foun = Forecast at time t+m = (S,+ B, *m) *I, .,
2. S = Level at time t = (F,'+ ae,) /I, .

3. B, = Trend at time t = B,., + Be /I,

4. e, = Error at time t = X, - F.'

5. I, = Seasonality factor at t = I+ e/ (S..y + B.,)



Series 1

1 1.0000
2 -0.0808
3 0.1234
4 0.4188
5 -0.2019
6 -0.0595
7 0.0893
8 0.3494
9 0.0593
10 -0.1060
1" -0.0443
12 -0.0486
13 0.0706
14 -0.1019
15 -0.0911
16 0.1518
17 -0.1081
18 0.0233
19 0.1518
20 0.0866
Avgr  0.0841

18

18 1.0000
19 0.0051
20 -0.0467
Avgr 0.1115

Note: Although the average is shown at the bottom of the column, it is the average for all correlations for the series

2 3

-00725 1.0000
0.0170 0.0765
-0.0006 -0.4351
0.02%0 0.0125
0.0909 -0.0984
0.0667 -0.1685
-01965 0.0682
0.1017 -0.0147
0.1669 -0.2588
-0.0138 -0.0340
0.0716 0.0165
-0.0469 -0.0076
-0.0023 -0.0953
-03076 -0.0843
-00789  0.0600
-0.0101  -0.0693
-0.1186  0.0929
0.0018 0.1720
0.0309 0.0142

19 20
1.0000

00771  1.0000
00272 -00204

Appendix
Correlation for Level Shifting Data After all Preprocessing

4

1.0000
-0.1634
-0.0906

0.3142

0.1299

0.1132
-0.0895

0.1379
-0.0476

0.0800

0.1836
-0.1378

0.1151

0.0979

0.1999

0.0398
-0.0106

0.1192

5

1.0000
-0.0248
-0.1039

0.0125
-0.2241
-0.3643

0.0977

0.0784

0.0677
-0.1594

0.1054
-0.0655
-0.0608

0.0206

0.0627
-0.2069
-0.0283

III Correlation and Squared Correlation Matrices

6

7

1.0000
0.0219
-0.1160
0.3162
0.0563
-0.0719
-0.1725
-0.0848
-0.1068
0.0760
-0.0884
-0.0763
-0.1483
-0.0573
0.0383

8

1.0000
-0.0839
-0.1991

0.0096

0.0548
-0.0131

0.0099
-0.0019

0.3096
-0.0658

0.1569

0.0195

0.0223

0.0796

9

1.0000
-0.0109
-0.0038
-0.0332

0.0024

0.3167
-0.0357

0.0231

0.1159

0.1710

0.1153

0.0812

0.0698

10

1.0000
0.1409
0.1899
-0.3128
0.0521
-0.0224
0.0288
0.1211
0.0346
-0.0465
-0.1053
0.0445

335

"

1.0000
0.2748
-0.0210
-0.0129
0.1391
0.1192
-0.0843
0.2320
-0.0601
-0.3575
0.0767

12

1.0000
-0.0846
0.0351
0.2639
0.3149
-0.0379
0.2609
-0.1156
-0.2543
0.0919

13

1.0000
-0.0778
0.0776
0.0711
-0.0254
0.0978
-0.0606
-0.0567
0.0418

14

1.0000
-0.3969
0.3322
0.5323
-0.2805
-0.0269
-0.0521
0.0563

1.0000
0.1594
-0.0404
0.5021
-0.0647
-0.0663
0.0659

16

1.0000
0.4177
0.0938
-0.1886
-0.3205
0.1133

1718



336
Proposed Technique

(Adjusting the Holt-Winters-wWilliams Model)

l.a F.' = Adjusted Forecast at time t=F, + P,
1. F, = Initial Forecast at time t =§Ss. 3 ¥ Beg) *Ien
2% St = Level at time t =(F,' + Qe.)/I.
3. B, = Trend at time t = B,; + PBe./I..
4. e, = Error at time t = X, - F.'
5. i = Seasonality factor at t = T, +*Y€/Se 1+ B
1)
6. A, = Adjustment factor at time t= P, - P,
7. P = A periodic estimate of a policy in a vector:
(...,0,0,0,a,b,c,...,n,n,n,...) where,
a, b, ¢, ..., n all have the same sign, and
la| < |b|] < || < ... [n|.

Other constraints are as with Holt-Winters-Williams.



Series 1

1 1.0000
2 -0.1504
3 -0.0169
4 -0.0684
5 -0.2082
6 -0.1401
7 -0.0823
8 0.1986
9 0.1560
10 -0.2309
" 0.1222
12 -0.0846
13 -0.0199
14 -0.0337
15 0.0029
16 0.2035
17 0.0684
18 0.1352
19 -0.0661
20 -0.0014
Avgr  0.0392

18

18 1.0000
19 0.1003
20 0.0671
Avgr  0.0509

1.0000
-0.2776
-0.0262
-0.0180

0.1859

0.1992
-0.1010

0.1029

0.0988

0.1924

0.2036
-0.0200
-00863
-0.0276
-0.1381
-0.0687
-0.0996

0.0486
-0.1585

0.0430

19
1.0000

0.2496
0.0910

1.0000
0.0837

1.0000
0.2947
0.1115
0.0497
-0.2656
-0.2322
-0.0423
-0.0640
-0.0016
-01741
-0.0470
0.1118
0.1419
-0.0019
-0.1614
-0.1488
-0.0426
0.0205

1.0000
0.1174
0.0153
-0.1311
0.2923
-0.0641
0.1490
-0.1087
01113
-0.0220
-0.0771
-0.0940
-0.0634
0.0238
-0.0087
0.0613

Correlation Data for Trials 1 Through 12 after All Preprocessing

7

1.0000
0.0693
-0.2175
0.2921
0.2752
0.0351
-0.2889
0.0220
0.1740
-0.0303
-0.0106
-0.05%0
-0.0640
-0.1268
0.0740

8

1.0000
0.0507
-0.1221
0.1843
-0.0895
0.1004
0.0349
-0.1295
-0.1513
-0.0273
-0.0366
0.0664
0.2092
0.0397

9

1.0000
0.0909
-0.0370
-01277
0.2357
0.1749
-0.0680
0.0608
0.0187
0.0824
0.1031
0.0497
0.0695

10

1"

0.0742

Note: Although the average is shown at the bottom of the column, it is the average for all correlations for the series

12

1.0000
-0.0395
0.0254
0.0092
-0.1502
-0.0266
-0.1161
0.0788
-0.0124
0.0382

13

1.0000
-0.1310
-0.0998

0.0875

0.0397
-0.0221

0.2352

0.0819

0.0500

14

1.0000
0.1362
-0.1521
-0.0114
-0.0502
0.2034
0.1372
0.0744

15

0.0893
0.1809
-0.0424
0.1646
0.1627
0.0659

16

0.1968
0.0735
-0.1168
0.0306
0.0559

17

1.0000
0.2024
0.0156
0.1297
0.0853

18

387



Serles 1

1 1.0000
2 -0.1504
3 -0.0169
4 -0.0684
S -0.2082
6 -0.1401
7 -0.0823
8 0.1986
9 0.1560
10 -0.2309
1 0.1222
12 -0.0846
13 -0.0199
14 -0.0337
15 0.0029
16 0.2035
17 0.0684
18 0.1352
19 -0.0661
20 -0.0014
Avgr  0.0392

18

18 1.0000
19 0.1003
20 0.0671
Avgr  0.0509

Note: Although the average is shown at the bottom of the column, it is the average for all correlations for the series

1.0000
-0.2776
-0.0262
-0.0180

0.1859

0.1992
-0.1010

0.1029

0 1924
0.2036
-0.0200
-0.0863
-0.0276
-0.1381
-0.0687
-0.0996
0.0486
-0.1585
0.0430

19
1.0000

0.2496
0.0910

1.0000
-0.0237
-0.1413
-0.0798
-0.0673
-0.0063

0.0833
-0.0197

0.1252

0.0051

0.0918
-0.0065
-0.1050

02123

0.1060

0.1454
-0.0276

0.1102

0.0554

20

1.0000
0.0837

1.0000
0.2947
0.1115
0.0497
-0.2656
-0.2322
-0.0423

-0. 0016
0.1741
-0.0470
0.1118
0.1419
-0.0019
-0.1614
-0.1488
-0.0426
0.0205

1.0000
0.0978
0.1931
-0.2053

0.0936
0.0S62
0.0041
0.007S
0.0918
-0.0139
-0.0041
-0.0231
-0.0322
-0.0530
0.0687
0.0602

Appendix III Correlation Matrices

Correlation Data for Trials 1 Through 12 after All Preprocessing

6

1.0000
0.1174
0.0153
-0.1311
0.2923
-0.0641
0.1490
-0.1087
0.1113
-0.0220
-00771

-0 0634
0.0238
-0.0987
0.0613

7

1.0000
0.0693
-0.217S
0.2921
0.2752
0.0351
-0.2889
0.0220
0.1740
-0.0303
-0.0106
-0.0590
-0.0640
-0.1268
0.0740

8

1.0000
0.0507
01221
0.1843
-0.0895
0.1004
0.0349
-0.1295
-0.1513
-0.0273
-0.0366
0.0664
0.2092
0.0397

9

1.0000

-0. 0370
-0.1277
0.2357
0.1749

0.0608
0.0187
0.0824
0.1031
0.0497
0.0695
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10

1.0000
0.0154
0.0887
-0.0923
-0.0494
-0.0200
-0.2321
-0.0428
-0.0727
0.1522
-0.0802
0.0544

"

1.0000
-0.1871
0.1159
0.1175
-0.1863
0.0741
0.0545
-0.0320
-0.1450
-0.1024
0.0742

12

1.0000
-0.0395
0.0254

0.1502
-0.0266
0.1161
0.0788
-0.0124
0.0382

13

-0 1310
-0.0998
0.087S
0.0337
-0.0221
0.2352
0.0819
0.0500

14

0 1362
-0.1521
-0.0114
-0.0502

0.2034

0.1372

0.0744

15

00893
0.1809
-0.0424
0.1646
0.1627
0.0659

16

17

1.0000
0.2024
0.0156
0.1297
0.0853



Level Shiftas Planned
Scenario 1

Period

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rankof K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Waliis statistic i s significant.

Adjust
354
1
333
1
1.65
1
4780
1
10
3.10
1
2.90
1
1.78
1
431.0
1
10
3.06
1
285
1
1.85
1
5120
1
10
280
1
269
1
1.68
1
3980
1
10

Appendix IV Tables from Scenarios 1 Through 13b

Average Rank of Absolute Error

HWW HW Adapt
6.75 6.98 7.87
8 9 1"
6.68 6.93 7.79
8 9 1"
7.63 8.43 9.50
8 10 "
28805 31315 36915
8 10 "
10 9 10
6.85 715 7.85
8 10 "
6.77 7.10 7.78
8 10 1"
7.95 8.50 9.03
9 10 1"
28645 31185 35745
8 10 1"
9 10 10
6.81 7.12 752
8 10 1"
6.69 7.04 740
8 10 1
7.25 79 82
8 10 1"
27040 29405 32245
8 10 1
10 10 10
6.78 7.10 7.85
8 9 1"
6.63 7.00 7.7
8 10 1
7.30 7.65 8.43
8 9 1
26775 28860 33020
8 9 1"
9 9 10

Auto
7.21

10
7.03

10
8.03

9

3,084.0

29200

9

339

Naive
6.38
7
6.33
7
7.00
7
2,576.0
7
10
6.69
7
6.57
7
713
7
2,706.5
7
10
6.66
7
6.50
7
6.95
7
26225
7
10
6.61
6
6.35
6
6.65
6
2,510.0
6
10

HWwW*

527
4
522
4
415
4

1,4050
4
9
451
2
438
2
335
2

1,0250
2

10
435
2
412
2
3575
2

1,1200
2

10
396
2
3
2
328
2

9885
2
10

Table: 1-1
HW* Adapt*
5.04 5.04
2 2
493 493
2 2
3.80 3.80
2 2
1,3245 1,3245
2 2
8 8
5.28 5.58
3 4
5.04 5.47
3 4
470 460
4 3
1,652.0 1,762.0
3 5
10 9
5.84 5.84
3 3
5.67 5.67
3 3
5625 5.625
3 3
2,031.5 2,031.5
3 3
10 10
5.31 5.76
3 4
495 552
3 4
493 533
3 4
1,787.0 2,0415
3 4
10 10

Auto*

6.50
6.73

2,601.5

Naive*

5.94
S
5.82
5
5.80
5
2,126.0
5
10
559
5
5.50
S
493
5
1,761.0
4
9
6.04
S
583
3
6.025
6
2,1895
S
10
6.05
5
5.85



Level Shift as Planned
Scenario 1

Period

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Mutti-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

AdJust
354
1
333
1
1.65
1
478.0
1
10
3.10
1
290
1
1.78
1
431.0
1
10
3.06
1
285
1
1.85
1
512.0
1
10
2.80
1
269
1
1.68
1
398.0
1
10

Appendix [V Tables from Scenarios 1 Through 13b

Average Rank of Absolute Error

HWW HW Adapt
6.75 6.98 7.87
8 9 11
6.68 6.93 7.79
8 9 1
7.63 8.43 9.50
8 10 1
28805 31315 36915
8 10 1
10 9 10
6.85 7.15 7.85
8 10 1
6.77 7.10 7.78
8 10 1
7.95 8.50 9.03
9 10 1
28645 31185 35745
8 10 1
9 10 10
6.81 7.12 7.52
8 10 11
6.69 7.04 7.40
8 10 1
7:25 79 8.2
8 10 11
27040 29405 32245
8 10 11
10 10 10
6.78 7.10 7.85
8 9 1
6.63 7.00 7.7
8 10 11
7.30 7.65 8.43
8 9 1
26775 28860 33020
8 9 1
9 9 10

Auto
7.21

10
7.03

10
8.03

9

3,084.0
9
9

Table: 1-1
Naive HwWw* Hw* Adapt*®
6.38 5.27 5.04 5.04
7 4 2 2
6.33 5.22 493 493
7 4 2 2
7.00 415 3.80 3.80
7 4 2 2
25760 14050 13245 1,3245
7 4 2 2
10 9 8 8
6.69 451 5.28 5.58
7 2 3 4
6.57 438 5.04 547
7 2 3 4
713 335 4.70 4.60
7 2 4 3
2,7065 1,0250 11,6520 1,762.0
7 2 3 S
10 10 10 9
6.66 435 5.84 5.84
7 2 3 3
6.50 412 5.67 5.67
7 2 3 3
6.95 3575 5.625 5.625
7 2 3 3
26225 1,1200 20315 2,031.5
7 2 3 3
10 10 10 10
6.61 3.96 5.31 5.76
6 2 3 4
6.35 N 4.95 552
6 2 3 4
6.65 328 493 533
6 2 3 4
2,510.0 9885 1,787.0 2,0415
6 2 3 4
10 10 10 10

340

Auto®
6.18

6.12
6.55
23450

10
6.44

6.32
6.53
2,478.0

10

6.00
5925
2,316.0

10
6.67

6.50
6.73

2,601.5

Naive*
5.94
5]
5.82
5]
5.80
5]
2,126.0
S
10
5.59
5
5.50
5]
493
S
1,761.0
4
9
6.04
5]
5.83
S
6.025
6
2,1895
5]
10
6.05
5
5.85
5
6.13
S
2,198.0
5
10



Level Shift as Planned

Period:  Scenario 1 Range of Percent Error
Period:

1 Adjusted HWW HW  Adaptive
Average 8.74% 1477% 1453%  15.90%
Rank 1 8 7 9
Geometric Mean 402% 12.83% 1250% 13.20%
Rank 1 8 7 9
Average Rank by Series 1.95 7.50 7.00 7.80
Rank of Average Rank 1 8 7 9
Kruskal-Wallis Rank Sum 14250 25950 25200 26220
Rank of K-W Rank Sum 1 8 7 9
K-W Mutti-Comparison Count® 10 8 9 9

S Average 8.03% 26.32% 26.00% 2251%
Rank 1 10 9 7
Geometric Mean 507% 25.38% 2507% 21.56%
Rank 1 10 9 8
Average Rank by Series 1.55 8.13 7.88 6.15
Rank of Average Rank 1 10 9 7
Kruskal-Wallis Rank Sum 7420 3,0505 30205 25220
Rank of K-W Rank Sum 1 10 9 8
K-W Multi-Comparison Count*® 10 9 9 9

10 Average 10.08% 31.37% 31.30% 33.23%
Rank 1 10 9 1
Geometric Mean 6.71% 29.26% 29.53%  30.52%
Rank 1 9 10 "
Average Rank by Series 1.775 7.65 77 7.225
Rank of Average Rank 1 9 10 8
Kruskal-Wallis Rank Sum 7325 27540 28020 28275
Rank of K-W Rank Sum 1 9 10 1
K-W Mutti-Comparison Count® 10 8 8 8

15 Average 10.01% 36.16% 37.48%  40.05%
Rank 1 8 9 1"
Geometric Mean 6.46% 31.93% 33.74% 34.32%
Rank 1 9 10 1
Average Rank by Series 1.88 795 7.88 6.85
Rank of Average Rank 1 1 10 8
Kruskal-Wallis Rank Sum 7795 27020 28145 28060
Rank of K-W Rank Sum 1 9 1 10
K-W Multi-Comparison Count® 10 10 9 9

*K-W Mutti-Comparison Count valid only if Kruskal-Wallis statistic is signficant.

Table: 1-2
Auto Naive HWW:* HW*  Adaptive* Auto* Naive®
16.09% 16.30% 12.80% 10.61% 10.67% 13.60% 12.46%
10 1" 5 2 3 6 4
1432% 1400% 11.19% 6.85% 7.08% 9.95% 9.50%
1 10 6 2 3 5 4
8.68 8.75 5.75 3.70 3.40 6.20 5.28
10 1 S 3 2 6 4
27995 12,7300 22840 11,6020 1,590.0 2,133.0 2,009.5
1" 10 6 3 2 5 4
9 9 10 9 9 10 10
2266% 2828% 19.84% 15.00% 16.05% 18.20% 17.54%
8 1" 6 2 3 5 4
2152% 27.46% 1848% 11.11% 13.16% 15.70% 15.49%
7 1 6 2 3 5 4
6.40 9.65 6.10 413 433 5.90 5.80
8 1 6 2 3 5 4
24890 33050 21220 15435 1,636.5 1,963.0 1,916.0
7 1 6 2 3 5 4
9 10 10 10 10 9 9
2959% 27.69% 20.58%  22.04% 24.40% 30.83% 26.31%
7 6 2 3 4 8 5
27.46% 26.81% 19.84% 14.32% 17.85% 24.93% 20.84%
8 7 4 2 3 6 5
6.6 7.85 4375 495 5.2 6.675 6
6 1 2 3 4 7 S
25590 25360 16695 1,767.0 20440 24855 21330
8 7 2 3 4 6 5
8 8 10 10 10 8 10
34.72% 26.46% 19.78%  26.84% 30.15% 39.74% 32.35%
7 3 2 4 5 10 6
30.01% 2565% 19.06% 14.73% 18.85% 28.05% 23.89%
8 6 4 2 3 7 S
6.58 7.30 5.03 475 498 6.65 6.18
6 9 4 2 3 7 5
25935 23820 16775 17770 2,0745 25130 2,190.5
8 6 2 3 4 7 5
9 10 10 10 10 9 10
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Level Shift as Planned

Perlod:  Scenario 1 Mean Absolute Percent Error

1 Adjusted HWW HW  Adaptive
Average 363% 7.45% 7.49% 8.73%
Rank 1 8 9 1"
Geometric Mean 1.93% 6.78% 6.83% 7.91%
Rank 1 8 9 1"
Average Rank by Series 1.55 8.18 8.53 9.60
Rank of Average Rank 1 8 10 1
Kruskal-Wallis Rank Sum 1,2600 26775 26945 3,007.0
Rank of K-W Rank Sum 1 8 9 1"
K-W Mutti-Comparison Count* 10 9 9 10

5 Average 439% 13.13% 13.62% 15.20%
Rank 1 8 10 1"
Geometric Mean 288% 1237% 13.01%  14.56%
Rank 1 8 9 1"
Average Rank by Series 1.50 8.38 8.98 9.20
Rank of Average Rank 1 9 10 1"
Kruskal-Wallis Rank Sum 7470 28015 29615 3,239.0
Rank of K-W Rank Sum 1 8 9 1"
K-W Multi-Comparison Count* 10 10 9 10

10 Average 563% 17.05% 18.26% 21.11%
Rank 1 7 10 1"
Geometric Mean 388% 1493% 1640% 19.16%
Rank 1 8 10 1
Average Rank by Series 1.65 7.875 7.975 8.65
Rank of Average Rank 1 9 10 1
Kruskal-Wallis Rank Sum 8290 25625 27545 3,067.0
Rank of K-W Rank Sum 1 8 10 1"
K-W Multi-Comparison Count* 10 9 9 10

15 Average 5.79% 20.29% 22.30%  27.35%
Rank 1 7 9 "
Geometric Mean 403% 1660% 18.87%  23.33%
Rank 1 7 10 "
Average Rank by Series 1.65 7.78 7.93 8.90
Rank of Average Rank 1 8 10 1"
Kruskal-Wallis Rank Sum 8070 24995 27225 3,067.0
Rank of K-W Rank Sum 1 7 10 "
K-W Multi-Comparison Count® 10 10 9 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table: 1-3
Auto Naive HWW* HW*  Adaptive*
7.99% 7.15% 6.16% 4.86% 4.93%
10 7 5 2 3
717% 6.35% 5.49% 3.49% 3.67%
10 7 6 2 3
8.45 7.55 5.50 3.28 3.28
9 7 6 2 2
28100 24680 22010 15735 1,589.5
10 7 6 2 3
10 10 10 9 9
1359% 11.96% 8.06% 8.25% 9.03%
9 7 2 3 4
13.09% 11.28% 7.79% 6.20% 7.48%
10 7 4 2 3
8.35 710 4.00 418 433
8 7 2 3 5
29870 24820 14240 1,680.5 1,8545
10 7 2 3 4
9 10 10 10 9
18.06% 13.79% 9.26% 1281% 14.52%
9 4 2 3 5
16.20% 12.85% 8.64% 8.34% 10.50%
9 6 3 2 4
7.85 6.85 3.85 4875 4825
8 7 2 4 3
27340 22620 1,4540 18305 21205
9 6 2 3 4
9 10 10 10 9
21.92% 1524% 9.17% 16.03% 18.65%
8 3 2 4 5
18.55% 1421% 853% 8.99% 11.74%
9 6 2 K) 4
7.80 6.75 3.90 458 4.88
9 7 2 3 4
27130 22700 14050 18505 21745
9 6 2 3 4
9 10 10 10 9

Auto* Naive*
6.22% 5.71%
6 4
5.03% 4.63%
S 4
5.35 475
S 4
2,087.0 1,942.0
S 4
10 10
10.79% 9.29%
6 5
9.31% 7.97%
6 5
5.75 425
6 4
2,225.0 1,908.0
6 S
10 9
17.61% 14.80%
8 6
13.78% 11.65%
7 S
6.2 54
6 S
2,545.0 2,151.0
7 5
9 9
24.11% 18.75%
10 6
17.16% 13.34%
8 5
6.55 5.30
6 5
2,619.0 2,1820
8 5
10 9
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Level Shift as Planned

Period: Scenario1 Root Mean Squared Error
Period:

1 Adjusted HWW
Geometric Mean 4894 164.28
Rank 1 9
Average Rank by Series 1.30 8.18
Rank of Average Rank 1 8

S Geometric Mean 7365 33536
Rank 1 8
Average Rank by Series 1.25 8.33
Rank of Average Rank 1 9

10 Geometric Mean 103.23 41212
Rank 1 8
Average Rank by Series 1.65 1.775
Rank of Average Rank 1 9

15 Geometric Mean 109.66 464.33
Rank 1 8
Average Rank by Series 1.50 7.68
Rank of Average Rank 1 9
Level Shift as Planned

Period: Scenarlo 1 Geometric Root Mean Squared Error

Adjusted HWW

1 Geometric Mean 26.32 86.26
Rank 1 8
Average Rank by Series 205 7.68
Rank of Average Rank 1 8

S Geometric Mean 47.09 164.81
Rank 1 8
Average Rank by Series 225 8.23
Rank of Average Rank 1 8

10 Geometric Mean 55646 213.34
Rank 1 8
Average Rank by Series 2 7.725
Rank of Average Rank 1 8

15 Geometric Mean 6791 246.61
Rank 1 7
Average Rank by Series 1.80 7.63

Rank of Average Rank 1 8

HW  Adaptive
162.50 187.79
8 1"

8.03 9.55
7 1"
341.67 366.72
10 1
8.83 8.95
10 1
440.36 500.55
10 1
8.125 85
10 1
51609 611.23
10 1"
7.88 8.70
10 1"
HW  Adaptive
94.50 124.35
9 1"
8.28 9.60
9 1"
196.95 234.14
10 1"
8.78 9.15
10 "
246.74 299.24
9 1"
8.025 85
9 1"
29591 405.33
9 1
8.03 9.05
9 1

Auto
177.28

10
8.55

10
340.29

9
8.30

8
42432

9
7.25

8
493.13

9
7.40

Table: 14
Naive HWW*
161.67 138.16
7 6
8.20 5.80
9 6
321.00 22238
7 S
7.40 4.00
7 2
360.08 251.84
6 3
7 38
7 2
39042 251.29
6 3
6.7 395
6 2
1-5
Naive HWW*
73.32 59.06
7 4
6.10 5.00
7 4
140.94 87.98
6 2
6.60 400
7 2
192.15 97.81
6 2
6.55 4
7 2
237.79 11209
6 2
6.90 325
7 2

HW*  Adaptive*

90.05
2
3.03
2

158.27
2
423
3

219.43
2

4775

3

24217
2
4.78
3

95.14
3
313
3

190.39
3
423
3

275.72
4

4875

4
314.75
4
5.08

4

HW*  Adaptive*

4453
3.58

47.32
3
3.98
3

115.16
S
438
4

168.85
4

5.025

4
194.63
4
468

4

Auto*
129.96

5.45

236.21

5.50

377.54

6.5

457.78

6.80

Nalve*

Naive*
64.51

5.55
109.71
4.60
175.52
5.45
216.18

5.55
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Level Shift as Planned
Perlod  Scenario 1

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1

S

10

15

Scenario 1

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1

5

10

15

Scenario 1

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1
S
10
15

Scenario 1

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Average Rank of Absolute Error

Table1-6

Table1-7

Table1-8

Chl Square DF p Value
62.68 19 0.0000
120.15 10 0.0000
55.38 19 0.0000
114.09 10 0.0000
40.12 19 0.0032
82.38 10 0.0000
4495 19 0.0007
93.77 10 0.0000
Symmetry Adjusted MAPE

Chi Square DF p Value
76.71 19 0.0000
42.55 10 0.0000
7292 19 0.0000
84.67 10 0.0000
56.54 19 0.0000
57.83 10 0.0000
58.39 19 0.0000
57.56 10 0.0000
Range of Percent Error

Chi Square DF p Value
52.83 19 0.0000
30.28 10 0.0008
50.16 19 0.0001
35.47 19 0.0122
49.81 10 0.0000
32.88 19 0.0248
46.49 10 0.0000
Geometric Root Mean Square Error Table 1 - 9
Chi Square DF p Value
56.20 19 0.0000
58.23 19 0.0000
4514 19 0.0007
56.24 19 0.0000

Period
1

5

10

15

Level Shift as Planned

Scenario 1

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1

5

10

15

Scenario 1

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1

5

10

15

Scenarlo 1

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned

1
5
10
15

Scenario 1

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Log Mean Squared Error Ratio Table 1 -10

Chi Square DF

56.20 19
82.89 10
58.23 19
70.33 10
45.14 19
55.80 10
56.24 19
60.82 10

p Value

Mean Absolute Percent Error  Table 1 - 11

Chi Square DF

7264 19
40.66 10
68.09 19
72.90 10
47.51 19
51.57 10
48.88 19
52.48 10

p Value
0.0000
0.0000
0.0000
0.0000
0.0003
0.0000
0.0002
0.0000

Median Absolute Percent Error Table 1 - 12

Chil Square DF

54.55 19
34.52 10
62.78 19
59.36 10
34.47 19
43.64 10
43.85 19
46.21 10

Root Mean Square Error

Chi Square DF

7.2 19
66.50 19
45.59 19
46.12 19

p Value

Table 1-13
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Level and Trend Shift

Period: Scenario 2

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

Average Rank of Absolute Error

Adjust
355
1
34
1
1.70
1
489.0
1
10
313
1
295
1
1.58
1
4140
1
10
303
1
284
1
1.73
1
4895
1
10
287
1
276
1
1.73
1
4140
1
10

HWW  HW
6.72 6.98
8 9
6.65 6.94
8 9
7.60 8.40
8 10
28555 3136.0
8 10
10 9
6.92 7.15
8 10
6.83 7.10
8 10
8.18 8.60
9 10
29165 31355
8 10
9 10
6.79 7.12
8 10
6.66 7.05
8 10
7.28 7.85
8 10
26975 23445
8 10
9 10
6.72 712
8 9
6.57 7.02
8 10
7.10 7.90
8 9
2631.5 2901.0
8 9
9 9

33240
1
10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
7.24

7.06
10
8.15

3108.0

6.86

6.78

7.50

28585

6.96

6.73

773

2851.0

10
7.10

6.95
7.78
29135

10
9

Naive
6.40
7
6.35
7
7.00
7
25815
7
10
6.73
7
6.62
7
718
7
27525
7
10
6.79
4
6.64
7
715
7
26955
7
9
6.65
6
6.40
6
6.73
6
25415
6
9

HWW*
5.21
4
5.16
4
415
4
1393.0
4
10
448
2
434
2
3.20
2
998.0
2
10
432
2
4.09
2
3.60
2
1104.0
2
10
3.99
2
3.74
2
333
2
995.5
2
10

Table: 2 -1

HW*
5.03
2
494
3
3.83
3
1299.0
2
9
533
<)
5.10
3
5.03
S
1686.5
3
9
5.84
3
5.67
4
5.45
3
2009.5
3
10
5.28
3
490
3
480
3
17705
3
10

Adapt*
5.03
2
494
2
383
2
1299.0
2
9
5.61
5
5.50
S
483
3
1791.5
5
10

Auto*
6.16

6.10

6.43

23335

10
6.42

6.31

6.33

24640

10
6.24

6.02

6.05

23310

10
6.68

6.51
6.83
2608.0

7
8

Naive*
5.98
5
5.88
S
5.78
5]

2175.0
S

10

5.49
4
5.37
4

4.60
3
1698.0
4
9
5.99
S
5.78
S
590
S
21520
S
10
5.98
S
5.78
S
5.95
S
2169.5
S
10
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Level and Trend Shift
Period:

Scenario 2 Range of Percent Error

AdJusted HWW HW Adaptive

1 Average 8.77%  1479% 14.56% 15.96%
Rank 1 8 7 9
Geometric Mean 407% 12.89% 1257% 13.29%
Rank 1 8 7 9
Average Rank by Series 1.95 7.60 6.90 7.80
Rank of Average Rank 1 8 7 9
Kruskal-Wallis Rank Sum 1428.0 2603.0 2519.0 2628.0
Rank of K-W Rank Sum 1 8 7 9
K-W Multi-Comparison Count® 10 9 10 9

S Average 8.12%  26.23% 25.89% 2264%
Rank 1 10 9 7
Geometric Mean 5.15% 2537% 25.04% 21.74%
Rank 1 10 9 8
Average Rank by Series 1.55 8.18 7.88 6.18
Rank of Average Rank 1 10 9 7
Kruskal-Wallis Rank Sum 751.0 30625 3021.5 26515
Rank of K-W Rank Sum 1 10 9 8
K-W Multi-Comparison Count*® 10 9 9 9

10 Average 991% 31.20% 31.01% 33.02%
Rank 1 9 9 1
Geometric Mean 6.55%  29.22% 29.32% 30.38%
Rank 1 9 10 1
Average Rank by Series 1.78 7.85 7.65 7.18
Rank of Average Rank 1 10 9 8
Kruskal-Wallis Rank Sum 7215 2763.0 2796.0 2831.5
Rank of K-W Rank Sum 1 9 10 11
K-W Multi-Comparison Count* 10 8 8 8

15 Average 9.92% 36.13% I7.22% 3981%
Rank 1 8 9 1"
Geometric Mean 652% 3217% 33.68% 3428%
Rank 1 9 10 1
Average Rank by Series 1.65 8.10 7.85 6.85
Rank of Average Rank 1 1 10 8
Kruskal-Wallis Rank Sum 767.0 2756.0 28450 2811.0
Rank of K-W Rank Sum 1 9 1 10
K-W Multi-Comparison Count*® 10 9 9 8

*K-W Multti-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Naive
16.29%

Table:
HWW*
12.69%
5
11.09%
6
5.75
5
2267.0
6
10
19.52%
6
18.10%
6
6.15
6
2090.0
6
10
20.19%
2
19.40%
4
433
2
1649.5
2
10
19.38%
2
18.66%
3
5.05
4
1626.0
2
10

2-2
HW*  Adaptive* Auto®
10.59% 10.64% 13.61%
2 k) 6
6.87% 7.07% 9.94%
2 3 5
3.70 3.40 6.20
3 2 6
1603.0 1590.0 21270
3 2 5
9 9 10
14.77% 1580%  18.10%
2 3 5
11.12% 13.06% 15.62%
2 k) 5
4.08 4.23 5.83
2 3 5
15145 1604.5 1967.5
2 3 5
10 10 9
21.83% 24.12%  30.54%
3 4 8
14.10% 17.77%  2476%
2 3 6
5.15 5.25 6.78
3 4 7
1773.0 2036.0 24835
3 4 6
10 9 9
26.57% 2980%  39.40%
4 5 10
14.95% 19.15%  27.96%
2 4 7
475 5.05 6.70
2 3 6
1766.0 2076.0 2509.0
3 4 7
10 10 10

Naive*
12.50%

9.50%
5.28
2008.5

10
17.43%

15.40%
5.85

1919.0

25.96%
20.63%
5.90

2116.0

31.88%
23.66%
5.98
21625

10



Level and Trend Shift

Period: Scenarlo 2
Adjusted
1 Average 3.63%
Rank 1
Geometric Mean 1.93%
Rank 1
Average Rank by Serles 1.45
Rank of Average Rank 1
Kruskal-Wallls Rank Sum 12520
Rank of K-W Rank Sum 1
K-W Multl-Comparison Count* 10
S Average 441%
Rank 1
Geometric Mean 295%
Rank 1
Average Rank by Series 1.50
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 747.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count® 10
10 Average 5.69%
Rank 1
Geometric Mean 3.95%
Rank 1
Average Rank by Series 1.65
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 8230
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count® 10
15 Average 5.82%
Rank 1
Geometric Mean 4.02%
Rank 1
Average Rank by Series 1.70
Rank of Average Rank 1
Kruskal-Wallls Rank Sum 788.0
Rank of K-W Rank Sum 1
K-W Multl-Comparison Count*® 10

Mean Absolute Percent Error

HWW

7.46%
8
6.80%
8
8.13
8
26775
8
9
13.15%
8
12.41%
8
8.38
9
28085
8
10
17.04%
7
1497%
8
7.88
9
25715
8
9
20.21%
7
16.65%
7
7.83
9
2500.5
7
10

HW Adaptive
7.49% 8.73%
9 1
6.84% 7.91%
9 1
8.53 9.60
10 "
2696.5 3005.0
9 1
9 10
13.63% 15.20%
10 1
13.03% 14.56%
9 1
8.98 925
10 1
2969.5 32530
9 1
9 10
18.22% 21.03%
10 1"
16.42% 19.11%
10 1"
8.03 8.90
10 "
27605 3063.0
10 1
9 10
22.18% 27.18%
9 1
18.89% 23.28%
10 "
7% 8.90
10 1
27275 3071.0
10 1
9 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

7.0

27020
9
9

Naive
7.18%
7
6.38%
7
7.60
7
2483.0
7
10
12.08%
/
11.41%
7
715
7
25230
7
10
14.09%
4
13.14%
6
6.95
7
2311.0
6
10
15.67%
3
14.61%
6
6.75
7
2320.0
6
10

Table:

HWW*
6.13%

5.46%
5.55
21920

10
7.98%

7.72%
4.00
1405.0

10
9.18%

8.55%
3.80
14370

10
9.07%

8.42%
3.90
1383.0

10

23
HW*  Adaptive®
4.86% 492%
2 3
3.50% 3.66%
2 3
333 333
3 2
15745 1592.5
2 3
9 9
8.26% 9.00%
3 4
6.28% 7.49%
2 3
423 438
3 5
1680.5 1851.5
3 4
10 9
12.76% 14.42%
3 5
8.41% 10.52%
2 4
488 468
4 3
1835.5 21135
3 4
10 9
15.92% 18.45%
4 5
9.06% 11.81%
3 4
453 4.88
3 4
18525 21795
3 4
10 9

Auto*

6.21%
6
5.02%
5

5.30

S

2089.0

5

10
10.73%
6
9.30%
6
5.55
6
2198.0
6
10
17.48%
8
13.74%
7
6.00
6
2531.0
7
9
23.88%
10
17.17%
8
6.60
6
2615.0
8
10

Naive*

5.70%

461%

475

1934.0

10
9.23%

7.94%

425

1893.0

14.66%

11.59%

5.30

21390

18.48%

13.18%

5.10

21710

9



Level and Trend Shift

Period:

1

10

15

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Level and Trend Shift

Period:

1

10

15

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Scenario 2
Adjusted
49.36
1
1.30
1
75.32
1
1.25
1
105.02
1
1.50
1
110.40
1
1.40
1

Root Mean Square Error

Adaptive
188.33

1
9.65

1
367.95

Scenario2 Geometric Root Mean Square Error

Adjusted
2670
1
205
1
4947
1
215
1
6227
1
21
1
66.81
1
200
1

HWW HW
164.82 162.99
9 8
8.18 8.08

8 7
336.92 342.76

8 10
8.38 8.88

9 10
415.04 442.00

8 10
7.93 8.23

9 10
468.99 518.61

8 10
7.73 7.88

9 10

HWW HW
86.96 95.85

8 9
763 833

8 9
167.80 199.07

8 10
8.33 888

8 10
21408 253.44

8 9

7.775 8.325

8 9
23226 291.35

6 9
7.18 8.23

8 9

Adaptive
124.48

1
955

Naive
162.41

8.20
32411
7.45
366.82
7.10
400.37

6.75

Naive
7467

6.30
0.00
6.35
7
20382
71
25439

7.00
7

Table:
HWW*
137.49
5.55
220.39
4.05
249.00
3.75
248.39
395
Table:
HWw*
59.42
5.00
89.28
3.90
106.73
39
111.97

375

24
HW*  Adaptive®
90.46 95.00
2 3
3.08 3.18
2 3
160.48 190.89
2 3
413 4.18
<) 4
22233 27765
2 4
478 483
3 4
24613 319.55
2 4
478 5.13
3 4
25
HW*  Adaptive*
43.69 47.76
2 3
358 393
2 3
98.63 115.19
4 6
448 443
4 3
138.11 172.19
3 4
4275 5.075
3 4
14219 186.30
3 4
398 4.73
3 4

Auto*
129.90
5

5.45
S

236.84
6
5.40
6

37857
7
6.45
6

460.77
7
6.80
7

Auto*

5.80
139.46
5.30
193.15
5.45
271.24

6.15
6

Naive*
120.45
4

480
4

211.37
4
490
S

310.74
5
5.60
5

360.74
5
5.45
5

Naive*

62.84
5.50
109.97
4.60
17553
5.35
210.09

5.50
5
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Level and Trend Shift Average Rank of Absolute Error

Period Scenario 2

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift

1

5

10

15

Scenario 2

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift

1

5

10

15

Scenario 2

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift

1
5
10
15

Scenario 2

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Table 2-6

Chi Square  DF p Value Period
61.72 19 0.0000

120.73 10 0.0000

58.70 19 0.0000

116.73 10 0.0000

4200 19 0.0018

85.29 10 0.0000

45.10 19 0.0007

93.58 10 0.0000
Symmetry Adjusted MAPE Table 2-7
Chi Square DF p Value

77.66 19 0.0000

4279 10 0.0000

73.65 19 0.0000

86.30 10 0.0000

58.26 19 0.0000

58.33 10 0.0000

62.37 19 0.0000

58.16 10 0.0000

Range of Percent Error Table 28
Chi Square DF p Value

5295 19 0.0000

3043 10 0.0007

51.01 19 0.0001

73.51 10 0.0000

34.70 19 0.0152

50.96 10 0.0000

35.34 19 0.0127

49.13 10 0.0000
Geometric Root Mean Square Error Table 2-9
Chi Square DF p Value

56.00 19 0.0000

59.24 19 0.0000

47.08 19 0.0003

52.36 19 0.0001

Level and Trend Shift

Scenario 2
1

5

10

15

Level and Trend Shift

1

5

10

15

Level and Trend Shift

1

5

10

15

Level and Trend Shift

1
S
10
15

Log Mean Square Error Ratio

Chi Square DF

RANK ANOVA 56.00 19
KRUSKAL-WALLIS 83.23 10
RANK ANOVA 58.36 19
KRUSKAL-WALLIS 66.70 10
RANK ANOVA 47.08 19
KRUSKAL-WALLIS 58.02 10
RANK ANOVA 5236 19
KRUSKAL-WALLIS 60.86 10

Scenario 2

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Scenario 2

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Scenario 2

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Mean Absolute Percent Error

Chi Square DF

7298 19
40.98 10
68.32 19
7421 10
50.45 19
5202 10
4954 19
53.66 10

Median Absolute Percent Error

Chi Square DF

53.99 19
34.45 10
64.07 19
60.34 10
36.00 19
4372 10
4470 19
46.76 10

Root Mean Square Error

Chi Square DF

77.74 19
68.63 19
48.89 19
4735 19

Table 2-10

Table 2-13
p Value
0.0000
0.0000
0.0002
0.0003
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Period:

10

15

Scenario 3 25% Level Shift
Average Rank of Absolute Error

Ad|usted
Average 7.78
Rank 10
Geometric Mean 7.61
Rank 10
Average Rank by Series 8.50
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 33345
Rank of K-W Rank Sum 10
K-W Mutti-Comparison Count®* 10
Average 7.18
Rank 10
Geometric Mean 6.90
Rank 10
Average Rank by Series 7.20
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 28875
Rank of K-W Rank Sum 10
K-W Mutti-Comparison Count® 10
Average 6.85
Rank 10
Geometric Mean 6.42
Rank 10
Average Rank by Series 6.7
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 26565
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10
Average 6.58
Rank 10
Geometric Mean 595
Rank 9
Average Rank by Series 5975
Rank of Average Rank S
Kruskal-Wailis Rank Sum 2,438.0
Rank of K-W Rank Sum 10

K-W Mutti-Comparison Count® 8

HWW
5.04
4
4.90
4
433
4

1,513.0

4

10
5.18
2
4.90
2
4.95
3
1,746.0
3
9
537
3
5.04
3
5.425
3
1,859.0
3
9
541
2
5.00
1
55
3
1,926.0
3
8

HW
495
2
483
3
393
3
1,4175
3
9
523
3
5.07
3
4.80
2
1,705.0
2

9
5.48
4
523
4
55
4
1,885.0
4
9
5.45
3
5.09
3
5.525
4
1,916.0
2
8

Adaptive
4.96
3
481
2
360
1
1,3925
2
8
5.55
4
5.34
4
5.13
4
1,867.0
4

10
5.29
2
489
1
S
2

1,7395

2

9
5.59
4
5.16
4
5425
2

1,944.0
4
8

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Naive
5.40
S
5.21
S
5.35
5
1,825.0
5
10
5.66
S
5.42
5
5.90
6
2,056.5
5]
9
592
S
5.57
5
5925
S
2,2075
S
8
6.29
9
5.79
6
6.375
9
2,412.0
8
8

Table: 31
HW*  Adaptive*
6.00 6.00
7 7
5.95 5.95
7 7
6.63 6.63
8 8
2,266.0 2,266.0
7 7
8 8
5.73 5.88
6 7
5§52 5.75
6 7
5.90 5.85
6 5
2,115.5 2,1945
6 7
8 9
5.96 5.96
6 6
5.83 5.83
6 6
6.1 6.1
7 7
2,271.0 2,271.0
6 6
8 8
5.78 5.93
5 6
5.55 5.81
5 7
6.075 6.175
6 7
2,168.5 2,2840
5 6
10 9

Auto*
6.17

6.07
6.28
23915

10
6.39

6.22
6.88
2,5625

10
6.15

6.02
6.05

2,349.0

6.29

6.09

6.375
24345

9
8

Naive*
5.89

5.79
5.85

2,2450
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Period: Scenario 3 25% Level Shift Table: 32
Range of Percent Error

Adjusted HWW HW Adaptive Auto Naive HWW* HW*  Adaptive* Auto* Naive*®

1 Average 16.25% 12.51% 12.43% 10.78% 11.36% 13.68% 22.50% 1427% 1431% 12.39% 13.44%
Rank 10 5 4 1 2 7 1 8 9 3 6
Geometric Mean 13.19% 7.27% 7.05% 7.10% 7.33% 8.08% 20.77% 11.13% 11.19% 10.28% 10.63%
Rank 10 3 1 2 4 5 1 8 9 6 7
Average Rank by Series 7.80 483 443 3.28 4.45 5.40 10.20 6.78 6.63 573 6.50
Rank of Average Rank 10 4 2 1 3 5 1 9 8 6 7
Kruskal-Wallis Rank Sum 2,161.0 1,419.0 1,416.5 1,3720 1,437.0 1,5625.0 3,150.0 1,790.0 1,802.5 1,7145 2,3350
Rank of K-W Rank Sum 9 3 2 1 4 5 1 7 8 6 10
K-W Mutti-Comparison Count* 10 7 7 7 7. 10 10 8 9 9 10

5 Average 18.62% 15.06% 14.77% 12.84% 12.72% 17.27% 38.83% 18.89% 18.68% 17.38% 18.28%
Rank 8 4 3 2 1 5 1 10 9 6 7
Geometric Mean 17.45% 11.95% 11.65% 10.36% 10.66% 13.75% 37.28% 17.19% 16.95% 15.83% 17.30%
Rank 10 4 3 1 2 5 1 8 7 6 9
Average Rank by Series 7.45 4.98 433 345 385 6.50 10.55 6.33 6.08 5.90 6.60
Rank of Average Rank 10 4 3 1 2 8 1 7 6 S 9
Kruskal-Wallis Rank Sum 2397.0 1,625.0 1,565.5 1,381.0 1,463.0 1,879.0 3,986.0 2,368.0 23135 2,139.0 25120
Rank of K-W Rank Sum 9 4 3 1 2 5 1 8 7 6 10
K-W Multi-Comparison Count* 10 9 9 10 10 10 10 9 9 10 10

10 Average 2441% 17.59% 17.28% 16.60% 15.47% 17.83% 37.12% 19.30% 18.46% 19.64% 19.26%
Rank 10 4 3 2 1 5 1 8 6 9 7
Geometric Mean 21.56% 15.02% 15.07% 14.19% 13.59% 14.82% 35.64% 17.52% 16.61% 18.05% 17.51%
Rank 10 4 5 2 1 3 1 8 6 9 7
Average Rank by Series 7175 5225 52 435 4 555 9.875 6.275 595 6.45 595
Rank of Average Rank 10 4 3 2 1 5 1 8 6 9 6
Kruskal-Wallis Rank Sum 27445 1,8705 1,891.5 1,7750 1,655.5 1,820.0 38125 2,136.0 2,0520 22500 2,190.0
Rankof K-W Rank Sum 10 4 5 2 1 3 1 7 6 9 8
K-W Multi-Comparison Count* 10 8 8 9 10 7 10 9 10 9 8

15 Average 28.68% 18.82% 18.58% 19.74% 17.62% 16.05% 41.47% 18.05% 17.28% 19.84% 17.78%
Rank 10 i/ 6 8 3 1 1 5 2 9 4
Geometric Mean 23.12% 15.39% 15.89% 16.41% 1497% 13.60% 39.35% 16.41% 15.35% 18.20% 15.51%
Rank 10 4 6 8 2 1 1 7 3 9 5
Average Rank by Series 6925 5.575 53 555 5.35 5.2 9.725 5.775 S 6.65 4.95
Rank of Average Rank 10 7 4 6 5 3 1 8 2 9 1
Kruskal-Wallis Rank Sum 2,8055 1,9755 2,0625 2,233.0 1,979.0 1,705.0 3,907.5 2,1320 2,017.0 2376.0 1,940.0
Rank of K-W Rank Sum 10 3 6 8 4 1 1 7 S 9 2
K-W Multi-Comparison Count* 10 7 8 10 7 10 10 9 6 10 7

*K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant.
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Period:

10

15

Scenario 3
Mean Absolute Percent Error

25% Level Shift

Adjusted
Average 9.68%
Rank 10
Geometric Mean 8.27%
Rank 10
Average Rank by Series 9.00
Rank of Average Rank 10
Kruskal-Wallls Rank Sum 1,795.0
Rank of K-W Rank Sum 9
K-W Multi-Comparison Count* 10
Average 12.37%
Rank 10
Geometric Mean 11.55%
Rank 10
Average Rank by Series 7.45
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 2,197.0
Rank of K-W Rank Sum 9
K-W Multi-Comparison Count®* 10
Average 15.50%
Rank 10
Geometric Mean 14.05%
Rank 10
Average Rank by Series 7
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 25170
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 17.73%
Rank 10
Geometric Mean 14 68%
Rank 10
Average Rank by Series 63
Rank of Average Rank 9
Kruskal-Wallis Rank Sum 2461.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count®* 10

HWW
5.59%
4
3.91%
4
403
4
921.0
3
9
8.29%
3
6.87%
2
458
3
1,276.0
3
9
10.65%
3
8.56%
1
5.225
4
1,605.0
2
8
11.86%
2
9.12%
1
5125
3
1,791.0
2
9

HW Adaptive
5.56% 5.09%
3 2
3.82% 3.78%
3 1
378 290
3 1
9245 736.0
4 1
9 9
8.35% 7.88%
4 2
7.01% 6.93%
4 3
463 435
4 2
1,2855 1,174.0
4 2
9 9
10.92% 10.41%
4 2
9.17% 9.05%
4 3
5125 475
3 2
1,6745 1,606.0
4 3
7 8
1234% . 1255%
3 5
10.10% 10.28%
3 4
5025 525
2 4
1,8975 1,891.0
5 4
7 8

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant

Auto
5.09%
1
3.79%
2
3.15
2
783.0
2
9
7.52%
1
6.63%
1
3.80
1
1,099.0
1
9
9.91%
1
8.62%
2
435
1
1,4920
1
10
10.97%
1
9.21%
2
445
1
1,648.0
1
10

Naive
6.04%
S
424%
S
5.45
S
1,118.0
5
9
8.95%
6
7.62%
5
5.70
5
1,447.0
S
9
11.15%
6
9.49%
5
6.1
7
1,7020
5
9
12.68%
6
10.78%
6
6.1
8
1,850.0
3
7

Table:

HWW*

13.57%

33
HW*  Adaptive®
6.74% 6.76%
8 9
5.59% 5.63%
8 9
713 6.98
9 8
1,336.0 1,3275
8 7
9 9
8.93% 9.24%
5 7
8.30% 8.72%
6 7
6.08 593
7 6
1,521.0 1,602.5
6 7
9 10
11.14% 11.85%
5 7
9.62% 10.61%
6 7
5.625 5675
5 6
1,834.0 1,9855
6 7
10 9
12.49% 13.40%
4 8
10.71% 11.91%
5 8
5975 6.025
6 7
1,946.0 2,1405
6 7
9 9

Auto*
6.49%
7
5.53%
7
6.45
7
1,191.0
6
9
9.55%
9
9.07%
9
6.70
9
1,7240
8
10
12.20%
9
11.36%
9
6.15
8
2,055.0
8
9
14.40%

9
1267%
9

6.95
10
23340
9
10

Naive*
6.20%

2,2530
9
10
13.15%
7
11.38%
7
5.85
S
2,166.0
8
9
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Period:

10

15

Period:

10

15

Scenario 3
Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Scenario 3

25% Level Shift

Adjusted

159.60
10
8.10
10
23590111

25% Level Shift

Geometric Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Adjusted

109.06

HWW
81.91

3
428

4

146.76204

3
478
4

193.97
2
4.825
3

209.60
2
5.125
3

HWW
47.38

368
93.86
483
113.30
5275
128.66

5.225
2

HW
79.70
1
403
3
147.168
4
453
3
203.68
4
4725
2
22835
3
5.225
4

HW
46.65
1
3.58
1
99.21
4
5.23
S
125.64
4
5.275
4
150.94
4
5.225
2

Adaptive

80.89
2
320
1

144.86492
2
435
2

20262
3
495
4

23392
4
5.05
2

Adaptive

48.10
4
3.95
3

100.10
6
5.10
3

13142
S
5.15
3

155.40
S
54
4

Auto Naive
81.95 89.19
4 5]
3.60 5.55
2 5
139.800891 164.888
1 5
3.90 5.75
1 5
191.94 210.73
1 5
44 5.85
1 5
208.84 236.99
1 S
435 6.15
1 8
Auto Naive
46.85 52.69
2 5
430 5.15
4 5
93.66 99.60
1 S
420 5.20
1 4
12259 138.89
3 6
S 6.55
2 9
132.96 164.27
2 7
45 6.4
1 8

Table: 34
HWW* HW*  Adaptive®
248.13 118.45 119.48
11 8 9
11.00 6.83 6.83
11 7 7
395.38813 186.88931 191.135
11 6 7
10.20 6.33 5.88
1 7 6
453.54 225.60 23857
11 6 7
10 5.975 5.925
1 7 6
468.35 24551 264.30
11 6 8
93 5.775 5.825
1 5 6
Table: 35
HWW* HW*  Adaptive®
155.40 63.59 63.73
11 7 8
11.00 6.63 6.63
1 8 8
226.64 95.05 105.94
1 3 7
9.50 5.38 573
1 6 7
268.45 115.07 141.51
1 2 7
875 4925 5525
1 1 6
230.73 142.99 175.80
1 3 8
7.65 6.175 6.325
1 6 7

Auto* Naive*
116.70 11717
6 7
5.75 6.85
6 9
191.74174 197.194
8 9
6.40 6.50
8 9
252.71 24243
9 8
6.35 6.35
8 8
287.28 257.27
9 7
6.85 5.9
10 7
Auto* Naive*
65.39 58.91
9 6
6.50 5.85
7 6
128.91 117.02
9 8
7.45 6.35
10 8
160.63 1585.73
9 8
6.45 6.35
8 4
182.90 161.28
9 6
6.55 6.1
10 5]



25% Level Shift Average Rank of Absolute Error

Period Scenario 3

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift

1

5

10

15

Scenario 3

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift

1

5

10

15

Scenario 3

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift Geometric Root Mean Square Error

1
5
10
15

Scenario 3

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Chi Square DF
52.60 19
89.34 10
2445 19
43.31 10
12.03 19
23.76 10
5.86 19
13.31 10
Symmetry Adjusted MAPE
Chi Square DF
61.41 19
68.62 10
27.41 19
54.66 10
16.68 19
31.88 10
1237 19
15.71 10
Range of Percent Error
Chi Square DF
3824 19
4353 10
40.60 19
68.45 10
26.39 19
46.50 10
2057 19
4421 10
Chi Square DF
5§6.35 19
24.18 19
13.99 19
8.21 19

Table 3- 6

p Value
0.0001

0.0000
0.1796
0.0000
0.8842
0.0083
0.9982
0.2068

Table 3-7
p Value
0.0000
0.0000
0.0955

Table 3-8
p Value
0.0055

Table 3-9
p Value
0.0000
0.1894
0.7843
0.9844

25% Level Shift

Period  Scenario 3

1 RANK ANOVA

KRUSKAL-WALLIS

5 RANK ANOVA

KRUSKAL-WALLIS

10 RANKANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

25% Level Shift
Scenario 3
1 RANK ANOVA

KRUSKAL-WALLIS

5 RANK ANOVA

KRUSKAL-WALLIS

10 RANKANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

25% Level Shift
Scenario 3
1 RANK ANOVA

KRUSKAL-WALLIS

S RANK ANOVA

KRUSKAL-WALLIS

10 RANKANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

25% Level Shift
Scenario 3

1 RANK ANOVA

5 RANK ANOVA

10 RANK ANOVA

15 RANKANOVA

Log Mean Square Error Ratio

Chi Square DF

56.35
41.94
2418
2097
13.99
13.88
8.21
9.05

19

Mean Absolute Percent Error

Chi Square DF

Root Mean Square Error

Median Absolute Percent Error

78.12 19
109.94 10
58.34 19
69.55 10
4762 19
4277 10
4233 19
35.88 10
Chi Square DF
50.69 19
59.30 10
10.95 19
31.36 10
14.65 19
21.36 10
552 19
717 10
Chi Square DF
54.85 19
3279 19
2485 19
18.16 19

310
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200% Level Shift

Period:

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multl-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Mutti-Comparison Count*®

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario 4 Average Rank of Absolute Error

Ad|usted
5.56
S
5.35
S
5.23
5
1813.0
5
9
4.95
2
4.66
2
4.48
3
1460.0
2
10
475
2
4.4
2
423
2
1388.0
2
10
4.50
2
421
2
3.95
2
1226.0
2
10

HWW
6.78
8
6.66
8
733
8
2831.5
8
9
6.70
8
6.61
8
753
8
2800.0
8
10
6.55
8
6.42
8
7.08
8
2591.0
8
10
6.67
8
6.53
8
7.23
8
2694.0
8
10

HW
7.05

10
6.98

10
10

Adaptive
7.99

1
7.91

41

Naive
5.81

5.7

8

HWW*
4.47
1
4.18
1
325
1
1153.0
1
9
4.19
1
397
1
275
1
855.5
1
10
4.3
1
4.1
1
313
1
10125
1
10
392
1
372
1
275
1
8395
1
10

HW*
5.04
2
494
2
413
2
1399.5
2
10
5.10
3
491
3
413
2
14720
3
10
5.64
3
542
3
473
3
1881.0
3
10
532
3
5.03
3
473
3
17555
3
10

Adaptive®
5.04
2
494
2
413
2
1399.5
2
10
552
4
5.41
4
463
4
1738.0
4
9
5.64
3
5.42
3
473
3
1881.0
3
10
5.81
4
5.61
6
5.15
4
20475
4
8

Auto*®
6.21

6.13

6.28

2396.0

10
6.31

6.21

6.13

2385.0

10
6.41

6.27

6.55

24720

10
6.57

6.39

6.53

25845

10

Naive*
5.47

5.35
4.83

1769.5

20265

5.83

557

5.63
2070.5

8
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Period:

1

10

15

200% Level Shift

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

*K-W Mutti-Comparison Count valid only if Kruskal-Wallls statistic is significant.

Scenario 4 Range of Percent Error

Ad|usted
12.74%
3
11.43%
4
3.18
3
1510.5
2
8
18.44%
2
16.31%
2
253
2
9195
2

10
2427%
2
20.64%
2
238
1
12245
2
9
30.77%
2
23.78%
2
288
2
1503.5
2
10

HWW HW Adaptive
18.67% 18.36% 21.33%
8 7 10
18.06% 17.72% 19.77%
8 7 10
7.50 7.10 8.88
8 7 10
2650.0 2568.0 2861.5
8 7 10
10 10 9
37.98% 38.11% 33.39%
9 10 7
37.33% 37.47% 32.39%
9 10 7
8.63 8.63 6.78
9 9 7
32575 32755 26525
9 10 7
9 9 9
47.74% 47.32% 48.44%
10 9 1
44.94% 45.01% 44.83%
10 1" 9
855 8.58 7.90
10 1 9
2888.0 29245 28840
10 1 9
8 8 8
54.81% 57.91% 62.76%
8 10 1
48.52% 51.94% 54.59%
9 10 1"
825 8.70 8.18
10 1 9
27240 28780 28845
9 10 1
10 9 9

42

Naive
19.88%

9
19.23%

7.05

2371.0
7
9

HWW*

12.19%
1
9.48%
1
273
1
1467.5
1
8
16.06%
1
14.53%
1
1.93
1
648.5
1
10
23.70%
1
19.06%
1
243
2
12175
1
9
30.06%
1
21.24%
1
228
1
1396.5
1
10

HW*  Adaptive*

12.90%
4
11.30%
3
3.60
4
1570.0
4
9
25.92%
4
2462%
4
5.08
4
1730.5
3
9
33.63%
3
28.31%
3
475
3
1708.0
3
10
41.81%
4
30.70%
3
490
3
1685.0
3
10

12.60%
2
10.86%
2
3.10
2
15140
3
7
25.78%
3
24 55%
3
493
3
17365
4
9
36.04%
S
30.86%
S
5.28
4
19515
4
9
45.04%
6
34.47%
4
5.15
4
19410
4
9

Auto*
16.60%
L)
13.91%
S
5.98
S
20885
S
9
27.43%
6
26.61%
6
5.08
4
19355
6
9
41.31%
7
34.03%
6
5.65
6
2297.0
6
10
55.97%
9
4259%
7
5.73
6
23415
6
9

Naive*
16.77%

14.68%
6.30

2168.0

27.13%
26.21%
5.40

1883.0

36.00%
30.35%
5.58

2002.5

44.79%
35.41%
538
1995.5

9

356



200% Level Shift

Period: Scenario 4 Mean Absolute Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®

*K-W Mutti-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Adjusted
8.68%
S
7.73%
5]
475
5
1996.0
S
10
13.28%
2
12.81%
3
455
4
1641.0
3
10
17.47%
3
15.83%
3
3.95
2
1877.0
4
9
20.90%
3
17.57%
4
3.80
2
1869.0
3
9

HWW HW  Adaptive
10.04% 10.14% 12.10%
8 9 1
9.69% 9.82% 11.46%
8 9 1
7.93 8.38 9.95
8 9 1
27265 27845 3145.0
8 9 1
9 8 10
17.79% 18.60% 21.54%
8 9 1
17.06% 17.96% 20.88%
8 9 1
7.78 8.38 9.50
8 9 1
25925 2809.5 33220
8 9 1
9 10 10
23.26% 2538% 30.01%
7 8 1
20.39% 2251% 27.27%
7 8 1
7.28 7.93 955
8 9 1
23545 2596.5 3034.0
7 9 1
10 9 10
28.42% 31.74% 38.61%
S 8 1
22.80% 2594% 32.58%
7 8 1
7.38 7.73 9.00
8 9 1
23025 25305 29540
7 8 1
10 9 10

43

Naive
9.10%
6
8.63%
7
6.35
7
2303.0
7
10
14.80%
S
14.43%
5
5.60
6
1950.0
5]
10
16.38%
2
15.85%
4
5.45
5]
1816.0
3
8
17.60%
1
17.00%
2
5.50
S
1887.0
4
9

HWW*

6.37%
1
4.92%
1

265

1

1466.0

2

8
9.65%
1
8.61%
1

210

1
876.0
1
10
1453%
1
11.79%
1
205
1
1399.0
1
10
18.10%
2
12.85%
1
205
1
1474.0
1
10

HW*  Adaptive*
7.02% 7.11%
2 3
6.57% 6.70%
2 3
313 358
2 3
14475 1500.5
1 3
8 8
13.44% 14.44%
3 4
12.14% 13.27%
2 4
363 398
2 3
1606.5 1854.5
2 4
10 10
19.48% 21.84%
4 5
15.08% 17.38%
2 5
423 463
3 4
17435 20385
2 5
9 10
2474% 28.54%
4 6
17.06% 20.37%
3 5
4.48 493
3 4
17725 20785
2 5
10 10

Auto®
9.17%

8.35%

5.85

2576.0
9
9

Naive*
8.36%

7.59%
4.65
1903.0

10
15.68%

14.79%
545
21120

10
22.72%

18.81%
5.75
2163.0

10
29.30%

2.10%
6.10
2205.0

10

31517



Period:

1

10

15

Period: Scenario 4 Geometric Root Mean Square Error
Adjusted

1

10

15

200% Level Shift

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

200% Level Shift

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Scenario 4 Root Mean Square Error
AdJusted

215.26
4
470
4

387.58
2
3.00
2

480.68
2
3.20
2

55265
2
3.10
2

139.88
6
5.70
6

24522
S
555
S

33273
6
5.45
S

371.49
4
480
3

HWW

270.27

7.83

583.25

8.13

699.82

7.68

790.00

7.68
8

HWW

14163
7
6.88
8

254.10
6
713

HW
268.08
8
7.88

9
595.88

9
8.73

9
750.57

9
8.38

9
880.72

9
833

10

Adaptive
315.75

203.00

Auto
296.97

Table:

Naive
25493
6.40
531.90
6.50
568.37
6.05
601.54

5.80

45
Naive
102.84
4.80
17724
4.45
23959
49
29241

5.45
5

44
HWW*
154.08
275
267.63
1.50
371.89
1.85
410.44

215

HWW*
79.64

3.65
153.20
3.2
22357
3.45
254.49

2.50
1

HW*  Adaptive®
186.48 185.80
3 2

313 3.18
2 3
394.46 42014
3 4
383 423
3 4
496.17 562.60
3 4
433 488
3 4
562.38 665.09
3 5
448 513
3 4
HW?*  Adaptive*
105.19 119.30
3 4
3.93 468
2 3
209.44 23752
3 4
438 478
2 4
264.35 31849
3 S
4625 5.125
2 4
335.25 40469
3 6
458 5.13
2 4

Auto®
238.12

5.90

503.19

6.00

707.09

6.50

871.21

Naive*®
219.91
5

5.40
S

465.85
S
5.45
5

593.71
6
5.40
S

706.77
6
5.55
5

Naive*®

120.91

5.00

270

6.

47

60

377.80

6.
456.

6.

6

6
34

S0

358



200% Level Shift Average Rank of Absolute Error

Period Scenario 4

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift

1

5

10

15

Scenario 4

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift

1

5

10

15

Scenario 4

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift Geometric Root Mean Square Ermror

1
5
10
15

Scenario 4

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Chi Square DF
45.27 19
87.44 10
4403 19
88.28 10
35.89 19
63.01 10
3313 19
68.04 10
Symmetry Adjusted MAPE
Chi Square DF
66.49 19
45.48 10
7273 19
8485 10
60.09 19
38.94 10
57.02 19
30.83 10
Range of Percent Error
Chi Square DF
65.01 19
4747 10
66.44 19
114.26 10
5193 19
50.19 10
48.94 19
35.88 10
Chi Square DF
34.30 19
30.98 19
2256 19
30.66 19

Table 4- 6
p Value
0.0006

Table 4- 7
p Value
0.0000

Table 4- 8
p Value
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0002
0.0001

Table 4-9
p Value
0.0169
0.0406
0.2574
0.0440

200% Level Shift

Period Scenario 4

1 RANK ANOVA
KRUSKAL-WALLIS

5 RANK ANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA

200% Level Shift

1

5

10

15

200% Level Shift Median Absolute Percent Error
Scenario 4 Chi Square DF
1 RANK ANOVA 25.99 19
KRUSKAL-WALLIS 252 10
5 RANK ANOVA 2491 19
KRUSKAL-WALLIS 3483 10
10 RANK ANOVA 19.38 19
KRUSKAL-WALLIS 27.05 10
15 RANK ANOVA 27.05 19
KRUSKAL-WALLIS 24.69 10
200% Level Shift Root Mean Square Error
Scenario 4 Chi Square DF
1 RANK ANOVA 6252 19
5 RANK ANOVA 75.33 19
10 RANK ANOVA 57.81 19
15 RANK ANOVA 50.88 19

KRUSKAL-WALLIS

Scenario 4

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Log Mean Square Error Ratio

Chi Square DF

34.30 19
31.89 10
30.98 19
25.43 10
22.56 19
14.61 10
30.66 19
17.95 10

Mean Absolute Percent Error

Chi Square DF

64.67 19
45.01 10
61.69 19
63.90 10
5223 19
29.68 10
4653 19
2435 10

Table 410

Table 4-11

Table 412

Table 413

359



Trend Shift

Period:

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario S Average Rank of Absolute Error

AdJusted
6.45

459
2
418
4
16595
4
10
5.25
4
463
4
5.13
4
17920
4
10
5.50
S
487
4
5.50
S
1908.5
4
10

HWW
5.62
4
5.46
4
5.13
3
1931.0
4
9
693
8
6.84
9
7.68
8
28720
9
8
710
9
6.98
9
7.83
9
2886.0
9
10
7.16
9
7.02
9
7.83
9
28840
9
10

HW
542
3
5.23
3
533
4
1857.0

793
10
29740
10
10

Adaptive
598
7
5.55
S
6.58
9
23835
8
9
7.07
10
6.75
8
7.83
9
28255
8
9
6.89
8
6.55
8
6.93
8
2669.5
8
10
6.54
8
6.13
8
6.58
8
24680
8
10

Auto
6.27
9
5.88
9
7.10
10
2418.0
9
9
6.35
7
6.15
7
6.68
7
24480
7
10
6.16
7
5.93
7
6.38
7
2295.0
7
10
5.94
7
5.66
7
6.28
7
21775
7
10

Table:

Naive

3.89

3.80

1409.5

10
462

4.02

4.00

1512.0

10

HW*
5.18

5.13
415

1510.0

4.81
4.68
3.90

1400.0

549

5.21

5.48
1955.0

10
549

5.29
5.10
1950.5

9

Adaptive*
5.18
1
5.13
1
4.15
1

1510.0
1
9
4.89
3
470
5
4.15
3
1510.0

3

10
549
S
5.21

Auto*
5.85
6
567
8
593
6
2151.0
6
8
5.14
5
4.67
3
4.88
5
1769.0
5
10
5.08
3
4.62
3
458
3
1704.0
3
10
489
3
441
3
435
3
1622.0
3
10

Naive*
5.74
5
5.55
6
5.75
)
2079.0
S
9
461
1
428
1
400
2
13835
1
9
439
1
409
2
3.70
1
12770
1
10
423
1
3.89
1
363
1
12525
1
10

360



Period:

1

10

15

Trend Shift

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Mutti-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario S Range of Percent Error

Adjusted
11.24%

1
9.22%

5.90

HWW
12.21%
4
7.93%
2
5.10
S
2035.0
4
7
16.70%
S
13.40%
4
5.28
3
20725
4
7
19.67%
6
16.29%
2
5.15
S
2038.0
S
S
19.44%
S
15.36%
2
5.68
S
1965.5
2
8

HW Adaptive
12.44% 14.14%
6 10
8.98% 10.38%
5 9
4.98 7.23
4 9
20525 2291.5
5 9
4 8
17.55% 16.11%
9 3
14.81% 14.50%
7 6
5.68 5.40
5 4
21945 2003.0
7 3
7 8
21.15% 20.27%
9 8
18.05% 17.82%
8 7
5.10 485
4 2
22450 2126.0
9 8
10 8
21.56% 22.48%
8 9
17.32% 17.98%
7 8
5.68 5.80
5 8
22395 2410
7 8
9 9

Table:

Auto
12.91%
10.05%

6.38

22495

17.26%
15.89%
5.70

22020

19.73%
18.08%
5.05

2090.0

20.21%
16.94%
575
20940

8

5-2
Naive
12.29%
5
7.02%
1
465
1
1954.0
1
8
14.46%
1
11.01%
1
5.05
1
17420
1
10
15.56%
1
12.43%
1
460
1
1421.0
1
10
13.34%
1
11.33%
1
465
1
1294.0
1
10

HWW*

16.74%

HW*  Adaptive®

11.80%
2
8.39%
3
465
1
1975.0
2
6
17.51%
8
15.22%
8
6.28
8
22315
9
8
19.35%
4
17.81%
6
6.15
8
20240
3
S
16.73%
2
15.98%
3
523
3
19895
3
8

11.90%
3
8.72%
4
483
3
1980.5
3
6
16.75%
6
14.22%
S
6.38
9
2147.5
6
6
18.82%
2,
17.20%
3
5.95
6
1960.0
2
7
16.83%
3
16.25%
4
5.18
2
20275
4
6

Auto*
13.50%
8
9.93%
7
6.88
8
2266.5
8
8
16.55%
4
13.29%
3
5.70
6
2104.0
S
8
19.47%
S
17.39%
4
6.35
9
2053.0
6
S
19.82%
6
18.61%
9
6.40
10
2361.0
9
9

361



Trend Shift

Period: Scenario S Mean Absolute Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Adjusted
7.15%
9
6.43%

5.00

21070
6
10
34.69%
9
34.38%
10
5.26
6
2200.0
6
9

HWW HW Adaptive
6.40% 6.20% 7.18%
4 3 10
5.53% 5.22% 5.70%
6 3 7
553 5.18 6.10
6 4 8
2041.5 1970.5 2190.0
S 3 8
7 6 9
17.38% 16.61% 17.00%
10 8 9
16.26% 15.32% 15.15%
10 9 8
8.33 8.48 7.95
9 10 8
2769.5 2601.5 2620.0
10 8 9
10 9 9
27.92% 26.60% 25.73%
10 9 7
26.07% 24.50% 2292%
10 8 6
8.38 8.33 7.50
10 9 8
27285 25595 24100
10 9 8
10 10 9
35.34% 33.62% 31.84%
10 8 6
33.01% 30.98% 28.53%
9 8 5
8.33 8.33 7.00
9 9 8
2661.5 25095 2262.0
10 9 8
10 10 8

Auto
7.09%
8
5.72%
8
6.00
7
2187.0
7
9
16.30%
7
14.79%
6
7.40
7
24590
7
10
25.76%
8
23.65%
7
7.25
7
2369.0
7
9
32.20%
7
29.74%
6
6.95
7
2208.0
7
9

Table:

Naive
7.04%
7
6.36%
9
6.55
9
2301.0
9
9
20.38%
1
20.24%

5-3

HWW*
10.78%
1
10.25%

2221.0
6
10
21.46%
3
21.06%
5
3.75
2

1567.0
1
10
30.29%
4
29.95%
I
3.85
3
1616.0
1
9

HW*  Adaptive®

6.09%
2
5.17%
2
458
2
19335
2
7
11.87%
4
9.96%
4
3.63
3
1635.5
)
8
22.82%
S
20.35%
4
4.43
S
1898.5
S
10
31.00%
S
28.21%
4
4,68
4
1997.5
S
10

5.97%
1
4.99%
1
428
1
1897.5
1
8
11.10%
1
9.03%
3
353
2
1529.5
1
9
21.49%
4
18.71%
3
4.38
4
17745
4
9
29.28%
3
26.12%
3
473
S
1888.5
4
10

Auto*
6.88%

5.44%

545

2095.0

1.77%

8.55%

4.05

1705.0

20.54%

16.72%

4.00

1728.0

27.44%
23.39%
3.80
1747.0

3
10

Naive*
6.48%
5
5.36%
4
5.10
3
20140
4
7
11.42%
2
8.85%
2
3.40
1
1602.0
2
8
20.68%
2
17.96%
2
355
1
1663.0
2
9
27.86%
2
24.98%
2
3.60
1
1657.0
2
9

362



Period:

1

10

15

Period: Scenario 5 Geometric Root Mean Square Error
Adjusted

1

10

15

Trend Shift

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Trend Shift

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Scenario S Root Mean Square Error
Adjusted

146.05

10
6.40

8
34433

S
435

4
74702

9
5.30

6
1148.17

10
5.40

6

100.95

10
7.30

10
215.86

S
4.30

S
61433

10
5.15

6
1027.32

10
5.20

6

HWW

129.06
4
5.48
4

404.44

10
8.03

8
762.28

10
8.13

9
1107.97

9
8.13

9

HWW

74.28
6
543
6

31003

10
8.28

10

610.07
9
8.025
9

929.30
9
8.23

10

HW Adaptive
122.48 134.37
3 7
5.23 6.85

3 10
384.03 384.61

8 9
8.13 8.30

9 10
722.29 693.10

8 5
8.28 7.55

10 8
1048.86 996.13

7 5
8.23 7.20

10 8

HW Adaptive
67.89 80.02

2 7
5.08 6.00

4 7
287.08 273.09

9 7
8.13 7.85

9 8
582.98 51232

8 6
8.325 7.25

10 8
85555 691.12

8 2
793 6.75

9 7

Auto
134.91

6.15

37420

7.15

697.52

7.10

1004.80

6.95

Table:

Auto
83.31
6.45
27749
7.15
555.54
715
836.89

6.95
8

Table:

Naive
14347

9
6.45

9
482.56

133753
1
9.60
1

54

HWW*
218.14

1
9.40

1
383.47

7
5.80

6
693.39

6
4.00

2
1061.12

8
4.15

3

817.37

365

HW*  Adaptive*
121.78 117.44

2 1
393 393

1 1
269.02 243,94

4 3
3.68 383

3 2
605.91 5§54.73

4 3
4.48 443

S 4
946.72 87747

4 3
468 4.58

5 4

HW*  Adaptive*
71.08 66.55

4 1
478 448

3 1
17312 152.82

4 2
373 3.43

2 1
484 .47 466.38

S 4

4475 4875

4 S
815.27 757.70

5 4
493 493

4 4

Auto*
129.89
5

6.30
7

230.41
1
4.45
5

505.38
1
410
3

809.85
1
405
2

Auto*
7391

5.10
14270

3.80
39747

41
59?.00

3.90
2

Naive*
131.70
6
5.90
5
236.14
2
3.30
1
536.15
2
3.35
1
837.76
2
3.40
1

Naive*®
69.70

4.50
161.99

4.20
42550

37
72389

395
3
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Trend Shift Average Rank of Absolute Error
Period Scenario S Chi Square DF
1 RANK ANOVA 23.63 19
KRUSKAL-WALLIS 42.10 10
5 RANK ANOVA KYNa4 19
KRUSKAL-WALLIS 62.58 10
10 RANK ANOVA 33.60 19
KRUSKAL-WALLIS 62.62 10
15 RANK ANOVA 3342 19
KRUSKAL-WALLIS 59.76 10
Trend Shift Symmetry Adjusted MAPE
Scenario S Chi Square DF
1 RANK ANOVA 27.46 19
KRUSKAL-WALLIS 15.90 10
5 RANK ANOVA 5747 19
KRUSKAL-WALLIS 48.05 10
10 RANK ANOVA 50.34 19
KRUSKAL-WALLIS 40.50 10
15 RANK ANOVA 4459 19
KRUSKAL-WALLIS 36.66 10
Trend Shift Range of Percent Error
Scenario S Chi Square DF
1 RANK ANOVA 16.74 19
KRUSKAL-WALLIS 10.72 10
5 RANK ANOVA 10.08 19
KRUSKAL-WALLIS 1532 10
RANK ANOVA 2455 19
10 KRUSKAL-WALLIS 38.41 10
RANK ANOVA 2402 19
15 KRUSKAL-WALLIS 37.96 10
Trend Shift Geometric Root Mean Square Error
Scenario 5 Chi Square DF
1 RANK ANOVA 30.91 19
5 RANK ANOVA 50.94 19
10 RANK ANOVA 4365 19
15 RANK ANOVA 4231 19

0.0000
0.0215
0.0000

Table 57
p Value
0.0944
0.1026
0.0000
0.0000

Table 58
p Value
0.6078
0.3797
0.9510
0.1208
0.1758
0.0000
0.1955
0.0000

Table S-9
p Value
0.0413
0.0001
0.0011
0.0016

Trend Shift

Period Scenario S

1

5

10

15

10

15

10

15

10
15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Log Mean Square Error Ratio

Chi Square DF

30.91 19
39.45 10
50.94 19
62.00 10
43.65 19
46.44 10
42.31 19
48.50 10

Trend Shift Mean Absolute Percent Error

Scenario 5

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Trend Shift Median Absolute Percent Error

Scenario 5

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANKANOVA
KRUSKAL-WALLIS

Chi Square DF

28.35 19
20.10 10
57.93 19
4951 10
50.39 19
41.66 10
46.43 19
38.85 10

Chi Square DF

2433 19
274 10
4259 19
31.74 10
39.66 19
32.04 10
29.80 19
30.89 10

Trend Shift Root Mean Square Error

Scenario S

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Chi Square DF

2370 19
52.64 19
46.42 19
4266 19

Table

p Value
0.2079
0.0001

0.0004
0.0014

5-10

5-11
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No Change

Period:

1

10

15

Average

Rank
Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario6 Average Rank of Absolute Error

Ad|usted

8.08

10
794

10
9.08

10

36295

10

10
795

10

10
2896.0

10

10

HWW
489
4
479
4
415
4
1327.0
4
10
5.33
4
5.20
4
473
4
1698.5
4
10
524
4
5.05
4
478
4
1686.0
4
9
553
4
535
4
5.30
4
1906.0
4
10

HW
4.61
3
447
3
335
3
11430
3
10
488
3
469
3
380
2
1373.0
3
10
5.14
3
492
3
468
3
1613.0
3
9
5.15
k)
482
3
4.45
3
1679.5
3
10

Adaptive
4.49
2
442
2
298
2
973.0
2
10
459
2
438
2
3.88
3
1220
2
10
483
2
456
2
425
2
14275
2
10
5.05
2
469
2
435
2
16925
2
10

Auto
424
1
4.19
1
2.28
1
7745
1
10
427
1
4.09
1
2.90
1
990.0
1
10
435
1
407
1
3.30
1
11045
1
10
422
1
394
1
328
1
1070.0
1
10

Table:

Naive
5.66

5.54

5.65

20430

10
6.09

5.86

6.63

24220

6.24

5.91

6.45

25125

6.51

6.14

6.98

26025

10

HWW*

HW*
6.07
7
6.05
7
6.65
7
24240
7
9
6.17
9
6.11
9
6.75
9
24935
9
9
6.02
6
595
7
6.53
7
23525
6
10
6.17
7
6.13
8
6.85
8
24685
8
9

Adaptive*
6.07
7
6.05
A
6.65
7
24240

6.60

24395
7
8

Naive*
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Period:

1

10

15

No Change

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario 6 Range of Percent Error

Ad|usted
20.54%

8.08
10
30985
10
10

HWW
11.94%
4
477%
3
415
4
1591.0
2
7
13.12%
4
8.05%
4
413
4
13935
4
9
14.95%
4
10.28%
S
490
S
1541.0
S
8
14.16%
4
8.96%
3
470
S
1521.0
4
8

HW Adaptive
11.92% 10.39%
3 1
4.67% 4.67%
1 2
3.90 3.38
3 1
1588.0 1648.5
1 3
7 6
13.04% 11.23%
3 2
7.69% 7.03%
3 2
358 330
3 2
1368.5 1257.0
3 2
9 9
14.60% 12.71%
<) 2
10.13% 8.80%
4 2
443 3.08
3 1
1509.5 1280.5
4 2
8 9
13.92% 1452%
3 5
9.30% 9.31%
4 S
428 4.63
3 4
14825 1576.5
3 5
9 9

Table:

Auto
10.88%
2
487%
4
3.50
2
1663.0
4
6
11.13%
1
6.80%
1
3.10
1
12440
1
9
12.25%
1
8.29%
1
3.08
1
12545
1
9
11.96%
1
7.84%
1
368
1
1290.5
1
9

6-2
Naive
13.09%
5]
5.44%
S
490
5
1691.0
S
8
15.39%
5
9.05%
5
5.10
5
1558.0
5
10
15.39%
5
9.11%
3
480
4
1487.0
3
8
12.89%
2
8.23%
2
410
2
1369.0
2
9

HWwW*

27.16%

HW*  Adaptive*
17.37% 17.42%
8 9
1451% 1457%
8 9
7.65 7.40
9 8
2544.0 25520
8 9
9 9
25.32% 2533%
6 7
23.60% 23.30%
7 6
6.93 7.13
6 7
26775 26845
6 8
8 6
2457% 24.48%
8 7
23.62% 23.53%
8 7
6.75 6.53
7 6
2508.0 2501.5
7 6
8 8
22.14% 2231%
6 7
2157% 21.76%
6 7
6.20 6.23
6 7
2398.0 24215
6 7
9 9

Auto*

1411%

6

12.50%

6
5.68
6
22945
6
10
25.80%
]
24.02%
10
735
]
27320
9
6
2442%
6
23.18%
6
6.78
8
258315
8
8
2471%
9
23.12%
8
6.93
8
25945
8
9

Nalve*

15.59%
7
13.40%
7
6.75
7

24250

7
10
25.93%
10
2397%

9

7.30

8

2760.0
10

7

26.47%

9

2552%

9
6.98
9

27155

9

10
24.48%

8

23.40%

9
7.08
9

26545

9
9
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No Change

Period: Scenario 6 Mean Absolute Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Mutti-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Mutti-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Ad|usted
12.89%

10
3178.0
10
10

HWW
5.41%
4
2.61%
4
3.68
4
15775
4
9
6.62%
4
428%
4
408
4
14495
4
9
8.65%
4
5.76%
4
463
4
1596.5
4
9
9.33%
4
6.28%
3
448
4
16345
4
8

HW
5.39%
3
2.51%
3
298
3
1562.5
3
9
6.54%
3
404%
3
3.13
2
14155
3
9
8.56%
3
5.72%
3
3.98
3
1565.5
3
9
917%
3
6.28%
4
403
2
16205
3
8

Adaptive
4.63%
2
2.39%
2
2.60
2
1477.0
2
9
5.79%
2
3.90%
2
335
3
1285.0
1
9
7.80%
2
5.44%
2
355
2
1473.0
2
9
8.82%
2
5.87%
2
405
3
1563.0
2
8

Auto

461%

1

2.38%

1

235

1
1463.0

1

9

5.7

1

3.67%

1

295

1
1291.0

2

9

7.31%

1

499%

1

3.10

1
1411.0

1

9

7.43%

1

5.09%

1

295

1
1350.0

1

10

Table:

Naive
5.93%
S
3.26%
5
5.40
S
1716.0
S
10
7.75%
5
5.91%
5
5.05
5]
1694.0
S
10
10.24%
S
8.08%
5
5.95
5
1869.0
5
10
11.86%
5
9.31%
5
5.90
S
2065.0
5
10

6-3

HWwW*
17.02%

HW*  Adaptive*
7.93% 7.93%
9 8
6.84% 6.83%
9 8
7.28 6.98
9 8
24115 24055
9 8
7 7
10.35% 10.40%
6 7
9.84% 9.92%
6 7
6.78 6.58
7 6
23735 23975
6 7
8 7
11.80% 11.96%
6 8
10.76% 11.03%
6 8
6.63 6.38
9 7
21735 22535
6 7
9 8
12.25% 12.35%
7 8
11.30% 11.47%
7 8
6.93 6.63
9 7
23035 23415
7 8
7 8

Auto®
7.83%
7
6.83%
7
6.95
6
24040
7
7
10.43%
8
10.01%
8
6.95
8
24410
8
7
12.05%
9
11.32%
9
6.50
8
23640
9
10
12.64%
9
11.76%
9
6.80
8
23620
9
8

Naive*

7.63%
6
6.70%
6

6.95

6

23740

6
7

10.51%

9

10.08%
9
7.10
9
24560
9
8
11.87%
7
11.02%
7
6.10
6
22550
8
]
11.88%
6
10.92%
6
6.40
6
22240
6
9
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Period:

1

10

15

No Change

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
No Change

Scenario 6 Root Mean Square Error

Adjusted
201.81

10
9.45

10

Period: Scenario 6 Geometric Root Mean Square Error

1

10

15

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Adjusted
138.93

HWW
52.16

4
373

4
86.73

4
418

4
122.13

4
468

4
132.29

3
458

4

HWW
29.28
4
3.78
4
51.19
4
418
4
67.75
2
4225
2
89.08
4
483
4

HW
S50.14

3
323

3
82.17

3
3.38

2
121.06

3
423

3
133.01

4
4.08

)

HW
27.81
3
3.63
<
4798
2
343
2
71.80
4
4575
4
88.09
)
458
3

Adaptive
48.36

1
255

2
78.90

2
3.60

3
113.93

2
355

2
12757

2
3.90

2

Adaptive
26.81
2
270
2
48.21
3
360
3
70.83
3
435
3
79.12
2
4.15
2

Auto
48.54

2
250

1
7397

1
2.60

1
103.57

1
3.10

1
108.60

1
285

1

Table:

Auto
26.63

1
250

1
4572

1
3.30

1
63.62

1
355

1
71.57

1
3.20

1

Table:

Naive
63.34

5]
555

5]
118.36

S
5.50

S
161.95

5
5.75

5
188.49

5]
5.60

S

6-5

Naive
40.23

S
5.50

5
71.91

5]
5.30

5
115.33

8
6.35

8
145.28

9
7.05

9

64
HWW*
290.18
1
11.00
1
470.79
1
10.80
1
546.11
11
10.50
1
567.46
1
10.05
1

HW*  Adaptive*
141.00 141.39
8 9
733 7.18

9 8
216.90 21813

6 7
6.53 6.38

7 6
24824 251.49

6 7
6.48 6.43

8 6
25452 258.69

7 8
6.88 6.68

8 7

HW*  Adaptive*
58.87 55.38

7 6
6.93 6.28

8 6
91.35 90.56

8 7
6.83 6.63

8 7
101.41 114.36

5 7

5725 6.125

S 7
130.59 13229

7 8
6.78 6.78

7 7

Auto®
137.86
6

6.60
6

218.76
8
6.80
8

254.44
9
6.60
9

268.08
9
7.05
9

Auto®

64.69
7.70
94.83
7.20
121.52
7.05
129.05

6.45
6

Naive*
138.55
7
6.90
7
22407
9
7.10
9
25369
8
6.45
7
25226
6
6.50
6

Naive*
60.19
6.75
90.25
6.45

104.19

123.54

6.25
S
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No Change Average Rank of Absolute Error
Perlod Scenario 6

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

No Change

1

5

10

15

Scenario 6

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

No Change

1

5

10

15

No Change Geometric Root Mean Square Error

1
S
10
15

Scenario 6

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Scenario 6

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Chi Square DF
7592 19
14527 10
47.14 19
93.99 10
3200 19
69.65 10
2522 19
49.34 10
Symmetry Adjusted MAPE
Chi Square DF
86.31 19
63.24 10
63.39 19
91.68 10
45.14 19
69.50 10
3563 19
5142 10
Range of Percent Error
Chi Square DF
5458 19
48.41 10
58.00 19
97.78 10
50.99 19
90.30 10
41.09 19
86.89 10
Chi Square DF
7721 19
56.29 19
38.28 19
27 41 19

6-6

6-7

6-8

6-9

No Change

Perlod Scenario 6

1

5

10

15

10

15

10

15

10
15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

No Change
Scenario 6

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANKANOVA
KRUSKAL-WALLIS

No Change
Scenario 6

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

No Change
Scenario 6
RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Log Mean Square Error Ratio

Chi Square DF

77.21
126.57
56.29
7235
38.28
50.92
2741
3459

19
10
19
10
19
10
19
10

p Value
0.0000

0.0001

Mean Absolute Percent Error  Table 6- 11
Chi Square DF

87.85
68.50
69.16
102.16
52.05
80.90
4236
61.33

19
10
19
10
19
10
19
10

p Value
0.0000
0.0000
0.0000
0.0000
0.0001

0.0000
0.0016
0.0000

Median Absolute Percent Error Table 6- 12
Chi Square DF

79.00
5498
43.56
60.15
34.11
54.41
18.58
3555

Root Mean Square Error

Chi Square DF

8207
66.05
48.02
4487

19
19
19
19

p Value
0.0000
0.0000
0.0011

Table 6- 13
p Value
0.0000
0.0000
0.0003
0.0007

Table 6- 10
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Variance Shift

Period:

1

10

15

Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum
K-W Multi-Comparison Count®
Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum
K-W Multl-Comparison Count*
Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum
K-W Mutti-Comparison Count*
Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rankof Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum
K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario 7 Average Rank of Absolute Error

Adjusted

10

HWW
5.39
4
5.27
4
485
4
1738.0
4
10
5.36
K]
5.21
4
5.00
4
1701.5
3
9
542
4
525
4
5.20
4
1801.0
4
10
547
4
5.25
4
5.20
4
1852.0
4
10

HW
5.19
3
5.08
3
4.23
3
1621.5
3
10
512
2
497
2
4.43
2
1504.5
2
10
5.2
3
5.04
3
4688
3
1653.0
3
10
5.20
2
491
3
475
3
1697.0
2
9

Adaptive
464
1
453
1
298
1
1031.0
1
9
539
4
5.19
3
495
3
17075
4
9
5.06
2
4.80
2
4.18
2
14835
2
10
525
3
4.88
2
460
2
1701.0
3
9

Auto
469
2
461
2
3.28
2
10355
2
9
472
1
452
1
3.50
1
11915
1
10
455
1
434
1
325
1
1161.0
1
10
454
1
436
1
3.45
1
1145.0
1
10

Table:

Naive
5.74

561
5.68

21570

5.98

5.68

6.88
23675

10
5.89

5.53
6.85

23218

6.18

5.80

6.90
2486.0

10

HW*
6.12

6.09
6.95
2540.0

10
5.85

5.75
5.98

21510

6.05
6.00
6.33

23855

6.10

6.00

6.45
2388.0

9

Adaptive*
6.12
8
6.09
8
6.95
8
25400
8
10
5.81
S
574
6
538
5
21035
5
8
6.05
7
6.00
7
6.33
7
23855
7
7
5.96
6
5.89
7
6.30
6
22875
6
9

Auto*
5.87
7
5.76
7
5.85
S
21770
6
8
6.45
9
6.34
9
7.03
9
26525
9
10
6.30
9
6.12
9
6.15
6
24105
9
8
6.18
8
5.98
8
6.38
7
23365
7
8

Naive*

5.75
6.15

22395
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1

10

15

Variance Shift

Period: Scenario 7 Range of Percent Error Table:
Adjusted HWW HW Adaptive

Average 34.61% 29.91% 29.81% 24.16%
Rank 8 6 S 1
Geometric Mean 22.20% 10.59% 10.19% 10.89%
Rank 10 3 1 4
Average Rank by Series 7.85 418 363 4.25
Rank of Average Rank 10 3 1 4
Kruskal-Wallis Rank Sum 25540 1750.5 17225 1865.0
Rank of K-W Rank Sum 10 2 1 4
K-W Multi-Comparison Count® 10 8 9 8
Average 41.92% 30.84% 31.19% 28.73%
Rank 10 3 4 2
Geometric Mean 31.90% 14.64% 15.61% 14.55%
Rank 10 3 4 2
Average Rank by Series 7.58 418 4.50 423
Rank of Average Rank 10 2 4 3
Kruskal-Wallis Rank Sum 2605.5 1666.5 1713.0 1617.5
Rank of K-W Rank Sum 10 3 4 2
K-W Multi-Comparison Count® 9 8 8 9
Average 39.60% 28.55% 28.52% 25.27%
Rank 10 4 3 2
Geometric Mean 35.05% 16.40% 17.16% 17.16%
Rank 10 3 S 4
Average Rank by Series 7.35 435 4.10 4.13
Rank of Average Rank 8 4 2 3
Kruskal-Wallis Rank Sum 2819.0 1678.0 1682.0 17525
Rank of K-W Rank Sum 10 2 3 S
K-W Mutti-Comparison Count* 10 7 7 7
Average 46.92% 23.36% 23.87% 24.38%
Rank 10 2 3 4
Geometric Mean 39.30% 15.62% 17.06% 16.23%
Rank 10 3 S 4
Average Rank by Series 7.85 448 4.48 415
Rank of Average Rank 10 3 3 2
Kruskal-Wallis Rank Sum 2961.0 1668.5 1701.5 17270
Rank of K-W Rank Sum 10 3 4 S
K-W Multi-Comparison Count® 10 6 7 8

*K-W Mutti-Comparison Count valid only if Kruskal-Wallis statistic is significant.

7-2
Auto
25.10%
10.40%
370
2

1828.0

2432%
12.85%
275

1503.0

2262%
15.21%
313
16155

10
21.43%

14.78%
3.68
1595.5

8

Naive
33.08%
7
12.02%
5
5.90
5
1868.0
5]
8
34.72%
S
16.25%
5
5.30
5
1773.0
5
9
30.76%
S
16.10%
2
460
S
1691.0
4
i/
2481%
5]
1467%
1
5.00
S
1638.0

7

HWW*

HW*  Adaptive*

34.95%

9
20.23%

8

6.98

8

24365

8

7
40.74%

7
31.06%

8

6.83

7

25465

8

8
36.66%

9
30.17%

9

7.65

35.02%
10
20.42%
9
7.13
9
24555
9
8
40.77%
8
31.09%
9
6.85
8
25470
9
7
36.31%
8
29.95%
8
7.40
9
24350
8
7
32.40%
7
28.72%
7
6.38
6
2266.5
{f
9

Auto®
28.22%
k)
18.65%
6
6.25
6
2361.0
6
8
41.11%
9
29.44%
7
7.18
9
24715
7
7
3225%
7
28.97%
7
6.73
6
23955
7
7
36.44%
9
31.73%
9
7.30
9
24480
9
9

Naive*
29.58%

19.29%
6.35

2409.0

37.02%
28.59%
6.15

2439.0

31.61%
28.73%
6.88

23825

34.76%
31.29%
6.88
24455

9
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Variance Shift

Period: Scenario 7 Mean Absolute Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

Adjusted
16.81%
10

HWW

12.42%
4
5.69%
4
428
4
18755
4
9
13.08%
4
7.74%
<)
448
4
17745
4
7
1452%
4
9.03%
2
443
4
17385
2
8
13.47%
3
8.61%
2
458
4
17545
4
8

HW Adaptive
12.40% 10.52%
3 1
5.62% 5.14%
3 2
4.18 270
3 1
1867.5 1681.0
3 1
9 9
12.97% 12.91%
3 2
7.68% 7.78%
2 4
4.18 425
2 3
17475 17470
3 2
7 7
14.48% 14.10%
3 2
9.54% 9.39%
4 3
4.23 4.10
3 2
17425 1762.0
3 4
8 7
13.34% 13.83%
2 4
9.17% 8.85%
4 3
4.08 385
3 2
1751.5 1746.0
3 2
8 8

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
10.58%
2
5.13%
1
270
1
1739.0
2
9
11.42%
1
7.07%
1
3.40
1
1660.0
1
10
12.44%
1
8.50%
1
330
1
1581.0
1
10
11.58%
1
7.68%
1
3.05
1
1526.0
1
10

Table:

Naive
13.15%
74
6.23%
S
6.00
S
1997.0
S
10
13.83%
5
8.94%
5
6.15
5
1816.0
5
7
15.16%
5
10.44%
5
6.00
5
1826.0
S
9
14.47%
S
11.04%
5
5.60
S
1924.0
5
10

7-3

HWW*
20.65%

HW*  Adaptive*
14.22% 14.22%
9 8
9.66% 9.64%
9 8
7.68 7.28
9 8
23535 23425
9 8
8 7
16.00% 16.07%
7 8
13.00% 13.19%
6 8
6.48 6.23
8 6
22785 23125
6 8
8 7
17.25% 17.46%
7 8
14.16% 14.73%
6 8
6.73 6.38
9 6
22235 22675
6 8
8 7
16.78% 16.88%
7 8
14.29% 14.72%
7 8
713 6.73
9 7
22095 22585
7 8
8 7

Auto*
1269%
6
9.06%
6
6.00
S
2262.0
6
8
16.38%
9
13.75%
9
6.75
9
23770
9
8
17.65%
9
15.08%
9
6.55
8
23390
9
9
17.70%
9
15.04%
9
6.90
8
23070
9
9

Naive*
12.50%
S
9.11%
7
6.45
7
22740
7
7
15.14%
6
13.04%
7
6.35
7
2304.0
7
7
16.63%
6
14.45%
7
6.45
7
2256.0
7
8
16.15%
6
14.26%
6
6.45
6
2196.0
6
8
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Variance Shift

Period: Scenario 7 RootMean Square Error

1

10

15

Period: Scenario 7 Geometric Root Mean Square Error

1

10

15

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Variance Shift

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Adjusted
235.41
10
7.55
9
329.07
10
745
10
437.18
10
7.20
10
48266
10
725
10

Adjusted
153.97

301.37
10
8
10

31465
10

7.75
10

HWW
113.44

448

156.98

483

198.09

493

192.48

463
4

HWW
69.06

3
513

3
91.44

3
468

4
11267

3

4975

4
119.15

3
5.13

4

HW

111.04
3
418
3

157.13
4
4.48
2

208.45
4
468
3

206.01
4
428
3

HW
70.72

533

8759

423

112.60

4475

12093

468
3

Adaptive
107.70
2

285
1

156.25
2
455
3

20394
3
4.15
2

199.05
3
4.10
2

Adaptive
5432

1
290

2
97.89

4
455

3
117.50

4

43

2
113.28

2
450

2

Table:

Auto
105.41
325
142.00
3.50
184.31
3.30
17202

3.15

Table:

Auto
56.25
2.80
88.09
4.40
103.22

34

98.54

315
1

7-4

Naive
122.60

5
6.45

6
181.61

5
6.20

6
22356

5
6.35

6
241.17

5
6.05

5

7-5

Naive
75.38
5.75
103.96
5.55
140.63
6.55
149.23

5.75
6

HWwW*
324.18

1
9.60

1

HW*  Adaptive*

194.58
8
7.63

10

278.10
7
6.63
9

321.19
7
6.88
9

321.19
6
7.08
9

195.10
9
7.08
8

28043
9
6.23
7

328.10
8
6.38
7

328.77
8
6.58
7

HW*  Adaptive*

96.24
8
7.58
9

122.86
6
6.08
7

158.97
6
6.325
7

172.51
8
6.98
8

97.74
9
7.48
8

12353
7
593
6

160.27
7
6.175
6

175.22
9
6.98
8

Auto*
184.78
6

6.05
5

280.09
8
6.50
8

33171
9
6.60
8

34431
9
7.00
8

Auto*
84.76

5.75

141.90

7.00

178.32

6.7

166.48

6.25
7

Naive*
188.09
7

6.90
7
269.93
6
6.15
S
316.66
6
6.30
5
323.00
7
6.55
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Variance Shift Average Rank of Absolute Error

Period Scenario 7 Chi Square DF
1 RANK ANOVA 50.54 19
KRUSKAL-WALLIS 98.03 10
5 RANK ANOVA 30.67 19
KRUSKAL-WALLIS 63.07 10
10 RANK ANOVA 28.45 19
KRUSKAL-WALLIS 55.00 10
15 RANK ANOVA 2421 19
KRUSKAL-WALLIS 47.56 10
Variance Shift Symmetry Adjusted MAPE
Scenario 7 Chi Square DF
1 RANK ANOVA 5334 19
KRUSKAL-WALLIS 20.51 10
5 RANK ANOVA 2459 19
KRUSKAL-WALLIS 31.94 10
10 RANK ANOVA 31.29 19
KRUSKAL-WALLIS 38.95 10
15 RANK ANOVA 3198 19
KRUSKAL-WALLIS 38.17 10
Variance Shift Range of Percent Error
Scenario 7 Chi Square DF
1 RANK ANOVA 39.64 19
KRUSKAL-WALLIS 277 10
5 RANK ANOVA 4743 19
KRUSKAL-WALLIS 44.06 10
RANK ANOVA 43.76 19
10 KRUSKAL-WALLIS 46.01 10
RANK ANOVA 3439 19
15 KRUSKAL-WALLIS 51.28 10
Variance Shift Geometric Root Mean Square Error
Scenario 7 Chi Square DF
1 RANK ANOVA 45.11 19
5 RANK ANOVA 2589 19
10 RANK ANOVA 30.23 19
15 RANK ANOVA 30.79 19

Table 7-6 Variance Shift

p Value
0.0001

0.0000
0.0438
0.0000
0.0752
0.0000
0.1881

0.0000

Table 7- 7
p Value
0.0000
0.0248
0.1744
0.0004
0.0375
0.0000
0.0314
0.0000

Table 7- 8
p Value
0.0036
0.0116
0.0003

Table 7-9
p Value
0.0007
0.1333
0.0489
0.0426

Period
0|

5

10

15

Variance Shift

Scenario 7 Chi Square DF
1 RANK ANOVA 61.11 19
KRUSKAL-WALLIS 25.02 10
5 RANK ANOVA 37.04 19
KRUSKAL-WALLIS 37.75 10
10 RANK ANOVA 38.34 19
KRUSKAL-WALLIS 4487 10
15 RANK ANOVA 40.99 19
KRUSKAL-WALLIS 46.34 10
Variance Shift Median Absolute Percent Error
Scenario 7 Chi Square DF
1 RANK ANOVA 4277 19
KRUSKAL-WALLIS 2152 10
S RANK ANOVA 10.61 19
KRUSKAL-WALLIS 19.94 10
10 RANK ANOVA 2572 19
KRUSKAL-WALLIS 34.67 10
15 RANK ANOVA 2436 19
KRUSKAL-WALLIS 29.16 10
Variance Shift Root Mean Square Error
Scenario 7 Chi Square DF
1 RANK ANOVA 45.58 19
S RANK ANOVA 28.80 19
10 RANK ANOVA 2874 19
15 RANK ANOVA 34.01 19

Scenario 7

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Log Mean Square Error Ratio

Chi Square DF

45.11
58.51
25.89
43.41
30.23
40.62
30.79
3453

19
10
19
10

Mean Absolute Percent Error

7-10

7-11

7-12
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Period: Level Shift as Planned (N)

10

15

Scenario 8

Average Rank of Absolute Error

Adjusted

Average 3.50
Rank 1
Geometric Mean 3.29
Rank 1
Average Rank by Series 1.48
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 4375
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 3.91
Rank 1
Geometric Mean 3.51
Rank 1
Average Rank by Series 273
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 889.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 376
Rank 1
Geometric Mean 3.40
Rank 1
Average Rank by Series 25
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 809.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 399
Rank 1
Geometric Mean 368
Rank 1
Average Rank by Series 2975
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 917.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10

HWW

6.74
8
6.68
8
7.45
8
2,8835
8
10
6.38
9
6.33
9
6.88
9
24770
9
9
6.50
8
6.41
8
7
9
25655
8
10
6.50
9
6.40
9
7.075
9
25185
9
9

HW
6.87
9
6.82
9
7.50
9
3,0375
9
10
6.38
8
6.29
8
6.73
8
2,460.5
8
9
6.63
9
6.55
10
6.825
8
2,652.0
9
9
6.73
10
6.68
10
7.15
10
26885
10
10

Adaptive

3,076.0
1
10

10

‘K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table: 8 - 1
Auto Naive
7.16 6.05
10 7
7.06 5.99
10 7
8.85 6.15
10 7
31755 2,2120
10 6
10 9
7.09 5.56
10 2
6.92 537
10 3
7.40 5.38
10 3
2,900.0 1,853.0
10 2
10 10
6.71 5.7
10 3
6.55 5.44
9 2
7175 5.725
10 5
2,7045 2,0145
10 4
9 8
6.49 6.02
8 5
6.24 562
8 S
6.275 64
7 8
24780 2,2700
8 5
9 9

HWW*
5.51

1,946.5

10

HW*
5.25
2
5.18
2
435
2
1,4375
2
9
5.67
4
5.36
2
5.85
6
2,0085
4
9
6.06
6
5.82
6
6.25
6
22745
6
9
6.03
6
5.60
4
6.15
S
2,3055
6
9

Adaptive*
5.25
2
5.18
2
435
2
1,4375
2
9
5.67
3
5.42
4
533
2
1,998.5
3
9
6.06
6
5.82
6
6.25
6
2,2745
6
9
6.21
7
5.92
7
6.225
6
2,387.0
7
10

Auto® Naive*®
6.04 5.86
6 5
5.97 5.80
6 5
5.90 5.68
6 5
22200 11,9525
7 5
9 10
6.03 6.01
6 5
5.79 5.90
5 7
578 5.53
5 4
2,256.0 2,1470
7 6
10 9
5.96 582
5 4
572 5.71
5 4
53 5.475
2 3
2,0755 1,967.0
5 3
9 8
6.00 5.45
4 2
5.68 5.14
6 2
5475 49
3 2
21575 1,809.5
4 2
10 10

375



Period:

10

15

Level Shift as Planned (N)
Range of Percent Error

Scenario 8

Adjusted
Average 15.14%
Rank 1
Geometric Mean 6.72%
Rank 1
Average Rank by Series 253
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 1,4705
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 14.29%
Rank 1
Geometric Mean 8.88%
Rank 1
Average Rank by Series 213
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 861.5
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 16.17%
Rank 1
Geometric Mean 11.20%
Rank 1
Average Rank by Series 245
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 866.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 15.98%
Rank 1
Geometric Mean 10.67%
Rank 1
Average Rank by Series 25
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 908.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count® 10

HWW
2473%
10
19.10%
9
7.58
10
25115
9
7
36.27%
8
33.40%
7
6.83
9
24765
7
9
40.75%
7
36.75%
7
6.65
7
2,438.0
7
7
44.71%
5
38.60%
7
6.8
9
2,414.0
6
8

HW Adaptive
24.30% 2471%
7 9
18.46% 19.78%
7 10
6.98 7.23
7 8
2,4445 2,580.5
7 10
7 9
36.98% 35.63%
9 6
33.78% 33.69%
9 8
6.73 6.53
8 6
24775 2,601.5
8 9
9 10
41.93% 50.22%
8 1
37.48% 46.09%
8 1
6.3 7.775
6 1
24540 29325
8 1
7 10
50.02% 64.09%
8 1
42.36% 53.84%
9 1
6.6 8.125
7 1
2,590.0 3,0355
9 1
10 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

28115
10
10

Table:

Naive
24 50%
8
18.79%
8
7.55
9
2,458.0
8

7
36.12%
7
31.64%
6
6.70
4
2,361.0
6
10
31.54%
2
28.31%
4
5.25
2
1,804.0
2
9
27.28%
2
2591%
3
47
2
1,593.0
2
10

8-2

HWW*

20.72%
5
17.82%
6
6.68
6

HW*  Adaptive®
18.76% 19.22%
2 3
11.28% 12.47%
2 3
403 403
2 2
16345 16775
2 3
9 9
25.49% 27.88%
2 3
18.21% 21.91%
2 3
478 478
2 2
15765 1,7075
2 3
10 10
32.70% 37.52%
3 5
2.12% 27.40%
2 3
5.35 5.45
3 4
1,839.0 2,087.0
3 4
9 9
38.61% 45.42%
4 7
23.30% 28.63%
2 4
54 5.45
3 4
1,8240 2,107.0
3 4
10 9

Auto* Naive*®
2024% 22.26%
4 6
15.58% 16.88%
4 5
5.18 5.78
4 5
21255 22525
4 5
10 10
30.86% 3245%
4 5
26.84% 26.86%
4 5
5.48 6.18
4 5
21405 22745
4 5
10 10
4455% 37.31%
9 4
35.28% 30.25%
6 5
6.775 5.9
8 5
24085 2,1480
6 5
8 9
57.68%  45.26%
10 6
40.23%  3454%
8 5
6.325 5.775
6 S
24485 21405
8 5
8 9

376



Period:

10

15

Level Shift as Planned (N)
Mean Absolute Percent Error

Scenario 8

Adjusted

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

6.13%
1
3.19%
1
1.40
1
1,291.0
1
10
7.76%
1
5.06%
1
235
1
9420
1
10
9.42%
1
6.61%
1
25
1
973.0
1
10
9.45%
1
6.78%
1
24
1
971.0
1
10

HWW

11.70%
8
10.26%
8
7.88
8
26135
8
9
17.28%
8
16.18%
8
713
8
24195
7
9
21.79%
7
19.10%
7
6.775
8
2,308.5
7
9
25.59%
6
21.22%
7
7.125
10
24315
il
9

HW Adaptive
11.81% 14.56%
9 1
10.44% 12.39%
9 1
7.98 9.50
9 1
2,661.5 2,8920
9 1
9 10
18.11% 22.08%
9 1
17.01% 20.68%
9 11
7.28 9.10
9 1
25675 3,113.0
9 1
10 10
24.04% 28.84%
8 1
21.18% 26.01%
9 1
6.875 85
9 1
2,5455 3,047.0
9 1
9 10
28.82% 35.15%
9 1
23.83% 28.67%
9 1
7.075 78
8 1
26435 2946.0
9 1
9 10

*K-W Multi-Comparison Count valid only if Krusleal-Wallis statistic is significant.

8.52%
6
5.45
S
2,215.0
6
9
16.89%
7
16.09%
7
6.95
7
2,421.0
8
9
17.71%
3
16.56%
S
6.35
7
2,077.0
4

10
17.36%
3
16.19%
4
6.4
7
2,015.0
4
8

HW*  Adaptive*
8.45% 8.61%
2 3
5.98% 6.40%
2 3
363 3.78
2 3
1,629.5 1,655.5
2 3
9 9
13.01% 14.32%
2 4
9.51% 11.45%
2 3
453 458
2 3
1,7835 1,980.5
2 4
9 10
18.86% 21.44%
4 6
13.10% 15.90%
2 4
5.675 5.775
5 6
1,959.5 2,2535
3 6
10 8
2293% 26.68%
4 7
14.30% 17.29%
2 6
5575 5.875
3 S
1,9825 2,2935
3 6
8 10

Auto* Naive*®
10.88% 10.11%
6 5
8.50% 8.01%
S 4
5.50 5.20
6 4
2,188.0 2,079.0
5 4
9 10
16.72%  14.94%
6 5
14.13% 13.08%
6 5
5.70 5.10
6 5
2,265.0 2,090.0
6 )
10 10
2509% 20.58%
10 5
19.24% 16.87%
8 6
55 53
4 3
2,493.0 2,215.0
8 S
9 9
3237% 24.05%
10 5
21.77% 16.93%
8 5
5.75 475
4 2
2,469.0 20450
8 5
9 8
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Period:

10

15

Period:

10

15

Level Shift as Planned (N) Scenario 8
Root Mean Squared Error

Adjusted
Geometric Mean 48.94
Rank 1
Average Rank by Series 1.55
Rank of Average Rank 1
Geometric Mean 73.65
Rank 1
Average Rank by Series 235
Rank of Average Rank 1
Geometric Mean 103.23
Rank 1
Average Rank by Series 26
Rank of Average Rank 1
Geometric Mean 109.66
Rank 1
Average Rank by Series 245
Rank of Average Rank 1
Level Shift as Planned (N) Scenario 8
Geometric Root Mean Squared Error

Adjusted
Geometric Mean 26.32
Rank 1
Average Rank by Series 1.65
Rank of Average Rank 1
Geometric Mean 47.09
Rank 1
Average Rank by Series 295
Rank of Average Rank 1
Geometric Mean 5546
Rank 1
Average Rank by Series 265
Rank of Average Rank 1
Geometric Mean 67.91
Rank 1
Average Rank by Series 255

Rank of Average Rank

1

HWW
151.69

8.08

24282

6.875

305.77

6.925

340.92

7.075
10

HWW
8733

7.075

128.19

7175

167.70

6.525

186.96

6.475
7

HW

151.51
8
7.98
8

250.02
8
6.975
8

331.42
9
6.875
8

380.72
9
6975
]

HW
9279
9
7.275
9
136.27
9
6.925
8
185.37
9
7.425
9
21097
9
6.925
9

Table:

Naive
139.76
6
6.65
7
202.89
5
475
2
22576
3
52
2
238.26
3
5.45
3

Table:

Naive
7233

6.65

95.17

475

12347

57

150.33

6.55
8

HW*  Adaptive*

87.84 9487
2 3
388 383
3 2

140.80 169.40
2 3
4.825 4775
4 3

20274 246.74
2 4
5.875 5975
S 6

229.77 278.08
2 4
5575 5925
4 6

HW*  Adaptive*

48.64 50.67
2 3
4275 4525
2 3

79.94 95.60
2 4
4925 4925
3 3

124.13 146.71
4 5
5.825 6.125
6 7

134.56 157.61
3 6
5175 5975
3 S



Level Shift as Planned (N)

Scenario 8

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned (N)

Scenario 8

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned (N)

Scenario 8

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level Shift as Planned (N)

Scenario 8

Period:

1
5

RANK ANOVA
RANK ANOVA

10 RANK ANOVA
15 RANK ANOVA

Average Rank of Absolute Error

p Value
0.0000
0.0000
0.2346

p Value
0.0000
0.0008
0.0376
0.0000
0.4375
0.0002
0.2933
0.0009

p Value
0.0001
0.0306
0.2681

Table: 8-6
Chi Squared DF
57.95 19
11237 10
23.06 19
4424 10
21.20 19
43.00 10
16.35 19
KENA 10
Range of Percent Error
Table: 8-7
Chi Squared DF
36.45 19
2263 10
29.86 19
48.02 10
2187 19
40.43 10
2480 19
4416 10
Symmetry Adjusted MAPE
Table: 8-8
Chi Squared DF
66.71 19
30.18 10
31.29 19
38.70 10
19.30 19
3374 10
2182 19
2974 10
Geometric Root Mean Squared Error
Table: 8-9
Chi Squared DF
50.18 19
3208 19
2233 19
2278 19

0.247

Level Shift as Planned (N)

Scenario 8

Period:

1 RANK ANOVA
KRUSKAL-WALLIS

5 RANKANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA

Level Shift as Planned (N)

KRUSKAL-WALLIS

Scenario 8

Period:

1 RANK ANOVA
KRUSKAL-WALLIS

S RANKANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA

KRUSKAL-WALLIS

Level Shift as Planned (N)

Scenario 8

Period:

1  RANKANOVA
KRUSKAL-WALLIS

5 RANKANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA

KRUSKAL-WALLIS

Level Shift as Planned (N)
Scenario 8
Chi Squared

Period:

1
5
10
15

RANK ANOVA
RANKANOVA
RANK ANOVA
RANK ANOVA

Log Mean Squared Error Ratio

Table: 8 -10
Chi Squared DF p Value
50.18 19 0.0001
83.95 10 0.0000
32.08 19 0.0306
4285 10 0.0000
2233 19 0.2681
3212 10 0.0004
2278 19 0.2471
25.90 10 0.0039
Median Absolute Percent Error
Table: 8 -11

Chi Squared DF p Value
64.07 19 0.0000
35.67 10 0.0001
2398 19 0.1968
35.24 10 0.0001
19.78 19 0.4079
31.90 10 0.0004
20.15 19 0.3854
2859 10 0.0014
Mean Absolute Percent Error
Table: 8 -12

Chi Squared DF p Value
66.72 19 0.0000
32.77 10 0.0003
39.85 19 0.0034
4395 10 0.0000
25.69 19 0.1391
38.87 10 0.0000
23.26 19 0.2259
35.45 10 0.0001
Root Mean Squared Error

Table: 8 -13

DF p Value

62.79 19 0.0000
36.64 19 0.0088
2077 19 0.3496
2173 19 0.2978
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Period: Level and Trend Shift (N)

10

15

Scenario 9

Average Rank of Absolute Error

Adjusted
Average 3.61
Rank 1
Geometric Mean 338
Rank 1
Average Rank by Series 1.48
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 460.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 389
Rank 1
Geometric Mean 350
Rank 1
Average Rank by Series 268
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 869.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 386
Rank 1
Geometric Mean 3.50
Rank 1
Average Rank by Series 2875
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 869.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 4.01
Rank 1
Geometric Mean 368
Rank 1
Average Rank by Series 3.025
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 9475
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10

HWW
6.70
8
6.64
8
7.40
8
2,8555
8
10
6.41
9
6.36
9
7.05
9
25125
9
9
6.44
8
6.34
8
6.875
9
2,507.0
8
10
6.49
8
6.39
9
7.075
1
2,510.0
9
9

HW
6.85
9
6.80
9
7.48
9
3,0365
]
9
6.39
8
6.30
8
6.88
8
2,496.0
8
9
6.57
9
6.48
9
6.8
8
2,595.0
9
10
6.71
10
6.66
1
7.025
10
2,661.0
10
10

Adaptive
787

27765
1"
10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table:
Naive
6.04
5.97
6.38

2,221.0

559
543
525

1,8535
2

10
5.7

5.45
5.575

2,005.0

6.01

5.58

6.475
2,2620

9

HWW*

562
5.46
475

1,813.0

6.03
582
6.00

2,1130
S

5.75
553
5.775

1,853.0
2

576

5.49

6.175
2,009.0

10

9-1
HW*  Adaptive*

523 523
2 2
5.16 5.16
2 2
430 430
2 2

1,4295 1,4295
2 2
9 9
573 5.70
4 3
5.44 5.46
3 4
5.80 5.30
6 3

2,026.0 2,021.0
4 3
9 9
6.07 6.07
6 6
5.82 582
6 6
6.125 6.125
6 6

22795 2,2795
6 6
9 9
6.04 6.22
6 7
5.63 5.92
6 7
6.2 6.325
S 7

2,301.5 24015
6 7
9 10

Auto®
6.04
7
597
6
5.88
6
22280
7
9
5.99
6
5.76
5
578
5
2,2420
7
10
5.97
5
5.73
5
5325
2
2,100.0
5
10
592
4
558
4
5.525
3
21225
4
10

Naive*

5.79
5.72
5.35
5

1,881.5
5)
9
5.99
S
5.88
7
5.60
4
2,128.5
6
9
5.84
4
5.72
4
5.45
3
19785
3
8
5.50
2
5.19
2
4925
2
1,829.0
2
10



Period:

10

15

Level and Trend Shift (N) Scenario 9
Range of Percent Error

Adjusted
Average 15.16%
Rank 1
Geometric Mean 6.77%
Rank 1
Average Rank by Series 248
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 1,4705
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 14.12%
Rank 1
Geometric Mean 8.94%
Rank 1
Average Rank by Series 213
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 8425
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 15.82%
Rank 1
Geometric Mean 10.93%
Rank 1
Average Rank by Series 22
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 836.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count® 10
Average 15.88%
Rank 1
Geometric Mean 10.94%
Rank 1
Average Rank by Series 26
Rank of Average Rank 1
Kruskal-Waliis Rank Sum 8940
Rank of K-W Rank Sum 1
K-W Mutti-Comparison Count* 10

HWW
2460%
10
19.00%
9
7.63
10
2,506.5
9
6
35.68%
8
33.00%
7
6.78
9
24775
7
9
40.36%
7
36.35%
7
6.725
7
24205
6
8
44.12%
5
37.96%
7
6975
9
23955
6
8

HW Adaptive
24.18% 2457%
7 9
18.35% 19.62%
7 10
7.03 7.13
7 8
2,4465 2,567.5
8 10
7 9
36.43% 35.20%
9 6
3341% 33.39%
9 8
6.68 6.65
8 7
2,4825 2,616.0
8 9
9 10
41.85% 50.22%
8 1
37.36% 46.15%
8 1
6.55 7.875
6 1
2,4580 2,965.5
7 1
7 10
49.80% 63.77%
8 1
42.02% 53.87%
9 1
6.575 8.025
7 1
2,580.5 30325
9 1
10 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table:

Naive
24.30%
8
18.62%
8
7.35
9
24420
7
7
35.64%
7
31.47%
6
6.60
6
23570
6
10
31.41%
2
28.20%
4
52
2
1,777.0
2
9
26.76%
2
25.16%
3
45
2
1,539.0
2
10

9-2

HWW*

20.76%
5
17.90%
6
6.83
6
2,4315

HW*  Adaptive*
18.65% 19.13%
2 3
11.17% 12.46%
2 3
403 403
2 2
1,638.5 1,685.5
2 3
9 9
25.12% 2753%
2 3
18.13% 21.82%
2 3
473 483
2 3
1,5675 1,706.5
2 3
10 10
32.58% 37.38%
3 5
22.13% 27.45%
2 3
5375 54
3 4
1,831.5 2,0840
3 4
9 9
38.19% 45.17%
4 6
2353% 2897%
2 4
5.325 5.275
4 3
1,8255 21175
3 4
10 9

Auto* Naive*
20.13% 2217%
4 6
15.54% 16.87%
4 5
5.18 5.88
4 5
21225 2,2655
4 5
10 10
3056% 32.18%
4 S
2668%  26.74%
4 5
5.55 6.13
4 5
2,157.0 2,2655
4 5
10 10
4472%  37.24%
9 4
3552%  30.39%
6 S
6.875 59
9 5
24645 21430
8 5
7 9
57.61%  4520%
10 7
3995% 3467%
8 5
6.375 5.775
6 S
2,4595 21515
7 5
8 9
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Period:

10

15

Level and Trend Shift (N)

Scenario 9

Mean Absolute Percent Error

Adjusted
Average 6.12%
Rank 1
Geometric Mean 3.19%
Rank 1
Average Rank by Series 1.40
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 1,287.0
Rankof K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 7.77%
Rank 1
Geometric Mean 517%
Rank 1
Average Rank by Series 235
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 933.0
Rank of K-W Rank Sum 1
K-W Mutti-Comparison Count* 10
Average 9.49%
Rank 1
Geometric Mean 6.73%
Rank 1
Average Rank by Series 25
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 962.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count* 10
Average 9.45%
Rank 1
Geometric Mean 6.75%
Rank 1
Average Rank by Series 23
Rank of Average Rank 1
Kruskal-Wallis Rank Sum 955.0
Rank of K-W Rank Sum 1
K-W Multi-Comparison Count® 10

HWW

11.65%
8
10.21%
8
7.88
8
26175
8
9
17.15%
8
16.09%
7
7.03
7
23995
7
9
21.73%
7
19.05%
7
6.825
8
2,300.5
7
8
2547%
6
21.13%
7
7.075
9
23995
7
10

HW Adaptive
11.77% 14.49%
9 1
10.39% 12.33%
9 1
7.98 9.50
9 1
2,660.5 2,8850
9 1
9 10
17.97% 21.90%
9 1
16.91% 20.55%
9 1
713 9.10
9 11
2,5495 3,100.0
9 1
10 10
23.95% 2867%
8 1
21.11% 2585%
9 1
6.875 8.45
9 1
25435 3,0320
9 1
9 10
28.65% 3497%
9 1
23.70% 2864%
9 1
7.025 7.85
8 1
26115 29440
9 1
9 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table:

Naive
10.94%

9.01%
6.45
23230

10
14.10%

13.00%
5.00

1,814.0

15.65%
14.23%
5.15
1,6720

10
16.85%

15.50%
6.1
1,880.0

10

9-3

HWW*

9.52%
8.55%
545

2,223.0

16.98%
16.19%
7.10

2,4530
8

17.84%
16.68%
6.45
2,097.0

10
17.52%

16.36%
6.35
2,027.0

8

HW*  Adaptive®
8.44% 8.61%
2 3
5.98% 6.41%
2 3
3.63 378
2 3
1,630.5 1,656.5
2 3
9 9
13.06% 14.35%
2 4
9.71% 11.52%
2 3
458 468
2 3
1,7895 1,989.5
2 4
9 10
19.00% 2153%
4 6
13.51% 16.09%
2 4
5675 5.825
5 6
1,965.5 22565
3 6
10 8
23.08% 26.71%
4 7
1492% 17.72%
2 6
5575 5925
3 5
1,998.5 2,301.5
3 6
8 10

Auto* Naive*
10.83% 10.06%
6 5
8.49% 7.99%
5 4
5.60 5.15
6 4
2,1950 2,081.0
S 4
9 10
16.66% 14.88%
6 5
14.14% 13.06%
6 5
5.75 5.00
6 4
22720 20870
6 5
10 10
2507% 2059%
10 )
19.25% 16.94%
8 6
55 52
4 3
2,490.0 22210
8 5
9 8
3229% 2401%
10 5)
21.78% 16.97%
8 5
5.9 475
4 2
24840 20290
8 5
10 8
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Period:

10

15

Period:

10

15

Level and Trend Shift (N) Scenario 9
Root Mean Squared Error

Adjusted
Geometric Mean 49.36
Rank 1
Average Rank by Series 1.55
Rank of Average Rank 1
Geometric Mean 75.32
Rank 1
Average Rank by Series 245
Rank of Average Rank 1
Geometric Mean 105.02
Rank 1
Average Rank by Series 265
Rank of Average Rank 1
Geometric Mean 110.40
Rank 1
Average Rank by Series 23
Rank of Average Rank 1
Level and Trend Shift (N) Scenario 9
Geometric Root Mean Squared Error

Adjusted
Geometric Mean 26.70
Rank 1
Average Rank by Series 1.75
Rank of Average Rank 1
Geometric Mean 4947
Rank 2
Average Rank by Series 29
Rank of Average Rank 1
Geometric Mean 62.27
Rank 1
Average Rank by Series 25
Rank of Average Rank 1
Geometric Mean 66.81
Rank 1
Average Rank by Series 245
Rank of Average Rank 1

HWW
151.21

8.18

24182

6.875

305.14

7.025

341.01

7.025

HWW
86.35

6975

131.03

7.125

171.44

6.725

186.74

6.525
7

HW

151.07
8
8.08
8

24937
8
6.975
8

331.77
9
6.825
8

381.81
9
7.025
9

HW
91.63
9
7175
9
137.69
9
6.875
8
198.17
9
7.425
9
208.97
9
6.875
8

Adaptive
171.27

1
9.15

Adaptive
121.48
1
9.8
1
179.92
1

94

Naive
139.29
6

6.75
7

203.05
5
475
3

22872
3
5.15
2

24319
3
545
3

9-5

Naive
73.20

6.6
0.00
475
132.46
5.85

165.06

10

HWW*
141.18
7
6.45
6
271.09
9
7.65
9
284.99
6
6.5
7
292.41
6
7
8

HWwW*
58.51

107.60

6.75

116.00

5.75

128.29

58
S

HW*  Adaptive*
87.96 95.23
2 3
388 383
3 2
143.82 170.94
2 3
4775 4725
4 2
209.51 251.09
2 4
5.875 5.925
5 6
240.19 28655
2 S
5525 5.875
4 5
HW*  Adaptive*
48.78 50.92
2 3
4225 4.475
2 3
85.77 95.81
3 4
5075 4825
S 3
131.16 151.56
3 S
5.775 6.275
S i
144.54 169.20
3 6
5325 6.125
3 6

Auto*
118.80

475
204.82

5.6
299.60

5.8

35254

Auto*®
7343

6.45
114.80
5.75
151.69
485
198.18

5.7
4

Naive*
115.71

4.65
189.69

53
259.19

53
283.07

5.15

Naive*
64.23

535
108.93

49
155.03

54
150.34

495
2
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Level and Trend Shift (N)

Scenario 9

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Scenario 9

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Scenario 9

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Scenario 9

Period:

1
5

RANK ANOVA
RANK ANOVA

Average Rank of Absolute Error

10 RANKANOVA
15 RANK ANOVA

Table: ] 6

Chi Squared DF p Value
56.69 19 0.0000
108.97 10 0.0000
2343 19 0.2189
4399 10 0.0000
17.80 19 0.5361
39.29 10 0.0000
15.02 19 0.7212
31.19 10 0.0005
Range of Percent Error

Table: 9 -7

Chi Squared DF p Value
36.43 19 0.0093
2231 10 0.0136
30.06 19 0.0510
49.08 10 0.0000
2430 19 0.1848
4247 10 0.0000
2558 19 0.1424
4591 10 0.0000
Symmetry Adjusted MAPE

Table: 9 8

Chi Squared DF p Value
66.04 19 0.0000
29.60 10 0.0010
3093 19 0.0411
38.82 10 0.0000
19.27 19 0.4395
3356 10 0.0002
2170 19 0.2994
30.41 10 0.0007
Geometric Root Mean Squared Error
Table: 9 -9

Chi Squared DF p Value
4955 19 0.0002
3224 19 0.0293
24.12 19 0.1914
2400 19 0.1963

Period:

Period:

Period:

Level and Trend Shift (N)

Scenario 9

Chi Squared

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Scenario 9

Chi Squared

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Chi
1

S
10

15

Scenario 9

Squared

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Level and Trend Shift (N)

Period:

Scenario 9

Chi Squared

1
5

RANK ANOVA
RANK ANOVA

Log Mean Squared Error Ratio

10 RANK ANOVA
15 RANKANOVA

Table: 9 -12
DF p Value

4955 19 0.0002
83.81 10 0.0000
32.31 19 0.0289
36.99 10 0.0001
24.12 19 0.1914
31.05 10 0.0006
24.00 19 0.1963
27.92 10 0.0019
Median Absolute Percent Error
Table: 9 -11

DF p Value

63.16 19 0.0000
35.46 10 0.0001
23.07 19 0.2341
35.16 10 0.0001
18.70 19 0.4760
30.15 10 0.0008
18.33 19 0.5008
27.86 10 0.0019
Mean Absolute Percent Error
Table: 9 -12

DF p Value

66.08 19 0.0000
3259 10 0.0003
3964 19 0.0036
4372 10 0.0000
2557 19 0.1427
38.37 10 0.0000
2399 19 0.1966
3499 10 0.0001
Root Mean Squared Error

Table: 9 -13

DF p Value

62.63 19 0.0000
36.39 19 0.0095
2043 19 0.3690
23.28 19 0.2252
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Period: 25% Level Shift (N)

10

15

Scenario 10

Average Rank of Absolute Error

Adjusted

Average 8.10
Rank 10
Geometric Mean 7.95
Rank 10
Average Rank by Series 8.90
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,576.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10
Average 8.17
Rank 10
Geometric Mean 8.01
Rank 10
Average Rank by Series 8.90
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,540.5
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 8.27
Rank 10
Geometric Mean 8.09
Rank 10
Average Rank by Series 8.875
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,523.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 832
Rank 10
Geometric Mean 8.07
Rank 10
Average Rank by Series 8575
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,4555
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10

HWW
467
1
4.49
1
3.80
1
1,261.0
2
9
448
1
432
1
375
2
1,207.5
1

8

469

3

447

k)

4025

3
1,461.0

3

10

450

2

427

2

3975

3
1,281.5

2

9

HW
483
2
474
3
393
2

1,256.5

1

9
465
2
459
S
3.48
1
1,2425
2
7
496
4
486
S
4.45
4
1,5780
4

10
480
4
4.66
4
43
4
1,4825
4
10

Adaptive
5.41
S
5.34
5
5.10
5
1,779.0
5
10
4.69
S
454
4
383
3
1,2570
3
7
466
2
4.40
2
3875
2
1,330.0
2
10
462
3
4.34
3
375
2
1,321.0
3
9

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
499
4
485
4
423
3
1,483.0
3
9
466
3
445
3
3.83
3
1,319.0
4
8
437
1
414
1
355
1
1,169.0
1

10
4.40
1
4.16
1
3.525
1

1,193.0

1

10

Table:

Naive
489
3
458
2
463
4

1,561.0
4
9
467
4
440
2
403
5

1,4265
5

10
5.05
S
468
4
4775
S

1,709.0

S

10
5.21
5]
475
5
5175
)

1,805.0

S

10

HW*
6.09
8
6.05
8
6.95
8
25240
8
10
6.65
8
6.56
8
7.80
9
28430
8
9
6.78
8
6.64
8
76
8
28135
8

10
6.62
8
6.50
8
7.55
8

27675

8
9

Adaptive*
6.09
8
6.05
8
6.95
8
25240
8
10
6.74
9
6.68
9
7.70
8
29220
9
9
6.78
8
6.64
8
7.6
8
28135
8

10
6.77
9
6.67
9
7.575
9

2,8230

9
9

Auto*
5.87
6
576
6
5.30
6
22115
6
9
6.08
7
5.91
7
6.45
7
23245
7
9
5.84
7
5.66
7
6.175
7
2,155.5
7
10
5.83
7
5.60
6
57
6
21495
6
]

Naive*

5.90
7
577
7
5.80
7
2,2420
7
9
6.04
6
5.89
6
6.15
6
23230
6

9
5.49
6
532
6
495
6
19175

6

10
5.80
6
5.66
7
575
7

2,169.0

7
9
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Period:

10

15

25% Level Shift (N) Scenario 10
Range of Percent Error

Adjusted
Average 18.09%
Rank 10
Geometric Mean 14.69%
Rank 10
Average Rank by Series 8.08
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 26475
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count*® 10
Average 24.19%
Rank 6
Geometric Mean 21.69%
Rank 6
Average Rank by Series 6.60
Rank of Average Rank 6
Kruskal-Wallis Rank Sum 2446.0
Rank of K-W Rank Sum 6
K-W Multi-Comparison Count* 10
Average 31.57%
Rank 10
Geometric Mean 27.49%
Rank 10
Average Rank by Series 6.775
Rank of Average Rank 8
Kruskal-Wallis Rank Sum 28125
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 38.56%
Rank 10
Geometric Mean 30.46%
Rank 10
Average Rank by Series 7.175
Rank of Average Rank 8
Kruskal-Wallis Rank Sum 28885
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10

HWW

13.71%
3
7.44%
3
460
S
1,7320
2
7
14.74%
3
10.58%
4
368
S
1,3545
3
7
16.66%
4
12.92%
3
4325
4
1,4715
3
8
16.54%
3
14.01%
2
3975
2
1,521.5
3
9

HW Adaptive
13.72% 11.42%
4 1
7.50% 7.36%
4 2
430 3.78
3 1
1,739.0 1,7635
<) 4
7 7
15.00% 12.77%
4 1
11.08% 10.06%
5 2
363 320
3 1
1,366.5 1,239.0
4 1
7 9
17.15% 16.52%
5 3
13.85% 13.97%
4 5
4425 3525
5 2
156225 1,508.5
5 4
8 8
17.64% 19.32%
4 5
15.45% 15.96%
4 5
4325 4725
4 5
1,630.5 1,7895
4 5
10 10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
12.84%
2
7.93%
5
433
4
18415
S
9
13.43%
2
10.13%
3
3.60
2
1,3020
2
6
15.32%
1
12.88%
2
3.125
1
1,3365
2
9
15.92%
2
14.08%
3
42
3
1,4540
2
9

Table:

Naive
14.26%
5
6.82%
1
3.90
2
1,659.0
1

8
16.12%
S
10.05%
1
365
4
1,368.0
S
7
16.41%
2
11.51%
1
43
3
1,329.0
1
9
13.76%
1
10.78%
1
3.15
1
1,1840
1
10

10-2

HWW*

24.02%
1
2237%

3,995.5

HW*  Adaptive*
17.58% 17.58%
8 9
13.79% 13.79%
8 9
7.80 7.60
9 8
2,4840 2,487.0
8 9
9 9
29.24% 2893%
10 9
27.90% 27.55%
10 9
8.43 8.38
10 9
29915 29365
10 9
9 9
27.77% 27.42%
9 8
26.60% 26.20%
9 8
7975 8.075
9 10
2,7395 2,7105
9 8
9 9
26.75% 26.22%
9 8
25.00% 2426%
9 8
7.425 7.225
10 9
2,6185 25255
9 8
10 9

Auto*® Naive*
1436% 14.72%
6 7
1240% 12.14%
7 6
5.88 6.18
6 7
23205 23075
7 6
9 9
2527%  25.72%
4 8
2441%  25.13%
7 8
6.95 7.15
7 8
25910 2,710.0
7 8
10 10
2545% 24.48%
7 6
2431%  23.38%
7 6
6.625 6.275
7 6
2,4865 23975
7 6
10 10
26.22%  23.51%
7 6
2385% 22.15%
7 6
6.825 6.4
7 6
24475 22600
7 6
9 10
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Period:

10

15

25% Level Shift (N) Scenario 10
Mean Absolute Percent Error

Adjusted
Average 10.81%
Rank 10
Geometric Mean 9.46%
Rank 10
Average Rank by Series 845
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,037.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 17.41%
Rank 10
Geometric Mean 16.74%
Rank 10
Average Rank by Series 8.95
Rank of Average Rank 10
Kruskal-Waliis Rank Sum 33220
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 2253%
Rank 10
Geometric Mean 20.45%
Rank 10
Average Rank by Series 88
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,303.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 26.39%
Rank 10
Geometric Mean 2233%
Rank 10
Average Rank by Series 85
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 32120
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10

HWW

6.15%
3
393%
2

413

3

1,6375
1

7

7.16%

2

5.59%

2

3.03

2
1,3035

1

6

9.16%

2

7.07%

1

3625

3
1,4495

2

7

10.12%

2

7.99%

2

3425

i
1,4845

2

10

HW Adaptive
6.17% 6.10%
4 2
3.99% 424%
3 S
408 480
2 S
1,647.5 1,751.0
2 S
7 8
7.34% 7.33%
4 3
5.94% 6.14%
3 S
298 3.45
1 4
1,326 5 1,361.0
2 4
6 6
953% 9.72%
3 4
7.77% 7.96%
4 S
3625 34
3 2
1,4995 1,596.0
3 S
8 9
10.68% 11.55%
3 S
8.78% 9.35%
3 S
3575 365
3 4
1,6955 1,704.0
3 5
10 9

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant

Auto
5.87%

4.09%
3.75

1,707.0
4

7.16%
597%
3.10

1,349.0

8.69%
7A7%
32

1,418.0
1

9.28%

797%

355
1,365.0

10

Table:

Naive
6.40%
5)
3.88%
1
4.40
4
1,688.0
3
6
7.46%
5
5.43%
1
3.60
5
1,380.0
5
6
9.73%
5
7.17%
3
42
5
1,5220
4
7
11.53%
4
8.80%
4
485
S
1,699.0

9

10-3

HWW*

14.96%
1
14.01%

HW*  Adaptive*
7.80% 7.83%
8 9
6.57% 6.61%
8 9
7.08 713
8 9
23955 2,400.5
8 9
9 9
13.27% 13.42%
8 9
12.18% 12.39%
8 9
8.03 7.93
9 8
2,6335 2,6585
8 9
9 9
15.01% 15.28%
8 9
13.43% 13.79%
8 9
7.575 7575
8 8
24595 25185
8 9
8 9
15.99% 16.40%
7 9
14.32% 14.82%
8 9
7525 7875
8 9
24275 2,506.5
8 9
8 9

Auto* Naive*
6.91% 6.88%
7 6
6.12% 6.06%
7 6
5.85 5.65
7 6
22410 22270
7 6
9 9
1216%  11.71%
7 6
11.52% 11.14%
7 6
7.10 6.90
7 6
2513.0 24240
7 6
10 10
1454% 12.76%
7 6
13.23%  11.89%
7 6
6.8 6.55
7 6
24290 22060
7 6
9 10
16.02%  13.46%
8 6
1408% 1237%
7 6
65 6
7 6
23820 2,118.0
7 6
9 10

387



Period:

10

15

Period:

10

15

25% Level Shift (N) Scenario 10

Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

25% Level Shift (N) Scenario 10

Adjusted

17270
10

8.60
10

306.93
10

10

Geometric Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Adjusted

105.85

HWW
7385

388

105.39

3075

140.95

3575

162.64

3.375

HWW
38.96

4175

62.51

3275

80.86

3.875

100.78

3625
2

HW
7435
3
3.78
2
111.14
S
3.125
3
15425
4
3675
4
178.30
4
3.625
4

HW
40.54
2
4475
3
66.81
3
3.425
3
89.74
4
3925
3
109.00
3
3.875
3

Adaptive

76.75
S
4.00
4

111.13
4
3.15
4

157.73
S
355
2

186.58
S
36
3

Adaptive

47.65
S
5.15
S

71.47
S
395
S

94.01
S
435
4

119.79
4
425
4

Auto
76.68

3.75
108.52
285
140.56
3.15
159.84

326

Auto
4282

42
67.99

365
8399

375
97.38

335
1

Table:

Naive
72.21
1
430
5
102.67
1
38
5
141.09
3
445
5
167.42
3
43
5

Table;

Naive
4228

3

46

4
60.11

1
3.15

1
88.03

3
485

S
126.42

104

HWW*
259.06

1
11.00

1

HW*  Adaptive®

128.90
8
7.63
9

247.10
8
8.175
9

27713
8
7.825
9

293.74
8
7775
8

129.06
9
7.58
8

24756
9
8.025
8

27881
]
7575
8

298.87
9
7.875
9

HW*  Adaptive*

57.60
6
6.375
8

116.73
8
7.425
8

141.09
8
7.075
8

176.48
8
7.425
8

59.24
8
6575
9

125.60
9
7925
9

151.60
9
7.425
9

183.03
9
7.725
9

Auto®
117.70
6

5.60
6
23147
7
6.95
7
268.84
7
6.85
7
289.74
7
6.75

Naive*
118.17

7
5.90

7
225.02

6
6.85

6
246 17

6

6

6
257.29

6

6.3
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25% Level Shift (N)
Scenario 10

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)
Scenario 10

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)
Scenario 10

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)
Scenario 10

Period:

1

RANK ANOVA

S RANKANOVA
10 RANK ANOVA
15 RANKANOVA

Average Rank of Absolute Error

Table: 10 -6

Chi Squared DF p Value
50.08 19 0.0001
102.13 10 0.0000
59.15 19 0.0000
121.33 10 0.0000
54.64 19 0.0000
105.70 10 0.0000
4997 19 0.0001
103.09 10 0.0000
Range of Percent Error

Table: 10 -7

Chi Squared DF p Value
4208 19 0.0017
33.38 10 0.0002
70.02 19 0.0000
107.75 10 0.0000
55.41 19 0.0000
89.38 10 0.0000
4897 19 0.0002
81.04 10 0.0000
Symmetry Adjusted MAPE

Table: 10 -8

Chi Squared DF p Value
58.33 19 0.0000
5474 10 0.0000
88.73 19 0.0000
11713 10 0.0000
69.17 19 0.0000
87.36 10 0.0000
63.10 19 0.0000
7394 10 0.0000
Geometric Root Mean Squared Error
Table: 10 -9

Chi Squared DF p Value
34.81 19 0.0147
7092 19 0.0000
4554 19 0.0006
47.60 19 0.0003

25% Level Shift (N)

Scenario 10
Period:  Chi Squared

1 RANKANOVA
KRUSKAL-WALLIS

S RANK ANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)

Scenario 10
Period:  Chi Squared

1 RANKANOVA
KRUSKAL-WALLIS

S RANKANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)

Scenario 10
Period:  Chi Squared

1 RANKANOVA
KRUSKAL-WALLIS

S RANKANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA
KRUSKAL-WALLIS

25% Level Shift (N)
Scenario 10
Period:  Chi Squared
1 RANK ANOVA
S RANKANOVA
10 RANK ANOVA
15 RANK ANOVA

Log Mean Squared Error Ratio

Table: 10 -10
DF p Value

34.81 19 0.0147
46.08 10 0.0000
7092 19 0.0000
84.99 10 0.0000
4554 19 0.0006
44.20 10 0.0000
47.60 19 0.0003
43.49 10 0.0000
Median Absolute Percent Error
Table: 10 -11

DF p Value

45.10 19 0.0007
39.10 10 0.0000
57.26 19 0.0000
68.06 10 0.0000
52.29 19 0.0001
56.02 10 0.0000
4125 19 0.0022
46.30 10 0.0000
Mean Absolute Percent Error
Table: 10 -12

DF p Value

4935 19 0.0002
49 .46 10 0.0000
85.47 19 0.0000
109.25 10 0.0000
67.58 19 0.0000
84.50 10 0.0000
61.26 19 0.0000
72.71 10 0.0000
Root Mean Squared Error

Table: 10 -13

DF p Value

61.33 19 0.0000
88.02 19 0.0000
66.96 19 0.0000
67.00 19 0.0000
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10

15

Period: 200% Level Shift (N) Scenario 11
Average Rank of Absolute Error
Adjusted
Average 5.43
Rank 5
Geometric Mean 5:21
Rank 4
Average Rank by Series 473
Rank of Average Rank 4
Kruskal-Wallis Rank Sum 1,708.0
Rank of K-W Rank Sum 4
K-W Multi-Comparison Count® 9
Average 5.26
Rank 4
Geometric Mean 4.95
Rank 3
Average Rank by Series 475
Rank of Average Rank 4
Kruskal-Wallis Rank Sum 1,647.5
Rank of K-W Rank Sum S
K-W Multi-Comparison Count*® 8
Average 481
Rank 2
Geometric Mean 450
Rank 2
Average Rank by Series 4075
Rank of Average Rank 2
Kruskal-Wallis Rank Sum 1,3490
Rank of K-W Rank Sum 2
K-W Multi-Comparison Count® 10
Average 476
Rank 2
Geometric Mean 4.40
Rank 2
Average Rank by Series 4175
Rank of Average Rank 2
Kruskal-Wallis Rank Sum 1,370.0
Rank of K-W Rank Sum 2
K-W Mutti-Comparison Count® 10

HWW
6.78
8
6.63
8
7.30
8
2,8230
8
10
6.54
8
6.46
8
7.10
8
25775
8

10
6.56
8
6.46
8
7.125
8
2,600.5
7
9
6.58
8
6.46
8
7.225
8
2,563.0
8
10

HW
714
9
7.05
9
8.30
9
3,148.0
9
9
6.87
9
6.81
9
793
9
2,8835
9
10
6.96
9
6.89
9
7925
9
29310
9
10
6.89
9
6.83
10
74
9
27975
9
9

Adaptive
8.02

3,100.0
1
10

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

1141

Naive
5.41
4
533
5
473
4

1,716.0
5

9
5.28
S
5.10
S
5.08
S
1,6205
4
8
5.44
<)
512
<)
535
S
1,8470
S
9
5.54
4
498
3
5.925
6
2,021.0
4
10

HWW*

417
1
3.96
1
2.65
1

8705

1

10
444
1
427
1
303
1

1,0225

1

10
431
1
412
1
3275
1

9825

1

10
426
1
402
1
34
1

1,051.0
1

10

HW*  Adaptive*
5.11 5.1
2 2
5.03 5.03
2 2
4.25 425
2 2
1,4740 1,4740
2 2
10 10
474 5.23
2 3
454 5.03
2 4
3.30 435
2 <)
1,2770 1,618.5
2 3
10 8
5.54 554
4 4
532 532
4 4
47 47
3 3
1,8135 1,8135
3 3
9 9
5.46 593
3 5
5.04 567
4 5
4.825 55
3 4
1,8985 21225
3 )
10 9

Auto*
6.29
7
6.21
7
6.65
7
24730
7
10
6.19
6
6.09
6
595
6
23275
6
9
6.56
7
6.45
7
6.45
7
26045
8
9
6.44
7
6.30
7
6.05
7
24220
7
10

Naive*
5.66
6
5.56
6
5.30
6
1,9265
6
10
6.24
7
6.14
7
6.23
7
23325
7
9
594
6
5.89
6
5.475
6
20425
6
10
6.01
6
5.89
6
5.6
S
2,140.0
6
9
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Period:

10

15

200% Level Shift (N)
Range of Percent Error

Scenario 11

Adjusted

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

58.67%
4
41.46%
4
5.23
4
2,2075
4
8
70.22%
2
61.49%
2
3.03
2
1,220.5
2
9
77.66%
2
69.29%
2
33
2
1,4920
2
10
89.97%
2
71.70%
2
345
2
1,695.0
2

10

HWW

63.13%
6
50.47%
8
7.05
9
2,388.0
8
8
118.11%
9
110.09%
9
7.60
7
2,824.0
9
7
131.65%
8
120.78%
8
79
9
2,668.0
8
9
146.51%
7
119.69%
7
8025
8
2,5035
7
9

HW Adaptive
61.16% 77.21%
5 1
47.84% 52.79%
7 10
6.38 7.60
6 10
2,3025 2,4520
7 10
8 8
120.27%  114.32%
10 7
111.36%  107.61%
10 7
7.63 8.03
8 10
2,8185 2,801.5
8 7
7 7
133.72%  155.47%
9 1
121.74%  143.80%
9 1
7.85 9.55
8 1
2,682.0 31220
9 1
9 10
162.66%  194.64%
9 1
131.02%  159.88%
9 1
8.2 8975
9 1
2,637.0 3,0525
9 1
10 10

*K-W Mutti-Comparison Count valid only if Kruskal-Wallis statistic is significant.

137.15%
10
8325
10
2,8055
10
10

11-2

Naive
64.12%
8
52.62%
9
6.85
8
2,397.0
9
8
116.96%
8
109.05%
8
7.80
9
2,825.0
10
7
97.59%
4
89.33%
)
495
5
2,0120
5
10
91.61%
3
79.50%
4
5.15
5
1,827.0
4
10

HWW*

52.42%
3
36.04%
3
428
2
2,001.5
3
10
64.59%
1
52.41%
1
2.88
1
1,197.5
1
9
67.51%
1
53.29%
1
255
1
1,218.0
1
10
79.98%
1
56.44%
1
295
1
1,413.0
1
10

HW*  Adaptive*
50.58% 48.78%
2 1
35.71% 31.32%
2 1
430 328
3 1
1,810.0 1,668.5
2 1
10 10
83.23% 83.61%
3 4
72.35% 72.22%
4 3
4.00 4.08
3 4
1,622.0 1,588.5
4 3
9 9
90.88%  103.53%
3 5
71.78% 81.11%
3 4
425 475
3 4
1,580.0 1,836.0
3 4
10 10
109.51%  127.00%
4 5
75.22% 87.59%
3 5
4.175 45
3 4
1,696.5 1,934.0
3 5
10 10

Auto* Naive*
67.50% 63.53%
9 7
4727% 45.45%
6 5
5.95 6.55
5 7
22240 2,2280
S 6
7 7
97.49%  97.25%
6 5
90.61% 89.87%
6 5
6.33 6.48
5 6
22525 2,2115
6 5
9 9
129.44% 109.69%
7 6
11392% 97.11%
7 6
6.8 6
7 6
25430 22270
7 6
10 10
164.86% 127.45%
10 6
120.56% 102.83%
8 6
6.125 6.125
6 6
25075 22385
8 6
9 10
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200% Level Shift (N) Scenario 11 Table: 11-3
Period: Mean Absolute Percent Error

Adjusted HWW HW Adaptive Auto Naive HWW* HW*  Adaptive* Auto* Naive*

1 Average 28.75% 28.38% 28.81% 36.51% 33.88% 24.30% 2.77% 21.42% 21.84% 29.53% 27.48%
Rank 7 6 8 1 10 4 3 1 2 9 5
Geometric Mean 23.58% 25.82% 26.45% 31.67% 28.51% 21.17% 17.36% 18.76% 19.38% 2426% 22.28%
Rank 6 8 9 1 10 4 1 2 3 7 5
Average Rank by Series 5.70 7.33 7.98 9.50 8.50 4.30 325 3.48 403 6.35 5.60
Rank of Average Rank 6 8 9 1 10 4 1 2 3 7 5
Kruskal-Wallis Rank Sum 2,300.0 24755 25545 2,878.0 2,614.0 1,928.0 1,820.0 1,655.5 1,7385 22620 2,084.0
Rank of K-W Rank Sum / 8 9 1 10 4 3 1 2 6 5
K-W Multi-Comparison Count* 9 9 8 10 9 10 10 10 10 9 10

5 Average 40.70% 52.64% 55.48% 67.83% 63.46% 40.86% 30.13% 37.40% 41.16% 5357%  49.42%
Rank 3 7 9 1 10 4 1 2 5 8 6
Geometric Mean 37.81% 49.41% 52.17% 63.85% 60.49% 38.41% 2594% 32.64% 36.06% 48.13%  45.89%
Rank 4 8 9 1 10 5 1 2 3 7 6
Average Rank by Series 4.50 7.83 823 9.60 9.60 4.90 225 333 373 6.10 5.95
Rank of Average Rank 4 8 9 10 10 5 1 2 3 7 6
Kruskal-Wallis Rank Sum 1,802.0 2,503.5 2,6885 3,251.0 3,146.0 1,728.0 1,161.0 1,502.5 1,7545 24420 2,331.0
Rank of K-W Rank Sum 5 8 9 1 10 3 1 2 4 7 6
K-W Multi-Comparison Count* 8 9 10 10 10 8 10 10 8 9 10

10  Average 46.77% 62.83% 70.09% 85.23% 74.32% 39.36% 38.72% 50.70% 58.55% 7487% 62.89%
Rank 3 6 8 1 9 2 1 4 5 10 7
Geometric Mean 42.46% 54.08% 60.00% 76.42% 68.19% 37.06% 31.39% 37.76% 43.86% 61.38% 53.55%
Rank 4 7 8 1 10 2 1 3 5 9 6
Average Rank by Series 42 7125 7.525 9.6 9.05 45 295 3.975 4475 6.5 6.1
Rankof Average Rank 3 8 9 1 10 5 1 2 4 7 6
Kruskal-Wallis Rank Sum 1,894.0 2,365.5 2,5625 3,187.0 29440 1,5220 1,465.0 1,5705 1,8825 25820 23350
Rank of K-W Rank Sum 5 7 8 1 10 2 1 3 4 9 6
K-W Multi-Comparison Count* 9 9 9 10 10 8 9 9 9 9 9

15  Average 52.28% 73.01% 8325%  103.17% 84.39% 38.36% 44.72% 62.49% 74.11% 94.77%  75.03%
Rank 3 5 8 1 9 1 2 4 6 10 7
Geometric Mean 41.88% 55.62% 62.73% 79.51% 67.85% 36.32% 30.88% 41.19% 48.71% 65.73% 55.26%
Rank 4 7 8 1 10 2 1 3 5 9 6
Average Rank by Series 385 7.075 7.475 8.95 8.3 5.15 26 4775 5.275 6.7 5.85

Rank of Average Rank 2 8 9 1 10 4 1 3 5 7 6
Kruskal-Wallis Rank Sum 1,939.0 23765 25315 2,938.0 2,768.0 1,678.0 1,484.0 1,7235 1,9975 25570 23170
Rank of K-W Rank Sum 4 7 8 1 10 2 1 3 5 9 6
K-W Multi-Comparison Count*® 9 9 9 10 10 9 10 9 9 9 9

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.
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Period:

10

15

Period:

10

15

200% Level Shift (N) Scenario 11

Root Mean Squared Error

Adjusted
Geometric Mean 201.81
Rank 4
Average Rank by Series 475
Rank of Average Rank 4
Geometric Mean 308.06
Rank K]
Average Rank by Series 365
Rank of Average Rank 3
Geometric Mean 390.87
Rank 3
Average Rank by Series 35
Rank of Average Rank 2
Geometric Mean 421.31
Rank 4
Average Rank by Series 35
Rank of Average Rank 2

200% Level Shift (N) Scenario 11

Geometric Root Mean Squared Error
Adjusted
Geometric Mean 138.93
Rank 7
Average Rank by Series 6
Rank of Average Rank 6
Geometric Mean 211.18
Rank 6
Average Rank by Series 57
Rank of Average Rank 5
Geometric Mean 24600
Rank 5
Average Rank by Series 46
Rank of Average Rank 4
Geometric Mean 24287
Rank 3
Average Rank by Series 46
Rank of Average Rank 2

HWW
25391

8.08
46367

7.825
564.87

7.625
593.22

7.325

HWW
142.91

7.275
20895

6.875
25956

6.275
303.79

6.775
7

HW

253.11
8
8.08
8

476.27
9
8325
9

610.29
9
8.025
9

663.09
9
7.725
9

HW

156.69
9
7.975
9

23555
8
6.925
8

306.07
7
7.425
9

33487
8
6.925
8

Adaptive

295.73
1

Adaptive

187.18

11-4

Naive
230.75
7

6.30
7

386.47
5
54
5

403.36
4
53
5

387.63
2
5.15
4

11-5

Naive
9476

43
144.40

42
181.45

5.35
207.23

6.15
6

HWW*
14697
1
240
1
22091
1
215
1
20463
1
235
1
32229
1
25
1

HWW*
8485

335
132.58

275
178.79

34
17557

295
1

HW*  Adaptive*

175.69
2
3.18
2

292.73
2
3.275
2

377.11
2
4175
3

421.04
3
4875
3

176.32
3
3.43
3

31542
4
3.775
4

43431
S
4775
4

49843
S
5.325
S

HW*  Adaptive®

105.63
3
3.875
2

148.00
3
3.425
2

211.06
3
4125
2

24859
4
4675
3

11459
4
4375
4

176.30
4
4075
3

24580
4
4425
3

29791
S
5.225
4

Auto*
218.51
6

5.65
6

412.16
7
6.35
7

581.40
8
6.45
7

661.22
8
6.8
7

Auto*
138.27

6.4
25381

6.95
35288

735
391.14

6.95
9

Naive*®
205.66
)

5.30
5
388.86
6
5.85
6
509.26
6
5.7
6
561.83
6
5.85
6

Naive*®
124 .86

55

231.90

6.7

306.61

6.2

326.65

5
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200% Level Shift (N)
Scenario 11

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)
Scenario 11

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)
Scenario 11

Period:

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)
Scenario 11

Period:
1 RANKANOVA
S RANK ANOVA
10 RANK ANOVA
15 RANK ANOVA

Average Rank of Absolute Error

Table: 1 -6

Chi Squared DF p Value
55.36 19 0.0000
104.91 10 0.0000
48.60 19 0.0002
89.50 10 0.0000
39.79 19 0.0035
7432 10 0.0000
2461 19 0.1736
4766 10 0.0000
Range of Percent Error

Table: 1 -7

Chi Squared DF p Value
2679 19 0.1097
997 10 0.4428
46.21 19 0.0005
58.73 10 0.0000
5212 19 0.0001
48.99 10 0.0000
4768 19 0.0003
3467 10 0.0001
Symmetry Adjusted MAPE

Table: 1 8

Chi Squared DF p Value
48.60 19 0.0002
21.01 10 0.0210
5333 19 0.0000
4203 10 0.0000
40.31 19 0.0030
30.08 10 0.0008
19.67 19 04144
17.04 10 0.0735
Geometric Root Mean Squared Error
Table: 1 -9

Chi Squared DF p Value
37.68 19 0.0065
50.21 19 0.0001
2N 19 0.0259
2488 19 0.1644

Period:

Period:

Period:

200% Level Shift (N)

Scenario 11

Chi Squared

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)

Chi
1

5

10

15

Scenario 11
Squared

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)

Chi
1
5

10

15

Scenario 11
Squared

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

200% Level Shift (N)

Period:

Scenario 11

Chi Squared

1 RANKANOVA
S RANKANOVA
10 RANKANOVA
15 RANKANOVA

Log Mean Squared Error Ratio

Table: 1 -10
DF p Value

3768 19 0.0065
39.30 10 0.0000
50.21 19 0.0001
4375 10 0.0000
2.7 19 0.0259
17.85 10 0.0576
2488 19 0.1644
12.71 10 0.2403
Median Absolute Percent Error
Table: 1 -1

DF p Value

35.36 19 0.0126
2364 10 0.0086
36.85 19 0.0063
3350 10 0.0002
272 19 0.2500
23.08 10 0.0105
11.87 19 0.8909
13.02 10 0.2223
Mean Absolute Percent Error
Table: 1 -12

DF p Value

47.60 19 0.0003
19.58 10 0.0335
67.14 19 0.0000
56.16 10 0.0000
49.76 19 0.0001
4245 10 0.0000
38.78 19 0.0047
28.01 10 0.0018
Root Mean Squared Error

Table: 1 -13

DF p Value

65.06 19 0.0000
7281 19 0.0000
5333 19 0.0000
40.78 19 0.0026
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Period: Trend Shift (N)

10

15

Scenario 12

Average Rank of Absolute Error

Adjusted
Average 7.55
Rank 10
Geometric Mean 7.36
Rank 10
Average Rank by Series 8.08
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,2625
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10
Average 6.64
Rank 10
Geometric Mean 6.32
Rank 10
Average Rank by Series 6.65
Rank of Average Rank 9
Kruskal-Wallis Rank Sum 2,636.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10
Average 5.90
Rank 6
Geometric Mean 5.14
Rank 4
Average Rank by Series 565
Rank of Average Rank S
Kruskal-Wallis Rank Sum 2,1235
Rank of K-W Rank Sum 6
K-W Multi-Comparison Count* 9
Average 6.09
Rank 6
Geometric Mean 5.10
Rank 3
Average Rank by Series 6.375
Rank of Average Rank 7
Kruskal-Wallis Rank Sum 22920
Rank of K-W Rank Sum 6
K-W Mutlti-Comparison Count* 8

HWW
5.03
2
483
2
463
K)
1,561.0
2
8
533
3
5.18
3
463
3
1,7035
3
9
6.15
8
6.02
8
6.325
8
23520
8
9
6.19
7
6.01
]
62
6
23405
7
7

HW
478
1
463
1
393
1
1,2675
1
10
522
2
499
2
428
2
1,651.0

5.96

6.375

7
2,3645

8

7

Adaptive
5.39

S
5.13

5
5.28

5

1,814.0

S

10
599

7
562

4
6.18

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
5.12
3
488
3
418
2

1,617.0

Table:

Naive
5.15
4
493
4
465
4
1,592.0
3
8
495
1
474
1
4.05
1
1,417.0
1
10
5.78
5)
5.55
6
5925
6
21055
5
9
574
4
5.49
6
5.6
3
2,0585
3
8

HWW*

HwW*
6.04
8
5.98
8
6.43
8
2355.0
8
9
5.94
4
5.85
7
6.18
6
2177.0
S

4.78
4.61

395

1,384.5
4.56

4.40

1,3340

9

Adaptive*
6.04
8
5.98
8
6.43
8
2355.0
8
9
5.96
6
5.88
8
6.45
8
22345
(4
7
478
1
4.61
1
395
1
1,3845
1
9
4.56
2
433
1
3925
1
1,355.0
2
9

Auto*
5.84
6
577
6
6.03
7
2,176.0
6
10
6.14
9
5.99
9
6.68
10
2,360.0
9
9
5.44
3
5.16
5
5.425
4
1,891.5
3
10
5.68
3
5.1
4
5.75
)
2,088.0
4
8

Naive*

6.03
7
5.90
7
5.68
6
22745

7

9
6.00
8
5.78
6
6.08
S

2,302.0

8

7
5.48
4
5.11
3

54

3

2,0115

4

10
5.79
S
533
S
5.675
4

21295

5
8
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Period:

10

15

Trend Shift (N) Scenario 12
Range of Percent Error

Adjusted
Average 18.41%
Rank 9
Geometric Mean 13.67%
Rank 9
Average Rank by Series 7.88
Rank of Average Rank 10
Kruskal-Wallls Rank Sum 2,5535
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count® 10
Average 30.39%
Rank 10
Geometric Mean 28.48%
Rank 10
Average Rank by Series 7.20
Rank of Average Rank 9
Kruskal-Wallis Rank Sum 2,695.0
Rank of K-W Rank Sum 10
K-W Mutlti-Comparison Count* 10
Average 56.68%
Rank 10
Geometric Mean 47.03%
Rank 10
Average Rank by Series 7.125
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 29285
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 89.82%
Rank 1
Geometric Mean 75.37%
Rank 1
Average Rank by Series 7575
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 3,1445
Rank of K-W Rank Sum 10
K-W Mutti-Comparison Count* 9

HWW
14.73%
3
7.60%
2,
3.93
1
1,7145
2
8
23.43%
3
15.34%
2
3.75
1
1,613.0
2
8
33.00%
4
2455%
2
495
3
1,857.0
2
8
39.78%
2
31.45%
2
S
4
1,7920
2
8

HW Adaptive
14.85% 13.23%
4 1
8.10% 8.32%
3 4
433 425
4 3
1,7395 1,831.0
3 4
9 10
23.83% 23.42%
4 2
16.66% 17.78%
3 5
3.90 5.05
2 5
1,629.0 1,806.0
3 5
8 10
33.21% 31.00%
5 1
25.46% 25.31%
4 3
4775 5.225
2 4
1,861.5 1,865.5
3 4
8 8
40.87% 41.86%
3 4
34.47% 35.39%
3 4
4775 485
2 3
1,8345 1,833.0
4 3
8 8

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
1452%
2
8.77%
5
5.10
5
1,929.0
5
10
22.62%
1
17.16%
4
423
3
1,7155
4
10
32.71%
3
27.19%
5
55
5)
2,002.0
5
10
43.34%
)
37.38%
6
5.875
S
2,0155
5
10

Table:

Naive
15.62%
6
6.39%
1
410
2
1,657.0
1

9
23.98%
S
1297%
1
435
4
1,587.0
1
8
31.09%
2
19.47%
1
4.2
1
1,580.0
1
10
36.13%
1
23.14%
1
3.75
1
1,490.0
1
10

12-2

HWW*

25.58%

3,221.5
1
9

HW*  Adaptive*
18.39% 18.57%
8 10
13.35% 13.70%
8 10
7.03 7.23
8 9
24055 2,4525
8 9
8 9
28.79% 28.39%
9 8
25.39% 24.86%
9 8
6.95 6.65
8 6
2,449.0 2,387.0
9 7
8 7
38.74% 37.67%
9 8
31.01% 29.88%
9 8
6.6 6.225
9 7
2,300.0 2,2045
9 8
10 9
52.34% 48.91%
9 7
44.09% 39.09%
9 7
6.9 6.225
9 6
2,367.0 2,1745
9 7
9 9

Auto* Naive*
15.47%  15.94%
5 7
1244% 1257%
6 7
5.80 6.60
6 7
2321.0 23700
6 7
9 8
2662% 27.77%
6 7
24.02% 2484%
6 ¥ 4
6.75 7.23
7 10
23410 24175
6 8
8 7
3476%  35.36%
6 7
2885% 28.41%
7 6
6.375 6
8 6
21035 2,166.0
6 7
9 8
4761%  50.46%
6 8
37.08% 41.36%
5 8
6.55 6.825
7 8
21020 23355
6 8
9 9

396



Period:

10

15

Trend Shift (N) Scenario 12
Mean Absolute Percent Error

Adjusted

Average 10.58%
Rank 10
Geometric Mean 9.70%
Rank 10
Average Rank by Series 8.00
Rank of Average Rank 10
Kruskal-Wallis Rank Sum 2,905.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count* 10
Average 18.98%
Rank 10
Geometric Mean 17.69%
Rank 10
Average Rank by Series 6.60
Rank of Average Rank 9
Kruskal-Wallis Rank Sum 2,828.0
Rank of K-W Rank Sum 10
K-W Multi-Comparison Count*® 10
Average 3252%
Rank 10
Geometric Mean 27.21%
Rank 10
Average Rank by Series 495
Rank of Average Rank 5
Kruskal-Wallis Rank Sum 2531.0
Rank of K-W Rank Sum 10
K-W Mutti-Comparison Count*® 10
Average 55.25%
Rank 10
Geometric Mean 46.41%
Rank 10
Average Rank by Series 6.3
Rank of Average Rank 6
Kruskal-Wallis Rank Sum 2,713.0
Rank of K-W Rank Sum 10
K-W Mutti-Comparison Count* 10

HWW

6.79%
3
4.38%
3
433
K)
1,680.5
2
8
13.26%
3
11.77%
3
418
3
1,781.5
3
8
2597%
7
24.10%
8
6.925
8
23375
8
9
41.29%
7
37.16%
8
6.975
9
23415
8
9

HW Adaptive
6.70% 7.04%
1 S
4.17% 4.60%
1 5
393 465
1 5
1,654.5 1,843.0
1 S
8 9
12.89% 13.68%
1 4
11.30% 11.95%
1 4
413 5.10
2 4
1,7275 1,927.0
1 4
8 9
25.15% 26.27%
S 8
23.08% 23.48%
S 6
6.875 76
7 9
22135 2,290.0
S 7
8 i
39.94% 41.91%
S 8
35.61% 36.67%
5 4
6925 75
8 10
22545 23120
6 7
8 7

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table:
Auto Naive
6.78% 6.92%
2 4
453% 4.38%
4 2
425 4.40
2 4
1,823.0 1,7120
4 3
9 8
14.16% 13.14%
5 ‘ 2
12.31% 11.51%
5 2
5.35 3.90
5 1
1,9520 17710
5 2
9 8
2753% 25.46%
9 6
25.17% 23.49%
9 7
78 6.45
10 6
2,447.0 2,2420
9 6
10 8
45.15% 40.37%
9 6
40.96% 36.25%
9 6
8.15 6.15
11 5
2,583.0 2,250.0
9 5
10 8

12-3

HWW*

14.72%

6.45
7
2,810.0
1
10

HW*  Adaptive*
8.44% 8.36%
9 8
7.04% 6.90%
9 8
6.93 6.78
9 8
23505 23135
9 8
9 7
15.32% 15.00%
9 8
13.85% 13.39%
9 8
6.73 6.58
10 8
2,1635 2,108.5
9 6
7 7
21.39% 20.50%
3 1
18.63% 17.42%
4 1
4275 3.975
2 1
1,7815 1,698.5
3 1
8 9
32.28% 30.94%
2 1
27.96% 25.64%
2 1
3875 3.625
2 1
1,726.5 1,648.5
2 1
8 9

Auto* Naive*
7.86% 7.79%
7 6
6.79% 6.72%
7 6
6.05 6.20
6 7
22680 2,261.0
7 6
8 8
1465% 1457%
4 6
1337% 13.29%
7 6
6.45 6.35
7 6
21330 21180
8 7
7 7
20.80%  21.45%
2 4
1790% 18.31%
2 3
465 47
3 4
1,7680 1,841.0
2 4
7 8
33.13% 3521%
3 4
28.00%  29.93%
3 4
49 5.15
3 4
1,7670 1,9040
3 4
9 10
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Period:

10

15

Period:

10

15

Trend Shift (N) Scenario 12
Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Trend Shift (N) Scenario 12

Adjusted

170.36

10
855

10
283.27

10
6.7

8
38343

10
525

5
568.47

10
6.05

6

Geometric Root Mean Squared Error

Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank
Geometric Mean

Rank

Average Rank by Series
Rank of Average Rank

Adjusted

104.70

HWW
77.90

413

17955

3925

325.76

7.075

440.36

7175

HWW
4484

4775

126.63

5425

24308

6.875

35212

7.075
9

HW
75.88
1
358
1
174.46
2
3.625
1
316.52
7
6.775
7
42893
6
6.925
8

HW
4188
1
4125
1
117.78
1
5326
3
22572
S
6.925
8
330.01
S
7.025
8

Adaptive

79.58
4
405
3

181.34
4
485
4

31477
6
75

10

43203
i
75

10

Adaptive

50.72
5
495
5

129.24
5
5.9
8

25157
9
79
9

35228
7
7.6

10

Auto
80.11

3.60

166.79

495

336.27

74

47863

83
1

Auto
4754

44

128.09

5.8

259.11

79

386.81

7.85
1

Table:

Naive
76.13
2
455
5
170.83
1
38
2
306.71
5
6
6
417.1
5
5.95
S

Table:

Naive
47 17

47
131.85

485
24324

5.95
366.35

6.55
6

12-4

HWwW*
25270

1
10.95

1
444 21

HW*  Adaptive®

130.10
9
7.38
9

226.23
9
7.225

10

259.48
4
4375
2

344 .81
3
4125
2

129.57
8
733
8

220.26
8
6.975
9

246.03
1
3.925
1

31782
1
3.775
1

HW*  Adaptive®

66.28
9
6525
9

142.34
9
5.725
6

163.21
3
3725
2

233.16
2
3.425
1

61.19
6
6.075
6

134.14
7
5475
S

151.41
1
3675
1

220.00
1
3.475
2

Auto® Naive*
123.24 12343

6 7
5.85 6.05
6 7
21554 216.31
6 7
6.65 6.6
7 6
249.16 24965
2 3
455 445
4 3
33229 354.13
2 4
46 5.05
3 4

Auto* Naive*®

65.05 65.00
8 7
6.3 6.4
7 8

135.90 127.34
8 3
6 475
9 1

160.84 168.98
2 4
45 48
3 4

23984 265.29
3 4
47 525
3 4
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Trend Shift (N)
Scenario 12
Period:
1 RANKANOVA

KRUSKAL-WALLIS

S RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

15 RANK ANOVA

KRUSKAL-WALLIS

Trend Shift (N)
Scenario 12
Period:
1 RANKANOVA

KRUSKAL-WALLIS

5 RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

Trend Shift (N)
Scenario 12
Period:
1 RANK ANOVA

KRUSKAL-WALLIS

5 RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

1S RANK ANOVA

KRUSKAL-WALLIS

Trend Shift (N)
Scenario 12
Period:
1 RANK ANOVA
5 RANK ANOVA
10 RANK ANOVA
15 RANK ANOVA

Average Rank of Absolute Error

Table: 12 -6

Chi Squared DF p Value
38.01 19 0.0059
75.35 10 0.0000
20.65 19 0.3562
36.84 10 0.0001
18.16 19 0.5116
3448 10 0.0002
17.04 19 0.5874
3448 10 0.0002
Range of Percent Error

Table: 12 -7

Chi Squared DF p Value
3727 19 0.0073
31.06 10 0.0006
3869 19 0.0048
4943 10 0.0000
18.93 19 0.4615
35.28 10 0.0001
17.23 19 05740
36.58 10 0.0001
Symmetry Adjusted MAPE

Table: 12 8

Chi Squared DF p Value
5423 19 0.0000
4868 10 0.0000
46.90 19 0.0004
63 06 10 0.0000
3054 19 0.0453
33.02 10 0.0003
2328 19 0.2251
2327 10 0.0098
Geometric Root Mean Squared Error
Table: 12 -9

Chi Squared DF p Value
31.05 19 0.0398
20.46 19 0.3674
2859 19 00728
2593 19 0.1321

Period:

Period:

Period:

Trend Shift (N) Root Mean Squared Error

Period:

Trend Shift (N)
Scenario 12

Chi Squared

1 RANKANOVA

KRUSKAL-WALLIS

S RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

Trend Shift (N)
Scenario 12

Chi Squared

1 RANK ANOVA

KRUSKAL-WALLIS

S5 RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

15 RANKANOVA

KRUSKAL-WALLIS

Trend Shift (N)
Scenario 12

Chi Squared

1 RANK ANOVA

KRUSKAL-WALLIS

5 RANKANOVA

KRUSKAL-WALLIS

10 RANK ANOVA

KRUSKAL-WALLIS

15 RANK ANOVA

KRUSKAL-WALLIS

Scenario 12
Chi Squared
1 RANK ANOVA
S RANK ANOVA
10 RANK ANOVA
15 RANK ANOVA

Log Mean Squared Error Ratio

Table: 12 -10
DF p Value

31.05 19 0.0398
4167 10 0.0000
20.46 19 0.3674
30.04 10 0.0008
2859 19 0.0728
35.62 10 0.0001
2593 19 0.1321
3258 10 0.0003
Median Absolute Percent Error
Table: 12 -11

DF p Value

3164 19 0.0343
3217 10 0.0004
25.19 19 0.1543
38.71 10 0.0000
17.79 19 0.5367
17.65 10 0.0612
16.79 19 0.6042
12.24 10 0.2691
Mean Absolute Percent Error
Table: 12 -12

DF p Value

4245 19 0.0015
4075 10 0.0000
3762 19 0.0066
4557 10 0.0000
2401 19 0.1957
2298 10 0.0108
2248 19 0.2609
20.02 10 0.0291
Table: 12 -13

DF p Value

5849 19 0.0000
4487 19 0.0007
2683 19 0.1086
2283 19 0.2451
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Historical Level Shift

Period:

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic is significant.

Scenario 13 Average Rank of Absolute Error

Adjusted
3.61
6
3.49
6
4.00
6
13855
6
5
In
1
2.88
1
295
1
987.5
1
5
3.08
1
284
1
290
1
984.0
1
5
N
1
288
1
338
2
1050.0
1
()

Table: 13-1
HWW HW
3.49 3.49
4 3
3.41 3.42
3 4
368 3.45
4 3
1261.5 12370
4 3
4 4
3.56 349
5 4
3.42 3.39
5 4
3.68 363
5 4
1266.5 1239.0
5 4
4 4
3.64 3.56
6 4
3.48 343
6 5
3.80 368
5 3
13375 1284.0
6 4
4 3
3.64 3.64
5 5
345 3.45
5 6
3.80 3.65
6 4
1310.0 1297.0
6 5
4 2

Adaptive
359
5
343
5
3.80
5
1331.0
5
5
368
6
343
6
3.98
6
1393.0
6
5
358
5
339
4
378
4
1301.0
5
3
3.51
3
328
4
355
3
12595
3
3

Auto
3.26
2
3.20
2
3.18
2
11205
2
5
337
5
3.27
3
3.30
2
11845
2
4
Kipx)
2
KRR
2
305
2
1099.0
2
5
3.19
2
3.06
2
2.95
1
10785
2
5

Naive
3.16
1
3.02
1
2.90
1
9245
1
5
3.39
3
322
2
3.48
3
1189.5
3
4
3.51
3
3.25
3
3.80
5
12545
3
4
352
4
3.16
3
3.68
5
1265.0
4
3

400



Historical Level Shift
Period:

1 Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

S Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rankof K-W Rank Sum

K-W Multi-Comparison Count*

10 Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

15 Average
Rank
Geometric Mean
Rank
Average Rank by Series
Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

Scenario 13  Range of Percent Error

Adjusted
8.69%
S
4.76%
3
3.45
3
1218.0
4
1
17.13%
2
8.03%
6
355
4
12470
6
4
19.66%
3
9.03%
6
320
2
12410
6
2
15.98%
4
9.09%
6
320
1
1297.0
6
5

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Table: 13-2
HWW HW Adaptive
8.44% 8.39% 8.56%
3 2 4
4.85% 4.84% 4.75%
6 5 2
3.80 355 3.15
5 4 1
1209.0 1203.0 1220.0
3 2 5
0 0 0
18.02% 17.94% 16.79%
5 4 1
7.62% 7.77% 7.55%
3 4 2
3.40 335 3.60
2 1 5
1194.0 1203.0 1215.0
2 3 4
1 1 0
21.53% 2152% 19.36%
6 ) 2
8.75% 8.80% 8.50%
3 4 2
3.40 3.05 345
3 1 4
1207.0 1210.0 11720
3 4 1
0 0 2
17.49% 17.08% 15.72%
6 S 3
7.94% 7.89% 7.46%
5 4 3
385 355 370
6 4 5
1230.0 12320 11770
4 S 3
4 4 3

Auto
8.23%
1
4.58%
1
3.20
2
1179.0
1
2
17.64%
3
7.83%
5
3.45
3
1223.0
5
2
20.39%
4
8.82%
5
3.80
5
1231.0
5
2
1426%
2
711%
2
3.30
2
1161.0
1
3

Naive
9.46%
6
4.84%
4
3.85
6
1231.0
6
1
21.11%
6
7.25%
1
365
6
1178.0
1
2
16.29%
1
8.36%
1
410
6
1199.0
2
0
13.21%
1
7.08%
1
3.40
3
1163.0
2
3
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Historical Level Shift

Period: Scenario 13 Mean Absolute Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®

Ad|usted
5.06%
3
2.83%
2
3.80
3
1219.0
3
2
7.56%
1
4.70%
1
305
1
1166.0
1
3
10.04%
1
6.10%
1
3.00
2
1133.0
1
4
10.72%
1
6.86%
1
3.20
2
1137.0
2
4

395

1263.0
S
3
24.83%
S
9.49%
S
3.95
6
12470
4
3

133
HW Adaptive
5.71% 5.00%
6 2
3.01% 2.90%
6 4
3.80 4.05
3 6
1230.0 1246.0
4 6
2 2
11.57% 8.12%
4 2
5.69% 499%
4 2
380 405
4 6
1229.0 11720
4 2
2 3
19.18% 11.19%
6 2
8.44% 6.50%
6 2
395 3.60
5 3
1269.0 1137.0
6 2
3 4
24.95% 12.73%
6 3
9.87% 7.41%
6 2
375 345
5 3
12740 1134.0
5 1
3 4

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
5.41%

287%
2.80
1185.0
11.69%
6 -
5.90
3.15

1248.0

18.84%
7.96%
290

1215.0

2459%
8.67%
295

11940

5

Naive
459%
1
265%
1
2.65
1
1149.0
1
4
8.56%
3
5.18%
3
3.05
1
1204.0
3
1
11.19%
3
7.59%
3
3.60
3
12430
4
2
12.11%
2
8.86%
4
3.70
4
12740
5]
3
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Historical Level Shift Table:
Period: Scenario 13 Root Mean Square Error

Adjusted HWW

1 Geometric Mean 3205 34.64
Rank 2 5

Average Rank by Series 3.60 3.90
Rank of Average Rank 3 4

S5 Geometric Mean 54.77 65.19
Rank 1 4

Average Rank by Series 295 3.80
Rank of Average Rank 1 5

10 Geometric Mean 71.07 94.66
Rank 1 5

Average Rank by Series 285 385
Rank of Average Rank 1 5

15 Geometric Mean 81.17 110.33
Rank 1 5

Average Rank by Series 3.15 4.05
Rank of Average Rank 2 6
Historical Level Shift Table:

Period: Scenario 13 Geometric R oot Mean Square Error

Adjusted HWW

1 Geometric Mean 2164 2264
Rank 3 6

Average Rank by Series 375 3.60
Rank of Average Rank 6 4

S5 Geometric Mean 34.24 43.61
Rank 2 5

Average Rank by Series 3.05 395
Rank of Average Rank 1 5

10 Geometric Mean 441 64.44
Rank 2 5

Average Rank by Series 3.15 375
Rank of Average Rank 2 4

15 Geometric Mean 56.89 79.64
Rank 1 4

Average Rank by Series 3.30 385
Rank of Average Rank 2 6

13-4

HW
34.72

6
4.00

6
65.48

S
3.65

4
95.84

6
3.85

S
11470

6
3.80

S

13-5

HW
2202

3.45
39.54
3.60
64.86
3.75
82.64

3.70
4

Adaptive
3365
4
3.90
4
57.23
2
405
6
75.33
2
370
3
86.87
2
3.50
3

Adaptive
20.94

2
3.70

S

38.87
3
3.95
5

50.74
3
38
6

64.49
2
3.40
3

Auto
3295

260
66.90
3.00
92.20
3.05
100.71

285

Auto
245

3.45
43.82

3.05
59.01

31

75.22

1

Naive
31.75

3.00
58.68
355
86.73
3.70
101.90

365

Naive
19.21

3.05
0.00
3.40
0.00
345
80.18

3.70

403



Historical Level Shift

Period Scenario 13

1 RANK ANOVA
KRUSKAL-WALLIS

5 RANK ANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift
Scenario 13

1 RANK ANOVA
KRUSKAL-WALLIS

5 RANK ANOVA
KRUSKAL-WALLIS

10 RANK ANOVA
KRUSKAL-WALLIS

15 RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift
Scenario 13

1 RANK ANOVA
KRUSKAL-WALLIS

5 RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA

10 KRUSKAL-WALLIS
RANK ANOVA

15 KRUSKAL-WALLIS

Historical Level Shift
Scenario 13

1 RANK ANOVA

5 RANK ANOVA

10 RANK ANOVA

15 RANK ANOVA

Average Rank of Absolute Error

Chi Square DF
3.00 19
5.72 5
257 19
364 5
3.02 19
394 5
228 19
272 5

Symmetry Adjusted MAPE

Chi Square DF

4.95 19
024 5
3.30 19
0.23 5]
332 19
073 5
257 19
0.88 S

Range of Percent Error

Chi Square DF

222 19
0.07 S
1.53 19
0.12 5
284 19
0.12 5
1.98 19
0.58 5

Geometric Root Mean Square Error Table13-9

Chi Square DF

201 19
298 19
235 19
227 19

Table 13- 6
p Value
1.0000
0.3348

Table 13- 7
p Value
0.9995
09986

Table 13-8
p Value
1.0000
0.9999
1.0000
0.9997
1.0000
0.9997
1.0000
0.9887

p Value
1.0000
1.0000
1.0000
1.0000

Historical Level Shift Log Mean Square Error Ratio Table
Period Scenario 13 Chi Square DF  p Value
1 RANK ANOVA 201 19 1.0000
KRUSKAL-WALLIS 1.90 5 0.8624
5 RANK ANOVA 307 19 1.0000
KRUSKAL-WALLIS 217 5 0.8246
10 RANK ANOVA 221 19 1.0000
KRUSKAL-WALLIS 1.52 5 0.9107
15 RANK ANOVA 227 19 1.0000
KRUSKAL-WALLIS 1.18 5 0.9464
Historical Level Shift Mean Absolute Percent Error
Scenario 13 Chi Square  DF p Value
1 RANK ANOVA 493 19 0.9995
KRUSKAL-WALLIS 0.27 5 0.9981
S RANK ANOVA 3.46 19 1.0000
KRUSKAL-WALLIS 0.26 5 0.9984
10 RANK ANOVA 337 19 1.0000
KRUSKAL-WALLIS 077 5 09788
15 RANK ANOVA 273 19 1.0000
KRUSKAL-WALLIS 0.86 S 09727
Historical Level Shift Median Absolute Percent Error
Scenario 13 Chi Square  DF p Value
1 RANK ANOVA 234 19 1.0000
KRUSKAL-WALLIS 047 S 0.9931
S RANKANOVA 224 19 1.0000
KRUSKAL-WALLIS 0.17 5 0.9994
10 RANK ANOVA 356 19 1.0000
KRUSKAL-WALLIS 112 5 0.9526
15 RANKANOVA 308 19 1.0000
KRUSKAL-WALLIS 1.16 5 0.9484
Historical Level Shift Root Mean Square Error  Table
Scenario 13 Chi Square  DF p Value
1 RANK ANOVA 452 19 0.9997
S RANK ANOVA 325 19 1.0000
10 RANK ANOVA 321 19 1.0000
15 RANK ANOVA 323 19 1.0000

13-10

Table

Table

13-13

13-11

13-12
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Historical Level Shift (Restricted)

Period:

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Scenario 13b

AdJusted
362
6
349
6
3.95
6
13720
6
5
291
1
27N
1
265
1
860.0
1
5
285
1
259
1
275
1
8505
1
5
287
1
268
1
308
2
8945
1
5

HWW
353
4
3.4
S
3.73
4
12925
4
4
3.62
S
3.49
S
3.80
S
13125
S
S
372
6
357
6
3.88
6
1381.0
6
S
N

6
353
6
3.90
6
13555
6
4

HW
3.49
3
343
4
3.45
3
1239.0
3
S
3.46
3
3.34
3
3.55
4
12245
2
3
3.57
3
342
4
3.60
3
1289.0
4
4
3.66
S
347
S
358
3
1320.0
S

Table: 138-1
Average Rank of Absolute Error
Adaptive Auto
359 3.26
5 2
343 3.20
3 2
3.80 3.18
) 2
13245 1114.0
S 2
4 5
373 3.45
6 2
352 335
6 4
408 3.40
6 2
14140 12335
6 4
S 3
363 3.30
S 2
345 317
S 2
385 3.10
S 2
13355 1140.0
5 2
S S
357 326
3 2
335 33
4 2
368 305
4 1
1298.0 1123.0
4 2
3 S

2

Naive
3.16
1
3.02
1
2.90
1
9275
1
5
347
4
3.28
2
353
3
1231.0
3
3
358
4
3.30
3
383
4
12815
3
4
357
3
3.19
3
373
5

12825
3
3
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Historical Level Shift (Restricted)

Period: Scenario 13b Range of Percent Error

1

10

15

Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count®
Average

Rank

Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
Kruskal-Wallis Rank Sum
Rank of K-W Rank Sum

K-W Multi-Comparison Count*

AdJusted
8.60%
4
471%
2
3.40
3
1213.0
2
1
16.16%
1
7.37%
2
325
1
1193.0
2
1
17.33%
2
7.99%
1
3.10
2
1181.0
2
1
12.75%
1
8.07%
6
305
1
1231.0
4
3

Table:

HWW
8.46%
2
4.86%
S
3.88
6
1213.0
2
0
18.08%
S
7.64%
4
3.48
3
1199.0
3
0
21.64%
6
8.78%
S
3.48
3
1215.0
S
0
17.62%
6
7.98%
S
3.98
6
1241.0
6
3

13B-2

HW
8.88%
S
4.97%
6
3.78
4
12225
S
1
18.00%
4
7.80%
S
343
2
12125
4
0
19.99%
4
8.61%
4
298
1
12105
4
0
15.19%
4
7.76%
4
3.48
4
12375
S
3

Adaptive
8.56%
3
4.75%
3
3.00
1
1216.0
4
0
16.79%
2
7.55%
3
3.65
S
1219.0
5
0
19.36%
3
8.50%
3
3.50
4
1174.0
1
1
15.72%
S
7.46%
3
375
)
1178.0
3
3

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.

Auto
8.23%

4.58%
3.15
1175.0
17.64
3 v
7.83%
3.50

1227.0

20.39%
8.82%
385

12350

14.26%
711%
2
335

1164.0

Naive
9.46%
6
484%
4
3.80
5
1228.0
6
1
21.11%
6
7.25%
1
3.70
6
1188.0
1
0
16.29%
1
8.36%
2
410
6
1209.0
3
0
13.21%
2
7.08%
1
3.40
3
1174.0
2
3
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Table: 13B-3
Historical Level Shift (Restricted)
Period: Scenario 13b Mean Absolute Percent Error

Adjusted HWW HW Adaptive Auto Naive

1 Average 5.12% 5.71% 5.50% 5.00% 5.41% 459%
Rank 3 6 5 2 4 1
Geometric Mean 287% 3.00% 2.96% 2.90% 287% 2.65%
Rank 2 6 S 4 3 1
Average Rank by Series 380 3.93 373 405 285 265
Rank of Average Rank 4 5 3 6 2 1
Kruskal-Wallis Rank Sum 12240 12320 1229.5 1246.0 1186.0 1148.0
Rank of K-W Rank Sum 3 S 4 6 2 1
K-W Multi-Comparison Count® 2 2 1 2 3 4

S5 Average 6.90% 1151% 11.09% 8.12% 11.69% 8.56%
Rank 1 5 4 2 6 3
Geometric Mean 437% 5.64% 5.44% 4.99% 5.90% 5.18%
Rank 1 S 4 2 6 3
Average Rank by Series 270 4.03 3.68 4.15 3.30 3.15
Rank of Average Rank 1 S 4 6 3 2
Kruskal-Wallis Rank Sum 1117.0 1229.0 12025 1180.0 12540 12220
Rank of K-W Rank Sum 1 5 3 2 6 4
K-W Multi-Comparison Count® S 2 2 3 3 1

10 Average 8.53% 1893%  18.30% 11.19% 18.84% 11.19%
Rank 1 6 4 2 5 3
Geometric Mean 5.42% 8.15% 8.01% 6.50% 7.96% 7.59%
Rank 1 6 5 2 4 3
Average Rank by Series 275 403 383 375 3.00 365
Rank of Average Rank 1 6 5] 4 2 3
Kruskal-Wallis Rank Sum 1068.0 1251.0 1230.5 1149.0 12220 1269.0
Rank of K-W Rank Sum 1 5 4 2 3 6
K-W Multi-Comparison Count® S 2 2 5 3 3

15 Average 8.85% 2455%  2378% 12.73% 2459% 12.11%
Rank 1 5 4 3 6 2
Geometric Mean 6.17% 9.26% 9.32% 7.41% 8.67% 8.86%
Rank 1 5 6 2 3 4
Average Rank by Series 295 4.08 363 355 3.05 375
Rank of Average Rank 1 6 4 3 2 5
Kruskal-Wallis Rank Sum 1064.0 12250 12285 11430 1203.0 1306.0
Rank of K-W Rank Sum 1 4 5 2 3 6
K-W Multi-Comparison Count* S 3 3 5 3 S

*K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant.
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Historical Level Shift (Restricted)
Period:

1 Geometric Mean

Rank

Average Rank by Serles

Rank of Average Rank
S Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
10 Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
15 Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank

Historical Level Shift (Restricted)
Period:

1 Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
S Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
10 Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank
15 Geometric Mean

Rank

Average Rank by Series

Rank of Average Rank

Scenario 13b

Ad|usted
3235
2
3.60
3
50.87
1
2.60
1
63.07
1
250
1
73.10
1
280
1

Scenario 13b
Adjusted
2209
4
3.80
6
3203
2
3.05
1
40.26
2
3.15
2
51.59
1
3.05
1

Table: 1384
Root Mean Square Error
HWW HW Adaptive Auto
34.63 34.68 3365 3295
5 6 4 3
3.93 393 3.90 265
S S 4 1
64.51 63.67 57.23 66.90
S 4 2 6
393 353 415 315
5 3 6 2
93.33 92.08 75.33 92.20
6 4 2 S
3.98 373 3.80 320
6 3 4 2
108.94 110.51 86.87 100.71
S 6 2 3
418 373 355 3.00
6 4 3 2
Table: 13B-5
Geometric Root Mean Square Error
HWW HW Adaptive Auto
2219 21.36 2094 2245
S 3 2 6
353 338 3.70 3.50
4 2 5 3
4273 37.36 38.87 43.82
5 3 4 6
398 353 4.00 3.05
S 4 6 1
62.60 61.72 50.74 59.01
6 5 3 4
3.725 3675 39 31
S 4 6 1
76.35 76.10 64.49 75.22
5 4 2 3
393 363 355 310
6 4 3 2

Naive
31.75

3.00
58.68
3.65
86.73
3.80
101.90

3.75

Naive
19.21

3.10
0.00
3.40
0.00
3.45
80.18

375
5
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Historical Level Shift (R)
Period Scenario 13b

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)

1

5

10

15

Scenario 13b

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)

1

5

10

15

Scenario 13b

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)

1
5
10
15

Scenario 13b

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Average Rank of Absolute Error

Chi Square  DF p Value  Period
295 19 1.0000
5.61 5 0.3457
3.60 19 1.0000
7.25 5 0.2028
350 19 1.0000
7.85 5 0.1647
2.60 19 1.0000
6.32 5 0.2759
Symmetry Adjusted MAPE

Chi Square  DF p Value

477 19 0.9996
0.25 S 0.9985
413 19 0.9999
0.44 5 0.9942
383 19 0.9999
1.32 S 0.9331
3.04 19 1.0000
1.54 5 0.9084
Range of Percent Error

Chi Square  DF p Value

2N 19 1.0000
0.07 5 0.9999
1.65 19 1.0000
0.05 5 1.0000
3.15 19 1.0000
0.11 5 0.9998
2.40 19 1.0000
0.27 5 0.9982
Geometric Root Mean Square Error Table 13B- 9
Chi Square  DF p Value

1.98 19 1.0000
3.10 19 1.0000
2.40 19 1.0000
259 19 1.0000

Table 13B-6

Table 13B-7

Historical Level Shift (R)
Scenario 13b

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)
Scenario 13b

1

5

10

15

RANKANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)
Scenario 13b

1

5

10

15

RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS
RANK ANOVA
KRUSKAL-WALLIS

Historical Level Shift (R)
Scenario 13b

1
5
10
15

RANK ANOVA
RANK ANOVA
RANK ANOVA
RANK ANOVA

Log Mean Square Error Ratio

Chi Square DF

1.98 19
1.84 S
3.19 19
3.06 5
224 19
243 5
259 19
252 5

p Value

Mean Absolute Percent Error

Chi Square DF

477 19
0.28 S
432 19
0.48 5
384 19
1.20 5
315 19
1.43 S

Median Absolute Percent Error

Chi Square DF

245 19
0.47 5
213 19
0.25 S
3.84 19
1.34 5
357 19
1.66 S

p Value

Root Mean Square Error

Chi Square DF

4.26 19
437 19
435 19
3.90 19

Table 13B-10

Table 13B- 11

Table

13B-12

Table 13B-13
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Appendix V Forecast Evaluation Statistics
Descriptive Statistics
Following are the statistics that are used in this

analysis. Citations are in the text.

Let:
X = Actual observation, (sometimes subscripted to time
period i)
F = Forecast (sometimes subscripted to time period i)

Mean Squared Error
MSE = I.”., E;*/n

Root Mean Squared Error
RMSE = VMSE

Mean Absolute Percent Error

MAPE

L. |Ey/Xi|/n * 100
Percent Error

1

Mean Percent Error
MPE = 1. PE,/
RS T R Lt

Geometric Root Mean Squared Error
GRMSE = [II.E3, (L) ]/%"
Where L = the number of steps ahead from T to the
observation from which the error is calculated, n = T -

L + 1, T = the t index value for the last actual
observation, and i is the index of the series.
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Log Mean Error Ratio (as compared with Naive 2).

Let m;; denotes the mean squared forecast error of
techniques j on series i. For this series, define the
log mean squared error ratio as Ilmr;. = log(m;,/my;),
where m;, is the mean [squared] forecast error of some
benchmark technique. Computed with the benchmark MSE
in the numerator, a positive LMR indicates that
technique j had a smaller forecast MSE on this series
than the benchmark.

Symmetrical Mean Absolute Percent Error
SMAPE = Z,.,"{|E;|/ (F.+X;) }/n
Symmetrical Percent Error
SPE; = E;/(F.+X.) * 100
Symmetrical Mean Percent Error
SMPE = I,.," SPE;/n
Median Absolute Percent Error (Median APE)
MdAPE = Observation (S+1)/2 for an odd number of
observations or the average of S/2 and
(S+1)/2 for an even number of observations,
where the observations are the rank ordered
average percent errors.
Average Rank
AR = (Summed Rank/Number of Obserwved Ranks) .

Range of Percent Error

RPE = largest positive percent error minus largest
negative percent error.
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Inferential Statistics

Rank ANOVA

Let the most accurate prediction = rank 1 and the least
accurate = rank n,
m = time periods (updates), and

R;. = the rank of the tth prediction for method 1i.

Summed ranks are calculated as:
m ;
Si=2t=1Rit' 1=1,2, P o |

Analysis of Variance by Rank (Friedman Test or Rank ANOVA)
The summed ranks can be compared using a chi-squared
goodness of fit test with a prior expectation of
1/2 m(n+l) use chi-squared with using n-1 degrees of
freedom:

x2=Li=;2 [S;-1/2m(n+1) 13/ [ (n)m(n+1) /12]
Kruskal-Wallis Test

H=[12/ (N(N+1)) 1+3 ;5] [(1/n,) « [W;- .50, (n;+1) 112

Where, Akzlzl(nﬁ and n; are the number of predictions

for the i methods and W; is the sum of the ranks for
method i. Ranks are based on the absolute value of the
forecast errors. H is a chi-squared variable with k-1
degrees of freedom.



Appendix VI Kruskal-Wallis and Analysis of Variance by Rank
The two non-parametric statistical tests produced
overwhelmingly significant results except with scenario 13
where they proved not significant with all statistics and
all trials. This last result led me to suspect that there
might be something wrong with scenario 13 and after some
investigation I came to suspect either (a) the models in
scenario 13 were allowed to fit to excessive [} parameters,
or (b) that the statistics were sensitive to the number of
treatments (models) considered. I examined the first
suspicion by reducing the possible P} parameter range and
rerunning this trial. Results have been presented as
scenario 13b and are not significantly different from
scenario 13. I examined the second suspicion by excluding 5
non-ad hoc models from scenario 1 and calculating the
Kruskal-Wallis and Rank ANOVA statistics for the rank of
absolute error comparison (equivalent to Tables 1-1 and 1-7

in Appendix IV). These results are shown in tables 1 and 2.
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Table 1 Inferential Statistics with Fewer Options

Period Adjust HWW® HW* Adapt® Auto® Naive*

1 Average Rank by Series 1.60 343 3.10 3.40 4.88 4.60
Rank of Average Rank 1 4 2 3 6 5
Kruskal-Wallis Rank Sum 372 1283 1069 1129 1709 1698
Rank of K-W Rank Sum 1 4 2 3 6 S
K-W Multi-Comparison Count* 5 5 5 5 4 4

S Average Rank by Series 1.75 2.83 3.80 3.98 4.80 3.85
Rank of Average Rank 1 2 3 5 6 4
Kruskal-Wallis Rank Sum 4155 903.5 13225 1402 17825 1434
Rank of K-W Rank Sum 1 2 3 4 6 S
K-W Multi-Comparison Count* 5 5 5 4 5 4

10  Average Rank by Series 1.55 2975 3825 4175 4.075 44
Rank of Average Rank 1 2 3 5 4 6
Kruskal-Wallis Rank Sum 3975 9465 13485 1494 1531.5 1542
Rank of K-W Rank Sum 1 2 3 4 5 6
K-W Multi-Comparison Count* 5 5 5 4 3 4

15  Average Rank by Series 1.58 275 3.70 3.98 468 433
Rank of Average Rank 1 2 3 4 6 5
Kruskal-Wallis Rank Sum 383 802 1340.5 14975 1712 1525
Rank of K-W Rank Sum 1 2 3 4 6 S
K-W Multi-Comparison Count® 5 S 5 4 S 4

Table 2 Rank Anova and Kruskal-Wallis Results

Period Chi Squared DF pvalue
1 RANK ANOVA 14.52 19 0.7528
KRUSKAL-WALLIS 50.46 S 0.0000
5 RANK ANOVA 12.15 19 0.8789
KRUSKAL-WALLIS 47.63 S 0.0000
10 RANK ANOVA 12.41 19 0.8674
KRUSKAL-WALLIS 43.10 S 0.0000
15 RANK ANOVA 13.96 19 0.7859
KRUSKAL-WALLIS 53.77 S 0.0000

For the Kruskal-Wallis statistic, the wvalues of the

statistics change (which should be expected), but the

general results do not, that is, the statistics remained

significant at the a =
ANOVA test, the statistics are no
suggests that the significance of
be partly attributable to the use
It

treatments (forecast models).

0.05 level.

However, for the Rank

longer significant. This
the previous results may

of a large number of

1s not clear whether this
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arises because of an increased number of obserwvations or
because of some unidentified bias that the tests bring into

the analysis.

Following these explorations, I again reviewed the
results of scenario 13 and found another reasonable
explanation, which is that the actual summarized statistical
results in scenario 13 did not vary very much. So, it seems
that the lack of significance in scenario 13 as compared
with the fairly strong statistical results in the other
scenarios could résult from the obvious statistical reason,
that the different treatments in scenario 13 do not produce

particularly different results.

Another problem with these statistics is that in some
of the trials rank order was strong, but inconsistent
between the various descriptive statistics. The non-
parametric tests were not sensitive to these inconsistent
results. The rank order results were statistically
significant with extremely low p values both when the
results were consistent between various descriptive
statistics and when they were not. This suggests that these
rank tests are not sufficient to distinguish superior and
inferior forecast models by themselves, but that they may be

useful as a supplement to the application of a battery of
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descriptive statistics as presented in this dissertation.
If the results are consistent across a battery of
descriptive statistics and test significant with these
tests, the researcher has reason to accept that the
treatments are different. Statistical significance is a
weaker result while significance without consistency is

uninterpretable.

In this study, the examination of possible statistical
testing of forecast treatments through non-parametric rank
order tests was a secondary objective. These results should
be considered exploratory. However, it appears that the
application of either of these statistical tests in the
manner described in this section has some promise when
applied across a battery of descriptive statistics. Where
results are consistent across the battery of descriptive
statistics and the results are significant with one or both
of these tests, as occurs with scenarios 1, 2, 8 and 9, it
appears that the tests support each other and strengthen the
conclusion that the differences in forecast treatments are
more than just incidental. Where the results are less
consistent across the battery of descriptive statistics, as
with scenario 5, or where the statistical tests are not
significant, as with scenario 13, results are not firmly

supported by the study.
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