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" Plurality 1S no t to be pos i ted wi thout necessity . "  

ii 

- Wil l iam of Ockham 
circa 12 8 0  - 13 4 9  
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Abstract 

ADJUSTING HOLT-WINTERS EXPONENTIAL SMOOTHING FOR EXTERNAL 
INTERVENTION : A MATHEMATICAL TECHNIQUE FOR MAKING QUASI­
JUDGMENTAL ADJUSTMENTS FOR ANTICIPATED CHANGES 

Daniel w .  wi l l iams , D . P . A .  

Virginia Commonweal th Univers tiy , 1 9 9 4  

Publ ic adminis tration data is sometimes extrapolated through 

exponential smoothing . somet imes such data may undergo a 

l eve l shi ft because of  a pol icy dec is ion . The slope of  the 

curve formed by connec t ing the periodic observations 

increases or decreases s igni ficantly for a brief period , 

thereaf ter returning to a slope s imi lar to the slope 

preceding the pol icy change . This discont inuity might be 

cal led a ramp or a s tep .  Forecasts made wi th exponential 

smoothing immediately be fore , during , or immediately af ter 

the ramp or step may be considerably inaccurate unless 

adj us ted . A technique cal led adj us ted exponential smoo thing 

is proposed to reduce or el iminate the inaccuracy of  

forecas ts made under such c ircums tances when the ramp or 

s tep arises from a planned pol icy dec ision .  An empirical 

s tudy is conduc ted to determine whether the proposed 

technique cons t i tutes an improvement over other exponential 

smoothing techniques . The empirical s tudy shows that the 

proposed technique improves the accuracy o f  forecasts when 

planned level shi fts subsequently ac tual ly occur . 

Guidel ines are provided for us ing the technique . 

xii 



CHAPTER 1: INTRODUCTION 

In this chapter I wi l l : 

o Provide a general introduc tion to this dissertation . 

o Provide an overview of  the following chapters . 

General Introduction 

I t  1S 

Forecas ting is an integral part of planning and 

budgeting for many public adminis trat ion ac tivi ties . 

used for revenue proj ec tions , planning for prisons , 

budgeting for Medicaid expendi tures , and numerous other 

public adminis tration planning and budgeting activi t ies . 

Forecasting techniques can be roughly c lass i f ied as 

s imple , intermediate , and sophis ticated . 

o Simple techniques can be as s imple as assuming that the 

last observation wil l  also be the next , which is 

somet imes called the random walk or naive method . 

Other s imple techniques fol low the random walk approach 

a f ter preprocessing data by such methods as 

deseasonaliz ing it or adj us ting for such fac tors as 

inflation , sometimes this sort of preprocess ing is 

called " decompos i tion . "  Some t imes a s imple trend is 

added to the data ; the trend may be the di f ference 

1 



between the las t two observa tions or the ratio of  the 

las t observation over the prior observat ion . 

2 

o Intermediate techniques inc lude moving averages , 

exponential smoothing , and the use o f  more complex 

decompos i tion which may inc lude bui lding a model of  the 

process that i s  to be forecas ted . 

o Sophisticated techniques generally involve use of  

s ingle or mul t iple correlation techniques or the use of  

complex forecas ting algori thms such as  ARIMA . 

These labels do not necessari ly capture the richnes s  o f  

the variety of  techniques , for example some moving average 

techniques , l ike X11 ( de fined in Appendix I ) , may be very 

complex . Empirical s tudies in forecas ting do no t 

demonstrate that sophi s ticated techniques produce be tter 

results  than intermediate techniques . Exponential 

smoothing , in particular , is of ten c i ted to be as e f fec t ive 

as more sophist icated techniques . 

In this di ssertation I examine a problem that arises 

when forecasting wi th exponent ial smoo thing . Data series 

sometimes undergo shi fts ( see Figure 1 )  that make them 

di f f icul t to forecas t . In data forecas ted for public 
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Figure 1 

adminis tration purposes , these shi fts  may arise because o f  

pol icy changes , s o  I c a l l  them po l icy changes o r  po l icy 

shi fts in this di ssertat ion . 

Data forecas t for public adminis trat ion frequently 

contain pol icy changes . Dec isions made by legislatures 

o f ten trans form into changes in data series . For example , 

the data series shown in the example is ac tual average 

reimbursement per service uni t  for certain Medicaid 

3 

expendi tures: the level shi f t  reflects a legislative ac tion . 

The exis tence o f  level shi fting data in revenue forecas ting 

is documented by Wi lpen Gorr .!  



4 

wi th techniques that use correlation based mathema t ic s , 

such as regression ,  his tori cal level shi fts generally c an be 

incorporated in the forecast model ei ther by inc luding 

independent variables that undergo s imil ar level shi f t s , or 

by use of dummy vari ables . This approach is not available 

to intermediate techniques such as exponential smoo thing . 

Techniques that are avai lable for incorporating historical 

level shi f ts are discussed in the l i terature review . 

Addi tionally ,  there is no avai lable technique for 

integrating expec tations of fu ture pol icy changes into 

exponential smoothing models . Such future pol icy changes ,  

espec ially those that have l i ttle historical precedence ,  

also pose a problem for more sophis t icated techniques .  

Somehow the level shi f t  mus t  be put into the model in order 

to get i t  out of the mode l . 

In this dissertation I propose a technique for 

integrating independently developed estimates of policy 

changes into exponential smoothing mode ls to forecast 

through future periods that have pol icy shi fts . This method 

cons i s ts o f  modi fications o f  an exponential smoothing model 

to incorporate the f irs t di f ferences o f  a pol icy change 

estimate wi thin the exponential smoothing mode l . 



5 

Two maj or hypotheses are examined : 

1 .  The proposed technique provides forecasts that are more 

accurate than are avai lable from o ther exponent ial 

smoothing techniques for the period beginning wi th the 

onset of the ac tual level shi fting data . 

2 .  The proposed technique provides forecas ts that are more 

accurate and be tter f i t  than are avai lable from o ther 

exponential smoothing models for periods of time 

following the period o f  a leve l shi f t . 

These hypotheses are made more prec ise in Chapter 6 .  

The first hypothes,s 1 S  examined through 12 di f ferent 

s imulations of pol icy shi fts over 2 0  data series . The 

proposed technique , four other exponential smoothing 

techniques , and the random walk approach are used to proj ec t  

each data series through a period where a level shi f t  i s  

antic ipated . Hold out data is adj usted for s imulated pol icy 

changes .  The forecas ts are updated through s ix periods 

under twelve scenarios of s imulated ac tual leve l shi fts . 

Forecasts are compared wi th s imulated ac tuals and errors are 

calculated for up to f i f teen periods subsequent to the s ix 

update periods . The errors aris ing from various techniques 



are compared across an array o f  stat i s tics in the manner o f  

forecast compet i tions . 

6 

Descriptive s tatistics inc lude three measures o f  Mean 

Squared Error , three measures of  Absolute Percent Error , a 

measure of  range o f  percent error and a measurement of  rank 

o f  absolute error . Each o f  these s tatistics is computed for 

each series and then summari z ed for all  twenty series . Four 

summarizations are provided , the average of the twenty 

series , the geometric mean o f  the twenty series , the average 

ranks o f  the 1 1  scenarios for each o f  the twenty series , and 

the summed Kruskal-Wa l l is ranks o f  the twenty series . Each 

o f  these results is ranked among the 11 scenarios . The 

average ranks and the Kruskal-Wallis ranks are tes ted for 

s tatis tical s igni ficance through two non-parametric tests , 

the Kruskal-Wallis analys is an the Analys is of  variance by 

Rank . 

The second hypothesis is examined in a separate 

forecast comparison . Twenty data series that are known to 

have undergone previous level shi fts are forecas t us ing the 

proposed technique in model f i t t ing s tage , and us ing four 

other techniques .  Magni tude of his torical level shi f ts i s  

empirically e s timated from the data . No s imulated pol icy 

changes are added to these data . Six updates are completed . 



Hold out data is used to examine the accuracy o f  the 

forecas t as wi th the f irst hypothesis . Analys is o f  results 

i s  as wi th the first hypothesis . 

Overview of Chapters 

In the second chapter I provide background related to 

forecas ting in public administration and background 

discuss ion o f  forecas ting in general and exponential 

smoo thing in particular . I describe Hol t-Winters 

exponent ial smoothing and discuss the relative worth o f  

exponential smoothing a s  a forecas ting technique . In the 

third chapter I provide a more complete discuss ion o f  the 

problem proposed in this introduc tory chapter , spec i fy the 

research question for this dissertat ion , and discuss the 

need for this s tudy . In the fourth chapter I examine the 

l i tera ture to de termine what techniques might already exi s t  

for addressing the proposed problem through exponential 

smoo thing . In the fifth chapter I propose an exponential 

smoo thing solution to the problem . In the sixth chapter I 

7 

examine the l i terature to determine various models o f  

forecasting research and examine appropriate models for 

empirical evaluation of proposed forecas ting techniques . I 

provide more prec ise formulations o f  the hypotheses . In the 

seventh chapter I de f ine two research proj ec ts tha t are used 

to examine these hypotheses . In the eighth chapter I 
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present the results o f  the two research proj ects . In the 

ninth chapter I discuss results and draw conc lus ions . Terms 

are de fined in Appendix I .  Appendix II inc ludes formulas 

for forecast techniques discussed . Appendix III inc ludes 

certain correlation matrices related to the data series used 

in the research proj ects . Appendix IV contains tables 

produced in the data analys is . Appendix V contains 

information concerning the f i t  of the model in the second 

research proj ec t .  Appendix VI contains estimated level 

shi fts  for the second research proj ect . Appendix VII 

contains formulas for the s tatis tics  demons trated in 

Appendix IV and certain o ther error stat i s t ics . 

Summary 

Forecasting is important for planning and budgeting , 

two integral elements o f  public adminis tration . Exponent ial 

smoo thing is a va luab le forecas t ing technique . Level 

shi f t ing data is di f f icult to forecas t whe ther through 

exponential smoothing or other techniques .  A method i s  

proposed for forecas t ing level shi f t ing data . Two maj or 

hypotheses concerning this technique are examined through 

two research proj ects . 



CHAPTER 2 :  BACKGROUND 

In this chapter I :  

o Identify some uses o f  forecas ting in public 

adminis tration . 

o Identi fy some occas ions where a level shi fting problem 

arise} wi th data forecas ted for public adminis tration . 

This problem is discussed in more detail in chapter 3 .  

o Discuss some general ideas regarding the display o f  

forecas t data in graphs . 

o Discuss forecas t techniques in general . 

o Discuss the use o f  a form o f  exponential smoothing 

known as Simple Exponential Smoothing ( SES ) and two 

variants known as Holt exponential smoo thing and Hol t ­

Winters exponent ial smoo thing . 

o Brie fly explain why exponential smoothing is a useful 

form of  forecas ting . 

Forecasting in Public Administration 

Some uses of  forecas ting in public administration are : 

o Revenue is forecas t for budget planning and other 

uses . 2 

9 



o Enti tlement programs forecas t enrol lment and service 

usage for budgeting and planning . d 

o Prison populations are forecast for budgeting and 

planning- . 3 

o Expendi tures are forecas t for budget planning . 4 

o Spec ial heal th care populations are forecast for 

planning and other purposes . 5  

Many of  these forecasts are made for budgetary and 

planning purposes , and are intimately assoc iated wi th the 

analytic roles o f  such public adminis tration pro fes sionals 

as budget or pol icy analys ts . Forecas ting is an important 

analytic tool for these public management and publ ic 

management support roles . Many techniques are used in the 

prac tice of public administrat ion . Publications and 

1 0  

enti t ies that focus on public adminis tration have sponsored 

artic les , chapters , or books concerning forecas ting . 6 

Exponential smoothing , which is the spec i f ic 

forecas ting method s tudied in this di ssertation , has been 

sugges ted as a technique that would bene f i t  local 

governments in budge t forecas ting . 7 Thi s  suggest ion res ts 

in part on the s implic i ty of use . Further , 1 0% o f  munic ipal 

dKnown from my personal experience as the budget 
director for the Department of Medical Assistance Services . 
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governments u s  exponential smoothing for revenue forecas t ing 

and 7% use i t  for expenditure forecas ting . s Analys is o f  

exponential smoothing forecas ting models has been accepted 

as a dis sertat ion topic in public adminis tration . 9  

Governmental forecas ting inaccuracy receives heavy 

scrutiny even when estimates are extremely c lose . 10 Both 

revenue and expendi ture forecas ting receive c lose at tention 

in evaluating the fiscal status o f  the s tates . 11 In recent 

years , evaluation of expendi ture forecas ting has 

spec i fically focussed on Medicaid programs . 12 

Medicaid Forecasting 

In Virginia , Medicaid general fund expendi tures account 

for 13% o f  all general fund expendi tures in the Commonweal th 

o f  Virginia for fiscal year 1 9 9 413 and is c i ted as among the 

fas tes t growing components of the Commonweal th's budget . 14 

Other s tates are experienc ing s imi lar growth in their 

Medicaid programs and their Medicaid programs are o f  s imi lar 

magni tude wi thin their s tate budgets . 15 Medicaid 

expendi tures have been proj ec ted to c limb to 2 5% of s tate 

spending by 19 9 5  ( us ing a di f ferent measurement scale which 

inc ludes federal funds and has these expendi tures at about 

2 0% in 19 9 4 ) . 16 
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The Medicaid program is also a rapidly growing large 

component of the federal budget , which currently consumes 

about 6 %  of the total federal budget . 17 Federal and s tate 

spending on Medicaid overtook other public spending for the 

poor in the early 1 9 8 0 s18 and is now the largest federal 

grant program in s tate government ,  amount ing to 3 5 % of all 

federal grants to s tates in 1 9 9 1 . 19 In 1 9 9 1 ,  federal 

spending on Medicaid total led $ 5 2 . 5  bi l l ion . 20 Medicaid is 

overtaking the currently larger Medicare program which 

accounts for 1 0 %  of the federal budget . 21  

The Medicaid program is generally cons idered to be 

uncontrollable . One o f  the components o f  the perception 

thi s  Medicaid is the fac t that many states have had 

di f f iculty forecas ting their programs during a period o f  

s igni ficant pol icy change during the late 1 9 8 0 s . 22 Federal 

findings show s tate forecas ting errors averaging 1 8 %  across 

the country wi th Alabama underes timating its federal grant 

by almost 9 0 %  for fiscal year 1 9 9 1  ( no t  all individual 

s tates are reported) ; 23 however , the report leaves i t  

unc lear as t o  how much error ari ses from ac tual forecas t 

error . 

The federal government attributes a subs tantial portion 

of  the budget errors to " Subs tantial increases in inpatient 



hospi tal care [ , ] . . .  Increase numbers o f  beneficiaries , some 

o f  whom now receive bene f i ts as a result o f  pos t - 1 9 8 5.­

Congres s ional expans ions o f  e l igibi l i ty for Medicai� , 

13  

and] . . .  a general ly unpredic ted upturn in acute hea�h care 

costs . ,,24 This is a not very c lear attribution of a 

subs tantial portion of  these forecas t errors to pol icy 

changes , poss ibly as much as 4 1% ( reporting categories are 

not adequately c l ear to show a de fini te share ) . A recent 

Heal th Care F inanc ing Adminis tration publ ication shows 3 9  

" maj or " Medicaid expans ions between 1 9 8 6  and 1 9 9 0 . 25 The 

s tates have been complaining about federal ly driven Medicaid 

expansions since at leas t 1 9 8 8 . 26 Whi le exac t attributions 

o f  magni tude are not possible with this data , i t  is apparent 

that i t  is di f f icul t to forecas t through periods of po licy 

change . 

In this dissertation a technique is developed for 

forecasting through periods of policy change when externally 

developed estimates of the policy change are available .  I 

have developed this technique wi th the forecast ing problems 

o f  the Medicaid program in mind . I t  is no t unreasonable to 

expec t  that such estimates are of ten available . 27 The 

pol icy change problem is discussed in more depth in the next 

chapter . 
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Policy Changes Occurring Throughout Governmental Data 

As discus sed in the next chapter , the same problem 

arises in the correc tions environment .  Corrections is 

another s igni ficant area of  s tate budget ing that is thought 

to be out of contro l . 28 In the corrections environment this 

problem may be exacerbated by the fac t that pol icy changes 

may have extremely long lead times from policy dec is ion to 

impac t on the data series . a  

While the signi ficance o f  the po l icy change problem i s  

not wel l  documented i n  public adminis tration l i terature , i t  

i s  not completely ignored . Wi lpen Gorr has written on the 

s igni ficance o f  tracking public pol icy fac tors in 

governmental MIS sys tems for the purpose o f  us ing them to 

explain forecas t . 29 A portion o f  his argument is that when 

public planners forecast data series that have level shi f t s , 

user conf idence in the forecas t depends , in part , on there 

be ing adequate unders tanding of the reasons for those 

shi fts . He c i tes techniques such as those of  Lewandowski 

and of Makridakis and Carbone ( reviewed in a Chapter 4 

below )  as po tential methods for forecas ting wi th data that 

has such shi fts . 

aIn a presentation to a forecasting technical panel in 
July 1993, a Virginia Department of Corrections analyst 
presented data that showed lead times of five or more years . 
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Forecast data is frequently displayed on a Cartes ian XY 

graph cal ibrating the X aX1S in roughly equal time uni ts , 

and the Y ax i s  in the observ a t i on measuremen ts o f  the da t a. 

The data is usually displayed wi th the f irs t avai lable 

observation at the Y axis and each subsequent observat ion 

di splayed one time unit to the right . Each observat ion 1 S  

located t o  the right o f  its Y measurement and above i t s  X 

axi s  t ime mark . By connec ting these observations one 

obtains a curve that follows this data across time . 

F igure 2 shows a Cartes ian XY graph . Throughout this 

dis sertation XY graphs are used in this manner . 
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Forecasting Techniques 

There are number of  forecas ting techniques ranging from 

intuitive or j udgmental to highly complex mathematical 

approaches . ' In general these techniques rest on an estimate 

o f  central tendency , such as an average ,  or i ts variate wi th 

poss ible cons ideration of some predic table variation from 

central tendency , such as seasonality .  

Simple techniques generally treat a recent observat ion 

( somet imes called the naive method30 or random walk31 ) ,  the 

average , or a trend added back to one o f  these as a the 

forecas t . Simple trends inc lude both di f ferences between 

recent observations ( addi tive trend ) and ratios be tween 

recent observations ( multiplicative trend ) . ( Formulas that 

demons trate these trends and other forecas ting methods 

discussed in this dis sertation can be found in Appendix I I . )  

Simple techniques can also involve data cleaning such 

as adj us ting data to remove the e f fec ts of general inf lation 

by converting nominal dol lars to cons tant dol lars . 32 An 

even s impler technique is the use o f  a known fixed number as 

a forecas t . Where the forecas ter has good reason to believe 

i t  i s  correc t ,  no other forecas t can compare wi th a fixed 

number , for example , the number of days in any future week 

in the relevant future can be rel iably forecast to be 7 .  
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Intermediate levels of  forecas t techniques genera l ly 

inc lude moving averages ( de f ined in Appendix I )  and 

exponential smoothing . 33 There are several forms o f  

exponential smoothing , one that is frequently mentioned in 

forecas ting l i terature is cal led Hol t  or Ho lt-Winters 

Exponential Smoothing . This technique forms the basis  for 

mos t  of  the discuss ion in this dissertation . 

Two types o f  techniques that are more sophisticated 

than exponential smoothing are ARIMA ( Auto-Regress ive 

Integrated Moving Average ) techniques , and correlation based 

techniques . 34 ARIMA is a complex sys tem of equations and 

evaluation techniques that are s imi lar to exponential 

smoothing techniques ,  in fac t ,  Hol t  exponent ial smoo thing 

can be shown to be a spec ial case of ARIMA . 35a Corre lat ion 

techniques generally invo lve determination of a causal 

relationship between independent and dependent variables 

through regression models or sys tems of regress ion models . 36  

These techniques account for a large share of  forecast 

techniques used in ac tual prac tice , 37 and the more 

sophisticated ones ( inc luding exponential smoo thing ) are 

commonly inc luded in forecas ting texts . 38 

aMultiplicative Holt-Winters is not reducible to an 
ARIMA model. 
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Exponential Smoothing 

Exponential smoo thing i s  a method of  proj ec ting serial 

data into the future through a s tatistical evaluation of  

forecas t errors aris ing in the exponential smoothing model . 

Single exponential smoothing ( SES ) is a moving average that 

places more weight on recent observations . It  is sometimes 

called an exponentially weighted moving average . The 

weights diminish exponentially as new observations are added 

to the model , which fac t  gives this method the exponential 

part of the name exponential smoothing . 39  

� 
The idea o f  SES is that more recent observations are a I 

I , bet ter predic tor o f  the future level of a series than are 

I 
o lder observat ions . Level re fers to the central tendency o f, 

a data series . Since every individual observation contains I 

some random noise , the latest observation by itself i s  not 

the bes t  predic tor o f  the future series . By averaging in 

older observations , this noise is smoothed away . However ,  

by weighting the observations towards the current period ,  

the model s t i l l  reflects the current period information . I 

J 
Exponential smoothing provides a summary o f  this data 

through a curve that follows the data through the same time 

period,  but has less overal l  variation . The di f ference 

between the model curve and the ac tual data is the known as 



res idual noise , random variation or error . When the 

observations are exhaus ted at the current period , SES 

proj ects future values as the level calculated from the 

error calculated wi th the las t ac tual observation . 

Figure 3 depic ts a forecas t made wi th SES . 
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400 
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100 
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• •• 

o �.' I I I I I I I I I I I I I I 
X-Axis 

I • Histort:al D<ta Forecast 

Figure 3 
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SES is produced by the following formulas : 40a 

Ft+1 = Ft + exet 

Where , 

eT = Error of  observation t ,  

Xt = Observation t ,  

Ft = Forecast of  observat ion t ,  

ex i s  a weight parameter subj ec t to 0 

t is an index o f  t ime . 

a 1, and 

To fit  a mode l , the parame ter ex is f i t  to the curve 

us ing an optimi z ing technique . The opt imi z ing technique 

general ly involves reduc ing Root Mean Squared Error , Mean 

Absolute Percent Error or some other loss func tion to a 

2 0  

minimum . A loss func tion i s  a s tatistic that represents the 

cost  o f  error in the forecas t . 41 Di f ferent types o f  loss 

func tions treat error di f ferently . For example , loss 

func tions that square errors place greater emphasis on 

reduc ing the larges t  errors , while abso lute error loss 

func tions do not . 

aThroughout this dissertation notation is adj usted from 
that arising in source documents to increase the 
consistency . 
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The firs t forecas t ( Fo ) 1n the series can be zero , or 

it can be ini tial ized at some value that the forecas ter 

bel ieves to be c lose to the ini tial level of the series . Fo 

is the model value for the f irs t observation in the series , 

that is , at the far left s ide of  the graph ; it  is not the 

first forecast after the end o f  the his torical data . In the 

graph the forecas t is shown as a l ine with Fo beginning at 

the same point as the firs t ac tual observation , Xo . 

When a is set at zero , then F does not change from 

period to period, so i t  remains the ini t ial value , Fo- When 

a is set at I ,  F for periods beyond the current period are 

identical to the current period X .  

I t  is apparent in Figure 3 that the average of  the 

ac tual observations , 1 4 7 , would be a cons iderably worse 

predic tor of  the future value of  the series than the SES 

predic tion of 2 7 9 . However , it is also apparent that the 

series is trending towards even higher numbers . SES i s  not 

able to capture such a trend . A technique that can capture 

a trend is Hol t  Exponential Smoothing . 
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Holt Exponential Smoothin� 
----­

Hol t  exponent ial smoothing decomposes data into leve l 

and trend . Trend re fers to the slope of  a data series and 

is the di f ference be tween two success ive observations . 42 

When the observations are exhaus ted at the current period , 

the Holt  model proj ects future values by repeatedly adding 

back trend to the level to proj ec t the next level . It  is 

explicitly de fined through formulas43 which can be found in 

Appendix I I . 

40J 
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aDiscuss ion o f  Ho lt  and Ho lt-Winters exponential 
smoo thing c losely fol lows Makridakis , Wheelright , and McGee , 
see endnote 12 . 



Hol t  exponential smoothing adds a � parameter for 

trend . Both a and � are optimi z ed subj ec t to the 

res triction ¢ = {a , � ) , 0 ¢ 1 .  This technique begins 

2 3  

wi th an exponent ially weighted moving average , but also adds 

an observed trend to the extrapolation . When the trend 

elements of  the Hol t  model are set to neutral values ,  Hol t  

exponential smoothing i s  equivalent t o  SES . 

[Exam pie Holt-Winters I 
10r-----------------------------------------�--------_, 

Tr�nd 

.,���r�-----------------L----�--� 
.; Forecast contains bolh �end and seasonali\Y 

� �I 
..... -� ... 

��.y � .' • 

X-A>i. 

1_ Fou:Ga. • Hist.oriGOlI D"'l� I 

Figure 5 

Holt-Winters Seasonal Exponential Smoothing 

While Ho l t  allows cons iderat ion of  trend , i t  does not 

help with seasonally fluc tuating data . The fol lowing graph 

demons trates Hol t  model that also inc ludes a Winters 
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multiplicative seasonal component . 44 Formulas are in 

Appendix I I . 45 

On the XY graph , Ho l t-Winters makes the curve less 

smooth by inc luding expec ted seasonal variation through a 

third parameter , y . The parameters , ¢ = { a , � , y ) ,  are 

opt imized subj ec t to the res tric tion ,  0 ¢ 1 .  Where data 

is s igni ficant ly seasonal , normal seasonal variation is 

treated as expec ted rather than as error , so it  does not 

result in mis leading forecast correct ion with each update . 

When the seasonality component of  Hol t-Winters is set to 

neutral values Hol t-Winters is equivalent to Holt . 

Predictable Variation 

Seasonality is a form of  predic table variation . Other 

techniques are also avai lable for reduc ing predic table 

variation ,  e . g . , data can be divided by the number o f  

trading days , 46 be fore i t  is entered into the statistical 

forecast modela and then readj us ted a fter forecas ting 

through the model to produce a ful l  forecas t .  Such 

aIn this s tudy I use " forecas t model " to refer to 
s tatistical forecas t models which are equations or sys tems 
o f  equations that inc lude parameterized evaluation o f  
forecas t error . I t  i s  also pos s ible t o  refer t o  any s e t  of  
equations that result in a forecast as  a " forecas t model . "  
Al though ei ther usage may be correc t ,  I use the term to 
refer to s tatistical models . 
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adj usting and explaining invo lves at tempts to reduce the 

amount of  variation that is left  as res idual no ise . The use 

of trading days is part of  the broader approach of  data 

decomposition , where forecas ters try to break down a serles 

into s impler component series be fore forecas ting , 47 for 

example , one may break down a forecas t of expenditures for 

health care services into a forecas t of uni ts  ( services 

del ivered ) and a forecas t of expendi ture per uni t ,  this 

would be a multiplicative decomposition ;  alternatively , one 

might break down a forecas t of  service uni ts into service 

uni t s  del ivered to adults and service uni ts  delivered to 

chi ldren , this would be an additive decomposition . 

By decompos ing data into s impler series , forecas ters 

have a better opportuni ty to de termine the intuitive 

reasonableness o f  forecas t proj ec tions . This bene f i t  arises 

because homogeneous data series are more l ike ly to have only 

a few primary fac tors generating their trend ; thus , 

incongruous information is more obvious ( e . g . , a forecas t of  

gros s  expenditures may be allowed to grow because o f  " trend " 

when a forecas t of  uni ts o f  service would not be because the 

forecas ter knows that a regulated service capac i ty l imi t has 

recently be exhaus ted ) . Thus , decompos i tion is c losely 

related to causal analys is . 
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The SES formula presented here and re lated formulas 

inc luded in Appendix I I  are the error formulation of these 

models . 4s This formulation demons trates the relationship 

between the determined error ( variation between forecas t and 

ac tual observation for any period t ) , and the proj ec tion for 

the next period . Spec i f ical ly ,  the forecas t for the level 

or trend components for period t + I is the forecas t for 

that component for period t plus a proportion of the error 

in that forecas t . 49 In the case of  seasonality the 

interpretation is s l ightly more compl icated but essential ly 

the same . 

This proportion-of-error provides a common sense 

interpre tation of  the parame ter res triction ,  � = { a , � , y ) ,  

o � 1 ,  as proport ions are natural ly l imi ted between 

none = 0 and all = 1 .  On this interpretation , error that is 

highly l ikely to indicate change in a component should be 

weighted highly , while error that is l ikely to be random 

noise should be given l imi ted weight . Thus , a parameter 

approaching 1 indicates that , for the spec i f ic component ,  

forecas t error can generally be taken to mean that there 1 S  

a change in the data , while a parameter approaching 0 

indicates that error is bes t  interpre ted as random noise and 
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the forecast performance i s  not s igni ficantly improved by 

heavi ly considering the magnitude o f  the mos t  recent error . 

Exponential Smoothing And Sophisticated Techniques 

Whi le some o f  the discuss ion in later sec tions and 

chapters addresses the presence� o f  a discontinuity problem 

that is the subj ec t o f  this dissertat ion when forecas ting 

wi th sophisticated techniques such as ARIMA , Kalman f i l ters 

( de fined below on page 6 9 ) , or regression ,  the obj ective of 

this study is to examine the problem when forecasting with 

exponential smoothing . In this dis sertat ion the discuss ion 

o f  both problem and solution focuses on exponential 

smoo thing . Thi s  should not be taken to imply that the 

problem does no t exi s t  wi th other forecas ting techniques ,  

nor that it  cannot be addressed through those other 

techniques . 

A Valuable Alternative to Sophisticated Techniques 

Regardless o f  po tential bene f i ts o f  sophisticated 

techniques , exponential smoothing is a valuable forecas t ing 

technique . I t  has some o f  the advantages of  the less 

sophi s ticated techniques and some of  the advantages of the 

more sophis ticated techniques . 



Advantages as a Sophisticated Technique 

Like the more sophis ticated techniques exponential 

smoothing is reasonably rel iable . 50 Sometimes regress ion 

based techniqUes and ARIMA are assumed to be most  rel iable 

forecas ting techniques because they are the most  

sophis ticated . However , forecas t l i terature tends to  

support the view that s impler techniques ,  particularly 

exponential smoothing , are more rel iable . 51 Arms trong has 

argued that the persis tent belief  that the most  

sophisticated techniques are the mos t  rel iable does no t 

re flect ac tual empirical evaluations of  such techniques . 52 

Some o f  the spec i f ic cons iderations about sophis ticated 

techniques involve forecas t f i t t ing , turning points , and 

sophis tication itsel f . 

Forecast Fitting 
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I t  i s  sometimes thought that techniques that are more 

e f fective in f i t t ing data during the sample period also do a 

bet ter j ob in forecas ting . This has not proved true . 53 

Sample period f i t  is cons idered an unrel iable indicator o f  

forecas t accuracy . Consequently ,  more sophis ticated 

techniques are not de fac t o  bet ter than exponential 

smoothing solely because of  any increased e f fec tiveness in 

sample period f i t t ing . 
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Turning Points 

Turning points are points in a series where a trend 

shi fts . Simple extrapolative techniques l ike exponential 

smoo thing can discover turning points only af ter they have 

occurred . Sometimes sophisticated techniques are thought to 

be e f fec tive in predic ting the turning points of  economic 

cyc les ; however , such techniques are not proved to be 

e f fec tive . 54 The point here is not that s imple techniques 

can predict turning points , but only that more sophis ticated 

ones are not particularly bet ter at i t . 

Sophistication 

A particular problem that arises wi th sophis ticated 

techniques is that sophist ication can lead to error . 55 This 

problem arises because sophisticated techniques involve a 

higher risk o f  confus ing forecas t no ise ( unexplained 

variat ion )  wi th information . As parameters or other 

s trategies for extrac ting information from varying data 

increase , so too does the risk o f  finding a pattern that 

appears to be meaningful when i t  is not . 56 Simpler 

techniques do not risk as much error of this sort because 

they do not attempt to explain as much variat ion . 
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Advantages as a Simple Technique 

In the previous sec tions I reviewed reasons why s imple 

techniques such as exponential smoothing are of ten j us t  as 

accurate as more sophisticated forecas ting techniques . In 

that respect exponential smoothing has the same forecasting 

bene fit  as sophis t icated techniques . Even when exponential 

smoothing may not be as accurate than these more 

sophisticated techniques , i t  may be be t ter because of  i t s  

advantages a s  a s imple technique . These advantages inc lude 

lower cos t and lack of  dependence on exogenous data . 

Lower Cost 

A modest gain in forecas t accuracy attained by us ing 

more sophis ticated techniques may not j us t i fy the cos t in 

analys t time and ski l l . 57 Exponential smoo thing is fairly 

easy to learn and to apply . 58 I t  is , there fore , use ful when 

the forecas ting work force is not i tself  skil led in more 

complex s tatistics . Also , i t  can be applied to a large 

number of data series with a relatively small amount o f  

work . This advantage is in direc t contras t to the need for 

sophisticated skills  and cons iderable analys t time for 

applying correlation based techniques and ARIMA techniques . 

This advantage should not be thought to imply that 

exponential smoothing is assoc iated with less capable 
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analysts . Ins tead , the use of  ski l l s  assoc iated wi th 

f i t t ing sophis ticated s tatistical models may consume t ime 

and e f fort that may be bet ter spent invest igating the data 

generating func tions that produce the data series being 

forecas t . 59 In an ac tual work environment as may arise in 

publ ic adminis trat ion , the analys t mus t  allocate an 

appropriate level of  time and e f fort to various tasks . 

Exponential smoothing may al low the al location of  less time 

to model fitting which , in turn , allows the al location o f  

more time t o  other tasks . 

Endogenous Data 

Exponential smoothing does no t require the availab i l i ty 

o f  data series and forecas ts of  data series that can be used 

as exogenous ( independent )  variables . Correlation based 

forecas t techniques depend on the avai labi l i ty of  forecas ts 

o f  independent variables which, in the end , must be 

generated ei ther from macro-economic models , j udgement ,  or 

extrapolation techniques ; 60 or which may not be available at 

all . 61 As Vol lmann , Berry , and Whybark put i t , " In the 

first place , in certain ins tances , we s imply have no pas t  

data [with which t o  develop correlation analys is ] . ,, 62 These 

techniques are not appropriate where forecas ts of causal 

data is not available , " The [ econometric ] approach , even i f  

fundamental for pol icy analys is , is o f ten inappropr iate for 
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very short - term predictions , firs t o f  all owing to the lack 

of the relevant data on the exogenous variables . ,, 63 

The mere fac t that independent variables can be 

correlated wi th the data that one wants to forecas t in a 

regression model is not suf fic ient for use of  the 

independent variables in forecas t ing , s ince the forecas t o f  

the dependent variable can extend only so far into the 

future as the avai labi l i ty o f  the independent variable 

unless the model also provides for a forecas t of  the 

independent variable . Extrapolation based techniques such 

as exponential smoo thing do no t have this di f ficul ty . 

Even where forecas ts of  independent variables are 

avai lable , they may have too much variance to be useful for 

forecas ting . Richard Ashley has demons trated that 

correlation based forecasts that depend on forecas ted 

independent variables may be particularly inaccurate . 64 He 

f inds that when a regress ion based forecas t depends on a 

forecas ted independent variable where the forecas t o f  the 

independent variable is subj ec t to s igni ficant variance ,  i t  

i s  l ikely to be less accurate than a mis specif ied forecas t 

( one that ignores an obvious ly signi ficant independent 

variable ) .  This finding cas ts cons iderable doubt on whether 

correlation techniques ( which inc lude some more complex 
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ARIMA techniques that are discussed in this disserta tion )  

are l ikely t o  be more beneficial 1n forecas ting than s impler 

extrapolation techniques such as exponential smoothing . 

Causation 

I am left wi th the idea that some people s imply canno t 

accept that forecasts that ignore regress ion and covariance 

may be better than , or at leas t as  good as , forecas ts that 

rely on extrapolation techniques . This remaining hes i tancy 

undoubtedly relates to the notion o f  causation . Al though i t  

a tenant of  research des ign that covariance does not , by 

i t se l f , imply causation , 65 covariance is commonly assumed to 

be s tatistics ' mos t  power ful measure of  causality .  For the 

moment I wi l l  set as ide the phi losophic problem of  

induc tion66 which is the root of  the problem of  covariance .  

In prac tice causation is demons trated by logically isolating 

the relationship ( or accounting for all important component 

causes wi thin the covariance struc ture ) ,  telling a good 

s tory as to why there is causality ,  es tablishing temporal 

order , and demons trat ing covariance . 67 Regress ion gets only 

the las t o f  these . No amount o f  model f i tting and 

regress ion diagnostics  is an adequate replacement for 

following all of these s teps . In prac tice , forecas ters may 

frequently find l imi ted amounts o f  data that are avai lable 

for forecas ting to the hori z on they need . When faced wi th 
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this condition and , perhaps , a false perception that a high 

correlation coe f ficient is proof o f  a good model , 

forecas ters may turn to corre lation maximi z ing techniques 

such as stepwise regress ion68 rather than care ful ly 

demons trating causality .  Even i f  they avoid the correlation 

maximization error , they may not be a f forded the luxury o f  

ful ly demons trating causality .  As compared wi th techniques 

that carry such heavy baggage , it should not be surpris ing 

that techniques that rely on much s impler assumpt ions 

( es sentially , that demographic or economic data does no t 

f luc tuate widely over a short period o f  t ime ) can produce 

comparable forecas ts . 

Conclusions Regarding More Sophisticated Techniques 

Exponential smoothing is a valuable forecast ing 

technique . In this dissertation it  is cons idered worth 

further examination and refinement . The poss ibi l i ty that 

o ther more sophisticated techniques may provide al ternative 

solutions to the problem that is described in this 

dis sertation is not cons idered a reason why it  is not wor th 

resolving the problem wi thin exponential smoothing . In 

par ticular , more sophis ticated techniques may be cons idered 

to exhibi t  problems that s impler techniques may avo id . I f  

the problem presented in this dissertation can be resolved 

or ameliorated wi thout s igni ficant loss o f  s implic i ty ,  i t  
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wi l l  be cons idered a worthwhile improvement ,  regardless o f  

whether the solution i s  the mos t  accurate solut ion avai lable 

under ideal condi tions for use of sophis ticated techniques .  

Ac tual forecas ting may frequently occur under condi tions 

that are not ideal for use o f  sophis ticated techniques .  

Summary 

Forecas ting is an important analytic technique used by 

public adminis trators for numerous public budgeting and 

planning purposes . Forecas ting is an accepted topic o f  

discuss ion in public adminis tration l i terature . The level 

shi f t ing problem identi f ied briefly here an discussed 1n 

the next chapter arises in data that is forecast for 

planning and budgeting in public adminis tration . There are 

various techniques for forecas ting serial data , these range 

from s imple to sophis ticated . Exponent ial Smoothing i s  a t  

the intermediate level o f  sophis t ication . Several vers ions 

exi s t . Research indicates that exponential smoothing may be 

as accurate in forecas ting as more sophis t icated techniques .  

Thi s  dissertation focuses on the use o f  exponential 

smoo thing as a forecas t technique . Discuss ion o f  problems 

aris ing wi th this technique should no t be taken as implying 

tha t  the same problems do no t arise wi th other techniques .  



CHAPTER 3 :  LEVEL SHIFTING DATA 

In this chapter I wi l l : 

o Describe a problem that arises wi th level shi fting data 

series . 

o Describe some s imple approaches to coping wi th this 

level shi f t ing problem . 

o Explain why these approaches should fai l . 

o Spec i fy the research ques tion o f  this disserta tion . 

o Show that addi tional research into the level shi fting 

problem i s  needed . 

Level Shifting Data 

A type o f  data series that is particularly di f f icul t to 

forecas t is one that adj us ts upwards or downwards ref lec ting 

some external intervention . 69 I generally re fer to these 

external interventions as \ policy changes or level shifts . 

They may also be known by such terms as discontinuities, 

exogenous events, externalities, interruptions, 

irregularities, outliers, ramps, shifts, steps, transients, 

etc . 70* These shi fts cons t i tute a s igni ficant source o f  

forecas t fai lure . 71 

*These terms are fairly generic and may also re fer to 
events in data that are no t associated wi th external 
interventions . 
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In this s tudy I am interes ted in interventions that 

resu l t  in a permanent level shift in data . Level shi f ts 

involve two nearly parallel s lopes ( trends ) that are 

connec ted by a ramp of two or more observat ions inc luding 

the end points o f  the ramp . A ramp is a series of  
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observations that has a s teeper or less s teep slope than the 

slope o f  the periods immediately be fore or immediately 

afterwards . When the ramp occurs in the slope between j u s t  

two end points ,  i t  may be cal led a step . *  

I Example Ramp I 
100r-----------------�------�------------------------� 

X-Axis 

Figure 6 

*These terms are being defined here , however , they are 
consistent with uses that are common in forecast literature . 
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I Example Step I 
100r-------------------�----------------------------------, 

100 

140 

120 

100 

X-Axis 

Figure 7 

Public adminis tration related data is frequently 

subj e c t  to interventions because o f  dec i s ions made in the 

pol icy making cyc le ; however , interventions can occur for 

reasons other than pol icy making , such as changes in the 

bi l l ing prac tices o f  government vendors , addi tion of  

s igni ficantly large enti ties to tax or other revenue roles 

or removal of  the same , changes in the items counted in 

data , re-categorization of data , changes in prac tices that 

generate data , etc . 

Thi s  s tudy concerns level shi fts  that arise from 

planned policy changes , or o ther events that are s imi lar to / 



planned pol icy changes in that they can be anticipated in 

advance . When such events occur , i t  is poss ible that the 

magni tude of such events can be anticipated be fore they 

occur . Following is an example of  a planned pol icy 

intervent ion . 
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45r---------------------------------------------� 
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35 
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o 
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Jul-88 Jul-89 Jul-90 Jul-91 

Months 
Jul-92 

- Example Policy Change 

Figure 8 

In the Medicaid program each service in a c lass o f  

services may be subj ec t to a rate ceiling . A public pol icy 

intervention may be to raise the cei l ing to a new benchmark 

leve l . In fac t ,  in 1 9 9 0  Virginia subs tantially raised its 
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rate ceil ings for phys ic ian services .  The impac t  o f  thi s 

pol icy change on the data series can be seen in Figure 8 .  A 

rate change amounting to over 3 0  percent of  the prior level 

occurs between the 1 8 th and 2 3 rd periods . The Depar tment o f  

Medical Assistance Services antic ipated this leve l shi f t  in 

the planning tha t  went into setting the new rates . 

Poor Performance 

As a user o f  exponent ial smoothing , * * I have found that 

this technique performs poorly when data undergo the sorts 

of adj us tment described above . I have found three problems 

o f  reliability and accuracy*** assoc iated wi th the three 

locations in time where the current period might be in 

relation to the level shi f t . The same sorts of  problems 

aris e  wi th more sophisticated techniques . 72 

* Information regarding the Virginia Medical Assistance 
Program is known from the researcher ' s  employment with this 
program for 13 years . 

**T.his discussion reflects my experience as a user of 
exponential smoothing and is consistent with the proportion­
of-error analysis as discussed beginning on page 2 6 . While 
the general problem of discontinuities is discussed in 
forecasting literature ( see endnote 82 ) ,  it has not been 
well analyzed . Thus , there is no precedence for this 
description of this aspect of the problem . 

* * *In this discussion a - reliable forecast - is one that 
is not subj ect to vast variation from one update to the next 
while an - accurate forecast - is one that turns out to be 
right . 
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Reliability and Accuracy 

Exponential smoothing forecasts o f  data that experience 

level shi f ts are not reliable , that is , forecas ts fluctuate 

considerably as the forecas t is updated, i . e . , new 

observations are added to the his torical observations . 

There are three phases to this aspec t o f  the forecas t  

problem : 

o Before the change exponential smoo thing mode ls do no t 

rel iably proj ect through the period o f  change . 

o During the shi f t  and immediately a f terwards , 

exponential smoothing mode ls do not effectively respond 

to the change . 

o After the change exponential smoothing mode ls be less 

effective for a cons iderable number of updates whi le 

wai ting for the problems that arose during the shi f t  to 

c lear up , or they become highly volatile re flec ting the 

undes irable e f fects o f  adj usting parameters to let the 

forecas t keep up wi th the change . 

Future Level Shifts 

Exponential smoothing forecas t models are no t 

particularly good at forecasting through future periods 
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during which such planned level shi fts are antic ipated . 

Exponential smoothing models contain no information about 

future level shi fts in their his torical data , have no other 

source of information ,  and have no means o f  e f fic ient ly 

us ing informa tion that may be known to the forecas ter , but 

not found in the his torical data . *  As a resul t ,  they do not 

forecas t the level shi f t . When the ac tual level shi f t  

occurs , data is considerably di f ferent than expec ted , so the 

model mus t  adj us t . Earl ier proj ec tions are replaced by 

considerably dif ferent later proj ec tions . 

Concurrent Level Shifts 

D .  W .  Trigg and A .  G .  Leach describe the ineffective 

response of exponential smoothing models , " With low values 

o f  a the forecas ting sys tem wi l l  take an unacceptably long 

time to home in to the new level ; biased forecas ts wi l l  

occur and wi ll continue for some time . ,, 73 This problem 

arises because of  the proportion-of-error adj us tment that 

has been described . Under ordinary c ircums tances the 

forecas t has already explained most variation and the 

remaining variation is no ise . Consequently ,  the model tends 

*This assertion follows logically from the fact that 
exponential smoothing models are fit to minimize a loss 
function that measures historical errors ; historical errors 
are the only source of information for exponential smoothing 
models . 



to avoid adding back a large proportion of  error to the 

previous ly exis ting forecas t .  However , when the level 
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shi f ts much more of  the error is information . If  the mode l 

assumes that the error is noise , it  wi l l  di scount the error 

too much , which leads to inaccurate forecas ts . 

Past Level Shifts 

This ineffective response can continue for a long t ime 

af ter the level shi f t  occurs74 whi le the parameters continue 

to sort out the forecas t error into noise and informat ion . 

Alternatively , the forecas ter may intervene by rais ing the 

a parameter which may allow for more rapid sorting out o f  

noise and informat ion in the level shi f t ing period . 

However ,  this may cause a loss of stability in the 

underlying forecas t ,  particularly where the underlying data 

series is charac teriz ed by high variance . 

Example Level Shift With Exponential Smoothing 

The fol lowing graphs show the impac t o f  the previous 

level shi f t  on a forecas t made through a variant of the Ho lt  

exponential smoothing model wi th parameters o f  a = 0 . 2 5  and 

� = 0 . 0 1 .  
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Forecast with Level Shift 

The movement of the partial line shows the updated actuals . 

Ini t ially the model contains 

no information about the 

pol icy change , i t  proj ects 

the series wi thout the 

po l icy change . At this 

point the forecas ter can 

lump on the estimated impac t  

EXA"'U! U'DATES 

0 0"'0 
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..!. ..!. 

00 ........... 09 

Figure 9 

o f  the policy change direc tly onto the results of  the 

s tatis t ical forecas t model to get a forecas t .  

Second Update 

As the pol icy change begins 

to take e f fec t ,  the 

s ta t i s t ical forecas t model 

follows the pol icy but at a 

rate that is discounted by 

the amount of  the 

a parameter . At this point , 

" ,------------------, 
. 

.. . 
00.0010 •

•
•

•
• �o 

0_ .. : 0040>(> 
.... °0 • 

. � 

. 

Figure 10 

the forecas ter mus t  begin to e s timate how much of the pol icy 

is " in "  be fore he can lump on the remainder to make a whole 

forecas t .  



Third Update 

As the pol icy ramp 

continues , the trend begins 

to respond to the po l icy 

impac t .  Here , even if the 

forecas ter accurately 

es timates how much the 

pol icy is " in , " he mus t  

EXAIIPL� U'D"'T�$ 

...... 
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Figure 11 

also fac tor out how much the s tatistical forecas t model is 

overe s timating before he can make an accurate whole 
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forecas t .  During this period, i t  i s  not poss ible t o  s imply 

add the lump sum value of  the pol icy to the prior forecas t ,  

because some o f  the impac t o f  the pol icy i s  in the forecas t .  

The data assoc iated with the pol icy change is beginning to 

enter into the historical series , the forecas t model is 

adj us ting the pro j ec ted future level and trend - however 

inaccurately - for this change . If  the pol icy is added back 

to the forecas t ,  the overall estimate wi l l  be too large . I f  

i t  i s  not added back t o  the forecas t ,  the overall est imate 

wi l l  be too small ( or large for negative changes ) .  The only 

option avai lable is j udgmentally adj ust the lump sum amount 

to add back to the forecas t .  



Fourth Update 

While the pol icy change is 

ful ly in e f fec t ,  the 

forecas t errors remain 

large . Both level and trend 

continue to adj ust upwards 

re flecting the presence of  

pos i t ive forecas t errors . 

!)(A"'U! U'DAnl 

. ........ 
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. . 

Figure 12 

At this s tage , the forecaster no longer worries about how 

much the pol icy change is " in . " Ins tead , his problem is 
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wi th how much the s tatistical forecast model i s  af fec ted by 

the pol icy impac t on the data . 

Fifth Update 

While the data series begins !)(A"'U! U'DAnl 

to return to pre-po licy 

change patterns at a higher 

leve l , the s tatistical 

forecas t model continues to 

adj ust upwards due to the 

large pos i t ive errors . ( In 
Figure 13 

this ac tual data series other events led to an shi f t  in the 

trend j us t  af ter the rate change . Had this not occurred , 

the overes timation o f  the trend would be even more ext reme . )  



Sixth Update 

The ac tual data has returned 

to the pre-change pat tern , 

but the forecas t continues 

to adj ust upwards in both 

level and trend . The short 

term forecas t is too low ,  

because the level i s  
Figure 14 

underestimated . The longer term forecas t is too high , 

because of  an overes t imation of  trend . 

Seventh Update 

As the pos i t ive errors 

continue to raise the level 

and trend ,  the forecas t 

begins to over estimate 

mos t  of the data series 

whi le continuing to 

underestimate the next few 

observations . 

�""ll!: UP"OATfS 

Figure 15 

47 



Eighth Update 

S ince the short term 

forecas t continues to 

underestimate the next 

observation ,  the level and 

trend continue to adj ust 

upwards , produc ing a severe 

over estimate of the 

intermediate and longer horizons . 

Ninth Update 

Ul timately the level catches 

up wi th the trend . At this 

point , the short term 

forecas t may be reasonably 

accurate for one to three 

future periods . However , 

the intermediate forecas t is 

VIA"'U! U'DATU 
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Figure 16 
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over estimated because of the trend adj us tments and the 

longer term forecast is severely over estimated . 
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Ineffective Responses to Level Shifting 

Following are some of  the obvious ways that exponent ial 

smoothing models can be used when the data they forecast 

experience the sort o f  shi f t  described above ( these 

approaches are presented to c lari fy the problem, other 

approaches are reviewed in the next chapter ) : 

Level Left Optimized 

The level parameter can be left as optimi zed be fore the 

shi f t  and the forecas ter can wai t  unt i l  the forecast model 

u l timately becomes e f fec tive again af ter many periods o f  

ine f fective forecas ts . 75 The forecas ts wil l  be ine f fec t ive 

for two reasons : 

o S ince the forecas t is optimi z ed at a time when the data 

does not experience such a mass ive shi f t , i t  wi ll 

cons ider a high proportion o f  the variation in the data 

as random noise ( i . e . , the a value wi l l  be set at a low 

number ) .  Thus the information contained in the level 

shi f t  wi l l  be excess ively discounted , and the level o f  

the forecas t wi l l  fail t o  keep up wi th the more mass ive 

shi f t  assoc iated wi th the policy intervent ion . Thus , 

the near term periods o f  the forecast wi l l  be under 
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estimate the level shi f t  ( become biased �n the oppos i te 

direction of  the level shi f t ) . 

o Since the level wi l l  fail to keep up wi th the shi f t ,  

the errors wi l l  become much larger than usual , and wi l l  

be highly autocorrelated, i . e . , wi l l  repeatedly have a 

pos itive or negative s ign . This result wi l l  cause the 

correc tly estimated trend and seasonal fac tors to over 

respond to the error and become incorrec tly estimated . 

Af ter a few periods the forecast wi l l  severely over 

estimate the change in trend with respec t to the level 

shi f t , thus the more distant hori z ons of  the forecas t 

will be over proj ec t in the direc tion of  the level 

shi f t . Simi lar , but more complex , confus ion wi ll occur 

wi th seasonal i ty .  

Adjust the Level 

The level parameter can be adj us ted ( increased ) to 

allow the forecas t to respond to the new level shi f t ing 

information . 76 S ince the level parameter is a proportion 

that is mul t ipl ied agains t the error to produce a new leve l 

est imate , the shi f t  can be rapidly inc luded in the forecast 

by setting the a parame ter very high . In this study, this 

approach , when combined with adding in the lump sum value of 
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the expected policy change ,  will be called the ad hoc 

method. * 

As seen in the following graphs , this approach also 

produces an ine f fec tive model . Al though the model responds 

to the level shi f t ,  thereby resolving , or at leas t 

mi tigating , the di f f icul ties discus sed above , it  does not 

restrict is response to that level shi f t . When the level 

shi f t  is over , it  continues to respond j us t  as rapidly to 

random noise . Over time the forecas t changes s igni ficant ly 

from period to period, making spec i fic forecas t results  

unusable as  i t  i s  di f f icult to determine which proj ection to 

rely upon unless the forecas t user is interes ted only in the 

next future observation . 

In the following graphs , the same data as shown in the 

previ ous models is forec as t wi th a = 0 . 8  and � = . 0 1 .  

Selec ted updates from periods af ter the level shi ft are 

shown to demonstrate the consequence of rais ing a to al low 

*1  have not found literature that demonstrates the use 
of the ad hoc method; however , it is clearly the simplest 
approach available . When I have discussed the technique 
proposed in Chapter 5 with forecasters , I have been asked 
how it differs from the ad hoc technique which is , by 
implication, potentially adequate to meet the problem . 
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the pol icy change leve l shi f t  to rapidly come into the mode l . 

Level Shift a = 0 . 8  

When the forecas t parameter 

is raised to ref lec t the 

antic ipation of a level 

shi f t , the forecast catches 

up wi th the level shi f t  

af ter a fairly short lag . 

Thi s  reduces , i f  no t 

e l iminates the negative 

impac t on the forecas ted trend . 

update with variation 

Afterwards , when the data 

experiences s igni ficant 

variation that is s imply 

unexplained noise , the 

forecas t level follows the 

variation j ust  as fai thful ly 

as i t  fol lows the explained 

level shi f t . 

fXAMPU! UPDATU 

..... ... 

Figure 18 

EXAMPLE UPDATES 

..... 

Figure 19 



Second Update 

Thi s  tracking o f  variation 

produces a rol ler coaster • . .. 0 

e f fec t in the forecas t .  

somet imes the forecas t is 

down as wi th the last graph 

and some times i t  is up as 

wi th this one . 
Figure 20 

Third Update 

The consequence o f  this 

rol ler coaster ef fec t is 

that each update produces a 

whole new forecast that is 

s igni ficantly di f ferent from 

the previous forecas t 

upda te . The user does not 
Figure 21 

know which one represents the antic ipated future . The 

forecas t is no longer an abs trac t summarization of  the 
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his torical data , i t  i s  ins tead a trend that takes off  from a 

point near the last ac tual observation . 



Updating 

A topic that �s not widely discussed in forecas ting 

l i terature is the mat ter of updating , for example whi le he 

widely c i tes s tudies for almost all o ther assertions , J .  

Scott Arms trong ' s  discussion of  updating exponential 

smoothing models is l imited to : " Frequent upda ting is 

important for accuracy [ I talics in original ] . " 77 Many 

organizations make periodic forecasts of  the same data 

series . When such re forecas ting is made wi th the same or 

s imi lar models from time to time , such forecas ting may be 

called updating . In my prac tical forecas ting experience ,  

updat ing is an important aspec t o f  forecas t ing . 

5 4  

For intermediate and longer forecas t horizons , 

inc luding many horizons of  governmental forecas ts , there are 

two contrary needs wi th forecast updates . Firs t ,  the 

forecast should not experience high variabi l i ty (bounce 

around a lot ) , in other words , it should be reliable . 78 I f  

updates are frequent , say monthly , and the forecas t 

frequently changes by a s igni ficant amount , say 1 0  percent 

of the incremental growth from a current year to a budget 

year , the forecas ter cannot have a lot o f  fai th in the 

current forecas t as compared with the forecast from the mos t  

recent previous update . On the next update i t  might bounce 

back . Second , the forecas t should change when there is a 



change , in other words , i t  should be accurate ; that , i t  

would seems , i s  the point o f  updating . 79 

5 5  

In part , the problem that is raised in this 

dissertation is a problem o f  updat ing under condi tions where 

one of these two needs may not be met .  I f  the forecas ter 

uses commonly accepted techniques to avoid excess ive 

variabi l i ty ,  i . e . , optimizes a forecas t in the absence o f  

level shi f ts , the forecas t l ikely wi l l  no t change when the 

level shi ft occurs . On the other hand , i f  the forecas ter 

adj usts the forecasts to recogni ze the level shi ft by 

rais ing the level parameter to a high value ( or ,  as wi l l  be 

discussed later , by us ing an adaptive technique ) ,  the 

forecas t may respond not only to the level shi f t , but also 

to every other event that might cause noise in the data . 

Research Question Specified 

In this dis sertation I ask : Can a method be devised 

to use prior knowledge of policy shifts to improve 

performance of exponential smoothing forecasts ? I compare 

the performance of various s imple exponential smoothing 

model s  and approaches that might be used to forec ast through 

periods o f  level shi fting . I examine whether any o f  the 

methods cons idered is superior . Inc luded among these 



methods is a method I have developed for use when pol icy 

changes are anticipated ( see Chapter 5 ) . Two maj or 

hypotheses are spec i f ied in Chapter 6 .  

Need for a Study 

5 6  

As a forecast prac t i tioner for a public program I find 

that policy changes pose s igni ficant di f f iculties for 

forecas ts . When I have information about prospec tive leve l 

shi f ts , I have found i t  di f f icult to e f fec tively use that 

information . The approach I formerly used was to add back 

the data in lump and let the forecasts adj ust to the data as 

polic ies went into place ( the ad hoc method ) . This proved 

unsatisfac tory in prac tice because : 

o Forecasts per form particularly poorly when the data 

series they forecas t are undergoing or have recent ly 

undergone l eve l shi fts . 

o I t  is di f f icul t to account for out year consequences o f  

pol icy changes when they are added back in lUmp sums . 

Typical ly in forecasting for the Virginia budget one 

needs forecas ts that address the current year and two 

subsequent years . Lump sums that may reflect mid-year 

pol icy s tart up are seldom of much use for any year but 

the year that the policy is expec ted to go into effec t . 



o I t  is di f f icult to work wi th lump sum amounts when 

summing the forecas t over various periods for various 

purposes . The Medicaid forecas t is summed over one 

fiscal year for use in s tate budge ting and another 

fiscal year for use in federal budgeting . Lump sum 

pol icy estimates only add confus ion under such 

c ircums tances . 
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o Lump sum changes are particularly di f ficult to work 

with when ini t ial assumptions change due to the nature 

of dec isions that are made as the po lic ies are put into 

place . 

o Once lump sum pol icy changes begin to become part o f  

the data series , there is l i ttle information available 

to guide the j udgements necessary to dec ide how much of 

the pol icy is " in . " 

The prac tice of  increas ing the level parame ter to allow 

the pol icy change in quickly avoids some o f  the consequences 

of the problem,  al though no t all ( e . g . , it does not resolve 

the ques t ion o f  how much of  the policy is " in " ) .  However , 

i t  brings its own costs in terms of  increased forecas t 

variation ( see F igure 18 through Figure 2 1 )  . 
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In discuss ions wi th other prac tic ing forecasters I have 

found that they too have di f ficulty wi th pol icy changes .  

For example , the Virginia Corrections forecas t has 

di f ficulty with account ing for the impac t o f  new laws that 

resu l t  in prison sentences on their forecas t of  new 

conuni tments . so 

As discus sed by Fred Collopy and J .  Scott Arms trong , S1 

the problem o f  ramps and steps i s  one of  the more severe 

unresolved problems in time series analys is . As discussed 

above , these problems arise in data that is forecas ted by 

and for the public sec tor and are s igni ficant to planning 

and budgeting for maj or public programs . I t  is , there fore , 

useful to the prac tice of  public adminis trat ion to evaluate 

a technique that may mi tigate this problem . 

Summary 

Level shi fting data poses a s igni ficant problem for 

forecas ting through exponential smoothing models . I t  can 

cause an exponential smoothing model to experience a 

cons iderable period o f  serially corre lated errors . Such 

errors may lead to inappropriate estimates o f  trend which 

may continue for some time af ter level proj ection errors are 

correc ted . Adj us tment of the a parame ter may reduce these 
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problems , but i t  can lead t o  ins tabil i ty ( high variabi l i ty )  

in the forecas t . When forecas ters possess information about 

prospec tive level shi fts , exponential smoothing mode ls do 

not make optimal use o f  that information ei ther in making 

proj ec tions or in minimi z ing error in the model . Wi th the 

s tandard Hol t-Winters type exponential smoo thing models one 

canno t  s imultaneously minimi ze variabi l i ty of  forecasts and 

maximize response to anticipated level shi fts . In this 

dissertation various models are examined to determine 

whether one is more e f fec tive than ano ther in proj ec t ing 

level shi fting data . One model that is inc luded in this 

comparison has been developed explic i t ly for deal ing wi th 

this sort Of data . Recent publications indicate that 

forecas ters cons ider the fami ly of  problems of  which i t  i s  a 

member ,  discontinuities , to be one o f  the more severe 

problems presently unresolved in time series analys is . 



CHAPTER 4 :  FORECAST LITERATURE CONCERNING LEVEL SHIFTS 

In this chapter I will : 

o Examine the forecas t ing l i terature regarding 

discontinui ties . 

o Identify techniques used to ident i fy level shi f ts . 

o Identi fy techniques used to adapt to level shi f ts . 

o Identify techniques for forecas ting where prospec tive 

level shi fts are anti c ipated . 

o Briefly review l i terature regarding estimation of  

prospec tive level shi fts . 

Literature Regarding Discontinuities 

Fred Collopy and J .  Scott Arms trong have recently 

as serted, " [ Time ] series forecasting research and prac tice 

have largely ignored abrupt changes . ,, 82 They find this 

particularly mys terious bec ause they find that 92% o f  

forecas ters cons ider this topic t o  be important in select ion 

o f  extrapolation methods , ranking i t  the third most 

important feature examined . 83 An examination of the 

l i terature reveals that things are not as bleak as Col lopy 

and Arms trong assert . Three common approaches to 

forecas t ing through periods of discont inuous data series are 

techniques that : 

6 0  



o Alert the forecas ter to suspec t that the model is 

mis f i t  at the point of  update , 

o Recogni ze the discontinu i ty and adapt to it , or 

o Assist  in f i tting a mode l under condi tions of  

discontinu i ty .  

Alerting the Forecaster to Discontinuities 

6 1  

A tracking s ignal is a s tatis tic that is used t o  s ignal 

the forecas ter that something has occurred near the end o f  

the his torical period that may result in the forecas ter ' s  

wanting to recons ider and replace the current forecast 

mode l . Everet te S .  Gardner ,  Jr . ,  iden t i f ies several 

tracking s tatis tics inc luding the s imple CUSUffi ,  the backward 

CUSUffi , the smoothed error tracking s ignal , and the 

autocorrelation tracking s ignal . 84 These tracking s ignals 

moni tor forecas t errors to determine whether the models are 

in control , that is s t i l l  reasonably wel l  f i t . They 

demons trate out o f  control condi tions when they exceed 

certain cri tical values . The princ ipal underlying these 

methods is to es tabl ish a ratio related to the error term In 

the forecas t model . Critical values are values at which 

these ratios indicate that the forecas t is out of control , 

for purposes o f  this s tudy that would mean i t  had undergone 

a level shi f t . Gardner ' s  f indings suggest that all  these 

methods are useful under appropriate condi tions . John o .  
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McClain has compared cusum wi th the smoothed error tracking 

s ignal and found that the smoo thed error tracking s ignal is 

more e f fec tive for identi fying out of  control condi t ions 

quickly . 85 

Lewis W .  Coopersmi th deve lops an alternative approach 

that uses the F - s tatistic : 

When a continuous model is assumed ,  a procedure 
for de tect ing knots [ Coopersmi th ' s  term for ei ther 
level or trend shifts ] . . involves a search 
over an interval which is firs t set small enough 
so that i t  is unlikely that more than one kno t 
would occur . The point is de termined which 
maximi zes the F - s tatis tic used in tes ting for a 
signi ficant change in trend . I f  the maximum F­
s tat istic is not s igni ficant , the evaluat ion 
interval is extended and tes ting is repeated . For 
discontinuous models that inc lude shi f ts , the 
search is extended to determine the point where 
the F-stat i s t ic which tes ts for the s igni ficance 
of  [ARIMA intervention ]  parameters . . is 
maximi zed . After the kno ts are determined , robus t 
procedures . are used to est imate the l inear 
pieces ; the las t piece is extended for use in 
forecas ting . 86 

While Coopersmi th ' s  approach assumes that the forecas t 

technique is ARIMA oriented , i t  is readi ly general i zable to 

other techniques so long as sums of  squared errors can be 

calcula ted in comparison between forecas t models that do and 

do not contain appropriate adaptation for discontinui ties . 

Vol lmann , Berry , and Whybark sugges t  another a tracking 

s ignal , Bias divided by Mean Absolute Deviation . They do 



not c learly de fine their measure of  Bias i however ,  the 

context sugges t s  that they intend average error or the 

smoothed error tracking s ignal . Thus , as they say,  this 

tracking signal is l imi ted to : 

- 1  � Tracking Signal � 1 
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This tracking s ignal suggests a forecast out of  control when 

i t  approaches e i ther 1 or _ 1 . 87 

Some o f  these techniques , e . g . , Coopersmith ' s  

technique , require considerably more e f fort than others , 

e . g . , CUSUffi ,  and may , for that reason , be more appropriate 

for ini tial model identif ication than for a tracking signal 

func tions . Al l provide the possibi l i ty o f  identi f ication of  

points where a data series has experienced a discont inu i ty 

and c an ,  in pr inc iple , be u s ed t o  iden t i fy out -af- control 

condi tions . However , the tracking s ignal approaches only 

serve to s ignal the fact that discontinuities have occurred . 

The forecas ter mus t  s t i l l  intervene with the forecas t model 

to re f i t  i t  under condi tions o f  discontinuity . Also , these 

techniques are not des igned to provide for anticipation of 

discontinuities . Problems related to forecas ting through 



prospec tive periods of  discontinui ty are not addressed by 

these techniques .  

Recognizing Discontinuity and Adapting To It 

6 4  

A natural extens ion o f  the tracking s ignal is the use 

of some s ignal in the data to adapt the forecas t to the 

condi tions near to the end o f  the historical period . This 

approach is sometimes called adaptive forecas ting . There 

are several forms of adaptive forecasting . D .  W .  Trigg and 

A .  G .  Leach pioneered the approach of  an adaptive 

a parameter . BB The tracking s ignal modi fies the a parame ter 

so that it  is large when the error is unusually large , i . e . , 

the forecast is out o f  control , and small otherwise . A 

commonly recogni zed Trigg-Leach model i s  as follows : B9 

Smoothed Error = Et = <l>et + ( l -<l» Et-1 

Smoothed Abso lute Error = � = <l> l et l + ( 1 -<l» �_1 

at = Absolute Tracking Signal = Tt = I Et /� 1 

In the Trigg-Leach model , the a parameter automatically 

adj usts wi th every update . Another approach is the Whybark 

method90 which adj usts parameters to preset adaptive levels 

only when tracking s ignals exceed certain critical values . 
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Independent Fit 

T .  M .  Wi l liams has improved the Trigg-Leach approach by 

removing a source o f  confus ion in the underlying Ho l t -

Winters model . 91 Wi l l iams ' idea i s  that the parame ters o f  

the Hol t -Winters model are not independent ,  s o  when the a 

parameter is adj usted by the Trigg-Leach approach , the � and 

y parameters are inc identally also adj us ted . He deve lops a 

revised Hol t-Winters model that does not have these 

interac tions , thereby allowing independent adapt ive 

modi fication o f  the a parameter . In Hol t  and Ho lt -Winters , 

the level parame ter , a , is fit  to all  three forecast 

components , leve l , trend , and seasona l i ty .  In the Wi l l i ams 

modi fication ,  this parameter is no t inc luded in the f i t  o f  

the trend and seasonal components o f  the model . As a resu l t  

� and y are allowed a broader range of  pos s ible f i t ted 

values . Formulas are shown in Appendix I I . Wi lliams uses 

the Trigg-Leach smoothing s ignal for calculating the 

adapt ive a parameter , 92 * 

Because the parameters ¢ = { a , � , y } are res tric ted to 

values of 0 � ¢ � 1 and because Wi lliams modi f ies Ho l t  and 

*He actually presents a di f ferent formula , but his 
formula makes no sense ( it exponentiates out o f  control 
under certain condi tions ) .  A careful review o f  his math and 
his text shows that he erroneously subs t i tuted " at = Et l {:j,t . 
for " at = I Et /{:j,t l - .  
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Hol t -Winters by dropping a from certain mul t iplications , the 

result is to increase the e f fective magni tude of the � or y 

parameter by the s i z e  o f  a .  In prac tice a is frequently 

selec ted to be qui te small , e . g . , a � 0 . 1 ,  so to retain 

roughly the same e f fect in a Wil l iams mode l , the parameters 

should be adj usted downwards by a fac tor of roughly 0 . 1 . 93 

While Wi l l iams makes these adj us tments to allow for 

less problematic adaptive forecas ts , it is equal ly 

reasonable where adapt ive forecasting is not in use . 

Wi l l iams ' technique has been re invented by Blyth C .  

Archibald in 1 9 9 0 . 94 The Wi lliams model is used as a bas is 

o f  a proposed model in this dissertat ion and is re ferred to 

as the Holt-Wi l l iams* or the Ho l t -Winters -Wi l l iams mode l . 

The idea o f  these adaptive models are that a tracking 

s ignal can automatically s ignal the a parameter to increase 

or decrease as necessary to keep the forecast in contro l . 

Thus , a is given a time index rather than being treated as 

s tatic across the whole model . The t ime indexed a is 

increased when the model appears out o f  contro l and 

dec reased when the model is in control . Such increas ing or 

* ·Williams · in these models refers to T. M .  Williams , 
not the current researcher . 



decreas ing is intended to allow the forecast to remain 

fairly s teady during periods o f  stabi l i ty yet respond 

rapidly when the tracking s ignal detects ins tabi l i ty .  
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The Wi l l iams article provides an extens ive bibliography 

o f  o ther adaptive models , inc luding those by Eilon and 

Elmaleh , 95 Steinar Ekern , 96 Thei l  and Wage , 97 and Nerlove and 

Wage , 98 as wel l  as many other c i tations . 99 Adaptive ARMA 

( autoregress ive moving average models ) have also been 

developed . 100 These art ic les generally discuss variations o f  

adaptive models , the generali zat ion o f  adaptive models , and 

the e f fec tivenes s  o f  adaptive models which Ekern in 

particular. questions . I t  is generally accepted that 

adapt ive models are not satis fac tory . Arms trong c i tes 12 

s tudies that support the view that adaptive forecas ting i s  

ine f fec tive . 101 

Autocorrelation 

C .  Chatfield proposes an exponential smoothing 

technique where the forecas t is adj us ted by adding the 

fac tor ( et-1 * Qe , et-1 ) '  that is the autocorrelation of the 

errors at t ime t - l  is mul t iplied by the error at time t - l  

and added back to the forecas t . 102 This fac tor i s  

exponent iated for periods beyond the end o f  the sample 
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period . This technique i s  not spec i f ical ly proposed for the 

purpose of adapt ive forecasting , but it can be seen to be a 

variation of an adaptive technique . The fac tor wi l l  become 

large where errors are autocorrelated and small where errors 

are not autocorrelated . Autocorrelation may arise under 

other s i tuations , but should certainly arise when the 

forecas t sys tematically erroneous due to level shi fts . 

Later re ferences to a Hol t-Winters -Wi l l iams variation o f  

this model in thi s  proposal wil l  label i t  autocorrelation 

correc ted Hol t-Winters -Wi l l iams . That model uses the 

Wi l l i ams correc tion to Holt -Winters and also uses the 

Chat field autocorrelation correc tion . This model is 

demons trated in Appendix I I . 

I t  should be apparent that all adapt ive techniques 

implici tly employ tracking s ignals . The Trigg-Leach method 

emp l oys the s i gna l a smoothed error signal . lo3 The Whybark 

method employs information about the standard deviat ion . lo4 

Chat f ield employs autocorrelation o f  errors . 10S 

Like tracking s ignals , these techniques are designed 

solely for dealing wi th level shi fts that are iden t i f ied 

retrospec tively through the data used to f i t  or update the 

mode l . They have no method of  e f fic iently us ing informa t i on 

the forecas ter may have concerning planned pol icy changes . 
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Whi le they may help a forecast catch up to a new level once 

i t  is observed in the historical data , they do not 

particularly help forecas t and update through a period o f  

updating . 

More Sophisticated Adjusting Models 

Ka� Filters 

The Kalman106 f i l ter approach optimi zes meta-parameters 

that allow for the forecas t parameters to adj ust wi th the 

level o f  variation in the data series . P .  J .  Harrison and 

c .  F .  Stevens have demons trated that the Kalman filter 

approach can be generaliz ed to inc lude both correlat ion 

based models and t ime series extrapolation models . Kalman 

f i l ters are sometimes cal led s tate-space models or the use 

of these models may be cal led Bayes ian forecas ting . Kalman 

f i l ters are not necessarily sens i t ive to level shi f ting 

data , ins tead they allow self-adj us t ing parameters wi th 

ordinary data . 

Harrison and S tevens developed a mul t i - s tate model 

which is spec i f ically des igned to al low Kalman f i l ter 

forecasts to respond to level shi f ts . 107 Thi s  mul t i - s tate 

model al lows the forecaster to de fine mul t iple Kalman f i l ter 

model s  ( they recommend four ) which are des igned to respond 

to various spec i fic types o f  data discontinuities ( level 



shi f t ,  trend shi f t ,  outliers , and no discontinuity ) . The 

mul t iple models are aggregated through an ass ignment o f  

probabil i ty t o  each o f  the various s tates . 

7 0  

Duk Bin Jun and Robert M .  Ol iver def ine ano ther variate 

o f  the Kalman f i l ter which is des igned spec i f ically for 

level shi fting data . lOS This technique adds a dummy variable 

to the Kalman f i l ter model at the po int in t ime where the 

level shi f t  is thought to occur . Duk Bin Jun also conduc ted 

further analys is concerning statistics that ass ist wi th 

identi fying the period of the level shi f t . lo9 This technique 

as sumes that the level shi f t  occurs over a s ingle period . 

Whi le Jun an Oliver argue that this technique should be 

bet ter than Trigg-Leach , they do not demons trate comparative 

e f fectiveness . 

Whi le the Kalman f i l ters di s cu s s ed here are variates o f  

exponential smoothing , they are not appropriately c l as s i f ied 

as s imple models . They are mathematical ly more complex than 

exponential smoothing , part icularly the mul t i - s tate model 

that i s  mos t  comparable to an adapt ive exponential smoo thing 

technique , and they may require more sophis t ication for 

model f i t t ing . Al so , these are mos t  appropriately 

c las s i f ied as adaptive models , they do not provide for 

ant i c ipation of level shi fts . 



Non-Gaussian Models 

The non-Gauss ian forecas t mode l ,  110 and c losely 

assoc iated , approaches attempt to dis t inguish between 

ordinary variance and level shi fts through the use o f  

heavi ly weighted tails in the probabi l i ty dis tribution 
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func tion surrounding the forecas t .  In e f fec t ,  the forecas t 

shi fts from one level to another when repeated observat ions 

indicate a new mean . The use o f  non-Gauss ian probabi l i ty 

dens i ty func tions allow for smoother trans i tion between 

level estimates . Non-Gauss ian mode ls are , however , another 

form o f  adaptive model that provides no opportunity for 

antic ipating change . 

ARIMA 

ARIMA provides three approaches to accounting for 

externally driven data shi fts . These are the trans fer 

func tion model , the intervention mode l , and the mul t ivariate 

time series mode l . 111 

o The trans fer func tion model combines the features o f  a 

univariate time series ARIMA model wi th features o f  a 

regres s ion model . I t  adj usts the autoregress ive 

results o f  an autoregress ive univariate model to also 

take into account the e f fects o f  a known causal 

variable . I f  this causal variable can be made to 
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change t o  re flect the pol icy change , i t  can be used to 

inc lude the pol icy e f fect in the forecas t .  I f  not ,  

then i f  the input variable changes natural ly as the 

policy changes ,  i t  can at leas t help the forecas t keep 

up wi th the pol icy change . 

o The intervention model is a spec ial case of  the 

trans fer func t ion model that uses a dummy variable . 

The dummy variable is set at zero for periods during 

which the pol icy ( or other source o f  level shi f t ) is 

not in e f fec t and 1 for periods during which the pol icy 

is in e f fec t . Use o f  dummy variables requires 

knowledge that non- s tationari ty· has occurred . 112 

Analys is of  the data series should reveal the exi s tence 

of non-stationari ty . However , this analys is is a maj or 

component o f  the increased analys t cost for us ing ARIMA 

type models . 

· ·Non-Stationarity·  refers to a condition of a t�e 
series where the series does not have a constant mean and/or 
variance Linearly trending data can be induced to be 
stationary through differencing , so a data series that can 
be fit to a Holt model is implicitly stationary . For the 
purposes of this study it is adequate to assume that a data 
series that can fit to a Winters model is also stationary . 
There are many reasons why a data series may be non­
stationary , level shifts are only one form of non­
stationarity . 
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o The mul t ivariate ARIMA model is s imi lar to the mul t iple 

equation econometric regress ion model . It  

s imultaneous ly solves interrelated mul t iple time 

series . Trans fer func t ion models and multivariate 

ARIMA models can account for future pol icy changes by 

inc luding independent variables that contain 

anticipated pol icy changes in the future period, i f  

such variables are also s igni ficantly related to 

his torical periods . However , to do so those 

independent variables must themse lves have forecasts 

that re flect the prospec tive pol icy change . 

Struc tural change non- s tationari ty can be clas s i f ied 

into five types , addi tive outl iers , innovational outl iers , 

level changes , trans ient level shi fts , and variance changes . 

Ruey S .  Tsay has developed spec i f ic procedures for 

identi fying each of these sorts of non- s tationarity in 

forecast data and identi f ied spec i f ic ARIMA models that are 

appropriate to each . 1l3 David J .  Pack1l4 has developed 

theoretical ARIMA mode ls that allow for model l ing any sort 

of non- s tationarity . 

The Pack model s  are des igned to provide the forecas ter 

wi th prec ise techniques for modelling variation ,  inc luding 

any form of non- s tationari ty or intervention variat ion that 
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might arise in the historical or sample data . However , they 

provide no guidance for forecasting through prospective 

shi fts that are unrelated to his torical variation . A 

related mode l des igned to suppress irrelevant outl iers is 

described by S teven Hil lmer . This model prevents the 

forecas t from becoming biased when one t ime outl iers 

occur . 115 The foregoing discus s ion is not a comprehensive 

review of ARIMA modelling ; such a review is beyond the scope 

o f  this dissertat ion . 

In this s tudy I am interes ted in level changes which 

may or may not be preceded by innovational outl iers . These 

are the sorts of  data series that reflect onset and 

permanent change related to external causes . The 

intervention ARIMA model provides for forecast model f i t t ing 

in the case that his torical data reveals a level shi f t  or 

other non- s tationar i ty .  I t  is not designed to ass i s t  wi th 

forecas ting through future periods that inc lude ant icipated 

non-s tationari ty . In fac t ,  wi th ARIMA mode ll ing i t  i s  

necessary t o  supplement the model fitting procedure wi th 

other special non-stationarity identifying procedures to 

achieve a s imi lar leve l of  e f fec tiveness for deal ing wi th 

non-s tationari ty whi le updating as is avai lable wi th o ther 

model s  discussed in this sec tion . 
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Regress ion model s are no t discussed separately because 

their use in forecas t ing o f  level shi f ts is general ly 

parallel to trans fer func tion , intervention ,  and 

mul t ivariate ARIMA models . This brings us back to the 

reason s imple methods like exponential smoo thing may be 

bet ter than more complex methods , li The approach . is  

o ften inappropriate . . firs t of  all owing to the lack of  

the relevant data on the exogenous variables . " 11G 

Summarizing Sophisticated Techniques 

The techniques discussed in this sec tion wi ll not be 

further examined in this s tudy because they are not 

assoc iated. wi th exponential smoothing techniques . They have 

been examined to determine whether the problem identif ied in 

the previous chapter is readi ly resolved wi th other 

techniques .  In general these techniques res t on the 

assumption that leve l shi fts are identif ied in the data that 

i s  used to fit  the forecas t model rather than anticipated 

before the fac t . They do not employ information that may be 

available to the forecas ter concerning antic ipated pol icy 

changes . Even trans fer func tion models require that the 

independent variable that reflec ts the prospec tive level 

shi f t  mus t  also be correlated wi th the historical data . 

While these techniques may provide some solutions to leve l 

shi f t ing data , they do not provide so c lear a solution as to 
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rule out the potential bene f i t  o f  ident ifying an exponential 

smoothing solution to the level shi f t ing data . 

Models Targeting Level Shifts in the Horizon 

Adaptive and intervention techniques are available for 

forecas t model l ing under condi tions of  discontinuity when 

the discontinuity is discovered in the his tory of  the data . 

In this sec tion I discuss models that antic ipate level 

shi fts  in the forecas t horizon . 

An ARIMA Model 

Vic tor M .  Guerrero provides ano ther use of  ARIMA 1n 

model l ing level shi f ting data . 1l7 He begins wi th the 

following problem : 

Since some new economic policies were to be 
implemented , a s truc tural change on the behavior o f  IMP 
was expec ted and a higher than usual rate of growth o f  
IMP was agreed upon . Then , a future monthly path , 
c ons i s ten t wi th the annu a l  targe t and wi th the 
[ available ]  his torical records , as wel l  as tolerance 
l imi ts for the pay , were needed to determine whether 
the observed behavior o f  IMP during the year should be 
cons idered accurate . llS 

This problem involves an adj ust ing the forecas t for 

pol icy dec i s ions . He reviews other artic les and conc ludes , 

II [None ] o f  these papers cons idered the poss ibi l i ty o f  

struc tural changes during the forecast horizon . " l19 He 

identi f ies several formulae that can be used as follows : 
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Where , Z is the original time series ( where this can be 

unders tood as e i ther Zt from formula I above or Yt from 

formulas 2 or 3 above ) ,  D is the deterministic e f fec t 

o f  struc tural change , V is the s tochas tic e f fects o f  

s truc tural change and F is the future period . 

This formula can be understood to mean that the 

expec ted value o f  the future series is the expec ted 

value o f  the old series plus the de terministic e f fect  

of  the pol icy change . 

While it  appears that Guerrero is deal ing wi th the 

problem raised in this s tudy , prospec tive struc tural shi f ts , 

the ac tual results of  the math he demons trates al lows for 

e s timating the inter� values of a forecas t when a plan o f  

ac tion i s  assumed t o  achieve a certain end point . The 

vec tors for the de terministic and stochas tic e f fec ts mus t  be 

estimated based on the anticipated value at the end point . 

The point o f  his mode ls is to determine how to e s timate the 

interim vec tors and the ir variance so as to be able to track 

ac tual interim per formance and determine whether ac tual 
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observations are leading to the antic ipated end point . This 

is s igni ficant ly dif ferent than the problem posed in thi s 

s tudy , i . e . , having prior knowledge o f  the determinis tic 

s truc tural e f fect  and needing to combine i t  with the 

underlying series to achieve a ful l  forecas t .  Guerrero ' s  

main contribution to the obj ec tive of  thi s  dissertation is 

further confirmat ion o f  the general absence of  studies 

focussed on " s truc tural changes during the forecas t 

horizon . " 

When Pat terns Change 

Spyros Makridakis and Robert Carbone have developed a 

forecas ting approach that is particularly aimed for 

forecas ting when there are pattern changes that occur beyond 

the period o f  the his torical data . 120 This method 

dis tinguishes between short and long term forecas ts us ing 

adap t ive or respons ive methods for forecas ting the short 

term whi le us ing less respons ive methods for forecas ting the 

longer term . These forecas ts are combined through weighted 

averaging wi th the weight beginning in favor of the 

respons ive technique and shi fting to the non-respons ive 

technique . The underlying idea o f  this approach i s  that 

short term f luc tuations may not re flec t permanent changes 

and , there fore , should not be allowed to excess ive ly 

influence the calculation o f  the longer term forecas t .  The 
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Carbone and Makridakis approach allow the forecas t to treat 

these as trend shi fts for the short term,  thereby allowing 

the forecast to fol low their impac t over the short term . 

However , the technique returns the forecas t to the 

dis c ipline of  the more stable trend over the longer term,  

preventing the longer term forecas t from fall ing completely 

o f f  track . 

This approach tends , implici tly ,  to support the 

disposition that arises wi th many forecas ters to pre fer 

setting extremely low forecast parameters . 121 This 

dispo s i tion can be unders tood to re flect an e f fort to avoid 

excess influence of short term fluc tuation in forecas ting 

the longer term . Where the forecas ter i s  more concerned 

about the shortest o f  the short term or about making a 

forecast that captures a fluc tuation that occurs near the 

end o f  the h i s tori c a l  period , this dispo s i t ion to set low 

parameters disappears . 122 The use of  high forecast 

parameters has the e f fec t of allowing the forecas t to 

respond to new information in much the same way as adaptive 

forecasting responds to such new information wi th the 

di f ference being that adapt ive forecast ing adj usts the 

amount o f  response such that i t  responds less where the 

tracking s ignal indicates the variation should be counted as 

noise rather than information . While such biases as a 



pre ference for low parameters may reduce forecas t f i t t ing 

success , prac tical experience may support the use o f  such 

s trategies s ince optimal model s  es tabl i shed wi thin the 

sample period frequently are not the optimal mode ls in the 

forecast period . u3 

Repeating Historical Fluctuations 

8 0  

Wi lpen L .  Gorr has developed a protocol for 

es tabl ishing spec ial event data bases . 124 Such data bases 

provide for the poss ibi l i ty of retaining fac tors or o ther 

information that can be used in forecas ting through periods 

where events have occurred . These factors might be addit ive 

or mul t iplicative in c lassic decompos i t ion models , or might 

be other informat ion . Gorr ' s  articles look at this issue 

not , primari ly ,  from a forecas ting point of view, but from 

the perspec tive o f  information management . From this 

perspec tive , i t  i s  crucial that spec ial event informat ion 

should be retained in a manner that allows for use af ter 

those who have firs t hand knowledge of  the event have l e f t  

the organi zation . The exac t use of  the informat ion in 

forecas t modell ing or other analys is is not necessar i ly pre­

spec i fied . While quantitative information is useful , this 

approach also focusses on qual i tative information that might 

be used to understand discontinuities in data series . 
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Gorr ' s  artic les point towards the work o f  Rudol f  

Lewandowski 125 whose technique , FORSYS , is identi fied as 

exhibi ting superior performance over longer time periods in 

a frequently c i ted forecas ting compet i tion . 126 Lewandowski 

describes a spec i fic addi tive technique used to remove the 

e f fects of spec ial events from forecas ts be fore 

extrapolating them into the future . In addi tion ,  he asserts 

that such special event information can be used by managers 

to anticipate the e f fec t of recurrences of the same spec ial 

events in the future . He describes two uses of  this 

technique : 

o Where spec ial events are known to have occurred in the 

pas t ,  he decomposes the data series by determining an 

addi tive level shi f t  that adj usts for the discontinu i ty 

that occurred in the history o f  the data . 127 

o Where a spec ial event has occurred in the pas t and i s  

antic ipated t o  occur again i n  the future , the magni tude 

o f  the pas t spec ial event is used as a guide to gaug ing 

the spec ial event in the future . 128 

This second usage appears to partial ly address the 

problem raised in this dissertation . Lewandowski is us ing 

the prior temporary level shi f t  as an estimator of  the 



future temporary level shi f t  (period by period)  . 

Lewandowski ' s  discuss ion shows that he uses this estimator 

as an adj us tment fac tor for the forecas t in the future 

periods where' a s imi lar special event is antic ipated . He 

explains this usage as accounting for such ac tivi ties as a 

sales promotional campaign . 129 
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Gorr also ident i f ies the FUTURCAST software package o f  

R .  Carbone and S .  Makridakis a s  containing a mUl t iplicat ive 

technique associated wi th spec ial events . 130 The 

mUl t iplicative spec ial event fac tor is s imi lar to a 

mUl t iplicative seasonal fac tor o f  a mul t ipl icative Hol t ­

Winters forecas t model . In e f fec t ,  it  estimates a percent 

change from the underlying base l ine forecast assoc iated 

with the special event . This mUl t iplicative fac tor allows 

for modell ing o f  future special events by analogy to prior 

spec ial events in a manner s imi lar to Lewandowski ' s  second 

use o f  his special event fac tor . The analogical use of  the 

mul t iplicative fac tor may be more bene fic ial where the 

underlying series has changed in magni tude between two 

occasions o f  the spec ial event . 

Whi le the spec ial event fac tors o f  Lewandowski or 

Carbone and Makridakis may be useful when there is a 

temporary divergence from a normal condi tion ,  or perhaps a 
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cyc l ical pattern that varies from an underlying l inear 

pattern , 131 they are not the mos t  pars imonious me thod o f  

representing permanent changes . The di f f icul ty ,  in the case 

of permanent changes , is that the spec ial event fac tor 

requires maintenance for each future period during which the 

spec ial event is in effec t . I f  the event i s  permanently in 

e f fec t ,  the fac tor mus t  be maintained for all future 

periods . I t  would be more e f fic ient to permanently adj us t 

the level of  the model . 

Another Repeating Model 

Jose Juan Carreno and Jesus Madinavei tia developed a 

modi fied Hol t-Winters model that uses an index simi lar to a 

seasonal index to forecas t the impac t o f  announced price 

increases on a forecas ted t ime series . 132 This index is a 

s e t  o f  mUl t iplicative fac tors that are computed to re flect 

the impac t of  the price increase over a cyc le in the demand 

series . The fac tors computed during one cyc le are taken as 

prior expectations during the next cyc le af ter being re­

selec ted by the forecas ter upon becoming aware of the 

intention to announce the price increase .  The error terms 

occurring in the cyc le adj ust the fac tors for use in the 

next cyc l e . They also develop a s imi lar model that is a 

modi fication o f  Brown ' s  double exponential smoo thing . They 

demons trate s igni ficant improvements us ing ei ther o f  the ir 
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techniques a s  compared wi th unadj usted double exponential 

smoothing . !33 This approach is s imi lar in concept to the 

Lewandowski spec ial event fac tors and espec ially the Carbone 

and Makridakis spec ial event fac tors , al though the ir 

c itations do not indicate a fami l iari ty wi th those 

approaches . Like these other approaches , this model is 

aimed at occas ions of temporary interruption in trend and 

level rather than permanent adj us tments , and it  rests on 

data from s imi lar his torical events rather than es timates 

suppl ied from external sources . 

Conclusions Regarding the State of the Art 

Whi le there are many techniques available for 

forecasting wi th discont inuous data , the recent survey by 

Fred Collopy and J .  Sco tt Arms trong suggests that these 

techniques are not cons idered satis fac tory . Since the late 

1 9 6 0 ' s  techniques have been proposed for identi fying 

discontinuity through the charac teristics o f  the forecasted 

data us ing tracking s ignals . Later techniques were proposed 

that developed these tracking s ignals into forecas t 

parameters for adapt ing to discont inuous s i tuations . Some 

s tudies have indicated that these adaptive techniques have 

been less than succes s ful . Other techniques that have been 

proposed , e . g . , Kalman f i l ters , non-Gauss ian methods and 

complex ARlMA models , have moved away from the s imp l i c i ty of 



exponential smoothing models . Of ten these more complex 

techniques are explained and j us t i f ied in the li terature 

based on their mathemat ical properties rather than on an 

empirical evaluation of their performance in ac tual 

forecas ts . 
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These techniques are des igned to identify level shi fts 

as they occur in the observed data . They react to the leve l 

shi f t  rather than forecas t through level shi fts , i . e . , 

forecas ting wi th a level shi f t  in the prospective period . 

Certain ARIMA models - intervention models - may be able to 

forecas t through level shi f ts , however , doing so depends on 

the availabi l i ty o f  an exogenous variable that contains a 

forecas t of  the level shi f t . 

In general , techniques do not exis t  for taking 

advantage of knowledge a forecas ter may have that a level 

shi f t  wi l l  occur in the future . There are a few exponential 

smoothing techniques that do forecas t through future leve l 

shi fts  - ac tual ly , temporary interventions - when s imi lar 

interventions can be found in the his tory o f  the data . 

These sugges t a model for forecas ting through a permanent 

level shi f t  where there is information available about the 

magni tude o f  that level shi f t . The sugges ted technique 

would allow the forecas ter to adj ust the forecas t pro j e c t ion 
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by the level o f  an external ly suppl ied estimate o f  the leve l 

shi f t . This technique wi ll be further deve loped in the next 

chapter . 

Estimation of Level Shifts 

In parts of this dissertation I have suggested that 

forecas ters may have external ly suppl ied information 

concerning level shi fts . Invest igation o f  such methods is 

not the obj ec tive of  this dissertat ion . Nevertheless , in 

antic ipation o f  a technique that is proposed in the next 

chapter , it is necessary to establish the credibi l i ty of the 

assumption that such estimates may exis t . 

Forecas t l i terature suggests a few techniques for 

proj ec ting relatively new things into the future . 

Techniques that can be borrowed from new-produc t forecas ting 

inc ludes subj ec tive estimates , analogy ,  consumer-based 

tes t ing , extrapo lat ion of early sales , and di f fusion 

models . 134 Extrapolation generally re fers to the use o f  time 

series techniques .  Analogy may re fer to purely subj ec t ive 

analogy , i . e . , reasoning from one case to ano ther and 

borrowing information from the source case . Al ternat ive ly , 

i t  may refer to use of  mathematical techniques that res t ,  In 

part , on analogy between a new case and old cases , e . g . , 

regress ion or di f fus ion models . Subj ective estimates 
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generally re fer t o  the use of  expert o r  management guesses . 

Consumer-based testing has i ts analogy in pol icy making 

under the guise o f  pilot proj ec ts . Generally ,  this approach 

involves trying something out on small scale be fore going 

large scale . 

interes ts . 

I t  can also involve surveying people ' s  

Available cos t oriented techniques inc lude learning 

curve models135 ( which are sometimes inc luded in the c lass o f  

di f fusion models ) ,  econometric techniques ,  and engineering 

e s t imates . 136 Learning curve models and their relatives 

require cons iderable data from the new series for fitting , 137 

therefore , they are of  l i ttle value in providing forecas ts 

o f  antic ipated new series or leve l shi fts in old series , 

al though they could be used heuristically for SUbj ec tive 

analogical models ( there is no l i terature that sugges ts  that 

they are used in this manner )  . 

Econometric techniques can be taken to re fer to 

correlation based techniques , that is , regress ion . Where 

appropriate , these techniques may provide for adequate 

e s t imat ion of pol icy impac ts . The use o f  an econometric 

technique for estimating a po licy impac t does no t guarantee 

the avai labi l i ty of  an econometric technique for 

forecas ting . Cross sec tional models may reasonably e s timate 
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the impac t o f  a policy , through analogy wi th other enti t ies 

that have implemented s imilar polic ies , wi thout providing a 

rel iable estimate of  the previous ly exi s ting data generat ing 

func tion . Thus , they may provide only the incremental 

impac t of  the pol icy . 

Arms trong , e t . al . ,  provide no further explanation o f  

the sort of  thing they mean when they say that changes in 

costs can be estimated through engineering estimates , except 

that they charac terize these techniques as " j udgmental . ,, 13 s 

However , i t  appears that they are re ferring to the use o f  

techniques which focus on cos t ing out ac tual component cost 

generating ac tivit ies , bui lding up the overall cos t from 

these components . 139 In ac tual ly performing cost estimation 

func tions for a government program, I frequently find this 

approach to be the method of choice for cos ting out proposed 

changes in governmental services . This approach may no t 

necessarily reflec t the prec is ion o f  engineering s tudies 

applied in industrial settings . However , the conceptual 

s truc ture is s imi lar wi th a focus on : 

o Identi fying the ac tual cos t generating ac tivi t ies or 

uni ts , 

o Estimat ing the quanti ty o f  these uni ts , 



o Determining reasonable estimates o f  cost assoc iated 

wi th these units , and 

o Accounting for such fac tors as : 

o s tart -up time , 

o spec ial s tart-up costs , 

o collateral costs , 

o o f fsetting savings , and 

o t ime frame corivers ions between accrual of  

liabi l i ties and cash transac tions . 
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The use of  such cos ting out procedures frequent ly res ts 

on a combination of use of planned ac tivi ties ( dec ision 

maker intentions ) ,  market information ( current and proj ec ted 

price information ) , and analogy ( information regarding 

service utili zation , etc . , borrowed from exis ting programs ) 

Thi s  approach is s imi lar �n concept to the idea of 

dec ompo s i t i on , focuss ing attention on individual components 

o f  cost rather than sophis ticat ion of  estimation technique . 

Some forecas ting l i terature supports the view that 

understanding the process may be more important than use of  

sophisticated techniques . 140 

Thi s  review �n not a thorough review o f  the techniques 

used to estimate prospective pol icy shi f ts . I t  is intended 

solely to show that i t  is credible to conc lude that such 
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techniques may exi s t  and may provide reasonably accurate 

estimates . Ac tual results aris ing from the technique 

proposed in the next chapter may depend on the which 

techniques are ac tual ly used and how rel iable their results 

may be . 

Sununary 

The problem o f  level shi fts  is recogni zed as 

signi ficant by a large number of forecas ting prac t i t ioners . 

Exis ting techniques inc lude those that identi fy level shi fts 

( out  o f  control condi tions ) through tracking signals , those 

that incorporate tracking s ignal into the estimation of the 

a parameter ( or other parameters ) , those that provide o ther 

methods for incorporating his torical ly identi fied level 

shi f ts into forecast models , and those that use historical 

level shi fts in analogy for anticipating new level shi f ts . 

Three models that might provide some guidance for further 

development are the Lewandowski additive model , the Carbone ­

Makridakis mul t ipl icative model and the Carreno-Madinave i t ia 

mul tipl icative mode l . Forecast l i terature supports the view 

that there may be techniques avai lable to estimate pol icy 

changes al though they are not serial estimates of whole data 

series . 



CHAPTER. 5 :  A MODIFICATION OF EXPONENTIAL SMOOTHING 

In this chapter I wi l l : 

o Propose a modi fication of  Holt -Winters -Wi ll iarns 

exponential smoothing that might provide a specific  

solution to  this problem . 

o Provide a theoretical j us t i fication o f  this solut ion . 

o Spec i fy some l imi tations o f  the proposed solution . 

Need for a Technique 

The techniques discussed in the last chapter al low the 

forecas ter to identify level shi fts occurring in historical 

data and to react to them . The reac t ion may be to re f i t  a 

model based on a tracking s ignal that indicates that the 

model is no longer reliably f i t , or i t  may be to use a 

tracking signal or another s imi lar s tatistic to f i t  a more 

complex model . In any case i t  is s t i l l  a reac tion . Even 

the bes t  technique for reac ting to a leve l shi ft only 

follows the data as the data changes . In some spheres i t  is 

thought that proac tive approaches to future problems are 

bet ter than reac tions , even good reac tions . 

When a pol icy dec is ion is made , the data can be 

expec ted to change even be fore i t  ac tual ly changes . Only 

the undocumented ad hoc technique is available for inc luding 
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antic ipated changes in the forecas t proj ec t ion unless the 

antic ipated change is s imply a repeti tion of a previous 

temporary level shi f t . A technique that al lows the forecast 

to inc lude any ant ic ipated changes may provide a more 

realis tic forecas t .  

In this chapter I propose a technique that allows the 

forecas ter to prospectively anticipate a level shi ft so that 

the model does not need to reac t to i t . In other words , the 

technique inc ludes the level shi f t  in the forecas t 

proj ec t ion . 

Techniques that reac t to level shi f ts do not al low 

the forecas ter to take advantage of  all o f  the information 

that is avai lable to them, particularly informat ion that may 

have been developed for the purpose of  supporting po l icy 

dec i s ions that lead to level shi fts . The technique proposed 

in this chapter is particularly des igned to take advantage 

of externally suppl ied information that can be used to 

ant i c ipate the e f fec t of a pol icy change . I anticipate that 

by taking advantage of  this informat ion , a more accurate 

forecast can be made . The s tudy that is described in a 

chapter 7 compares the technique proposed in this chapter 

with some of the s imple approaches for reac ting to a level 

shi f t  identi f ied in the previous chapter . 
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A Proposed Exponential Smoothing Solution 

The ad hoc method sugges ts that a po licy change may be 

inc luded 1n a forecas t model by adding the anticipated value 

o f  the policy change to the forecast produced into the 

forecas t model . The Lewandowski method sugges ts a s imi lar 

addi tion when a his torical fluc tuation is expec ted to 

repeat .  When such addi tions are lumped onto the forecas t 

produced by the exponential smoothing model they may provide 

for a more accurate ul timate forecas t .  However , they do no t 

correc t for problems that may arise wi thin the exponential 

smoothing model itsel f . Also , these techn iques require that 

the adj us tment be added to each proj ec ted observat ion 

produced from the exponential smoothing model . While thi s 

may be a sui table approach where a temporary leve l shi f t  is 

antic ipated over a short period o f  time , i t  presents more 

di f f icu l ty where the level shi f t  is long las ting and where 

mUl t iple level shi fts may arise over time . 

To address these di f ficulties , I propose the fol lowing 

modi f ication to the Ho l t -Wi l l iams model : *  

*Numbering o f  these formulae cont inue the same series 
as the Holt-Winters -Wi lliams formulae . 
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et = Error at time t = Xt Ft , 

F '  t = Adj usted Forecas t at time t = Ft + Pt 

Ft = Ini tial Forecast at time t = St-l + Bt-1 

St = Level at  time t = Ft , + aet 

Bt = Trend at time t = Bt-1 + � et 

� = Adj us tment factor at t ime t = Pt - Pt-1 

P = A periodic estimate o f  a pol icy in a vec tor : 

( . . .  , O , O , O , a , b , c , . . .  , n , n , n , . . .  ) where , 

a ,  b ,  c ,  . . . , n all  have 

l a l  < Ib l  < I c l  < I n l · 

the same s ign , 

Other cons traints are as wi th Hol t -Wi l l iams as 

described in Appendix I I . 

I Forecast with Pol icy Cha nge I 
�r-------------------------------------�------------� 

'Planned Policy Olange 

300 

� 
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• Historical Aduals • Unadjusted Forecast - Adjusted Forecast 
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These three comments serve to c lari fy these formulas 

somewhat :  
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o The second res trict ion on the vec tor P is for prac tical 

cons iderations only , to avoid use of this leve l 

shi fting technique in cases where the change under way 

is ac tual ly a trend shi f t  or a seasonality change . 

When the user has knowledge that a complex level shi ft 

is under way , as when a level adj us tment is expec ted 

for a spec i fic time period only , this res tric tion can 

be removed . 

o Formula 2 .  can be res tated as : 

Ft+m I = 

Then the express ion Lt+! . t+m ( Pt )  can be s implified to : 

�+m - � 

This formulation shows that the adj us tments inc luded ln 

the forecas t model at time t are equal to ful l  level 

adj us tment that would be added in the ad hoc adj us tment 

at time t .  

o By subscripting P as Pj where J is an index that i s  

assoc iated wi th var ious pol ic ies and summing 

appropriately ,  this formula can be general i z ed to 
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account for mul t iple pol icy adj us tments . In this case 

formula 6 is modi fied to : 

= Adj us tment factor at time t = 

These formulas modi fy Hol t -Wi l l iams ; however , Hol t ­

Wi l liams is very s imi lar t o  SES , Hol t , Winters , Hol t ­

Winters , and Ho l t -Winters -Wi l l iams . Wi th appropriate 

subs titution of these o ther bas ic models , this pol icy 

adj us tment model can also modi fy these other exponential 

smoothing models . 

For ease o f  re ference , I some times refer to this 

technique as adjusted Holt -Wi l l iams ( or adj usted Hol t -

Winters -Wi l l iams ) . I t  may also be called the differences 

technique because i t  adj usts a pol icy-adj us tment - free ­

forecast for the level impac t o f  polic ies by adding the 

f irst differences of an e s t ima te o f  the pol icy change to the 

unadj usted forecas t .  Since i t  adds these first di f ferences 

direc tly into the forecas t model , it permanently shi f ts the 

forecast upwards ( or downwards in the case of negative 

dif ferences ) .  Thus , the adj us ted forecas t permanently 

inc ludes the pol icy change . 



Making an adj us tment in this manner results in the 

following expec ted consequences : 

1 .  When the pol icy occurs at approximately the time 

expec ted in approximately the s i z e  expec ted , the 

forecast is ready for the change and requires no 

further adj us tment . The forecas t does not develop 
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large errors at the time o f  the po l icy change , so i t  is 

not necessary to correc t any of  the forecast 

parameters . Problems assoc iated wi th large forecast 

errors do not material i z e . 

2 .  When the technique is used to empirically fit  

his torical level changes that are known to have 

occurred , exponential smoothing parameters can be 

better f i t  to the remainder of  the series . *  

3 .  When the pol i cy fai ls to occur at approximately the 

t ime expec ted in approximately the s i z e  expec ted , the 

forecast error increases . This increased error alerts 

the forecaster to the fac t that the pol icy change has 

*This usage should be l imi ted to cases where the 
forecas ter knows that there has been a level shi f t  and knows 
why the level shi f t  occurred . I f  a data series has periodic 
level shi fts  that are unexplained , the forecas t parameter 
needs to re flec t this so that future occurrences aris ing for 
the same unexplained reasons wi l l  not be ignored . 
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no t occurred, leading him t o  fol low up wi th the people 

who are respons ible for the pol icy implementat ion in 

order to de termine what sort of  change is required ln 

the adj us tment . It  also alerts management of the 

implementation fai lure , leading to management use o f  

forecas t information . 

4 .  When the forecast is generated through the proposed 

formulas , the whole forecast inc luding the pol icy 

change component is generated wi thout additional 

manipulation . So when results are tabulated,  no 

adj us tments are required . Likewi se , when the forecas t 

is used as input to other more complex forecas ts , the 

impac t is automatically carried forward to those 

forecas ts . This is particularly bene fic ial when the 

forecast is generated in an automated environment , 

where other approaches may require manual intervention . 

I t  can also be very bene fic ial where various summat ion 

periods are required for di f ferent report ing purposes . 

5 .  When , prior to the change in the pol icy , the forecaster 

learns o f  revised assumptions about timing or 

magni tude , the forecas t as sumptions can be adj us ted by 

revis ing the same as sumptions wi thin the forecas t .  For 

example , the forecas ter can shi f t  the pol icy change 
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forwards or backwards in time , or can increase or 

decrease the magni tude of the adj us tment . Consequences 

for all future periods and all summation periods are 

automatically adj us ted . Such adj us tments can also be 

made when , empirically ,  i t  is demons trated that the 

pol icy change has impac ts other than those 

prospec tively antic ipated . 

The empirical research in this dissertation examines 

the f irs t ( the larger s tudy ) and second ( the smal ler s tudy ) 

o f  these expec ted consequences and finds inc identally 

relevant information for the third . The fourth and f i f th 

consequences are logical in nature and do not require 

addi tional research to demons trate their accuracy . 

Theoretical Rationale 

The proposed technique augments the use of information 

ln forecas ting . Quantitative forecas ting involves ef forts 

to extrac t information from sample data ( the historical 

period) that can be e f fec tively general i zed to the out - o f ­

s ample data ( extrapolated into the future ) .  A di f f icu l ty 

with sophisticated techniques is that they somet imes confuse 

random or unexplained variation for informat ion . 1 4 1  The 

proposed technique deals wi th the problem o f  information 

about the future in a di f ferent way . I t  decomposes the 
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forecas ting problem into separate problems o f  forecas t ing 

the underlying process and forecas t ing a prospec tive change 

in the process , allows for quasi-judgmental forecasts o f  the 

prospec tive change relying on pol icy maker intentions , and 

f inal ly reintegrates the results into a complete forecas t .  

Decomposition for Efficient Use of Information 

J .  Scot t  Arms trong argues that i t  i s  particularly 

helpful t� decompose a problem to help analyze it . 142 

Arms trong provides numerous c i tations that show that 

decompos i tion improves forecas ting . He argues : 

Decompos i tion has a number of  advantages . It  allows 
the forecas t to use information in a more effic ient 
manner .  I t  helps to spread the risk ; errors in one 
part of the problem may be o f fset by errors in ano ther 
part . I t  allows the researcher to spl it  the problem 
among di f ferent members o f  a research team .  I t  makes 
i t  poss ible for expert advice to be obtained on each 
part . Final ly , it permi ts the use of di fferent methods 
on di fferent parts of the problem . H3 

This argument c i tes several spec i f ic advantages o f  

decompos i tion that are direc tly related t o  the proposed 

technique . These inc lude : 

o The abi l i ty to spl i t  the problem up among di f ferent 

members of the research team . The proposed technique 

allows the forecas ter to bene fit  from analyses 
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completed by staff  who have developed spec i fic po l i cy 

cos t analyses . 

o The abi l i ty to obtain expert advice on each part . The 

forecaster can separately seek out informat ion about 

each part o f  the forecast ( at leas t prospec tively ) and 

use the advantage of  that information in making a 

forecas t .  

o The abi l i ty to use di f ferent methods for di f ferent 

parts of the problem . The proposed technique is 

spec i f ically oriented to us ing di f ferent methods in 

making the forecas t ,  whi le integrating the results into 

the mos t  e f fec tive combined forecas t .  

By breaking down the ini tial forecas ting problem into 

forecas ting of the underlying process and estimating the 

pol icy change , the proposed technique allows the forecas ter 

to use appropriate techniques and information for each 

component of the forecas ting problem, rather than forc ing 

the problem to f i t  the technique . 

Judgmental Adjustments 

The use o f  external ly supplied estimates o f  po l icy 

changes in the proposed technique is very s imi lar to the use 
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o f  j udgmental forecas ting based on pol icy maker intent ions . 

Arms trong c i tes numerous s tudies that show intentions 

provide good predic t ions where mat ters are important . 144 

Prac ticing forecas ters commonly advocate adj usting 

forecasts to account for external ly available informat ion . 145 

Such accounting is also the underlying purpose of  

decompos ition techniques in general . For example , 

forecas ters frequently adj us t data to take into account 

trading days146 prec isely because they anti c ipate that this 

external fac tor wi l l  lead to predic table variat ion in the 

data being forecas ted . 

Nevertheless , forecas ting s tudies general ly show that 

j udgmental adj us tments o f  forecas ts do not improve forecast 

qua l i ty . 147 Still forecas ters persist  in believing that use 

o f  knowledge about the data series , part icularly about 

future s tates of the data series , he lps in forecasting the 

data series . Vol lmann , Berry , and Whybark o f fer a typical 

discuss ion where they sugges t  that when a forecaster has 

knowledge of external information he mus t  chose between 

adj us ting the forecast and adj us ting the forecas t model . 148 

Don Mi l ler has conj ec tured that i t  is more e f fec tive to 

use j udgmental adj us tments when the forecas ter or other 



expert commi ts to the adj us tment be fore the forecast is 

made . 149 The rationale for this conj ec ture is as follows : 
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When j udgmental adj us tments are commi t ted t o  be fore the 

forecas t is made , they relate to the information underlying 

the adj ustment itself . This use res tricts the role of  

j udgmental adj us tments to that o f  inc luding more information 

in the forecas t and may improve the forecas t .  However , when 

j udgmental adj us tments are made as the las t stage of  the 

forecasting , they are used to force the overal l forecast to 

the forecaster ' s  subj ec tive est imates . The second use 

subs t i tutes a subj ec tive forecas t for an extrapo lat ion 

forecas t with an assoc iated loss of accuracy . 

The proposed technique may bridge be tween these 

competing views on the advisabi l i ty of  inc luding j udgmental 

adj us tments in forecas ts . I t  provides for c lear quantif ied 

forec a s t  adj us tments that rely on prior existence of 

quantitative estimates of  the fac tors that are expec ted to 

lead to predic table variat ion in the data series . By 

relying on the prior exis tence of  quantitative estimates ,  

the technique also follows the normat ive logic of  Mil ler ' s  

conj ec ture that the commi tment should be made be fore the 

unadj usted forecas t is known . 
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Integration 

The math that allows for integration of  the component 

forecas ts into one model is the heart o f  the proposed 

technique . For the sort o f  problem for which this technique 

has been developed some future event irrevers ibly combines 

component data series into a s ingle indis tinguishable one . 

Be fore they merge , one can forecast them separately and add 

the resul ts . Exponential smoo thing can be used for the 

series that has a reasonably long data his tory ,  but the 

other component is not in that history so i t  must be 

estimated in some other way . Nei ther component forecas t 

alone accounts for the future expec tation . Together , they 

make a more reasonable forecas t . lso Af ter the data merges , 

there is only one series to forecas t . So , the firs t 

di f ferences o f  the pol icy change estimate are used to 

permanently adj ust the level of the exponential smoothing 

forecast model , thereby aggregating the component forecasts 

into an integrated whole j us t  as the data series itself wi l l  

b e  integrated . 

This process is a formali zat ion o f  the ad hoc me thod 

that forecas ters might otherwise use when faced wi th po l icy 

changes . Integrating forecasts that arise from various 

sources may be cons idered an improvement over these separate 

forecas ts . lSl When the policy change is known to occur far 
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in the future , the forecas ter could s imply add the 

consequences o f  the pol icy change to a forecast derived from 

a s tatis tical forecas t model ( the ad hoc technique ) . 

Ignoring any dynamic aspec ts o f  the forecas t ,  that approach 

would have the same result as the proposed technique . The 

summation o f  the periodic firs t di f ferences used in the 

proposed technique gets the forecas ted data series to the 

same level as would be attained through the ad hoc 

technique . 

The di f ference be tween the two techniques is not the 

estimate that i t  produces , but the consequences of  updating 

wi th ac tual data . With the ad hoc technique , the data 

assoc iated wi th the po l icy change leads to large forecast 

errors which throw the s tatistical forecas t model into 

confus ion while data assoc iated wi th fai lure to experience 

the pol icy change does no thing at all . Nei ther of  these 

as s i s t  ei ther the forecaster or the manager who uses the 

forecast . In the proposed integrated technique , the 

occurrence of  the pol icy change minimally confuses the 

forecas t ( the confusion is less as the estimate of the 

impac t o f  the pol icy change is bet ter ) , while fai lure to 

experience the pol icy change throws the s tatistical forecas t 

model into confus ion . These consequences help both the 

forecas ter and the manager who uses the forecast regardless 
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o f  whether the pol icy change occurs or not . The bene f i t  

arises because the integrated technique can be expec ted to 

have much smaller errors wi thin the statis t ical forecas t 

mode l than the ad hoc method . 

Limiting Factors For the Technique 

There are fac tors that may interfere with anti c ipated 

benef its of the proposed technique : 

Independent Components 

In part the antic ipated bene fits arise from the 

assumption that the two series that are to be merged are 

independent .  I f  they are not independent ,  the combination 

o f  the series is no t best  accomplished through simple 

addi t ion . A lack o f  independence might arise when the main 

e f fe c t  of a pol icy change is to change the level o f  a data 

series , bu t an addi t i onal e f fec t i s  t o  also change the trend 

o f  that series . I t  is likely that this as sumption o f  

independence wi l l  be vio lated with ac tual policy changes . 

An important fac tor to examine is whether the technique is 

robust to violations of  this assumption . In the empirical 

s tudy , two s imulated pol icy changes re flect a correc t 

estimate ( scenarios 1 and 8 )  and two inc lude both a level 

change and a trend change ( scenarios 2 and 9 ) . The purpose 
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violation of  the assumption of  independence . 

Accurate ComPonent Estimates 
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I t  is assumed that the two component series are 

estimated through techniques that are reasonably reliable . 

There is a higher risk that this wi l l  not be true for the 

estimate of the pol icy change A pol icy estimate may be 

subs tantially inaccurate in several ways : 

o I t  may subs tantially over or under estimate the impac t 

o f  the pol icy . Where i t  underes timates the impac t o f  

the pol icy i t  s t i l l  should result i n  reduc ing the 

overall bias o f  the forecas t ,  that is , it should reduce 

the size  of the error that arises from us ing a mode l 

that contains no information at all  about the pol icy by 

some portion o f  the di f ference between the unadj us ted 

model and the true data generat ing process . When i t  

overestimate the impac t o f  the po l icy , there i s  no 

guarantee that the pol icy-adj us ted model wi l l  be more 

accurate than the unadj us ted model . In the s tudy there 

are two scenarios that s imulate underes timated pol icy 

changes ( scenarios 3 and 1 0 ) and two scenarios that 

s imulate overes timated po licy changes ( scenarios 4 

and 1 1 ) . 
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o I t  may incorrec tly estimate the nature o f  the impac t ,  

that is , i t  may adj ust the forecas t to reflect a new 

level and minimal impac t on trend when j ust  the 

oppos i te occurs . In the s tudy two scenarios s imulate a 

trend change ins tead of  a level change ( scenarios 5 and 

12 ) ,  one s imulates no change at all  ( scenario 6 )  and 

one simulates a variance change ins tead o f  a level 

change ( scenario 7 )  . 

o I t  may place the pol icy at the wrong point in time , 

e i ther be fore or after the ac tual impac t occurs . Thi s  

poss ibi l i ty is not examined i n  the empirical study . 

o I t  may predic t  the oppos i te of  the ac tual impac t ,  that 

i s , increase when decrease occurs or vice versa . Thi s  

pos sibi l i ty is not examined i n  the empirical study . 

o I t  may incorrec tly account for the t iming and length ( 

the ramp o f  the level shi f t ,  ei ther by not account ing 

for i t  at all ( assuming a s tep ) when , in fac t ,  phase 

up , or by as suming too short or too long a ramp . This 

poss ibi l i ty is not examined in the empirical s tudy . 
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Trend, Seasonality ,  and Variance Shifts 

The technique only addresses the case o f  a level shi f t . 

Trend , seasona l i ty ,  and variance shi fts are not adj us ted by 

this technique . I t  is likely that a variation of  the 

technique would be avai lable for trend shi fts . ·  I am not 

aware of a modi fication of the technique to adj us t the 

forecas t for seasona l i ty or variance shi f ts . 

Competing Shifts 

The proposed technique may lead the forecaster to 

overlook a trend shi f t ,  seasonality shi f t , or other 

unexplained level shi f t  that occurs at the time of the 

expec ted level shi f t . The large errors that may have caused 

the forecas t to adj ust for e i ther o f  these alternative types 

of changes wi l l  be lost because the forecast is already 

adj us ted to reduce the size  of  these errors . 

·With the following modi ficat ions this technique can 
also adj ust for trend shi f ts : 
3 . 5 Bt = Trend at time t = Bt-1 + yet + Kt 
8 . 5  Kt = Trend Adj us tment Fac tor = Pt + Pt-2 - 2 Pt-1 

Thi s  places the second di f ferences of  the pol icy e s timate 
into the trend . I t  is l ikely that the forecas ter would have 
to make a j udgement that the chief problem he / she has wi th a 
part icular policy is i t s  impac t on trend or i t s  impac t on a 
po l icy and , then selec t which to modi fy . Modi fying both may 
be too aggress ive . 
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The forecaster is no t re lieved o f  this problem because 

he fails to anticipate a pol icy change . I f  the pol icy 

change is not inc luded in the model through the proposed 

technique and the forecast begins to perform poorly , the 

forecas ter wi l l  have to invest igate the phenomena in order 

to dec ide what sort of remedial ac tion is required . Upon 

finding an expec ted policy change i t  wi l l  be reasonable for 

the forecas ter to assume that a change occurring at the time 

i t  i s  expec ted and in the order o f  magni tude expec ted is the 

change that is expec ted . While this wi l l  occas ional ly 

result in erroneous resul ts , i t  is less l ikely than the 

oppos i te assumption . Thus , the same result occurs whether 

the pol icy change is accounted for in the mode l or no t . In 

ei ther case , addi tional experience may correc t the error 

af ter more updates ; however , there is no guarantee i t  wi l l . 

Shifts that are Too Small for Significance 

The changes that this technique imports into the 

forecast may be so small as to be of l i t tle consequence to 

the forecast per formance .  This may be the case particularly 

when the data series that is modi fied by the po l icy change 

is subj ec t to wide variat ion in the firs t place , or when the 

estimate o f  the prospec tive pol icy change is subj ec t to wide 

variation . So , the technique may import a risk of  error 

wi thout s igni ficantly improving the forecas t .  Thi s  is 
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undoubtedly true for some applications . A forecast that 

sugges ts an expendi ture of $ 5 0 0  mi llion a year may be 

ins igni ficantly impac ted by a policy change that adj us ts i t  

by $ 5 0 0 , 0 0 0  a year , s ince the confidence interval around the 

$ 5 0 0  mi l lion forecas t may be much larger than that . Yet ,  

ignoring the change would appear to bias the forecas t ,  

assuming i t  was previous ly unbiased , s ince the es timated 

impac t of the program change implies that the expendi ture 

wi l l  be greater than the previous ly estimated central 

tendency . So , as ins igni ficant as the item is for the 

e f fectiveness o f  the forecas ting model , ignoring it creates 

an underes timate . 

More importantly ,  the forecas ter should not overlook 

practical forecas ting consequences when dec iding technical 

fac tors . The acquis i tion o f  the funding for the pol icy that 

cos t $ 5 0 0 , 0 0 0  may not be inconsequential . By sys tematically 

ignoring all such pol icy changes , i t  may wel l  be that a 

program creates unnecessary budgetary turmoi l  for itsel f by 

first  seeking budgetary approval for pol icy impac ts , then 

later seeking funds to support s l ight unexpec ted growth in 

the forecas t ,  when the growth in the forecast is merely the 

forecast model ' s  recogni tion o f  the po l icy that was 

previously ignored . 
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Explaining the Forecast 

The use o f  thi s  technique may reduce the forecas ter ' s  

abi l i ty to explain the forecas t model to the forecast user . 

When a forecas t is adj us ted through the ad hoc me thod , the 

forecas ter can tell the user the exac t s i z e  of the pol icy 

adj us tment . When the adj us tment is incorporated wi thin the 

forecas t through the proposed technique and entered as a 

component into a more complex forecas t ,  the exac t s i z e  o f  

the policy adj us tment is no longer easy to s tate . 

Swmnary 

When forecasters have informat ion about anticipated 

pol icy changes , it may be e f fec tive to inc lude that 

information in the s tatis tical forecas t model . A technique 

i s  de f ined to allow for a permanent inc lus ion of such 

information . This technique makes sense because i t  s imply 

allows the forecas ter to inc lude information in the 

s tatis tical forecas t model . This is a natural extens ion of  

the decomposition approach to  forecast ing . 



CHAPTER 6 :  VALIDATING FORECAST TECHNIQUES 

In this chapter I wi l l : 

o Identi fy the cri teria that are available for comparing 

forecas t techniques . 

o Spec i fy two maj or hypotheses ( 5  cons t i tuent hypotheses ) 

that are examined through empirical research which i s  

discussed i n  the f{nal three chapters of  this 

dissertation . 

o Identi fy the various types o f  forecas t evaluations . 

o Discuss the generally accepted approach to evaluating 

forecas t accuracy . 

o Identi fy the range o f  s tatistics that are avai lable for 

evaluating forecas t accuracy . 

Forecast Criteria 

To determine whe ther forecasts made us ing the proposed 

technique a r e  be t ter , i t  i s  important to cons ider the 

meaning of better . This term has been used wi th several 

meanings among forecas ters . Roughly , these inc lude : 

o Bet ter f i t  in the sample period . 152 

o More accurate in the forecas t period . 153 

o Lack o f  bias . 154 

o Less expens ive to use . 155 

113  



o Eas ier to use . 156 

o Eas ier to unders tand . 157 

o Not having sys tematic errors . 158 

o Containing more information . 159 

o Providing more useful information to a forecas t 

user . 160 

Also , I proposed two criteria in chapter 3 ,  accuracy 
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and reliabi l i ty .  These cri teria , beginning wi th the two I 

proposed, are discussed below . 

Accuracy 

There is cons iderable dispute 1n the l i terature 

regarding which s tatistic , i f  any , rel iably measures the 

relative accuracy o f  various forecasts . 161 In addi tion , 

s tudies indicate that forecas t conf idence intervals 

calculated by s tandard statistical formulas are unduly 

narrow162 which suggests that s tatistical comparisons between 

forecas ts may not be rel iable . Nevertheless , severely 

inaccurate forecasts would seem to be po intless . So , 

forecas t accuracy is cons idered a cri terion of  forecas t 

model adequacy . Later in this chapter methods for 

evaluating accuracy are reviewed more thoroughly . 
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Reliability 

Forecasting l i terature does not address the issue o f  

rel i abi l i ty as I have raised i t . I use reliability to re fer 

to a lack of  update driven fluc tuation . Forecasts o f  more 

than one period ahead are of l i ttle value when they change 

s igni ficantly wi th every update . I f  the current foreca s t  

and the l a s t  one are bo th the bes t  made at the time , but the 

current one is 1 0 %  more ( or less ) than the last one , and i f  

the forecas t fluc tuates this much wi th every update , how 

does the user know which one is right ?  I n  the empirical 

analys is a s tati s t ic is inc luded to look at this issue . 

Better Fit 

It appears that the better fit in the sample period 

cri terion is a proxy for the more accurate in the forecast 

period cri terion . However , forecas t l i terature does not 

s upport the view that the one implies the other . 163 In thi s 

s tudy accuracy wi l l  be measured more direc tly by looking at  

the ac tual consequences of  ac tual forecas ts . Better f i t  

wi l l  no t be a cri terion o f  forecast model adequacy . 

Lack of Bias 

In estimation , bias arises when the expec ted value of  

an e s timator is not  equal to the parameter i t  is used to 

e s t imate . 164 I t  is , there fore , related to accuracy . In this 
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s tudy , concerns o f  bias will be subsumed under concerns o f  

accuracy . Never theless , Mean Deviat ion ( a  measure o f  bias ) 

wi l l  be cons idered in f i tting of  forecas t models . 

Less Expensive to Use 

As has been c i ted elsewhere in this s tudy ( page 3 D ) , i t  

is commonly bel ieve that exponential smoothing i s  a 

relatively inexpens ive forecas ting technique . This view 

res ts on the fac t that exponential smoothing calls on 

relatively l i ttle data and can be taught to s taf f who have 

l i t t l e  s tatistical or other high cos t analytic ski lls . I t  

also requires only a moderate amount o f  computer time and 

calls on formulas that are avai lable in numerous computer 

programs and which formulas are fairly easy to recreate when 

o f f - the-shel f  software is no t avai lable or des ired . In the 

usual case , interpretation o f  the results o f  exponential 

smoothing models i s  not cons idered di f f i c u l t .  I have not 

been able identi fy research that demons trates these 

assertions , but I assume from personal experience that they 

are accurate . Another element of forecast cos t is the cost 

of  wrong dec isions due to forecast inaccuracy ; however ,  

forecas t accuracy i s  a separate cri terion for thi s  s tudy . 

I f  exponential smoothing i s  an inexpens ive forecas ting 

technique , and i f  the proposed technique uses only 
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information that is on hand requiring only a small amount o f  

e f fort t o  put i n  a usable format , the proposed technique 

should remain inexpens ive . The ques tion whether the 

proposed technique is less expens ive than unadj usted 

exponential smoothing res ts on whether the value gained 

through improved accuracy or other value added is greater 

than the increased e f fort required for appl ication of the 

technique . I am not able to operationalize this question 

and do not propose evaluating i t  ques tion in this s tudy . 

Easier to Use 

I t  is widely held that exponent ial smoothing is a 

relatively easy to use forecas ting technique . Reasons for 

this view are not widely discussed but ,  I assume , are 

assoc iated wi th the relatively s imple math and the relative 

ease o f  interpreting output in the usual case . The proposed 

technique is a relatively s imple extens ion of  exponential 

smoothing , requiring primari ly that the forecas ter grasp the 

mathematical operationalization of a firs t dif ference . 

Consequently , i f  exponential smoothing is relatively easy to 

use , so too is the proposed technique . 

Also , the proposed technique provides for several 

ef fic ienc ies compared wi th its primary alternative , the ad 

hoc approach . These are discussed beginning on page 9 7 . 
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One o f  the more important of  these efficienc ies i s  that , as 

compared wi th the ad hoc technique , this technique has the 

advantage that i t  is " more seamless , " i . e . , it allows for 

the computerized forecas t model to contain a leve l shi f t . A 

forecast prac t i tioner who wants to accomplish the same 

results wi thout the proposed technique makes a two s tage 

forecast ,  firs t he uses a computerized forecas t mode l to 

produce an ini t ial forecas t ,  then he takes the results of 

the model and manual ly adds the ad hoc adj us tment . Wi th 

each forecast update , the same two s tage adj us tment mus t  be 

made . Also , when more than one forecas t horizon is 

reported ,  the ad hoc adj us tment mus t  be inc luded for each 

reported horizon . The proposed technique minimizes the 

number of adj us tments made by permanently inc luding the 

adj us tment in the forecas t level and contains the 

adj us tments in the computerized forecas t model , thereby 

e l iminat ing manua l  adj us tmen t s . 

Easier to Understand 

An easy to unders tand inaccurate forecas t is of  l i t t l e  

value . The ease o f  understanding cri terion i s , in the first 

place , related to forecas ts that are anticipated to be 

accurate . At this point , the accuracy o f  the proposed 

technique has not been evaluated . Thus , evaluation o f  the 

ease o f  understanding cri terion would be premature unless it  
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can be inc luded in the s tudy of  accuracy with minimal 

addi tional impac t .  

I anticipate that , in fac t ,  the proposed technique wi l l  

be somewhat less easy for the user t o  understand than is ad 

hoc method . Under the ad hoc method , the user can see the 

forecas t from the s tatistical forecas t model , see the policy 

impac t ,  and see the combination o f  these . In the proposed 

technique , the pol icy change is mys teriously absorbed into 

the s tatistical forecast model . 

In the discuss ion above i t  is sugges ted that this ad 

hoc method somet imes resul ts in s ignificant inaccurac ies . 

I t  i s , there fore , important to separate the �ssue of  

accuracy from the issue o f  unders tanding . I f  the s tudy o f  

accuracy demonstrates s igni ficant gains , the issue o f  

understanding may become more s igni ficant for a separate 

s tudy . 

There are two issues o f  ease o f  understanding : 

( 1 )  Whether the technique as described in this s tudy can be 

unders tood by forecas ters and end users wi th relative ease . 

( 2 )  I f  not ,  whether an al ternative description can be 

articulated that wi l l  make the technique accessible to 
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forecas ters and end users . A negative finding on the f ir s t  

issue does not settle the matter . 

Absence of Systematic Errors 

In his discuss ion of  this issue , H .  o .  Stekler is 

c l early interes ted in the issues of  bias and accuracy . 165 

These are issues previous ly discussed above under separate 

topical headings . In general ,  a sys tematic error is an 

error that indicates the fai lure to take into account an 

important explanatory variable .  In causal or econometric 

type forecas ting , this would general ly mean that the model 

is miss ing an important explanatory variable . In Ho l t -

Winters -Wi lliams models i t  may indicate a need t o  analyz e 

the decompos i tion o f  the data into the series that are being 

forecas t . For example a periodic up and down cyc le in 

monthly data may indicate that the data is inherently weekly 

in nature wi th a spec ial weekly end date , e . g . , Fridays , 

such that in months that have five Fridays ( roughly one a 

quarter ) the series bumps up , in other months it  bumps down . 

Thi s  sort o f  decompos i tion analys is is ano ther approach to 

deal ing with explanatory variables . 

The proposed technique is developed spec i f ically to 

remove certain sorts of  sys tematic error , it is des igned to 

remove the serial correlation that arises over a period of 
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t ime during which an exponential smoothing forecas t mode l i s  

behind the curve on a level shi f t ing pol icy change . 

Consequently ,  the evaluation of  the relative accuracy o f  the 

technique is also an implic i t  evaluation of its 

e f fec t iveness in removing sys tematic error from the 

forecas t .  

Containing More Information 

The proposed technique i s  spec i f ically des igned to 

incorporate information known by the forecas ter into the 

s tatistical forecast model . Wi th respec t to the overall  

forecast mode l , inc luding non- s tatistical equations , the 

forecast m�de in advance o f  the date of the policy change 

us ing the proposed technique does no t contain more 

information that a forecas t us ing the ad hoc method . 

However , it  is proposed that the statistical mode l in the 

proposed technique does contain more information than the 

statistical model used in the ad hoc technique . The 

di f ference in the s tatis tical models is that the proposed 

technique uses the anticipation of  a change to adj ust the 

number that is to be compared wi th the forecas t error . As 

the policy change unfolds , the errors computed in the 

a l ternative statistical forecast models wi l l  be di f ferent . 

In one case the s tatistical error reflects the ant icipation 

o f  a change , in the o ther i t  does not . In the proposed 
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technique the s tatis tical error indicates a need t o  adj u s t  

( and adj usts t o  the degree that the parame ters al low ) i n  the 

case that the pol icy change fai ls to occur . It cont inues 

wi thout s igni ficant adj us tment if the pol icy change occurs 

as expec ted . In the ad hoc model , the reverse occurs . 

While this di f ference is solely a di f ference in where 

the information is s tored be fore the pol icy change occurs 

( wi thin or outs ide of the s tatistical model ) ,  it becomes a 

difference in information as the model is updated while 

policy change is going into effect . The di f ference is found 

in the error term o f  the s tatis tical forecas t model . Assume 

that the estimate o f  the policy change is reasonably 

accurate . In this case , the user of  the proposed technique 

cont inues to have available a s tati s t ical forecas t that i s  

no t a f fec ted by abnormal errors . The user o f  the ad hoc 

technique , on the other hand , has a statistical forecas t 

that is not working because the s tatistical forecas t mode l 

is affec ted by abnormal errors . Once the pol icy change i s  

i n  e f fec t and i n  the his torical period of  the data , the ad 

hoc technique contains the informat ion about the pol icy 

change wi thin the s tatistical forecast model in the 

a parameter where it is at risk o f  confus ing other 

unexplained variation with pol icy changes while the proposed 



1 2 3  

technique contains the information wi thin a component o f  the 

mode l that is targeted spec i f ically to the spec i f ic pol icy 

change and has no risk o f  confus ing unexplained variation 

with the pol icy change . 

Moving to the assumption that the pol icy change does 

not take place , the user of  the proposed technique is free 

to change the forecas t model to exc lude an unexperienced 

adj us tment , and would be i l l  advised to do otherwise . In 

that case the forecas t would contain the same information as 

that used in the ad hoc method . 

Consequently ,  i t  appears that the proposed technique 

produces a forecas t model that contains at leas t as much 

information as the alternative technique , that it inc ludes 

more information in the statistical forecast model under 

c er t ain c i rcums t anc e s . Whi le the discussion above asserts 

such bene fits based on the proposed rat ionale , an empirical 

eva luation o f  the accuracy o f  the proposed technique also 

cons t i tutes the evaluation o f  this information s trategy . 

Providing More Useful Information to the User 

I t  is poss ible that the proposed technique can be 

further developed for use in evaluating or tes ting the 

occurrence of the anticipated level shi f t , thereby providing 
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useful information t o  the user . Such testing would cons i s t  

o f  cons idering a statistic that would behave di f ferent ly 

between models that have both antic ipated and ac tual pol icy 

changes and model s  that have antic ipated pol icy changes that 

do not material i z e . Development and evaluation of  this 

s tatistic is beyond the scope of this dissertation 

Summary of Criteria 

In this s tudy the proposed technique is evaluated co 

determine whether i t  meets the cri terion that it is more 

accurate and rel iable than some comparative forecas t in the 

forecas t period . 

� 

Hypotheses to Examine 

In this dissertation I propose that a certain sort of  

problem,  level shi f t ing , arises wi th serial data that may be 

forecas ted . In the ensuing discuss ion I examine various 

approaches to forecas ting data that experiences leve l 

shi fts . Cons iderable attention is given to data that has 

level shi f ts during the forecast horizon .  I discuss various 

exponential smoo thing techniques that may be used to 

forecast through periods of  level shi f t ing data . I def ine a 

spec i f ic forecas ting technique that incorporates 

independently developed estimates of pol icy changes into 

exponential smoothing models . I discuss several sorts  of  



1 2 5  

problems that may arise wi th the proposed technique . This 

discuss ion leads to the following hypotheses . 

Accuracy wheri Forecasting Through Periods of Policy Change 

There should be a s igni ficant variation in performance 

of various exponent ial smoothing techniques in forecast ing 

through periods o f  level shi f t ing pol icy changes . Some 

methods perform should bet ter than others . Where 

antic ipated pol icy changes material i z e , Hol t -Winters , Hol t-

Winters -Wi lliams ,  adaptive Hol t-Winters -Wi l liarns ,  and 

autocorrelation correc ted Holt -Winters -Wi l l iarns· used alone 

or in combinat ion wi th the ad hoc method ( herein , the 

a l ternative techniques ) ··  should not per form as wel l  as the 

proposed technique when the forecas ter possesses reasonably 

accurate information about the prospec tive level shi f t ing 

pol icy change . Where antic ipated policy changes do not 

material ize , only the models that completely ignore the 

antic ipated pol icy change should per form as wel l  as or 

·These terms are used here to reflect a class of 
models : SES , Holt-Williams , and multiplicative Holt-Winters­
Williams . Thus , it is asserted that adjusted-SES is more 
effective than SES or adaptive SES , adjusted-Holt-Williams 
is more effective than Holt-Williams or adaptive Holt­
Williams , and adjusted-Holt-Winters-Williams is more 
effective than Holt-Winters-Williams or adaptive Holt­
Winters-Williams . 

··These techniques represent a reasonably broad range 
of those techniques that preserve the simplicity advantage 
of exponential smoothing . 



accurate information about the prospect ive level shi fting 

pol icy change . Where antic ipated pol icy changes do no t 

materialize , only the models that comple tely ignore the 

antic ipated pol icy change should perform as we ll as or 

be tter than the proposed me thod , that is , the alternative 

me thods may perform be tter than the proposed method only 
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when the ad hoc adj us tment is no t used and the antic ipa ted 

pol icy change does no t ma terial ize . These expectat ions lead 

to these hypotheses : 

HYPOTHES IS la : The al ternat ive techniques and the 
proposed technique are no t equally accurate in 
forecas ting through periods where po licy shi fts are 
ant ic ipated . 

HYPOTHESIS Ib : The proposed technique is more accura te 
than the alterna tive techniques when used to forecas t 
through periods where pol icy shi fts are antic ipated and 
such pol icy changes material ize . 

HYPOTHESIS lc : The proposed technique is more ac curate 
than the subset of the alternative techniques that 
inc lude use of the ad hoc method when used to forecas t 
through periods where po licy shi fts are antic ipated and 
such policy changes fail to material ize . 

Forecasting with Data that has Historical Policy Changes 

There should be a s igni ficant variation in the 

performance of forecasting mode ls that are fit  acros s 

periods of  level shi fting data . Fitting sample period da ta 

series that have explained leve l shifts ( po licy changes ) ln 

the sample per iod through the proposed technique should 

produce more accurate forecasts than fitting such his torical 
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HYPOTHESIS 2 a : The alternative techniques and the 
proposed technique are not equal ly accurate when used 
to fit data that has had a leve l shi f t  in the 
historical period . 

HYPOTHESIS 2b : The proposed technique is more accurate 
than the alternative techniques when used to fit data 
that has had a level shi f t  in the his torical period . 

Evaluating Forecast Methods 

The hypo theses address whether , and under what 

c ircums tances , forecas t ing wi th the proposed technique 

provide bet ter results than would occur in its absences . 

What cons titutes a reasonable s tudy o f  such a question? 

Forecasting l iterature suggests the following research 

des igns related to forecast techniques : 

1 .  Examination o f  the mathematical val idity of  a proposed 

technique . 166 

2 .  Examination o f  a mathematical model through the use o f  

s imulated data . 167 

3 .  Forecas t competitions , generally involving the use o f  a 

hand ful l  o f  techniques appl ied to the same data 

series . 168 The mos t  s igni ficant of these over the 

recent pas t have inc luded the M-Compet i t ion and the M2 -

Competi tion ,  both of  which involved comparison of maj or 
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forecas ting techniques by highly recognized members o f  

the forecas t ing community . 169 

4 .  Review o f  the use o f  a technique on one or more data 

series known by the researcher . 170 

5 .  Examination o f  cross sec tional data , e . g . , looking at  

forecas ting accuracy for techniques that are frequently 

used by prac t i tioners . 171 

6 .  Reexamination o f  published data and results . 172 

7 .  Survey research , e . g . , into forecas ter satis fac tion 

with methods . 173 

8 .  Forecast technique c l ar i f icat ion through the 

development o f  protocols for use o f  a technique . 174 

9 .  S tudy of  psycho- social elements of  forecas ting . 175 

No s ingle s tudy could attempt to pursue all these 

approaches to forecast adequacy . Ins tead , an ac tual s tudy 

should be comparable to one or several o f  these approaches 

and should be des igned to resolve spec i f ic quest ions raised 

through spec i fic hypotheses . The s tudy des ign discussed in 



12 9 

the next chapter reflects several o f  the types of  studies 

c i ted above . I t  inc ludes a forecas t compe t i t ion ( see bullet 

3 ) , us ing data that is known to the researcher ( bullet 4 ) , 

and s imulated pol icy changes ( bullet 2 )  . I t  is used to 

determine under what c ircums tances the proposed technique 

might be e f fec tive ( bullet 8 ) . Other des igns mentioned 

above are not inc luded in this s tudy . 

N-Period Ahead Evaluations 

Two aspects o f  an forecas t update are the trace o f  each 

forecast update and the n-period ahead point of repeated 

forecas ts . 176 The trace is the forecas t for periods t+m 

through t+m+ l where t is a time index , m is the number o f  

t ime periods before the period of  interes t ,  and 1 i s  the 

number o f  time periods in the period o f  interes t .  The 

trace , there fore , i s  a vec tor o f  forecas ts : 

F t+m '  F t+m+l '  F t+m+2 , • , Ft+m+l 

The n-period ahead point o f  repeated forecas t updates 

is the forecast at the observation at tj+n , where t is the 

index o f  the las t ac tual observation and updates by an 

increment o f  1 wi th each addi tion of 1 observat ion to the 

history of the data , j is the index o f  the updates , and n is 

the number of periods from t to the observation measured . 



13 0 

The n-period ahead point of  repeated forecas t updates moves 

to a later point in time by the number o f  additional ac tual 

observations added to the history wi th each update . There 

is one point observation from each j th update and it is 

located one period later in time . These are further 

demons trated in the following table : 

Table 1 Trace and N-Periods 
Period 

Update 1 2 3 4 5 6 7 
1 Fl , l  F1 , 2  F1 , 3  F1 , 4  Fl , S  F1 , 6  F1 , 7  
2 A2 , 0  F2 , l  F2 , 2  F2 , 3  F2 , 4  F2 , S  F2 , 6  
3 A3 , - 1  A3 , 0  F3 , 1  F3 , 2  F3 , 3  F3 , 4  F3 , S  
4 A4 , -2 A4 , -1  A4 , 0  F4 , 1  F4 , 2  F4 , 3  F4 , 4  
5 AS , -3 AS , -2 AS , - 1  AS , O  FS , l  FS , 2  FS , 3  
6 A6 , -4  A6 , -3  A6 , -2  A6 , - 1  A6 , 0  F6 , 1  F6 , 2  
7 A7 , - 5  A7 , -4  A7 , -3 A7 , -2 A7 , - 1  A7 , 0  F7 , 1  

F = Forecas t ,  A = Ac tual 
First Subscript ( i )  = Update ( row ) 
Second Subscript ( j ) = Periods be fore ( negative ) or af ter 

(pos itive )  the current observation ( Ai , O  = Current Period) 
1 = Subscript o f  the Trace ( row ) 
J = Subscript o f  the N-Period Ahead Forecast ( diagonal from 

l e f t  top to right bot tom ) 

The most  commonly accepted forecas t evaluation des ign 

i s  to compare forecas ts based on the n-period ahead po int 

observation . 177 It is acknowledged that evaluation of n-

period ahead point accuracy may not ful ly evaluate trace 

accuracy . This l imi tation arises because o f  the di f ference 

between two of  the maj or fac tors o f  a forecas t ,  slope and 

leve l . 



The di f ficul ty of evaluating only the n-period ahead 

observation is that two di fferent forecasts may not be 

distinguishable at  n-periods ahead . In evaluating a 
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forecas t at ri-periods ahead , one is evaluating the level o f  

the forecas t a t  that observation point . I f  two forecasts 

have dif ferent levels at the end o f  the his torical period of  

a data series and also have dif ferent slopes they may 

intersect at a certain point in the future , thereby having 

no di f ference in level at that particular point . I f  this 

point is near the n-period ahead observations , it  may be 

di f ficult to dist inguish between these two forecasts at n­

periods ahead ; they could be confused for two forecasts that 

had the level at the end of the historical period and the 

same slope thereaf ter , i . e . , ident ical forecas ts . It  i s  

reasonable t o  assume that i f  the trace o f  one of  these 

forecasts is s imi lar to the trace of  the ac tual data series 

as it unfolds , this forecas t is the better forecas t .  

However , the n-period ahead evaluation may not reveal this 

di f ference . 

Unfortunately ,  observations o f  a forecas t at various 

periods ahead are no t independent of each other , so the 

errors from the ac tual data series members are highly 

correlated . This correlation inval idates the use of  such 

s tatistical procedures as ANOVA , t - tests , and regress ion 
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coe f fic ients when working wi th forecas t traces . 

Consequently ,  generally accepted forecast evaluation des igns 

do not provide for the evaluation o f  the trace o f  

comparative forecas ts . 178 

Ins tead o f  comparing traces , the prac tice is to 

evaluate forecasts at various horizons ( n-periods ahead ) to 

determine which technique is more e f fec tive for forecas ts at 

each horizon . For example , this approach i s  the technique 

used in a very widely recognized s tudy known as the M-

Competition and a recent follow on to that s tudy known as 

the M2 -Competition . 179 Al though this view is no t corrunonly 

art iculated , i t  can be argued that a forecas t technique that 

produces e f fec tive forecas ts at various horizons reasonably 

mus t  have a trace that is s imi lar to the trace of the ac tual 

data series . 

Statistical Evaluation of Forecasts' 

Various statistics have been proposed for evaluating 

forecast accuracy . In general these are descriptive 

statistics . The general prac tice wi th forecast compe titions 

is to demons trate numerous tables of  descriptive s tatistics  

'Notation in formulae presented in this section may be 
altered from the original for consistency within this 
discussion . 



and to discuss these qualitatively .  
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Statistics that have 

been proposed for , or used in , forecas t evaluation are 

reviewed below . 

Descriptive Statistics 

Fol lowing is a review of various descriptive s tatistics 

proposed for forecast evaluation . 

M-Competitions 

Two common forecas t s tatistics are Mean Squared Error 

( MSE ) and Mean Abso lute Percent Error ( MAPE ) . 180 These 

s tatistics have been presented in both the M-Compet i tion and 

the M2 -Competition and are commonly c i ted in other forecas t 

l i terature . Other s tatistics presented in the M-Compet i t ion 

inc lude Median MAPE ( MdMAPE ) ,  Median Abso lute Percent Error 

MdAPE ) , Average Rank ( between various methods used ) and 

comparative performance to Naive 1 ( no change ) or Naive 2 

( seasonal ly adj us ted Naive 1 )  . 181 The comparative 

performance s tati s t ics  s imply show the number of  times tha t 

Naive 1 or Naive 2 method out performs the alternat ive 

technique . Other comparative performance statistics are 

also presented . Makridakis ,  et . al . do not show why these 

are pre ferable statistics . 
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The M2 -Compe ti tion presents s imi lar s tatis tic s inc lude 

average MAPE , ranking of all series , percent of time be t ter 

than Naive 2 ,  di f ference of MAPE between Naive 2 and o ther 

methods , Mean Percent Error ( MPE ) , median MAPE divided by 

MAPE of  Naive 1 and median MAPE divided by MAPE o f  Naive 

2 . 182 The authors o f  this s tudy remark , " This paper has 

provided many tables ( some complain too many ) and used 

several accuracy measures to report and compare resul ts . 

[ I talics in original ] ,, 183 

Spyros Makridakis and Michele Hibon have published 

another s imi lar s tudy in which they repor ted s imi lar 

s tatis tics as wel l  as report ing Thei l ' s  U-Coe f fic ients . 184 

Thei l ' s  U-Coe f fic ient is a s tatistic that compares the 

ac tual one step ahead forecasts produced in a forecast model 

wi th the forecas t somet imes known as Naive 1 ,  a no change 

f orecas t .  A U-Coef f ic ient less than 1 indicates that the 

proposed technique is an improvement over Naive 1 .  However , 

the s tatistic ' s  distribution is unknown so s tatistical 

s igni f icance cannot be establ ished . 18s 

Robert McLaughlin 

Rober t  McLaughl in186 de fines a s tatis tic that he calls 

the s tandardi zed real ization percent ( SR ) . He recommends 

this statistic for the purpose of  easy communication wi th 



management .  The s tandardi zed realizat ion percent is a 

variant of  MAPE . 

Benito Flores 

Benito F lores provides a general review of  forecast 

s tatistics and identi f ies de fines a large number 

inc luding187* Mean Error ( ME ) , Mean Absolute Deviation 
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( MAD ) , Root Mean Squared Error ( RMSE ) . These are abso lute 

s tatis tics , that is , their magni tude is dependent on the 

magni tude of  the original data series . MSE and RMSE are 

somet imes used as loss func tions in optimiz ing forecas ts , 

but they place more weight on larger errors . Under some 

c ircums tances this might not be des irable . 

He also de fines Percent Error ( PE ) , Mean Percent 

Error** ( MPE ) , and a symmetrically adj us ted MAPE ( SMAPE ) 

s tatistic as follows . 188 He points out that MAPE is biased 

in favor of underestimation because of a bias in the ratio 

calculat ion when dividing by the ac tual . For example wi th 

*F1ores definitions of MSE and MAPE have been discussed 
above . 

**This formula is a correction of Flores published 
number where he calculates the - *  100 - against the average 
FEi • He has already included this component of the standard 
percentage formula in calculating FEi • 
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two equally large errors , e . g . , predicted 5 0  and ac tual 1 0 0  

versus predic ted 1 0 0  and ac tual 5 0 , the first wi l l  be : 

( 1 5 0 - 10 0 1 / 10 0 ) * 1 0 0  = 5 0 % , 

Whi le the second wi l l  be : 

( 1 10 0 - 5 0 1 / 5 0 ) * 1 0 0  = 1 0 0 %  

These statistics ( MPE , MAPE , and SMAPE ) are 

dimens ionless in that they are divided by the data series or 

some other quanti ty that i s  in the same order of magni tude 

as the data series . Because o f  this dimens ionless qua l i ty ,  

comparison between forecasts and communication wi th 

management is enhanced . 

Armstrong and Collopy 

In a recent article Arms trong and Collopy de fine a 

large number of  error measures ,  inc luding the fol lowing 

which they recommend or are used in the calculation o f  those 

they recommend : 189 Median APE ( MdAPE ) ,  Relative Absolute 

Error ( RAE ) , Winsorized RAE ( WRAE ) , Geometric Winsorized 

RAE ( GMWRAE ) , Median RAE ( MdRAE ) . They recommend the use o f  

GMWRAE for cal ibrating parameters , MdRAE for selec ting among 
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a small number of  forecas ts , and MdAPE for selec ting among a 

larger number o f  forecasts . They recommend agains t RMSE for 

use in general i z ing about the accuracy of forecas ts because 

of i ts low reliabil i ty .  The recommend agains t the use o f  

MAPE because of  i t s  bias in favor o f  low forecas ts . 

Al though their discuss ion does no t recommend them they 

also de fine o ther s tatistics inc luding Cumulative RAE , 

Geometric Cumulative RAE , Median Cumulative RAE , an 

aggregate RMSE for mUl t iple series , a generalized Thei l ' s  U 

which they call Thei l ' s  U2 , a Geometric U2 , Percent Bet ter , 

and a s tatistic that summarizes s ix o f  these other 

s tatistics which they label Consensus Rank . They do no t 

de f ine inferential tes ts of  s tati s t ical s igni ficance for 

various error measures . 

Patrick A Thompson 

Patrick A .  Thompson19o proposes the use of  the log mean 

squared error ratio for comparison of  forecas ts . This 

s tatistic is de fined as follows : 

Let mij denotes the mean squared forecast error of  
techniques j on series i .  For this series , de f ine the 
log mean squared error ratio as Imrit = log ( miO/mij ) , 
where miO is the mean [ squared] forecas t error o f  s ome 
benchmark technique . Computed wi th the benchmark MSE 
in the numerator , a pos i t ive LMR indicates that 
technique j had a smal ler forecas t MSE on this series 
than the benchmark . 191 
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Thompson goes on to argue that is permis s ible to 

average LMR across series . The benchmark that Thompson uses 

i s  Naive 2 .  

Robert Fildes 

Several o f  the s tatistics de fined by Arms trong and 

Collopy involve the use of  Geome tric calibrations to 

summarize across mul t iple series . Robert Fi ldes de fines a 

s tatistic he calls the Geometric Root Mean Squared Error 

acros s  time periods which he then uses in a ratio to compare 

be tween two di f ferent forecas t techniques and a more 

general ized statistic cal led The Relative Geometric Root 

Mean Squared Error ratio across t ime periods ( TRGRMSE ) 192 

F i ldes also de f ines an array of  other statistics . 

Ul timately he conc ludes that TRGRMSE or a relative Median 

APE are pre ferable statistics for comparing methods . He 

obj ec ts to MAPE because i t  is inef fec tive when ac tual 

observations are near zero , which is s imi lar to other 

obj ections discussed above . 

Inferential Statistics 

In addi tion to these descriptive statistics the 

fol lowing inferential s tatistics have been proposed : 
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Benito Flores 

In another article Flores discusses the use of the 

Wi lcoxon tes t o f  paired data to compare forecas ting 

methods . 193 For n> 1 0 , the resulting quanti ty is compared 

wi th the normal distribution for statistical s igni ficance . 

For lesser n ,  the T+ dis tribution is known . In his analys i s  

o f  this statistic , Flores recommends i ts use in combination 

with other approaches to comparing forecas ts , but does not 

give it unqual i f ied support . 194 It should be noted that the 

Wi lcoxon test is only appropriate for comparing two 

forecasts with each other . 

Ko� and Stekler 

Kolb and S tekler195 propose a method o f  comparing 

forecasts by testing whether the di f ferences in the mean 

squared error of  the forecas ts is s tatistically s igni ficant . 

They de fine a regress ion model that compares these means . 

I t  should be noted that this regression requires a 

reasonably large number o f  observations to provide an 

adequate N .  Use o f  mUl t iple observations from the same 

forecas t trace encounters the covariance problem discus sed 

above . 

H .  o .  Stekler 
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H .  O .  Stekler identi f ies several inferential stat i s t ics  

in a general review of  forecas t evaluation s tatistics : 196 

The Analysis of Variance by rank ( here in , Rank ANOVA ) 

computes relative ranks o f  forecas ts for each trial , sums 

those ranks for each model , and compares summed ranks us ing 

a chi -squared goodness of  f i t  tes t . Thi s  tes t is also 

sometimes cal led the Friedman tes t . The Kruskal-Wallis tes t 

i s  s imilar to the Rank ANOVA except that i t  ranks all  

observations in one series rather than by trial . The 

Kruskal-Wallis tes t also tes ts s igni ficance through chi 

square . Because of the ranking technique , the Kruskal­

Wal lis  test i s  no t valid when di f ferent trials naturally 

di f fer in magni tude . 

The Percent Better is the number o f  occas ions where A 

out performs B divided by the total number of  trials . Where 

n>4 0 ,  this can be tes ted for s igni ficance us ing 

Zo= ( n1-n/2 ) / ( n/ 4 )  where n1 i s  the number o f  times the first  

method is bet ter and n is the total number o f  trials . 

S tekler de fines ano ther test which is aimed at 

determining whether on forecas t contains more information 

than another . Calculate the regress ion : 
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� = bPxt + ( l -b) Pyt 

Where A is the ac tual and P is the predic ted for two 

dif ferent methods . Cons ider the nul l  hypothesis b = 1 .  I f  

the tes t i s  s ignificant , i t  i s  implied that one forecas t 

contains more information than the other . Again , the 

independence of  observations problem lurks in the 

background . 

S tekler discus ses several other s tatis tics which wi l l  

be omi t ted from this discuss ion . One , the Wi lcoxon tes t ,  is 

discussed above . 

Optimization vs . Model Comparison 

Before leaving this discuss ion o f  s tatistics , I want to 

emphasize  the di f ference between optimi z ing a s ingle mode l 

and comparing various models or methods . Many of these 

s tatistics can be used for ei ther o f  these purposes ; 

however , they may no t per form equally wel l  for each . Thi s  

review is aimed at finding a sui table method of  comparing 

results from various forecas t models . Articles do not show 

cons iderable fault wi th tradi tional approaches to 

optimization . Results from recent analyses sugges t  that 

mos t  approaches to optimi zat ion have s imi lar resul ts . 197 
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Selection o f  Approach for Comparison 

These articles show that there is no consensus as to 

which statistics are adequate for comparison of  forecas t 

models . Several o f  the proposed s tatistics provided for 

poss ible test of  s igni ficance ; however , there is no c lear 

consensus on which,  if any , of these tes ts is appropriate . 

Some may require more observations than may be avai lable . 

Others may have less than c lear bene f i t  in prac tice . There 

is no evidence that any par ticular statistical tes t is 

generally accepted as an appropriate tes t for forecas t 

accuracy or comparative forecas t value . This s tudy fol lows 

the tradi tional approach o f  displaying and discuss ing 

several descriptive statistics . Tables are used to display 

a variety of  statistics summari z ing forecas t performance .  

This approach re f lects the prac tice o f  maj or s tudies 

inc luding one that has been published wi thin the pas t 

year . 198 

As an exploratory element of  thi s dissertation three 

non-parametric s tatistics are inc luded for evaluation of the 

descriptive s tatis tics . These s tatistics are the Rank ANOVA 

proposed by S tekler , the Kruskal-Wallis statistic also 

sugges ted by Stekler , and the mUl t iple treatment comparison 

s tatistic for the Kruskal-Wallis tes t which is used to 

identify which series are di f ferent when the Kruskal -Wal l i s  



s tatis tic is s ignificant . 199 These s ta t is tics are used to 

evaluate the relative ranks of various treatments .  
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It  should be unders tood that these statis tics are no t 

generally accepted as a basis for tes t ing hypotheses about 

forecast methods , thus , use in this dissertation is 

exploratory , that is , other analyses wi l l  be conduc ted 

regardless of the s tatis tical s igni ficance of these tes ts . 

Further , the Kruskal-Wal1is tes t is sens i t ive to dispari ty 

o f  magnitude among di f ferent series , that i s , when the 

series that are compared are s igni ficantly di f ferent ln 

magni tude in the firs t place the Kruska1-Wa 1 1 is tes t wi l l  

l ikely test ins igni ficant regardless of  the variat ion o f  

e f fec tiveness of  the treatments ( forecast methods ) .  Thus , 

the Kruskal-Wallis  tes t is not val id for use wi th s ta t i s t ics  

that retain the original magni tude of  the data ( i . e . , the 

Mean Squared Error statistics ) .  

These tes ts are appl ied as fol lows : The descript ive 

statistics selec ted in a later portion o f  this chapter are 

arrayed us ing various series of data as trials and various 

forecas t modell ing techniques as treatments . The 

descriptive s tatistics are then ranked us ing e i ther the Rank 

ANOVA or Kruskal-Wallis ranking rules . These ranks are then 

compared us ing the Rank ANOVA and Kruskal -Wa1lis s ta t i s t ics . 
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Any s tatistics selec ted that are heavily influenced by the 

magni tude of  the original data series wi l l  be compared only 

through the Rank ANOVA test as the Kruskal -Wallis tes t is 

invalid . The Rank ANOVA and Kruskal-Wallis tes ts are 

selec ted because they allow comparison of more than two 

series , but they do not require the more complex assumptions 

assoc iated wi th parametric s tatistic s . This part of  this 

dissertation is inc luded as a trial of the possible benefit 

of these non-parametric inferential statistics in comparison 

of forecast models . As discussed in the earl ier paragraph , 

the primary design is a qualitative review based on display 

o f  descriptive statistic s . For all Rank ANOVA and Kruskal­

Wal l i s  tests the nul l  hypothesis is : 

Ho : Statistic!  - Statistic2 - - Statisticn 

The a l t erna t ive i s  tha t at leas t one s tatis tic is not 

equal to the others . Results wi l l  be compared wi th Q = . 0 5 

level o f  s igni ficance . However , as these tes ts are being 

inc luded to explore their value for this sort of analys i s , 

results wi l l  be c ons idered and discussed even i f  

s igni ficance is not attained . I f  the nul l  is rej ec ted , the 

mUl t iple series comparison analys is assoc iated wi th the 

Kruskal-Wallis s tatistic is conduc ted to de termine which 



spec i fic model is dis tinc t . The use o f  these tes ts is 

further discussed in the next chapter . 

Selected Statistics 
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Based on the previous review the following fac tors are 

cons idered in selec ting the descriptive s tatis tics that are 

compared in analys is of the empirical research : 

o RMSE and MAPE are subj ec t to biases and should be use 

with caution if at all , nevertheles s , these two 

concepts form the bas is of  mos t  s tatis tics ac tual ly 

proposed , so i t  may be des irable to represent each in 

the selec ted s tatistics . Two poss ible statistics are 

GRMSE and LMR . 

o variations o f  MAPE or APE that avoid the biases o f  MAPE 

are general ly considered good . Two possible variations 

are MdAPE and SMAPE . 

o Relative measures should be compared , absolute measures 

do not have comparat ive meaning . Some poss ible 

relative measures are LMR , Thei l ' s  U ,  GRMSE ,  RAE , and 

RMdAPE . 



o Aggregation across mul t iple series may be improved 

through Geometric means . 
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The following s tatistics are selec ted for use in thi s 

analys is . 

1 .  Geometric Root Mean Squared Error , GRMSE . 

2 .  Log Mean Squared Error Ratio , LMR ( as compared wi th 

Naive 2 )  . 

3 .  Symmetrical Mean Absolute Percent Error , SMAPE . 

4 .  Median Abso lute Percent Error , MdMAPE . 

5 .  Average Rank . 

In addi tion ,  because these statistics do not address 

the reliabil i ty cri terion discussed in the second sec tion o f  

this chapter , the following s tatistic is added . 

6 .  Range of  percent error = largest pos i t ive percent error 

m1nus larges t  negative percent error . 

Also , because they are frequently c i ted in forecas t 

l i terature , Mean Absolute Percent Error ( MAPE ) and Root Mean 

Squared Error ( RMSE )  wi l l  be displayed . 



1 4 7  

In tables presented in chapter 8 and Appendix IV each 

o f  these s tati s t ics  is aggregated across mul t iple trials 

through four di f ferent techniques : s imple average , geome tric 

mean , average rank , and Kruskal -Wallis  rank sum . The 

average rank and Kruskal -Wallis rank sums relate to the 

assoc iated inferential s tatistics . 

Sununary 

There are numerous criteria for evaluat ing forecast 

models . The proposed technique can be expec ted to meet 

cri teria related to low cos t and ease o f  use . An empirical 

s tudy is conduc ted to evaluate whether the proposed 

technique meets criteria related to accuracy and 

rel iabi l i ty .  Two maj or hypo theses ( 5  cons ti tuent 

hypotheses ) are spec i fied . Three cons ti tuent hypotheses 

concern accuracy wi th prospec tive po licy changes . Two 

cons ti tuent hypo theses concern accuracy wi th retrospective 

policy changes .  Accuracy and re liabi l i ty are measured 

through an array of s tatistics focuss ing on squared error , 

absolute error , and variation in error . Statis tics are 

aggregated across mul t iple series us ing geometric averaging 

and other techniques .  



CHAPTER 7 :  TWO RESEARCH PROJECTS (METHOOOLOOY) 

In this chapter I :  

o Generally describe two proposed research proj ec ts . 

o Explain the methodology of  a research proj ect for 

analys is of  the first maj or hypothesis proposed above . 

o Explain the methodology o f  a research proj ect for 

analys is of  the second maj or hypothesis proposed above . 

To examine the firs t maj or hypothesis ( hypotheses la , 

1b , and 1c as spec i f ied on page 12 6 ) , s ix forecas t model s  

were bui l t  for each o f  2 0  real data series from the Virginia 

Medical Ass i s tance Program . Two variant forecasts were 

extrac ted from f ive of the models , resulting in a total o f  

eleven forecas ts . The forecas ts were made wi th the 

assumption that the data series would undergo spec i f ic 

pol icy changes in the horizon period . Various s imulated 

pol icy adj us tmen t s  were added to the data series re flec ting 

accurate and inaccurate policy change assumptions . The 

forecasts were updated through s ix updates . Accuracy i s  

evaluated for certain periods i n  the 1 5  periods subsequent 

to the end o f  the s ix update periods . 

To examine the second maj or hypothesis ( hypotheses 2 a  

and 2b ) , s ix forecasts models were bui l t  f o r  each o f  2 0  real 

1 4 8  
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data series that have undergone real level shi fts i n  the 

observed ( historical ) period . All these data series are 

also from the Virginia Medical As sis tance Program . Accuracy 

is evaluated - for certain periods in the 15 periods 

subsequent to the end of  the s ix update periods . 

Selection of Scope of the Study 

Each study inc ludes 2 0  data series �n order to balance 

be tween two obj ectives . The firs t is that the study be 

suf f ic iently small  that i t  can be c ompleted wi thin the scope 

o f  a dissertation . The second obj ective is that the s tudy 

should be suf fic iently large and general to el iminate the 

realistic poss ibil i ty that the findings arise because o f  

chance selec tion o f  data series . This need leads to the 

selection of a larger number of series , even more than 2 0  

may be desirable . For this same reason , di f ferent types of  

data were used ( units , cost per uni t ,  enrol led Medic aid 

e l igibles , and gross dol lar amounts ) .  Also , data re flec ting 

di f ferent origination dates ( July 1 9 8 8  and July 1 9 8 7 ) were 

used . 

In the l i terature review I did not find any standard 

number o f  forecasts for empirical evaluation o f  a technique . 

Ac tual empirical evaluations ranged in size  from 1 to 1 0 0 1  

and from one organization t o  many . Limi tation o f  the scope 
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o f  this s tudy t o  2 0  series and t o  series originating from 

the one organization reflect a reasonable compromise to  

complete the proj ec t .  As wil l  be seen in further discus s ion 

below ,  12 di f ferent scenarios were compared for 7 updates 

and a second s tudy is conduc ted us ing 2 0  addi tional series 

which were fit to 6 models and updated for 7 periods . The 

total number o f  forecasts that were made ( exc luding those 

for model fitting ) wi l l  be 1 9 , 3 2 0  as shown in the following 

table : 

Table 2 Number of Forecasts 

Study Series Updates Models Scenarios Total 
1 2 0  7 11 12 18 , 4 8 0  
2 2 0  7 6 1 840 

Total 19 , 3 2 0  

I t  seems likely that 2 0  series updated across 7 periods 

should cons t i tute an reasonable tes t o f  each method for each 

spec i fic scenario . 

The First Maj or Hypothesis 

To examine the firs t maj or hypothesis I compared 

forecas ts made wi th s ix types of forecas t models . The s ix 

types o f  models are Hol t-Winters , Holt -Winters -Wi l l iams , 

adapt ive Hol t-Winters -Wi l l iams , autocorrelation correc ted 

Holt-Winters-Wil l iams ,  Naive 2 ,  and adj us ted Holt-Winters -
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Wi l liams ( the proposed technique ) .  Only one forecas t was 

made us ing the proposed technique ; however , two forecasts 

were made us ing the other five techniques : one that uses 

the ad hoc method of adding on a lump amount for the pol icy 

change , and one that s imply looks for the forecas t to catch 

up while completely ignoring any information that may be 

available from the estimate o f  the pol icy change . In all  

cases except wi th Naive 2 ,  Hol t-Winters re fers to a 

selection between four possible models : SES , Holt ( i . e . , a 

model wi th trend calculated in the manner of  Hol t ) , Winters 

( i . e . , a model wi th mul t iplicative seasonality calculated In 

the manner of Winters ) ,  or Holt-Winters . For the Naive 2 

model Naive I was the alternative non- seasonal model . 

Forecasts were made o f  data series wi th which I am fami l iar 

having forecas t this data for a government program . The 

unadj us ted version o f  Naive 2 ( i . e . , the one wi thout the ad 

hoc adj ustment ) was used as the benchmark model for LMR 

s tatistic . In fac t ,  in this s tudy seasonal models were no t 

deve loped . This is explained in further discuss ion . 

Selection of Models to Compare 

The proposed technique , the naive model wi th and 

wi thout the ad hoc adaptation ,  and four al ternat ive methods 

with and wi thout the ad hoc adaptat ion are compared . The 

inc lus ion o f  the proposed technique is obvious . The naive 
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model is inc luded a s  a base l ine for the LMR s tatistic . The 

ad hoc adaption is inc luded because i t  appears to be the 

mos t  obvious technique that a forecaster might use in the 

case that he had external ly supplied information and did no t 

have a forecast model that could integrate this informat ion 

into the proj ec t ion , which 1S the condi tion I believe 

forecas ters would normally be in . The four selec ted mode ls 

are inc luded to represent a reasonable range of  poss ible 

techniques that forecas ters might actually have avai lable to 

forecas t us ing exponential smoothing when they anticipate 

policy changes . The Hol t -Winters model is inc luded because 

it is the mos t  common s tandard exponential smoothing mode l . 

The Hol t -Winters -Wi l l iams model is inc luded because the 

arguments provided by T .  M .  Wi l l iams sugges t  that i t  may be 

pos s ible to optimi ze i t  beyond the degree that the s tandard 

Hol t-Winters model can be optimi z ed .  The adaptive Hol t ­

Winters -Wi lliams mode l i s  inc luded a s  a representative of  

the adaptive technique us ing s imple methods . The Chatfie ld 

autocorrelation correc ted model is inc luded as an 

a l ternative approach to adaptive modell ing , still  wi thin the 

realm o f  s imple approaches . 

Obvious models not inc luded wi thin the trial inc lude 

Kalman f i l ter approaches and intervention based ARIMA 

mode l s . These are exc luded because of  the underlying 
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assumption of  the s tudy , 1 . e . , that forecasting wi th s imple 

methods is worthwhile and worth improving even if such 

forecas ting may be less accurate than may be achieved wi th 

more complex methods . 

The Data 

The data are 2 0  monthly level ( i . e . ,  having one 

observation value per month ) data series selec ted from data 

series used in budget forecas ting for the Department of 

Medical Assis tance Services . Series that have obvious 

problems unrelated to those under examination in this s tudy , 

e . g . , those wi th observations wi th the value of  zero , were 

exc luded from the select ion . Nevertheles s , a variety o f  

series , ref lec ting a variety o f  ac tual forecas t condi tions , 

were selec ted . These series cons i s t  o f  monthly leve l uni ts , 

expendi ture per uni t ,  and gross dol lar amounts for various 

s e rvice ca tegor i e s  running from July 1 9 8 8  through September 

1 9 9 3 , and monthly level enrol lment data running from July 

1 9 8 7  through September 1 9 9 2 . The following graphs show 

these data series af ter certain preprocess ing discus sed 

below . 
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Independence 

Because all series originate from a s ingle organi zation 

they may render the trial susceptible to some unique 

condi t ion aris ing wi thin that organi zation . As there i s  a 

variety of  types o f  data aris ing wi thin the organization and 

as the data reaches the end o f  its f i t t ing period on two 

di f ferent dates that are a year apart ,  i t  is unlikely that 

data would all re f lec t an undetec ted aberrance that would 

render the trials irrelevant to other data . Nevertheless , a 

correlation matrix was computed to de termine whe ther the 

series are unduly interdependent . I t  should be no ted that 

s ince many of  these data series are trending 1n t ime they 



1 5 7  

c an be expec ted t o  re flec t some corre 1ation , 20o there fore , 

correlation matrices were calculated for the first 

di f ferences o f  the data ins tead of  the raw data . The data 

cons idered in these correlat ion matrices were the firs t 

di f ferences o f  the pre-processed data described below . 

Even so , the use o f  data from a s ingle organization should 

be cons idered a l imitation that may j us t i fy addi tional 

trials at a later date . A correlation matrix and a squared 

c orrelation matrix are shown in Appendix I I I . 

Inevi tably , the calculation o f  a correlation matrix led 

to selection of the series from the larger universe on the 

bas is of independence .  I used the following procedure to 

select uncorrelated data series from the larger set of all  

series avai lable for analys is : I calculated the correlat ior 

matrix and the squared correlation c oef fic ient of all the 

data series available . I then identi f ied the two series 

that had the highest squared correlation c oe f fic ient . I 

e l iminated the one o f  these two that had the highest average 

squared correlation coe f f i c ient . I repeated the process 

unti l  only 2 0  series remained . An unexpec ted s ide ef fec t of  

selec t ing data out was that seasonal series , which are 

somewhat more highly correlated wi th each other , were 

essentially el iminated from the data selec tion . This result 
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had the e f fec t o f  e l iminating cons iderat ion o f  the Winters 

models . 

Level Shifts 

Graphs of the data series were visual ly inspec ted for 

level shi f ts . Visual inspec tion was augmented through my 

prior knowledge of  the data series . Data series that 

experience a prior level shi f t  were exc luded from this 

portion of  the analys is . These series are exc luded to avo id 

confus ion between reasons for performance resul ts . The 

second s tudy discussed below evaluates the applicat ion o f  

the technique i n  series that have historical level shi fts . 

Other Data Restrictions 

Data series that inc lude any of  the following were no t 

inc luded in this analys is : 

o Data that has zero valued observations . 

o Data that inc ludes wide swings in variation . 

o Data that inc ludes frequent trend shi fts . 

These data are exc luded because i t  is my experience 

that such data are di f f icu l t  to forecast wi th any technique . 

Results showing a preference for one technique ra ther than 

ano ther wi th respec t to the anticipat ion of pol icy 



adj us tments when forecas t ing through these sorts of  data 

series could not be ruled out as spurious . 
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Another res tri c tion on the data series i s  that they 

were all the same length ,  63  observations inc luding 1 5  hold 

out observations , al though some originate in July 1 9 8 7  whi le 

others originate in July 1 9 8 6 . There i s  no thing special 

about the numbers 6 3  and 1 5 . I t  was the number of  

observations that were avai lable for the maj ority o f  the 

series inc luded at the time that this s tudy was completed . 

The population based series are longer than this and are 

res tric ted to 63 to be comparable in length to the other 

series . These series are al located to segments as follows : 

the first 2 4  periods are al located to ini tiali zation 

( discussed below ) , the next 1 8  periods are al located to 

mode l fitting , the next 6 periods are allocated to 

simulation o f  l eve l s hi f ts , and the last 15 periods are 

al located to ex ante mode l evaluation . This seems to be a 

reasonable allocation o f  the available observations . 

Hold Out Data 

Twenty one months o f  data were held out from the 

forecas ts for use in s imulated monthly updat ing and for 

evaluation of the errors . 
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Model Selection 

One model was selec ted from each o f  the five types o f  

models for each data series based on optimi z ing loss 

func tions ( produc ing one forecast for the proposed technique 

and two forecasts each for the alternative methods ) . 

Opt imi zation was based on a grid o f  poss ible parameter 

selec tions . The grid o f  parameters is : 

Table 3 Grid of Parameters 

a = 
� = 
y = 

0 . 05 
0 . 0  
0 . 0  

0 . 1  
0 . 0 01 
0 . 05 

0 . 2 
0 . 005 
0 . 1  

0 . 4  
0 . 01 
0 . 3 

0 . 8  
0 . 1  
0 . 5  

0 . 2 0 . 3  0 . 5  

The settings � = 0 . 0  and y = 0 . 0  represent Winters and 

Hol t . Where both occur , the model i s  SES . In these cases 

ini tial i zation of trend , seasonality ,  or both ( discussed 

below ) is disregarded . For the non-adaptive models the a 

f ixed a = 0 . 8  was assumed to be optimal as discussed be low . 

The a values are selec ted because they represent a wide 

range of  possible values . Discus s ion in previous chapters 

shows my rationale for keeping � and y fairly low ,  which is 

that the Wi lliams adj us tment to Hol t  exponential smoo thing 

raises the imp l i c i t  values o f  � and y by something 

approaching a factor of 1 0 . The values cons idered ac tual ly 

represent a broader range than I usual ly cons ider while 

forecas ting to avoid overlooking legitimate models . As 



discussed in chapter 9 ,  I cons idered a separate set of  

models for one scenario when I began to suspec t that the 

large � values led to problems ; however , the results were 

not af fec ted by this extra scenario . The lower limi ts 

( other than zero ) for � and y are selec ted based on my 

experience that values below these tend to have l i ttle 

impac t on ac tual forecas t models . 
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The adaptive model fol lows the same prac tice for � and 

y and calculates a following the Trigg-Leach formula whi le 

us ing the Wi l l iams adj us tment to Hol t-Winters . In this 

model the a grid values were used to f i t  ¢ .  

The loss func tions that were optimi z ed were SMAPE , 

RMSE , SMPE . MAPE and RMSE were inc luded as they are 

commonly used loss func tions that measure overal l accuracy 

o f  forecas t . MPE was inc luded to help e liminate models that 

are cons is tently erroneous wi th the same s ign as it  i s  

assumed that cons is tently high o r  cons is tently low forecasts 

are particularly undesirable . 

I set control l imi ts for SMAPE and SMPE , then minimi ze 

RMSE . The control l imi ts were 2 5 % for SMAPE and ± 5 %  for 

SMPE . I have found no l i terature that suppor ts spec i f ic 
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control l imits for MAPE o r  MPE ( the symme trical versions o f  

these statistics are not widely known ) . The spec i f ied 

control l imi ts are proposed based on two reasons . Firs t , 

symmetry correc ted percent error and absolute percent error 

are likely to be smal ler than their non- symme try correc ted 

versions because the non- symmetry correc ted versions are 

s igni ficantly af fec ted by the occas ional error where the 

forecas t is intense ly higher than the ac tual . Wi th such 

small  ac tuals as the denominator in the percent calculation , 

the percent becomes very large . When the mean of  the ac tual 

and the forecast is used as the denominator , the calculated 

percent dec l ines immensely . I t  i s ,  there fore , as sumed that 

reasonably low percents can be set . Second , reasonably low 

percents are needed because forecasts that exceed such 

control l imi ts are likely to be o f  l i ttle value . The 

spec i f ic percents selec ted are arbitrary and represent my 

j udgemen t o f  the point where forec as ts begin to 

s igni ficantly lose value due to the various forms o f  

inaccuracy . 

The se lec ted model was to be the model wi th the lowe s t  

RMSE that a l s o  meets the control l imi t cri teria for the 

SMAPE and SMPE loss func tions , i f  no model meets these 

cri teri a ,  the model selec ted was to be the one with the 
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lowe s t  RMSE wi thout regard t o  other cri teria . In fac t mos t  

s elec ted model s  meet all cri teria . 

Model Initialization* 

I normally ini tial ize level , trend , and seasona l i ty o f  

exponential smoothing forecas t models us ing the technique 

described below which I firs t learned from Don Mi l ler . 

Forecast l i terature does not demonstrate a terrific 

advantage in model ini tial i zat ion . 201 Nevertheless , there is 

l ikewise no evidence that initial i z ing causes harm . Under 

such c ircums tances , i t  would appear that the most  important 

cons ideration is in cons is tency of  prac tice in comparing 

models . 

I use this ini tializ ation process because it  seems 

l ikely that unini tiali zed exponential smoo thing model s  may 

have biased parameters . This bias arises because 

unini tiali zed models are ac tual ly ini tiali zed at zero for 

level and trend and 1 for seasona l i ty .  These ini tial values 

guarantee high error values for the firs t few observations . 

Wi th guaranteed high error values for the first few 

observations , unini tial i zed models are l ikely to require 

large ( respons ive ) parame ters to sel f - ini tialize . As a 

*This initialization process is similar to one 
described to me by Don Miller . 
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consequence , when the user f i ts the model to high 

parameters , i t  i s  di f ficul t to know how much the fai lure to 

ini tial i z e  contributed to this f i t . The technique described 

be llow seems to o f fer a reasonable alternative to these 

extremely unlike ly ini tial values . 

The firs t twenty four observations are l inearl i zed by 

subtrac ting the mean o f  the f i rs t 12 obs erva t i ons from the 

mean o f  the second 12 and dividing by 12 . The slope so 

computed is the ini tial trend . This trend is backed off the 

mean o f  the first 12 observations by 6 . 5  to obtain the 

ini tial level . I t  is then be added back to the ini tial 

level for twenty four i terations to es tablish an estimated 

deseasonal ized series for the first two years . While 

ini tialization o f  seasonality was discus sed in the proposal , 

because of  the inc idental el imination of  seasonal series 

discussed above , seasonality was not a fac tor in the mode l 

f i t t ing . 

Exclusion from Loss Functions 

Because the first twenty four observations were used to 

ini tialize the forecas t ,  they were exc luded from the 

calculations of  the loss func tion in model f i tting . 
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Trading Days * 

Because thi s  data is known some times to be af fec ted by 

trading day information ,  ( Fridays o f  the month or to tal days 

o f  the prior month ) the data series was adj us ted ( divided) 

by these fac tors where it  approved to reduce unexplained 

variation . Use o f  trading day corrections is recommended by 

Arms trong . 202 

Data Editing 

J .  Scott Arms trong advises that data serles should be 

c leaned o f  erroneous observations and irrelevant outl iers . 203 

In thi s  s tudy the data series was cleaned following 

Arms trong ' s  advic e . Because I am fami liar wi th the series , 

I am aware that some o f  the series may undergo a low month 

followed by a high month , or vice versa . These high/ low or 

low/high events are trans i tory and re flect short term 

external events . These were adj us ted by averaging the two 

observations . Certain extreme outl iers were edi ted out o f  

the series by replac ing them average of  the preceding and 

following periods . I visually identi f ication of these 

observations bu inspec ting graphs be fore forecas ting data 

or s imulating policy shi fts . 

*This trading day analysis is similar to one described 
to me by Don Miller . 
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Simplification with Pre-processed Data 

Pre-processed data was used to generate the input data 

for the trials ins tead o f  us ing the preprocess ing math to 

bui ld more complex models that reversed the preprocess ing 

s tage as the las t s tep . This was the princ ipal I applied to 

all data preprocess ing in both experiments , e . g . , edi ting 

out l iers or removing weekly variation from monthly level 

data . This princ ipal was used to s imp l i fy assumptions about 

the end resul t ,  i . e . , to allow the as sumption that the 

errors of the results arose from the exponential smoo thing 

models rather than from the combination o f  the exponential 

smoothing models and the reversal o f  the preprocess ing . 

Since these forecas ts were not generated for prac tical use , 

i t  was not es sential to produce a final forecas t that was 

comparable to the original raw series . Forecas ters who make 

prac t ical forecas ts are not afforded this convenience .  

The Simulated Policy Adjustments 

All models were developed as i f  they had an expec ted 

level shi ft occurring beginning on the first month of the 

forecas t period . The prospective level shi f t  is anticipated 

at 3 0 % of the average of the data series in the las t 12 

months of the historical period and is expec ted to phase in 

( fo l low a ramp ) over 3 months in equal increments . Bo th 

pos i t ive and negative level shi fts  were cons idered for each 
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series . For the model us ing the proposed technique , this 

level shi ft was incorporated into the forecast . For the 

other techniques ,  the s tatistical model was updated wi thout 

inc lus ion of policy adj us ted information . However , for 

those models two forecasts were calculated from the data . 

One forecas t inc luded only the information from the 

statis tical forecas t .  The other inc luded an ad hoc 

adj us tment added onto the forecast at the monthly level to 

increase the forecast to a level s imi lar to that of the 

proposed technique . 

For each series the following condi tions were s imulated 

by adj usting the hold out data . These condi tions allow for 

c ons ideration of some of  the po tent ial l imi tations of the 

technique discussed on page 1 0 6 . 

Scenario 1 :  A level shi f t  occurs exac tly as ant icipated , 

beginning on the anticipated date and phas ing in over 3 

months and attaining 1 0 0 %  of  the antic ipated amount . 

Scenario 2 :  Each level shi f t  occurs as wi th scenario 1 .  In 

addi tion , a trend shi f t  of 1 0 %  of the average first 

dif ferences o f  the 6 periods prior to the level shi f t  is 

added to the data . 



1 6 8  

Scenario 3 :  The level change occurs as wi th scenario 1 

except that it  attains 2 5 %  of  the anticipated pol icy change . 

Scenario 4 :  The level change occurs as wi th scenario 1 

except that i t  attains 2 0 0 %  o f  the antic ipated pol icy 

change . 

Scenario 5 :  A pos i t ive trend shi f t  occurs beginning in the 

month of the anticipated level shi f t  phase in date and 

attaining a s lope that is 5 0 %  o f  the slope o f  planned ramp . 

Scenario 6 :  No change is added to the data series . 

Scenario 7 :  No level shi f t  or trend shi f t  is added to the 

data series ; however the variat ion of  the data series is be 

increased by 1 0 0 % . This increase is calculated by 

determining the di f ference between the observation and a 

3 period moving average . That di f ference is multipl ied by 2 

and then added back to the original moving average to create 

a new observation at 1 0 0 %  greater variation . 

Scenario 8 :  A negat ive level shi ft occurs exac tly as 

anti c ipated . 
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Scenario 9 :  Each level shi f t  occurs as wi th scenario 8 .  In 

addi tion , a trend shi f t  of 1 0 %  o f  the average firs t 

di f ferences of  the 6 periods prior to the leve l shi ft 1S 

added to the data . 

Scenario 1 0 : The level change occurs as wi th scenario 8 

except that i t  attains 2 5 %  o f  the antic ipated pol icy change . 

Scenario 11 : The level change occurs as wi th scenario 8 

except that i t  attains 2 0 0 % of  the antic ipated pol icy 

change . 

Scenario 12 : A negative trend shi f t  occurs beginning in the 

month of the antic ipated level shi f t  phase in date and 

attaining a slope that is 2 5 %  of  the s lope o f  planned ramp . 

The 2 5 % trend shi f t  for negative cases is set so as to avo id 

having the forecas t series attain a level below zero in the 

forecas t horizon . 

Simulated Scenarios Explained 

These adj us tments cons ti tute twelve di f ferent scenarios 

that may arise when data series are antic ipated to have 

level shi fts . Scenarios 1 through 5 involve planned and 

ac tual pos itive shi fts . Scenarios 6 and 7 are planned 
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pos i t ive shi fts with no ac tual pos i t ive shi f t . Scenarios 8 

through 12 are planned and ac tual negative shi fts . 

Scenarios 1 and 8 represents the s i tuation for which 

the proposed technique is des igned . Cons is tent fai lure in 

this scenario would suggest that the technique is of l i t tle 

value . Scenarios 2 and 9 represents the condi tion for which 

the technique should be robus t .  Whi le the pol icy adj us tment 

is going into place the series also undergoes a s igni ficant 

trend adj us tment . The technique should not severely reduce 

the exponential smoothing model ' s  abi l i ty to respond to the 

trend adj us tment . In any case , the model should be expec ted 

to perform at least as wel l  as the a l ternative models . 

Scenarios 3 ,  4 ,  1 0 , and 1 1  re flec t problems that the 

forecas ter may frequently face . I t  is not c lear which 

t echnique shou l d  be mos t  accura te under these condi t ions . 

Also , these are scenarios for which the forecaster may want 

to be alerted to est imation fai lure through a signal such as 

the smoothed error tracking s ignal . 

Scenarios 5 and 12 should pose a s igni ficant problem 

for the proposed technique s ince the model can be expec ted 

to ignore the trend shi f t  over the first few periods , 

treating i t  as a level shi f t  ins tead . This sugges ts that 
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the alternative methods may per form bet ter when such a shi f t  

occurs . However , the scenario may also pose a s igni ficant 

problem for the a l ternat ive methods . 

Scenarios 6 and 7 challenge the proposed technique ( and 

the alternat ive techniques )  to per form wel l  in the absence 

o f  the expec ted change . Scenario 7 introduces new confus ing 

information that may cause problems wi th all  of the 

techniques . 

�tmg 

Al l forecasts were updated by adding one period o f  new 

data to the his torical series and recalculating the 

proj ec tions . Parame ters were not adj us ted during the 

updating process . For the standard Ho l t-Winters and Hol t ­

Winters-Wi l l iams models , the a parameter was raised to 0 . 8  

be fore any updating occurs to al low for the antic ipated 

level shi f t , also the � and y parameters were changed to the 

optimal � and y parameters for the subset of  a = 0 . 8  mode ls 

tes ted . This rise in the a parame ter reflects Arms trong ' s  

recommendations following the previous advice of  Brown . 204 

Six updates were comple ted for each series . Each 

update was recorded wi th forecas ts through the end o f  the 
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original 2 1  period horizon . The last f i f teen observat ions , 

adj usted to re flec t each s imulated policy adj us tment , were 

avai lable solely for evaluation of the techniques .  

Statistical Evaluation 

Summari zed statistics  spec i f ied in the previous chapter 

are displayed in tables for horizons 1, 5 ,  10 , and 15 . 

Models that have lower values for all s tatistics except LMR 

are cons idered to perform be t ter . For LMR ,  the higher value 

reflects bet ter performance .  Al l s tatistics except the 

range o f  percent error are measurements o f  accuracy . The 

range of  percent error s tatistic is a measurement of  

rel iabi l i ty .  Because o f  the extens ive nature of these 

s tatistics , the tables displaying them are placed in 

Appendix IV . That Appendix also inc ludes tables that 

display the results o f  the Rank ANOVA and Kruskal-Wa l l i s  

tes ts . 

In the absence o f  consensus among forecas ting experts 

concerning what cons t i tutes unequivocal success in a 

forecast compet i tion , the results are discus sed 

qual i tatively rather than spec i f ically compared to a 

de fini te s tandard for acceptance or rej ec tion o f  hypotheses . 

The qual i tative discuss ion addresses tendenc ies o f  

par ticular techniques t o  rank a s  more o r  less accurate than 
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other techniques , for example the tendency o f  the proposed 

technique , or the proposed technique and the ad hoc adj usted 

techniques to rank as more or less accurate than the 

forecasts made with alternat ive techniques in which no 

adj us tment is made for pol icy changes .  The discuss ion also 

addresses the relative ranks wi thin par ticular scenarios , 

e . g . , whether the proposed technique increases the risk o f  

forecast error when in ac tuality the pol icy leads to a 

s igni f icant increase in variance rather than a leve l change , 

which may allow a po tential user of  the technique to 

evaluate whe ther the technique increases or decreases 

potential forecast accuracy wi th respec t to the particular 

l ikely outcomes antic ipated for a spec i f ic planned po l i cy 

change . 

While qua l i tative results are discussed, I also 

examine the results through Rank ANOVA and Kruskal-Wallis , 

two non-parametric tes t o f  rank order . However , because o f  

the small sample s i z e , 2 0  forecas t series , and the lack o f  

general consensus on the applicabi l i ty ,  these non-parametric 

tests are not do not de fini t ively evaluate the hypotheses . 

As the analys is does not inc lude de fini tive inferential 

tes t s , the results should be cons idered to add to the 

overal l  discuss ion of techniques appropriate to forecas ting 

discontinuous data . 
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The Second Maj or Hypothesis 

To evaluate the second maj or hypo thesis ( hypotheses 2 a  

and 2 b )  I made forecasts of  2 0  data series that have had 

leve l shi fts -during the his torical period . The s ix mode ls 

used to forecas t series in the first analyses were used to 

forecas t the series in this analyses . 

The Data 

The data are 2 0  series selec ted from the Department o f  

Medical Assis tance Services . Only series that have a leve l 

shi f t  be fore the beginning of  the hold out data are used . 

These data are shown in the following graphs : 
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Independence 

Correlation matrices were calculated as wi th the first 

s tudy .  These are also demons trated in Appendix I I I . 

Because this series inc luded level shi f t ing data , the leve l 

shi f ts added confusion to the correlat ion analys is . The 

purpose o f  the correlation analys is was to val idate that the 

data were not correlated in general . Large level shi f ts 

aris ing at the same time would tend to cause these series to 

be spurious ly correlated , while large level shi fts ari s ing 

at di f ferent points in time could mask ac tual correlation in 

the data . Consequently, the level shi fts  are averaged out 

of the f irs t di f ferences be fore calculation of the 

correlation matrices . There is some correlation between 

some of series ( R- squared � 0 . 3 ) ; however , in general the 

series are independent .  The universe from which these 

series were drawn did not contain a suf f ic ient number o f  

l eve l shi f t ing s e r i e s  t o  reduce a l l  corr e l a t i ons fur the r . 

Two o f  the 2 0  selec ted series appeared to be seasonal . To 

avoid confounding the resul ts ( s ince all other series were 

non-seasonal ) I deseasonaliz ed these series and treated the 

deseasonalized data as the pre-processed data as described 

above . 



Forecast Procedures 

Ini tial i zation and other forecast procedures were as 

with the firs t analys is except as follows : 

1 .  There were no art i f ic ial level shi fts  or scenar ios . 

Only the actual data series were forecas t .  

17 8 

2 .  Where the level shi f t  occurs be fore the end of  the 

ini t iali zat ion period , j udgmental ( eyeball ) values were set 

for ini tial trend and level . 

3 .  The level shi fting element o f  the proposed technique 

was used to f i t  the historical level shi fts in a manner 

s imilar to an intervention variable . The his torical level 

shi fts  were " es t imated " by identi fying outlier . These first  

di f ferences were treated as  the retrospec tive level shi f t  

e s timators . A table o f  these is shown i n  Appendix VI . 

updating and Statistical Analysis 

The six models were updated for the same S lX periods as 

wi th the first analys is . Forecasts and errors were 

c alculated for horizons 1, 5 ,  10 and 15 as wi th the first 

analys i s . The statistical analys is is c onduc ted in the same 

manner as wi th the first analys is . In the next two chapters 

this second s tudy is referred to as scenario 13 . As 
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discussed there , two variants o f  this s tudy were c onduc ted . 

The second variant i s  cal led scenario 13b . Related tables 

wi th those headings are shown in Appendix IV . 

Limitations of the Research Proj ects 

This s tudy should be viewed as an exploratory analys is 

o f  a new type of  forecast model . This model is a hybr id of  

an exponential smoothing model and s impler estimation 

approaches . Mos t  results are displayed in descriptive 

statistics . While non-parametric inferential stat istics  are 

presented, they are not wide ly used for comparing forecas t 

model s  and are inc luded in part for cons ideration o f  whether 

they may be use ful in this sort o f  comparison . Also , both 

the number of series evaluated, 2 0  for each of two proj ec ts , 

and their origins from a s ingle organi zation l imi t the 

generalizabil i ty o f  this s tudy . On the other hand , 

correlation matrices presented in Appendix I I I  show that the 

series are independent ,  thus , i t  is reasonable to 

tentatively cons ider general i z ing resul ts . Overal l ,  

however , this s tudy provides a prel iminary analys is o f  the 

proposed technique . 

addi tional s tudy . 

Promis ing results sugges t the need for 



Summary 

Two research proj ects were undertaken . In the first  

proj ec t ,  20  data series were forecas t over 1 5  horizon 

periods us ing " 5 di f ferent techniques wi th two variants o f  

f ive o f  the techniques ( for a total comparison of 1 1  

model s ) .  Twelve pol icy change scenarios wi l l  be tes ted . 

The series wil l  be updated for 6 periods . Six summary 
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s tatistics wi l l  be calculated for each horizon to evaluate 

the comparative e f fec tiveness of  the 9 models . In the 

second proj ec t ,  2 0  data series that have undergone a leve l 

shi f t  in the his torical period were forecas t over 1 5  horizon 

periods us ing s ix di f ferent techniques . The series were 

updated for 6 periods . Six summary s tatis tics were 

calculated for each horizon to evaluate the comparative 

e f fec tiveness o f  the s ix models . Because o f  ci ted 

l imi tations , results should be cons idered prel iminary . 



CHAPTER 8 :  PRESENTATION AND ANALYSIS OF THE DATA 

In this chapter I wi l l : 

o Describe the research and the layout of  the statis tical 

tables presented here . 

o Describe the results o f  each o f  the 12 scenarios 

assoc iated wi th the first empirical s tudy . 

o Describe the resul ts of  the 1 scenario assoc iated wi th 

the second empirical s tudy . 

Results of Statistical Analysis 

The s tatis tical analys is is conduc ted primarily through 

development o f  one table of twenty trials for each hor i z on 

for each scenario for each descriptive statis tic . These 

tables are then summarized through the average , the 

geometric mean , the average rank , and the Kruskal-Wallis  

rank sums . As discussed below ,  some summary data is no t 

appropriate for some s tatis tic s . The summarized data is 

presented in tables in Appendix IV . Following is a 

descripi ton of  these tables . 

The Tables 

Tables demons trating summary information from the 12 

scenarios of the firs t s tudy and two variates of the second 

1 8 1  
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s tudy run eight pages in length each , for a total of  1 0 4  

pages , s o  they are not displayed in the text of  this 

dissertation . These tables are inc luded as Appendix IV . 

For convenience o f  reference I label the 1 1  models generated 

in the s tudy as fol lows ( The mode ls that are marked wi th an 

as terisk are not produced for the second s tudy which is 

labe led scenario 13 ) : 

Adjust 

HWW 

HW 

Adapt 

Auto 

HWW* 

HW* 

Adapt * 

Auto* 

The proposed method ( or Adjusted) . 

Holt -Winters -Wil l iams . 

Hol t -Winters . 

Hol t-Winters -Wi l l iams with an adaptive � parameter 

( or Adaptive ) . 

Hol t-Winters -Wi l l iams wi th the Chatfield 

autocorrelat ion correc tion . 

Hol t-Winters -Wi l l iams wi th an ad hoc level shi f t . 

Holt -Winters wi th an ad hoc level shi f t . 

Hol t-Winters -Wi l l iams with an adapt ive � parame ter 

and an ad hoc level shi f t  ( or Adaptive* )  . 

Hol t-Winters -Wi lliams wi th the Chatf ield 

autocorrelation correc tion and an ad hoc level 

shi f t . 
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Each table contains four sub-tables for horizons I ,  5 ,  

1 0  and 15 . I t  summarizes one s tatis tic , e . g . , SMAPE , over 

2 0  trials . Trial -by-trial results are not displayed due to 

the magni tude o f  information . The dif ferent lines of each 

sub-table reflec t di f ferent ways of summari z ing the 

s tatistic . The tables are number X-Y where X is the 

scenario number and Y is the table number . For each hori z on 

the following information is reported in tables X-I  through 

X - 8 : 

o The average value o f  the s tatis tic across twenty trials 

for each o f  the eleven alternative models . That is , 

the basic s tatistic ( error , squared error , absolute 

error , etc . )  is  calculated for each o f  7 updates for 

each of  2 0  trials . I t  is summari zed ( averaged , summed , 

ranked , or aggregated in whatever the appropriate 

manner for the part icular table ) to one stat istic for 

each mode l for each trial . Then the 2 0  trials are 

summarized to one average . 

o The rank o f  the average values among the eleven models . 

o The geometric mean of  the s tatis tic across twenty 

trials for each of the eleven models . 
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o The rank of  the geometric mean o f  the statistic among 

the eleven models . 

o The average rank of  the s tatistic by ser1es across 

twenty trials for each of  eleven models , i . e . , the rank 

among the eleven models for each trial , averaged . 

o The rank o f  the average rank among the eleven models . 

o The rank sum as calculated in the Kruskal -Wallis 

s tatistic ( where all observations among the twenty 

models are ranked in one set ) . 

o The rank o f  the Kruskal-Wallis Rank Sum . 

o The number o f  models that are statistically 

dis tinguished from the reported model in the case that 

the Kruskal -Wal lis  s tatistic is s igni f icant . The 

Kruskal -Wallis  s tatistics are reported in Tables X - 9  

through X- 1 6 . I f  these statistics  are s ignificant , the 

number reported in this table shows how many of the 

o ther model s  has a s tatistically s igni ficant 

di f ference . I f  the Kruskal-Wallis s tatistic is not 

s igni ficant , the number repor ted in this table is 

irrelevant . When the Kruskal -Wallis s tatistic 1S 



1 8 5  

s igni ficant and the number reported in this table i s  1 0  

( 5  for Scenario 13 ) ,  all the other models are 

s tatistically dis t inc t from this model . 

For most  o f  the s tatistics  reported in tables X- 1 

through X- 8 lower values are superior to higher values . 

This is no t true for the Log Mean Squared Error Rat io , where 

the higher value is the superior resu l t  ( in the tables , the 

ranks reflect this fac t ) . Also , the last row of data for 

each sub- table implies no superiori ty for ei ther higher or 

lower numbers , ins tead , it shows how many of the other 

model s  ( models in other columns ) are s tatistically dis t inc t 

from the reported model when the Kruskal-Wallis stat i s t ic is 

s igni f icant . I f  this number is small compared wi th the 

number o f  models reported , the other models wi th s imi lar 

Kruskal-Wallis Rank Sums cannot be statistically 

dist ingui shed from the reported model . Due to the quant i ty 

o f  s tatistics calculated for this s tudy , individual pairwi se 

comparisons are not reported . 

For the Root Mean Squared Error and the Geometric Root 

Mean Squared Error certain results are not valid because 

problems assoc iated wi th aggregat ing over data that is no t 

comparable in magni tude . The Geometric Mean i s  not a valid 

mean for the Log Mean Error Ratio because negat ive logs 
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imply that the mean error ratio l S  less than one , s o  the 

technique is worse than the comparison naive model . 

information is not reported . 

Inval id 

Tables X- 9 through X - 1 6  show the results of two non­

parametric tes ts for s igni ficant di f ferences of  the ranks of  

the reported statistic in . Thus , in Table X-10 the Rank 

ANOVA and Kruskal-Wallis s tati s t ics for the ranks of  the 

SMAPEs for the twenty trials are shown for horizons 1 ,  5 ,  

1 0 , and 15 . These s tatis tics  are repor ted under the Chi 

Square Column as they are compared wi th the Chi Square 

dis tribution for de terminat ion o f  s igni ficance . The next 

co lumn reports the degrees of freedom and the las t co lumn 

reports the ac tual leve l of  s igni ficance at tained . 

Tradi tionally ,  p values below a levels of  0 . 0 5 are 

cons idered indication of s tatistical s igni ficance . 

Description of the Data Collection and Analysis 

I did the following ( not  necessarily in this sequence )  

to generate each table ( in this example I discuss 

scenario 1 ,  hori z on 1 ,  table 1 - 2 , SMAPE ) : I f i t  the model 

wi th the observations ending in December 1 9 9 1  ( or December 

1 9 9 0  i f  the data originated from population based series ) . 

I col lec ted the error for observation for January 1 9 9 2  ( or 
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1 9 9 1  a s  may be ) . I updated the model for the s imulated 

ac tual for the January observation and col lec ted the error 

for February , and continued through the seventh update 

( counting the model fitting observation ) . I divided each o f  

the seven errors by the average of  the observation and the 

model proj ec t ion for each of these seven periods to produce 

a SMAPE for the period ( or followed other procedures to 

produce the relevant periodic s tatis tic for the other 

tables ) .  I carried the average of  the seven SMAPEs to a 

table for comparison wi th the other 1 0  models and the other 

1 9  trials . The average across all twenty trials is shown on 

the first row ( by the label " Average " )  on Table 1-2 , and for 

the proposed technique is 3 . 6 6% . The rank of  the averages 

is shown on the next l ine , etc . The table of  Rank ANOVA and 

Kruskal-Wallis s tatistics shows a Chi Squared value o f  7 5 . 6 1 

for the Rank ANOVA ( p  value 0 . 0 0 0 0 ) and 42 . 5 5 for the 

Kruskal -Wallis statistic (p value 0 . 0 0 0 0 ) for the SMAPE 

s tatistic and Hori z on 1 .  These p values are , of  course ,  

s igni ficant a t  the a = 0 . 0 5 level . 

The two non-parametric tes ts were appl ied as follows : 

o An array of  the descriptive s tatistics were calcula ted 

for each trial . 
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o Ranks were then calculated among the descript ive 

s tatistics . For Rank ANOVA , each trial was ranked 

separately . For the Kruskal -Wa l l is s tatistic a table 

of all the results for the twenty trials was ranked 

from lowest to highes t .  

o The Kruskal -Wallis  s tatistic was reported only for 

relatively dimens ionless s tatistics ( percents , ranks , 

LMRs , etc . ) . 

o Both the Kruskal-Wallis s tatistic and the Rank ANOVA 

statistics were compared wi th the Chi Square 

dis tribution for tes ts of  statistical s igni f icance . 

Material That is Presented 

In this overview certain general results are observed . 

I illus trate the forecasts made wi th the various techniques 

under the various condi tions wi th graphs . These graphs are 

a visual guide to the variation in bo th the trials and the 

results ; however , they do not necessar i ly demons trate the 

consequences of the various techniques for all twenty data 

the series . For the firs t 12 scenarios , these graphs are 

taken from the application o f  the techniques to Series 4 .  

Several series are demons trated for scenario 13 . 
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The scenarios presented below are keyed t o  ini tial l i s t  

o f  scenarios . To maintain data integrity ,  this key was not 

changed al though scenarios are grouped in a di f ferent order 

for this discuss ion . Also , the term unadjusted models wi l l  

b e  used t o  collectively re fer t o  the five models that do no t 

take the anticipated level shi f t  into account . 

Scenarios 1 through 12 Discussed 

The firs t twelve scenarios address hypothesis la : 

The al ternative techniques and the proposed technique 
are not equally accurate in forecas t ing through periods 
where pol icy shi fts are anticipated . 

The following eight scenarios also address 

hypothesis lb : 

The proposed technique is more accurate than the 
alternative techniques when used to forecas t through 
periods where policy shi fts are ant ic ipated and such 
pol icy changes material ize . 

In the firs t four scenarios presented , the simulated 

actual level shift is equal to the planned level shift . 

Scenario 1 :  Level Shift as Expected 

In scenario 1 the s imulated ac tual level shi f t  is the 

same as the planned leve l shi f t  inc luded in the forecas t 

mode l . In the following graphs , this can be seen wi th the 

large level shi ft at the same point as the beginning of the 
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updat ing period . To read these graphs , notice that the 

bumpy l ine i s  the ac tual data , while the f irs t update has 

the longes t forecas t l ine . 

Forecasts that are near the I Proposed Modell 

ac tual data are more accurate -,..,... 
- Pefloo 1 

- "...,." 

than otherwise , whi le those 
- PIiro:l 3  

- Pwo:l 4  

- PwIXl S  

- FW1Od 6  

that are also in a tight pack 
- PlIr1OO 7 

x·_ 

are more reliable . Figure 63 
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Figure 64  Figure 65  
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X·_ x·_ 

Figure 6 6  Figure 67 
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Figure 69  

IAutocorrelation Corrected Ad Hoc I 
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Figure 7 1  
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Figure 73 
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These graphs show a s igni ficant variat ion in the 

results for the various models . Nevertheless , the spec i f ic 

variation is relevant only for the example serl.es . Tables 

1 - 1  through 1 - 1 6  summarize the results for all 2 0  examined 

serl.es : 
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o When the planned level shi f t  ac tual ly occurs , the 

proposed method ranks superior to all other models . 

This result holds for each of  the four tes ted hori zons 

and for 'all o f  the reported s tatistics . 

o The Kruskal-Wallis s tatistic and the Rank ANOVA show 

s tatis tical signi ficance for these results wi th 

p values ranging from 0 . 0 0 0 0  to 0 . 02 4 8 . 

o The Kruskal-Wallis mUl t iple series comparisons shows 

that the proposed method can be s tatis tically 

dis tinguished from all other methods for all 

comparisons for which i t  is valid ( i . e . , where this 

result is reported ) . 

o The five other models that take the prospec tive po l i cy 

change into cons ideration ,  the ad hoc models ( marked 

wi th an as terisk ) , cons i s tently perform better than the 

f ive unadj usted models . However , patterns of  results  

( rank order o f  performance between these five models ) 

are no t cons is tent across the various s tatistics . 

o The five unadjusted models are the wors t  performing 

models . Among these , the adapt ive , autocorre lation 

correc ted , and Ho lt -Winters models are frequent ly the 
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worst per forming models , wi th the Ho lt -Winters -Wi l l i ams 

and naive models performing somewhat bet ter . 

o Among the models in which the prospec tive change is no t 

taken into cons ideration , the naive model is more 

e f fec tive than the al ternative models ; however , the ad 

hoc naive model is no t superior to the other ad hoc 

models . 

Scenario 8 ,  Negative Level Shift as Anticipated 

Scenario 8 i s  l ike I Proposed Modell 

Scenario I ,  except that both - """" 
- P,na "  
- Pan oo 2  

the expec ted and ac tual level - P$-1OO 3 

- P.1Od 4 

- PilwIOO S 
- Ptr1Od 6  

shi f t  are a negative shi f t  - Per1Od 7  

x·_ 

rather than a pos i t ive shi f t . 
Figure 74  
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Figure 83 Figure 84  
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Following are the observed results :  

o The proposed technique outperforms all other techniques 

across all reported horizons and all reported 

statistic s . 

o The ad hoc methods generally outperformed the 

unadj usted models . 

o The naive method generally outperformed the other 

techniques that do not inc lude an ant ic ipated level 

shi f t  and frequently outperformed the ad hoc methods . 

o The Kruskal-Wallis tes t is s igni ficant for all 

s tatistics and all horizons . 

o The proposed me thod c an be di s t ingu i shed f rom all o ther 

models on the Kruskal-Wallis related mUltiple treatment 

c omparison analys is in all analyses for which the 

Kruskal-Wallis tes t is val id . 

o The Rank ANOVA tes t is s igni ficant for all statistics 

for horizon 1 and for all statistics except for the 

average rank o f  the absolute error for hori z on 5 .  I t  

i s  not s igni ficant for horizons 1 0  or 1 5 . 



1 9 6  

Scenario 2 :  Level and Trend Shift 

In scenario 2 ,  the s imulated ac tual level shi f t  is 

equal to the planned level shi f t ; however ,  an unanti c ipated 

trend shi f t  also occurs . The s imulated trend shi ft is a 1 0 %  

increase of  the trend over the 

pas t 12 periods . I t  is 
I Proposed Modell 

apparent from the graphs that 
- ...... 
- Poood 1 

- I1n Od 2  

- Ptrm 3  

this change in slope may not 
- _ .  

- J1fo:l 6  

- F'lr1Od 6  

- F1ro:l 7  
result in a s igni f icant change 

x-_ 

in the forecast level . Figure 85 
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The results o f  thi s  scenario are s imi lar to those of 

scenario 1 .  These inc lude : 

o The proposed method ranks superior to all other mode ls 

for all reported s tatistics . 
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o The ad hoc techniques cons is tently rank superior to the 

unadj us ted models . 

o Among the five unadj us ted models , the least e f fective 

models are the Hol t-Winters , adaptive , and 

autocorrelation correc ted models . 

o The Kruskal-Wal l i s  tes t i s  s igni ficant at the a = 0 . 0 5 

level o f  s igni ficance for all s tatistics for which i t  

is valid . 

o The proposed me thod can be dis tingui shed from all  other 

models on the Kruskal-Wallis related mUltiple treatment 

comparison analys is in all analyses for which the 

Kruskal -Wa l l i s  tes t is val id . 

o The Rank ANOVA test is generally s igni f icant at the 

a = 0 . 0 5 level o f  s igni f icance for all statistics and 

horizons except i t  is not s igni ficant for hori z ons 

greater than 1 for the range of percent error 

measurement . 
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Scenario 9 ,  Negative Level and Trend Shift 

Scenario 9 is l ike scenario 2 except that both the 

expec ted and ac tual level 

shi fts are negative rather than I Proposed M:Jdell 

pos i t ive . As wi th the pos i t ive - I1rCld 1  

- Per!Od2 
- Per m !  

version ,  the trend shi f t  is - Per IOd "  

- Pwl oo s  

- F'wn CXl 6  

- """'" 

small in the example graph . 
X·_ 

Figure 96  
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Observed results are as follows : 

o The proposed technique is the mos t  e f fec tive method 

across all reported horizons and all  reported 

statistics . 

o In general the ad hoc techniques rank superior to the 

unadj us ted models . 

o The Kruskal-Wallis test is signi f icant at the � = 0 . 0 5 

level of  s igni ficance for all s tatistics  for which i t  

is val id . 
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o The proposed method can be dis tinguished from all o ther 

models on the Kruskal -Wallis related mul t iple treatment 

comparison analys is in all  analyses for which the 

Kruskal-Wallis  tes t is val id . 

o The Rank ANOVA test is s igni ficant at the a = 0 . 0 5 

level of  s igni ficance for hori z on I ,  has mixed results 

at horizon 5 al though i t  is usual ly s igni ficant , and 

generally is not s igni ficant at the a = 0 . 0 5 level o f  

s igni ficance for hori zons 1 0  and 1 5 . I t  is not 

s igni ficant at horizon 5 for the average rank of  

absolute error and for the median absolute percent 

error . 

When the Level Shift is Larger or Smaller 

In the next four models , the simula ted ac tual l evel 

shi ft occurs when planned, bu t is signi fi can tly di fferen t In 

magni tude from the planned l evel shi ft . 
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Scenario 3 ,  Level shift at 25% of Anticipation 

In scenario 3 a s imulated I Proposed Modell 

level shi f t  occurs at the - ""'" 
- F'W1OO 1 

- - ,  
antic ipated time ; however , it  - Plr1QCl 3  

- PtrIOd "  

- Pw 1Od 5  

- PerIOd S  

is only 2 5 %  as large as - Pw m 1  

x-_ 

anti c ipated . 
Figure 107 
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Results for this model are as follows : 

2 0 3 

-...... 
- 11'100 1 
- """'" -"""'" 
- � 1Od 4  

- �cd 5  

- PIr1Dd &  

- Pw1OO 7 

- ""'" 
- Pa"1OCl 1  

- f'ilrw 2  

- Piw1Od 3  

- Plro:l 4  

- PwIXl S  - 11r1OO 6 

- PlIl'lod 7  

o The proposed technique cons is tently ranks tenth out o f  

the eleven series , only the a d  hoc Ho lt-Winters -

Wi ll iams me thod is less e f fec t ive . 

o The unadj usted models generally outperform the o thers . 

o The autocorrelation correc ted model tends to perform 

the bes t . 
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o Both the Rank ANOVA and the Kruskal-Wallis  tes t 

s igni ficant at the � = 0 . 0 5 level of  s igni f icance for 

horizon 1 ,  bo th tes t ins igni ficant at horizon 1 5 . 

o In general the Rank ANOVA tes ts ins ignificant at the 

� = 0 . 0 5 level o f  s igni ficance for horizons 5 and 1 0  

and the Kruskal-Wallis  tes ts s igni ficant at those 

horizons ; however , the reader should consult the 

tables . 

o Where the Kruskal-Wallis  statistic tests signi ficant , 

the proposed method is dist inguishable from the other 

techniques wi th the mUl t iple treatment comparison tes t , 

so to is the aforementioned ad hoc Hol t-Winters­

Williams model . However , the autocorrelation correc ted 

model generally is no t dis t inguishable from some or all  

of  the other unadj us ted models . 
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Scenario 10 , 2 5 %  Level shift,  Negative 

Scenario 1 0  is a negative 

version of  scenario 3 .  The I Proposed Modell 

expec ted level shi f t  is 
- """" 

- PenXl 1  

negat ive . The s imulated ac tual 
- Fleral 2  

- - ,  

- Pw1OO4 
- PwIOd S  

level shi f t  is 2 5 % of the 
- P'rlod S  

-PerIOd 1 

expected level shi f t . x·",. 

Figure 118 
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Following are observed resul ts : 

o The unadj us ted models are more e f fec t ive than the 

others . 
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o In general ,  for the more dis tant reported hori z ons and 

most reported s tatistics the autocorrelat ion correc ted 

model appears mos t  e f fective . This result is not 

entirely cons is tent . 

o The Hol t-Winters -Wi l l iams model is the leas t e f fec tive 

mode l for all reported hori z ons and all reported 

statistics . 



o The proposed technique is generally the next leas t 

e f fective model for all reported hori z ons and all  

reported s tatistics . 
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o The Kruskal-Wallis test is s igni ficant at the � = 0 . 0 5 

level of  s igni ficance for all s tatistics for which i t  

is val id . 

o The Rank ANOVA tes t is s igni ficant at  the � = 0 . 0 5 

level o f  s igni ficance for all s tatistics and all 

horizons . 

o The mUl t iple series comparison analys is shows the 

proposed technique and the Ho lt -Winters-Wi ll iams 

technique to be dis tinguishable from the other 

techniques .  In general , the autocorrelation correc ted 

model is not dis t inguishable from some or all of the 

other models that do not take the planned level shi f t  

into account . 
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Scenario 4 ,  2 0 0% Level Shift 

In scenario 4 ,  the I Proposed Modell 

s imulated level shi f t  occurs at 
- Plro:l '  
- PI!rexI 2  

the anticipated t ime , however , - Per1lXl 3  

- Plro:l 4  

- PWO:l S  

- Pw1CCl 6 
i t  is 2 0 0 %  of  the antic ipated - Pw1OCl 7  

x-_ 

level shi f t . 
Figure 129 
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Following are the observed results : 

o The ad hoc model us ing the Ho l t -Winters -Wi ll iams 
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technique has superior results for all  horizons and 

mos t  s tatistics . 

o The proposed technique generally performs among the 

be t ter performing models , wi th ranks ranging from 1 to 

6 and frequently ranking 2 .  

o The unadj us ted naive model has superior resul ts wi th 

the median absolute percent error for all  hori z ons . 
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o In general ,  but not wi thout exceptions , the models that 

take the antic ipated level shi f t  into account per form 

be tter than the unadj us ted models . The exceptions are 

that the ad hoc autocorrelation c orrec ted model is a 

fairly poor per former while the unadj usted naive model 

is a fairly good performer . 

o The Kruskal-Wallis tes t is s igni ficant at the a = 0 . 0 5 

level of  s igni ficance for all statistics for which i t  

is val id except for the log mean squared error ratio a t  

horizons 1 0  and 1 5 . 

o The Rank ANOVA tes ts s igni ficant at the a = 0 . 0 5 leve l 

o f  s igni ficance for all  s tatistics for which it  i s  

val id except for horizon 1 0  for the log mean squared 

error ratio and the geome tric root mean squared error , 

and all hori z ons for the median absolute percent error . 

o Al l models tes t s igni ficantly di f ferent from each 

other , sometimes excepting the ir neares t alternat ive by 

rank or rare ly their two neares t al ternatives , for all  

horizons and all s tatistics where the Kruskal-Wallis 

s tatis tic tes ted s igni ficant . 
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Scenario 11 , Negative 200% Level Shift 

Scenario 11 is the negative equivalent to scenario 4 .  

Bo th the antic ipated and 

s imulated ac tual level shi fts 
I Proposed Modell 

are negative . However , the 

s imulated ac tual level shi ft is ~ 
-Pined 1 

- Pen a3 2  

f -PIned 3 

" - Per IOd "  

- Plluxl S 

- l1ro:! 6  

- f1r1Od 7  

twice as large as antic ipated . 
x·_ 

Figure 140 
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Following are the observed results : 

I Autocorrelation Corrected M Hoc I 
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Figure 148 
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Figure 150 
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o The ad hoc Hol t -Winters -Wi l l iams techn ique was c l early 

superior to all  other models . 

o The next four models tended to clus ter in ranking wi th 

the rank order dependent on the s tatistic presented . 

These were : the proposed technique , ad hoc Hol t -

Winters , a d  hoc adaptive , and the unadj us ted naive 

technique . Of  these , the proposed technique tended to 

be rank the best , but not cons is tently . 
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o The ad hoc autocorrelation correc ted mode l performed 

very poorly as compared wi th o ther techniques that took 

the antic ipated level shi f t  into account . 

o The Kruska1 -Wa 1 1 i s  tes t i s  s igni ficant at the a = 0 . 0 5 

level of  s igni ficance for all statis tics for which i t  

i s  val id wi th the following exceptions a t  hori z on 1 ,  

range of  percent error ; at horizon 1 0 , log mean squared 

error ratio and range of percent error ; and at hori z on 

1 5 , symmetrical mean abso lute percent error , log mean 

squared error ratio , and median absolute percent error . 

o The Rank ANOVA tes t is s igni ficant at the a = 0 . 0 5 

level of  significance except as follows : at hori z on 1 ,  

range of  percent error ; at hori z on 1 0 , median abso lute 

percent error ; and at horizon 1 5 , the tes t is only 

s igni ficant for root mean squared error , range of  

percent error , and mean absolute percent error . 

o The models are s igni ficantly di f ferent from 7 to 1 0  o f  

their alternatives in the mul t iple treament compar ison . 
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When the Planned Shift Fails to Materialize 

The next four scenarios address Hypothesis lc 

The proposed technique is more accurate than the subset 
of the al ternative techniques that inc lude use of the 
ad hoc method when used to forecas t through periods 
where policy shi fts are anticipated and such policy 
changes fail to material i ze . 

In these scenarios the proposed level shi ft does not 

occur at all . Ins tead , the anticipated level shi f t  is 

replaced by a s imulated trend or variance shi ft or , in one 

case , no s imulated data at all is added to the data . 

Scenario 5 ,  Trend Shift 

In scenario 5 the planned I Proposed M:>dell 

level shi f t  does not occur . - -""'" 
- Per1Cl:l 1  

- FW1IXI 2  

Ins tead , a trend shi f t  is -' - P'flod 3  

" - FW IOd "  

- Pen cd 5  

- Pen od 8  

s imulated at 2 5 %  o f  the - Ptr1Od 7  

x·_ 

magni tude of  the first period 
Figure 1 5 1  

o f  the planned level shi f t . 
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Following are the observed resul ts : 

o No technique i s  particularly good across all hori z ons 

and all repor ted statistics . 

o The proposed method i s  particularly ine f fec tive for 

horizon 1 ;  however , it ranks about midway for the other 

horizons for mos t  statistics . 

o Other techniques that take anticipated level shi fts  

into account are , in general , more e f fec tive than the 

techniques that do not acros s all hor i z ons and mos t  

s tatistics . 

o The naive technique is particularly ine f fective , 

ranking 1 1  for all hori z ons except horizon 1 .  

o The Kruskal-Wallis tes t is s igni ficant at the a = 0 . 0 5 

level o f  s igni ficance for all s tatistics for which i t  

is val id except horizon 1 for symmetry adj us ted mean 

absolute percent error and range of  percent error , and 

horizon 5 for range o f  percent error . 



o The Rank ANOVA tes t is s igni ficant at  the � = 0 . 0 5 
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level o f  s igni ficance except as follows : at horizon 1 ,  

average rank o f  absolute error , symmetry adj us ted mean 

absolute percent error , and median absolute percent 

error , mean absolute percent error ; and all hori z ons 

for range of percent error . 

o All models test s igni ficantly di f ferent from each 

other , sometimes excepting their neares t  alternative by 

rank or rarely their two nearest alternatives by rank , 

for all hori z ons and all s tati s t ics  where the Kruska1 -

Wallis s tatistic tes ted signi ficant . 

Scenario 12 , Negative Trend Shift 

Scenario 12 is the I Proposed tvodell 

negative equivalent to - ...... 
- Per1lXl 1  
-PeI"1Od2 

Scenario 5 .  At the time of an - Paned 3 
-PwIOd.4 
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antic ipated negative level - P.1Cd1 

x-_ 

shi ft , a negative trend shi f t  
Figure 162 

is s imulated . 
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Following are the observed resul ts : 

o The proposed technique and the ad hoc Holt-Winters-
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Wi l l iams technique perform the poores t for the shorter 

horizons ( periods 1 and 5 )  . 

o For those same horizons , in general ,  the unadj us ted 

models perform bet ter than the ad hoc models . 

o For longer horizons results are very mixed, al though 

the ad hoc adaptive technique does frequently appear to 

be superior . 

o The Kruskal-Wallis tes t is s igni ficant at the a = 0 . 0 5 

level o f  s igni ficance for all statis tics  for which i t  

i s  val id except horizon 1 5  for the Median Absolute 

Percent Error . 



o The Rank ANOVA test is significant at the a = 0 . 0 5 
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level o f  s igni ficance for horizon 1 .  Results are very 

mixed for other horizons . 

o In the mUl t iple series comparison analys is , models tes t 

di f ferent from 7 to 1 0  of  the alternative models for 

all comparisons where the Kruskal-Wallis resul t is 

s igni ficant . 
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Following is a summary of  the observed results : 

o The unadj us ted models show superior performance across 

all reported horizons and all reported statistic s . 

o The rank order o f  the three mos t  superior models 1 S : 

( 1 )  the autocorrelation correc ted model , ( 2 )  the 

adaptive mode l ,  ( 3 ) the Hol t -Winters models , across a l l  

horizons and most s tatistics . 

o The proposed technique ranks tenth out o f  eleven , j u s t  

ahead of  the a d  hoc Hol t-Winters -Wi l l iams model , across 

all horizons and most statistics . 

o Among the ad hoc models , the naive technique general ly 

outperforms other naive techniques across all reported 

horizons and mos t  reported statistic s . 

o The Kruskal-Wallis tes t is s igni ficant at the � = 0 . 0 5 

level of  s igni ficance for all  statistics for which i t  

is val id . 



o The Rank ANOVA tes t is s igni ficant at  the a = 0 . 0 5 
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level of  s igni ficance for a l l  s tatis tics for which i t  

is val id . 

o In the mUl t iple series compari son analys is , model s  tes t 

out as di f ferent from 6 to 1 0  o f  the alternative mode ls 

for all c omparisons where the Kruskal -Wallis resu l t  is 

s igni ficant . 

Scenario 7 I Variance Shift 

In scenario 7 a s imulated 

variance shi f t  that is equal 

to doubl ing the amount of  

variation in the data is added 

at the point of  the antic ipated 

level shi f t . No s imulated 

level shi ft is added to the data . 
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Following are the observed resul ts : 

o The unadj us ted models are superior to those that 

inc lude an anticipated level shi f t  across all horizons 

mos t  statistics . 

o The adaptive and the autocorrelation correc ted model s  

are mos t  e f fective . 

o The ad hoc Hol t -Winters -Wi l l iams mode l and the proposed 

technique are leas t e f fec tive . 

o In general the naive mode l is the leas t effec t ive o f  

the unadj usted models , whi le the a d  hoc naive model i s  

generally more e f fec tive than models that take 

prospec tive level shi fts into account . 

o The Kruskal -Wallis  tes t is s igni ficant at the a = 0 . 0 5 

level of  s igni ficance for all statistics  for which i t  

i s  valid . 

o The Rank ANOVA tes t i s  s igni ficant at the a = 0 . 0 5 

level o f  s igni ficance for all s tatistics for which i t  

is val id for the hori z on 1 .  Results are mixed for 



2 2 6  

o ther hori zons , wi th the tes t leas t frequently 

s igni ficant at horizon 5 .  

o In the mUl t iple series comparison analys is , models test 

dif ferent from 7 to 1 0  o f  the a l ternative models for 

all compari sons where the Kruskal-Wallis  resul t i s  

s igni ficant except wi th the median absolute percent 

error where i t  ranged to as few as 4 .  

Scenario 13 Discussed 

Scenario 13 address Hypotheses 2 a  and 2b : 

The alternative techniques and the proposed technique 
are not equal ly accurate when used to f i t  data that has 
had a level shi f t  in the historical period . 

The proposed technique is more accurate than the 
alternative techniques when used to f i t  data that has 
had a level shi f t  in the his torical period . 

For the last scenario , s imi lar tables are produced and 

inc luded in Appendix IV . These tables inc lude a comparison 

o f  only s ix models as the retrospec tive models do not 

inc lude ad hoc models . In this scenario series that have 

his torical level shi f ts are f i t  us ing the proposed technique 

as a means of explic i tly taking his torical level shi fts into 

account in exponential smoothing models . These models do 

not inc lude s imulated data . Series are f i t  through the 
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December 1 9 9 0  or 1 9 9 1  as with other scenarios , us ing the 

proposed technique during the model f i t t ing s tage for the 

" Adj usted " mode l . The ac tual is then updated for S l X  

periods . 

Because o f  some of  the resul ts , I became concerned that 

the beta parameter was allowed to be f i t  for too high a 

value . I subsequent ly made a second trial ( labeled Scenario 

13b in Appendix IV ) in which this parame ter was res tric ted 

to � � 0 . 02 ;  however , the main results were not changed . 

The following graphs demons trate an example of  

senario 13 _ ( from level shi f t  series 5 ) : 
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IAutocorrelation Corrected I 
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Following are the observed resul ts : 

o For hori z ons 5 ,  1 0 , and 1 5 , the proposed technique 

ranked superior for mos t  statistics . 

o For horizon I ,  the naive technique general ly ranked 

superior for mos t  statistics . 

o There was no other discernable pattern of  rank order 

among the techniques . 

o The Kruskal-Wallis and Rank ANOVA results are not 

statistically significant . 

o These results held for both the ini t ial trial o f  

Scenario 13  and the revised trial wi th a more 

restric ted � parameter . 
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Summary 

In this chapter I have presented the results from the 

ac tual analyses . Detai led tables supporting these results  

are in Appendix IV . 



CHAPTER 9 :  SUMMARY ,  CONCLUSIONS ,  AND RECOMMENDATIONS 

In this chapter I wi l l : 

o Provide an overview o f  the s tudy and i ts resul ts . 

o Provide a discus s ion o f  the results presented in las t 

chapter . 

o Provide tentat ive recommendations related to the use o f  

the techniques s tudied in thi s  dissertation for 

forecasting when prospec tive level shi fts are 

antic ipated . 

o Provide a discuss ion of  the use o f  the two inferential 

s tatistics presented in this dis sertation . 

o Identify o ther interes ting results o f  the study . 

o Identi fy areas o f  needing further s tudy . 

An Overview of the Study and its Results 

In this s tudy I proposed a technique for incorporat ing 

an exogenously e s t imated level shi f t  into an exponential 

smoothing model and I conduc ted two s tudies to de termine 

whe ther forecasts made us ing this technique are more 

e f fec tive than those made wi th other s imi lar exponent ial 

smoothing models . In general , the proposed technique is 

more e f fective than other techniques when a s imulated ac tual 

leve l shi f t  occurs as expec ted , even i f  an unexpec ted trend 

shi f t  occurs at the same time . Results are mixed when a 
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level shi ft occurs when expec ted, but a t  a cons iderably 

di f ferent magni tude . The technique produces a cons iderably 

worse result than mos t  other techniques when the leve l shi f t  

fails t o  occur o r  manifests itself  in an unexpec ted form 

such as a trend shi f t  or increase in variabi l i ty .  In a 

later section o f  this chapter I argue that this last resu l t  

can b e  viewed a s  a bene f i t  of  the technique i f  one cons iders 

i t  important for the forecas ter to be alerted to the fac t 

that the ac tual events are cons iderably di f ferent from those 

that are anticipated ; however , this bene f i t  would be 

dependent on further analys is that shows that this resu l t  is 

suf f ic ient to make a di f ference in the e f fec t of the 

forecas t errors on tracking signals . Results from the 

second s tudy , which examined whe ther i t  is bene fic ial to use 

the proposed technique to help f i t  data series that have 

his torical level shi fts , is inconc lus ive . While the 

proposed technique results in s l ightly bet ter forecas ts for 

mos t  s tatis tical measures , ac tual variation in outcomes is 

so s l ight as to cas t doubt on whether the proposed technique 

provided any s igni ficant bene f i ts . 

Discussion of the Study Results 

In the discuss ion that follows , I wi l l  focus on two 

fac tors : 
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o Whether the data analys is warrants some acceptance o f  

the hypothesis wi th respec t  t o  each o f  the spec i f ic 

scenarios . 

o Whether there is a pattern with respect to which 

scenarios lead to which outcomes such as might lend 

i tself to some guidance for use o f  these models . 

HYPOTHESIS la 

The alternative techniques and the proposed technique 
are not equal ly accurate in forecasting through periods 
where pol icy shi fts are anticipated . 

The results show that there is a di f ference in 

performance between the models for the various scenarios . 

The Kruskal-Wallis statistics and the Rank ANOVA tes ts 

indicate that this di f ference is s igni ficant . For scenarios 

1 ,  2 ,  8 ,  and 9 ,  i . e . , the ones that re flect a simulated 

ac tual level shi f t  that compares wi th the anticipated l evel 

shi f t ,  the proposed technique outper forms all other 

techniques . In scenarios 5 ,  6 ,  7 ,  and 12 , which compare 

with s i tuations where the leve l shi ft does no t occur at a l l  

or i s  replaced by some change that is ent irely di f ferent 

from the anticipated change , the models that do no t inc lude 

anticipated level shi fts per form the bes t . In general , the 

proposed method is ei ther the least e f fec t ive or among the 

leas t e f fec tive methods under these c ircums tances . I 



discuss this further below at the heading " Addi tional 

F inding . " 

The remaining four scenarios inc lude the pos i t ive 
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( scenarios 3 and 4 )  and negative ( scenarios 1 0  and 1 1 ) cases 

where the level shi f t  is considerably less ( scenarios 3 and 

1 0 ) or cons iderably more ( scenarios 4 and 1 1 ) than expec ted . 

For the scenarios where the level shi f t  was s igni ficant ly 

underestimated the models that take an ant ic ipated level 

shi f t  into account tended to outper form the unadj us ted 

models , al though the proposed technique was not the bes t . 

However , where the level shi f t  was s igni ficantly 

overestimated the unadj us ted models were better . 

wi th respec t  to the firs t hypothesis , results were very 

c lear that for each scenario the various mode ls exhibi ted a 

pattern o f  e f fectiveness , that is the proposed technique was 

e i ther very e f fec t ive or very ine f fective on all the 

reported statistics and all the reported horizons . Al so , 

the models that took the prospec tive level shi ft into 

account were all  e i ther more e f fec tive or less e f fec tive 

than those that did not take prospec t ive leve l shi fts  into 

account . 
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The general f inding i s  that regardless o f  the s ta t i s t i c  

used, the proposed technique di f fers i n  e f fectivenes s  from 

the o ther techniques in a manner that i s  cons is tent across 

various s imi lar scenarios , is cons i s tent with the variation 

between e f fec tiveness of  other methods , i . e . , usually 

follows the same pattern as the di f ference be tween o ther 

techniques that take anticipated changes into account as 

compared with those that do no , and is cons is tent with the 

common sense expectation o f  per formance ,  i . e . , the proposed 

technique works when the anticipated change is s imulated to 

ac tual ly occur and fails when the anticipated change 1 S  

s imulated to not occur or to vary s igni ficantly from the 

ant ic ipated change . 

Nevertheless , wi th the scenarios that inc lude a change , 

but not the planned change , some of  the results are mixed . 

Various s tatistics sugges t  various techniques to be more 

e f fective . Frequently these resul ts are supported by the 

inferential s tati s t ics  even when they di f fer between the 

vari ous descript ive statistics . Thi s  consequence sugges t s  

two conc lus ions : ( 1 )  Where s igni ficant ly conf l ic t ing 

results occur between di f ferent descriptive s ta t i s t ics , no 

particular results should be accepted as superior . ( 2 ) I t  

i s  probably more e f fec tive t o  use mUl t iple descriptive 



s tatistics  in evaluat ing various model s  to avoid being 

mis led by the results of  one or two measurements . 

HYPOTHESIS Ib 

The proposed technique i s  more accurate than the 
alternative techniques when used to forecas t through 
periods where pol i cy shi fts are antic ipated and such 
pol icy changes material i z e . 
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Among the 8 relevant scenarios there are two relevant 

condi tions . Scenarios I ,  2 ,  8 ,  and 9 s imulate accurate or 

relatively accurate estimates of level shi fts . Scenarios 3 ,  

4 ,  1 0 , and 1 1  s imulate fairly inaccurate estimates o f  level 

shi f ts . 

The results are very c lear for the accurate estimates 

of level shi fts . In all  four o f  the re levant scenarios , the 

proposed technique produces superior forecasts by whichever 

s tatis tic is used to measure accuracy for both near and 

dis tant horizons . As examined by scenarios in 2 and 9 ,  this 

e f fec t is not af fec ted by s imulated s imultaneous trend 

shi f ts as might be expec ted to arise wi th ac tual policy 

driven level shi f ts . When this examination is supplemented 

through the use of non-parametric rank order s ta t i s t ics , 

extremely high chi squared values suggest that the e f fect  is 

s trong . When there is a reasonable expec tation that the 

external ly produced est imate of a level shi ft is reasonably 



2 3 6  

accurate , the proposed technique can be expec ted to produce 

a superior forecast as compared wi th any o ther technique 

examined . 

The results are less c lear when the e s t imated leve l 

shi f t  is fairly inaccurate . When the s imulated ac tual leve l 

shi f t  is twice as large as anticipated i t  is more e f fec t ive 

to use some model in which the leve l shi f t  is antic ipated ; 

however , the proposed method is not necessarily the bes t  

mode l . Other e f fec t ive models inc lude the a d  hoc Hol t -

Winters -Wi l l iams model and the a d  hoc naive model . However , 

thi s  result does not fol low when the leve l shi ft is only one 

fourth as large as expec ted . In that case , the models in 

which no level shi f t  is anticipated are the most  e f fec tive . 

HYPOTHESIS lc 

The proposed technique is more accurate than the subset 
o f  the alternative techniques that inc lude use o f  the 
ad hoc method when used to forecas t through periods 
where policy shi fts are anticipated and such pol icy 
changes fail to material ize . 

The data from scenarios 5 ,  6 ,  7 ,  and 1 2  provide no 

reasonable evidence that the proposed technique is more 

accurate or , for the mos t  part , even as accurate as the 

other ad hoc techniques in forecasting through periods o f  

antic ipated level shi fts when those leve l shi fts fai l  t o  
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mater ial ize . In general , where the statist ics are in any 

agreement at all , the proposed technique is among the leas t 

accurate techniques under these condi t ions . 

Additional Finding 

One of  the unantic ipated results that has arlsen is 

that when the s imulated ac tual data is considerably 

di f ferent from the anticipated level shi f t ,  the proposed 

technique is generally among the mos t  inaccurate techniques , 

except where the inaccuracy is in the form of  an original 

underes timation o f  the ac tual level shi f t . On re flec tion 

this result is not particularly surpri s ing for two reason : 

1 .  When the leve l shi f t  is cons iderably less than the 

proposed level shi f t  ( less than 5 0 %  o f  the proposed 

level shi f t ) ,  it  is natural that the errors from the 

forecas ts that inc lude the level shi f t  would be greater 

than the errors from the forecasts that do no t inc lude 

the proposed level shi f t . 

2 .  The parameter setting rules allowed the level parameter 

for the proposed technique to be set quite low ,  so when 

i ts errors became relatively large i t  s t i l l  was no t 

necessarily able to rapidly correc t in the direction of  

the smal ler level shi f t . Meanwhile the ad hoc 



adj us tments were rapidly el iminated from the o ther 

models wi th the first three updates allowing those 

models to correct to the small level shi ft much more 

rapidly . 
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These findings show that the proposed method i s  no t the 

mos t  accurate technique when the leve l shi f t  fails to 

materialize or material i z es in an unexpec ted way ( much 

smal ler , trend shi f t , or variance shi f t ) .  This result is 

not necessarily undesirable . When these condi tions arise , 

there is truly an unexpec ted event underway . In a sense 

there is something wrong wi th a forecas t that is not 

adversely af fec ted by data that indicates the material i z ing 

future is cons iderably di f ferent from the expec ted future . 

Thi s  is not because the forecast is wrong , but because i t  is 

inexplicably right . 

Whi le getting the future right is an obj ective o f  a 

forecas t ,  it  should no t be its only obj ec t ive . At the very 

leas t ,  the forecaster should want to be able to replicate 

the success wi th addi tional forecas ting . A forecas ter 

should want to know that the data that is being forecas t is 

not behaving as expec ted . He may be able to find this  ou t 

without depending on forecas t errors ( e . g . , he may rece ive a 

management report that says a pol icy implementat ion is 



delayed ) . However ,  i t  is also poss ible that he wi l l  be 

dependent on the forecas t model to alert him to such 

unexpec ted outcomes . In fac t ,  management may look to the 
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forecas ter for s ignals that ac tivi ties are o f f  track , 

particularly where there are a large number o f  ac tivi t ies 

underway . I f  a forecast fails because expec ted events fail 

to occur as expected ,  the obj ec tive o f  get t ing the future 

right may have failed ,  but the obj ec t ive o f  helping 

management manage may s t i l l  be met . 

I f  the forecas ter is dependent on the model itself  to 

alert him to the presence o f  unexpec ted events , large errors 

or pat tern$ in errors are des irable when such unexpected 

events occur . In this case , the proposed method ' s  

relatively poor results wi th descriptive s tatistics under 

condi tions where the expec ted level shi f t  does not occur , or 

is cons iderably di f ferent from the expec ted leve l shi f t , i s  

a bene f i t  rather than a def ic i t . I t  sugges ts that the 

proposed technique contains , and e f fic ient ly summari zes , 

information that might be deve loped into a tracking s ignal 

that would alert the forecas ter to the fai lure for the 

expec ted level shi f t ing event to material i z e . Other 

techniques which fail to detec t abnormal condi t ions , i . e . , 

per form relatively wel l  when , in fac t ,  the expec ted future 
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fails t o  material i z e , are , on this view , relatively less 

des irable . 

HYPOTHESES 2a and 2b 

The alternative techniques and the proposed technique 
are not equal ly accurate when used to f i t  data that has 
had a level shi f t  in the his torical period . 

The proposed technique is more accurate than the 
alternative techniques when used to f i t  data that has 
had a level shi f t  in the historical period . 

In scenario 13 , 2 0  data series are f i t  to each o f  the 

s ix bas ic model s  across a period in which there is a 

his torical level shi f t . Because I suspec ted poss ible 

distortions from the f i t t ing of  the � parameter , I f i t  two 

versions of  scenario 1 3 , in the firs t ,  I f i t  the model wi th 

the same grid as with the other scenarios . In the second , I 

res tric ted � to not greater than 0 . 02 .  Ac tual results from 

both are demons trated , in the Appendix IV ; however , resu l ts 

are very s imi lar for the two versions . 

The results weakly support the view that the proposed 

technique can be used to as s i s t  in f i tting data series that 

have undergone level shi f ts , part icularly where the 

forecaster is interes ted in the longer horizons . The 

inc lus ion of  a level shi f t  wi thin the mode l has an e f fect  

s imi lar to an intervention variable in a regress ion or an 
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ARIMA model . However , the results are no t s trong enough for 

s tatistical s igni ficance in ei ther of the non-parametric 

comparisons . These s tatis tical comparisons sugges t that any 

bene f i t  from us ing the proposed technique in the model 

f i t t ing stage i s  at bes t  relatively weak , particularly s ince 

much more s igni ficant results were found in the firs t 12 

scenarios . At wors t ,  however , there is l i t tle evidence that 

the proposed technique provides a worse result than do o ther 

models . 

An Interesting Result 

This lack o f  statistical s igni ficance wi th scenario 13  

where the proposed method is used to f i t  the data series i s  

perhaps the mos t  surpris ing result o f  this s tudy . I t  is 

particularly surpris ing because the minimi zed root mean 

squared error used in fitting the proposed model is 

cons iderably smal ler than the minimi z ed roo t mean squared 

error for the al ternative mode l for mos t  trials . The 

selec ted parameters and model f i t t ing s tatistics for this 

s tudy are shown in Appendix V which is summarized in the 

Table 4 below . 
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Table 4 Fit All Trials Geometric 
Mean 
RMSE 

---Average--­
SPE SMPE 

Geometric 
Mean 
SMPE 

Adaptive 
Autocorrelation Correc ted 
Hol t -Winters ' 
Proposed Technique 
Hol t -Winters -Wi l l iams 

5 0 . 5 3 
52 . 6 7 
5 2 . 2 3 
24 . 51 
52 . 2 8 

0 . 13 %  
0 . 8 0 %  
0 . 4 7 %  

-0 . 06 %  
0 . 4 9 %  

5 . 9 3 %  
6 . 4 9%  
6 . 53 %  
4 . 8 5% 
6 . 4 8%  

3 . 3 1 %  
3 . 5 2 %  
3 . 6 7 %  
2 . 19%  
3 . 6 4 %  

However , thi s  result can be seen as cons is tent with 

o ther findings in the l i terature : 

o Everet te Gardner and Spyros Makridakis205 find that 

success at model fitting is no t necessarily a good 

indicator of forecas t accuracy . In this study ,  the 

small values o f  the minimi zed roo t mean squared errors 

c learly shows the proposed technique leads to superior 

results in model f i tting . However , in this scenario , 

no s tatis tical di f ference could be found in forecas t 

accuracy wi th the seven updates . 

o Spyros Makridakis and Michele Hibon206 find no 

particular advantage in forecast model ini t ia l i z ation . 

The use o f  the proposed technique in model f i t ting has 

a s imilar e f fec t to model ini t iali zation ,  par ticularly 

where the his torical data s tretches for a large number 

of  periods af ter the historical level shi f t . The 
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natural tendency for the model t o  catch up t o  the level 

may dominate when enough periods have pas sed between 

the level shi f t  and the end o f  the his torical data . 

o Steven Hi l lmer207 finds that in exponent ial smoothing 

models mos t  o f  the e f fec t o f  addi t ive outl iers occurs 

in the next period af ter the outl ier . In e f fec t ,  the 

e f fec t exponentiates away for later periods . I t  seems 

reasonable , particularly cons idering the Makridakis and 

Hibon result ,  to expec t a s imi lar exponential dec l ine 

in the errors aris ing from a level shi ft . Thus , when 

the level shi f t  is not near the end o f  the his torical 

period , i t  has l i ttle influence on the forecas t .  

o Spyros Makridakis , e t . al . ,  say : " As a rule of  thumb 8 

to 3 ( L )  data points are adequate for ini tial estimat i on 

purposes ( where L is the length o f  seasonality ) . ,, 208 

This result is cons is tent wi th Hi l lmer ' s  result and 

suggests that the main impac t of  the level shi f t  i s  In 

the firs t few periods af ter the shi f t . 

o George C .  Canavos and Don M .  Mil ler209 demons trate that 

as a increases , the weight placed on older observations 

dec l ines dramatically in s imple exponential smoo thing . 



2 4 4  

Where � is a s  great a s  0 . 3 ,  the ent ire weight placed on 

all  observations exceeding 6 periods ( counting the 

current period) less than 1 2 % . Where � is as great as 

0 . 5 ,  this weight dec l ines to 1 . 5 % .  These numbers would 

have to be adj us ted for Hol t  type models , but they 

represent the same bas ic phenomena . Consequently , 

where the level shi ft is more than 6 periods old and � 

i s  as great as 0 . 3 ,  the level shi f t  is discounted to a 

proportionate share of  about 1 2 %  or less of  the overa l l  

weighted average proj ec ted i n  the exponential smoo thing 

model . Thus , the use o f  the proposed technique i s  

unl ikely t o  s igni ficantly impac t the accuracy of  a 

forecast that has had a level shi f t  1 0  or 1 5  periods or 

more be fore the updat ing period ( future period ) , unless 

the optimal � would be set particularly low . 

When cons idered from this perspective , the lack o f  

s igni ficance in results o f  this scenario is not unusual . 

These artic les sugges t  that results might be significant for 

forecast made soon after a level shift . In the fol lowing 

graphs ( level shi f t  series 1 1 ) , the level shi f t  occurs 

immediately be fore the updat ing period . While one series 1S 

not suffic ient to reach a conc lus ion , they are very 

sugges tive . I t  can be seen that the forecas t from the 
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proposed model i s  much more in l ine wi th the ac tual data 

than the forecasts made wi th any of  the a l ternative models . *  

The only other model that comes c lose i s  the naive model . 

I Proposed Modell JHWNI 
-"""" 

� 
- -, - PlrlCd l  

! • 
-PIrio:I 2 � ! - FW1Od 2  

- PItWxI , -FW1OCI3 ! ; -�al4 ,:. i 6 - PwIOd" 
. -Pwi:ld6 � - FW 1Od 6  

- Plrbd 8  - Pw 1Od 6  

--, � - Pan oo 7  

x·_ x_ 

Figure 2 0 1  Figure 2 02 

I Han Winters I I Adaptive I 
- ...... - ....... 
- FWlcxl 1  - PerIOd 1 

� ! - FW1OCl 2 

. - Per IOd  3 

� ; - FW IIXI "  

- Pw'm 2  

- Pw 1Cd 3  

- PII"IOd " 
- PlneJd 6  - Ponal '  

- Pw1Od 8  - Peo oo 6  

- PI .... od 1 -Perm T 
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Figure 2 03 Figure 204 

I Autocorrelation Corrected I 

-
- ""'" - ....... 
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- Pw1Od 6  - F1r1Od 6  
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x·_ x·_ 

Figure 2 0 5  Figure 2 0 6  

*The forecasts that g o  below z ero mos t  l ikely would be 
dampened - see Appendix I - in prac tical forecas ting 
environments ; however , to de termine the s i z e  o f  the error 
generated by the technique , they were a l lowed to go below 
z ero in this s tudy . 
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On the other hand , even a dramatic change in level may 

have l i ttle impac t after a cons iderable period has pas sed as 

is shown in the following graphs ( level shi ft series 1 5 ) . 

I Proposed Modell 
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� - ...... 
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Figure 207 Figure 208 
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Figure 2 0 9  Figure 2 10 

I Autocorrelation Corrected I 

- ...... - 1'dR 
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-�IJd � - Ptr o:t 3  

- '11"1014 - Ptr 1Od 4  

- Plro:l 5  - P.-od S  

- FW"1Cd 6  - Plr1Od 6  

- Perm 7  - J1r1Od 7  

Figure 211 Figure 2 12 

Based on this review , the proposed technique wi l l  al low 

the forecas ter to achieve a bet ter model f i t ; however ,  that 

resu l t  may not s igni ficantly inf luence the pro j ec tion o f  the 

future . I t  appears that proj ections made shortly af ter the 
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level shi ft are improved through the use of  the proposed 

technique while proj ec tions made wel l  af ter the leve l shi f t  

are not influenced a s  much . 

Final Remarks about the Proposed Method 

The proposed method seems to be a bene fic ial 

modi fication of exponential smoothing forecast models for 

forecas ting when prospec tive level shi fts are expec ted for 

the following reasons . 

o When the antic ipated level shi ft occurs as expec ted , 

the forecas t made and updated us ing the proposed 

technique is more accurate than forecasts made with 

other techniques considered in this s tudy . 

o When the antic ipated level shi f t  occurs , but no t as 

expec ted , there is l i ttle reason to suspect the 

proposed technique is particularly worse than ad hoc 

techniques cons idered in this study . The only severe 

fai lure of the proposed technique arises when the level 

shi f t  is cons iderably smal ler than anti c ipated ; 

however , all  forecasts that anticipate level shi fts 

fail wi th that condi tion . 
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When the antic ipated level shi ft does not occur , 

forecas ts made and updated with the proposed method are 

l ikely to have more dramatic errors than forecasts made 

wi th other techniques cons idered in this study . This 

may serve to alert the forecaster that the future be ing 

experienced ( at the time of  the updates ) is not the 

future that was expec ted . 

o Forecas ting wi th the proposed technique is pre ferable 

to the ad hoc technique because o f  an e f ficiency it 

produces . Wi th the ad hoc technique the forecas ter 

makes a forecas t with an exponential smoo thing model , 

in all l ikel ihood us ing computerized software . He then 

adds the ad hoc adj us tment to the resu l t  to produce a 

complete forecas t . I t  is likely that the ad hoc 

adj us tment step involves a manual intervention into the 

forecas t ,  for example , the forecas ter may make a 

forecast us ing a computerized exponent ial smoothing 

model , get a printout of  the resul t ,  and key both the 

resul t and the ad hoc adj us tment into a spreadsheet to 

ge t the final forecas t .  When the proposed technique 1 S  

used , the level shi ft is bui l t  into the computerized 

exponential smoo thing mode l thereby el iminating the 

manual intervention step . 
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o The proposed technique also produces an effic iency as 

compared with other forms of forecas t intervention 

models ( e . g . , ARIMA models wi th intervention variables , 

Duk Bin ' s  model , or the Carreno and Madinave i t ia 

model ) .  This e ffic iency is found in the permanence o f  

the level shi f t  achieved wi th the proposed technique . 

For other intervention models , a level shi ft is 

accompl ished through the addi t ion o f  a level shi f t  

fac tor t o  the base l ine forecas t level , sometimes 

through the mul t iplication o f  a coe f fic ient times a 

dummy variable . The level shi f t  s tays wi th the 

forecas t only for so long as the addi t ion occurs . To 

make the level shi f t  permanent ,  the leve l shi f t  factor 

mus t  be individual ly added to each future observat ion 

to the end o f  the forecas t horizon .  I f  more than one 

level shi f t  occurs , a separate fac tor must be carried 

for each , which c an lead to the deve l opment of f a ir ly 

compl icated models i f  the data series is subj ect to 

cons iderable pol icy intervention . 

The proposed technique i s  much more mathematically 

e f f ic ient . When a level shi f t  occurs , the base l ine 

forecast level is adj us ted by the magni tude o f  the 

level shi f t . This new level then becomes the base line 

level o f  the exponential smoothing model . The level 
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shi f t  s tays in the forecast unless i t  i s  expl ic i t ly 

taken out . No addi tional intervention is required to 

keep the level at the higher ( or lower ) leve l for 

future periods . Addi t ional level shi fts can be added 

to the model in the same manner , adding complicat ion 

only for those periods during which there are expec ted 

level shi f ts . Thus , the proposed technique provides a 

comparatively s imple intervention mode l . 

o As shown with scenario 13 , al though there is no 

requirement to keep the level shi f t  in the model long 

after the shi f t  has occurred , there is no apparent 

disadvantage in doing so . Thus , the model bui l t  wi th 

the prospec tive level shi f t  that later occurs as 

expec ted , wi l l , af ter enough updates , contain a 

retrospec tive leve l shi f t  that ass is ts wi th model 

fitting and may improve forecas t accuracy . No 

addi tional e f fort is required except where the leve l 

shi ft does not occur as expec ted . 

Recommendations for Forecasters 

Where a forecas ter who is us ing an exponential 

smoothing model has a reasonably rel iable external ly 

suppl ied estimate o f  an expec ted level shi f t ,  i t  would be 

reasonable for him to modi fy his exponential smoothing mode l 
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t o  apply the method proposed in this dis sertation . Thi s  

application should result i n  a more accurate forecas t as the 

model is updated while the level shi f t  takes place . 

Further , the forecas t should fail more dramatically should 

the expec ted level shi f t  fail to take place . This more 

dramatic fai lure might provide the forecaster wi th a be t ter 

opportunity to discover that the expec ted change fai led to 

take place us ing the forecas t errors as a tracking s ignal . 

Where rel iabi l i ty of  the external ly suppl ied level 

shi f t  estimate is unknown or thought to be fairly low ,  the 

forecas ter may reasonably hes i tate to use the proposed 

technique as other techniques may be more e f fec tive . I f  the 

forecas ter suspec ts that the external ly suppl ied estimate is 

smaller than the level shi f t  that may ac tual ly material i z e , 

e i ther the proposed technique or the Hol t -Winters -Wi l l iams 

technique may be mos t  e f fec t ive . I f  he suspects that the 

external ly suppl ied estimate is s igni ficantly larger than 

the level shi f t  that wi l l  ac tual ly material ize , it may be 

bes t  to leave the level shi ft out of  the model unless he 

wants to use the model for the tracking signal e f fect 

briefly mentioned in the last paragraph . 

Guidelines 

The following guidelines should ass i s t  the forecas ter : 
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1 .  I f  you are reasonably confident in the externally 
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supplied estimate and that a leve l shi f t  is the primary 

consequence of  the pol icy change , use the proposed 

technique . I t  wil l  result in a more accurate forecas t .  

2 .  I f  you are not confident in the externally supplied 

estimate , you mus t  choose the technique you use based 

on goals : 

o I f  your goal is to have the most accurate forecas t 

at all times , you mus t  cons ider what sort o f  

uncertainty you have : 

o I f  you suspec t that the policy change will 

not occur at all or wi l l  material ize in an 

unexpec ted manner , leave the forecas t alone , 

poss ibly af ter adj us ting the level parameter 

to a high number such as a = 0 . 8 . * * 

* *I did not examine the consequences o f  s imply leaving 
the model alone ; however , i t  seems likely that rais ing the 
level parameter i s  pre ferable unless the expec ted level 
shi f t  has an ins igni ficant magni tude or has es sential ly no 
chance o f  occurring . 
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o I f  you suspec t  that the externally supplied 

estimate is significantly too large , do not 

adj ust the forecas t for the anticipated level 

change . Leave it  alone , poss ibly af ter 

rais ing the level parameter to a high number 

such as a = 0 . 8 .  Al ternat ively , you may want 

to correc t the external ly suppl ied estimate 

and select the firs t option above . 

o I f  you suspec t that the externally supplied 

estimate is much too small ,  adj us t the 

forecas t us ing an ad hoc technique or the 

proposed technique . Poss ibly you should also 

raise the level parameter to a high number 

such as a = 0 . 8 .  Al ternatively ,  you may want 

to correc t the external ly suppl ied estimate 

and selec t the firs t option above . 

o I f  you do not know what to suspec t ,  see the 

next goal . 

o I f  your goal is to monitor the data generating 

function through the forecast as wel l  as to 

forecas t accurately , use the proposed technique . 
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I f  the forecas t fails , it  may be a signal that the 

pol icy change did not take e f fec t as expec ted . 

• Retrospectively : 

1 .  I f  you are updating a model that used the proposed 

technique to inc lude an approximately accurate 

his torical level shi f t , leave i t  in . I t  may improve 

the forecas t i f  the level shi f t  i s  recent , or i f  i t  

does not improve the forecas t ,  there is no evidence 

that i t  wi l l  make the forecas t worse . 

2 .  I f  you are fitting a forecas t model to a data series 

that has a his torical level shi f t : 

o I f  the level shift is relatively recent , inc lude 

the level shi f t  through the proposed technique . 

o I f  the level shi ft is relatively old, it  is not 

clear that inc luding the level shi ft is bene fic ial 

for forecas t ing , al though i t  may improve the mode l 

f i t . On the other hand , the s tudy does not show 

that inc luding the leve l shi f t  wi l l  result in a 

poorer forecas t . 
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o " Relatively recent " and " relatively old " are 

largely dependent on the parameter selec tion which 

is the obj ec tive of f i t t ing the forecas t . I t  wi l l  

be hard t o  make the j udgement sugges ted above 

wi thout firs t f i t t ing the forecas t ,  thus , i t  may 

be more e f fective to always inc lude the level 

shi f t  in the ini tial f i t  o f  the data . 

o The proposed technique af fec ts the f i t . Whatever 

you do , do not confound the fitting issue by 

including the level shift through the proposed 

technique for some parameter combinations and 

excluding it for others . 

Kruskal-Wallis and Analysis of Variance by Rank 

The two non-parame tric s tatistical tes ts produced 

overwhelmingly s ignificant results except wi th scenario 13 

where they proved not s igni ficant with all  s tatistics and 

all trials . This las t  result led me to suspec t that there 

might be something wrong with scenario 13 and af ter some 

investigation I came to suspec t ei ther ( a )  the mode ls in 

scenario 13 were allowed to f i t  to excess ive � parameters , 

or ( b )  that the s tatistics were sens i tive to the number of  

treatments ( models ) cons idered . I examined the first 
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suspic ion by reduc ing the poss ible 0 parameter range and 

rerunning thi s  trial . Results have been presented as 

scenario l3b and are not s igni ficantly di f ferent from 

scenario 13 . I examined the second suspic ion by exc luding 5 

non-ad hoc models from scenario 1 and calculating the 

Kruskal-Wallis and Rank ANOVA s tatistics for the rank o f  

absolute error comparison ( equivalent t o  Tables 1 - 1  and 1 - 9  

in Appendix IV ) . These results are shown in tables 5 and 6 .  

Table 5 Inferential Statistics with Fewer Options 

Period 
1 Average Rank by Series 

Rank of Average Rank 
Kruskal-Wallis Rank Sum 
Rank of K-W Rank Sum 
K-W Multi-Comparison Count· 

5 Average Rank by Series 
Rank of Average Rank 
Kruskal-Wallis Rank Sum 
Rank of K-W Rank Sum 
K-W Multi-Comparison Count· 

1 0  Average Rank by Series 
Rank of Average Rank 
Kruskal-Wallis Rank Sum 
Rank of K-W Rank Sum 
K-W Multi-Comparison Count· 

1 5  Average Rank by Series 
Rank of Average Rank 
Kruskal-Wallis Rank Sum 
Rank of K-W Rank Sum 
K-W Multi-Comparison Count· 

Adjust 
1 .60 
1 

372 
1 
5 
1 .75 
1 

41 5.5 
1 
5 
1 .55 
1 

397.5 
1 
5 
1 .58 
1 

383 
1 
5 

HWW* 
3.43 
4 

1 283 
4 
5 
2.83 
2 

903.5 
2 
5 
2.975 
2 

946.5 
2 
5 
2.75 
2 

HW* Adapt· 
3.1 0 3.40 
2 3 

1 069 1 1 29 
2 3 
5 5 
3.80 3.98 
3 5 

1 322.5 1 402 
3 4 
5 4 
3.825 4. 1 75 
3 5 

1 348.5 1 494 
3 4 
5 4 
3.70 3.98 
3 4 

Auto· 
4.88 
6 

1 709 
6 
4 
4.80 
6 

1 782.5 
6 
5 
4.075 
4 

1 531 .5 
5 
3 
4.68 
6 

802 
2 

1 340.5 1 497.5 1 71 2  
6 
5 5 

3 4 
5 4 

Table 6 Rank Anova and Kruskal-Wallis Results 

Period Chi Squared DF p value 
1 RANK AN OVA 1 4.52 1 9  0.7528 

KRUSKAL-WALLIS 50.46 5 0.0000 
5 RANK ANOVA 1 2. 1 5  1 9  0.8789 

KRUSKAL-WALLIS 47.63 5 0.0000 
1 0  RANK AN OVA 1 2.41 1 9  0.8674 

KRUSKAL-WALLIS 43. 1 0  5 0.0000 
1 5  RANK AN OVA 1 3.96 1 9  0.7859 

KRUSKAL-WALLIS 53.77 5 0.0000 

Naive· 
4 .60 
5 

1 698 
5 
4 
3.85 
4 

1 434 
5 
4 
4.4 
6 

1 542 
6 
4 
4.33 
5 

1 525 
5 
4 
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For the Kruskal-Wallis s tatistic the values o f  the 

s tatistics change ( which should be expec ted) , but the 

general results do not , that is , the s tatis tics remained 

s igni ficant at the a = 0 . 0 5 leve l . However ,  for the Rank 

ANOVA test , the s tatistics  are no longer s igni ficant . This 

suggests that the s igni ficance o f  the previous results may 

be partly attributable to the use o f  a large number of  

treatments ( forecast models ) . I t  is not c lear whe ther thi s 

ari ses because o f  an increased number o f  observations or 

because of  some unidenti fied bias that the tes ts bring into 

the analys is . 

Following these explorations , I again reviewed the 

results of scenario 13 and found another reasonable 

explanation ,  which is that the ac tual summarized stat i s tical 

results in scenario 13 did not vary very much . So , i t  seems 

that the lack o f  s igni ficance in scenario 13  as compared 

wi th the fairly s trong s tatis tical results in the other 

scenarios could result from the obvious s tatistical reason , 

that the di f ferent treatments in scenario 13 do not produce 

particularly di f ferent results . 
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Another problem with these s tatistics i s  that in some 

o f  the trials rank order was s trong , but inconsistent 

between the various descriptive s tatistics . The non­

parametric tes ts  were not sens i t ive to these incons is tent 

results . The rank order results were statistically 

s igni ficant wi th extremely low p values both when the 

resul ts were consi s tent between various descriptive 

statistics and when they were not . This suggests that these 

rank tests are not suf fic ient to dis tingui sh superior and 

inferior forecast models by themselves , but that they may be 

useful as a supplement to the application o f  a battery of 

descriptive statistics as presented in thi s  dissertation . 

I f  the results are cons is tent acros s a bat tery of 

descriptive statist ics and tes t signi ficant wi th these 

tests , the researcher has reason to accept that the 

treatments are di f ferent . S tatistical s igni f icance i s  a 

weaker resul t while s igni ficance wi thout cons istency is 

uninterpretable . 

In this dissertation the examination o f  possible 

statistical tes ting of forecas t treatments through non­

parame tric rank order tes ts was a secondary obj ective . 

These results should be cons idered exploratory . However , it  

appears that the applicat ion o f  ei ther o f  these s tatis tical 

tests in the manner described in thi s  sec tion has some 
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promise when applied across a bat tery o f  descriptive 

s tatistics . Where results are cons is tent across the bat tery 

o f  descriptive statistics  and the results are signi ficant 

with one or both o f  these tes ts , as occurs wi th scenarios 1 ,  

2 ,  8 and 9 ,  i t  appears that the tests support each o ther and 

s trengthen the conc lus ion that the di f ferences in forecas t 

treatments are more than j us t  inc idental . Where the resu l ts 

are less cons i stent across the bat tery o f  descriptive 

s tatistics , as wi th scenario 5 ,  or where the s tatis tical 

tests are not s igni ficant , as with scenario 13 , results are 

not firmly supported by the s tudy . 

Areas Needing Further Study 

I have brought up several topics in this dissertation 

that need further s tudy . These are : 

In chapter 5 I proposed that the me thod introduced here 

could be extended to applications wi th trend shi fts us ing 

second di f ferences that adj ust the trend component of the 

mode l . Further examination o f  this extens ion seems 

worthwhi le . When a data series undergoes a trend shi f t , the 

trend component mus t  respond . However ,  i f  the trend 

parameter is set high , the trend may respond to all  the 

noise in the data series . Since the trend iterates i tsel f 

for each future period , over-response is likely to lead to 



extreme variation in forecas ts af ter a few periods . 

Al ternatively ,  i f  the parameters are set low ,  then the 

models may ignore trend - shi fts even when they occur . A 

modi fication 'of the proposed technique may allow for a 

fairly low trend parameter that , nevertheless , does allow 

for recognition o f  planned trend changes .  

2 6 0  

In this s tudy i t  became apparent that the proposed 

technique does not necessar i ly provide a bene fit  when i t  � s  

used t o  ful fill  the intervention func tion for f i t ting 

his torical level shi fts . However , this result may no t be 

universally correc t .  For example , the technique may be 

bene f ic ial when the level shi f t  is near to the end o f  the 

his torical data series , when i t  �s particularly large 

compared wi th the prior level , or when i t  phases in over a 

large number of  periods ( thereby emulat ing a trend shi f t ) . 

Further ana ly s i s  may provide more ins i ght into why the s tudy 

o f  the proposed technique as an intervention variable led to 

the counter- intuit ive results that were achieved . 

I have suggested that the forecaster should capi tal i z e  

on the proposed techniques relatively large errors where the 

anti c ipated level shi fts do not material i z e . Under such 

c ircums tances , the forecaster should be able to provide 

feedback from the forecast to organizational management that 
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the planned event that was expec ted to produce a leve l shi f t  

is not occurring , o r  at leas t , i t  i s  not produc ing the 

expec ted level shi f t . Further analys is is required to 

de termine whe ther exi s ting tracking s ignals are adequate for 

this purpose or whether alternative tracking signals are 

needed . In particular , the researcher should be alert to  

the possible problems that wi l l  arise when the leve l shi f t  

occurs a s  expec ted , but not a t  prec isely the right point in 

t ime . 

The results concerning s imulated ac tual level shi fts 

that occur when expec ted but no t to the degree expec ted 

require further c lari fication . How accurate should the 

external ly supplied estimate be ? How much error is too 

much? Further s tudy may allow for c lari f ication as to when 

the technique deve loped in this s tudy is appropriate and 

when it  is not . 

In this s tudy I used two non-parametric statis tical 

tests to evaluate variation in descriptive statistics . 

Results were promis ing . I proposed that these statistics 

might be used in combination with a bat tery o f  descript ive 

s tatistics as 1n this dissertation . Further refinement o f  

this approach would be wor th pursuing . 
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Summary 

In this chapter I reviewed the results o f  

forecas ting level shi fting data wi th various forecast models 

in 13 scenarios . The mode ls do not produce equal ly 

e f fec tive forecasts when level shi fts  are antic ipated 1n the 

forecast horiz on .  The proposed technique improves forecast 

accuracy when the antic ipated level shi fts ac tual ly 

material izes in the amount expec ted , even when an 

unanticipated trend shi f t  also materia l i z es . The proposed 

technique is among the superior methods when there i s  a 

level shi f t ,  but i t  is considerably larger than anti c ipated . 

The proposed technique does not produce a particularly 

e f fec t ive forecast when the planned level shi ft does no t 

material ize or materializes in an unexpec ted manner such as 

a trend shi f t ,  a variance shi f t , or a cons iderably smal ler 

than planned leve l shi f t . In fac t ,  i t  produces larger 

errors than mos t  o ther techniques in these c ircums tances . 

These larger errors might be bene f ic ial i f  they could be 

captured for use in a tracking s ignal . I proposed 

guidel ines for use when prospec tive level shi fts are 

antic ipated . I reviewed the bene f i ts o f  us ing non-

parame tric tes ts to evaluate forecast models and sugges ted 

some further areas of s tudy . In conclusion, the proposed 

technique is a beneficial modification of exponential 

smoothing when used according the proposed guidelines . 



BIBLIOGRAPHY 

Aaker , David A . , and Robert Jacobson . The sophis tication of  
' naive ' modelling , Interna t i onal Journal o f  

Forecas ting, 3 ,  no . 3 / 4 ( 1 9 87 ) : 4 4 9 - 4 5 1 . 

Ahlburg , Dennis A . , and Kenneth C .  Land . Populat ion 
forecas ting : Gues t  edi tors ' introduc tion ,  Interna t i onal 
Journal of Forecas ting, 8 ,  no . 3 ( 1 9 92 ) : 2 8 9 - 2 9 9 . 

Archibald, Blyth C .  Parameter space o f  the Holt-Winters ' 
model , Int erna t i onal Journal of Forecas ting, 6 ,  no . 2 
( July 1 9 9 0 ) : 1 9 9 - 2 1 0 . 

Arms trong , J .  Scot t . " Forecasting with Econome tric 
Methods : Folklore versus Fac t , " in The Forecas ting 
Accuracy of Maj or Time Series Me thods , eds . , S .  
Makridakis , e t . al . ,  John Wiley & Sons : Chiches ter , 
1 9 8 4 : 1 9 -3 4 . 

Arms trong , J .  Scot t . Long-Range Forecas ting, From Crys tal 
Bal l to Compu ter .  2d ed . New York : John Wi ley & Sons , 
1 9 8 5 . 

Arms trong , J .  Scot t , Roderick J .  Brodie , and Shelby H .  
Mc Intyre . Forecas ting methods for marke ting , 
Interna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4 
( 1 9 8 7 ) : 3 5 5 - 3 7 8 . 

Arms trong , J .  Sco t t , and Fred Collopy . Error measures for 
generaliz ing about forecas ting me thods : Empirical 
comparisons , In terna t i onal Journal of Forecas ting, 8 ,  
no . 1 ( June 1 9 9 2 ) : 6 9 - 8 0 . 

Ashley , Richard . On the Use fulness o f  Macroeconomic 
Forecasts as Inputs to Forecasting Models , Journal of 
Forecas ting, 2 ( 1 9 83 ) : 2 1 1 - 2 2 3 . 

Ashley , Richard . On the relative worth o f  recent macro­
economic forecas ts , Int erna t i onal Journal of 
Forecas ting, 4 ,  no . 3 ( 1 9 8 8 ) : 3 6 3 -3 7 6 . 

Barre t t ,  Katherine and Richard Greene . The S tate o f  the 
S tates , Financial World ( May 12 , 1 9 92 ) : 2 4  - 4 3 . 

Benson , P .  George , and Dilek Onka1 . The e f fects of  feedback 
and training on the performance of probabi l i ty 

2 63 



2 6 4 

forecasters , In terna t i onal Journal of Forecas t ing, 8 ,  
no . 4 ( December 1 9 92 ) : 5 5 9 - 5 7 3 . 

Bewley , Ronald, and Denz i l  G .  Fiebig . A flexible logistic  
growth model wi th applications in  telecommunicat ions , 
In terna t i onal Journal of Forecas t ing, 4 ,  no . 2 ( 1 9 8 8 ) : 
1 7 7 - 192 . 

Bloom,  David E . , and Sherry Gl ied . Proj ec t ing the number o f  
new AIDS cases i n  the Uni ted S tates , In terna t i onal 
Journal of Forecas ting, 8 ,  no . 3 ( 19 92 ) : 3 3 9 - 3 6 5 . 

Bodo , Giorgio , and Luigi Federico Signorini . Short - term 
forecas ting o f  the industrial produc tion index , 
In terna t i onal Journal of Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) 
2 4 5 - 2 5 9 . 

Bos , Eduard , and Rodo l fo A .  Bulatao . The demographic impac t 
o f  AIDS in sub-Saharan Africa ,  short- and long- term 
pro j ec tions , Int erna t i onal Journal o f  Forecas t ing, 8 ,  
no . 3 ( 1 9 92 ) : 3 67 -3 8 4 . 

Bre tschneider , S tuart Ira . 1 9 7 9 . Adapt ive Time Series 
Analysis and Forecasting . Ph . D .  d1ss . ,  The Ohio S tate 
Univers i ty . 

Bretschneider , S tuart I . , Wi lpen L .  Gorr , Gloria Gri z z le , 
and Earle Klay . Pol i tical and organi zat ional 
influences on the accuracy of forecas ting s tate 
government revenues , In terna t i onal Journal of 
Forecas ting, S ,  no . 3 ( 1 9 8 9 ) : 3 0 7 - 3 1 9 . 

Buck , Jef frey A .  and John Klemm . Re cent Trends in Med i c a i d  

Expendi tures . Heal th Care Financing Revi ew ( 1 9 9 2  
Annual Supplement ) : 2 7 1  - 2 83 . 

Calmes , Jacquel ine . Bricks Wi thout S traw : The Complaints 
Go On but Congress Keeps Mandat ing . Governing 
( September 1 9 8 8 ) : 2 1 -2 6 . 

Canavos , George C .  Appl i ed Probabi l i ty and Sta t i s t i cal 
Methods . Bos ton : Little , Brown and Company , 1 9 8 4 . 

Canavos , George C . , and Don M .  Mi l ler . An In trodu c t i on t o  
Modern Business Sta t i s t i cs . Belmont , Cal i fornia : 
Duxbury Press , 1 9 9 3 . 



Carbone , Robert , and Spyros Makridakis . Forecas ting when 
pat tern changes occur beyond the his torical data , 
Managemen t Sci ence , 3 2 , no . 3 ( 1 9 8 6 ) : 2 5 7 -2 7 1 . 

2 6 5  

Carreno , Jose Juan , and Jesus Madinave i t ia . A modi fication 
of time series forecas ting methods for handl ing 
announced price increases , Interna t i onal Journal o f  
Forecas t ing, 6 ,  no . 4 ( 19 9 0 ) : 4 7 9 - 4 8 4 . 

Cass idy ,  Glenn , Mark S .  Kamlet , and Daniel S .  Nagin . An 
Empirical examination o f  bias in revenue forecasts by 
s tate governments , Int erna t i onal Journal of 
Forecas ting, S ,  no . 3 ( 1 9 8 9 ) : 3 2 1 - 3 3 1 .  

Chambers , John C . , Satinder K .  Mul l ick,  and Donald D .  Smi th . 
How to Choose the Right Forecasting Technique . Harvard 
Business Revi ew ( July-Augus t  1 9 7 1 ) : 4 5  - 7 4 . 

Chat field , C . , The Hol t -Winters forecast ing procedure .  
Applied Sta t i s t i cs ,  2 7 , no . 3 ( 1 9 7 8 ) : 2 6 4 - 2 7 9 . 

C loud , David S .  Rhetoric Confronts Real i ty As the 1 9 9 1  
Budget Battle Gets Under Way . Governing ( May 1 9 9 0 ) : 2 1 -
2 5 . 

Clemen , Robert T .  Combining forecas ts : a review and 
annotated bibliography , In terna t i onal Journal of 
Forecas ting, S ,  no . 4 ( 1 9 8 9 ) : 5 5 9 - 5 8 3 . 

Collopy , Fred, and J .  Scott Arms trong . Expert opinions 
about extrapolat ion and the mys tery of the overlooked 
discontinuities , In terna t i onal Journal of Forecas t ing, 
8 ,  no . 4 ( December 1 9 9 2 ) : 5 7 5 - 5 8 2 . 

Congressional Budge t Office . Proj ec t i ons of Na tional Heal th 
Expendi tures . Washington , D . C . : Congressional Budget 
Office , Oc tober , 1 9 92 . 

Coopersmi th , Lewis W .  Forecast ing time series which are 
inherently discontinuous , Journal of Forecas t ing, 2 
( 1 9 83 ) : 2 2 5 - 2 3 5 . 

Cox , James E .  An asses sment o f  books relevant to 
forecas ting in market ing , In terna t i onal Journal of 
Forecas t ing, 3 ,  no . 3 / 4 ( 1 9 8 7 ) : 5 1 5 - 5 2 7 . 

Dalrymple , Douglas J .  Sales forecas t ing prac tices , 
In terna t i onal Journal of Forecas ting 3 ,  no . 3 / 4 ( 1 9 8 7 ) 
3 7 9 -3 9 1 . 



2 6 6  

Danaher ,  Peter J . , and Roderick J .  Brodie . Predictive 
accuracy o f  s imple versus complex market share models , 
Interna t i onal Journal of Forecas ting, 8 ,  no . 4 
( December 1 9 92 ) : 6 13 - 62 6 . 

Dancer , Robert , and C l i f ford Gray . An empirical evaluat ion 
of cons tant and adaptive computer forecas ting models 
for inventory control , Decision Sci ences , 8 ( 1 9 7 7 ) : 
2 2 8 -2 3 8 . 

Department o f  Medical Assis tance Services , The Statis t i cal 
Record of the Virginia Medi cai d Program . Richmond , 
Virginia , February , 1 9 9 3 . 

Eas ingwood , Christopher J .  
long term forecas t ing 
Interna t i onal Journal 
6 9 - 82 . 

An analogical approach to the 
o f  maj or new produc t sales , 
of Forecas t ing, 5 ,  no . 1 ( 1 9 8 9 ) 

Ei lon , Samuel , and Joseph Elmaleh ,  Adaptive limi ts in 
inventory contro l . Management Sci ence , 16 , no . 8 
(April , 1 9 7 0 ) : B- 5 3 3  - B- 5 4 8 . 

Ekern , S teinar . Adaptive exponential smoothing revi s i ted,  
Journal of the Opera t i onal Research Soci e ty, 32 ( 1 9 8 1 )  
7 7 5 - 7 82 . 

Feder , Judi th , Diane Rowland , John Holahan , Al ina 
Salganic o f f , David Heslam . The Medi caid Cos t Expl os i on ,  
Causes and Consequences . Bal t imore , Maryland : The 
Kaiser Commiss ion on the Future o f  Medicaid, February , 
1 9 9 3 . 

Fi ldes , R .  Quantitative forecas ting - - the s tate of  the 
art : Extrapolative models , Journal of the Opera t i onal 
Research Soci e ty, 3 0 ,  no . 8 ( 1 9 7 9 ) : 6 9 1 - 7 1 0 . 

Fi ldes , Robert , and Spyros Makridakis . Forecasting and loss 
func tions , In t erna t i onal Journal of Forecas ting, 4 ,  no . 
4 ( 1 9 8 8 ) : 5 4 5 - 5 5 0 . 

F ildes , Robert .  The evaluation o f  extrapolat ive forecas ting 
methods , In terna t i onal Journal of Forecas ting, 8 ,  no . 1 
( Apri l  1 9 92 ) : 8 1 - 9 8 . 

F lores , Beni to E .  A pragmatic view o f  accuracy measurement 
in forecas ting , Omega , 14 , no . 2 ( 1 9 8 6 ) : 93 - 9 8 . 



2 6 7 

Flores , Benito E .  The utilization of  the Wi lcoxon tes t to 
compare forecas t ing methods : a note , In terna t i onal 
Journal of Forecas ting, 5 ,  no . 4 ( 1 9 8 9 ) : 52 9 - 5 3 5 . 

Frank , Howard A . , and Geras imos A .  Gianakis .  Rais ing the 
bridge us ing time series forecas ting models , Publ i c  
Productivi ty & Management Revi ew, XIV , no . 2 ( Winter 
1 9 9 0 ) : 1 7 1 - 1 8 8 . 

Ful lerton , Thomas M . , Jr . A compos ite approach to 
forecas ting s tate government revenues : case s tudy of 
the Idaho sales tax , In terna t i onal Journal of 
Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) : 3 7 3 - 3 8 0 . 

Gardner , Everet te S . , Jr . Automatic moni toring of 
forecas t ing errors , Journal of Forecas ting, 2 ( 1 9 8 3 ) 
1 -2 1 . 

Gardner , Everette S . , Jr . Exponential smoo thing : The s tate 
o f  the art ,  Journal of Forecas ting, 4 ( 1 9 8 5 ) : 1 - 2 8 . 

Gardner , Everet te S . , Jr . and Spyros Makridakis .  The future 
o f  forecas ting , In terna t i onal Journal of Forecas t ing, 
4 ,  no . 3 ( 1 9 8 8 ) : 3 2 5 - 3 3 0 .  

Gardner , Everette S . , Jr . and Ed McKenz ie . Seasonal 
exponential smoothing with dampened trends , Managemen t 
Science , 3 5 ,  no . 3 ( March 1 9 8 9 ) : 3 7 2 - 3 7 6 .  

Geurts , Michael D . , and J .  Patrick Kel ly . Comments on : " In 
de fense o f  ARIMA model l ing " ,  by D .  J .  Pack , 
Interna t i onal Journal of Forecas t ing, 6 ,  no . 4 ( 1 9 9 0 ) : 
4 9 7 - 4 9 9 . 

Ghali , Moheb A .  Seasonality ,  aggregation and the tes ting o f  
the produc tion smoothing hypothesis , The American 
Economi c Revi ew, 7 7 , no . 3 ( June 1 9 8 7 ) : 4 6 4 - 4 6 9 . 

Gi lchris t ,  Warren . Sta t i s t i cal Forecas ting . Chiches ter : 
John Wi ley & Sons , 1 9 7 7 . 

Gorr , wilpen L .  
Quarterly, 

Special event data in shared databases , MIS 
1 0  ( September 1 9 8 6 ) : 2 3 9 -2 5 0 . 

Gorr , Wi lpen L .  Use o f  spec ial event data in government 
information sys tems , Publ i c  Admini s tra t i on Revi ew, 4 6 ,  
Spec ial I s sue ( November 1 9 8 6 ) : 5 3 2 - 5 3 9 . 



2 6 8  

Guerrero , Vic tor M .  ARIMA forecasts with restric tions 
derived from a s truc tural change , Int erna tional Journal 
of Forecas t ing, 7 ,  no . 3 ( 1 9 9 1 ) : 3 3 9 - 3 4 7 . 

Hanke , John . Forecas ting in bus iness schools , a fol low-up 
survey , In terna t i onal Journal of Forecas ting, 5 ,  no . 2 
( 1 9 8 9 ) : 2 5 9 - 2 6 2 . 

Harrison ,  P .  J . , and C .  F .  Stevens . A Bayes ian approach to 
short - term forecas t ing , Opera t i onal Research Quart erly, 
2 2 , no . 4 ( 1 9 7 1 ) : 3 4 1- 3 62 . 

Harrison ,  P .  J . , and C .  F .  Stevens . Bayes ian forecas t ing , 
Journal of the Royal Sta t i s t i cal Soci e ty Series B ,  3 4 , 
no . 3 ( 1 9 7 6 ) : 2 0 5 - 22 8 . 

Harvey , Andrew , and Ralph D .  Snyder . S truc tural time series 
models in inventory control , In terna t i onal Journal of 
Forecas ting, 6 ,  no . 2 ( July 1 9 9 0 ) : 1 8 7 - 1 9 8 . 

Heal th Care Finance Adminis tration . Appendix 4 HCFA Of fice 
of  the Ac tuary forecas ting Medicaid expendi tures , 
[photocopy ] , [ circa 1 9 92 ] . 

HHS News Release . " Adminis tration Ac ts to Address Medicaid 
Es timating Problems and Escalat ing Cos t Increases . "  
July 1 0 , 1 9 9 1 . 

Hi l lmer ,  S teven . Monitoring and Adj us ting Forecas ts in the 
Presence of  Addi tive Outl iers . Journal of Forecas t ing 
3 ( 19 8 4 ) : 2 0 5 -2 1 5 . 

Hogwood , Brian W .  and Lewis A .  Gunn , Pol i cy Analysis for the 
Real World .  Oxford : Oxford Univers i ty Press , 1 9 8 4 . 

Holloway , Thomas M .  Measuring the cyc lical sens i t ivi ty o f  
federal rece ipts and expendi tures : s implified 
estimation procedures ,  In terna t i onal Journal of 
Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) : 3 4 7 - 3 6 0 . 

Howel l ,  Sydney D .  Parameter ins tabi l i ty in learning curve 
models , In terna t i onal Journal of Forecas ting, 6 ,  no . 4 
( 1 9 9 0 ) : 5 4 1 - 5 4 7 . 

Hume , David . An Inquiry Concerning Human Unders tanding in 
David Hume : On Human Na ture and the Unders tanding . 
Antony Flew ,  ed . , Col l ier Classics in the History o f  
Thought , Crane Brinton and Paul Edwards , eds . New 
York : The Macmi l lan Company , 1 9 7 1 . 



2 6 9  

Jarret t ,  Jef frey . Business Forecas t ing Me thods . Oxford : 
Bas i l  Blackwell , 1 9 8 7 . 

Jazwinski , A .  H .  Stochas t i c  Processes and Fil tering Theory 
( New York/ London ; Academic Press , 1 9 7 0 ) . 

Jenkins , Gwi lym M .  Prac t ical Experi ences wi th Model l ing and 
Forecas ting Time Seri es ( Jersey , Channel Islands : 
Gwi lym Jenkins & Partners ( Overseas ) Ltd . , 1 9 7 9 ) . 

Jun , Duk Bin and Robert M .  Oliver . Bayes ian Forecas ting 
Following a Maj or Level Change in Exponential 
Smoothing . Journal of Forecas ting 4 ( 1 9 8 5 ) : 2 9 3 - 3 0 2 . 

Jun , Duk B .  On Detec ting and Estimating a Maj or Level or 
Slope Change in General Exponent ial Smoo thing . Journal 
of Forecas t ing 8 ( 1 9 8 9 ) : 5 5 - 6 4 . 

Kitagawa , Genshiro . Non-Gauss ian s tate - space model l ing o f  
nons tationary t ime series , Journal of the Ameri can 
Sta t i s t i cal Associ a t i on ,  82 ( December 1 9 8 7 ) : 1 03 2 - 1 0 4 1 . 

Kolb , R .  A . , and H .  o .  S tekler . Are economic forecasts 
s igni ficantly bet ter than naive predi c t ions ? An 
appropriate tes t , In terna t i onal Journal of Forecas t ing, 
9 ,  no . 1 ( Apri l  1 9 9 3 ) : 1 1 7 - 12 0 . 

Kirkendall , Nancy J .  Monitoring for Out l iers and Level 
Shi fts in Kalman F i l ter Implementations of  Exponential 
Smoothing , Journal of Forecas ting, 1 1 ,  no . 6 ( 1 9 9 2 ) 
5 4 3 - 5 6 0 . 

LaCivi ta , Charl es J . , and Terry G .  Seaks . Forecas t ing 
accuracy and the choice o f  firs t di f ference or 
percentage change regress ion models , In terna t i onal 
Journal of Forecas ting, 4 ,  No . 2 ( 1 9 8 8 ) : 2 6 1 -2 6 8 . 

Langbein , Laura Irwin . Discovering Whe ther Programs Work : A 
Guide to Sta t i s t i cal Me thods for Program Evalua t i on . 
The Scott , Foresman Public Pol icy Analys is and 
Management Science Series , Arnold J .  Me l tsner and Mark 
H Moore , eds . Glenview ,  I l l inois : Scot t ,  Foresman and 
Company , 1 9 8 0 . 

Lefran�ois , Pierre . Al lowing for asymmetry in forecast 
errors : results from a Monte-Carlo s tudy , In t erna t i onal 
Journal of Forecas ting, 5 .  no . 1 ( 1 9 8 9 ) : 9 9 - 1 1 0 . 



2 7 0  

Lemov, Penelope . Cl imbing out o f  the Medicaid Trap . 
Governing ( Oc tober 1 9 9 1 ) : 4 9 - 5 3 . 

Lemov , Penelope . States and Medicaid : Ahead of the Feds . 
Governing ( July 1 9 93 ) : 2 7 - 2 8 . 

Lewandowski , Rudo l f . 
of Forecas t ing, 

Sales forecas ting by FORSYS , Journal 
1 ( 1 9 8 2 ) : 2 0 5 - 2 14 . 

Mahaj an ,  Vij ay ,  and Yoram Wind . New produc t forecas ting 
models : Direc tions for research and implementation , 
In terna t i onal Journal of Forecas t ing, 4 ,  no . 3 ( 1 9 8 8 ) : 
3 4 1 - 3 5 8 . 

Makridakis , S . , A .  Anderson , R .  Carbone , R .  Fildes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen ,  and R .  
Winkler . The accuracy o f  extrapolation ( t ime series ) 
methods : results o f  a forecas ting competi tion ,  Journal 
of Forecas ting, 1 ( 1 9 82 ) : 1 1 1 - 1 5 3 . 

Makridakis , Spyros , Steven C .  Wheelwright , and Vic tor E .  
McGee . Forecas ting : Me thods and Appl i ca tions , 3 rd ed . 
New York : John Wiley & Sons , 1 9 83 . 

Makridakis-, Spyros , and Robert L .  Winkler . Averages o f  
forecas ts , some empirical resul ts , Managemen t Sci ence , 
2 9 ,  no . 9 ( 9 / 83 ) : 9 8 7  - 9 9 6 . 

Makridakis , S . , A .  Anderson , R .  Carbone , R .  Fildes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen , and R .  
Winkler . The Forecas ting Accuracy o f  Major Time Seri es 
Me thods . Chichester : John Wi ley & Sons ( 1 9 8 4 ) 

Makridakis , Spyros and Michele Hibon . Accuracy of  
Forecasting : An Empirical Investigation (wi th 
Discussion ) . Reprinted as chapter 3 in The Forecas ting 
Accuracy of Maj or Time Seri es Me thods , S .  Makridakis , 
et . al . ,  eds . ,  Chiches ter : John Wiley & Sons , ( 1 9 8 4 ) . 

Makridakis , Spyros , and Robert Carbone . Forecast ing when 
pat tern changes occur beyond the historical data , 
Managemen t Sci ence , 3 2 , no . 3 ( 1 9 8 6 ) : 2 5 7 - 2 7 1 . 

Makridakis , Spyros , Michele Hibon , Ed Lusk , and Moncef 
Belhadj ali . Confidence intervals : An empirical 
investigation of the series in the M-competition ,  
In terna t i onal Journal o f  Forecas t ing, 3 ,  no . 3 / 4 
( 1 9 8 7 ) : 4 8 9 - 5 0 8 . 



Makridakis , Spyros .  Metaforecasting : Ways of improving 
forecas ting accuracy and use fulness , In terna t i onal 
Journal of Forecas t ing, 4 ,  no . 3 ( 1 9 8 8 ) : 467 - 4 9 1 . 

2 7 1  

Makridakis , Spyros ,  and Miche le Hibon . Exponential 
smoothing : The e f fec t o f  ini tial values and loss 
func tions on pos t-sample forecas t ing accuracy , 
In terna t i onal Journal of Forecas t ing, 7 ,  no . 3 ( 1 9 9 1 ) 
3 17 -3 3 0 .  

Makridakis ,  Spyros , Chris Chatfield,  Michele Hibon , Michael 
Lawrence ,  Terence Mi lls , Keith Ord , and LeRoy F .  
Simmons . The M2 -competition : A rea l - t ime j udgmentally 
based forecas ting s tudy , In terna t i onal Journal of 
Forecas ting, 9 ,  no . 1 ( Apri l  1 9 93 ) : 5 - 2 2 . 

Mandy , David M .  Forecas t ing unemployment insurance trus t 
funds : The case o f  Tennessee Interna t i onal Journal of 
Forecas ting, 5 no . 3 ( 1 9 8 9 ) : 3 8 1 - 3 9 1 . 

Manton , Kenneth G . , Eric S tal lard , and Bur t  Singer . 
Proj ecting the future size  and hea l th status o f  the US 
elderly population , In terna t i onal Journal of 
Forecas ting, 8 ,  no . 3 ( 1 9 92 ) : 4 3 3 - 4 5 8 . 

Martin , Christine A . , and Stephen F .  Wi tt . Forecasting 
tourism demand : A comparison o f  the accuracy o f  several 
quanti tative methods , Interna t i onal Journal of 
Forecas ting, 5 ,  no . 1 ( 1 9 8 9 ) : 7 - 2 0 . 

McC lain , John o .  Dominant tracking s ignals , In terna t i onal 
Journal of Forecas ting, 4 ,  no . 4 ( 1 9 8 8 ) : 5 6 3 - 5 7 2 . 

McCo llough , James . State o f  the Art - Munic ipal Revenue and 
Expendi ture Forecas ting : Current Status and Future 
Prospec ts . Governmen t Finance Revi ew ( Oc tober 1 9 9 0 ) : 
3 8  - 4 0 . 

McDonald , James B .  Partially adaptive estimation o f  ARMA 
t ime series models , In terna t i onal Journal of 
Forecas ting, 5 ,  no . 2 ( 1 9 8 9 ) : 2 17 - 2 3 0 .  

McDowel l ,  Charles . Not much cuttable budge t left  a f ter 
ent i tlements taken out . Ri chmond Times -Dispa tch . 
( February 9 ,  1 9 9 4 ) : A2 . 

McKenz ie , E .  Error analys is for Winters ' addi tive seasonal 
forecas ting sys tem, In terna t i onal Journal of 
Forecas ting, 2 ( 1 9 8 6 ) : 3 7 3 - 3 82 c i ted in Paul Newbo ld 



and Ted Bos , On exponential smoo thing and the 
assumption o f  determinis t ic trend plus whi te noise 
data-generating models , In terna t i onal Journal of 
Forecas ting, 5 ,  no . 4 ( 1 9 8 9 ) : 5 2 3 - 5 2 7 . 

McKenzie , Ed . General exponential smoothing and the 
equivalent ARMA process , Journal of Forecas ting, 3 
( 19 8 4 ) : 3 3 3 -3 4 4 . 

2 7 2  

McLaughl in , Rober t  L .  Measuring the accuracy o f  forecas ts , 
Business Economi cs , 7 ( May 1 9 7 2 ) : 2 7 - 3 5 . 

McLaughlin , Robert L .  A model of  an average reces s ion and 
recovery , Journal of Forecas ting, 1 ( 1 9 82 ) : 5 5 - 6 5 . 

McNees ,  Stephen K .  On the future of  macroeconomic 
forecasting , Interna t i onal Journal of Forecas ting, 4 ,  
no . 3 ( 19 8 8 ) : 3 5 9 - 3 62 . 

Medi cine & Heal th ' s  Heal th Reform Insigh t . Forecasting 
Health Care Cos ts : Firs t , Cross Your Fingers . 
( December 3 ,  1 9 93 ) : 1 .  

Montgomery , Douglas C . , and Lynwood A .  Johnson . Forecas ting 
and Time Seri es Analysis . New York : McGraw-Hill  Book 
Company , 1 9 7 6 . 

Nachmias , David and Chava Nachmias . Research Me thods In the 
Social Sci ences , 2nd ed . New York : S t . Martin ' s  Press , 
1 9 8 1 . 

Nairn, Mohamed M . , and Denis R .  Towi l l . An engineering 
approach to LSE mode l l ing of  experience curves in the 
elec tric ity supply indus try , In terna t i onal Journal o f  
Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) : 5 4 9 - 5 5 6 . 

Nerlove , M . , and S .  Wage . On the optima l i ty of  adaptive 
forecas ting , Managemen t Sci ence , 1 0 , no . 2 ( January , 
1 9 6 4 ) : 2 0 7 -2 2 3 . 

Newbold,  Paul , and Ted Bos . On exponential smoo thing and 
the assumption o f  determinis t ic trend plus white noise 
data-generating models , In terna t i onal Journal o f  
Forecas ting, 5 ,  no . 4 ( 1 9 8 9 ) : 52 3 - 52 7 . 

Noether , Go t t f r i ed E .  In t rodu c ti on t o  S t a t i s t i c s . New 
Y o r k : Houghton Mi f f l i n Company, 1 9 7 1 . 



2 7 3  

O f f ice o f  Management and Budget and Department o f  Hea l th & 
Human Services , " Better Management for Better Medicaid 
Es t imates , "  July 1 0 , 1 9 9 1 . 

Ord , J .  Kei th . Future developments in forecas t ing : The t ime 
series connexion , In terna t i onal Journal of Forecas ting, 
4 ,  no . 3 ( 1 9 8 8 ) : 3 8 9 - 4 0 1 . 

Pack , David J .  In de fense of  ARIMA mode l l ing , In terna t i onal 
Journal of Forecas ting, 6 ,  no . 2 ( July 1 9 9 0 ) : 2 1 1 - 2 1 8 . 

Pankratz , Alan . Time Series Forecasts and Extra-model 
Information . Journal of Forecas ting, 8 ( 1 9 8 9 ) : 7 5 - 8 3 . 

Pant , P .  Narayan , and Wi l l iam Starbuck . Innocents in the 
fores t :  Forecasting and research methods , Journal of 
Management ,  1 6 ,  no . 2 ( 19 9 0 ) : 43 3 - 4 6 0 . 

Poulos ,  Laurette , Alan Kvanli and Rober t  Pavur . A 
comparison o f  the accuracy o f  the Box-Jenkins method 
wi th that o f  automated forecas ting methods , 
Interna t i onal Journal of Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) 
2 6 1 - 2 6 7 . 

Priestly ,  M .  B .  Discuss ion on the paper by Pro fessor 
Harrison and Mr . Stevens , Journal of the Royal 
Sta tis tical Soci e ty, Series B ,  3 4 ,  no . 3 ( 1 9 7 6 ) : 2 2 8 -
2 3 0 . 

Report Prepared by the Congres sional Research Services for 
the use of the Subcommi ttee on Heal th and the 
Environment o f  the Commi ttee on Energy and Commerce , 
u . s .  House o f  Representatives , Joseph E .  Ross , 
Direc tor , Henry A .  Waxman , Chairman . Medi caid Source 
Book : Background Da ta and Analysis (A 1 993 Upda t e ) . 
Washington , D . C . : U . S .  Government Printing O f f ice , 
January , 1 9 9 3 . 

Revankar , Nagesh S .  On the Problem o f  Forecas ting Prior to 
' Price ' Control or Decontrol ,  Journal of Forecas t ing, 
1 1 ,  no . 1 ( 1 9 9 2 ) 1 - 1 5 . 

Rosenberg , Alexander . Phi l osophy of Social Sci ence . 
Dimens ions o f  Phi losophy Series , Norman Daniels and 
Kei th Lehrer , eds . ( Boulder : Wes tview Press , 1 9 8 8 ) . 

Rosenfie ld,  Donald . A model for predic ting frequenc ies o f  
random events , Managemen t Sci ence , 3 3 , no . 8 ( August 
1 9 8 7 ) : 9 4 7 - 9 5 4 . 



2 7 4  

SAS Ins titute Inc . ,  SA� User ' s  Guide : Sta t i s t i cs - Versi on 
5 Edi t i on .  Cary , North Carol ina : SAS Ins titute Inc . , 
1 9 8 5 . 

Schnaars , Steven P . , and Martin T .  Topo l . The use o f  
mul t iple scenarios i n  sales forecas t ing , In terna t i onal 
Journal of Forecas t ing, 3 ,  no . 3 / 4 ( 1 9 8 7 ) : 4 0 5 - 4 1 9 . 

Schroeder , Larry , and Michael Wasylenko . Publ ic sec tor 
forecas ting in the Third World,  In terna tional Journal 
of Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) : 3 3 3 - 3 4 5 . 

Sco t t , Claudia Devi ta . Forecas ting Local Governmen t 
Spending . Washington , D . C . : The Urban Institute , 1 9 7 2 . 

Shanahan , Ei leen . Cracks in the Crys tal Ball . Governing 
( December 1 9 9 1 ) : 2 9  - 3 2 . 

Sharp , John A . , and David H .  R .  Price . Experience curve 
models in the e lec tronic supply industry ,  
In terna t i onal Journal of Forecas t ing, 6 ,  no . 4 ( 1 9 9 0 ) 
5 3 1 - 5 4 0 . 

Shkurti , Wil l iam J . , and Darrel l  Wine fordner . The pol i t i c s  
o f  state revenue forecas ting i n  Ohio , 1 9 8 4 - 1 9 8 7 : A case 
s tudy and research impl ications , In terna tional Journal 
of Forecas t ing, 5 ,  no . 3 ( 1 9 8 9 ) : 3 6 1 - 3 7 1 . 

Smi th , Stanley K . , and Terry Sinc ich . Forecasting s tate and 
household populations : Evaluat ing the forecas t accuracy 
and bias of alternative populations proj ec t ions for 
s tates , Int erna t i onal Journal of Forecas ting, 8 ,  no . 3 
( 1 9 92 ) : 4 9 5 - 5 0 8 . 

Snyder ,  R .  D .  Progress ive tuning o f  s imple exponential 
smoothing forecas ts , Journal of the Opera tional 
Research Soci e ty, 3 9 ,  no . 4 ( 1 9 8 8 ) : 3 9 3 - 3 9 9 . 

Sta tis ti cal Abs tra c t  of the Uni ted States 1 992 . Washington , 
D . C . : U . S .  Government Printing Of fice , 1 9 9 2 . 

Stekler , H .  o .  Macroeconomic forecast evaluat ion 
techniques ,  In terna t i onal Journal of Forecas t ing, 7 ,  
no . 3 ( 1 9 9 1 ) : 3 7 5 - 3 8 4 . 

Steward , Rodney D .  
Wiley & Sons , 

Cos t Es t ima ting . 2nd ed . New York , John 
Inc . ,  1 9 9 0 . 



The i l , H . , and S .  Wage . Some observations on adapt ive 
forecasting , Management Sci ence , 1 0 , no . 2 ( January , 
1 9 6 4 ) : 1 9 8 -2 0 6 . 

2 7 5  

Thompson , Patrick A .  An MSE s tatis t ic for comparing 
forecast accuracy across series , In terna tional Journal 
of Forecas ting, 6 ,  no 2 .  ( July 1 9 9 0 ) : 2 1 9 -2 2 7 . 

Thompson , Patrick A .  Evaluation o f  the m-competi tion 
forecas ts via log mean squared error ratio , 
Interna t i onal Journal of Forecas ting, 7 ,  no . 3 
( November 1 9 9 1 ) : 3 3 1 - 3 3 4 . 

Time , The forecas ters flunk , ( August 2 7 , 1 9 8 4 ) : 42 . 

Towi l l ,  Denis R . .  Forecasting learning curves , 
In terna t i onal Journal of Forecas ting, 6 ,  no . 1 ( 1 9 9 0 ) 
2 5 - 3 8 . 

Trigg , D .  W . , and A .  G .  Leach . Exponential smoothing wi th 
an adaptive response rate , Opera t i onal Research 
Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) : 5 3 - 5 9 . 

Tsay , Ruey S .  Comment : Detec ting and model l ing changes in 
time series , Journal of the Ameri can Sta t i s tical 
Association ,  82 ( 1 9 8 7 ) : 1 0 5 6 - 1 0 5 9 . 

Tsay , Ruey S . , Outl iers , level shi f ts , and variance changes 
in time series , Journal of Forecas ting, 7 ( 1 9 8 8 ) : 1 - 2 0 . 

Vandaele , Wal ter . Appl i ed Time Seri es and Box-Jenkins 
Models . New York : Harcourt Brace Jovanovich , 
Publ i sher s , 1 9 8 3 . 

Vol lmann , Thomas E . , Wi l l iam L .  Berry , and D .  Clay Whybark , 
In tegra t ed Produ c t i on and Inven tory Managemen t :  
Revi tali zing the Manufac turing En terprise . The 
Bus iness One Irwin/APICS Library o f  Integrated Resource 
Management .  Homewood , I l l inois 6 0 4 3 0 : Bus iness One 
Irwin,  1 9 93 . 

Whi te , Edna M . , and Ronald Dat tero . Combining vec tor 
forecas ts to predic t thoroughbred horse race outcomes , 
Int erna t i onal Journal of Forecas ting, 8 ,  no . 4 ( 1 9 9 2 ) : 
5 9 5 - 6 1 1 . 

Whi te , Michael J . , Ross Clayton , Robert Myrtle , G i lbert 
Siegel and Aaron Rose , Managing Publ i c  Sys t ems . 
Lanham, MD : Univers i ty Press o f  America , 1 9 8 5 . 



Wilder , L .  Douglas , Governor . " Excerpts form the Remarks 
Made to the F inance and Appropriations Commi ttees o f  
the Virginia General Assembly . "  Unpublished News 
Release , Richmond , Virginia , Augus t  2 3 , 1 9 9 3 , 5 .  

2 7 6  

Wi l l iams , T .  M .  Adaptive Hol t-Winters forecas ting , Journal 
of the Opera t i onal Research Soci e ty, 3 8 ,  no . 6 ( June 
1 9 8 7 ) : 5 5 3 - 5 6 0 . 

Winters , Peter R .  Forecasting sales by exponentially 
weighted moving averages , Managemen t Sci ence , 7 ( Apri l  
1 9 6 0 ) : 3 2 4 -3 4 2 . 

Woo ldridge , Blue . Revenue planning in the publ ic sec tor , 
[ unpublished paper used as required reading in the 
course " Public Financ ial Management , " Virginia 
Commonwealth Univers i ty ,  Fall 1 9 9 2  - photocopy ] . 

Woolsey ,  Gene . The f i f th column : The case of  the unused 
forecas t or when trying to forecas t what ' s  to be , first 
try y = mx + b,  In terfaces , 1 6 , no . 6 ( November­
December 1 9 8 6 ) : 5 8 - 6 0 . 

Wun , Lap-Ming , and Wen Lea Pearn . Assess ing the statist ical 
charac teri s t ics  of  the mean absolute error [ o f ]  
forecas ting , Interna t i onal Journal o f  Forecas ting, 7 ,  
no . 3 ( November 1 9 9 1 ) : 3 3 5 - 3 3 7 . 

Yar , Mohammed , and Chris Chat field . Predic tion intervals 
for the Hol t -Winters forecas ting procedure , 
In terna t i onal Journal of Forecas ting, 6 ,  no . 1 ( 1 9 9 0 ) 
12 7 - 13 7 . 

Young , Peg , and J .  Kei th Ord . Model selec t ion and 
estimation for technological growth curves , 
In terna t i onal Journal of Forecas ting, 5 ,  no . 4 ( 1 9 8 9 ) 
5 0 1 - 5 13 . 



ENDNOTES 

Endnotes Chapter 1 

1 .  Wi lpen L .  Gorr , " Spec ial Event Data in Shared 
Databases , "  MIS Quarterly, 1 0  ( September 1 9 8 6 ) , 2 3 9 -2 5 0 ; 
Wi lpen L .  Gorr , " Use of  Special Event Data in Government 
Information Sys tems , "  Publ i c  Adminis tra t i on Revi ew, 4 6 , 
Spec ial Issue ( November 1 9 8 6 ) , 5 3 2 - 53 9 .  

2 7 7  



Endnotes Chapter 2 

2 .  S tuart I .  Bretschneider , Wi lpen L .  Gorr , Gloria 
Gri z z le ,  and Earle Klay ,  " Poli tical and Organizational 
Influences on the Accuracy of Forecast ing State Government 
Revenues , "  Interna t i onal Journal of Forecas ting, 5 ,  no . 3 
( 1 9 8 9 ) , 3 0 7 - 3 1 9 ; Glenn Cass idy ,  Mark S .  Kamlet , and Daniel 
S .  Nagin , " An Empirical Examinat ion o f  Bias in Revenue 
Forecasts by State Governments , " Interna t i onal Journal of 
Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) , 3 2 1- 3 3 1 ;  Larry Schroeder and 
Michael Wasylenko , " Publ ic Sector Forecasting in the Third 
World, " Interna t i onal Journal of Forecas ting, 5 ,  no . 3 
( 1 9 8 9 ) , 3 3 3 - 3 4 5 ; Thomas M .  Holloway , " Measuring the Cyc lical 
Sens i t ivi ty o f  Federal Receipts and Expendi tures : Simp l i f ied 
Es timation Procedures , "  Interna t i onal Journal of 
Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) , 3 4 7 -3 6 0 ;  Wi l l iam J .  Shkurti , 
and Darrel l  Wine fordner , " The Pol i t ics  of  State Revenue 
Forecas ting in Ohio , 1 9 8 4  - 1 9 8 7 : A Case S tudy and Research 
Implications , "  In terna t i onal Journal of Forecas ting, 5 ,  no . 
3 ( 1 9 8 9 ) , 3 6 1 -3 7 1 ;  Thomas M .  Ful lerton , Jr . " A  Compos i te 
Approach to Forecas ting State Government Revenues :  Case 
S tudy of  the Idaho Sales Tax , " Interna t i onal Journal of 
Forecas t ing, 5 ,  no . 3 ( 1 9 8 9 ) , 3 7 3 - 3 8 0 ; David M .  Mandy , 
" Forecas ting Unemployment Insurance Trus t Funds : The Case o f  
Tennessee " In terna t i onal Journal of Forecas ting, 5 no . 3 
( 1 9 8 9 ) , 3 8 1-3 9 1 ; Howard A .  Frank and Geras imos A .  Gianaki s ,  
" Raising the Bridge Us ing Time Series Forecasting Models , " 
Publ i c  Productivi ty & Managemen t Revi ew, XIV , no . 2 ( Winter 
1 9 9 0 ) , 1 7 1 - 1 8 8 ; Wilpen L .  Gorr , " Use of Spec ial Event Data 
in Government Information Sys tems , "  Publ i c  Adminis tra t i on 
Revi ew, 4 6 ,  Spec ial Issue ( November 1 9 8 6 ) , 5 3 2 - 5 3 9 . 

3 .  Forecas ter at Department of  Correc tions , personal 
communication , March 5 ,  1 9 9 3 . 

4 .  Larry Schroeder and Michael Wasylenko , " Public Sec tor 
Forecas ting in the Third World, " Int erna t i onal Journal of 
Forecas ting, 5 ,  no . 3 ( 1 9 8 9 ) , 3 3 3 -3 4 5 ; Heal th Care F inance 
Adminis tration , " Appendix 4 HCFA Of fice of  the Ac tuary 
Forecas ting Medicaid Expendi tures , " [photocopy ] , [ circa 
1 9 92 ] . 

5 .  David E .  Bloom and Sherry Gl ied , " Proj ec ting the Number 
of New AIDS Cases in the Uni ted S tates , "  In terna t i onal 
Journal of Forecas t ing, 8 ,  no . 3 ( 1 9 9 2 ) , 3 3 9 - 3 6 5 ; Eduard Bos 
and Rodolfo A .  Bulatao , " The Demographic Impac t of AIDS in 
Sub-Saharan Africa , Short - and Long-Term Proj ec t ions , " 
In terna t i onal Journal of Forecas ting, 8 ,  no . 3 ( 1 9 92 ) , 3 6 7 -
3 8 4 ; Kenne th G .  Manton , Eric Stal lard , and Burt Singer , 

2 7 8  



" Proj ec ting the Future Size and Health S tatus of  the US 
Elderly Population , " In terna t i onal Journal of Forecas ting, 
8 ,  no . 3 ( 1 9 92 ) , 4 3 3 - 4 5 8 . 

6 .  Brian W .  Hogwood and Lewis A .  Gunn , Pol i cy Analysis for 
the Real World ( Oxford : Oxford Univers i ty Press , 1 9 8 4 ) ; 
Michael J .  Whi te , Ross Clayton , Rober t  Myrtle , Gi lbert 
S iegel and Aaron Rose , Managing Publ i c  Sys tems ( Lanham , MD :  
Univers i ty Pres s  o f  Americ a ,  1 9 8 5 ) ; Claudia Devi ta Sco t t , 
Forecas ting Local Governmen t Spending ( Washington , D . C . : The 
Urban Institute , 1 9 7 2 ) ; Howard A .  Frank and Geras imos A .  
Gianakis ,  " Rais ing the Bridge Us ing Time Series Forecas ting 
Models , "  Publ i c  Productivi ty lie Managemen t Review, XIV , no . 2 
( Winter 1 9 9 0 ) , 1 7 1 - 1 8 8 ; Wilpen L .  Gorr , " Use of  Special 
Event Data in Government Information Sys tems , "  Publ i c  
Adminis tra t i on Revi ew, 4 6 , Special Issue ( November 1 9 8 6 ) , 
5 3 2 - 53 9 ; Eileen Shanahan , " Cracks in the Crys tal Bal l " 
Governing ( December 1 9 9 1 ) 2 9  - 3 2 ; James McCo llough , " S tate 
o f  the Art - Munic ipal Revenue and Expendi ture Forecas t ing : 
Current S tatus and Future Prospec ts " Governmen t Finance 
Revi ew ( October 1 9 9 0 )  3 8  - 4 0 . 

7 .  Howard A .  Frank and Geras imos A .  Gianakis ,  " Rais ing the 
Bridge Us ing Time Series Forecasting Models , "  Publ i c  
Produc tivi ty lie Managemen t Revi ew, XIV, no . 2 (Winter 1 9 9 0 ) , 
1 7 1 - 1 8 8 . 

8 .  James ' McCollough , " S tate o f  the Art - Munic ipal Revenue 
and Expendi ture Forecas ting : Current Status and Future 
Prospec ts , "  Government Finance Revi ew ( Oc tober 1 9 9 0 )  3 8  -
4 0 . 

9 .  S tuart Ira Bretschneider , " Adaptive Time Series 
Analys is and Forecas ting , " ( Ph . D .  dis s . ,  The Ohio S tate 
univers i ty,  1 9 7 9 )  3 8  f f . 

1 0 . Eileen Shanahan , " Cracks in the Crys tal Bal l , " 
Governing ( December 1 9 9 1 ) 2 9  - 3 2 . 

1 1 . Katherine Barret t  and Richard Greene , " The State o f  the 
S tates , "  Financial World ( May 12 , 1 9 9 2 ) 2 4  - 43 . 

12 . Katherine Barre t t  and Richard Greene , " The S tate o f  the 
States , "  Financial World ( May 12 , 1 9 92 ) 2 8 . 

13 . Department of  Medical Ass i s tance Services , The 
Sta t i s t i cal Record of the Virgini a  Medi caid Program 
( Richmond , Virginia , February 1 9 9 3 ) Table 7 - 4 . 

2 7 9  



1 4 . Governor L .  Douglas wi lder , " Excerpts form the Remarks 
Made to the Finance and Appropriat ions Commi t tees o f  the 
Virginia General As sembly , "  Unpublished News Release , 
( Richmond , Virginia ,  Augus t 2 3 , 1 9 9 3 ) ,  5 .  

1 5 . Congressional Budget Of fice , Proj ec t i ons of Na t i onal 
Heal th Expendi tures ( Washington , D . C . : Congress ional Budge t 
O f f ice , Oc tober , 1 9 92 ) , 9 ;  Judi th Feder , Diane Rowland , John 
Holahan , Al ina Salganicof f ,  David Heslam, The Medi caid Cos t 
Expl osion ,  Causes and Consequences ( Baltimore ,  Maryland : The 
Kai ser Commiss ion on the Future o f  Medicaid , February , 
1 9 93 ) , xi . 

1 6 . Penelope Lemov , " S tates and Medicaid : Ahead o f  the 
Feds " Governing ( July 1 9 93 ) , 2 7 -2 8 . 

1 7 . Report Prepared by the Congress ional Research Services 
for the use of the Subcommi t tee on Health and the 
Environment of  the Commi t tee on Energy and Commerce , U . S .  
House of  Representatives , Joseph E .  Ros s ,  Direc tor , Henry A .  
Waxman , Chairman , Medicaid Source Book : Background Da ta and 
Analysis (A 1 993 Upda t e )  ( Washington , D . C . : U . S .  Government 
Printing Of fice , January , 1 9 93 ) , 4 7 5 ; Charles McDowell , 
Ri chmond Times -Dispa tch ,  " Not  much cut table budget left  
a f ter enti t lements taken out " ( February 9 ,  1 9 9 4 ) , A2 . 

1 8 . Judi th Feder , Diane Rowland , John Holahan , Al ina 
Salganicof f ,  David Heslam, The Medi caid Cos t Explos i on ,  
Causes and Consequences ( Baltimore , Maryland : The Kai ser 
Commiss ion on the Future o f  Medicaid, February , 1 9 9 3 ) ,  3 4 . 

1 9 . The Medi caid Cos t Explosion ,  Causes and Consequences 
( Ba l t imore , Maryland : The Kaiser Commiss ion on the Future of  

Medicaid , February , 1 9 9 3 ) , 3 2 ; Report Prepared by the 
Congres sional Research Services for the use o f  the 
Subcommit tee on Health and the Environment of the Commi t tee 
on Energy and Commerce , U . S .  House of Representatives , 
Joseph E .  Ross , Direc tor , Henry A .  Waxman , Chairman , 
Medi caid Source Book : Background Da ta and Analysis (A 1 993 
Upda t e )  ( Washington , D . C . : U . S .  Government Print ing O f f ice , 
January , 1 9 93 ) , 4 9 3 . 

2 0 . Sta tis t i cal Abs tra c t  of the Uni ted Sta tes 1 992 
( Washington , D . C . : U . S .  Government Print ing Of fice , 1 9 9 2 ) , 
2 82 . 

2 1 . Congressional Budget O f f ice , Proj ec t i ons of Na t i onal 
Heal th Expendi tures ( Washington , D . C . ; Congress ional Budge t 
O ffice , Oc tober , 1 9 92 ) , 3 9 ;  Judi th Feder , Diane Rowland , 

2 8 0  



John Holahan , Al ina Salganicoff , David Hes lam , The Medi cai d 
Cos t  Explos i on ,  Causes and Consequences ( Bal timore , 
Maryland : The Kaiser Commiss ion on the Future of  Medicaid,  
February , 1 9 93 ) , 8 ;  Charles McDowe l l , Ri chmond Times ­
Dispa tch ,  " Not much cut table budge t left af ter enti tlements 
taken out " ( February 9 ,  1 9 9 4 ) , A2 . 

2 2 . HHS News Release , " Adminis tration Ac ts to Address 
Medicaid Estimating Problems and Escalating Cos t Increases , "  
July 1 0 , 1 9 9 1 . 

2 3 . Office o f  Management and Budge t and Department o f  
Heal th & Human Services , " Be tter Management for Better 
Medicaid Es timates , "  July 1 0 , 1 9 9 1 . 

2 4 . Of fice of  Management and Budge t and Department o f  
Heal th & Human Services , " Better Management for Be tter 
Medicaid Estimates " ( July 1 0 , 1 9 9 1 ) 2 - 3 .  

2 5 . Jef frey A .  Buck and John Klemm, " Recent Trends in 
Medicaid Expendi tures , "  Heal th Care Financing Revi ew ( 1 9 9 2  
Annual Supplement ) 2 7 1  - 2 83 . 

2 6 . Jacquel ine Calmes , " Bricks Wi thout Straw : The 
Complaints Go On but Congress Keeps Mandating , "  Governing 
( September 1 9 8 8 ) 2 1 -2 6 ; David S .  Cloud , " Rhetoric Confronts 
Real i ty As the 1 9 9 1  Budget Bat tle Gets  Under Way , " Governing 
( May 1 9 9 0 ) 2 1 -2 5 . 

2 7 . Medi cine lie Heal th ' s  Heal th Reform Insigh t ,  " Forecast ing 
Heal th Care Cos ts : Firs t ,  Cross Your F ingers , "  
( December 3 ,  1 9 93 ) , 1 .  

2 8 . Governor L .  Douglas Wi lder , " Excerpts form the Remarks 
Made to the Finance and Appropriations Commi ttees o f  the 
Virginia General Assembly , " Unpublished News Release ,  
( Richmond , Virginia , August 2 3 , 1 9 9 3 ) , 5 .  

2 9 . Wi lpen L .  Gorr , " Spec ial Event Data in Shared 
Databases , "  MIS Quarterly, 1 0  ( September 1 9 8 6 ) , 2 3 9 - 2 5 0 ; 
Wi lpen L .  Gorr , " Use o f  Spec ial Event Data in Goverrunent 
Information Sys tems , "  Publ i c  Adminis tra ti on Review, 4 6 , 
Special Issue ( November 1 9 8 6 ) , 5 3 2 - 53 9 . 

3 0 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas t ing : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 9 0 5 . 

2 8 1  



3 1 .  J .  Scott Arms trong , Long-Range Forecas ting ( New York : 
John Wi ley and Son ' s , 1 9 8 5 ) , 1 7 9 . 

3 2 . Blue Wooldridge , " Revenue Planning in the Public 
Sec tor , " [ unpublished paper used as required reading in the 
course " Public Financ ial Management , " Virginia Commonwealth 
Univers i ty ,  Fall 1 9 92 -photocopied) , 4 .  

3 3 . Spyros Makridakis , Steven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wiley & Sons , 1 9 8 3 ) , 6 2  - 1 8 3 . 

3 4 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas t ing : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 83 ) , 1 8 4  - 5 4 3 . 

3 5 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i ca t i ons ( New York : John 
Wiley & Sons , 1 9 83 ) , 3 5 2 - 5 3 7 ; J .  Kei th Ord , " Future 
Developments in Forecas ting : The Time Series Connexion , "  
In t erna t i onal Journal of Forecas t ing, 4 ,  no . 3 ( 1 9 8 8 ) , 3 9 3 ; 
Moharmned Yar and Chris Chatfield,  " Predic tion Intervals for 
the Hol t-Winters Forecas ting Procedure , "  In terna ti onal 
Journal of Forecas t ing, 6 ,  no . 1 ( 1 9 9 0 ) , 1 2 7 - 13 7 ; Ed 
McKenzie , " General Exponential Smoothing and the Equivalent 
ARMA Process , "  Journal of Forecas ting, 3 ( 1 9 8 4 ) , 3 3 3 -3 4 4 . 

3 6 . Spyr6s Makridakis , S teven C .  Whee lwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wiley & Sons , 1 9 8 3 ) , 1 8 4 -3 4 6 . 

3 7 . Douglas J .  Dalrymple , " Sales Forecas ting Prac tices , "  
In terna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 
3 7 9 - 3 9 1 ; John Hanke , " Forecast ing in Bus iness Schools , A 
Follow-Up Survey , "  In terna t i ona l Journal o f  Forecas t ing , 5 ,  

no . 2 ( 1 9 8 9 ) , 2 5 9 -2 62 . 

3 8 . Spyros Makridakis , Steven C .  Whee lwright , and Victor E .  
McGee , Forecas ting : Me thods and Appl i ca t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 83 ) ; Warren Gi lchris t ,  
Sta t i s t i cal Forecas t ing ( Chiches ter : John Wi ley & Sons , 
1 9 7 7 ) ; Douglas C .  Montgomery , and Lynwood A .  Johnson , 
Forecas ting and Time Seri es Analysis ( New York : McGraw-Hi l l  
Book Company , 1 9 7 6 ) ; Wal ter Vandaele , Appl i ed Time Seri es 
and Box-Jenkins Models ( New York : Harcourt Brace Jovanovich , 
Publ i shers , 1 9 8 3 ) ; Je f frey Jarret t ,  Business Forecas ting 
Me thods Oxford : Bas i l  Blackwell , 1 9 8 7 ) . 

2 8 2 



3 9 . Spyros Makridakis , S teven C .  Whee lwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) ,  84 ; George C .  Canavos and 
Don M .  Mil ler , An In troduc t i on to Modern Business 
Sta t i s ti cs ,  ( Belmont , Cali fornia : Duxbury Press : 1 9 9 3 ) ,  6 7 7 . 

4 0 . Spyros Makridakis , Steven C .  Wheelwright , and Vic tor E .  
McGee , Forecas t ing : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wiley & Sons , 1 9 83 ) , 8 7 . 

4 1 . Spyros Makridakis and Michele Hibon , " Exponential 
smoothing : The e f fec t of ini tial values and loss func tions 
on pos t- sample forecas ting accuracy , " In terna tional Journal 
of Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 17 -3 3 0 . 

42 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 83 ) , 9 7  f f . 

4 3 . Spyros Makridakis , Steven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 9 7 ; T .  M .  Wi l l iams , 
" Adaptive Hol t-Winters Forecas ting , " Journal of the 
Opera t i onal Research Society,  3 8 ,  no . 6 ( June 1 9 8 7 ) , 5 5 6 . 

4 4 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wiley & Sons , 1 9 83 ) , 1 0 3  f f . 

4 5 . Peter R .  Winters , " Forecas ting Sales by Exponentially 
Weighted Moving Averages , " Managemen t Sci ence , 7 (Apri l  
1 9 6 0 ) , 3 2 4 - 3 42 ; Spyros Makridakis , S teven C .  Wheelwright , 
and Vic tor E .  McGee , Forecas ting : Me thods and Appl i ca t i ons , 
3 rd ed . (New York : John Wi ley & Sons , 1 9 8 3 ) , 1 0 5 - 1 0 6 ; T .  M .  
Wi l l iams , " Adaptive Hol t-Winters Forecas ting , " Journal o f  
the Opera tional Research Soci e ty, 3 8 ,  no . 6 ( June 1 9 7 8 ) , 
5 5 6 . 

4 6 . Spyros Makridakis , Steven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 1 4 9 . 

4 7 . J .  Scott Arms trong , Long-Range Forecas t ing, From 
Crys tal Bal l  to Compu ter .  2d ed . ( New York : John Wiley & 
Sons , 1 9 8 5 ) , 5 8 . 

4 8 . George C .  Canavos and Don M .  Mi l ler , An In troduc t i on to 
Modern Business Statis t i cs ,  ( Belmont , Cali fornia : Duxbury 
Press : 1 9 93 ) , 6 7 7 . 

2 8 3  



4 9 . J .  Scot t  Arms trong , Long-Range Forecas ting, From 
Crys tal Ball t o  Compu t er .  2d ed . ( New York : John Wiley & 
Sons , 1 9 8 5 ) , 1 6 5 . 

5 0 . S .  Makridakis , A .  Anderson,  R .  Carbone , R .  Fi ldes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen ,  and R .  Winkler , 
" The Accuracy o f  Extrapolation ( Time Series ) Methods : 
Results of  a Forecas ting Compe t i t ion , " Journal of 
Forecas ting, 1 ( 1 9 82 ) , 1 1 1 - 1 5 3 ; Rober t  Carbone and Spyros 
Makridakis , " Forecas ting When Pat tern Changes Occur Beyond 
the His torical Data , " Management Sci enc e ,  3 2 , no . 3 ( 1 9 8 6 ) , 
2 5 7 ; R .  F ildes , " Quanti tative Forecasting - - The S tate o f  
the Art : Extrapolative Models , "  Journal o f  the Opera t i onal 
Research Soci e ty, 3 0 ,  no . 8 ( 1 9 7 9 ) ,  6 9 1 - 7 1 0 ; T .  M .  Wi l l i ams , 
" Adaptive Hol t-Winters Forecas ting , " Journal of the 
Opera t i onal Research Soci e ty, 3 8 ,  no . 6 ( June 1 9 8 7 ) , 5 53 . 

5 1 . J .  Scot t  Arms trong , Long-Range Forecas ting, From 
Crys tal Ball to Compu ter,  2d ed . ( New York : John Wi ley & 
Sons , 1 9 8 5 ) , 1 7 8 ; J .  Scott Arms trong , Roderick J .  Brodie , 
and Shelby H .  Mc Intyre , " Forecasting Me thods for Marke ting , " 
In t erna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4  ( 1 9 8 7 ) , 
3 6 6 ; Spyros Makridakis , Chris Chatfield,  Michele Hibon , 
Michael Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  
Simmons , " The M2 -Compet i tion : A Real-Time Judgmentally Based 
Forecas ting Study , " Interna t i onal Journal of Forecas ting, 9 ,  
no . 1 ( Apri l  1 9 93 ) , 5 - 2 2 ; P .  Narayan Pant and Wi l l iam 
S tarbuck ,  " Innocents in the Fores t :  Forecas ting and Research 
Me thods , "  Journal of Managemen t 1 6 , no . 2 ( 1 9 9 0 ) , 43 3 - 4 6 0 . 

5 2 . J .  Scot t  Arms trong , " Forecasting wi th Econome tric 
Me thods : Folklore versus Fac t , " in The Forecasting Accuracy 
of Major Time Seri es Me thods , eds . ,  S .  Makridakis ,  e t . al . 
( John Wi ley & Sons : Chiches ter , 1 9 8 4 ) , 1 9  - 3 4 . 

5 3 . Everette S .  Gardner , Jr . and Spyros Makridaki s ,  " The 
Future of  Forecas t ing , " In terna t i onal Journal of 
Forecas ting, 4 ,  no . 3 ( 1 9 8 8 ) , 3 2 6 . 

5 4 . Spyros Makridakis , " Ways o f  Improving Forecast ing 
Accuracy and Use fulness , " In terna t i onal Journal of 
Forecas ting, 4 ,  no . 3 ( 1 9 8 8 ) , 4 7 9 ;  Time , " The Forecas ters 
F lunk , " Augus t  2 7 , 1 9 8 4 ; J .  Scot t  Arms trong , Long Range 
Forecas ting ( New York : John Wi ley and Sons , 1 9 8 5 ) , 1 7 9 - 1 83 . 

5 5 . P .  Narayan Pant and Wi l l iam H .  Starbuck ,  " Innocents in 
the Fores t : Forecasting and Research Me thods , "  Journal of 
Managemen t ,  1 6 , no . 2 ( 1 9 9 0 ) , 442 ; C .  Chat field,  " The Ho lt­
Winters Forecasting Procedure , "  Appl i ed Sta t i s t i cs , 27  

2 8 4  



( 1 9 7 8 ) , 2 64 - 2 7 9 ;  Robert Carbone and Spyros Makridaki s ,  
" Forecas ting When Pat tern Changes Occur Beyond the 
His torical Data , " Management Sci ence , 3 2 , no . 3 ( 1 9 8 6 ) , 2 5 2 -
2 6 0 ; David A .  Aaker and Robert Jacobson , " The Sophis t ication 
o f  ' Naive ' Model ing , " Int erna tional Journal of Forecas t ing, 
3 ,  no . 3 / 4 ( 1 9 87 ) , 4 4 9 - 4 5 1 . 

5 6 . J .  Scott Arms trong , Long Range Forecas ting ( New York : 
John Wi ley and Sons , 1 9 8 5 ) , 4 8 7 . 

5 7 . Thomas E .  Vol lmann , Wi l l iam L .  Berry , and D .  Clay 
Whybark , Integra ted Produ c t i on and Invent ory Managemen t :  
Revi tal izing the Manufacturing En terpri s e ,  The Bus iness One 
Irwin/APICS Library o f  Integrated Resource Management 
( Homewood , I l l inoi s  6 0 4 3 0 : Bus iness One Irwin , 1 9 9 3 ) , 7 2 , 
7 8 - 8 1 ;  J .  Scot t  Arms trong , Roderick J .  Brodie , and She lby H .  
Mc Intyre , " Forecas ting Methods for Market ing , " In terna t i onal 
Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 8 3 ; Douglas J .  
Dalrymple , " Sales Forecasting Prac tices : Results from a 
Uni ted States Survey , " In terna t i onal Journal of Forecas ting, 
3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 8 3 . 

5 8 . Everette S .  Gardner ,  Jr . ,  " Exponential Smoothing : The 
S tate o f  the Art , " Journal of Forecas ting, 4 ( 1 9 8 5 ) , 1 .  

5 9 . Gene Woolsey , " The f i f th column : The case of  the 
unused forecas t or when trying to forecas t what ' s  to be , 
first try y = mx + b , " Int erfaces , 1 6 , no . 6 (November­
December 1 9 8 6 ) , 5 8 - 6 0 . 

6 0 . R .  Fi ldes " Quanti tative Forecas ting - - The State o f  the 
Art :  Extrapolative Models , "  Journal of the Opera t i onal 
Research Soci e ty, 3 0 ,  no . 8 ( 1 9 7 9 ) , 7 0 0 ; Giorgio Bodo and 
Luigi Federico Signorini , " Short-Term Forecas ting o f  the 
Industrial Produc tion Index , " Interna t i onal Journal o f  
Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) , 2 4 5 . 

6 1 . Giorgio Bodo and Luigi Federico Signorini , " Short - Term 
Forecas ting o f  the Industrial Produc tion Index , " 
In terna tional Journal of Forecas t ing, 3 ,  no . 2 ( 1 9 8 7 ) , 2 4 5 . 

6 2 . Thomas E .  Vol lmann , Wi l l iam L .  Berry , and D .  Clay 
Whybark , Integra ted Produ c t i on and Invent ory Managemen t :  
Revi tali zing the Manufa c turing En terprise , The Bus iness One 
Irwin/APICS Library o f  Integrated Resource Management 
( Homewood , I l l inois 6 0 4 3 0 :  Bus iness One Irwin , 1 9 9 3 ) , 7 1 . 

2 8 5  



63 . Giorgio Bodo and Luigi Federico Signorini , " Short-Term 
Forecas ting of  the Indus trial Produc t ion Index , "  
In terna t i onal Journal of Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) , 2 4 5 . 

6 4 . Richard Ashley , " On the relative wor th of  recent macro­
economic forecas ts , "  In terna t i onal Journal of Forecas t ing, 
4 ,  no . 3 ( 19 8 8 ) , 3 63 - 3 7 6 ; Richard Ashley , " On the 
Use fulness o f  Macroeconomic Forecasts as Inputs to 
Forecasting Models , "  Journal o f  Forecas t ing, 2 ( 1 9 8 3 ) , 2 1 1 -
2 2 3 . 

6 5 . Laura Irwin Langbein , Discovering Whe ther Programs 
Work : A Guide t o  Sta tis t i cal Me thods for Program Evalua t i on ,  
The Scott , Foresman Public Pol icy Analys is and Management 
Science Series , Arnold J .  Mel tsner and Mark H Moore , Eds . 
( Glenview , I l l inois : Scot t , Foresman and Company , 1 9 8 0 ) , 3 1  
- 3 9 ; David Nachmias and Chava Nachmias , Research Me thods in 
the Social Sci ences , 2nd ed . ( New York : S t . Martin ' s  Press , 
1 9 8 1 ) , 82  f f . 

6 6 . Alexander Rosenberg , Phi l osophy of Social Sci ence , 
Dimensions of  Phi losophy Series , Norman Daniels and Ke i th 
Lehrer , eds . ( Boulder : Wes tview Press ,  1 9 8 8 ) , 9 ;  David Hume , 
An Inquiry Concerning Human Unders tanding in David Hume : On 
Human Na t ure and the Unders tanding, Antony Flew ,  ed . ,  
Col l ier C lassics in the His tory of  Thought , Crane Brinton 
and Paul Edwards , eds . ( New York : The Macmi l lan Company , 
1 9 7 1 ) , 7 6  f f . 

6 7 . Laura Irwin Langbe in , Discovering Whe ther Programs 
Work : A Guide to Sta t i s t i cal Me thods for Program Eva l ua t i on ,  
The Scott , Foresman Public Pol icy Analys is and Management 
Science Series , Arno ld J .  Mel tsner and Mark H Moore , Eds . 
( Glenview , I l l inois : Scot t , Foresman and Company , 1 9 8 0 ) , 3 1  
- 3 9 ; David Nachmias and Chava Nachmias , Research Me thods in 
the Social Sci ences , 2nd ed . ( New York : St . Martin ' s  Press , 
1 9 8 1 ) , 82  f f . 

6 8 . J .  Sco t t  Arms trong , Long-Range Forecas ting, 2nd ed . 
(New York : John Wi ley & Sons : 1 9 8 5 ) 2 0 4 ; SAS Ins t i tute Inc . ,  
SA� User ' s  Guide : Sta t i s t i cs - Versi on 5 Edi t i on ( Cary , 
North Carolina : SAS Ins t i tute Inc . : 1 9 8 5 ) , 7 6 3  - 7 7 4 . 

2 8 6  



Endnotes Chapter 3 

6 9 . Fred Collopy and J .  Scot t  Arms trong , " Expert Opinions 
About Extrapolation and the Mystery of the Overlooked 
Discontinui ties , " In terna t i onal Journal of Forecas ting, 8 ,  
no . 4 ( December 1 9 92 ) , 5 7 8 ; Lewis W .  Coopersmith , 
" Forecas ting Time Series Which are Inherently 
Discontinuous , "  Journal of Forecas ting, 2 ( 1 9 8 3 ) , 2 2 5 -2 3 5 .  

7 0 . Fred Collopy and J .  Scot t  Arms trong , " Expert Opinions 
About Extrapolation and the Mys tery o f  the Overlooked 
Discontinui ties , " Interna t i onal Journal of Forecas ting, 8 ,  
no . 4 ( December 1 9 92 ) , 5 7 8 . 

7 1 . Fred Collopy and J .  Sco t t  Arms trong , " Expert Opinions 
About Extrapolation and the Mys tery o f  the Overlooked 
Discontinuities , "  In ternational Journal of Forecas ting, 8 ,  
no . 4 ( December 1 9 92 ) , 5 7 5 - 5 82 ; Spyros Makridakis , Michele 
Hibon , Ed Lusk , and Monce f  Belhadj ali , " Conf idence 
Intervals : An Empirical Investigation of  the Series in the 
M-Competition , " In terna t i onal Journal o f  Forecas ting, 3 ,  no . 
3 / 4 ( 1 9 8 7 ) , 4 9 9 . 

7 2 . Nagesh S .  Revankar , On the Problem o f  Forecast ing Prior 
to ' Price ' Control or Decontrol ,  Journal of Forecas t ing, 1 1 , 
no . 1 ( 1 9 92 ) , 1 - 1 5 . 

7 3 . D .  W .  Trigg , and A .  G .  Leach . Exponential smoothing 
wi th an adaptive response rate , Opera t i onal Research 
Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) , 53 . 

7 4 . D .  W .  Trigg , and A .  G .  Leach . Exponential smoothing 
wi th an adaptive response rate , Opera ti onal Research 
Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) , 53 . 

7 5 . D .  W .  Trigg , and A .  G .  Leach . Exponential smoothing 
wi th an adapt ive response rate , Opera t i onal Research 
Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) , 53 . 

7 6 . J .  Scot t  Arms trong , Long-Range Forecas ting, From 
Crys tal Bal l  to Compu ter . 2d ed . ( New York : John Wiley & 
Sons , 1 9 8 5 ) , 1 6 5 . 

7 7 . J .  Scot t  Arms trong , Long-Range Forecas t ing ( New York , 
John Wiley & Sons , 1 9 8 5 ) , 1 7 1 . 

7 8 . J .  Sco t t  Arms trong , Long-Range Forecas ting, From 
Crys tal Bal l  to Compu ter .  2d ed . { New York : John Wi l ey & 

2 8 7 



Sons , 1 9 8 5 ) , 1 6 5 . 

7 9 . D .  W .  Trigg , and A .  G .  Leach . Exponential smoo thing 
wi th an adaptive response rate , Opera t i onal Research 
Quarterly, 1 8 , no . 1 ( 19 67 ) , 53 - 5 9 . 

8 0 . Forecas ter at Department of  Corrections , personal 
communication , March 5 ,  1 9 9 3 . 

8 1 . Fred Collopy and J .  Scott Arms trong , " Expert Opinions 
About Extrapolation and the Mystery o f  the Overlooked 
Discontinuities , "  Int erna t i onal Journal of Forecas ting, 8 ,  
no . 4 ( 19 92 ) , 5 7 5 - 5 8 2 . 

2 8 8  



Endnotes Chapter 4 

8 2 . Fred Collopy and J .  Scott Arms trong , " Expert Opinions 
About Extrapolation and the Mys tery o f  the Overlooked 
Discontinuities , "  Int erna t i onal Journal of Forecas ting, 8 ,  
no . 4 ( 1 9 92 ) , 5 7 8 . 

8 3 . Fred Collopy and J .  Scott Arms trong , " Expert Opinions 
About Extrapolation and the Mys tery o f  the Overlooked 
Discontinui ties , " Interna t i onal Journal of Forecas ting, 8 ,  
no . 4 ( December 1 9 9 2 ) , 5 7 7 . 

8 4 . Evere t te S .  Gardner , Jr . ,  " Automatic Monitoring o f  
Forecas ting Errors , "  Journal o f  Forecas t ing, 2 ( 1 9 8 3 ) , l - 2 l . 

8 5 . John o .  McClain ,  " Dominant Tracking Signals , "  
In t erna t i onal Journal of Forecas ting, 4 ,  no . 4 ( 1 9 8 8 ) , 5 6 3 -
5 7 2 . 

8 6 . L .  W .  Coopersmi th , " Forecas ting Time Series Which are 
Inherently Discontinuous , "  Journal of Forecas ting, 2 ( 1 9 8 3 ) , 
2 2 5 -2 3 5 .  

8 7 . Thomas E .  Vol lmann , Wi ll iam L .  Berry , and D .  Clay 
Whybark , Integra ted Produ c t i on and Invent ory Managemen t :  
Revi tal izing the Manufac turing En terprise , The Bus iness One 
Irwin/APICS Library o f  Integrated Resource Management 
( Homewood , I l l inois 6 0 4 3 0 : Bus iness One Irwin , 199 3 ) , 8 4 - 8 5 . 

8 8 . D .  W .  Trigg and A .  G .  Leach , " Exponential Smoothing 
wi th an Adaptive Response Rate , " Opera ti onal Research 
Quarterly, 1 8 ,  no . 1 ( 1 9 6 7 ) , 53 - 5 9 . 

8 9 . Spyros Makridakis , Steven C .  Whee lwright , and Vic tor E .  
McGee , Forecas t ing : Me thods and Appl i ca t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 114 . 

9 0 . Robert Dancer and C l i f ford Gray , " An Empirical 
Evaluation of  cons tant and Adaptive Computer Forecas t ing 
Model s  for Inventory Control , "  Decision Sci ences , 8 ( 1 9 7 7 ) , 
2 2 8 - 2 3 8 .  

9 1 . T .  M .  Wi lliams , " Adaptive Hol t-Winters Forec as ting , " 
Journal of the Opera t i onal Research Soc i e ty, 3 8 ,  no . 6 ( June 
1 9 8 7 ) , 5 53 - 5 6 0 . 

92 . T .  M .  Wi l l iams , " Adaptive Ho l t-Winters Forec as t ing , " 
Journal of the Opera t i onal Research Soci e ty, 3 8 ,  no . 6 ( June 

2 8 9  



1 9 8 7 ) , 5 5 5 . 

9 3 . T .  M .  Wi l l iams . " Adaptive Hol t -Winters Forecas ting , " 
Journal of the Opera t i onal Research Soci e ty, 3 8 ,  no . 6 ,  ( June 
1 9 8 7 ) , 5 5 6 . 

9 4 . Blyth C .  Archibald, " Parameter Space o f  the Hol t ­
Winters ' model , "  In terna t i onal Journal of Forecas ting, 6 ,  
no . 2 ( July 1 9 9 0 ) , 2 0 0  

9 5 . Samuel Ei lon and Joseph Elmaleh ,  " Adapt ive Limi ts in 
Inventory Contro l , " Management Sci ence , 1 6 , no . 8 ( Apr i l , 
1 9 7 0 ) , B - 5 3 3  - B- 5 4 8 . 

9 6 . Steinar Ekern , " Adaptive Exponential Smoothing 
Revis i ted , " Journal of the Opera t i onal Research Soc i e ty, 3 2  
( 1 9 8 1 ) , 7 7 5 - 7 82 . 

9 7 . H .  Theil , and S .  Wage , " Some Observations on Adaptive 
Forecas t ing , " Managemen t Sci ence , 1 0 , no . 2 ( January , 1 9 6 4 ) , 
1 9 8 - 2 0 6 . 

9 8 . M .  Nerlove and S .  Wage , " On the Opt imality of  Adaptive 
Forecas ting , " Managemen t Sci ence , 1 0 , no . 2 ( 1 9 6 4 ) , 2 0 7 -2 2 3 . 

9 9 . T .  M .  Wil l iams , " Adaptive Hol t-Winters Forecas ting , " 
Journal of the Opera t i onal Research Soc i e ty, 3 8 ,  no . 5 
( 1 9  8 7  ) ,  5 6-0 .  

1 0 0 . James B .  McDonald , " Partially Adapt ive Estimation o f  
ARMA Time Series Models , "  In terna t i onal Journal of 
Forecas ting, 5 ,  no . 2 ( 1 9 8 9 ) , 2 17 - 2 3 0 .  

1 0 1 . J .  Scott Arms trong , Long-Range Forecas ting (New York , 
John Wi ley & Sons , 1 9 8 5 ) , 17 1 .  

1 0 2 . C .  Chat field , " The Hol t-Winters Forecast ing Procedure , "  
Appl i ed Sta t i s t i cs ,  2 7 , no . 3 ( 1 9 7 8 ) , 2 6 4 -2 7 9 . 

1 0 3 . D .  W .  Trigg and A .  G .  Leach , " Exponential Smoothing 
with an Adaptive Response Rate , " Opera t i onal Research 
Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) , 53 . 

1 0 4 . Robert Dancer and C l i f ford Gray , " An Empirical 
Evaluation of cons tant and Adaptive Computer Forecas ting 
Model s  for Inventory Control , "  Decision Sci ences , 8 ( 1 9 7 7 ) , 
2 3 1 . 

2 9 0  



1 0 5 . C .  Chatfield,  " The Hol t-Winters Forecasting Procedure , "  
Appl i ed Statis t i cs ,  2 7 , no . 3 ( 1 9 7 8 ) ,  2 6 4 - 27 9 . 

1 0 6 . P .  J .  Harrison and C .  F .  Stevens , " Bayesian 
Forecas ting , " Journal of the Royal Sta t i s t i cal Soc i e ty 
Series B ,  3 4 , no . 3 ( 1 9 7 6 ) ,  2 0 5 - 2 3 0 ;  Nancy J .  Kirkendall , 
" Moni toring for Outl iers and Level Shi f ts in Kalman F i l ter 
Implementation of Exponential Smoothing , "  Journal of 
Forecas ting 1 1 , no . 6 ( 1 9 9 2 ) 5 4 3  - 5 6 0 , Andrew Harvey and 
Ralph D .  Snyder , " Struc tural Time Series Models in Inventory 
Control , "  In terna t i onal Journal of Forecas ting, 6 ,  no . 2 
( July 1 9 9 0 ) , 1 8 7 - 1 9 8 . 

1 0 7 . P .  J .  Harrison and C .  F .  Stevens , " A  Bayesian Approach 
to Short- term Forecas ting , " Opera t i onal Research Quart erly, 
2 2 , no . 4 ( 19 7 1 ) , 2 4 1  - 3 62 . 

1 0 8 . Duk Bin Jun and Robert M .  Ol iver , " Bayesian Forecast ing 
Following a Maj or Level Change in Exponential Smoo thing , "  
Journal of Forecas t ing 4 ( 1 9 8 5 ) , 2 9 3 -3 02 . 

1 0 9 . Duk B .  Jun , " On Detec ting and Es timating a Maj or Leve l 
or Slope Change in General Exponent ial Smoothing , "  Journal 
of Forecas ting 8 ( 1 9 8 9 ) , 5 5 - 6 4 . 

1 1 0 . Genshiro Kitagawa , " Non-Gauss ian S tate-Space Model ing 
o f  Nons tationary Time Series , "  Journal of the Ameri can 
Sta t i s t i cal Associ a t i on ,  82 ( December 1 9 8 7 ) , 1 03 2 - 1 0 4 4 . 

1 1 1 . Gwi lym M .  Jenkins , Pra c t i cal Experi ences wi th Modell ing 
and Forecas ting Time Seri es ( Jersey , Channel Islands : Gwi lym 
Jenkins & Partners ( Overseas ) Ltd . , 1 9 7 9 ) , 3 8 - 8 7 ; Wal ter 
Vandaele , Appl i ed Time Seri es and Box-Jenkins Models ( New 
York : Harcourt Brace Jovanovich , Publ ishers , 1 9 8 3 ) , 2 5 7 - 3 0 0 . 

112 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas t ing : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 9 0 6 . 

1 13 . Ruey S .  Tsay , " Outl iers , Level Shi f ts , and Variance 
Changes in Time Series , "  Journal of Forecas ting, 7 ( 1 9 8 8 ) , 
1 -2 0 ; Ruey S .  Tsay , " Comment : Detec ting and Mode l ing Changes 
in Time Series , "  Journal of the Ameri can Sta t i s t i cal 
Associa t i on ,  82 ( 1 9 8 7 ) , 1 0 5 6 - 1 0 5 9 . 

114 . David J .  Pack,  " In De fense o f  ARIMA Mode l ing , " 
Interna t i onal Journal of Forecas t ing, 6 ,  no . 2 ( July 1 9 9 0 ) , 
2 1 1 - 2 1 8 . 

2 9 1  



1 1 5 . S teven Hil lmer , " Moni toring and Adj ust ing Forecasts in 
the Presence o f  Addi tive Outl iers , "  Journal of Forecas t ing 3 
( 1 9 8 4 ) , 2 0 5 - 2 1 5 . 

1 1 6 . Giorgio Bodo and Luigi Federico Signorini , " Short-Term 
Forecas ting o f  the Indus trial Produc tion Index , " 
In terna tional Journal of Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) , 2 4 5 . 

1 1 7 . Vic tor M .  Guerrero , " ARIMA Forecas ts wi th Res tric tions 
Derived from a S truc tural Change , "  Interna t i onal Journal of 
Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 3 9 - 3 4 7 . 

1 1 8 . Vic tor M .  Guerrero , " ARIMA Forecasts with Restrict ions 
Derived from a S truc tural Change , "  In t erna t i onal Journal of 
Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 3 9 . 

1 1 9 . Vic tor M .  Guerrero , " ARIMA Forecas ts wi th Restrict ions 
Derived from a S truc tural Change , "  In terna t i onal Journal of 
Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 4 0 . 

1 2 0 . Spyros Makridakis and Robert Carbone , " Forecas ting When 
Pattern Changes Occur Beyond the Historical Data , " 
Management Sci ence , 3 2 , no . 3 ( 1 9 8 6 ) , 2 5 7 -2 7 1 .  

1 2 1 . T .  M .  Wi l l iams " Adaptive Ho lt-Winters Forecas ting , " 
Journal of the Opera t i onal Research Soci e ty, 3 8 ,  no . 6 ( June 
1 9 8 7 ) , 5 5 7 ; Everette S .  Gardner , Jr . ,  " Exponential 
Smoothing : - The State of the Art , " Journal of Forecas ting, 4 
( 1 9 8 5 ) , 1 1 ; S teinar Ekern , " Adaptive Exponential Smoo thing 
Revis i ted, " Journal of the Opera t i onal Research Soc i e ty, 3 2 , 
no . 9 ( 1 9 8 1 ) , 7 7 8 ; E .  McKenz ie , " Error Analys is for Winters ' 
Additive Seasonal Forecast ing Sys tem, " In t erna tional Journal 
of Forecas ting, 2 ( 1 9 8 6 ) , 3 7 3 - 3 82 as c i ted in Paul Newbold 
and Ted Bos , " On Exponential Smoothing and the As sumption of 
Deterministic Trend Plus White Noise Data-Generating 
Mode ls , "  Interna t i onal Journal of Forecas t ing, 5 ,  no . 4 
( 1 9 8 9 ) , 5 2 5 ; D .  W .  Trigg , and A .  G .  Leach . Exponential 
smoothing wi th an adaptive response rate , Opera tional 
Research Quarterly, 1 8 , no . 1 ( 1 9 6 7 ) , 53 . 

122 . C .  Chatfield,  " The Ho l t-Winters Forecasting Procedure , "  
Appl i ed Sta t i s t i cs ,  2 7 , no . 3 ( 1 9 7 8 ) , 2 6 4 - 2 7 9 . 

1 2 3 . Robert F i ldes and Spyros Makridakis , " Forecast ing and 
Loss Func tions , "  In terna t i onal Journal of Forecas ting, 4 ,  
no . 4 ( 1 9 8 8 ) , 5 4 6 ; Evere t te S .  Gardner , Jr . and Spyros 
Makridakis , " The Future of  Forecas ting , " In terna t i onal 
Journal of Forecas t ing, 4 ,  no . 3 ( 1 9 8 8 ) , 3 2 6 . 

2 9 2  



1 2 4 . Wilpen L .  Gorr , " Spec ial Event Data in Shared 
Databases , "  MIS Quarterly, 1 0  ( September 1 9 8 6 ) , 2 3 9 -2 5 0 ; 
Wi lpen L .  Gorr , " Use of  Special Event Data in Government 
Informat ion Sys tems , "  Publ i c  Admini s tra ti on Revi ew, 4 6 , 
Spec ial Issue ( November 1 9 8 6 ) , 53 2 - 53 9 . 

1 2 5 . Rudol f  Lewandowski , " Sales Forecast ing by FORSYS , "  
Journal of Forecas ting, 1 ( 19 82 ) , 2 0 5 - 2 1 4 . 

1 2 6 . S .  Makridakis ,  A .  Anderson , R .  Carbone , R .  Fi ldes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen , and R .  Winkler , 
" The Accuracy o f  Extrapolation ( Time Series ) Methods : 
Results of  a Forecasting Compe t i t ion , " Journal of 
Forecas ting, 1 ( 1 9 82 ) , 127 . 

1 2 7 . Rudol f  Lewandowski , " Sales Forecas ting by FORSYS , "  
Journal of Forecas ting, 1 ( 1 9 82 ) , 2 0 9 . 

1 2 8 . Rudol f  Lewandowski , " Sales Forecas ting by FORSYS , " 
Journal of Forecas t ing, 1 ( 19 82 ) , 2 0 9 - 2 1 0 . 

1 2 9 . Rudol f  Lewandowski , " Sales Forecas ting by FORSYS , "  
Journal of Forecas ting, 1 ( 1 9 82 ) , 2 0 9 - 2 1 0 . 

13 0 .  Wi lpen L .  Gorr , " Spec ial Event Data in Shared 
Databases , "  MIS Quarterly, 1 0  ( September 1 9 8 6 ) , 2 4 0 - 2 4 1 ; 
Wi lpen L .  Gorr , " Use o f  Spec ial Event Data in Government 
Information Sys tems , "  Publ i c  Adminis tra t i on Revi ew, 4 6 ,  
Special Issue ( November 1 9 8 6 ) , 5 3 3 . 

13 1 .  Robert L .  McLaughlin , " A  Model o f  an Average Recession 
and Recovery , " Journal of Forecas ting, 1 ( 1 9 82 ) , 5 5 - 6 5 . 

1 3 2 . Jose Juan Carreno and Jesus Madinave i t ia , " A  
Modi fication o f  Time Series Forecas ting Methods for Handl ing 
Announced Price Increases , "  In terna t i onal Journal of 
Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) , 4 7 9 - 4 8 4 . 

1 3 3 . Jose Juan Carreno and Jesus Madinavei t i a ,  " A  
Modi f ication o f  Time Series Forecas ting Me thods for Handl ing 
Announced Price Increases , "  In terna t i onal Journal of 
Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) , 4 8 3 . 

1 3 4 . J .  Sco t t  Arms trong , Roderick J .  Brodie , and Shelby H .  
Mc Intyre , " Forecasting Methods for Marke ting , " In terna t i onal 
Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 6 5 ; Vij ay 
Mahaj an and Yoram Wind , " New Product Forecas ting Models : 
Direc tions for Research and Implementation , " In terna t i onal 
Journal of Forecas ting, 4 ,  no . 3 ( 1 9 8 8 ) , 3 4 1 - 3 5 8 ; James E .  

2 93 



Cox , "An Assessment o f  Books Relevant to Forecast ing in 
Market ing , " Interna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4 
( 1 9 8 7 ) , 5 1 9 - 52 6 ; Christopher J .  Eas ingwood , " An Analogical 

Approach to the Long Term Forecas ting o f  Maj or New Produc t 
Sales , "  In terna t i onal Journal of Forecas ting, S ,  no . 1 
( 1 9 8 9 ) , 6 9 -82 ; John C .  Chambers , Satinder K .  Mul lick,  and 
Donald D .  Smi th , " How to Choose the Right Forecasting 
Technique , "  Harvard Business Revi ew ( July-August 1 9 7 1 ) , 4 5  -
7 4 . 

13 5 .  John A .  Sharp and David H .  R .  Price , " Experience Curve 
Models in the Elec tronic Supply Indus try , " In terna ti onal 
Journal of Forecas t ing, 6 ,  no . 4 ( 1 9 9 0 ) , 5 3 1 - 5 4 0 ; Denis R .  
Towi l l , " Forecasting Learning Curves , "  In terna tional 
Journal of Forecas t ing, 6 ,  no . 1 ( 1 9 9 0 ) , 2 5 -3 8 ; Sydney D .  
Howell , " Parameter Ins tabi l i ty in Learning Curve Models , " 
Int erna t i onal Journal of Forecas ting, 6 ,  no . 4 ( 1 9 9 ) , 5 4 1 -
5 4 7 ; Mohamed M .  Nairn and Denis R .  Towi l l , " An  Engineering 
Approach to LSE Mode l l ing of Experience Curves in the 
Elec tricity Supply Industry , " In terna t i onal Journal of 
Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) , 5 4 9 - 5 5 6 ; Peg Young and J .  
Kei th Ord, " Model Selec tion and Es timation for Techno logical 
Growth Curves , "  In terna t i onal Journal of Forecas ting, S ,  no . 
4 ( 1 9 8 9 ) , 5 0 1 - 5 13 ; Ronald Bewley and Denz i l  G .  Fiebig , " A  
Flexible Logis tic Growth Model with Applicat ions in 
Telecommunications , "  Interna t i onal Journal of Forecas t ing, 
4 ,  no . 2 ( 1 9 8 8 ) , 1 7 7 - 1 9 2 . 

13 6 . J .  Scott Arms trong , Roderick J .  Brodie , and She lby H .  
Mc Intyre , " Forecas ting Methods for Marke ting , " In terna t i onal 
Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 6 7 . 

13 7 . Christopher J .  Eas ingwood " An Analogical Approach to 
the Long Term Forecas ting o f  Maj or New Produc t Sales , "  
In t erna tional Journal of Forecas ting, S ,  no . 1 ( 1 9 8 9 ) , 7 6 . 

13 8 .  J .  Scot t  Arms trong , Roderick J .  Brodie , and Shelby H .  
Mc Intyre , " Forecasting Methods for Marke ting , " Interna t i onal 
Journal of Forecas t ing, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 6 5 . 

13 9 .  Rodney D .  S teward , Cos t  Es tima ting, 2nd ed . ( New York , 
John Wi ley & Sons , Inc . ,  1 9 9 0 ) . 

1 4 0 . Gene Woolsey ,  " The F i f th Column : The Case o f  the 
Unused Forecas t or When Trying to Forecas t What ' s  To Be , 
First Try Y = MX + B , " In terfaces , 1 6 ,  no . 6 ( November­
December 1 9 8 6 ) , 5 8 - 6 0 . 

2 9 4  



Endnotes Chapter 5 

1 4 1 . Dennis A .  Ahlburg and Kenneth C .  Land , " Population 
Forecas ting : Gue s t  Edi tors ' Introduc tion , " In terna t i onal 
Journal of Forecas ting, 8 ,  no . 3 ( 19 92 ) , 2 8 9 -2 9 9 ; Stanley K .  
Smi th and Terry Sincich " Forecasting S tate and Household 
Populations : Evaluating the Forecast Accuracy and Bias o f  
Alternative Populations Proj ec tions for S tates , " 
Interna tional Journal o f  Forecas ting, 8 ,  no . 3 ( 1 9 92 ) , 4 9 5 -
5 0 8 . 

142 . J .  Scott Arms trong , Long-Range Forecas ting, From 
Crys tal Ball t o  Compu ter . 2d ed . ( New York : John Wiley & 
Sons , 1 9 8 5 ) , 5 7  - 6 4 . 

1 4 3 . J .  Scot t  Arms trong , Long-Range Forecas t ing, From 
Crys tal Bal l  to Compu ter . 2d ed . ( New York : John Wi ley & 
Sons , 1 9 8 5 ) , 5 8 . 

1 4 4 . J .  Scott Arms trong , Long-Range Forecas ting : From 
Crys tal Bal l  t o  Compu t er ,  2 d .  ed . ( New York , John Wi ley & 
Sons , 1 9 8 5 ) , 8 1 - 82 . 

1 4 5 . P .  J .  Harrison and C .  F .  Stevens , " Bayes ian 
Forecasting , " Journal of the Royal Sta ti s t i cal Soci e ty ,  
Series B ,  3 4 ,  no . 3 ( 1 9 7 6 ) , 2 0 5 - 2 2 8 ; M .  B .  Priestly ,  
" Discuss ion on the Paper by Pro fessor Harri son and Mr . 
Stevens , :  Journal of the Royal Stati s t i cal Soci ety, Series 
B ,  3 4 ,  no . 3 ( 1 9 7 6 ) , 2 2 9 ; Thomas E .  Vol lmann , Wi ll iam L .  
Berry , and D .  Clay Whybark , In tegra ted Produc tion and 
Inven tory Managemen t :  Revi talizing the Manufacturing 
En terpris e ,  The Bus iness One Irwin/APICS Library of  
Integrated Resource Management ( Homewood , I l l inois 6 0 4 3 0 : 
Bus iness One Irwin , 1 9 9 3 ) , 6 9 - 9 0 . 

1 4 6 . Spyros Makridakis , S teven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i c a t i ons , 3 rd ed . ( New 
York : John Wi ley & Sons , 1 9 8 3 ) , 1 4 9 - 1 5 1 . 

1 4 7 . Spyros Makridakis , Chris Chat field , Michele Hibon , 
Michael Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  
Simmons , " The M2 -Compet i t ion : A Real -Time Judgmentally Based 
Forecasting S tudy , " Int erna t i onal Journal of Forecas t ing, 9 ,  
no . 1 ( Apri l  1 9 9 3 ) , 5 - 2 2 . 

2 9 5  



1 4 8 . Thomas E .  Vo l lmann , Wi lliam L .  Berry , and D .  Clay 
Whybark , In tegra ted Produ c t i on and Inven t ory Managemen t :  
Revi tali zing the Manufac turing En terpri s e ,  The Bus ines s  One 
Irwin/APICS Library o f  Integrated Resource Management 
( Homewood , I l l inoi s  6 0 4 3 0 : Bus iness One Irwin , 1 9 9 3 ) , 8 1 - 8 2 . 

1 4 9 . Personal communication wi th Don Mil ler on September 3 ,  
1 9 9 3 . 

1 5 0 . J .  Scot t  Arms trong , Long-Range Forecas ting : From 
Crys tal Bal l t o  Compu t er ,  2d ed . ( New York : John Wi ley & 
Sons , 1 9 8 5 ) , 6 1 . 

1 5 1 . Alan Pankratz , " Time Series Forecas ts and Extra-mode l 
Information , " Journal of Forecas ting 8 ( 1 9 8 9 ) , 7 5 - 8 3 . 

2 9 6  



Endnotes Chapter 6 

1 5 2 . S tephen K .  McNees , " On the Future o f  Macroeconomic 
Forecasting , " Internat i onal Journal of Forecas ting, 4 ,  no . 3 
( 1 9 8 8 ) , 3 5 9 - 3 62 . 

1 5 3 . Stephen K .  McNees , " On the Future o f  Macroeconomic 
Forecasting , " Interna t i onal Journal of Forecas ting, 4 ,  no . 3 
( 19 8 8 ) , 3 5 9 - 3 62 ; J .  Scott Arms trong , Roderick J .  Brodie , and 
Shelby H .  Mc Intyre , " Forecas ting Methods for Marketing , " 
Int erna tional Journal of Forecas ting, 3 ,  no . 3 / 4  ( 1 9 8 7 ) , 
3 6 5 ;  Michael D .  Geurts and J .  Patrick Kel ly ,  " Comments on : 

I In de fense of  ARIMA model ing I ,  by D .  J .  Pack , " 
In terna tional Journal of Forecas t ing, 6 ,  no . 4 ( 19 9 0 ) , 4 9 7 -
4 9 9 ; Spyros Makridakis and Michele Hibon , " Exponential 
smoothing : The e f fec t of ini tial values and loss func tions 
on pos t-sample forecas ting accuracy , " Int ernational Journal 
of Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 17 - 3 3 0 . 

1 5 4 . Michael D .  Geurts and J .  Patrick Kel ly ,  " Comments on : 
I In de fense of  ARIMA model ing I ,  by D .  J .  Pack, " 
Int erna t i onal Journal of Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) , 4 9 7 -
4 9 9 . 

1 5 5 . Michael D .  Geurts and J .  Patrick Ke l ly ,  " Comments on : 
I In de fense o f  ARIMA model ing I ,  by D .  J .  Pack , " 
In t erna tional Journal of Forecas ting, 6 ,  no . 4 ( 1 9 9 0 ) , 4 9 7 -
4 9 9 . 

1 5 6 . Michael D .  Geurts and J .  Patrick Kel ly ,  " Comments on : 
I In de fense o f  ARIMA model ing I ,  by D .  J .  Pack , " 
In terna t i onal Journal of Forecas t ing, 6 ,  no . 4 ( 1 9 9 0 ) , 4 9 7 -
4 9 9 . 

1 5 7 . J .  Scott Arms trong , Roderick J .  Brodie , and Shelby H .  
Mc Intyre , " Forecas t ing Methods for Marke ting , " In terna t i onal 
Journal of Forecas t ing, 3 ,  no . 3 / 4  ( 1 9 8 7 ) , 3 6 5 . 

1 5 8 . H .  o .  Stekler , " Macroeconomic Forecas t Evaluat ion 
Techniques , "  Int erna t i onal Journal of Forecas ting, 7 ,  no . 3 
( 1 9 9 1 ) , 3 7 5 -3 8 4 . 

1 5 9 . H .  o .  Stekler , " Macroeconomic Forecast Evaluation 
Techniques , "  Interna t i onal Journal of Forecas ting, 7 ,  no . 3 
( 19 9 1 ) , 3 7 5 -3 8 4 . 

1 6 0 . H .  o .  S tekler , " Macroeconomic Forecast Evaluation 
Techniques , "  Int erna t i onal Journal o f  Forecas t ing, 7 ,  no . 3 

2 9 7 



( 1 9 9 1 ) , 3 7 5 - 3 8 4 . 

1 6 1 . Patrick A .  Thompson , " An  MSE Statistic for Comparing 
Forecast Accuracy Across Series , "  In terna t i onal Journal o f  
Forecas ting, 6 ,  no 2 .  ( July 1 9 9 0 ) , 2 1 9 - 2 2 7 ; Benito E .  
F lores , " The Uti l i z ation o f  the Wi lcoxon Tes t to Compare 
Forecas ting Methods : A Note , " In terna t i onal Journal of 
Forecas ting, 5 ,  no . 4 ( 1 9 8 9 ) , 5 2 9 - 53 5 ; R .  A .  Kolb and H .  o .  
S tekler , " Are Economic Forecasts Signi ficantly Better than 
Naive Predic tions ? An Appropriate Tes t , " Int erna t i onal 
Journal of Forecas t ing, 9 ,  no . 1 ( Apri l  1 9 93 ) , 1 1 7 - 12 0 ; 
Peter J .  Danaher and Roderick J .  Brodie , " Predictive 
Accuracy of Simple Versus Complex Market Share Models , "  
Int erna t i onal Journal of Forecas ting, 8 ,  no . 4 ( December 
1 9 92 ) , 6 13 - 62 6 ; Robert Fi ldes and Spyros Makridakis , 
" Forecas ting and Loss Func tions , "  Int erna t i onal Journal of 
Forecas ting, 4 ,  no . 4 ( 1 9 8 8 ) , 5 4 5 - 5 5 0 ; Pierre LefranGo is , 
" Al lowing for Asymmetry in Forecast Errors : Results from a 
Monte-Carlo S tudy , " Interna t i onal Journal of Forecas t ing, 5 .  
no . 1 ( 1 9 8 9 ) , 9 9 - 1 1 0 ; Patrick A .  Thompson , " Evaluation o f  
the M-competition Forecas ts via Log Mean Squared Error 
Ratio , I Interna t i onal Journal of Forecas ting, 7 ,  no . 3 
( November 1 9 9 1 ) , 3 3 1 -3 3 4 ; Lap-Ming Wun and Wen Lea Pearn , 
" Assessing the S tatis tical Charac teris tics o f  the Mean 
Absolute Error [ o f ]  Forecas ting , " Interna t i onal Journal o f  
Forecas t ing, 7 ,  no . 3 ( November 1 9 9 1 ) , 3 3 5 - 3 3 7 ; J .  Sco t t  
Arms trong and Fred Col lopy , " Error Measures for General i z ing 
about Forecasting Methods : Empirical Comparisons , "  
In t erna t i onal Journal of Forecas ting, 8 ,  no . 1 ( June 1 9 92 ) , 
6 9 - 8 0 ; Robert Fi ldes , " The Evaluation o f  Extrapolative 
Forecas ting Methods , "  Int erna t i onal Journal of Forecas ting, 
8 ,  no . 1 ( Apri l  1 9 9 2 ) , 8 1 - 9 8 ; Beni to E .  Flores , " A  Pragmatic 
View o f  Accuracy Measurement in Forecas t ing , " Omega , 1 4 , no . 
2 ( 1 9 8 6 ) , 93 - 9 8 ; Robert L .  McLaughlin , " Measuring the 
Accuracy of  Forecas ts , " Business Economi cs , 7 (May 1 9 7 2 ) , 
2 7 - 3 5 . 

1 6 2 . Spyros Makridakis , Michele Hibon , Ed Lusk,  and Monce f  
Belhadj ali , " Confidence Intervals : An Empirical 
Inve s tigation of the Series in the M-Compe ti tion ,  " 
In t erna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 
4 8 9 - 5 0 8 . 

1 6 3 . S tanley K .  Smi th and Terry Sincich,  " Forecas t ing S tate 
and Househo ld Populations : Evaluating the Forecas t Accuracy 
and Bias of Al ternative Populations Proj ec tions for States , "  
In terna ti onal Journal of Forecas ting, 8 ,  no . 3 ( 1 9 92 ) , 4 9 5 -
5 0 8 ; Spyros Makridaki s ,  " Metaforecast ing : Ways of  Improving 
Forecasting Accuracy and Use fulness , " Int erna t i onal Journal 

2 9 8  



of Forecas t ing, 4 ,  no . 3 ( 19 8 8 ) , 4 7 6 ; Robert Fi ldes and 
Spyros Makridakis , " Forecasting and Loss Func t ions , " 
In t erna t i onal Journal of Forecas ting, 4 ,  no . 4 ( 1 9 8 8 ) , 5 4 6 ; 
Everette S .  Gardner , Jr . and Spyros Makridakis ,  " The Future 
of Forecas ting , " Int erna t i onal Journal of Forecas t ing, 4 ,  
no . 3 ( 1 9 8 8 ) , 3 2 6 . 

1 6 4 . Spyros Makridakis , Steven C .  Wheelwright , and Vic tor E .  
McGee , Forecas ting : Me thods and Appl i ca t i ons , 3 rd ed . ,  New 
York : John Wiley & Sons , 1 9 8 3 , 8 9 1 . 

1 6 5 . H .  o .  Stekler , " Macroeconomic Forecas t Evaluation 
Techniques , "  Interna t i onal Journal of Forecas ting, 7 ,  no . 3 
( 1 9 9 1 ) , 3 7 7 . 

1 6 6 . Rudol f  Lewandowski , " Sales Forecas ting by FORSYS , "  
Journal of Forecas t ing, 1 ( 1 9 82 ) , 2 0 5 -2 1 4 ; M .  Nerlove and 
S .  Wage , " On the Opt imality o f  Adapt ive Forecas ting , " 
Managemen t Sci ence , 1 0 , no . 2 ( January , 1 9 64 ) , 2 0 7 -2 2 3 . 

1 6 7 . R .  D .  Snyder , " Progress ive Tuning o f  Simple Exponential 
Smoothing Forecas t s , " Journal of the Opera t i onal Research 
Soci e ty, 3 9 ,  no . 4 ( 1 9 8 8 ) , 3 9 3 -3 9 9 ; P .  J .  Harrison and C .  F .  
S tevens , " A  Bayesian Approach to Short- term Forecasting , " 
Opera t i onal Research Quarterly 2 2 , no . 4 ( 1 9 7 1 ) , 3 4 1 - 3 62 . 

1 6 8 . Christine A .  Martin and S tephen F .  Wi t t ,  " Forecas t ing 
Tourism Demand : A Comparison of the Accuracy of Several 
Quantitative Methods , "  Int erna t i onal Journal of Forecas t ing , 
5 ,  no . 1 ( 1 9 8 9 ) , 7 - 2 0 . 

1 6 9 . S .  Makridakis , A .  Andersen , R .  Carbone , R .  Fildes , M .  
Hibon , R .  Lewandowski , J Newton , E .  Parzen and R .  Winkler , 
" The Accuracy o f  Extrapolation ( Time Series ) Methods : 
Results of a F orecasting Competit ion , "  Journal o f  

Forecas t ing, 1 ( 1 9 82 ) , 1 1 1 - 1 53 ; Spyros Makridakis , Chri s  
Chat f ield , Michele Hibon , Michael Lawrence ,  Terence Mi l l s , 
Ke i th Ord, and LeRoy F .  Simmons , " The M2 -Competition : A 
Real -Time Judgmentally Based Forecasting S tudy , " 
Int erna t i onal Journal of Forecas t ing, 9 ,  no . 1 ( Apri l  1 9 9 3 ) , 
5 -2 2 . 

1 7 0 . Jose Juan Carreno and Jesus Madinave i t ia , " A  
Modi fication o f  Time Series Forecasting Methods for Handl ing 
Announced Price Increases , "  In terna t i onal Journal of 
Forecas t ing, 6 ,  no . 4 ( 1 9 9 0 ) , 4 8 3 ; Char les J .  LaCivita and 
Terry G .  Seaks , " Forecasting Accuracy and the Choice o f  
F irst D i f f erence o r  Percentage Change Regres sion Models , " 
In terna t i onal Journal of Forecas ting, 4 ,  No . 2 ( 1 9 8 8 ) , 2 6 1 -

2 9 9  



2 6 8 ; Wilpen L .  Gorr , " Spec ial Event Data in Shared 
Databases , "  MIS Quarterly, 10 ( September 1 9 8 6 ) , 2 3 9 - 2 5 0 ; 
Moheb A .  Ghal i ,  " Seasonality ,  Aggregation and the Tes t ing o f  
the Produc tion Smoothing Hypothes is , " The American Economi c 
Revi ew, 7 7 , no . 3 ( June 1 9 8 7 ) , 4 6 4 - 4 6 9 ; Donald Rosenfield,  
" A  Model for Predi c ting Frequenc ies of  Random Events , " 
Management Sci ence , 3 3 , no . 8 ( Augus t 1 9 8 7 ) , 947 - 9 5 4 ; Peter 
R .  Winters , " Forecas ting Sales by Exponential ly We ighted 
Moving Averages , " Managemen t Sci ence ,  7 ( Apri l  1 9 6 0 ) , 3 2 4 -
3 4 2 . 

1 7 1 . Richard Ashley ,  " On the Relative Worth o f  Recent Macro­
Economic Forecas ts , " In ternational Journal of Forecas ting , 
4 ,  no . 3 ( 1 9 8 8 ) , 3 6 3 -3 7 6 . 

1 7 2 . Spyros Makridakis and Robert Carbone , " Forecas ting When 
Pattern Changes Occur Beyond the Historical Data , " 
Management Sci ence ,  3 2 , no . 3 ( 1 9 8 6 ) , 2 5 7 -2 7 1 ;  R .  F i ldes , 
" Quant i tative Forecas ting - The S tate o f  the Art ,  Journal of 
the Opera t i onal Research Soci e ty,  3 0 ,  no . 8 ( 1 97 9 ) , 6 9 1 - 7 1 0 ; 
P .  Narayan Pant and Wi l l iam Starbuck , " Innocents in the 
Fore s t : Forecas ting and Research Methods , "  Journal of 
Managemen t ,  1 6 , no . 2 ( 19 9 0 ) , 4 3 3 - 4 6 0 ; Everette S .  Gardner ,  
Jr . and Ed McKenzie , " Seasonal Exponential Smoothing wi th 
Dampened Trends , "  Managemen t Sci ence ,  3 5 ,  no . 3 ( March 
1 9 8 9 ) , 3 7 2 - 3 7 6 ;  Laurette Poulos , Alan Kvanl i  and Robert 
Pavur , "A Comparison of the Accuracy of the Box-Jenkins 
Method wi th that of Automated Forecasting Me thods , " 
Int erna tional Journal of Forecas ting, 3 ,  no . 2 ( 1 9 8 7 ) , 2 6 1 -
2 6 7 . 

1 7 3 . Douglas J .  Dalrymple , " Sales Forecast ing Prac tices , "  
In terna tional Journal of Forecas ting 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 3 7 9 -
3 9 1 ;  John Hanke , " Forecasting in Bus iness Schools , A follow­
up survey , " In t erna t i onal Journal o f · Forecas t ing , 5, no . 2 
( 1 9 8 9 ) , 2 5 9 - 2 62 ; Fred Collopy and J .  Sco t t  Arms trong , 
" Expert Opinions About Extrapo lat ion and the Mys tery o f  the 
Overlooked Discontinuities , "  In terna t i onal Journal of 
Forecas ting, 8 ,  no . 4 ( December 1 9 9 2 ) , 5 7 5 - 5 8 2 . 

1 7 4 . P .  Narayan Pant and Wi l l iam Starbuck ,  " Innocents in the 
Fores t : Forecasting and Research Methods , "  Journal of 
Managemen t ,  1 6 , no . 2 ( 1 9 9 0 ) , 4 3 3 - 4 6 0 ; Lewis W .  Coopersmi th , 
" Forecasting Times Series Which are Inherently 
Discontinuous , "  Journal of Forecas ting, 2 ( 1 9 8 3 ) , 2 2 5 -2 3 5 ;  
Ruey S .  Tsay ,  " Outliers , Level Shi f ts , and variance Changes 
in Time Series , "  Journal of Forecas ting, 7 ( 1 9 8 8 ) , 1 -2 0 . 

3 0 0  



1 7 5 . P .  George Benson and Dilek Onkal , " The Effec ts  o f  
Feedback and Training on the Per formance of  Probability 
Forecas ters , "  In terna t i onal Journal of Forecas t ing, 8 ,  no . 4 
( December , 1 9 92 ) , 5 5 9 - 5 7 3 ; Steven P .  Schnaars and Mart in T .  
Topol ,  " The Use o f  Mul t iple Scenarios in Sales Forecas t ing , 
In terna t i onal Journal of Forecas ting, 3 ,  no . 3 / 4 ( 1 9 8 7 ) , 
4 0 5 - 4 1 9 . 

1 7 6 . S tuart Ira Bretschneider , " Adaptive Time Series 
Analys is and Forecas ting , " ( Ph . D .  diss . ,  The Ohio S tate 
Univers i ty ,  1 9 7 9 ) ,  3 8  f f . 

1 7 7 . Stuart Ira Bretschneider , " Adapt ive Time Series 
Analys is and Forecas ting , " ( Ph . D .  diss . ,  The Ohio State 
Univers ity ,  1 9 7 9 ) ,  3 7 . 

1 7 8 . S tuart Ira Bretschneider , " Adaptive Time Series 
Analys i s  and Forecas t ing , " ( Ph . D .  diss . ,  The Ohio State 
Univers i ty ,  1 9 7 9 ) , 4 1 . 

1 7 9 . S .  Makridakis , A .  Anderson , R .  Carbone , R .  Fi ldes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen ,  and R .  Winkler , 
" The Accuracy o f  Extrapolation ( Time Series ) Methods : 
Results o f  a Forecas ting Competi tion , " Journal of 
Forecas ting, 1 ( 1 9 82 ) , 1 1 1 - 1 5 3 ; Spyros Makridakis ,  Chris 
Cha t f ield , Michele Hibon , Michael Lawrence ,  Terence Mi l l s , 
Kei th Ord , and LeRoy F .  Simmons , " The M2 -Competition : A 
Real -Time judgmentally Based Forecasting S tudy , " 
In terna t i onal Journal of Forecas ting, 9 ,  no . 1 ( Apri l  1 9 9 3 ) , 
5 -2 2 . 

1 8 0 . S tuart Ira Bretschne ider , " Adapt ive Time Series 
Analys is and Forecas ting , " ( Ph . D .  diss . ,  The Ohio State 
Univers i ty ,  1 97 9 )  3 8  f f . ;  S .  Makridakis , A .  Anderson , R .  
Carbone , R .  F i lde s , M .  H ibon , R .  Lewandowski , J .  Newton , E .  
Parz en ,  and R .  Winkler , " The Accuracy o f  Extrapolation ( Time 
Series ) Methods : Results of  a Forecas ting Competi tion , " 
Journal of Forecas t ing, 1 ( 1 9 82 ) , 1 1 1 - 1 5 3 ; Spyros 
Makridakis , Chris Chat field , Michele Hibon , Michael 
Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  Simmons , 
" The M2 -Competi tion : A Real -Time Judgmental ly Based 
Forecas ting Study , " In terna t i onal Journal of Forecas t ing, 9 ,  
no . 1 ( Apri l  1 9 9 3 ) ,  5 - 2 2 . 

1 8 1 . S .  Makridakis , A .  Anderson , R .  Carbone , R .  F i ldes , M .  
Hibon , R .  Lewandowski , J .  Newton , E .  Parzen , and R .  Winkler , 
" The Accuracy o f  Extrapo lation ( Time Series ) Methods : 
Results o f  a Forecas ting Compe ti tion , " Journal of 
Forecas ting, 1 ( 1 9 82 ) , 1 1 1 - 1 5 3 . 

3 0 1  



1 8 2 . Spyros Makridakis , Chris Chatfield,  Michele Hibon , 
Michael Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  
Simmons , " The M2 -Compet i tion : A Real-Time Judgmentally Based 
Forecas ting S tudy , " In terna t i onal Journal of Forecas ting, 9 ,  
no . 1 ( Apri l  1 9 93 ) , 5 -2 2 . 

1 8 3 . Spyros Makridakis , Chris Chatf ield , Michele Hibon , 
Michael Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  
Simmons , " The M2 -Compe t i t ion : A Real-Time Judgmentally Based 
Forecas ting Study , " Int erna t i onal Journal of Forecas t ing, 9 ,  
no . 1 ( Apri l  1 9 93 ) , 1 8 . 

1 8 4 . Spyros Makridakis and Michele Hibon , " Accuracy o f  
Forecas ting : An Empirical Investigation ( wi th Discuss ion ) " 
reprinted as chapter 3 in The Forecas ting Accuracy of Maj or 
Time Series Me thods , S .  Makridakis , e t . al . ,  eds . , 
( Chiches ter : John Wiley & Sons , 1 9 8 4 ) . 

1 8 5 . R .  A .  Kolb and H .  o .  Stekler , " Are Economic Forecasts 
Significantly Bet ter than Naive Predic tions ? An Appropriate 
Tes t , " Interna t i onal Journal of Forecas t ing, 9 ,  no . 1 ( Apri l  
1 9 93 ) , 117 - 12 0 . 

1 8 6 . Robert L .  McLaughl in ,  " Measuring the Accuracy o f  
Forecas ts , " Business Economi cs , 7 ( May 1 9 7 2 ) , 2 7 - 3 5 . 

1 8 7 . Benito E .  F lores , " A  Pragmatic View o f  Accuracy 
Measurement in Forecas ting , "  Omega , 14 , no . 2 ( 1 9 8 6 ) , 9 3 - 9 8 . 

1 8 8 . Benito E .  F lores , " A  Pragmatic View o f  Accuracy 
Measurement in Forecas ting , " Omega , 14 , no . 2 ( 1 9 8 6 ) , 9 6 . 

1 8 9 . J .  Scott Arms trong and Fred Collopy , " Error Measures 
for General i z ing about Forecas ting Methods : Empirical 
Comparisons , "  Int erna t i onal Journal of Forecas ting, 8 ,  no . 
1 ( June 1 9 92 ) , 6 9 - 8 0 . 

1 9 0 . Patrick A .  Thompson , " An MSE Statis t ic for Comparing 
Forecas t Accuracy Across Series , "  In terna t i onal Journal o f  
Forecas ting ,  6 ,  no 2 .  ( July 1 9 9 0 ) , 2 1 9 - 2 2 7 ; Patrick A .  
Thompson , " Evaluation o f  the M-compet i tion Forecasts via Log 
Mean Squared Error Ratio , ' In terna t i onal Journal of 
Forecas ting, 7 ,  no . 3 ( November 1 9 9 1 ) , 3 3 1 - 3 3 4 . 

1 9 1 . Patrick A .  Thompson , " Evaluation o f  the M-compe t i tion 
Forecasts via Log Mean Squared Error Ratio , ' In t erna t i onal 
Journal of Forecas ting, 7 ,  no . 3 ( November 1 9 9 1 ) , 3 3 1 -3 3 2 . 

3 02 



1 9 2 . Robert Fi ldes , " The Evaluation of  Extrapolat ive 
Forecas ting Me thods , "  In terna t i onal Journal of Forecas ting, 
8 ,  no . 1 ( Apri l  1 9 92 ) , 8 1 - 9 8 . 

1 9 3 . Benito E .  Flores , " The Uti l i zation o f  the wi lcoxon Tes t  
t o  Compare Forecas ting Methods : A Note , " In terna t i onal 
Journal of Forecas t ing, 5 ,  no . 4 ( 19 8 9 ) , 5 2 9 - 5 3 5 . 

1 9 4 . Benito E .  Flores , " The Uti l i zation o f  the Wi lcoxon Test  
to Compare Forecasting Methods : A No te , " In terna tional 
Journal of Forecas t ing, 5 ,  no . 4 ( 1 9 8 9 ) , 5 3 5 . 

1 9 5 . R .  A .  Kolb and H .  O .  S tek1er , " Are Economic Forecasts 
Signi ficantly Bet ter than Naive Predictions ? An Appropriate 
Tes t , " Interna t i onal Journal of Forecas ting, 9 ,  no . 1 ( April 
1 9 93 ) , 118 . 

1 9 6 . H .  O .  Stekler , " Macroeconomic Forecas t Evaluation 
Techniques , "  Int erna t i onal Journal of Forecas ting, 7 ,  no . 3 
( 1 9 9 1 ) , 3 7 5 - 3 8 4 . 

1 9 7 . Spyros Makridakis and Michele Hibon , " Exponential 
smoothing : The e f fec t of  ini tial values and loss func t ions 
on pos t-sample forecas t ing accuracy , " Int erna tional Journal 
of Forecas ting, 7 ,  no . 3 ( 1 9 9 1 ) , 3 17 - 3 3 0 . 

1 9 8 . Spyros Makridakis , Chris Chat field,  Michele Hibon , 
Michael Lawrence ,  Terence Mi lls , Kei th Ord , and LeRoy F .  
Simmons " The M2 -compe t i t ion : A real - time j udgmentally based 
forecast ing s tudy , " In terna t i onal Journal of Forecas t ing, 9 ,  
no . 1 ( April 1 9 9 3 ) , 5 - 2 2 . 

1 9 9 . Gott fried E .  Noether , Introdu c t i on t o  Sta t i s t i cs ( New 
York : Houghton Mi f f l in Company , 1 9 7 1 ) , 147 . 

3 0 3 



Endnotes Chapter 7 

2 0 0 . Gwi lym M .  Jenkins , Pra c t i cal Experi ences wi th 
Mode l l ing and Forecas ting Time Seri es ( Jersey , Channel 
Islands : Gwi lym Jenkins & Partners ( Overseas ) Ltd . , 1 9 7 9 ) , 
1 7 . 

2 0 1 . Spyros Makridakis , and Michele Hibon , " Exponential 
smoothing : The e f fec t of ini tial values and loss func t ions 
on pos t - sample forecas ting accuracy , " Int erna tional Journal 
of Forecas t ing, 7 ,  no . 3 ( 1 9 9 1 ) , 3 17 -3 3 0 . 

2 02 . J .  Scott Arms trong , Long-Range Forecas ting, From 
Crys tal Bal l to Compu ter .  2d ed . ( New York : John Wi ley & 
Sons , 1 9 8 5 ) , 1 6 2 - 1 6 3 . 

2 03 . J .  Scott Arms trong , Long-Range Forecas ting, From 
Crys tal Bal l  to Compu ter,  2d ed . ( New York : John Wi ley & 
Sons , 1 9 8 5 ) , 1 6 1 - 1 6 3 . 

2 0 4 . J .  Scott Arms trong , Long-Range Forecas ting ( New York , 
John Wi ley & Sons , 1 9 8 5 ) , 1 7 1 . 

3 0 4 



Endnotes Chapter 9 

2 0 5 . Everette S .  Gardner , Jr . and Spyros Makridakis ,  " The 
Future o f  Forecas t ing , " Int erna t i onal Journal of 
Forecas ting, 4 ,  no . 3 ( 1 9 8 8 ) , 3 2 6 . 

3 0 5  

2 0 6 . Spyros Makr i da k i s  and M i ch e l e  Hibo n ,  " E xponent i a l  
smoo t hing : The e f fe c t  o f  i n i t i a l  v a l u e s  and l o s s  func t i o n s  

on po s t - s amp l e  f o r e c a s t i n g  accu r a c y , " In t ern a t i onal Jo urnal 
of Foreca s ti ng, 7 ,  no . 3 ( 1 9 9 1 ) 3 1 7 - 3 3 0 . 

2 0 7 . S teven .Hi l lmer , " Moni toring and Adj us ting Forecas ts in 
the Presence of Addi tive Outliers , "  Journal of Forecas ting 
3 ( 1 9 84 ) : 2 0 5 - 2 1 5 . 

2 0 8 . Spyros Makridakis , Steven C .  Wheelright and Vic tor E .  
McGee , Forecas ting Me thods and Appl i c a t i ons , 2nd ed . ( New 
York : John Wi ley & sons : 1 9 83 ) 122 . 

2 0 9 . George C .  Canavos and Don M .  Mi l ler An In troduc t i on t o  
Modern Business Sta tis tics ,  ( Belmont , Cal i f ornia : Duxbury 
Press : 1 9 9 3 ) 6 7 9 . 



APPENDIX I TERMS 

Abnormal Errors - Errors that form an identif iable non­

random pattern . 

Ad Hoc Method/Model - A forecas t method that forecas ts a 

data series wi th a s tatis tical forecast model then adds 

on a lump sum amount to adj ust the forecas t for an 

antic ipated policy change . 

Ad Hoc Technique - Same as the ad hoc me thod . 

Adapt ive Forecasting - Forecas t models that use some 

informat ion about forecas t error to adj us t the value o f  

a forecas t parameter . 

Adaptive Holt-Winters -Wi l l iams - An exponential smoo thing 

forecast technique de fined in Appendix I I . 

Adapt ive Techniques - Same as adapt ive forecasting . 

Addi tive Seasonality - Seasona l i ty fac tors that increase or 

decrease the level by addi tive fac tors . 
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Additive Trend - A trend calculated by adding an incremental 

value back to a prior leve l . 

Adj us ted Hol t�Winters -Wi l l iams - The forecas t technique 

proposed in this dissertation . 

Autocorrelation Correc ted Holt -Winters -Wi l l i ams - A forecast 

technique that uses the Hol t-Winters -Wi l l iams 

exponential smoothing model and also correc ts for 

autocorrelation following the method mentioned by 

Chat field . 

Analogy - Reasoning from one case to another and borrowing 

information from the source case , may be ei ther 

subj ective or based on mathematical techniques that 

res t , in par t ,  on analogy between a new case and old 

cases . 

Analys is o f  Variance by Rank - See Rank ANOVA . 

ARIMA - Autoregress ive Integrated Moving Average , a 

sophis t icated use o f  di f ferences and moving averages in 

order to forecas t data . 
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Autocorrelation correc ted Hol t -Winters-Wi l l iams - A vers i on 

of  exponential smoothing that uses autocorrelat ion as a 

fac tor s imi lar to a tracking signal . 

Autocorrelation - Interdependence ( correlation )  be tween 

observations in the same data series . 

Average Percent Error - A relat ive s tatistic of  bias . 

Backward Cusum - A tracking signal . 

Cartes ian XY Graph - A graph that locates data de f ined by 

two variables on a vertical axis and a horizontal axis . 

Central Tendency - The average or ano ther s tatistic that 

estimates the center o f  a data series . For forecas ts , 

c ommonly the level . 

Classic Decompos i t ion Models - Forecas t models that break 

down data series by maj or sources of variat ion , rather 

than forecas ting aggregated data . 

Correlation Based Techniques - Forecas ting techniques that 

use the correlat ion between two or more data series to 

forecas t one o f  these series , commonly regress ion . 
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Current Period - The period ( location on the X axis ) o f  an 

observation . 

Curve - The l ine formed by connec tion the individual 

observations of a series , may be applied to ei ther raw 

data or to a summari zation ,  such as a forecas t .  In 

this usage curves are not necessar i ly smooth . 

Data Series - A set o f  observations that are organi zed in 

order ( e . g . , over t ime ) . 

Dampen - This is a forecas t technique that makes the trend 

parameter exponentiate to zero in future periods to 

reflect an assumption that growth is no t permanent .  

Decompose - Break down a data series into components , may be 

addi t ive or mUl t iplicative . 

Deseasonaliz ing - Decompos ing a data series by removing the 

seasonal aspec t o f  the series , may be addi tive or 

mul tiplicative . 

Di f ferences - For serial data , the data series made of  

subtrac ting the data series Xt-n Xt+1-n , Xt+2-n , from 
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etc . When the di f ferences are calculated from raw 

( undi f ferenced ) numbers , the di f ferences are called 

first di f ferences . When the series i s  calculated from 

a di fferenced series o f  order m,  i t  i s  cal led the m+ l 

di fferences , e . g . , second di f ferences are the 

di fferences o f  firs t di f ferences , etc . When n = I ,  the 

series is the di f ferences o f  the first period, etc . 

The first di f ference o f  the first period is normally 

cal led the first difference . 

Discontinuities - A general term re ferring to phenomena l ike 

level shi f t s . 

Dummy Variable - In correlation based techniques .  a variable 

that has ei ther the value of  1 or 0 ,  generally used to 

account for a condi tion that is only sometimes present 

wi th the series . 

Econometric Techniques - Correlation based techniques , 

general ly referring to the more sophis t icated of  these 

techniques . 

Endogenous / Exogenous Variables - These terms denote the 

dichotomy o f  variables that are bo th input and output 

in a forecas t model ( endogenous variables ) and 
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variables that are only input in a forecas t model 

( exogenous variables ) .  Forecast models can generate 

their own future values of endogenous variables , but 

are dependent on external sources for future values o f  

exogenous variables . 

Engineering Es timates - Cost estimate based on costing out 

ac tual component cos t generating ac tivities and 

bui lding up the overall cost from these components . 

Error - Ac tual Observation minus Predic ted Observat ion . 

Exponential Smoothing - A forecas t technique that 

extrapolates a series o f  data through a weighted 

averaging technique that places more weight on recent 

data and less weight on older data . Several spec i f ic 

versions o f  this technique are de fined mathematically 

in Appendix I I . 

Exponentiated - General ly ,  this term refers to a number that 

is mul t ipl ied by itself  over and over again . When a 

number i s  less than 1 and is exponentiated , i t  soon 

becomes ins igni ficantly smal l .  In forecas t ing serial 

data , a number might be exponentiated as it moves away 

from the last ac tual observat ion in a data series . 
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Extrapolation - Forecasting by identi fying fac tors l ike 

level and trend and proj ec ting them into the future , 

generally re fers to the use of  time series techniques . 

First Di fference - See Di f ference . 

F i t  - Cal ibrate the parameters that bes t  apply a forecas t 

model to a data series . 

Forecast - Thi s  term may mean forecas t model ( see forecas t 

model ) ,  a proj ec tion ( see proj ec tion )  or the prac tice 

o f  applying a model to make a proj ec t ion .  

Forecast Compet i tion - A fairly common form of  forecast 

comparison in which a number o f  forecast techniques are 

used to forecas t the same data series to determine 

whether any par ticular technique is more e f fec t ive . 

Forecast Horizon - The number o f  periods beyond the current 

period for which a forecast is des ired . 

Forecas t Model - A set o f  mathemat ical formulae that are 

used to proj ec t  future values of a data series . 
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Forecas ting - Us ing any technique to proj ec t  serial numeric 

data into the future . 

Geometric Average - An average calculated by mUltiplying 

observations and finding the root equal to the number 

of mUltiplicands of the produc t .  

Geometric Root Mean Squared Error - An error s tatistic 

de fined in Appendix VI I . 

His torical Period - For serial data , the period for which 

there is data . 

Hold Out Data - Serial data near the end o f  the historical 

period which are not inc luded when f i tting forecas t 

model to a data series so that i t  can be used to 

evaluate the e f fec tiveness of  the model that is f i t . 

Hol t  exponential smoothing - Trended exponent ial smoothing . 

See formulas in Appendix I I . 

Ho l t-Winters exponential smoothing - Trended and 

seasonali zed exponent ial smoothing . 

Appendix I I . 

See formulas ln 



Ho1 t-Winters -Wi l l iams exponent ial smoothing - A modi f ied 

version of Hol t-Winters as def ined by T .  M .  Wi l l iams 

and discus sed in Appendix I I . 
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Horizon - the period or periods ahead for which a proj ect ion 

is des ired from a forecas t mode l . 

Intervention Model - An ARIMA model that uses dummy 

variables . 

Judgmental Adj us tments - Generally ,  correc ting a the results 

of a forecas t model for information no t inc luded in the 

data or model f i tting . 

Kalman Filter - A complex technique s imi lar to adaptive 

forecas ting . 

Kruskal -Wallis tes t - An inferential s tatistic used ln thi s 

s tudy and de fined in Appendix VII . 

Lag - For serial data that is assoc iated by correlation ,  

this term indicates an association that i s  not 

concurrent , for example where one variable is located 

at t ime t and the other is located at time t - 1 . 
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Level - The current period central tendency of  a data 

series . Wi th many forecas ting techniques the level i s  

time indexed . ( Especially used in discuss ion o f  

exponential smoothing o r  moving averages )  . 

Level Shi f t  - Wi thin a data series , one or more observations 

that change in leve l by more than the slope ( trend ) and 

seasonality o f  the series . 

Log Mean Squared Error Ratio - A s tatistic used for 

comparing forecas ts . See formulas in Appendix VII . 

Loss Func tion - A statistic , or set o f  s tatistics , that i s  

( are ) optimi zed i n  order t o  f i t  a mode l . A l o s s  

fun c t i o n  i s  a s t at i s t i c  that repr e s en t s  the co s t  o f  

e rror i n  t h e  f o r e c a s t . 

Lump Sum Changes - A number that is added in lump to 

j udgmentally adj ust a data series . 

Mean Absolute Deviation - An error s tatistic . 

Mean Absolute Percent Error - An error s tatistic . See 

formulas in Appendix VII . 



Mean Deviation - Mean Error . 

Mean Error - A statis tic that may be a bias measure . 

Mean Percent Error - An error statistic . See formulas 1n 

Appendix VI I . 

Mean Squared Error - An error s tati stic . See formulas 1n 

Appendix VII . 

Median Absolute Percent Error - An error s tatistic . See 

formulas in Appendix VII . 

Method - See mode l . 
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Model - In this dissertation mode l , technique and method are 

used interchangeably . Al l are used to re fer to a means 

of making a forecas t or a set o f  formulas used to make 

a forecas t .  

Moving Average - Wi th N observations o f  serial data , one can 

compute m + 1 averages each containing n = N - m serial 

observations where , N > m .  When m > 1 and the m + 1 

averages are arranged in serial order , they are 

re ferred to as a moving average . 



Mul tipl icative Seasonal i ty - A seasona l i ty factor that 

adj usts level by mul tiplicative fac tors . 
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Mul tipl icative Trend - A trend calculated by multiplying a 

ratio times a prior leve l . 

N- Period Ahead Forecast - The forecas t at  the observation at  

tj+n , where t is the index of  the las t ac tual 

observation and updates by an increment of 1 with each 

addi tion o f  1 observation to the history of the data , J 

is the index o f  the updates , and n is the number o f  

periods from t t o  the observat ion measured . The n­

period ahead point of a repeated forecas t updates moves 

to a later point in time by the number of addi tional 

ac tual observations added to the history wi th each 

update . There is one point observation from each j th 

upda t e  and i t  i s  loca t ed one period l a ter in t ime . 

Naive 1 - Same as the naive method , a forecas t of  no change . 

Naive 2 - A seasonal ly adj us ted version o f  Naive 1 .  

Naive Method - A forecas t o f  no change . 



Noise - ( white noise ) error that is no t assoc iated wi th 

known causes and does not exhibi t  any observable 

pattern . 
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Non- S tationary - The property o f  a data series of  fail ing to 

have ei ther a cons tant mean or a constant variance ,  for 

the purposes of this s tudy , has experienced a level 

shi f t . 

Optimi ze - Bring a loss func tion as close as poss ible to a 

des ired value . In exponential smoothing , loss 

func tions are usually optimi zed by bringing them to a 

minimum value . 

Opt imi z ing Technique - A me thod for bringing a loss func t ion 

as c lose as pos s ible to a des ired value . 

Out o f  Control - For purposes of  this s tudy that would mean 

i t  had undergone a level shi f t . 

Out liers - Extraordinary observations , some times de f ined as 

those observations that exceed 3 s tandard deviations 

from some measure o f  central tendency such as the mean 

or a moving average . 



Parameter - In exponential smoo thing , a s tatistic that i s  

adj us ted t o  optimi ze the model . 

Percent Error " - An error statistic . 
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Planned Policy Change - A leve l shi f t  that can be 

anticipated in advance ,  generally because it  results  

from intentional intervention into the data generat ing 

func tion by a dec is ion maker , also , see pol icy shi f t . 

Pol icy Change - See planned policy change and policy shi f t . 

Pol icy Shi ft - A portion o f  a data series that has a steeper 

or less s teep slope than the period be fore or 

af terwards and which can be direc tly assoc iated wi th an 

external event , typical ly a po l icy dec is ion , see 

discuss ion in Chapter 2 regarding other labe ls that 

might also be used . 

Preprocess ing - Adj usting data be fore forecas ting 

Prospective shi f t  - See pol icy shi f t . 

Proj ec t ion - The values predic ted by a forecast mode l , o f ten 

thi s  is s imply cal led a forecas t .  
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Ramp - A series o f  2 or more data observations that have a 

di f ferent s lope from those o f  the surrounding 

observat ions . 

Random Noise - See noise . 

Random Walk - ( Naive Method l Naive 1 )  Forecast ing on the 

assumption that the next observation ( or all future 

observations ) wi l l  be the same as the last observation . 

Rank ANOVA - Analys is o f  Variance by Rank ( the Friedman 

Tes t ) . An inferential s tatis tic used in this 

dissertation and de fined in Appendix VII . 

Regress ion Mode ls - Forecasts made by generat ing a 

regress ion o f  the his torical ( sample ) data and 

extending i t  into the future by extending the input 

data into the future ( generally by us ing a forecas t o f  

the input data l o r  some times by us ing lagged values o f  

the input data ) . 

Relative Absolute Error - An error statistic . 

Relat ive Geometric Root Mean Squared Error ratio across time 

periods - An error s tatistic . 



Root Mean Squared Error - An error statis t ic . 

Sample Data - Data used in f i t t ing a forecas t model ( the 

data from the his torical period ) . 
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Seasonal Fac tors - Numbers that are used t o  adj us t a 

forecas t for regular variation from the central 

tendency . For example the observat ions aris ing ln each 

march might tend to be 2 0 %  greater than the average 

over the year , or might have 20 extra uni ts compared 

wi th the average over the year . Fac tors can be 

calculated to adj ust a forecast to inc lude these two 

sorts . of  expec tations . The first would lead to a 

mUl t iplicative seasonal factor ( a  number mUl t ipl ied by 

the deseasonalized data to get a large enough 

forecas t ) , the second would lead to an addi tive 

seasonal fac tor ( a  number added to the data to get a 

large enough forecas t )  . 

Serial Data - See data series . 

Serially Correlated Errors - Errors ( see errors ) that have a 

pat tern . See autocorrelat ion . 

Simple Cusum - A tracking s ignal . 
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Simulated Pol icy Changes - Art i f icial data used t o  generate 

level shi fts that are s imi lar to those described in 

Chapter 3 .  

Single Exponential Smoothing - ( SES ) A weighted moving 

average that places more weight on the more recent 

observations , see exponential smoo thing . 

Slope - The di f ference between two success ive observations 

or proj ect ions . 

Smoo thed Error Tracking Signal - A time indexed error 

s tatistic . 

Smoothing Cons tant - A parame ter for an exponential 

smoothing mode l . 

Special Events - See level shi ft or po l icy shi f t ,  as used 

here , generally temporary in nature . 

S tandardi zed Real i z ation Percent ( SR )  - An error s tatistic . 

Stationary - The property of  a data series o f  having has a 

cons tant mean and a cons tant var iance . 
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Statis tical Error - Error aris ing in a s tatistical 

forecas ting model , used in calculating future predic ted 

values . 

Statistical Forecast Model - A forecast model that uses 

information about errors ( see error ) in calculating 

future predic ted values . 

Step - A ramp that inc ludes prec isely two observations . 

Subj ec t ive Es timates - Generally re fer to the use o f  exper t 

or management guesses . 

Symmetrically Adj us ted MAPE ( SMAPE ) - An error s tatis t ic . 

Technique - See model . 

Three parameter exponential smoothing - Ho lt -Winters 

exponential smoothing . 

Thei l ' s  U-Coe f fic ients - A s tatistic used to compare a 

forecas t wi th the forecas t that would have been made 

us ing the naive method . 
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Trace - The forecas t for periods t+m through t+m+ l where t 

is a time index , m is the number o f  time periods be fore 

the period of interest , and 1 is the number of  time 

periods in the period of  interes t .  The trace , 

there fore , is a vec tor of  forecas ts Ft+m , Ft+m+1 , Ft+m+2 , 

. , F t+m+l .  

Tracking Signal - A s tatis tic that is sens i t ive to the 

errors near the end o f  the his torical observations o f  a 

t ime series which can be used to indicate that the 

series is no t wel l  f i t  at that point in the series . 

Trading Days - The number of  days during which a forec asted 

data series had an opportuni ty to occur , frequently the 

number o f  bus iness days in a week or the number o f  days 

in a month . 

Trans fer func t ion model - an ARlMA model that uses 

correlation between data series in making a forecas t .  

Trend - The slope o f  a data series . Wi th many forecas t ing 

techniques the trend is time indexed . 

Two Parameter Exponential Smoothing - Hol t  Exponential 

Smoothing . 



3 2 5  

Unadj us ted Model - This term is used t o  refer to those 

models inc luded in this s tudy which do not account for 

prospec tive level shi fts . 

Updating - Adding a new period ' s  observat ion to the 

historical ( observed ) data and making a new forecas t 

proj ec tion . 

Variabi l i ty - The tendency for data to vary . 

Variance - A measure o f  variation us ing squared errors . 

Windsorize - A technique for adj usting away extraordinary 

errors . 

Winters - A seasona l i ty technique for exponential smoo thing . 

X I I  - A moving average technique developed by the Census 

Bureau . 



3 2 6  

Statis tical Error - Error aris ing in a statistical 

forecas ting model , used in calculating future predic ted 

values . 

Statis tical Forecast Model - A forecas t model that uses 

information about errors ( see error ) in calculating 

future predicted values . 

Step - A ramp that inc ludes precisely two observations . 

Subj ect ive Estimates - Generally re fer to the use of expert 

or management guesses . 

Symme trically Adj us ted MAPE ( SMAPE ) - An error statistic . 

Technique - See model . 

Three parameter exponential smoothing - Holt -Winters 

exponential smoothing . 

Theil ' s  U-Coe fficients - A statistic used to compare a 

forecast wi th the forecas t that would have been made 

us ing the naive method . 
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Trace - The forecas t for periods t+m through t+m+l where t 

is a time index , m is the number of time periods be fore 

the period of interes t ,  and 1 is the number of time 

periods in the period of interest . The trace , 

there fore , is a vec tor of  forecasts Ft+m , Ft+m+1 t Ft+m+2 , 

, Ft+m+1 •  

Tracking Signal - A statistic that is sens itive to the 

errors near the end of the his torical observations of a 

time series which can be used to indicate that the 

series is not well fit at that point in the series . 

Trading Days - The number of days during which a forecas ted 

data series had an opportunity to occur , frequently the 

number of business days in a week or the number of days 

in a month . 

Trans fer func tion mode l - an ARlMA model that uses 

correlation be tween data series in making a forecas t .  

Trend - The slope of a data series . with many forecas ting 

techniques ,  the trend is time indexed . 

Two Parameter Exponential Smoothing - Ho lt Exponential 

Smoothing . 
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Unadj us ted Mode l - Thi s  term i s  used to re f er to those 

mode l s  inc luded in this s tudy which do no t acc ount f or 

prospec t ive l eve l s hi f t s . 

Upda t ing - Adding a new period ' s  obs erva t i on to the 

h i s t o r i c a l ( observed ) da t a  and making a new forec a s t  

pro j ec t i on . 

Var i abi l i ty - The t endency for da ta to vary . 

Var i ance - A measure o f  var i a t i on us ing squared errors . 

Winds o r i z e  - A techniqu e  f o r  adj u s t ing away extra ordinary 

errors . 

Winters - A s e a s ona l i ty t echnique for exponen t i a l  smo o th ing . 

Xll - A moving average techn i que deve l oped by the Census 

Bureau . 



APPENDIX II FORMULAS 

Holt-Williams Exponential Smoothing 

1 .  Ft+m = Forecast at time t+m = St + ( Bt * m) 

2 .  St = Level at t ime t = Ft + exet 

3 .  Bt = Trend at t ime t = Bt-1 + f?>et 

4 . et = Error at time t = Xt - Ft 

Where , 

Xt = Observat ion at t ime t 

ex = a level parameter subj ec t to 0 $ ex $ 1 

f?> = a trend parameter subj ec t to 0 $ f?> $ 1 

t = a t ime index . 

m = the number o f  periods between the current 

observation period and a forecas t period 

( hori z on )  . 

So = 0 ,  or alternatively an ini tiali zed value 

derived from other techniques . 

Bo = 0 ,  or alternative ly an ini tiali zed value 

derived from other techniques .  
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3 . 

4 .  

5 . 
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Holt-Winters-Williams Exponential Smoothing 

Ft_ = Forecas t at time t+m 

St = Level at time t 

Bt = Trend at  time t 

et = Error at time t 

It = Seasona l i ty fac tor at t 

= [ St+ ( Bt *m ) ] * It+m-L 

= ( Ft + exet ) / It-L 

= Bt-1 + r?>et / It-L 

= Xt - Ft 

= It-L+yet / ( St-l+Bt-l ) 

Where , 

Xt = Observation at time t 

t 

m 

Y 

L 

= 

= 

= 

= 

= 

= 

= 

= 

= 

a level parameter subj ec t to 0 � ex � 1 

a trend parameter subj ec t to 0 � r?> � 1 

a time index . 

the number o f  periods be tween the current 

observation period and a forecas t period 

( hori z on )  . 

0 ,  or alternatively an ini tial ized value 

derived from other techniques . 

0 ,  or alternatively an ini tiali zed value 

derived from other techniques . 

a seasonality parame ter subj ec t to 0 � y � I ,  

the length o f  the seasonality cyc le , and 

. = IL-1 = I ,  unless ini tial i z ed by 

some other technique , and for future periods 

It = It-1 • 



Holt-Winters-Williams Adaptive 

Hol t -Winters -Wi l l iams Adaptive is ident ical wi th Ho l t ­

Winters -Wi l l iams wi th the exception that � is subscripted 

for time and selec ted us ing the fol lowing algorithm .  

Smoothed Error = Et = ¢et + ( l -¢ ) Et-1 

Smoothed Abso lute Error = � = ¢ I et I + ( l - ¢ )  Mt-1 

�t = Absolute Tracking Signal = Tt = I Et /� I 

Holt-Winters-Williams Autocorrelation Corrected 

l .  F '  = Autocorr . Correc ted F = F+ ( et-1 
* Qe ,  et-l ) 

3 3 1  

l .  Ft+m = Forecas t at time t+m = ( St+ Bt * m)  * It+m-L 

2 . St = Level at  time t = ( Ft ' + �et ) / It-L 

3 .  Bt = Trend at time t = Bt-1 + �et / It-L 

4 .  et = Error at time t = Xt - Ft , 

5 . It = Seasona l i ty fac tor at t = It-L+ et/ ( St-l + Bt-1 ) 



Holt-Williams Exponential Smoothing 

l .  Ft .... 
= Forecas t a t  t ime t+m = St + ( Bt * m) 

2 . St = Level at t ime t = Ft + aet 

3 . Bt = Trend at t ime t = Bt-1 + �et 

4 .  et = Error at t ime t = � - Ft 

Where , 

� = Observation at t ime t 

a = a level parameter subj ec t to 0 � a � 1 

� = a trend parame ter subj ec t to 0 � � � 1 

t = a t ime index . 

m = the number o f  periods between the current 

observation period and a forecas t period 

( horizon ) . 

So = 0 ,  or alternat ive ly an ini tiali z ed value 

der ived from o ther techniques .  

Bo = 0 ,  or al ternat ive ly an ini t iali z ed value 

der ived from o ther techniques .  
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L a  Ft I 

1 .  Ft 

2 . St 

3 . Bt 

4 .  et 

5 .  It 

6 .  � 

7 . P 

Proposed Technique 

(Adjusting the Holt-Winters-Williams Model ) 

= Adj us ted Forecas t at time t=Ft + Pt 

= Ini t ial Forecast at 

= Level at t ime t 

= Trend at time t 

= Error at time t 

= Seasonal i ty fac tor 

time 

at t 

t = ( St-l + Bt-1 ) * It-L 

= ( F t I + aet ) / It-L 

= Bt-1 + �et / It-L 

= xt - Ft I 

= Adj us tment fac tor at time t= Pt - Pt-1 

= A periodic estimate o f  a policy in a vec tor : 

( . . .  , 0 , 0 , 0 , a ,  b ,  c ,  . . .  , n ,  n ,  n ,  . . .  ) where , 
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a ,  b ,  c ,  • • •  I n all have the same s ign , and 

l a l  < Ib l  < I c l  < I n l · 

Other cons traints are as wi th Hol t -Winters -Wi l l iams . 



Holt-Winters-Williams Adaptive 

Ho l t -Winters -Wi l l i ams Adaptive is ident ical wi th Ho l t ­

Winters -Wi l l i ams wi th the exception that a is subscripted 

for t ime and selec ted us ing the following algor i thm .  

Smoo thed Error = Et = ¢et + ( 1 - ¢ ) Et-1 

Smoothed Abso lute Error = � = ¢ I et I + ( 1 - ¢ )  �-l 

at = Absolute Tracking Signal = Tt = I Et /� I 

Holt-Winters-Williams Autocorrelation Corrected 

l .  F '  = Autocorr . Correc ted F = F+ ( et - 1  
* Qe .  et - l ) 
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l .  Ft+", 
= Forecast at  time t+m = ( St+ Bt * m )  * It+m-L 

2 . St = Leve l at time t = ( Ft I + aet )  I It-L 

3 .  Bt = Trend at time t = Bt - 1  + � et I I t -L 

4 .  et = Error at time t = Xt - Ft 
, 

5 .  It = Seasona l i ty fac tor at t = It -L + et l ( St - l  + Bt -1 )  



Appendix I I I  Correlat i on and Squared Correlat i on Matri ces 
Correlation for Level Shifting Data After all Preprocessing 
Series 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7 1 8  

1 1 .0000 

2 -0.0808 1 .0000 

3 0.1 234 -0.0725 1 .0000 

4 0.4188 0.01 70 0.0765 1 .0000 

5 -0.201 9 -0.0006 -0.4351 -0.1 634 1 .0000 

6 -0.0595 0.0290 0.0125 -0.0906 -0.0248 1 .0000 

7 0.0893 0.0909 -0.0984 0.3 1 42 -0.1 039 -0.0746 1 .0000 

8 0.3494 0.0667 -0.1 685 0.1 299 0.0125 -0.0380 0.021 9 1 .0000 

9 0.0593 -0.1 965 0.0682 0.1 1 32 -0.2241 0.0330 -0. 1 1 60 -0.0839 1 .0000 

1 0  -0.1 060 0.1 01 7  -0.01 47 -0.0895 -0.3643 0.1 765 0.3 1 62 -0.1 991 -0.01 09 1 .0000 

1 1  -0.0443 0.1 669 -0.2588 0.1 379 0.0977 0.0033 0.0563 0.0096 -0.0038 0 . 1 409 1 .0000 

1 2  -0.0486 -0.01 38 -0.0340 -0.0476 0.0784 0.1 075 -0.071 9  0.0548 -0.0332 0.1 899 0.2748 1 .0000 

1 3  0.0706 0.0716 0.01 65 0.0800 0.0677 0.1 048 -0.1 725 -0.0131 0.0024 -0.31 28 -0.02 1 0  -0.0846 1 .0000 

1 4  -0. 1 0 1 9  -0.0469 -0.0076 0.1 836 -0.1 594 -0.0886 -0.0848 0.0099 0.3 1 67 0.0521 -0.01 29 0.0351 -0.0778 1 .0000 

1 5  -0.091 1 -0.0023 -0.0953 -0.1 378 0 . 1054 0.1 322 -0.1 068 -0.0019 -0.0357 -0.0224 0.1 391 0.2639 0.0776 -0.3969 1 .0000 

1 6  0 . 1518 -0.3076 -0.0843 0.1 1 51 -0.0655 0.0206 0.0760 0.3096 0.0231 0.0288 0.1 1 92 0.3 1 49 0.071 1 0.3322 0.1 594 1 .0000 

1 7  -0.1 081 -0.0789 0.0600 0.0979 -0.0608 -0.0360 -0.0884 -0.0658 0.1 1 59 0.1 21 1 -0.0843 -0.0379 -0.0254 0.5323 -0.0404 0.41 77 1 .0000 

1 8  0.0233 -0.0101 -0.0693 0.1 999 0.0206 0.1 041 -0.0763 0.1 569 0 . 1 7 1 0  0.0346 0.2320 0.2609 0.0978 -0.2805 0.5021 0.0938 -0.1 894 

1 9  0.1 5 1 8  -0. 1 1 86 0.0929 0.0398 0.0627 -0.0889 -0.1 483 0.01 95 0. 1 1 53 -0.0465 -0.0601 -0. 1 1 56 -0.0606 -0.0269 -0.0647 -0.1 886 -0.1 004 

20 0.0866 0.001 8 0.1 720 -0.0106 -0.2069 -0.1 830 -0.0573 0.0223 0.08 1 2  -0.1 053 -0.3575 -0.2543 -0.0567 -0.0521 -0.0663 -0.3205 -0.1 323 

Avg r 0.0841 0.0309 0.0142 0.1 1 92 -0.0283 0.0520 0.0383 0.0796 0.0698 0.0445 0.0767 0.09 1 9  0.041 8 0.0563 0.0659 0.1 1 33 0.0648 

1 8  1 9  20 

1 8  1 .0000 

1 9  0.0051 1 .0000 

20 -0.0467 0.0771 1 .0000 

Avg r 0.1 1 1 5 0.0272 -0.0204 

Note: Although the average is shown at the bottom of the column, it is the average for all correlations for the series 
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Proposed Technique 

(Adj usting the Holt-Winters-Williams Model ) 

= Adj us ted Forec as t at t ime t=Ft + Pt 

= Ini tial Forecast at  t ime t = ( St- l + Bt-1 ) * It-L 

= Leve l at t ime t = ( Ft ' + exet ) I It-L 

= Trend at  time t = Bt- 1 + �et l It-L 

= Error at  t ime t = Xt - Ft , 

= Seasona l i ty fac tor at t = It-L +yet l St-l + 

= Adj us tment fac tor at  time t= Pt - Pt-1 

= A peri odic es tima te of  a pol icy in a vec tor : 

( . . .  , O , O , O , a , b , c ,  . . .  , n , n , n , . . .  ) where , 

Bt_ 

a ,  b ,  c ,  .. .. ..  I n all  have the s ame s ign , and 

l a l < Ib l < I c l < I n l · 

Other cons traints are as wi th Ho l t -Winters -Wi l l i ams . 
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Correlation Data for Trials 1 Through 1 2  after All Preprocessing 
Series 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  

1 1 .0000 

2 -0.1 504 1 .0000 

3 -0.01 69 -0.2776 1 .0000 

4 -0.0684 -0.0262 -0.0237 1 .0000 

5 -0.2082 -0.01 80 -0.1 41 3  0.2947 1 .0000 

6 -0.1 401 0.1 859 -0.0798 0.1 1 1 5  0.0978 1 .0000 

7 -0.0823 0.1 992 -0.0673 0.0497 0. 1 931 0.1 1 74 1 .0000 

8 0 . 1 986 -0. 1 01 0  -0.0063 -0.2656 -0.2053 0.01 53 0.0693 1 .0000 

9 0.1 560 0.1 029 0.0833 -0.2322 -0.0046 -0. 1 31 1  -0.21 75 0.0507 1 .0000 

1 0  -0.2309 0.0988 -0.0197 -0.0423 0.0936 0.2923 0.2921 -0. 1 221 0.0909 1 .0000 

1 1  0.1 222 0.1 924 0.1 252 -0.0640 0.0562 -0.0641 0.2752 0.1 843 -0.0370 -0.01 54 1 .0000 

1 2  -0.0846 0.2036 0.0051 -0.001 6 0.0041 0. 1 490 0.0351 -0.0895 -0.1 277 0.0887 -0.1 871 1 .0000 

1 3  -0.01 99 -0.0200 0.0918 -0.1 741 0.0075 -0.1 087 -0.2889 0.1 004 0.2357 -0.0923 0.1 1 59 -0.0395 1 .0000 

1 4  -0 0337 -0.0863 -0.0065 -0.0470 0.09 1 8  0.1 1 1 3 0.0220 0.0349 0.1 749 -0.0494 0.1 1 75 0.0254 -0. 1 3 1 0  1 .0000 

1 5  0.0029 -0.0276 -0.1 050 0.1 1 1 8  -0.01 39 -0.0220 0 . 1 740 -0.1295 -0.0680 -0.0200 -0.1 863 0.0092 -0.0998 0.1 362 1 .0000 

1 6  0.2035 -0.1 381 0.2123 0. 1 41 9  -0.0041 -0.0771 -0.0303 -0. 1 51 3  0.0608 -0.2321 0.0741 -0.1 502 0.0875 -0. 1 521 0.0893 1 .0000 

1 7  0.0684 -0.0687 0.1060 -0.001 9 -0.0231 -0.0940 -0.01 06 -0.0273 0.01 87 -0.0428 0.0545 -0.0266 0.0397 -0.01 1 4  0.1 809  0 . 1 968 1 .0000 

18 0 . 1 352 -0.0996 0.1454 -0. 1 6 1 4  -0.0322 -0.0634 -0.0590 -0.0366 0.0824 -0.0727 -0.0320 -0.1 1 61 -0.0221 -0.0502 -0.0424 0.0735 0.2024 

1 9  -0.0661 0.0486 -0.0276 -0. 1 488 -0.0530 0.0238 -0.0640 0.0664 0. 1 031 0. 1 522 -0.1 450 0.0788 0.2352 0.2034 0. 1 646 -0. 1 1 68 0.01 56 

20 -0.001 4 -0.1 585 0.1 102 -0.0426 0.0687 -0.0987 -0.1 268 0.2092 0.0497 -0.0802 -0.1 024 -0.0124 0.081 9 0 .1 372 0.1 627 0.0306 0.1 297 

Avg r 0.0392 0.0430 0.0554 0.0205 0.0602 0.06 1 3  0.0740 0.0397 0.0695 0.0544 0.0742 0.0382 0.0500 0.0744 0.0659 0.0559 0.0853 

1 8  1 9  20 

1 8  1 .0000 

1 9  0. 1 003 1 .0000 

20 0.0671 0.2496 1 .0000 

Avg r 0.0509 0.0910 0.0837 

Note: Although the average is shown at the bottom of the column ,  it is the average for all correlations for the series 



Appendix I I I  C orrelat ion Matri ces 
Correlation Data for Trials 1 Through 12 after All Preprocessing 

Series 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  

1 1 .0000 

2 -0. 1 504  1 .0000 

3 -0.01 69 -0.2776 1 .0000 

4 -0.0684 -0.0262 -0.0237 1 .0000 

5 -0.2082 -0.01 80 -0. 1 41 3  0.2947 1 .0000 

6 -0. 1 401 0.1 859 -0.0798 0.1 1 1 5  0.0978 1 .0000 

7 -0.0823 0 . 1 992 -0.0673 0.0497 0. 1 931 0.1 1 74 1 .0000 

8 0. 1 986 -0. 1 0 1 0  -0.0063 -0.2656 -0.2053 0.0153 0.0693 1 .0000 

9 0. 1 560 0. 1 029 0.0833 -0.2322 -0.0046 -0.1 31 1 -0.21 75 0.0507 1 .0000 

1 0  -0.2309 0.0988 -0.01 97 -0.0423 0.0936 0.2923 0.2921 -0.1 221 0.0909 1 .0000 

1 1  0.1 222 0 . 1 924 0.1 252 -0.0640 0.0562 -0.0641 0.2752 0. 1 843 -0.0370 -0.01 54 1 .0000 

1 2  -0.0846 0.2036 0.0051 -0.001 6 0.0041 0. 1 490 0.0351 -0.0895 -0.1 277 0.0887 -0.1 871 1 .0000 

1 3  -0.0 1 99  -0.0200 0.0918 -0.1 741 0.0075 -0. 1 087 -0.2889 0 . 1 004 0.2357 -0.0923 0.1 1 59 -0.0395 1 .0000 

1 4  -0.0337 -0.0863 -0.0065 -0.0470 0.091 8 0.1 1 1 3 0.0220 0.0349 0.1 749 -0.0494 0.1 1 75 0.0254 -0. 1 31 0  1 .0000 

1 5  0.0029 -0.0276 -0. 1 050 0.1 1 1 8 -0.01 39 -0.0220 0. 1 740 -0. 1 295 -0.0680 -0.0200 -0.1 863 0.0092 -0.0998 0. 1 362 1 .0000 

1 6  0.2035 -0. 1 381 0.21 23 0.1 419 -0.0041 -0.0771 -0.0303 -0. 1 51 3  0.0608 -0.2321 0.0741 -0.1 502 0.0875 -0. 1 521 0.0893 1 .0000 

1 7  0.0684 -0.0687 0.1 060  -0.0019 -0.0231 -0.0940 -0.0106 -0.0273 0.01 87 -0.0428 0.0545 -0.0266 0.0397 -0.01 1 4  0. 1 809  0. 1 968  1 .0000 

1 8  0.1 352 -0.0996 0. 1 454 -0. 1 6 1 4  -0.0322 -0.0634 -0.0590 -0.0366 0.0824 -0.0727 -0.0320 -0.1 1 61 -0.0221 -0.0502 -0.0424 0.0735 0.2024 

1 9  -0.0661 0.0486 -0.0276 -0.1 488 -0.0530 0.0238 -0.0640 0.0664 0. 1 031 0 . 1 522 -0. 1 450 0.0788 0.2352 0.2034 0 . 1 646  -0.1 1 68  0.0 1 56  

20 -0.001 4 -0. 1 585 0.1 1 02 -0.0426 0.0687 -0.0987 -0.1 268 0.2092 0.0497 -0.0802 -0.1 024 -0.0124 0.081 9 0.1 372 0 . 1 627 0.0306 0.1 297 

Avg r 0.0392 0.0430 0.0554 0.0205 0.0602 0.061 3 0.0740 0.0397 0.0695 0.0544 0.0742 0.0382 0.0500 0.0744 0.0659 0.0559 0.0853 

1 8  1 9  20 

1 8  1 .0000 

1 9  0. 1 003 1 .0000 

20 0.0671 0.2496 1 .0000 

Avg r 0.0509 0.0910 0.0837 

Note: Although the average Is shown at the bottom of the column, it Is the average for all correlations for the series 
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Appendix IV Tables from Scenarios 1 Through 13b 
Level Shift as Planned Table: 1 - 1 
Scenario 1 Average Rank of Absolute Error 

Period Adjust HWW HW Adapt Auto Naive HWW" HW" Adapt" Auto" Naive" 
1 Average 3.54 6.75 6.98 7.87 7.21 6.38 5.27 5.04 5.04 6.18 5.94 

Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Geometric Mean 3.33 6.68 6.93 7.79 7.03 6.33 5.22 4.93 4.93 6. 1 2  5.82 
Rank 1 8 9 1 1  . 1 0  7 4 2 2 6 5 
Average Rank by Series 1 .65 7.63 8.43 9.50 8.03 7.00 4. 1 5  3.80 3.80 6.55 5.80 
Rank of Average Rank 1 8 1 0  1 1  9 7 4 2 2 6 5 
Kruskal-Wallis Rank Sum 478.0 2,880.5 3, 1 31 .5 3,691 .5 3,084.0 2,576.0 1 ,405.0 1 ,324.5 1 ,324.5 2,345.0 2,1 26.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 4 2 2 6 5 
K-W Multi-Comparison Count" 1 0  1 0  9 1 0  9 1 0  9 8 8 1 0  1 0  

5 Average 3. 1 0  6.85 7.1 5  7.85 6.95 6.69 4.51 5.28 5.58 6.44 5.59 
Rank 1 8 1 0  1 1  9 7 2 3 4 6 5 
Geometric Mean 2.90 6.77 7. 1 0  7.78 6.88 6.57 4.38 5.04 5.47 6.32 5.50 
Rank 1 8 1 0  1 1  9 7 2 3 4 6 5 
Average Rank by Series 1 .78 7.95 8.50 9.03 7.53 7.1 3 3.35 4.70 4.60 6.53 4.93 
Rank of Average Rank 1 9 1 0  1 1  8 7 2 4 3 6 5 
Kruskal-Wallis Rank Sum 431 .0 2,864.5 3,1 1 8.5 3,574.5 2,937.0 2,706.5 1 ,025.0 1 ,652.0 1 ,762.0 2,478.0 1 ,761 .0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 2 3 5 6 4 
K-W Multi-Comparison Count" 1 0  9 1 0  1 0  9 1 0  1 0  1 0  9 1 0  9 

1 0  Average 3.06 6.81 7 . 1 2  7.52 6.97 6.66 4.35 5.84 5.84 6.22 6.04 
Rank 1 8 1 0  1 1  9 7 2 3 3 6 5 
Geometric Mean 2.85 6.69 7.04 7.40 6.74 6.50 4. 1 2  5.67 5.67 6.00 5.83 
Rank 1 8 1 0  1 1  9 7 2 3 3 6 5 
Average Rank by Series 1 .85 7.25 7.9 8.2 7.7 6.95 3.575 5.625 5.625 5.925 6.025 
Rank of Average Rank 1 8 1 0  1 1  9 7 2 3 3 5 6 
Kruskal-Wallis Rank Sum 51 2.0 2,704.0 2,940.5 3,224.5 2,852.5 2,622.5 1 , 1 20.0 2,031 .5 2,031 .5 2,316.0 2,1 89.5 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 2 3 3 6 5 
K-W Multi-Comparison Count" 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  

1 5  Average 2.80 6.78 7 . 1 0  7.85 7. 1 2  6.61 3.96 5.31 5.76 6.67 6.05 
Rank 1 8 9 1 1  1 0  6 2 3 4 7 5 
Geometric Mean 2.69 6.63 7.00 7.71 6.97 6.35 3.71 4.95 5.52 6.50 5.85 
Rank 1 8 1 0  1 1  9 6 2 3 4 7 5 
Average Rank by Series 1 .68 7.30 7.65 8.43 7.93 6.65 3.28 4.93 5.33 6.73 6.1 3 
Rank of Average Rank 1 8 9 1 1  1 0  6 2 3 4 7 5 
Kruskal-Wallis Rank Sum 398.0 2,677.5 2,886.0 3,302.0 2,920.0 2,510.0 988.5 1 ,787.0 2,041 .5 2,601 .5 2, 1 98.0 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  6 2 3 4 7 5 
K-W Multi-Comparison Count" 1 0  9 9 1 0  9 1 0  1 0  1 0  1 0  9 1 0  
" K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic i s  significant. 
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Appendix IV Tables from Scenarios 1 Through 13b 
Level Shift as Planned Table: 1 - 1  
Scenario 1 Average Rank of Absolute Error 

Period Adjust HWt/II HW Adapt Auto Naive HWt/II· HW· Adapt· Auto· Naive· 
Average 3.54 6.75 6.98 7.87 7.21 6.38 5.27 5.04 5.04 6. 1 8  5.94 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Geometric Mean 3.33 6.68 6.93 7.79 7.03 6.33 5.22 4.93 4.93 6. 1 2  5.82 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Average Rank by Series 1 .65 7.63 8.43 9.50 8.03 7.00 4. 1 5  3.80 3.80 6.55 5.80 
Rank of Average Rank 1 8 1 0  1 1  9 7 4 2 2 6 5 
Kruskal-Wallls Rank Sum 478.0 2,880.5 3,1 31 .5 3,691 .5 3,084.0 2,576.0 1 ,405.0 1 ,324.5 1 ,324.5 2,345.0 2,1 26.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 4 2 2 6 5 
K-W Multi-Comparison Count· 1 0  1 0  9 1 0  9 1 0  9 8 8 1 0  1 0  

5 Average 3. 1 0  6.85 7 . 15  7.85 6.95 6.69 .· 4.51 5.28 5.58 6.44 5.59 
Rank 1 8 1 0  1 1  9 7 2 3 4 6 5 
Geometric Mean 2.90 6.77 7 . 10  7.78 6.88 6.57 4.38 5.04 5.47 6.32 5.50 
Rank 1 8 1 0  1 1  9 7 2 3 4 6 5 
Average Rank by Series 1 .78 7.95 8.50 9.03 7.53 7. 1 3  3.35 4.70 4.60 6.53 4.93 
Rank of Average Rank 1 9 1 0  1 1  8 7 2 4 3 6 5 
Kruskal-Wallis Rank Sum 431 .0 2,864.5 3,1 1 8.5 3,574.5 2,937.0 2,706.5 1 ,025.0 1 ,652.0 1 ,762.0 2,478.0 1 ,761 .0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 2 3 5 6 4 
K-W Multi-Comparison Count· 1 0  9 1 0  1 0  9 1 0  1 0  1 0  9 1 0  9 

1 0  Average 3.06 6.81 7 . 12  7.52 6.97 6.66 4.35 5.84 5.84 6.22 6.04 
Rank 1 8 1 0  1 1  9 7 2 3 3 6 5 
Geometric Mean 2.85 6.69 7.04 7.40 6.74 6.50 4. 1 2  5.67 5.67 6.00 5.83 
Rank 1 8 1 0  1 1 9 7 2 3 3 6 5 
Average Rank by Series 1 .85 7.25 7.9 8.2 7.7 6.95 3.575 5.625 5.625 5.925 6.025 
Rank of Average Rank 1 8 1 0  1 1  9 7 2 3 3 5 6 
Kruskal-Wallis Rank Sum 51 2.0 2,704.0 2,940.5 3,224.5 2,852.5 2,622.5 1 , 1 20.0 2,031 .5 2,031 .5 2,316.0 2,1 89.5 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 2 3 3 6 5 
K-W Multi-Comparison Count· 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  

1 5  Average 2.80 6.78 7 . 1 0  7 .85 7. 1 2  6.61 3.96 5.31 5.76 6.67 6.05 
Rank 1 8 9 1 1  1 0  6 2 3 4 7 5 
Geometric Mean 2.69 6.63 7.00 7.71 6.97 6.35 3.71 4.95 5.52 6.50 5.85 

Rank 1 8 1 0  1 1  9 6 2 3 4 7 5 

Average Rank by Series 1 .68 7.30 7.65 8.43 7.93 6.65 3.28 4.93 5.33 6.73 6. 1 3  
Rank of Average Rank 1 8 9 1 1  1 0  6 2 3 4 7 5 
Kruskal-Wallis Rank Sum 398.0 2,677.5 2,886.0 3,302.0 2,920.0 2,51 0.0 988.5 1 ,787.0 2,041 .5 2,601 .5 2 , 1 98.0 

Rank of K-W Rank Sum 1 8 9 1 1  1 0  6 2 3 4 7 5 
K-W Multi-Comparison Count· 1 0  9 9 1 0  9 1 0  1 0  1 0  1 0  9 1 0  

·K-W Multi-Comparison Count valid only I f  Kruskal-Wallis statistic Is Significant. 
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Level Shin as Planned 
Period: Scenario 1 Range of Percent Error Table: 1-2 

Period: 
Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 

Average 8.74% 14.n% 14.53% 15.90% 16.09% 16.30% 12.80% 10.61% 10.67% 13.60% 12.46% 
Rank 1 8 7 9 10 11 5 2 3 6 4 
Geometric Mean 4.02% 12.83% 12.50% 13.20% 14.32% 14.00% 11.19% 6.85% 7.08% 9.95% 9.50% 
Rank 1 8 7 9 11 10 6 2 3 5 4 

Average Rank by Series 1.95 7.50 7.00 7.80 8.88 8.75 5.75 3.70 3.40 6.20 5.28 
Rank of Average Rank 1 8 7 9 10 11 5 3 2 6 4 

Kruskal-Wallis Rank Sum 1,425.0 2,595.0 2,520.0 2,622.0 2,799.5 2,730.0 2,284.0 1,602.0 1,590.0 2,133.0 2,009.5 
Rank of K-W Rank Sum 1 8 7 9 11 10 6 3 2 5 4 
K-W Multi-Comparison Count· 10 8 9 9 9 9 10 9 9 10 10 

5 Average 8.03% 26.32% 26.00% 22.51% 22.66% 28.28% 19.84% 15.00% 16.05% 18.20% 17.54% 
Rank 1 10 9 7 8 11 6 2 3 5 4 
Geometric Mean 5.07% 25.38% 25.07% 21.56% 21.52% 27.46% 18.48% 11.11% 13.16% 15.70% 15.49% 
Rank 1 10 9 8 7 11 6 2 3 5 4 
Average Rank by Series 1.55 8.13 7.88 6.15 6.40 9.65 6.10 4.13 4.33 5.90 5.80 
Rank of Average Rank 1 10 9 7 8 11 6 2 3 5 4 

Kruskal-Wallis Rank Sum 742.0 3,050.5 3,020.5 2,522.0 2,489.0 3,305.0 2,122.0 1,543.5 1,636.5 1,963.0 1,916.0 
Rank of K-W Rank Sum 1 10 9 8 7 11 6 2 3 5 4 
K-W Multi-Comparison Count· 10 9 9 9 9 10 10 10 10 9 9 

10 Average 10.08% 31.37% 31.30% 33.23% 29.59% 27.69% 20.58% 22.04% 24.40% 30.83% 26.31% 
Rank 1 10 9 11 7 6 2 3 4 8 5 
Geometric Mean 6.71% 29.26% 29.53% 30.52% 27.46% 26.81% 19.84% 14.32% 17.85% 24.93% 20.84% 
Rank 1 9 10 11 8 7 4 2 3 6 5 
Average Rank by Series 1.n5 7.65 7.7 7.225 6.6 7.85 4.375 4.95 5.2 6.675 6 
Rank of Average Rank 1 9 10 8 6 11 2 3 4 7 5 
Kruskal-Wallis Rank Sum 732.5 2,754.0 2,802.0 2,827.5 2,559.0 2,536.0 1,669.5 1,767.0 2,044.0 2,485.5 2,133.0 
Rank of K-W Rank Sum 1 9 10 11 8 7 2 3 4 6 5 
K-W Multi-Comparison Count· 10 8 8 8 8 8 10 10 10 8 10 

15 Average 10.01% 36.16% 37.48% 40.05% 34.72% 26.46% 19.78% 26.84% 30.15% 39.74% 32.35% 
Rank 1 8 9 11 7 3 2 4 5 10 6 

Geometric Mean 6.46% 31.93% 33.74% 34.32% 30.01% 25.65% 19.06% 14.73% 18.85% 28.05% 23.89% 
Rank 1 9 10 11 8 6 4 2 3 7 5 
Average Rank by Series 1.88 7.95 7.88 6.85 6.58 7.30 5.03 4.75 4.98 6.65 6.18 
Rank of Average Rank 1 11 10 8 6 9 4 2 3 7 5 
Kruskal-Wallis Rank Sum n9.5 2,702.0 2,814.5 2,806.0 2,593.5 2,382.0 1,6n.5 1,m.0 2,074.5 2,513.0 2,190.5 
Rank of K-W Rank Sum 1 9 11 10 8 6 2 3 4 7 5 
K-W Multi-Comparison Count· 10 10 9 9 9 10 10 10 10 9 10 
·K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is slgnflcant. 
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Level Shin as Planned Table: 1-3 

Period: Scenario 1 Mean Absolute Percent Error 
1 Adjusted HWVII HW Adaptive Auto Naive HWVII· HW· Adaptive· Auto· Naive· 

Average 3.63% 7.45% 7.49% 8.73% 7.99% 7.15% 6.16% 4.86% 4.93% 6.22% 5.71% 

Rank 1 8 9 11 10 7 5 2 3 6 4 

Geometric Mean 1.93% 6.78% 6.83% 7.91% 7.17% 6.35% 5.49% 3.49% 3.67% 5.03% 4.63% 

Rank 1 8 9 11 10 7 6 2 3 5 4 

Average Rank by Series 1.55 8.18 8.53 9.60 8.45 7.55 5.50 3.28 3.28 5.35 4.75 

Rank of Average Rank 1 8 10 11 9 7 6 2 2 5 4 

Kruskal-Wallls Rank Sum 1,260.0 2,6n.5 2,694.5 3,007.0 2,810.0 2,468.0 2,201.0 1,573.5 1,589.5 2,087.0 1,942.0 

Rank of K-W Rank Sum 1 8 9 11 10 7 6 2 3 5 4 
K-W Multi-Comparison Count· 10 9 9 10 10 10 10 9 9 10 10 

5 Average 4.39% 13.13% 13.62% 15.20% 13.59% 11.96% 8.06% 8.25% 9.03% 10.79% 9.29% 
Rank 1 8 10 11 9 7 2 3 4 6 5 

Geometric Mean 2.88% 12.37% 13.01% 14.56% 13.09% 11.28% 7.79% 6.20% 7 . 48% 9.31% 7.97% 

Rank 1 8 9 11 10 7 4 2 3 6 5 

Average Rank by Series 1.50 8.38 8.98 9.20 8.35 7.10 4.00 4.18 4.33 5.75 4.25 
Rank of Average Rank 1 9 10 11 8 7 2 3 5 6 4 

Kruskal-Wallis Rank Sum 747.0 2,801.5 2,961.5 3,239.0 2,987.0 2,482.0 1,424.0 1,680.5 1,854.5 2,225.0 1,908.0 

Rank of K-W Rank Sum 1 8 9 11 10 7 2 3 4 6 5 

K-W Multi-Comparison Count· 10 10 9 10 9 10 10 10 9 10 9 

10 Average 5.63% 17.05% 18.26% 21.11% 18.06% 13.79% 9.26% 12.81% 14.52% 17.61% 14.80% 
Rank 1 7 10 11 9 4 2 3 5 8 6 
Geometric Mean 3.88% 14.93% 16.40% 19.16% 16.20% 12.85% 8.64% 8.34% 10.50% 13.78% 11.65% 
Rank 1 8 10 11 9 6 3 2 4 7 5 

Average Rank by Series 1.65 7.875 7.975 8.65 7.85 6.85 3.85 4.875 4.825 6.2 5.4 
Rank of Average Rank 1 9 10 11 8 7 2 4 3 6 5 

Kruskal-Wallls Rank Sum 829.0 2,562.5 2,754.5 3,067.0 2,734.0 2,262.0 1,454.0 1,830.5 2,120.5 2,545.0 2,151.0 

Rank of K-W Rank Sum 1 8 10 11 9 6 2 3 4 7 5 

K-W Multi-Comparison Count" 10 9 9 10 9 10 10 10 9 9 9 
15 Average 5.79% 20.29% 22.30% 27.35% 21.92% 15.24% 9.17% 16.03% 18.65% 24.11% 18.75% 

Rank 1 7 9 11 8 3 2 4 5 10 6 
Geometric Mean 4.03% 16.60% 18.87% 23.33% 18.55% 14.21% 8.53% 8.99% 11.74% 17.16% 13.34% 
Rank 1 7 10 11 9 6 2 3 4 8 5 

Average Rank by Series 1.65 7.78 7.93 8.90 7.80 6.75 3.90 4.58 4.68 6.55 5.30 
Rank of Average Rank 1 8 10 11 9 7 2 3 4 6 5 
Kruskal-Wallis Rank Sum 807.0 2,499.5 2,722.5 3,067.0 2,713.0 2,270.0 1,405.0 1,850.5 2,174.5 2,619.0 2,182.0 
Rank of K-W Rank Sum 1 7 10 11 9 6 2 3 4 8 5 
K-W Multi-Comparison Count" 10 10 9 10 9 10 10 10 9 10 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 
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Level Shift as Planned 
Period: Scenario 1 Root Mean Squared Error Table: 1-4 

Period: 
Adjusted HWIN HW Adaptive Auto Naive HWIN· HW· Adaptive· Auto· Naive· 

Geometric Mean 48.94 164.28 162.50 187.79 In.28 161.67 138.16 90.05 95.14 129.96 120.46 

Rank 1 9 8 11 10 7 6 2 3 5 4 

Average Rank by Series 1.30 8.18 8.03 9.55 8.55 8.20 5.80 3.03 3.13 5.45 4.80 

Rank of Average Rank 1 8 7 11 10 9 6 2 3 5 4 

5 Geometric Mean 73.65 335.36 341.67 366.72 340.29 321.00 222.38 158.27 190.39 236.21 211.53 

Rank 1 8 10 11 9 7 5 2 3 6 4 

Average Rank by Series 1.25 8.33 8.83 8.95 8.30 7.40 4.00 4.23 4.23 5.50 5.00 

Rank of Average Rank 1 9 10 11 8 7 2 3 3 6 5 

10 Geometric Mean 103.23 412.12 440.36 500.55 424.32 360.08 251.84 219.43 275.72 3n.54 310.90 

Rank 1 8 10 11 9 6 3 2 4 7 5 

Average Rank by Series 1.65 7.775 8.125 8.5 7.25 7 3.8 4.775 4.875 6.5 5.75 

Rank of Average Rank 1 9 10 11 8 7 2 3 4 6 5 

15 Geometric Mean 109.66 464.33 516.09 611.23 493.13 390.42 251.29 242.17 314.75 457.78 361.97 

Rank 1 8 10 11 9 6 3 2 4 7 5 

Average Rank by Series 1.50 7.68 7.88 8.70 7.40 6.75 3.95 4.78 5.08 6.80 5.50 

Rank of Average Rank 1 9 10 11 8 6 2 3 4 7 5 

Level Shift as Planned 
Period: Scenario 1 Geometric Root Mean Squared Error Table: 1-5 

Adjusted HWIN HW Adaptive Auto Naive HWIN· HW· Adaptive· Auto· Naive· 
Geometric Mean 26.32 86.26 94.50 124.35 98.39 73.32 59.06 44.53 47.32 68.54 64.51 

Rank 1 8 9 11 10 7 4 2 3 6 5 

Average Rank by Series 2.05 7.68 8.28 9.60 8.40 6.10 5.00 3.58 3.98 5.80 5.55 

Rank of Average Rank 1 8 9 11 10 7 4 2 3 6 5 

5 Geometric Mean 47.09 164.81 196.95 234.14 193.97 140.94 87.98 95.67 115.16 141.12 109.71 

Rank 1 8 10 11 9 6 2 3 5 7 4 

Average Rank by Series 2.25 8.23 8.78 9.15 8.50 6.60 4.00 4.23 4.38 5.30 4.60 

Rank of Average Rank 1 8 10 11 9 7 2 3 4 6 5 

10 Geometric Mean 55.46 213.34 246.74 299.24 257.65 192.15 97.81 137.02 168.85 200.22 175.52 

Rank 1 8 9 11 10 6 2 3 4 7 5 

Average Rank by Series 2 7.725 8.025 8.5 8.35 6.55 4 4.425 5.025 5.95 5.45 

Rank of Average Rank 1 8 9 11 10 7 2 3 4 6 5 

15 Geometric Mean 67.91 246.61 295.91 405.33 326.87 237.79 112.09 147.96 194.63 276.15 216.18 

Rank 1 7 9 11 10 6 2 3 4 8 5 

Average Rank by Series 1.80 7.63 8.03 9.05 8.50 6.90 3.25 4.23 4.68 6.40 5.55 

Rank of Average Rank 1 8 9 11 10 7 2 3 4 6 5 
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level Shift as Planned Average Rank of Absolute Error Table 1 -6 level Shift as Planned log Mean Squared Error Ratio Table 1 -1 0  

Period Scenario 1 Chi Square OF pValue Period Scenario 1 Chi Square OF p Value 

1 RANKANOVA 62.68 19 0.0000 1 RANKANOVA 56.20 1 9  0.0000 

KRUSKAl-WAlliS 1 20. 1 5  10 0.0000 KRUSKAl-WAlliS 82.89 1 0  0.0000 

5 RANKANOVA 55.38 1 9  0.0000 5 RANKANOVA 58.23 19 0.0000 

KRUSKAl-WAlliS 1 1 4.09 1 0  0.0000 KRUSKAl-WAlliS 70.33 1 0  0.0000 

1 0  RANKANOVA 40. 1 2  1 9  0.0032 1 0  RANKANOVA 45. 1 4  1 9  0.0007 

KRUSKAl-WAlliS 82.38 1 0  0.0000 KRUSKAl-WAlliS 55.80 10 0.0000 

1 5  RANKANOVA 44.95 1 9  0.0007 1 5  RANKANOVA 56.24 1 9  0.0000 

KRUSKAl-WAlliS 93.n 1 0  0.0000 KRUSKAl-WAlliS 60.82 1 0  0.0000 

level Shift as Planned Symmetry Adjusted MAPE Table 1 -7 level Shift as Planned Mean Absolute Percent Error Table 1 -1 1 

Scenario 1 Chi Square OF p Value Scenario 1 Chi Square OF pValue 

RANKANOVA 76.71 19 0.0000 RANKANOVA 72.64 1 9  0.0000 

KRUSKAl-WAlliS 42.55 1 0  0.0000 KRUSKAl-WAlliS 40 . 66 1 0  0.0000 

5 RANKANOVA 72.92 19 0.0000 5 RANKANOVA 68.09 1 9  0.0000 

KRUSKAl-WAlliS 84.67 10 0.0000 KRUSKAl-WAlliS 72.90 10 0.0000 

10 RANKANOVA 56.54 19 0.0000 1 0  RANKANOVA 47.51 19 0.0003 

KRUSKAl-WAlliS 57.83 1 0  0.0000 KRUSKAl-WAlliS 51 .57 1 0  0.0000 

15 RANKANOVA 58.39 1 9  0.0000 1 5  RANKANOVA 48.88 19 0.0002 

KRUSKAl-WAlliS 57.56 10 0.0000 KRUSKAl-WAlliS 52.48 1 0  0.0000 

level Shift as Planned Range of Percent Error Table 1 - 8 level Shift as Planned Median Absolute Percent Error Table 1 - 1 2  

Scenario 1 Chi Square OF p Value Scenario 1 Chi Square OF pValue 

RANKANOVA 52.83 1 9  0.0000 RANKANOVA 54.55 1 9  0.0000 

KRUSKAl-WAlliS 30.28 10 0.0008 KRUSKAl-WAlliS 34.52 1 0  0.0002 

5 RANKANOVA SO.16 19 0.0001 5 RANKANOVA 62.78 1 9  0.0000 

KRUSKAl-WAlliS KRUSKAl-WAlliS 59.36 10 0.0000 

RANKANOVA 35.47 19 0.0122 1 0  RANKANOVA 34.47 1 9  0.0 1 62 

10 KRUSKAl-WAlliS 49.81 10 0.0000 KRUSKAl-WAlliS 43.64 1 0  0.0000 

RANKANOVA 32.88 19 0.0248 1 5  RANKANOVA 43.85 1 9  0.00 1 0  

15 KRUSKAl-WAlliS 46.49 1 0  0.0000 KRUSKAl-WAlliS 46.21 1 0  0.0000 

level Shift as Planned Geometric Root Mean Square Error Table 1 -9 level Shift as Planned Root Mean Square Error Table 1 - 1 3  

Scenario 1 Chi Square OF pValue Scenario 1 Chi Square OF p Value 

1 RANKANOVA 56.20 1 9  0.0000 1 RANKANOVA n.22 1 9  0.0000 

5 RANKANOVA 58.23 1 9  0.0000 5 RANKANOVA 66.SO 19 0.0000 

10 RANKANOVA 45.14 19 0.0007 1 0  RANKANOVA 45.59 1 9  0.0006 

15 RANKANOVA 56.24 19 0.0000 15 RANKANOVA 46.1 2  19 0.0005 

344 



Level and Trend Shift Table: 2 - 1  
Period: Scenario 2 Average Rank of Absolute Error 

Adjust HWW HW Adapt Auto Naive HWW" HW" Adapt" Auto" Naive" 
Average 3.55 6.72 6.98 7.66 7.24 6.40 5.21 5.03 5.03 6. 1 6  5.98 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Geometric Mean 3.34 6.65 6.94 7.79 7.06 6.35 5 . 16 4.94 4.94 6.1 0  5.66 
Rank 1 8 9 1 1  1 0  7 4 3 2 6 5 
Average Rank by Series 1 .70 7.60 8.40 9.45 8 . 15  7.00 4. 1 5  3.83 3.83 6.43 5.78 
Rank of Average Rank 1 8 1 0  1 1  9 7 4 3 2 6 5 
Kruskal-Wallis Rank Sum 489.0 2855.5 31 36.0 3685.0 31 08.0 2581 .5 1 393.0 1 299.0 1 299.0 2333.5 21 75.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 4 2 2 6 5 
K-W Multi-Comparison Count" 1 0  1 0  9 1 0  9 1 0  1 0  9 9 1 0  1 0  

5 Average 3.1 3 6.92 7 . 15  7.89 6.86 6.73 4.48 5.33 5.61 6.42 5.49 
Rank 1 8 1 0  1 1  8 t 2 3 5 6 4 
Geometric Mean 2.95 6.83 7.10 7.83 6.78 6.62 4.34 5.1 0  5.50 6.31 5.37 
Rank 1 8 1 0  1 1  8 7 2 3 5 6 4 
Average Rank by Series 1 .58 8 . 18  8.60 9.00 7.50 7.1 8 3.20 5.03 4.83 6.33 4.60 
Rank of Average Rank 1 9 1 0  1 1  8 7 2 5 3 6 3 
Kruskal-Wallis Rank Sum 41 4.0 291 6.5 31 35.5 3595.0 2858.5 2752.5 998.0 1 686.5 1 791 .5 2464.0 1 698.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  8 7 2 3 5 6 4 
K-W Multi-Comparison Count" 1 0  9 1 0  1 0  9 1 0  1 0  9 1 0  1 0  9 

1 0  Average 3.03 6.79 7 . 12  7.56 6.96 6.79 4.32 5.84 5.84 6.24 5.99 
Rank 1 8 1 0  1 1  9 7 2 3 3 6 5 
Geometric Mean 2.84 6.66 7.05 7.44 6.73 6.64 4.09 5.67 5.67 6.02 5.78 
Rank 1 8 1 0  1 1  9 7 2 4 3 6 5 
Average Rank by Series 1 .73 7.28 7.85 8.28 7.73 7 .15 3.60 5.45 5.45 6.05 5.90 
Rank of Average Rank 1 8 1 0  1 1  9 7 2 3 3 6 5 
Kruskal-Wallis Rank Sum 489.5 2697.5 2944.5 3244.5 2851 .0 2695.5 1 104.0 2009.5 2009.5 2331 .0 21 52.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 7 2 3 3 6 5 
K-W Multi-Comparison Count" 1 0  9 1 0  1 0  1 0  9 1 0  1 0  1 0  1 0  1 0  

1 5  Average 2.87 6.72 7.1 2  7.87 7 . 10 6.65 3.99 5.28 5.75 6.68 5.98 
Rank 1 8 9 1 1  9 6 2 3 4 7 5 
Geometric Mean 2.76 6.57 7.02 7.72 6.95 6.40 3.74 4.90 5.51 6.51 5.78 
Rank 1 8 1 0  1 1  9 6 2 3 4 7 5 
Average Rank by Series 1 .73 7 . 10 7.90 8.53 7.78 6.73 3.33 4.80 5.35 6.83 5.95 
Rank of Average Rank 1 8 9 1 1  9 6 2 3 4 7 5 
Kruskal-Wallis Rank Sum 41 4.0 2631 .5 2901 .0 3324.0 291 3.5 2541 .5 995.5 1 nO.5 2041 .0 2608.0 2169.5 
Rank of K-W Rank Sum 1 8 9 1 1  10 6 2 3 4 7 5 
K-W Multi-Comparison Count" 1 0  9 9 1 0  9 9 1 0  .1 0 1 0  8 1 0  
"K-W Multi-Comparison Count valid only I f  Kruskal-Wallis statistic Is significant. 

3 4 5  



Level and Trend Shift 
Period: Scenario 2 Range of Percent Error Table: 2-2 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 8.77% 1 4.79% 1 4.56% 1 5.96% 1 6. 1 7% 1 6.29% 1 2.69% 1 0.59% 1 0.64% 1 3.61 % 1 2.50% 
Rank 1 8 7 9 1 0  1 1  5 2 3 6 4 
Geometric Mean 4.07% 1 2.89% 1 2.57% 1 3.29% 1 4.41 % 1 4.02% 1 1 .09% 6.87% 7.07% 9.94% 9.50% 
Rank 1 8 7 9 1 1  1 0  6 2 3 5 4 
Average Rank by Series 1 .95 7.60 6.90 7.80 8.68 8.75 5.75 3.70 3.40 6.20 5.28 
Rank of Average Rank 1 8 7 9 1 0  1 1  5 3 2 6 4 
Kruskal-Wallls Rank Sum 1 428.0 2603.0 251 9.0 2628.0 2803.5 2733.0 2267.0 1 603.0 1 590.0 21 27.0 2008.5 
Rank of K-W Rank Sum 1 8 7 9 1 1  1 0  6 3 2 5 4 
K-W Multi-Comparison Count" 1 0  9 1 0  9 9 9 1 0  9 9 1 0  1 0  

5 Average 8. 1 2% 26.23% 25.89% 22.64% 22.78% 28,24% 1 9.52% 1 4.77% 1 5.80% 1 8. 1 0% 1 7.43% 
Rank 1 1 0  9 7 8 1 1- 6 2 3 5 4 
Geometric Mean 5.1 5% 25.37% 25.04% 21 .74% 21 .73% 27.45% 1 8. 10% 1 1 . 1 2% 1 3.06% 1 5.62% 1 5.40% 
Rank 1 1 0  9 8 7 1 1  6 2 3 5 4 
Average Rank by Series 1 .55 8. 1 8  7.68 6. 1 8  6.45 9.65 6. 1 5  4.08 4.23 5.83 5.85 
Rank of Average Rank 1 1 0  9 7 8 1 1  6 2 3 5 5 
Kruskal-Wallis Rank Sum 751 .0 3062.5 3021 .5 2551 .5 2510.0 3318.0 2090.0 1 51 4.5 1 604.5 1 967.5 1 91 9.0 
Rank of K-W Rank Sum 1 1 0  9 8 7 1 1  6 2 3 5 4 
K-W Multi-Comparison Count" 1 0  9 9 9 9 1 0  1 0  1 0  1 0  9 9 

1 0  Average 9.91 % 31 .20% 31 .01 % 33.02% 29.28% 27.69% 20.1 9% 21 .83% 24. 1 2% 30.54% 25.96% 
Rank 1 9 9 1 1  7 6 2 3 4 8 5 
Geometric Mean 6.55% 29.22% 29.32% 30.38% 27.22% 26.79% 1 9.40% 1 4. 1 0% 1 7.77% 24.76% 20.63% 
Rank 1 9 1 0  1 1  8 7 4 2 3 6 5 
Average Rank by Series 1 .76 7.65 7.65 7. 1 6  6.60 7.55 4.33 5. 1 5  5.25 6.76 5.90 
Rank of Average Rank 1 1 0  9 6 6 9 2 3 4 7 5 
Kruskal-Wallis Rank Sum 721 .5 2763.0 2796.0 263 1 .5 2576.0 2562.0 1 649.5 1 773.0 2036.0 2483.5 21 1 6.0 
Rank of K-W Rank Sum 1 9 1 0  1 1  6 7 2 3 4 6 5 
K-W Multi-Comparison Count" 1 0  6 6 6 9 6 1 0  1 0  9 9 9 

1 5  Average 9.92% 36. 1 3% 37.22% 39.61 % 34.56% 26.34% 1 9.38% 26.57% 29.80% 39.40% 31 .66% 
Rank 1 6 9 1 1  7 3 2 4 5 1 0  6 
Geometric Mean 6 .52% 32. 1 7% 33.68% 34.26% 30.1 4% 25.54% 1 8.66% 1 4.95% 1 9 . 1 5% 27.96% 23.66% 
Rank 1 9 1 0  1 1  6 6 3 2 4 7 5 
Average Rank by Series 1 .65 6. 1 0  7.65 6.65 6.63 7.20 5.05 4.75 5.05 6.70 5.96 
Rank of Average Rank 1 1 1  1 0  6 7 9 4 2 3 6 5 
Kruskal-Wallis Rank Sum 767.0 2756.0 2845.0 261 1 .0 2607.5 2364.0 1 626.0 1 766.0 2076.0 2509.0 21 62.5 
Rank of K-W Rank Sum 1 9 1 1  1 0  6 6 2 3 4 7 5 
K-W Multi-Comparison Count" 1 0  9 9 6 1 0  1 0  1 0  1 0  1 0  1 0  1 0  

"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

3 4 6  



Level and Trend Shin Table: 2-3 
Perlod: Scenarlo 2 Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 3.63% 7.46% 7.49% 8.73% 7.99% 7.1 8% 6.1 3% 4.86% 4.92% 6.21 % 5.70% 
Rank 1 8 9 1 1  1 0  7 5 2 3 6 4 
Geometrlc Mean 1 .93% 6.80% 6.84% 7.91 % 7. 1 8% 6.38% 5.46% 3.50% 3.66% 5.02% 4.61 % 
Rank 1 8 9 1 1  1 0  7 6 2 3 5 4 
Average Rank by Serles 1 .45 8. 1 3  8.53 9.60 8.45 7.60 5.55 3.33 3.33 5.30 4.75 
Rank of Average Rank 1 8 1 0  1 1  9 7 6 3 2 5 4 
Kruskal-Wallls Rank Sum 1 252.0 2677.5 2696.5 3005.0 2814.0 2483.0 21 92.0 1 574.5 1 592.5 2089.0 1 934.0 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  7 6 2 3 5 4 
K-W Multl-Comparlson Count" 1 0  9 9 1 0  1 0  1 0  1 0  9 9 1 0  1 0  

5 Average 4.41 % 1 3. 1 5% 1 3.63% 1 5.20% 1 3.59% 1 2.08% 7.98% 8.26% 9.00% 1 0.73% 9.23% 
Rank 1 8 1 0  1 1  9 7 2 3 4 6 5 
Geometrlc Mean 2.95% 1 2.41 % 1 3.03% 1 4.56% 1 3.09% 1 1 .41 % 7.72% 6.28% 7.49% 9.30% 7.94% 
Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 
Average Rank by Series 1 .50 8.38 8.98 9.25 8.35 7. 1 5  4.00 4.23 4.38 5.55 4.25 
Rank of Average Rank 1 9 1 0  1 1  8 7 2 3 5 6 4 
Kruskal-Wallis Rank Sum 747.0 2808.5 2969.5 3253.0 2981 .0 2523.0 1 405.0 1 680.5 1 851 .5 2198.0 1 893.0 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  7 2 3 4 6 5 
K-W Multi-Comparison Count" 1 0  1 0  9 1 0  9 1 0  1 0  1 0  9 1 0  9 

10 Average 5.69% 1 7.04% 1 8.22% 21 .03% 1 7.99% 1 4.09% 9. 1 8% 1 2.76% 1 4.42% 1 7.48% 1 4.66% 
Rank 1 7 1 0  1 1  9 4 2 3 5 8 6 
Geometric Mean 3.95% 1 4.97% 1 6.42% 1 9. 1 1 %  1 6. 1 6% 1 3. 1 4% 8.55% 8.41 % 1 0.52% 1 3.74% 1 1 .59% 
Rank 1 8 1 0  1 1  9 6 3 2 4 7 5 
Average Rank by Series 1 .65 7.88 8.03 8.90 7.95 6.95 3.80 4.88 4.68 6.00 5.30 
Rank of Average Rank 1 9 1 0  1 1  9 7 2 4 3 6 5 
Kruskal-Wallis Rank Sum 823.0 2571 .5 2760.5 3063.0 2725.0 231 1 .0 1 437.0 1 835.5 21 1 3.5 2531 .0 21 39.0 
Rank of K-W Rank Sum 1 8 1 0  1 1  9 6 2 3 4 7 5 
K-W Multi-Comparison Count" 10 9 9 1 0  9 1 0  1 0  1 0  9 9 9 

15 Average 5.82% 20.21 % 22.18% 27. 1 8% 21 .73% 1 5.67% 9.07% 1 5.92% 1 8.45% 23.88% 1 8.48% 
Rank 1 7 9 1 1  8 3 2 4 5 1 0  6 
Geometric Mean 4.02% 16.65% 1 8.89% 23.28% 1 8.46% 1 4.61 % 8.42% 9.06% 1 1 .81 % 17 . 17% 1 3. 18% 
Rank 1 7 1 0  1 1  9 6 2 3 4 8 5 
Average Rank by Series 1 .70 7.83 if§! 8.90 7.90 6.75 3.90 4.53 4.88 6.60 5.1 0  
Rank of Average Rank 1 9 1 0  1 1  9 7 2 3 4 6 5 
Kruskal-Wallls Rank Sum 788.0 2500.5 2727.5 3071 .0 2702.0 2320.0 1 383.0 1 852.5 21 79.5 261 5.0 2171 .0 
Rank of K-W Rank Sum 1 7 1 0  1 1  9 6 2 3 4 8 4 
K-W Multl-Comparlson Count" 1 0  1 0  9 1 0  9 1 0  1 0  1 0  9 10 9 
"K-W Multi-Comparison Count valid only If Kruskal-Wallls statistic is significant. 
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Level and Trend Shift 
Period: Scenario 2 Root Mean Square Error Table: 2-4 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 49.36 164.82 1 62.99 1 88.33 1 77.83 1 62.41 1 37.49 90.46 95.00 1 29.90 1 20.45 
Rank 1 9 8 1 1  1 0  7 6 2 3 5 4 
Average Rank by Series 1 .30 8. 1 8  8.08 9.65 8.55 8.20 5.55 3.08 3. 1 8  5.45 4.80 
Rank of Average Rank 1 8 7 1 1  1 0  9 6 2 3 5 4 

5 Geometric Mean 75.32 336.92 342.76 367.95 341 .54 324. 1 1  220.39 1 60.48 1 90.89 236.84 21 1 .37 
Rank 1 8 1 0  1 1  9 7 5 2 3 6 4 
Average Rank by Series 1 .25 8.38 8.88 8.95 8.45 7.45 4.05 4.1 3  4. 1 8  5.40 4.90 
Rank of Average Rank 1 9 1 0  1 1  9 7 2 3 4 6 5 

1 0  Geometric Mean 1 05.02 41 5.04 442.00 501 .58 424.95 366.82 249.00 222.33 277.65 378.57 310.74 
Rank 1 8 1 0  1 1  9 6 3 2 4 7 5 
Average Rank by Series 1 .50 7.93 8.23 8.50 7.35 7 . 1 0  3.75 4.78 4.83 6.45 5.60 
Rank of Average Rank 1 9 1 0  1 1  8 7 2 3 4 6 5 

1 5  Geometric Mean 1 1 0.40 468.99 51 8.61 61 2.92 493.97 400.37 248.39 246. 1 3  31 9.55 460.n 360.74 
Rank 1 8 1 0  1 1  9 6 3 2 4 7 5 
Average Rank by Series 1 .40 7.73 7.88 8.70 7.45 6.75 3.95 4.78 5 . 13  6.80 5.45 
Rank of Average Rank 1 9 1 0  1 1  8 6 2 3 4 7 5 
Level and Trend Shift 

Period: Scenario 2 Geometric Root Mean Square Error Table: 2-5 
Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 

Geometric Mean 26.70 86.96 95.85 1 24.48 97. 1 5  74.67 59.42 43.69 47.76 68.56 62.84 
Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 
Average Rank by Series 2.05 7.63 8.33 9.55 8.35 6.30 5.00 3.58 3.93 5.80 5.50 
Rank of Average Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 

5 Geometric Mean 49.47 1 67.80 1 99.07 237.87 193.68 0.00 89.28 98.63 1 1 5 . 19 1 39.46 1 09.97 
Rank 1 8 1 0  1 1  9 1 3 4 6 7 5 
Average Rank by Series 2.15 8.33 8.88 9.30 8.30 6.35 3.90 4.48 4.43 5.30 4.60 
Rank of Average Rank 1 8 1 0  1 1  8 7 2 4 3 6 5 

1 0  Geometric Mean 62.27 21 4.08 253.44 292.72 258.72 203.82 1 06.73 1 38.1 1 1 72. 1 9  1 93.1 5  1 75.53 
Rank 1 8 9 1 1  1 0  7 2 3 4 6 5 
Average Rank by Series 2. 1 7.n5 8.325 8.35 8.3 7.1  3.9 4.275 5.075 5.45 5.35 
Rank of Average Rank 1 8 9 1 0  9 7 2 3 4 5 5 

1 5  Geometric Mean 66.81 232.26 291 .35 41 5.49 323.95 254.39 1 1 1 .97 1 42. 1 9  1 86.30 271 .24 21 0.09 
Rank 1 6 9 1 1  1 0  7 2 3 4 8 5 
Average Rank by Series 2.00 7.18 8.23 9. 1 5  8.35 7.00 3.75 3.98 4.73 6. 1 5  5.50 
Rank of Average Rank 1 8 9 1 1  10  7 2 3 4 6 5 

3 4 8  



Level and Trend Shift Average Rank of Absolute Error Table 2 - 6  Level and Trend Shift Log Mean Square Error Ratio Table 2 - 1 0 
Period Scenario 2 Chi Square OF p Value Period Scenario 2 Chi Square OF p Value 
1 RANK ANOVA 61 .72 1 9  0.0000 1 RANK ANOVA 56.00 1 9  0.0000 

KRUSKAL-WALLIS 1 20.73 1 0  0.0000 KRUSKAL-WALUS 83.23 1 0  0.0000 
5 RANK ANOVA 58.70 1 9  0.0000 5 RANK ANOVA 58.36 1 9  0.0000 

KRUSKAL-WALUS 1 1 6.73 1 0  0.0000 KRUSKAL-WALLIS 66.70 1 0  0.0000 
1 0  RANK ANOVA 42.00 1 9  0.001 6 1 0  RANK ANOVA 47.06 1 9  0.0003 

KRUSKAL-WALUS 65.29 1 0  0.0000 KRUSKAL-WALUS 58.02 1 0  0.0000 
1 5  RANK ANOVA 45. 1 0  1 9  0.0007 1 5  RANK ANOVA 52.36 1 9  0.0001 

KRUSKAL-WALUS 93.58 1 0  0.0000 KRUSKAL-WALUS 60.86 1 0  0.0000 

Level and Trend Shift Symmetry Adjusted MAPE Table 2 -7 Level and Trend Shift Mean Absolute Percent Error Table 2 - 1 1 
Scenario 2 Chi Square OF p Value Scenario 2 Chi Square OF p Value 
RANK ANOVA 77.66 1 9  0.0000 RANK ANOVA 72.98 1 9  0.0000 
KRUSKAL-WALUS 42.79 1 0  0.0000 KRUSKAL-WALUS 40.98 1 0  0.0000 

5 RANK ANOVA 73.65 1 9  0.0000 5 RANK ANOVA 66.32 1 9  0.0000 
KRUSKAL-WALUS 86.30 1 0  0.0000 KRUSKAL-WALUS 74.21 1 0  0.0000 

1 0  RANK ANOVA 58.26 1 9  0.0000 1 0  RANK ANOVA 50.45 1 9  0.0001 
KRUSKAL-WALUS 58.33 1 0  0.0000 KRUSKAL-WALUS 52.02 1 0  0.0000 

1 5  RANK ANOVA 62.37 1 9  0.0000 1 5  RANK ANOVA 49.54 1 9  0.0002 
KRUSKAL-WALUS 58.16 1 0  0.0000 KRUSKAL-WALUS 53.66 1 0  0.0000 

Level and Trend Shift Range of Percent Error Table 2 -8  Level and Trend Shift Median Absolute Percent Error Table 2 - 1 2 
Scenario 2 Chi Square OF p Value Scenario 2 Chi Square OF p Value 
RANK ANOVA 52.95 1 9  0.0000 RANK ANOVA 53.99 1 9  0.0000 
KRUSKAL-WALUS 30.43 1 0  0.0007 KRUSKAL-WALUS 34.45 1 0  0.0002 

5 RANK ANOVA 51 .01 1 9  0.0001 5 RANK ANOVA 64.07 1 9  0.0000 
KRUSKAL-WALUS 73.51 1 0  0.0000 KRUSKAL-WALLIS 60. 34 1 0  0.0000 
RANK ANOVA 34.70 1 9  0.01 52 1 0  RANK ANOVA 36.00 1 9  0.0106 

1 0  KRUSKAL-WALLIS 50.96 1 0  0.0000 KRUSKAL-WALUS 43.72 1 0  0.0000 
RANK ANOVA 35.34 1 9  0.01 27 1 5  RANK ANOVA 44.70 1 9  0.0006 

1 5  KRUSKAL-WALUS 49. 1 3  1 0  0.0000 KRUSKAL-WALUS 46.76 1 0  0.0000 

Level and Trend Shift Geometric Root Mean Square Error Table 2 - 9 Level and Trend Shift Root Mean Square Error Table 2 - 1 3  
Scenario 2 Chi Square OF p Value Scenario 2 Chi Square OF p Value 

1 RANK ANOVA 56.00 1 9  0.0000 1 RANK ANOVA 77.74 1 9  0.0000 
5 RANK ANOVA 59.24 1 9  0.0000 5 RANK ANOVA 66.63 1 9  0.0000 
1 0  RANK ANOVA 47.06 1 9  0.0003 1 0  RANK ANOVA 46.89 1 9  0.0002 
1 5  RANK ANOVA 52.36 1 9  0.0001 1 5  RANK ANOVA 47.35 1 9  0.0003 

3 4 9  



Period: Scenario 3 25% Level Shift 
Average Rank of Absolute Error Table: 3-1 

Adjusted H\IIIW HW Adaptive Auto Naive H\IIIW" HW" Adaptive" Auto" Naive" 
Average 7.78 5.04 4.95 4.96 4.83 5.40 9.01 6.00 6.00 6.1 7  5.89 
Rank 1 0  4 2 3 1 5 1 1  7 7 9 6 
Geometric Mean 7.61 4.90 4.83 4.81 4.67 5.21 8.91 5.95 5.95 6.07 5.79 
Rank 1 0  4 3 2 1 5 1 1  7 7 9 6 
Average Rank by Series 8.50 4.33 3.93 3.60 3.73 5.35 1 0.90 6.63 6.63 6.28 5.85 
Rank of Average Rank 1 0  4 3 1 2 5 1 1  8 8 7 6 
Kruskal-Wallis Rank Sum 3,334.5 1 ,51 3.0 1 ,41 7.5 1 ,392.5 1 ,321 .0 1 ,825.0 3,976.0 2,266.0 2,266.0 2,391 .5 2,245.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  7 7 9 6 
K-W Multi-Comparison Count" 1 0  1 0  9 8 9 1 0  1 0  8 8 1 0  8 

5 Average 7.1 8 5. 1 8  5.23 5.55 4.90 5.66 8.24 5.73 5.88 6.39 6.09 
Rank 10  2 3 4 1 5 1 1  6 7 9 8 
Geometric Mean 6.90 4.90 5.07 5.34 4.69 5.42 8.05 5.52 5.75 6.22 5.94 
Rank 10 2 3 4 1 5 1 1  6 7 9 8 
Average Rank by Series 7.20 4.95 4.80 5. 13  3.70 5.90 9.48 5.90 5.85 6.88 6.23 
Rank of Average Rank 10  3 2 4 1 6 1 1  6 5 9 8 
Kruskal-Wallis Rank Sum 2,887.5 1 ,746.0 1 ,705.0 1 ,867.0 1 ,426.5 2,056.5 3,510.0 2, 1 1 5.5 2, 1 94.5 2,562.5 2,340.5 
Rank of K-W Rank Sum 10  3 2 4 1 5 1 1  6 7 9 8 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  9 1 0  8 9 1 0  1 0  

1 0  Average 6.85 5.37 5.48 5.29 5. 1 7  5.92 7.82 5.96 5.96 6. 1 5  6.25 
Rank 10 3 4 2 1 5 1 1  6 6 8 9 
Geometric Mean 6.42 5.04 5.23 4.89 4.98 5.57 7.49 5.83 5.83 6.02 6. 1 4  
Rank 1 0  3 4 1 2 5 1 1  6 6 8 9 
Average Rank by Series 6.7 5.425 5.5 5 4.45 5.925 8.45 6.1 6. 1 6.05 6.675 
Rank of Average Rank 10  3 4 2 1 5 1 1  7 7 6 9 
Kruskal-Wallis Rank Sum 2,656.5 1 ,859.0 1 ,885.0 1 ,739.5 1 ,700.0 2,207.5 3,1 83.0 2,271 .0 2,271 .0 2,349.0 2,436.5 
Rank of K-W Rank Sum 1 0  3 4 2 1 5 1 1  6 6 8 9 
K-W Multi-Comparison Count" 1 0  9 9 9 9 8 1 0  8 8 9 1 0  

1 5  Average 6.58 5.41 5.45 5.59 5.21 6.29 7.39 5.78 5.93 6.29 6.09 
Rank 10 2 3 4 1 9 1 1  5 6 8 7 
Geometric Mean 5.95 5.00 5.09 5. 1 6  5.02 5.79 6.79 5.55 5.81 6.09 5.87 
Rank 9 1 3 4 2 6 1 1  5 7 1 0  8 
Average Rank by Series 5.975 5.5 5.525 5.425 4.8 6.375 7.575 6.075 6 . 175 6.375 6.2 
Rank of Average Rank 5 3 4 2 1 9 1 1  6 7 9 8 
Kruskal-Wailis Rank Sum 2,438.0 1 ,926.0 1 ,91 6.0 1 ,944.0 1 ,755.0 2,412.0 2,905.5 2,1 68.5 2,284.0 2,434.5 2,316.5 
Rank of K-W Rank Sum 1 0  3 2 4 1 8 1 1  5 6 9 7 
K-W Multi-Comparison Count" 8 8 8 8 1 0  8 1 0  1 0  9 8 9 
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

3 5 0  



Period: Scenario 3 25% Level Shift Table: 3-2 
Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 1 6.25% 1 2.51 % 1 2.43% 1 0.78% 1 1 .36% 1 3.68% 22.50% 1 4.27% 1 4.31 % 1 2.39% 1 3.44% 
Rank 1 0  5 4 1 2 7 1 1  8 9 3 6 
Geometric Mean 1 3. 1 9% 7.27% 7.05% 7.10% 7.33% 8.08% 2O.n% 1 1 . 1 3% 1 1 . 1 9% 1 0.28% 1 0.63% 
Rank 1 0  3 1 2 4 5 1 1  8 9 6 7 
Average Rank by Series 7.80 4.83 4.43 3.28 4.45 5.40 1 0.20 6.78 6.63 5.73 6.50 
Rank of Average Rank 1 0  4 2 1 3 5 1 1  9 8 6 7 
Kruskal-Wallls Rank Sum 2, 1 61 .0 1 ,41 9.0 1 ,41 6.5 1 ,372.0 1 ,437.0 1 ,525.0 3,1 50.0 1 ,790.0 1 ,802.5 1 ,71 4.5 2,335.0 
Rank of K-W Rank Sum 9 3 2 1 4 5 1 1  7 8 6 1 0  
K-W Multi-Comparison Count" 10 7 7 7 7 1 0  1 0  8 9 9 1 0  

5 Average 1 8.62% 1 5.06% 1 4.n% 12.84% 1 2.72% 1 7.27% 38.83% 1 8.89% 1 8.68% 1 7.38% 1 8.28% 
Rank 8 4 3 2 1 5 1 1  1 0  9 6 7 
Geometric Mean 1 7.45% 1 1 .95% 1 1 .65% 10.36% 1 0.66% 1 3.75% 37.28% 17 . 19% 1 6.95% 1 5.83% 1 7.30% 
Rank 1 0  4 3 1 2 5 1 1  8 7 6 9 
Average Rank by Series 7.45 4.98 4.33 3.45 3.85 6.50 1 0.55 6.33 6.08 5.90 6.60 
Rank of Average Rank 1 0  4 3 1 2 8 1 1  7 6 5 9 
Kruskal-Wallis Rank Sum 2,397.0 1 ,625.0 1 ,565.5 1 ,381 .0 1 ,463.0 1 ,879.0 3,986.0 2,368.0 2,31 3.5 2,1 39.0 2,51 2.0 
Rank of K-W Rank Sum 9 4 3 1 2 5 1 1  8 7 6 1 0  
K-W Multi-Comparison Count" 1 0  9 9 10 10 1 0  1 0  9 9 1 0  1 0  

1 0  Average 24.41 % 1 7.59% 1 7.28% 1 6.60% 1 5.47% 1 7.83% 37.1 2% 1 9.30% 1 8.46% 1 9.64% 1 9.26% 
Rank 1 0  4 3 2 1 5 1 1  8 6 9 7 
Geometric Mean 21 .56% 1 5.02% 15.07% 1 4. 1 9% 1 3.59% 1 4.82% 35.64% 1 7.52% 1 6.61 % 1 8.05% 1 7.51 % 
Rank 1 0  4 5 2 1 3 1 1  8 6 9 7 
Average Rank by Series 7.1 75 5.225 5.2 4.35 4 5.55 9.875 6.275 5.95 6.45 5.95 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  8 6 9 6 
Kruskal-Wallls Rank Sum 2,744.5 1 ,870.5 1 ,891 .5 1 ,n5.0 1 ,655.5 1 ,820.0 3,81 2.5 2,136.0 2,052.0 2,250.0 2,190.0 
Rank of K-W Rank Sum 1 0  4 5 2 1 3 1 1  7 6 9 8 
K-W Multi-Comparison Count" 1 0  8 8 9 1 0  7 1 0  9 1 0  9 8 

1 5  Average 28.68% 1 8.82% 1 8.58% 19.74% 1 7.62% 1 6.05% 41 .47% 1 8.05% 1 7.28% 19.84% 1 7.78% 
Rank 1 0  7 6 8 3 1 1 1  5 2 9 4 
Geometric Mean 23. 1 2% 1 5.39% 1 5.89% 1 6.41 % 1 4.97% 1 3.60% 39.35% 1 6.41 % 1 5.35% 1 8.20% 1 5.51 % 
Rank 1 0  4 6 8 2 1 1 1  7 3 9 5 
Average Rank by Series 6.925 5.575 5.3 5.55 5.35 5.2 9.725 5.n5 5 6.65 4.95 
Rank of Average Rank 1 0  7 4 6 5 3 1 1  8 2 9 1 
Kruskal-Wallls Rank Sum 2,805.5 1 ,975.5 2,062.5 2,233.0 1 ,979.0 1 ,705.0 3,907.5 2,1 32.0 2,01 7.0 2,376.0 1 ,940.0 
Rank of K-W Rank Sum 1 0  3 6 8 4 1 1 1  7 5 9 2 
K-W Multi-Comparison Count" 1 0  7 8 10 7 1 0  1 0  9 6 10 7 
"K-W Multi-Comparison Count valid only If Kruskal-Wallls statistic Is significant. 

3 5 1 



Period: Scenario 3 25% Level Shift Table: 3-3 
Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 9.68% 5.59% 5.56% 5.09% 5.09% 6.04% 1 3.57% 6.74% 6.76% 6.49% 6.20% 
Rank 1 0  4 3 2 1 5 1 1  8 9 7 6 
Geometric Mean 8.27% 3.91 % 3.82% 3.78% 3.79% 4.24% 1 2.58% 5.59% 5.63% 5.53% 5.38% 
Rank 1 0  4 3 1 2 5 1 1  8 9 7 6 
Average Rank by Series 9.00 4.03 3.78 2.90 3. 1 5  5.45 1 1 .00 7 . 13  6.98 6.45 6.1 5  
Rank of Average Rank 1 0  4 3 1 2 5 1 1  9 8 7 6 
Kruskal-Wallls Rank Sum 1 ,795.0 921 .0 924.5 736.0 783.0 1 ,1 1 8.0 2,840.0 1 ,336.0 1 ,327.5 1 , 191 .0 2,21 8.0 
Rank of K-W Rank Sum 9 3 4 1 2 5 1 1  8 7 6 1 0  
K-W Multi-Comparison Count· 1 0  9 9 9 9 9 1 0  9 9 9 1 0  

5 Average 1 2.37% 8.29% 8.35% 7.88% 7.52% 8.95% 1 8.74% 8.93% 9.24% 9.55% 9.35% 
Rank 1 0  3 4 2 1 6 1 1  5 7 9 8 
Geometric Mean 1 1 .55% 6.87% 7.01 % 6.93% 6.63% 7.62% 1 8.07% 8.30% 8.72% 9.07% 8.96% 
Rank 1 0  2 4 3 1 5 1 1  6 7 9 8 
Average Rank by Series 7.45 4.58 4.63 4.35 3.80 5.70 1 0.30 6.08 5.93 6.70 6.50 
Rank of Average Rank 10  3 4 2 1 5 1 1  7 6 9 8 
Kruskal-Wallls Rank Sum 2,197.0 1 ,276.0 1 ,285.5 1 , 1 74.0 1 ,099.0 1 ,447.0 3,424.0 1 ,521 .0 1 ,602.5 1 ,724.0 2,317.0 
Rank of K-W Rank Sum 9 3 4 2 1 5 1 1  6 7 8 1 0  
K-W Multi-Comparison Count· 10  9 9 9 9 9 1 0  9 1 0  1 0  1 0  

10 Average 1 5.50% 1 0.65% 10.92% 10.41 % 9.91 % 1 1 . 1 5% 21 .28% 1 1 . 1 4% 1 1 .85% 1 2.20% 1 2.06% 
Rank 1 0  3 4 2 1 6 1 1  5 7 9 8 
Geometric Mean 14.05% 8.56% 9. 1 7% 9.05% 8.62% 9.49% 20.39% 9.62% 1 0.61 % 1 1 .36% 10.92% 
Rank 10  1 4 3 2 5 1 1  6 7 9 8 
Average Rank by Series 7 5.225 5. 1 25 4.75 4.35 6.1 9.6 5.625 5.675 6. 1 5  6.4 
Rank of Average Rank 10 4 3 2 1 7 1 1  5 6 8 9 
Kruskal-Wallls Rank Sum 2,51 7.0 1 ,605.0 1 ,674.5 1 ,606.0 1 ,492.0 1 ,702.0 3,387.0 1 ,834.0 1 ,985.5 2,055.0 2,253.0 
Rank of K-W Rank Sum 10  2 4 3 1 5 1 1  6 7 8 9 
K-W Multi-Comparison Count" 10  6 7 6 1 0  9 1 0  1 0  9 9 1 0  

1 5  Average 1 7.73% 1 1 .66% 1 2.34% 12.55% 1 0.97% 12.68% 22.35% 1 2.49% 1 3.40% 1 4.40% 1 3. 1 5% 
Rank 10 2 3 5 1 6 1 1  4 8 9 7 
Geometric Mean 14.68% 9. 1 2% 10. 1 0% 10.26% 9.21 % 1 0.78% 1 9.67% 1 0.71 % 1 1 .91 % 1 �'111 1 1 .38% 
Rank 10  1 3 4 2 6 1 1  5 8 9" 7 
Average Rank by Series 6.3 5. 1 25 5.025 5.25 4.45 6.1  8.95 5.975 6.025 6.95 5.85 
Rank of Average Rank 9 3 2 4 1 8 1 1  6 7 10 5 
Kruskal-Wallls Rank Sum 2,461 .0 1 ,791 .0 1 ,697.5 1 ,691 .0 1 ,648.0 1 ,650.0 3,088.0 1 ,946.0 2,1 40.5 2,334.0 2,166.0 
Rank of K-W Rank Sum 10  2 5 4 1 3 1 1  6 7 9 8 
K-W Multi-Comparison Count" 10  9 7 6 1 0  7 1 0  9 9 10  9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is Significant. 

3 5 2 



Period: Scenario 3 25% Level Shin Table: 3-4 
Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 59.60 81 .91 79.70 80.89 81 .95 89.1 9  248.1 3  1 1 8.45 1 1 9.48 1 1 6.70 1 1 7 . 17  
Rank 1 0  3 1 2 4 5 1 1  8 9 6 7 
Average Rank by Series 8.1 0  4.28 4.03 3.20 3.60 5.55 1 1 .00 6.83 6.83 5.75 6.85 
Rank of Average Rank 1 0  4 3 1 2 5 1 1  7 7 6 9 

5 Geometric Mean 235.901 1 1  1 46.76204 1 47.1 68 1 44.86492 1 39.800891 1 64.888 395.3881 3  1 86.88931 1 91 . 1 35 1 91 .741 74 1 97. 1 94  
Rank 10  3 4 2 1 5 1 1  6 7 8 9 
Average Rank by Series 7.40 4.78 4.53 4.35 3.90 5.75 1 0.20 6.33 5.88 6.40 6.50 
Rank of Average Rank 10  4 3 2 1 5 1 1  7 6 8 9 

1 0  Geometric Mean 302.23 1 93.97 203.68 202.62 1 91 .94 21 0.73 453.54 225.60 238.57 252.71 242.43 
Rank 1 0  2 4 3 1 5 1 1  6 7 9 8 
Average Rank by Series 6.65 4.825 4.725 4.95 4.4 5.85 1 0  5.975 5.925 6.35 6.35 
Rank of Average Rank 10  3 2 4 1 5 1 1  7 6 8 8 

1 5  Geometric Mean 330.67 209.60 228.35 233.92 208.84 236.99 468.35 245.51 264.30 287.28 257.27 
Rank 10  2 3 4 1 5 1 1  6 8 9 7 
Average Rank by Series 6.45 5 . 125 5.225 5.05 4.35 6. 1 5  9.3 5.n5 5.825 6.85 5.9 
Rank of Average Rank 9 3 4 2 1 8 1 1  5 6 1 0  7 

Period: Scenario 3 25% Level Shin Table: 3-5 
Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 109.06 47.38 46.65 48.1 0  46.85 52.69 1 55.40 63.59 63.73 65.39 58.91 
Rank 1 0  3 1 4 2 5 1 1  7 8 9 6 
Average Rank by Series 8.75 3.68 3.58 3.95 4.30 5.1 5  1 1 .00 6.63 6.63 6.50 5.85 
Rank of Average Rank 1 0  2 1 3 4 5 1 1  8 8 7 6 

5 Geometric Mean 1 65.68 93.86 99.21 100.10 93.66 99.60 226.64 95.05 1 05.94 1 28.91 1 1 7.02 
Rank 1 0  2 4 6 1 5 1 1  3 7 9 8 
Average Rank by Series 7.05 4.83 5.23 5 . 10 4.20 5.20 9.50 5.38 5.73 7.45 6.35 
Rank of Average Rank 9 2 5 3 1 4 1 1  6 7 1 0  8 

10  Geometric Mean 1 96.91 1 1 3.30 125.64 1 31 .42 1 22.59 1 38.89 268.45 1 1 5.07 1 41 .51 1 60.63 1 55.73 
Rank 1 0  1 4 5 3 6 1 1  2 7 9 8 
Average Rank by Series 6.75 5.275 5.275 5.1 5 5 6.55 8.75 4.925 5.525 6.45 6.35 
Rank of Average Rank 1 0  4 4 3 2 9 1 1  1 6 8 7 

1 5  Geometric Mean 1 90.47 1 28.66 1 50.94 1 55.40 1 32.96 1 64.27 230.73 1 42.99 1 75.80 1 82.90 1 61 .28 
Rank 10 1 4 5 2 7 1 1  3 8 9 6 
Average Rank by Series 6.45 5.225 5.225 5.4 4.5 6.4 7.65 6 . 1 75 6.325 6.55 6.1 
Rank of Average Rank 9 2 2 4 1 8 1 1  6 7 1 0  5 

3 5 3 



25% Level Shift Average Rank of Absolute Error Table 3- 6 25% Level Shift Log Mean Square Error Ratio Table 3-1 0 
Period Scenario 3 Chi Square OF p Value Period Scenario 3 Chi Square OF p Value 
1 RANK ANOVA 52.60 1 9  0.0001 1 RANK ANOVA 55.35 1 9  0.0000 

KRUSKAL-WALLIS 89.34 1 0  0.0000 KRUSKAL-WALLIS 41 .94 1 0  0.0000 
5 RANK ANOVA 24.45 1 9  0. 1 796 5 RANK ANOVA 24. 1 8  1 9  0. 1 894 

KRUSKAL-WALLIS 43.31 1 0  0.0000 KRUSKAL-WALLIS 20.97 1 0  0.0213 
10 RANK ANOVA 1 2.03 1 9  0.8842 1 0  RANK ANOVA 1 3.99 1 9  0.7843 

KRUSKAL-WALLIS 23.76 1 0  0.0083 KRUSKAL-WALLIS 1 3.88 1 0  0. 1 786 
1 5  RANK ANOVA 5.86 1 9  0.9982 1 5  RANK ANOVA 8.21 1 9  0.9844 

KRUSKAL-WALLIS 1 3.31 1 0  0.2068 KRUSKAL-WALLIS 9.05 1 0  0.5270 

25% Level Shift Symmetry Adjusted MAPE Table 3-7 25% Level Shift Mean Absolute Percent Error Table 3 -1 1 
Scenario 3 Chi Square OF p Value Scenario 3 Chi Square OF p Value 
RANK ANOVA 61 .41 1 9  0.0000 RANK ANOVA 78. 1 2  1 9  0.0000 
KRUSKAL-WALLIS 68.62 1 0  0.0000 KRUSKAL-WALLIS 1 09.94 1 0  0.0000 

5 RANK ANOVA 27.41 1 9  0.0955 5 RANK ANOVA 58.34 1 9  0.0000 
KRUSKAL-WALLIS 54.66 1 0  0.0000 KRUSKAL-WALLIS 69.55 1 0  0.0000 

10  RANK ANOVA 1 6.68 1 9  0.61 1 7  1 0  RANK ANOVA 47.62 1 9  0.0003 
KRUSKAL-WALLIS 31 .88 1 0  0.0004 KRUSKAL-WALLIS 42.77 1 0  0.0000 

1 5  RANK ANOVA 1 2.37 1 9  0.8693 1 5  RANK ANOVA 42.33 1 9  0.0016 
KRUSKAL-WALLIS 1 5.71 1 0  0. 1 082 KRUSKAL-WALLIS 35.88 1 0  0.0001 

25% Level Shift Range of Percent Error Table 3-8 25% Level Shift Median Absolute Percent Error Table 3 - 12  
Scenario 3 Chi Square OF p Value Scenario 3 Chi Square OF p Value 
RANK ANOVA 38.24 1 9  0.0055 RANK ANOVA SO. 69 1 9  0.0001 
KRUSKAL-WALLIS 43.53 1 0  0.0000 KRUSKAL-WALLIS 59.30 1 0  0.0000 

5 RANK ANOVA 40.60 1 9  0.0027 5 RANK ANOVA 1 0.95 1 9  0.9255 
KRUSKAL-WALLIS 68.45 1 0  0.0000 KRUSKAL-WALLIS 31 .36 1 0  0.0005 
RANK ANOVA 26.39 1 9  0. 1 1 96 1 0  RANK ANOVA 1 4.65 1 9  0.7455 

1 0  KRUSKAL-WALLIS 46.SO 1 0  0.0000 KRUSKAL-WALLIS 21 .36 1 0  0.0187 
RANK ANOVA 20.57 1 9  0.361 0 1 5  RANK ANOVA 5.52 1 9  0.9988 

1 5  KRUSKAL-WALLIS 44.21 1 0  0.0000 KRUSKAL-WALLIS 7.1 7 1 0  0.7096 

25% Level Shift Geometric Root Mean Square Error Table 3-9 25% Level Shift Root Mean Square Error Table 3 - 13  
Scenario 3 Chi Square OF p Value Scenario 3 Chi Square OF p Value 

1 RANK ANOVA 55.35 1 9  0.0000 1 RANK ANOVA 54.85 1 9  0.0000 
5 RANK ANOVA 24. 1 8  1 9  0. 1894 5 RANK ANOVA 32.79 1 9  0.0254 
10  RANK ANOVA 1 3.99 1 9  0.7843 1 0  RANK ANOVA 24.85 19  0. 1 654 
1 5  RANK ANOVA 8.21 1 9  0.9844 1 5  RANK ANOVA 1 8 . 1 6  1 9  0.51 1 9  

3 5 4 



200% Level Shift Table: 4-1 
Period: Scenario 4 Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 5.56 6.78 7.05 7.99 6.82 5.81 4.47 5.04 5.04 6.21 5.47 
Rank 5 8 1 0  1 1  9 6 1 2 2 7 4 
Geometric Mean 5.35 6.66 6.98 7.91 6.71 5.71 4.1 8  4.94 4.94 6. 1 3  5.35 
Rank 5 8 1 0  1 1  9 6 1 2 2 7 4 
Average Rank by Series 5.23 7.33 8.43 9.50 7.93 5.60 3.25 4.1 3  4.1 3  6.28 4.83 
Rank of Average Rank 5 8 1 0  1 1  9 6 1 2 2 7 4 
Kruskal-Wallis Rank Sum 1 81 3.0 2831 .5 31 28.0 3708.5 2877.5 2005.0 1 1 53.0 1 399.5 1 399.5 2396.0 1 769.5 
Rank of K-W Rank Sum 5 8 1 0  1 1  9 6 1 2 2 7 4 
K-W Multl-Comparlson Count" 9 9 1 0  1 0  9 1 0  9 1 0  1 0  1 0  9 

5 Average 4.95 6.70 7.02 7.68 7.00 5.88 4. 1 9  5.1 0  5.52 6.31 5.66 
Rank 2 8 1 0  1 1  9 6 1 3 4 7 5 
Geometric Mean 4.66 6.61 6.98 7.63 6.97 5.78 3.97 4.91 5.41 6.21 5.58 
Rank 2 8 1 0  1 1  9 6 1 3 4 7 5 
Average Rank by Series 4.48 7.53 8.33 9.1 3 8 . 18 5.88 2.75 4.1 3  4.63 6. 1 3  4.88 
Rank of Average Rank 3 8 1 0  1 1  9 6 1 2 4 7 5 
Kruskal-Wallis Rank Sum 1 460.0 2800.0 3096.5 3579.0 3081 .5 2030.0 855.5 1 472.0 1 738.0 2385.0 1 81 2.5 
Rank of K-W Rank Sum 2 8 1 0  1 1  9 6 1 3 4 7 5 
K-W Multi-Comparison Count" 1 0  1 0  9 1 0  9 1 0  1 0  1 0  9 1 0  9 

1 0  Average 4.75 6.55 6.97 7.53 6.93 5.85 4.31 5.64 5.64 6.41 5.81 
Rank 2 8 1 0  1 1  9 6 1 3 3 7 5 
Geometric Mean 4.41 6.42 6.89 7.44 6.82 5.64 4. 1 1  5.42 5.42 6.27 5.64 
Rank 2 8 1 0  1 1  9 5 1 3 3 7 6 
Average Rank by Series 4.23 7.08 7.78 8.70 8.33 5.93 3.1 3  4.73 4.73 6.55 5.38 
Rank of Average Rank 2 8 9 1 1  1 0  6 1 3 3 7 5 
Kruskal-Wallis Rank Sum 1 388.0 2591 .0 2936.0 331 7.5 2962.5 2059.0 1012.5 1 881 .0 1 881 .0 2472.0 2026.5 
Rank of K-W Rank Sum 2 8 9 1 1  1 0  6 1 3 3 7 5 
K-W Multi-Comparison Count" 1 0  10  9 1 0  9 9 1 0  1 0  1 0  1 0  9 

1 5  Average 4.50 6.67 7.04 7.64 6.79 5.91 3.92 5.32 5.81 6.57 5.83 
Rank 2 8 1 0  1 1  9 6 1 3 4 7 5 
Geometric Mean 4.21 6.53 6.96 7.52 6.66 5.60 3.72 5.03 5.61 6.39 5.57 
Rank 2 8 1 0  1 1  9 5 1 3 6 7 4 
Average Rank by Series 3.95 7.23 7.50 8.70 7.65 6.20 2.75 4.73 5. 1 5  6.53 5.63 
Rank of Average Rank 2 8 9 1 1  1 0  6 1 3 4 7 5 
Kruskal-Wallis Rank Sum 1 226.0 2694.0 2944.5 3285.0 2782.5 2080.5 839.5 1 755.5 2047.5 2584.5 2070.5 
Rank of K-W Rank Sum 2 8 1 0  1 1  9 6 1 3 4 7 5 
K-W Multi-Comparison Count" 1 0  1 0  1 0  1 0  1 0  8 1 0  1 0  8 10 8 
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

3 5 5 



200% level Shift 
Period: Scenario 4 Range of Percent Error Table: 4-2 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 1 2.74% 1 8.67% 1 8.36% 21 .33% 22.25% 1 9.88% 1 2. 1 9% 1 2.90% 12.60% 1 6.60% 1 6.77% 
Rank 3 8 7 1 0  1 1  9 1 4 2 5 6 
Geometric Mean 1 1 .43% 1 8.06% 1 7.72% 1 9.77% 21 .40% 1 9.23% 9.48% 1 1 .30% 1 0.86% 1 3.91 % 1 4.68% 
Rank 4 8 7 1 0  1 1  9 1 3 2 5 6 
Average Rank by Series 3.1 8  7.50 7.1 0 8.88 9.65 8.00 2.73 3.60 3. 1 0  5.98 6.30 
Rank of Average Rank 3 8 7 1 0  1 1  9 1 4 2 5 6 
Kruskal-Wallis Rank Sum 1510.5 2650.0 2568.0 2861 .5 3091 .0 2821 .0 1 467.5 1 570.0 1514.0 2088.5 21 68.0 
Rank of K-W Rank Sum 2 8 7 1 0  1 1  9 1 4 3 5 6 
K-W Multi-Comparison Count" 8 1 0  1 0  9 1 0  9 8 9 7 9 ' 9 

5 Average 1 8.44% 37.98% 38.1 1 %  33.39% 33.59% 39.90% 1 6.06% 25.92% 25.78% 27.43% 27. 1 3% 
Rank 2 9 1 0  7 8 1 1  1 4 3 6 5 
Geometric Mean 1 6.31 % 37.33% 37.47% 32.39% 32.49% 39.65% 1 4.53% 24.62% 24.55% 26.6 1 %  26.21 % 
Rank 2 9 1 0  7 8 1 1  1 4 3 6 5 
Average Rank by Series 2.53 8.63 8.63 6.78 7.05 1 0.00 1 .93 5.08 4.93 5.08 5.40 
Rank of Average Rank 2 9 9 7 8 1 1  1 4 3 4 6 
Kruskal-Wallis Rank Sum 91 9.5 3257.5 3275.5 2652.5 2701 .0 3570.0 648.5 1 730.5 1 736.5 1 935.5 1 883.0 
Rank of K-W Rank Sum 2 9 1 0  7 8 1 1  1 3 4 6 5 
K-W Multi-Comparison Count" 1 0  9 9 9 9 1 0  1 0  9 9 9 9 

1 0  Average 24.27% 47.74% 47.32% 48.44% 43.76% 39.39% 23.70% 33.63% 36.04% 41 .31 % 36.00% 
Rank 2 1 0  9 1 1  8 6 1 3 5 7 4 
Geometric Mean 20.64% 44.94% 45.0 1 %  44.83% 40.55% 38.95% 1 9.06% 28.31 % 30.86% 34.03% 30.35% 
Rank 2 1 0  1 1  9 8 7 1 3 5 6 4 
Average Rank by Series 2.38 8.55 8.58 7.90 7.68 7.25 2.43 4.75 5.28 5.65 5.58 
Rank of Average Rank 1 1 0  1 1  9 8 7 2 3 4 6 5 
Kruskal-Wallis Rank Sum 1 224.5 2888.0 2924.5 2884.0 2642.5 2570.0 1 21 7.5 1 708.0 1 951 .5 2297.0 2002.5 
Rank of K-W Rank Sum 2 1 0  1 1  9 8 7 1 3 4 6 5 
K-W Multi-Comparison Count" 9 8 8 8 9 9 9 1 0  9 1 0  9 

1 5  Average 30.77% 54.81% 57.91 % 62.76% 52.69% 38.66% 30.06% 41 .81 % 45.04% 55.97% 44.79% 
Rank 2 8 1 0  1 1  7 3 1 4 6 9 5 
Geometric Mean 23.78% 48.52% 51 .94% 54.59% 46.27% 38.32% 21 .24% 30.70% 34.47% 42.59% 35.41 % 
Rank 2 9 1 0  1 1  8 6 1 3 4 7 5 
Average Rank by Series 2.88 8.25 8.70 8. 1 8  7.53 7.05 2.28 4.90 5. 15  5.73 5.38 
Rank of Average Rank 2 1 0  1 1  9 8 7 1 3 4 6 5 
Kruskal-Wallis Rank Sum 1 503.5 2724.0 2878.0 2884.5 2589.5 2371 .0 1 396.5 1 685.0 1 941 .0 2341 .5 1 995.5 
Rank of K-W Rank Sum 2 9 1 0  1 1  8 7 1 3 4 6 5 
K-W Multi-Comparison Count" 1 0  1 0  9 9 1 0  9 1 0  1 0  9 9 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallls statistic is significant. 

3 5 6 



200% Level Shift Table: 4-3 
Period: Scenario 4 Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 8.66% 1 0.04% 10. 1 4% 1 2. 1 0% 1 0.93% 9.1 0% 6.37% 7.02% 7.1 1 %  9. 1 7% 8.36% 
Rank 5 8 9 1 1  1 0  6 1 2 3 7 4 
Geometric Mean 7.73% 9.69% 9.82% 1 1 .46% 1 0.22% 8.63% 4.92% 6.57% 6.70% 8.35% 7.59% 
Rank 5 8 9 1 1  1 0  7 1 2 3 6 4 
Average Rank by Series 4.75 7.93 8.38 9.95 8.80 6.35 2.65 3. 1 3  3.58 5.85 4.65 
Rank of Average Rank 5 8 9 1 1  1 0  7 1 2 3 6 4 
Kruskal-Wallis Rank Sum 1 996.0 2726.5 2784.5 3145.0 2834.0 2303.0 1 466.0 1 447.5 1 500.5 2204.0 1 903.0 
Rank of K-W Rank Sum 5 8 9 1 1  1 0  7 2 1 3 6 4 
K-W Multi-Comparison Count" 1 0  9 8 1 0  9 1 0  8 8 8 1 0  1 0  

5 Average 1 3.28% 1 7.79% 1 8.60% 21 .54% 1 9.63% 1 4.80% 9.65% 1 3.44% 1 4.44% 1 7.46% 1 5.66% 
Rank 2 8 9 1 1  1 0  5 1 3 4 7 6 
Geometric Mean 1 2.81 % 1 7.06% 1 7.96% 20.88% 1 9.05% 1 4.43% 8.61 % 1 2. 1 4% 1 3.27% 1 6.33% 1 4.79% 
Rank 3 8 9 1 1  1 0  5 1 2 4 7 6 
Average Rank by Series 4.55 7.78 8.38 9.50 9.20 5.60 2.1 0  3.63 3.98 5.85 5.45 
Rank of Average Rank 4 8 9 1 1  1 0  6 1 2 3 7 5 
Kruskal-Wallis Rank Sum 1 641 .0 2592.5 2809.5 3322.0 3029.0 1 950.0 876.0 1 606.5 1 854.5 251 7.0 21 1 2.0 
Rank of K-W Rank Sum 3 8 9 1 1  1 0  5 1 2 4 7 6 
K-W Multi-Comparison Count" 1 0  9 10  1 0  1 0  1 0  1 0  1 0  1 0  9 1 0  

1 0  Average 1 7.47% 23.26% 25.38% 30.01 % 26.05% 1 6.38% 1 4.53% 1 9.48% 21 .84% 26.76% 22.72% 
Rank 3 7 8 1 1  9 2 1 4 5 1 0  6 
Geometric Mean 1 5.83% 20.39% 22.51% 27.27% 23.39% 1 5.85% 1 1 .79% 1 5.08% 1 7.38% 22.54% 1 8.81 % 
Rank 3 7 8 1 1  1 0  4 1 2 5 9 6 
Average Rank by Series 3.95 7.28 7.93 9.55 8.45 5.45 2.05 4.23 4.63 6.75 5.75 
Rank of Average Rank 2 8 9 1 1  1 0  5 1 3 4 7 6 
Kruskal-Wallis Rank Sum 1 8n.O 2354.5 2596.5 3034.0 2700.0 1816.0 1 399.0 1 743.5 2038.5 2588.0 21 63.0 
Rank of K-W Rank Sum 4 7 9 1 1  1 0  3 1 2 5 8 6 
K-W Multi-Comparison Count" 9 1 0  9 1 0  1 0  8 1 0  9 1 0  9 1 0  

1 5  Average 20.90% 28.42% 31 .74% 38.61 % 32.20% 1 7.60% 1 8. 1 0% 24.74% 28.54% 35.63% 29.30% 
Rank 3 5 8 1 1  9 1 2 4 6 1 0  7 
Geometric Mean 1 7.57% 22.80% 25.94% 32.58% 26.85% 1 7.00% 1 2.85% 1 7.06% 20.37% 27.38% 22.1 0% 
Rank 4 7 8 1 1  9 2 1 3 5 1 0  6 
Average Rank by Series 3.80 7.38 7.73 9.00 8.40 5.50 2.05 4.48 4.93 6.65 6. 1 0  
Rank o f  Average Rank 2 8 9 1 1  1 0  5 1 3 4 7 6 
Kruskal-Wallis Rank Sum 1 869.0 2302.5 2530.5 2954.0 2661 .0 1 887.0 1 474.0 1 n2.5 2078.5 2576.0 2205.0 
Rank of K-W Rank Sum 3 7 8 1 1  1 0  4 1 2 5 9 6 
K-W Multi-Comparison Count" 9 1 0  9 1 0  1 0  9 1 0  1 0  1 0  9 1 0  
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

3 5 7 



200% level Shift 
Period: Scenario 4 Root Mean Square Error Table: 4-4 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 21 5.26 270.27 268.08 31 5.75 296.97 254.93 1 54.08 1 86.48 1 85.80 238. 1 2  21 9.91 
Rank 4 9 8 1 1  1 0  7 1 3 2 6 5 
Average Rank by Series 4.70 7.83 7.88 9.80 9.05 6.40 2.75 3.1 3  3. 1 8  5.90 5.40 
Rank of Average Rank 4 8 9 1 1  1 0  7 1 2 3 6 5 

5 Geometric Mean 387.58 583.25 595.88 653.85 61 7.50 531 .90 267.63 394.46 420.1 4  503. 1 9  465.85 
Rank 2 8 9 1 1  1 0  7 1 3 4 6 5 
Average Rank by Series 3.00 8. 1 3  8.73 9.65 9.00 6.50 1 .50 3.83 4.23 6.00 5.45 
Rank of Average Rank 2 8 9 1 1  1 0  7 1 3 4 6 5 

1 0  Geometric Mean 480.68 699.82 750.57 864.39 753.33 568.37 371 .89 496.1 7  562.60 707.09 593.71 
Rank 2 7 9 1 1  1 0  5 1 3 4 8 6 
Average Rank by Series 3.20 7.68 8.38 9.30 8.45 6.05 1 .85 4.33 4.88 6.50 5.40 
Rank of Average Rank 2 8 9 1 1  1 0  6 1 3 4 7 5 

1 5  Geometric Mean 552.65 790.00 880.72 1 052.50 885. 1 9  601 .54 410.44 562.38 665.09 871 .21 706.77 
Rank 2 7 9 1 1  1 0  4 1 3 5 8 6 
Average Rank by Series 3 .10 7.68 8.33 9.00 8.00 5.80 2.15 4.48 5. 1 3  6.80 5.55 
Rank of Average Rank 2 8 10  1 1  9 6 1 3 4 7 5 

200% level Shift 
Period: Scenario 4 Geometric Root Mean Square Error Table: 4-5 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 39.88 1 41 .63 162.67 203.00 1 46.68 1 02.84 79.64 1 05.19  1 1 9.30 1 47.20 1 20.91 
Rank 6 7 1 0  1 1  8 2 1 3 4 9 5 
Average Rank by Series 5.70 6.88 7.88 9.45 7.20 4.80 3.65 3.93 4.68 6.85 5.00 
Rank of Average Rank 6 8 10  1 1  9 4 1 2 3 7 5 

5 Geometric Mean 245.22 254.1 0  285.25 362.76 31 3.31 1 n.24 1 53.20 209.44 237.52 306.70 270.47 
Rank 5 6 8 1 1  1 0  2 1 3 4 9 7 
Average Rank by Series 5.55 7.13 7.23 8.50 8.30 4.45 3.20 4.38 4.78 5.90 6.60 
Rank of Average Rank 5 8 9 1 1  1 0  3 1 2 4 6 7 

1 0  Geometric Mean 332.73 296.64 355.46 468.78 41 6.76 239.59 223.57 264.35 31 8.49 428. 1 1  3n.80 
Rank 6 4 7 1 1  9 2 1 3 5 1 0  8 
Average Rank by Series 5.45 5.825 6.775 8.2 7.55 4.9 3.45 4.625 5. 1 25 7.5 6.6 
Rank of Average Rank 5 6 8 1 1  1 0  3 1 2 4 9 7 

15 Geometric Mean 371 .49 392.38 446.65 61 1 .29 503.39 292.41 254.49 335.25 404.69 538.85 456.34 
Rank 4 5 7 1 1  9 2 1 3 6 1 0  8 
Average Rank by Series 4.80 6.83 7 . 13  8.55 7.60 5.45 2.50 4.58 5.13 6.95 6.50 
Rank of Average Rank 3 7 9 1 1  1 0  5 1 2 4 8 6 

3 5 8 



200% Level Shin Average Rank of Absolute Error Table 4- 6 200% Level Shin Log Mean Square Error Ratio Table 4-10 
Period Scenario 4 Chi Square OF p Value Period Scenario 4 Chi Square OF p Value 
1 RANK ANOVA 45.27 1 9  0.0006 1 RANK ANOVA 34.30 1 9  0.0169 

KRUSKAL-WALLIS 87.44 1 0  0.0000 KRUSKAL-WALLIS 31 .89 1 0  0.0004 
5 RANK ANOVA 44.03 1 9  0.0009 5 RANK ANOVA 30.98 1 9  0.0406 

KRUSKAL-WALLIS 88.28 1 0  0.0000 KRUSKAL-WALLIS 25.43 1 0  0.0046 
1 0  RANK ANOVA 35.89 1 9  0.0109 1 0  RANK ANOVA 22.56 1 9  0.2574 

KRUSKAL-WALLIS 63.01 1 0  0.0000 KRUSKAL-WALLIS 1 4.61 1 0  0.1471 
1 5  RANK ANOVA 33. 1 3  1 9  0.0232 1 5  RANK ANOVA 30.66 1 9  0.0440 

KRUSKAL-WALLIS 68.04 1 0  0.0000 KRUSKAL-WALLIS 1 7.95 1 0  0.0559 

200% Level Shin Symmetry Adjusted MAPE Table 4- 7 200% Level Shin Mean Absolute Percent Error Table 4-1 1 
Scenario 4 Chi Square OF p Value Scenario 4 Chi Square OF p Value 
RANK ANOVA 66.49 1 9  0.0000 RANI< ANOVA 64.67 1 9  0.0000 
KRUSKAL-WALLIS 45.48 1 0  0.0000 KRUSKAL-WALLIS 45.01 1 0  0.0000 

5 RANK ANOVA 72.73 1 9  0.0000 5 RANK ANOVA 61 .69 1 9  0.0000 
KRUSKAL-WALLIS 84.85 1 0  0.0000 KRUSKAL-WALLIS 63.90 1 0  0.0000 

1 0  RANK ANOVA 60.09 1 9  0.0000 1 0  RANK ANOVA 52.23 1 9  0.0001 
KRUSKAL-WALLIS 38.94 1 0  0.0000 KRUSKAL-WALLIS 29.68 1 0  0.001 0 

1 5  RANK ANOVA 57.02 1 9  0.0000 1 5  RANK ANOVA 46.53 1 9  0.0004 
KRUSKAL-WALLIS 30.83 1 0  0.0006 KRUSKAL-WALLIS 24.35 1 0  0.0067 

200% Level Shin Range of Percent Error Table 4- 8 200% Level Shin Median Absolute Percent Error Table 4-1 2 
Scenario 4 Chi Square OF p Value Scenario 4 Chi Square OF p Value 
RANK ANOVA 65.01 1 9  0.0000 RANK ANOVA 25.99 1 9  0. 1 306  
KRUSKAL-WALLIS 47.47 1 0  0.0000 KRUSKAL-WALLIS 22.52 1 0  0.0127 

5 RANK ANOVA 66.44 1 9  0.0000 5 RANK ANOVA 24.91 1 9  0.1 635 
KRUSKAL-WALLIS 1 1 4.26 1 0  0.0000 KRUSKAL-WALLIS 34.83 1 0  0.0001 
RANK ANOVA 51 .93 1 9  0.0001 1 0  RANK ANOVA 1 9.38 1 9  0.4325 

1 0  KRUSKAL-WALLIS SO.19 1 0  0.0000 KRUSKAL-WALLIS 27.05 1 0  0.0026 
RANK ANOVA 48.94 1 9  0.0002 1 5  RANK ANOVA 27.05 1 9  0.1035 

1 5  KRUSKAL-WALLIS 35.88 1 0  0.0001 KRUSKAL-WALLIS 24.69 1 0  0.0060 

200% Level Shin Geometric Root Mean Square Error Table 4- 9 200% Level Shin Root Mean Square Error Table 4-13 
Scenario 4 Chi Square OF p Value Scenario 4 Chi Square OF p Value 

1 RANK ANOVA 34.30 1 9  0.01 69 1 RANK ANOVA 62.52 1 9  0.0000 
5 RANK ANOVA 30.98 1 9  0.0406 5 RANK ANOVA 75.33 1 9  0.0000 
1 0  RANK ANOVA 22.56 1 9  0.2574 1 0  RANK ANOVA 57.81 1 9  0.0000 
1 5  RANK ANOVA 30.66 1 9  0.0440 1 5  RANK ANOVA SO.88 1 9  0.0001 

3 5 9 



Trend Shift Table: 5-1 
Period: Scenario 5 Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 6.45 5.62 5.42 5.98 6.27 6.08 8.24 5. 1 8  5. 1 8  5.85 5.74 
Rank 1 0  4 3 7 9 8 1 1  1 1 6 5 
Geometric Mean 6.29 5.46 5.23 5.55 5.88 5.66 8.06 5.1 3  5. 1 3  5.67 5.55 
Rank 1 0  4 3 5 9 7 1 1  1 1 8 6 
Average Rank by Series 6.30 5.1 3  5.33 6.58 7.1 0  5.93 9.58 4. 1 5  4. 1 5  5.93 5.75 
Rank of Average Rank 8 3 4 9 1 0  6 1 1  1 1 6 5 
Kruskal-Wallis Rank Sum 2591 .5 1 931 .0 1 857.0 2383.5 2418.0 2226.5 3631 .0 1510.0 1 5 1 0.0 2151 .0 2079.0 
Rank of K-W Rank Sum 1 0  4 3 8 9 7 1 1  1 1 6 5 
K-W Multi-Comparison Count" 1 0  9 9 9 9 9 1 0  9 9 8 · 9 

5 Average 5.09 6.93 7.00 7.07 6.35 8. 1 5  5.96 4.81 4.89 5. 1 4  4.61 
Rank 4 8 9 1 0  7 1 1  6 2 3 5 1 
Geometric Mean 4.59 6.84 6.89 6.75 6 . 15 7.86 5.58 4.68 4.70 4.67 4.28 
Rank 2 9 1 0  8 7 1 1  6 4 5 3 1 
Average Rank by Series 4. 1 8  7.68 8.08 7.83 6.68 8.90 5.75 3.90 4. 1 5  4.88 4.00 
Rank of Average Rank 4 8 1 0  9 7 1 1  6 1 3 5 2 
Kruskal-Wallis Rank Sum 1 659.5 2872.0 2938.0 2825.5 2448.0 3365.5 21 39.0 1 400.0 1 51 0.0 1 769.0 1 383.5 
Rank of K-W Rank Sum 4 9 1 0  8 7 1 1  6 2 3 5 1 
K-W Multi-Comparison Count" 1 0  8 9 9 1 0  1 0  1 0  9 1 0  1 0  9 

1 0  Average 5.25 7.1 0 7.28 6.89 6. 1 6  8.59 4.44 5.49 5.49 5.08 4.39 
Rank 4 9 1 0  8 7 1 1  2 5 5 3 1 
Geometric Mean 4.63 6.98 7.09 6.55 5.93 8.26 3.89 5.21 5.21 4.62 4.09 
Rank 4 9 1 0  8 7 1 1  1 5 5 3 2 
Average Rank by Series 5. 1 3  7.83 7.90 6.93 6.38 9. 1 5  3.80 5.48 5.48 4.58 3.70 
Rank of Average Rank 4 9 1 0  8 7 1 1  2 5 5 3 1 
Kruskal-Wallis Rank Sum 1 792.0 2886.0 2995.5 2669.5 2295.0 3489.0 1 409.5 1955.0 1 955.0 1 704.0 1 277.0 
Rank of K-W Rank Sum 4 9 10 8 7 1 1  2 5 5 3 1 
K-W Multi-Comparison Count" 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  10 

15  Average 5.50 7.16 7.30 6.54 5.94 8.76 4.62 5.49 5.58 4.89 4.23 
Rank 5 9 1 0  8 7 1 1  2 4 6 3 1 
Geometric Mean 4.87 7.02 7.07 6. 1 3  5.66 8.45 4.02 5.29 5.28 4.41 3.89 
Rank 4 9 1 0  8 7 1 1  2 6 5 3 1 
Average Rank by Series 5.50 7.83 7.93 6.58 6.28 9.25 4.00 5.10 5.58 4.35 3.63 
Rank of Average Rank 5 9 10 8 7 1 1  2 4 6 3 1 
Kruskal-Wallis Rank Sum 1 908.5 2884.0 2974.0 2468.0 2177.5 3548.0 1 512.0 1950.5 201 3.0 1622.0 1 252.5 
Rank of K-W Rank Sum 4 9 1 0  8 7 1 1  2 5 6 3 1 
K-W Multi-Comparison Count" 10 1 0  1 0  1 0  1 0  1 0  1 0  9 9 1 0  10 
"K-W Multi-Comparison Count valid only i f  Kruskal-Wallis statistic Is  Significant. 

3 6 0  



Trend Shift 
Period: Scenario 5 Range of Percent Error Table: 5-2 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 1 1 .24% 1 2.21 % 1 2.44% 1 4. 1 4% 1 2.91 % 1 2.29% 1 6.74% 1 1 .80% 1 1 .90% 1 3.50% 1 3.73% 
Rank 1 4 6 10  7 5 1 1  2 3 8 9 
Geometric Mean 9.22% 7.93% 8.98% 10.38% 1 0.05% 7.02% 1 5.51 % 8.39% 8.72% 9.93% 10.86% 
Rank 6 2 5 9 8 1 1 1  3 4 7 1 0  
Average Rank by Series 5.90 5. 1 0  4.98 7.23 6.38 4.65 8. 15  4.65 4.83 6.88 7.28 
Rank of Average Rank 6 5 4 9 7 1 1 1  1 3 8 1 0  
Kruskal-Wallis Rank Sum 21 48.0 2035.0 2052.5 2291 .5 2249.5 1 954.0 2983.0 1 975.0 1 980.5 2266.5 2374.5 
Rank of K-W Rank Sum 6 4 5 9 7 1 1 1  2 3 8 1 0  
K-W Multi-Comparison Count· 1 0  7 7 8 8 8 1 0  6 6 8 1 0  

5 Average 1 9.81 % 1 6.70% 1 7.55% 1 6. 1 1 %  1 7.26% 1 4.46% 22.32% 1 7.51 % 1 6.75% 1 6.55% 1 5.61 % 
Rank 1 0  5 9 3 7 1 1 1  8 6 4 2 
Geometric Mean 1 9.33% 1 3.40% 1 4.81 % 1 4.50% 1 5.89% 1 1 .01 % 21 .72% 1 5.22% 1 4.22% 1 3.29% 1 3. 1 1 %  
Rank 1 0  4 7 6 9 1 1 1  8 5 3 2 
Average Rank by Series 7.00 5.28 5.68 5.40 5.70 5.05 8.30 6.28 6.38 5.70 5.25 
Rank of Average Rank 1 0  3 5 4 6 1 1 1  8 9 6 2 
Kruskal-Wallis Rank Sum 2639.0 2072.5 21 94.5 2003.0 2202.0 1 742.0 3038.0 2231 .5 2147.5 2104.0 1 936.0 
Rank of K-W Rank Sum 1 0  4 7 3 8 1 1 1  9 6 5 2 
K-W Multi-Comparison Count· 1 0  7 7 8 7 1 0  1 0  8 6 8 9 

1 0  Average 24.34% 1 9.67% 21 . 1 5% 20.27% 1 9.73% 1 5.56% 32.77% 1 9.35% 1 8.82% 19.47% 1 8.98% 
Rank 1 0  6 9 8 7 1 1 1  4 2 5 3 
Geometric Mean 22.79% 1 6.29% 1 8.05% 1 7.82% 1 8.08% 1 2.43% 32. 15% 1 7.81 % 1 7.20% 1 7.39% 1 7.44% 
Rank 1 0  2 8 7 9 1 1 1  6 3 4 5 
Average Rank by Series 6.78 5. 1 5  5.1 0  4.85 5.05 4.60 10.08 6. 1 5  5.95 6.35 5.95 
Rank of Average Rank 10 5 4 2 3 1 1 1  8 6 9 6 
Kruskal-Wallis Rank Sum 2685.5 2038.0 2245.0 21 26.0 2090.0 1 421 .0 3643.5 2024.0 1 960.0 2053.0 2024.0 
Rank of K-W Rank Sum 1 0  5 9 8 7 1 1 1  3 2 6 3 
K-W Multi-Comparison Count· 1 0  5 1 0  8 5 1 0  1 0  5 7 5 5 

1 5  Average 22.69% 1 9.44% 21 .56% 22.48% 20.21 % 1 3.34% 35.98% 1 6.73% 1 6.83% 1 9.82% 17.47% 
Rank 10  5 8 9 7 1 1 1  2 3 6 4 
Geometric Mean 1 9.36% 1 5.36% 1 7.32% 1 7.98% 16.94% 1 1 .33% 33.93% 1 5.98% 1 6.25% 1 8.61 % 1 6.65% 
Rank 1 0  2 7 8 6 1 1 1  3 4 9 5 
Average Rank by Series 6.05 5.68 5.68 5.80 5.75 4.65 1 0.30 5.23 5.1 8 6.40 5.30 
Rank of Average Rank 9 5 5 8 7 1 1 1  3 2 1 0  4 
Kruskal-Wallis Rank Sum 2369.0 1 965.5 2239.5 2241 .0 2094.0 1 294.0 3631 .0 1 989.5 2027.5 2361 .0 2098.0 
Rank of K-W Rank Sum 1 0  2 7 8 5 1 1 1  3 4 9 6 
K-W Multi-Comparison Count· 9 8 9 9 8 1 0  1 0  8 6 9 8 
·K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

3 6 1  



Trend Shift Table: 5-3 
Period: Scenario 5 Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 7.1 5% 6.40% 6.20% 7.18% 7.09% 7.04% 1 0.78% 6.09% 5.97% 6.88% 6.48% 
Rank 9 4 3 1 0  8 7 1 1  2 1 6 5 
Geometric Mean 6.43% 5.53% 5.22% 5.70% 5.72% 6.36% 1 0.25% 5. 1 7% 4.99% 5.44% 5.36% 
Rank 1 0  6 3 7 8 9 1 1  2 1 5 4 
Average Rank by Series 6.95 5.53 5.1 8  6.1 0  6.00 6.55 1 0.30 4.58 4.28 5.45 5. 1 0  
Rank of Average Rank 10  6 4 8 7 9 1 1  2 1 5 3 
Kruskal-Wallis Rank Sum 2333.0 2041 .5 1 970.5 21 90.0 21 87.0 2301 .0 3347.0 1933.5 1 897.5 2095.0 201 4.0 
Rank of K-W Rank Sum 1 0  5 3 8 7 9 1 1  2 1 6 4 
K-W Multi-Comparison Count· 9 7 6 9 9 9 1 0  7 8 9 7 

5 Average 1 2.86% 1 7.38% 1 6.61 % 1 7.00% 1 6.30% 20.38% 15 . 15% 1 1 .87% 1 1 . 1 0% 1 1 .n% 1 1 .42% 
Rank 5 1 0  8 9 7 1 1  6 4 1 3 2 
Geometric Mean 1 2.50% 1 6.26% 1 5.32% 1 5. 15% 1 4.79% 20.24% 1 4.85% 9.96% 9.03% 8.55% 8.85% 
Rank 5 1 0  9 8 6 1 1  7 4 3 1 2 
Average Rank by Series 4.00 8.33 8.48 7.95 7.40 9.40 5.85 3.63 3.53 4.05 3.40 
Rank of Average Rank 4 9 1 0  8 7 1 1  6 3 2 5 1 
Kruskal-Wallis Rank Sum 1 684.0 2769.5 2601 .5 2620.0 2459.0 3483.0 2221 .0 1635.5 1 529.5 1 705.0 1 602.0 
Rank of K-W Rank Sum 4 1 0  8 9 7 1 1  6 3 1 5 2 
K-W Multi-Comparison Count· 9 1 0  9 9 1 0  1 0  10 8 9 8 8 

1 0  Average 25.09% 27.92% 26.60% 25.73% 25.76% 33.07% 21 .46% 22.82% 21 .49% 20.54% 20.68% 
Rank 6 1 0  9 7 8 1 1  3 5 4 1 2 
Geometric Mean 24.71 % 26.07% 24.50% 22.92% 23.65% 32.91 % 21 .06% 20.35% 1 8.71 % 1 6.72% 1 7.96% 
Rank 9 1 0  8 6 7 1 1  5 4 3 1 2 
Average Rank by Series 5.00 8.38 8.33 7.50 7.25 9.45 3.75 4.43 4.38 4.00 3.55 
Rank of Average Rank 6 1 0  9 8 7 1 1  2 5 4 3 1 
Kruskal-Wallis Rank Sum 21 07.0 2728.5 2559.5 2410.0 2369.0 3505.0 1 567.0 1898.5 1 n4.5 1 728.0 1 663.0 
Rank of K-W Rank Sum 6 1 0  9 8 7 1 1  1 5 4 3 2 
K-W Multi-Comparison Count· 1 0  1 0  1 0  9 9 1 0  1 0  1 0  9 8 9 

1 5  Average 34.69% 35.34% 33.62% 31 .84% 32.20% 42.34% 30.29% 31 .00% 29.28% 27.44% 27.86% 
Rank 9 10  8 6 7 1 1  4 5 3 1 2 
Geometric Mean 34.38% 33.01 % 30.98% 28.53% 29.74% 42.24% 29.95% 28.21 % 26. 1 2% 23.39% 24.98% 
Rank 1 0  9 8 5 6 1 1  7 4 3 1 2 
Average Rank by Series 5.25 8.33 8.33 7.00 6.95 9.50 3.85 4.68 4.73 3.80 3.60 
Rank of Average Rank 6 9 9 8 7 1 1  3 4 5 2 1 
Kruskal-Wallis Rank Sum 2200.0 2661 .5 2509.5 2262.0 2208.0 3563.0 1 61 6.0 1 997.5 1 888.5 1 747.0 1 657.0 
Rank of K-W Rank Sum 6 10  9 8 7 1 1  1 5 4 3 2 
K-W Multi-Comparison Count· 9 1 0  1 0  8 9 1 0  9 1 0  1 0  1 0  9 
·K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 
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Trend Shift 
Period: Scenario 5 Root Mean Square Error Table: 5-4 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 46.05 1 29.06 1 22.48 1 34.37 1 34.91 1 43.47 21 8 . 14  1 21 .78 1 1 7.44 1 29.89 1 31 .70 
Rank 1 0  4 3 7 8 9 1 1  2 1 5 6 
Average Rank by Series 6.40 5.48 5.23 6.85 6. 1 5  6.45 9.40 3.93 3.93 6.30 5.90 
Rank of Average Rank 8 4 3 1 0  6 9 1 1  1 1 7 5 

5 Geometric Mean 344.33 404.44 384.03 384.61 374.20 482.56 383.47 269.02 243.94 230.41 236.1 4  
Rank 5 1 0  8 9 6 1 1  7 4 3 1 2 
Average Rank by Series 4.35 8.03 8. 1 3  8.30 7.1 5 9.30 5.80 3.68 3.53 4.45 3.30 
Rank of Average Rank 4 8 9 1 0  7 1 1  6 3 2 5 1 

1 0  Geometric Mean 747.02 762.28 722.29 693. 1 0  697.52 922.69 693.39 605.91 554.73 505.38 536.1 5  
Rank 9 1 0  8 5 7 1 1  6 4 3 1 2 
Average Rank by Series 5.30 8.1 3 8.28 7.55 7.1 0 9.30 4.00 4.48 4.43 4. 1 0  3.35 
Rank of Average Rank 6 9 10 8 7 1 1  2 5 4 3 1 

1 5  Geometric Mean 1 1 48.1 7  1 1 07.97 1 048.86 996.1 3  1 004.80 1 353.92 1 061 . 1 2  946.72 8n.47 809.85 837.76 
Rank 1 0  9 7 5 6 1 1  8 4 3 1 2 
Average Rank by Series 5.40 8. 1 3  8.23 7.20 6.95 9.25 4. 15  4.68 4.58 4.05 3.40 
Rank of Average Rank 6 9 1 0  8 7 1 1  3 5 4 2 1 

Trend Shift 
Period: Scenario 5 Geometric Root Mean Square Error Table: 5-5 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 100.95 74.28 67.89 80.02 83.31 98.1 9 1 56.55 71 .08 66.55 73.91 69.70 
Rank 1 0  6 2 7 8 9 1 1  4 1 5 3 
Average Rank by Series 7.30 5.43 5.08 6.00 6.45 6.55 1 0.35 4.78 4.48 5. 1 0  4.50 
Rank of Average Rank 1 0  6 4 7 8 9 1 1  3 1 5 2 

5 Geometric Mean 21 5.86 31 0.03 287.08 273.09 2n.49 441 .20 271 .21 1 73. 1 2  1 52.82 1 42.70 161 .99 
Rank 5 1 0  9 7 8 1 1  6 4 2 1 3 
Average Rank by Series 4.30 8.28 8.1 3  7.85 7.1 5  9.35 5.80 3.73 3.43 3.80 4.20 
Rank of Average Rank 5 1 0  9 8 7 1 1  6 2 1 3 4 

1 0  Geometric Mean 61 4.33 61 0.07 582.98 51 2.32 555.54 876.79 446.56 484.47 466.38 397.47 425.50 
Rank 1 0  9 8 6 7 1 1  3 5 4 1 2 
Average Rank by Series 5. 1 5  8.025 8.325 7.25 7.1 5 9.25 3.7 4.475 4.875 4.1 3.7 
Rank of Average Rank 6 9 1 0  8 7 1 1  1 4 5 3 1 

1 5  Geometric Mean 1 027.32 929.30 855.55 691 . 1 2  836.89 1 337.53 81 7.37 81 5.27 757.70 596.00 723.89 
Rank 1 0  9 8 2 7 1 1  6 5 4 1 3 
Average Rank by Series 5:20 8.23 7.93 6.75 6.95 9.60 3.65 4.93 4.93 3.90 3.95 
Rank of Average Rank 6 1 0  9 7 8 1 1  1 4 4 2 3 

3 6 3 



Trend Shift Average Rank of Absolute Error Table 5-6 Trend Shift Log Mean Square Error Ratio Table �10 
Period Scenario 5 Chi Square OF p Value Period Scenario 5 Chi Square OF p Value 
1 RANK ANOVA 23.63 1 9  0.2106 1 RANK ANOVA 30.91 1 9  0.0413 

KRUSKAL-WALLIS 42. 1 0  1 0  0.0000 KRUSKAL-WALLIS 39.45 1 0  0.0000 
5 RANK ANOVA 37.n 1 9  0.0063 5 RANK ANOVA 50.94 1 9  0.0001 

KRUSKAL-WALLIS 62.58 1 0  0.0000 KRUSKAL-WALLIS 62.00 1 0  0.0000 
1 0  RANK ANOVA 33.60 1 9  0.0205 1 0  RANK ANOVA 43.65 1 9  0.001 1 

KRUSKAL-WALLIS 62.62 1 0  0.0000 KRUSKAL-WALLIS 46.44 1 0  0.0000 
1 5  RANK ANOVA 33.42 1 9  0.0215 1 5  RANK ANOVA 42.31 1 9  0.0016 

KRUSKAL-WALLIS 59.76 1 0  0.0000 KRUSKAL-WALLIS 48.50 1 0  0.0000 

Trend Shift Symmetry Adjusted MAPE Table � 7 Trend Shift Mean Absolute Percent Error Table �1 1 
Scenario 5 Chi Square OF p Value Scenario 5 Chi Square OF p Value 
RANK ANOVA 27.46 1 9  0.0944 RANK ANOVA 28.35 1 9  0.0769 
KRUSKAL-WALLIS 1 5. 90  1 0  0. 1 026 KRUSKAL-WALLIS 20.10 10  0.0283 

5 RANK ANOVA 57.47 1 9  0.0000 5 RANK ANOVA 57.93 1 9  0.0000 
KRUSKAL-WALLIS 48.05 10  0.0000 KRUSKAL-WALLIS 49.51 1 0  0.0000 

1 0  RANK ANOVA 50.34 1 9  0.0001 1 0  RANK ANOVA 50.39 1 9  0.0001 
KRUSKAL-WALLIS 40.50 1 0  0.0000 KRUSKAL-WALLIS 41 .66 1 0  0.0000 

1 5  RANK ANOVA 44.59 1 9  0.0008 1 5  RANK ANOVA 46.43 1 9  0.0004 
KRUSKAL-WALLIS 36.66 10  0.0001 KRUSKAL-WALLIS 38.85 1 0  0.0000 

Trend Shift Range of Percent Error Table 5-8 Trend Shift Median Absolute Percent Error Table � 1 2  
Scenario 5 Chi Square OF p Value Scenario 5 Chi Square OF p Value 
RANK ANOVA 1 6.74 1 9  0.6078 RANK ANOVA 24.33 1 9  0. 1 838 
KRUSKAL-WALLIS 1 0.72 10  0.3797 KRUSKAL-WALLIS 22.74 1 0  0.01 1 8  

5 RANK ANOVA 1 0.06 1 9  0.9510 5 RANK ANOVA 42.59 1 9  0.001 5 
KRUSKAL-WALLIS 1 5.32 1 0  0. 1 206  KRUSKAL-WALLIS 31 .74 10 0.0004 
RANK ANOVA 24.55 1 9  0. 1 758 1 0  RANK ANOVA 39.66 19  0.0036 

10 KRUSKAL-WALLIS 38.41 10  0.0000 KRUSKAL-WALLIS 32.04 10 0.0004 
RANK ANOVA 24.02 1 9  0 . 1955 1 5  RAN K ANOVA 29.80 19 0.0544 

1 5  KRUSKAL-WALLIS 37.96 10 0.0000 KRUSKAL-WALLIS 30.89 1 0  0.0006 

Trend Shift Geometric Root Mean Square Error Table � 9 Trend Shift Root Mean Square Error Table � 1 3  
Scenario 5 Chi Square OF p Value Scenario 5 Chi Square OF p Value 

1 RANK ANOVA 30.91 1 9  0.041 3 1 RANK ANOVA 23.70 1 9  0.2079 
5 RANK ANOVA 50.94 1 9  0.0001 5 RANK ANOVA 52.64 1 9  0.0001 
10  RANK ANOVA 43.65 1 9  0.001 1 1 0  RANK ANOVA 46.42 1 9  0.0004 
1 5  RANK ANOVA 42.31 1 9  0.0016 1 5  RANK ANOVA 42.66 1 9  0.001 4 
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No Change Table: 6-1 
Period: Scenario 6 Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 8.08 4.89 4.61 4.49 4.24 5.66 9. 1 7  6.07 6.07 6.50 5.99 
Rank 1 0  4 3 2 1 5 1 1  7 7 9 6 
Geometric Mean 7.94 4.79 4.47 4.42 4. 1 9  5.54 9.06 6.05 6.05 6.45 5.95 
Rank 1 0  4 3 2 1 5 1 1  7 7 9 6 
Average Rank by Series 9.08 4. 1 5  3.35 2.98 2.28 5.65 1 0.98 6.65 6.65 7.55 5.98 
Rank of Average Rank 10 4 3 2 1 5 1 1  7 7 9 6 
Kruskal-Wallis Rank Sum 3629.5 1 327.0 1 1 43.0 973.0 774.5 2043.0 4074.5 2424.0 2424.0 2878.0 2353.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  7 7 9 6 
K-W Multi-Comparison Count" 10  1 0  1 0  1 0  1 0  1 0  1 0  9 9 1 0  9 

5 Average 7.95 5.33 4.88 4.59 4.27 6.09 8.86 6. 1 7  5.96 6.08 5.82 
Rank 1 0  4 3 2 1 8 1 1  9 6 7 5 
Geometric Mean 7.72 5.20 4.69 4.38 4.09 5.86 8.71 6. 1 1  5.93 5.91 5.73 
Rank 10  4 3 2 1 6 1 1  9 8 7 5 
Average Rank by Series 8.33 4.73 3.80 3.88 2.90 6.63 1 0.20 6.75 6.30 6.33 6. 1 8  
Rank of Average Rank 10 4 2 3 1 8 1 1  9 6 7 5 
Kruskal-Wallis Rank Sum 3374.5 1 698.5 1 373.0 1 222.0 990.0 2422.0 3843.5 2493.5 2324.0 2374.0 21 95.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 8 1 1  9 6 7 5 
K-W Multi-Comparison Count" 10  1 0  1 0  1 0  1 0  8 1 0  9 9 8 10  

1 0  Average 7.68 5.24 5.1 4 4.83 4.35 6.24 8.54 6.02 6.02 6.34 5.72 
Rank 1 0  4 3 2 1 8 1 1  6 6 9 5 
Geometric Mean 7.43 5.05 4.92 4.56 4.07 5.91 8.32 5.95 5.95 6.21 5.64 
Rank 1 0  4 3 2 1 6 1 1  7 7 9 5 
Average Rank by Series 7.78 4.78 4.68 4.25 3.30 6.45 9.53 6.53 6.53 6.70 5.80 
Rank of Average Rank 1 0  4 3 2 1 6 1 1  7 7 9 5 
Kruskal-Wallis Rank Sum 31 93.5 1 686.0 1 6 1 3.0 1 427.5 1 1 04.5 251 2.5 3622.0 2352.5 2352.5 2493.5 2056.5 
Rank of K-W Rank Sum 10 4 3 2 1 9 1 1  6 6 8 5 
K-W Multi-Comparison Count" 10 9 9 1 0  1 0  9 1 0  1 0  1 0  9 10 

1 5  Average 7.39 5.53 5. 1 5  5.05 4.22 6.51 8.03 6. 1 7  6.03 6.25 5.67 
Rank 1 0  4 3 2 1 9 1 1  7 6 8 5 
Geometric Mean 6.94 5.35 4.82 4.69 3.94 6. 1 4  7.59 6.1 3  5.96 6.1 1  5.53 
Rank 10  4 3 2 1 9 1 1  8 6 7 5 
Average Rank by Series 7. 1 0  5.30 4.45 4.35 3.28 6.98 8.60 6.85 6.78 6.60 5.73 
Rank of Average Rank 10 4 3 2 1 9 1 1  8 7 6 5 
Kruskal-Wallis Rank Sum 2896.0 1 906.0 1 679.5 1 592.5 1 070.0 2602.5 3274.0 2468.5 2373.5 2439.5 2008.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 9 1 1  8 6 7 5 
K-W Multi-Comparison Count" 1 0  1 0  1 0  1 0  1 0  1 0  1 0  9 9 8 10 
"K-W Multi-Comparison Count valid only i f  Kruskal-Wallis statistic Is  significant. 
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No Change 
Period: Scenario 6 Range of Percent Error Table: 6-2 

Adjusted HWW HW Adaptive Auto Naive HWW* HW* Adaptlve* Auto* Nalve* 
Average 20.54% 1 1 .94% 1 1 .92% 1 0.39% 1 0.68% 1 3.09% 27.1 6% 1 7.37% 1 7.42% 1 4. 1 1 %  1 5.59% 
Rank 1 0  4 3 1 2 5 1 1  8 9 6 7 
Geometric Mean 1 7.20% 4.77% 4.67% 4.67% 4.87% 5.44% 25.1 8% 1 4.51 % 1 4.57% 1 2.50% 1 3.40% 
Rank 1 0  3 1 2 4 5 1 1  8 9 6 7 
Average Rank by Series 8.35 4. 1 5  3.90 3.38 3.50 4.90 1 0.35 7.65 7.40 5.68 6.75 
Rank of Average Rank 1 0  4 3 1 2 5 1 1  9 8 6 7 
Kruskal-Wallis Rank Sum 2844.0 1 591 .0 1 588.0 1 648.5 1 663.0 1 691 .0 3469.0 2544.0 2552.0 2294.5 2425.0 
Rank of K-W Rank Sum 1 0  2 1 3 4 5 1 1  8 9 6 7 
K-W Multi-Comparison Count* 1 0  7 7 6 6 8 1 0  9 9 1 0  10 

5 Average 25.39% 1 3. 1 2% 1 3.04% 1 1 .23% 1 1 . 1 3% 1 5.39% 47.87% 25.32% 25.33% 25.80% 25.93% 
Rank 8 4 3 2 1 5 1 1  6 7 9 1 0  
Geometric Mean 23.72% 8.05% 7.69% 7.03% 6.80% 9.05% 46.29% 23.60% 23.30% 24.02% 23.97% 
Rank 8 4 3 2 1 5 1 1  7 6 1 0  9 
Average Rank by Series 7.45 4. 1 3  3.58 3.30 3 . 10  5 .10 1 0.65 6.93 7. 1 3  7.35 7.30 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  6 7 9 8 
Kruskal-Wallis Rank Sum 2681 .0 1 393.5 1 368.5 1 257.0 1 244.0 1 558.0 3954.0 2677.5 2684.5 2732.0 2760.0 
Rank of K-W Rank Sum 7 4 3 2 1 5 1 1  6 8 9 1 0  
K-W Multi-Comparison Count* 7 9 9 9 9 1 0  1 0  8 6 6 7 

1 0  Average 34. 1 0% 1 4.95% 1 4.60% 1 2.71 % 1 2.25% 1 5.39% 45.78% 24.57% 24.48% 24.42% 26.47% 
Rank 1 0  4 3 2 1 5 1 1  8 7 6 9 
Geometric Mean 29.93% 1 0.28% 1 0. 1 3% 8.80% 8.29% 9.1 1 %  43. 1 2% 23.62% 23.53% 23. 1 8% 25.52% 
Rank 10  5 4 2 1 3 1 1  8 7 6 9 
Average Rank by Series 8.50 4.90 4.43 3.08 3.08 4.80 1 0.20 6.75 6.53 6.78 6.98 
Rank of Average Rank 10  5 3 1 1 4 1 1  7 6 8 9 
Kruskal-Wallis Rank Sum 31 25.0 1 541 .0 1 509.5 1 280.5 1 254.5 1 487.0 3856.0 2508.0 2501 .5 2531 .5 271 5.5 
Rank of K-W Rank Sum 1 0  5 4 2 1 3 1 1  7 6 8 9 
K-W Multi-Comparison Count* 1 0  8 8 9 9 8 1 0  8 8 8 1 0  

1 5  Average 40.72% 1 4. 1 6% 1 3.92% 1 4.52% 1 1 .96% 1 2.89% 54.03% 22. 1 4% 22.31 % 24.71 % 24.48% 
Rank 1 0  4 3 5 1 2 1 1  6 7 9 8 
Geometric Mean 32.22% 8.96% 9.30% 9.31 % 7.84% 8.23% 49.80% 21 .57% 21 .76% 23. 12% 23.40% 
Rank 1 0  3 4 5 1 2 1 1  6 7 8 9 
Average Rank by Series 8.08 4.70 4.28 4.63 3.68 4. 1 0  1 0. 1 3  6.20 6.23 6.93 7.08 
Rank of Average Rank 10  5 3 4 1 2 1 1  6 7 8 9 
Kruskal-Wallis Rank Sum 3098.5 1521 .0 1 482.5 1 576.5 1 290.5 1 369.0 3903.5 2398.0 2421 .5 2594.5 2654.5 
Rank of K-W Rank Sum 1 0  4 3 5 1 2 1 1  6 7 8 9 
K-W Multi-Comparison Count* 1 0  8 9 9 9 9 1 0  9 9 9 9 
·K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is Significant. 
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No Change Table: 6-3 
Period: Scenario 6 Mean Absolute Percent Error 

Adjusted HWVV HW Adaptive Auto Naive HWVV" HW· Adaptive· Auto· Naive· 
Average 1 2.89% 5.41 % 5.39% 4.63% 4.61 % 5.93% 1 7.02% 7.93% 7.93% 7.83% 7.63% 
Rank 1 0  4 3 2 1 5 1 1  9 8 7 6 
Geometric Mean 1 1 .20% 2.61 % 2.51 % 2.39% 2.38% 3.26% 1 5.74% 6.84% 6.83% 6.83% 6.70% 
Rank 1 0  4 3 2 1 5 1 1  9 8 7 6 
Average Rank by Series 9.85 3.68 2.98 2.60 2.35 5.40 1 1 .00 7.28 6.98 6.95 6.95 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  9 8 6 6 
Kruskal-Wallis Rank Sum 3208.0 1 5n.5 1 562.5 1 4n.O 1 463.0 1 71 6.0 371 1 .0 241 1 .5 2405.5 2404.0 2374.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  9 8 7 6 
K-W Multi-Comparison Count" 1 0  9 9 9 9 1 0  1 0  7 7 7 7 

5 Average 1 7 . 1 8% 6.62% 6.54% 5.79% 5.71 % 7.75% 24. 1 0% 10.35% 10.40% 1 0.43% 1 0.51 % 
Rank 1 0  4 3 2 1 5 1 1  6 7 8 9 
Geometric Mean 1 6. 1 7% 4.28% 4.04% 3.90% 3.67% 5.91 % 23.27% 9.84% 9.92% 1 0.01 % 1 0.08% 
Rank 10 4 3 2 1 5 1 1  6 7 8 9 
Average Rank by Series 9.20 4.08 3. 1 3  3.35 2.95 5.05 1 0.85 6.78 6.58 6.95 7. 1 0  
Rank of Average Rank 1 0  4 2 3 1 5 1 1  7 6 8 9 
Kruskal-Wallis Rank Sum 3469.0 1 449.5 1 41 5.5 1 285.0 1291 .0 1 694.0 4038.0 2373.5 2397.5 2441 .0 2456.0 
Rank of K-W Rank Sum 1 0  4 3 1 2 5 1 1  6 7 8 9 
K-W Multi-Comparison Count· 10 9 9 9 9 1 0  1 0  8 7 7 8 

1 0  Average 21 .35% 8.65% 8.56% 7.80% 7.31 % 1 0.24% 27.72% 1 1 .80% 1 1 .96% 12.05% 1 1 .87% 
Rank 1 0  4 3 2 1 5 1 1  6 8 9 7 
Geometric Mean 1 9.44% 5.76% 5.72% 5.44% 4.99% 8.08% 26.48% 1 0.76% 1 1 .03% 1 1 .32% 1 1 .02% 
Rank 10 4 3 2 1 5 1 1  6 8 9 7 
Average Rank by Series 8.50 4.63 3.98 3.55 3.10 5.95 1 0.70 6.63 6.38 6.50 6. 10 
Rank of  Average Rank 1 0  4 3 2 1 5 1 1  9 7 8 6 
Kruskal-Wallis Rank Sum 3403.0 1 596.5 1 565.5 1 473.0 1 41 1 .0 1 869.0 3946.0 2173.5 2253.5 2364.0 2255.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  6 7 9 8 
K-W Multi-Comparison Count· 1 0  9 9 9 9 1 0  1 0  9 8 10 9 

1 5  Average 24.62% 9.33% 9.1 7% 8.82% 7.43% 1 1 .86% 29.68% 12.25% 1 2.35% 1 2.64% 1 1 .88% 
Rank 1 0  4 3 2 1 5 1 1  7 8 9 6 
Geometric Mean 1 9 .82% 6.28% 6.28% 5.87% 5.09% 9.31 % 25.47% 1 1 .30% 1 1 .47% 1 1 .76% 10.92% 
Rank 1 0  3 4 2 1 5 1 1  7 8 9 6 
Average Rank by Series 8.00 4.48 4.03 4.05 2.95 5.90 9.85 6.93 6.63 6.80 6.40 
Rank of Average Rank 1 0  4 2 3 1 5 1 1  9 7 8 6 
Kruskal-Wallis Rank Sum 31 78.0 1 634.5 1 620.5 1 563.0 1 350.0 2065.0 3668.0 2303.5 2341 .5 2362.0 2224.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1 7 8 9 6 
K-W Multi-Comparison Count" 1 0  8 8 8 1 0  1 0  1 0  7 8 8 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 
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No Change 
Period: Scenario 6 Root Mean Square Error Table: 6-4 

Adjusted HWW HW Adaptive Auto Naive HWW' HW' Adaptive' Auto' Naive' 
Geometric Mean 201 .81 52. 16  50.14  48.36 48.54 63.34 290.1 8  1 41 .00 1 41 .39 1 37.86 1 38.55 
Rank 1 0  4 3 1 2 5 1 1  8 9 6 7 
Average Rank by Series 9.45 3.73 3.23 2.55 2.50 5.55 1 1 .00 7.33 7 . 18 6.60 6.90 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  9 8 6 7 

5 Geometric Mean 308.06 86.73 82. 1 7  78.90 73.97 1 1 8.36 470.79 21 6.90 21 8. 1 3  21 8.76 224.07 
Rank 1 0  4 3 2 1 5 1 1  6 7 8 9 
Average Rank by Series 9 . 15  4. 18  3.38 3.60 2.60 5.50 1 0.80 6.53 6.38 6.80 7.10 
Rank of  Average Rank 1 0  4 2 3 1 5 1 1  7 6 8 9 

1 0  Geometric Mean 390.87 1 22. 1 3  1 21 .06 1 1 3.93 1 03.57 1 61 .95 546.1 1  248.24 251 .49 254.44 253.69 
Rank 1 0  4 3 2 1 5 1 1  6 7 9 8 
Average Rank by Series 8.25 4.68 4.23 3.55 3 . 10  5.75 1 0.50 6.48 6.43 6.60 6.45 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  8 6 9 7 

1 5  Geometric Mean 421 .31 1 32.29 1 33.01 1 27.57 1 08.60 1 88.49 567.46 254.52 258.69 268.08 252.26 
Rank 1 0  3 4 2 1 5 1 1  7 8 9 6 
Average Rank by Series 7.85 4.58 4.08 3.90 2.85 5.60 1 0.05 6.88 6.68 7.05 6.50 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  8 7 9 6 
No Change 

Period: Scenario 6 Geometric Root Mean Square Error Table: 6-5 
Adjusted HWW HW Adaptive Auto Naive HWW' HW' Adaptive' Auto' Naive' 

Geometric Mean 1 38.93 29.28 27.81 26.81 26.63 40.23 1 83.36 58.87 55.38 64.69 60.1 9  
Rank 1 0  4 3 2 1 5 1 1  7 6 9 8 
Average Rank by Series 9.30 3.78 3.63 2.70 2.50 5.50 1 0.95 6.93 6.28 7.70 6.75 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  8 6 9 7 

5 Geometric Mean 21 1 . 1 8  51 . 1 9  47.98 48.21 45.72 71 .91 268.47 91 .35 90.56 94.83 90.25 
Rank 1 0  4 2 3 1 5 1 1  8 7 9 6 
Average Rank by Series 8.50 4. 1 8  3.43 3.60 3.30 5.30 1 0.60 6.83 6.63 7.20 6.45 
Rank of Average Rank 1 0  4 2 3 1 5 1 1  8 7 9 6 

1 0  Geometric Mean 246.00 67.75 71 .80 70.83 63.62 1 1 5.33 327.98 1 01 .41 1 1 4.36 1 21 .52 1 04. 1 9  
Rank 1 0  2 4 3 1 8 1 1  5 7 9 6 
Average Rank by Series 7.85 4.225 4.575 4.35 3.55 6.35 1 0.2 5.725 6.1 25 7.05 6 
Rank of Average Rank 1 0  2 4 3 1 8 1 1  5 7 9 6 

1 5  Geometric Mean 242.87 89.08 88.09 79. 1 2  71 .57 1 45.28 284.51 1 30.59 1 32.29 1 29.05 1 23.54 
Rank 1 0  4 3 2 1 9 1 1  7 8 6 5 
Average Rank by Series 7.35 4.83 4.58 4. 1 5  3.20 7.05 8.60 6.78 6.78 6.45 6.25 
Rank of Average Rank 1 0  4 3 2 1 9 1 1  7 7 6 5 
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No Change Average Rank of Absolute Error 
Period Scenario 6 Chi Square OF 
1 RANK ANOVA 75.92 1 9  

KRUSKAl-WAlliS 1 45.27 1 0  
5 RANK ANOVA 47.1 4  1 9  

KRUSKAl-WAlliS 93.99 10  
1 0  RANK ANOVA 32.00 1 9  

KRUSKAl-WAlliS 69.65 1 0  
1 5  RANK ANOVA 25.22 1 9  

KRUSKAl-WAlliS 49.34 10 

No Change Symmetry Adjusted MAPE 
Scenario 6 Chi Square OF 
RANK ANOVA 86.31 1 9  
KRUSKAl-WAllIS 63.24 1 0  

5 RANK ANOVA 63.39 1 9  
KRUSKAl-WAlliS 91 .68 10 

1 0  RANK ANOVA 45. 1 4  1 9  
KRUSKAl-WAlliS 69.SO 1 0  

1 5  RANK ANOVA 35.63 1 9  
KRUSKAl-WALlIS 51 .42 1 0  

No Change Range of Percent Error 
Scenario 6 Chi Square OF 
RANK ANOVA 54.58 1 9  
KRUSKAL-WALLIS 48.41 10  

5 RANK ANOVA 58.00 1 9  
KRUSKAl-WALlIS 97.78 10  
RANK ANOVA SO. 99 1 9  

1 0  KRUSKAL-WALLIS 90.30 10  
RANK ANOVA 41 .09 1 9  

1 5  KRUSKAl-WAlliS 86.89 10  

No  Change Geometric Root Mean Square Error 
Scenario 6 Chi Square OF 

1 RANK ANOVA 77.21 1 9  
5 RANK ANOVA 56.29 1 9  
10  RANK ANOVA 38.28 1 9  
1 5  RANK ANOVA 27.41 1 9  

Table 6- 6 
p Value 
0.0000 
0.0000 
0.0003 
0.0000 
0.0312 
0.0000 
0.1 533 
0.0000 

Table 6- 7  
p Value 
0.0000 
0.0000 
0.0000 
0.0000 
0.0007 
0.0000 
0.01 1 7  
0.0000 

Table 6- 8 
p Value 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0000 
0.0023 
0.0000 

Table 6- 9 
p Value 
0.0000 
0.0000 
0.0055 
0.0955 

No Change log Mean Square Error Ratio Table 6- 1 0  
Period Scenario 6 Chi Square OF p Value 
1 RANK ANOVA 77.21 1 9  0.0000 

KRUSKAl-WAlliS 1 25.57 1 0  0.0000 
5 RANK ANOVA 56.29 1 9  0.0000 

KRUSKAl-WAlliS 72.35 1 0  0.0000 
1 0  RANK ANOVA 38.28 1 9  0.0055 

KRUSKAl-WAlliS SO.92 1 0  0.0000 
1 5  RANK ANOVA 27.41 1 9  0.0955 

KRUSKAl-WAlliS 34.59 1 0  0.0001 

No Change Mean Absolute Percent Error Table 6- 1 1  
Scenario 6 Chi Square OF 

5 

RANK ANOVA 87.85 
KRUSKAl-WAlliS 68.SO 
RANK ANOVA 69. 1 6  
KRUSKAl-WAlliS 1 02. 1 6  

1 0  RANK ANOVA 52.05 
KRUSKAl-WAlliS 80.90 

15 RAN K ANOVA 42.36 
KRUSKAl-WALlIS 61 .33 

1 9  
1 0  
1 9  
1 0  
1 9  
1 0  
1 9  
1 0  

p Value 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0000 
0.0016 
0.0000 

No Change Median Absolute Percent Error Table 6- 1 2  
Scenario 6 Chi Square OF p Value 
RANK ANOVA 79.00 1 9  0.0000 
KRUSKAL-WALLIS 54.98 10  0.0000 

5 RANK ANOVA 43.56 19 0.001 1 
KRUSKAL-WAlliS 60.1 5  1 0  0.0000 

10 RANK ANOVA 34.1 1  1 9  0.01 78 
KRUSKAl-WALlIS 54.41 10 0.0000 

1 5  RANK ANOVA 1 8.58 19 0.4841 
KRUSKAl-WALlIS 35.55 10  0.0001 

No Change Root Mean Square Error Table 6- 1 3  
Scenario 6 Chi Square OF p Value 
RANK ANOVA 82.07 1 9  0.0000 

5 RANK ANOVA 66.05 1 9  0.0000 
10 RANK ANOVA 48.02 1 9  0.0003 
1 5  RANK ANOVA 44.87 1 9  0.0007 
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Variance Shift Table: 7-1 
Period: Scenario 7 Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW Adaptive" Auto" Naive" 
Average 7.56 5.39 5. 1 9  4.64 4.69 5.74 8.72 6.1 2  6.1 2 5.87 5.85 
Rank 1 0  4 3 1 2 5 1 1  8 8 7 6 
Geometric Mean 7.36 5.27 5.08 4.53 4.61 5.61 8.57 6.09 6.09 5.76 5.75 
Rank 1 0  4 3 1 2 5 1 1  8 8 7 6 
Average Rank by Series 8.00 4.85 4.23 2.98 3.28 5.88 1 0.50 6.95 6.95 5.85 6. 1 5  
Rank of Average Rank 1 0  4 3 1 2 6 1 1  8 8 5 7 
Kruskal-Wallis Rank Sum 3273.0 1 738.0 1 521 .5  1 031 .0 1 035.5 21 57.0 3955.5 2540.0 2540.0 21 77.0 2239.5 
Rank of K-W Rank Sum 1 0  4 3 1 2 5 1 1  8 8 6 7 
K-W Multi-Comparison Count" 1 0  1 0  1 0  9 9 9 1 0  1 0  1 0  8 9 

5 Average 7.24 5.36 5. 1 2  5.39 4.72 5.98 8. 1 2  5.85 5.81 6.45 
. 

5.96 
Rank 1 0  3 2 4 1 8 1 1  6 5 9 7 
Geometric Mean 7.04 5.21 4.97 5.1 9  4.52 5.68 7.96 5.75 5.74 6.34 5.88 
Rank 1 0  4 2 3 1 5 1 1  7 6 9 8 
Average Rank by Series 7.68 5.00 4.43 4.95 3.50 6.88 9.60 5.98 5.38 7.03 5.60 
Rank of Average Rank 1 0  4 2 3 1 8 1 1  7 5 9 6 
Kruskal-Wallis Rank Sum 3136.5 1 701 .5 1 504.5 1 707.5 1 1 91 .5 2367.5 361 3.5 2151 .0 2103.5 2652.5 2180.5 
Rank of K-W Rank Sum 1 0  3 2 4 1 8 1 1  6 5 9 7 
K-W Multl-Comparison Count" 10 9 1 0  9 1 0  1 0  1 0  8 8 1 0  8 

1 0  Average 7.35 5.42 5.22 5.06 4.55 5.89 8. 1 7  6.05 6.05 6.30 5.87 
Rank 1 0  4 3 2 1 6 1 1  7 7 9 5 
Geometric Mean 7.05 5.25 5.04 4.80 4.34 5.53 7.91 6.00 6.00 6. 1 2  5.n 
Rank 1 0  4 3 2 1 5 1 1  7 7 9 6 
Average Rank by Series 7.65 5.20 4.88 4.18 3.25 6.85 9. 1 3  6.33 6.33 6. 15  5.65 
Rank of Average Rank 1 0  4 3 2 1 9 1 1  7 7 6 5 
Kruskal-Wallis Rank Sum 3029.5 1801 .0 1 653.0 1 483.5 1 1 61 .0 2321 .5 3451 .0 2385.5 2385.5 241 0.5 21 70.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 6 1 1  7 7 9 5 
K-W Multi-Comparison Count" 1 0  1 0  1 0  10 1 0  9 1 0  7 7 8 1 0  

1 5  Average 7.33 5.47 5.20 5.25 4.54 6 . 18  8.08 6.1 0  5.96 6. 18  5.72 
Rank 10 4 2 3 1 9 1 1  7 6 8 5 
Geometric Mean 7.01 5.25 4.91 4.88 4.36 5.80 7.79 6.00 5.89 5.98 5.63 
Rank 1 0  4 3 2 1 6 1 1  9 7 8 5 
Average Rank by Series 7.50 5.20 4.75 4.60 3.45 6.90 8.90 6.45 6.30 6.38 5.58 
Rank of Average Rank 1 0  4 3 2 1 9 1 1  8 6 7 5 
Kruskal-Wallis Rank Sum 2967.0 1852.0 1 697.0 1 701 .0 1 1 45.0 2486.0 3371 .5 2388.0 2287.5 2336.5 2078.5 
Rank of K-W Rank Sum 1 0  4 2 3 1 9 1 1  8 6 7 5 
K-W Multi-Comparison Count" 1 0  10 9 9 10 1 0  1 0  9 9 8 10 
"K-W Multi-Comparison Count valid only I f  Kruskal-Wallis statistic Is  significant. 

3 7 0  



Variance Shift 
Period: Scenario 7 Range of Percent Error Table: 7-2 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 34.61 % 29.91 % 29.81 % 24. 1 6% 25.10% 33.08% 40.29% 34.95% 35.02% 28.22% 29.58% 
Rank 8 6 5 1 2 7 1 1  9 1 0  3 4 
Geometric Mean 22.20% 1 0.59% 1 0. 1 9% 1 0.89% 1 0.40% 1 2.02% 31 .36% 20.23% 20.42% 1 8.65% 1 9.29% 
Rank 1 0  3 1 4 2 5 1 1  8 9 6 7 
Average Rank by Series 7.85 4. 1 8  3.63 4.25 3.70 5.90 9.80 6.98 7. 1 3  6.25 6.35 
Rank of Average Rank 10 3 1 4 2 5 1 1  8 9 6 7 
Kruskal-Wallis Rank Sum 2554.0 1 750.5 1 722.5 1 865.0 1 828.0 1 868.0 3060.0 2436.5 2455.5 2361 .0 2409.0 
Rank of K-W Rank Sum 1 0  2 1 4 3 5 1 1  8 9 6 7 
K-W Multi-Comparison Count" 1 0  8 9 8 7 8 1 0  7 8 8 7 

5 Average 41 .92% 30.84% 31 . 1 9% 28.73% 24.32% 34.72% 60.46% 40.74% 40.77% 41 . 1 1 %  37.02% 
Rank 1 0  3 4 2 1 5 1 1  7 8 9 6 
Geometric Mean 31 .90% 1 4.64% 1 5.61 % 1 4.55% 1 2.85% 1 6.25% 52.70% 31 .06% 31 .09% 29.44% 28.59% 
Rank 10 3 4 2 1 5 1 1  8 9 7 6 
Average Rank by Series 7.58 4. 1 8  4.50 4.23 2.75 5.30 1 0.48 6.83 6.85 7. 1 8  6. 1 5  
Rank of Average Rank 1 0  2 4 3 1 5 1 1  7 8 9 6 
Kruskal-Wallis Rank Sum 2605.5 1 666.5 1 7 1 3.0 1 61 7.5 1 503.0 1 773.0 3427.5 2546.5 2547.0 2471 .5 2439.0 
Rank of K-W Rank Sum 1 0  3 4 2 1 5 1 1  8 9 7 6 
K-W Multi-Comparison Count" 9 8 8 9 1 0  9 1 0  8 7 7 9 

1 0  Average 39.60% 28.55% 28.52% 25.27% 22.62% 30.76% 51 .47% 36.66% 36.31 % 32.25% 31 .61 % 
Rank 10 4 3 2 1 5 1 1  9 8 7 6 
Geometric Mean 35.05% 1 6.40% 1 7. 1 6% 1 7. 1 6% 1 5.21 % 1 6. 1 0% 48.48% 30.1 7% 29.95% 28.97% 28.73% 
Rank 1 0  3 5 4 1 2 1 1  9 8 7 6 
Average Rank by Series 7.35 4.35 4. 1 0  4. 1 3  3.1 3  4.60 9.70 7.65 7.40 6.73 6.88 
Rank of Average Rank 8 4 2 3 1 5 1 1  10 9 6 7 
Kruskal-Wallis Rank Sum 2819.0 1678.0 1 682.0 1 752.5 1 51 5.5 1 691 .0 3497.0 2462.0 2435.0 2395.5 2382.5 
Rank of K-W Rank Sum 1 0  2 3 5 1 4 1 1  9 8 7 6 
K-W Multi-Comparison Count" 1 0  7 7 7 1 0  7 1 0  7 7 7 7 

1 5  Average 46.92% 23.36% 23.87% 24.38% 21 .43% 24.81 % 59.28% 32.29% 32.40% 36.44% 34.76% 
Rank 1 0  2 3 4 1 5 1 1  6 7 9 8 
Geometric Mean 39.30% 15.62% 1 7.06% 1 6.23% 1 4.78% 1 4.67% 54.88% 28.44% 28.72% 31 .73% 31 .29% 
Rank 1 0  3 5 4 2 1 1 1  6 7 9 8 
Average Rank by Series 7.85 4.48 4.48 4. 1 5  3.68 5.00 9.45 6.38 6.38 7.30 6.88 
Rank of Average Rank 10 3 3 2 1 5 1 1  6 6 9 8 
Kruskal-Wallis Rank Sum 2961 .0 1668.5 1 701 .5 1 727.0 1 595.5 1 638.0 361 9.0 2239.5 2266.5 2448.0 2445.5 
Rank of K-W Rank Sum 1 0  3 4 5 1 2 1 1  6 7 9 8 
K-W Multi-Comparison Count" 1 0  6 7 8 8 7 1 0  9 9 9 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

3 7 1  



Variance Shift Table: 7-3 
Period: Scenario 7 Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 1 6.81 % 1 2.42% 1 2.40% 1 0.52% 1 0.58% 1 3. 1 5% 20.65% 1 4.22% 1 4.22% 1 2.69% 1 2.50% 
Rank 10  4 3 1 2 7 1 1  9 8 6 5 
Geometric Mean 1 2.93% 5.69% 5.62% 5. 1 4% 5. 1 3% 6.23% 1 7.67% 9.66% 9.64% 9.06% 9.1 1 %  
Rank 10  4 3 2 1 5 1 1  9 8 6 7 
Average Rank by Series 8.20 4.28 4. 1 8  2.70 2.70 6.00 1 0.55 7.68 7.28 6.00 6.45 
Rank of Average Rank 1 0  4 3 1 1 5 1 1  9 8 5 7 
Kruskal-Wallis Rank Sum 2754.0 1 875.5 1 867.5 1 681 .0 1 739.0 1 997.0 31 64.0 2353.5 2342.5 2262.0 2274.0 
Rank of K-W Rank Sum 1 0  4 3 1 2 5 1 1  9 8 6 7 
K-W Multi-Comparison Count· 10  9 9 9 9 1 0  1 0  8 7 8 7 

5 Average 20.08% 1 3.08% 1 2.97% 1 2.91 %  1 1 .42% 1 3.83% 26.48% 1 6.00% 1 6.07% 1 6.38% 1 5. 1 4% 
Rank 10  4 3 2 1 5 1 1  7 8 9 6 
Geometric Mean 1 7.72% 7.74% 7.68% 7.78% 7.07% 8.94% 24.55% 1 3.00% 1 3. 1 9% 1 3.75% 1 3.04% 
Rank 1 0  3 2 4 1 5 1 1  6 8 9 7 
Average Rank by Series 7.85 4.48 4. 1 8  4.25 3.40 6. 1 5  9.90 6.48 6.23 6.75 6.35 
Rank of Average Rank 10  4 2 3 1 5 1 1  8 6 9 7 
Kruskal-Wallis Rank Sum 2849.0 1 774.5 1 747.5 1 747.0 1 660.0 1 81 6.0 3444.0 2278.5 231 2.5 2377.0 2304.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  6 8 9 7 
K-W Multi-Comparison Count· 1 0  7 7 7 10  7 1 0  8 7 8 7 

1 0  Average 24. 1 4% 1 4.52% 1 4.48% 1 4. 1 0% 1 2.44% 15 . 16% 29.91 % 1 7.25% 1 7.46% 1 7.65% 1 6.63% 
Rank 10  4 3 2 1 5 1 1  7 8 9 6 
Geometric Mean 22. 1 6% 9.03% 9.54% 9.39% 8.50% 1 0.44% 28.53% 1 4. 1 6% 1 4.73% 1 5.08% 1 4.45% 
Rank 10  2 4 3 1 5 1 1  6 8 9 7 
Average Rank by Series 8.05 4.43 4.23 4. 1 0  3.30 6.00 9.80 6.73 6.38 6.55 6.45 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  9 6 8 7 
Kruskal-Wallis Rank Sum 3053.0 1 738.5 1 742.5 1 762.0 1 581 .0 1 826.0 3521 .0 2223.5 2267.5 2339.0 2256.0 
Rank of K-W Rank Sum 10  2 3 4 1 5 1 1  6 8 9 7 
K-W Multi-Comparison Count· 10  8 8 7 1 0  9 1 0  8 7 9 8 

1 5  Average 26.69% 1 3.47% 1 3.34% 1 3.83% 1 1 .58% 1 4.47% 32.09% 1 6.78% 1 6.88% 1 7.70% 1 6. 1 5% 
Rank 1 0  3 2 4 1 5 1 1  7 8 9 6 
Geometric Mean 23.45% 8.61 % 9 . 17% 8.85% 7.68% 1 1 .04% 29.67% 1 4.29% 1 4.72% 1 5.04% 1 4.26% 
Rank 10  2 4 3 1 5 1 1  7 8 9 6 
Average Rank by Series 8. 1 5  4.58 4.08 3.85 3.05 5.60 9.50 7. 1 3  6.73 6.90 6.45 
Rank of Average Rank 10  4 3 2 1 5 1 1  9 7 8 6 
Kruskal-Wallis Rank Sum 3092.0 1 754.5 1 751 .5 1 746.0 1 526.0 1 924.0 3545.0 2209.5 2258.5 2307.0 21 96.0 
Rank of K-W Rank Sum 1 0  4 3 2 1 5 1 1  7 8 9 6 
K-W Multi-Comparison Count· 10  8 8 8 1 0  1 0  1 0  8 7 9 8 
·K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is Significant. 

3 7 2  



Variance Shift 
Period: Scenario 7 Root Mean Square Error Table: 7-4 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 235.41 1 1 3.44 1 1 1 .04 1 07.70 1 05.41 1 22.60 324.18 1 94.58 195.10  1 84.78 1 88.09 
Rank 1 0  4 3 2 1 5 1 1  8 9 6 7 
Average Rank by Series 7.55 4.48 4. 1 8  2.85 3.25 6.45 9.60 7.63 7.08 6.05 6.90 
Rank of Average Rank 9 4 3 1 2 6 1 1  1 0  8 5 7 

5 Geometric Mean 329.07 1 56.98 1 57. 1 3  1 56.25 1 42.00 1 81 .61 480.20 278. 1 0  280.43 280.09 269.93 
Rank 1 0  3 4 2 1 5 1 1  7 9 8 6 
Average Rank by Series 7.45 4.83 4.48 4.55 3.50 6.20 9.50 6.63 6.23 6.50 6. 1 5  
Rank of Average Rank 1 0  4 2 3 1 6 1 1  9 7 8 5 

1 0  Geometric Mean 437 . 18  1 98.09 208.45 203.94 1 84.31 223.56 573.69 321 . 1 9  328. 1 0  331 .71 31 6.66 
Rank 10  2 4 3 1 5 1 1  7 8 9 6 
Average Rank by Series 7.20 4.93 4.68 4.1 5  3.30 6.35 9.25 6.88 6.38 6.60 6.30 
Rank of Average Rank 1 0  4 3 2 1 6 1 1  9 7 8 5 

1 5  Geometric Mean 482.66 1 92.48 206.01 1 99.05 1 72.02 241 . 1 7  61 4.30 321 . 1 9  328.n 344.31 323.00 
Rank 1 0  2 4 3 1 5 1 1  6 8 9 7 
Average Rank by Series 7.25 4.63 4.28 4. 1 0  3. 1 5  6.05 9.35 7.08 6.58 7.00 6.55 
Rank of Average Rank 1 0  4 3 2 1 5 1 1  9 7 8 6 

Variance Shift 
Period: Scenario 7 Geometric Root Mean Square Error Table: 7-5 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 53.97 69.06 70.72 54.32 56.25 75.38 205.86 96.24 97.74 84.76 83.41 
Rank 1 0  3 4 1 2 5 1 1  8 9 7 6 
Average Rank by Series 7.60 5. 1 3  5.33 2.90 2.80 5.75 9.80 7.58 7.48 5.75 5.90 
Rank of Average Rank 1 0  3 4 2 1 5 1 1  9 8 5 7 

5 Geometric Mean 21 4.00 91 .44 87.59 97.89 88.09 1 03.96 268.02 1 22.86 1 23.53 1 41 .90 1 27.71 
Rank 1 0  3 1 4 2 5 1 1  6 7 9 8 
Average Rank by Series 7.90 4.68 4.23 4.55 4.40 5.55 9. 1 0  6.08 5.93 7.00 6.60 
Rank of Average Rank 10  4 1 3 2 5 1 1  7 6 9 8 

1 0  Geometric Mean 301 .37 1 1 2.67 1 1 2.60 1 1 7.50 1 03.22 1 40.63 365.53 1 58.97 160.27 1 78.32 1 61 .00 
Rank 1 0  3 2 4 1 5 1 1  6 7 9 8 
Average Rank by Series 8 4.975 4.475 4.3 3.4 6.55 9.25 6.325 6.1 75 6.7 5.85 
Rank of Average Rank 1 0  4 3 2 1 8 1 1  7 6 9 5 

1 5  Geometric Mean 31 4.65 1 1 9. 1 5  1 20.93 1 1 3.28 98.54 1 49.23 385.52 1 72.51 1 75.22 1 66.48 1 52.31 
Rank 10  3 4 2 1 5 1 1  8 9 7 6 
Average Rank by Series 7.75 5. 1 3  4.68 4.50 3. 1 5  5.75 9.30 6.98 6.98 6.25 5.55 
Rank of Average Rank 10  4 3 2 1 6 1 1  8 8 7 5 

3 7 3  



Variance Shift Average Rank of Absolute Error Table 7- 6 Variance Shift Log Mean Square Error Ratio Table 7-1 0  
Period Scenario 7 Chi Square OF p Value Period Scenario 7 Chi Square OF p Value 
1 RANK ANOVA SO.54 1 9  0.0001 1 RANK ANOVA 45. 1 1 1 9  0.0007 

KRUSKAL-WALLIS 98.03 10  0.0000 KRUSKAL-WALLIS 58.51 1 0  0.0000 
5 RANK ANOVA 30.67 1 9  0.0438 5 RANK ANOVA 25.89 1 9  0.1 333 

KRUSKAL-WALLIS 63.07 1 0  0.0000 KRUSKAL-WALLIS 43.41 1 0  0.0000 
1 0  RANK ANOVA 28.45 1 9  0.0752 1 0  RANK ANOVA 30.23 1 9  0.0489 

KRUSKAL-WALLIS 55.00 10  0.0000 KRUSKAL-WALLIS 40.62 1 0  0.0000 
1 5  RANK ANOVA 24.21 1 9  0.1881 1 5  RANK ANOVA 30.79 1 9  0.0426 

KRUSKAL-WALLIS 47.56 10 0.0000 KRUSKAL-WALLIS 34.53 1 0  0.0002 

Variance Shift Symmetry Adjusted MAPE Table 7- 7 Variance Shift Mean Absolute Percent Error Table 7-1 1 
Scenario 7 Chi Square OF p Value Scenario 7 Chi Square OF p Value 
RANK ANOVA 53.34 1 9  0.0000 RANK ANOVA 61 . 1 1 1 9  0.0000 
KRUSKAL-WALLIS 20.51 1 0  0.0248 KRUSKAL-WALLIS 25.02 1 0  0.0053 

5 RANK ANOVA 24.59 1 9  0.1 744 5 RANK ANOVA 37.04 1 9  0.0078 
KRUSKAL-WALLIS 31 .94 10  0.0004 KRUSKAL-WALLIS 37.75 1 0  0.0000 

1 0  RANK ANOVA 31 .29 19 0.0375 1 0  RANK ANOVA 38.34 1 9  0.0054 
KRUSKAL-WALLIS 38.95 10  0.0000 KRUSKAL-WALLIS 44.87 10  0.0000 

1 5  RANK ANOVA 31 .98 1 9  0.0314 1 5  RANK ANOVA 40.99 19 0.0024 
KRUSKAL-WALLIS 38. 1 7  1 0  0.0000 KRUSKAL-WALLIS 46.34 1 0  0.0000 

Variance Shift Range of Percent Error Table 7- 8 Variance Shift Median Absolute Percent Error Table 7-1 2  
Scenario 7 Chi Square OF p Value Scenario 7 Chi Square OF p Value 
RANK ANOVA 39.64 1 9  0.0036 RANK ANOVA 42.77 1 9  0.001 4 
KRUSKAL-WALLIS 22.77 10  0.01 1 6  KRUSKAL-WALLIS 21 .52 1 0  0.01 77 

5 RANK ANOVA 47.43 1 9  0.0003 5 RANK ANOVA 1 0.61 1 9  0.9362 
KRUSKAL-WALLIS 44.06 1 0  0.0000 KRUSKAL-WALLIS 1 9.94 1 0  0.0299 
RANK ANOVA 43.76 1 9  0.001 0 1 0  RANK ANOVA 25.72 1 9  0. 1 381 

1 0  KRUSKAL-WALLIS 46.01 10  0.0000 KRUSKAL-WALLIS 34.67 10  0.0001 
RANK ANOVA 34.39 1 9  0.0165 1 5  RANK ANOVA 24.36 1 9  0.1 827 

1 5  KRUSKAL-WALLIS 51 .28 1 0  0.0000 KRUSKAL-WALLIS 29.16 10 0.001 2 

Variance Shift Geometric Root Mean Square Error Table 7- 9 Variance Shift Root Mean Square Error Table 7-1 3 
Scenario 7 Chi Square OF p Value Scenario 7 Chi Square OF p Value 

1 RANK ANOVA 45. 1 1 1 9  0.0007 1 RANK ANOVA 45.58 1 9  0.0006 
5 RANK ANOVA 25.89 1 9  0.1333 5 RANK ANOVA 28.80 1 9  0.0692 
1 0  RANK ANOVA 30.23 1 9  0.0489 1 0  RANK ANOVA 28.74 1 9  0.0702 
1 5  RANK ANOVA 30.79 1 9  0.0426 1 5  RANK ANOVA 34.01 1 9  0.01 83 

3 7 4  



Period: Level Shift as Planned (N) Scenario 8 Table: 8 - 1 
Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 3.50 6.74 6.87 7.86 7 . 16  6.05 5.51 5.25 5.25 6.04 5.86 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Geometric Mean 3.29 6.68 6.82 7.80 7.06 5.99 5.34 5. 1 8  5. 1 8  5.97 5.80 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Average Rank by Series 1 .48 7.45 7.50 9.80 8.85 6. 1 5  4.35 4.35 4.35 5.90 5.68 
Rank of Average Rank 1 8 9 1 1  1 0  7 2 2 2 6 5 
Kruskal-Wallis Rank Sum 437.5 2,883.5 3,037.5 3,n2.0 3,1 75.5 2,21 2.0 1 ,700.0 1 ,437.5 1 ,437.5 2,220.0 1 ,952.5 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  6 4 2 2 7 5 
K-W Multi-Comparison Count· 1 0  10  1 0  1 0  1 0  9 1 0  9 9 9 10  

5 Average 3.91 6.38 6.38 7.26 7.09 5.56 6.04 5.67 5.67 6.03 6.01 
Rank 1 9 8 1 1  1 0  2 7 4 3 6 5 
Geometric Mean 3.51 6.33 6.29 7. 1 8  6.92 5.37 5.81 5.36 5.42 5.79 5.90 
Rank 1 9 8 1 1  1 0  3 6 2 4 5 7 
Average Rank by Series 2.73 6.88 6.73 8.55 7.40 5.38 5.88 5.85 5.33 5.78 5.53 
Rank of Average Rank 1 9 8 1 1  10  3 7 6 2 5 4 
Kruskal-Wallis Rank Sum 889.0 2,4n.0 2,460.5 3,21 0.5 2,900.0 1 ,853.0 2,1 1 0.0 2,008.5 1 ,998.5 2,256.0 2,1 47.0 
Rank of K-W Rank Sum 1 9 8 1 1  10  2 5 4 3 7 6 
K-W Multi-Comparison Count· 1 0  9 9 1 0  10  10  9 9 9 1 0  9 

1 0  Average 3.76 6.50 6.63 7 . 14 6.71 5.71 5.71 6.06 6.06 5.96 5.82 
Rank 1 8 9 1 1  10  3 2 6 6 5 4 
Geometric Mean 3.40 6.41 6.55 7.04 6.55 5.44 5.51 5.82 5.82 5.72 5.71 
Rank 1 8 10  1 1  9 2 3 6 6 5 4 
Average Rank by Series 2.5 7 6.825 7.825 7. 1 75 5.725 5.575 6.25 6.25 5.3 5.475 
Rank of Average Rank 1 9 8 1 1  10  5 4 6 6 2 3 
Kruskal-Wallis Rank Sum 809.0 2,565.5 2,652.0 3,076.0 2,704.5 2,01 4.5 1 ,920.0 2,274.5 2,274.5 2,075.5 1 ,967.0 
Rank of K-W Rank Sum 1 8 9 1 1  10  4 2 6 6 5 3 
K-W Multi-Comparison Count" 1 0  1 0  9 10  9 8 9 9 9 9 8 

1 5  Average 3.99 6.50 6.73 6.90 6.49 6.02 5.68 6.03 6.21 6.00 5.45 
Rank 1 9 1 0  1 1  8 5 3 6 7 4 2 
Geometric Mean 3.68 6.40 6.68 6.68 6.24 5.62 5.44 5.60 5.92 5.68 5. 1 4  
Rank 1 9 10  1 1  8 5 3 4 7 6 2 
Average Rank by Series 2.975 7.075 7 . 15 7.325 6.275 6.4 6.05 6. 1 5  6.225 5.475 4.9 
Rank of Average Rank 1 9 10  1 1  7 8 4 5 6 3 2 
Kruskal-Wallis Rank Sum 91 7.0 2,51 8.5 2,688.5 2,832.0 2,478.0 2,270.0 1 ,946.5 2,305.5 2,387.0 2,1 57.5 1 ,809.5 
Rank of K-W Rank Sum 1 9 1 0  1 1  8 5 3 6 7 4 2 
K-W Multi-Comparison Count" 10  9 10 10  9 9 10  9 10  10  10  
"K-W Multi-Comparison Count valid only i f  Kruskal-Wallis statistic is significant. 

3 7 5  



Level Shift as Planned (N) Scenario 8 Table: 8-2 
Period: Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 1 5. 1 4% 24.73% 24.30% 24.71 % 27.52% 24.50% 20.72% 1 8.76% 1 9.22% 20.24% 22.26% 
Rank 1 1 0  7 9 1 1  8 5 2 3 4 6 
Geometric Mean 6.72% 19 . 10% 1 8.46% 1 9.78% 22.1 2% 1 8.79% 1 7.82% 1 1 .28% 1 2.47% 1 5.58% 1 6.88% 
Rank 1 9 7 10  1 1  8 6 2 3 4 5 
Average Rank by Series 2.53 7.58 6.98 7.23 8.48 7.55 6.68 4.03 4.03 5. 1 8  5.78 
Rank of Average Rank 1 1 0  7 8 1 1  9 6 2 2 4 5 
Kruskal-Wallis Rank Sum 1 ,470.5 2,51 1 .5 2,444.5 2,580.5 2,733.5 2,458.0 2,421 .5 1 ,634.5 1 ,6n.5 2, 1 25.5 2,252.5 
Rank of K-W Rank Sum 1 9 7 1 0  1 1  8 6 2 3 4 5 
K-W Multi-Comparison Count" 1 0  7 7 9 1 0  7 8 9 9 1 0  1 0  

5 Average 1 4.29% 36.27% 36.98% 35.63% 37.72% 36.1 2% 39.24% 25.49% 27.88% 30.86% 32.45% 
Rank 1 8 9 6 1 0  7 1 1  2 3 4 5 
Geometric Mean 8.88% 33.40% 33.78% 33.69% 35.56% 31 .64% 38.75% 1 8.21 % 21 .91 % 26.84% 26.86% 
Rank 1 7 9 8 1 0  6 1 1  2 3 4 5 
Average Rank by Series 2 . 13 6.83 6.73 6.53 7.58 6.70 8.33 4.78 4.78 5.48 6. 1 8  
Rank of Average Rank 1 9 8 6 1 0  7 1 1  2 2 4 5 
Kruskal-Wallis Rank Sum 861 .5 2,476.5 2,4n.5 2,601 .5 2,700.5 2,361 .0 3,1 32.5 1 ,576.5 1 ,707.5 2,1 40.5 2,274.5 
Rank of K-W Rank Sum 1 7 8 9 1 0  6 1 1  2 3 4 5 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  

1 0  Average 1 6. 1 7% 40.75% 41 .93% 50.22% 45.54% 31 .54% 38.94% 32.70% 37.52% 44.55% 37.31 % 
Rank 1 7 8 1 1  1 0  2 6 3 5 9 4 
Geometric Mean 1 1 .20% 36.75% 37.48% 46.09% 42.86% 28.31 % 37.63% 22.1 2% 27.40% 35.28% 30.25% 
Rank 1 7 8 1 1  1 0  4 9 2 3 6 5 
Average Rank by Series 2.45 6.65 6.3 7.775 7.3 5.25 6.8 5.35 5.45 6.775 5.9 
Rank of Average Rank 1 7 6 1 1  1 0  2 9 3 4 8 5 
Kruskal-Wallls Rank Sum 866.0 2,438.0 2,454.0 2,932.5 2,838.0 1 ,804.0 2,495.0 1 ,839.0 2,087.0 2,408.5 2,1 48.0 
Rank of K-W Rank Sum 1 7 8 1 1  1 0  2 9 3 4 6 5 
K-W Multi-Comparison Count" 1 0  7 7 10  1 0  9 8 9 9 8 9 

1 5  Average 1 5.98% 44.71 % 50.02% 64.09% 51 .75% 27.28% 37.48% 38.61 % 45.42% 57.68% 45.26% 
Rank 1 5 8 1 1  9 2 3 4 7 1 0  6 
Geometric Mean 1 0.67% 38.60% 42.36% 53.84% 46.65% 25.91 % 36.39% 23.30% 28.63% 40.23% 34.54% 
Rank 1 7 9 1 1  1 0  3 6 2 4 8 5 
Average Rank by Series 2.5 6.8 6.6 8. 1 25 7.575 4.7 6.75 5.4 5.45 6.325 5.775 
Rank of Average Rank 1 9 7 1 1  1 0  2 8 3 4 6 5 
Kruskal-Wallis Rank Sum 908.0 2,414.0 2,590.0 3,035.5 2,81 1 .5 1 ,593.0 2,438.0 1 ,824.0 2, 1 07.0 2,448.5 2,1 40.5 
Rank of K-W Rank Sum 1 6 9 1 1  1 0  2 7 3 4 8 5 
K-W Multi-Comparison Count" 1 0  8 10  1 0  1 0  1 0  8 1 0  9 8 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallls statistic is significant. 

3 7 6  



Level Shift as Planned (N) Scenario 6 Table: 8-3 
Period: Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 6. 1 3% 1 1 .70% 1 1 .61 % 1 4.56% 1 3.60% 1 0.96% 9.51 % 6.45% 6.61 % 1 0.66% 1 0. 1 1  % 
Rank 1 6 9 1 1  1 0  7 4 2 3 6 5 
Geometric Mean 3. 1 9% 1 0.26% 1 0.44% 1 2.39% 1 1 .35% 9.04% 6.52% 5.98% 6.40% 8.50% 6.01 % 
Rank 1 6 9 1 1  1 0  7 6 2 3 5 4 
Average Rank by Series 1 .40 7.66 7.98 9.50 9.30 6.40 5.45 3.63 3.76 5.50 5.20 
Rank of Average Rank 1 6 9 1 1  1 0  7 5 2 3 6 4 
Kruskal-Wallis Rank Sum 1 ,291 .0 2,61 3.5 2,661 .5 2,692.0 2,761 .0 2,324.0 2,21 5.0 1 ,629.5 1 ,655.5 2,1 66.0 2,079.0 
Rank of K-W Rank Sum 1 6 9 1 1  1 0  7 6 2 3 5 4 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  1 0  9 9 9 9 1 0  

5 Average 7.76% 1 7.26% 1 8. 1 1 %  22.08% 20.59% 1 4. 1 5% 1 6.89% 1 3.01 % 1 4.32% 1 6.72% 1 4.94% 
Rank 1 8 9 1 1  1 0  3 7 2 4 6 5 
Geometric Mean 5.06% 1 6. 1 8% 1 7.01 % 20.68% 1 9.38% 1 2.99% 1 6.09% 9.51 % 1 1 .45% 1 4. 1 3% 1 3.08% 
Rank 1 8 9 1 1  1 0  4 7 2 3 6 5 
Average Rank by Series 2.35 7. 1 3  7.28 9. 1 0  8.25 5.05 6.95 4.53 4.58 5.70 5. 1 0  
Rank of Average Rank 1 8 9 1 1  1 0  4 7 2 3 6 5 
Kruskal-Wallis Rank Sum 942.0 2,41 9.5 2,567.5 3,1 1 3.0 2,922.0 1 ,806.0 2,421 .0 1 ,783.5 1 ,980.5 2,265.0 2,090.0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  3 8 2 4 6 5 
K-W Multi-Comparison Count" 1 0  9 1 0  1 0  1 0  9 9 9 1 0  1 0  1 0  

1 0  Average 9.42% 21 .79% 24.04% 28.84% 24.87% 1 5.43% 1 7.71 % 1 8.86% 21 .44% 25.09% 20.58% 
Rank 1 7 8 1 1  9 2 3 4 6 10  5 
Geometric Mean 6.61 % 1 9. 10% 21 . 1 8% 26.01 % 22.86% 1 3.99% 1 6.56% 1 3. 1 0% 1 5.90% 1 9.24% 1 6.87% 
Rank 1 7 9 1 1  1 0  3 5 2 4 8 6 
Average Rank by Series 2.5 6.775 6.875 8.5 7.6 5. 1 5  6.35 5.675 5.775 5.5 5.3 
Rank of Average Rank 1 8 9 1 1  1 0  2 7 5 6 4 3 
Kruskal-Wallis Rank Sum 973.0 2,308.5 2,545.5 3,047.0 2,782.0 1 ,656.0 2,077.0 1 ,959.5 2,253.5 2,493.0 2,21 5.0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  2 4 3 6 8 5 
K-W Multi-Comparison Count" 10  9 9 1 0  1 0  1 0  1 0  1 0  8 9 9 

1 5  Average 9.45% 25.59% 28.82% 35. 1 5% 28. 1 0% 1 6.45% 1 7.36% 22.93% 26.68% 32.37% 24.05% 
Rank 1 6 9 1 1  8 2 3 4 7 1 0  5 
Geometric Mean 6.78% 21 .22% 23.83% 28.67% 23.89% 1 5. 1 7% 1 6. 1 9% 1 4.30% 1 7.29% 21 .77% 1 6.93% 
Rank 1 7 9 1 1  1 0  3 4 2 6 8 5 
Average Rank by Series 2.4 7.1 25 7.075 7.8 7.1  6. 1 5  6.4 5.575 5.875 5.75 4.75 
Rank of Average Rank 1 1 0  8 1 1  9 6 7 3 5 4 2 
Kruskal-Wallis Rank Sum 971 .0 2,431 .5 2,643.5 2,946.0 2,683.0 1 ,830.0 2,01 5.0 1 ,982.5 2,293.5 2,469.0 2,045.0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  2 4 3 6 8 5 
K-W Multi-Comparison Count" 10  9 9 1 0  9 1 0  8 8 1 0  9 8 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic Is significant. 

3 7 7  



Level Shift as Planned (N) Scenario 8 Table: 8-4 
Period: Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 48.94 1 51 .69 1 51 .51 1 7 1 .88 1 65.98 1 39.76 1 40.50 87.84 94.87 1 1 8.59 1 1 5.65 
Rank 1 9 8 1 1  10  6 7 2 3 5 4 
Average Rank by Series 1 .55 8.08 7.98 9.25 8.85 6.65 6.50 3.88 3.83 4.80 4.65 
Rank of Average Rank 1 9 8 1 1  10  7 6 3 2 5 4 

5 Geometric Mean 73.65 242.82 250.02 289.98 275.29 202.89 268.54 1 40.80 1 69.40 204.31 1 89.24 
Rank 1 7 8 1 1  1 0  5 9 2 3 6 4 
Average Rank by Series 2.35 6.875 6.975 8.65 8.25 4.75 7.6 4.825 4.775 5.6 5.35 
Rank of Average Rank 1 7 8 1 1  10  2 9 4 3 6 5 

1 0  Geometric Mean 103.23 305.77 331 .42 394.84 347.21 225.76 281 .24 202.74 246.74 296.84 256.80 
Rank 1 8 9 1 1  10  3 6 2 4 7 5 
Average Rank by Series 2.6 6.925 6.875 7.85 7. 1 5  5.2 6.5 5.875 5.975 5.8 5.25 
Rank of Average Rank 1 9 8 1 1  1 0  2 7 5 6 4 3 

1 5  Geometric Mean 1 09.66 340.92 380.72 457.01 383.62 238.26 287.06 229.77 278.08 349.06 279.78 
Rank 1 7 9 1 1  1 0  3 6 2 4 8 5 
Average Rank by Series 2.45 7.075 6.975 7.75 6.8 5.45 6.9 5.575 5.925 5.9 5.2 
Rank of Average Rank 1 1 0  9 1 1  7 3 8 4 6 5 2 

Level Shift as Planned (N) Scenario 8 Table: 8-5 
Period: Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 26.32 87.33 92.79 1 21 .68 94. 1 7  72.33 57.88 48.64 50.67 73.43 64.81 
Rank 1 8 9 1 1  10  6 4 2 3 7 5 
Average Rank by Series 1 .65 7.075 7.275 9.7 8.25 6.65 4.85 4.275 4.525 6.3 5.45 
Rank of Average Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 

5 Geometric Mean 47.09 1 28. 1 9  1 36.27 1 81 .21 1 69.58 95. 1 7  1 04. 1 3  79.94 95.60 1 1 6.44 1 08.1 8  
Rank 1 8 9 1 1  1 0  3 5 2 4 7 6 
Average Rank by Series 2.95 7.1 75 6.925 9.05 8.1 4.75 6.45 4.925 4.925 5.7 5.05 
Rank of Average Rank 1 9 8 1 1  10  2 7 3 3 6 5 

1 0  Geometric Mean 55.46 1 67.70 1 95.37 223.20 205.65 1 23.47 1 1 0.85 1 24. 1 3  1 46.71 1 61 .54 1 54.71 
Rank 1 8 9 1 1  1 0  3 2 4 5 7 6 
Average Rank by Series 2.65 6.525 7.425 7.9 7.6 5.7 5.6 5.825 6.1 25 5.2 5.45 
Rank of Average Rank 1 8 9 1 1  1 0  5 4 6 7 2 3 

1 5  Geometric Mean 67.91 1 86.96 21 0.97 255.38 21 8.53 1 50.33 1 26.55 1 34.56 1 57.61 1 99.60 1 56.23 
Rank 1 7 9 1 1  10  4 2 3 6 8 5 
Average Rank by Series 2.55 6.475 6.925 8.2 7.3 6.55 6 5. 1 75 5.975 5.75 5.1 
Rank of Average Rank 1 7 9 1 1  10  8 6 3 5 4 2 

3 7 8  



Level Shift as Planned (N) Average Rank of Absolute Error Level Shift as Planned (N) Log Mean Squared Error Ratio 
Scenario 8 Table: � Scenario 8 Table: 8 -1 0 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 57.95 1 9  0.0000 1 RANK ANOVA 50.18 1 9  0.0001 

KRUSKAL-WALLIS 1 1 2.37 1 0  0.0000 KRUSKAL-WALLIS 83.95 1 0  0.0000 
5 RANK ANOVA 23.06 1 9  0.2346 5 RANK ANOVA 32.08 1 9  0.0306 

KRUSKAL-WALLIS 44.24 10  0.0000 KRUSKAL-WALLIS 42.85 1 0  0.0000 
1 0  RANK ANOVA 21 .20 1 9  0.3258 1 0  RANK ANOVA 22.33 1 9  0.2681 

KRUSKAL-WALLIS 43.00 10  0.0000 KRUSKAL-WALLIS 32. 1 2  1 0  0.0004 
1 5  RANK ANOVA 1 6.35 1 9  0.6337 1 5  RANK ANOVA 22.78 1 9  0.2471 

KRUSKAL-WALLIS 33.71 10  0.0002 KRUSKAL-WALLIS 25.90 1 0  0.0039 

Level Shift as Planned (N) Range of Percent Error Level Shift as Planned (N) Median Absolute Percent Error 
Scenario 8 Table: 8-7 Scenario 8 Table: 8 -1 1 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 36.45 1 9  0.0093 1 RANK ANOVA 64.07 1 9  0.0000 

KRUSKAL-WALLIS 22.63 10  0.01 22 KRUSKAL-WALLIS 35.67 1 0  0.0001 
5 RANK ANOVA 29.86 1 9  0.0536 5 RANK ANOVA 23.98 1 9  0. 1 968 

KRUSKAL-WALLIS 48.02 10  0.0000 KRUSKAL-WALLIS 35.24 1 0  0.0001 
10 RANK ANOVA 21 .87 1 9  0.2907 1 0  RANK ANOVA 1 9.78 1 9  0.4079 

KRUSKAL-WALLIS 40.43 1 0  0.0000 KRUSKAL-WALLIS 31 .90 1 0  0.0004 
1 5  RANK ANOVA 24.80 1 9  0 . 1671 1 5  RANK ANOVA 20. 1 5  1 9  0.3854 

KRUSKAL-WALLIS 44. 1 6  1 0  0.0000 KRUSKAL-WALLIS 28.59 10  0.001 4 

Level Shift as Planned (N) Symmetry Adjusted MAPE Level Shift as Planned (N) Mean Absolute Percent Error 
Scenario 8 Table: 8-8 Scenario 8 Table: 8 -1 2 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 66.71 1 9  0.0000 1 RANK ANOVA 66.72 1 9  0.0000 

KRUSKAL-WALLIS 30. 1 8  10  0.0008 KRUSKAL-WALLIS 32.n 1 0  0.0003 
5 RANK ANOVA 31 .29 19 0.0376 5 RANK ANOVA 39.85 1 9  0.0034 

KRUSKAL-WALLIS 38.70 10  0.0000 KRUSKAL-WALLIS 43.95 1 0  0.0000 
10 RANK ANOVA 1 9.30 1 9  0.4375 1 0  RANK ANOVA 25.69 1 9  0. 1 391 

KRUSKAL-WALLIS 33.74 10  0.0002 KRUSKAL-WALLIS 38.87 1 0  0.0000 
1 5  RANK ANOVA 21 .82 1 9  0.2933 1 5  RANK ANOVA 23.26 1 9  0.2259 

KRUSKAL-WALLIS 29.74 10  0.0009 KRUSKAL-WALLIS 35.45 1 0  0.0001 

Level Shift as Planned (N) Geometric Root Mean Squared Error Level Shift as Planned (N) Root Mean Squared Error 
Scenario 8 Table: 8-9 Scenario 8 Table: 8 -1 3 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 50.1 8  1 9  0.0001 1 RANK ANOVA 62.79 1 9  0.0000 
5 RANK ANOVA 32.08 1 9  0.0306 5 RAN K ANOVA 36.64 1 9  0.0088 
1 0  RANK ANOVA 22.33 1 9  0.2681 1 0  RANK ANOVA 2O.n 1 9  0.3496 
1 5  RANK ANOVA 22.78 1 9  0.2471 1 5  RANK ANOVA 21 .73 1 9  0.2978 

3 7 9  



Period: Level and Trend Shift (N) Scenario 9 Table: 9-1 
Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 3.61 6.70 6.85 7.87 7.07 6.04 5.62 5.23 5.23 6.04 5.79 
Rank 1 8 9 1 1  1 0  6 4 2 2 7 5 
Geometric Mean 3.38 6.64 6.80 7.82 6.97 5.97 5.46 5.1 6  5. 1 6  5.97 5.72 
Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Average Rank by Series 1 .48 7.40 7.48 9.88 8.65 6.38 4.75 4.30 4.30 5.88 5.35 
Rank of Average Rank 1 8 9 1 1  1 0  7 4 2 2 6 5 
Kruskal-Wallis Rank Sum 460.0 2,855.5 3,036.5 3,784.0 3,106.5 2,221 .0 1 ,81 3.0 1 ,429.5 1 ,429.5 2,228.0 1 ,881 .5 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  6 4 2 2 7 5 
K-W Multi-Comparison Count" 10  1 0  9 1 0  9 9 9 9 9 9 9 

5 Average 3.89 6.41 6.39 7.23 7.05 5.59 6.03 5.73 5.70 5.99 5.99 
Rank 1 9 8 1 1  1 0  2 7 4 3 6 5 
Geometric Mean 3.50 6.36 6.30 7 . 14  6.88 5.43 5.82 5.44 5.46 5.76 5.88 
Rank 1 9 8 1 1  1 0  2 6 3 4 5 7 
Average Rank by Series 2.68 7.05 6.88 8.55 7 . 13 5.25 6.00 5.80 5.30 5.78 5.60 
Rank of Average Rank 1 9 8 1 1  1 0  2 7 6 3 5 4 
Kruskal-Wallis Rank Sum 869.0 2,51 2.5 2,496.0 3, 1 87.0 2,861 .5 1 ,853.5 2,1 1 3.0 2,026.0 2,021 .0 2,242.0 2,1 28.5 
Rank of K-W Rank Sum 1 9 8 1 1  1 0  2 5 4 3 7 6 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  1 0  9 9 9 1 0  9 

1 0  Average 3.86 6.44 6.57 7 . 10  6.69 5.71 5.75 6.07 6.07 5.97 5.84 
Rank 1 8 9 1 1  1 0  2 3 6 6 5 4 
Geometric Mean 3.50 6.34 6.48 6.98 6.54 5.45 5.53 5.82 5.82 5.73 5.72 
Rank 1 8 9 1 1  1 0  2 3 6 6 5 4 
Average Rank by Series 2.875 6.875 6.8 7.75 7.1  5.575 5.775 6. 1 25 6.1 25 5.325 5.45 
Rank of Average Rank 1 9 8 1 1  1 0  4 5 6 6 2 3 
Kruskal-Wallis Rank Sum 869.0 2,507.0 2,595.0 3,060.0 2,706.0 2,005.0 1 ,953.0 2,279.5 2,279.5 2,1 00.0 1 ,978.5 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  4 2 6 6 5 3 
K-W Multi-Comparison Count" 1 0  1 0  1 0  10  1 0  8 8 9 9 1 0  8 

1 5  Average 4.01 6.49 6.71 6.82 6.52 6.01 5.76 6.04 6.22 5.92 5.50 
Rank 1 8 1 0  1 1  9 5 3 6 7 4 2 
Geometric Mean 3.68 6.39 6.66 6.57 6.27 5.58 5.49 5.63 5.92 5.58 5. 1 9  
Rank 1 9 1 1  1 0  8 5 3 6 7 4 2 
Average Rank by Series 3.025 7.075 7.025 7 6.25 6.475 6. 1 75 6.2 6.325 5.525 4.925 
Rank of Average Rank 1 1 1  1 0  9 6 8 4 5 7 3 2 
Kruskal-Wallis Rank Sum 947.5 2,51 0.0 2,661 .0 2,776.5 2,489.5 2,262.0 2,009.0 2,301 .5 2,401 .5 2, 1 22.5 1 ,829.0 
Rank of K-W Rank Sum 1 9 1 0  1 1  8 5 3 6 7 4 2 
K-W Multi-Comparison Count" 1 0  9 1 0  1 0  9 9 1 0  9 10  10  10  
"K-W Multi-Comparison Count valid only i f  Kruskal-Wallis statistic is significant. 

3 8 0  



Level and Trend Shift (N) Scenario 9 Table: 9-2 
Period: Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 1 5. 1 6% 24.60% 24. 1 8% 24.57% 27.41 % 24.30% 20.76% 1 8.65% 1 9. 1 3% 20.1 3% 22.1 7% 
Rank 1 10  7 9 1 1  8 5 2 3 4 6 
Geometric Mean 6.77% 1 9.00% 1 8.35% 1 9.62% 22.01 % 1 8.62% 1 7.90% 1 1 . 1 7% 1 2.46% 1 5.54% 1 6.87% 
Rank 1 9 7 1 0  1 1  8 6 2 3 4 5 
Average Rank by Series 2.48 7.63 7.03 7. 1 3  8.48 7.35 6.83 4.03 4.03 5. 1 8  5.88 
Rank of Average Rank 1 1 0  7 8 1 1  9 6 2 2 4 5 
Kruskal-Wallis Rank Sum 1 ,470.5 2,506.5 2,446.5 2,567.5 2,733.5 2,442.0 2,431 .5 1 ,638.5 1 ,685.5 2, 1 22.5 2,265.5 
Rank of K-W Rank Sum 1 9 8 10  1 1  7 6 2 3 4 5 
K-W Multi-Comparison Count· 1 0  6 7 9 1 0  7 7 9 9 1 0  1 0  

5 Average 1 4. 1 2% 35.68% 36.43% 35.20% 37.46% 35.64% 39. 1 4% 25.1 2% 27.53% 30.56% 32. 1 8% 
Rank 1 8 9 6 10  7 1 1  2 3 4 5 
Geometric Mean 8.94% 33.00% 33.41 % 33.39% 35.37% 31 .47% 38.65% 1 8. 1 3% 21 .82% 26.68% 26.74% 
Rank 1 7 9 8 1 0  6 1 1  2 3 4 5 
Average Rank by Series 2. 1 3  6.78 6.68 6.65 7.48 6.60 8.48 4.73 4.83 5.55 6. 1 3  
Rank of Average Rank 1 9 8 7 1 0  6 1 1  2 3 4 5 
Kruskal-Wallis Rank Sum 842.5 2,477.5 2,482.5 2,61 6.0 2,698.5 2,357.0 3, 1 39.5 1 ,567.5 1 ,706.5 2, 1 57.0 2,265.5 
Rank of K-W Rank Sum 1 7 8 9 1 0  6 1 1  2 3 4 5 
K-W Multi-Comparison Count" 1 0  9 9 1 0  10  1 0  1 0  1 0  1 0  1 0  1 0  

1 0  Average 1 5.82% 40.36% 41 .85% 50.22% 45.39% 31 .41 % 39.1 2% 32.58% 37.38% 44.72% 37.24% 
Rank 1 7 8 1 1  10  2 6 3 5 9 4 
Geometric Mean 1 0.93% 36.35% 37.36% 46.1 5% 42.68% 28.20% 37.82% 22. 1 3% 27.45% 35.52% 30.39% 
Rank 1 7 8 1 1  1 0  4 9 2 3 6 5 
Average Rank by Series 2.2 6.725 6.55 7.875 7. 1 5  5.2 6.75 5.375 5.4 6.875 5.9 
Rank of Average Rank 1 7 6 1 1  10  2 8 3 4 9 5 
Kruskal-Wallis Rank Sum 836.0 2,420.5 2,458.0 2,965.5 2,81 9.0 1 ,m.0 2,51 1 .0 1 ,831 .5 2,084.0 2,464.5 2, 1 43.0 
Rank of K-W Rank Sum 1 6 7 1 1  10  2 9 3 4 8 5 
K-W Multi-Comparison Count" 1 0  8 7 10  10  9 8 9 9 7 9 

1 5  Average 1 5.88% 44.1 2% 49.80% 63.77% 51 .66% 26.76% 37.80% 38. 1 9% 45. 1 7% 57.61 % 45.20% 
Rank 1 5 8 1 1  9 2 3 4 6 1 0  7 
Geometric Mean 1 0.94% 37.96% 42.02% 53.87% 46.76% 25. 1 6% 36.83% 23.53% 28.97% 39.95% 34.67% 
Rank 1 7 9 1 1  1 0  3 6 2 4 8 5 
Average Rank by Series 2.6 6.975 6.575 8.025 7.725 4.5 6.85 5.325 5.275 6.375 5.775 
Rank of Average Rank 1 9 7 1 1  10  2 8 4 3 6 5 
Kruskal-Wallis Rank Sum 894.0 2,395.5 2,580.5 3,032.5 2,841 .5 1 ,539.0 2,473.0 1 ,825.5 2,1 1 7.5 2,459.5 2,1 51 .5 
Rank of K-W Rank Sum 1 6 9 1 1  10  2 8 3 4 7 5 
K-W Multi-Comparison Count" 1 0  8 10  10  1 0  1 0  8 1 0  9 8 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

3 8 1 



Level and Trend Shift (N) Scenario 9 Table: 9-3 
Period: Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 6. 1 2% 1 1 .65% 1 1 .77% 1 4.49% 1 3.54% 1 0.94% 9.52% 8.44% 8.61 % 1 0.83% 10.06% 
Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 
Geometric Mean 3 . 19% 10.21 % 1 0.39% 1 2.33% 1 1 .30% 9.01 % 8.55% 5.98% 6.41 % 8.49% 7.99% 
Rank 1 8 9 1 1  1 0  7 6 2 3 5 4 
Average Rank by Series 1 .40 7.88 7.98 9.50 9.20 6.45 5.45 3.63 3.78 5.60 5. 1 5  
Rank of Average Rank 1 8 9 1 1  1 0  7 5 2 3 6 4 
Kruskal-Wallis Rank Sum 1 ,287.0 2,61 7.5 2,660.5 2,885.0 2,751 .0 2,323.0 2,223.0 1 ,630.5 1 ,656.5 2, 1 95.0 2,081 .0 
Rank of K-W Rank Sum 1 8 9 1 1  1 0  7 6 2 3 5 4 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  1 0  9 9 9 9 10 

5 Average 7.77% 1 7.1 5% 1 7.97% 21 .90% 20.41 % 1 4. 1 0% 1 6.98% 1 3.06% 1 4.35% 1 6.66% 1 4.88% 
Rank 1 8 9 1 1  1 0  3 7 2 4 6 5 
Geometric Mean 5. 1 7% 1 6.09% 1 6.91 % 20.55% 1 9.26% 1 3.00% 1 6. 1 9% 9.71 % 1 1 .52% 1 4. 1 4% 1 3.06% 
Rank 1 7 9 1 1  1 0  4 8 2 3 6 5 
Average Rank by Series 2.35 7.03 7. 1 3  9. 1 0  8.30 5.00 7 . 10  4.58 4.68 5.75 5.00 
Rank of Average Rank 1 7 9 1 1  1 0  4 8 2 3 6 4 
Kruskal-Wallis Rank Sum 933.0 2,399.5 2,549.5 3,1 00.0 2,923.0 1 ,81 4.0 2,453.0 1 ,789.5 1 ,989.5 2,272.0 2,087.0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  3 8 2 4 6 5 
K-W Multi-Comparison Count" 1 0  9 10 1 0  1 0  9 9 9 10  10  1 0  

1 0  Average 9.49% 21 .73% 23.95% 28.67% 24.74% 15.65% 1 7.84% 1 9.00% 21 .53% 25.07% 20.59% 
Rank 1 7 8 1 1  9 2 3 4 6 10 5 
Geometric Mean 6.73% 1 9.05% 21 . 1 1 %  25.85% 22.78% 1 4.23% 1 6.68% 1 3.51 % 16.09% 1 9.25% 16.94% 
Rank 1 7 9 1 1  1 0  3 5 2 4 8 6 
Average Rank by Series 2.5 6.825 6.875 8.45 7.55 5.1 5  6.45 5.675 5.825 5.5 5.2 
Rank of Average Rank 1 8 9 1 1  1 0  2 7 5 6 4 3 
Kruskal-Wallis Rank Sum 962.0 2,300.5 2,543.5 3,032.0 2,770.0 1 ,672.0 2,097.0 1 ,965.5 2,256.5 2,490.0 2,221 .0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  2 4 3 6 8 5 
K-W Multi-Comparison Count" 1 0  8 9 1 0  1 0  1 0  1 0  1 0  8 9 8 

1 5  Average 9.45% 25.47% 28.65% 34.97% 27.97% 1 6.85% 1 7.52% 23.08% 26.71 % 32.29% 24.01 % 
Rank 1 6 9 1 1  8 2 3 4 7 1 0  5 
Geometric Mean 6.75% 21 . 1 3% 23.70% 28.64% 23.90% 1 5.50% 1 6.36% 1 4.92% 1 7.72% 21 .78% 1 6.97% 
Rank 1 7 9 1 1  1 0  3 4 2 6 8 5 
Average Rank by Series 2.3 7.075 7.025 7.85 7 . 15  6.1 6.35 5.575 5.925 5.9 4.75 
Rank of Average Rank 1 9 8 1 1  1 0  6 7 3 5 4 2 
Kruskal-Wallis Rank Sum 955.0 2,399.5 2,61 1 .5 2,944.0 2,680.0 1 ,880.0 2,027.0 1 ,998.5 2,301 .5 2,484.0 2,029.0 
Rank of K-W Rank Sum 1 7 9 1 1  1 0  2 4 3 6 8 5 
K-W Multi-Comparison Count" 1 0  1 0  9 1 0  9 1 0  8 8 10 10 8 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

3 8 2 



Level and Trend Shift (N) Scenario 9 Table: 9-4 
Period: Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 49.36 151 .21 1 51 .07 171 .27 1 65.42 1 39.29 1 41 . 1 8 87.96 95.23 1 1 8.80 1 1 5.71 
Rank 1 9 8 1 1  1 0  6 7 2 3 5 4 
Average Rank by Series 1 .55 8. 1 8  8.08 9. 1 5  8.75 6.75 6.45 3.88 3.83 4.75 4.65 
Rank of Average Rank 1 9 8 1 1  1 0  7 6 3 2 5 4 

5 Geometric Mean 75.32 241 .82 249.37 289.37 274.81 203.05 271 .09 1 43.82 1 70.94 204.82 1 89.69 
Rank 1 7 8 1 1  1 0  5 9 2 3 6 4 
Average Rank by Series 2.45 6.875 6.975 8.65 8.25 4.75 7.65 4.775 4.725 5.6 5.3 
Rank of Average Rank 1 7 8 1 1  1 0  3 9 4 2 6 5 

1 0  Geometric Mean 1 05.02 305. 1 4  331 .77 396.21 348.46 228.72 284.99 209.51 251 .09 299.60 259. 19  
Rank 1 8 9 1 1  1 0  3 6 2 4 7 5 
Average Rank by Series 2.65 7.025 6.825 7.85 7.1 5. 1 5  6.5 5.875 5.925 5.8 5.3 
Rank of Average Rank 1 9 8 1 1  1 0  2 7 5 6 4 3 

1 5  Geometric Mean 1 1 0.40 341 .01 381 .81 461 .42 386.82 243.1 9  292.41 240.1 9  286.55 352.54 283.07 
Rank 1 7 9 1 1  10  3 6 2 5 8 4 
Average Rank by Series 2.3 7.025 7.025 7.7 6.95 5.45 7 5.525 5.875 6 5. 1 5  
Rank of Average Rank 1 9 9 1 1  7 3 8 4 5 6 2 

Level and Trend Shift (N) Scenario 9 Table: 9-5 
Period: Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 26.70 86.35 91 .63 1 21 .48 93.92 73.20 58.51 48.78 50.92 73.43 64.23 
Rank 1 8 9 1 1  1 0  6 4 2 3 7 5 
Average Rank by Series 1 .75 6.975 7.1 75 9.8 8.2 6.6 5 4.225 4.475 6.45 5.35 
Rank of Average Rank 1 8 9 1 1  1 0  7 4 2 3 6 5 

5 Geometric Mean 49.47 1 31 .03 1 37.69 1 79.92 1 67.29 0.00 1 07.60 85.77 95.81 1 1 4.80 1 08.93 
Rank 2 8 9 1 1  1 0  1 5 3 4 7 6 
Average Rank by Series 2.9 7 . 125 6.875 9 8.05 4.75 6.75 5.075 4.825 5.75 4.9 
Rank of Average Rank 1 9 8 1 1  1 0  2 7 5 3 6 4 

1 0  Geometric Mean 62.27 1 71 .44 1 98. 1 7  215 . 14 209.1 4  1 32.46 1 1 6.00 1 31 . 1 6  1 51 .56 1 51 .69 1 55.03 
Rank 1 8 9 1 1  1 0  4 2 3 5 6 7 
Average Rank by Series 2.5 6.725 7.425 7.8 7.65 5.85 5.75 5.775 6.275 4.85 5.4 
Rank of Average Rank 1 8 9 1 1  1 0  6 4 5 7 2 3 

1 5  Geometric Mean 66.81 1 86.74 208.97 266.68 21 1 .67 1 65.06 1 28.29 1 44.54 1 69.20 1 98. 1 8  1 50.34 
Rank 1 7 9 1 1  1 0  5 2 3 6 8 4 
Average Rank by Series 2.45 6.525 6.875 8.3 6.95 7 5.8 5.325 6. 1 25 5.7 4.95 
Rank of Average Rank 1 7 8 1 1  9 1 0  5 3 6 4 2 

3 8 3 



Level and Trend Shift (N) Average Rank of Absolute Error Level and Trend Shift (N) Log Mean Squared Error Ratio 
Scenario 9 Table: 9 -6 Scenario 9 Table: 9 -12 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 56.69 1 9  0.0000 1 RANK ANOVA 49.55 1 9  0.0002 

KRUSKAL-WALLIS 1 08.97 1 0  0.0000 KRUSKAL-WALLIS 83.81 1 0  0.0000 
5 RANK ANOVA 23.43 1 9  0.21 89 5 RANK ANOVA 32.31 1 9  0.0289 

KRUSKAL-WALLIS 43.99 1 0  0.0000 KRUSKAL-WALLIS 36.99 1 0  0.0001 
1 0  RANK ANOVA 1 7.80 1 9  0.5361 1 0  RANK ANOVA 24. 1 2  1 9  0. 1 91 4  

KRUSKAL-WALLIS 39.29 10  0.0000 KRUSKAL-WALLIS 31 .05 1 0  0.0006 
1 5  RANK ANOVA 1 5.02 1 9  0.721 2 1 5  RANK ANOVA 24.00 1 9  0. 1 963 

KRUSKAL-WALLIS 31 . 1 9  1 0  0.0005 KRUSKAL-WALLIS 27.92 1 0  0.001 9 

Level and Trend Shift (N) Range of Percent Error Level and Trend Shift (N) Median Absolute Percent Error 
Scenario 9 Table: 9 -7 Scenario 9 Table: 9 -1 1 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 36.43 1 9  0.0093 1 RANK ANOVA 63. 1 6  1 9  0.0000 

KRUSKAL-WALLIS 22.31 1 0  0.01 36 KRUSKAL-WALLIS 35.46 1 0  0.0001 
5 RANK ANOVA 30.06 1 9  0.0510 5 RANK ANOVA 23.07 1 9  0.2341 

KRUSKAL-WALLIS 49.08 1 0  0.0000 KRUSKAL-WALLIS 35. 1 6  1 0  0.0001 
1 0  RANK ANOVA 24.30 1 9  0. 1 848 1 0  RANK ANOVA 1 8.70 1 9  0.4760 

KRUSKAL-WALLIS 42.47 10  0.0000 KRUSKAL-WALLIS 30.15  10  0.0008 
1 5  RANK ANOVA 25.58 1 9  0.1 424 1 5  RANK ANOVA 1 8.33 1 9  0.5008 

KRUSKAL-WALLIS 45.91 1 0  0.0000 KRUSKAL-WALLIS 27.86 1 0  0.001 9 

Level and Trend Shift (N) Symmetry Adjusted MAPE Level and Trend Shift (N) Mean Absolute Percent Error 
Scenario 9 Table: 9 -8 Scenario 9 Table: 9 -1 2 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 66.04 1 9  0.0000 1 RANK ANOVA 66.08 1 9  0.0000 

KRUSKAL-WALLIS 29.60 10  0.0010 KRUSKAL-WALLIS 32.59 1 0  0.0003 
5 RANK ANOVA 30.93 1 9  0.041 1 5 RANK ANOVA 39.64 1 9  0.0036 

KRUSKAL-WALLIS 38.82 1 0  0.0000 KRUSKAL-WALLIS 43.72 1 0  0.0000 
1 0  RANK ANOVA 1 9.27 1 9  0.4395 10  RANK ANOVA 25.57 1 9  0. 1 427 

KRUSKAL-WALLIS 33.56 10  0.0002 KRUSKAL-WALLIS 38.37 1 0  0.0000 
1 5  RANK ANOVA 21 .70 1 9  0.2994 1 5  RANK ANOVA 23.99 1 9  0. 1 966 

KRUSKAL-WALLIS 30.41 10  0.0007 KRUSKAL-WALLIS 34.99 1 0  0.0001 

Level and Trend Shift (N) Geometric Root Mean Squared Error Level and Trend Shift (N) Root Mean Squared Error 
Scenario 9 Table: 9 -9 Scenario 9 Table: 9 - 13  

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 49.55 1 9  0.0002 1 RANK ANOVA 62.63 1 9  0.0000 
5 RANK ANOVA 32.24 1 9  0.0293 5 RANK ANOVA 36.39 1 9  0.0095 
1 0  RANK ANOVA 24. 1 2  1 9  0. 1 9 1 4  10  RANK ANOVA 20.43 1 9  0.3690 
1 5  RANK ANOVA 24.00 1 9  0. 1 963 1 5  RANK ANOVA 23.28 1 9  0.2252 
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Period: 25% Level Shift (N) Scenario 1 0  Table: 1 0-1 
Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 8 . 10  4.67 4.83 5.41 4.99 4.89 9.25 6.09 6.09 5.87 5.90 
Rank 1 0  1 2 5 4 3 1 1  8 8 6 7 
Geometric Mean 7.95 4.49 4.74 5.34 4.85 4.58 9 . 14  6.05 6.05 5.76 5.n 
Rank 1 0  1 3 5 4 2 1 1  8 8 6 7 
Average Rank by Series 8.90 3.80 3.93 5. 1 0  4.23 4.63 1 0.75 6.95 6.95 5.30 5.90 
Rank of Average Rank 1 0  1 2 5 3 4 1 1  8 8 6 7 
Kruskal-Wallis Rank Sum 3,576.0 1 ,261 .0 1 ,255.5 1 ,779.0 1 ,483.0 1 ,561 .0 4,036.0 2,524.0 2,524.0 2,21 1 .5 2,242.0 
Rank of K-W Rank Sum 1 0  2 1 5 3 4 1 1  8 8 6 7 
K-W Multi-Comparison Count· 1 0  9 9 1 0  9 9 1 0  1 0  1 0  9 9 

5 Average 8. 1 7  4.48 4.65 4.69 4.66 4.67 9 . 17  6.65 6.74 6.08 6.04 
Rank 1 0  1 2 5 3 4 1 1  8 9 7 6 
Geometric Mean 8.01 4.32 4.59 4.54 4.45 4.40 9.04 6.56 6.68 5.91 5.89 
Rank 1 0  1 5 4 3 2 1 1  8 9 7 6 
Average Rank by Series 8.90 3.75 3.48 3.83 3.83 4.03 1 0. 1 0  7.80 7.70 6.45 6. 1 5  
Rank of Average Rank 1 0  2 1 3 3 5 1 1  9 8 7 6 
Kruskal-Wallis Rank Sum 3,540.5 1 ,207.5 1 ,242.5 1 ,257.0 1 ,31 9.0 1 ,426.5 3,904.5 2,843.0 2,922.0 2,324.5 2,323.0 
Rank of K-W Rank Sum 1 0  1 2 3 4 5 1 1  8 9 7 6 
K-W Multi-Comparison Count· 1 0  6 7 7 6 1 0  1 0  9 9 9 9 

1 0  Average 8.27 4.69 4.96 4.66 4.37 5.05 9.28 6.76 6.78 5.64 5.49 
Rank 1 0  3 4 2 1 5 1 1  8 8 7 6 
Geometric Mean 8.09 4.47 4.66 4.40 4. 1 4  4.68 9.20 6.64 6.64 5.66 5.32 
Rank 1 0  3 5 2 1 4 1 1  8 6 7 6 
Average Rank by Series 8.675 4.025 4.45 3.875 3.55 4.775 1 0.5 7.6 7.6 6. 1 75 4.95 
Rank of Average Rank 1 0  3 4 2 1 5 1 1  6 6 7 6 
Kruskal-Wallis Rank Sum 3,523.0 1 ,461 .0 1 ,576.0 1 ,330.0 1 , 1 69.0 1 ,709.0 3,969.0 2,81 3.5 2,61 3.5 2,1 55.5 1 ,91 7.5 
Rank of K-W Rank Sum 1 0  3 4 2 1 5 1 1  8 8 7 6 
K-W Multi-Comparison Count" 1 0  1 0  10  1 0  10  1 0  1 0  1 0  1 0  1 0  1 0  

1 5  Average 6.32 4.50 4.80 4.62 4.40 5.21 9. 1 4  6.62 6.77 5.63 5.80 
Rank 1 0  2 4 3 1 5 1 1  6 9 7 6 
Geometric Mean 8.07 4.27 4.66 4.34 4. 1 6  4.75 9.01 6.50 6.67 5.60 5.66 
Rank 1 0  2 4 3 1 5 1 1  8 9 6 7 
Average Rank by Series 6.575 3.975 4.3 3.75 3.525 5. 1 75 1 0. 1 25 7.55 7.575 5.7 5.75 
Rank of Average Rank 10  3 4 2 1 5 1 1  6 9 6 7 
Kruskal-Wallis Rank Sum 3,455.5 1 ,261 .5 1 ,482.5 1 ,321 .0 1 , 1 93.0 1 ,805.0 3,662.5 2,767.5 2,823.0 2, 1 49.5 2,1 69.0 
Rank of K-W Rank Sum 1 0  2 4 3 1 5 1 1  8 9 6 7 
K-W Multi-Comparison Count" 1 0  9 10  9 10  1 0  1 0  9 9 9 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is Significant. 
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25% Level Shift (N) Scenario 1 0  Table: 1 0-2 
Period: Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 1 8.09% 1 3.71 % 1 3.72% 1 1 .42% 1 2.84% 1 4.26% 24.02% 1 7.58% 1 7.58% 1 4.36% 1 4.72% 
Rank 1 0  3 4 1 2 5 1 1  8 9 6 7 
Geometric Mean 1 4.69% 7.44% 7.50% 7.36% 7.93% 6.82% 22.37% 1 3.79% 1 3.79% 1 2.40% 1 2. 1 4% 
Rank 1 0  3 4 2 5 1 1 1  8 9 7 6 
Average Rank by Series 8.08 4.60 4.30 3.78 4.33 3.90 9.58 7.80 7.60 5.88 6. 1 8  
Rank of Average Rank 1 0  5 3 1 4 2 1 1  9 8 6 7 
Kruskal-Wallis Rank Sum 2,647.5 1 ,732.0 1 ,739.0 1 ,763.5 1 ,841 .5 1 ,659.0 3,328.5 2,484.0 2,487.0 2,320.5 2,307.5 
Rank of K-W Rank Sum 1 0  2 3 4 5 1 1 1  8 9 7 6 
K-W Multi-Comparison Count· 1 0  7 7 7 9 8 1 0  9 9 9 9 

5 Average 24. 1 9% 1 4.74% 1 5.00% 1 2.n% 1 3.43% 16 . 12% 49.22% 29.24% 28.93% 25.27% 25.72% 
Rank 6 3 4 1 2 5 1 1  1 0  9 7 8 
Geometric Mean 21 .69% 1 0.58% 1 1 .08% 1 0.06% 10. 1 3% 10.05% 48.43% 27.90% 27.55% 24.41 % 25.1 3% 
Rank 6 4 5 2 3 1 1 1  1 0  9 7 8 
Average Rank by Series 6.60 3.68 3.63 3.20 3.60 3.65 1 0.75 8.43 8.38 6.95 7. 1 5  
Rank of Average Rank 6 5 3 1 2 4 1 1  1 0  9 7 8 
Kruskal-Wallis Rank Sum 2,446.0 1 ,354.5 1 ,366.5 1 ,239.0 1 ,302.0 1 ,368.0 4,005.0 2,991 .5 2,936.5 2,591 .0 2,710.0 
Rank of K-W Rank Sum 6 3 4 1 2 5 1 1  1 0  9 7 8 
K-W Multi-Comparison Count· 1 0  7 7 9 6 7 1 0  9 9 1 0  10  

1 0  Average 31 .57% 1 6.66% 1 7. 1 5% 1 6.52% 1 5.32% 1 6.41 % 47.36% 27.n% 27.42% 25.45% 24.48% 
Rank 1 0  4 5 3 1 2 1 1  9 8 7 6 
Geometric Mean 27.49% 1 2.92% 1 3.85% 1 3.97% 1 2.88% 1 1 .51 % 46.29% 26.60% 26.20% 24.31 % 23.38% 
Rank 1 0  3 4 5 2 1 1 1  9 8 7 6 
Average Rank by Series 6.n5 4.325 4.425 3.525 3 . 125 4.3 1 0.575 7.975 8.075 6.625 6.275 
Rank of Average Rank 8 4 5 2 1 3 1 1  9 1 0  7 6 
Kruskal-Wallls Rank Sum 2,81 2.5 1 ,471 .5 1 ,522.5 1 ,508.5 1 ,336.5 1 ,329.0 3,995.5 2,739.5 2,71 0.5 2,486.5 2,397.5 
Rank of K-W Rank Sum 1 0  3 5 4 2 1 1 1  9 8 7 6 
K-W Multi-Comparison Count· 1 0  8 8 8 9 9 1 0  9 9 1 0  1 0  

1 5  Average 38.56% 1 6.54% 17.64% 1 9.32% 1 5.92% 1 3.76% 54.57% 26.75% 26.22% 26.22% 23.51 % 
Rank 1 0  3 4 5 2 1 1 1  9 8 7 6 
Geometric Mean 30.46% 1 4.01 % 1 5.45% 1 5.96% 1 4.08% 1 0.78% 51 .99% 25.00% 24.26% 23.85% 22.1 5% 
Rank 1 0  2 4 5 3 1 1 1  9 8 7 6 
Average Rank by Series 7. 1 75 3.975 4.325 4.725 4.2 3. 1 5  1 0.575 7.425 7.225 6.825 6.4 
Rank of Average Rank 8 2 4 5 3 1 1 1  1 0  9 7 6 
Kruskal-Wallis Rank Sum 2,888.5 1 ,521 .5 1 ,630.5 1 ,789.5 1 ,454.0 1 , 1 84.0 3,990.5 2,61 8.5 2,525.5 2,447.5 2,260.0 
Rank of K-W Rank Sum 1 0  3 4 5 2 1 1 1  9 8 7 6 
K-W Multi-Comparison Count· 1 0  9 1 0  1 0  9 1 0  1 0  1 0  9 9 10  
·K-W Multi-Comparison Count valid only i f  Kruskal-Wallis statistic is  significant. 
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25% Level Shift (N) Scenario 1 0  Table: 1 0-3 
Period: Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 1 0.81 % 6. 1 5% 6. 1 7% 6 . 10% 5.87% 6.40% 1 4.96% 7.80% 7.83% 6.91 % 6.88% 
Rank 1 0  3 4 2 1 5 1 1  8 9 7 6 
Geometric Mean 9.46% 3.93% 3.99% 4.24% 4.09% 3.88% 1 4.01 % 6.57% 6.61 % 6. 1 2% 6.06% 
Rank 1 0  2 3 5 4 1 1 1  8 9 7 6 
Average Rank by Series 8.45 4. 1 3  4.08 4.80 3.75 4.40 1 0.70 7.08 7. 1 3  5.85 5.65 
Rank of Average Rank 1 0  3 2 5 1 4 1 1  8 9 7 6 
Kruskal-Wallls Rank Sum 3,037.0 1 ,637.5 1 ,647.5 1 ,751 .0 1 ,707.0 1 ,688.0 3,578.0 2,395.5 2,400.5 2,241 .0 2,227.0 
Rank of K-W Rank Sum 1 0  1 2 5 4 3 1 1  8 9 7 6 
K-W Multi-Comparison Count' 1 0  7 7 8 6 6 1 0  9 9 9 9 

5 Average 1 7.41 % 7. 1 6% 7.34% 7.33% 7 . 16% 7.46% 25.09% 1 3.27% 1 3.42% 1 2. 1 6% 1 1 .71 % 
Rank 1 0  2 4 3 1 5 1 1  8 9 7 6 
Geometric Mean 1 6.74% 5.59% 5.94% 6. 1 4% 5.97% 5.43% 24.61 % 1 2. 1 8% 1 2.39% 1 1 .52% 1 1 . 1 4% 
Rank 1 0  2 3 5 4 1 1 1  8 9 7 6 
Average Rank by Series 8.95 3.03 2.98 3.45 3. 1 0  3.60 1 0.95 8.03 7.93 7 . 10  6.90 
Rank of Average Rank 1 0  2 1 4 3 5 1 1  9 8 7 6 
Kruskal-Waliis Rank Sum 3,322.0 1 ,303.5 1 ,326.5 1 ,361 .0 1 ,349.0 1 ,380.0 4,039.0 2,633.5 2,658.5 2,513.0 2,424.0 
Rank of K-W Rank Sum 1 0  1 2 4 3 5 1 1  8 9 7 6 
K-W Multi-Comparison Count' 1 0  6 6 6 6 6 1 0  9 9 1 0  1 0  

1 0  Average 22.53% 9. 1 6% 9.53% 9.72% 8.69% 9.73% 29.45% 1 5.01 % 1 5.28% 1 4.54% 1 2.76% 
Rank 1 0  2 3 4 1 5 1 1  8 9 7 6 
Geometric Mean 20.45% 7.07% 7.77% 7.96% 7. 1 7% 7. 1 7% 28.34% 1 3.43% 1 3.79% 1 3.23% 1 1 .89% 
Rank 1 0  1 4 5 2 3 1 1  8 9 7 6 
Average Rank by Series 8.8 3.625 3.625 3.4 3.2 4.2 1 0.65 7.575 7.575 6.8 6.55 
Rank of Average Rank 1 0  3 3 2 1 5 1 1  8 8 7 6 
Kruskal-Waliis Rank Sum 3,303.0 1 ,449.5 1 ,499.5 1 ,596.0 1 ,41 8.0 1 ,522.0 3,909.0 2,459.5 2,51 8.5 2,429.0 2,206.0 
Rank of K-W Rank Sum 10  2 3 5 1 4 1 1  8 9 7 6 
K-W Multi-Comparison Count' 10  7 8 9 9 7 1 0  8 9 9 1 0  

1 5  Average 26.39% 1 0. 1 2% 1 0.68% 1 1 .55% 9.28% 1 1 .53% 32.55% 1 5.99% 1 6.40% 1 6.02% 1 3.46% 
Rank 1 0  2 3 5 1 4 1 1  7 9 8 6 
Geometric Mean 22.33% 7.99% 8.78% 9.35% 7.97% 8.80% 30.34% 1 4.32% 1 4.82% 1 4.08% 1 2.37% 
Rank 1 0  2 3 5 1 4 1 1  8 9 7 6 
Average Rank by Series 8.5 3.425 3.575 3.65 3.55 4.85 1 0.55 7.525 7.875 6.5 6 
Rank of Average Rank 10  1 3 4 2 5 1 1  8 9 7 6 
Kruskal-Wallis Rank Sum 3,21 2.0 1 ,484.5 1 ,595.5 1 ,704.0 1 ,365.0 1 ,699.0 3,81 6.0 2,427.5 2,506.5 2,382.0 2,1 1 8.0 
Rank of K-W Rank Sum 1 0  2 3 5 1 4 1 1  8 9 7 6 
K-W Multi-Comparison Count' 1 0  1 0  10 9 1 0  9 1 0  8 9 9 1 0  
*K-W Multi-Comparison Count valid only I f  Kruskal-Wallis statistic is significant. 
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25% Level Shift (N) Scenario 10  Table: 1 �  
Period: Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 72.70 73.85 74.35 76.75 76.68 72.21 259.06 1 28.90 1 29.06 1 1 7.70 1 1 8 . 17  
Rank 1 0  2 3 5 4 1 1 1  8 9 6 7 
Average Rank by Series 8.60 3.88 3.78 4.00 3.75 4.30 1 1 .00 7.63 7.58 5.60 5.90 
Rank of Average Rank 1 0  3 2 4 1 5 1 1  9 8 6 7 

5 Geometric Mean 306.93 1 05.39 1 1 1 . 1 4  1 1 1 . 1 3  1 08.52 1 02.67 479.73 247. 1 0  247.56 231 .47 225.02 
Rank 1 0  2 5 4 3 1 1 1  8 9 7 6 
Average Rank by Series 9 3.075 3. 1 25 3. 1 5  2.85 3.8 1 1  8. 1 75 8.025 6.95 6.85 
Rank of Average Rank 1 0  2 3 4 1 5 1 1  9 8 7 6 

1 0  Geometric Mean 385.42 1 40.95 1 54.25 1 57.73 1 40.56 1 41 .09 543.79 2n. 1 3  278.81 268.84 246. 1 7  
Rank 1 0  2 4 5 1 3 1 1  8 9 7 6 
Average Rank by Series 8.55 3.575 3.675 3.55 3. 1 5  4.45 1 0.8 7.825 7.575 6.85 6 
Rank of Average Rank 1 0  3 4 2 1 5 1 1  9 8 7 6 

1 5  Geometric Mean 438. 1 8  1 62.64 1 78.30 1 86.58 1 59.84 1 67.42 614. 1 2  293.74 298.87 289.74 257.29 
Rank 1 0  2 4 5 1 3 1 1  8 9 7 6 
Average Rank by Series 8.5 3.375 3.625 3.6 3.25 4.3 1 0.65 7.775 7.875 6.75 6.3 
Rank of Average Rank 1 0  2 4 3 1 5 1 1  8 9 7 6 

25% Level Shift (N) Scenario 10  Table: 1 0-5 
Period: Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 05.85 38.96 40.54 47.65 42.82 42.28 147.01 57.60 59.24 61 . 1 1 58.54 
Rank 1 0  1 2 5 4 3 1 1  6 8 9 7 
Average Rank by Series 8.2 4. 1 75 4.475 5. 1 5  4.2 4.6 1 0  6.375 6.575 6.25 6 
Rank of Average Rank 1 0  1 3 5 2 4 1 1  8 9 7 6 

5 Geometric Mean 203.25 62.51 66.81 71 .47 67.99 60.1 1  260.67 1 1 6.73 1 25.60 1 1 5.66 1 08.87 
Rank 1 0  2 3 5 4 1 1 1  8 9 7 6 
Average Rank by Series 9 3.275 3.425 3.95 3.65 3. 1 5  10.4 7.425 7.925 7.1 6.7 
Rank of Average Rank 1 0  2 3 5 4 1 1 1  8 9 7 6 

1 0  Geometric Mean 257.64 80.86 89.74 94.01 83.99 88.03 332.73 1 41 .09 1 51 .60 1 40.86 1 22.80 
Rank 1 0  1 4 5 2 3 1 1  8 9 7 6 
Average Rank by Series 8.65 3.875 3.925 4.35 3.75 4.85 9.85 7.075 7.425 6.5 5.75 
Rank of Average Rank 1 0  2 3 4 1 5 1 1  8 9 7 6 

1 5  Geometric Mean 289.95 1 00.78 1 09.00 1 1 9.79 97.38 1 26.42 365. 1 6  1 76.48 183.03 1 73.56 1 46.44 
Rank 1 0  2 3 4 1 5 1 1  8 9 7 6 
Average Rank by Series 8. 1 5  3.625 3.875 4.25 3.35 5.5 9.85 7.425 7.725 6.5 5.75 
Rank of Average Rank 1 0  2 3 4 1 5 1 1  8 9 7 6 
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25% Level Shift (N) Average Rank of Absolute Error 25% Level Shift (N) Log Mean Squared Error Ratio 
Scenario 1 0  Table: 1 0  -6 Scenario 1 0  Table: 1 0  -1 0 

Period: Chi Squared OF p Value Period: Chi Squared O F  p Value 
1 RANK ANOVA SO.08 1 9  0.0001 1 RANK ANOVA 34.81 1 9  0.01 47 

KRUSKAL-WALLIS 1 02. 1 3  1 0  0.0000 KRUSKAL-WALLIS 46.08 1 0  0.0000 
5 RANK ANOVA 59. 1 5  1 9  0.0000 5 RANK ANOVA 70.92 1 9  0.0000 

KRUSKAL-WALLIS 1 21 .33 1 0  0.0000 KRUSKAL-WALLIS 84.99 1 0  0.0000 
1 0  RANK ANOVA 54.64 1 9  0.0000 1 0  RANK ANOVA 45.54 1 9  0.0006 

KRUSKAL-WALLIS 105.70 1 0  0.0000 KRUSKAL-WALLIS 44.20 1 0  0.0000 
1 5  RANK ANOVA 49.97 1 9  0.0001 1 5  RANK ANOVA 47.60 1 9  0.0003 

KRUSKAL-WALLIS 1 03.09 1 0  0.0000 KRUSKAL-WALLIS 43.49 1 0  0.0000 

25% Level Shift (N) Range of Percent Error 25% Level Shift (N) Median Absolute Percent Error 
Scenario 1 0  Table: 1 0  -7 Scenario 1 0  Table: 1 0  -1 1 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 42.08 1 9  0.001 7 1 RANK ANOVA 45. 1 0  1 9  0.0007 

KRUSKAL-WALLIS 33.38 1 0  0.0002 KRUSKAL-WALLIS 39. 1 0  1 0  0.0000 
5 RANK ANOVA 70.02 1 9  0.0000 5 RANK ANOVA 57.26 1 9  0.0000 

KRUSKAL-WALLIS 107.75 1 0  0.0000 KRUSKAL-WALLIS 68.06 1 0  0.0000 
1 0  RANK ANOVA 55.41 1 9  0.0000 1 0  RANK ANOVA 52.29 1 9  0.0001 

KRUSKAL-WALLIS 89.38 1 0  0.0000 KRUSKAL-WALLIS 56.02 1 0  0.0000 
1 5  RANK ANOVA 48.97 1 9  0.0002 1 5  RANK ANOVA 41 .25 1 9  0.0022 

KRUSKAL-WALLIS 61 .04 1 0  0.0000 KRUSKAL-WALLIS 46.30 1 0  0.0000 

25% Level Shift (N) Symmetry Adjusted MAPE 25% Level Shift (N) Mean Absolute Percent Error 
Scenario 1 0  Table: 1 0  -8 Scenario 1 0  Table: 1 0  -1 2 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 58.33 1 9  0.0000 1 RANK ANOVA 49.35 1 9  0.0002 

KRUSKAL-WALLIS 54.74 10  0.0000 KRUSKAL-WALLIS 49.46 1 0  0.0000 
5 RANK ANOVA 68.73 1 9  0.0000 5 RANK ANOVA 85.47 1 9  0.0000 

KRUSKAL-WALLIS 1 1 7. 1 3  1 0  0.0000 KRUSKAL-WALLIS 1 09.25 1 0  0.0000 
1 0  RANK ANOVA 69. 1 7  1 9  0.0000 1 0  RANK ANOVA 67.58 1 9  0.0000 

KRUSKAL-WALLIS 67.36 1 0  0.0000 KRUSKAL-WALLIS 84. SO 1 0  0.0000 
1 5  RANK ANOVA 63. 1 0  1 9  0.0000 1 5  RANK ANOVA 61 .26 1 9  0.0000 

KRUSKAL-WALLIS 73.94 1 0  0.0000 KRUSKAL-WALLIS 72.71 1 0  0.0000 

25% Level Shift (N) Geometric Root Mean Squared Error 25% Level Shift (N) Root Mean Squared Error 
Scenario 1 0  Table: 1 0  -9 Scenario 10  Table: 1 0  -1 3 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 34.81 1 9  0.01 47 1 RANK ANOVA 61 .33 1 9  0.0000 
5 RANK ANOVA 70.92 1 9  0.0000 5 RANK ANOVA 68.02 1 9  0.0000 
1 0  RANK ANOVA 45.54 1 9  0.0006 1 0  RANK ANOVA 66.96 1 9  0.0000 
1 5  RANK ANOVA 47.60 1 9  0.0003 1 5  RANK ANOVA 67.00 1 9  0.0000 

3 8 9 



Period: 200% Level Shift (N) Scenario 1 1  Table: 1 1 -1 
Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Average 5.43 6.78 7. 1 4  8.02 7.21 5.41 4. 1 7  5. 1 1  5. 1 1  6.29 5.66 
Rank 5 8 9 1 1  1 0  4 1 2 2 7 6 
Geometric Mean 5.21 6.63 7.05 7.97 7.1 1 5.33 3.96 5.03 5.03 6.21 5.56 
Rank 4 8 9 1 1  1 0  5 1 2 2 7 6 
Average Rank by Series 4.73 7.30 8.30 9.83 8.65 4.73 2.65 4.25 4.25 6.65 5.30 
Rank of Average Rank 4 8 9 1 1  1 0  4 1 2 2 7 6 
Kruskal-Wallis Rank Sum 1 ,708.0 2,823.0 3,1 48.0 3,759.5 3,1 71 .0 1 ,71 6.0 870.5 1 ,474.0 1 ,474.0 2,473.0 1 ,926.5 
Rank of K-W Rank Sum 4 8 9 1 1  1 0  5 1 2 2 7 6 
K-W Multi-Comparison Count· 9 1 0  9 10  9 9 1 0  1 0  1 0  1 0  1 0  

5 Average 5.26 6.54 6.87 7.64 7.56 5.28 4.44 4.74 5.23 6. 1 9  6.24 
Rank 4 8 9 1 1  1 0  5 1 2 3 6 7 
Geometric Mean 4.95 6.46 6.81 7.60 7.51 5. 10  4.27 4.54 5.03 6.09 6. 1 4  
Rank 3 8 9 1 1  1 0  5 1 2 4 6 7 
Average Rank by Series 4.75 7 . 10 7.93 9.40 8.90 5.08 3.03 3.30 4.35 5.95 6.23 
Rank of Average Rank 4 8 9 1 1  1 0  5 1 2 3 6 7 
Kruskal-Wallis Rank Sum 1 ,647.5 2,577.5 2,883.5 3,551 .0 3,452.0 1 ,620.5 1 ,022.5 1 ,277.0 1 ,61 8.5 2,327.5 2,332.5 
Rank· of K-W Rank Sum 5 8 9 1 1  1 0  4 1 2 3 6 7 
K-W

'
Multi-Comparison Count· 8 1 0  10  1 0  1 0  8 1 0  1 0  8 9 9 

1 0  Average 4.81 6.56 6.96 7.66 7.02 5.44 4.31 5.54 5.54 6.56 5.94 
Rank 2 8 9 1 1  1 0  3 1 4 4 7 6 
Geometric Mean 4.50 6.46 6.89 7.58 6.96 5.1 2 4. 1 2  5.32 5.32 6.45 5.89 
Rank 2 8 9 1 1  1 0  3 1 4 4 7 6 
Average Rank by Series 4.075 7. 1 25 7.925 9.2 8.3 5.35 3.275 4.7 4.7 6.45 5.475 
Rank of Average Rank 2 8 9 1 1  1 0  5 1 3 3 7 6 
Kruskal-Wallis Rank Sum 1 ,349.0 2,600.5 2,931 .0 3,489.0 3,020.5 1 ,847.0 982.5 1 ,81 3.5 1 ,81 3.5 2,604.5 2,042.5 
Rank of K-W Rank Sum 2 7 9 1 1  1 0  5 1 3 3 8 6 
K-W Multi-Comparison Count· 1 0  9 10  1 0  1 0  9 1 0  9 9 9 1 0  

1 5  Average 4.76 6.58 6.89 7.24 6.89 5.54 4.26 5.46 5.93 6.44 6.01 
Rank 2 8 9 1 1  1 0  4 1 3 5 7 6 
Geometric Mean 4.40 6.46 6.83 7. 1 5  6.71 4.98 4.02 5.04 5.67 6.30 5.89 
Rank 2 8 10  1 1  9 3 1 4 5 7 6 
Average Rank by Series 4. 1 75 7.225 7.4 8.25 7.65 5.925 3.4 4.825 5.5 6.05 5.6 
Rank of Average Rank 2 8 9 1 1  1 0  6 1 3 4 7 5 
Kruskal-Wallis Rank Sum 1 ,370.0 2,563.0 2,797.5 3,100.0 2,824.5 2,021 .0 1 ,051 .0 1 ,898.5 2, 1 22.5 2,422.0 2,1 40.0 
Rank of K-W Rank Sum 2 8 9 1 1  1 0  4 1 3 5 7 6 
K-W Multi-Comparison Count· 1 0  1 0  9 1 0  9 1 0  10  1 0  9 10  9 
·K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is Significant. 

3 9 0  



200% level Shift (N) Scenario 1 1  Table: 1 1 -2 
Period: Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 58.67% 63.1 3% 61 . 1 6% n.21 % 75.98% 64.1 2% 52.42% 50.58% 48.78% 67.50% 63.53% 
Rank 4 6 5 1 1  1 0  8 3 2 1 9 7 
Geometric Mean 41 .46% 50.47% 47.84% 52.79% 57.56% 52.62% 36.04% 35.71 %  31 .32% 47.27% 45.45% 
Rank 4 8 7 10  1 1  9 3 2 1 6 5 
Average Rank by Series 5.23 7.05 6.38 7.60 8.55 6.85 4.28 4.30 3.28 5.95 6.55 
Rank of Average Rank 4 9 6 1 0  1 1  8 2 3 1 5 7 
Kruskal-Wallis Rank Sum 2,207.5 2,388.0 2,302.5 2,452.0 2,631 .0 2,397.0 2,001 .5 1 ,81 0.0 1 ,668.5 2,224.0 2,228.0 
Rank of K-W Rank Sum 4 8 7 1 0  1 1  9 3 2 1 5 6 
K-W Multi-Comparison Count" 8 8 8 8 1 0  8 1 0  1 0  1 0  7 7 

5 Average 70.22% 1 1 8 . 1 1 %  1 20.27% 1 14.32% 1 24. 1 3% 1 1 6.96% 64.59% 83.23% 83.61 % 97.49% 97.25% 
Rank 2 9 1 0  7 1 1  8 1 3 4 6 5 
Geometric Mean 61 .49% 1 1 0.09% 1 1 1 .36% 1 07.61 % 1 1 5.87% 1 09.05% 52.41 % 72.35% 72.22% 90.61 % 89.87% 
Rank 2 9 1 0  7 1 1  8 1 4 3 6 5 
Average Rank by Series 3.03 7.60 7.63 8.03 8. 1 8  7.80 2.88 4.00 4.08 6.33 6.48 
Rank of Average Rank 2 7 8 1 0  1 1  9 1 3 4 5 6 
Kruskal-Waliis Rank Sum 1 ,220.5 2,824.0 2,81 8.5 2,801 .5 2,948.5 2,825.0 1 , 1 97.5 1 ,622.0 1 ,588.5 2,252.5 2,21 1 .5 
Rank of K-W Rank Sum 2 9 8 7 1 1  1 0  1 4 3 6 5 
K-W Multi-Comparison Count" 9 7 7 7 1 0  7 9 9 9 9 9 

1 0  Average n.66% 1 31 .65% 1 33.72% 1 55.47% 1 38. 1 2% 97.59% 67.51 % 90.88% 1 03.53% 1 29.44% 1 09.69% 
Rank 2 8 9 1 1  1 0  4 1 3 5 7 6 
Geometric Mean 69.29% 1 20.78% 1 21 .74% 1 43.80% 1 29.26% 89.33% 53.29% 71 .78% 81 .1 1 % 1 1 3.92% 97. 1 1 %  
Rank 2 8 9 1 1  1 0  5 1 3 4 7 6 
Average Rank by Series 3.3 7.9 7.85 9.55 8.1 4.95 2.55 4.25 4.75 6.8 6 
Rank of Average Rank 2 9 8 1 1  1 0  5 1 3 4 7 6 
Kruskal-Wallis Rank Sum 1 ,492.0 2,668.0 2,682.0 3,1 22.0 2,930.0 2,01 2.0 1 ,21 8.0 1 ,580.0 1 ,836.0 2,543.0 2,227.0 
Rank of K-W Rank Sum 2 8 9 1 1  1 0  5 1 3 4 7 6 
K-W Multi-Comparison Count" 1 0  9 9 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0  

1 5  Average 89.97% 1 46.51 %  1 62.66% 1 94.64% 1 59.06% 91 .61 %  79.98% 1 09.51 % 1 27.00% 1 64.86% 1 27.45% 
Rank 2 7 9 1 1  8 3 1 4 5 1 0  6 
Geometric Mean 71 .70% 1 1 9.69% 1 31 .02% 1 59.88% 1 37.1 5% 79.50% 56.44% 75.22% 87.59% 1 20.56% 1 02.83% 
Rank 2 7 9 1 1  1 0  4 1 3 5 8 6 
Average Rank by Series 3.45 8.025 8.2 8.975 8.325 5.1 5  2.95 4. 1 75 4.5 6. 1 25 6.1 25 
Rank of Average Rank 2 8 9 1 1  1 0  5 1 3 4 6 6 
Kruskal-Wallis Rank Sum 1 ,695.0 2,503.5 2,637.0 3,052.5 2,805.5 1 ,827.0 1 ,41 3.0 1 ,696.5 1 ,934.0 2,507.5 2,238.5 
Rank of K-W Rank Sum 2 7 9 1 1  1 0  4 1 3 5 8 6 
K-W Multi-Comparison Count" 1 0  9 1 0  10  10  1 0  1 0  1 0  1 0  9 1 0  
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic Is significant. 

3 9 1 



200% level Shift (N) Scenario 1 1  Table: 1 1 -3 
Period: Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 28.75% 28.38% 28.81 % 36.51 % 33.88% 24.30% 22.n% 21 .42% 21 .84% 29.53% 27.48% 
Rank 7 6 8 1 1  1 0  4 3 1 2 9 5 
Geometric Mean 23.58% 25.82% 26.45% 31 .67% 28.51 % 21 . 1 7% 1 7.36% 1 8.76% 1 9.38% 24.26% 22.28% 
Rank 6 8 9 1 1  1 0  4 1 2 3 7 5 
Average Rank by Series 5.70 7.33 7.98 9.50 8.50 4.30 3.25 3.48 4.03 6.35 5.60 
Rank of Average Rank 6 8 9 1 1  1 0  4 1 2 3 7 5 
Kruskal-Wallis Rank Sum 2,300.0 2,475.5 2,554.5 2,878.0 2,61 4.0 1 ,928.0 1 ,820.0 1 ,655.5 1 ,738.5 2,262.0 2,084.0 
Rank of K-W Rank Sum 7 8 9 1 1  1 0  4 3 1 2 6 5 
K-W Multi-Comparison Count" 9 9 8 1 0  9 1 0  1 0  1 0  1 0  9 1 0  

5 Average 40.70% 52.64% 55.48% 67.83% 63.46% 40.86% 30.1 3% 37.40% 41 . 1 6% 53.57% 49.42% 
Rank 3 7 9 1 1  1 0  4 1 2 5 8 6 
Geometric Mean 37.81 % 49.41 % 52. 1 7% 63.85% 60.49% 38.41 % 25.94% 32.64% 36.06% 48.1 3% 45.89% 
Rank 4 8 9 1 1  1 0  5 1 2 3 7 6 
Average Rank by Series 4.50 7.83 8.23 9.60 9.60 4.90 2.25 3.33 3.73 6. 1 0  5.95 
Rank of Average Rank 4 8 9 10 1 0  5 1 2 3 7 6 
Kruskal-Wallis Rank Sum 1 ,802.0 2,503.5 2,688.5 3,251 .0 3,1 46.0 1 ,728.0 1 , 1 61 .0 1 ,502.5 1 ,754.5 2,442.0 2,331 .0 
Rank of K-W Rank Sum 5 8 9 1 1  1 0  3 1 2 4 7 6 
K-W Multi-Comparison Count· 8 9 10 10 10 8 1 0  1 0  8 9 1 0  

1 0  Average 46.n% 62.83% 70.09% 85.23% 74.32% 39.36% 38.72% 50.70% 58.55% 74.87% 62.89% 
Rank 3 6 8 1 1  9 2 1 4 5 10 7 
Geometric Mean 42.46% 54.08% 60.00% 76.42% 68.1 9% 37.06% 31 .39% 37.76% 43.86% 61 .38% 53.55% 
Rank 4 7 8 1 1  1 0  2 1 3 5 9 6 
Average Rank by Series 4.2 7. 1 25 7.525 9.6 9.05 4.5 2.95 3.975 4.475 6.5 6.1 
Rank of Average Rank 3 8 9 1 1  1 0  5 1 2 4 7 6 
Kruskal-Wallis Rank Sum 1 ,894.0 2,365.5 2,562.5 3,1 87.0 2,944.0 1 ,522.0 1 ,465.0 1 ,570.5 1 ,882.5 2,582.0 2,335.0 
Rank of K-W Rank Sum 5 7 8 1 1  1 0  2 1 3 4 9 6 
K-W Multi-Comparison Count" 9 9 9 1 0  1 0  8 9 9 9 9 9 

1 5  Average 52.28% 73.01 % 83.25% 1 03.17% 84.39% 38.36% 44.72% 62.49% 74. 1 1 %  94.n% 75.03% 
Rank 3 5 8 1 1  9 1 2 4 6 1 0  7 
Geometric Mean 41 .88% 55.62% 62.73% 79.51 % 67.85% 36.32% 30.88% 41 . 1 9% 48.71 % 65.73% 55.26% 
Rank 4 7 8 1 1  1 0  2 1 3 5 9 6 
Average Rank by Series 3.85 7.075 7.475 8.95 8.3 5. 1 5  2.6 4.n5 5.275 6.7 5.85 
Rank of Average Rank 2 8 9 1 1  1 0  4 1 3 5 7 6 
Kruskal-Wallis Rank Sum 1 ,939.0 2,376.5 2,531 .5 2,938.0 2,768.0 1 ,678.0 1 ,484.0 1 ,723.5 1 ,997.5 2,557.0 2,31 7.0 
Rank of K-W Rank Sum 4 7 8 1 1  1 0  2 1 3 5 9 6 
K-W Multi-Comparison Count" 9 9 9 10 1 0  9 1 0  9 9 9 9 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

3 9 2 



200% Level Shift (N) Scenario 1 1  Table: 1 1 -4 
Period: Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 201 .81 253.91 253. 1 1  295.73 282.99 230.75 1 46.97 1 75.69 1 76.32 21 8.51 205.66 
Rank 4 9 8 1 1  1 0  7 1 2 3 6 5 
Average Rank by Series 4.75 8.08 8.08 9.70 9. 1 5  6.30 2.40 3. 1 8  3.43 5.65 5.30 
Rank of Average Rank 4 8 8 1 1  1 0  7 1 2 3 6 5 

5 Geometric Mean 308.06 463.67 476.27 561 . 1 6  534.35 386.47 220.91 292.73 31 5.42 412. 1 6  388.86 
Rank 3 8 9 1 1  1 0  5 1 2 4 7 6 
Average Rank by Series 3.65 7.825 8.325 10 9 .4 5.4 2. 1 5  3.275 3.775 6.35 5.85 
Rank of Average Rank 3 8 9 1 1  1 0  5 1 2 4 7 6 

1 0  Geometric Mean 390.87 564.87 61 0.29 739.24 663.52 403.36 294.63 377. 1 1  434.31 581 .40 509.26 
Rank 3 7 9 1 1  1 0  4 1 2 5 8 6 
Average Rank by Series 3.5 7.625 8.025 9.4 8.7 5.3 2.35 4. 1 75 4.775 6.45 5.7 
Rank of Average Rank 2 8 9 1 1  1 0  5 1 3 4 7 6 

1 5  Geometric Mean 421 .31 593.22 663.09 820.71 709.98 387.63 322.29 421 .04 498.43 661 .22 561 .83 
Rank 4 7 9 1 1  1 0  2 1 3 5 8 6 
Average Rank by Series 3.5 7.325 7.725 8.7 8.25 5. 1 5  2.5 4.875 5.325 6.8 5.85 
Rank of Average Rank 2 8 9 1 1  1 0  4 1 3 5 7 6 

200% Level Shift (N) Scenario 1 1  Table: 1 1 -5 
Period: Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 38.93 1 42.91 1 56.69 1 87 . 18 1 57.79 94.76 84.85 1 05.63 1 1 4.59 1 38.27 1 24.86 
Rank 7 8 9 1 1  1 0  2 1 3 4 6 5 
Average Rank by Series 6 7.275 7.975 8.95 8 4.3 3.35 3.875 4.375 6.4 5.5 
Rank of Average Rank 6 8 9 1 1  1 0  3 1 2 4 7 5 

5 Geometric Mean 21 1 . 1 8  208.95 235.55 31 9.21 293.56 1 44.40 1 32.58 1 48.00 1 76.30 253.81 231 .90 
Rank 6 5 8 1 1  1 0  2 1 3 4 9 7 
Average Rank by Series 5.7 6.875 6.925 9.35 9.05 4.2 2.75 3.425 4.075 6.95 6.7 
Rank of Average Rank 5 7 8 1 1  1 0  4 1 2 3 9 6 

1 0  Geometric Mean 246.00 259.56 306.07 397. 1 1  364.94 1 81 .45 1 78.79 21 1 .06 245.80 352.88 306.61 
Rank 5 6 7 1 1  1 0  2 1 3 4 9 8 
Average Rank by Series 4.6 6.275 7.425 8.6 8.25 5.35 3.4 4. 1 25 4.425 7.35 6.2 
Rank of Average Rank 4 7 9 1 1  1 0  5 1 2 3 8 6 

1 5  Geometric Mean 242.87 303.79 334.87 435.75 361 .40 207.23 1 75.57 248.59 297.91 391 . 14  326.65 
Rank 3 6 8 1 1  9 2 1 4 5 10  7 
Average Rank by Series 4.6 6.775 6.925 8.3 7.45 6.15 2.95 4.675 5.225 6.95 6 
Rank of Average Rank 2 7 8 1 1  1 0  6 1 3 4 9 5 

3 9 3 



200% Level Shift (N) Average Rank of Absolute Error 200% Level Shift (N) Log Mean Squared Error Ratio 
Scenario 1 1  Table: 1 1  -0 Scenario 1 1  Table: 1 1  -10 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 55.36 1 9  0.0000 1 RANK ANOVA 37.68 1 9  0.0065 

KRUSKAL-WALLIS 1 04.91 10 0.0000 KRUSKAL-WALLIS 39.30 1 0  0.0000 
5 RANK ANOVA 48.60 1 9  0.0002 5 RANK ANOVA SO.21 1 9  0.0001 

KRUSKAL-WALLIS 69.SO 1 0  0.0000 KRUSKAL-WALLIS 43.75 1 0  0.0000 
1 0  RANK ANOVA 39.79 1 9  0.0035 10 RANK ANOVA 32.71 1 9  0.0259 

KRUSKAL-WALLIS 74.32 1 0  0.0000 KRUSKAL-WALLIS 1 7.65 1 0  0.0576 
1 5  RANK ANOVA 24.61 1 9  0. 1 736 1 5  RANK ANOVA 24.68 1 9  0.1 644 

KRUSKAL-WALLIS 47.66 1 0  0.0000 KRUSKAL-WALLIS 1 2.71 1 0  0.2403 

200% Level Shift (N) Range of Percent Error 200% Level Shift (N) Median Absolute Percent Error 
Scenario 1 1  Table: 1 1  -7 Scenario 1 1  Table: 1 1  -1 1 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 26.79 1 9  0. 1097 1 RANK ANOVA 35.36 1 9  0.01 26 

KRUSKAL-WALLIS 9.97 1 0  0.4426 KRUSKAL-WALLIS 23.64 1 0  0.0066 
5 RANK ANOVA 46.21 1 9  0.0005 5 RANK ANOVA 36.65 1 9  0.0063 

KRUSKAL-WALLIS 56.73 1 0  0.0000 KRUSKAL-WALLIS 33.SO 1 0  0.0002 
1 0  RANK ANOVA 52. 12  1 9  0.0001 1 0  RANK ANOVA 22.72 1 9  0.2500 

KRUSKAL-WALLIS 48.99 1 0  0.0000 KRUSKAL-WALLIS 23.08 1 0  0.0105 
15 RANK ANOVA 47.68 1 9  0.0003 1 5  RANK ANOVA 1 1 .67 1 9  0.6909 

KRUSKAL-WALLIS 34.67 1 0  0.0001 KRUSKAL-WALLIS 1 3.02 1 0  0.2223 

200% Level Shift (N) Symmetry Adjusted MAPE 200% Level Shift (N) Mean Absolute Percent Error 
Scenario 1 1  Table: 1 1  -8 Scenario 1 1  Table: 1 1  -1 2 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 48.60 1 9  0.0002 1 RANK ANOVA 47.60 1 9  0.0003 

KRUSKAL-WALLIS 21 .01 1 0  0.021 0 KRUSKAL-WALLIS 1 9.56 1 0  0.0335 
5 RANK ANOVA 53.33 1 9  0.0000 5 RANK ANOVA 67. 1 4  1 9  0.0000 

KRUSKAL-WALLIS 42.03 1 0  0.0000 KRUSKAL-WALLIS 56.1 6  1 0  0.0000 
1 0  RANK ANOVA 40.31 1 9  0.0030 10 RANK ANOVA 49.76 1 9  0.0001 

KRUSKAL-WALLIS 30.08 1 0  0.0006 KRUSKAL-WALLIS 42.45 1 0  0.0000 
1 5  RANK ANOVA 1 9.67 1 9  0.41 44 1 5  RANK ANOVA 38.76 1 9  0.0047 

KRUSKAL-WALLIS 1 7.04 1 0  0.0735 KRUSKAL-WALLIS 26.01 1 0  0.001 6 

200% Level Shift (N) Geometric Root Mean Squared Error 200% Level Shift (N) Root Mean Squared Error 
Scenario 1 1  Table: 1 1  -9 Scenario 1 1  Table: 1 1  -13 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 37.68 1 9  0.0065 1 RANK ANOVA 65.06 1 9  0.0000 
5 RANK ANOVA SO.21 1 9  0.0001 5 RANK ANOVA 72.61 1 9  0.0000 
1 0  RANK ANOVA 32.71 1 9  0.0259 1 0  RANK ANOVA 53.33 1 9  0.0000 
15 RANK ANOVA 24.68 19  0.1 644 1 5  RANK ANOVA 40.76 1 9  0.0026 

3 9 4  



Period: Trend Shift (N) Scenario 1 2  Table: 1 2-1 
Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 7.55 5.03 4.78 5.39 5. 1 2  5.1 5  8.70 6.04 6.04 5.84 6.03 
Rank 1 0  2 1 5 3 4 1 1  8 8 6 7 
Geometric Mean 7.36 4.83 4.63 5. 1 3  4.88 4.93 8.54 5.98 5.98 5.n 5.90 
Rank 1 0  2 1 5 3 4 1 1  8 8 6 7 
Average Rank by Series 8.08 4.63 3.93 5.28 4. 1 8  4.65 1 0.35 6.43 6.43 6.03 5.68 
Rank of Average Rank 1 0  3 1 5 2 4 1 1  8 8 7 6 
Kruskal-Wallis Rank Sum 3,262.5 1 ,561 .0 1 ,267.5 1 ,81 4.0 1 ,61 7.0 1 ,592.0 3,839.5 2,355.0 2,355.0 2,1 76.0 2,274.5 
Rank of K-W Rank Sum 1 0  2 1 5 4 3 1 1  8 8 6 7 
K-W Multi-Comparison Count" 1 0  8 1 0  1 0  8 8 1 0  9 9 10  9 

5 Average 6.64 5.33 5.22 5.99 5.94 4.95 7.90 5.94 5.96 6. 1 4  6.00 
Rank 1 0  3 2 7 5 1 1 1  4 6 9 8 
Geometric Mean 6.32 5. 1 8  4.99 5.62 5.65 4.74 7.72 5.85 5.88 5.99 5.78 
Rank 1 0  3 2 4 5 1 1 1  7 8 9 6 
Average Rank by Series 6.65 4.63 4.28 6 . 18  5.78 4.05 9.08 6. 1 8  6.45 6.68 6.08 
Rank of Average Rank 9 3 2 6 4 1 1 1  6 8 10  5 
Kruskal-Wallis Rank Sum 2,636.0 1 ,703.5 1 ,651 .0 2,229.0 2,1 38.0 1 ,41 7.0 3,462.0 2,1 IT. 0 2,234.5 2,360.0 2,302.0 
Rank of K-W Rank Sum 1 0  3 2 6 4 1 1 1  5 7 9 8 
K-W Multi-Comparison Count" 1 0  9 9 8 9 1 0  1 0  8 7 9 7 

1 0  Average 5.90 6 . 15  6. 1 3  7 . 19  7.20 5.78 7 . 10 4.78 4.78 5.44 5.48 
Rank 6 8 7 1 0  1 1  5 9 1 1 3 4 
Geometric Mean 5. 1 4  6.02 5.96 6.80 6.92 5.55 6.n 4.61 4.61 5.1 6 5.1 1 
Rank 4 8 7 10  1 1  6 9 1 1 5 3 
Average Rank by Series 5.65 6.325 6.1 25 7.625 7.825 5.925 7.575 3.95 3.95 5.425 5.4 
Rank of Average Rank 5 8 7 1 0  1 1  6 9 1 1 4 3 
Kruskal-Wallis Rank Sum 2, 1 23.5 2,352.0 2,350.0 2,908.0 2,903.5 2,1 05.5 2,824.0 1 ,384.5 1 ,384.5 1 ,891 .5 2,01 1 .5 
Rank of K-W Rank Sum 6 8 7 1 1  1 0  5 9 1 1 3 4 
K-W Multi-Comparison Count" 9 9 9 9 8 9 9 9 9 10  10  

15  Average 6.09 6 . 19  6.21 7.31 7.55 5.74 6.31 4.56 4.56 5.68 5.79 
Rank 6 7 8 10  1 1  4 9 1 2 3 5 
Geometric Mean 5.10 6.01 5.96 6.74 7.29 5.49 5.53 4.40 4.33 5.1 1 5.33 
Rank 3 9 8 10  1 1  6 7 2 1 4 5 
Average Rank by Series 6.375 6.2 6.375 7.4 8. 1 5  5.6 6.55 4 3.925 5.75 5.675 
Rank of Average Rank 7 6 7 10  1 1  3 9 2 1 5 4 
Kruskal-Wallis Rank Sum 2,292.0 2,340.5 2,364.5 2,854.5 3,072.5 2,058.5 2,421 .0 1 ,334.0 1 ,355.0 2,088.0 2,1 29.5 
Rank of K-W Rank Sum 6 7 8 10  1 1  3 9 1 2 4 5 
K-W Multi-Comparison Count" 8 7 7 10  1 0  8 8 9 9 8 8 
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

3 9 5  



Trend Shift (N) Scenario 1 2  Table: 1 2-2 
Period: Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 1 8.41 % 1 4.73% 1 4.85% 1 3.23% 1 4.52% 1 5.62% 25.58% 1 8.39% 1 8.57% 1 5.47% 1 5.94% 
Rank 9 3 4 1 2 6 1 1  8 1 0  5 7 
Geometric Mean 1 3.67% 7.60% 8 . 10% 8.32% 8.n% 6.39% 23.28% 1 3.35% 1 3.70% 1 2.44% 1 2.57% 
Rank 9 2 3 4 5 1 1 1  8 1 0  6 7 
Average Rank by Series 7.88 3.93 4.33 4.25 5. 1 0  4. 1 0  9.78 7.03 7.23 5.80 6.60 
Rank of Average Rank 1 0  1 4 3 5 2 1 1  8 9 6 7 
Kruskal-Wallls Rank Sum 2,553.5 1 ,7 14.5 1 ,739.5 1 ,631 .0 1 ,929.0 1 ,657.0 3,336.5 2,405.5 2,452.5 2,321 .0 2,370.0 
Rank of K-W Rank Sum 1 0  2 3 4 5 1 1 1  8 9 6 7 
K-W Multi-Comparison Count" 1 0  8 9 1 0  1 0  9 1 0  8 9 9 8 

5 Average 30.39% 23.43% 23.83% 23.42% 22.62% 23.98% 47.20% 28.79% 28.39% 26.62% 27.n% 
Rank 1 0  3 4 2 1 5 1 1  9 8 6 7 
Geometric Mean 28.48% 1 5.34% 1 6.66% 1 7.78% 1 7. 1 6% 1 2.97% 46.70% 25.39% 24.86% 24.02% 24.84% 
Rank 1 0  2 3 5 4 1 1 1  9 8 6 7 
Average Rank by Series 7.20 3.75 3.90 5.05 4.23 4.35 9.95 6.95 6.65 6.75 7.23 
Rank of Average Rank 9 1 2 5 3 4 1 1  8 6 7 1 0  
Kruskal-Wallls Rank Sum 2,695.0 1 ,61 3.0 1 ,629.0 1 ,806.0 1 ,71 5.5 1 ,587.0 3,670.0 2,449.0 2,387.0 2,341 .0 2,417.5 
Rank of K-W Rank Sum 1 0  2 3 5 4 1 1 1  9 7 6 8 
K-W Multi-Comparison Count" 1 0  8 8 1 0  1 0  8 1 0  8 7 8 7 

1 0  Average 56.68% 33.00% 33.21 % 31 .00% 32.7 1 %  31 .09% 63.48% 38.74% 37.67% 34.76% 35.36% 
Rank 10  4 5 1 3 2 1 1  9 8 6 7 
Geometric Mean 47.03% 24.55% 25.46% 25.31 % 27. 1 9% 1 9.47% 58.43% 31 .01 % 29.88% 28.85% 28.41 % 
Rank 1 0  2 4 3 5 1 1 1  9 8 7 6 
Average Rank by Series 7.125 4.95 4.n5 5.225 5.5 4.2 9.025 6.6 6.225 6.375 6 
Rank of Average Rank 1 0  3 2 4 5 1 1 1  9 7 8 6 
Kruskal-Wallis Rank Sum 2,926.5 1 ,857.0 1 ,861 .5 1 ,865.5 2,002.0 1 ,580.0 3,441 .5 2,300.0 2,204.5 2, 1 03.5 2,1 66.0 
Rank of K-W Rank Sum 10  2 3 4 5 1 1 1  9 8 6 7 
K-W Multi-Comparison Count" 1 0  6 8 6 1 0  1 0  1 0  1 0  9 9 8 

1 5  Average 69.62% 39.78% 40.87% 41 .86% 43.34% 36.1 3% 86.n% 52.34% 48.91 % 47.61 %  50.46% 
Rank 1 1  2 3 4 5 1 1 0  9 7 6 8 
Geometric Mean 75.37% 31 .45% 34.47% 35.39% 37.38% 23. 1 4% 75.25% 44.09% 39.09% 37.08% 41 .36% 
Rank 1 1  2 3 4 6 1 1 0  9 7 5 8 
Average Rank by Series 7.575 5 4.n5 4.65 5.675 3.75 7.675 6.9 6.225 6.55 6.625 
Rank of Average Rank 1 0  4 2 3 5 1 1 1  9 6 7 8 
Kruskal-Wallls Rank Sum 3,144.5 1 ,792.0 1 ,634.5 1 ,833.0 2,01 5.5 1 ,490.0 3,221 .5 2,367.0 2, 1 74.5 2,1 02.0 2,335.5 
Rank of K-W Rank Sum 10  2 4 3 5 1 1 1  9 7 6 6 
K-W Multi-Comparison Count" 9 6 6 6 1 0  1 0  9 9 9 9 9 
"K-W Multi-Comparison Count valid only If Kruskal-Wallls statistic Is significant. 

3 9 6 



Trend Shift (N) Scenario 1 2  Table: 1 2-3 
Period: Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive HWW" HW" Adaptive" Auto" Naive" 
Average 1 0.58% 6.79% 6.70% 7.04% 6.78% 6.92% 1 4.72% 8.44% 8.36% 7.86% 7.79% 
Rank 1 0  3 1 5 2 4 1 1  9 8 7 6 
Geometric Mean 9.70% 4.38% 4. 1 7% 4.60% 4.53% 4.38% 1 4. 1 1 %  7.04% 6.90% 6.79% 6.72% 
Rank 1 0  3 1 5 4 2 1 1  9 8 7 6 
Average Rank by Series 8.00 4.33 3.93 4.65 4.25 4.40 1 0.50 6.93 6.78 6.05 6.20 
Rank of Average Rank 1 0  3 1 5 2 4 1 1  9 8 6 7 
Kruskal-Wallis Rank Sum 2,905.0 1 ,680.5 1 ,654.5 1 ,843.0 1 ,823.0 1 ,71 2.0 3,499.0 2,350.5 2,31 3.5 2,268.0 2,261 .0 
Rank of K-W Rank Sum 1 0  2 1 5 4 3 1 1  9 8 7 6 
K-W Multi-Comparison Count" 1 0  8 8 9 9 8 1 0  9 7 8 8 

5 Average 1 8.98% 1 3.26% 1 2.89% 1 3.68% 1 4. 1 6% 1 3. 1 4% 26.65% 1 5.32% 1 5.00% 1 4.65% 1 4.57% 
Rank 1 0  3 1 4 5 2 1 1  9 8 7 6 
Geometric Mean 1 7.69% 1 1 .n% 1 1 .30% 1 1 .95% 1 2.31 % 1 1 .51 % 26.08% 1 3.85% 1 3.39% 1 3.37% 1 3.29% 
Rank 1 0  3 1 4 5 2 1 1  9 8 7 6 
Average Rank by Series 6.60 4. 1 8  4. 1 3  5 . 10 5.35 3.90 1 0.65 6.73 6.58 6.45 6.35 
Rank of Average Rank 9 3 2 4 5 1 1 1  1 0  8 7 6 
Kruskal-Wallis Rank Sum 2,828.0 1 ,781 .5 1 ,727.5 1 ,927.0 1 ,952.0 l ,nl .0 3,800.0 2, 1 63.5 2,1 08.5 2,1 33.0 2,1 1 8.0 
Rank of K-W Rank Sum 1 0  3 1 4 5 2 1 1  9 6 8 7 
K-W Multi-Comparison Count" 10  8 8 9 9 8 1 0  7 7 7 7 

1 0  Average 32.52% 25.97% 25. 1 5% 26.27% 27.53% 25.46% 37.54% 21 .39% 20.50% 20.80% 21 .45% 
Rank 1 0  7 5 8 9 6 1 1  3 1 2 4 
Geometric Mean 27.21 % 24. 1 0% 23.08% 23.48% 25.1 7% 23.49% 34.34% 1 8.63% 1 7.42% 1 7.90% 1 8.31 % 
Rank 10  8 5 6 9 7 1 1  4 1 2 3 
Average Rank by Series 4.95 6.925 6.875 7.6 7.8 6.45 7.8 4.275 3.975 4.65 4.7 
Rank of Average Rank 5 8 7 9 1 0  6 1 0  2 1 3 4 
Kruskal-Wallis Rank Sum 2,531 .0 2,337.5 2,213.5 2,290.0 2,447.0 2,242.0 3,1 60.0 1 ,781 .5 1 ,698.5 1 ,768.0 1 ,841 .0 
Rank of K-W Rank Sum 1 0  8 5 7 9 6 1 1  3 1 2 4 
K-W Multi-Comparison Count" 1 0  9 8 7 1 0  8 10  8 9 7 8 

1 5  Average 55.25% 41 .29% 39.94% 41 .91 % 45. 1 5% 40.37% 55.67% 32.28% 30.94% 33. 1 3% 35.21 % 
Rank 1 0  7 5 8 9 6 1 1  2 1 3 4 
Geometric Mean 46.41 % 37. 1 6% 35.61 % 36.67% 40.96% 36.25% 48.30% 27.96% 25.64% 28.00% 29.93% 
Rank 1 0  8 5 7 9 6 1 1  2 1 3 4 
Average Rank by Series 6.3 6.975 6.925 7.5 8. 1 5  6.1 5 6.45 3.875 3.625 4.9 5. 1 5  
Rank of Average Rank 6 9 8 1 0  1 1  5 7 2 1 3 4 
Kruskal-Wallis Rank Sum 2,71 3.0 2,341 .5 2,254.5 2,31 2.0 2,583.0 2,250.0 2,810.0 1 ,726.5 1 ,648.5 1 ,767.0 1 ,904.0 
Rank of K-W Rank Sum 1 0  8 6 7 9 5 1 1  2 1 3 4 
K-W Multi-Comparison Count" 1 0  9 8 7 1 0  8 1 0  8 9 9 1 0  
"K-W Multi-Comparison Count valid only I f  Kruskal-Wallis statistic Is significant. 

3 9 7 



Trend Shift (N) Scenario 1 2  Table: 1 2-4 
Period: Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 70.36 77.90 75.88 79.58 80. 1 1 76. 1 3  252.70 1 30. 1 0  1 29.57 1 23.24 1 23.43 
Rank 1 0  3 1 4 5 2 1 1  9 6 6 7 
Average Rank by Series 6.55 4. 1 3  3.58 4.05 3.60 4.55 1 0.95 7.38 7.33 5.65 6.05 
Rank of Average Rank 1 0  4 1 3 2 5 1 1  9 6 6 7 

5 Geometric Mean 263.27 1 79.55 1 74.46 1 61 .34 1 66.79 1 70.63 444.21 226.23 220.26 21 5.54 21 6.31 
Rank 1 0  3 2 4 5 1 1 1  9 6 6 7 
Average Rank by Series 6.75 3.925 3.625 4.65 4.95 3.6 1 0.65 7.225 6.975 6.65 6.6 
Rank of Average Rank 6 3 1 4 5 2 1 1  10  9 7 6 

1 0  Geometric Mean 383.43 325.76 31 6.52 31 4.77 336.27 306.71 487.93 259.48 246.03 249. 1 6  249.65 
Rank 1 0  6 7 6 9 5 1 1  4 1 2 3 
Average Rank by Series 5.25 7.075 6.775 7.5 7.4 6 6.7 4.375 3.925 4.55 4.45 
Rank of Average Rank 5 6 7 1 0  9 6 1 1  2 1 4 3 

1 5  Geometric Mean 566.47 440.36 426.93 432.03 476.63 41 7.31 596.93 344.61 31 7.62 332.29 354.1 3  
Rank 1 0  6 6 7 9 5 1 1  3 1 2 4 
Average Rank by Series 6.05 7 . 175 6.925 7.5 6.3 5.95 6.55 4. 1 25 3.775 4.6 5.05 
Rank of Average Rank 6 9 6 1 0  1 1  5 7 2 1 3 4 

Trend Shift (N) Scenario 1 2  Table: 1 2-5 
Period: Geometric Root Mean Squared Error 

Adjusted HWW HW Adaptive Auto Naive HWW· HW· Adaptive· Auto· Naive· 
Geometric Mean 1 04.70 44.64 41 .88 SO. 72 47.54 47. 1 7  1 45.42 66.26 61 . 1 9  65.05 65.00 
Rank 10  2 1 5 4 3 1 1  9 6 6 7 
Average Rank by Series 7.9 4.775 4. 1 25 4.95 4.4 4.7 9.65 6.525 6.075 6.3 6.4 
Rank of Average Rank 1 0  4 1 5 2 3 1 1  9 6 7 6 

5 Geometric Mean 1 80. 1 5  1 26.63 1 1 7.76 1 29.24 1 26.09 1 31 .65 254.65 1 42.34 1 34. 1 4  1 35.90 1 27.34 
Rank 10  2 1 5 4 6 1 1  9 7 6 3 
Average Rank by Series 7 5.425 5.325 5.9 5.6 4.65 9.75 5.725 5.475 6 4.75 
Rank of Average Rank 1 0  4 3 6 7 2 1 1  6 5 9 1 

1 0  Geometric Mean 246.01 243.08 225.72 251 .57 259. 1 1  243.24 330.04 1 63.21 151 .41 1 60.64 1 68.96 
Rank 6 6 5 9 1 0  7 1 1  3 1 2 4 
Average Rank by Series 5.6 6.675 6.925 7.9 7.9 5.95 7.95 3.725 3.675 4.5 4.6 
Rank of Average Rank 5 7 6 9 9 6 1 1  2 1 3 4 

1 5  Geometric Mean 369.61 352. 1 2  330.01 352.26 366.61 366.35 421 .56 233. 1 6  220.00 239.64 265.29 
Rank 9 6 5 7 1 0  6 1 1  2 1 3 4 
Average Rank by Series 6.3 7.075 7.025 7.6 7.65 6.55 6.75 3.425 3.475 4.7 5.25 
Rank of Average Rank 5 9 6 1 0  1 1  6 7 1 2 3 4 

3 9 8  



Trend Shift (N) Average Rank of Absolute Error Trend Shift (N) Log Mean Squared Error Ratio 
Scenario 1 2  Table: 12  -6 Scenario 1 2  Table: 1 2  - 10  

Period: Chi Squared OF p Value Period: Chi Squared O F  p Value 
1 RANK ANOVA 38.01 1 9  0.0059 1 RANK ANOVA 31 .05 1 9  0.0398 

KRUSKAL-WALLIS 75.35 1 0  0.0000 KRUSKAL-WALLIS 41 .67 1 0  0.0000 
5 RANK ANOVA 20.65 1 9  0.3562 5 RANK ANOVA 20.46 1 9  0.3674 

KRUSKAL-WALLIS 36.84 1 0  0.0001 KRUSKAL-WALLIS 30.04 1 0  0.0008 
1 0  RANK ANOVA 1 8 . 1 6  1 9  0.51 1 6  1 0  RANK ANOVA 28.59 1 9  0.0728 

KRUSKAL-WALLIS 34.48 1 0  0.0002 KRUSKAL-WALLIS 35.62 1 0  0.0001 
1 5  RANK ANOVA 1 7.04 1 9  0.5874 15 RANK ANOVA 25.93 1 9  0 . 1321 

KRUSKAL-WALLIS 34.48 1 0  0.0002 KRUSKAL-WALLIS 32.58 1 0  0.0003 

Trend Shift (N) Range of Percent Error Trend Shift (N) Median Absolute Percent Error 
Scenario 1 2  Table: 1 2  -7 Scenario 1 2  Table: 1 2  -1 1 

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 37.27 1 9  0.0073 1 RANK ANOVA 31 .64 1 9  0.0343 

KRUSKAL-WALLIS 31 .06 1 0  0.0006 KRUSKAL-WALLIS 32. 1 7  1 0  0.0004 
5 RANK ANOVA 38.69 1 9  0.0048 5 RANK ANOVA 25. 1 9  1 9  0 .1 543 

KRUSKAL-WALLIS 49.43 1 0  0.0000 KRUSKAL-WALLIS 38.71 1 0  0.0000 
1 0  RANK ANOVA 1 8.93 1 9  0.461 5 1 0  RANK ANOVA 1 7.79 1 9  0.5367 

KRUSKAL-WALLIS 35.28 1 0  0.0001 KRUSKAL-WALLIS 1 7.65 1 0  0.0612 
15 RANK ANOVA 1 7.23 1 9  0.5740 1 5  RANK ANOVA 1 6.79 1 9  0.6042 

KRUSKAL-WALLIS 36.58 1 0  0.0001 KRUSKAL-WALLIS 1 2.24 1 0  0.2691 

Trend Shift (N) Symmetry Adjusted MAPE Trend Shift (N) Mean Absolute Percent Error 
Scenario 12  Table: 1 2  -8 Scenario 1 2  Table: 1 2  - 12  

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 54.23 1 9  0.0000 1 RANK ANOVA 42.45 1 9  0.0015 

KRUSKAL-WALLIS 48.68 10  0.0000 KRUSKAL-WALLIS 40.75 1 0  0.0000 
5 RANK ANOVA 46.90 1 9  0.0004 5 RANK ANOVA 37.62 1 9  0.0066 

KRUSKAL-WALLIS 63 06 1 0  0.0000 KRUSKAL-WALLIS 45.57 1 0  0.0000 
1 0  RANK ANOVA 30.54 1 9  0.0453 1 0  RANK ANOVA 24.01 1 9  0.1 957 

KRUSKAL-WALLIS 33 02 10  0.0003 KRUSKAL-WALLIS 22.98 1 0  0.01 08 
1 5  RANK ANOVA 23.28 1 9  0.2251 1 5  RANK ANOVA 22.48 1 9  0.2609 

KRUSKAL-WALLIS 23.27 1 0  0.0098 KRUSKAL-WALLIS 20.02 1 0  0.0291 

Trend Shift (N) Geometric Root Mean Squared Error Trend Shift (N) Root Mean Squared Error 
Scenario 1 2  Table: 1 2  -9 Scenario 1 2  Table: 1 2  - 1 3  

Period: Chi Squared OF p Value Period: Chi Squared OF p Value 
1 RANK ANOVA 31 .05 1 9  0.0398 1 RANK ANOVA 58.49 1 9  0.0000 
5 RANK ANOVA 20.46 19 0.3674 5 RANK ANOVA 44.87 1 9  0.0007 
1 0  RANK ANOVA 28.59 19 0.0728 1 0  RANK ANOVA 26.83 1 9  0 . 1086 
1 5  RANK ANOVA 25.93 1 9  0 . 1321 15 RANK ANOVA 22.83 1 9  0.2451 

3 9 9  



Historical Level Shift Table: 1 3-1 
Period: Scenario 1 3  Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive 
Average 3.61 3.49 3.49 3.59 3.26 3.1 6  
Rank 6 4 3 5 2 1 
Geometric Mean 3.49 3.41 3.42 3.43 3.20 3.02 
Rank 6 3 4 5 2 1 
Average Rank by Series 4.00 3.68 3.45 3.80 3.1 8 2.90 
Rank of Average Rank 6 4 3 5 2 1 
Kruskal-Wallis Rank Sum 1 385.5 1 261 .5 1 237.0 1 331 .0 1 1 20.5 924.5 
Rank of K-W Rank Sum 6 4 3 5 2 1 
K-W Multi-Comparison Count" 5 4 4 5 5 5 

5 Average 3 . 1 1 3.56 3.49 3.68 3.37 3.39 
Rank 1 5 4 6 2 3 
Geometric Mean 2.88 3.42 3.39 3.43 3.27 3.22 
Rank 1 5 4 6 3 2 
Average Rank by Series 2.95 3.68 3.63 3.98 3.30 3.48 
Rank of Average Rank 1 5 4 6 2 3 
Kruskal-Wallis Rank Sum 987.5 1 266.5 1 239.0 1 393.0 1 1 84.5 1 1 89.5 
Rank of K-W Rank Sum 1 5 4 6 2 3 
K-W Multi-Comparison Count" 5 4 4 5 4 4 

1 0  Average 3.08 3.64 3.56 3.58 3.23 3.51 
Rank 1 6 4 5 2 3 
Geometric Mean 2.84 3.48 3.43 3.39 3.1 1 3.25 
Rank 1 6 5 4 2 3 
Average Rank by Series 2.90 3.80 3.68 3.78 3.05 3.80 
Rank of Average Rank 1 5 3 4 2 5 
Kruskal-Wallis Rank Sum 984.0 1 337.5 1 284.0 1 301 .0 1 099.0 1 254.5 
Rank of K-W Rank Sum 1 6 4 5 2 3 
K-W Multi-Comparison Count" 5 4 3 3 5 4 

1 5  Average 3. 1 1  3.64 3.64 3.51 3.1 9 3.52 
Rank 1 5 5 3 2 4 
Geometric Mean 2.88 3.45 3.45 3.28 3.06 3 . 16  
Rank 1 5 6 4 2 3 
Average Rank by Series 3.38 3.80 3.65 3.55 2.95 3.68 
Rank of Average Rank 2 6 4 3 1 5 
Kruskal-Wallis Rank Sum 1 050.0 1 31 0.0 1 297.0 1 259.5 1 078.5 1 265.0 
Rank of K-W Rank Sum 1 6 5 3 2 4 
K-W Multi-Comparison Count" 5 4 2 3 5 3 
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic Is significant. 

4 0 0  



Historical Level Shift Table: 1 3-2 
Period: Scenario 1 3  Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive 
Average 8.69% 8.44% 8.39% 8.56% 8.23% 9.46% 
Rank 5 3 2 4 1 6 
Geometric Mean 4.76% 4.85% 4.84% 4.75% 4.58% 4.84% 
Rank 3 6 5 2 1 4 
Average Rank by Series 3.45 3.80 3.55 3.1 5  3.20 3.85 
Rank of Average Rank 3 5 4 1 2 6 
Kruskal-Wallis Rank Sum 1 21 8.0 1 209.0 1 203.0 1 220.0 1 1 79.0 1 231 .0 
Rank of K-W Rank Sum 4 3 2 5 1 6 
K-W Multi-Comparison Count" 1 0 0 0 2 1 

5 Average 1 7. 1 3% 1 8.02% 1 7.94% 1 6.79% 1 7.64% 21 . 1 1 %  
Rank 2 5 4 1 3 6 
Geometric Mean 8.03% 7.62% 7.n% 7.55% 7.83% 7.25% 
Rank 6 3 4 2 5 1 
Average Rank by Series 3.55 3.40 3.35 3.60 3.45 3.65 
Rank of Average Rank 4 2 1 5 3 6 
Kruskal-Wallis Rank Sum 1 247.0 1 1 94.0 1 203.0 1 21 5.0 1 223.0 1 1 78.0 
Rank of K-W Rank Sum 6 2 3 4 5 1 
K-W Multi-Comparison Count" 4 1 1 0 2 2 

10 Average 1 9.66% 21 .53% 21 .52% 19.36% 20.39% 1 6.29% 
Rank 3 6 5 2 4 1 
Geometric Mean 9.03% 8.75% 8.80% 8.50% 8.82% 8.36% 
Rank 6 3 4 2 5 1 
Average Rank by Series 3.20 3.40 3.05 3.45 3.80 4. 1 0  
Rank of Average Rank 2 3 1 4 5 6 
Kruskal-Wallis Rank Sum 1 241 .0 1 207.0 1210.0 1 1 72.0 1 231 .0 1 1 99.0 
Rank of K-W Rank Sum 6 3 4 1 5 2 
K-W Multi-Comparison Count" 2 0 0 2 2 0 

1 5  Average 1 5.98% 1 7.49% 1 7.08% 1 5.72% 1 4.26% 1 3.21 % 
Rank 4 6 5 3 2 1 
Geometric Mean 9.09% 7.94% 7.89% 7.46% 7.1 1 %  7.08% 
Rank 6 5 4 3 2 1 
Average Rank by Series 3.20 3.85 3.55 3.70 3.30 3.40 
Rank of Average Rank 1 6 4 5 2 3 
Kruskal-Wallis Rank Sum 1 297.0 1 230.0 1 232.0 1 1 77.0 1 1 61 .0 1 1 63.0 
Rank of K-W Rank Sum 6 4 5 3 1 2 
K-W Multi-Comparison Count" 5 4 4 3 3 3 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 

4 0 1  



Historical Level Shift Table: 1 3-3 
Period: Scenario 1 3  Mean Absolute Percent Error 

Adjusted HWW HW Adaptive Auto Naive 
Average 5.06% 5.71 % 5.71 % 5.00% 5.41 % 4.59% 
Rank 3 5 6 2 4 1 
Geometric Mean 2.83% 3.00% 3.0 1 %  2.90% 2.87% 2.65% 
Rank 2 5 6 4 3 1 
Average Rank by Series 3.80 3.90 3.80 4.05 2.80 2.65 
Rank of Average Rank 3 5 3 6 2 1 
Kruskal-Wallis Rank Sum 1 21 9.0 1 231 .0 1 230.0 1 246.0 1 1 85.0 1 1 49.0 
Rank of K-W Rank Sum 3 5 4 6 2 1 
K-W Multi-Comparison Count" 2 2 2 2 4 4 

5 Average 7.56% 1 1 .64% 1 1 .57% 8.1 2% 1 1 .69% 8.56% 
Rank 1 5 4 2 6 3 
Geometric Mean 4.70% 5.74% 5.69% 4.99% 5.90% 5.1 8% 
Rank 1 5 4 2 6 3 
Average Rank by Series 3.05 3.90 3.80 4.05 3. 1 5  3.05 
Rank of Average Rank 1 5 4 6 3 1 
Kruskal-Wallis Rank Sum 1 1 66.0 1 241 .0 1 229.0 1 1 72.0 1 248.0 1 204.0 
Rank of K-W Rank Sum 1 5 4 2 6 3 
K-W Multi-Comparison Count" 3 2 2 3 3 1 

1 0  Average 1 0.04% 1 9 . 1 5% 1 9. 1 8% 1 1 . 1 9% 1 8.84% 1 1 . 1 9% 
Rank 1 5 6 2 4 3 
Geometric Mean 6 . 10% 8.33% 8.44% 6.50% 7.96% 7.59% 
Rank 1 5 6 2 4 3 
Average Rank by Series 3.00 3.95 3.95 3.60 2.90 3.60 
Rank of Average Rank 2 5 5 3 1 3 
Kruskal-Wallis Rank Sum 1 1 33.0 1 263.0 1 269.0 1 1 37.0 1 21 5.0 1 243.0 
Rank of K-W Rank Sum 1 5 6 2 3 4 
K-W Multi-Comparison Count" 4 3 3 4 4 2 

1 5  Average 1 0.72% 24.83% 24.95% 1 2.73% 24.59% 1 2. 1 1 %  
Rank 1 5 6 3 4 2 
Geometric Mean 6.86% 9.49% 9.87% 7.41 % 8.67% 8.86% 
Rank 1 5 6 2 3 4 
Average Rank by Series 3.20 3.95 3.75 3.45 2.95 3.70 
Rank of Average Rank 2 6 5 3 1 4 
Kruskal-Wallis Rank Sum 1 1 37.0 1 247.0 1 274.0 1 1 34.0 1 1 94.0 1 274.0 
Rank of K-W Rank Sum 2 4 5 1 3 5 
K-W Multi-Comparison Count" 4 3 3 4 5 3 
"K-W Multi-Comparison Count valid only If Kruskal-Wallis statistic is significant. 

4 0 2 



Historical Level Shift Table: 1 3-4 
Period: Scenario 1 3  Root Mean Square Error 

Adjusted HWW HW Adaptive Auto Naive 
Geometric Mean 32.05 34.64 34.72 33.65 32.95 31 .75 
Rank 2 5 6 4 3 1 
Average Rank by Series 3.60 3.90 4.00 3.90 2.60 3.00 
Rank of Average Rank 3 4 6 4 1 2 

5 Geometric Mean 54.77 65. 1 9  65.48 57.23 66.90 58.68 
Rank 1 4 5 2 6 3 
Average Rank by Series 2.95 3.80 3.65 4.05 3.00 3.55 
Rank of Average Rank 1 5 4 6 2 3 

1 0  Geometric Mean 71 .07 94.66 95.84 75.33 92.20 86.73 
Rank 1 5 6 2 4 3 
Average Rank by Series 2.85 3.85 3.85 3.70 3.05 3.70 
Rank of Average Rank 1 5 5 3 2 3 

1 5  Geometric Mean 81 . 1 7  1 1 0.33 1 1 4.70 86.87 1 00.71 101 .90 
Rank 1 5 6 2 3 4 
Average Rank by Series 3.15 4.05 3.80 3.50 2.85 3.65 
Rank of Average Rank 2 6 5 3 1 4 

Historical Level Shift Table: 1 3-5 
Period: Scenario 1 3  Geometric R oot  Mean Square Error 

Adjusted HWW HW Adaptive Auto Naive 
Geometric Mean 21 .64 22.64 22.02 20.94 22.45 1 9.21 
Rank 3 6 4 2 5 1 
Average Rank by Series 3.75 3.60 3.45 3.70 3.45 3.05 
Rank of Average Rank 6 4 2 5 2 1 

5 Geometric Mean 34.24 43.61 39.54 38.87 43.82 0.00 
Rank 2 5 4 3 6 1 
Average Rank by Series 3.05 3.95 3.60 3.95 3.05 3.40 
Rank of Average Rank 1 5 4 5 1 3 

1 0  Geometric Mean 44.41 64.44 64.86 50.74 59.01 0.00 
Rank 2 5 6 3 4 1 
Average Rank by Series 3.15 3.75 3.75 3.8 3.1 3.45 
Rank of Average Rank 2 4 4 6 1 3 

1 5  Geometric Mean 56.89 79.64 82.64 64.49 75.22 80.1 8  
Rank 1 4 6 2 3 5 
Average Rank by Series 3.30 3.85 3.70 3.40 3.05 3.70 
Rank of Average Rank 2 6 4 3 1 4 
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Historical Level Shift Average Rank of Absolute Error Table 1 3- 6 Historical Level Shift Log Mean Square Error Ratio Table 1 3  - 1 0 
Period Scenario 1 3  Chi Square OF p Value Period Scenario 1 3  Chi Square OF p Value 
1 RANK ANOVA 3.00 1 9  1 .0000 1 RANK ANOVA 2.01 19  1 .0000 

KRUSKAL-WALLIS 5.72 5 0.3348 KRUSKAL-WALLIS 1 .90 5 0.8624 
5 RANK ANOVA 2.57 1 9  1 .0000 5 RANK ANOVA 3.07 1 9  1 .0000 

KRUSKAL-WALLIS 3.64 5 0.6022 KRUSKAL-WALLIS 2 . 17  5 0.8246 
1 0  RANK ANOVA 3.02 1 9  1 .0000 10  RANK ANOVA 2.21 1 9  1 .0000 

KRUSKAL-WALLIS 3.94 5 0.5578 KRUSKAL-WALLIS 1 .52 5 0.91 07 
1 5  RANK ANOVA 2.28 1 9  1 .0000 1 5  RANK ANOVA 2.27 19  1 .0000 

KRUSKAL-WALLIS 2.72 5 0.7423 KRUSKAL-WALLIS 1 . 1 8  5 0.9464 

Historical Level Shift Symmetry Adjusted MAPE Table 1 3- 7 Historical Level Shift Mean Absolute Percent Error Table 1 3  - 1 1  
Scenario 1 3  Chi Square OF p Value Scenario 1 3  Chi Square OF p Value 
RANK ANOVA 4.95 1 9  0.9995 RANK ANOVA 4.93 1 9  0.9995 
KRUSKAL-WALLIS 0.24 5 0.9986 KRUSKAL-WALLIS 0.27 5 0.9981 

5 RANK ANOVA 3.30 1 9  1 .0000 5 RANK ANOVA 3.46 1 9  1 .0000 
KRUSKAL-WALLIS 0.23 5 0.9987 KRUSKAL-WALLIS 0.26 5 0.9984 

1 0  RANK ANOVA 3.32 1 9  1 .0000 1 0  RANK ANOVA 3.37 19  1 .0000 
KRUSKAL-WALLIS 0.73 5 0.9814 KRUSKAL-WALLIS 0.77 5 0.9788 

1 5  RANK ANOVA 2.57 1 9  1 .0000 1 5  RANK ANOVA 2.73 19  1 .0000 
KRUSKAL-WALLIS 0.88 5 0.9716 KRUSKAL-WALLIS 0.86 5 0.9727 

Historical Level Shift Range of Percent Error Table 1 3-8 Historical Level Shift Median Absolute Percent Error Table 1 3  - 1 2  
Scenario 1 3  Chi Square OF p Value Scenario 1 3  Chi Square OF p Value 
RANK ANOVA 2.22 1 9  1 .0000 1 RANK ANOVA 2.34 1 9  1 .0000 
KRUSKAL-WALLIS 0.07 5 0.9999 KRUSKAL-WALLIS 0.47 5 0.9931 

5 RANK ANOVA 1 .53 1 9  1 .0000 5 RAN K ANOVA 2.24 19  1 .0000 
KRUSKAL-WALLIS 0 . 12  5 0.9997 KRUSKAL-WALLIS 0 . 17  5 0.9994 
RANK ANOVA 2.84 1 9  1 .0000 10 RANK ANOVA 3.56 19  1 .0000 

1 0  KRUSKAL-WALLIS 0. 1 2  5 0.9997 KRUSKAL-WALLIS 1 .1 2  5 0.9526 
RANK ANOVA 1 .98 1 9  1 .0000 15  RAN K ANOVA 3.08 1 9  1 .0000 

1 5  KRUSKAL-WALLIS 0.58 5 0.9887 KRUSKAL-WALLIS 1 . 1 6  5 0.9484 

Hlstork:al Level Shift Geometric Root Mean Square Error Table13-9 Historical Level Shift Root Mean Square Error Table 1 3  - 1 3  
Scenario 1 3  Chi Square OF p Value Scenario 1 3  Chi Square OF p Value 

1 RANK ANOVA 2.01 1 9  1 .0000 1 RANK ANOVA 4.52 1 9  0.9997 
5 RANK ANOVA 2.98 1 9  1 .0000 5 RANK ANOVA 3.25 1 9  1 .0000 
1 0  RANK ANOVA 2.35 1 9  1 .0000 1 0  RANK ANOVA 3.21 19  1 .0000 
1 5  RANK ANOVA 2.27 1 9  1 .0000 1 5  RANK ANOVA 3.23 19  1 .0000 
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Historical Level Shift (Restricted) Table: 1 38-1 
Period: Scenario 1 3b Average Rank of Absolute Error 

Adjusted HWW HW Adaptive Auto Naive 
Average 3.62 3.53 3.49 3.59 3.26 3. 1 6  
Rank 6 4 3 5 2 1 
Geometric Mean 3.49 3.44 3.43 3.43 3.20 3.02 
Rank 6 5 4 3 2 1 
Average Rank by Series 3.95 3.73 3.45 3.80 3 . 18  2.90 
Rank of Average Rank 6 4 3 5 2 1 
Kruskal-Wallis Rank Sum 1 372.0 1 292.5 1 239.0 1 324.5 1 1 1 4.0 927.5 
Rank of K-W Rank Sum 6 4 3 5 2 1 
K-W Multi-Comparison Count" 5 4 5 4 5 5 

5 Average 2.91 3.62 3.46 3.73 3.45 3.47 
Rank 1 5 3 6 2 4 
Geometric Mean 2.71 3.49 3.34 3.52 3.35 3.28 
Rank 1 5 3 6 4 2 
Average Rank by Series 2.65 3.80 3.55 4.08 3.40 3.53 
Rank of Average Rank 1 5 4 6 2 3 
Kruskal-Wallis Rank Sum 860.0 1 31 2.5 1 224.5 1 41 4.0 1 233.5 1 231 .0 
Rank of K-W Rank Sum 1 5 2 6 4 3 
K-W Multi-Comparison Count" 5 5 3 5 3 3 

1 0  Average 2.85 3.72 3.57 3.63 3.30 3.58 
Rank 1 6 3 5 2 4 
Geometric Mean 2.59 3.57 3.42 3.45 3. 1 7  3.30 
Rank 1 6 4 5 2 3 
Average Rank by Series 2.75 3.88 3.60 3.85 3. 1 0  3.83 
Rank of Average Rank 1 6 3 5 2 4 
Kruskal-Wallis Rank Sum 850.5 1 381 .0 1289.0 1 335.5 1 1 40.0 1 281 .5 
Rank of K-W Rank Sum 1 6 4 5 2 3 
K-W Multi-Comparison Count" 5 5 4 5 5 4 

1 5  Average 2.67 3.71 3.66 3.57 3.26 3.57 
Rank 1 6 5 3 2 3 
Geometric Mean 2.66 3.53 3.47 3.35 3. 1 3  3. 1 9  
Rank 1 6 5 4 2 3 
Average Rank by Series 3.08 3.90 3.58 3.66 3.05 3.73 
Rank of Average Rank 2 6 3 4 1 5 
Kruskal-Wallis Rank Sum 694.5 1 355.5 1 320.0 1 296.0 1 1 23.0 1 282.5 
Rank of K-W Rank Sum 1 6 5 4 2 3 
K-W Multi-Comparison Count" 5 4 2 3 5 3 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 
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Historical Level Shift (Restricted) Table: 1 36-2 
Period: Scenario 1 3b Range of Percent Error 

Adjusted HWW HW Adaptive Auto Naive 
Average 8.60% 8.46% 8.88% 8.56% 8.23% 9.46% 
Rank 4 2 5 3 1 6 
Geometric Mean 4.7 1 %  4.86% 4.97% 4.75% 4.58% 4.84% 
Rank 2 5 6 3 1 4 
Average Rank by Series 3.40 3.88 3.78 3.00 3. 1 5  3.80 
Rank of Average Rank 3 6 4 1 2 5 
Kruskal-Wallis Rank Sum 1 21 3.0 1 21 3.0 1 222.5 1 21 6.0 1 1 75.0 1 228.0 
Rank of K-W Rank Sum 2 2 5 4 1 6 
K-W Multi-Comparison Count" 1 0 1 0 3 1 

5 Average 16 . 16% 1 8.08% 1 8.00% 1 6.79% 1 7.64% 21 . 1 1 %  
Rank 1 5 4 2 3 6 
Geometric Mean 7.37% 7.64% 7.80% 7.55% 7.83% 7.25% 
Rank 2 4 5 3 6 1 
Average Rank by Series 3.25 3.48 3.43 3.65 3.50 3.70 
Rank of Average Rank 1 3 2 5 4 6 
Kruskal-Wallis Rank Sum 1 1 93.0 1 1 99.0 1 21 2.5 1 21 9.0 1 227.0 1 1 88.0 
Rank of K-W Rank Sum 2 3 4 5 6 1 
K-W Multi-Comparison Count" 1 0 0 0 1 0 

1 0  Average 1 7.33% 21 .64% 1 9.99% 1 9.36% 20.39% 1 6.29% 
Rank 2 6 4 3 5 1 
Geometric Mean 7.99% 8.78% 8.61 % 8.50% 8.82% 8.36% 
Rank 1 5 4 3 6 2 
Average Rank by Series 3. 1 0  3.48 2.98 3.50 3.85 4. 1 0  
Rank of Average Rank 2 3 1 4 5 6 
Kruskal-Wallis Rank Sum 1 1 81 .0 1 2 1 5.0 1 21 0.5 1 1 74.0 1 235.0 1 209.0 
Rank of K-W Rank Sum 2 5 4 1 6 3 
K-W Multi-Comparison Count" 1 0 0 1 2 0 

1 5  Average 1 2.75% 1 7.62% 15 . 19% 1 5.72% 1 4.26% 1 3.21 % 
Rank 1 6 4 5 3 2 
Geometric Mean 8.07% 7.98% 7.76% 7.46% 7.1 1 %  7.08% 
Rank 6 5 4 3 2 1 
Average Rank by Series 3.05 3.98 3.48 3.75 3.35 3.40 
Rank of Average Rank 1 6 4 5 2 3 
Kruskal-Wallis Rank Sum 1 231 .0 1 241 .0 1 237.5 1 1 78.0 1 1 64.0 1 1 74.0 
Rank of K-W Rank Sum 4 6 5 3 1 2 
K-W Multi-Comparison Count" 3 3 3 3 3 3 
"K-W Multi-Comparison Count valid only If IVuskal-Wallis statistic Is significant. 
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Table: 1 38-3 
Historical Level Shift (Restricted) 

Period: Scenario 1 3b Mean Absolute Percent Error 
Adjusted HWW HW Adaptive Auto Naive 

Average 5. 1 2% 5.71 % 5.50% 5.00% 5.41 % 4.59% 
Rank 3 6 5 2 4 1 
Geometric Mean 2.87% 3.00% 2.96% 2.90% 2.87% 2.65% 
Rank 2 6 5 4 3 1 
Average Rank by Series 3.80 3.93 3.73 4.05 2.85 2.65 
Rank of Average Rank 4 5 3 6 2 1 
Kruskal-Wallis Rank Sum 1 224.0 1 232.0 1 229.5 1 246.0 1 1 86.0 1 1 48.0 
Rank of K-W Rank Sum 3 5 4 6 2 1 
K-W Multi-Comparison Count" 2 2 1 2 3 4 

5 Average 6.90% 1 1 .51 % 1 1 .09% 8.1 2% 1 1 .69% 8.56% 
Rank 1 5 4 2 6 3 
Geometric Mean 4.37% 5.64% 5.44% 4.99% 5.90% 5.1 8% 
Rank 1 5 4 2 6 3 
Average Rank by Series 2.70 4.03 3.68 4.1 5  3.30 3. 1 5  
Rank of Average Rank 1 5 4 6 3 2 
Kruskal-Wallis Rank Sum 1 1 1 7 .0 1 229.0 1 202.5 1 1 80.0 1 254.0 1 222.0 
Rank of K-W Rank Sum 1 5 3 2 6 4 
K-W Multi-Comparison Count" 5 2 2 3 3 1 

1 0  Average 8.53% 1 8.93% 1 8.30% 1 1 . 1 9% 1 8.84% 1 1 . 1 9% 
Rank 1 6 4 2 5 3 
Geometric Mean 5.42% 8. 1 5% 8.01 % 6.50% 7.96% 7.59% 
Rank 1 6 5 2 4 3 
Average Rank by Series 2.75 4.03 3.83 3.75 3.00 3.65 
Rank of Average Rank 1 6 5 4 2 3 
Kruskal-Wallis Rank Sum 1 068.0 1 251 .0 1 230.5 1 1 49.0 1 222.0 1 269.0 
Rank of K-W Rank Sum 1 5 4 2 3 6 
K-W Multi-Comparison Count" 5 2 2 5 3 3 

1 5  Average 8.85% 24.55% 23.78% 1 2.73% 24.59% 1 2. 1 1 %  
Rank 1 5 4 3 6 2 
Geometric Mean 6. 17% 9.26% 9.32% 7.41 % 8.67% 8.86% 
Rank 1 5 6 2 3 4 
Average Rank by Series 2.95 4 08 3.63 3.55 3.05 3.75 
Rank of Average Rank 1 6 4 3 2 5 
Kruskal-Wallis Rank Sum 1 064.0 1 225.0 1 228.5 1 1 43.0 1 203.0 1 306.0 
Rank of K-W Rank Sum 1 4 5 2 3 6 
K-W Multi-Comparison Count" 5 3 3 5 3 5 
"K-W Multi-Comparison Count valid only if Kruskal-Wallis statistic is significant. 
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Historical level Shift (Restricted) Table: 1 3B� 
Period: Scenario 1 3b Root Mean Square Error 

Adjusted HWW HW Adaptive Auto Naive 
Geometric Mean 32.35 34.63 34.68 33.65 32.95 31 .75 
Rank 2 5 6 4 3 1 
Average Rank by Series 3.60 3.93 3.93 3.90 2.65 3.00 
Rank of Average Rank 3 5 5 4 1 2 

5 Geometric Mean SO.87 64.51 63.67 57.23 66.90 58.68 
Rank 1 5 4 2 6 3 
Average Rank by Series 2.60 3.93 3.53 4.1 5  3. 1 5  3.65 
Rank of Average Rank 1 5 3 6 2 4 

1 0  Geometric Mean 63.07 93.33 92.08 75.33 92.20 86.73 
Rank 1 6 4 2 5 3 
Average Rank by Series 2.SO 3.98 3.73 3.80 3.20 3.80 
Rank of Average Rank 1 6 3 4 2 4 

15 Geometric Mean 73. 1 0  108.94 1 1 0.51 86.87 1 00.71 1 01 .90 
Rank 1 5 6 2 3 4 
Average Rank by Series 2.80 4. 1 8  3.73 3.55 3.00 3.75 
Rank of Average Rank 1 6 4 3 2 5 

Historical level Shift (Restricted) Table: 1 3B-5 
Period: Scenario 1 3b Geometric Root Mean Square Error 

Adjusted HWW HW Adaptive Auto Naive 
Geometric Mean 22.09 22. 1 9  21 .36 20.94 22.45 1 9.21 
Rank 4 5 3 2 6 1 
Average Rank by Series 3.80 3.53 3.38 3.70 3.SO 3.10 
Rank of Average Rank 6 4 2 5 3 1 

5 Geometric Mean 32.03 42.73 37.36 38.87 43.82 0.00 
Rank 2 5 3 4 6 1 
Average Rank by Series 3.05 3.98 3.53 4.00 3.05 3.40 
Rank of Average Rank 1 5 4 6 1 3 

1 0  Geometric Mean 40.26 62.60 61 .72 SO.74 59.01 0.00 
Rank 2 6 5 3 4 1 
Average Rank by Series 3. 15  3.725 3.675 3.9 3.1 3.45 
Rank of Average Rank 2 5 4 6 1 3 

1 5  Geometric Mean 51 .59 76.35 76. 1 0  64.49 75.22 80.18 
Rank 1 5 4 2 3 6 
Average Rank by Series 3.05 3.93 3.63 3.55 3. 1 0  3.75 
Rank of Average Rank 1 6 4 3 2 5 
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Historical Level Shift (R) Average Rank of Absolute Error Table 1 38� Historical Level Shift (R) Log Mean Square Error Ratio Table 1 38- 1 0  
Period Scenario 1 3b Chi Square OF p Value Period Scenario 1 3b Chi Square OF p Value 
1 RANK ANOVA 2.95 1 9  1 .0000 1 RANK ANOVA 1 .98 1 9  1 .0000 

KRUSKAL-WALLIS 5.61 5 0.3457 KRUSKAL-WALLIS 1 .84 5 0.8706 
5 RANK ANOVA 3.60 1 9  1 .0000 5 RANK ANOVA 3 . 19  19  1 .0000 

KRUSKAL-WALLIS 7.25 5 0.2028 KRUSKAL-WALLIS 3.06 5 0.6907 
1 0  RANK ANOVA 3.50 1 9  1 .0000 1 0  RANK ANOVA 2.24 1 9  1 .0000 

KRUSKAL-WALLIS 7.85 5 0 . 1647 KRUSKAL-WALLIS 2.43 5 0.7863 
1 5  RANK ANOVA 2.60 1 9  1 .0000 1 5  RANK ANOVA 2.59 1 9  1 .0000 

KRUSKAL-WALLIS 6.32 5 0.2759 KRUSKAL-WALLIS 2.52 5 0.7733 

Historical Level Shift (R) Symmetry Adjusted MAPE Table 1 38- 7 Historical Level Shift (R) Mean Absolute Percent Error Table 1 38- 1 1  
Scenario 1 3b Chi Square OF p Value Scenario 1 3b Chi Square OF p Value 
RANK ANOVA 4.77 1 9  0.9996 1 RAN K ANOVA 4.77 1 9  0.9996 
KRUSKAL-WALLIS 0.25 5 0.9985 KRUSKAL-WALLIS 0.28 5 0.9980 

5 RANK ANOVA 4.1 3 1 9  0.9999 5 RANK ANOVA 4.32 1 9  0.9998 
KRUSKAL-WALLIS 0.44 5 0.9942 KRUSKAL-WALLIS 0.48 5 0.9928 

1 0  RANK ANOVA 3.83 1 9  0.9999 1 0  RANK ANOVA 3.84 1 9  0.9999 
KRUSKAL-WALLIS 1 .32 5 0.9331 KR USKAL-WALLIS 1 .20 5 0.9448 

1 5  RANK ANOVA 3.04 1 9  1 .0000 1 5  RANK ANOVA 3.1 5 1 9  1 .0000 
KRUSKAL-WALLIS 1 .54 5 0.9084 KRUSKAL-WALLIS 1 .43 5 0.9205 

Historical Level Shift (R) Range of Percent Error Table 1 38-8 Historical Level Shift (R) Median Absolute Percent Error Table 1 38- 1 2  
Scenario 1 3b Chi Square OF p Value Scenario 1 3b Chi Square OF p Value 
RANK ANOVA 2.71 1 9  1 .0000 1 RANK ANOVA 2.45 1 9  1 .0000 
KRUSKAL-WALLIS 0.07 5 0.9999 KRUSKAL-WALLIS 0.47 5 0.9931 

5 RANK ANOVA 1 .65 1 9  1 .0000 5 RANK ANOVA 2. 1 3  1 9  1 .0000 
KRUSKAL-WALLIS O.OS 5 1 .0000 KRUSKAL-WALLIS 0.25 5 0.9985 
RANK ANOVA 3.1 5  1 9  1 .0000 1 0  RANK ANOVA 3.84 1 9  0.9999 

1 0  KRUSKAL-WALLIS 0.1 1 5 0.9998 KRUSKAL-WALLIS 1 .34 5 0.9307 
RANK ANOVA 2.40 1 9  1 .0000 1 5  RANK ANOVA 3.57 1 9  1 .0000 

1 5  KRUSKAL-WALLIS 0.27 5 0.9982 KRUSKAL-WALLIS 1 .66 5 0.8945 

Historical Level Shift (R) Geometric Root Mean Square Error Table 1 38- 9 Historical Level Shift (R) Root Mean Square Error Table 1 38- 1 3  
Scenario 1 3b Chi Square OF p Value Scenario 1 3b Chi Square OF p Value 

1 RANK ANOVA 1 .98 1 9  1 .0000 1 RANK ANOVA 4.26 1 9  0.9998 
5 RANK ANOVA 3. 1 0  1 9  1 .0000 5 RANK ANOVA 4.37 1 9  0.9998 
1 0  RANK ANOVA 2.40 1 9  1 .0000 1 0  RANK ANOVA 4.35 1 9  0.9998 
1 5  RANK ANOVA 2.59 1 9  1 .0000 15  RANK ANOVA 3.90 1 9  0.9999 
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Appendix V Forecas t  Evaluation Statistics 

Descriptive Statistics 

F o l l owing are the s ta t i s t i c s  that are used 1n thi s 

ana lys i s . C i t a t i ons are in the text . 

Let : 

x = Ac tual obs e rva t i on , ( some t imes s ubs c r ipted to t ime 
period i )  

F = Fore c a s t  ( s ome t imes subs c r ipted to t ime per i od i )  

Mean Squared Error 

Roo t Mean Squared . Error 

RMSE = v'MSE 

Mean Abs o lu t e  Percent Error 

Percent Error 

Mean Perc ent Error 

MPE n 
= l: .  1PE . /n � =  � 

Geome t r i c  Roo t  Mean Squared Error 

GRMSE = 

Where L = the number o f  s teps ahead from T to the 
obs e rva t ion from which the error is c a l cu l ated , n = T -

L + 1 ,  T = the t index value for the l a s t  ac tual 
obs e rva t i on ,  and i is the index of the s e r i e s . 
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Log Mean Error Rat io ( as c ompared w i th Naive 2 )  . 

L e t  mij deno tes the mean squared forecast error of 
techniques j on series i .  For thi s  s e r i e s , de f ine the 
l og mean s quared error r a t i o  as Imrie = log ( miO /mij ) , 
where miO i s  the mean [ squared ] forec a s t  error o f  some 
benchmark technique . Computed wi th the benchmark MSE 
in the numera tor , a pos i t ive LMR indicates tha t 
technique j had a sma l ler forec a s t  MSE on thi s series 
than the benchmark . 

Symme t r i c a l  Mean Abs o lute Perc ent Error 

Symme t r i c a l  Perc ent Error 

Symme t r i c a l  Mean Perc ent Error 

Median Abs o lu t e  Perc ent Error ( Median APE ) 

MdAPE = 

Average Rank 

Obs ervat i on ( S+ 1 ) / 2  for an odd number o f  
observa t i ons or the average o f  S / 2  and 
( S+ 1 ) / 2  for an even number o f  obs erva ti ons , 

where the obs erva t ions are the rank ordered 
average percent errors . 

AR = ( Summed Rank/Number o f  Observed Ranks ) . 

Range o f  Perc ent Error 

RPE = l arges t  pos i t ive perc ent error minus large s t  
negat ive percent error . 
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Inferential Statistics 

Rank ANOVA 

Le t the mos t  accurate predi c t ion = rank 1 and the least 
accurate = r ank n ,  
m = t ime peri ods ( updates ) ,  and 

Rit = the r ank o f  the t th predi c t i on for me thod i .  

Summed r anks are c a l culated as : 

Analys i s  o f  Var ian c e  by Rank ( Fr i edman Tes t  or Rank ANOVA ) 
The summed ranks c an be c ompared us ing a chi- squared 
goodn e s s  o f  f i t  tes t wi th a prior expec ta t i on o f  
1 / 2  m ( n+ 1 ) u s e  chi - s quared wi th us ing n- 1 degrees o f  
f re edom : 

Kruskal-Wallis Tes t  

i = l  Where , N=!:' k (ni ) and ni a r e  the number o f  predic t ions 

for the i me thods and Wi is the sum of the ranks for 
me thod i .  Ranks are based on the abs o lu t e  value o f  the 
fore c a s t  errors . H i s  a chi - s quared var i able w i th k - 1  
degrees o f  f r eedom . 



Appendix VI Kruskal-Wallis and Analys is o f  Variance by Rank 

The two non-parame t r i c  s ta t i s t i c al t e s ts produc ed 

overwhe lmingly s igni f i c ant resu l t s  excep t w i th s c enar io 13 

where they proved no t s igni f i c ant w i th all s ta t i s t i c s  and 

a l l  t r i a l s . Thi s  las t resu l t  led me to suspe c t  tha t there 

might be s ome thing wrong wi th s c enar i o  13 and a f ter some 

inve s t igation I c ame to suspec t e i ther ( a )  the mode l s  in 

s c enar i o  13 were a l lowed to f i t  to exc e s s ive � parame ters , 

or ( b )  tha t the s ta t i s t i c s  were sens i t ive to the number o f  

treatment s  ( mode l s ) c ons idered . I examined the f i r s t  

susp i c i on by r educ ing the pos s ible � parame ter range and 

rerunning thi s  t r i a l . Resu l t s have been pres ented as 

s c enar 1 0  1 3 b  and are no t s igni f ic an t ly di f ferent from 

s c enar i o  1 3 . I examined the second susp i c ion by exc luding 5 

non - ad hoc mode l s  from s c enar i o  1 and c a l c u l a t ing the 

Kruska l -Wa l l i s  and Rank ANOVA s ta t i s t i c s  for the rank o f  

abs o lu t e  error c ompari son ( equ iva lent t o  Tables 1 - 1  and 1 - 7  

i n  Appendix IV ) . Thes e  resu l t s are shown in tables 1 and 2 .  
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Table 1 Inferential Statistics with Fewer Options 

Period Adjust HWW* HW* Adapt· Auto· Naive· 
1 Average Rank by Series 1 .60 3.43 3.1 0 3.40 4.88 4.60 

Rank of Average Rank 1 4 2 3 6 5 
Kruskal-Wallis Rank Sum 372 1 283 1 069 1 1 29 1 709 1 698 
Rank of K-W Rank Sum 1 4 2 3 6 5 
K-W Multi-Comparison Count· 5 5 5 5 4 4 

5 Average Rank by Series 1 .75 2.83 3.80 3.98 4.80 3.85 
Rank of Average Rank 1 2 3 5 6 4 
Kruskal-Wallis Rank Sum 41 5.5 903.5 1 322.5 1 402 1 782.5 1 434 
Rank of K-W Rank Sum 1 2 3 4 6 5 
K-W Multi-Comparison Count* 5 5 5 4 5 4 

1 0  Average Rank by Series 1 .55 2.975 3.825 4.1 75 4.075 4.4 
Rank of Average Rank 1 2 3 5 4 6 
Kruskal-Wallis Rank Sum 397.5 946.5 1 348.5 1 494 1 531 .5 1 542 
Rank of K-W Rank Sum 1 2 3 4 5 6 
K-W Multi-Comparison Count* 5 5 5 4 3 4 

1 5  Average Rank by Series 1 .58 2.75 3.70 3.98 4.68 4.33 
Rank of Average Rank 1 2 3 4 6 5 
Kruskal-Wallis Rank Sum 383 802 1 340.5 1 497.5 1 71 2  1 525 
Rank of K-W Rank Sum 1 2 3 4 6 5 
K-W Multi-Comparison Count· 5 5 5 4 5 4 

Table 2 Rank Anova and Kruskal-Wallis Results 

Period Chi Squared DF p value 
1 RANK AN OVA 1 4.52 1 9  0.7528 

KRUSKAL-WALLIS 50.46 5 0.0000 
5 RANK ANOVA 1 2. 1 5  1 9  0.8789 

KRUSKAL-WALLIS 47.63 5 0.0000 
1 0  RANK AN OVA 1 2.41 1 9  0.8674 

KRUSKAL-WALLIS 43. 1 0  5 0 .0000 
1 5  RANK AN OVA 1 3.96 1 9  0.7859 

KRUSKAL-WALLIS 53.77 5 0.0000 

For the Krus ka1 -Wa l l i s  s ta t i s t i c , the va lues o f  the 

s ta t i s t i c s  c hange ( which shou ld be expec t ed ) , bu t the 

gener a l  resu l t s  do not , tha t i s , the s ta t i s t i c s  remained 

s igni f i c an t  at the a = 0 . 0 5 leve l . However , for the Rank 

ANOVA tes t , the s ta t i s t i c s  are no l onger s i gni f i c an t . Thi s  

sugges t s  that the s ign i f i c an c e  o f  the previous resu l t s  may 

be par t ly a t tr ibu table to the u s e  o f  a l arge number o f  

treatment s  ( forec a s t  mode l s ) .  I t  1 S  no t c lear whe ther thi s  
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a r i s e s  bec au s e  o f  an incr ea s ed number o f  observa t i ons or 

bec au s e  o f  s ome uniden t i f ied bias that the t e s t s  br ing into 

the ana lys i s . 

F o l l owing thes e  explorations , I again r eviewed the 

r e su l t s  o f  s c enar io 13 and found ano ther reas onab l e  

exp l anat i on ,  which i s  tha t the ac tual summari z ed s ta t i s t i c a l  

resu l t s  in s c enar io 1 3  did no t vary very much . So , i t  s e ems 

that the l a c k  o f  s igni f i c an c e  in s c enar i o  1 3  as c ompared 

wi th the f a i r ly s trong s ta t i s t i c a l  resu l ts in the o ther 

s c enari o s  c ou l d  resu l t  f rom the obvious s ta t i s t i c a l  reason , 

tha t the di f fe rent treatments in s c enar i o  1 3  do no t produce 

par t i c u l ar ly di f f erent resu l t s . 

Ano ther problem wi th thes e  s ta t i s t i c s  i s  tha t in some 

o f  the t r i a l s  rank order was s trong , bu t incons istent 

be tween the var i ous de s c r ip t ive s ta t i s t ic s . The non� 

parame tr i c  t e s t s  were not s ens i t ive to thes e  inc ons i s tent 

resul t s . The r ank order resu l t s were s ta t i s t i c a l ly 

s igni f i c an t  wi th extreme ly l ow p values bo th when the 

resu l t s  were c ons i s tent be tween var i ous des c r ip t ive 

s ta t i s t ic s  and when they were no t .  Thi s sugges ts tha t these 

r ank tests are not su f f i c ient to di s t ingu ish superior and 

inferior fore c as t mode l s  by thems e lve s , but that they may be 

u s e fu l  as a supp l ement to the app l i c a t ion o f  a battery of 



descriptive s tatistics as pres ented in this dissertat ion . 

I f  the resu l ts are c ons i s tent across a ba t tery o f  

des c r ip t ive s ta t i s t i c s  and tes t s igni f i c ant wi th the se 

tes t s , the res earcher has reason to accept tha t the 

treatments are di f ferent . S t a t i s t ic a l  s igni f i c ance i s  a 

weaker resu l t  whi l e  s igni f i c ance wi thou t c ons i s tency i s  

uninterpre t able . 

4 1 6  

In this s tudy , the examina t i on o f  pos s ible s ta t i s t i c a l  

tes t ing o f  forec a s t  treatments through non-parame tric rank 

order t e s t s  was a sec ondary obj ec t ive . The s e  resu l t s  shou ld 

be c ons i dered exploratory . Howeve r , i t  appears tha t the 

app l i c a t i on o f  e i ther o f  thes e  s ta t i s t i c a l  t e s t s  in the 

manne r  des c r ibed in thi s s e c t i on has s ome promi s e  when 

app l ied across a bat t e ry o f  des c r ipt ive s ta t i s t ic s . Where 

resu l t s  are c ons i s tent across the ba t te ry o f  de s c r ipt ive 

s ta t i s t i c s  and the resu l t s  are s igni f i c ant w i th one or both 

of the s e  t e s t s , as oc curs w i th s c enar ios 1 , 2 ,  8 and 9 , i t  

appears tha t the t e s t s  support each o ther and s trengthen the 

c onc lus i on tha t the di f ferenc es in fore c as t treatments are 

more than j us t  inc idental . Where the resu l t s  are l e s s  

c ons i s tent across the ba t te ry o f  de s c r ip t ive s ta t i s t i c s , a s  

wi th s c enar i o  5 ,  or where the s ta t i s t ic a l  t e s t s  a r e  not 

s ign i f i c ant , as wi th s c enar io 1 3 , resu l t s  are no t f i rmly 

supported by the s tudy . 
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