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ABSTRACT 

STUDIES ON THE ROLE OF CREB AS A MEDIATOR OF NEUROTROPHIN-3 
ACTION IN OLIGODENDROCYTES 

Jamie R .  Johnson, B .S .  

A thesis submitted in partial fulfi l lment of the requirements for the degree of M.S .  at 
Virginia Commonwealth University. 

Virginia Commonwealth University, 2000 

Thesis Director: Cam1en Sato-Bigbee, PhD., Assistant Professor, Department of 
Biochemistry and Molecular Biophysics 

In the central nervous system (CNS), oligodendrocytes (OLGs) are the cells 

responsible for producing the myelin membrane which allows for the saltatory conduction 

of neuronal impulses. Vfe have previously shown that CREB (cAMP response element 

binding protein), a transcription factor that belongs to a large family of bZip (basic 

leucine zipper) proteins, could be a mediator of neuronal signals that, coupled to different 

signal transduction pathways, may play different regulatory roles at specific stages of 

ol igodendrocyte development. We have found before that, in committed OLGs, CREB 

activation by phosphorylation can be triggered by p-adrenergic stimulation and appears to 

play a role in the induction of OLG differentiation by cAMP. In contrast, in OLG 

precursor cells, C REB phosphorylation is stimulated by neuroligands that increase 



x 

calcium levels by a process that involves a mitogen activated protein kinase (MAPK)/ 

protein kinase C (PKC) pathway. This observation suggested that, at this early 

developmental stage, CREB could play a role in regulating cell proliferation. In support 

of this hypothesis, we have now found that a rapid and dramatic stimulation of CREB 

phosphorylation is one of the earliest events that precedes the increase in cell prol iferation 

that is observed when OLG precursors are treated with neurotrophin-3 (NT-3) .  

Moreover, our present results also showed that down-regulation of CREB expression in 

the OLG precursors abolished the in(Jrease in cell proliferation that is observed when the 

cultures are treated with NT-3 . Experiments in which CREB phosphorylation was 

investigated in the presence of different kinase inhibitors indicated that the activation of , 

this transcription factor in the presence of NT-3 is mediated by the concerted action of 

MAPK- and PKC-dependent signal transduction pathways. Additional experiments using 

specific inhibitors of protein kinase A (PKA), Ca2+ -calmodulin-dependent kinase 

(CamK) and phosphatidylinositol 3-kinase (PI3 K) pathways suggested that these k inases 

may not play a significant role in mediating CREB phosphorylation by NT-3 . However, 

further studies are required for more conclusive results about these kinases. Thus, our 

present results support the idea that stimulation of OLG proliferation by NT -3 involves 

the CREB transcription factor and its activation by MAPK- and PKC-dependent signal 

transduction pathways. 



INTRODUCTION 

The myeli n  membrane 

The myelin sheath is a highly modified and specialized membrane structure that 

wraps around axons and allows for the saltatory conduction of neuronal impulses. The 

myelin membrane surrounds the axons in a spiral fashion to form a multi-lamellar 

structure (Fig I ) . In the central nervous system (eNS), myelin is formed by the extended 

plasma membrane of the oligodendrocytes (OLGs). In the peripheral nervous system 

(PNS), however, the Schwann cells synthesize this membrane. The myelin membrane 

and the areas of the axon that are myelinated are collectively called the internodes. These 

internodes are separated by regions of the axon that are bare and are known as the nodes 

of Ranvier (Raine, I 984a). 

In the PNS, the myelin membrane of each internode is made by the Schwam1 cel l .  

During development the Schwann cel ls  migrate with the peripheral nerve fibers which 

begin to be myelinated after reaching the diameter of 1 -2 Ilm. A single Schwann cell wi l l  

then wrap around an axon as the Schwam1 cell 's cytoplasmic ridge folds around the axon 

and underneath its own membrane on the other side. This expanding portion of the 

membrane, called the mesaxon, continues to concentrically encircle the axon as the 

cytoplasm is extruded, thus condensing the membrane surfaces and producing compact 

myelin .  By this process, the cell body of the Schwann cell remains closely apposed to the 

1 



2 

Figure 1. An il lustration of OLGs myelinating axons in the eNS. (A) OLG cell body 
with many processes myelinating various axons. (B) Cross section of an axon with 
concentrically wrapped myelin membrane. 
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axon (Raine, 1 984a). 

The myelination process in the CNS by the OLGs is similar to that of the 

Schwann cel l .  However, the major difference is that OLGs have arborized processes that 

extend from their soma; it is the ends of these processes that come into contact with the 

axons forming the myelin membrane around them. By this process, each OLG in the 

CNS could myelinate 40 or more separate axons with its cell body being some distance 

away from the axons (Davidson et a I . ,  1 970).  

The functional role of the myelin membrane, as an electrical insulator, was 

speculated as early as 1 878 by Ranvier. Currently, it is accepted that the myelin 

membrane allows for the rapid form of neuronal impulse propagation known as saltatory 

conduction. In unmyelinated nerve fibers, the neuronal impulses are propagated in such a 

manner that a local circuit is created in the axonal membrane in which the resulting 

current travels by depolarizing the adjacent area of the membrane in a sequential and 

continuous fashion. However, during saltatory conduction, only the nodes of Ranvier 

participate in the depolarization while the myelin membrane insulates the rest of the axon. 

Furthermore, the sodium channels required for the depolarization are localized at the 

nodes of Ranvier (Waxman et aI . ,  1 993) .  

The presence of myelin not only saves energy by resulting in less sodium flux due 

to the localization of the sodium channels at the nodes of Ranvier, but also greatly 



increases the conduction velocity of the neuronal impulse by producing a current that is 

saltatory. It also has space saving properties by decreasing the axonal diameter 

requirements which, in theory, should be proportional to the conduction velocity. To 

better understand this, if unmyelinated axons were to replace the myelinated ones, in 

order to maintain the same conduction velocity, the human spinal cord would have to be 

as thick as a tree trunk (Ritchie, 1 984) .  

4 

The myelin membrane is a particularly good insulator, not only because of its 

multi-lamellar structure, but also due to its composition, characterized by a high lipid to 

protein ratio, of about 80 to 20.  Besides cholesterol, a major lipid component of myelin 

is cerebroside, also known as galactosylceramide. About one-fifth of these galactolipids 

also occur as sulfatides in which the 3-hydroxyl group on the galactose moiety of 

cerebrosides is sulfated (Norton and Cammer, 1 984). Because of their quantity, it was 

believed that these galactolipids were essential for myelin formation. However, a mouse 

knockout model lacking the last step in cerebroside biosynthesis revealed that the myelin 

formed was relatively normal and that these galactolipids perhaps played a role in myelin 

stability, not myelin formation (Coetzee et aI . ,  1 996).  A minor component of myelin are 

gangliosides, which comprise approximately 0 . 1 to 0 .3% of the total lipid. These are 

complex glycolipids in which the ceramide backbone is esterified to three or more sugar 

residues. 

Myelin basic protein (MBP) is a major extrinsic membrane protein that exists 



both in the CNS and PNS myelin, however, it is more abundant in the CNS myelin 

comprising about 3 0%-40% of the total protein (Lees and Brostoff, 1 984) .  MBP exists 

on the cytoplasmic surface and is bel ieved to play a role in myelin compaction forming a 

structure known as the major dense line resulting from the apposition of the cytoplasmic 

face of the plasma membrane after the extrusion of the cytoplasm. Evidence for this 

comes from studies of a line of mutant mice called shiverer (Chernoff, 1 98 1 ) . It was 

shown that MBP is specifically deficient in these mice (Dupouey et aI . ,  1 979),  and that 

the major dense line in these animals is not evident, indicating uncompacted myelin 

(Privat et aI . ,  1 979) .  

5 

There are several variants of MBP that range from 2 1 . 5 kDa to 1 4 . 1 kDa which 

result from alternative splicing of a single gene containing at least seven exons 

(Takahashi et a I . ,  1 985;  Mentaberry et aI . ,  1 986; Roth et aI., 1 987; Newman et aI., 1 987). 

Although the functional roles of these variants are uncertain, changes in their ratios and 

differential expression suggest that some of these MBPs play a role during myelination. 

It has been suggested that the larger forms of MBP, 2 1 . 5 kDa and 17 kDa, which contain 

exon II may play an important role in the early period of myelin formation and/or OLG 

differentiation, since they are relatively more abundant at that time (Carson et a I . ,  1 983 ; 

Roth et aI . ,  1 987). 

Proteolipid protein (PLP) is another major constituent of the CNS myelin, 

comprising about 50% of its total protein (Lees and Brostoff, 1 984) .  Like MBP, PLP is 



not exclusive to the CNS. However, in the PNS, PLP is expressed at much lower levels 

in the Schwann cells and is also restricted to the cell cytoplasm (Puckett et aI., 1 987). In 

the CNS, PLP serves as a 30 kDa integral membrane lipoprotein that probably 

6 

participates in the formation of the intraperiod line, which results from the close 

apposition of the extra-cytoplasmic side of the adjacent plasma membranes in the 

concentric layers of myelin. Again, the evidence for this comes from a line of mutant 

mice called j impy (Sidman, (964) in which there are abnormalities in the intraperiod lines 

(Duncan et aI., (987) .  

Another protein component of myelin is the myelin-associated glycoprotein 

(MAG). Unlike MBP and PLP, MAG is expressed at low levels in the CNS and PNS 

myelin comprising about I % of the total protein (Quarles, 1 984) and is expressed at the 

periaxonal regions of the myelin sheath (Sternberger et aI . ,  1 979) .  MAG has a single 

transmembrane domain and five immunoglobulin-like domains, a structure similar to the 

one corresponding to the neural cell adhesion molecule (NCAM) (Salzer et aI., (987).  In 

addition, treatment of cell cultures with anti-MAG antibodies blocks neuron

oligodendrocyte and o ligodendrocyte-oligodendrocyte adhesion (Poltorak et a I . ,  1 987). 

Thus, these observations support the notion that MAG serves as an adhesion molecule 

that may function in cell to cell signaling, perhaps directing the initiation of myelination. 

An interesting aspect of the cell to cell signaling properties of MAG is the fact that it may 

not only direct the myelination of an axon, but it may also control the growth of the axon 

itself as MAG is one of the molecules in the CNS that has been shown to inhibit neurite 
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outgrowth in tissue cultures (Mukhopadhyay et al . ,  1 994). 

Another minor protein component of CNS myelin is the myelin-oligodendrocyte 

glycoprotein (MOG) (Gardinier et al . ,  1 992) .  Similar to MAG, MOG also contains an 

immunoglobulin-like domain. However, unlike MAG, MOG is localized on the surfaces 

of myelin and OLGs, which may indicate a function in transmitting extracellular 

information to the OLG interior. These protein components may play a role in certain 

pathologies of myelin. Much like MBP, MOG has been implicated as a target antigen in 

the autoimmune aspects of demyelinating neuropathies of the CNS such as multiple 

sclerosis. 

Multiple sclerosis 

Multiple sclerosis (MS) is a disease that currently afflicts an estimated 3 50,000 

persons in the United States (Anderson et al . ,  1 992) and is perhaps the most studied 

among a group of diseases of the CNS collectively known as demyelinating neuropathies 

characterized by a loss or damage of the myelin membrane. Consequently, one of the 

first neurological disabil ities usually caused by MS is optic neuritis resulting in impaired 

vision. Symptoms can remit and relapse while recovery may become incomplete as the 

disease progresses. Further loss of neurological control may occur as sufferers of the 

disease possibly face being wheelchair bound or, in extreme cases, death. 
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Currently, it is believed that the etiology of MS involves a genetically predisposed 

individual who becomes stimulated, perhaps by viruses during the late childhood, to have 

immunological reactions against the antigens found in the CNS, in particular in the 

myelin membrane and/or OLGs (Sorenson et a I . ,  1 998). Mutant or abnormal genes have 

not been l inked to MS,  however, a susceptibility al lele has been l inked to both familial 

and sporadic MS. (Yaouanq et aI . ,  1 997) .  

Family studies have also revealed a genetic susceptibility component. First

degree relatives have a 20-fold increased risk compared to the population background 

(Sadovnick et a I . ,  1 993) ,  while a non-related child adopted into MS families retains the 

population background level of developing MS.  (Ebers et aI . ,  1 995) .  Also, siblings raised 

in separate households retain an equal chance of developing MS.  (Sadovnick et a I . ,  1 996) .  

Furthermore, the importance of genetics or perhaps other environmental factors is 

emphasized by the fact that Japan exhibits a lower occurrence of MS compared to other 

populations in similar latitudes (Hartung et aI . ,  1 990) .  Interestingly, if an individual 

moves from a high-risk area to a low risk area during chi ldhood, he or she wi l l  acquire 

the low risk of developing M S .  However, if that individual moves after adolescence, he 

or she retains the risk of the original location. (Kurtzke, 1 977) .  

The idea that the onset of MS could be stimulated by viral infections stems from 

the notion that MS is an autoimmunelinflammatory disease. Support for this notion 

comes from studies of experimental autoimmune enchephalomyelitis (EAE), an animal 
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model in which rats are immunized with components of the myelin membrane, i .e .  myelin 

basic protein (MBP) (Raine, 1 984b; Lassman, 1 983). According to this model,  T helper 

cells (CD4 positive, class II MHC restricted) recognize myelin antigens that are presented 

by cells of the macrophage lineage (microglia) and perhaps astrocytes resulting in 

inflammation that destroys myelin as well as damaging the OLGs. 

It is believed that in humans these T cells are generated by processes of molecular 

mimicry in which viral or bacterial antigenic fragments c losely resemble myelin 

components (Wucherpfennig et aI . ,  1 995) .  Furthermore, break down of the BBB is a 

characteristic component of M S  pathogenesis, albeit it is unknown whether this is an 

initiating factor or a secondary event to inflammation. However, it has been shown that 

activated T cells are able to cross the BBB (Hickey, 1 99 1 )  and is believed that they 

become resident in the CNS if they are specifically targeted to CNS antigens. The origins 

of the autoreactive T cells are not known, however the idea of molecular mimicry is 

supported by the studies finding that 1 29 bacterial and viral peptides were similar enough 

to MBP to trigger the activation of human T cell clones (Wucherpfennig et aI . ,  1 995) .  

Lastly, although these mechanisms of inflammation in MS are conjectural,  it has been 

shown that MS patients harbor autoreactive T cells (Hafler et aI . ,  1 985a; Hafler et aI . ,  

1 985b; Al legretta et aI . ,  1 990;  Allegretta et aI . ,  1 994). 

Due to its complex pathogenesis, understanding and trying to find therapies for 

MS involves various research disciplines which include genetics, epidemiology, 
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neuropathology, immunology and virology. In this project, we have focused our attention 

on the signaling cascade mechanism(s) involved in regulating the proliferation of the 

OLGs. It is hoped that a better understanding of these mechanisms will  eventually help to 

develop methods which wil l  aid in replenishing the OLGs that are damaged and/or lost in 

the course of diseases like MS .  

Oligodend rocyte development 

OLGs continue to divide throughout l ife ,  although at a much slower rate than 

during CNS development (Kaplan and Hinds, 1 980; McCarthy and Leblond, 1 988). 

Therefore, one might assume that diseases like MS where OLGs are damaged and/or lost 

may be easily cured by simply replenishing the cells. Unfortunately, the healing process 

is neither so easy nor simple. However, knowing that these cells could potentially 

regenerate gives hope into the possibil ity of developing treatment for diseases such as 

M S .  This has made the study of OLGs very important, because still little is known about 

the processes that regulate the proliferation and differentiation of these cells during 

normal CNS development. 

OLGs originate in the late gestational and early postnatal period from multi potent 

neural stem cells which are present in the peri ventricular zone and can generate neuronal, 

astroglial and oligodendroglial progenitors (Davis and Temple, 1 994; Marmur et aI . ,  

1 998; Vescovi et aI . ,  1 999;  Rogister et a I . ,  1 999; Tropepe et aI . ,  1 999) .  Cells of the OLG 
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lineage are initially identified in distinct regions of the ventricular and subventricular 

zone from where they migrate during differentiation (LeVine and Goldman 1 988; Curtis 

et aI . ,  1 988; Warf et aI., 1 99 1 ) . The different stages of differentiation can be 

distinguished by the sequential expression of different antigenic markers. Early 

prol iferative precursors express the embryonic neural cell adhesion molecule (E-NCAM) 

(Hardy and Reynolds, 1 99 1 ) . These cells later develop into early OLG progenitors or 0-

2A cells which were originally identified in cultures of developing optic nerve. 

The 0-2A cells were appropriately named so because, depending on the culture 

conditions, they are able to differentiate into either OLGs or type-2 astrocytes. When 

cultured in serum-free, chemically defined medium (COM), the 0-2A cells develop into 

OLGs. However, when these cells are grown in medium containing 1 0% fetal bovine 

serum, they develop into cells called type-2 astrocytes which express glial fibril lary acidic 

protein (GFAP), an astrocytic marker (Raff, 1 983 ) .  The existence of the type-2 astrocytes 

in vivo is controversial. Experiments in which 0-2A cells were labeled, in vitro, with fast 

blue dye and transplanted into neonatal rat brain, showed that all labeled cells developed 

into OLGs (Espinosa de los Monteros et aI., 1 993) .  This observation indicates the 

necessity for careful extrapolations of data obtained from inyitro experiments to an in 

vivo environment. 

The 0-2A progenitors were first identified by using the A2BS monoclonal 

antibody (Eisenbarth et al . , I 979; Raff et aI . ,  1 983) known to react with several 

gangliosides (Kundu et aI . ,  1 983; Fredman et aI . ,  1 984 ; Majocha et aI . ,  1 989). These cells 

have a simple, bi- or tripolar morphology (Temple and Raff, 1 986; Small et aI . ,  1 987), 
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express the intermediate fi lament vimentin (Raff et ai . ,  1 984), are very motile (Small et 

a i . ,  1 987) and prol iferate rapidly with a cell cycle time of approximately 1 8  to 20 hrs 

(Noble et a i . ,  1 988). The 0-2A cells later develop into the 04 positive progenitors 

characterized by their reactivity with the 04 antibody which recognizes cerebrosides and 

sulfatides (Sommer and Schachner, 1 982; Dubois-Dalcq, 1 987). Further differentiation 

of these progenitors into the mature committed OLGs follows the orderly expression of 

galactocerebroside (GC) (Raff et ai . ,  1 979), the myelin enzyme 2',3 '-cyclic nucleotide 3 '

phosphodiesterase (CNPase) (McMorris, 1 983) and in a few days time, the myelin 

proteins MBP, PLP and MAG (Dubois-Dalcq et ai . ,  1 986). 

The factors that control the proliferation and differentiation of these cells have 

been the topic of intense scrutiny. It has been shown that platelet-derived growth factor 

(PDGF) is one of the major mitogens (Noble et ai . ,  1 988; Richardson et ai . ,  1 988), as well  

as a chemoattractant (Am1strong et a i . ,  1 99 1 )  for OLG progenitors. Type- l astrocytes 

and neurons produce PDGF (Yeh, et a i . ,  1 99 1 ;  Sasahara et ai . ,  1 99 1 ), which supports the 

idea for a regulatory role on OLG proliferation and differentiation in vivo. 

PDGF is a dimer of a cationic glycoprotein (30 kDa) and in the human, there are 

two distinct, but related polypeptides called A and B chains (Betsholtz et a i . ,  1 986). 

PDGF A transcripts were found in the type- I astrocyte (Richardson et ai . ,  1 988) and 

compared to other dimers, the AA homodimer appears to be the most potent mitogen for 

0-2A cells compared to other dimers (Pringle et a i . ,  1 989). There are two classes of 
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PDGF receptors, the A fonn which can bind all  three dimers, and the B fonn which has 

high affinity for the BB dimer, but low affinity for the AB (Hart et al . ,  1 988; Heldin et a l . ,  

1 988) .  Radiolabeled PDGF binding assays suggest that 0-2A cells have the A type 

PDGF receptor (Hart et al . ,  1 989). Interestingly, in the continued presence of PDGF, the 

0-2 A  precursors stop prol iferating and acquire characteristics of mature OLGs (Noble et 

a l . ,  1 988; Richardson et al . ,  1 988). However, this is not due to receptor loss, for the 0-

2A progenitor cells continue to express the PDGF alpha receptor (Hart et al . ,  1 989). 

Basic fibroblast growth factor (bFGF) has also been shown to be mitogenic for 

OLGs (Eccleston and Si lberberg, 1 985; Besnard et al . ,  1 989) as well as astrocytes 

(Pettman et a l . ,  1 985;  Kniss and Burry, 1 988). bFGF not only causes the 0-2A cells to 

undergo a high rate of proliferation (Noble et al . ,  1 988), it also maintains high levels of 

PDGF receptors on the 0-2A precursors (McKinnon et al . ,  1 990) .  An interesting 

observation is the lack of MBP transcripts after treatment with bFGF (McKinnon et al . ,  

1 990), which may suggest an inhibitory role for bFGF on myelin gene expression and/or 

OLG differentiation. Consequently, the combination of PDGF and bFGF causes 0-2A 

precursor prol iferation for long periods without differentiation (Bogler, et a l . ,  1 990) .  

It has been shown that insulin and insulin-like growth factors ( IGFs) are essential 

for the development of OLGs in vitro (van der Pal et al., 1 988). A role of these factors in 

vivo have come from the fact that transcripts for insulin-l ike growth factors, IGF-I and 

IGF-II have been found in the CNS, with the highest levels of gene expression coinciding 
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with early neuronal development (E I 4- 1 8) (Rotwein et aI . ,  1 988). IGF-I and IGF-II 

receptors have been detected in rodent brain as well as cultured astrocytes, OLGs, and 

0-2A progenitor cells (Gammeltoft et aI . ,  1 985; Balloti et a I . ,  1 987; Ocrant et aI . ,  1 988; 

McMorris and Furlanetto, 1 989). The importance of these factors have been shown in 

that low levels of IGF levels result in hypomyelination in vivo (Phil l ips and 

Vaffilopoulou-Sell in, 1 979;  Wiggins, 1 982). On the other hand, increased IGF expression 

is associated with increased myelination (Carson et aI., 1 988, McMorris et aI . ,  1 990) .  

OLGs contain high levels of iron, suggesting an important relationship between 

iron and the state/function of the OLGs (Connor and Menzies, 1 995) .  Consequently, it 

has been shown that transferrin, an iron mobilizing protein is an essential factor for 

myelination by OLGs (Espinosa de los Monteros et aI . ,  1 999) .  Iron plays a direct role in 

lipid and cholesterol biosynthesis by acting as a required co-factor and may have a 

protective function by regulating oxidative stress (Connor and Menzies, 1 996) .  The 

importance in understanding the combined information from the effects of all of these 

factors is seen in the advent of a chemically defined medium giving optimal conditions to 

grow OLGs in culture, thus enabling the further elucidation of factors that may regulate 

OLG development. 

C REB, a transcription factor highly expressed in developing OLGs 

Previous studies from this laboratory have shown that developing OLGs express 



elevated levels of a transcription factor known as CREB (cyclic AMP response element 

binding protein) (Sato-Bigbee and Yu, 1 993 ; Sato-Bigbee et al . ,  1 994 Sato-Bigbee and 

DeVries, 1 996) .  

CREB belongs to a large family of transcription factors characterized by the 

presence of a basic leucine zipper dimerization domain and their binding to a consensus 

nucleotide sequence TGACGTCA. This sequence is known as CRE (cyclic AMP 

response element) and it is present in the promoter region of cAMP and Ca2• responsive 

genes ( Montminy et al., 1 990; Sheng et a I . ,  1 99 1 ) . The ability of CREB to activate 

transcription is positively regulated by phosphorylation at a region called the P-box, 

specifically, a serine residue at position 1 33 .  
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CREB is encoded by a large gene that generates several alternatively spliced 

transcripts ( Hoeffler et a l . ,  1 990).  However, the 43 kDa CREB and a form known as 

�CREB , which is missing the alternatively spliced 1 4  amino-acid segment called the 

(X-region (Yamamoto et a l . ,  1 990), appears to be the predominant isoforms expressed in 

most of the tissues tested. Our previous results indicated that the CREB protein 

expressed in the OLGs contains the (X-region (Sato-Bigbee et al . ,  1 994). This is 

particularly important because this region interacts cooperatively with the 

phosphorylation motif which as indicated above is required for transcriptional activation. 

Moreover, it has been shown that the potency of �CREB as a transcriptional activator is 

1 0-fold lower than that of CREB (Yamamoto et al . ,  1 990). 
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Initially, C REB phosphorylation at SerilJ was attributed to cAMP-dependent 

protein kinase (PKA) (Gonzalez and Montminy 1 989). Thus, factors which elevate 

cAMP levels may result in the activation of PKA and the subsequent phosphorylation of 

CREB, leading to gene activation. However, later evidence indicated that CREB could 

be phosphorylated at SerilJ by several other kinases including Ca2'-calmodulin-dependent 

kinases (CamK) (Sheng et aI . ,  1 99 1 ), protein kinase C (PKC) (Xie and Rothstein, 1 995) ,  

and the ribosomal S6 kinase (RSK) (Xing et  aI . ,  1 996), which as  described later, is a 

target of the MAPK (mitogen activated protein kinase) pathway. 

In addition to the P-box, other structurally important domains in CREB are the 

glutamine rich regions flanking the P-box which are believed to play a role in interacting 

with other components of the transcription machinery (Gonzalez et a I . ,  1 99 1 ) . Of these 

two glutamine-rich domains (Q I and Q2) that flank the P-box, Q2 appears to have more 

of a significant role in the activation of transcription, for the deletion of Q2 dramatically 

reduces C REB function (Brindle et aI., 1 993) .  Furthermore, CREB also requires a 

cofactor called CBP (CREB-binding protein).  CBP is a 265 kDa protein that interacts 

with the phosphorylated P-box of CREB (Chrivia et aI . ,  1 993) .  The phosphorylation of 

SerilJ on CREB promotes the binding of CBP, which mediates CREB interaction with the 

RNA polymerase II complex. For full activity however, it  was demonstrated that the 

glutamine-rich region was necessary for its role in interacting with the general 

transcription factor TFIID (Nakaj ima et aI . ,  1 997).  
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As far as the negative regulation i s  concerned, i t  appears that the main mechanism 

attenuating transcriptional activation by CREB is dephosphorlyation. CREB is 

dephosphorylated in vivo by protein phosphatase- I (Hagiwara et aI . ,  1 992) and protein 

phosphatase-2 appears to have some activity as well (Wadzinski et a I . ,  1 993) .  Although 

the capacity of CREB to activate transcription is regulated by its phosphorylation, other 

factors can also have effects in regulating the function of this protein. While CREB 

stimulates transcription, certain forms of another transcription factor called CREM 

(cAMP response element modulator) work as competitive repressors (Foulkes et a I . ,  

1 99 1 ), as  does the lCER (inducible cAMP early repressor) proteins ( Molina et  a I . ,  1 993) .  

The C REM gene also generates a large family of alternatively spliced isoforms . 

C REM alpha, beta and gamma function as antagonists of CREB-induced transcription 

either by binding to CRE sites as homodimers or heterodimers, thus blocking activator 

binding to the CRE. This is possible due to the fact that structurally, these CREM 

isoforms are very similar to CREB as they also bind to the CRE sequence, but lack the 

glutamine rich domains required for transcriptional activation (Foulkes et a I . ,  1 99 1 ) . 

lCER, a truncated CREM product (Stehle et aI . ,  1 993 ; Molina et aI . ,  1 993) ,  is 

transcribed from an alternative promoter within an intron of the CREM gene and acts as a 

powerful repressor of CREB-induced transcription. lCER, which actually negatively 

autoregulates its own promoter (Molina et a I . ,  1 993), is able to heterodimerize with the 

CREM proteins as well as with CREB (Stehle et aI . ,  1 993) .  Thus, the fact that many of 
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these different CRE-binding factors are able to heterodimerize with each other (Hai et a I . ,  

1 989) makes the study of these proteins and their mechanism of action very complicated. 

Possible role of CREB in developing OLGs 

Studies from this laboratory in which CREB expression was analyzed in OLGs 

directly isolated from rat brain at different stages of development (Sato-Bigbee and Yu, 

1 993; Sato-Bigbee et aI. , 1 994) or in neonatal OLGs that were allowed to differentiate in 

vitro (Sato-Bigbee and DeVries, 1 996),  indicated that this protein is highly expressed in 

cells that are sti l l  MBP negative and have a typical morphology of immature OLGs. 

However, CREB expression decreases to background levels of detection in cells that 

express MBP and exhibit highly branched processes characteristic of mature OLGs. This 

pattern of expression suggested that in the OLGs, CREB plays a role in a developmental 

window that precedes the period of active myelination. 

While the activity of transcription factors like CREB occurs in the nucleus of the 

cel l ,  the stimuli  which activate such transcription factors are usually extracellular in 

origin. Thus, interaction of these external stimuli with the cells by means of specific 

l igand-receptor mechanisms that are coupled to different signal transduction cascades, are 

able to elicit changes in gene activity that regulate cell development. 

Recent results from this laboratory have suggested that CREB could be a mediator 

of neuronal signals that, coupled to different signal transduction pathways, may play 
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different roles at specific stages of OLG development (Sato-Bigbee et aI . ,  1 999a). We 

have found before that in committed OLGs, CREB activation by phosphorylation at Ser'JJ 

can be triggered by the beta-adrenergic agonist isoproterenol, which is known to increase 

cAMP levels in these cells .  In this regard, we have previously found that treatment of 

young but already committed OLGs with db-cAMP (a cell permeable analogue of cAMP) 

resulted in stimulation of MBP expression and cell process outgrowth. However, this 

stimulation was not observed in cells in which the expression of CREB was inhibited by 

transfecting the cells with an antisense oligonucleotide directed against CREB mRNA. 

Thus, these results indicated that CREB plays a crucial role in the stimulation of OLG 

differentiation by cAMP (Sato-Bigbee and De Vries, 1 996). Based on these observations, 

it  is possible to hypothesize that in young, but already "committed" OLGs, beta 

adrenergic stimulation fol lowed by PKA activation and CREB phosphorylation could be 

at least one of the signals triggering the final stages of OLG maturation. 

Interestingly, we have found that at an earlier developmental stage, when the cells 

are sti l l  "immature" OLG precursors, CREB phosphorylation is stimulated by the 

cholinergic agonist carbachol, glutamate and ATP; all neuroligands that increase Ca'+ 

levels in the cells .  In this case, CREB phosphorylation involved the action of a 

MAPKlPKC pathway. These latter results suggested that at this early developmental 

stage, CREB could p lay a role in regulating cell proliferation. This hypothesis is based 

on the observation that the MAPK pathway in OLGs is stimulated by neurotrophin-3 

(NT-3) ,  PDGF, and bFGF (Bhat and Zang, 1 996; Cohen et aI., J996a), al l  factors known 
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to stimulate OLG proliferation (Bogler et aI . ,  1 990; McKinnon et aI . ,  1 990; Barres et aI., 

1 99 3 ,  1 994). Thus, based on the results described above, we decided to test whether 

CREB could be a mediator of NT-3 action in OLGs. 

Neurotrophins and their signaling cascade pathway 

NT-3 is a member of a family of closely related peptide factors known as 

neurotrophins. Neurotrophins also include nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), neurotrophin-4/5 (NT-4/5)  (Snider et aI . ,  1 989;  Eide et aI . ,  

1 99 3 )  and NT-6 (Gotz et aI . ,  1 994). These factors bind to and activate the Trk family of 

receptor tyrosine kinases. TrkA, TrkB, and TrkC are the receptors for NGF, BDNF and 

NT-3 ,  respectively (Thoen en, 1 99 1 ). TrkB also serves as a receptor for NT-4/5 

(Bothwell ,  1 99 1 ) . In the nervous system, neurotrophins affect a wide range of biological 

responses which include proliferation, differentiation, and survival of neuroblasts 

(Confort et a I . ,  1 99 1 ;  DiciccooBloom et aI . ,  1 993)  as well as the survival and development 

of neurons (Levi-Montalcini, 1 987;  Ghosh et aI . ,  1 994). The differentiation effects 

elic i ted by neurotrophins include enhanced neurite outgrowth (Segal et a I . ,  1 995) ,  

alterations in the electrophysiological properties of neurons as wel l  as enhanced synaptic 

transmission (Levine et aI . ,  1 995a; Levine et aI . ,  1 995b), and determination of the 

neuronal cel l  fate (S ieber-Blum, 1 99 1 ) . 

Neurotrophins are also known to affect the glial cells as they regulate the function 
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of cultured microglia (Nakajima et al . ,  1 998), and the morphological behavior of 

astrocytes in vitro (Hutton et al . ,  1 995) .  In vitro experiments have shown that NT -3 in 

particular appears to be important for OLG proliferation, development, and survival 

(Barres et a l . ,  1 994; Kumar et a l . ,  1 998) .  In vivo results from Kahn et al. ( 1 999) showed 

that knockout mice lacking the TrkC receptor or NT-3 resulted in fewer progenitor cells 

as well  as attenuated expression of OLG specific markers. Moreover, it has been shown 

that transplantation of NT -3 and BDNF producing fibroblasts into contused rat spinal 

cord ameliorated the axonal and myelin damage after spinal cord injury (McTigue et al . ,  

1 998) .  Furthermore, Heinrich e t  al .  ( 1 999) recently demonstrated that N T  - 3  aids i n  the 

early differentiation of OLGs in rat cortical cultures. 

The mechanisms of action of neurotrophins are sti l l  controversial as they seem to 

include the concerted actions of different signal transduction pathways, and this 

complexity may explain the variety of effects that these factors are able to elicit .  

The best studied example is the action of NGF on the rat pheochromocytoma cell  

line PC 1 2  (Kaplan et al . ,  1 99 1 ) . The binding of NGF to its receptor TrkA causes receptor 

dimerization and the activation of the intrinsic tyrosine kinase activity of TrkA (Jing et 

a l . ,  1 992) .  Once the receptor is  activated by auto-phosphorylation, the phosphotyrosines 

and the nearby amino acids of the receptor act as recognition sites for effector molecules 

that contain the Src homology 2 (SH2) domain. Among the proteins that have the SH2 

domains are the enzymes phospholipase C gamma (PLC y), phosphatidylinositol 3-
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kinase (P13 kinase) (Stephens et aI . ,  1 994; Obermeier et aI . ,  1 993), and the adapter protein 

Shc (Stephens et a I . ,  1 994). 

The MAPK pathway, critical for the NGF induction of PC 1 2  cell differentiation, 

is set into motion when the Shc adapter protein binds to its recognition site on the 

activated TrkA receptor. Shc then becomes phosphorylated by the receptor tyrosine 

kinase and serves as an adapter for yet another SH2 containing protein known as Grb2 

(growth factor receptor-bound protein 2) (Rozakis-Adcock et aI . ,  1 992) .  Grb2 has yet 

another structural motif called the Src homology 3 (SH3) domain (Lowenstein et aI . ,  

1 992),  which mediates i ts  association with the GTP exchange factor Sos (son of sevenless 

protein). Sos then activates a membrane bound G protein called Ras by exchanging GDP 

for GTP on Ras 

( McCormick, 1 994). The activated, GTP-bound Ras then interacts and activates the 

serine-threonine kinase Raf (Moodie et aI., 1 993) ,  which in tum phosphorylates a dual 

specificity threonine/tyrosine kinase called MEK (MAPKIErk kinase) (Jaiswal et aI . ,  

1 994). The substrates for MEK are MAP K I  and MAPK2 (mitogen-activated protein 

kinases I and 2, also known as Erks ( extracellular signal-regulated kinases) (Crews et aI . ,  

1 992) .  Once the MAPKs are activated, they are translocated into the nucleus (Chen et a I . ,  

1 992)  where they phosphorylate several transcription factors as wel l  as other kinases, i .e .  

the ribosomal S6 kinases (Rsk) (Chen et  a I . ,  1 993) .  I t  appears that the role of Rsks is to 

phosphorylate other transcription factors, one of which is CREB (Xing et a I . ,  1 996) .  

(Fig .  2) .  
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Figure 2. T h e  NGF stimulated MAPK pathway as described in the pe 12 cells.  This 
figure i l lustrates the proteins involved in activating the MAPK pathway in the PC 1 2  cells 
after NGF treatment. 
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The importance of CREB in the NGF induction of neuronal differentiation has 

been demonstrated by Bonni et al .  ( 1 995) .  However, a similar role for CREB in other 

cel ls of the CNS has never been described before. Thus, in the present study, we have 

investigated the possible role of CREB as a mediator of NT -3 actions in OLG precursor 

cells .  



MATERIALS AND METHODS 

Isolation and c u lture of oligodendrocytes. OLGs were isolated from 2-day-old 

Sprague-Dawley rat cerebrum by using a Percoll (Sigma Chemical Co. ,  St Louis, Mo) 

gradient according to the method of Berti-Mattera et al .  ( 1 984) with minor modifications 

(Sato-Bigbee et a I . ,  1 999a) .  The cerebra are minced and then dissociated in Ca2+ - Mg'+

free Hanks' balanced salt solution (HBSS), 25 mM HEPES (pH 7 .2) ,  I mg/ml glucose, 

0 . 1 mg/ml DNAse and 1 mg/ml acetyltrypsin. After incubation for 45 minutes at 3 7 °C, 

the tissue is forced through a 74 jlm pore size nylon mesh and the resulting cell  

suspension is mixed with 1 . 5 vol.  isosmotic Percoll and centrifuged at 3 0,000 x g for 1 5  

minutes. The band corresponding to the OLGs and their precursor cells is collected, 

washed with HBSS, and the final cell suspension incubated for 30 minutes on tissue 

culture-treated Petri dishes to allow the attachment of residual microglial and astrocyte 

contamination (-5 - 1 0%).  The dishes were then gently swirled for 1 0  seconds and the 

non-adherent cells plated in 24-wel l  plates ( I  x I 06 cells/well)  previously coated wit 

reduced-growth factor Matrigel (Becton Dickinson, NJ, USA) ( 1 0  jll/wel l ) .  Cells were 

grown in chemically-defined medium (CDM) [Dulbecco's modified Eagle's medium 

(DMEM)/Ham F- 1 2  medium ( 1 : 1 ,  vol/vol) supplemented with I mg/ml bovine serum 

albumin, 50 jlg/ ml transferrin, 5 mg/ml insulin, 30 nM sodium selenite, 0 . 1 1  mg/ml 

sodium pyruvate, 1 0  nM biotin, 2 jlM hydrocortisone, 1 5  nM triiodothyronine, 5 0  

units/ml penic i l l in, and 50 jlg/ml streptomycin] a t  3 7 °C i n  5% CO,. Cultures prepared i n  

2 5  
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this way are comprised of OLG precursor cells that are either bipolar or have several 

simple processes and can be labeled with the 04 (Sommer and Schachner, 1 98 1 )  and lor 

the A2B5 (Levi et aI . ,  1 987) antibodies. Astrocyte contamination, as judged by staining 

with anti-glial fibri l lary acidic protein antibody, was < 5%. Neuronal contamination as 

determined by staining with anti-neurofilament antibody was < 1 %. 

Effect of NT -3 on CREB and MAPK phosphorylation. After one day in culture, 

OLGs were incubated for various times in CDM with or without 50 nglml human 

recombinant NT-3 (Pepro Tech Inc. ,  Rocky Hill ,  NJ) .  After incubation, the cells were 

rinsed with ice-cold DMEM and processed for western blot analysis to determine the 

relative levels of total CREB, phosphorylated CREB and MAPK as described below. In 

experiments aimed to determine the role of different protein kinases, the cells were pre

incubated for 1 0  minutes in the presence of the fol lowing specific kinase inhibitors : 50 

flM PD098059 (MEK inhibitor); 10 flM chelerythrine (PKC inhibitor), 0 .5  flM H-89 

(PKA inhibitor), 3 0  flM KN-62 (CamK II ,  IV and V inhibitor), or 10 mM L Y294002 (P13 

kinase inhibitor). Al l  inhibitors were obtained from Calbiochem (San Diego, CA). After 

this, culture were incubated for I S  minutes in the presence or absence of both NT -3 and 

kinase inhibitor. Inhibitor concentrations are higher than IC,o values for the purified 

enzymes, but are in agreement with the concentrations previously used by us and other 

investigators to specifically inhibit these kinases in cell culture systems (Balboa and Insel, 

1 99 5 ;  Campenot et aI., 1 994; Maurer et aI., 1 996; Muthalif et aI., 1 996;  Sato-Bigbee et 

aI . ,  1 999b). 
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Western blot an alysis. OLG cultures containing equivalent number of cells per well 

were lysed in 1 00 III of 60 mM Tris-HCl buffer (pH 6.8) containing 1 0% glycerol, 2% 

sodium dodecyl sulfate (SDS), and 5% 2-mercaptoethanol. The samples were frozen and 

stored at -70°C until required. Fifteen III samples were subjected to SDS-polyacrylamide 

gel electrophoresis in 1 2% acrylamide gels and the proteins were then electrotransferred 

to nitrocellulose membranes. The membranes were then subjected to immunoblot 

analysis .  Non-specific antibody binding to the blots was blocked by incubation in buffer 

containing 1 0  mM Na.,HPO" 2 .7  mM KC1, 1 3 7  mM NaCI (PBS);  3% non-fat dry milk; 

0 . 05% Tween 20 (pH 7.4) (blocking solution), for 1 hour at room temperature. The blots 

were then incubated overnight with either a total CREB (phosphorylated and non

phosphorylated protein) anti-CREB monoclonal antibody (dil .  I : 500) (Santa Cruz 

Biotech. ,  Santa Cruz, CA) or a phosphorylated CREB antibody which recognizes CREB 

when phosphorylated at Ser'3J (Ginty et al., 1 993) (di l .  I :  1 000) (Upstate Biotech. inc . ,  

Lake Placid, N Y ) .  Phosphorylated MAPKs were detected using an antibody that 

specifically recognizes p42 and p44 MAPKs when phosphorylated at Tyr204 (dil .  I :  1 000) 

(Santa Cruz Biotech. ) .  The b lots were then incubated with the appropriate secondary 

horse radish peroxidase ( HRP)-conjugated antibody (monoclonal anti-mouse IgG (di l .  

1 : 2000) for total CREB and MAPK; polyclonal anti-rabbit IgG (di l .  I :  1 000) for 

phosphorylated C REB). After two 5 minute rinses of the blots with PBS containing 

0 . 05% Tween 20 and three 5 minute rinses in PBS, the immunoreactive bands were 

revealed by a chemiluminescence reaction with SuperSignal Ultra reagents (Pierce, 

Rockford, IL). The relative amount of immunoreactive protein in each band was 
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determined by scanning densitometric analysis of the X-ray films. 

D iacylglycerol Assay. OLG cultures were incubated for 1 0  minutes in CDM with or 

without 50 ng/ml NT-3 . At the end of the incubation, the cultures were rinsed with ice

cold DMEM, transferred to ice, and the cells rapidly scraped off the plates and 

homogenized in phosphate buffer saline solution (PBS).  Aliquots of the ceil lysates were 

used to determine the concentration of sn- I ,2-diacylglycerol (DAG) using an assay kit 

from Amersham (Arlington Heights, IL), according to the manufacturer's 

recommendations. This assay utilizes E. Coli DAG kinase and allows the quantitative 

conversion of the DAG present in the cells to [12PJphosphatidic acid in the presence of 

I n hibition of CREB p rotein expression. CREB protein synthesis was inhibited by 

using a deoxyoligonucleotide directed against CREB mRNA as previously reported 

(Sato-Bigbee and DeVries, 1 996) with minor modifications. Deoxyoligonucleotides 

corresponding to the CREB- I sequence (Gonzalez et aI . ,  1 989a) in the antisense ( 5'-GC 

TCC AGA eTC CAT GGT CAT-3')  and sense (5 '-ATC ACC ATG GAC TCT GAA GC-

3') orientations, spanning the initiation codon to nucleotide 20, were prepared by Ransom 

Hil l  Bioscience (Ramona, CA). Transfection was carried out by using Lipofectamine 

P lus™ reagent (GIBCO BRL, Gaithersburg, MD). Sense or antisense oligonucleotides ( 1  

flg/well)  were incubated for I S  minutes with 5 fll Plus reagent fol lowed by 1 5  minutes 

with 1 .25  fll Lipofectamine. Cells were then incubated overnight with the 



oligonucleotide mixture in DMEM : HAM F- 1 2  ( 1 : 1  v/v). CREB expression after 

transfection was assessed by western blot analysis using anti-total CREB antibody as 

described above. 
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Proliferation assay. After transfection, the medium was replaced by CDM containing 

0 . 5  IlCi/ml ['H]thymidine (75Ci/mmol, Amersham), in the presence or absence of 50 

ng/ml NT -3 . At the end of an 1 8  hour incubation period, the cultures were washed three 

times with ice-cold PBS and the cells were solubilized in 500 III 0.2N NaOH. The DNA 

was precipitated with 20% trichloroacetic acid (TCA) and the pellet was washed four 

times with 5 % TCA. After solubil ization of the pellet by incubation with 70% perchloric 

acid at 

3 7 °C for 1 hour, the radioactivity was determined by liquid scinti llation counting. 

Statistical analysis. Statistical analysis was performed by one-way ANOV A. 

Differences were considered statistically significant when p values were < 0 .05 .  



RESULTS 

Treatment of n eonatal OLG precursor cells with NT-3 results in  stimulation of 

C REB p h osphorylation. 

As indicated before, previous results from this laboratory indicated that CREB 

phosphorylation in "immature" OLG precursors could be regulated by agents which 

stimulate a MAPK pathway. In order to investigate whether NT-3 , which is known to 

activate MAPK in OLGs, could also regulate CREB activation in these cells, cultures of 

OLG precursors were incubated for various times in chemically defined medium 

containing 50 ng/ml NT-3 .  At the end of each incubation time, the cells were lysed and 

the levels of C REB phosphorylation were investigated by western b lot analysis. In these 

experiments, we have used an antibody that specifically recognizes CREB only when 

phosphorylated at SerJJJ .  As indicated before, phosphorylation of CREB at SerJJJ is a 

requirement for this transcription factor to activate transcription. 

Figure 3 shows that NT -3 treatment results in a rapid increase in the levels of 

CREB phosphorylation reaching a peak at 1 5  minutes and remaining elevated even after 

45 minutes of incubation time. Consequently, future experiments investigating the 

signaling pathways leading to CREB activation utilized 1 5  minute incubation times. 

To demonstrate that these results signified a true increase in CREB 

phosphorylation levels, as opposed to increased expression of the CREB protein itself, 
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Figure 3.  Treatment of OLG precursors with NT-3 results in stimulation of CREB 

phosphorylation. After 1 day in culture, OLGs were incubated for various t imes in the 
presence of 50 ng/ml NT-3 . Phosphorylated CREB (P CREB) was detected by western 
blot analysis with an antibody that specifically recognizes CREB when phosphorylated at 
SerlH Total CREB was detected using an antibody that detects both phosphorylated and 
non-phosphorylated CREB. (A) representative western blot, each lane corresponds to 1 0  
flg of cel l  lysate protein. (B) P CREB levels were detennined by scanning densitometry 
of the bands. The results are expressed as % of the control values in the absence of NT-3 
and represent the mean±SEM from 3-4 independent experiments. *0 min vs. 5, 1 5 , 45 
min: p<O.OO l .  
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parallel western blots were performed using an antibody that recognizes total CREB 

protein levels, this is both the phosphorylated and non-phosphorylated forms of CREB. 

As shown in figure 3, incubation of the cultures in the presence of NT-3 did not affect the 

levels of total CREB protein, indicating that the observed increase in phospho-CREB 

levels directly reflect increased phosphorylation. 

The MAPK and PKC pathways play a significant role in the NT-3 dependent 

stimulation of CREB p hosphorylation. 

Based on the results described above we decided to investigate the signal 

transduction pathway(s) mediating the stimulation of CREB phosphorylation in the cells 

treated with NT-3 . 

For this purpose, cultures of OLG precursor cells were incubated in medium 

containing NT-3 in the presence or absence of cell permeable specific kinase inhibitors . 

The possible role of a MAPK pathway was studied by co-incubation of the cells in the 

presence o f P D098059.  This compound inhibits MEK, the kinase that phosphorylates 

and activates MAPK. As shown in figure 4, incubation in the presence of this inhibitor 

decreases the NT-3 dependent stimulation of CREB phosphorylation by about 23%. 

Interestingly, incubation in the presence of chelerythrine, a specific inhibitor of 

PKC, also resulted in a significant reduction (- 36%) in the NT-3 dependent stimulation 

of CREB phosphorylation. Most importantly, we observed that CREB phosphorylation in 
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Figure 4 .  The NT-3 dependent stimulation of CREB phosphorylation in OLGs involves 
the action of MAPK- and PKC- signaling pathways. 
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Figure 4 .  T h e  NT - 3  dependent stimulation o f  C R E B  p hosphorylation in OLGs 

involves the action of MAPK- and PKC -signaling pathways. After 1 day in culture, 
the cells were preincubated for 1 0  minutes under the fol lowing conditions: (a) and (b) :  
medium alone;  (c) 5 0  IlM PD098059 (MEK inhibitor); (d) 10 IlM chelerythrine (PKC 
inhibitor); or (e) 5 0  IlM MEK inhibitor + 1 0  IlM PKC inhibitor. Cultures were then 
incubated for 1 5  minutes in (a) medium alone (control);  (b) 50 nglml NT-3;  (c) 50 nglml 
NT-3 + 50 IlM MEK inhibitor; (d) 50 nglml NT-3 + 1 0  IlM PKC inhibitor; or (e) 50 
nglml NT -3 + 5 0  IlM MEK inhibitor + 10 IlM PKC inhibitor. After incubation, 
phosphorylated CREB (P CREB) levels were determined by western blot analysis. 
(A) representative western blot, each lane corresponding to 1 0  Ilg of cell lysate protein.  
(B)  P CREB levels are expressed as % of the controls in the absence of NT-3 and 
represent the mean±SEM from 3-5 independent experiments. Control vs. NT -3 : p<O .OO I ;  

NT-3 vs.  NT-3 + MEK inhibitor: p<0 .05 ;  NT-3 vs. NT-3 + PKC inhibitor: p<0 .05 ;  NT-3 
vs. NT -3 + MEK inhibitor + PKC inhibitor: p<O .OO 1 .  
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the presence of NT-3 was dramatically decreased, by about 70%, when the M E K  and 

PKC inhibitors were used simultaneously. This observation suggested the possibility of a 

concerted mechanism between the MAPK and PKC pathways. 

To test this possibi l i ty, we investigated the role of both MEK and PKC in 

mediating the activation of MAPK by NT-3 .  In these experiments MAPK 

phosphorylation was investigated by western blot analysis using an antibody that 

specifically recognizes MAPK 42 and MAPK 44 when phosphorylated at Tyr204. 

Our data showed that incubation in the presence of NT-3 resulted in a dramatic 

increase in the phosphorylation of MAPK. Inhibiting MEK, however, decreased this 

stimulation by about 50%. Interestingly, inhibition of PKC also reduced MAPK 

phosphorylation in the presence of NT-3 by - 5 0%, suggesting that, in addition to MEK, 

P KC also plays an integral role in the pathway that leads to the activation of MAPK by 

NT-3 . Further evidence for a concerted mechanism is supported by the observation that 

incubation in the presence of both MEK and PKC inhibitors completely blocked the NT-

3 mediated stimulation of MAPK phosphorylation. (Fig. 5 ) .  

To further support the participation of a PKC activity in  the pathways triggered by 

NT-3 , we investigated whether incubation with this neurotrophin could affect the levels 

of possible activators of PKC. As shown in figure 6, treatment of the cells with NT-3 

resulted in a significant increase in the intracellular levels of diacylglycerol (DAG). 

Thus, it may be possible to speculate that this increase in DAG results in PKC activation; 
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Figure 5. MAPK activation in OLGs treated with NT-3 is coupled to both MEK and 

PKC activities. After I day in culture, cells were pre-incubated for 10 minutes under the 
fol lowing conditions: (a) and (b) :  medium alone; (c) 50 f-LM PD098059 (MEK inhibitor); 
(d) 1 0  f-LM chelerythrine (PKC inhibitor); or (e) 50 f-LM MEK inhibitor + 1 0  f-LM PKC 
inhibitor. Cultures were then incubated for 1 5  minutes in (a) medium alone ; (b) 5 0  
ng/ml NT-3 ; ( c )  5 0  nglml NT-3 + 50 f-LM MEK inhibitor; (d) 50 ng/ml NT-3 + 1 0  f-L M  
P KC inhibitor; or ( e )  5 0  ng/ml NT-3 + 50 f-L M  MEK inhibitor + 1 0  f-LM PKC inhibitor. 
Western b lot analysis was then used to detect p42 and p44 MAPK Tyr phosphorylation . 
(A) representative western blot, each lane corresponding to 1 0  f-Lg of cell lysate protein. 

(B) levels of phosphorylated MAPK were expressed as % of the control values in the 
absence of NT-3 and represent the mean±SEM from 3 independent experiments. Control 
vs. NT-3 : p<O.OO I ;  NT-3 vs. NT-3 + MEK inhibitor: p<O.OO I ;  NT-3 vs. NT-3 + PKC 
inhibitor: p<0.02;  NT-3 vs. NT-3 + MEK inhibitor + PKC inhibitor: p<O.OO I .  
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Figure 6. Treatment of OLG precu rsors with NT -3 results in increased levels of 

diacylglycerol (DAG). After 1 day in culture, cells were pre-incubated for 1 0  minutes in 
the presence or absence of 50 ng/ml NT -3 . At the end of the incubation, DAG 
concentration in the cells (5x 1 O· cel ls/sample) was determined as indicated under 
"Methods." The results represent the mean±SEM from 3 independent determinations. 
* Control vs . NT-3 : p<0 .05 .  



this step being one of the events mediating the action of NT -3 on OLGs. 

Since the inhibition of both MEK and PKC drastically decreased, but not 

completely abolished CREB phosphorylation, it is possible that other kinases may also 

play a minor role in mediating CREB activation by NT-3 . In order to identify other 

possible kinase(s) involved in this stimulation, we carried out additional inhibition 

studies. 

4 1  

The possible role of PKA was investigated by co-incubation of the cells in the 

presence of its specific inhibitor H-89. On the other hand, the possible role of CamK and 

PI3-kinase was studied by treatment with their specific inhibitors KN-62 and L Y294002, 

respectively. Figure 7 suggests that these kinases may not play a significant role in 

mediating CREB phosphorylation by NT-3 . However, further studies are required for 

more conclusive results about these kinases. 

Thus, the question still remains open as whether there may be a yet unidentified 

kinase(s) that may play a minor role in mediating the phosphorylation of CREB under 

NT-3 stimulation. 
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Figure 7. The NT -3 dependent stimulation of CREB phosphorylation in OLGs does not 
appear to involve the PKA, CamK, nor the PI3K pathways. 
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Figure 7. The NT-3 dependent stimulation of CREB phosphorylation in OLGs does 

not appear to involve the PKA, CamK, nor the PI3K pathways. After 1 day in 
culture, the cells were preincubated for 1 0  minutes under the fol lowing conditions: (a) 
and (b): medium alone; (c) 0.5 flM H-89 (PKA inhibitor); (d) 30  flM KN-62 (CamK II, 
IV and V inhibitor); (e) 10 flM LY294002 (PI3 kinase inhibitor). Cultures were then 
incubated for 1 5  minutes in (a) medium alone (control) ;  (b) 50 ng/ml NT-3;  (c) 50 ng/ml 
NT-3 + 0 . 5  flM PKA inhibitor; (d) 50 ng/ml NT-3 + 30 flM CamK inhibitor; (e) 50 
ng/ml NT -3 + 1 0  flM PI3 kinase inhibitor. After incubation, phosphorylated CREB (P 
CREB) levels were determined by western blot analysis. P CREB levels are expressed as 
% of the controls in the absence of NT-3 and represent the mean±SEM from 2-3 
independent experiments with each experiment having a minimum of 2 individual 
samples. NT-3 vs. NT-3 + PKA inhibitor: not significant; NT-3 vs. NT-3 + CamK 
inhibitor: not significant; NT-3 vs. NT-3 + PI3K inhibitor: not significant. 



I n hibition of CREB expression abolishes the NT -3 dependent stimulation of DNA 

synthesis in  OLGs. 
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As described before, results from different laboratories have indicated that NT-3 

stimulates the proliferation of OLG precursor cells in vitro as well as in vivo (Barres et 

a I . ,  1 994; McTigue et a I . ,  1 998 ;  Kumar et al . ,  1 998) .  Thus, the results described above 

raise the question of whether CREB could play a role in mediating that stimulation. 

To test this possibil ity, CREB expression in the OLG cultures was inhibited by 

using an antisense oligodeoxynucleotide sequence directed against CREB mRNA. For 

this, an oligonucleotide probe corresponding to the CREB sequence was prepared in the 

antisense (5'-GC TCC AGA GTC CAT GGT CAT-3') and sense (5 '-ATG ACC ATG 

GAC TCT GGA GC-3') orientations, spanning the initiation codon to nucleotide 20. 

Control cultures were treated with a CREB sense oligodeoxynucleotide. In these 

experiments, the uptake of the oligonucleotides was facil itated by using a cationic 

liposome preparation. Al l  conditions, including cell number, concentrations of 

oligonucleotides and transfection reagents, and incubation times were optimized to reach 

maximal levels of inhibition of CREB expression. The effectiveness of treatment with 

the antisense construct in inhibiting CREB expression was evaluated by western blot 

analysis .  In these experiments, we use an antibody that recognizes total CREB, both 

phosphorylated and non-phosphorylated forms. 

As shown in figure 8, the expression of CREB was drastically reduced in the 
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Figure 8. I n h ibition of CREB expression in OLG cultures. CREB expression was 
blocked by transfection with an antisense oligodeoxynucleotide (A ODN) directed against 
CREB mRNA, as indicated under "Methods." Control cultures were treated in a simi lar 
manner but in the presence of the cOITesponding construct in the sense orientation (S 
ODN). CREB expression after transfection was determined by western blot analysis with 
an antibody that recognizes both phosphorlyated and non-phosphorylated CREB. (A) 
representative western blot, each lane corresponding to 10 f..Lg of cell lysate protein. (B) 
C REB levels are expressed as % of the values corresponding to the control cel ls  (S ODN) 
and represent the mean±SEM from 4 experiments. 

* S ODN vs. A ODN: p<O.OO I .  
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antisense-treated cells compared to the sense strand treated control cells. 

eH]thymidine incorporation into DNA was then used to assess the effect of NT-3 

on the prol iferation of OLGs expressing either normal (sense-treated cells) or reduced 

(antisense-treated) C REB protein levels. 

As shown in figure 9,  incubation of the sense-treated OLG precursor cells with 

NT -3 resulted in a significant stimulation of DNA synthesis. However, this stimulation 

in DNA synthesis after NT -3 incubation was not seen in the antisense-treated cultures 

which, as shown before, expressed very low levels of CREB. Furthermore, CREB does 

not seem to have an important role as a regulator of the basal levels of DNA synthesis, for 

inhibition of CREB expression in cultures without NT-3 treatment did not appear to have 

any significant effects on [3H] thymidine incorporations. Altogether, these results support 

the idea that CREB is an important mediator in the stimulation of OLG proliferation by 

NT-3 . 
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Figure 9. I n h ib ition of CRE B expression abolished the NT-3 dependent stimulation 

of DNA synthesis in  OLGs. CREB expression was inhibited by transfection with CREB 
antisense ol igodeoxynucleotide (A ODN). Control cells were treated with the 
corresponding sense construct ( S ODN). Eighteen hours after transfection, the cell 
cultures were incubated for 1 8  hours in medium containing ['H] thymidine in the 
presence or absence of 5 0  ng/ml NT -3 . [JH] thymidine incorporation into DNA was 
determined as described under "Methods ."  The results are expressed as % of the values 
corresponding to the cells treated with S ODN in the absence of NT-3 (controls) and 
represent the mean±SEM from 5 experiments. 
* S ODN vs. A ODN + NT-3 :  p<0.02.  



DISCUSSION 

Results from Finkbeiner et al .  ( 1 997) indicated that in neurons, CREB is a key 

regulator in the induction of gene expression by BDNF, suggesting that CREB plays an 

important role in mediating neurotrophin responses in those cells. 

However to our knowledge, a similar role for CREB in other cells of the CNS has 

not been studied before. Our present results provide the first evidence that this 

transcription factor also plays a crucial role in mediating the action of another 

neurotrophin, NT-3 , in OLG precursor cells .  

Our studies demonstrated that treatment of OLG precursors with NT-3 results a in 

rapid and dramatic stimulation of CREB phosphorylation. Moreover, inhibition of CREB 

expression in the OLG precursors abolished the stimulation of DNA synthesis that is 

observed when the cells are incubated with NT-3.  Altogether, these results suggest that 

CREB activation is an important step in the signaling pathway(s) that triggered by NT-3 , 

result i n  stimulation of OLG proliferation. 

Our results indicated that in the OLGs, the stimulation of CREB phosphorylation 

by NT-3 appears to require the concerted action of MAPK- and PKC-mediated pathways. 

Based on the results previously reported by Xing et al. ( 1 996), we could speculate that the 

most likely mechanism linking MAPK to CREB phosphorylation when the OLGs are 

treated with NT-3 , is a MAPK-dependent activation of Rsk2 which could in tum 

phosphorylate C REB. 

As indicated above we have found that, in addition to a MAPK pathway, CREB 
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phosphorylation in OLGs treated with NT-3 also involves a PKC activity. This is in 

contrast with the observation from Finkbeiner et al .  ( 1 997) showing that in neurons, the 

stimulation o f C REB phosphorylation by BDNF is mediated by MAPK- and CamK

dependent pathways. Consistent with the involvement of a CamK, these authors have 

found that treatment of cortical neurons with BDNF results in a slowly developing but 

sustained increase in cytosolic Ca2+ levels. To support a role for PKC in our cells, we 

have found that NT-3 was able to elicit an increase in the concentration of DAG. This 

increase in DAG could result in PKC activation. 

5 1  

In support of this possibil ity, our present results suggested that in the presence of 

NT-3 , a PKC activity is involved in mediating not only CREB phosphorylation but also 

the activation of M APK by Tyr phosphorylation. In this regard, results from different 

laboratories have previously shown a role for PKC in the activation of MAPK in OLGs in 

response to different conditions, including muscarinic receptor stimulation (Larocca and 

A lmazan, 1 997;  Pende et a l . ,  1 997),  activation of glutamate receptor channels (Pende et 

a l . ,  1 997) ,  and p latelet-derived growth factor (PDGF) and basic fibroblast growth factor 

(bFGF) (Bhat and Zhang, 1 996). 

P KC could directly phosphorylate Raf, which could then activate MEK resulting 

in MAPK phosphorylation (Kolch et a l . ,  1 993 ;  Marquardt et al . ,  1 994; Ueda et al . ,  1 996) .  

However, PKC may also modulate the MAPK pathway by different mechanisms in 

different cell types. It has been suggested that sites of PKC action, other than Raf 

activation, are likely to be effective at different points of the MAPK pathway as well 

(Cobb and Goldsmith, 1 995) .  
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Miranti et a ! .  ( 1 999) demonstrated that the alpha, delta and epsilon isoforms of  

PKC led to the activation of p42 MAPK by possibly regulating the Tyr phosphorylation 

of Shc in Cos 7 cells. Moreover, others have demonstrated that PKC can lead to the 

activation of MAPKs independent of many of the factors in the MAPK pathway, i .e .  Ras, 

Raf, and MEK (Ueda et a! . ,  1 996; Chao et a! . ,  1 994; Grammar et a! . ,  1 997) .  However, the 

direct role  that PKC plays in such cascades has yet to be elucidated. 

Thus, i t  appears that the site where PKC is involved in the MAPK pathway may 

be variable.  In our experiments, we have seen that MAPK phosphorylation is completely 

abo lished only when both MEK and PKC are inhibited simultaneously. On the other 

hand, individual inhibition of either MEK or PKC only decreased the phosphorylation by 

50%. These observations suggest that PKC is not working upstream of MEK because 

then the inhibition of MEK alone should produce the same result as inhibiting both MEK 

and PKC simultaneously. Furthermore, we know, by the antibody used in the western 

blots, that the M APKs are phosphorylated at a Tyr residue. Thus, the possibil ity of a 

direct phosphorylation of MAPK by PKC is eliminated by the fact that PKC is a 

serine/threonine kinase. Thus, the possibil ity exists of a yet unidentified step which may 

link P KC with MAPK activation by Tyr phosphorylation. 

Further complications in studying PKC signaling pathways stem from reports 

indicating the existence of several isoforms and differential cellular distributions of PKC 

(S lepko et a ! . ,  1 999) .  It appears that in the OLGs, PKC isotypes are differentially 

expressed according to developmental stages. Asotra and Macklin ( 1 994) reported that in 
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0-2A progenitors, only the Ca2+-independent PKC-delta, -epsilon and -zeta forms are 

expressed while other isotypes can be detected at later stages. The particular isoform of 

PKC appears to be critical in determining the physiological function effected by the 

kinase since Corbit et ai .  ( 1 999) reported that the aid of PKC delta in MAPK activation in 

PC 1 2  cel ls is related to neurogenic functions, but not to a mitogenic response. Studies 

investigating PKC activation have shown that PKC can be calcium dependent as well as 

calcium independent (Huang et aI . ,  1 993) .  Ohmichi et ai . ( 1 993)  demonstrated that NGF 

stimulation of PC 1 2  cells,  which also stimulated the production of DAG, selectively 

activated the calcium-insensitive epsilon isoform of PKC. This report is similar to our 

findings in that NT-3 stimulation of OLG precursor cells resulted in elevated levels of 

DAG, which may activate PKC. Thus, further experiments are necessary to determine the 

precise mechanism by which PKC could stimulate MAPK activation in the OLGs in the 

presence of NT-3 and how these two signaling pathways interact to mediate the NT-3 

dependent stimulation of CREB phosphorylation in the OLGs. 

Previous results from this laboratory suggested that in committed OLGs, CREB 

plays an important role being at least one of the mediators in the stimulation of OLG 

differentiation by cAMP (Sato-Bigbee and DeVries, 1 996). However, later studies 

investigating the regulation of CREB phosphorylation along OLG maturation raised the 

possibi lity that this transcription factor may play different roles by mediating the action of 

different signaling pathways at specific stages of cell differentiation (Sato-Bigbee et aI . ,  

1 999a).  Our present results support the idea that in the immature OLG precursors, CREB 
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plays an important role in transducing signals, which like NT-3, may regulate cell 

proliferation. In effect, previous results have shown that CREB phosphorylation in OLG 

precursors can also be stimulated by a MAPK pathway triggered by PDGF, bFGF (Pende 

et a I . ,  1 997) and the cholinergic agonist charbachol (Pende et aI . ,  1 997; Sato-Bigbee et 

a I . ,  1 999a); all factors known to promote OLG proliferation (Bogler et aI., 1 990; 

McKinnon et aI . ,  1 990; Cohen et aI . ,  1 996b). Thus, it  is possible to hypothesize that 

CREB could be a common mediator of signals which, by activating the MAPK pathway 

results in C REB phosphorylation and stimulation of OLG proliferation. Therefore, we 

are currently focusing on identifying the gene(s) that may be regulated by CREB 

mediating the stimulation of OLG proliferation. 

Our preliminary results indicated that treatment of OLGs with NT -3 also results in 

increased levels of c-fos (Sato-Bigbee et a I . ,  1 999a), a protein for which elevated 

expression has been linked to OLG proliferation (Bhat et aI . ,  1 992; Cohen et aI . ,  1 996b). 

It has been shown that in PC 1 2  cells, CREB interacts with other transcription factors 

mediating the stimulation of c-fos expression by NGF (Bonni et aI . ,  1 995) ;  and in neurons 

CREB by itself can mediate the up-regulation of c-fos expression by BDNF (Finkbeiner 

et a I . ,  1 997) .  Thus, CREB could in part mediate the up-regulation of c-fos expression 

that we have observed in the OLGs treated with NT-3 .  Interestingly, it  is possible to 

hypothesize that C REB itself and c-fos could simulate the expression of several proteins 

that are crucial for cel l  proliferation to occur. One of these proteins is the proliferating 

cel l  nuclear antigen (PCNA), an essential factor for DNA polymerase. It has been shown 

that PCNA promoter activity in interleukin 2-stimulated T lymphocytes largely depends 
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o n  the presence o f  tandem CREB binding sites (Huang e t  aI . ,  1 994). Moreover, Lee and 

M athews ( 1 997) demonstrated that CREB acts as a transcriptional coactivator capable of 

mediating the induction of human PCNA promoter by the adenovirus E I A  oncoprotein. 

Another possibil ity is that CREB may be involved in the regulation of genes encoding 

cyclins. Cyclins comprise a family of proteins which interact with and activate a series of 

kinases known as cyclin-dependent kinases or cdks (Pines, 1 993) .  In recent years it has 

ben shown that cdks catalyze phosphorylation events which are critical for the regulation 

of eukaryotic cel l  proliferation (Norbury and Nurse, 1 992; Pines, 1 993) .  In this regard, 

studies in human fibroblasts and muscle cells suggested that CREB and c-fos could play 

an important role i n  the cell cycle regulation of cyclin A expression (Desdouets et aI . ,  

1 99 5 ;  Sylvester e t  aI . ,  1 998) .  In addition, studies of  cyclin D gene promoter 

characterization and regulation suggested a role for CREB and c-fos in cyclin D 

expression (Yang et aI . ,  1 996; Jun et aI . ,  1 997; Brown et aI . ,  1 998) .  However, the 

possibility of similar roles for CREB or c-fos in the OLG has not yet been investigated. 

In summary, our present results indicated that CREB phosphorylation is at least 

one of the down-stream consequences of the NT-3 dependent activation of MAPK and 

PKC signaling pathways in OLG precursor cells. Moreover, CREB appears to play a 

crucial role in the stimulation of OLG proliferation by NT -3 . Further experiments would 

determine whether these mechanisms are also operational in vivo. A better understanding 

of these regulatory systems and their final targets should provide important clues to 

design strategies to stimulate OLG proliferation and remyelination after demyelinating 

lesions of the CNS. 
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