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ABSTRACT 

ALTERED AXON INITIAL SEGMENT STRUCTURE AND FUNCTION IN 
INFLAMMATORY DISEASE 

 

By Kareem Clark, B.S. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2017 

 

Director: Jeffrey L. Dupree, Ph.D. 
Associate Professor 
Department of Anatomy and Neurobiology 
 

     Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), 

an inflammatory demyelinating disease of the central nervous system (CNS), but the 

mechanisms that underlie axonal insults remain unclear. While most axonal pathologies 

characterized in MS are a direct consequence of myelin loss, we propose that axonal 

pathologies also occur independent of demyelination. In support of this idea, we recently 

reported that mice that develop experimental autoimmune encephalomyelitis (EAE), a 

model commonly used to mimic the pathogenesis of MS, exhibit a structural and 

functional disruption of the axon initial segment (AIS), a subdomain of the axon that acts 

as the trigger-zone for action potential generation. Importantly, this disruption is 

independent of myelin loss. Although the mechanism responsible for AIS disruption 

remains unclear, we observed an attenuation of the AIS insult following treatment with a 

known scavenger of oxygen free radicals. To further investigate the role of oxidative 

stress in modulating AIS stability, we employed an in vitro model in which neurons were 

exposed to a spontaneous reactive oxygen and nitrogen species generator. Through this 
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approach, we demonstrated that oxidative stress is capable of AIS modulation acting 

through induction of cytosolic calcium (Ca2+) influx from both extracellular and intracellular 

sources, resulting in calpain protease activation. Furthermore, because rises in 

intracellular Ca2+ are central to these and other mechanisms of AIS disruption, we next 

investigated the cisternal organelle (CO), an AIS-localized Ca2+-regulating structure. 

Although this organelle could prove to be central to AIS modulation, very little is known 

about the mechanisms regulating its stability. Through this line of investigation, we 

provide the first evidence of pathological alteration to the CO in a disease state.  This 

disruption precedes loss of AIS protein clustering and axo-axonic GABAergic input in both 

EAE and MS postmortem tissue. Overall, these studies reveal a primary axonal insult, 

independent of myelin loss, in a disease classically characterized as a white-matter 

pathology. Instead, this insult is most likely driven by oxidative stress through local Ca2+ 

dysregulation at the AIS, providing novel therapeutic targets for MS. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 The Central Nervous System   

     The central nervous system (CNS), which integrates information and coordinates 

activity throughout the body, consists of two major structures: the brain and spinal cord, 

as opposed to the peripheral nervous system which consists of nerves that travel outside 

of the skull or spinal column (de Lahunta et al., 2016). This system is composed of gray 

and white matter which contain neuronal cell bodies and processes respectively (de 

Lahunta et al., 2016). Entry of circulating blood flow components into the CNS is restricted 

by a highly selective blood brain barrier (BBB). Additionally, a unique set of cell types 

reside in the CNS, including neuronal and glial cells, which include astrocytes, microglia, 

and oligodendrocytes (Zuchero and Barres, 2015).     

     Astrocytes are one of three main types of glial cells present in the CNS (Oberheim et 

al., 2012). These star-shaped cells have perhaps the most diverse set of functions 

including guiding laminar organization, providing neuronal trophic support, modulating 

synaptic activity, and maintaining BBB integrity. These cells are also interconnected 

through gap-junctions that aid in the synchrony during reactivity (Orellana et al., 2013). 

Microglia, a separate glial cell type, are the resident innate immune cells of the CNS. 

While the periphery contains a host of lymphocyte and macrophage related cells, the 

inflammatory response in the CNS is largely mediated by microglia (Kabba et al., 2017). 

These cells survey the surrounding CNS environment ready to respond to potential insults 

(Kabba et al., 2017). As effectors of the inflammatory response, these cells can exhibit a 
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spectrum of reactivity profiles depending on the nature of the insult. Microglia are capable 

of displaying either pro-inflammatory or resolving phenotypes which mediate destructive 

or reparative processes respectively (Tang and Le, 2016).  

     A third type of glial cell, oligodendrocytes, are critical for efficient neuronal firing activity 

(Simons and Nave, 2015). These cells form the myelin sheaths, fatty membranes which 

wrap around and insulate the axon and allow for rapid propagation of an action potential 

(AP) (Simons and Nave, 2015). These myelin forming glial cells are responsible for the 

establishment and maintenance of several neuronal subdomains along the axon that are 

crucial for AP transmission (Chang and Rasband, 2013). Oligodendrocytes arise from 

progenitor cells which develop into non-myelin forming immature oligodendrocytes. 

These pro-oligodendrocytes then mature and express critical myelin components 

necessary for initiation of myelination (Barateiro et al., 2016). While myelin consists of 

~70% lipids, proteins such as myelin basic protein (MBP), proteolipid protein (PLP), 

myelin oligodendrocyte glycoprotein (MOG), and myelin associated glycoprotein (MAG) 

are important for proper myelination (Jahn et al., 2009). As oligodendrocyte processes 

wrap around an axon, cytoplasm in the oligodendrocyte membranes is compressed 

towards the lateral edges of the myelin segments, resulting in regions of compacted and 

non-compacted myelin (Zuchero and Barres, 2015). While some axons are unmyelinated, 

AP conduction speed is significantly slower. Without myelin, axons typically have an AP 

conduction velocity of ~10 m/s, while compact myelinated axons can propagate at speeds 

around 100 m/s. (Salzer, 2003; Zalc, 2006). 

     While glial cells have important roles within the CNS, they serve primarily to support 

neurons, the functional units of the nervous system. Acting as the effectors of impulse 
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transmission, these cells control a vast array of physiological functions (Raichle, 2010). 

Neurons of the CNS can be subclassified into pyramidal cells or interneurons which 

exhibit excitatory or inhibitory neurotransmitter release respectively (Hu et al., 2014). 

Important for their firing function, neurons exhibit cellular polarity which involves the 

establishment of distinct cellular compartments such as the somatodendritic region, which 

receives input from other neurons, and the axonal compartment which transmits signals 

to other targets (Britt et al., 2016).  

 

1.2 Axonal Domains 

     A myelinated axon of the CNS contains distinct specialized domains including; the 

internode, juxtaparanode, paranode, node of Ranvier, and axon initial segment (AIS), 

which are diagramed in Figure 1.1 (modified from Susuki et al., 2013). These domains 

have similarities and differences with regards to protein composition, function, and 

mechanisms of establishment and maintenance (Buttermore et al., 2013).  

 

1.2.1 The Internode 

     Spanning a distance of about 99% of the myelinated segment length, the internode is 

the region of the myelinated axon where the myelin is most compact (Buttermore et al., 

2013; Salzer, 2003; Thaxton and Bhat, 2009). This domain contains axoglial interactions 

mediated by cell adhesion molecules (CAMs) called nectin-like proteins, which form 

junctions between the internodal axonal membrane and the overlying myelin sheath. 

These nectin-like proteins are important for both the initiation of myelin wrapping, as well 

as the maintenance of these axoglial interactions following myelination (Park et al., 2008, 
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Spiegel et al., 2007). The cytoskeletal network in the internode consists of the scaffolding 

proteins βII- and αII-spectrin, protein 4.1B, and the adaptor protein ankyrin B which form 

a complex that interacts with actin to establish and maintain neuronal polarity (Buttermore 

et al., 2013; Galiano et al., 2012). While ion channels are not clustered at the internode, 

they are diffusely distributed along the length of this domain (Freeman et al., 2016). 

Despite the lack of ion channel clustering, the internode plays a critical role in AP 

propagation through the maintenance of close axonal-myelin association of the protein 

interactions described above (Buttermore et al., 2013; Maurel et al., 2007; Salzer, 2003; 

Thaxton and Bhat, 2009).  

 

1.2.2 The Juxtaparanode 

     Flanking the internodes is an axonal domain that is crucial for repolarization following 

AP transmission known as the juxtaparanode. This domain contains a high density of 

delayed rectifier potassium channels which function to return the membrane potential to 

resting state following AP propagation and prevents its backpropagation (Buttermore et 

al., 2011; Rasband et al., 1998; Thaxton and Bhat, 2009). Similar to the internode, the 

juxtaparanode makes contact with the overlying myelin sheath via specific protein 

interactions. The protein complex, however, is distinct from that of the internodal axoglial 

interactions. Transmembrane cell adhesion molecule contactin associated protein-2 

(caspr-2) binds the CAM known as transient axonal glycoprotein-1 (tag-1) on the 

axolemma (Gollan et al., 2003; Thaxton and Bhat, 2009; Zoupi et al., 2013). Axonal caspr-

2 and tag-1 then form interactions with tag-1 expressed on the myelin membrane to form 

axoglial junctions (Traka et al., 2003; Zoupi et al., 2013). Similar to the internode, this 
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complex is linked to the cytoskeleton through the same scaffolding proteins αII- and βII-

spectrin, protein 4.1B, and the adaptor ankyrin B. The caspr-2/tag-1 complex is also 

important for the clustering of the rectifier potassium channels, as a mutation in either of 

these proteins results in diffusion of these channel clusters (Poliak et al., 2003; Thaxton 

and Bhat, 2009; Zoupi et al., 2013).  

 

1.2.3 The Paranode 

     Located immediately adjacent to the juxtaparanode is the paranodal axonal domain, 

which forms junctions with the lateral edges of myelin segments (Buttermore et al., 2013; 

Rosenbluth et al., 2013; Salzer, 2003; Thaxton and Bhat, 2009). The length of the 

paranode is highly conserved at ~3.5 µm (Shepherd et al., 2012). As myelin wraps around 

the axon, the cytoplasm contained in the oligodendrocyte process is forced to the edges, 

creating pockets of cytoplasm (non-compact myelin) in the glial membrane called 

“paranodal loops” (Buttermore et al., 2013; Snaidero et al., 2014). These loops make 

contact with the axonal membrane (axolemma) through protein interactions termed 

transverse bands or axoglial septate-like junctions which provide a barrier against lateral 

diffusion of the distinct axonal domains (Buttermore et al., 2011; Buttermore et al., 2013; 

Snaidero et al., 2014). The junctions between the axolemma and the paranodal myelin 

loops consist of 2 proteins on the axolemmal side: CAM caspr-1 which binds in cis with 

contactin (Buttermore et al., 2013) and a single transmembrane CAM  neurofascin 155 

(NF-155) on the glial side (Gollan et al., 2003). Additionally these axoglial interactions are 

stabilized by the spectrin, protein 4.1B, and ankyrin B actin scaffolding complex as in the 

internode and juxtaparanode (Faivre-Sarrailh and Devaux et al., 2013; Thaxton et al., 
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2011). The establishment and maintenance of the paranode is dependent on these 

interactions with the myelin membrane through this complex (Pillai et al., 2009). The 

paranodal domain, while crucial for myelin contact, does not contain functional ion 

channel clusters in the axolemma (Buttermore et al., 2013). Despite this, the paranode 

nevertheless plays an important role in AP propagation serving as a “fence,” demarcating 

nodal and juxtaparanodal ion channels and allowing for rapid saltatory conduction 

(Dupree et al., 1999; Rosenbluth et al., 2003; Thaxton and Bhat, 2009).  

 

1.2.4 The Node of Ranvier  

     The nodes of Ranvier are myelin-bare regions of the axon spanning approximately 1-

2 µm in length (Salzer, 1997). Saltatory conduction, the “jumping” of action potentials from 

node to node along the axon, is made possible by a high density clustering of voltage 

gated sodium channels at the node of Ranvier (Salzer, 2003; Arancibia‑Carcamo and 

Attwell, 2014). Without this clustering, AP conduction would be severely hindered. These 

sodium channels are anchored to the cytoskeleton through interaction with the nodal- and 

AIS-specific scaffolding protein ankyrin G (AnkG) (Buttermore et al., 2013; Thaxton and 

Bhat, 2009). AnkG associates with the spectrin-actin cytoskeleton through interactions 

with βIV-spectrin, which is also exclusively localized in the node and AIS (Berghs et al. 

2000; Buttermore et al., 2013; Komada and Soriano, 2002). The node of Ranvier also 

contains extracellular matrix (ECM) molecules such as the proteoglycans; brevican 

(Bekku et al., 2009) and versican (Dours-Zimmermann et al., 2009), as well as specific 

CAMs such as neurofascin-186 (NF-186) and neural cell adhesion molecule (NrCAM) 

(Davis et al., 1996; Eshed-Eisenbach and Peles, 2013), which also interact with the 
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scaffolding protein AnkG (Lustig et al., 2001; Rasband, 2010). Establishment and 

maintenance of nodal protein clustering is dependent on both extrinsic glial cues and 

intrinsic neuronal cues through initial clustering of NF-186 driven by myelin contact 

followed by recruitment of the AnkG scaffolding protein which clusters other scaffolding 

proteins and voltage gated ion channels (Yang et al., 2007; Zonta et al., 2008).  

 

1.2.5 The Axon Initial Segment 

     The AIS is the unmyelinated region of the axon, spanning about 35-45 µm distally from 

the soma, located between the axon hillock and the first myelin segment (Grubb and 

Burone, 2010; Rasband, 2010). The AIS provides two critical functions: serving as the 

trigger zone for AP initiation as well as establishing and maintaining neuronal polarity 

(Yosihmura and Rasband, 2014). Consistent with the AIS and the NOR both playing roles 

in AP transmission, their protein clusters are very similar in composition (Rasband, 2010). 

The AIS, like the node, contains a high density of voltage gated sodium channels which 

are ~40-50 times more densely clustered in the AIS compared to the somatodendritic 

domain (Rasband, 2010; Kole et al., 2008). Unlike the node, which assists in the 

propagation of action potentials, these AIS sodium channel clusters instead serve as the 

trigger zone for firing (Meeks et al., 2007). In addition to its role in AP initiation, modulation 

of the AP amplitude, duration, and frequency is made possible by a variety of voltage 

gated potassium channel subtypes (Kole et al., 2007; Sánchez-Ponce et al., 2012). The 

AIS also serves as a barrier between the somatodendritic and axonal compartments; thus 

maintaining neuronal polarity (Rasband, 2010). This AIS barrier, while not fully 

understood, is hypothesized to act as a sieve to filter out large cytoplasmic molecules 
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(Nakada et al., 2003; Rasband, 2010). Diffusion within the membrane is also restricted 

due to physical interactions with the AIS cytoskeletal and scaffolding proteins (El-Husseini 

et al., 2000; Rasband, 2010).  

     Establishing and maintaining the protein complexes that constitute the AIS is critical 

for both initiation and modulation of action potentials, as well as retaining neuronal 

polarity. Establishment and maintenance of this domain is under the sole control of 

cytoskeletal scaffolding protein AnkG, which is dubbed the “master organizer” of the AIS 

complex (Dzhashiashvili et al., 2007; Hedstrom, et al., 2007; Rasband, 2010). AnkG 

silencing and its removal from the mature AIS results in dismantling of the AIS, as 

detected through dispersion of sodium channels, βIV-spectrin, NF-186, and NrCAM 

immunolabeling (Hedstrom et al., 2008). AnkG is therefore, not only required for the initial 

recruitment and clustering of AIS proteins, but also for the long-term maintenance of this 

domain. The AIS, once established, is highly plastic, exhibiting alterations to ion channel 

localization and expression in response to neuronal activity. (Adachi et al., 2014; Grubb 

and Burrone 2010; Kaphzan et al., 2011; Kuba et al., 2012).  

   Although the node of Ranvier and the AIS contain very similar protein clusters, they are 

established and maintained through drastically different processes. In addition to the 

differences in roles that NF-186 and AnkG play in recruitment and stabilization of the two 

domains, as described above, perhaps the most extreme difference lies in the role of 

myelin contact. In fact, none of the nodal, paranodal, juxtaparanodal, and internodal 

domains can successfully form without glial contact (Dupree et al., 1999; Buttermore et 

al., 2013; Dzhashiashvili et al., 2007; Eshed-Eisenbach and Peles, 2013; Susuki et al., 

2013; Thaxton and Bhat, 2009). The AIS, however, is formed intrinsically through AnkG 
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restriction to the proximal end of the developing axon, completely independent of 

myelination (Bennett and Baines, 2001; Galiano et al., 2012).     

 

1.3 Axonal Domains in Injury and Disease 

     As described above, the nodal and initial segment domains are responsible for critical 

functions such as AP firing and neuronal polarity maintenance (Nelson et al., 2017). 

Because of these vital functions, pathological disruption of these domains yields severe 

downstream consequences responsible for a wide array of CNS insults (Nelson et al., 

2017). 

 

1.3.1 The Nodal Domains in Injury and Disease 

     As detailed above, the major regulator of the nodal axonal domain stability is myelin 

integrity. For this reason, nodal disruption is characteristic of all CNS insults with 

demyelination as a pathogenic feature. Our laboratory and others have demonstrated 

loss of nodal protein clustering as a downstream consequence of demyelination in mouse 

models of MS and postmortem MS tissue (Dupree et al., 2004; Coman et al., 2006; Howell 

et al., 2010; Pomicter et al., 2010; Zoupi et al., 2013). Following loss of myelin contact on 

the axon, voltage gated ion channels, as well as cytoskeletal scaffolding molecules, 

diffuse away from the domains at which they were clustered (Arancibia-Carcamo and 

Attwell, 2014). Interestingly, nodal clustering can be re-established upon remyelination. 

In the cuprizone demyelinating model of MS, mice that were withdrawn from the cuprizone 

treatment display endogenous remyelination which paralleled reestablishment of nodal 

ion channel and scaffolding protein clustering (Dupree et al., 2004). Similarly, analysis of 
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partially remyelinated lesions in MS postmortem tissue revealed similar restoration of 

nodal clustering (Coman et al., 2006). Other demyelinating disorders of the CNS that 

include nodal domain disruption include optic neuritis, phenylketonuria, Tay-Sachs, 

Gaucher disease, and other leukodystrophies (Mehndiratta and Gulati, 2014). 

     Interestingly, there is evidence of nodal domain dysfunction in CNS disorders that lack 

detectible myelin loss. For example, mutations in ion channels as well as cytoskeletal 

scaffolding proteins at the NOR, paranode and juxtaparanode are implicated in several 

psychiatric disorders including epilepsy, bipolar disorder and autism (Susuki, 2013). 

Additional myelin-independent mechanisms of nodal domain disruption, in the form of 

reduced ion channel expression and localization, occurs in disorders involving the 

peripheral nervous system, such as amyotrophic lateral sclerosis (ALS) (Shibuya et al., 

2011). Traumatic brain injury, as induced through mild fluid percussion, can also result in 

intrinsic disruption of nodal domains through neuronal calpain activation and proteolytic 

cleavage of critical nodal scaffolding components (Reeves et al., 2010). Unlike the myelin-

dependent nodal pathologies, restoration of nodal structure and function following insult 

has yet to be demonstrated. 

 

1.3.2 The Axon Initial Segment in Injury and Disease 

     While nodal axonal domains are crucial for AP propagation, AIS function is perhaps 

more crucial to neuronal firing as the site of AP initiation (Adachi et al., 2014).  Unlike the 

nodal axonal domains, the AIS does not require myelin for establishment of the domain 

(Nelson et al., 2017). The role of myelination in maintenance of AIS integrity, however, 

has only very recently been investigated by our lab (see Chapter 2; Clark et al., 2016) 
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and others (Hamada and Kole, 2015). Other CNS insults, however, are known to induce 

structural and functional alterations to this domain. AIS disruption is prominent, and 

thought to be a causative factor, in several animal models of epilepsy (Marco et al., 1997, 

Wimmer et al., 2010; Harty et al., 2013; Liu et al., 2017). These findings are consistent 

with the role of the AIS as a modulator of neuronal firing (Kole et al., 2008). Additionally, 

traumatic brain injury (TBI), as modeled by blast wave exposure and mild central fluid 

percussion, induces reductions in AIS length, which correlate to functional changes in AP  

generation (Baalman et al., 2013; Greer et al., 2013; Vascak et al., 2017). Disrupted AISs 

are also observed in close proximity to Amyloid-β plaques in models of Alzheimer’s 

disease (León-Espinosa et al., 2012; Marin et al., 2016). These changes in models of 

Alzheimer’s disease are believed to result from decreased AnkG expression by increased 

levels of specific microRNAs (Sun et al., 2014). These structural changes correlated to 

impairment of the selectivity function of the AIS allowing macromolecules such as 

pathogenic forms of Tau into the somatodendritic compartment (Li, et al., 2011; Zempel 

et al., 2017). AIS structure is also a downstream consequence of ischemic injury as 

induced through middle cerebral artery occlusion, focal cortical, and focal white matter 

stroke (Schafer et al., 2009; Hinman et al., 2013). Similarly, excitotoxicity to high levels of 

purinergic and glutamate signaling also result in alterations to the AIS complex (Del 

Puerto et al., 2015; Benned-Jensen et al., 2016) As detailed below, AIS dismantlement 

under ischemic and excitotoxic conditions involves activation of a calcium activated 

protease revealing an important role for calcium regulation at the AIS in the maintenance 

of domain stability. 
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1.4 The Role of Calcium at the AIS 

     As described above, all established mechanisms of AIS alterations under CNS insults 

involve Ca2+ dysregulation and activation of downstream Ca2+-dependent enzymatic 

processes. Understanding mechanisms of Ca2+ entry and storage is, therefore, vital to 

addressing these pathologies in an array of CNS conditions.  

 

1.4.1 Extracellular Ca2+ Entry 

     Influx of extracellular Ca2+ at the AIS is achieved through a variety of membrane 

channels that involve both voltage as well as ligand-gated entry (Rao et al., 2007; Simms 

et al., 2014). Voltage-gated Ca2+ channels (VGCCs), which remain closed at resting 

membrane potential, require a depolarizing shift in order for Ca2+ influx to occur (Simms 

et al., 2014). These channels respond to membrane depolarization through a 

conformational change of the channel subunits, which allows pore formation and entry 

of Ca2+ down its concentration gradient (Catterall et al., 2011). Multiple subfamilies of 

VGCCs are classified according to a variety of properties including; strength of voltage-

dependence, conductance of ion flow, and sensitivity to pharmacological antagonists 

(Catterall et al., 2011). These VGCC subfamilies include Cav1, Cav2, and Cav3, which 

are further classified into channel subtypes correlating with the type of Ca2+ current they 

conduct. Additionally, each VGCC subfamily is also described based on the degree of 

changes to membrane potential required for activation: either low-voltage activated 

(LVA) or high-voltage activated (HVA). These subfamilies include L-type, N-type, P/Q-

type, T-type and R-type currents (Catterall et al., 2011; Simms et al., 2014). 
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     T-type VGCCs, belonging to the Cav3 subfamily, are classified separately from all 

other subfamilies as LVA, since they open in response to small depolarizing currents 

(Cain et al., 2013). Three subtypes of T-type VGCCs are identified each with a unique 

pore forming subunit (Cain et al., 2013). These include Cav3.1, Cav3.2, and Cav3.3 (Cain 

et al., 2013). While T-type channels are the only LVA type of VGCCs described, they are 

not the only type classified differently from the HVA channels. R-type channels (Cav2.3), 

despite belonging to the Cav2 subfamily of VGCCs, share activation and inactivation 

properties with both HVA and LVA channels, lending them to an intermediate-voltage 

activated classification (Guéguinou et al., 2014). Both T- and R-type VGCCs are present 

at the AIS of hippocampal neurons, neocortical pyramidal cells, cerebellar Purkinje cells, 

as well as cartwheel interneurons of the dorsal cochlear nucleus (Bender and Trussell, 

2009, Bender et al., 2010, Grubb and Burrone, 2010). AIS expression of these channels, 

however, seems to vary among cell type as T-type channels are excluded from the AIS-

like region of retinal bipolar cells, and are instead localized exclusively to the 

somatodendritic compartment. While T- and R-type VGCCs are expressed in a variety 

of neuronal cell types axonally and/or somatodendritically (Puthussery et al., 2013), their 

localization at the AIS in other CNS regions remains to be investigated.  

     The Cav2 subfamilies of VGCCS contain P/Q-type and N-type VGCCs are both HVA 

channels further characterized as Cav2.1 and Cav2.2, respectively (Nimmrich and Gross, 

2012; Adams et al., 2013). While N-type channels were named for their ubiquitous 

expression in the “nervous” system, P/Q-type VGCCs were originally identified in 

cerebellar Purkinje cells but later found to be expressed in a variety of other CNS regions 

(Gazulla and Tintore, 2007).  Among several neuronal functions, these channel subtypes 
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are important for vesicle release of specific neurotransmitters at synaptic terminals 

(Molderings et al., 2000; Nimmrich and Gross, 2012). They are also localized at the AIS 

where their proposed function is in the modulation of AP wave form and spike timing (Yu 

et al., 2010).  

     Another type of HVA channels, L-type VGCCs, belong to the Cav1 subfamily 

(Furukawa, 2013). These subtypes are named for their “long-lasting” duration of 

activation, and are extensively characterized in cardiomyocytes (Eisner et al., 2014). 

Neuronal L-type VGCCs, however, are expressed and involved in a variety of neuronal 

functions such as regulating synaptic transmission and plasticity at the somatodendritic 

compartment. Interestingly, while L-type VGCCs are heavily involved in modulating AIS 

plasticity and injury in a variety of CNS insults as described below, they are absent at the 

AIS plasma membrane (Griggs et al., 2017; Jamann et al., 2017). These are not the only 

non-AIS localized Ca2+ channels that influence domain stability. Purinergic (P2X7) and 

glutamate (NMDA) receptors, which are non-selectively permeable to cations including 

Ca2+, also reside in the somatodendritic compartment where they are thought to influence 

AIS Ca2+ levels through changes in membrane potential and subsequent activation of 

AIS-localized VGCCs (Del Puerto et al., 2015; Benned-Jensen et al., 2016). 

 

1.4.2 Intracellular Ca2+ Stores: The Cisternal Organelle 

     While cell surfaced localized channels are important for extracellular Ca2+ entry, local 

storage at the AIS is also critical for buffering cytoplasmic Ca2+ levels (Benedeczky et 

al., 1994). The AIS contains a unique Ca2+ storing structure known as the cisternal 

organelle (CO), which is a specialized form of smooth endoplasmic reticulum (Bas Orth 
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et al., 2007). Insight into the function of the CO is largely gained from the nature of the 

proteins expressed at this structure. The CO contains annexin 6 (A6), sarco-endoplasmic 

reticulum Ca2+-ATPase (SERCA), and Inositol 1,4,5-trisphosphate (IP3) receptor type 1 

(IP3R1); all suggesting a role for the CO in the sequestration and release of Ca2+ at the 

AIS (Benedeczky et al., 1994; Sánchez-Ponce et al., 2011). The CO maintains its 

stability through interactions with the actin cytoskeleton via synaptopodin and α-actinin, 

which are actin-associated proteins crucial for CO establishment and maintenance (Bas 

Orth et al., 2007; Sánchez-Ponce et al., 2011; Sánchez-Ponce et al., 2012). The AIS and 

CO seem to be reciprocally dependent for stability, as loss of AIS clustering disrupts CO 

integrity, and proper CO localization drives AIS plasticity during development (Sánchez-

Ponce et al., 2011; Schlüter et al., 2017). Overall, while the CO appears to be important 

for local Ca2+ regulation at the AIS, alterations to CO integrity under pathological 

conditions have yet to be demonstrated. 

 

1.4.3 The Role of Ca2+ in AIS Plasticity and Injury 

     The AIS, while a highly stable complex, undergoes homeostatic alterations in length 

and positioning along the axon as a response to changes in neuronal activity (Jamann 

et al., 2017). For example, overstimulation of hippocampal neurons results in relocation 

of the AIS complex in an anterograde direction along the axon (Grubb and Burrone, 

2010). Additionally, several studies have demonstrated AIS length changes in response 

to neuronal activity (Jamann et al., 2017). Input deprivation results in lengthened AISs 

while increased stimulation induces shortening of the complex (Evans et al., 2015). All 

reported mechanisms of activity-dependent AIS plasticity are also dependent on Ca2+. 
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More specifically, this involves Ca2+ flow specifically through L-type VGCCs and 

subsequent activation of calcineurin, a Ca2+-dependent phosphatase that destabilizes 

interactions between AIS proteins such as AnkG and voltage gated ion channels (Evans 

et al., 2013). Overall, these Ca2+ dependent AIS alterations are thought to serve as a 

mechanism for fine tuning neuronal excitability in response to synaptic input (Jamann et 

al., 2017). 

     In addition to neuronal activity, changes to AIS protein clustering can also be induced 

through pathological insult as described above (Buffington and Rasband, 2011). The 

mechanisms of AIS dismantlement under ischemic and excitotoxic conditions, like that 

induced through homeostatic plasticity, is driven by Ca2+ influx (Stoler et al., 2016). 

Instead of calcineurin, these mechanisms of AIS injury involve proteolytic cleavage of 

critical AIS proteins including AnkG, βIV spectrin and voltage gated sodium channels by 

calpain, a Ca2+ activated cysteine protease (Schafer et al., 2009; Del Puerto et al., 2015; 

Benned-Jensen et al., 2016). Unlike calcineurin-mediated homeostatic AIS plasticity, 

calpain-dependent proteolysis of the AIS is thus far reported to be irreversible (Schafer 

et al., 2009). It remains unclear how Ca2+ influx selectively triggers calcineurin- versus 

calpain-driven AIS modulation.  

 

1.5 Multiple Sclerosis: Definition and Epidemiology 

1.5.1 Definition and Diagnosis 

     Multiple Sclerosis (MS) is an immune-mediated disease of the CNS in which myelin, 

the protective insulating sheath surrounding neuronal fibers is targeted for degeneration 

(Hemmer et al., 2015). Patients typically present with an initial episode of neurological 
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symptoms lasting at least 24 hours, known as a clinically isolated syndrome (CIS). While 

not all cases of CIS lead to a diagnosis of MS, about ~80% of these cases manifest into 

the disease within several years following the initial event (Brownlee and Miller, 2014). 

Following a CIS, MS can present as one of three types of disease courses: relapsing-

remitting (RRMS), secondary-progressive (SPMS), or primary-progressive (PPMS). With 

85% of MS patients initially diagnosed with RRMS, this is the most common form of the 

disease (Gallo et al., 2015). The RRMS disease course consists of periods of worsening 

neurologic symptoms, or “relapses,” interspersed between periods of symptom 

alleviation, or “remissions” (Gallo et al., 2015). Most patients initially diagnosed with 

RRMS will eventually develop SPMS, in which there is a steady progression of 

neurological deficits over time (Lassmann et al., 2012). A third form of MS, known as 

PPMS, presents with worsening clinical symptoms from the start, lacking the periods of 

remission characteristic of RRMS or the early stages of SPMS (Rice et al., 2013). During 

sudden relapses, PPMS can be also subclassified as “active”, a disease course formally 

referred to as progressive-relapsing MS (PRMS) (Ontaneda and Fox, 2015). 

     No matter the disease course, all diagnoses of MS must meet a specific set of clinical 

criteria (Katz Sand, 2015). Neurological function can be assessed clinically through 

several types of evoked potential testing (Kraft, 2013). Recording electrodes placed on 

the scalp record brain activity following presentation of visual or somatosensory 

stimulations which should yield impaired nerve conduction in MS patients (Kraft, 2013). 

While these tests can identify general neurological deficits, further criteria are necessary 

to rule out a diagnosis of a variety of other CNS diseases (Katz Sand, 2015). A diagnosis 

of MS must also present with regions of CNS myelin loss, termed lesions or plaques, as 
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visualized through Magnetic Resonance Imaging (MRI). Furthermore, a patient 

diagnosed with MS must demonstrate “dissemination of lesions in both space and time” 

according to the McDonald diagnostic criteria for MS (Milo and Miller, 2014). Additionally, 

patients diagnosed with MS also frequently present with oligoclonal bands, which are 

immunoglobulins present in the cerebrospinal fluid (CSF). These immunoglobulins, while 

originally thought to represent autoantibodies against certain CNS components, appear 

to present only as a secondary consequence of the disease, but remain valuable 

biomarkers nonetheless (Milo and Miller, 2014).  

 

1.5.2 Epidemiology 

     MS is estimated to affect 2.3 million individuals worldwide, with about 300,000 of those 

cases found in the United States (Schiess and Calabresi, 2016). Most patients are 

diagnosed between the ages of 20 and 50 (~85% of cases), with pediatric and geriatric 

cases of MS representing about 3-10% and 1-10% of diagnoses, respectively (Buhse et 

al., 2015; Cappa et al., 2017; Tenembaum, 2017). Diagnosing MS in children, however, 

is confounded by transient demyelinating events that may occur early in life, as well as 

the difficulty in identifying lesion progression through both space and time as described 

above (Kamate et al., 2010; Tenembaum, 2017). As with most autoimmune diseases 

(Fairweather et al., 2008), there is also an unequal predominance of MS based on sex, 

with an approximate 3:1 female to male prevalence of the disease (Bove and Chitnis, 

2013) potentially a consequence of  differential effects that sex hormones have on 

immune system function (Golden and Voskuhl, 2016). 
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1.5.3 Risk Factors 

     While the specific causes of MS are unclear, several risk factors, both environmental 

and genetic, are believed to be associated with the disease (Belbasis et al., 2015; 

Didonna et al., 2015). Interestingly, disease prevalence is higher among individuals 

residing in temperate climates such as those found in Canada, the northern United States, 

New Zealand, southeastern Australia and Europe. Low rates of incidence are observed 

among inhabitants of tropical climates, indicating an environmental component may 

contribute to MS development (Marrie, 2004). One hypothesis for this phenomenon is 

that living farther away from the equator, where exposure to sunlight is reduced, results 

in lower vitamin D production, a well-documented risk factor for MS (Lucas et al., 2015). 

There is strong evidence for a correlation between vitamin D levels and MS prevalence 

with levels typically lower in MS patients experiencing more severe disabilities (Simpson 

et al., 2017). Supporting this correlation, clinical trials have demonstrated that 

supplementing with vitamin D yields favorable immunomodulatory effects including 

suppressed lymphocyte reactivity and pro-inflammatory cytokine production (Røsjø E et 

al., 2015; Sotirchos et al., 2016; Muris et al., 2016B). No clinical trials to date, however, 

have successfully demonstrated a significant reduction in the frequency and severity of 

MS symptoms following vitamin D supplementation (Muris et al., 2016A). 

     Another heavily investigated environmental risk factor associated with MS 

development is exposure to the Epstein-Barr virus (EBV) (Wingerchuk, 2011). EBV 

correlates with a large number of MS cases with an increased incidence risk estimated 

around four-fold (Sundström et al., 2008; Wingerchuk, 2011; Burnard et al., 2017). Studies 

have found evidence of EBV infection in the serum and CNS of MS patients; including 
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increased antibody titers to the virus and virally infected T- and B-lymphocytes (Ascherio 

and Munger, 2007; Serafini et al., 2007; Farrell et al., 2009). Additionally, patients display 

an impaired EBV-specific lymphocytic response, suggesting that the MS immune system 

is inadequately equipped to control the virus, unlike that of healthy individuals (Jilek et al., 

2012; Laurencea and Benito-León, 2017). Despite this support for a link between EBV 

and MS development, mounting counter-evidence casts doubt on this hypothesis. Clinical 

trials have found no association between increased EBV antibody levels and the risk of 

developing MS following a CIS; a finding contradictory to its proposed role as a risk factor 

(Munger et al., 2015).  

     While MS is not considered a hereditary disease, familial and ethnic relationships have 

been identified (Hollenbach and Oksenberg, 2015). Existing evidence supports the 

involvement of a genetic component in the development of MS potentially acting to create 

a pre-disposition that would result in enhanced susceptibility to other disease triggers 

such as those described above. Supporting this idea, risk gene CYP24A1, which encodes 

an enzyme involved in vitamin D degradation, was found to be overexpressed in MS 

(Shahijanian et al., 2013). This may explain the extensive vitamin D deficiencies 

associated with severe neurological deficits in MS (Simpson et al., 2017). A variant of a 

critical allele of the HLA-DRB1 gene, which encodes a type of MHC class II cell surface 

receptor, has also been demonstrated in MS patients (Alcina et al., 2012). This receptor 

is crucial for proper recognition of the EBV by T-lymphocytes providing a possible 

explanation for the increased risk of EBV infection in MS patients (Kumar et al., 2013). 
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1.6 Multiple Sclerosis: Murine Models 

     While multiple sclerosis is strictly a human disease, key pathological features such as 

inflammation, demyelination, remyelination, and neuronal insults can be closely 

recapitulated in murine models (Kipp et al., 2017). The most commonly utilized mouse 

models of MS include toxin-induced demyelinating models, viral-induced demyelinating 

models, and experimental autoimmune/allergic encephalomyelitis (EAE) (Kipp et al., 

2017).  

 

1.6.1 Toxin-Induced Demyelinating Models 

     Because demyelination is a hallmark pathological feature of MS (Filippi et al., 2016), 

recapitulating this in mouse models is essential for uncovering the mechanisms 

underlying white matter injury and repair. This is effectively achieved through the use of 

toxin-induced demyelinating models such as the cuprizone and lysolecithin models. The 

cuprizone toxin, which is regularly administered through chow, yields detectible myelin 

loss around 1-2 weeks on cuprizone treatment with peak demyelination by 5-6 weeks of 

exposure (Denic et al., 2011). CNS targets of cuprizone-induced demyelination include 

white matter tracts such as the corpus callosum, striatum, and anterior commissure, but 

also grey matter areas such as the cerebral cortex, hippocampus and cerebellum (Herder 

et al., 2011). Lysolecithin, which is administered through focal stereotactic injection into 

specific CNS regions of interest, induces demyelination much sooner, with myelin loss 

appearing hours after injection (Torre-Fuentes et al., 2017). Unlike cuprizone, lysolecithin-

induced demyelinating insults are limited to the site of injection which commonly include 

the spinal cord or corpus callosum (Torre-Fuentes et al., 2017). While both toxins yield 
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substantial myelin loss, the mechanisms underlying these white matter insults remain 

unclear. 

     Cuprizone, a copper chelating agent, results in the death of oligodendrocytes 

presumably through impairment of mitochondrial enzymes responsible for cellular 

respiration (Torre-Fuentes et al., 2017). In contrast to cuprizone, lysolecithin, is thought 

to stimulate demyelination through disruption of myelin membranes rather than induction 

of oligodendrocyte death. (Höflich et al., 2016). In addition to providing a means of 

examining the downstream consequences of myelin loss, the toxin-induced models also 

allow for the investigation of remyelination mechanisms as both models display 

endogenous myelin repair following removal of the toxins (Baker and Amor, 2015). These 

demyelinating models, however, lack peripheral immune system involvement, a major 

component of MS pathogenesis, which involves autoimmune lymphocyte reactivity and 

CNS infiltration (Filippi et al., 2016). While this may be viewed as a pitfall of the models 

in their deviation from MS pathogenesis, it can also effectively be exploited to uncover 

mechanisms of demyelination and remyelination in a more pure environment. Despite the 

lack of peripheral inflammatory involvement, the inflammatory environment of the CNS is 

altered in both models. This includes increased reactivity and recruitment of microglia, 

the resident innate immune cells of the CNS, to lesion sites where they seem to promote 

myelin debris clearance and remyelination (Rawji and Yong, 2013). Overall, the toxin-

induced models are commonly used to investigate mechanisms of demyelination and 

remyelination, such as those present in MS, but fail to recapitulate the peripheral 

inflammatory component of the autoimmune disease. 
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1.6.2 Viral-Induced Demyelinating Models 

     As described above, development of MS is linked to certain viral infections (Mecha et 

al., 2013). To examine the viral contribution to MS pathogenesis, viruses such as Murine 

Hepatitis virus, Semliki Forest virus, and Theiler's murine encephalomyelitis virus (TMEV) 

are employed. TMEV, the most commonly studied demyelination-inducing virus, is a 

mouse pathogen capable of infecting neuronal and glial cells resulting in the activation 

and recruitment of peripheral lymphocytes into the CNS (DePaula-Silva et al., 2017). 

Intracerebral injection of TMEV leads to the induction of a late-onset demyelinating 

disease with motor deficits and myelin loss not evident until 4-5 weeks post injection 

(McCarthy et al., 2012). As with the toxin-induced models, the mechanisms that trigger 

demyelination remain unknown with possibilities including demyelination as a secondary 

consequence to axonal damage, direct viral effects on oligodendrocytes, or macrophage 

mediated phagocytosis (Mecha et al., 2013). Unlike the cuprizone model, the majority of 

the demyelinating lesions are restricted to the spinal cord despite initial intracerebral 

infection. The chronic inflammatory environment, however, is present in a variety of CNS 

regions and closely mimics that of MS (Olson, 2014). A major advantage of the viral-

induced demyelinating models is that, much like MS, the disease persists for the entire 

lifespan of the animals making it most useful for studying effective therapies for the 

chronic progressive forms of MS (DePaula-Silva et al., 2017). Because of this, effectively 

studying mechanisms of remyelination is challenging since white matter recovery is 

limited in the viral-induced models of MS (Oleszak et al., 2004). 
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1.6.3 Experimental Autoimmune Encephalomyelitis 

     EAE is the most commonly utilized mouse model of MS, and arguably the most 

successful in our understanding of disease pathogenesis since at least three of the 

approved therapies were developed solely through the use of this model (Denic et al., 

2011). EAE is induced through subcutaneous injection of myelin proteins accompanied 

by pertussis toxin and an adjuvant to ignite an inflammatory response (Beeton et al., 

2007). Immunized myelin proteins in this model include myelin oligodendrocyte 

glycoprotein (MOG), myelin basic protein (MBP), or proteolipid protein (PLP) (Badawi and 

Siahaan, 2013). Interestingly, induction of EAE with each of these proteins results in 

distinct disease courses with MOG- and MBP-induced EAE displaying a course closer to 

primary progressive MS with PLP more closely recapitulating the relapsing-remitting form 

(Badawi and Siahaan, 2013).  

    Within 1-2 weeks following induction, EAE mice display motor deficits that can present 

as mild or severe (Beeton et al., 2007). Similar to the viral-induced models, demyelination 

is limited to the spinal cord, but lymphocyte infiltration and microglial reactivity is prevalent 

throughout the CNS (Fletcher et al., 2010; Luo et al., 2017). With extensive peripheral 

and central inflammatory involvement, EAE is arguably the most successful at 

recapitulating the inflammatory environment associated with MS (Kipp et al., 2017). 

Furthermore, pathogenesis of this model, much like MS, is T-cell driven, as transfer of 

EAE-activated T-cells into Naïve mice results in adoptive progression of the disease 

(Rangachari and Kuchroo, 2013). The central role of the autoimmune component in EAE 

distinguishes this model from the toxic models of demyelinating disease which utilize 

more artificial triggers to recapitulate MS symptoms (Denic et al., 2011). Although EAE is 
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the most widely utilized murine model of MS, it is not without its pitfalls. While lymphocytic 

CNS infiltration is successfully replicated in EAE, the prominent T-cell subtype 

contributing to disease progression of this model is CD4+, with CD8+ T-cells known to 

play the predominant role in MS pathogenesis (Babbe et al., 2000; Kipp et al., 2017). 

Despite leading to the development of several currently prescribed MS drugs, EAE also 

has an incredibly high rate of failure for potential therapies, which showed promise in the 

model but proved ineffective in clinical trials (Sriram and Steiner, 2005). Overall, these 

models, along with their advantages and disadvantages, provide close recapitulation of a 

variety of pathogenic components associated with MS. 

 

1.7 Multiple Sclerosis: The Inflammatory Environment 

1.7.1 Peripheral Inflammation 

     While MS is considered an autoimmune disease of the CNS, the inflammatory 

response in MS is initiated in the periphery and thought to drive the early phase of disease 

(Hemmer et al., 2015). Effectors of the inflammatory response associated with MS 

pathogenesis include antigen presenting cells (APCs), T-cells, and B-cells. While T-cells 

are the primary peripheral immune cell type driving MS pathogenesis, their activity is 

dependent on APCs (Sie and Korn, 2017). Peripheral APCs, including macrophages, 

monocytes and dendritic cells, are involved in activating T-cells in the periphery through 

phagocytosis and presentation of myelin antigens on MHC class II receptors along with 

costimulatory molecules (Chastain et al., 2011). This process is necessary for 

development and pathogenesis of both the TMEV and EAE models of MS (Greter et al., 

2005; Chastain et al., 2012). Ultimately, this method of T-cell activation results in 
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maturation into specific T-cell subsets depending on the costimulatory signals presented 

alongside the antigen (Breed et al., 2017). 

     T-cells, which play a major role in the adaptive immune response, are CD3+ 

lymphocytes that mature in the thymus to yield one of three subsets: CD4 expressing 

helper T-cells (Th),  CD8 expressing cytotoxic T-cells, and the more enigmatic CD4-/CD8- 

gamma delta T-cells (Germain, 2002; Wiest, 2016). Helper T-cells, upon activation by 

APCs, further mature into effector subsets including Th1, Th2, Th17 and regulatory T-

cells (Tregs) which are classified based on cytokine profiles. Th1 cells, which mount 

responses against bacterial infections under non-autoimmune conditions, release pro-

inflammatory cytokines such as IFN-gamma (IFN-γ), Interleukin (IL)-2, and tumor 

necrosis factor beta (TNF-β) (Zhu et al., 2010). In contrast, Th2 cells, which normally 

protect against parasitic infection, release several immunosuppressive cytokines 

including IL-10 and IL-4 (Allen and Sutherland, 2014). The Th1 to Th2 balance appears 

critical for MS pathogenesis, as alleviation of disease symptoms is achieved by shifting 

the balance towards the resolving Th2 population (Oreja-Guevara et al., 2012; Aharoni, 

2014). Th17 cells, named for their effector cytokine IL-17, are a distinct pro-inflammatory 

subset of helper T-cells that play a large role in pathogen clearance at mucosal 

membranes but are heavily implicated in a variety of autoimmune disorders upon 

dysregulation (Tabarkiewicz et al., 2015). While these autoimmune functions have proven 

effective for tumor regression, this T-cell subset plays a detrimental role in MS 

pathogenesis (Brucklacher-Waldert et al., 2009; Bailey et al., 2014). Autoreactive Th17 

cells in MS permit CNS lymphocytic infiltration through breakdown of BBB tight junctions, 

and promotion of lymphocyte adhesion to the vascular endothelium (Kebir et al., 2007; 
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Brucklacher-Waldert et al., 2009). While still ongoing, clinical trials targeting the Th17 

population in MS have shown promise (Dos Passos et al., 2016). Whereas Th1 and Th17 

subsets are considered to exhibit pro-inflammatory effector functions, Tregs function to 

suppress these subsets and promote resolution of the inflammatory response; producing 

a variety of anti-inflammatory cytokines such as Transforming growth factor beta (TGF-

β), IL-35, and IL-10 (Duffy et al., 2017). Because modulating the proper T-cell subset 

balance has proven essential for successful disease alleviation in models and clinical 

trials, these cells are of interest for MS therapeutic strategies (Danikowski et al., 2017). 

Interestingly, Tregs are significantly downregulated in MS with those present exhibiting 

dysfunctional receptor expression and cytokine release (Danikowski et al., 2017). Most 

current MS therapies do not target the Treg population but on-going clinical trials are 

aiming to achieve this (Danikowski et al., 2017). Additionally, while much less is known 

about gamma delta T-cells, they are capable of suppressing the Treg population, thus 

exacerbating the autoimmune response. Consistent with a downregulated Treg 

population, the gamma delta T-cell population is significantly increased in MS lesions 

(Paul et al., 2015). Finally, CD8+ T-cells, which normally possess anti-tumor and anti-viral 

functions, are the predominant T-cell subtype found in MS plaques (Sinha et al., 2015). 

The role for these cytotoxic T-cells, however, is controversial with conflicting evidence 

supporting both a pathogenic, as well as an immune regulatory role in MS (Salou et al., 

2015). CD8+ T-cells appear detrimental to MS pathogenesis as they secrete factors 

involved in BBB disruption, and are sufficient to adoptively transfer EAE, which presents 

as a more severe form than that of the donor animal (Salou et al., 2015). Supporting a 

regulatory role, CD8+ T-cells, are important for EAE recovery and display higher activity 
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levels during phases of remissions rather than relapses in MS (Denic et al., 2013; Sinha 

et al., 2015). 

     In addition to T-cells, B-cells are also critical for adaptive immunity with antibody 

production being the most notable function during the inflammatory response (Hoffman 

et al., 2016). B-cells are responsible for the production of CSF oligoclonal 

immunoglobulins, one of the hallmarks of MS clinical diagnosis (Bankoti et al., 2014). 

These cells produce autoantibodies against myelin and axonal specific proteins within 

CNS plaques, and direct the T-cell population toward pro-inflammatory effector functions 

(Rawes et al., 1997; DeVries, 2004; Wootla et al., 2011). Further supporting a pathogenic 

role for B-cells in MS, depletion of B-cells in clinical trials resulted in significant 

improvement of MS disability (Cree et al., 2005; Hauser et al., 2008). Overall, these 

lymphocytes and macrophages, while activated peripherally, infiltrate the CNS where they 

ultimately contribute to plaque formation and disease progression (Larochelle et al., 

2011). 

 

1.7.2 Central Inflammation 

     The CNS, once thought to be immune privileged, is now known to undergo immune 

surveillance by lymphocytes residing in the meninges (Louveau et al., 2015). Despite this 

connection to the peripheral immune system, Microglia serve as the major regulators of 

the CNS inflammatory response (Fernandes et al., 2014). Interestingly, microglia in MS 

adopt a biphasic response, serving as either pro-inflammatory or resolving, depending on 

their location within the diseased CNS (Luo et al., 2017).  
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     Microglia in EAE and the TMEV-induced models display a pro-inflammatory 

phenotype, classically referred to as M1, which contributes to a destructive environment 

such as that found in actively demyelinating MS lesions (Gao and Tsirka, 2011). These 

microglia release a litany of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-6, IL-

12, and IL-23 and overexpress enzymes that contribute to oxidative stress such as 

inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate 

oxidase (NOX) (Rawji and Yong, 2013). These cytotoxic cytokines and free radical 

generating enzymes contribute to extensive damage to surrounding neurons and glial 

cells (Yamasaki et al., 2014). In addition to direct effects on neurons and 

oligodendrocytes, these pro-inflammatory microglia also act to re-stimulate T-cells that 

were activated in the periphery through presentation of new myelin antigens and 

costimulatory molecules (Croxford et al., 2002). 

     In contrast, microglia in toxin-induced demyelinating models such as cuprizone display 

an immunosuppressive phenotype, classically labeled as M2, which contributes to the 

reparative environment found in remyelinating, or “shadow”, plaques (Clemente et al., 

2013). These microglia release resolving and neurotrophic factors such as IL-4, IL-10, 

and TGF-β (Tang and Le, 2016). Additionally, these microglia promote remyelination of 

demyelinated axons both through the clearance of myelin debris, and the secretion of 

factors necessary for recruitment and maturation of oligodendrocyte progenitors (Miron 

et al., 2013). 

     Interestingly, microglia are not the only antigen presenting cells in the CNS. 

Astrocytes, while not traditionally considered immune cells, perform immunomodulatory 

functions (Claycomb et al., 2013). In animal models of MS for example, astrocytes 
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enhance proliferation rate and activation of myelin-specific T-cells by phagocytosis and 

presentation of myelin antigens (Nair et al., 2008). Additionally, they indirectly promote 

myelin damage and T-cell activation through the recruitment of other APCs, such as 

dendritic cells, to sites of damaged myelin (Claycomb et al., 2013). 

     Overall, modulation of the inflammatory response in MS is crucial, and a common 

target of all currently approved therapies (Dargahi et al., 2017). The lack of a cure, 

however, suggests the necessity for a solution more intricate than dampening the 

systemic inflammatory response. This is highlighted by several failed clinical trials which 

aimed to suppress pro-inflammatory cytokines previously implicated in disease 

pathogenesis in animal models (Denic et al., 2011), but either failed to alleviate or 

worsened MS deficits (Anon, 1999; Panitch et al., 1987; Segal et al., 2008; Longbrake 

and Racke, 2009). 

     In order to investigate the contribution of central inflammation in the models used in 

this study, we treated mice with an anti-inflammatory drug termed 3,4-dihy 

dihydroxybenzohydroxamic acid, Didox (Molecules for Health Inc., Richmond, VA). Didox 

was originally purposed as a tumor suppressive drug due to its function as a potent 

ribonucleotide reductase inhibitor (Inayat et al., 2010; Matsebatlela et al., 2015; Shah et 

al., 2015). This drug, however, has also proven effective in suppressing central 

inflammation through inhibition of the peripheral T-cell response, free radical scavenging, 

and reduction of the pro-inflammatory NFkB pathway (Matsebatlela et al., 2015). Due to 

these immunosuppressive properties, Didox will be utilized in these studies to investigate 

the contribution of the inflammatory environment on our pathologies of interest.  
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1.8 Chapter Summary 

     Ultimately, while our lab has previously demonstrated disruption of nodal domains 

under the pathological conditions associated with MS, stability of the compositionally 

similar AIS under these conditions has not been investigated. In the subsequent chapters 

we explore this unaddressed potential neuropathology utilizing a variety of approaches 

including MS mouse models, primary neuronal cultures, and postmortem human tissue. 

In Chapter 2 we exploit two separate mouse models of MS, the cuprizone and EAE 

models, to investigate AIS stability under distinct hallmark conditions of MS pathogenesis 

(Dargahi et al., 2017), demyelination and inflammation, respectively. In an attempt to 

address AIS insults in a wide variety of CNS pathologies, Chapter 3 includes a study 

utilizing a primary neuronal in vitro system of oxidative stress to investigate potential 

mechanisms of reactive oxygen and nitrogen species (ROS/RNS)-induced AIS 

modulation. Finally, in Chapter 4 we examine the cisternal organelle, the enigmatic 

structure responsible for local Ca2+ regulation at the AIS. This includes investigation of 

the mechanisms regulating its stability as well as the consequences of its disruption in 

MS and its inflammatory model. 
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Figure 1.1. Schematic of Axonal Domains. A myelinated axon exhibits five domains 

critical for action potential initiation and propagation. The axon initial segment (AIS) is the 

proximal unmyelinated portion of the axon. The node of Ranvier (N) is the unmyelinated 

IN IN 
Modified from: Susuki et al., 2013 
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gap between the myelin segments. The node is flanked by the paranode (PN), the region 

where the lateral edges of the myelin segments contact the axon. The juxtaparanode (JP) 

is located adjacent to the paranodal domains, while the internode (IN) is the axonal region 

underlying the majority of the compacted myelin segments.     

 

 

 

 

 

 

 

 

 

CHAPTER TWO 

 

COMPROMISED AXON INITIAL SEGMENT INTEGRITY IN EAE IS PRECEDED BY 
MICROGLIAL REACTIVITY AND CONTACT 

 

Clark et al., 2016. Glia 

 

2.1 Abstract 

     Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), 

an inflammatory demyelinating disease of the central nervous system (CNS), but the 

mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that 

axonal pathology is a direct consequence of demyelination, as we and others have shown 

that the node of Ranvier disassembles following loss of myelin. In contrast to the node of 
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Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible 

for action potential initiation, remains intact following cuprizone-induced cortical 

demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that 

develop experimental autoimmune encephalomyelitis (EAE) independent of local 

demyelination. EAE-induced mice demonstrate profound compromise of AIS integrity with 

a progressive disruption that corresponds to EAE clinical disease severity and duration, 

in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox 

results in attenuation of AIS pathology concomitantly with microglial reversion to a less 

reactive state. Together, our findings suggest that inflammation, but not demyelination, 

disrupts AIS integrity and that therapeutic intervention may protect and reverse this 

pathology.   

 

2.2 Introduction 

     Multiple Sclerosis (MS) is an immune-mediated inflammatory disease of the central 

nervous system (CNS) characterized by lymphocytic infiltration (Greer, 2013) and focal 

demyelination (Popescu et al., 2013). In addition to myelin loss, axonal pathology is 

prevalent and postulated to be responsible for irreversible clinical disability (Trapp et al., 

1998). Although present at all stages of MS (Criste et al., 2014), axonal pathology is 

generally considered a consequence of demyelination (Black et al., 2007; Waxman, 

2008). Consistent with this view, deterioration of the node of Ranvier (NOR), the 

specialized axonal domain required for action potential propagation (Susuki and 

Rasband, 2008), is a consequence of myelin loss in MS (Coman et al., 2006; 
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Desmazieres et al., 2012; Howell et al., 2010) and mouse models of CNS demyelination 

(Dupree et al., 2004) and inflammation (Zoupi et al., 2013).  

     Here, we examined the effect that demyelination has on another specialized axonal 

domain- the axon initial segment (AIS), which clusters many of the same proteins as the 

NOR (Buffington and Rasband, 2011). The AIS is located distal to the soma, contains a 

high density of ion channels including voltage-gated sodium (Nav
+) channels (Kole et al., 

2008) and is responsible for action potential initiation and modulation (Buffington and 

Rasband, 2011).  Mice incapable of clustering AIS proteins develop ataxia and fail to 

initiate action potentials (Zhou et al., 1998). The Nav
+ channels clustered at the AIS are 

linked to the spectrin-actin cytoskeleton through interactions with the scaffolding protein 

ankyrin-G (AnkG) (Buffington and Rasband, 2011). AnkG is considered the master 

organizer of the AIS, as it is required for the establishment and maintenance of AIS protein 

clusters and neuronal polarity (Hedstrom et al., 2008; Jenkins and Bennett, 2001). While 

the establishment of the AIS is well defined (Galiano et al., 2012), the mechanisms that 

regulate AIS stability remain poorly understood. AIS protein clustering is compromised in 

a variety of neuropathological models including stroke (Schafer et al., 2009; Hinman et 

al., 2013) and traumatic brain injury (Baalman et al., 2013; Greer et al., 2013) while protein 

clustering is preserved following demyelination (Hamada and Kole, 2015). To our 

knowledge, however, this is the first study to investigate AIS stability in an immune-

mediated CNS model of inflammation. 

     Our findings, consistent work of Hamada and Kole (2015), show that local 

demyelination is not sufficient to trigger disruption of AIS protein clusters, indicating that 

the mechanisms that maintain the node/paranode are distinct from those that maintain 
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the AIS. In contrast, we provide the first evidence that AIS clustering is lost in an 

inflammatory model of MS. AIS disruption is preceded by microglial reactivity and 

correlates with increased microglia/AIS contact and expression of pro-inflammatory 

factors. Moreover, we report that pharmacological intervention can prevent and reverse 

these microglial changes and lead to the protection of AIS integrity. 

 

2.3 Materials and Methods 

Animals 

     Five and 11 weeks old c57bl/6 mice were purchased from Jackson Laboratories (Bar 

Harbor, ME) and maintained in the Virginia Commonwealth University Division of Animal 

Resources (VCU DAR) or the McGuire Veterans Affairs Medical Center  

(VAMC) vivariums, respectively, which are both AAALAC accredited facilities. Treatments 

were initiated after the mice acclimated for one week resulting in treatment initiation at six 

and 12 weeks of age. Food and water were provided ad libitum. In addition, 12 weeks old 

Thy1-YFP-H mice [B6Cg-TgN (Thy1-YFP-H)2Jrs, stock number 003782 obtained from 

the Jackson Laboratories] were obtained from an established colony maintained in the 

VCU DAR. All procedures were conducted in accordance with the methods outlined in 

approved VCU and McGuire VAMC IACUC protocols. 

 

The Cuprizone Model 

     To induce cortical demyelination, ground chow (5001 Rodent Diet; PMI Nutrition 

International, LLC, Brentwood, MO) was mixed with cuprizone (Bis(cyclohexanone) 

oxaldihydrazone; Sigma-Aldrich, St. Louis, MO; 0.2% w/w) as previously described 
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(Dupree et al., 2004).  Briefly, six weeks old mice were maintained on a ground chow diet 

without (0%; n=7) or with (0.2% w/w) cuprizone for 1 (n=6), 3 (n=6) or 5 (n=6) weeks. 

These durations were chosen based on previous studies that reported initial signs of 

cortical demyelination occur following 3.5 weeks and maximum demyelination occurs 

following 5 weeks of cuprizone exposure (Fjaer et al., 2013).  An additional group was 

maintained on cuprizone for 5 weeks followed by 3 weeks of normal (non-cuprizone; n=6) 

chow, allowing remyelination. Table 2.1 outline treatment duration and the number of 

mice per treatment group.   

 

The Chronic EAE Model 

     To evaluate AIS integrity in an inflammatory environment, we induced the chronic 

model of experimental autoimmune encephalomyelitis (EAE) as previously described 

(DeVries et al., 2012; Secor McVoy et al., 2015; Dupree et al., 2015). Briefly, 12 weeks 

old c57bl/6 mice or Thy1-YFP-H mice were injected subcutaneously over each shoulder 

with 50 L of a solution containing 3 mg/mL myelin oligodendrocyte glycoprotein peptide 

35–55 (MOG35–55, MEVGWYRSPFSRVVHLYRNGK) (AnaSpec, Inc., Fremont, CA)  

emulsified with complete Freund’s adjuvant containing 2 mg/mL of heat-killed M. 

tuberculosis (Invitrogen Life Technologies, Grand Island, NY). Mice were also injected 

intraperitoneal (i.p.) on the same day with 300 ng Pertussis toxin (PT) (List Biological 

Labs, Campbell, California) in 200 µL phosphate buffered saline (PBS) with a booster PT 

injection 48 hours later. Clinical motor symptoms were scored daily and recorded as 

follows: 0= no signs, 1.0= limp tail, 2.0= loss of righting reflex, 3.0= paralysis of single 

hind limb and 4.0= paralysis of both hind limbs. 
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     Mice achieved peak clinical symptoms at ~15 days post injection (Fig. 2.1A). 

Immunohistochemical analysis was conducted at two time points along the EAE disease 

course; an early inflammatory time point (3 days post peak clinical symptoms; ~18 days 

post induction) and a late inflammatory time point (9 days post peak clinical symptoms; 

~24 days post induction) as indicated in Figure 2.1A. As illustrated, not all mice achieved 

the more severe clinical scores (Fig. 2.1A). We have exploited this variation in model 

progression and grouped the mice into 2 categories based on clinical scores which 

provided a clinical score-to-structural disruption analysis. Within each time point, mice 

were categorized as either EAE 1&2 (Early n=4; Late n=3) or EAE 3&4 (Early n=4; Late 

n=7) based on daily scoring. Only animals that maintained consistent scores for the period 

of 3 or 9 days post peak score were used in the study.  Table 2.2 displays the clinical 

scores and the number of mice used in each group.   

 

Didox Administration    

     Didox (N-3,4-tridhydroxy-benzamide), a ribonucleotide reductase inhibitor supplied by 

Molecules for Health, Inc., (Richmond, VA), is a multifunctional compound that inhibits 

DNA replication and T-cell proliferation, reduces oxidative injury and attenuates 

microglia/macrophage production of inflammatory factors (Bhave et al., 2013; Inayat et 

al., 2010; Matsebatlela et al., 2015; Turchan et al., 2003). Based on prior optimization 

studies to determine drug dose, frequency, and route of administration (DeVries et al., 

2012, Elford et al., 2013), 200 µl of carboxymethylcellulose containing 550 mg/kg of didox 

was administered via oral gavage to a separate cohort of mice (n=4) at the Early time 

point. Vehicle control mice (n=4), also at the Early EAE time point, were administered 200 
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µl of carboxymethylcellulose solution by oral gavage. The vehicle solution contained 0.5% 

(w/v) carboxymethylcellulose, 0.9% (w/v) sodium chloride, 0.4% (w/v) polysorbate 30, and 

0.9% (w/v) benzyl alcohol in deionized water. Administration of didox or vehicle was 

continued daily for 6 days (Fig. 2.1B). 

 

Antibodies 

     Axon initial segments (AISs) were visualized using mouse monoclonal antibodies 

directed against ankyrin-G (AnkG) (NeuroMab, Davis, CA; N106/36, 1:200) and the Nav
+ 

channel isoform 1.6 (Nav1.6) (NeuroMab; K87A/10, 1:100)  Microglia were labeled with a 

rabbit polyclonal antibody directed against the ionized calcium binding adaptor molecule-

1 (IBA-1) (Wako Chemicals, Richmond, VA; 1:1000). An antibody directed against myelin 

basic protein (MBP) (Covance, Chantilly, VA, 1:1000) was used to assess myelin integrity 

in the EAE-induced and cuprizone treated mice. Neurons were identified using the NeuN 

antibody (Millipore; Billerica, MA; 1:1000). To distinguish nodes of Ranvier from 

potentially fragmented AISs, an antibody directed against Caspr (anti-guinea pig; 

generous gift from Dr. Manzoor Bhat, University of Texas San Antonio) was used to label 

paranodes. To assess inflammatory molecular profiles of reactive microglia, antibodies 

directed against tumor necrosis factor alpha (TNFα) (abcam; Cambridge, MA, 1:200), 

inducible nitric oxide synthase (iNOS) (BD Biosciences; San Jose, CA, 1:200), and 

macrophage colony stimulating factor (M-CSF) (Santa Cruz Biotechnology; Dallas, TX, 

1:200) were used. All secondary antibodies were obtained from Invitrogen Life 

Technologies (Grand Island, NY; AlexaTM Fluor) and used at a dilution of 1:500. 
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Tissue Preparation      

     Mice were deeply anesthetized using 0.016 mL/gm body weight of a 2.5% solution of 

avertin (2, 2, 2 tribromoethanol) (Sigma-Aldrich; St. Louis, MO) in 0.9% sodium chloride 

(Sigma-Aldrich, St. Louis, MO) and transcardially perfused with 4% paraformaldehyde 

(Ted Pella, Redding, CA) (Dupree et al., 1999; Shepherd et al., 2012). Following perfusion 

the cortex was cryopreserved in 0.1 M PBS containing 30% sucrose for 48 hours, frozen 

in Optimal Cutting Temperature compound, and serially sectioned at 40 µm in a coronal 

orientation using a Leica CM 1850 cryostat. The cortical region spanning 1.1 mm anterior 

to bregma to 2.5 mm posterior to bregma was serially sectioned. Fifteen sets of six 

sections were collected and placed on ProbeOn Plus slides (Fisher Scientific, 

Loughborough, UK) and stored at -80°C.  Additionally, a single mouse brain was 

sectioned transversely to assess microglia/AIS interactions from a different orientation.  

 

Immunohistochemistry 

     Slides were immunolabeled with the appropriate primary and secondary antibodies as 

described (Dupree et al., 1999; Shepherd et al., 2012; Pomicter et al., 2010) with the 

modification that 0.5%  Triton X-100 was used for AnkG  labeling and 1% Triton X-100 

was used for MBP labeling. Nuclear stain BisBenzimide (Sigma-Aldrich, St. Louis, MO, 

1:1000) was used to identify cortical layers. Slides were mounted with Vectashield™ 

(Vector Laboratories, Burlingame, CA); and imaged using confocal microscopy. 
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Confocal Microscopy/Quantitation 

Image Collection 

     All images were collected using a Zeiss LSM 710 confocal laser scanning microscope 

(Carl Zeiss Microscopy, LLC, Thornwood, NY) housed in the VCU Department of 

Anatomy and Neurobiology Microscopy Facility. Confocal z-stacks, each spanning an 

optical distance of 25m, using a pin hole of 1 Airy disc unit and Nyquist sampling were 

collected from neocortical layer V for each of the six sections per mouse resulting in 12 

images per animal for AIS quantitation and 24 images per animal for microglial 

morphological scoring. Images were taken with a 40X oil-immersion objective with a 

numerical aperture of 1.3; optical slice thickness was 0.49 µm, using a scan average of 

2. X, Y and Z image dimensions were 212.43 µm x 212.43 µm x 25.00 µm, respectively. 

The gain and offset values were kept constant for all images. Spectral unmixing was 

employed to remove auto-fluorescence that resulted from lipofuscin and interfered with 

AIS quantitation. All quantitative analyses of AISs were limited to the AnkG-labeled slides 

since labeling intensity and consistency were superior with the AnkG antibody as 

compared to the Nav1.6 antibody. Although not quantified, Nav1.6 labeled sections were 

used to confirm, qualitatively, the changes in AIS integrity.  

 

AIS Quantitation   

     AIS length measurements and counts were performed using ImageJ analysis software 

by manually tracing initial segments from maximum intensity projection images resulting 

in the analysis of >1000 AISs per Naïve mouse. To eliminate AISs that extended beyond 
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the boundaries of the captured field of view (FOV), which would result in an artificial 

shortening of the segment, AISs touching any of the six edges of the collected z-stack 

were excluded from analysis. To compare the number of AISs, the data are presented as 

percent of Naïve (% Naïve ± SEM). To compare AIS length, the average length of the 

AISs in micrometers is presented as mean ± SEM. We also determined AIS length as a 

percent of AIS length from Naïve mice and these data are presented as % Naïve ± SEM. 

After determining normal distribution of the data sets using normal quantile (Q-Q) plots, 

one-way ANOVAs with Tukey’s Honest Significant Difference (HSD) post hoc tests were 

performed for both mean AIS number and length comparisons. All graphing and statistical 

analyses were performed using GraphPad Prism version 6.03 for Windows (GraphPad 

Software, San Diego, CA). 

 

Neuronal Number Quantitation 

     To compare neuron number, neuronal nuclei were immunolabeled with the NeuN 

antibody (Mullen et al., 1992) and NeuN+ cells were counted in three Naïve mice and 

three EAE 3&4 mice at the Late time point. Double immunolabeling with AnkG was also 

performed to determine the percent of NeuN+ cells with and without an associated AIS. 

Three confocal images per mouse were collected using a 20X objective with a numerical 

aperture of 1.4 and a pinhole of 1 Airy disc unit, resulting in ~900 neurons analyzed per 

Naïve mouse. A two-tailed T-test with Welch’s correction was performed on the average 

number of NeuN+ cells using GraphPad Prism version 6.03 for Windows. 

 

Quantitation of Microglial Morphology 
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     Microglial morphology was quantified using a modification of a method previously 

published (Hutson et al., 2011; Taetzsch et al., 2015). Briefly, microglia, as identified by  

IBA-1 immunolabeling in  confocal Z-stacks, were scored with values ranging from “0” to 

“3” based on cell morphology wherein a stage “0” represents a ramified, surveying 

microglia, and a stage “3” represents an amoeboid form, consistent with reactivity. 

Microglia exhibiting each morphological stage are presented in Supplementary Figure 

S2.1. Categorizing characteristics included cell body size as well as process thickness, 

length and branching complexity as described (Hutson et al., 2011; Taetzsch et al., 2015); 

quantification was conducted blindly and independently by two individuals resulting in 

scoring of approximately 250 cells per mouse. Results of microglial phenotype 

quantitation varied by <10% per mouse between the two blinded evaluators. The findings 

from the two blinded evaluators were averaged, and the data presented as morphological 

stage distribution graphs as a percent of the total microglia present. For statistical 

analysis, two-way ANOVAs with Tukey’s HSD post hoc tests were performed using 

GraphPad Prism software version 6.03 for Windows. 

 

Quantitation of Microglial-AIS Interactions 

     Contact between microglia and AISs was quantified using Volocity™ 3D Image 

Analysis Software version 6.3 allowing each confocal z-stack to be observed in three 

dimensions.  The number of microglia, AISs, and contact points in each double 

immunolabeled z-stack was counted manually. Contact points along the six edges of the 

z-stacks were excluded from analysis. Data are presented as the number of contact 
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points per FOV as a percent of Naïve. One way ANOVAs with Tukey’s HSD post hoc 

tests were performed using GraphPad Prism version 6.03 for Windows. 

    The z-stacks used for the quantitation of microglia and AIS contact were also used for 

production of isosurfaced images. These images were generated as a 3D-reconfiguration 

of the optical slices to facilitate visual assessment. 

 

Isolation of Mouse Cortical Microglia 

     Isolation of adult cortical microglia was performed as described (Taetzsch et al., 2015). 

Briefly, Naïve, cuprizone treated (3 wk), and EAE induced (Early 1&2) mice were perfused 

with 50mL of ice-cold PBS.  After removal of the meninges, cerebral cortices of three mice 

were pooled per sample (3 mice = 1 n) and suspended in Hank’s balanced salt saline 

solution (HBSS) without CaCl2 and MgCl2 (Corning, Corning, NY). A single-cell 

suspension was prepared using the Miltenyi Neural Tissue Dissociation Kit (Miltenyi 

Biotec, San Diego, CA). Myelin depletion was performed by suspension in 30% isotonic 

Percoll™ (GE Healthcare Life Sciences, Pittsburgh, PA) followed by a spin at 700xg 

(4oC). Isolation of microglia was performed using CD11b microbead labeling (Miltenyi, 

San Diego, CA) followed by passage of the cells through MACS LS columns and magnetic 

separator (Miltenyi, San Diego, CA). 

 

Quantitative Reverse Transcriptase Polymerase Chain Reaction 
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     Total RNA was extracted from CD11b+ isolated cells using a Qiagen RNeasy mini kit 

(Qiagen, Germantown, MD). Contaminating DNA was eliminated through treatment with 

Ambion DNase I (Invitrogen Life Technologies, Grand Island, NY). iScript Reverse 

Transcription Supermix (BioRad, Hercules, CA) was used to create cDNA from the 

isolated RNA (0.3 μg/sample). Quantitative RT-PCR was performed with a CFX96 

(BioRad, Hercules, CA) RT-PCR detection system using 1 μL of cDNA, SsoFast 

Evagreen Supermix (BioRad), and forward and reverse primers (500 nM). Cycling 

parameters were one cycle at 95°C (5 min), 40 cycles of 95°C (5 sec) and 56°C (5 sec) 

followed by a melt curve measurement consisting of 5 sec 0.5°C incremental increases 

from 65°C to 95°C. The fold changes in expression of the genes M-CSF (forward: 5’- 

CGAGACCCTCAGACATTGGA -3’; reverse: 5’- TGGTGAGGGGTCATAGAATCC -3’), 

iNOS (forward: 5’-TCCAGAATCCCTGGACAAGCTGC-3’; reverse: 5’-

TGCAAGTGAAATCCGATGTGGCCT-3’), and TNFα (forward: 5’-

GCCCACGTCGTAGCAAACCACC-3; reverse: 5’-CCCATCGGCTGGCACCACTA-3’) in 

CD11b+ cells were calculated using the formula RQ = 2−ΔΔCt, using Cyclophilin A 

(forward: 5’- CTAGAGGGCATGGATGTGGT -3’; reverse: 5’- 

TGACATCCTTCAGTGGCTTG -3’) as an endogenous reference gene. For statistical 

analysis, two-way ANOVAs with Tukey’s HSD post hoc tests were performed using 

GraphPad Prism software for Windows (v6.03). 

 

2.4 Results 

Axon initial segments are not disrupted following cuprizone-induced 

demyelination  
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     Our laboratories (Dupree et al., 2004; Coman et al., 2006) and others (Howell et al., 

2010; Zoupi et al., 2013) have shown that demyelination results in the loss of NOR protein 

clustering. Here, we investigated the effect that demyelination has on another axonal 

domain -- the AIS. Consistent with previous studies (Skripuletz et al., 2008) and as shown 

in Figure 2.2, mice maintained on a normal diet (Fig. 2.2A) or a cuprizone diet for 1 week 

(Fig. 2.2B) revealed robust MBP labeling in cortical grey matter, while extensive reduction 

was observed following 3 (Fig. 2.2C) and 5 (Fig. 2.2D) weeks of cuprizone exposure (Fig. 

2.2D). Mice that were maintained for 5 weeks on cuprizone followed by 3 weeks of normal 

chow revealed increased MBP labeling consistent with remyelination (Fig. 2.2E). 

     To assess AIS number and length in the control, 1, 3 and 5 weeks cuprizone treated 

and recovered (5+3 weeks) mice, AISs were immunolabeled for AnkG (Fig. 2.2F-J) and 

Nav1.6 (not shown). Consistent with the findings of Hamada and Kole (2015), who 

showed that AnkG, Nav1.6 and βIV spectrin maintained AIS clustering following cuprizone 

treatment, no significant difference was observed among any of the groups as compared 

to the Naïve with regard to either AIS number (Fig. 2.2K; Table 2.1) or length (Fig. 2.2L; 

Table 2.1), indicating that unlike the NOR, AIS maintenance is independent of 

myelination. 

 

Axon initial segments are shortened following Early EAE  

     Although cuprizone treatment provides an excellent model to study demyelination and 

subsequent remyelination, the inflammatory aspects of MS are better studied by 

exploiting the EAE model. Following EAE induction, we analyzed AIS number and length 
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in cortical layer V of EAE mice at the Early disease stage (3 days post peak; Fig. 2.1A). 

For comparison, EAE mice were grouped according to clinical disease severity as mild 

(scores 1&2 or EAE 1&2) or severe (scores 3&4 or EAE 3&4).  No change in AIS number 

was observed among either of the Early groups (Fig. 2.3A-C, G; Table 2.2) and no 

difference in the mean AIS length was observed between Naïve (19.9 ± 0.3m; Table 

2.2) and Early EAE 1&2 (17 ± 1.6 µm; Table 2.2) animals. In contrast, the Early EAE 3&4 

mice showed significantly shorter mean AIS lengths (13.4 ± 0.4m; Table 2.2) as 

compared to both the Naïve and the Early EAE 1&2 groups (compare Fig. 2.3C against 

Fig. 2.3A, B; Fig. 2.3H). As shown in Figure 2.3, AIS labeling was frequently discontinuous 

in the Early EAE 3&4 mice suggesting that AIS clustering was modestly compromised at 

this stage of disease.  

 

 

 

Axon initial segments are lost during Late EAE  

     Our findings from the Early EAE mice indicate that AISs are structurally vulnerable (i.e. 

AIS shortening); however, recent studies have shown that the AIS is a highly dynamic 

structure with regard to length (Evans et al., 2013; Grubb and Burrone, 2010). Therefore, 

to determine whether the changes in length observed in the EAE mice during the Early 

stages of disease were maintained, we assessed AIS morphology in the EAE mice at 9 

days post peak clinical score (Late EAE).   



49 
 

     In contrast to the mice at the Early EAE stage, EAE-induced mice at the Late stage 

presented significantly fewer AISs in both the EAE 1&2 (Fig. 2.3E) and the EAE 3&4 

group (Fig. 2.3F) compared to the Naïve (Fig. 2.3D).  As shown in Figure 2.3G and Table 

2.2, approximately 60% of the AISs were lost in the Late EAE 1&2 group while nearly 

75% of the AISs were lost in the Late EAE 3&4 mice, with a statistically significant 

difference between the latter two groups.   

    For the above data, AIS counts from all sections spanning the entire anterior to 

posterior axis of the brains were combined. To determine whether AIS stability was 

different along the anterior-posterior axis, counts were compared between comparable 

regions with regard to their location. Consistent with the compiled findings, AISs were 

equally susceptible to disruption at each bregma location along the anterior-posterior axis 

(Supplementary Figure S2.2).    

    With the loss of AISs, AnkG-labeled puncta were more readily observed. To determine 

whether these puncta were remnants of disrupted AISs or possibly nodes of Ranvier, we 

double labeled EAE brain sections for AnkG and the paranodal protein Caspr (Bhat et al., 

2001; Peles and Salzer, 2000). As shown in Figure 2.3F inset, these AnkG-positive 

puncta were flanked by Caspr labeling indicating that these structures were preserved 

nodes of Ranvier. 

     As with the Early group, we also measured AIS lengths in the Late group (Fig. 2.3H). 

The average AIS length for the Late EAE 1&2 mice was 12.0 ± 0.3 µm (Table 2.2), which 

was significantly shorter than that of the Early group with similar clinical scores (17.0 ±1.6 

µm for Early EAE 1&2). The average AIS length for the EAE 3&4 mice in the Late group 

was 16.0 ± 0.6 µm, which was significantly shorter than that of the Naïve (19.9 ± 0.3 µm). 
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Although the AISs from the Late EAE 3&4 mice were significantly shorter than those of 

the Naïve group, the mean AIS length of the Late EAE 3&4 mice  was significantly longer 

than that of the Early EAE 3&4 mice (compare 13.4 ± 0.4 µm for Early versus 16.0 ± 0.6 

µm; p=0.0071). At first glance these findings appear to suggest that the Early stage of the 

disease resulted in greater AIS disruption, with regard to length; however, the average 

length for the Late mice reflects AISs that remained intact. As shown in Figure 2.3, about 

75% of the AISs were lost in the Late EAE 3&4 group. These findings suggest that the 

AISs of cortical neurons have differential vulnerabilities and that the AISs that were not 

lost were less susceptible to shortening. 

 

AIS loss is not due to demyelination, neuronal death, or axonal transection 

     Our findings demonstrated that AIS integrity of cortical layer V neurons was 

significantly compromised in EAE. To determine whether AIS disruption was a primary 

insult and not a result of upstream neuropathology, we assessed the neuronal population 

as well as myelin and axonal integrity. While EAE is primarily an inflammatory model, 

demyelination is consistently reported in the spinal cord (Dupree et al., 2015), cerebellum 

(Noor et al., 2015), parahippocampus (Sun et al., 2015), corpus callosum and cortical 

regions (Mangiardi et al., 2011). However, unlike the cuprizone model (Fig. 2.2) cortical 

demyelination is less prominent. In order to assess the extent of demyelination in our 

mice, we performed MBP immunolabeling on both Early and Late EAE animals and 

observed no reduction in intensity (Fig. 2.4A-C). The absence of cortical myelin loss was 

also confirmed by western blot analyses for the myelin proteins cyclic nucleotide 

phosphodiesterase and MBP (Supplementary Figure S2.3). 



51 
 

    Studies have reported a reduced number of cortical layer V neurons in EAE (Burns et 

al., 2014; Spence et al., 2014). In order to determine if the AIS disruption observed in this 

study was a consequence of neuronal loss, we performed counts based on NeuN labeling 

(Fig. 2.4D, E). Counts revealed no difference in the neuronal populations (Fig. 2.4F; Late 

EAE 3&4 was 104% of the Naïve). In addition to total neuronal counts, we also quantified 

the number of NeuN-positive cells with or without an associated AIS.  96.2% ± 0.4% of 

neurons counted in the Naïve had an associated AIS which was reduced to 27.7% ± 3.7% 

of neurons in the Late EAE 3&4 mice, consistent with the findings reported in Figure 2.3G. 

Lastly, we induced EAE in Thy1-YFP mice to assess axonal transection and 

degeneration. Neither pathology was observed even in neurons with deteriorated AISs at 

a Late EAE 3&4 stage (Fig. 2.4G, H). Together these findings suggest that AIS loss is not 

due to demyelination, neuronal death or axonal transection.  

     

 

Microglia exhibit reactive morphology during both Early and Late EAE 

     Baalman et al. (2015) recently reported that AISs within the cortex are contacted by 

microglia. Presently, the role that these cells play in AIS structure/function is not known 

but may involve AIS structural modulation. Therefore, we focused our attention on the 

role that microglia, the resident innate immune cells of the CNS, play in changes in AIS 

organization. 

     In the spinal cord of EAE-induced mice, reactive microglia clear myelin debris (Lewis 

et al., 2014). In the cortex of EAE-induced mice where demyelination is limited, the role 



52 
 

of reactive microglia is not as well characterized. It should be noted that while microglia 

were identified as IBA-1 positive cells, peripheral monocyte-derived macrophages, which 

infiltrate the CNS in EAE, are IBA-1 positive also. However, based on their distinct 

morphology, as previously described (Yamasaki et al., 2014), we will refer to IBA-1 

positive cells as “microglia.”  

     As shown in Figure 2.5A and 2.5D, surveying (non-reactive) microglia, identified by 

the presence of long, thin, highly branched processes and small cell bodies, were 

prevalent throughout cortical layer V of Naïve mice.  Following EAE induction, however, 

the percent of microglia that exhibited a reactive phenotype, as revealed by thicker and 

shorter branches and large cell bodies, was significantly increased in both the Early (Fig. 

2.5B, C, G, H) and Late (Fig. 2.5E, F, I, J) stages regardless of disease severity, as shown 

by the shift towards more reactive morphologies. Importantly, microglial reactivity was 

observed in the Early EAE 1&2 mice indicating that microglial reactivity preceded AIS 

disruption.   

 

Microglia are reactive in cuprizone treated mice    

     Because microglial reactivity paralleled AIS disruption in the EAE model, we 

investigated the state of microglial reactivity in the cuprizone model in which AIS integrity 

was not altered. The cuprizone model is generally described as a model of demyelination, 

without inflammation, at least with regard to T-cell infiltration due to an intact blood-brain-

barrier (McMahon et al., 2002). However, reactive microglia play a critical role in both MS 

and the cuprizone model acting as phagocytes to clear myelin debris (Gudi et al., 2014). 
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In our cuprizone treated mice, we found that microglia exhibited morphologies consistent 

with reactivity only during periods of active demyelination—3 and 5 weeks of cuprizone 

treatment (Fig. 2.6C, D, G, H). Following 1 week of cuprizone treatment, a time point 

when demyelination was not observed (Fig. 2.2B), microglia displayed ramified 

morphologies (Fig. 6B, 6F) resembling the microglia in the untreated mice (Fig. 2.6A, F). 

Following termination of cuprizone exposure (5+3 wks Cup), the microglia returned to 

their ramified morphology during a period of repair (Fig. 2.6E, I).   

 

Microglial-AIS interactions increase with disease progression in both the cuprizone 

and EAE models 

    The presence of reactive microglia, not only in EAE but also in cuprizone mice, negated 

our hypothesis that the presence of reactive microglia alone is sufficient to cause AIS 

disruption. Since a recent paper reported that a subset of microglia contact the AIS 

(Baalman et al., 2015), consistent with these cells playing a role in AIS plasticity, we 

quantified microglia/AIS contact in the two models proposing that a difference in the 

frequency of interaction between the AIS and the microglia would shed light on the role 

that these cells play in the observed AIS breakdown (EAE) and preservation (cuprizone). 

    For this analysis we utilized Volocity™ to quantify microglial/AIS contact while 

preserving 3-dimensional relationships since the use of collapsed projection images can 

provide misleading associations. In both the cuprizone (Fig. 2.7B, H) and the EAE (Fig. 

2.7C, I) models, our quantitative analyses revealed a significant increase in the number 

of microglial/AIS contact points per FOV as compared to Naïve mice (Fig. 2.7A) and this 
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increase paralleled and preceded both myelin loss (cuprizone; 1 wk - 122.9 ± 4.3%; 3 wk 

– 145.3 ± 5.9%; 5 wk – 216.4 ± 8.5%; 5+3 wk – 179.7 ± 6.3%; all values are expressed 

as percent of Naïve) and AIS breakdown (EAE; Early 1&2 – 153.8 ± 22.5%; Early 3&4 – 

185.0 ± 5.9%; Late 1&2 – 205.6 ± 33.9%; Late 3&4 – 169.4 ± 31.2%; all values are 

expressed as percent of Naïve) (Fig. 2.7H, I). Interestingly, the types of contact were 

highly varied with some of the microglia extending processes that ran along the AIS (Fig. 

2.7D, F) while other processes completely ensheathed the AIS (Fig. 2.7E). 

 

Reactive microglia in cuprizone-treated and EAE-induced mice exhibit different 

molecular profiles 

     Based on the above findings, there is a significant increase in the percent of AISs that 

are contacted by microglia in both the cuprizone and EAE models as compared to control 

but no difference in the extent of contact was noted between the models. Therefore, 

increased microglial contact is not sufficient to explain the difference in AIS integrity 

observed in the EAE and cuprizone models. We further proposed that the reactive 

microglia in these two models exhibit different molecular profiles resulting in functional 

diversity. To test this hypothesis, we double immunolabeled brain sections from 

cuprizone-treated and EAE-induced mice with IBA-1 and tumor necrosis factor alpha 

(TNFα), inducible nitric oxide synthase (iNOS), or macrophage colony stimulating factor 

(M-CSF) at the earliest time points when microglial morphology was altered and prior to 

pathology (3 wk cuprizone, Fig. 2.6; Early 1&2 EAE, Fig. 2.5). TNFα and iNOS are pro-

inflammatory factors produced by reactive microglia (Block et al., 2007; Haji et al., 2012; 

Miron et al., 2013); M-CSF regulates microglial proliferation and survival (Elmore et al., 
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2014). As shown in Figure 2.8, microglia from Naïve mice exhibit minimal labeling for 

these three markers (Fig. 2.8A, E, I), consistent with the surveying state of microglia in 

Naïve mice. In contrast, cuprizone treated mice (Fig. 2.8B, F, J) exhibited minimal labeling 

for TNFα and iNOS (comparable to Naïve) but elevated labeling for M-CSF. Interestingly, 

microglia in EAE induced mice (Fig. 2.8C, G, K) presented elevated labeling for TNFα, 

and iNOS while M-CSF labeling was comparable to Naïve. These results were confirmed 

using quantitative RT-PCR of cortical microglia isolated from Naïve, cuprizone (3 wk) and 

EAE mice (Early 1&2) (Fig. 2.8D, H, L). Therefore, consistent with previous work 

(reviewed by Rawji and Yong, 2013), we propose that the reactive microglia found in each 

model are phenotypically distinct, and play functionally distinct roles. 

 

EAE-induced AIS disruption is attenuated with anti-inflammatory treatment 

     Since AIS disruption was preceded by microglial reactivity (Fig. 2.5), we proposed that 

reactive microglia may be involved. To test this hypothesis, we administered an anti-

inflammatory drug to the EAE 3&4 mice at the Early time point, predicting that the 

inhibition of microglial reactivity would result in sparing of the AIS. For this approach we 

used didox, a drug that readily crosses the blood brain barrier (Fiqul et al., 2003), 

scavenges free radicals (Mayhew et al., 2002), down regulates NFƙB activity (Inayat et 

al., 2002) and inhibits microglial reactivity and the production of pro-inflammatory factors 

that are produced by macrophages/microglia (Matsebatlela et al., 2015).  Treatment with 

this drug resulted in an attenuation of the EAE clinical scores (Fig. 2.1B).  
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     In addition to the attenuation of clinical scores and consistent with our hypothesis, 

didox treatment also resulted in a significant reduction in microglial reactivity based on 

morphological analysis (Fig. 2.9A-D) and microglia/AIS contact (Figure 2.9E-H). Although 

reversion back to a surveying phenotype was not complete in the didox treated animals 

(Fig. 2.9C, C’, D), microglia/AIS contact reverted to near Naïve levels (Fig. 2.9G, H). 

Therefore, our findings indicate that didox inhibited progressive AIS deterioration and 

reversed AIS pathology with regard to length, and almost completely attenuated the 

reactive microglial morphology.  Furthermore, didox treatment attenuated the elevated 

microglial expression of TNFα (Supplementary Fig. S2.4A-D), and iNOS (Fig. 2.9I-L) 

consistent with a return to a surveying phenotype.  

     Moreover, Early EAE 3&4 mice treated with didox (Fig. 2.10C) displayed, at the Late 

stage, AISs with lengths that were indistinguishable from Naïve (compare 19.5 ± 0.9 µm 

for didox; 19.9 ± 0.3 µm for Naïve; Fig. 2.10A; Table 2.2) indicating that didox treatment 

reversed AIS pathology observed in the Early EAE 3&4 group. Didox treated mice also 

exhibited significantly longer AISs than the vehicle control (16.8 ± 1.2 µm; Fig. 2.10B, 

2.10E; Table 2.2) and EAE 3&4 Early and Late mice (13.4 ± 0.4 µm, and 16.0± 0.6, 

respectively; Table 2.2). In addition, the loss of AISs was significantly attenuated with a 

preservation of 68.4% ± 5.5% of the AISs following didox treatment compared to the 

preservation of only 27.7% ± 0.5% in the vehicle control group and only 28.5 ± 0.5% in 

the Late EAE 3&4 (Figs. 2.10D, Table 2.2).  

 

2.5 Discussion 



57 
 

     In contrast to the NOR, here we show that protein clustering in the AIS is not lost 

following demyelination but is disrupted following inflammation.  Initially, AIS length is 

reduced followed by a significant loss in AIS number in later disease stages. Although the 

mechanism of disruption is unknown, microglial reactivity and increased microglial/AIS 

contact preceded AIS pathology. Additionally, treatment with didox, a drug known to 

reduce macrophage/microglia inflammation (Matsebatlela et al., 2015), resulted in 

suppression of microglial reactivity, reversal of AIS shortening and prevention of AIS 

breakdown. Finally, we provide evidence that the roles that microglia play in 

demyelinating and inflammatory disease are dependent on their expression profiles. 

   

AIS integrity is not compromised by demyelination 

     Axonal function requires maintenance of the NORs and the AISs (Buttermore et al., 

2013). The maintenance of these domains, however, differs with respect to myelin 

dependency as we (Dupree et al., 1999; 2004) and others (Bhat et al., 2001; Ishibashi et 

al., 2002; Pillai et al., 2009; Rasband et al., 1999; Rosenbluth et al., 2003; Suzuki et al., 

2004) have shown that myelin contact is critical for NOR maintenance. For example, 

cuprizone-induced demyelination resulted in complete loss of nodal and paranodal 

clustered proteins (Dupree et al., 2004). In contrast, we now show that AIS maintenance 

is not dependent on myelin as cortical demyelination did not alter AIS number or length 

consistent with work by Hamada and Kole (2015). Therefore, while the NOR and AIS 

maintain clusters of similar proteins (Buffington and Rasband, 2011), the mechanisms 

responsible for domain maintenance are distinct. 
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AIS integrity is compromised following EAE disease induction    

     Although we are the first to report AIS disruption in EAE, we are not the first to report 

AIS vulnerability following disease or injury. Schafer et al. (2009) reported a significant 

loss of cortical and striatal AISs following ischemia in vivo, and showed that AIS 

deterioration resulted from calpain activity. Although calpain inhibitors prevented AIS 

deterioration, reversal of the pathology was not achieved. Similarly, Hinman et al. (2013) 

reported AIS shortening following ischemia and showed sprouting of immature AISs 

suggesting the potential for AIS replacement but not repair.   

      Following traumatic brain injury (TBI), AISs were significantly shortened consistent 

with altered neuronal excitability (Baalman et al., 2013) and developed amyloid precursor 

protein-containing axonal swellings (Greer et al., 2012; 2013).  Although the mechanisms 

responsible for AIS disruption following TBI are unclear, cytoskeletal disruption has been 

observed (Buki and Povlishock, 2006; Povlishock et al., 1999). Similar to the findings of 

Schafer et al. (2009), spectrin and AnkG are degraded following TBI (Buki et al., 1999; 

Reeves et al., 2010), which is accompanied by calpain activation suggesting that related 

mechanisms underly AIS breakdown in distinct models. 

   

Is the axon a primary target of pathology in MS? 

     Demyelination is a hallmark feature of MS (Lassmann, 1999), but axonal insults are 

also prevalent in this disease (Kornek and Lassmann, 1999). The formation of axonal 

swellings, reduced levels of Na+/K+ ATPase, synaptic damage, axon transection, and 

disruption of nodal domains are among the known axonal pathologies associated with 

MS and its models (Black et al., 2007; Dutta et al., 2011; Howell et al., 2010; Peterson et 
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al., 2001; Pomicter et al., 2010). These axonal pathologies, which contribute to disability 

progression (Dutta and Trapp, 2011), are postulated as consequential to demyelination; 

however, the axon may also be a primary target (Calabrese et al., 2015).  For instance, 

MS plaque load does not correlate with axonal loss (DeLuca et al., 2006); analysis of 

post-mortem MS tissue reveals axonal swellings and end bulbs located in normal 

appearing white matter (Kutzelnigg et al., 2005; Nikić et al., 2011) and axonal number is 

reduced in regions lacking demyelination in MS and EAE (Bjartmar et al., 2001; Recks et 

al., 2013). Similarly, our findings suggest that axonal pathology results from a 

demyelination-independent mechanism further suggesting that the axon may be a 

primary target in inflammatory disease. 

 

Are microglia responsible for inflammation-dependent AIS disruption? 

     Microglia are reactive in MS and play a role in the progression of the disease (Rawji 

and Yong, 2013). EAE progression closely correlates with microglial reactivity and 

inhibition of these inflammatory cells attenuates disease course (Bhasin et al., 2007; 

Heppner et al., 2005). Triggers for microglial reactivity in MS include oligodendrocyte 

stress and demyelination (Hendrickx et al., 2014; Huizinga et al., 2012; Lassmann et al., 

2001); however, microglial reactivity also occurs in the absence of demyelination (Marik 

et al., 2007) and, consistent with our findings, these cells may directly target axons in MS 

and its animal models (Nikić et al., 2011; Rawji and Yong, 2013).  

     Baalman et al. (2015) recently established a relationship between microglia and the 

AIS by reporting that a subpopulation of microglia contact the AIS during development 

and maintain this contact throughout adulthood suggesting a role in AIS organization. 
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Interestingly, following TBI reactive microglia lost AIS contact. Our results further confirm 

the existence of microglia/AIS contacts in the Naïve cortex but demonstrate that these 

contacts are increased in a pathological environment-- either inflammatory (EAE) or 

demyelinating (cuprizone model). Our results also highlight a differential response to TBI 

and EAE induction concerning AIS stability. Indeed, Baalman et al. (2013) reported that 

following blast injury, the AIS is only modestly, yet significantly, shortened whereas in 

EAE our results show a dramatic early shortening followed by AIS loss, the latter being 

preceded by an increase in microglia/AIS contact.  

     In EAE, reactive microglia release pro-inflammatory factors including reactive oxygen 

species (ROS) (Guemez-Gamboa et al., 2011), and TNFα (Haji et al., 2012). Each of 

these factors is capable of increasing intraneuronal calcium levels by triggering calcium 

channel currents specifically through L-type calcium channels (Furukawa and Mattson, 

1998; Das et al., 2011; Guemez-Gamboa et al., 2011; Sama and Norris, 2013; Vogel et 

al., 2015). Thus, both TNFα and ROS have the potential to contribute to AIS modulation, 

since L-type calcium channels are crucial for plasticity at the AIS (Grubb and Burrone, 

2010). Moreover, neurons in EAE-induced mice exhibit elevated calcium levels with a 

corresponding increase in calpain activity and axonal cytoskeletal pathology that is 

ameliorated by calpain inhibition (Guyton et al., 2005, 2009). Calpain inhibitors also 

reduce symptomatic severity in EAE mice (Das et al., 2013) potentially through anti-

inflammatory and neuroprotective mechanisms (Trager et al., 2014). This scenario of AIS 

disruption is consistent with our data suggesting that pro-inflammatory microglia can 

trigger a cascade that drives this disruption.   
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Is microglial function dependent on their inflammatory profile? 

     Although an easy culprit for AIS disruption, reactive microglia were also abundant in 

the cuprizone model where AISs were not compromised. However, reactive microglia in 

the EAE and cuprizone models presented with different inflammatory profiles providing a 

viable explanation for distinct functions (Hanisch and Kettenmann, 2007). Consistent with 

AIS disruption, numerous studies have implicated iNOS and TNFα as mediators of 

neurodegeneration (Block et al., 2007; Glass et al., 2010).  In contrast, an up-regulation 

of M-CSF, a growth factor involved in proliferation and survival of microglia and 

macrophages (Stanley et al., 1997), promotes remyelination in demyelinating mouse 

models through the recruitment of microglia to lesioned sites, followed by oligodendrocyte 

progenitor differentiation (Döring et al., 2015). While these distinct expression profiles are 

consistent with microglia playing different roles in these models, it is important to point 

out that TNFα and iNOS also have neuroprotective roles (Arnett et al., 2001; 2002; Liu et 

al., 1998) and that anti-inflammatory cytokines may also have differential expression 

patterns in these models (Janssens et al., 2015) indicating the complex nature of these 

cells. 

 

Is AIS disruption reversible? 

     In the ischemic injury model (Schafer et al., 2009), calpain inhibitors preserved AIS 

integrity; however, AIS repair was not observed suggesting an irreversible pathology 

(Schafer et al., 2009).  Here, AIS length was restored following didox treatment. AISs alter 

their length during development (Gutzmann et al., 2014) and in response to changes in 

presynaptic input (Kuba et al., 2010) indicating that the AIS is a dynamic domain. 
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However, the present study is the first to report a therapeutic attenuation of AIS pathology. 

It remains to be determined if the more severe consequences, such as complete loss of 

AIS protein clustering, as observed in Late EAE, can be reversed. 

 

     In summary, we report that AIS integrity was preserved in the demyelinated cortex, 

but significant disruption was observed in the non-demyelinated cortex of EAE-induced 

mice suggesting that the AIS is a potential primary axonal target during inflammation. 

Morphological analyses at two distinct time points along the disease course indicates AIS 

shortening is an early event that is followed by loss of AIS protein clustering. Importantly, 

AIS pathology, potentially mediated by reactive microglia, appears both preventable and 

reversible through therapeutic intervention. Taken together, our results open new 

perspectives into the understanding of disability progression in inflammatory 

demyelinating disease such as MS, with potential innovative therapeutic avenues. 
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Figure 2.1. Clinical Progression of EAE model. Mean clinical scores of the EAE mice 

used in this study are graphed showing the consistent progression of the disease of each 

clinical score group (EAE 1&2 and EAE 3&4) as well as the time points at which these 

groups were analyzed (Early and Late; arrows) (A). Treatment with the anti-inflammatory 

didox at the Early time point resulted in reduced EAE clinical scores, while treatment with 

the vehicle carboxymethylcellulose had no effect on EAE progression (B). 
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Figure 2.2. AISs are not disrupted following cuprizone-induced demyelination. 

Cortical demyelination was assessed by immunolabeling for MBP (A–E). No myelin loss 

was detected following 1 week of cuprizone treatment (B). Note a slight reduction in MBP 

labeling following 3 weeks of cuprizone exposure (compare A and C) with a continued 

decrease in labeling by 5 weeks of treatment (D). Following an additional 3 weeks without 

cuprizone, MBP labeling increased consistent with remyelination (E). Ankyrin-G labeling 

of cortical layer V axon initial segments (AIS) revealed no difference among mice that 

were maintained on ground chow without cuprizone (F) and mice maintained on 

cuprizone for 1 week (G), 3 weeks (H), 5 weeks (I), or 5 weeks with an additional 3 weeks 

of recovery (J). Quantitative analysis confirmed that neither AIS number (K) nor AIS 

length (L) was altered following cortical demyelination at any exposure time point or as 

compared to untreated (Naïve) mice. 
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Figure 2.3. AIS length is reduced in early stages of EAE while the number of AISs 

is decreased in the late stages of disease. In Early disease stage (3 days post peak 

clinical symptoms), AISs in cortical layer V neurons of Naïve (A) and EAE 1&2 (B) mice 

were abundant, presented with uniform length and rarely revealed discontinuous labeling 

indicative of fragmentation (yellow arrows). In contrast, AISs of layer V cortical neurons 

in Early EAE 3&4 mice (C) were frequently reduced in length (white arrows) and 

fragmented (yellow arrows). Quantitative analysis confirmed the immunohistochemical 

observations. No difference in AIS number was observed among the Early EAE groups 

(G). Although no difference in AIS length was observed between Naïve and Early EAE 

1&2 mice (H), a significant shortening was observed with the Early EAE 3&4 mice 

compared to Naïve animals (H). In contrast, the Late EAE 1&2 mice (E,G) exhibited a 

significantly reduced number of AISs with a continued progression in AIS loss observed 

in the Late EAE 3&4 mice (F,G). While there was a significant decrease in AIS length for 

the Late EAE 1&2 mice, a significant but less dramatic shortening was observed for the 

Late EAE 3&4 mice as compared to the Naïve animals (H). Note that with the loss of AISs 

(Panel F), punctate AnkG labeling was observed. Double labeling for AnkG and the 

paranodal marker Caspr (see F inset; AnkG – red; Caspr – green) revealed that these 

puncta were nodes of Ranvier that were not disrupted following EAE induction. (Asterisks 

with no associated bracket represent a significant difference from the Naïve group; 

*P = 0.0001, ** P = 0.008). 
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Figure 2.4. Disrupted AISs in EAE are not the consequence of demyelination, 

neuronal death or axonal transection. Based on immunohistochemical labeling for 

MBP, no difference in cortical myelin was observed among Naïve (A), Early EAE 3&4 

mice (B) or Late EAE 3&4 mice (C). The density of neuronal cell bodies, as determined 

by NeuN immunolabeling (D–F) also remained constant, indicating AIS loss is not a result 

of cell death. Note the presence of numerous NeuN/AnkG double positive cells in Panel 

D while most NeuN positive cells in Panel E lack AnkG labeling (white arrowheads) 

Immunolabeling of AnkG (red) in Thy1-YFP (green) mice induced with EAE (Late 3&4) 

revealed intact axons following disruption of the AIS protein clustering (H; white rectangle) 

while Naïve Thy1-YFP mice revealed robust AnkG labeling in the AIS (G; white 

rectangle). 
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Figure 2.5. Microglia exhibit a reactive morphology at Early and Late stages of EAE. 

Microglia in Naïve mice (A,D) exhibited small cell bodies with long, thin and highly 

branched processes indicative of a surveying phenotype (white arrows). In contrast, 

microglia from Early and Late EAE 1&2 (B,E) and EAE 3&4 (C,F) mice displayed enlarged 

cell bodies with short, thick processes with reduced branching consistent with cells in a 

state of reactivity (yellow arrows). Distribution graphs of microglial morphological stages 

provide quantitative evidence confirming this significant shift from the Naïve (G-J). 

(*P = 0.0001, ** P = 0.003). 
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Figure 2.6. Microglia exhibit a reactive morphology during periods of demyelination 

in the cuprizone model. Based on immunohistochemical labeling for IBA-1, mice 

maintained on normal chow (no cuprizone) exhibited ramified microglia (A), indicative of 

a surveying role. Scoring of microglial morphology indicated that the cells remained 

ramified following 1 week of cuprizone treatment (B,F). Following 3 (C,G) and 5 (D,H) 

weeks of treatment, microglia exhibited an amoeboid morphology consistent with 

reactivity. Removal of cuprizone from the diet resulted in a shift in the presented 

morphologies consistent with untreated mice (E,I). (*P = 0.0001, ** P = 0.006). 
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Figure 2.7 Microglia exhibit increased contact with the AIS in Cuprizone treated and 

EAE induced mice. Double immunolabeling of IBA-1 and AnkG revealed an increase in 

the percent of AISs contacted by microglia in both the cuprizone (B) and EAE (C) models 

temporally corresponding with microglial reactivity (H,I). Confocal z-stacks were analyzed 

in 3D to rule out apparent contact points in 2D as demonstrated by the inset AIS (A′) 

which was rotated 90° along the X-axis, revealing no microglial contact (A′′). Examples of 

microglial-AIS interactions are depicted with reactive microglia making contact onto one 

(F) or more AISs (D, E). Processes frequently aligned along the AIS (white arrows, D,F). 

Transverse sections of the cortex revealed microglial processes wrapping completely 

around AISs cut in cross section (E, yellow arrows). The number of contact points per 

FOV as a percent of the Naïve was significantly increased following 3 and 5 weeks of 

cuprizone treatment, with a slight, but significant, decrease in contact following 3 weeks 

of recovery (no cuprizone) (H). Similarly, microglial-AIS interactions were increased along 

with EAE progression (I). Panels F and F′ present the same microglia but display anterior 

(F) and posterior (F′) views. The image in Panel F′′ was generated with the software 

Volocity™ from the z-stack of images used to compile the images in F and F′. The 

Volocity™ generated image provides shadowing to display the image with 3 dimensions 

providing a better depiction of the microglia and neuron interaction. (Asterisks with no 

associated bracket represent a significant difference from the Naïve group; * P = 0.0001, 

** P = 0.01). 
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Figure 2.8. Microglia present distinct phenotypes in Cuprizone vs. EAE. Double 

immunolabeling at the onset of microglial reactivity (3 weeks for cuprizone and Early 1&2 

for EAE), for IBA-1 (green) in combination with either TNFα (A-C; red), iNOS (E-G; red), 

or M-CSF (I-K; red) indicated distinct phenotypes of the reactive microglia between the 

two models. Labeling intensities for TNFα were elevated in the microglia from both models 

(B,C). Labeling intensities for iNOS were elevated, as compared to Naïve, only in the 

microglia of the EAE mice (G), while M-CSF labeling intensities were elevated only in the 

microglia of the cuprizone treated mice (J). Immunohistochemistry results were confirmed 

by qRT-PCR of cortical microglia isolated from Naïve, cuprizone and EAE mice (D, H, L) 

(Asterisks represent a significant difference from the Naïve group; * P = 0.0001). 
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Figure 2.9 Didox treatment attenuates microglial reactivity and AIS-contact. 

Microglia in the Naïve mice (A,D) were not reactive based on their morphology (white 

arrows) while the microglia in the vehicle-treated animals were reactive as evidenced by 

large cell bodies and thick processes with limited branching (B,D). Although didox 

treatment attenuated microglial reactivity (white arrows) (C,D), treatment did not result in 

a complete reversion as reactive microglia (yellow arrow) were also detected in the didox 

treated animals (C′,D). In addition to reactivity, didox treatment also attenuated the 

increased microglial-AIS contact (G,H) while carboxymethylcellulose vehicle treatment 

maintained the enhanced number of contact points (F,H) as compared to the Naïve (E,H). 

Importantly, didox administration to EAE mice attenuated the elevated labeling intensities 

of iNOS (K) consistent with didox attenuation of microglial reactivity. iNOS 

immunolabeling (J) and mRNA expression (L) in the vehicle treated group remained 

increased compared to the Naïve group (I,L) (Asterisks with no associated bracket 

represent a significant difference from the Naïve group; * P =0.0001, ** P =0.02, *** P 

=0.002). 
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Figure 2.10 Didox treatment attenuates AIS disruption. Naïve mice exhibited 

numerous AISs (A). Initiating didox treatment at the Early stage of disease in EAE 3&4 

mice resulted in inhibition of AIS loss (C,D). In contrast to the didox treated mice, animals 

maintained on the vehicle, carboxymethylcellulose, displayed continued AIS 

degeneration (B,D,E). In addition to AIS preservation, Early EAE 3&4 mice treated with 

didox revealed a reversal of AIS shortening by the Late EAE stage. These are the first 

data to indicate a therapeutic reversal of AIS pathology. 
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Figure S2.1. Microglia present distinct morphologies consistent with state of 

reactivity.  Microglia present unique morphology representing specific stages of reactivity 

as visualized through IBA-1 immunolabeling (B). Surveying microglia are scored as a 

Stage 0. Increasing cell body size, shorter and thicker processes and fewer processes 

are indicative of higher stage scores and are equated to cells with a higher level of 

reactivity. 
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Figure S2.2. AISs are consistently disrupted throughout the anterior/posterior axis 

following EAE induction.  Comparison of the number of AISs among all treatment 

groups at each position along the anterior/posterior axis revealed no difference in AIS 

susceptibility to disruption. Although all 6 locations were separately compared, only the 

results of those quantitative comparisons for the most anterior (bregma +1.1 mm) and 

posterior (bregma -2.5 mm) positions are shown. Note the findings for each distinct 

anterior/posterior location precisely mirror the compiled data (Figure 2.3). 
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Figure S2.3 Western blot analysis revealed no cortical demyelination in EAE mice.  

Western blot analyses of isolated cortices from Naïve and Late EAE 3&4 mice revealed 

no difference in the levels of the myelin proteins CNP (A) and MBP (C).  Quantitative 

densitometry confirmed the absence of myelin protein loss.   
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Figure S2.4 Didox treatment attenuates TNFα expression in EAE induced mice.  

Immunolabeling (A-C) and RNA expression (D) for TNFα indicated low levels of cytokine 

expression in the Naïve and EAE induced mice treated with didox while EAE induced 

mice that received only the vehicle carboxymethylcellulose maintained high levels of both 

the protein and RNA. 
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CHAPTER THREE 

 

OXIDATIVE STRESS INDUCES DISRUPTION OF THE AXON INITIAL SEGMENT 

 

Clark et al., ASN Neuro (In Revision) 

 

3.1 Abstract 

     The axon initial segment (AIS), the domain responsible for action potential initiation 

and maintenance of neuronal polarity, is targeted for disruption in a variety of central 

nervous system (CNS) pathological insults. Previous work in our laboratory implicates 

oxidative stress as a potential mediator of structural AIS alterations in two separate 

mouse models of CNS inflammation, as these effects were attenuated following reactive 

oxygen species scavenging and NADPH oxidase 2 ablation. While these studies suggest 

a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen 

and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here we 

demonstrate that oxidative stress, as induced through treatment with 3-

morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible 

loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological 

inhibition of both voltage dependent and intracellular calcium (Ca2+) channels suggests 

that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type 

voltage dependent Ca2+ channels and its release from IP3-gated intracellular stores. 

Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, 

a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we 
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demonstrate for the first time that oxidative stress, as induced through exogenously 

applied ROS/RNS, is capable of driving structural alterations in the AIS complex. 

 

3.2 Introduction 

     The axon initial segment (AIS) is a specialized region of the axon located at the 

junction between the somatodendritic and distal axonal domains that is essential for both 

action potential generation, and the maintenance of neuronal polarity (Hedstrom et al., 

2008; Buffington and Rasband, 2011). This complex consists of cytoskeletal scaffolding 

proteins ankyrin-G (AnkG) and βIV-spectrin, which cluster the high density of voltage-

gated ion channels required for action potential initiation and modulation (Jenkins and 

Bennett, 2001). The AIS is a highly dynamic and plastic structure regulated by changes 

in neuronal activity (Yamada and Kuba, 2016), but its integrity is compromised 

consequential of a variety of pathological central nervous system (CNS) insults. These 

include models of epilepsy (Wimmer et al., 2010; Harty et al., 2013), ischemic injury 

(Schafer et al., 2009; Hinman et al., 2013), traumatic brain injury (Baalman et al., 2013; 

Greer et al., 2013; Vascak et al., 2017), Alzheimer’s disease (León-Espinosa et al., 2012; 

Sun et al., 2014; Marin et al., 2016; Zempel et al., 2017), and multiple sclerosis (Hamada 

and Kole, 2015; Clark et al., 2016). While the AIS is frequently and extensively targeted 

for disruption in CNS pathology, the mechanisms underlying altered stability of this 

domain have not been fully elucidated. 

     Our laboratory has previously demonstrated that AIS integrity is targeted for disruption 

in inflammatory environments. For example, induction of experimental autoimmune 
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encephalomyelitis (EAE), a model commonly used to mimic the inflammatory component 

of MS (Kipp et al., 2017), resulted in severe disruption of the AIS domain, which was 

preceded by and correlated with microglial reactivity and increased contact (Clark et al., 

2016). Similarly, peripheral injection of lipopolysaccharide (LPS), a classic model of 

systemic inflammation, was sufficient to drive the loss of AIS protein clustering, which 

was reversed following resolution of the inflammatory response (Benusa et al., 2017). In 

both of these inflammatory models, treatment with Didox, a novel scavenger of reactive 

oxygen and nitrogen species (ROS/RNS) (Mayhew et al., 2002; Turchan et al., 2003; 

Matsebatlela et al., 2015), prevented and reversed the AIS pathology (Clark et al., 2016; 

Benusa et al., 2017). Additionally, LPS injection in mice deficient in the major ROS 

producing enzyme NADPH oxidase 2 (Pollock et al., 1995) resulted in the complete 

preservation of the AIS (Benusa et al., 2017). Together, these data highlight a potential 

role for ROS and RNS in the alteration of AIS protein clustering; however, direct evidence 

that ROS/RNS are capable of driving AIS disruption is lacking. Here, to address this void 

in our understanding, we investigate the effect of exogenously applied ROS/RNS on AIS 

stability in primary cortical neurons in vitro, utilizing the spontaneous ROS/RNS generator 

SIN-1 (Singh et al., 1999). 

     Our findings demonstrate that oxidative stress, induced through exogenous 

application of ROS/RNS, is sufficient to drive structural disruption of the AIS protein 

complex. Pharmacological inhibition of voltage-dependent calcium channels (VDCCs), 

intracellular calcium (Ca2+) stores, and enzymatic activity suggests this mechanism of 

ROS/RNS-induced AIS disruption to involve cytosolic Ca2+ entry extracellularly through 
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L-type VDCCs, and intracellularly from IP3-gated store release, as well as calpain 

protease activation. 

 

3.3 Materials and Methods 

Animals 

     Timed pregnant embryonic day 14 (E14) c57bl/6 mice were purchased from Charles 

River (Wilmington, MA) and maintained in the Virginia Commonwealth University Division 

of Animal Resources (VCU DAR) or the McGuire Veterans Affairs Medical Center (VAMC) 

vivariums, respectively, which are both AAALAC accredited facilities. Timed pregnant 

mice were maintained in the facilities until pups were removed on embryonic day 15. 

Animals were maintained on an alternating 12 hour light and dark cycle and food and 

water were provided ad libitum. All procedures were conducted in accordance with the 

methods outlined in approved VCU and McGuire VAMC IACUC protocols. 

 

Primary Neuronal Cultures 

     Primary cortical neuron cultures were prepared from cerebral cortices of E15 mouse 

pups. Timed pregnant females were anesthetized with isoflurane and sacrificed by 

decapitation. Pups were removed and decapitated to allow for removal of the brains.  

Following removal of the meninges, cortices were incubated on ice in Accutase® Cell 

Detachment Solution (Innovative Cell Technologies, San Diego, CA) and dissociated 

step-wise using 1000 µL and 200 µL-sized pipette tips. Cells were counted and diluted in 
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plating medium consisting of Neurobasal® medium (Thermo Fisher Scientific, Waltham, 

MA; Formulation detailed in Supplementary Table S3.1) supplemented with glutamate 

(25 µM, Sigma-Aldrich, St. Louis, MO), glutamine (0.5 mM, Thermo Fisher Scientific, 

Waltham, MA), Antibiotic-Antimycotic (Thermo Fisher Scientific, Waltham, MA), and B-

27® supplement (Thermo Fisher Scientific, Waltham, MA). Cells were then plated at a 

density of 3000 cells/cm2 on poly-d-lysine (1 mg/mL; Sigma-Aldrich, St. Louis, MO) coated 

glass coverslips (12 mm) in 24-well plates. Following cell attachment, wells were filled 

with the medium described above, in which the B-27® supplement was replaced with B-

27® supplement minus antioxidants (Thermo Fisher Scientific, Waltham, MA). All 

experiments were performed starting at 12 days in vitro (DIV).  

 

SIN-1 and Pharmacological Treatments  

     12 DIV neurons were treated with spontaneous ROS/RNS generator SIN-1 (3-

Morpholinosydnonimine hydrochloride, Sigma-Aldrich, St. Louis, MO) diluted in the 

maintenance media described above at concentrations ranging from 0.1-100 μM and 

analyzed 3, 6, 12, 24, or 72 hours post-treatment. All pharmacological reagents were 

added simultaneously with SIN-1 and included EGTA (0.001-2 mM), NiCl2 (0.1-50 μM), 

(S)-(−)-Bay K8644 (0.00001-50 μM), MK-801 (0.001-50 μM), 2-APB (0.1-50 μM) and FK-

506 (0.001-50 μM) obtained from Sigma-Aldrich (St. Louis, MO) as well as ω-Conotoxin 

MVIIC (0.001-50 μM), nifedipine (0.001-50 μM), ryanodine (0.001-50 μM) and MDL 28170 

(0.001-50 μM) obtained from Tocris Bioscience (Avonmouth, Bristol, England). Stock 

dilutions of all pharmacological reagents were prepared in DMSO (Thermo Fisher 

Scientific, Waltham, MA) with subsequent dilutions performed in culture medium, except 
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for EGTA, NiCl2 and ω-Conotoxin MVIIC in which all dilutions were performed in culture 

medium. While a larger concentration range of pharmacological inhibitors and activators 

was tested, only non-cytotoxic concentrations are reported. All SIN-1 and 

pharmacological treatments were performed in three separate cell culture preparations 

(n=3). Within each preparation, three technical replicates at the 24 hour time point were 

performed.  

Measurement of Calpain Activity 

     Calpain activity was quantified using a fluorometric assay kit (Biovision, Milpitas, CA) 

according to the manufacturer's instructions. Briefly, neurons were treated with the 

extraction buffer provided by the manufacturer to extract cytosolic proteins while 

preventing the auto-activation of calpain during the extraction procedure. The neuronal 

supernatant was then incubated with a calpain substrate (Ac-LLY-AFC) which fluoresces 

at 505 nm upon cleavage. Fluorescence intensities at each SIN-1 concentration were 

measured on a spectrophotometric microplate reader and compared against an untreated 

sample at each time point. Six coverslips of neurons were pooled at each time point and 

SIN-1 concentration. Data from these measurements are presented as relative 

fluorescence units (RFU) as a percent increase over untreated samples. A total of three 

separate culture preparations (n=3), each run in three technical replicates, were 

compared at each measurement. Statistical comparisons were made by repeated 

measures one-way ANOVA with a Dunnett’s multiple comparisons post-hoc test. All 

graphing and statistical analyses were performed using GraphPad Prism version 6.03 for 

Windows (GraphPad Software, San Diego, CA). 
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Immunofluorescence 

     Cells were immunolabeled with the appropriate primary and secondary antibodies (see 

below) as described previously (Shepherd et al., 2012; Clark et al., 2016; Benusa et al., 

2017) with the modification that cells were fixed with 4% paraformaldehyde (Ted Pella, 

Redding, CA) for 5 minutes and permeabilized with -20oC methanol (Fisher Scientific, 

Waltham, MA). Slides were mounted with Vectashield™ mounting medium with DAPI 

(Vector Laboratories, Burlingame, CA); and imaged using confocal microscopy. 

 

Antibodies 

     Axon initial segments were visualized using mouse monoclonal antibodies directed 

against ankyrin-G (AnkG) (NeuroMab, Davis, CA; N106/36, 1:200) or βIV-spectrin (a 

generous gift from Dr. Matthew Rasband, Baylor College of Medicine; 1:500). Neurons 

were identified using an antibody directed against NeuN (Millipore; Billerica, MA; 1:1000). 

All secondary antibodies for immunofluorescence were purchased from Invitrogen Life 

Technologies (Grand Island, NY; AlexaTM Fluor) and used at a dilution of 1:500.  

 

Confocal Microscopy/Quantitation 

Image Collection 

     All images were collected using a Zeiss LSM 710 confocal laser scanning microscope 

(Carl Zeiss Microscopy, LLC, Thornwood, NY) housed in the VCU Department of 

Anatomy and Neurobiology Microscopy Facility. Confocal z-stacks, each spanning an 
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optical distance of 10 m, using a pin hole of 1 Airy disc unit and Nyquist sampling were 

collected from three technical replicate coverslips (12 mm) per treatment and time point 

resulting in 12 images per experimental group for AIS quantitation (~ 600 neurons per 

treatment group). All comparisons were made using three independent culture 

preparations (n=3). Images were taken with a 20X objective with a numerical aperture of 

1.4; optical slice thickness was 0.49 µm, using a scan average of 2. X, Y and Z image 

dimensions were 212.43 µm x 212.43 µm x 10.00 µm, respectively. The gain and offset 

values were kept constant for all images.  

 

AIS Quantitation   

     AIS stability was determined using ImageJ analysis software by manually counting 

initial segments from maximum intensity projection images resulting in the analysis of 

>600 AISs per experimental treatment and time point. The number of neurons in a FOV 

was also determined in the same images used for AIS analysis by counting NeuN-positive 

cells. Data are presented as the percent of NeuN-positive cells with an associated AIS as 

a percent of the control. One-way ANOVAs with Tukey’s Honest Significant Difference 

(HSD) post hoc tests were performed for these comparisons. All graphing and statistical 

analyses were performed using GraphPad Prism version 6.03 for Windows (GraphPad 

Software, San Diego, CA). 

 

 

Cell Viability Quantitation 
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     The extent of neuronal survival following SIN-1 treatment was determined using a 

propidium iodide (PI) exclusion assay to identify non-viable cells. Prior to 

paraformaldehyde fixation, cells were treated with a 0.01 mg/mL propidium iodide 

(Molecular Probes, Eugene, OR) solution for 10 minutes. Cells were then fixed and 

immunolabeled for NeuN as described above. The number of PI-positive and NeuN-

positive cells was manually counted from maximum intensity projection images using 

ImageJ analysis software. Data are presented as the percent of NeuN-positive cells 

negative for PI as a percent of the control (% neuronal survival). One-way ANOVAs with 

Tukey’s Honest Significant Difference (HSD) post hoc tests were performed for these 

comparisons. All graphing and statistical analyses were performed using GraphPad Prism 

version 6.03 for Windows (GraphPad Software, San Diego, CA). 

 

Measurement of ROS Production 

     Quantification of neuronal ROS production induced by SIN-1 treatment was performed 

using the CellROX® Green Reagent kit (Thermo Fisher Scientific, Walthanm, MA) 

according to the manufacturer's instructions. Briefly, 12 DIV primary cortical neurons 

grown on coverslips were treated with SIN-1 at concentrations ranging from 0.1-100 μM 

and analyzed 3, 6, 12, 24, or 72 hours post treatment. Cells were incubated for 30 minutes 

at 37oC with CellROX® Reagent at a concentration of 5 μM. Coverslips were rinsed with 

PBS and mounted on slides with Vectashield™ hard set mounting medium with DAPI 

(Vector Laboratories, Burlingame, CA); and imaged using confocal microscopy as 

described above. The CellROX® green fluorescence intensity was measured from 

maximum intensity projection images using ImageJ analysis software. Data from these       
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measurements are presented as the percent fluorescence increase over the untreated at 

each SIN-1 treatment concentration and time point. Data from these measurements are 

presented as relative fluorescence units (RFU) as a percent increase over untreated 

samples. A total of three separate culture preparations (n=3) were compared at each 

measurement. Statistical comparisons were made by repeated measures one-way 

ANOVA with a Dunnett’s multiple comparisons post-hoc test. All graphing and statistical 

analyses were performed using GraphPad Prism version 6.03 for Windows (GraphPad 

Software, San Diego, CA). 

 

3.4 Results 

ROS/RNS generator, SIN-1, induces primary neuronal oxidative stress in vitro 

     In order to directly test the effect of ROS/RNS on AIS stability, we treated primary 

cortical neurons in vitro with the NO and superoxide donor SIN-1 (Singh et al., 1999; 

Trackey et al., 2001; Rocchitta et al., 2005; Zhaowei et al., 2014). Optimal SIN-1 treatment 

conditions were first determined using a combination of cell death analysis, and a ROS 

production assay to identify SIN-1 concentrations that generated ROS/RNS without 

inducing cortical neuron death. Our first step was to administer the SIN-1 reagent, ranging 

in concentrations from 0.1 µM to 100 µM consistent with previous studies (Trackey et al., 

2001; Rocchitta et al., 2005; Zhaowei et al., 2014), to determine the maximum SIN-1 

concentration that could be tolerated by the cultured cells. Neuronal survival was 

assessed by the propidium iodide exclusion assay 24 hours post-treatment, a time point 

consistent with previous SIN-1 cytotoxicity studies (Trackey et al., 2001). As shown in 
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Figure 3.1 A-F and M, significant cell death was observed at the highest concentrations 

(50 µM and 100 µM) while no cell loss occurred at the concentrations of 25 µM and below. 

Specifically, the percent of NeuN positive cells that were also propidium iodide negative 

(defined as % neuronal survival) 24 hours after the addition of SIN-1 was 90.7% ± 6.6% 

(0.1 µM), 84.0% ± 5.9% (1 µM), 91.6% ± 4.9% (10 µM) and 89.0% ± 9.5% (25 µM).  

Significant neuronal loss, however, was detected at SIN-1 concentrations of both 50 µM 

(54.4% ± 12.5%, p=0.0004; Fig. 3.1M) and 100 µM (4.1% ± 0.42%, p<0.0001; Fig. 3.1F, 

M). Therefore, these findings indicated that 25 µM was an appropriate concentration for 

SIN-1 treatment to ensure that cell death was not induced. 

    Our initial studies to identify optimal SIN-1 concentrations were conducted at the 24 

hour time point based on previous work (Trackey et al., 2001). However, to better 

understand the profile of ROS/RNS production in our culture system, we employed the 

CellROX® Green assay, a fluorogenic cell-permeable probe which fluoresces upon 

oxidation by ROS (Isaev et al., 2016; Liu et al., 2014), to quantify levels of neuronal ROS 

over time. No significant increase in neuronal ROS levels was detected 3 (Fig. 3.1H, N) 

and 6 hours (Fig. 3.1I, N) post SIN-1 treatment, at a concentration of 25 µM (the highest 

non-cytotoxic concentration), as compared to the untreated cultures (Fig. 3.1G, N). 

However, by 12 hours (Fig. 3.1J, N) post SIN-1 addition, ROS levels were significantly 

increased with the levels highest at 24 hours (Fig. 3.1K, N) post SIN-1 treatment. By 72 

hours (Fig. 3.1L, N) post SIN-1 addition, ROS production returned to baseline levels 

indicating a resolution of the oxidative insult. With an established time course of SIN-1 

induced oxidative stress through the CellROX® assay, we next asked whether AIS 

integrity was compromised as a result of this insult. 
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Exogenously applied ROS/RNS induce AIS disruption in vitro 

    In order to assess the effects of exogenously applied ROS/RNS on AIS stability, 

primary cortical neurons were treated with SIN-1 at all of the non-cytotoxic concentrations 

tested above (0.1-25 µM) and subsequently double immunolabeled for AnkG and NeuN 

at 3, 6, 12, and 24 hours post-treatment. Data are presented as the percent of neurons 

(defined as NeuN+ cells) with an associated AIS (defined as AnkG+). Representative 

images for only the 25 µM SIN-1 treatments are shown for each time point (Fig. 3.2B-F). 

No significant alteration in AIS integrity was observed at any of the tested SIN-1 

concentrations (0.1-25 µM) 3 hours (Fig. 3.2B, G), 6 hours (Fig. 3.2C, H), or 12 hours 

(Fig. 3.2D, I) post-treatment as compared to the non-treated cultures (Fig. 3.2A). 

Similarly, at 24 hours (Fig. 3.2J), neither 0.1 µM nor 1 µM of SIN-1 was sufficient to induce 

disruption of the AIS. However, AIS loss was observed 24 hours after SIN-1 addition at 

concentrations of 10 µM (Fig. 3.2J; p=0.034) and 25 µM (Fig. 3.2E, J; p=0.003) with a 

significant reduction in the percent of neurons with an associated AIS of 29.0% ± 5.2% 

and 43.2% ± 3.7% respectively. Results from AnkG quantitation were confirmed by 

immunolabeling for βIV-spectrin, another AIS protein crucial for domain stability (data not 

shown). 

     Since the CellROX® assay indicated a return to baseline levels of ROS/RNS by 72 

hours, we next analyzed AIS integrity at this late time point to determine whether the 

ROS/RNS-induced AIS disruption is reversible. Interestingly, recovery was observed 72 

hours following SIN-1 treatment at both the 10 µM (Fig. 3.2K) and 25 µM (Fig. 3.2F, K) 

concentrations. To ensure that the recovery in the percentage of AIS+ cells was not due 
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to a loss of neurons that lacked positively labeled AISs, the relative number of NeuN+ 

cells was compared between the treated and non-treated groups. No significant 

difference was observed between groups (data not shown) indicating that NeuN+ cells 

that lost their AISs did not die, but recovered from the SIN-1 treatment and restored their 

AIS. This recovery at 72 hours post-treatment corresponds to a return to baseline of 

neuronal ROS levels as shown in Figure 3.1L & N. Overall, these data provide a time-

course for ROS/RNS-induced AIS disruption in our in vitro system, allowing for 

subsequent pharmacological manipulations to elucidate the underlying mechanism. All 

further experiments were performed 24 hours following treatment of 25 µM SIN-1, the 

time point of peak AIS loss, and the highest non-cytotoxic concentration of SIN-1, 

respectively.                                                                                                                                                                    

 

ROS/RNS-induced AIS disruption requires extracellular Ca2+ 

     Calcium (Ca2+) is central to most previously identified mechanisms of AIS modulation, 

during both activity-dependent plasticity (Yamada and Kuba, 2016), as well as 

pathological insult (Stoler and Fleidervish, 2016). In order to determine if ROS/RNS-

induced AIS disruption involves extracellular Ca2+ entry, neurons were pre-treated with 

the non-membrane permeable Ca2+-chelating agent EGTA, prior to SIN-1 addition. EGTA 

pre-treatment at concentrations of 0.001 mM and 0.01 mM were not sufficient to prevent 

the AIS disruption previously observed (Fig. 3.3D), and SIN-1 treated cells exposed to 

these concentrations were indistinguishable from those without EGTA (Fig. 3.3B, D). 

EGTA concentrations of 1 mM (Fig. 3.3D) and 2 mM (Fig. 3.3C, D), however, were 

capable of attenuating the AIS disruption, resulting in the preservation of 81.9% ± 0.8% 
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(p=0.0004) and 94.9% ± 0.7% (p<0.0001) of neurons with an associated AIS, 

respectively, as compared to the 62.3% ± 1.6% percent observed with SIN-1 treatment 

alone. Similar to other previously established models of AIS plasticity and injury (Schafer 

et al., 2009; Stoler and Fleidervish, 2016; Yamada and Kuba, 2016), these data 

demonstrate that extracellular Ca2+ is central to AIS disruption; however, we implicate 

ROS/RNS as upstream activators of this degenerative pathway.  

 

L-type voltage-dependent calcium channels are required for ROS/RNS-induced AIS 

disruption 

     While the importance of extracellular Ca2+ entry was demonstrated with EGTA, the 

site of Ca2+ entry into the cell during ROS/RNS-induced AIS modulation remains unclear. 

To address this, we pre-treated neurons with a series of inhibitors to the known types of 

voltage-dependent calcium channels prior to SIN-1 treatment (Catterall, 2011). Inhibition 

of T and R-type VDCCs by NiCl2 (Evans et al., 2013; Bhattacharjee et al., 1997) revealed 

no significant attenuation of SIN-1 induced AIS disruption at the range of concentrations 

tested (0.1-50 µM; Fig. 3.4C, G).  Similarly, no AIS protection was observed following 

application of the P, Q and N-type VDCC inhibitor ω-Conotoxin MVIIC (0.0001-1 µM; Fig. 

3.4D, H). Concentrations of these inhibitors higher than those presented resulted in 

significant neuronal death (data not shown). Additionally, specific inhibition of L-type 

VDCCs with nifedipine (Nguemo et al., 2013) at concentrations of 0.001-0.1 µM was not 

sufficient to protect AIS integrity. However, attenuation of SIN-1 induced AIS disruption 

was observed following pre-treatment with the L-type specific VDCC inhibitor at 

concentrations of 1 µM and 10 µM (Fig. 3.4E, I) resulting in the preservation of 88.3% ± 
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3.66% (p=0.0147) and 92.1% ± 4.3% (p=0.0055) of AISs respectively, as compared to 

the 60.2% ± 3.9% percent observed with SIN-1 treatment alone. 

     We then asked whether Ca2+ flow through L-type VDCCs in the absence of SIN-1 was 

sufficient to drive disruption of the AIS. To address this, a selective irreversible activator 

of L-type channels, (S)-(-)-Bay K 8644 (Ravens and Schöpper, 1990; Fusi et al., 2017), 

was used at concentrations ranging from 0.00001–1 µM with AIS assessment performed 

24 hours post-treatment. This treatment resulted in a significant reduction in the percent 

of neurons with an associated AIS at concentrations of 0.1 µM and 1 µM by 22.6% ± 3.9% 

(p=0.0002) and 32.5% ± 3.9% (p<0.0001) respectively (Fig. 3.4F, J). Importantly, these 

concentrations of (S)-(-)-Bay K 8644 did not result in neuronal death as determined by 

the propidium iodide exclusion assay described above (data not shown). Overall, these 

data suggest that ROS/RNS-mediated disruption of the AIS involves extracellular Ca2+ 

flow specifically through L-type VDCCs, and that activation of these channels, 

independently of SIN-1, is sufficient to drive similar AIS alterations.  

 

ROS/RNS-mediated AIS modulation involves IP3-gated Ca2+ stores 

     Because AIS stability is heavily dependent on the level of intracellular of Ca2+ (Stoler 

and Fleidervish, 2016; Yamada and Kuba, 2016) and on the function of VDCCs for 

ROS/RNS-mediated AIS disruption, we next asked if release from intracellular stores is 

involved in this SIN-1 induced insult. Prior to SIN-1 addition, neurons were pre-treated 

with inhibitors to both ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors, the two 

major mediators of Ca2+ release from intracellular stores (Marks, 1997; Evans et al., 

2013). Inhibition of ryanodine receptors with ryanodine at concentrations of 0.001-10 µM 
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did not result in protection of the AIS from SIN-1 induced disruption (Fig. 3.5C, E). 

Concentrations greater than 10 µM resulted in significant neuronal death (data not 

shown). Conversely, pre-treatment with IP3 receptor inhibitor 2-Aminoethoxydiphenyl 

borate (2-APB) was capable of significantly preserving AIS integrity in a dose dependent 

manner at concentrations of 10 µM and 20 µM, resulting in the preservation of 80.4% ± 

7.3% (p=0.0290) and 95.1% ± 2.7% (p=0.0002) of neurons with an intact AIS respectively 

(Fig. 3.5D, F). Interestingly, low concentrations of 2-APB (<10 µM) result in the release 

of Ca2+ from IP3-gated intracellular stores (DeHaven et al., 2008), a possible explanation 

for the exacerbated effect of SIN-1 on the AIS at the 0.1 µM concentration (Fig. 3.5F; 

p=0.0010). Taken together, these data highlight an important role for Ca2+ release from 

IP3, but not ryanodine-sensitive intracellular stores in ROS/RNS-induced AIS disruption.  

 

Calpain, but not calcineurin activity, is involved in ROS/RNS-induced AIS 

disruption 

     While Ca2+ from both extracellular and intracellular sources appears to play a critical 

role in ROS/RNS-mediated AIS disruption, the downstream mediator of this AIS 

modulation remains unknown. Previously described mechanisms of AIS plasticity and 

injury have implicated two Ca2+-activated enzymes as critical regulators of AIS stability 

(Evans et al., 2013; Schafer et al., 2009). These include calcineurin, a Ca2+-activated 

phosphatase responsible for disassembly of the AIS protein complex in models of activity-

dependent plasticity (Evans et al., 2013), as well as calpain, a Ca2+-activated protease 

whose substrates include critical structural and functional AIS proteins (Schafer et al., 

2009). In order to assess the contribution of each potential AIS modulator in ROS/RNS-
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induced AIS disruption, pharmacological inhibitors of each were employed prior to SIN-1 

addition. Inhibition of calcineurin with FK-506 (Evans et al., 2013) in the presence of SIN-

1 was insufficient to prevent AIS disruption at all concentrations tested (0.001-10 μM) 

(Fig. 3.6C, E). Concentrations greater than 10 µM resulted in significant neuronal death 

(data not shown).  

     Treatment with the well-established calpain inhibitor MDL 28170 (Schafer et al., 2009; 

Donkor, 2015), however, prevented AIS loss in a dose-dependent manner, at 

concentrations of 1 μM and 10 μM, yielding preservation of 83.3% ± 0.6% (p<0.0001) and 

96.8% ± 0.8% (p<0.0001) of AISs respectively (Fig. 3.6D, F). A fluorescent activity assay 

was used to determine the time-course of calpain activity, at the time points tested in 

Figure 3.2, in order to correlate with SIN-1 induced AIS loss and recovery. While elevated 

calpain activity was observed at 12 hours post SIN-1 treatment (69.4% ± 4.8% increase 

over untreated; p=0.0036; Fig. 3.6G), peak activity was observed at 24 hours (255.5% ± 

14.9% increase over untreated; p<0.0001; Fig. 3.6G); the time point at which AIS loss is 

greatest (Fig. 3.2E, J). Interestingly, by 72 hours post SIN-1 treatment, calpain activity 

returned to baseline levels (34% ± 9.9% increase over untreated; Fig. 3.6G), 

corresponding to the point at which neuronal ROS levels have returned to baseline (Fig. 

3.1L, N) and AIS recovery is achieved (Fig. 3.2F, K). Overall, these data implicate a role 

for calpain, but not calcineurin, as an effector of AIS disruption downstream of oxidative 

stress. 

 

3.5 Discussion 
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     Previous work from our lab implicated oxidative stress as a mediator of AIS disruption, 

since free radical scavenger treatment was sufficient to protect and recover the domain 

in an inflammatory mouse model of MS (Clark et al., 2016). Additionally, ablation of NOX2, 

a major source of ROS/RNS production in the CNS, was sufficient to preserve AIS 

integrity in an LPS model of systemic inflammation (Benusa et al., 2017). While these 

studies suggested a role for oxidative stress in AIS modulation, the direct effects of 

reactive oxygen and nitrogen species on AIS stability remained unclear. The present 

study demonstrates for the first time that oxidative stress, induced through exogenous 

ROS/RNS application, drives structural alterations of the AIS. Additionally, 

pharmacological inhibition of both voltage-dependent and intracellular Ca2+ channels 

suggests that Ca2+ entry through L-type VDCCs and its release from IP3-gated stores is 

involved in ROS/RNS-mediated AIS modulation. Furthermore, this AIS insult is 

dependent upon calpain, but not calcineurin, activity.   

 

The Role of ROS/RNS in Axonal Pathology 

     The data presented in this study highlight a role for ROS/RNS in disruption of the AIS 

protein complex, but other axonal targets of oxidative stress have been described. These 

include the F-actin cytoskeleton (Hung et al., 2011; Sakai et al., 2012), axonal growth 

cones (Munnamalai and Suter, 2009; Munnamalai et al., 2014), and microtubule-

associated stabilizers and motors (Stroissnigg et al., 2007; Carletti et al., 2011; Redondo 

et al., 2015). Reactive oxygen and nitrogen species have also been associated with the 

pathogenesis of many CNS insults including axonal loss in peripheral nerve and spinal 

cord injury (Kuo et al., 2017; Maggio et al., 2017), hyperphosphorylation of tau in 
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Alzheimer’s disease (Sepulveda-Diaz et al., 2015), loss of cortical connections following 

ischemia (Rosenzweig and Carmichael, 2013), and demyelination and axonal 

degeneration in MS (Forte et al., 2007; Qi et al., 2007). 

     Because oxidative stress is a key contributor to many CNS pathologies (Lewén et al., 

2000; Smith et al., 2013; Méndez-Armenta et al., 2014; Islam, 2017), it is likely that this 

mechanism of ROS/RNS-induced AIS modulation may underlie many models of CNS 

injury. Our laboratory has recently identified AIS disruption in both an inflammatory model 

of multiple sclerosis (Clark et al., 2016), as well as a model of systemic inflammation 

(Benusa et al., 2017), which was prevented and/or reversed upon free-radical scavenger 

treatment. Additionally, other labs have reported alterations in AIS stability in models of 

epilepsy (Wimmer et al., 2010; Harty et al., 2013), ischemic injury (Schafer et al., 2009; 

Hinman et al., 2013), traumatic brain injury (Baalman et al., 2013; Greer et al., 2013; 

Vascak et al., 2017), and Alzheimer’s disease (León-Espinosa et al., 2012; Sun et al., 

2014; Marin et al., 2016; Zempel et al., 2017), which have all been shown to be associated 

with CNS oxidative stress through ROS/RNS dysregulation (Lewén et al., 2000; Smith et 

al., 2013; Méndez-Armenta et al., 2014; Islam, 2017). 

 

 

 

ROS/RNS and Ca2+ Entry 

     Our data suggest that ROS/RNS-mediated AIS disruption involves extracellular Ca2+ 

entry through L-type VDCCs, as well as intracellular release from IP3-gated stores. While 
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the mechanistic link between ROS/RNS application and cytosolic Ca2+ levels is not well 

defined in our system, previous studies examining this link may provide insight. Similar to 

the present study, SIN-1 treatment is known to induce Ca2+ entry through L-type channels 

in CA1 pyramidal neurons, cardiomyocytes, and striatal neurons (Pan et al., 2004; 

Rocchitta et al., 2005; Zhaowei et al., 2014). Peroxynitrite treatment of cerebral cortical 

neurons, the cell type used in the present study, also resulted in increased Ca2+ entry 

through L-type VDCCs (Ohkuma et al., 2001). However, the effects of SIN-1 have been 

shown to vary in other cell types, as treatment resulted in decreased Ca2+ flow through L-

type VDCCs in cerebellar granule cells and vestibular hair cells (Gutiérrez-Martín et al., 

2005; Almanza et al., 2007; Tiago, et al., 2011). While the mechanism of ROS/RNS 

modulation of L-type VDCCs remains unclear for most cell types described, S-

glutathionylation of the L-type VDCCs has been shown to be involved in increased Ca2+ 

flow through these channels in cardiomyocytes (Tang et al., 2011; Johnstone and Hool, 

2014). It remains to be determined if this, or other modifications, could underlie SIN-1-

induced Ca2+ influx through L-type VDCCs in our primary cortical neuron system.   

     In addition to L-type VDCCs, we demonstrate the involvement of IP3-gated intracellular 

Ca2+ stores on ROS/RNS-induced AIS disruption. Similar to the present study, previous 

work has shown SIN-1 and its ROS/RNS products to induce release of Ca2+ specifically 

through IP3-gated stores in neuroblastoma SH-SY5Y cells and cardiomyocytes (Saeki et 

al., 2000; De Simoni et al., 2013). It has been reported, however, that SIN-1 derived 

ROS/RNS can induce intracellular Ca2+ release non-specifically in renal epithelial cells 

and ventral horn spinal cord neurons (Ohashi et al., 2016; Munoz et al., 2017) or 

specifically through ryanodine-sensitive stores in smooth and skeletal muscle cells (Pan 
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et al., 2004; Yamada et al., 2015). Given the cell-type specific effects of ROS/RNS on 

both voltage-dependent and intracellular Ca2+ channel function reported in the literature, 

the mechanistic action of SIN-1 on L-type VDCCs and IP3-gated intracellular stores in our 

system remains to be determined. 

 

How does Calpain Modulate the AIS? 

     In the present study, we have identified ROS/RNS-induced AIS disruption to be 

dependent upon calpain activation. Similarly, calpain activity is shown to drive AIS 

alterations in other model systems including ischemic injury (Schafer et al., 2009), 

glutamate excitotoxicity (Benned-Jensen et al., 2016), and P2X7 purinergic activation 

(Del Puerto et al., 2015). Schafer et al. (2009) demonstrated that proteolytic degradation 

of essential AIS proteins, such as ankyrinG, βIV spectrin, and voltage-gated Na+ 

channels, was the mechanism underlying calpain-mediated AIS modulation following 

ischemic injury. Benned-Jensen et al. (2016) and Del Puerto et al. (2015) did not analyze 

the extent of proteolysis, but speculated that a mechanism similar to that reported by 

Schafer et al. (2009) was most likely involved in their models of AIS injury. It is likely that 

calpain-mediated proteolysis of the AIS complex underlies the alterations observed 

following the ROS/RNS-induced insult presented in this study, as this mechanism is well 

characterized by Schafer et al. (2009). 

     In summary, for the first time, we demonstrate that oxidative stress, stimulated directly 

through exogenously applied ROS/RNS, is capable of reversible structural modulation of 

the AIS. This mechanism involves activity of L-type VDCCs, as well as intracellular IP3-
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gated stores. Additionally, calpain, but not calcineurin, activity is involved in this 

ROS/RNS-induced disruption. These findings provide new insights into the mechanisms 

underlying altered AIS stability in a variety of CNS pathologies.  
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Figure 3.1. ROS/RNS generator, SIN-1, induces oxidative stress in vitro. Cortical 

neurons (NeuN+ cells, green) treated with (B-F) and without (A) SIN-1 at increasing 

concentrations reveal no propidium iodide (PI) staining at concentrations of 25 μM and 

below (B-E) 24 hours post treatment; however, robust staining was present at 

concentrations of 50 μM (not shown) and 100 μM (F). Quantitation of percent neuronal 

survival, determined as the percentage of NeuN+ cells that were also PI- (as a percent of 

the untreated cells), revealed significant cell death at SIN-1 concentrations of 50 μM and 

100 μM (M). The CellROX® Green assay for detection of ROS production by the cortical 

neurons revealed baseline levels of ROS at ≤6 hours post SIN-1 treatment (G-I, N) with 

significantly elevated levels at 12 hours (J, N), peak levels at 24 hours (K, N) and a return 

to baseline by 72 hours (L, N). Asterisks represent a significant difference from the SIN-

1 untreated group (*p < 0.05).  
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Figure 3.2. Exogenous ROS/RNS drive disruption of the AIS in vitro. Axon initial 

segments of cultured cortical neurons maintain their integrity with no SIN-1 treatment (A) 

or 3 (B,G), 6 (C,H), or 12 (D,I) hours following exposure to 25 μM SIN-1, a concentration 

that did not induce cell death. However, at this same concentration, a significant dose-

dependent reduction in the number of cortical neurons (NeuN+, green) that presented 

ankyrin-G (red) positive AISs was observed 24 hours after SIN-1 exposure (white arrows; 

E,J). By 72 hours post SIN-1 exposure, AIS integrity was restored (F,K) demonstrating 

the reversibility of AIS disruption and further indicating that AIS loss was not a 

consequence of cell death. Asterisks represent a significant difference from the SIN-1 

untreated group (*p < 0.05). 
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Figure 3.3. ROS/RNS-induced AIS disruption is attenuated following chelation of 

extracellular Ca2+. The loss of AIS labeling (white arrows) following exposure to 25 μM 

SIN-1 (B) was inhibited by the addition of EGTA (C) to the medium prior to SIN-1 

treatment. The extent of AIS maintenance was directly dependent on the dose of EGTA 

(D). An asterisk with an associated bracket indicates significant differences between 

treated groups; asterisks without an associated bracket represent a significant difference 

from the SIN-1 untreated group (A, *p < 0.05). (NeuN, green; AnkG, red) 
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Figure 3.4. L-type voltage dependent calcium channels are required for ROS/RNS-

induced AIS disruption. Similar to SIN-1 treated neurons without inhibitor pre-treatment 

(B), neurons (NeuN+, green) treated with inhibitors directed against T/R- (C,G) or P/N/Q-

type (D,H) calcium channels prior to SIN-1 exposure presented with significant loss (white 

arrows) in AIS labeling (AnkG, red). In contrast, cultured cortical neurons treated with an 

L-type calcium channel inhibitor (E,I) resulted in a significant preservation of the AISs. 

Further demonstrating a role for L-type calcium channels in mediating AIS alterations, 

cortical neurons treated with (S)-(-)-Bay K 8644 also resulted in a significant disruption of 

the AISs (F,J). Asterisks without an associated bracket represent a significant difference 

from the SIN-1 untreated group (A, *p < 0.05).  

 

 

 

 

 



125 
 

 

 

 

 

 

 

 

 

 

 



126 
 

 

 

 

 

 

 

 

Figure 3.5. IP3-gated Ca2+ stores are required for ROS/RNS-induced AIS disruption. 

AIS labeling (AnkG, red) was lost (white arrows) following exposure of cortical neurons 

(NeuN+, green) to 25 μM SIN-1 (B). This disruption was prevented by pre-treatment with 

an IP3-receptor inhibitor (D,F) but not an inhibitor to ryanodine receptors (C,E). Asterisks 

without an associated bracket represent a significant difference from the SIN-1 untreated 

group (A, *p < 0.05). 
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Figure 3.6. ROS/RNS-induced AIS disruption is mediated by calpain but not 

calcineurin activity. Cultured cortical neurons (NeuN+, green) treated with an inhibitor 

directed against calcineurin (C,E) prior to SIN-1 exposure presented with a significant 

loss (white arrows) of AIS labeling (AnkG, red) similar to the SIN-1 treated neurons 

without inhibitor pre-treatment (B). In contrast, neurons treated with a calpain inhibitor 

displayed a significant preservation of AISs (D,F). A calpain protease activity assay 

revealed significantly elevated activity at 12 hours, peak activity at 24 hours and a return 

to baseline by 72 hours post SIN-1 treatment (25 μM) which is represented as the percent 

increase over untreated neurons (G). Asterisks without an associated bracket represent 

a significant difference from the SIN-1 untreated group (A, *p < 0.05). 
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Supplementary Table S3.1. Neurobasal™ Medium Formulation 

Components Molecular Weight (kDa) Concentration (mg/L) 
Amino Acids   

Glycine 75.0 30.0 

L-Alanine 89.0 2.0 
L-Arginine hydrochloride 211.0 84.0 

L-Asparagine-H2O 150.0 0.83 

L-Cysteine 121.0 31.5 
L-Histidine hydrochloride-H2O 210.0 42.0 

L-Isoleucine 131.0 105.0 

L-Leucine 131.0 105.0 

L-Lysine hydrochloride 183.0 146.0 

L-Methionine 149.0 30.0 

L-Phenylalanine 165.0 66.0 
L-Proline 115.0 7.76 

L-Serine 105.0 42.0 

L-Threonine 119.0 95.0 
L-Tryptophan 204.0 16.0 

L-Tyrosine 181.0 72.0 

L-Valine 117.0 94.0 

Vitamins   

Choline Chloride 140.0 4.0 

D-Calcium Pantothenate 477.0 4.0 

Folic Acid 441.0 4.0 

Niacinamide 122.0 4.0 

Pyridoxal Hydrochloride 204.0 4.0 

Riboflavin 376.0 0.4 

Thiamine Hydrochloride 337.0 4.0 
Vitamin B12 1355.0 0.0068 

i-Inositol 180.0 7.2 

Inorganic Salts   
Calcium Chloride (anhydrous) 111.0 200.0 

Ferric Nitrate 404.0 0.1 

Magnesium Chloride (anhydrous) 95.0 77.3 
Potassium Chloride 75.0 400.0 

Sodium Bicarbonate 84.0 2200.0 

Sodium Chloride 58.0 3000.0 

Sodium Phosphate Monobasic 138.0 125.0 

Zinc Sulfate 288.0 0.194 

Other Components   

D-Glucose (Dextrose) 180.0 4500.0 

HEPES 238.0 2600.0 
Phenol Red 376.4 8.1 

Sodium Pyruvate 110.0 25.0 
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CHAPTER FOUR 

 

DISRUPTION OF THE CISTERNAL ORGANELLE IN EAE AND  
MULTIPLE SCLEROSIS  

 

Clark et al., Cerebral Cortex (Submitted) 

 

4.1 Abstract 

     The axon initial segment (AIS), the neuronal subcompartment responsible for action 

potential generation, is altered through activity-dependent plasticity and pathological 

insult. While there may be many triggers for AIS modulation, all described mechanisms 

converge on calcium (Ca2+) dysregulation which activates enzymes leading to AIS 

destabilization and neuronal dysfunction. Understanding the mechanisms that regulate 

Ca2+ levels at the AIS is therefore critical for addressing AIS alterations that underlie many 

CNS insults. Here, we investigate the cisternal organelle (CO), a poorly understood 

structure located specifically at the AIS and reported to buffer Ca2+ at this domain. Our 

findings of CO disruption in postmortem multiple sclerosis (MS) tissue are the first to show 

pathologically-induced CO alteration. Further characterization in a mouse model of MS 

(experimental autoimmune encephalomyelitis) suggests F-actin depolymerization and 

axo-axonic GABAergic synapse loss is a trigger and consequence of CO disruption, 

respectively.  Importantly, we also demonstrate that F-actin depolymerization, synaptic 

loss, and CO instability are reversible upon treatment with didox, a potent free radical 

scavenger. Overall, these findings identify a novel neuronal insult which may provide 

insight into new therapeutic targets for MS and other CNS pathologies.   
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4.2 Introduction 

     The axon initial segment (AIS) is a specialized axonal subdomain responsible for both 

action potential initiation, and maintenance of neuronal polarity (Kole et al., 2008; 

Rasband, 2010). Consistent with its role as the trigger zone for neuronal firing, voltage 

gated ion channels are clustered at the AIS by the cytoskeletal scaffolding protein 

ankyrinG (AnkG) (Nelson and Jenkins, 2017). Structural and functional stability of this 

domain is heavily dependent on the master regulatory protein AnkG, as its loss at the AIS 

results in complete disassembly of the complex (Hedstrom et al., 2008). Our lab (Clark et 

al., 2016, Benusa et al., 2017, Clark et al., in press), and others (Buffington and Rasband, 

2011; Yamada and Kuba, 2016) have demonstrated alterations to the AIS as a result of 

either activity-dependent plasticity or pathological insult. While the initial triggers of AIS 

modulation may differ, local calcium (Ca2+) dysregulation at this axonal complex is central 

to all established mechanisms of AIS plasticity and injury (Buffington and Rasband, 2011; 

Yamada and Kuba, 2016). To elucidate the mechanisms underlying plasticity- and 

pathologically-induced Ca2+ changes at the AIS, we investigated the cisternal organelle 

(CO), an enigmatic structure localized specifically at the AIS reported to play a role in 

local cytosolic Ca2+ regulation (Benedeczky et al., 1994; Sánchez-Ponce et al., 2011). 

     The CO is a specialized form of smooth endoplasmic reticulum, arranged similarly as 

stacks of electron-dense membranous cisternae (Benedeczky et al., 1994; Bas Orth et 

al., 2007). This structure lies in close apposition to the axolemma while also associating 

with the submembranous cytoskeleton at the AIS (Sánchez-Ponce et al., 2012). 

Surprisingly, the functional role of the CO has not been fully elucidated. In fact, most 

insight into the function of this structure  is derived from the nature of the expressed 
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proteins such as annexin 6 (A6), sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), 

and Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1). The functional nature of 

these proteins suggests a role for the CO in the sequestration and release of Ca2+ at the 

AIS (Benedeczky et al., 1994; Sánchez-Ponce et al., 2011). Recently, a role for the CO 

in AIS maturation and plasticity during development was demonstrated in the visual cortex 

(Schlüter et al., 2017). Additional insight into the functional role of the CO is gleaned from 

existing knowledge about a distinct, but structurally analogous organelle found in dendritic 

spines, termed the spine apparatus (Segal et al., 2010). Unlike the CO, the functional role 

of the spine apparatus as a regulator of local Ca2+ levels at the dendritic spine has been 

extensively characterized (Segal et al., 2010). Despite the elusive functional role of the 

CO, evidence for the mechanisms involved in its establishment and maintenance is 

provided by in vitro and in vivo studies (Bas Orth et al., 2007; Sánchez-Ponce et al., 2011; 

Schlüter et al., 2017). Stability of this organelle is dependent on both AnkG localization 

and clustering of filamentous actin (F-actin), as both AnkG silencing and actin 

depolymerization results in the loss of this structure at the AIS (Sánchez-Ponce et al., 

2011). In addition to these extrinsic AIS components, CO integrity is also regulated 

intrinsically by synaptopodin (Synpo), an actin-binding protein critical for stabilizing the 

CO with the F-actin cytoskeleton (Kremerskothen et al., 2004; Sánchez-Ponce et al., 

2011), as Synpo-deficient mice fail to establish COs (Bas Orth et al., 2007). 

     While the mechanisms that establish and maintain the CO are becoming clear, the 

structural and functional vulnerability of this organelle under any pathological condition 

has yet to be demonstrated. Presently, the only study to investigate CO integrity under 
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pathological conditions found the CO to remain structurally intact in a model of 

Alzheimer’s disease (León-Espinosa et al., 2012).  

     Interestingly, we have recently reported that Ca2+ regulation is altered at the AIS 

following inflammatory insults that mimic those present in multiple sclerosis (MS) (Clark 

et al., 2017), a disease classically characterized by demyelination but known to exhibit 

extensive axonal pathology (Trapp et al., 1998; Criste et al., 2014). Based on our previous 

findings, we investigated CO stability in MS and experimental autoimmune 

encephalomyelitis (EAE), an animal model of MS, and found that CO integrity is 

compromised in both the human disease and the animal model. Our findings provide the 

first evidence that the CO is vulnerable to pathologically-induced disruption. Additionally, 

we provide evidence of a potential upstream trigger, and downstream consequence of 

CO instability in the form of F-actin depolymerization and GABAergic axo-axonic synapse 

loss, respectively. Importantly, we show that the CO disruption is reversible following free 

radical scavenger treatment suggesting that this newly described form of neuronal injury 

is potentially amenable to clinical manipulation for novel therapeutic approaches to 

combat MS. 

 

4.3 Materials and Methods 

Animals 

    11 week old female C57BL/6J mice were purchased from Jackson Laboratories (Bar 

Harbor, ME) and maintained in the McGuire Veterans Affairs Medical Center  

(VAMC) vivarium, an AAALAC accredited facility. The EAE model was induced following 



135 
 

one week of acclimation post-arrival resulting in induction at 12 weeks of age. Food and 

water were provided ad libitum. All procedures were conducted in accordance with the 

methods outlined in the approved McGuire VAMC IACUC protocols.  

 

The EAE Model and Didox Administration 

     Induction of EAE was performed in 12 week old female C57BL/6J mice as previously 

described (Clark et al., 2016). Briefly, subcutaneous injection of 100 µL of myelin 

oligodendrocyte glycoprotein peptide 35-55 (3 mg/mL; AnaSpec, Fremont, CA) was 

emulsified in complete Freund’s adjuvant (Thermo Fisher Scientific, Waltham, MA) 

containing heat-killed M. tuberculosis (2 mg/mL, Invitrogen Life Technologies, Waltham, 

MA). Intraperitoneal (IP) injection with PBS-diluted pertussis toxin (0.25 µg/µL, List 

Biological Labs, Campbell, California) was performed on the same day, followed by a 

booster injection 48 hours later. Clinical motor symptoms were scored daily and recorded 

as follows: 1.0 = limp tail, 2.0 = loss of righting reflex, 3.0 = paralysis of single hind limb 

and 4.0 = paralysis of both hind limbs consistent with previous reports (Dupree et al., 

2015; Clark et al., 2016). For analysis, EAE mice were grouped into two clinical score 

groups: those presenting with mild scores (1&2) and severe scores (3&4) as previously 

described (Clark et al., 2016). Additionally, these two groups were assessed at two 

different time points along the EAE disease course: an early inflammatory time point (3 

days after peak clinical score presentation) and a late inflammatory time point (9 days 

after peak clinical score presentation). This resulted in EAE groups termed: Early EAE 

1&2, Early EAE 3&4, Late EAE 1&2 and Late EAE 3&4 (Clark et al., 2016). Only animals 
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that maintained consistent scores (whether 1&2 or 3&4) for the duration of their 

designated EAE duration were included in the study.   

     As previously described (Clark et al., 2016), EAE mice presenting with severe clinical 

scores (3&4) were treated with didox, a ribonucleotide reductase inhibitor (Bhave et al., 

2013) which has been shown to dampen the inflammatory response (Matsebatlela et al., 

2015; Clark et al., 2016; Caslin et al., 2017) and act as a potent free radical scavenger 

(Szekeres et al., 1997). Didox was supplied by Molecules for Health, Inc. (Richmond, VA) 

and administered via IP injection based on prior studies optimizing the treatment 

parameters (DeVries et al., 2012, Clark et al., 2016). Didox was dissolved at a 

concentration of 250 mg/kg in a solution containing: 0.5% (w/v) carboxymethylcellulose 

(Sigma-Aldrich Corp., St. Louis, MO), 0.9% (w/v) sodium chloride (Sigma-Aldrich Corp., 

St. Louis, MO), 0.4% (w/v) polysorbate 80 (Sigma-Aldrich Corp., St. Louis, MO), and 0.9% 

(w/v) benzyl alcohol (Sigma-Aldrich Corp., St. Louis, MO) in deionized water. Didox 

treatment was initiated in the Early EAE 3&4 mice and continued once daily for 6 days. 

For analysis, these mice were compared against similarly EAE staged animals treated 

daily with vehicle solution for the same duration (termed Carboxy Veh. group).  

    

Mouse Tissue Preparation      

     Mouse tissue preparation was performed as previously described (Clark et al., 2016). 

Briefly, mice were transcardially perfused with 4% paraformaldehyde (Ted Pella, Inc., 

Redding, CA) and brains cryopreserved in 30% sucrose solution (in PBS), frozen in 

Tissue TEK Optimal Cutting Temperature compound at -80oC, and serially sectioned 
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coronally at 40 µm thickness. Fifteen slides of six sections spanning the region 1.1 mm 

anterior to bregma to 2.5 mm posterior to bregma were collected as described previously 

(Clark et al., 2016).  

 

Human Tissue 

     All human tissue used in this study, including postmortem samples from non-

demented control or MS individuals, was obtained from the Netherlands Brain Bank 

(Amsterdam, Netherlands). Tissue characterization and donor history data are detailed in 

Supplementary Table S4.1.    

 

Antibodies and Immunohistochemistry 

    A complete list of the primary antibodies used in this study is provided in 

Supplementary Table S4.2. All secondary antibodies were obtained from Invitrogen Life 

Technologies (Waltham, MA) (1:500, AlexaTM Fluor). Human and mouse tissue was 

immunolabeled with the appropriate primary and secondary antibodies as described 

previously (Clark et al., 2016; Benusa et al., 2017), and imaged using confocal 

microscopy. 

 

Image Collection and Quantitation 

     Confocal z-stacks spanning an optical distance of 20 m were collected using a Zeiss 

LSM 710 confocal laser scanning microscope (Carl Zeiss Microscopy, Jena, Germany) 
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housed in the VCU Department of Anatomy and Neurobiology Microscopy Facility. 

Imaging parameters described previously (Clark et al., 2016) were used for all 

immunofluorescent analyses in the present study. Twelve fields of view were collected 

for both mouse and human tissue samples, yielding >1000 or >500 AISs per animal or 

donor, respectively. Neocortical layer V, the region previously revealed to exhibit severe 

AIS disruption following EAE induction (Clark et al., 2016), was the area of focus for 

analysis. A minimum of four mice (n=4) were used per treatment group, while the number 

of human tissue samples analyzed was five and 18 for non-demented controls (n=5) and 

MS (n=18), respectively (Supplementary Table S4.1).  

     Z-stack image files were analyzed using Volocity™ 3D Image Analysis Software 

version 6.3 (PerkinElmer, Waltham, MA). For CO, F-actin, and GABAergic axo-axonic 

synaptic analyses, automated measurements in the 3D z-stack allowed for specific 

selection and measurements of the CO through colocalization with AnkG (Supplementary 

Fig. S4.1). Automated exclusion of CO markers (Synpo, αAct, annexin 6, SERCA, IP3R1), 

F-actin (phalloidin) and GABAergic axo-axonic synaptic components (VGAT, gephyrin) 

not colocalized with AnkG was performed in order to restrict analysis to the AIS 

(Supplementary Fig. S4.1). COs were analyzed based on the 1. percent of AISs with COs, 

2. number of COs as a function of AIS length (per 10 µm) and 3. combined CO length as 

a function of AIS length (per 10 µm). Similar automated 3D measurements were used for 

the analyses of F-actin and GABAergic synaptic labeling. Data from these analyses are 

presented as the percent of AISs with F-actin or GABAergic synaptic clustering, as well 

as the number of these clusters as a function of AIS length (per 10 µm). Representative 

images shown for individual AISs are presented as isosurface images (generated in 
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Volocity™ 3D Image Analysis Software) with the raw images provided in Supplementary 

Figures S4.3, S4.4 and S4.5. One way ANOVAs with Tukey’s HSD post hoc tests were 

performed for all analyses using GraphPad Prism version 6.03 (GraphPad Software, Inc., 

La Jolla, CA ). 

     In order to determine the extent of parvalbumin (PV)+ and total neuronal cell death, 

tissue was immunolabeled for PV and NeuN in combination with  TUNEL labeling (Roche 

In Situ Cell Death Detection Kit, Fluorescein, Sigma-Aldrich Corp., St. Louis, MO). Images 

were collected as described above and qualitatively assessed for the presence of 

neuronal death at all EAE disease stages and time points used in this study 

(Supplementary Fig. S4.2). Additionally, TUNEL labeling was utilized in the postmortem 

human tissue to restrict CO and GABAergic synapse analysis to tissue sections 

containing only non-apoptotic neurons (Supplementary Fig. S4.2). 

 

4.4 Results 

The cisternal organelle is disrupted in an inflammatory model of MS 

     Our lab has previously reported disruption of the AIS in EAE (Clark et al., 2016), a 

murine model commonly used to recapitulate the inflammatory environment associated 

with MS (Kipp et al., 2017). Follow-up in vitro studies identified dysregulation of Ca2+ as 

a potential driver of the observed AIS pathology (Clark et al., in press) consistent with all 

previously reported mechanisms underlying AIS modulation (Leterrier et al., 2016; 

Jamann et al., 2017). Since we and others have implicated Ca2+ as a regulator of AIS 

stability, we investigated the integrity of the CO, a Ca2+-storing organelle localized 
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specifically in the AIS which regulates local cytosolic Ca2+ levels (Benedeczky et al., 1994; 

Sánchez-Ponce et al., 2011). Based on our previous findings suggesting Ca2+ 

dysregulation at the AIS in EAE (Clark et al., 2016), CO integrity was first assessed in this 

model at all previously established time points and disease stages (Clark et al., 2016).       

     In the Early EAE 1&2 disease group, no difference in the percent of AISs containing 

COs (identified as synaptopodin, or “Synpo”+ puncta), number of COs per 10 µm of AIS 

or total combined length of COs per 10 µm was observed as compared with Naïve mice 

(Fig. 4.1A&B, 4.1K&M). However, in the Early EAE 3&4 disease group (Fig. 4.1C), the 

percent of AISs with Synpo+ puncta was significantly reduced (Fig. 4.1K) as was the 

number of puncta (Fig. 4.1M) and the combined length of puncta per 10 µm of AISs (data 

not shown). By Late EAE, in both the 1&2 (Fig. 4.1D) and 3&4 (Fig. 4.1E) groups, Synpo 

labeling exhibited a continued and/or progressed reduction with regard to all three 

quantified parameters indicating that CO disruption parallels disease development (Fig. 

4.1K&M). 

     To further analyze CO integrity, we next conducted immunolabeling of α-actinin (α-

Act), a separate actin-binding protein important for CO stabilization (Sánchez-Ponce et 

al., 2012). Similar to the Synpo findings, co-immunolabeling for α-Act and AnkG revealed 

no significant changes in CO integrity in the Early EAE 1&2 clinical group (Figs. 4.1G, L, 

N) as compared to the Naïve (Figs. 4.1F, L, N). In contrast with the results of the Synpo 

analysis, the Early EAE 3&4 mice did not show a significant reduction in the percent of 

AISs containing α-Act+ puncta (Figs. 4.1H, L). However, CO stability was still impaired in 

this disease group as the number and total combined length of αAct-immunoreactive (IR) 

puncta per 10 µm of AnkG labeling were significantly reduced (Figs. 4.1H, N). Also, 
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consistent with the Synpo analysis, both clinical score groups at the late time point 

presented with a significant reduction in the percent of AISs containing αAct-IR puncta 

(Figs. 4.1I, J, L) as well as the number and combined length of puncta per 10 µm of AIS 

(Figs. 4.1I, J, N). Overall, we have identified disruption of the CO following EAE induction 

and confirmed this disruption separately through immunohistochemical analysis of two 

proteins critical for organelle structural stability. 

 

Calcium-regulating proteins at the cisternal organelle are also lost in EAE 

     In order to further characterize the EAE-induced pathological alteration of the CO, we 

next investigated the CO-specific expression of several Ca2+-associated proteins which 

are critical for its proposed function as a regulator of cytosolic Ca2+ at the AIS (Sánchez-

Ponce et al., 2011).  

     Consistent with the CO analysis performed through Synpo and α-Act immunolabeling 

and based on the same parameters of analysis, no change in the expression of Ca2+-

associated proteins (annexin 6, SERCA and IP3R1) on the COs of Early EAE 1&2 mice 

was observed as compared to the Naïve group (Figs. 4.2P-X). Also consistent with Synpo 

and α-Act analysis, mice in the Early EAE 3&4, Late EAE 1&2, and Late EAE 3&4 groups 

exhibited significant reduction in the percent of AISs containing annexin 6+, SERCA+, and 

IP3R1+ COs (Figs. 4.2P-R). Similarly, these groups exhibited significant reductions in the 

number of Ca2+-associated protein+ COs per 10 μm of AIS (Figs. 4.2S-U), as well as in 

the percent of COs positive for these Ca2+-associated proteins (Figs. 4.2V-X). Overall, in 

addition to the EAE-induced structural changes in CO integrity (Fig. 4.1), these data also 
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suggest an impaired function as these Ca2+-associated proteins are vital for the proposed 

role of the CO as a Ca2+-regulating structure (Sánchez-Ponce et al., 2011).  

 

Loss of F-actin clustering precedes cisternal organelle disruption in EAE 

     We have demonstrated significant CO disruption following EAE induction and next 

asked what pathological mechanism could trigger this insult. While very little is known 

about the mechanisms that regulate CO integrity, AnkG and F-actin are both known to 

stabilize this organelle (Sánchez-Ponce et al., 2011). Because we are investigating CO 

stability in the AnkG-intact population of AISs, we focused our analysis instead on the 

integrity of the F-actin clusters at the AIS. To determine if altered F-actin stability could 

act as an upstream trigger of CO disruption, we quantified F-actin puncta associated with 

the AIS, as visualized through fluorescently conjugated Phalloidin staining, at all 

previously described EAE clinical score groups and time points.  

     Interestingly, a significant reduction in the percent of AISs with F-actin puncta, the 

number of F-actin puncta per 10 μm of AnkG labeling, and the combined length of these 

puncta per 10 μm of AnkG labeling (data not shown) was detected in all EAE clinical score 

groups and time points (Figs. 4.3A-E, K&L). In order to temporally correlate this loss of F-

actin clustering with CO integrity at the AIS, double immunolabeling for Synpo and AnkG 

in combination with Phalloidin staining was performed within the same tissue sections. 

While an approximate one-to-one ratio of the number of F-actin puncta to CO (Synpo+) 

puncta  within the AIS was maintained in the Naïve mice (Figs. 4.3F, M), this ratio dropped 

significantly in the Early EAE 1&2 mice (Figs. 4.3G, M) in which the F-actin clustering was 
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lost (Fig. 4.3L) but no change in CO stability was detected (Fig. 4.1). This F-actin to CO 

ratio, however, was not significantly different between the Naïve group and  mice 

belonging to the Early EAE 3&4, Late EAE 1&2, and Late EAE 3&4 disease groups (Figs. 

4.3H-J, M) since these mice also exhibit CO disruption (Fig. 4.1) in addition to F-actin 

loss. Taken together, these data demonstrate that loss of F-actin clustering precedes CO 

disruption along the EAE disease course consistent with F-actin destabilization acting as 

a trigger for this pathological CO insult.   

 

 GABAergic axo-axonic synapse loss follows cisternal organelle disruption in EAE 

     As our findings implicate F-actin destabilization as a potential upstream trigger of CO 

disruption in EAE, we next wanted to identify   downstream consequences of this insult. 

Although not associated with disease, previous studies have suggested that the CO 

provides functional support for inhibitory GABAergic synaptic input on the AIS 

(Benedeczky et al., 1994; Jedlicka et al., 2009; King et al., 2014). This is evidenced by 

strong colocalization between the CO and GABAergic synaptic boutons along the AIS 

(King et al., 2014), as well as a functionally impaired inhibitory network in Synpo-deficient 

mice which fail to establish COs (Jedlicka et al., 2009). In light of these findings, we next 

investigated the structural stability of the GABAergic synaptic terminals on AISs of cortical 

pyramidal neurons of the EAE mice which displayed compromised CO stability. The 

morphological integrity of GABAergic synaptic input at the AIS made by chandelier cells, 

a subset of GABAergic cortical interneurons (King et al., 2014; Wang et al., 2016), was 

determined through co-immunolabeling of AnkG and either vesicular GABA transporters 

(VGAT) or gephyrin to visualize the pre- and postsynaptic compartments, respectively.  
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     No change in either the percent of AISs with VGAT+ puncta or the number of 

presynaptic puncta per 10 µm of AIS was detected at the early time point in either clinical 

score group (Figs. 4.4U&V). In contrast to the early EAE groups, a significant reduction 

in the percent of AISs containing VGAT+ puncta, as well as in the number of these boutons 

per 10 µm of AIS was observed in the Late EAE 1&2 and Late EAE 3&4 groups (Figs. 

4.4U&V). These data demonstrate a loss of the presynaptic component of the GABAergic 

synaptic complex at the AIS in EAE. 

     To determine if the postsynaptic component of the GABAergic synaptic complex was 

also disrupted, immunolabeling for gephyrin, a postsynaptically localized scaffolding 

protein critical for the establishment and maintenance of these axo-axonic synapses 

(Choii and Ko, 2015), was performed on all EAE disease groups. Consistent with the 

VGAT analysis, no significant differences were observed in the percent of AISs containing 

gephyrin+ postsynaptic puncta nor the number of these puncta per 10 µm of AnkG 

immunolabeling between the Naïve and Early EAE 1&2 disease groups (Figs. 4.4X&Y). 

Also consistent with the VGAT analysis, significant loss in the percent of AISs containing 

gephyrin+ synapses and the number of  synaptic puncta as a function of AIS length (per 

10 µm) was observed in both the Late EAE 1&2 and Late EAE 3&4 disease groups (Figs. 

4.4X&Y). Surprisingly, a significant reduction in these parameters was also detected in 

the Early EAE 3&4 group (Figs. 4.4X&Y), which displayed intact VGAT+ presynaptic 

terminals (Figs. 4.4U&V).   

     As shown in Figure 4.4, we then correlated the disruption of the GABAergic synaptic 

complex with the CO integrity within each AIS. Triple immunolabeling for VGAT, Synpo, 

and AnkG revealed the ratio of CO to VGAT+ puncta number to be maintained at a two-
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to-one ratio in the Naïve and Early EAE 1&2 groups (Fig. 4.4W). This ratio is significantly 

reduced only in the Early EAE 3&4 disease group (Fig. 4.4H&W), a point at which VGAT 

immunolabeling is reduced (Fig. 4.4U&V) but CO number is maintained (Fig. 4.1). In 

contrast, the ratio of CO to VGAT+ puncta number was not significantly different from 

Naïve in both clinical score groups at the late time point (Figs. 4.4W) since CO number is 

also reduced at this disease stage (Fig. 4.1). Additionally, triple immunolabeling for 

gephyrin, Synpo, and AnkG and subsequent determination of the CO to gephyrin+ 

postsynaptic puncta ratio revealed similar trends to that of the VGAT-CO correlative 

analysis (Fig. 4.4Z). Overall, these data suggest that instability of the GABAergic synaptic 

complexes at the AIS is a downstream consequence of CO disruption in EAE.  

 

Cisternal organelle disruption in EAE is reversible following anti-inflammatory 

treatment 

     In the present study, we have provided the first evidence for pathological alterations 

to the CO. While we now know that the CO is vulnerable to disruption, we asked whether 

these pathological changes are reversible. Our lab has previously demonstrated, not only 

an alleviation of disease clinical scores, but also an attenuation of AIS pathology in EAE 

through treatment with a novel anti-inflammatory and free radical scavenger known as 

didox (Clark et al., 2016). To investigate whether the loss of the CO in EAE is also 

recoverable, we began treatment in the Early EAE 3&4 mice, a time point and disease 

stage at which significant CO loss is observed (Fig. 4.1). Following didox treatment, we 

first assessed CO integrity through immunolabeling for the two actin-associated markers 

utilized in Figure 4.1: Synpo (Fig. 4.5A-E) and α-Act (data not shown), both of which are 
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important for CO stability (Sánchez-Ponce et al., 2012). CO loss was indeed reversible, 

with the percent of AISs containing Synpo+ or α-Act+ organelles indistinguishable from 

Naïve, and significantly increased compared to the vehicle treated mice (Figs. 4.5A-D). 

Similarly, the number of Synpo- or α-Act-IR puncta was also reduced in the vehicle treated 

mice but significantly attenuated in the didox treated group (Figs.  4.5A-C, E). CO number, 

however, did not completely return to baseline when compared to the Naïve mice (Figs. 

4.5A, C, E).   

     We next investigated whether the CO integrity was also reversible based on 

immunolabeling of the functional Ca2+-regulating proteins assessed previously (Fig. 4.2). 

Triple immunolabeling with AnkG (βIV-spectrin in the case of the SERCA analysis), 

Synpo, and either annexin 6 (data not shown), IP3R1, or SERCA revealed a decrease in 

the percent of AISs containing COs positive puncta for these markers and a significant 

recovery following didox treatment (Figs. 4.5F-I, K-N). Didox treated mice, however, did 

display mixed results when assessing the percent of COs positive for each of the three 

Ca2+-associated proteins. Only the IP3R1 but not annexin 6 (data not shown) or SERCA 

(Figs. 4.5K-M, 5O) analysis revealed a significant return to Naïve levels for this 

measurement. SERCA labeling, however, reminiscent of the IP3R1 analysis, displayed 

significant recovery when compared to vehicle treated mice (Figs. 4.5K-M, O). Taken 

together, these findings reveal at least a partial, but potentially incomplete, recovery of 

CO proteins important for Ca2+ regulation at the AIS.  

       Finally, we investigated the reversibility of the F-actin and GABAergic synaptic 

complex loss at the AIS, a potential trigger (Fig. 4.3) and consequence (Fig. 4.4) of this 

pathological CO insult, respectively. As expected, phalloidin staining revealed significant 
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F-actin loss in the vehicle treated mice (Figs. 4.5P-T). Interestingly, this loss was also 

reversible with didox treatment (Figs. 4.5P-T). Immunolabeling for both the presynaptic 

(VGAT) and postsynaptic (gephyrin, data not shown) GABAergic complex components 

revealed a similar attenuation following didox treatment as compared to the loss observed 

in vehicle treated EAE mice (Figs. 4.5U-Y). Overall, these findings demonstrate that loss 

of CO integrity and GABAergic synaptic complexes at the AIS are reversible insults in 

EAE.  

 

The cisternal organelle and GABAergic axo-axonic synapses are lost in multiple 

sclerosis 

     The findings in the EAE model suggest that CO and axo-axonic synaptic loss at the 

AIS may represent previously unidentified insults associated with MS pathogenesis. In an 

effort to investigate the relevancy of these observations to the human disease, 

postmortem MS tissue was analyzed for each of these potential neuronal pathologies. As 

shown in Figure 4.6, double immunolabeling for AnkG and Synpo was performed to 

quantify the percent of AISs containing COs, the number of COs as a function of AIS 

length (number of COs per 10 µm of AIS) and the combined CO length as a function of 

AIS length (combined CO length per 10 µm of AIS). While no change in the percent of 

AISs containing the CO was detected between MS and control tissue (data not shown), 

significant reductions in CO number and total CO length per 10 µm of AnkG 

immunolabeling, as compared to the non-demented control tissue, were observed (Fig 

4.6). These findings are the first to demonstrate CO pathology in any human disease.      
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     As demonstrated in Figure 4.4, loss of the CO in EAE was observed preceding that of 

GABAergic axo-axonic boutons at the AIS. To investigate this relationship in the 

postmortem MS tissue, immunolabeling for VGAT was used to identify the axo-axonic 

GABAergic presynaptic terminals formed by chandelier cells (King et al., 2014; Wang et 

al., 2016). Similar to the findings of CO stability, a significant reduction in the number of 

VGAT+ synaptic terminals was also observed in postmortem MS tissue (Fig. 4.6). AISs in 

MS tissue presented with significantly fewer GABAergic boutons per 10 µm of AnkG 

immunolabeling, as compared to non-demented control tissue. Overall, these findings 

reveal a loss of both the CO and GABAergic axo-axonic synapses at the AIS, two 

previously unidentified neuronal insults associated with MS pathogenesis. 

 

4.5 Discussion 

     In the present study, we have identified the first pathological alterations to the CO, an 

organelle critical for the regulation of Ca2+ levels at the AIS (Benedeczky et al., 1994; 

Sánchez-Ponce et al., 2011). Additionally, the loss of this structure, as well as the 

GABAergic synaptic complexes on the AIS, represent previously unidentified neuronal 

insults associated with MS pathogenesis (Fig. 4.6). Investigating CO integrity in the 

inflammatory EAE model provided a more complete characterization of this novel 

pathology. Loss of F-actin clustering at the AIS presents before detectable changes to 

CO stability during EAE progression (Fig. 4.7B). In contrast, loss of the axo-axonic 

GABAergic synaptic complexes appear to occur downstream of the CO insult along the 

disease course (Fig. 4.7D). Importantly, the morphological alterations to the GABAergic 

synaptic terminals are consistent with the functional impairment of the GABAergic 
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inhibitory network previously reported in the Synpo deficient mice (Jedlicka, et al., 2009). 

Finally, structural disruption of the CO as well as its potential downstream pathology are 

reversible upon  anti-inflammatory and free radical scavenger treatment  (Figs. 4.5, 4.7) 

suggesting that these novel MS pathologies are clinically subject to therapeutic 

modification.  

 

How does cisternal organelle integrity affect AIS stability? 

     While our lab has previously identified extensive AIS disruption in EAE (Clark et al., 

2016), here we demonstrate loss of the CO in the population of AISs that remain 

morphologically intact (AnkG+). It remains unclear how CO and AIS loss may correlate 

mechanistically, but previous work in vitro and in vivo provides some insight. AIS stability 

is required for both the establishment and maintenance of the CO (Sánchez-Ponce et al., 

2011). Not only does AIS maturation precede that of the CO, but AnkG silencing in 

cultured hippocampal neurons results in complete destabilization of this organelle 

(Sánchez-Ponce et al., 2011). While these findings provide strong evidence for the 

dependence of the CO on AIS stability, the reciprocal relationship is not as clearly defined. 

Initial findings from Synpo deficient mice, in which the CO is not established, revealed no 

consequence on structural or functional integrity of the AIS with respect to AnkG 

localization and action potential generation (Bas Orth et al., 2007). The authors, however, 

acknowledged the possibility that the CO could play a role at the AIS distinct from the 

basic electrophysiological parameters tested (Bas Orth et al., 2007). A recent study 

suggested a role for the CO in modulating developmental plasticity of the AIS. Schlüter 

et al. (2017) demonstrated altered AIS length in the visual cortex of mice lacking the CO 
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following dark rearing. In addition to its role in AIS development, the CO may also play a 

role in maintaining GABAergic axo-axonic synaptic complexes based on 

immunocytochemistry colocalization (Benedeczky et al., 1994; King et al., 2014). 

Consistent with this possibility, electrophysiological studies in the Synpo deficient mice, 

which lack the CO and spine apparatus, revealed an impaired local inhibitory network 

(Jedlicka et al., 2009). Therefore, the apparent downstream consequence of CO loss, as 

observed in both previous (Jedlicka et al., 2009; King et al., 2014) and our present studies, 

is impaired structural and functional AIS stability, since the AIS is a highly plastic structure 

heavily regulated by neuronal activity (Yamada and Kuba, 2016; Jamann et al., 2017).  

     In addition to activity-dependent AIS alterations as a potential consequence of CO 

disruption, it is also likely that dysregulation of cytosolic Ca2+ at the AIS could lead to 

proteolytic modulation of this domain. Previous studies demonstrated cleavage of critical 

AIS components including AnkG, βIV-spectrin, and voltage-dependent sodium channels 

by calpain, a Ca2+-activated protease (Schafer et al., 2009). Calpain activation is central 

to a wide array of pathological AIS insults including those induced by ischemia (Schafer 

et al., 2009; Hinman et al., 2013), purinergic receptor activation (Del Puerto et al., 2015), 

glutamate excitotoxicity (Benned-Jensen et al., 2016), LPS-mediated inflammation 

(Benusa et al., 2016), and oxidative stress (Clark et al., in press). Because regulation of 

local Ca2+ is crucial for AIS stability, it is possible that alterations to the CO could underlie 

many of these previously identified AIS pathologies.  
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Is F-actin destabilization mediated by the inflammatory environment? 

     Here we show loss of F-actin clustering at the AIS of EAE-induced mice which 

precedes CO disruption (Fig. 4.3). This finding is consistent with other studies in which F-

actin is revealed to stabilize and maintain CO integrity at the AIS (Sánchez-Ponce et al., 

2011). Although loss of F-actin could be mechanistically upstream of CO disruption in 

EAE, the trigger for F-actin destabilization in this model remains unclear. It is likely that 

the inflammatory environment of EAE is responsible for the alterations of F-actin, as actin 

dynamics are modulated by a variety of inflammatory components (Cross and Woodroofe, 

1999; Delbro et al., 2009; Munnamalai and Suter, 2009; Tong et al., 2012; Munnamalai 

et al., 2014). Previous studies demonstrated loss of F-actin clustering in a variety of cell 

types as a result of an LPS-induced inflammatory insult and more specifically by cytokines 

such as IL-1β (Cross and Woodroofe, 1999; Delbro et al., 2009; Tong et al., 2012). 

Additionally, it is possible that oxidative stress plays a role in the F-actin alterations 

observed in this study, since clustering was recovered following free radical scavenger 

treatment (Fig. 4.5). Supporting this idea, reactive oxygen species (ROS) disassemble 

the F-actin cytoskeleton at the neuronal growth cone during normal neurite outgrowth 

(Munnamalai and Suter, 2009; Munnamalai et al., 2014). These changes are believed to 

be due to ROS-mediated activation of various kinases that regulate actin remodeling 

(Munnamalai and Suter, 2009). While these mechanisms are important for neural 

development, they may become pathological when overstimulated, as F-actin 

destabilization mediated through oxidative stress has been attributed to the pathogenesis 

of other neurodegenerative diseases such as Alzheimer’s disease (Bamburg and 
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Bernstein, 2016). The specific trigger of F-actin destabilization in the EAE model requires 

further investigation.  

 

Impairment of the GABAergic network in multiple sclerosis 

     In the present study, we have identified loss of the CO and GABAergic synaptic 

complexes localized at the AIS (Figs. 4.4, 4.6), two previously undescribed axonal insults 

in MS pathogenesis. These findings are consistent with the hypothesized role for the CO 

in maintaining these axo-axonic inputs at the AIS (Benedeczky et al., 1994; Jedlicka et 

al., 2009; King et al., 2014), and provide a possible explanation for the impaired 

GABAergic network reported in MS and its animal models (Dutta et al., 2006; Rossi et al., 

2011; Falco et al., 2014; Mosayebi et al., 2016). Western blot, as well as 

immunohistological analysis on postmortem MS and EAE cortical tissue, previously 

revealed decreased overall expression of pre- and postsynaptic components of the 

GABAergic complex (Dutta et al., 2006; Falco et al., 2014). These morphological findings 

are consistent with functional studies performed in the EAE model demonstrating loss of 

the hippocampal paired-pulse inhibitory effect (Mosayebi et al., 2016), as well as impaired 

striatal GABAergic transmission (Rossi et al., 2011). Though the triggers of structural and 

functional impairment of the inhibitory network in EAE are not clearly defined, loss of PV+ 

interneurons may contribute (Falco et al., 2014). In the present study, we reveal structural 

changes to the GABAergic axo-axonic synapses in the absence of PV+ interneuron cell 

death (Supplementary Fig. 4.2), at a much earlier disease stage than those examined in 

previous studies (Falco et al., 2014). This suggests that these effects are not, at least 

initially, consequences of neuron cell death. In addition to the animal studies suggesting 
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a functionally impaired GABAergic network, Arpin et al. (2017) used 

magnetoencephalography (MEG) to record neural responses following paired-pulse 

stimulations showing similar functional abnormalities in MS patients consistent with a loss 

of GABAergic synaptic complexes.  

     Overall, we provide the first evidence of CO disruption under pathological conditions, 

an insult that would have profound effects on local Ca2+ regulation at the AIS. Additionally, 

we report the disruption of the CO as well as the axo-axonic GABAergic synaptic terminals 

at the AIS in postmortem MS tissue. Characterization of CO insult in EAE revealed this 

disruption to be preceded by loss of F-actin clustering at the AIS and followed by structural  

impairment of the GABAergic network, which is consistent with previous studies that 

reported  compromised CO integrity and a disrupted CNS inhibitory network (Jedlicka et 

al., 2009; Sánchez-Ponce et al., 2011; King et al., 2014). Importantly, these changes are 

reversible upon free radical scavenger treatment in EAE, indicating that these neuronal 

MS deficits are potentially amendable to therapeutic approaches. 
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Figure 4.1. The cisternal organelle is disrupted in early and late EAE. Representative 

immunolabeling for the CO using antibodies directed against two structural CO proteins 

(Synpo (A-E) and α-Act (F-J), green; white arrows) in Early EAE 1&2 mice (B,G) reveals 

no change in either the percent of AISs containing these structures (K,M), or the number 

of these organelles per 10 µm of AnkG labeling (L,N) as compared to the Naïve group 

(A,F). Significant reductions in both of these values were detected in mice belonging to 

the Early EAE 3&4 (C,H), Late EAE 1&2 (D,I), and Late EAE 3&4 (E,J) groups. Isosurface 

insets of individual AISs are shown below the low magnification representative images. 

Asterisks without an associated bracket represent a significant difference from the Naïve 

group (*p < 0.05). 
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Figure 4.2. Calcium-regulating proteins at the cisternal organelle are compromised 

following EAE induction. Representative isosurface AISs immunolabeled with AnkG 

(grey), Synpo (green; white arrows), and either Annexin 6 (A-E), SERCA (F-J), or IP3R1 

(K-O) (red; white arrows) demonstrate no change in the expression of these Ca2+-

associated proteins on the CO in Naïve (A,F,K) and Early EAE 1&2 mice (B,G,L). Loss of 

each of these proteins on the CO is present in the Early EAE 3&4 (C,H,M), Late EAE 1&2 

(D,I,N), and Late EAE 3&4 (E,J,O) groups. Yellow arrows denote COs that are negative 

for Annexin 6 (C-E), SERCA (H-J), or IP3R1 (M-O) on the composite images. Data are 

presented as the percent of AISs containing COs positive for each of these Ca2+-

associated markers (P-R), the number of theses COs per 10 µm of AnkG labeling (S-U), 

and the percent of COs positive for each Ca2+-associated protein (V-X). Asterisks without 

an associated bracket represent a significant difference from the Naïve group (*p < 0.05). 

 

 

 

 



159 
 

 

 

 

 

 

 

 

 

 

 



160 
 

 

 

 

Figure 4.3. Loss of F-actin clustering at the AIS precedes cisternal organelle 

disruption. Staining of F-actin with phalloidin (green; A-E) in representative images 

collected from Naïve mice (A) display numerous AIS-localized (AnkG, red; A-E) clusters 

(white arrows). Significant reduction in F-actin clustering at the AIS is first observed at 

Early EAE 1&2 (B), which persists at the Late EAE time point for both clinical score groups 

(D,E). Data for this analysis are presented as the percent of AISs containing F-actin 

puncta (K), as well as the number of these puncta as a function of AIS length (per 10 µm; 

L). Isosurface insets of individual AISs are shown below the low magnification 

representative images (A-E). Staining of F-actin (green; white arrows) with simultaneous 

double immunolabeling for Synpo (CO, red; white arrows) and AnkG (AIS, grey) allow for 

correlation between F-actin and CO loss (F-J). The ratio of F-actin to CO number at the 

AIS is only significantly reduced in the Early EAE 1&2 group (H), the clinical stage where 

F-actin loss precedes CO disruption. The F-actin/CO ratio returns to baseline level in the 

Early EAE 3&4 (H), Late EAE 1&2 (I), and Late EAE 3&4 (J) groups as subsequent CO 

loss is also observed. Yellow arrows (most prevalent in G merged) denote COs not 

colocalized with F-actin. Representative AISs are depicted as isosurface images (F-J). 

Asterisks without an associated bracket represent a significant difference from the Naïve 

group (*p < 0.05). 
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Figure 4.4. Axo-axonic GABAergic synaptic complexes are lost following cisternal 

organelle disruption. Immunolabeling of GABAergic presynaptic (VGAT, green; A-J) 

axo-axonic terminals in representative images collected from Naïve (A,F), Early EAE 1&2 

(B,G), and Early EAE 3&4 (C,H) mice display numerous AIS-localized (AnkG, red; A-E) 

GABAergic terminals (white arrows). Significant loss of these presynaptic axo-axonic 

synapses is observed, however, at the Late EAE time point of both clinical score groups 

(D,E). Similarly, postsynaptic (gephyrin, green; white arrows; K-T) GABAergic terminal 

labeling reveals no change in AIS localization (AnkG, red; P-T) in Early EAE 1&2 (L) mice 

as compared to the Naïve (K). This postsynaptic component of the GABAergic complex 

is, however, significantly disrupted in the Early EAE 3&4 (M), Late EAE 1&2 (N), and Late 

EAE 3&4 (O) groups. Isosurface insets of individual AISs are shown below the low 

magnification representative images (A-E). Data from these analyses are presented as 

the percent of AISs with either VGAT+ (U) or gephyrin+ (X) puncta, and the number of 

these GABAergic synaptic components (VGAT, V; gephyrin, Y) per 10 µm of AnkG 

labeling. Furthermore, the ratio of CO to pre- (VGAT; F-J, W) or postsynaptic number 

(gephyrin; P-T, Z) at the AIS (AnkG, grey) demonstrates a significant reduction beginning 

in the Early EAE 3&4 group, as CO disruption is observed to precede GABAergic axo-

axonic synaptic loss at this point (yellow arrows). Representative AISs are depicted as 

isosurface images (A-E; P-T). Asterisks without an associated bracket represent a 

significant difference from the Naïve group (*p < 0.05). 
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Figure 4.5. Cisternal organelle and axo-axonic GABAergic loss is reversible 

following free radical scavenger treatment. Immunolabeling for the CO (Synpo, green; 

A-C) in didox treated mice (C) reveals significant recovery in both the percent of AISs 

(AnkG, red; A-C) containing the CO (D), and the number of these structures per 10 µm of 

AnkG labeling (E) as compared to the Naïve (A) and vehicle treated (B) groups. 

Isosurface insets of individual AISs are shown below the low magnification representative 

images (A-C). Representative isosurface AISs immunolabeled with AnkG (grey; F-H), 

Synpo (green; F-H), and either IP3R1 or SERCA (red; F-H) demonstrate recovery of CO-

expression of these Ca2+-associated proteins in didox treated mice (H,M) as compared to 

the Naïve (F,K) and vehicle treated (G,L) groups. Data from these analyses are presented 

as the percent of AISs containing either IP3R1 or SERCA+ COs (I,N) and the percent of 

COs that are positive for these markers (J,O). Yellow arrows denote COs without 

colocalization of either Ca2+-associated proteins IP3R1 (F-H) or SERCA (K-M). Finally, 

both F-actin clustering (phalloidin, green; P-R) and GABAergic axo-axonic synaptic 

puncta (VGAT, green; U-W) recovered following didox treatment (R,W) with respect to 

both the percent of AISs (red, P-W) positive for each of these markers (S,X), and the 

number of these puncta as a function of AIS length (T,Y), as compared to the Naïve (P,U) 

and vehicle treated (Q,V) groups. Isosurface insets of individual AISs are shown below 

the low magnification representative images (P-R; U-W). Asterisks without an associated 

bracket represent a significant difference from the Naïve group (*p < 0.05). 
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Figure 4.6. The cisternal organelle and axo-axonic GABAergic synaptic terminals 

on the AIS are lost in postmortem MS tissue. Representative AISs (AnkG+, grey) 

immunolabeled in non-demented control (A,B) and multiple sclerosis (MS) (C,D) tissue 

reveal significant  fewer Synpo+ COs (red) and VGAT+ GABAergic synaptic terminals 

(green) in disease.  Quantitation of the number of these Synpo+ (E) and VGAT+ (F) 

structures, as a function of AIS length (per 10 µm), revealed significant reductions in MS 

tissue. Asterisks represent a significant difference from the control group (*p < 0.05). 
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Figure 4.7. Summary of findings for F-actin, cisternal organelle, and GABAergic 

synaptic disruption along EAE disease progression. Naïve mice present with intact 

filamentous actin (F-actin), cisternal organelle (CO), and an axo-axonic synaptic complex 

(composed of post synaptic density (PSD) and GABAergic Bouton) at the AIS. 

Destabilization of F-actin clustering is first observed in the early stages of the disease 

(Early EAE 1&2 (B)) preceding CO and axo-axonic GABAergic complex disruption. As 

the disease progresses, initial signs of CO loss are detected (Early EAE 3&4 mice (C)) 

preceding loss of axo-axonic GABAergic presynaptic clustering (VGAT), but coincident 

with reduced postsynaptic density (PSD) clustering at the AIS. In the later and more 

severe stages of disease (Late EAE (D)), loss of F-actin, COs, and axo-axonic GABAergic 

terminals is prevalent. Encouragingly, F-actin depolymerization, CO disruption, and loss 

of the GABAergic axo-axonic complex may be reversible (blue arrow); however, the 

therapeutic window for recovery has not been determined.  
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Supplementary Figure S4.1. Methodology of 3D automated image analysis. A 

representative raw image with immunolabeling for synaptopodin (Synpo;green) and the 

AIS (AnkG, red) shows Synpo+ puncta localized both at the AIS (termed the cisternal 

organelle), and outside the AIS (located on dendritic spines – termed the spine apparatus) 

(A). To focus our analysis specifically on the COs, Volocity™ 3D Image Analysis Software 

was used to select only those Synpo+ puncta colocalized with AnkG (D’, yellow arrows) 

in an automated fashion. This is performed through initial selection of total Synpo+ (B) and 

AnkG+ (C) positive objects, followed by exclusion of those Synpo+ objects not colocalized 

with AnkG+ structures (D, white arrows). Although Synpo is depicted as an example in 

this figure, all CO, F-actin, and GABAergic synapse analyses were performed using this 

quantifying approach.  
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Supplementary Figure S4.2. Neuronal loss was not detected in EAE or analyzed 

postmortem human MS tissue. Representative images of triple labelling for NeuN 

(green; total neurons), Parvalbumin (red; interneurons) and TUNEL (cyan) qualitatively 

show no apoptotic neurons in Naïve (A) or Late EAE mice (B). In contrast, some of the 

post mortem human Control (not shown) and MS (E; white arrows) samples revealed 

NeuN (green) and TUNEL (cyan) labelling indicative of apoptosis. These samples were 

excluded from analyses.  All analyses were restricted to postmortem control (C) and MS 

tissue (D) that did not contain apoptotic neurons.  
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Supplementary Figure S4.3. Non-isosurface images from Figure 4.2. Non-isosurface 

raw images of triple labelled synpo, AnkG and either annexin 6, SERCA, or IP3R1 from 

Figure 4.2. 
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Supplementary Figure S4.4. Non-isosurface images from Figures 4.3 and 4.4. Non-

isosurface raw images of triple labelled synpo, AnkG and either phalloidin (F-actin), 

VGAT, or gephyrin from Figures 4.3 and 4.4. 
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Supplementary Figure S4.5. Non-isosurface images from Figure 4.5. Non-isosurface 

raw images of triple labelled synpo, AnkG and either SERCA, or IP3R1 from Figure 4.5. 
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Supplementary Table S4.1. Summary of donor history and tissue characterization 

Tissue ID Sex 
Age 

(years) 
Diagnosis 

MS Duration 
(years) 

Postmortem 
Delay (hrs:min) 

Brain Region 

S11/044 M 51 Non-Demented Control NA 7:45 Medial Temporal Gyrus 
S95/056 F 86 Non-Demented Control NA 13:30 Inferior Temporal Gyrus 
S96/057 M 73 Non-Demented Control NA 6:00 Superior Temporal Gyrus 
S96/238 F 87 Non-Demented Control NA 8:00 Inferior Temporal Gyrus 
S96/251 M 84 Non-Demented Control NA 9:00 Inferior Temporal Gyrus 
S09/054 F 68 Multiple Sclerosis 4 8:25 Medial Temporal Gyrus 
S10/085 F 57 Multiple Sclerosis 27 8:40 Medial Temporal Gyrus 
S10/273 M 56 Multiple Sclerosis 14 9:50 Medial Temporal Gyrus 
S11/048 M 53 Multiple Sclerosis 24 10:00 Medial Temporal Gyrus 
S08/240 F 40 Multiple Sclerosis 6 8:55 Medial Temporal Gyrus 
S08/302 F 77 Multiple Sclerosis 24 10:00 Medial Temporal Gyrus 
S10/334 F 60 Multiple Sclerosis 7 10:40 Medial Temporal Gyrus 
S11/080 F 56 Multiple Sclerosis 32 8:25 Medial Temporal Gyrus 
S04/114 F 56 Multiple Sclerosis 20 6:35 Medial Temporal Gyrus 
S96/102 F 74 Multiple Sclerosis 24 5:30 Inferior Temporal Gyrus 
S96/115 F 57 Multiple Sclerosis 19 5:45 Inferior Temporal Gyrus 
S07/127 F 48 Multiple Sclerosis 23 11:40 Medial Temporal Gyrus 
S08/047 M 49 Multiple Sclerosis 25 8:00 Medial Temporal Gyrus 
S09/251 M 75 Multiple Sclerosis 39 7:45 Medial Temporal Gyrus 
S09/317 F 59 Multiple Sclerosis 24 4:45 Medial Temporal Gyrus 
S10/052 M 44 Multiple Sclerosis 22 10:15 Medial Temporal Gyrus 
S12/056 M 78 Multiple Sclerosis 33 8:45 Medial Temporal Gyrus 
S96/232 F 40 Multiple Sclerosis 4 7:00 Medial Temporal Gyrus 
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Supplementary Table S4.2. Summary of markers used 

Marker Target Structure Species/Isotype Dilution Manufacturer 

Ankyrin-G (AnkG) Axon Initial Segment Mouse/IgG2a 1:500 NeuroMab 

βIV-Spectrin Axon Initial Segment Rabbit/IgG 1:500 Gift from Dr. Matthew Rasband 

Synaptopodin (Synpo) Cisternal Organelle Mouse/IgG1 1:100 OriGene 

α-Actinin (α-Act) Cisternal Organelle Mouse/IgG1 1:500 Thermo Fisher Scientific 

Annexin 6 (A6) Cisternal Organelle Rabbit/IgG 1:500 Thermo Fisher Scientific 

Sarco-endoplasmic reticulum 

Ca
2+

-ATPase (SERCA) 
Cisternal Organelle Mouse/IgG2a 1:250 Abcam 

Inositol 1,4,5-trisphosphate 
receptor type 1 (IP

3
R1) Cisternal Organelle Rabbit/IgG 1:250 Thermo Fisher Scientific 

Vesicular GABA Transporter 
(VGAT) 

Presynaptic  
GABAergic Synapses 

Rabbit/IgG 1:500 Synaptic Systems 

Gephyrin 
Postsynaptic 

GABAergic Synapses 
Mouse/IgG2b 1:500 NeuroMab 

Parvalbumin 
PV+ Neocortical 

Interneurons 
Mouse/IgG1 1:1000 MP Biomedicals 

NeuN Neuronal Nuclei Rabbit/IgG 1:1000 Abcam 

Phalloidin 
Filamentous actin 

 (F-actin)  
NA 1:100 Thermo Fisher Scientific 
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CHAPTER FIVE 

DISCUSSION 

5.1 Synopsis 

     The focus of these studies was to better understand the stability and vulnerability of 

the axon initial segment in MS. While nodal disruption in MS was well characterized 

(Dupree et al., 2004; Coman et al., 2006; Howell et al., 2010; Pomicter et al., 2010; Zoupi 

et al., 2013), much less was known about the AIS, a compositionally similar axonal 

domain critical for neuronal function (Buttermore et al., 2013). To more effectively 

investigate the extent of AIS stability under hallmark conditions of MS pathogenesis, 

animal models of the disease were utilized and presented in Chapter 2. AIS integrity was 

assessed in both the cuprizone and EAE murine models, which are commonly used to 

recapitulate the demyelinating and inflammatory aspects of the disease, respectively 

(Kipp et al., 2017). Unlike the nodal domains, no changes in AIS stability were observed 

in the demyelinating cuprizone model. Extensive loss of AIS protein clustering was 

detected, however, following EAE induction. This disruption closely correlated with the 

inflammatory environment specifically with increased microglial reactivity and AIS contact 

(Figure 5.1). Treatment with a novel anti-inflammatory drug dampened the microglial 

response, attenuated AIS loss and restored AIS structure. This study revealed, for the 

first time, that the AIS, unlike the node of Ranvier, does not require myelin contact to 

maintain its integrity. This finding provides valuable insight into the pathogenesis of MS, 

as most neuronal insults in the disease are demonstrated to be consequential to myelin 

damage rather than primary pathogenic events. Furthermore, AIS alterations were found 
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to be driven by the local inflammatory environment suggesting that this mechanism of 

neuronal injury may not be restricted to MS pathogenesis.   

          While the study presented in Chapter 2 implicated the inflammatory environment in 

driving alterations at the AIS, the underlying mechanism remained unclear. The strongest 

insight was that oxidative stress was a key contributor as treatment with a free radical 

scavenger was capable of attenuating this insult. In order to investigate this further, we 

established an in vitro model that allowed us to more easily manipulate this AIS injury 

mechanism. In Chapter 3, AIS integrity was assessed in an in vitro primary cortical neuron 

system of oxidative stress induced through the application of SIN-1. The addition of this 

spontaneous ROS/RNS generator resulted in the loss of AIS stability, which was reversed 

upon resolution of the oxidative insult. ROS/RNS-induced AIS loss involves increased 

cytosolic Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and 

from IP3-gated intracellular stores (Figure 5.1). These AIS alterations are also dependent 

upon activation of calpain, a Ca2+-activated protease whose substrates include critical 

AIS components (Schafer et al., 2009) (Figure 5.1). Overall, we uncovered a mechanism 

of AIS injury driven by oxidative stress, a finding that could have implications for a variety 

of CNS pathologies. 

          Our lab and others have demonstrated that elevated levels of intracellular Ca2+ 

drive the pathologic mechanisms responsible for AIS disruption associated with ischemia, 

traumatic brain injury, Alzheimer’s disease, epilepsy, and MS (Schafer et al., 2009; 

Baalman et al., 2013; Greer et al., 2013; Harty et al., 2013; Hinman et al., 2013; Hamada 

and Kole, 2015; Clark et al., 2016; Vascak et al., 2017). Therefore, elucidating the 

mechanisms that regulate local Ca2+ levels at the AIS is therefore vital to addressing the 
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AIS alterations associated with these pathologies. This led us to investigate the cisternal 

organelle (CO), an AIS-specific Ca2+-storing organelle thought to regulate local cytosolic 

Ca2+ levels. Although this organelle may be central to AIS modulation, very little is known 

about the mechanisms regulating its stability and no pathological alterations have ever 

been described. To determine if CO integrity is altered coincident with AIS disruption, we 

performed morphological assessments in the EAE model in which severe AIS loss was 

previously observed. As presented in Chapter 4, extensive CO loss was detected and 

found to precede the AIS alterations in EAE (Figure 5.1). These changes were preceded 

by destabilization of F-actin at the AIS signifying a potential upstream trigger of CO 

instability under inflammatory conditions (Figure 5.1). Additionally, loss of GABAergic 

synapses at the AIS followed CO disruption consistent with the CO playing a critical role 

in stabilizing AIS axo-axonic synapses (Figure 5.1). Finally, CO disruption and loss of 

inhibitory synaptic complexes at the AIS were also detected in postmortem MS tissue. 

This study provided the first evidence of a pathologically-induced insult to the CO. 

Collectively, these studies provide crucial insight into the pathogenesis of not only MS, 

but an array of CNS insults in which axonal Ca2+ regulation is impaired. 

 

5.2 The AIS and CO: Inflammatory Mediated Modulation 

     Findings from EAE and the in vitro system of oxidative stress implicate the 

inflammatory environment in modulation of AIS and CO stability. As described in the 

Introduction, the MS inflammatory environment involves immune mediators including 

peripheral lymphocytes and resident CNS microglia with the peripheral lymphocytes 

believed to prime and drive the microglial response (Larochelle et al., 2011). For this 
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reason, the present studies have largely focused on the contribution of microglia, rather 

than peripheral lymphocytes to AIS and CO instability under these inflammatory 

conditions. As described above, microglia have biphasic roles in MS pathogenesis 

exhibiting reactivity states that are either pro-inflammatory or resolving depending on the 

stage of CNS damage (Luo et al., 2017). Fortunately for the characterization of MS driven 

AIS insult, these phenomena are recapitulated separately in the cuprizone and EAE 

models in which microglia exhibit reparative or destructive reactivity profiles respectively 

(Gao and Tsirka, 2011; Clemente et al., 2013). While microglia make close associations 

with the AIS in the non-inflamed state (Baalman et al., 2015), increased AIS-contacts 

were made by microglia displaying both types of reactivity profiles in the two models as 

presented in Chapter 2. The increased AIS associations by pro-inflammatory microglia in 

EAE, however, likely have destructive rather than protective consequences for the AIS 

providing a possible explanation for the differential outcomes on AIS stability seen 

between the cuprizone and EAE models.  

     While microglia appear to be the modulators of AIS and CO disruption in EAE, 

oxidative stress is the likely downstream contributor to AIS and CO instability, as free 

radical scavenger treatment prevented and/or reversed these insults. As presented in 

Chapter 3, further characterization in an in vitro model of oxidative stress revealed that 

exogenously applied ROS/RNS was sufficient to induce changes to the AIS complex. This 

is likely contributing to the AIS disruption observed in EAE since microglia produce 

ROS/RNS (Guemez-Gamboa et al., 2011) in close proximity to the AIS. Due to the lability 

of ROS/RNS (Forkink et al., 2010), the most destructive effects would likely be observed 

in microglial-contacted rather than uncontacted AISs. While AIS disruption, as detected 
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through AnkG and βIV spectrin localization, closely correlated to microglial reactivity and 

contact in EAE, the present studies did not make this correlation for the CO. As presented 

in Chapter 4, CO disruption was first detected at the Early disease stage in mice exhibiting 

severe clinical scores (3 & 4), a time point and disease stage following detectable 

microglial reactivity and contact with the AIS (Chapter 2). Therefore, it is possible that 

microglia also drive CO disruption in EAE. Additionally, using the same free radical 

scavenger treatment paradigm as in Chapter 2, CO loss was attenuated much like that of 

disrupted AnkG localization. This implies that CO disruption can occur through ROS/RNS-

induced insult as well. As discussed in Chapter 3, previous studies demonstrated 

oxidative stress-induced alterations to F-actin polymerization (Munnamalai et al., 2014), 

a component of the AIS cytoskeleton that is essential for proper CO maintenance 

(Sánchez-Ponce et al., 2011). Therefore, to further understand the mechanisms 

underlying these insults it would be important to investigate F-actin and CO stability 

following exogenous ROS/RNS treatment with SIN-1 in vitro and correlate the timing of 

this potential disruption to AnkG loss.  

 

5.3 The AIS and CO: Calpain Mediated Modulation 

     As described in the Introduction, calpain protease activation underlies AIS disruption 

in a variety of CNS insults (Buffington and Rasband, 2011), including the ROS/RNS-

induced insult presented in Chapter 3. Additional work in our lab revealed attenuation of 

LPS-induced AIS disruption following in vivo administration of a calpain inhibitor (Benusa 

et al., 2017) further implicating this protease in AIS modulation under inflammatory 

conditions. Previous studies have implicated calpain in MS pathogenesis with a proposed 
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role in myelin proteolytic breakdown (Rosenberger, 2014). Here, we propose an 

additional role for calpain under the inflammatory conditions associated with MS in 

targeting the AIS complex for disruption. Interestingly, calpain inhibition in the EAE model 

results in alleviation of clinical scores (Rosenberger, 2014); AIS stability, however, 

remains to be assessed. 

     In addition to AIS protein clustering, the relationship between CO stability and calpain 

activity remains elusive, but interesting. While no study has investigated this relationship 

specifically, calpain activation may occur both upstream and downstream of CO 

disruption under inflammatory conditions. For example, drebrin, an actin binding and F-

actin stabilizing protein, is a known target of calpain mediated proteolysis, resulting in F-

actin depolymerization (Chimura et al., 2015). This supports a role for calpain upstream 

of CO disruption since depolymerization of F-actin results in loss of CO stability (Sánchez-

Ponce et al., 2011). In contrast, because calpain activation requires large Ca2+ influx, it is 

also likely that protease activation would be a downstream consequence of CO loss, since 

this organelle is responsible for regulation of cytosolic Ca2+ levels (Benedeczky et al., 

1994; Sánchez-Ponce et al., 2011). Supporting this possibility, Chapter 3 demonstrates 

the involvement of IP3-gated intracellular Ca2+ stores in ROS/RNS-induced AIS 

disruption. We propose that the receptors contributing to Ca2+ release at the AIS following 

this insult were those present on the CO which releases Ca2+ in an IP3-gated manner 

(Benedeczky et al., 1994; Sánchez-Ponce et al., 2011). Because calpain requires 

micromolar to millimolar levels of Ca2+ for activation, cell death cascades could be 

activated if threshold levels are achieved cell-wide (Baudry and Bi, 2016). Perhaps the 

CO, instead, allows for local Ca2+ release at these levels specifically at the AIS to restrict 
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calpain activation to this axonal compartment. Further investigation in the SIN-1 in vitro 

model is required to elucidate the relationship between the CO and calpain during 

ROS/RNS-induced AIS disruption. 

 

5.4 Implications for MS Pathogenesis and Treatment 

     Here, we describe two previously unidentified neuronal insults in MS: disruption of the 

CO and loss of axo-axonic GABAergic synaptic complexes at the AIS (Chapter 4). We 

propose that these pathologies have detrimental effects on neuronal function since Ca2+ 

dysregulation at the AIS leads to a dysfunctional trigger zone and loss of neuronal polarity 

(Buffington and Rasband, 2011). Additionally, loss of GABAergic input at the AIS could 

also impair neuronal firing capabilities (Jamann et al., 2017) and contribute to the 

impaired GABAergic network seen in the EAE model and MS patients (Falco et al., 2014; 

Arpin et al. 2017).  

    Since we believe these insults have the potential to contribute to MS disability, and 

have demonstrated them to be driven by the inflammatory environment, it remains to be 

determined why currently prescribed immunomodulatory MS therapies are not effective. 

All currently approved MS therapies, while acting through slightly different mechanisms, 

aim to suppress the inflammatory response in a widespread fashion (Dargahi et al., 2017). 

Targeting the inflammatory response in this manner has proven more beneficial for the 

early phases of disease rather than later progressive stages (Torkildsen et al., 2016). It 

is possible that the AIS and CO insults highlighted in the present study are far more 

extensive in patients upon clinical presentation, and potentially beyond reversibility 

through anti-inflammatory treatment alone. In this case, it would be important to target 
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downstream of the inflammatory response. One such potential therapeutic target is 

calpain, the proteolytic effector of AIS disruption (Schafer et al., 2009; Del Puerto et al., 

2015; Benned-Jensen et al., 2016), which may exhibit high levels of activation at the 

chronic stages of MS pathogenesis that is unaffected by dampening of the inflammatory 

response. Encouragingly, the SIN-1 in vitro study presented in Chapter 3 demonstrates 

repair of the AIS complex once calpain activity is reduced. Additionally, calpain inhibition 

in EAE has shown promise as mentioned above (Trager et al., 2014; Cagmat et al., 2015). 

Selectivity may be an issue, however, since calpain is required for certain endogenous 

neuronal functions (Cagmat et al., 2015). 

 

5.5 Recommendations for Future Studies 

     While the present studies effectively characterize disruption of the AIS in EAE, 

technical challenges have prevented investigation of AIS protein clustering in postmortem 

tissue. As shown in Chapter 4, postmortem samples vary widely in collection time. This 

appears to have severe consequences on AnkG localizations since the AIS responds 

very rapidly to changes in neuronal activity (Evans et al., 2015) resulting in substantial 

AIS disruption (through AnkG localization) in the non-demented control in addition to the 

MS samples. In contrast, significant alterations to CO and GABAergic synaptic stability 

were detected in postmortem samples despite varying collection times (Chapter 4). These 

structures may be more resistant to the tissue processing issues seen with AnkG. 

Ultimately, in order to effectively investigate AIS disruption through AnkG immunolabeling 

in postmortem human tissue, it is important to obtain control and MS tissue that have 

much more consistent and reduced post-death collection times. Outside of collection 
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issues, differential AIS stability due to inconsistently affected CNS regions should be 

accounted for by pairing AIS assessments with lymphocytic and microglial markers to 

assess infiltration and activation, respectively. This would allow for a more effective 

correlation between AIS disruption and the varying degrees of inflammatory conditions 

with MS pathogenesis. 

     As described above, it would also be important to follow up the SIN-1 in vitro study 

with an investigation into the effects of exogenously applied ROS/RNS on the cisternal 

organelle. Correlating the CO disruption with that of the AIS is difficult in the EAE model 

since the first signs of insult appear concurrently at the Early 3&4 disease stage (Chapters 

2 and 4). Since these structures exhibit mutual dependence for stability, understanding 

the order of events mechanistically is crucial for identifying therapeutic strategies. This 

study would involve application of SIN-1 followed by morphological assessments such as 

those performed in Chapter 4. Additionally, F-actin should be investigated as a potential 

target of ROS/RNS-induced insult since its stability is critical for CO maintenance at the 

AIS (Sánchez-Ponce et al., 2011). If F-actin depolymerization is targeted by oxidative 

stress, as hypothesized (Munnamalai and Suter, 2009; Munnamalai et al., 2014), an F-

actin stabilizer such as jasplakinolide (Zhang et al., 2012) could be used to confirm F-

actin’s mechanistic positioning upstream of CO and AIS disruption under ROS/RNS-

induced insult. 

     Finally, although we have demonstrated reversibility of AIS and CO disruption in EAE, 

it would be important to examine a more chronic disease state for more relevant 

therapeutic potential. Our designation of “late” disease is only nine days following 

achievement of peak clinical scores, a far cry from the chronic inflammatory conditions of 
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the human disease. It would be important to know if free radical scavenging is a viable 

therapeutic target for late stage disease. Additionally, as mentioned above, examining the 

therapeutic potential of targeting calpain, a downstream mediator of AIS complex 

destabilization (Schafer et al., 2009; Del Puerto et al., 2015; Benned-Jensen et al., 2016), 

is also critical for addressing reversibility of AIS insults following the chronic inflammatory 

conditions associated with MS.  

 

5.6 Concluding Remarks 

     These studies identify disruption of the AIS and CO under the inflammatory 

environment of MS adding to the growing number of neuronal insults independent of 

myelin loss. Further characterization in EAE implicate microglia and the inflammatory 

environment of MS as drivers of AIS alterations. An in vitro primary neuronal system of 

oxidative stress allowed for elucidation of the mechanism underlying ROS/RNS-induced 

AIS insult revealing Ca2+ dysregulation to be central to these changes. Investigation of the 

CO, an important regulator of local Ca2+ levels at the AIS, in EAE and MS revealed the 

first described pathologically-induced alterations. CO loss was preceded by F-actin 

destabilization and followed by loss of GABAergic axo-axonic synaptic terminals at the 

AIS. Importantly both AIS and CO insults are reversible upon free radical scavenger 

treatment. Overall, these findings highlight the importance for the inclusion of primary 

neuronal insults, such as AIS and CO disruption, in future therapeutic strategies for MS.  
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Figure 5.1. Proposed mechanism of inflammatory-induced AIS and CO disruption. 

Reactive microglia make increased associations with the AIS in EAE. These cells release 

ROS/RNS in close approximation to the neuron. L-type VGCCs and IP3 receptors are 

both involved in ROS/RNS-induced AIS disruption. We hypothesize that the IP3 receptors 

involved in this mechanism are located at the CO. The CO is also a target of ROS/RNS 

resulting in Ca2+ dysregulation locally at the AIS. This can lead to calpain activation and 

proteolysis of critical AIS complex protein such as AnkG. CO destabilization also results 

in loss of GABAergic axo-axonic synapses at the AIS. These presumed changes in 

activity level may also contribute to structural modification of the AIS complex. 
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APPENDIX ONE 

Primary Cortical Neuron In Vitro System Methodology 

Media Recipes for Primary Cortical Neuron Culture 

Neurobasal Media w/out B27 (500 mL) NB w/ B27 (50 mL)  
 

500 mL  Catalog # 

Neurobasal Media 500-7.55 mL  Gibco 21103-049 

Anti-Anti 5 mL  Gibco 15240-096 

B-27* (50X) - 1 mL Gibco 17504-044 
L-Glutamine (200 mM) 1250 µL  Gibco 25030-149 

Glutamate (10mM) 1300 µL  Sigma G8415-100G 

*Will need with and without B-27* (Thaw frozen B27 at 4oC) 

            NB Media + B27 with anti-oxidants – for initial plating (100 µL/coverslip) 

            NB Media + B27 without anti-oxidants – for long term maintenance media (600 µL/well)   

Sterilize via vacuum filtration! 

Store at 4o C 

Poly-D-Lysine Coating 

Preparing the Solution 

1. Prepare Borate Buffer  

2. Dissolve 100 mg of Poly-D-Lysine (Sigma P0899) in 1 mL Borate Buffer and 

aliquot to 100 µL, store at -20oC. 

3. For each 10 mL Borate Buffer, add 100 µL of Poly-D-Lysine stock solution, filter 

through 0.22 µm filters. 

Preparing the coverslips 

Note: coverslips should be acid washed in 1 M HCl for at least 5 hours in 60oC water 

bath then rinsed thoroughly with DI H2O and stored long-term in EtOH.  

Borate Buffer  
 1 L Catalog # 

Water 1 L  

Boric Acid 3.1 g Sigma B6768-500G 

Sodium Borate 4.75 g Sigma 221732-500G 
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1. Place desired # of coverslips on Whatman paper and let dry under UV in the hood 

2. Put 100 µL of diluted Poly-D-Lysine solution on each coverslip and let sit in the 

hood for 1 Hr 

3. Transfer to 24-well plates containing DI H2O (keep coated side up) 

4. Dump and replace DI H2O at least 6 times (6 washes in DI H2O) (keep coated 

side up) 

5. Transfer washed coverslips to Whatman paper and let dry overnight under UV in 

the hood (keep coated side up!) 

6. Once completely dry, transfer to sterile 24 well plates for cell plating (keep coated 

side up) 

 

Neuronal Culture Preparation and Plating 

Pre-preparation 

- Make sure the incubator is set to 37oC and 5% CO2 

- Prepare 500 mL Neurobasal media (w/out B-27) and keep on ice  

- Put 10 mL of NB media (w/out B-27) in 6 petri dishes and keep on ice 

- Prepare Neurobasal media w/ B-27 + AO and keep on ice  

- Prepare Neurobasal media w/ B-27 - AO and keep in 37oC water bath 

- Thaw 2 mL accutase aliquot at RT and keep on ice once thawed 
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Removal of Embryos 

1. Euthanize the mother (containing E16 pups) 

2. Remove the embryonic sac 

- Apply ethanol to belly 

- pull up skin and cut open to reveal the embryonic sac 

- remove embryonic sac and place in a petri dish containing NB media (w/o B-27) 

to wash off excess blood 

3. Remove the individual embryos, decapitate with scissors, and place heads in a 

separate dish w/ NB media (w/o B-27) 

 

Dissection of Brains       ****From here on out, do all steps on ice!**** 

4. Place one head on a gauze pad soaked in ethanol under a dissecting 

microscope 

5. Using two very fine forceps peel off the skin - pinch in the center and pull in 

opposite directions to rip it away from the brain 

6. Using the same method, peel off the skull (it should be soft enough) 

7. Pick up the brain with the forceps (pinch underneath and lift) and place it into an 

empty dish containing NB media (w/o B-27) - do this for all brains 
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8. Place one brain in a separate dish w/ NB media (w/o B-27) under the dissecting 

microscope and using forceps and micro-scissors; remove and discard the 

cerebellum 

9. Separate the two hemispheres and turn them downward (midbrain on the 

bottom) - do not cut, pull them apart 

10. Using two forceps method, remove the meninges from both hemispheres 

(separately) - meninges need to be removed to prevent blood cells and other cell 

types from contaminating your culture  

11. Turn hemisphere back over (midbrain facing up) and cut out the midbrain w/ 

micro-scissors or with forceps– leaving only the cortex behind 

- place all cortex tissue in a separate dish containing NB media (w/o B-27) 

12. Transfer cortices (using a transfer pipette) into 2 mL of accutase in a 15 mL 

conical tube 

13. Let sit on ice for 10 minutes  

- do not close the conical tube lid - the cells need airflow 

- mix around every 5 minutes to break up clumps 

 

Neuronal Isolation       ****From here on out use NB media WITH B-27+AO**** 

14. Centrifuge the accutase/neuronal conical tube for 5 min at 900 RPM 
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15. Aspirate and discard supernatant w/ pipette-man and add 7 mL of complete NB 

media (w/ B-27+AO) – should use less than 7 mL if fewer you have fewer than 5 

cortices   

16. Homogenize (by trituration) w/ 10 mL pipette (until it flows smoothly) 

17. Homogenize (by trituration) w/ 10 mL pipette + 1000 µL sterile tip attached (until 

it flows smoothly) 

18. Homogenize (by trituration) w/ 10 mL pipette + 200 µL sterile tip attached  

(20 times up/down or until it flows smoothly) 

19. Pass homogenate through a 70 µm cell strainer in a 50 mL conical tube. 

20. Pass again through a second filter on another 50 mL conical tube = single cell 

solution 

 

Neuronal Counting & Plating 

21.      Dilute 30 µL of single cell solution into 270 µL of trypan blue in a hemocytometer 

and count.     

22.      Dilute to desired cell concentration (30,000 neurons per coverslip) in complete 

NB media (w/ B-27+AO) and plate (100 µL of cell solution) 

Desired plating concentration:  (30,000 cells)/(100 µL )=300,000 cells⁄mL 

23. 1 hour after plating (after cells have adhered to the coverslip): add 600 µL of NB 

media w/ B27 - AO with a multi-channel pipette  
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24. Leave the cells in the incubator without changing media. Treatments can begin at 

10 days after plating (the point at which the AIS is mature in vitro).  

 

Neuronal Culture Preparation and Plating 

The following steps are for treating one 24-well plate – do this for each plate separately 

1. Prepare necessary amount of media with B27 (–AO)  

(Depends on number of plates to be treated – need ~11 mL per plate) – do not 

prepare less than 50 mL since B27 (-AO) cannot be re-frozen 

2. Warm media to 37oC in water bath  

(do not treat cells until it has sat at least ~15 min in the water bath) 

3. Weigh out 1 mg of SIN-1 into a micro-centrifuge tube on an analytical balance 

4. Prepare two 15 mL centrifuge tubes – each with the appropriate amount of media 

ready to use immediately upon dilution of SIN-1 

- 1 tube with 6.05 mL media (Tube 1) 

- 1 tube with 3.75 mL media (Tube 2) 

 

5. Make sure all necessary pipettes are set and ready to use for treatment 

6. Use ~1 mL from Tube 1 to dissolve and rinse the tube containing 1 mg SIN-1 – 

quickly transfer this back to Tube 1 and vortex 

SIN-1 Dilution Final Concentration 

800 µM = 1 mg in 6.05 mL  

200 µM = 1.25 mL of 800 µM in 5 mL 100 µL added = 25 µM 
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7. Immediately add 1.25 mL of Tube 1 to Tube 2 and vortex 

8. Quickly remove plate to be treated from incubator and add 100 µL of Tube 2 to 

each well – dip the tip and add directly into the existing media so none of it is lost 

(keep using the same tip for every well to save time)  

9. Place plate back into incubator to be taken at desired time point 
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