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The direct ion o f  equ i l ibrat ion was changed at 5 %  
MeOH . . 1 5 0  

Figure 5 - 1 5 . Transmit tance o f  Li Chroprep RP - 1 8  i n  MeOH - water 
e luent vs . e luent compo s i t ion . The sol i d  and 
dashed curves were obtained from downward and 
upward equ i l ibrat ion experime nt s , respect ive l y . 
The direc t i on o f  equ i l ibrat ion was changed at 6 %  
MeOH . . 1 5 1  

Figure 5 - 1 6 . Transmittance o f  L iChroprep RP - 1 8  i n  MeOH - water 
e luent vs . e l uent compo s i t i on . The plot was 
obtained by upward equ i l ibrat i on experiment 
start i ng with dry s tat i onary phase . . . . . .  1 5 3  

Figure 5 - 1 7 . Transm i ttance o f  YMC Octyl 1 2 0A ( 1 5  �m ) i n  ACN
water e luent vs . e luent compo s i t ion . The sol i d  
and dashed curves were obtained from downward and 
upward equ i l ibrat ion experime nt s ,  respect ively 

. 1 5 7  

Figure 5 - 1 8 . Transm i t tance o f  LiChroprep RP - 1 8  i n  MeOH - wat er 
e luent vs . e luent compos i t i on . The sol id  and 
dashed curves were obtained from downward and 
upward equ i l ibrat ion experiments ,  re spect ively . 
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The direct ion o f  equ i l ibrat ion was changed at 1 0 %  
MeOH. 1 5 9  

Figure 5 - 1 9. Transmi t tance o f  LiChroprep RP-1 8 i n  MeOH-water 
eluent vs. eluent compo s i t ion. The sol id and 
dashed curves were obtained from downward and 
upward equi l ibrat ion experiment s ,  respect ively. 
The direct ion o f  equ i l ibrat ion was changed at 1 5 %  
MeOH. . 1 6 0  

Figure 5-2 0 . Transmittance o f  LiChroprep RP-1 8 i n  MeOH-water 
e luent vs. eluent compos i t ion. The s o l i d  and 
dashed curves were obtained from downward and 
upward equi l ibrat ion experiments ,  respect ively. 
The direct ion o f  equ i l ibrat ion was changed at 2 5 %  
MeOH. . 1 6 1  

Figure 5-2 1 . Transmit tance o f  HDG C1sH37 vs. t ime. The mob i l e  
phase was changed from MeOH t o  a MeOH- water 
eluent with 3 0 % ,  1 5 % ,  and 7 %  MeOH. Arabic  
numbers are used to l abel d i f ferent regions o f  
t he equ i l ibrat ion curves. 1 6 8  

Figure 5-2 2.  Equ i l ibrat ion time for HDG C1sH37 , from MeOH t o  a 
MeOH-water eluent , vs. eluent compos i t ion. The 
f l at part of t he curve i s  p l ot ted in t he i nset 
wit h  a di f ferent ordinate scale . . . . . . .  1 7 0  

Figure 5 - 2 3 . Transm i t tance o f  YMC Butyl 1 2 0A ( 2 5  �m )  i n  ACN
water eluent vs. eluent composit ion. The sol i d  
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

. 1 7 1  

Figure 5-2 4 . Transmit tance o f  YMC Butyl 1 2 0A ( 2 5  �m ) vs. t ime. 
The mob i l e  phase was changed from ACN to 9 8 %  ACN
water , t hen back to ACN . . . 1 7 3  

Figure 5 - 2 5 . Transmittance o f  HDG C1sH37 vs. t ime. The mob i le 
phase was changed from MeOH to water , at a f low 
rate of 0 . 2 5 mL/min. Af ter 4. 3 5  mL of water was 
pas sed through t he f low cel l , the f l ow was 
stopped . 1 7 5  

Figure 5 -2 6 .  Final constant transmi ttance o f  HDG C1sH37 vs. t he 
volume o f  water pas sed t hrough t he f low cel l 
before t he f l ow was stopped . 1 7 6  

Figure 5 - 2 7. E f fect o f  temperature on the equi l ibrat ion 



process for HDG C1sH37 when the eluent was 
switched from MeOH to water . The eluent f low 

xv 

rate was 0 . 2 5 mL/min . . . . . 1 7 8  

Figure 5-2 8. Transmit tance o f  Li Chrosorb S 1  1 0 0  and SUPELCOS 1 L  
LC-1 8 ,  in  water and various pure organi c  s o l  vents 
vs . the d i f ference in  the refract i ve index 
between s i l ica and t he solvent . The point 
indi cated by an arrow is for SUPELCOS 1 L  LC- 1 8  i n  
water . 1 8 1  

Figure 5-2 9. D ipolarity for MeOH- water eluent ( spec i f ied as 
"Solvent" ) and L iChroprep RP- 1 8  vs . eluent 
compo s i t ion . The sol id and dashed curves were 
obtained from downward and upward equ i l ibrat ion 
experiment s ,  respectively . . . . . . . . . .  1 8 7  

Figure 5-3 0 . Dipolarity for MeOH-water eluent ( speci f ied as 
"Solvent") and LiChroprep RP- 1 8  vs . eluent 
compos it ion . The sol i d  and dashed curves were 
obtained from downward and upward equ i l ibrat ion 
experiment s ,  respect ively . . . . . . . . . .  1 8 8  

Figure 5-3 1 . Dipolarity for HDG C1sH37 , SUPELCOS1L LC- 1 8 , and 
Li Chroprep RP - 1 8  in MeOH-water eluent vs . eluent 
compos it ion . The curves were obtained from 
downward equ i l ibrat ion experiments . . . .  1 9 1  

Figure 5-3 2 . Retent ion o f  caf feine on LiChroprep RP-1 8 vs . t he 
MeOH content in  the eluent . The arrow i ndicates 
t he direct ion of equ i l ibrat ion . . . . . . . .  1 9 3  

Figure 5 - 3 3 . Retent ion o f  caf feine on L iChroprep RP- 1 8  i n  3 %  
( v/v )  MeOH-water eluent vs . t he MeOH content i n  
t he preequ i l ibrat ion eluent ( see text for 
explanat ion ) . . 1 9 5  

Figure B-1 . Transmi t tance o f  L iChroprep RP-1 8 in ACN-water 
eluent vs . eluent composit ion . The sol id and 
dashed curves were obtained from downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

. 2 2 0  

Figure B-2 . Transmi t tance o f  Li Chroprep RP- 1 8  in  THF- water 
eluent vs . eluent compos i t ion . The sol i d  and 
dashed curves were obtained from downward and 
upward equ i l ibrat ion experiments ,  respect ively 

. 2 2 1  
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Figure B-3. Transmittance of SUPELCOS I L  LC- 1 8  in MeOH-water 
eluent vs . eluent compo s i t ion . The sol i d  and 
dashed curves were obtained f rom downward and 
upward equ i l ibrat i on experiments ,  respect ively 

· 2 2 2  

Figure B-4. Transmittance o f  SUPELCOS I L  LC- 1 8  i n  ACN-water 
eluent vs. eluent compos i t ion. The sol i d  and 
dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 3  

Figure B-5 . Transmittance o f  SUPELCOS I L  LC - 1 8 i n  THF-water 
eluent vs. eluent compos i t ion. The sol i d  and 
dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 4  

Figure B-6. Transmit tance of Spheri sorb ODS 2  in MeOH-water 
eluent vs . eluent composi t ion. The sol i d  and 
dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respec t ively 

· 2 2 5  

Figure B-7 . Transmittance o f  Spheri sorb ODS 1 i n  MeOH-water 
eluent vs . eluent compos i t ion. The sol id  and 
dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 6  

Figure B - 8 . Transmittance o f  YMC ODS-A 1 2 0A ( 1 0  �m)  i n  ACN 
water eluent vs . eluent compo s i t ion. The sol id  
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 7  

Figure B - 9 .  Transmittance o f  YMC ODS-A 1 2 0A ( 2 5  �m)  i n  ACN 
water eluent vs. eluent compo s i t i on. The sol id  
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 8  

Figure B - 1 0 . Transmittance o f  YMC ODS-A 1 2 0A ( 5 0  �m ) i n  ACN 
water eluent vs. eluent compo s i t ion . The sol id  
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiment s ,  respect ively 

· 2 2 9  
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Figure B-1 1. Transmi t tance o f  YMC ODS-A 2 0 0A ( 2 5  �m ) in  ACN
water eluent vs . eluent compo s i t ion . The s o l i d  
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion exper iments , respect ively 

. 2 3 0  

F igure B-1 2 . Transmi t tance o f  YMC ODS-A 3 0 0A ( 2 5  �m) i n  ACN
water eluent vs . eluent compo s i t ion . The sol id 
and dashed curves were obtained f rom downward and 
upward equ i l ibrat ion experiments , respect ively 

. 2 3 1  

Figure B - 1 3 . Transmi t t ance o f  YMC TMS 1 2 0A i n  ACN-water eluent 
vs . eluent compos i t ion . The sol id and dashed 
curves were obtained f rom downward and upward 
equ i l ibrat ion exper iment s ,  respect ively . . .  2 3 2  
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Lis t  o f  Abbreviat ions and Symbol s  

Abbreviat ions 

ACN 

DCMPVP 

ET-3 0 

ET-3 3 

HPLC 

IND 

I R  

kK 

MeOH 

NMR 

ODS 

RPLC 

RSD 

SD 

SDS 

THF 

vs . 

Acet on i t r i l e  

2 , 4-D ichloro - 6- [ 2- (N-me thyl - 4 -
pyridini o ) vinyllphenolate ( see  page 3 8  for the 
s t ructure o f  DCMPVP ) 

2 , 6-Diphenyl - 4 - ( 2 , 4 , 6-triphenyl-l-pyr i dini o ) -1-
phenolate ( see page 3 8  for the s t ructure of ET-3 0 )  

2 , 6-D i chloro - 4 - ( 2 , 4 , 6 - t riphenyl-N
pyridini o ) phenolate ( see page 3 8  for the s t ructure 
o f  ET - 3 3 )  

High perf ormance l i quid  chromatography 

Factor indicator funct ion 

I n f ra- red spe ctros copy 

K i lokayse r  ( 1 0 0 0  cmo1 ) 

Met hanol 

Nuc lear magnet i c resonance spectroscopy 

Octadecyl s i lylated s i l ica 

Reversed- phase l iquid chromat ography 

Residual standard deviat ion 

Standard deviat ion 

Sodium dodecyl sul fate 

Tet rahydrofuran 

versus 



Symbol s  

% T 

k' 

{3 

t,G 

cp 

Vmax 

xix 

Percent t ransmit tance in opt ical  t ransm i t t ance 
measurements 

Capac i t y  f actor 

Hydrogen - bonding acidity parameter 

Hydrogen - bondi ng bas i c i ty parameter 

Surface tens ion o f  the sol id - vapor interface 

Surface tens ion o f  the sol id- l i quid  i nterface 

Surface tens ion o f  the l iqui d - vapor i nterface 

Free energy change 

Percent o rganic  modi f ier ( v/v)  in organic  modi f ier 
water mixtures 

Wavelength at the absorpt ion maximum in an 
elec t ronic  absorp t i on spec t rum 

F requency at the absorpt ion maximum in an electron i c  
absorpt ion spect rum 

Dipo l ar i ty-po l a r i z abi l i ty parameter 

Contact angle formed at the three - phase 
( so l i d/ l iquid/vapor )  boundary 
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Symbo l s  in target factor analys i s  

D 

E 

s 

T 

U 

v 

c 

n 

r 

Aj 

Data mat rix 

Key cobminat ion set used to reproduce data mat rix  D 
within experimental error 

Reproduced data mat rix 

Resi dual error mat r i x ,  represent ing the di f ferent 
between Dr and D 

Diagonal mat rix obtained f rom s i ngular value 
decompos i t ion of data mat rix D, whose diagonal 
element s  are the square roots of t he respect ive 
eigenvalues for the eigenvectors in orthonormal 
mat rices U and V 

Transformat i on mat rix used to reproduce data mat rix 
D f rom t he key combinat i on set 

Orthonormal mat rix obtained f rom s i ngul ar value 
decompos i t ion of data mat rix D, composed o f  
eigenvectors o f  the row- factor space 

Orthonormal mat rix obtained f rom s i ngular value 
decompos i t ion of data mat rix D, composed o f  
eigenvectors o f  the column - factor space 

Number o f  columns in data mat rix D 

Number o f  s igni f i cant factors 

Number o f  rows i n  data mat rix D 

E igenvalue for the jth eigenvector in ort honormal 
mat rices U and V 
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INTERACTIONS AMONG THE STATIONARY PHASE , THE MOB I LE PHASE , AND 
THE SOLUTE IN L I QUID CHROMATOGRAPH I C  SYSTEMS 

By Zengbiao Li , Ph . D .  

A d i s sertat ion submitted in part ial ful f i l lment o f  t he 
requi rement s  for t he degree of Doctor of Philosophy at 
Virginia Commonweal t h  Univers i ty . 

Virginia Commonweal t h  Univers ity,  1 9 9 6 . 

D i rector: Sarah C .  Rutan , Ph . D . , Assoc iate Professor , 
Department of Chemistry 

Interact ions among the stat ionary phase , t he mob i le 

phase , and t he solute in l iquid chromatography have been 

studied . A s t rong dependence of t he stat ionary phase 

propert ies on t he mobile phase compos i t ion may ari se f rom 

t heir interac t i ons . 

The solvatochromic compari son met hod , which can give 

est imates for t he dipolarity-polar i zab i l ity , t he hydrogen-

bonding ac idity , and the hydrogen- bonding bas icity of a 

solvent , represented by the solvatochromic parameters n', a ,  

and � ,  respect ively , was used to study the surface propert ies 

of s i l ica i n  t he presence of n- hexane - c hloroform or n - hexane -

ethyl ether mixtures . A high dipolarity-polar i zab i l ity , a 

high hydrogen - bonding ac idity,  and a low hydrogen - bonding 

bas i c ity were obtained for s i l ica in n - hexane . The n
' and a 
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values for s i l ica were not af fected by the add i t ion o f  

chloroform into n- hexane. The hydrogen- bonding bas i c i ty of  

s i l ica , however , decreased with increas i ng amount s  of  

chloroform . The n* value for s i l ica decreased with  i ncreas ing 

conten t s  of ethyl ether. The decrease in  n* and � values for 

s i l ica may have resul ted from the compet i t ion between t he 

polar solvent and t he solvatochromic dyes for the strong 

adsorp t i on s i tes on s i l ica. 

E lectronic absorpt i on spectra of  a solvatochromic dye , 

N , N-dimethyl-4-ni troan i l i ne , in n - hexane-ethyl ether mixtures 

were used to elucidate solute-solvent i nteract ions. Target 

fac tor anal ys i s  indicated that solute-solvent interact ions in  

a binary solvent can only be reproduced using t hree or four 

s igni f i cant factors , instead of a l inear combinat i on of  

solute- solvent interact ions i n  t he two pure component s ,  which 

i s  probably  caused by the exi stence o f  various 

m icroenvironment s  in mixtures o f  n-hexane and ethyl et her. 

Opt ical transmittance measurement s  were establ i shed to  

study t he wett i ng o f  alkyl bonded s i l icas in  organi c  solvent 

water mixtures. When the percent organic solvent content in  

t he eluent , �,  was high , alkyl bonded s i l ica was wetted and 

wel l  solvated. With decreas ing � ,  alkyl bonded s i l i ca became 

less solvated . When � was lower than the nonwet t i ng l imit  

( less than 10%  o f  organi c  solvent ) ,  alkyl bonded s i l ica became 

nonwetted. With i ncreasing� , a nonwetted alkyl bonded s i l ica 
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remains nonwetted  unt i l  � reaches the rewe t t i ng l im i t  ( around 

6 0 % )  I whi c h  i s  much higher than the nonwet t i ng l imit . Wet t i ng 

hys t e re s i s  c an be observed c l e arly in opt i c a l  t ransmi t t ance 

measuremen t s . S l ow kine t i c s  may be a prerequ i s i t e  for the 

appearance o f  wet t i ng hystere s i s . D i f f e rent a l kyl bonded 

phase s  have d i f f e rent wett i ng behaviors . Much longe r column 

equ i l ibrat ion t i me i s  required i f  the s t a t i onary phase  i s  

nonwe t t e d  o r  not we l l  so lvat ed . Bot h the surface dipo l ar i ty 

and solute re tent ion are a f f ected by the we t t ing o f  t he 

s t a t i onary phas e . 



Chapter 1 

Introduct ion 

1 
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Liqu i d  chromat ography i s  one of  the mos t  import ant modern 

separat i on t e chn i ques . Ac cording to the re l at ive pol arity o f  

the s t a t i onary phase and the mob i l e  phase , there are t wo 

separat ion mode s in l iquid  chromat ography : the norma l - phase 

mode , i n  whi c h  the s tationary phase is more polar than t he 

mobi l e  phase , and the reversed - phase mode , i n  which  t he 

sta t i onary phase i s  l e s s  polar than the mob i l e  phase . S i l i c a  

i s  t he most f requent ly  used s tationary phase  i n  norma l - phase 

l iqu i d  chromatography . I n  reve rsed-phase l iqu id  

chromat ography ( RP LC ) , chemically modi f ied s i l i c a  with  a l kyl 

subs t i tuents is the most f requently used s t a t i onary phase . To 

make s t at i onary phases for RPLC , some surface s i l ano l s  are 

removed by a l kyl s i lylat ion , 

a 
Si-O-H 

a 
A chromatographi c  process  is  determined by the 

int eract i ons among the s tationary phase , the mob i l e  pha se , and 

t he solut e . A st rong dependence of  the stat ionary phase  

propert i e s  on  the mob i l e  phase compo s i t ion may arise  f rom 

t he i r  interact i ons . I n  most cases in l iquid  chromatography , 

the mob i l e  phas e  i s  not a pure solvent , but a mixture o f  two 
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or more solvent s .  The interact ions between t he solute and t he 

mob i l e  phase i s  o f ten comp l i cated by pre fe rent i a l  solva t i on o f  

t h e  solute b y  one component o f  t he mixture and mol e c u l a r  

interact ions between di f f e rent components in the mob i l e  phase . 

The surface o f  s i l i ca i s  composed of  s i l anol and s i l oxane 

group s . Surface s i l anol s  are mainly re spons ible  for  t he 

retent ion o f  solutes on s i l i c a . I n  RPLC , surface s i l anol 

groups are a l so instrument a l  i n  the we t t ing of alkyl s i lylated 

s i l i c a  and the retention o f  some solut e s . There are seve ral 

typ e s  of  surface s i l anol s . 

have d i f f e rent acidi t i e s . 

D i f f e rent types of  s i l anol s  may 

Most of t he studie s  on s i l i ca 

sur faces  are under condit ions without the presence o f  a 

solvent . One que st ion posed in this  research i s  how a solvent 

modi f i e s  t he prope r t i e s  o f  surface s i l ano l s  

int e ract i ons between surface s i l anol s  and solutes . 

or t he 

Thi s 

e f f e c t  must be understood to e luc idate t he retent ion mechani sm 

and predic t  retent ion i n  l iquid chromatography . 

The solvatochromi c compari son met hod , which  can g ive 

e s t imat e s  for  t he dipolarity-po l ari z abi l i ty , represented by 

the sol vatochromi c parameter  TI* , the hydrogen - bonding acidi t y , 

represented by the solvat ochromic parame t e r  a, and t he 

hydrogen- bonding bas i c i t y ,  represented by the solvatochromic  

paramet e r  {3 ,  o f  t he surface o f  sil  ica , wa s used  in  this  

research . The solvatochromic parame ters was used to e luc idate 

the surface c hemi s t ry o f  s i l ica . The ult imate goal is t he 
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predi c t i on o f  ret ent ion based on t he sol vatochromic  parameters  

o f  solute s , the stationary phase , and the mob i l e  phase 

according to t he fo l l owing equat i on: 

l n  k' c + 8· 1T; . {Hr * 
a· (32 • /::'Ci b· Ci2• /::,(3 ( 1 - 1 ) = + + 

where k' i s  t he capacity factor , 7T; I Ci2 , and (32 are t he 

solvatochromi c parameters for the solutes , /::'1T* , /::'Ci ,  and /::'(3 are 

the di f f erences o f  the solvatochromic parameters between the 

s t a t i onary phase and the mob i l e  phase , and 8 ,  a ,  and b are 

regre s s i on coe f f i c ient s . 

The mob i l e  phase in norma l - phase l iquid  chromatograp hy i s  

o f t e n  a mixture o f  a nonpolar solvent and a polar solvent , 

e . g . , n - hexane and et hyl et he r . The interact i ons between a 

pol a r  organ i c  solute and t he mob i l e  phase are comp l i cated by 

t he potent i a l  pre f e rent i a l  so lvat ion of  the pol a r  solute by 

e t hyl ether and dipo l ar interact ions between ethyl  e ther 

mol ecule s . Factor analys i s  was conducted on the e l e c t ronic 

spect ra o f  a solvat ochromi c  dye , N , N - dimethyl - 2 - n i t roan i l ine , 

in mixtures with di f f erent ethyl ether content s . I n format ion 

about t he mol ecular interac t i ons between the dye and the 

mob i l e  phase can be obt ained f rom the re su l t s  of  the f actor 

analys i s  study . 

The surface o f  alkyl s i lylated s i l ic a  i s  composed of  

bonded a l kyl chains and residual s i l anol s . The s t a t i onary 

phase mat e r i a l s  for  RPLC are re l a t ive ly hydrophobi c  because o f  

t he a l kyl s i lylat ion o f  some o f  the surface s i lanol groups . 
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The mob i l e  phase used i n  RPLC , howeve r ,  i s  usua l l y  a mixture 

of  wat e r  and organi c  solvent s . There fore , in  

wi t h  we t t i ng t he alkyl s i lylated s i l icas  

RPLC , probl ems 

are expected , 

espe c i a l l y  in wa t e r - r i ch el uent s . 

alkyl phase , more spe c i f ical l y ,  

between t he stat ionary phase and 

The we t t ing of a bonded 

the int e r f a c i a l  t ens ion 

the mob i l e  phase , may 

s t rongly a f fec t  vari ous chromatographic behaviors of t he 

bonded phase . Unl ike a f l at surface , howeve r ,  there are not 

many exper iment al  techniques ava i l able  to charac t e r i z e  the 

we t t ing and i nt e r f a c i a l  behaviors of  porous part i c l e s . I n  

t h i s  researc h , t he measurements of  the opt i c a l  t ransmi t t ance 

of t he stat i onary phase /mobi l e  phase system was propo sed as  a 

means to st udy the interfacial  behavior of  the stat i ona ry 

pha se part i c l e s  i n  the mob i l e  pha se . The sol va tochrom i c  

me t hod , chromatographi c  measurements , and di rect we t t ing t e s t s  

we re a l so appl ied to study the wett ing , or the int e r f a c i a l  

behavior , and i t s  e f fe c t s  o n  chromatographic  perf ormanc e . 

Al t hough l i qu id chromatography has been pract i ced f o r  a 

long t i me , the interact ions among the s t at ionary phase , t he 

mob i l e  phase , and the solute are s t i l l  far  f rom we l l  

unde rst ood . In  t h i s  re search , so lvent e f f e c t s  on the 

propert i e s  of  s i l i c a  and alky l s i lylated s i l ica  were studied by 

the solvatochromi c  compa r i son met hod , opt ical  t ransmi t t ance 

and chromatographi c  mea surement s ,  di rec t  we tt ing tests , 

measurement s .  Factor analys i s  was appl ied to study t he 
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interact ions between a solute and bi nary solvent mixture s . 

The resu l t s  f rom t hi s  research may solve some problems i n  

chromatographi c  app l i cat ions and improve our understandi ng o f  

t he mechan i sm o f  a l iqu id chromatographic proce s s. 



Chapter 2 

Background 

7 
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2 - 1  Surface Chem i s t ry o f  S i l ica  

Bas i c  knowledge about s i l ica  can be  found in  two 

f requent l y  c i t ed books in this  f i eld . 1 . 2 Several recent 

art i c l e s  have reviewed advances in e luc idat ing t he chemical  

nature of  t he surface o f  s i l i ca for  chromatographi c  

appl i cat i ons . 3 - 6 The chemi cal nature of  the surface o f  s i l ica 

has been cha rac t e r i z ed by various technique s ,  inc luding i n f r a 

r e d  spe c t roscopy ( I R )  , 7 - 1 0 nuc lear magne t i c  resonance 

spec t roscopy ( NMR ) , 7 . 9 . 1 1 - 1 3 

chromat ographic met hods . 8.1 6 

adsorpt ion met hods , 14 . 1 5 and 

The informat ion provided by t hese  

t e chni ques i s  summarized  here . The surface of  s i l i c a  is  

composed o f  s i l anol and s i loxane groups . There are  t hree 

types o f  s i l anol s---f ree  s i lanol s ,  hydrogen - bonded s i l anol s ,  

and geminal s i l anol s , 17 as shown i n  Figure 2 - 1 . 2 9S i  NMR can 

be used to d i s t inguish t he s i l i con atoms in  s i l oxane groups , 

[ ( =;8i - O - )  4Si) , the s i l icon atoms 

[ ( =Si - O - ) 3SiOH) , and t he s i l icon 

wi t h  one hydroxyl group , 

atoms with two hydroxyl 

groups , [ ( =S i - O - ) 2Si ( OH )  2 ) 11 But this  met hod can not 

d i s t i ngu i s h  f ree  and hydrogen- bonded s i lanol groups . I R  i s  

c apabl e  o f  d i s t i ngui shing f ree and hydrogen- bonded s i l anol 

groups . 7 . 1 8 I sotherm adsorpt ion14,15 and chromatographic 

met hods8 , 16 g ive informat ion about the activi t ies  o f  d i f f e rent 

adsorpt i on s i t e s  on the surface of  s i l i ca . 

The surface s i l anol concent rat ion , t he rat io  of  the t hree 
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type s  o f  s i l anol groups and t he content of  me t a l  impur i t i e s  

a r e  among the mos t  important parame ters for  s i l i c a  i n  

chromatographic app l i cat ions . 9,14,17 The surface s i l ano l 

concent rat i on can be changed by the degree o f  hydrat ion . For 

f u l l y  hydrated porous s i l i c a  in chromatographi c  app l i cat ions , 

i t  i s  genera l ly agreed that the surface s i l anol concent rat ion 

is  around 8 /lmo l /m2 ( 4 . 8  s i l anol groups /nm2 ) . 4 , 1 9,2 0 The rat i o  

o f  t he three types o f  s i l anol groups i s  re l ated to t h e  degree 

of hydrat ion of s i l i c a . For ful ly hydrated s i l i c a , geminal  

s i l anol groups account for about 3 0 %  o f  t he total  s i l anol 

groups . 7,12 D i f fe rent types o f  s i l anol s have d i f f e rent 

a c i d i t i e s . I t  i s  general ly be l i eved that f ree  s i l anol s are 

more a c i d i c  than hydrogen - bonded s i lanol s . 7,9 But there are 

a rgument s about whe t he r  hydroge n - bonded s i l anol s  are t he mos t  

ac i di c . 1 5 S t rong evi dence was provided by P f l e iderer and Baye r 

t ha t  geminal s i l anol s  were respons ible  for  the abnormal 

chromat ographi c  behavior o f  bas i c  solutes on s i l i c a . 2 1 Met al  

i mpu r i t i e s  i n  s i l i ca may have a large e f fect  on t he ac i d i t y  o f  

s i l i ca14,2 2  and the re tent i on o f  hydrogen - bonding acceptor 

solut e s2 3 or solutes capabl e  o f  che l a t i ng me t al s . 24,25 

Dehydrat i on o f  s i l i c a  i s  usua l ly performed by t he rmal 

t re atment under vacuum . The f irst s t age is t he removal of 

phys i c a l ly adsorbed water  at relat ive ly l ow dehydrat ion 

t emperature s . 

F i n a l l y  f re e  

Then hydrogen - bonded s i l anol s  are  e l iminated . 

s i l ano l s  can be removed at very high 
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t empe ratures .  S i ndorf  and Mac i e l  have studied dehydrat ion and 

rehydrat ion o f  s i l i c a  by 2 9S i  NMR and thermogravime t r i c  

met hods . 12 Most o f  the phys i c a l ly adsorbed and bul k  molecular 

wat e r  was  removed at temperature s l ower t han 1 0 0 ° C. Most o f  

the s i l anol groups were removed at t emperatures l ower t han 

5 0 0 ° C. At t emperatures be low 5 0 0 ° C ,  geminal s i l anol s were 

removed to a l arger degree· than s i ng l e  s i l ano l s . Geminal  

s i l anol s removed below 5 0 0 ° C  can be  comp l e t e ly rest ored by 

exposure to wat e r . But only about hal f  of  the s ingl e  s i l anol 

groups removed be low 5 0 0 ° C  can be recovered . At t emperatures 

between 5 0 0 ° C  and 7 0 0 ° C ,  the surface concentra t i on o f  geminal 

s i l anol s remai ned cons t ant . But the restorat ion o f  geminal  

s i l anol s decreased rapidly in  this  t empe rature range . At  

t emperatures higher than 7 0 0 ° C ,  both geminal and s ingle  

s i l anol groups were further e l iminated . L i t t l e  restorat ion o f  

surface s i l anol s was observed f o r  s i l ic a  dehydrated a t  

t emperatures higher than 7 0 0 ° C. Ki nney et al . demonstrated by 

lH NMR t ha t  hydrogen - bonded s i l anol s  s e l dom existed on t he 

surface o f  s i l i ca dehydrated at 5 0 0 oC . 1 3 

I R  studies conducted by Mauss  and Engel hardt s howed 

l i t t l e  evidence of hydrogen - bonded s i l anol s  for s i l i c a  

dehydrated above 6 0 0 ° C. 8 I t  was observed that capac ity f actor 

values  for benzyl a l c ohol and phenol , solut es  with  hydroxyl 

groups , decreased with  the dehydrat ion temperature of s i l ic a . 

The l arges t  decrease in  ret ent ion on s ilica for benzyl a l cohol 
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and phenol occurred within the dehydra t i on t emperature range 

between 4 0 0 ° C  and 6 0 0 ° C .  I t  was conc luded that benzyl a l c ohol 

and phenol were mainly reta i ned by hydrogen - bonded s i l ano l s  on 

t he surface of s i l i c a . In  cont rast , the retent ion o f  ketones 

and e st e rs  was s eldom a f fected by dehydrat ion i n  t he 

t empe rature range between 1 0 0 ° C  and 6 0 0 ° C .  I t  i s  bel i eved 

t ha t  these solutes were adsorbed preferent i a l l y  on the f ree  

s i l anol s .  Some earl i e r  re search showed that solutes w i t h  

hydroxyl g roups adsorbed pre f e rent i a l ly o n  hydrogen - bonded 

s i l anol s  whereas solutes wit h only hydrogen - bonding accept i ng 

abi l i t y  p re f erred to interact with f ree  s i l ano l s . 1B 

From t he enthalpy o f  adsorpt i on of  var i ous mo l e c u l e s  as  

a funct i on o f  coverage , Fubini  et  al . showed that  the surface 

o f  s i l i c a  was highly he t e rogeneous . 1 5 The decrease o f  t he 

enthalpy of  adsorpt ion o f  wat e r  on s i l i ca a f t e r  the rmal 

t reatment at 8 0 0 ° C  was a t t ributed to the removal of  hydrogen

bonded s i l anol s ,  whi c h  may have st ronger interact ions w i t h  

wat e r  t han f ree  s i l anol s . From the decrease o f  the enthalpy 

o f  adsorpt ion o f  ammoni a  on s i l ica a f t e r thermal t reatment , i t  

was conc l uded that hydrogen - bonded s i l anol s  were more a c i d i c  

than f re e  s i l anols . 

P f l e iderer and Baye r be l i eve that geminal s i l ano l s  are 

respons ible for  the abnormal chromatographic behavior  of ba s i c  

solutes o n  s i l i ca or chemi cal ly modi f i ed s i l i ca . 2 1 They found 

that t he mod i f i cat i on of s i l ica  by Fe 3+ can reduce t he 
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retent i on o f  bas i c  solutes and improve the column e f f i c i ency 

for bas i c  solutes . Sol id state  NMR showed t hat  t he Fe3• on t he 

s i l i c a  was lo ca l i zed on the geminal s i l ano l s  by che l at ion . 

Only about 4 0 %  o f  t he geminal s i l anol groups were strong 

adsorpt i on s i t e s  for bas i c  solut es . An ion - exchange mechani sm 

was proposed for the interact ions between bas i c  solutes  and 

a c i d i c  geminal  s i l anol group s .  He idrich e t  al . 26 demon s t rated 

by ab i ni t io c a l c u l a t i ons t hat the geminal s i l anol s  were more 

aci dic  t han s ingl e  s i l anol s  in t he gas phase . 

Nawrocki and S z c z epaniak studied st rong adsorpt ion s i t e s  

on s i l i c a  surfaces by gas chromatography . 22 The populat ion o f  

strong adsorpt ion s i t e s  wa s corre l ated to the trace amount o f  

c a l c ium i n  s i l ic a . I t  i s  be l ieved that s i l anol groups c l ose 

to  met a l  impur i t i e s , not the me tal  impuri t i e s  t hems e l ves , are 

t he st rong adsorpt ion s it e s . 22 , 2 3 Ab i n i t i o  c a l cu l a t i ons showed 

that t he a c i dit y of a s i l anol group can be s igni f i cant l y  

increased b y  i t s  interact ions w i t h  a Lewis center . 26 Kohl e r  

et  a l . 7 correl at ed t he pH val ue o f  9 . 2  of  Li Chrospher S i - 2 0 0  

s i l i c a  w i t h  t he high sodium content o f  t he s i l ica . But ba s i c  

solutes were s t i l l  s t rongl y  adsorbed on to  t he s i l i c a  w i t h  a 

high pH value . I t  i s  bel ieved t hat acid t reatment can only 

remove surface meta l s ,  but not t he me t a l  impuri t ies  embedded 

withi n  the s i l ica s t ructure. 24 

A quant i t a t ive e s t imat ion of  the surface polarity o f  

s i l ica i s  very important f o r  chromatographic app l i cat ions . 
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Boudreau and Coope r27 , 2 8  eva luated t he surface polarity of  

s i l ica  by  a heterogeneous gas - so l i d chromatographi c  met hod . 

I n  t h i s  method , the mono laye r adsorpt ion energies of  indi cator 

solut e s  are used to bu i ld polarity scales . The indicator 

solutes  for  t he a c i d i t y ,  bas i c i t y ,  and dipolarity of  a surf ace 

are pyridine , chloro form , and dichlorome t hane , re spe c t ive ly . 

I n  t h i s  me t hod , t he cont r ibut ion of  dipolar int e rac t i ons to  

the adsorpt ion energies  of chlorof orm and pyridine i s  not 

excluded in measuring the acidity and bas i c i ty of  a surface . 

There fore , t he parameters  for t he acidity and bas i c i ty inc lude 

some cont r ibu t i on f rom the dipolarity of t he surface . I n  

add i t ion ,  t h i s  approach cannot b e  appl ied to study t he e f fect  

of  t he overlying solvent on the sur face propert i e s . 

2 - 2  Sol vent - Solvent and Solvent - Solute Int e rac t i ons in Binary 

Solvent Mixtures 

I n  l iquid  chromatography , t he mob i l e  pha se i s  usua l ly a 

b inary so lvent mixture . To a rough approximat ion , a property 

of  t he b inary sol vent mixture can be cons idered as a l inear 

comb i na t i on of t he corre sponding propert ies  of  the two pure 

component s ,  i . e . , a l inear funct ion of  the solvent 

compos i t ion . This l inear relat ionship holds onl y ,  howeve r ,  

for  binary solvent mixtures cons ist ing o f  two components  with  

t he i r  mo l ecular interact ions s imilar  both in type and i n  
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I n  mos t  cases , a non - l inear relat ionship i s  

observed because solvent mutual - interac t ions , i .  e .  , 

int e ract i ons be tween a solvent mo lecul e of  one component and 

a solvent mol e c u l e  of another component , are sign i f i cant l y  

di f f e rent f rom sol vent s el f - interac t i ons , i . e . ,  interac t i ons 

among solvent mol e cu l e s  o f  the same component . When a solute  

used t o  probe t he propert ies  o f  the so lvent mixture is  added 

into t he binary solvent mixture , the s i tuat ion becomes more 

comp l i c a t e d  because of t he solute-solvent interact ions . I n  a 

word , i n t e rpretat ion o f  interac t i ons between a solute and a 

binary solvent mixture are comp l i cated by solvent se l f 

interac t ions and sol vent mutua l - interact ions . 

Non - l inear dependence on the solvent compo s i t ion I n  

binary solven t s  h a s  been obs erved f o r  various propert i e s , 

e .  g . , vol ume , dens ity , vi scos i t y ,  d i e l e c t r i c  constant , and 

re f ract ive i ndex . Based on the change s of  these phys i c a l  

prope r t i e s  o f  bi nary solvent mixtures , solvent - solvent 

int e ract i ons in  t he solvent mixture can be inve s t igated . 2 9 , 3 0 

Spe c t roscopic measurement s ,  however , may provide more det a i l e d  

informa t i on about solut e - solvent interact ions and interac t ions 

be tween t he solvent component s . NMR has been used to  st udy 

the s t ru cture of wat e r - acetoni t r i l e  mixtures . 3 1 , 3 2 Most o f  t he 

research work concerning t he s t ructure of  binary sol vent 

mixtures and interact ions be tween t he solute and b inary 

solvent mixtures was conducted based on e l e c t roni c  absorpt ion 
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and emi s s i on spe c t roscop i c  me asurements wi t h  probe mo l e c u l e s  

whi c h  a re s e n s i  t i v e  to s o l  vent envi ronment s .  3 3 - 3 5 Some o f  t h e  

probe mol e cu les  have been u s e d  as solvatochrom i c  indicators t o  

measure sol vent polarity . The i r  e l e c t ronic exc i tat ion 

energ i e s  have been we l l  corre l ated with  sol vent polar i t y . 

P re f e rent i a l  so lvat ion , de f ined as the d i f f e rence between the 

sol vent compo s i t ion in the immediate surroundi ngs of t he 

solut e , and t he bul k  solvent compo s i t ion , i s  often  obse rved 

for probe mol ecul es . The solvent compo s i t ion i n  t he immediate  

surrounding o f  the  solute  can be cal culated f rom t he 

expe r iment a l  exc itat ion energy of  t he solut e , assumi ng a 

l inear dependence o f  exc i t at ion ene rgy on solvent compo s i t ion 

i n  t he local  region . Pre ferent i a l  solvat ion as  def i ned here i n  

i s  a compo s i t e  e f fec t  o f  solvent s e l f  - assoc i at ion , sol vent 

mutual interact ions , and sol vent - solute int eract ions . The 

three types o f  int eract ions are int erre l ated . Solvent se l f -

associat i on may re sult in microheterogene i t y  in so lvent 

mixture s , i . e . , m i c rophases of one component coex i s t  w i t h  

m i c rophases of  another component . Solvent - solute interac t i ons 

may p l ay a much more s igni f i cant role  in pre f e ren t i a l  

solvat i on t han solvent - so lvent interac t i ons and i t  i s  not easy 

to separate t he cont ributions of  d i f f e rent types o f  

int e ract i ons to pre f erent ial  solvat ion . There fore , to 

e luc idate t he s t ructure o f  binary sol vent mixtures re lying 

so l e l y  on pre ferent ial  solvat ion dat a is unwi se . 
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Aqueous binary solvent mixtures . Aqueous binary mixtures 

are subj e c t s  of intens ive research because of the i r  widespread 

app l i cat i ons and the i r  complexity in s t ructure . Some polar  

organ i c  solvents may complex with  water . The presence of  

comp l exe s , whi c h  may have s igni f icantly d i f f e rent chemical  and 

phys i c a l  propert ies  f rom the individual component s , may 

s t rongly a f f ec t  the prope r�ies  of the mixtures . For binary 

mixtures o f  wat e r  with  met hanol ( MeOH ) , aceton i t r i l e  ( ACN ) , 

and t e t rahydrofuran ( THF ) , Kat z et  al . 2 9 calcul ated t he 

associat i on cons tants and the mol ar vo lume s of  t he organic 

sol vent - water compl exe s us ing an i t erat ive procedure to 

minimize the di f f e rence between t he volume change on mixing 

obt a i ned f rom t entat ive assoc iat ion constants and molar 

vo l umes and the exper imental vol ume change . A wat e r  mol e c u l e  

comp l exes s t rongly w i t h  a MeOH mol e cule . Binary mixture s o f  

wat e r  and MeOH should  b e  cons idered as ' t ernary ' mixtures o f  

se l f - associated water , se l f - assoc iated MeOH , and wat e r - MeOH 

complexe s . With  the vol ume f ract ion of MeOH in t he range f rom 

4 5 %  to 8 0 % , t he ma j or component in the mixtures is t he wat e r 

MeOH comp l ex . For ACN-water mixtures , complex forma t i on i s  

almost  negl i g ible . Complex formation in THF -water mixtures i s  

cons i de rable ,  but much les s  signi f i cant than i n  MeOH - wat e r  

mixture s . For MeOH -water mixtures , t he dens i t y  change and 

re f ract ive i ndex change data have also  been used to calculate  

the associat ion constant and s imilar resul t s  we re obt ained . 3D 
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ACN - water mixtures are the most studied binary solvent 

sys t em . 3 1 , 3 2 , 3 6 , 3 7 A general ly be l i eved p i c ture for ACN - wa t e r  

mixture s f rom various studies  h a s  been presented . 3 1 , 3 2 , 3 7 w i t h  

t he mo l e  f ra ct ion o f  ACN in t he mixtures in t h e  range f rom 0 

to about 0 . 2 ,  ACN mo l e cul es  gradual ly occupy cav i t i e s  i n  t he 

wat e r  s t ructure . The presence of  ACN mol ecu l e s  l e ave s the 

wat e r  s t ructure intact or even enhance s  t he wat e r  s t ructure . 

Further addi t ion o f  ACN dis rupt s  t he water  s t ruc ture . S e l f 

as soc i a t i on l e ads to a microhe t e rogeneous s t ructure , i .  e .  , 

m i c rophase s  o f  s t ruc tured water  coexist  w i t h  mic rophases of  

ACN . Separat ion into microphases pers i st s  unt i l  the mol e  

f ra ct i on of  ACN reaches about 0 . 7 .  With  the mo l e  f ract ion o f  

ACN i n  t he range f rom 0 . 7  to 0 . 9 5 ,  the ACN-wat er  mixtures can 

be described as  d i s c rete  water-ACN comp lexes surrounded by 

ACN . W i t h  more t han 0 . 9 5 mol e  f ract ion o f  ACN i n  t he 

mixture s , an ACN s t ructure as in t he neat sol  vent , almost  

unmodi f ied by the presence o f  wat e r , i s  formed . 

Solvatochromi c  indicators have of ten been used t o  study 

aqueous bi nary mixtures . The solvatochromi c behavior o f  2 , 6 -

diphenyl - 4 - ( 2 , 4 , 6 - t riphenyl - l -pyr idinio ) - 1 -phenolate  ( ET - 3 0 )  

has been st udied i n  mixtures o f  wat er  w i t h  MeOH , e t hano l , 1 -

propano l , THF , and acetone . 38 ET - 3 0  i s  pre f e rent i a l ly  solvated 

by a l c ohol i n  a l l  t hree wat e r - a l cohol syst ems . Using the 

organ i c  solvent s with no hydrogen- bondi ng a c i d i t y ,  i . e . ,  THF 

and acetone , as t he coso lvent , however ,  pre ferent i a l  solvat i on 
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by t he organ i c  component occurs only i n  the wat e r - r i c h  regi on . 

I n  t he organ i c - rich  reg ion , ET - 3 0  i s  pre ferent i a l ly solvated 

by wat e r . S i mi l a r  behavior was observed for 4 - [ 2 - ( 1 - me t hyl - 4 -

pyr i d i n io )  e t henyl l phenolate  in the mixtures of  wa ter  w i t h  

MeOH , e t hanol , 1 - propanol , and acetone . 3 9 The phenomenon of  

pre f e rent i a l  solva t i on o f  ET- 3 0  by di f ferent solvent 

component s in di f ferent compos i t ion ranges was a l so obse rved 

in ACN - wa t e r  mixtures36 and 1 , 4 -dioxane - water mixtures . 4 o For 

N - e t hy l - 4 - cyanopyridinium iodide and N - e t hylpyrazinium iodide 

in  t he mixtures o f  1 , 4  - di oxane - water and THF - water , t h i s  

behavior was a l so observed . 4 1 The common feature of  t he s e  

solvatochrom i c  indicators i s  that they are highly pol a r i zed 

w i t h  a high degree o f  i on i c  character in  the i r  ground s t a t e s . 

For many aqueous binary syst ems , the dipo l a r i ty

polarizab i l i t y ,  repre sented by the solvatochromic  paramet e r  

n° , w a s  determined w i t h  solvat ochromic  i ndi cators . For most  

of  t he aqueous b i nary systems , e . g . , MeOH - wa t e r , 4 2 ACN 

wat e r , 3 7 , 4 2 2 -propano l - water , 4 2 and THF -water , 4 2 , 4 3 t he curve o f  

n' aga i n s t  t he so lvent compo s i t ion re f l e c t s  t he pre f e rent i a l  

solvat i on of  the i ndicator molecules by t he organi c  cosolvent , 

For mixtures o f  wat e r  w i t h  dime t hyl sulphoxi de , f ormamide , and 

form i c  ac i d , however ,  a maximum n' value higher t han e i t he r  o f  

t he two pure component s was observed . 4 3 I t  i s  be l i eved t hat 

a comp l ex between wat e r  and t he organi c  cosolvent is f orme d ,  

whi c h  has a l arger dipole moment t han e i t her  component . 4 3 
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Non- aqueous binary solvent mixtures . Mos t  o f  t he s tudi e s  

f o r  t he non- aqueous bi nary solvent mixtures were conducted t o  

charact e r i ze pref e rent i a l  solvat ion . In  a few case s , no 

pre f e rent i a l  solva t i on was obse rved. Such systems are usua l l y  

t he rmodynami c a l ly ideal , but not of  much prac t i c a l  value , 

e . g . , mixtures o f  t ributyl phosphat e  and t r i me t hyl phosphat e4 0 

and mixtures o f  1 , 2  - dibromome thane and 1 , 2  - d ibromopropane . 4 0 , 4 4 

Whe ther an indi cator dye i s  pre f e rent i a l l y  solvated by t he 

more polar component or the l e s s  pol a r  component depends on 

t he nature of t he dye and the two solvent component s .  

I n  a l cohol i c  binary mixture s ,  dyes wi t h  some ionic  

chara c t e r  in t he i r  ground s tates , e . g . , ET - 3 0 ,  4 - [ 2 - { l - me t hy l -

4 - py r i d in i o )  e t heny l l pheno l a t e , N - e t hyl - 4 - cyanopyr i d i nium 

iodide , l - e thyl - 4  -me t hoxycarbonylpyr idinium iodide , and N

e t hylpyraz ini um iodide , are usua l ly pre f e rent i a l ly solvated by 

t he a l c ohol cosol vent . 3 3 , 3 8 -4 1 , 4 4 -4 6  In  mixtures o f  a non - po l a r  

solvent and a po l a r  so l vent , solvatochromi c  indicators are 

pre f e rent i a l l y  solvated by the po lar  solvent because t he 

indicator mo l e c u l e s  are pol ar . 4 7 Various f actors , inc luding 

hydrogen - bonding int erac t ions , d i e l e c t r i c  

hydrophobi c  

enri chment , 

interact ions , have been c i ted to  exp l a in 

pre f e rent i a l  solvat ion phenomena . 4 7 - 4 9 

I n  some non - aqueous binary solvent mixture s ,  synerg i s t i c  

e f fe c t s , i . e . , t he mixture i s  more po lar  t han e i t he r  of  i t s  

two pure component s , we re obse rved . 44 , 4 5  A maximum i n  
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e l e c t roni c  exc i t a t ion energy was obse rved for ET- 3 0  i n  t he 

chloroform - t ributyl phosphat e  binary system . 4 5  A sol vent 

mutual a t t ract ion weaker than s el f - as soc i at ion is be l i eved to 

be t he reason for the appe arance of  the maximum . 4 5 S imi l ar 

behav i or was observed for ET - 3 0  and 1 - e t hyl - 4 -

met hoxycarbonylpyridinium iodide in mixture s of  acetone 

chloroform and acetone -dic hlorome thane , which  i s ,  however , 

a t t ri buted t o  the compl exa t i on between acetone and i t s  

cosolvent , 4 4  as  proposed f o r  some aqueous mixture s . 

2 - 3  We t t ing 

We t t i ng refers to the macroscop i c  mani f e stat ions o f  the 

mol ecular interact ions between a l iquid and a sol id i n  direct 

contact . Such mani f e stat ions can be quant i t a t ive , e .  g .  , 

measurements of cont act angle  and cap i l l a ry r i se , or 

qua l i t a t ive , e . g . , the immers ion o f  f i ne part i c l e s  in a l iqu id  

and t he spreading o f  a l i quid over a sol id surface . The 

quant i t at ive man i fes tat ions can be used as wett ing parame ters  

t o  chara c t e r i ze t he wett i ng phenomena . The wet t ing between a 

l iqu i d  and a sol id  i s  opposed by the cohes ive forces among t he 

mole cu l e s  o f  t he l i quid  and f ac i l itated by the adhe s ive forces 

between t he molec ules  o f  the l iquid and the mo l ecules  on t he 

surface of  t he sol id . 

The contact angl e , 8 ,  can be related to surface t ens ions 
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by Young ' s equat i on , 50  

rSV = rSL + rLV . cos e ( 2  - 1 )  

where r� , rSL , and r� are the surface tens ions o f  the sol i d 

vapor i n t e r f ac e , the sol i d - l i qu i d  interface , and the l iqui d 

vapor i n t e r f ace , respec t ively . 

As a t he rmodynami c  quant i t y ,  the contact ang l e  i s  

expe c t e d  t o  have a un i que value f o r  any part i cu l a r  sys t em . 

D i f f e rent cont act angles  are obtained , howeve r ,  depending on 

whe t he r  a l iqui d  drop i n  contact w i t h  a sol id t ends t o  advance 

or recede ; this phenomenon i s  usua l l y  re f e rred to as we t t i ng 

hyst e re s i s . 

c a l l e d  t he 

respec t ively . 

The maxi mum and minimum stable contact ang l e s  are 

advanc i ng and receding contact angl e s , 

I t  i s  not c lear whi ch , i f  e i t he r , of  the t wo 

conta ct  ang l e s  repre sents t he t rue equ i l ibr ium value . 5 0 

Accord i ng to Berg , the most use ful contact ang l e  to de s c r ibe 

wet t i ng behavior is the stat i c  advanc ing contact ang l e . 5 1 

Conta ct  ang l e s  reported i n  the l iterature , i f  not spe c i f ie d ,  

repre sent s t a t i c  advanc i ng contact angl es . 

The origins o f  we t t ing hys t e re s i s  are s t i l l  

cont rove r s i al . 5 0  Ac cording t o  Johnson and Det t re , 52 hys t e re s i s  

i s  always present . They a t t ribute cont act ang l e  hys t e re s i s  t o  

the e x i s t ence o f  many thermodynami c  meta stable s t a t e s  at  t he 

t hree -phase ( so l i d / l i qui d/vapor ) boundary . The energy 

barri e r s  between these metas table states are large r t han kT . 

Whi l e  t he t he rmodynami c  argument s for hystere s i s  e f f e c t s  are 
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ve ry convinc i ng , t he mo lecular mechani sm for contact angle  

hys t e re s i s  has  yet to be  c l a r i f i ed . The most preva l ent 

exp l anat i ons for cont act angle  hys t e re s i s  are surface 

roughne ss  and heterogene i ty . 52 , 5 3 The advanc ing and re ceding 

conta ct  ang l e s  are bel ieved to be associ ated with  regions of  

l ow wet t ab i l ity and regions of  high  wet t ab i l i t y ,  

respe ct ive ly , 52 

Wet t i ng processes  can be c l a s s i f ied 

cat egor i e s , adhe s i onal wet t ing , immersional 

spreading wet t ing , as s hown i n  Figure 2 _ 2 . 53 

into t hree 

wett i ng , and 

In adhe s i onal 

we t t ing , a l iqui d - vapor interface and a sol i d - vapor interface 

are rep l aced by a sol id - l iquid  interfac e , i nvolvi ng t he 

f o l l owing f re e  energy change 

!:::.G = ( rSL - r Sv - rLV ) ' A ( 2  - 2 )  

i f  every interface i nvolved has an area of  A .  I n  immers ional 

we t t i ng ,  a sol i d - vapor interface i s  replaced by a sol i d - l i qu i d  

inte r f ace , i nvolving the f r e e  energy change 

!:::.G = ( rSL - rSV ) ' A ( 2  - 3 )  

I n  spreadi ng wet t ing , a s o l i d - vapor interface i s  replaced by 

a l iqui d - vapor int e rface and a sol id - l iquid  interfac e , 

i nvolvi ng the f ree  ene rgy change 

( 2 - 4 )  

Subst i t ut i ng Young ' s equat ion into equat ions 2 - 2 , 2 - 3 , 

and 2 - 4  resu l t s  i n  equat ions 2 - 5 ,  2 - 6 ,  and 2 - 7  

!:::.G = - A · rLV .  ( cos e + 1 )  ( 2 - 5 )  
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Figure 2 - 2 . Adhe s ional ( a  � b ) , imme rs i onal ( b  � c ) , and 
spreading ( c  � d) wet t ing . 
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( 2  - 6 )  

( 2  - 7 )  

spont aneou s ly . 

negat ive for a we tt ing proc e s s  to occur 

This requ i res  t he cont act angl e  to  be l e s s  

t han 1 8 0 ° , l e s s  t han 9 0 ° , and 0 °  f o r  spont aneous adhe s i ona l 

wet t i ng , spont aneous immers ional we tt ing , and spont aneous 

spreading we t t ing , re spe c t ive�y . 

A we t t ing process  can a l so be de scribed by cap i l la ry 

r i s e . The penetrat ion o f  a l i qu id into a capi l l ary i s  

det e rmined by the pressure di f f erence across t he curved 

surface of a men i s cus , 6P , whi ch can be e s t imat ed f rom t he 

surf ace tension o f  t he l i qui d ,  'YLV ,  the contact  angl e , 8 ,  and 

t he radius of the capil l a ry ,  r ,  

6 P  = 2 'YLV · cos 8 / r ( 2 - 8 )  

The cont act ang l e  i s  requ i red to be l e s s  than 9 0 °  for  

spontaneous penet rat ion o f  the  l i quid into the cap i l l ary . 

The s t a t e  o f  wet t ing can be c lass i f ied into t hree stages 

according t o  the magnitude o f  the cont act  angle .  Usua l l y ,  

comp l e t e  we t t i ng means a cont act ang l e  o f  z e ro be t ween t he 

l i qu i d  and t he s o l i d ,  with spont aneous spreading o f  t he l i qu i d  

ove r  the sol i d  surface . 54  Nonwett ing i s  used  when the  cont act 

angl e  i s  l arger t han 9 0 ° . 5 5  The s i tuat ion in  between can be 

de s cribed by t he t e rm part ial  wet t ing . 5 1 
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2 - 4 Wet t ing and Related Behavior o f  Alkyl s i lylated S i l i ca 

The surface o f  a l kyl s i lyl ated s i l ica i s  

bonded a l kyl cha ins and res idual s i l anol groups . 

octadecyl s i l yl ated s i l i ca i s  inf luenced by 

composed of  

Wet t ing of  

chain - chai n  

i n t e ract i ons , cha i n - e l uent interact ions , and residual s i l anol 

e l uent interact ions . 56 , 57 The macroscopic  wet t ing phenomenon , 

i . e "  t he contact angle ,  however ,  has not been we l l  corre l ated 

with int e ract i ons on a mol ecular leve l  or the nanos copi c  

s t ructure at t he mob i l e  phas e / stationary phase boundary , 5 8 

Behavior of  alkyl s i lylated s i l ica in water- rich e luents . 

I n  wat e r - r i ch e luent s , abnormal chromatographic  behavior i s  

o f t en observed . 5 9 - 6 6  A very l ong t ime i s  required t o  bring a 

column to equ i l ibrium i f  wate r  alone i s  used as the 

e l uent . 59 , 6 0 , 64 With  water as the eluent , a plot of  column 

equ i l ibrat i on t ime versus C18 bonding dens i ty shows a maximum 

at bonding den s i ty of about 2 . 9  ILmol /m2 , 6 4  The add i t i on of 3 %  

1 - p ropano l i n  wat e r  s i gn i f i cant ly reduces column equ i l ibrat ion 

t ime . 64 The sorpt i on capac i ty o f  a C18  column w i t h  wat e r  as 

t he e l uent decreases with t ime , but can be res tored by washing 

w i t h  MeOH . 6 5 Convent ional ret ent i on mode l s  can not predict  

retent ion i n  wat e r - r i ch e luent s . 6 1 , 6 2 I n  mob i l e  phases w i t h  

l e s s  t han 1 0 %  MeOH or ACN , the i ncrease in the reten t i on of  

non - po l a r  compounds with decreas i ng organic modi f i e r  content 

is much l e s s  than expected , 6 6 Retent ion may even decrease w i t h  
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wat e r - r i c h  

e luent s . 59 , 6 2 , 6 3  If  change s in the s t at ionary phase  w i t h  

chang i ng e luent a r e  cons idered in t h e  retention mode l , the 

predi c t i on i s  much bett er . 6 2 , 6 7 I n  addit ion , col umn e f f i c i ency 

decreas e s  i n  wate r - r i c h  e l uent s . 6 8  Al l of these phenomena are 

presumed to re f l ec t  the state  o f  wet t i ng of  t he stat ionary 

phase . 

When t he organic mod i f ier  content in t he e luent i s  lowe r 

t han a certain value , preequ i l ibra t i on of  t he column w i t h  

organic modi f i e r  l e ads to a longe r ret ent ion t ime t han 

preequ i l ibrat ion with  water . 6 9 This indicate s  t hat t he 

stat i onary phase may exist in d i f f erent states  even when i n  

cont act w i t h  t he same e luent . Gilpin  et  al . observed t hat 

w i t h  pure wat e r  as the e luent , a bonded phase may exi s t  i n  a 

di f f e rent st a te  a f t er heat ing . 56 , 70 , 7 1 Even t he rate of  coo l i ng 

a f t e r  heat i ng may a f fec t  the propert i e s  of  bonded phas es . 72 

Wetting s tudies  for alkyl bonded phases . The wet tabi l i ty 

o f  a bonded phase can be t e sted by t i t rat ing i t s  suspens ion i n  

a n  organ i c  solvent 73 o r  in wat er57 , 6 0 using water  o r  a n  organ i c  

sol vent a s  t he t i t rant , respe c t ively . About 5 0 %  o f  wat e r  was 

needed to bring a pers is tent f i lm of  alkyl bonded phase 

part i c l e s  t o  t he surface 

MeOH . 73 About 6 0 %  (v Iv )  

of a bonded phase suspen s i on in 

MeOH was requ i red to wet bonded 

phase s  used ext ens ively in RPLC . 57 , 6 0  Le ss  organi c  modi f ie r  was 

requ i red t o  wet a bonded phase with a lower surface coverage 
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o f  a l kyl groups . 57 , 7 3 

Cont a ct  ang l e s  on bonded phases can be c a l cu l ated f rom 

t he cap i l l ary r i s e in a l kyl bonded g l a s s  cap i l l aries . 74 , 75 

Contact  ang l e s  in the range f rom 1 5 °  to 7 0 °  were obt ai ned 

using ACN , MeOH , e t hanol , and t he i r  aqueous mixture s with l e s s  

t han 5 0 %  o f  wat e r  as  the wet t i ng agent . Contact ang l e s  can 

a l so be c a l culated f rom solvent migra t i on rat e s  on reversed

phase t hi n  l ayer c hromatographic plates . 75 

Park and Kim conducted a thorough study on the we t t i ng o f  

monomer i c  Cl , C4 , Cs ' and C1S phases on boros i l icate  g l a s s  

surfaces i n  MeOH - water mixtures by measuring advanc i ng contact  

angl e s . 76 The  contact ang l e  increases with  increas ing bonding 

den s i ty and incre a s i ng percentage of  wat er . With  increas i ng 

chain l e ng t h , the contact angle  f i rst decreases , t hen 

increases .  The minimum cont act angle  val ue wa s observed for 

t he Cs  or C4 phas e , depending on the bonding dens i t y . The 

rigidity and hydrophobi c ity of t he me t hyl groups on t he 

surface of  the Cl pha se are cons idered t he reasons for the 

high contact ang l e  for t he Cl phase . With  int ermediate cha in 

l engths , t he a l kyl chains are more mob i l e  and di sorde red , 

expos ing many me t hyl ene groups to t he surface . I t  i s  we l l  

known t hat surfaces composed o f  methyl ene groups have a higher 

c r i t i ca l  surface tens ion , i .  e . , are l e s s  hydrophob i c , t han 

surf a c e s  f ormed by me t hyl groups . 52 For surfaces bonded with  

C18 chains , due to t he higher degree of  van der  Waa l s  
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i n t e ract i ons among the chains , t he chains are we l l  packed and 

onl y  the me t hyl groups are exposed to the overlaying l i qui d ,  

l e ading t o  higher cont act angles . Contact angles  f o r  a l l  t he 

C4 and C8 surfaces , in the whole  composit ion range , are l e ss  

than 9 0 ° . I n  wat e r , contact angles  are more than 9 0 °  for t he 

Cl and C18 surfaces w i t h  the highe s t  bonding dens ity . 

For polyme r i c  phases , '  the s i tuat ion i s  obviously 

d i f f e rent . Was s e rman et al . 77 observed that for Cl , C2 , and C3 

phase s , t he wat er  cont act angle  i s  l e s s  than 9 0 ° . For phases 

f rom C6 to C1 8 , the wat er contact angle  i s  around 1 1 0 °  and is  

not a f f e c t ed by chain length . 

Schwart z et  al  . 78 synt he s i zed bonded C18 l ayers by 

reac t i ng octadecyl t r i chl oros i l ane with  steam t reated mica  

surface s . The wat e r  cont act angle  obviously  increases w i t h  

t he surface coverage . The surface w i t h  a comp l e t e  coverage 

has a wat e r  cont act ang l e  o f  1 1 2 ° . 

Montgomery e t  al . observed that octadecyl derivat i zed 

s i l i c a  p l a t e s  are not we tted by pure water , and show a contact  

ang l e  o f  9 3 ° . 79 Aqueous e luent s with  2 0 %  of  MeOH or 5%  1 -

propanol have contact angles  o f  6 5 °  and 6 9 ° , respect ive l y . 

Correlation between wetting and the other properties  o f  

alkyl bonded phases .  Wett ing can be u l t imat ely  t raced t o  

interact i ons o n  t he mo lecular level . The re fore , i t  i s  

important to corre l ate we tt ing w i t h  t he mic roscop i c  

man i f e s t a t i ons o f  mol ecular interact ions , e .  g . , mob i l i t y ,  
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orient a t i on ,  and conforma t i on o f  bonded a l kyl chains and 

orderness  of bonded alkyl l ayer . For a l kyl bonded surfac e s , 

a more c l o s e l y  packed and more ordered l ayer usua l ly ind i c a t e s  

a surface o f  lower surface t ens ion and l arger cont act 

angl e . 8 0 • 8 1 Us i ng a f luorescence probe , Montgomery e l  a l . 79 , 8 2 - 84 

were abl e  to  determine the orient a t i onal dist ribut ions o f  C18 

cha ins bonded on a s i l ica  plate . In  wat e r ,  on average , the 

cha ins t i l t  away from t he surf ace normal at an ang l e  o f  about 

8 0 ° . 82 W i th  t he addit ion of 2 0 %  MeOH or 5 %  I - propanol , t he 

chains  t i l t  about 7 0 °  f rom the surface normal . Wi t h  t he 

introduct i on o f  a submonol aye r amount of  hept anol , octano l , or 

dec anol into the C18 l aye r ,  the average t i l t  ang l e  is  a l i t t l e  

more t han 5 0 ° . I n  addit ion , t he orient a t i onal d i s t ribut i on i s  

narrower w i t h  the introduct ion of  t he long - chai n  al cohol s .  

The t i l t  ang l e  decreases with the chain l ength o f  a l c ohol . I t  

was proposed t hat the addit ion o f  a sma l l  amount o f  short 

chain a l cohol may make the C1 8 phase part i a l ly we t t e d ,  but not 

solvated . 79 The long - chain al coho l s  are be l ieved to 

interpenet ra t e  into the C18 l ayer . 82 The add i t ion o f  sodium 

dode cyl sul f ate  ( SDS ) in the mobi l e  phase at  the l eve l o f  

mi l l imo l e s  p e r  l i t e r  a l so decreases t he t i l t  angle  to  a l i t t l e  

more t han 5 0 °  and makes the orient a t i ona l distribut i on 

narrower . 8 3 , 84 The t i l t  angl e  reaches a minimum at a SDS 

concentrat i on j us t  below t he c rit ical  mi c e l l e  concentrat i on of 

8 . 3  mM .  I t  i s  be l i eved t hat t he chains f rom bonded C1 8 l ayer 
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and t hose f rom the adsorbed SDS layer interpene t rate  one 

anothe r . S 3 Burbage and Wi rthS5 studied t he reorientat ion of a 

f luorophor , acridine orange , on a C1S layer bonded to a s i l i ca 

p l a t e . Acr i dine orange is  be l i eved to  sit  at t he C1 s/ solvent 

i nt e r f ac e . The addit ion of a sma l l  amount o f  MeOH or propanol 

into wat e r  causes a broader out - o f - plane orientat ional 

d i s t r ibut i on , i .  e . , makes the interface rougher .  Based on 

changes i n  NMR l ine shape , Gi lpin and Gangoda63 studied t he 

mobi l i ty o f  a l kyl chains bonded on s i l i c a  by l 3C - l abel ing of  

the t e rminal met hyl group . For a polyme r i c  C7 phase w i t h  a 

l ow bondi ng den s i t y  ( 4 . 7 5 %  C ) , upon t he addit ion of  at l e a s t  

1 %  di oxane i n  D20 ,  the l ine f rom the t erminal met hyl group 

suddenly becomes sharp . For the phase with  a medium coverage 

( 6 . 4 7 %  C ) , t he content o f  dioxane requ i red to  bring t he change 

i s  8 % . The content o f  dioxane requ i red i s  2 %  and 2 5 %  for 

pol yme r i c  Cs phas es  with a bonding density of 6 . 1 8 %  and 9 . 5 0 %  

C ,  respe c t ively . Obvious l y ,  upon the addit ion o f  a sma l l  

amount of  dioxane , the alkyl chains become more mob i l e . For 

monomer i c  Cs and C10 phases , however ,  no sudden 1 i ne - sharpeni ng 

occurs upon t he addit ion of dioxane . 

A general knowl edge about t he s t ructure , compos i t ion ,  and 

propert i e s  of solvated alkyl bonded s i l icas may be useful  i n  

s tudying t h e  wet t i ng proces s . Re s i dual s i l ano l s  usua l ly 

ac count for over  hal f o f  th e  total s i lano l s  bef ore 

a l kyl s i ly l a t ions6 and pre f e r  to  interact with  water  over  
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organi c  modi f ie r . 86 , 8 7 Organic mod i f ier i s  enriched on a l kyl 

bonded s i l i c a  t hroughout the whol e  compo s i t ion range , except 

at very l ow content s o f  wat er . 8 8  The amount o f  sorbed organic 

modi f i e r  at  f i rst ris es  rapidly with  increas i ng organic 

modi f i e r  content , t hen increases much s l ower as the organic 

modi f ie r  content i s  higher t han about 50%  (v/v )  8 9 , 90 Mol e c u l a r  

mot ion increases a l ong the bonded alkyl chain moving outward 

f rom t he surface and t he methyl group at the unbound end i s  

muc h  more mob i l e  t han the other part of  the chain . 91 The 

mob i l i t y  of bonded a l kyl chains decreases w i t h  increas i ng 

wat e r  cont ent . 92 A predominantly orde red s t ructure of  a bonded 

C18 l ayer s l i ght ly  lowers i t s  degree of  order a f t e r  exposure 

t o  organic modi f ier . 9 3  The di f fus ion coe f f i c ient of a solute  

in a bonded C18 l ayer increases with  increas ing MeOH content . 94 

The polarity of C18  phases decreases w i t h  increas i ng MeOH 

content approxima t e l y  in the range from 0% to 5 0 % . 95 , 96 A 

fusion - l ike t rans i t ion o f  bonded C18 l ayers i s  o f t en obse rved 

around room temperature . 97 , 98 Al l of  these are u l t ima t e l y  

det e rmined b y  mol e cular interac t i ons among the stat ionary 

phase , the mobi l e  phase , and t he solut e . 
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3 - 1 I n t roduct ion 

I t  i s  obvious f rom the background chapt er  t hat a l t hough 

the surface chemi s t ry of s i l ica  has been extens ivel y  

inve s t igated f o r  a long period , t here are s t i l l  many 

cont rove r s i e s  and ambigu i t ies  about t he origin of t he a c i d i t y ,  

t he mol ecular int eract ions between solut es  and t he s i l i c a  

surface s ,  and t he surface polarity of  s i l i ca . In  t h i s  

chapte r ,  t he dipolarity and hydrogen-bonding abi l i ty o f  t he 

surface of  s i l ica and solvent e f f e c t s  on t hem are studied . 

The resul t s  are explained based on mol e cular interac t i ons 

between s i l anol groups , so lvent mo lecu l e s , and the solut e . 

Gene ra l ly speak ing , t here are two strategies  to  s tudy t he 

surface c hemi s t ry o f  s i l ica . One o f  t hem i s  d i re c t  

c harac t e r i z at ion by NMR , I R ,  e lement a l  analys i s ,  

t he rmogravi me t r i c  analys i s ,  and pH measuremen t s . The o t he r  

s t ra t egy i s  i nd i re c t  and based on t he int eract ions between 

probe mol e cules  and t he surface . I t  inc ludes adsorp t ion 

methods , chromatographi c  methods , and IR,  NMR , f l uore scenc e , 

and UV- v i s ib l e  spe c t roscopy of probe mol ecul es . Us ing the 

l a t t e r  s t ra t egy , t he informat ion on mo lecular interac t i ons 

al lows for t he pred i c t ion of t he chromatographi c  ret ent i on of 

solut e s , s ince the probe s serve as mode l s  for chromatographic  

solutes . 

The polarity o f  a medium can be probed using e l e c t roni c  
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spectroscopy . 9 9 - 1 0 1 Among them , t he sol vatochromic compari son 

method devel oped by Kaml et and Ta ft 102 - 1 06 dist ingui she s i t se l f  

f rom other techn i ques by quant it at ive ly decompos i ng the 

mol ecular interac t i ons o f  a medium with a solute into 

dipol arity - po l a r i z ab i l ity ( 7TO )  , hydrogen - bonding bas i c i ty ( {3 )  , 

and hydrogen- bonding acidity ( 0' ) . Thi s  met hod has been 

suc c e s s fu l ly app l ied to e luc idate interac t ions between 

homogeneous media and solute s .  I t  wi l l  be the main approach 

used to i nve st igate t he surface chemistry of s i l ica in t h i s  

re se arch . 

The e l e c t roni c  exc it at ion energy of  a mol ecule depends on 

the p ropert i e s  of t he medium because the ground and exc ited  

state s  o f  t he mol ecule have d i f ferent e l e c t roni c  

d i s t r ibut i ons . I n  other words , t he propert i e s  of  a medium can 

be deduced f rom the ene rgy o f  e l e ctroni c  exc it at ion of  probe 

mol e cu l e s . W i t h  r i ght choices  o f  probe mol e cul e s ,  the abi l i ty 

o f  t he medium to part i c ipate by di f ferent types of  

interac t i ons , i .  e .  , dipolarity-polari z ab i l i  ty , hydrogen

bondi ng ac idity , and hydrogen- bonding bas i c ity , can be 

measured . This i s  t he bas i c  idea of the sol vatochrom i c  

compari son met hod . 

The e l e c t roni c  exc it at ion energies  of certain dye s are 

s t rongly a f f ected by dipolarity-pol ari zabi l ity of  solvent s , 

but s e l dom a f fected by hydrogen - bonding or any other spec i f i c  

interact i ons wit h  so lvent s . The solvent dipolarity-
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pol ari z ab i l i ty scale  was es tabl i shed with these dye s . 1 02 , 1 03 , 106 

4 - Ni t roan i s o l e , 2 - n i t roan i sole , N , N-diethyl - 3 - ni t roani l ine ,  4 -

met hoxy - � - ni t rostyrene , 1 - ethyl - 4 - ni t robenz ene , and N - methyl -

2 -n i t roan i l i ne are among t he dyes used to establ ish  t he 

solvent dipo l a r i t y - polari zabi l i ty scal e , 1 06 The solvent 

dipo l ar i ty - pola r i z ab i l ity  scale is called t he 7T' scale because 

t he e l e c t roni c  t rans i t ion o f  the dyes is  of  the 7T to  7T ' type . 

The 7T' value repre sent ing t he dipolarity-polari zabi l i ty o f  a 

so lvent i s  c a l culated f rom the f requency at the absorpt ion 

maximum o f  t he 7T ' indicator dye in t he sol vent , v max ' i n  kK 

( k i lokays e r , 1 0 0 0  cm - 1 ) ,  by equat i on 3 _ 1 , 1 06 

7T' = ( V max - V 0 ) / s ( 3  - 1 )  

where V o i s  the f requency at t he absorpt ion maximum o f  t he 7T' 

dye i n  cyclohexane , wh ich i s  ass igned a 7T ' value o f  z e ro ,  and 

s i s  a norma l i z a t i on fac tor , obt a ined by s e t t ing t he 7T '  value 

of dime t hyl sul foxide to  one . 

The e s t ab l i shment o f  the a - scale of  solvent hydrogen 

bondi ng ac i d i t ies  requires an a dye , the e l e c t roni c  t rans i t ion 

energy o f  whi c h  i s  sens i t ive to t he hydrogen- bonding ac i d i t y  

o f  a sol vent , and a 7T ' dye , to canc e l  t he cont ribut ion of  

dipo l a r i t y - polari zabi l i ty of the solvent to t he energy s h i f t  

of  t he e l e c t roni c  t rans i t i on o f  t he a dye . 1 02 , 1 05 , 1 0 7 The 

s t ructures of some a dyes , ET- 3 0 ,  2 , 6 - di c hloro - 4 - ( 2 , 4 , 6 -

t riphenyl - N - pyridini o )  phenolate ( ET - 3 3 )  , 1 08 and 2 , 4  - dichloro - 6 -

[ 2  - ( N- me t hyl - 4  - pyridinio ) vinyl ) phenolate ( DCMPVP ) , 1 09 are shown 
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The const ruct ion o f  the � - scale o f  solvent 

ac idi t i e s 102 , 105 , 1 07 can be explai ned 

d i agrammat i c a l ly , as shown in Figure 3 - 2 . In  solvent s with  no 

hydrogen- bonding a c i d i t y ,  a l inear corre l a t i on between t he v_x 

for an � dye ( DCMPVP ) and the v_x for a re ference w· dye ( N , N

dime t hy l - 4 - n i t roani l ine ) is  expected , 

v max ( �  dye ) = a · v max ( w' dye ) + b ( 3 - 2 )  

whe re a i s  the s l ope , and b i s  the intercept . In  a solvent 

w i t h  hydrogen - bonding acidity , the v ,"ax ( �  dye ) value wi l l  

deviate  f rom t he s t raight l i ne de scr ibed by equa t i on 3 - 2 . The 

deviat i on ,  whi c h  is the di f f erence between t he observed v max ( �  

dye ) value and t he v max ( �  dye ) value c a l culated f rom equat ion 

3 - 2 ,  i s  used to cal culate t he � value of  so lvent hydrogen

bonding acidity , 

� = [ vmax ( �  dye ) ( obsd)  - vmax ( �  dye ) ( ca l c d ) ] / c ( 3 - 3 )  

where c i s  a norma l i z at ion factor obt ained by sett ing the � 

value o f  MeOH t o  one . 

The � - s c a l e  o f  solvent hydrogen - bonding ba s i c i t i e s  was 

con s t ructed i n  a way s imilar to the � - scale . 1 02 , 1 04 , 1 1 0  Typ i c a l  

dye p a i r s  f o r  t h e  measurement of  the � value of  s o l  vent 

hydrogen - bonding bas i c i ty are 4 - nitroan i l ine/N , N- die thyl - 4 -

ni t roan i l ine ,  2 - n i t roan i l ine /N , N- dimethyl - 2 - ni t roani l i ne , 2 -

nitro -p - toluidine/N , N - dimethyl - 2 - nitro-p- toluidine , 2 - nitro - p 

ani s idine/N , N - dime t hyl - 2  - ni t ro - p - an i s i dine , a s  shown in Figure 

3 - 3 . Hydrogen - bonding interact ions between so lvent s and � or 
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Equat ions 3 - 4  and 3 - 5  

are used t o  obt ain t he � value of  solvent hydrogen - bonding 

bas i c i t y ,  

Vmax W dye ) = a · V max ( 1T' dye ) + b 

� = [ vmax W dye ) ( calc d )  - vmax W dye ) ( obsd ) J I e  

( 3  - 4 )  

( 3  - 5 )  

where c i s  a norma l i z a t i on factor obt a ined by sett ing t he � 

value o f  hexamet hylphosphoramide to  one . 

The so l vatochromic compari son method ha s been appl i e d  

suc c e s s f u l l y  to  t he characteri z at i on of various s o l  vent s .  

This  met hod has also  been app l i ed to  t he c harac t e r i zat ion o f  

dry so l id surfac e s , inc luding s i l i c a , l 1 1 s i l i cal i t e  and 

z eo l i t e s , 1 12 , 1 1 3 and alumina . 1 14  Re cent ly , t he solvatochromic 

parame te r s  of  s i l ic a  in t he presence of l , 2 - di chloroethane or 

cycl ohexane were a l so measured . 11s Solvatochromic parame ters 

for a heterogeneous surface measured by d i f ferent dye s were 

muc h  l e s s  reproducible  t han for a homogeneous medium . 1 1 1  Thi s  

was a t t r i buted to  t he more spe c i f i c  int erac t i ons between 

s i l i ca  and dye s . 1 1 1 The sol vatochromic parameters for a 

het erogeneous interface may be les s  rel iable t han t he ones for 

a homogeneous medium in princ iple because spe c i f i c  

intera ct i ons are more l ikely t o  exi st  between t he 

heterogeneous 

d i f f i cul t i e s , 

interface 

e . g .  , dye 

and the probe . 

ove r 1 oadi ng11 1 . 1 14 

Techni cal 

and l arge 

interf e rences  f rom background absorption ,  may also  a f f ec t  t he 

qua l i t y  o f  t he dat a . 
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F i gure 3 - 4 . Hydrogen - bonding interac t ions between solven t s  
( i . e . , wat e r )  and a o r  � dyes . 
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The solvatochromic compari son me t hod has been appl ied to 

the c harac t e r i zat ion of  solvat ed bonded phases . 9 9 , 1 1 6 The 7[ 

va lues of octadecyl s i lylated s i l ica exposed to reversed- phase 

mob i l e  phases are genera l ly lowe r than the corresponding 

mob i l e  phase va l ues , but much higher than al kane values , 9 9 , 1 16 

Thi s  i s  cons i s t ent with  the genera l ly he ld view that t he 

stat ionary phases  are solvated by mob i l e  phases . The a values 

of  solvated octadecyl s i lylated s i l ica  are highe r t han the 

corresponding mob i l e  phase values . 1 16 Thi s  was expl ained by 

spec i f i c interact ions between t he a dye and residual surface 

s i l anol g roups . 1 16 

I n  t h i s  research , the solvatochromic compari son met hod i s  

used to c harac t e r i z e  the sur face of s i l ica  in mixtures o f  n -

hexane and a polar so lvent . The a ,  � ,  and 7[- values of  the 

surface of  s i l ica are c alculated f rom e l e c troni c  spe c t ral  data 

of  dye s on t he surface , These values can be used to predi c t  

chromat ographi c  ret ent ion o f  various solutes . The e f f e c t s  of  

solvent compo s i t ion and the nature o f  the polar solvent o n  t he 

surface proper t i e s  o f  s i l ica are studied . Thi s  me thod , 

deve l oped for s i l i ca in mixtures of  n- hexane and a po l a r  

solvent , may a l so b e  useful f o r  characteri zation of  other 

sol i d - l i qu i d  inter faces , 
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3 - 2 Experimental  

3 - 2 - 1  Mat e r i a l s  and Chemi cals  

L i Chrosorb SI  1 0 0  ( 3 0  �m , 1 0 0  A pore s )  was  purchased f rom 

E .  Merck ( Da rmstadt , Germany ) . Molecular s i eves 3 A ,  obt a i ned 

f rom Aldrich (Mi lwaukee , WI , USA) , were pre t reated at  2 2 0  ± 5 

° C  f or  more t han 4 8  hours be fore use , except when spe c i f ie d  

othe rw i se . 

2 - Ni t roani l i ne , 4 - ni t roan i l ine , and 4 - n i t roan i s o l e  were 

suppl i e d  by Aldr i c h  (Milwaukee , W I , USA) . N , N- Dime t hyl - 4 -

n i t roani l i ne , N , N - di e t hyl - 4 - ni t roani l i ne , N - me t hyl - 2 -

n i t roan i l i ne , and ET- 3 3  were obt ained f rom Kodak ( Roche s t e r , 

NY , USA) , Frinton Laboratories ( Vine l and , NJ , USA) , Lancas t e r  

Synthes i s  L td  ( Wh i t e  Lund , Morecambe , Engl and ) , and Lambda 

( Graz , Aus t ri a ) , respe c t ively . DCMPVP wa s synt hes i z e d  and 

puri f ied in our l aboratory . 1 09 

Al l sol vent s were HPLC or spect rophotomet r i c  grade . 

3 - 2 - 2  Acqu i s i t ion o f  Elec troni c  Spe c t ral  Data 

Al l e l e c t roni c  absorpt ion spectra were obta ined on a 

Shimadzu UV- 2 6 5  spect rophot ome ter  equipped wi t h  an int egrat ing 

sphere a t t ac hment . A di agram o f  the quart z f l ow c e l l  used for 

t he s e  measurements i s  shown in Figure 3 - 5 .  There i s  



... .., 
J: .., 

< 
C) I ....... 

---
't:J 
(1) ... ... 
E 
0 
c: 
ca 
'-... 
(1) 
0 
:::J ..... ..... --

C 

.., .., 
.., 

.., .., .. ..... .., .., 
.., f" I 

Flow 

-
:::J 
(') --
c. 
(1) 
:::J .-+ 
---

(Q 
:::r .-+ 

(Transm itted l i g ht is col lected by 
i ntegrati ng sphere attach ment_)  

4 5  

Figure 3 - 5 .  D iagram o f  f l ow c e l l  used for sol vat ochromic  
measurement s .  
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cons i derabl e  t ransmi t t ance o f  l ight through s i l ica and 

chemi cal l y  modi f ied s i l i ca wet t e d  by so lvent s .  The 

t ransmi t t ed l ight is h ighly d i f fuse , so the integrat ing sphere 

att achment used in the t ransmi t t ance mode was adopted for t he 

measurement o f  spe c t ra of dye s on t he surface of  s i l ica  in t he 

presence of  a mob i l e  phase . The s l i t  width was set to  g ive a 

bandpass of  5 nm . A f l ow c e l l  with a 1 mm path l ength wa s 

packed w i t h  t he s t a t i onary phase of interest . For condi t ions 

whe re t he retent ion of the dye was not very l arge , a solu t i on 

of  the dye i n  t he s elected mob i l e  phase with  an appropriate 

concent rat i on was passed through the f l ow cell unt i l  the 

spe c t rum d i d  not change with t ime . I f  the retent ion of  t he 

dye on a s t a t ionary phase in t he selected mob i l e  phase was 

very l a rge , a solu t i on o f  the dye in a mob i l e  phase with  an 

appropr i a te  elut ion s t rength was passed through the f l ow ce l l  

unt i l  t he dye was uni formly dist ributed on t he stat ionary 

phase t hroughout t he f low ce l l . Then the f l ow c e l l  was 

equ i l ibrated w i t h  t he mob i l e  phase of interest , and t he 

spe c t rum was measured . The spectra of the background 

cont r ibut i ons were measured with the s i l i ca - f i l l ed f l ow c e l l  

equ i l ibrated w i t h  the appropriate mobile  phases and we re 

subt ract ed f rom t he spectra with  dyes  in the f l ow c e l l  to 

obt a i n  t he spe c t ra o f  the dye s . Solvent s were dr ied over 

mole cular s i eve s for more than 2 4  hours I except for t he 

measure ments  o f  TI' values for mixtures of n- hexane and 
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chloroform . A drying tube f i l l ed with s i l ica  was instal led on 

t he t op o f  the solvent or solut ion reservo i r  dur ing t he 

proce s s  of  equ i l ibrat ing the s i l ica  in the f l ow c e l l  with  t he 

dye solut i on or mob i l e  phase . This  reduced the amount of  

moi s ture absorbed by the  so lvent s . 

Solut i on spe c t ra of the dyes were obt a ined in t he 

t ransm i t t ance mode w i t hout t he int egrat ing sphere a t t achment . 

In  t h i s  case , 1 0  mm path length cuve t t e s  were used , and t he 

s l i t  width was set to  give a bandpass of  2 nm . 

The dye spe c t ra were smoot hed by a quadra t i c  polynomial 

smoothing program . 1 l 7 The wave length of  maximum absorbance ,  

A�x ' was obt a ined f rom the f i rst derivat ive of  each spe c t rum 

w i t h  the a s s i st ance of l inear regre ss ion analys i s  to determine 

t he point a t  whi c h  t he derivat ive was zero . 

Al l measurements for the so lvatochromic parame t e rs o f  

s i l i c a  were repeated several t imes . But only t he highe st  

value , not  t he average , for eac h  so lvatochromic paramet e r  is  

reported because t race amount s o f  water in the mob i l e  phases  

always lowe red the me asured n" , Ci ,  and {3 values . The care 

t aken above can not guarant ee t he complete  e l imina t i on o f  the 

sys t ema t i c  e rror caused by t race amount s  of  wat er , but t he 

resu l t s  described here give an est imate for t he lower bound 

for t he solvatochromic parame t e rs of t he s i l i c a  surface . 



4 8  

3 - 2 - 3  Int e r fe rence f rom the Dye i n  the Mob i l e  Phase 

In  a f l ow c e l l  packed with s i l i ca part i c l e s , the l i ght 

path in Beer ' s law is decreased by the oc cupat ion of some of  

the space by  s i l i ca . However ,  the l ight path i s  increased by 

re f l ect i on and re f rac t i on o f  l ight by s i l ica . When there i s  

n o  re tent i on o n  the s i l ica  surface , t he pathl ength correct i on 

factor , K ,  i s  the rat io o f  t he absorbance of  a dye solu t i on in  

the f l ow ce l l  i n  th e  pres ence o f  s i l ica  over the absorbance in 

the absence o f  s i l i c a . A K value of 0 . 9 1 was de termined , so 

the net pathlength t hrough the solut ion is decreased by 9% in  

t he presence o f  s i l i c a  part ic l e s . 

The mob i l e  phase interference i s  est imated as shown in  

F igure 3 - 6 . Spe c t rum 1 ,  Al P , ) , i s  from a dye solution with  

t he mob i l e  phase o f  interest as the so lvent in the absence of  

s i l i ca ( molar concent rat ion Cl i pathl ength bl ) . A dye solut i on 

with  a mol a r  concent rat i on of � was kept f l owing through a 

f l ow c e l l  ( pathl ength b2 ) packed with s i l ica  unt i l  an 

equ i l ibrium was reached . Spe ct rum 2 ,  A2 ( A ) , including 

cont r ibut i ons both from the dye in the mob i l e  phase ( spectrum 

3 ,  A3 ( A ) ) and f rom the dye retained on the surface of s i l ica  

( sp e c t rum 4 ,  A4 ( A ) ) ,  was obt ai ned . At equ i l ibr ium the dye 

concent rat ion i n  t he mob i l e  phase i s � .  There f ore , 

A3 ( A ) = K ·  Al ( A )  . ( b2 ' C2 ) / ( bl • Cl ) ( 3  - 6 )  

The spec t rum of the dye reta ined on the surface of  
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Figure 3 - 6 . Spec t ra f rom a dye solut ion with  the mob i l e  phase 
as t he solvent ( 1 ) and f rom t he dye in the f l ow c e l l  ( in t he 
mob i l e  phase and adsorbed on s i l i c a )  ( 2 ) , which i s  composed o f  
spec t ra 3 ( in t he mob i l e  phase ) and 4 ( adsorbed on s i l i c a )  . 
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s i l ic a ,  A4 ( A ) , l S  t he d i f ference between A2 ( A )  and A3 ( A ) , 

A4 ( A ) = A2 ( A )  - K · Al ( A )  . ( b2 •  C2 ) / ( b1 • C1 ) ( 3 - 7 ) 

The absorbance maxima o f  spe c t ra 1 to  4 i s  at the 

wave l engt hs o f  Amax1 , Amax2 , Amax3 , and Amax4 , respect ively . The 

absorbance cont ribut ion f rom the dye in the mob i l e  phase at 

A=� can be obt a i ned by subst i tu t i ng Al ( A_� ) into equat ion 3 -

6 .  The rat io o f  t he amount o f  t he dye adsorbed on t he s i l i ca 

surface to  t he amount o f  t he dye present in t he mob i l e  phase , 

i .  e . , t he capa c i t y  factor k' ,  approximately equal s  to  t he 

rat io o f  A4 ( Amax4 ) to  A3 ( Amax3 ) When t he contribut ion f rom t he 

mob i l e  phase  i s  sma l l , A4 ( Amax4 ) approximately equal s  to  t he 

d i f f e rence between A2 ( Amax2 ) and A3 ( Amax2 ) There fore , 

k I = [A2 ( Amax2 ) - A3 ( Amax2 ) 1 / A3 ( Amax3 ) ( 3 - 8 ) 

whe re A3 ( Amax2 ) and A3 ( Amax3 ) can be obt ained f rom equat i on 3 - 6 . 

3 - 2 - 4 Chromat ographic Measurements 

Measurements  o f  the retent ion of  dyes on LiChrosorb S 1  

1 0 0  were performed on a Hewl e t t - Packard 1 0 5 0  series l iquid  

chromat ograph , f i t t ed with  a quate rnary pump , an  autosampler , 

and a variab l e  wavel engt h det ector . A 1 0 0  x 4 . 6  mm column was 

f i l l e d  w i t h  LiChrosorb S1 1 0 0  by dry -packing . Solvent s were 

dried over mo lecular s i eve s for more t han 24 hours . Drying 

tube s f i l l ed w i t h  s i l ica were instal led on the top of  t he 

solvent reservoi rs . 
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3 - 3  Re su l t s  

3 - 3 - 1  n * Values f o r  Mixture s o f  n - Hexane and Chloroform 

The dye s used for measuring n* values for mixture s o f  n 

hexane and chloroform are 4 - n i t roan i l ine ( 1 ) , 2 - n i t roan i l i ne 

( 2 ) and N , N - dime t hyl - 4 - n i t roan i l ine (3 ) . 4 -Nit roan i l i ne and 

2 - n i t roan i l ine c an be used to measure n * values of solvent s 

that have negl igible hydrogen - bonding bas i c ity . The 

e l e c t ronic spe c t ra of t hese probe s in mixtures of n - hexane and 

chloroform were obtained . These solut ions were not subj ected  

t o  any spe c i a l  precaut ions to minimi ze t he water  content . The 

V o and s values for t he cal cul at ion of n * values are f rom 

re f e rence 1 0 6 . The V�X values for the t hree dyes , and the n * 

values f rom each o f  the t hree dyes are l i sted i n  Tabl e  3 - 1 . 

The n * values o f  t hes e  sol vents  were not a f f ected  by 

drying . The n * values o f  dried n - hexane probed by 4 -

n i t roan i l ine ,  2 - n i t roan i l ine and N , N - dime t hyl - 4 - ni t roan i l ine 

were - 0 . 0 8 5 ,  - 0 . 0 9 4 , and - 0 . 0 9 2 , respe c t ively . The n * values 

of  dried c hl oroform probed by 4 - nit roani l ine , 2 - n i t roan i l ine 

and N , N - dime t hyl - 4 - ni t roan i l ine were 0 . 7 0 6 , 0 . 74 4 , and 0 . 7 1 0 , 

respe c t ive l y . 
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Tab l e  3 - 1 . v max values ( in kK)  o f  4 - ni t roan i l ine ( 1 )  ( v a 3 1 . 1 0 
kK i s - 3 . 1 3 8 ) , 2 - ni t roani l ine ( 2 )  ( v a 2 6 . 5 5 k K i  s - 1 . 5 3 6 )  and 
N , N - dime thyl - 4 - n i t roani l ine ( 3) ( v a 2 8 . 1 0 kK i s - 3 . 4 3 6 )  in  
mixtures o f  n - hexane and chl oroform and the calculated 7r' 
values 

% CHCl )  
( v/v) 

v ( 1 )  max 
7[ " 1 

v ( 2 ) max 
7[ " 2 

v ( 3 ) max 

7[;)  ) 
rr �Aver . )  

0 

3 1 . 4 1 

- 0 . 0 9 8  

2 6 . 7 1 

- 0 . 1 0 4  

2 8 . 3 9 

- 0 . 0 8 5  

- 0 . 1 0 

2 5 

3 1 . 2 9 3 1 . 0 9 

- 0 . 0 6 0  0 . 0 0 2  

2 6 . 6 5 2 6 . 5 3 

- 0 . 0 6 7  0 . 0 1 2  

2 8 . 1 8 2 7 . 9 3 

- 0 . 0 2 2  0 . 0 4 9  

- 0 . 0 5 0 . 0 2 

1 0  2 0  3 0  5 0  7 0  1 0 0  

3 0 . 8 3 3 0 . 3 8 3 0 . 0 5 2 9 . 6 0 2 9 . 2 5 2 8 . 8 7 

0 . 0 8 7  0 . 2 3 1  0 . 3 3 5  0 . 4 7 7  0 . 5 9 0  0 . 7 1 1  

2 6 . 4 0 2 6 . 1 8 2 6 . 0 0 2 5 . 7 5 2 5 . 5 9 2 5 . 4 1 

0 . 0 9 8  0 . 2 4 2  0 . 3 5 7  0 . 5 2 3  0 . 6 2 6  0 . 7 4 0  

2 7 . 6 0 2 7 . 1 4 2 6 . 7 7 2 6 . 3 1 2 5 . 9 1 2 5 . 5 6 

0 . 1 4 5  0 . 2 7 8  0 . 3 8 6  0 . 5 2 1  0 . 6 3 8  0 . 7 3 9  

0 . 1 1 0 . 2 5 0 . 3 6 0 . 5 1 0 . 6 2 0 . 7 3 
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3 - 3 - 2 n * Values for  S i l ica l n  n - Hexane - Chloroform Mixtures 

4 - N i t roani sole ( 4 ) , N-me t hyl - 2 - n i t roan i l ine ( 5 ) , N , N

dime t hyl - 4 - n it roan i l i ne ( 3 )  and N , N-diethyl - 4 - n i t roan i l ine ( 6 )  

were used t o  p robe the dipolari ty-polari z abi l i t y  of  t he s i l ica 

surface . I t  was origina l ly as sumed t hat  N-me t hyl - 2 -

n i t roan i l ine cou l d  be used as a n* dye because o f  i t s  

int ramo l ecular  hydrogen -bonding interact i ons . 1 06 The 11 0  and s 

values are f rom re f e rence 1 0 6 . The II max values for these dyes 

and the n* values f rom these dyes are l i sted in  Tabl e  3 - 2 . 

From the dat a  i n  Table 3 - 2  i t  can be concluded that t he 

surface of  s i l i ca has a very high dipolari ty-polar i z ab i l i ty .  

S ign i f i cant ly  lowe r and les s  reproducible n * values for 

s i l i c a  were obt a i ned when the solvent s were not dr ied . 

The n * values for s i l i c a  i n  cont act with  mixture s of  n 

hexane and chloroform and t he n * values for t he mixtures vs . 

t he compo s i t i on are plot t ed i n  Fi gure 3 - 7 . I t  i s  obvi ous f rom 

Figure 3 - 7  that the dipolarity-pol a r i z ab i l i t y  of s i l i c a  i n  

cont act  w i t h  mixtures o f  n- hexane and chl oro form i s  not 

a f f e c t e d  by the compos i t ion o f  t he mob i l e  pha se , but that t he 

values obt a ined are somewhat dependent on the nature of  the 

dye used a s  t he probe mo lecule . 

I n  chloroform,  i . e . , the case with the least  ret ent ion on 

s i l ic a ,  the absorbance cont ribut ion f rom N , N- dime t hyl - 4 -

ni t roan i l i ne i n  the mob i l e  pha se , obt a ined as des c r ibed i n  the 
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Tab l e  3 - 2 . v_x va lues ( i n kK)  o f  N , N - dimethyl - 4 - n i t roan i l ine 
( 3) ( v a 2 8 . 1 0 kK i s - 3 . 4 3 6 ) , 4 - n i t roanisole  ( 4 )  ( v a 3 4 . 1 2 kK i 

s - 2 . 3 4 3 ) , N - me t hyl - 2 - ni t roan i l i ne ( 5 )  ( v a 2 4 . 5 9 kK i s - 1 . 5 9 3 ) 
and N , N - di e t hyl - 4 - ni t roan i l ine ( 6 )  ( v a 2 7 . 5 2 kK i s - 3 . 1 8 2 ) on 
s i l i c a  in mixtures of n- hexane and chlorof orm and t he 
c a l culated n* values 

% cHel,  v ( 4 ) max 1T � 4 )  V ( 5 )  max (V/V)  
7r � S I V ( 3 )  max 7r � 3 ) V ( 6 )  max 7f � 6 )  

0 3 1 . 4 2 1 . 1 5 2  2 2 . 1 5 . l . 5 3 3  2 3 . 6 6 1 . 2 9 1 2 2 . 9 4 1 . 4 3 9  

2 3 1 . 3 7 1 . 1 7 4  2 2 . 1 6 1 . 5 2 3  2 3 . 7 1 1 . 2 7 7  2 3 . 0 0 1 . 4 2 0  

5 3 1 . 3 8 1 . 1 6 9  2 2 . 1 6 1 . 5 2 3  2 3 . 6 4 1 . 2 9 9  2 3 . 0 1 l .  4 1 7  

1 0  3 1 . 3 1 1 . 1 9 9  2 2 . 0 9 1 . 5 6 7  2 3 . 0 0 1 . 4 2 0  

2 0  3 1 . 2 2 1 . 2 3 8  2 3 . 7 1 1 . 2 7 7  2 2 . 9 7 1 . 4 3 0  

3 0  3 1 . 2 4 1 . 2 2 9  2 3 . 6 7 1 . 2 9 0  2 2 . 9 5 1 . 4 3 6  

5 0  3 1 . 3 7 1 . 1 7 4  2 3 . 6 6 1 . 2 9 1  2 2 . 8 8 1 . 4 5 8  

7 0  3 1 . 4 9 1 . 1 2 2  2 3 . 7 0 1 . 2 8 2  2 2 . 8 1 1 . 4 8 0  

1 0 0  2 3 . 6 6 1 . 2 9 1  2 2 . 7 3 1 . 5 0 5  

Average 3 1 . 3 5 1 . 1 8 2  2 2 . 1 4 1 . 5 3 7  2 3 . 6 8 1 . 2 8 7  2 2 . 9 2 1 . 4 4 5  
+ 0 . 0 3 9  + 0 . 0 2 1  + 0 . 0 0 8  ± 0 . 0 3 0  
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Figure 3 - 7 . 1T ' va lues for s i l ica  i n  n - C6H14 - CHC1 3 and 1T ' 

values for n - C6H14 - CHC13 • 
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experiment al sect ion , i s  9 . 5 % .  Howeve r ,  f rom Figure 3 - 7  t here 

i s  no evidence t hat the v _x value i s  a f fected to any 

s i gn i f i cant extent by dye present in t he mob i l e  phase , 

otherw i se  the l ine for N , N - dimethyl - 4 - ni t roani l ine woul d  

approach t h e  curve for t he sol vent . The absorbance 

con t r ibut ions f rom N , N - dimethyl - 4 - ni t roan i l ine in  the mob i l e  

phase w i t h  7 0 % , 5 0 % , 3 0 % ,  2 0 % , 1 0 % , 5 % ,  and 0 %  (v/v )  o f  

chl oro f orm are 3 . 5 % ,  0 . 7 3 % , 0 . 1 0 % , 0 . 0 1 5 % , 0 . 0 0 8 6 % , 0 . 0 0 0 5 1 % , 

and 0 . 0 0 0 2 0 % , respectively . I n  this sec t i on and t he sections 

below , only the v max values which are not af fected by the dye 

present i n  t he mob i l e  phase are l i sted and used to c a l culate  

the solvatochromic parameters for t he surface of  s i l i c a , 

except when spec i f ied ot herwi se . Chromatographic t e s t s  

described l a t e r  wi l l  give more informat ion about t he magni tude 

of t he interference f rom the dyes present in t he mob i l e  phase . 

3 - 3 - 3  Equat i ons for a Measurements with  ET- 3 3  and DCMPVP as 

Probe s 

E T - 3 3 ( 7 )  and DCMPVP ( 8 ) , paired with  N ,  N - dime t hyl - 4 -

n i t roan i l ine (3 ) or 4 - n i t roan i so le  ( 4 ) , were used to probe the 

hydrogen- bondi ng acidity of s i l i ca . The V max values of  these 

dyes i n  var i ous solvent s with  no hydrogen - bonding acidity and 

in MeOH are l i s ted in Table  3 - 3 . 

I n  so lvent s w i t h  no hydrogen - bonding acidity , the v max 
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Tab l e  3 - 3 . v_x values ( in kK ) o f  N , N - dimethyl - 4 - ni t roan i l i ne 
( 3 ) , 4 - n i t roan i sole ( 4 )  ( f rom re ference 1 0 5 ) , ET- 3 3  ( 7 ) , and 

DCMPVP ( 8 )  in various solvent s with no hydrogen - bonding 
ac i d i ty and in MeOH 

Sol vent v ( 3 )  max V ( 4 )  max V ( 7 )  max V ( 8 ) max 

Ethyl e t he r  2 7 . 1 0 3 3 . 4 5 1 4 . 1 0 

Ethyl acetate 2 6 . 1 6 3 2 . 7 9 1 5 . 9 2 1 6 . 1 3 

THF 2 5 . 9 5 3 2 . 7 9 1 6 . 3 2 1 6 . 6 1 

Dimethylacetamide 2 5 . 14 3 2 . 0 5 1 8 . 0 6 1 7 . 3 8 

Dime t hyl f ormamide 2 5 . 0 9 3 2 . 0 5 1 8 . 3 7 1 7 . 54 

Dime t hyl sul foxide 2 4 . 6 0 3 1 . 7 0 1 9 . 2 4 1 7 . 9 7 

MeOH 2 5 . 6 6 3 2 . 7 9 2 2 . 5 9 2 0 . 2 6 
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values for the 0/ dyes ( ET - 3 3  and DCMPVP ) are expected to 

correlate l inearly with the vmax values for the n' dye s . 

Corre lat ions for dye pairs ( 7 )  / ( 3 ) , ( 7 )  / ( 4 ) , ( S )  / ( 3 ) , and 

( S ) / ( 4 )  are expre s sed by equat ions 3 - 9 ,  3 - 1 0 ,  3 - 1 1 , and 3 - 1 2 ,  

respect ively . 

v ( 7 )  max ( 7 0 . 6  ± 1 . 4 )  - ( 2 . 0 8 9  ± 0 . 0 5 3 ) v ( 3 ) max 

( n  = 6 ;  r = - 0 . 9 9 8 7 ; SD = 0 . 1 1 )  

v ( 7 )  max = ( 1 1 1  . 6 ± 4 .  1 )  - ( 2 . 9 1  ± O .  1 3 ) V ( 4 )  max 

( n  = 6 ;  r = - 0 . 9 9 6 2 ; SD = 0 . 1 8 )  

V ( S )  max = ( 4 5 . 9 ± 2 .  2 ) - ( 1 . 1 3  5 ± O .  0 8 7 )  V ( 3  ) max 

( n  = 5 ;  r = - 0 . 9 9 1 3 ; SD = 0 . 1 1 )  

V ( S )  max = ( 6 4  . 6 ± 6 .  8 ) - ( 1 . 4 7 ± O .  2 1 )  V ( 4 )  max 

( n  = 6 ;  r = - 0 . 9 9 8 7 ; SD = 0 . 2 1 )  

( 3  - 9 )  

( 3  - 1 0 )  

( 3 - 1 1 )  

( 3  - 1 2 )  

Equat ions 3 - 1 3 , 3 - 14 ,  3 - 1 5 , and 3 - 1 6 , obt ained us ing the 

met hod described in  t he introduct ion sect ion , are used for dye 

pairs ( 7 ) / ( 3 ) , ( 7 ) / ( 4 ) , ( S ) / ( 3 ) , and ( S ) / ( 4 ) , respect ive l y ,  to 

calculate 0/ value s . 

0/ (7 ) / (3 )  [ V  ( 7 )  max ( obsd)  - v ( 7 ) _x ( calcd) ] / 5 . 5 6 ( 3 - 1 3 ) 

0/ (7 ) / (4 )  [ V  ( 7 )  max ( obsd)  - V ( 7 )  max ( calcd) ] / 6 . 5 2 ( 3  - 14 )  

0/ (8 ) / ( 3 )  [ V  ( S ) max ( obsd)  - v ( S ) _x ( calcd) ] / 3 . 4 4  ( 3  - 1 5 )  

0/ (8 ) / (4 )  [ V  ( S ) max ( obsd)  - v ( S ) _x ( calcd) ] / 3 . 9 0 ( 3  - 1 6 )  

3 - 3 - 4 0/ Values f or S i l ica in n - Hexane - Chloroform Mixtures 

The Vmax values for ET- 3 3  and DCMPVP on s i l ica in  mixtures 
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o f  n - hexane and chl oroform and t he corre sponding a va lues  are 

l i sted in  Table  3 - 4 . I n  calculat ing t he a va lue s , v ( 3 )  max i n  

equa t i ons 3 - 9  and 3 - 1 1  and v ( 4 ) �x in  equat ions 3 - 1 0  and 3 - 1 2  

a r e  taken a s  2 3 . 6 8 and 3 1 . 3 5 ,  respect i ve l y , whi c h  a r e  t he 

average V max va lues for N ,  N - d imet hyl - 4  - n i t roan i l i ne and 4 -

n i t roan i sole  on s i l i c a  in mixture s of  n- hexane and chlorof orm 

( Table 3 - 2 )  . From t he data i n  Table  3 - 4 i t  can be conc luded 

t hat the surface of  s i l ic a  has a mode rat e to high hydroge n 

bondi ng a c i d ity , whi c h  does  not depend o n  t he compos i t ion o f  

t he overlying solvent . 

3 - 3 - 5  Equat ions for � Measurement s w i t h  4 -Ni t roan i l ine and 2 -

N i t roan i l ine as Probes 

4 - N i t roan i l ine ( 1 ) , pa i red w i t h  N , N - d i e t hyl - 4 -

n i t roan i l ine ( 6 )  or N , N - dimethyl - 4 - n i t roan i l i ne ( 3 ) , and 2 -

n i t roan i l i ne ( 2 ) , pa i red w i t h  N - me t hyl - 2 - n i t roan i l ine ( 5 ) , are 

used t o  probe t he hydroge n - bonding ba s i city  of  s i l i c a . The 

v �x values of these dye s i n  solvent s w i t h  no hydrogen- bonding 

bas i c i t y  and hexamet hylphosphoramide are l i sted i n  Tab l e  3 - 5 . 

I n  media with  no hydrogen- bondi ng bas i c i t y ,  t he V max 

values for a � dye are expected to corre l a t e  l inearly w i t h  the  

v�x values  o f  the  corre sponding TI o  dye . Corre l a t i ons for dye 

pairs  ( 1 ) / ( 6 ) , ( 1 ) / ( 3 )  and ( 2 ) / ( 5 )  are expressed by equat i ons 

3 - 1 7 , 3 - 1 8 ,  and 3 - 1 9 ,  re spe c t ive l y . 
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Tab l e  3 - 4 . v _x values o f  ET - 3 3  ( 7 )  and DCMPVP ( 8 )  on s i l ica  
i n  mixtures o f  n - hexane and chloroform and the  calculated a 
values w i t h  N , N - dime t hyl - 4 - n it roan i l ine (3 ) or 4 - n i t roan i sole  
( 4 )  as the  ref e rence 7f'  dyes  

% CHCl 3 0 1 0  1 0 0  Average 
(v/v )  

v rnax ( kK )  2 2 . 8 7 2 2 . 6 7 2 2 . 7 1 2 2 . 7 5 

ET - 3 3  a ( 7 )  / ( 3 )  0 . 3 0 6  0 . 2 7 0  0 . 2 7 7  0 . 2 8 4 ± 0 . 0 1 9  

a ( 7 )  / ( 4 )  0 . 3 9 9  0 . 3 6 8  0 . 3 7 4 0 . 3 8 0 ± 0 . 0 1 6  

v max ( kK )  2 2 . 2 8 2 2 . 3 6 2 2 . 3 4 2 2 . 3 3 

DCMPVP a ( 8 )  / ( 3 )  0 . 9 3 4  0 . 9 5 8  0 . 9 5 1  0 . 94 8 ± 0 . 0 1 2  

a ( 8 )  / ( 4 )  0 . 9 7 5  0 . 9 9 6  0 . 9 9 1  0 . 9 8 7 ± 0 . 0 1 1  
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Tab l e  3 - 5 . v max value s ( i n kK)  o f  4 - n i t roan i l ine ( 1 ) , N , N 
diethyl - 4 - n i t roan i l i ne ( 6 ) , N , N- dimethyl - 4 - nitroani l ine ( 3 ) , 
2 - n i troan i l ine ( 2 )  and N - methyl - 2 - nitroan i l i ne ( 5 )  in  various 
solvent s w i t h  no hydrogen- bonding bas i c i ty and in 
hexame t hylphosphoramide 

Sol vent v ( 1 ) max V ( 6 )  max V ( 3 )  max V ( 2 )  max V ( 5 )  max 

n - Hexane 3 1 . 3 7 2 7 . 9 6 2 8 . 4 2 2 6 . 7 0 2 4 . 7 0 

Cyc lohexane 3 1 . 1 1 2 7 . 6 5 2 8 . 1 8 2 6 . 5 3 2 4 . 5 7 

Carbon t e t rachloride 3 0 . 4 9 2 6 . 9 2 2 7 . 3 8 2 6 . 1 8 2 4 . 2 0 

Tri chloroet hyl ene 2 9 . 5 2 2 5 . 9 0 2 6 . 2 6 2 5 . 7 5 2 3 . 7 9 

Chloroform 2 8 . 8 9 2 5 . 2 2 2 5 . 6 6 2 5 . 4 1 2 3 . 3 1 

Met hy l ene chloride 2 8 . 5 5 2 5 . 1 1 2 5 . 5 2 2 5 . 3 4 2 3 . 3 0 

1 , 2 - D i chloroe thane 2 8 . 4 7 2 5 . 14 2 5 . 54 2 5 . 2 9 2 3 . 3 5 

Hexamet hy lphosphoramide 2 5 . 5 3 24 . 9 3 2 5 . 1 8 2 4 . 0 9 2 3 . 2 0 
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v ( 1 )  max = ( 0 . 9 8 6  ± o . 04  4 )  V ( 6 )  max + ( 3 . 9  ± 1 . 2 )  

( n  = 7 ·  , r = 0 . 9 9 5 0 ; SD = 0 . 1 3 )  ( 3  - 1 7 )  

V ( 1 )  max = ( 0 . 9 5 6  ± o . 04  5 )  V ( 3 )  max + ( 4 . 3  ± 1 . 2 )  

( n  = 7 ·  , r = 0 . 9 9 4 4 ; SD = 0 . 1 4 )  ( 3  - 1 8 )  

V ( 2 )  max = ( 0 . 9 6 4  ± o . 0 3  8 )  V ( 5 ) max + ( 2 . 8 5 ± 0 . 9 1 )  

( n  = 7 ·  , r = 0 . 9 9 6 1 ; SD = 0 . 0 6 )  ( 3  - 1 9 )  

Equa t i ons 3 - 2 0 ,  3 - 2 1 ,  and 3 - 2 2 , obtained us ing t he met hod 

des c r ibed in t he introduct ion sec t i on , are used for dye pairs 

( 1 ) / ( 6 ) , ( 1 ) / ( 3 )  and ( 2 ) / ( 5 ) , respe c t ive l y ,  to  calculate  {3 

val ue s . 

(3 ( 1 ) / ( 6 )  

(3 ( 1 ) / ( ) )  

f3 ( 2 ) / ( S )  

[ V  ( l ) max ( ca l c d )  

[ V  ( l ) max ( ca l c d )  

[ V  ( 2 ) max ( ca l c d )  

v ( 1 ) _x ( obsd) ] / 2 . 9 2 

v ( 1 ) _x ( obsd) ] / 2 . 7 8 

v ( 2 ) _x ( obsd) ] / 1 . 1 3 

( 3  - 2 0 )  

( 3  - 2 1 )  

( 3  - 2 2 ) 

The equat i ons for dye pair ( 1 ) / ( 6 )  are s l ight ly d i f f e rent 

f rom t he ones reported by Kaml et and Ta f t 104 and Krygowski e t  

a l . 1 1 8  As po inted out by Krygowski et  al . , 1 18 two sol vent s with  

s l i ght hydrogen - bonding bas i c i ty ,  toluene and benzene , were 

incl uded to bui l d  t he corre lat ion between v ( l ) _x and v ( 6 ) _x in 

t he equa t i ons reported by Kaml et  and Ta f t . 1M The corre l at ion 

reported by Krygowski et  al . 1l8 has a higher prec i s i on , and no 

solvent s wi t h  hydrogen - bonding bas i c ity were used to bu i l d  t he 

corre l a t ion . But t he v ( l ) max and v ( 6 ) max values report e d  by 

Krygowski e t  al . 1 1 8 are always lower t han our values . The 

reason for th is  i s  not c l ear . For consistency , equat ions 3 - 1 7  

and 3 - 2 0  are used t o  cal culate {3 va lues here . 
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3 - 3 - 6  � Va lues for S i l i ca i n  n - Hexane - Chloro form Mixtures 

The v max values for 4 - n i t roani l i ne and 2 - n i t roanil ine on 

s i l i ca in mixture s of  n - hexane and chloro form and t he 

corresponding � values are l i s ted in Table  3 - 6 . In  

c a l c u l at ing � values , v ( 6 ) max , v ( 3 ) max and v ( S ) max in equat ions 

3 - 1 7 , 3 - 1 8 , and 3 - 1 9  are taken as 2 2 . 9 2 , 2 3 . 6 8 and 2 2 . 14 ,  

respec t i ve l y ,  whic h  are the ave rage vmax values for N , N 

diethyl - 4 - n i t roani l ine , N , N - dimethyl - 4 - n it roan i l ine and N 

met hyl - 2 - n i t roani l ine o n  s i l i ca in mixtures o f  n- hexane and 

chloroform ( Tabl e  3 - 2 )  From the data in Table  3 - 6 i t  can be 

conc l uded that the surface o f  s i l ica  has a low t o  moderate 

hydrogen- bondi ng bas i c i ty . The � value for s i l ica  vs . t he 

compo s i t ion o f  t he mob i l e  phase i s  plotted in Figure 3 - 8 . 

3 - 3 - 7 Dye Ret ent ion on S i l i c a  in n - Hexane - Chloroform Mixtures 

Chroma t ographic t e s t s  we re carried out t o  est imat e the 

extent o f  t he interference f rom t he dye s present in the mob i l e  

phase o n  t he measurement s  of  the surface so lvatochrom i c  

paramet ers . The sol  vent peak was used a s  t he de ad vo lume 

marke r .  The capac ity factors for a l l  the n '  and � dyes  used 

in this research are l i s ted in Table 3 - 7 . The ret ent i on 

va lues for the a dye s used in this  research were not measured 

because t hey have very st rong ret ent ion even in ACN , which  i s  
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Tab l e  3 - 6 . v �x values ( in kK)  o f  4 - n i t roan i l ine ( 1 )  and 2 -
n i t roan i l ine ( 2 )  on s i l i ca i n  mixtures o f  n- hexane and 
chloroform and the c alculated � values with N , N - dime t hyl - 4 -
n i t roan i l ine ( 3 )  , N-methyl - 2 - ni t roan i l ine ( 5 ) , or N , N - di e t hyl -
4 - n i t roani l i ne ( 6 )  as the reference n' dye s 

% CHCl 3 0 2 5 1 0  2 0  3 0  5 0  7 0  1 0 0  
( v/ v )  

v ( 1 )  max 2 5 . 4 5  2 5 . 4 7 2 5 . 6 1 2 6 . 1 2 2 6 . 1 2 2 6 . 2 2 2 6 . 3 0 2 6 . 6 8 

� ( 1 )  / ( 6 )  0 . 3 4 9  0 . 3 4 2  0 . 2 9 5  0 . 1 2 0  0 . 1 2 0  0 . 0 8 6  0 . 0 5 8  - 0 . 0 7 2  

� ( 1 )  / ( 3 )  0 . 5 14 0 . 5 0 7  0 . 4 5 7  0 . 2 7 3  0 . 2 7 3  0 . 2 3 7  0 . 2 0 9  0 . 0 7 2  

v ( 2 )  max 2 4 . 0 6 2 4 . 0 6 2 4 . 0 7 24 . 0 9 2 4 . 1 4 24 . 1 5 2 4 . 2 8 

� ( 2 )  / ( 5 )  0 . 1 2 4  0 . 1 2 4  0 . 1 1 5  0 . 0 9 7  0 . 0 5 3  0 . 0 4 4  - 0 . 0 7 1  
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Figure 3 - 8 . {3 values for s i l i ca in n - C6H14 - CHC1 3 mixtures . 
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Tabl e  3 - 7 .  Capa c i ty factors for various 7fo and {3 dyes on 
s i l i ca  in n - hexane - chloroform mixtures 

% CHC1 3 (v/v )  1 0 0  7 0  5 0  3 0  2 0  1 0  

N - Me t hyl - 2 - n i t roan i l ine 2 . 0  3 . 7  6 . 9  1 5 . 3  2 3 . 9  4 6 . 6  

4 - N i t roanisole  1 . 5  3 . 1  6 . 4 1 5 . 4  2 6 . 7  5 6 . 3  

N , N - Dime t hyl - 4 - n i t roan i l ine 5 . 6  1 1 . 1  2 3 . 0  5 6 . 2 1 0 7  

N , N - Di e t hyl - 4 - ni t roani l ine 6 . 4 14 . 3  2 6 . 8  6 9 . 7  1 2 1  

2 - N i t roan i l ine 3 . 5 7 . 6  14 . 6  3 4 . 5  5 6 . 6  1 0 6  

4 - N i t roan i l ine 9 . 6  2 2 . 8  6 2 . 6  1 8 3  
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a much st ronger norma l phase e luent than chloroform . From 

Tab l e  3 - 7  i t  can be seen that N , N - dimethyl - 4 - ni t roan i l ine , 

N ,  N - di e thy l - 4  - n i t roani l i ne , and 4 - n i t roan i l ine have relat ively 

high retent ion over the ent i re 

n i troani l ine w i t h  chlorof orm 

compos it ion range . For 2 -

as the mob i l e  phase , the 

absorbance cont r ibut ion f rom t he dye present in t he mob i l e  

phase cannot b e  neglected . For N-methyl - 2 - ni t roan i l ine and 4 -

n i t roan i s o l e  i n  a mob i l e  phase with more than 7 0 %  ( v/v ) of  

chloroform , the  absorbance cont ribut ion f rom the  dyes present 

i n  t he mob i l e  pha se may be s igni f i cant . The phase ratios and 

t he degree of drying of the mob i l e  phases in the f l ow ce l l  

t e s t s  and i n  the chromatographic tests  may not be t he same . 

Desp i t e  these d i f f e rences , the chromatographic t e s t s  can give 

an e s t ima te  of the extent of interference f rom the dyes  

present in the  mob i l e  pha se . 

3 - 3 - 8 Dye Retent ion on S i l ica in n - Hexane - Ethyl Ether Mixtures 

From prel iminary spect rophotometric  measurements i t  was 

obs e rved that n* dyes  in mixtures of n- hexane and ethyl e t her 

had a muc h  l ower ret ent ion on s i l ica t han in mixtures of  n -

hexane and chloro form . Dye s present in t he mob i l e  phase may 

t he measurement s of sol vatochromi c  st rongly interfere 

parame t e r s  for  s i l ica  in the presence of n- hexane - e thyl ethe r  

mixture s . I t  i s  necess ary to est imate the si gni f i cance of  
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such i n t e r f e rence be fore calcul a t i ng solvatochromic 

parame t e r s . The rat io of  the amount o f  a dye adsorbed on t he 

s i l i c a  surface over the amount o f  the dye present in the 

mob i l e  phase , i . e . , the capacity fac tor , can be est imated f rom 

spe c t roscop i c  measurement s ,  as de scribed in t he exper imental 

sect i on . The c apa c i  ty factors for N ,  N- dimethyl - 4  - n i t roani l ine 

and N , N - d i et hyl - 4 - ni t roan i l ine on s i l i ca in mixtures of n

hexane and e t hyl e t her are l i sted in Table  3 - 8 . From Tab l e  3 -

8 i t  can be seen that the amount of  dyes present in t he mob i l e  

phase s t a r t s  t o  surpass that adsorbed o n  s i l i ca when t he ethyl 

e t he r  cont ent in the mob i l e  phase is large r than 1 0 %  ( v/v ) . 

3 - 3 - 9  n' Va lues for Mixtures of  n- Hexane and Ethyl Ethe r  and 

for S i l i c a  in Mixtures of n - Hexane and Ethyl Ether 

N , N - Dimethyl - 4 - n i t roani l ine ( 3 )  and N , N - di e t hyl - 4 -

ni t roan i l  ine ( 6 )  were used t o  me asure the n' values for 

mixtures o f  n - hexane and ethyl ether and for s i l i ca in 

mixture s o f  n - hexane and ethyl ether . The vmx values for the 

two n' dyes in mixtures of  n - hexane and ethyl ether and the 

corresponding n ' values for the mixtures are l i sted in Tabl e  

3 - 9 . For t he measurements o f  the n ' values f o r  s i l ica in 

mixtures of n - hexane and ethyl ether , the absorbance 

cont ri but ion f rom the dye s in the mob i l e  phase was subt racted 

f rom the t o t a l  spe c t ra as de scr ibed in the expe riment al 
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Tab l e  3 - 8 . Capac ity  factors for N , N - dimethyl - 4 - n i t roan i l i ne 
( 3 ) and N , N - di et hyl - 4 - ni t roan i l ine ( 6 )  on s i l i ca in n - hexane 

e t hyl  e t he r  mixtures 

% E thyl e the r ( v/ v )  k ; 3 )  k ; 6 )  

1 0 0  0 . 2 1 3  0 . 0 6 8  

8 0  0 . 3 4 6  0 . 0 6 9  

6 0  0 . 4 1 3  0 . 1 2 4  

4 0  0 . 8 6 2  0 . 2 1 9  

2 0  1 . 7 8 0 . 5 8 8  

1 0  3 . 2 3 1 .  2 0  

8 3 . 2 5 1 . 4 2 

6 4 . 0 9 1 .  7 7  

4 5 . 1 0 3 . 0 8 

3 6 . 2 6 3 . 8 7 

2 9 . 5 1 5 . 2 1 

1 2 3 . 0  1 5 . 0  

0 . 5  5 8 . 2  4 3 . 0  
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Tab l e  3 - 9 .  v max values  ( i n kK )  for N , N - dimethyl - 4 - ni t roan i l ine 
(3) and N , N - di ethyl - 4 - n i t roanil ine ( 6 )  in mixtures of n - hexane 
and e t hyl e ther and the corresponding 7r' values for t he 
mixtures 

% Ethyl e t her ( v/ v )  v ( 3) max 7r�3 )  V ( 6 )  max 7r� 6 )  1f�Aver . ) 
0 2 8 . 4 3 - 0 . 0 9 6  2 7 . 8 2 - 0 . 0 9 4 - 0 . 0 9 5  

0 . 5  2 8 . 3 9 - 0 . 0 8 4  2 7 . 7 9 - 0 . 0 8 5  - 0 . 0 8 5  
1 2 8 . 3 5 - 0 . 0 7 3  2 7 . 7 7 - 0 . 0 7 9  - 0 . 0 7 6  

2 2 8 . 3 4 - 0 . 0 7 0  2 7 . 7 5 - 0 . 0 72  - 0 . 0 7 1  

3 2 8 . 3 3 - 0 . 0 6 7  2 7 . 7 2 - 0 . 0 6 3  - 0 . 0 6 5  

4 2 8 . 3 0 - 0 . 0 5 8  2 7 . 6 3 - 0 . 0 3 5  - 0 . 04 7  

6 2 8 . 2 8 - 0 . 0 5 2  2 7 . 5 8 - 0 . 0 1 9  - 0 . 0 3 6  

8 2 8 . 2 2 - 0 . 0 3 5  2 7 . 5 9 - 0 . 0 2 2  - 0 . 0 2 9  

1 0  2 8 . 2 1 - 0 . 0 2 9  2 7 . 5 5 - 0 . 0 0 9  - 0 . 0 1 9  

2 0  2 8 . 0 3 0 . 0 2 0  2 7 . 4 2 0 . 0 3 1  0 . 0 2 6  

4 0  2 7 . 7 5 0 . 1 0 2  2 7 . 2 0 0 . 1 0 1  0 . 1 0 2  

6 0  2 7 . 5 2 0 . 1 6 9  2 7 . 04 0 . 1 5 1  0 . 1 6 0  

8 0  2 7 . 3 4 0 . 2 2 1  2 6 . 8 3 0 . 2 1 7  0 . 2 1 9  

1 0 0  2 7 . 1 7 0 . 2 7 1  2 6 . 6 9 0 . 2 6 1  0 . 2 6 6  
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sect ion . The subt racted spe c t rum represents only the dye 

adsorbed on the s i l ica  surface . The n * values obt ained f rom 

t he subtract e d  spect ra represent the dipolarity-polari zabi l ity 

of  the s i l i c a  surface . The v _x values for these dye s f rom t he 

total  spe c t ra and the subt racted spe c t ra and the corre sponding 

n* va lues f rom these dyes are l i s ted in Table 3 - 1 0 . The v a  and 

s va lues are f rom re f e rence 1 0 6 . Spectral subt rac t ion and t he 

c a l culat ion o f  n' value s for the s i l ica  surface are only 

performed for syst ems cont aining up to  1 0 %  e t hyl ethe r  in the 

mob i l e  pha se . With  more than 1 0 %  ethyl ethe r  in the mob i l e  

phase , t he c apac ity  factors f o r  the dye s are too low to  al low 

accurate e s t ima t i on o f  the n* values for t he s i l i ca surface . 

The n * values for s i l i ca in cont act with mixtures o f  n 

hexane and e t hyl et her ( a f t e r  correct ion ) and t he n * values 

for the mixture s vs . the e t hyl ether cont ent in the range of 

0 - 1 0 %  ( v / v )  are plot ted in F igure 3 - 9 . I t  is  obvi ous f rom 

Figure 3 - 9  that the dipol arity-polari zabi l i ty of s i l ica  in 

cont act  with mixture s of n - hexane and e t hyl e t her de creases 

with t he e t hyl e t her content in the mob i l e  pha se . I t  i s  also  

instruct ive to  plot  the n * values be fore correct ion and t hose 

for the mixtures vs . the ethyl ether cont ent in the whole 

compo s i t i on range , as shown in Figure 3 - 1 0 . The l ines for 

s i l ica  be fore correct ion approach the solut ion l ine at high 

e t hyl e the r contents because of the low retent ion of  dye s on 

s i l i c a . 
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Tab l e  3 - 1 0 . v max values ( in k K )  for N , N - dimethyl - 4 -
n i t roani l ine ( 3 )  and N , N - diethyl - 4 - n i t roani l ine ( 6 )  on s i l ica  
i n  mixtures o f  n - hexane and ethyl ether before and a f t e r  
corre c t i on for  t he mob i l e  pha se cont r ibut ion and the 
correspondi ng n ' va lues 

% E t hyl Be f ore corre c t i on After correct ion 
e t her 
( v/ v )  v ( 3 ) max 1f� 3 )  V ( 6 )  max 1f � 6 ) V ( 3 )  max n� 3 )  V ( 6 ) max n� 6 ) 

0 2 3 . 5 0 1 . 3 3 9  2 3 . 1 8 1 . 3 6 7  2 3 . 5 0 1 . 3 3 9  2 3 . 1 8 1 . 3 6 7  

0 . 5  2 3 . 8 2 1 . 2 4 6  2 3 . 5 7 1 . 2 4 1  2 3 . 8 2 1 . 2 4 6  2 3 . 5 7 1 . 2 4 1  

1 2 4 . 1 1 1 . 1 6 1  2 3 . 9 0 1 . 1 3 8  24 . 1 1 1 . 1 6 1  2 3 . 9 0 1 . 1 3 8  

2 2 4 . 8 6 0 . 9 4 3  2 4 . 5 6 0 . 9 3 0  24 . 8 6 0 . 94 3  2 4 . 5 6 0 . 9 3 0  

3 2 5 . 4 0  0 . 7 8 6  2 5 . 0 0 0 . 7 9 2  2 5 . 3 3 0 . 8 0 6  2 4 . 9 1 0 . 8 2 0  

4 2 5 . 6 9 0 . 7 0 1  2 5 . 6 9 0 . 5 7 5  2 5 . 6 3 0 . 7 l 9  2 5 . 1 8 0 . 7 3 5  

6 2 6 . 1 0 0 . 5 8 2  2 6 . 5 0 0 . 3 2 1  2 5 . 8 7 0 . 6 4 9  2 5 . 4 2 0 . 6 6 0  

8 2 6 . 5 7 0 . 4 4 5  2 6 . 6 2 0 . 2 8 3  2 5 . 9 5 0 . 6 2 6  2 5 . 54 0 . 6 2 2  

1 0  2 7 . 0 1 0 . 3 2 0  2 6 . 7 4 0 . 2 4 5  2 6 . 1 6 0 . 5 6 5  2 5 . 5 5 0 . 6 1 9  

2 0  2 7 . 1 5 0 . 2 7 6  2 6 . 9 2 0 . 1 8 9  

4 0  2 7 . 2 5 0 . 2 4 7  2 6 . 9 5 0 . 1 7 9  

6 0  2 7 . 1 7 0 . 2 7 l  2 6 . 8 7 0 . 2 0 4  

8 0  2 7 . 1 2 0 . 2 8 5  2 6 . 7 7 0 . 2 3 6  

1 0 0  2 7 . 0 4 0 . 3 0 8  2 6 . 6 0 0 . 2 8 9  
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Figure 3 - 9 .  �*  va lues for s i l ica in  mixtures o f  n - hexane and 
ethy l  ether ( af t e r  correc ti on )  and �* values for the mixtures . 



1 .2 
Si l ica i n  solvent 

0 . 8  

N,N-Dimethyl-4-n itroan i l ine 
0 .4 , N,N-Diethyl-4-nitroani l ine 

o ������--�------------� 
Solvent (Average) 

o 20 40 60 80 
% Ethyl ether (v Iv) 

1 00 

74  

Figure 3 - 1 0 . 7[ '  values for s i l i ca be fore correct ion and t he 
7[' values f o r  the mixtures o f  n - hexane and ethyl ether . 



7 5  

3 - 3 - 1 0 Transi t i on Energies  of  ET - 3 3  on S i l ica in Mixture s o f  

n - Hexane and Ethyl Ether 

ET- 3 3  i s  we l l  retained on s i l i ca in mixtures o f  n- hexane 

and e t hyl e t her . The amount o f  ET- 3 3  present in the mob i l e  

phase i s  negl igible  t hroughout the whole  compos i t ion range . 

The V �X values for ET - 3 3  on s i l ica in mixtures o f  n - hexane and 

e t hyl e t her and the corresponding a values are l i s ted in Table  

3 - 1 1 .  I n  c a l cu l a t ing the a values , v ( 3 ) rnax values a f t e r  

corre c t ion In Tab l e  3 - 1 0 are used in equat ion 3 - 9 . The dat a  

in Tab l e  3 - 1 1 show that the a value f o r  s i l i ca increases w i t h  

t he e t hyl e t he r content , which is  obviously cont rary t o  

chem i c a l  i n tuit i on . The possible  reason for this  behavior 

wi l l  be di scussed in the next se c t i on . Inst ead o f  the a 

value s , the t rans i t ion ene rgy o f  ET- 3 3  on s i l ica  i s  calculated 

and p l o t t e d  vs . the e t hyl ether content , as shown in Figure 3 -

1 1 . F rom F i gure 3 - 1 1 i t  can be seen that the ove ra l l  po larity 

o f  the  s i l i c a  surface  de creases with the ethyl e t he r  content . 
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Table  3 - 1 1 . v_x va lues for ET - 3 3  on s i l i ca i n  mixtures of  n 
hexane and e t hyl e t he r  and the corresponding a values 

% E thyl e t her ( v /v ) v max ( kK )  V max ( kcal /mol ) a 

0 2 2 . 7 6 6 5 . 0 7 0 . 2 2 5  

0 . 5  2 2 . 4 3 64 . 1 3 0 . 2 8 6  

1 22 . 3 0 6 3 . 7 6 0 . 3 7 2 

2 2 2 . 1 3 6 3 . 2 8 0 . 6 2 3  

3 2 2 . 0 0 6 2 . 8 9 0 . 7 7 5  

4 2 1 . 9 3 6 2 . 7 0 0 . 8 7 6  

6 2 1 . 8 3 6 2 . 4 2 0 . 94 9  

8 2 1 . 6 7 6 1 . 9 6 0 . 9 5 0  

1 0  2 1 . 6 4 6 1 . 8 6 1 . 0 2 2  

2 0  2 1 . 3 4 6 1 . 0 2 

2 5  2 1 . 2 5 6 0 . 7 5 

3 0  2 1 . 2 0 6 0 . 6 2 

4 0  2 0 . 9 9 6 0 . 0 1 

5 0  2 0 . 9 0 5 9 . 7 6 

6 0  2 0 . 7 5 5 9 . 3 5 

8 0  2 0 . 5 9 5 8 . 8 8 

1 0 0  2 0 . 4 7 5 8 . 5 1 
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Figure 3 - 1 1 . Trans i t ion energy of ET- 3 3  on s i l ica in mixtures 
of  n- hexane and e t hyl e t her . 
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3 - 4  D i s c u s s ion 

3 - 4 - 1  Expe rimental S etup and So lvent Drying 

The use of a f l ow c e l l  a l l ows the samp l e  opt ical  spect rum 

and t he background spect rum t o  be obtained using exac t l y  t he 

same c e l l  pos i t i on and the same batch of  s i l i ca . This  makes 

t he background subt ract ion much more re l i abl e . Thi s  i s  very 

important as we know f rom expe ri ence that the background 

int e r f e rences may be severe in some cases . 

The � . values  obtained for the solvent s we re not a f f ected  

by  dry ing . But i t  was obse rved t hat the e l e c t ronic absorpt i on 

dat a  f o r  DCMPVP were sens i t ive to t race amounts o f  wate r  in  

t he solvent s .  1 09  Thi s  can be a t t r ibut ed t o  t he pre f e rent i a l  

solvat ion o f  t h e  Ci dyes40 by wat er due to the zwi t t e rionic 

nature of these dyes , whereas the � . dyes used in this  

researc h  are not  s ign i f icantly pre ferent i a l ly solvated by 

wat e r . The muc h  l arger e f fect  o f  t race amount s  o f  wat e r  in 

t he mob i l e  phase on the � . values of  s i l i ca t han on the � . 

values  o f  t he mob i l e  phases can be a t t ributed t o  t he 

enric hment o f  water on t he surface o f  s i l i ca1l 9 and t he 

blocking o f  adsorp t i on s i tes  with high dipolari t i es  by wat e r . 

The amount o f  water in the mob i l e  phase can s igni f i cant ly 

a f fect  the r e tent ion o f  solutes on s i l ica , espec ially with t he 

wate r  content in t he mob i l e  phase l ower than 1 0 0  ppm . 1 l9 I n  
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solvent s dried over  molecular s i eves , as i n  our case , there l S  

approxima t e l y 1 0  ppm o f  water rema ining . 1 l9 

3 - 4 - 2 n* Va lues for S i l ica  in n - Hexane - Chloroform or n - Hexane 

E t hyl Ether Mixtures 

N - Methy l - 2 - n i t roani l i ne wa s originally  proposed for t he 

n* measurements  o f  prot i c  solvent s . 1 06 However ,  in solvent s 

w i t h  a h i gh hydrogen - bonding acidity , t he n* values f rom N 

met hyl - 2 - n i t roan i l ine are usua l ly higher than the values f rom 

the o t he r  n * dyes , 4 2 . 9 9  as was observed in this  research . 

Casas sas e t  al . found by factor ana lys is  that the spe c t ral  

shi f t  o f  N - me t hyl - 2 - n i t roan i l ine is  sign i f icantly af fected by 

hydrogen - bonding int erac t i ons . 120 They sugge sted the re j ect ion 

of  N - met hyl - 2 - n i t roani l ine as a n * dye . 

The n * measurement s  for so lvent s with  st rong hydrogen

bondi ng ac i d i t y  may not  be  very rel iable because t he e f f ect  of  

hydrogen- bond ing interact ions o n  the e l e c t ron i c  spe c t ral  data 

of  n * dye s can not always be neglected in such sol vent s . 102 , 1 1 5 

The n * dye s used in t h i s  research are more po lar in t he i r  

exc i t ed s t a t e  t han i n  t he i r  ground state , 1 02 as shown in F igure 

3 - 1 2 . Hydrogen- bonding interac t i ons between t he n i t ro group 

in t he dye s and p ro t i c  so lvent s are expected to be sl ight ly 

s tronger when t he dye s are in the i r  exc i t ed states t han when 

t he dyes a re in their  ground states . Thi s  may make t he 
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Figure 3 - 1 2 . Approximate s t ructures of N , N - dimethyl - 4 -
n i t roan i l ine i n  t he ground and exc ited states . 



measured 7[* values higher than t he actual ones . 102  
8 1  

The 7[* 

values  f o r  s i l i ca in this  research should t herefore be 

cons idered the upper l imit  of  the dipol arity-polari zabi l i ty of 

s i l i ca . For s i l i ca in cont act with mixtures of  n - hexane and 

chlorofo rm , the l owe st 7[ ' value , 7[�4 ) obt ained f rom 4 -

n i troan i s ol e , may be the one most  c losely re f l ect ing the 

actual dipo l a r i t y - po l a r i z ab i l ity o f  the s i l ica surface . The re 

is s t i l l  a c ons i de rable  dispers ion among t he 7[ ' values 

obt a i ned f rom d i f fe rent 7[ ' dyes , ranging f rom 1 . 1 8 2  to 1 . 5 3 7 ,  

t hough the d i spersion i s  much sma l l e r t han that observed for 

the 7[* values for  dry s i l ica , which range f rom 0 . 8 1 to 4 . 0 0 .  i l l 

I n  mixture s o f  n - hexane and chloroform , i t  i s  obvious 

f rom F i gure 3 - 7  t hat  t he dipol arity-po l a r i z abi l i ty o f  s i l i c a  

i s  n o t  a f f e c t e d  b y  t h e  so lvent compos it ion . The average value 

o f  7[�4 )  at  di f ferent compos i tions ( not the average value f rom 

di f f e rent dye s ) , 1 . 1 8 2  ( See Table 3 - 2 ) , shoul d  be used t o  

represent t h e  surface dipol ari ty-polar i z ab i l i ty of  s i l ica  in 

conta c t  with mixture s of  n- hexane and chloroform . I t  can be 

conc l uded that t hough t he 7[ * values of the surface of s i l ica 

vary f rom dye t o  dye , the re lat ive t rends in  the 7[ ' values 

obt a ined f rom one 7[ ' dye can certainly be t rusted . 

An adsorbed 7[ ' dye molecule interac t s  not only with 

surf ace s i l anol groups , but also with solvent mo lecules  ( both 

adsorbed and i n  t he mob i l e  phase ) . 12 1 Mos t  aroma t i c  mol ecules  

are bel i eved to adsorb in a f l at conf igura t i on on t he 
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adsorbent surface . 12 1 Such a conf iguration wi l l  expose one 

f a c e  o f  t he adsorbed n ' dye molecule to the mob i l e  phase . I f  

interact i ons between t he adsorbed n ' dye mol ecule and solvent 

mol e cu l e s  are s igni f icant , the V �X value for the adsorbed n' 
dye is expe cted  to change with  the solvent compo s i t ion . Such 

a dependence is not observed for n ' dyes adsorbed on s i l i ca in 

contact  w i t h  mixtures of n- hexane and chloroform . This 

ind i c a t e s  that interac t ions between an adsorbed solute 

mole cu l e  and solvent molecul es are negl igible compared w i t h  

i nt e rac t i ons between the solute molecule and the adsorbent 

surf ace . 

I n  cont rast to t he case with  chloroform as the cosolvent , 

t he dipo l a r i t y - po lar i z ab i l ity of s i l i ca decreases w i t h  the 

content o f  e t hyl ether in n- hexane - e thyl ethe r  mixtures . The 

s i l i c a  surface has adsorp t i on s i tes  with d i f f e rent energies . 

E t hyl e ther molec ules  may compete for high ene rgy adsorp t i on 

s i t e s  w i t h  dye mo lecules and force some dye mol ecul es  to  

adsorb on to  weaker s i tes , result ing in the dec reasing 

dipo l a r i t y - po l a r i zab i l i t y  o f  s i l i ca in  n- hexane - e t hyl e t he r  

mixture s . 

The n ' values be fore correct ion in Figure 3 - 1 0  inc l ude 

cont ri but ions bot h  f rom the s i l i ca surface and the mob i l e  

phase . W i t h  t he e t hyl ether content lower than 4 0 % , t he n ' 

val ue dec reases  with  the ethyl ether content , indica t i ng the 

cont r i but ion f rom the s i l i ca surface i s  domi nant . In  the 
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range o f  4 0 - 1 0 0 %  e t hyl e t her , the n' va lue increases with t he 

e t hyl e t he r  content , indi cat ing the cont ribut ion f rom the 

mob i l e  phase i s  dominant . These resu l t s  ar'e cons i stent with  

the retent i on da t a  in Table  3 - 8 . 

3 - 4 - 3  Hydrogen- Bonding Ac idity of  Si l i ca 

Chloroform or n-Hexane - Ethyl Ether Mixture s 

in n- Hexane -

I t  can be seen f rom Table  3 - 4 that the a values obtained 

f rom DCMPVP are much larger  t han the a values obt ained f rom 

ET - 3 3 . Hydrogen- bonding is  a spec i f i c interac t i on whi c h  

requ i re s  s t er i c  compa t ib i l i ty . I t  is  we l l  known in t he 

l i t e rature t hat hydrogen-bonding interact ions o f  an adsorbate 

with a sol i d  surface are st rongly af fec ted by s t e r i c  

f ac t ors . 9 , 14 , 1 5 , 1 22 , 1 2 3 From Raman spect ra ,  hydrogen - bonding 

interac t i ons between pyridine and the s i l ica  ge l surface were 

observed . 12 2  But no hydrogen - bonding interact ions were present 

between 2 - chloropyridine and the s i l ica ge l . 122 This wa s 

att ributed t o  s t e r i c  hindrance . 122 The two or tho chlorine 

atoms in ET - 3 3  may bring s igni f icant steric  hindrance t o  

hydroge n - bondi ng interact ions between the phenolate in ET- 3 3  

and surface s i l anol groups . In addi t ion , hydrogen- bonding 

inte rac t ions between the re ference n ' dye and the sur face 

s i l anol groups may cause the measured a value to be l ower t han 

t he a value repre sent ing the actual hydrogen- bonding acidi ty 



o f  t he s i l i ca surface . 

84  

From the above analys is , i t  i s  

proposed t hat t he highe s t  !Y. value i n  Table 3 - 4 , 

obt ai ned by u s i ng DCMPVP paired with 4 - n i t roanisol e ,  

!Y. ( 8 ) / ( 4 )  , 

i s  the 

one tha t  mos t  closely represent s the actual hydrogen - bonding 

ac idity o f  t he s i l ica surface . Thi s  value shoul d  be 

cons i dered t he l ower l imit of t he hydrogen - bonding acidi ty of  

the  s i l i ca surface . I t  i s  obvious f rom the data in Table  3 - 4 

that t he hydrogen- bonding acidity of  the s i l i ca i s  not 

af f e c t e d  by the compos it ion of n- hexane - chloroform mixture s . 

The average value o f  !Y. ( 8 ) / ( 4 )  for a l l  compo s i t ions , 0 . 9 8 7  ( see 

Tab l e  3 - 4 ) , shoul d  be used to represent the lower l imit  for 

t he surface hydrogen- bonding acidity of s i l ica . 

The n ' dye s may not be as e f fe c t ive as ET - 3 3  in compet ing 

for st rong adsorpt ion s i t e s  on s i l ica with  so lvent mol e cu l e s . 

I n  t he same mob i l e  phase , ET - 3 3  may oc cupy st ronger adsorpt ion 

s i t e s  t han the re f e rence n* dyes . With the presence of  e t hyl 

e t he r  i n  t he mob i l e  phase , use of a reference n ' dye can only 

canc e l  part o f  t he dipolar contr ibut ion to  the interac t i ons 

between ET - 3 3  and t he s i l i ca surface , leading to  an 

over e s t imated !Y. va lue for the s i l i ca surface . The degree of 

ove r e s t ima t i on increases with the ethyl ether content , 

result ing i n  change s in the !Y. value of  t he s i l i ca surface 

contrary to  chemical  intu i t ion . The decrease in the 

t rans i t ion energy o f  ET - 3 3  on s i l i ca with the ethyl ethe r  

content i s  l i ke ly caused by oc cupat ion of some of the st rong 
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adsorp t i on s i te s  by ethyl e t he r  mo lecul es . 

3 - 4 - 4 � Va lues for  S i l ica in n - Hexane - Chloroform Mixtures 

As de scribed above , N-methyl - 2 - ni t roan i l ine may not be an 

appropri a te  re ference 1T" dye . The � values probed by 2 -

n i  t roan i l ine/N - me t hyl - 2 - n i  t roan i l ine , � ( 2 ) / ( 5 ) ' should there fore 

be rej e c t e d . The � ( 2 ) / ( 5 )  values are always lower than the � 

values f rom t he other dye pairs in the same mob i l e  phase 

compos i t ion ,  presumably because of t he hydrogen - bonding 

interac t i ons between N - methyl - 2 - n i t roan i l ine and t he surface 

s i l anol g roups . 

There i s  a s ign i f i cant di f fe rence between t he � values 

f rom 4 - n i t roan i l ine with d i f f e rent 1T* re f e rence dyes , as shown 

in Tabl e  3 - 6 . In  measur ing � values , it  i s  as sumed t hat t he 

e f f e c t s  o f  sol  vent dipolari ty-polar i z abi l i  ty and hydrogen-

bondi ng a c i d i t y  o n  the  e l ec t ronic spectral  data of  � dyes  can 

be canc e l e d  by re f e renc ing to the appropriate 1T * dye . But i t  

i s  bel i eved t hat  in the exc i ted state , t he n i t ro groups o f  � 

dye s  are s t ronge r hydrogen- bonding acceptors than the n i t ro 

groups o f  t he i r  alkylated derivatives , the re f e rence 1T * 

dye s . 1 02  Thi s  may make t he me asured � values higher than t he 

actual one s for me dia with high hydrogen - bonding acidi t ies . 

The values probed by 4 - n i t roan i l ine/N , N - diethyl - 4 -

n · t  · 1 ·  n re bel l· eved to most closely re f l ect  t he 1 roanl lne , 1-' ( 1 ) / ( 6 ) ' a 
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actual hydrogen - bonding bas i c i t y  o f  t he s i l ica  surface . 

Aga i n , the relat ive t rends o f  t he {3 va lues f rom one {3 dye 

shoul d  be empha s i z e d . I t  is  obvious f rom Figure 3 - 8  that a l l  

three s e t s  o f  {3 values change i n  a s imilar way w i t h  t he 

concent rat i on o f  chlorof orm in the n - hexane - chloroform 

mixture , i . e . , t he {3 value o f  the s i l ica  surface dec reases as 

the concentrat ion o f  chloroform in the bi nary mixture is 

increased . Hydrogen - bonding interact ions between chloroform 

and the surface s i l anol groups may reduce the e f f ec t ive 

hydrogen- bond i ng bas i c i ty of t he s i l ica  surface . For solute s  

w i t h  hydrogen- bonding ac idity ,  t he de crease of  t he e f fe c t ive 

hydrogen - bondi ng bas i c i ty o f  t he s i l ica  surface with the 

concent rat i on o f  chlorof orm mus t  be cons idered in order to 

pred i ct  change s in ret ent ion with the mob i l e  phase 

compos i t ion . 

3 - 4 - 5  Compar i sons to  the L i t e rature Re sul t s  

From the exp e rimental resul t s  and t he above argument s ,  i t  

can be conc luded t hat t he sur face of  s i l i ca has a high 

dipol a r i ty-polari z abi l i t y ,  a high hydrogen- bonding acidity  and 

a l ow hydrogen - bonding bas i c i ty . According to  t he above 

argument s ,  t he n* and a va lue for t he sur face of s i l i c a  in n 

hexane - c hloroform mixture s are 1 . 1 8 2  and 0 . 9 8 7 , respe c t i ve l y . 

In  n - hexane - e t hyl e t her mixtures , t he n* va lue for t he sur face  
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o f  s i l i c a  dec reases with  t he ethyl ethe r  content . The � value 

f o r  the surface of s i l i c a  in n - hexane is not higher than 0 . 3 5 

( See  � ( 1 )  / ( 6 )  i n  Tab l e  3 - 6 ) , and the value decreases wi th  

increas i ng concent rat ion o f  chl orof orm in the mob i l e  phase . 

These resul t s  are in good qua l i t at ive agreement wi t h  t he 

values reported for dry s i l i cas . 1 1 1  The Tf' , Ci ,  and � values 

are 1 . 9 8 ,  1 . 2 2 ,  and 0 . 4 3 , and 2 . 0 8 ,  0 . 9 3 ,  and 0 . 4 8 for two 

di f f e rent dry s i l icas , respe c t ively . The se Tf' va lues are much 

higher than ours , but t he Ci and � values are more cons i st ent 

w i t h  ours . I t  s houl d  be noted t hat the presence of  so lvent i s  

not t he only d i f f erence between t he two report s . The types of  

s i l i c a s , t he so lvatochromic dye s used , and t he amount s of  dye s 

app l i e d  to  s i l i ca are not the same e i t her . The amount s of  

dyes app l i e d  t o  t h e  surface o f  s i l ica  in our case  are  about 

one tenth of t he lowes t  amount appl ied in reference 1 1 1 , whi c h  

i s  0 . 2 4 %  ( w/ w )  So d i rect compari sons should  be  made with 

cau t i on . The surface propert ies  of s i l i c a  have also  been 

deduced f rom t he coe f f ic ients of the mul t ip l e  l inear 

corre l a t i on between normal phase solvent e luot rop i c  s t rength 

£ 0 and t he sol vatochromic parameters of  sol vents . 124 The 

coe f f i c i en t s  for the parameters Tf ' , Ci ,  and � in the reported 

mUl t ip l e  l inear correlat ion are 0 . 4 5 ,  0 . 0 3 ,  and 0 . 4 1 ,  

respe c t ive l y ,  whi c h  re f l ect  t he magnitude s of  dipolarity

pol a r i z ab i l i ty , hydrogen - bonding bas i c i t y ,  and hydrogen

bonding ac i d i ty o f  the s i l ica  surface , re spec t ively . 124 Though 
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these values can not b e  compared quant itat ively with our 

solvatochromic  parame ters  for t he surface of s i l i ca , they are 

qua l i ta t ivel y  in ve ry good agreement with our resul t s . 

The two cosolvent s ,  ethyl ether ( n' 0 . 2 7 ; a 0 . 0 0 ;  � 0 . 4 7 )  

and chloroform ( n' 0 . 5 8 ;  a 0 . 44 ; � 0 . 0 0 ) , have signi f i cant ly 

d i f f e rent e f f e c t s  on the propert ies of the s i l i ca surface . 

Though chloro form has a higher dipolarity-pol ari zabi l it y ,  

ethyl e ther has a h igher elut ion st rength . Ethyl et her may 

have a st ronger int eract ions with the s i l ica surface because 

of  the hi gh hydrogen- bonding acidity and low hydrogen- bonding 

bas i c i ty o f  t he s i l ica  surface . Thi s is cons istent with the 

observat ion that on s i l i ca , Snyder ' s e luent st rength parameter  

[0 for  e t hy l  e t her i s  higher than the one for chloroform . 121 

Spange e t  a l . a l so found that solvent s with hydrogen - bonding 

bas i c i t y  can modi fy t he surface propert ies of s i l i ca . 125 

As me a sured by Spange et  al . ,  n' , a , and � values for 

s i l i c a  in 1 , 2 - dichloroethane are 0 . 5 , 1 . 4 1 ,  and 0 . 0 6 ,  

respe c t ively . l lS Us ing a d i f ferent dye f rom the measurement s 

in 1 , 2 - d i chl oroethane , a n' value of 1 . 5  was obt ained for 

s i l ica  in cyc l ohexane . l l 5 Spange et al . attributed the highe r 

n* val ue for s i l ica  in cycl ohexane and all  the higher n' values 

measured for s i l ica in t he l i terature to hydrogen - bonding 

interac t ions between t he n' dye s and surface s i l anol s .  As 

observed i n  t h i s  work , however ,  solvent s may s ign i f icant ly 

modi fy t he dipo l a r i ty-polari zabi l i ty of s i l i ca . It  i s  very 
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l ikely t hat i n  1 , 2 - di chloroe thane ( 7f* 0 . 8 1 ;  c¥ 0 . 0 0 ;  (3 0 . 0 0 ) , 

the surf ac e  dipo l a r i ty -pol a r i z ab i l ity  o f  s i l ica  is  

s i gn i f i cant ly reduced . 

3 - 5  Conc lus ion 

U si ng t he solvatochromic compar i son method , a high 

dipo l a r i  t y - p o l a r i zabi l i ty ( 7f* 1 . 1 8 2 ) , a high hydroge n - bonding 

acidity ( c¥  0 . 9 8 7 ) , and a low hydrogen- bonding bas i c i ty ( {3  < 

0 . 3 5 )  we re obta ined for s i l ica  in n- hexane . The 7f* and c¥ 

va lues for s i l ica are not af fected by the addi t ion of  

chlorofo rm i nto  n - hexane . The hydrogen -bonding bas i c i ty o f  

s i l i ca , howeve r ,  de creases with increas ing amount o f  

chloroform i n  n - hexane - chlorof orm mixtures . In n- hexane - ethyl 

ethe r  mixture s , t he 7f* value for s i l ica  decreases with  

increas i ng content o f  e t hyl e t he r . The decrease in 7f* and {3 

values for s i l ica with  increas ing amount o f  t he polar solvent 

component may resul t f rom the compe t i t ion between t he polar 

solvent and the solvatochromic dye s for t he st rong adsorpt i on 

s i t e s  on s i l ica . Such change s in t he solvatochromic 

parame t e r s  f o r  t he surface o f  s i l i ca should be cons idered in 

pred i c t ing solute retent ion . 



Chapt e r  4 

Sol vent - Solute Interac t ions in B inary Solvent s 

Studied by Target Factor Analys i s  

o f  E l e c t roni c  Absorpt ion Spec t ra of Solvatochromic Dye s 

9 0  



4 - 1  I ntroduct ion 

9 1  

I nte ract ions be tween a solute and a binary solvent 

mixture are compl icated by solute - so lvent interact ions , 

solvent s e l f - int erac t ions , and solvent mutual - interact ions . 

E l e c t roni c  absorpt ion spectra o f  the solute can be used to 

e luc idate solvent - solute interac tions . It i s  very d i f f icult , 

however ,  to  c haracterize  the di f ferent interact ions 

i ndividua l ly . 

Factor analys i s  has been widely used to solve various 

complex probl ems in  almost eve ry branch of  chemi stry . Us ing 

f ac t or analys i s , the number o f  sign i f i cant factors and the 

abs t ract s i gni f ic ant factors can be obt ained . The abst ract 

s igni f i cant f actors can then be targe t - trans formed to ident i fy 

potent ia l l y  s i gni f i cant factors . The e f fects  of  pure solvent s 

on var i ous phys i cochemical propert ies  have been studied by 

factor analys i s . 1 2 6 - 12 8  Casassas et al . have studied solvent 

e f f e c t s  on the wave length shi ft  of d i f f e rent so lvatochromic 

dye s and on pKa value s o f  several acidic compounds in dioxane 

wate r  mixtures by f actor analys i s  . 1 2 0 , 12 9 Macroscop i c  

parameters , such as mol e  fract ion and dielectric  constant , and 

microscop i c  parameters , such as ET ( 3 0 )  values of sol vent 

pol ar i ty and 

repre sent i ng 

bas i c ity , and 

solvatochromic parameters Ci. ,  {3 ,  and 

hydrogen - bonding 

dipo larity o f  

acidity , hydrogen - bonding 

solvent s ,  respective l y ,  we re 
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target t e s t ed t o  evaluate the i r  sign i f i cance a s  phys i cal  

factors . The res ult  is  not t r ivial because t he authors were 

abl e  to de te rmine that the shi ft of the absorpt ion maximum 

wave l engths of one o f  the n* dyes , N-methyl - 2 - n i t roani l ine , i s  

s igni f i cant l y  a f f e cted by the � and $ values of  the solvent 

mixture s . The f i nding is cons i s t ent with resu l t s  in an 

ear l i e r  report4 2 and with our resu l t s  in Chapter 3 .  Though 

factor analys i s  has been used to analyze the shi ft  of the 

absorpt ion maximum wave lengt h ,  it  has not been appl ied to  

study the comp l e t e  spe c t ra . 

I n  t h i s  research , targe t factor analys i s  w i l l  be used to 

study solvent e f fe c t s  on the e l e ct roni c  absorpt ion spectra of  

N , N - dime t hy l - 4 - n i t roan i l ine in mixtures of  n- hexane and ethyl 

ethe r . Both so lvent - solute inte ract ions and solvent - solvent 

interact i ons are c i ted to  explain the dependence of solute 

spectra on the so lvent compo s it ion . 

4 - 2  Exper imenta l  

N , N - Dimethyl - 4 - ni t roan i l ine was purchased f rom Kodak 

( Roche s t e r , NY ) . E t hyl ether and n- hexane are 

spect rophot ome t r i c  grade . Al l e l e c t ronic absorpt ion spectra 

were obt a ine d  on a Shimadzu UV- 2 6 5  spect rophotome t e r . 

Solut ions o f  N , N- dime t hyl - 4 - n i t roanil ine at 1x1 0 - 4 M in 

each o f  the n - hexane - et hyl et her mixtures with 1 0 0 , 8 0 ,  6 0 , 
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4 0 , 2 0 , 1 0 , 8 , 6 , 4 , 3 , 2 , 1 , 0 . 5 , and 0 %  ( v/v )  of  e t hyl 

e t he r , c a l l ed mixtures 1 ,  2 ,  and 14 , re spec t ive l y ,  were 

prepared , which wi l l  be referred to as solut ions 1 ,  2 ,  

and 1 4 , respec t ively . Electronic absorp t i on spe c t ra for t he 

14  solut i ons were obt ained in t he wave length range of 2 5 0  nm 

to  5 0 0  nm a t  an interval of 0 . 1  nm . 

4 - 3  Target Factor Analys i s  

4 - 3 - 1  Data Mat rix 

As a f i rs t  approximat ion , an e l ec t roni c  absorpt ion 

spe c t rum o f  a dye in a binary solvent mixture can be 

cons idered a s  a l i near combinat ion of the spectra of  the dye 

in each o f  t he two pure so lvent component s .  Spec i f i cal l y ,  t he 

absorbance value o f  a dye in a binary solvent mixture can be 

cons idered a l i near comb inat ion of the absorbance value s of  

the dye in each o f  two pure solvent component s , i . e . , 

( 4  - 1 )  

where l\n ,  A1 , and A2 repre sent the absorbance of the dye 

solut i on in the mixture , pure solvent 1 ,  and pure solvent 2 ,  

respect ive ly , A represents the wave lengt h ,  and C 1  and c2 are 

coe f f i c ient s ,  depending on the composit ion of the mixture . 

The da ta  ma trix for this  research i s  bu i l t  up by taking 

t he absorbance va lues of each of the 14 spe c t ra as a column , 
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(4  - 2 )  D = [�l �2 
where �l ' �2 ' and �14 are the absorbance values o f  the 

spe c t rum of N , N- dimethyl - 4 - nit roan i l ine in mixtures 1 , 2 ,  . . .  , 

and 1 4 , respect ively . The dimensions of  the data mat rix are 

2 5 0 0x14 . The wave lengt hs at the maximum absorbance for the 14  

solut i ons a re  l i sted in Table  4 - 1 . The spectra of  solut ions 

1 ( in e t hyl e t her ) , 7 ( in 1 0 %  ethyl ethe r ) , and 14 ( in n 

hexane ) are shown in Figures 1 ,  2 ,  and 3 ,  respect ively . 

4 - 3 - 2 S i ngular  Va lue Decomposit ion 

S i ngul a r  value decompos it ion can decompose a data mat rix 

into e igenve ctors , 

D USV ' 

where U and V are orthonormal matrices , 

( 4  - 3 )  

composed of  

e igenvectors o f  the row - factor space and e igenvectors of  the 

column - f actor space , respectively . S is  a di agonal mat rix 

whose  d iagonal e l ements are the square roots of  the respective 

e igenva l ue s . S i ngular value decomposit ion was performed for 

the data matrix  i n  MAT LAB , us ing the command 

[u , s , v] svd ( D , O )  

The f i rst column in U ,  represent ing the most sign i f i cant 

e igenvector ( i . e . , abs t ract facto r )  of the row- factor space , 

i s  shown a s  t he sol id curve in Figure 4 - 4 . It  can be 

cons i de red the average of the 14 spectra . The second most 
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Tab l e  4 - 1 .  Wavel ength a t  t he maximum absorbance ,  Amax , for 
N , N - dime t hyl - 4 - n i t roani l i ne in mixtures o f  n- hexane and ethyl 
ether 

% Ethyl e t he r  ( v/v)  Amax ( nm )  

0 3 5 1 . 7  

0 . 5  3 5 2 . 2  

1 3 5 2 . 7  

2 3 5 2 . 9  

3 3 5 3 . 0  

4 3 5 3 . 4  

6 3 5 3 . 6  

8 3 5 4 . 3  

1 0  3 5 4 . 5  

2 0  3 5 6 . 8  

4 0  3 6 0 . 3  

6 0  3 6 3 . 4  

8 0  3 6 5 . 7  

1 0 0  3 6 8 . 1  
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Figure 4 - 1 . E l e c t ron ic absorp t i on spect rum of N , N - dimethyl - 4 -
nit roan i l ine i n  e t hyl ether . 
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F igure 4 - 2 . E l e c t roni c  absorpt ion spe ct rum of N , N- dimethyl - 4 -
n i t roani l ine in an n - hexane - e thyl ether mixture containing 1 0 %  
(v/v)  e t hyl ethe r . 
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Figure 4 - 3 . E l e c t ronic absorption spect rum of  N , N - dimethyl - 4 -
n itroan i l ine in n - hexane . 
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Figure 4 - 4 . The f i rst ( so l i d  curve ) and the se cond ( dashed 
curve ) most s ign i f i cant abstract factors of  the row- factor 
space .  
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s igni f i cant abst ract factor , shown as the dashed curve in 

Figure 4 - 4 ,  was obta ined f rom the re s i due after  extrac t i ng t he 

most  s i gn i f i cant factor . The third , fort h ,  and f i f t h  most 

s i gni f i cant abs t ract factors are shown in Figure 4 - 5 ,  4 - 6 ,  and 

4 - 7 ,  respec t ively . There are t o t a l ly 14  abs t ract factors . 

Only t he f i r s t  n l a rges t  abs t ract factors are requ i red t o  

account for t he data  within expe rimental error . The other 

abs t rac t f ac tors only account for experiment al error . 

4 - 3 - 3 Numbe r  o f  S igni f icant Factors 

The number of s igni f i cant factors can be det e rmined by a 

met hod based on compari son between the est imated experimental 

error and t he re s i dual s t andard deviat i on ( RSD )  and an 

emp i r i c a l  met hod us ing the factor indicator funct ion deve loped 

by Ma l inowsk i  . 1 2 6 RSD mus t  be obta ined f i rst i n  bot h  me t hods . 

RSD can be c a l cu l a ted by 

c 
( 4  - 4 )  

RSD j =n + l  
r ( c - n )  

whe re r ,  c ,  and n are t he number o f  rows i n  t he ma t r ix D ,  t he 

number o f  co lumns in t he matr ix D ,  and the number o f  

signi f i cant f a c t ors , respectively . Aj is a n  e i genvalue , 

A j = s ( j ,  j ) . s ( j ,  j )  ( 4  - 5 )  

where s ( j ,  j )  i s  t he j t h  diagonal e l ement in matrix S in 
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equat i on 4 - 3 . 

The emp i ri c a l  me t hod us ing the factor indicator func t ion 

( IND ) was explo red f i rst . IND i s  de f ined as 

I ND = RSD/ ( c  - n )  2 ( 4 - 6 )  

I n  a p l ot o f  I ND vs . t he number o f  factors cons idered n ,  the 

n value at t he minimum I ND i s  cons idered t he number of  

s ign i f i cant f ac t ors . With a MAT LAB program ( see Appendix A ) , 

whi c h  i s  adapted f rom a program descr ibed by Ma l inowski ,  126 t he 

plot  i s  obt a ined , as shown in Figure 4 - 8 . From the plot it  

can  be see t hat t he number o f  s igni f i cant factors i s  4 .  

For t he method based on compari son between the est imated 

expe rimen t a l  error and RSD , t he expe rimental  error must  be 

e s t imated f i r s t . Four f l at part s of  spectra are used to  

e s t ima te  t he experimental error . Among them two are  f rom t he 

short wave l e ngth region and the other two are f rom the long 

wave l ength region . The experimental error i s  est imated to  be 

in t he range of 0 . 0 0 0 5  to 0 . 0 0 1 5  absorbance uni t , which i s  

same a s  e s t imated by Bulme r  and Shurve l l . 13 0  A plot of RSD vs . 

t he number o f  f act ors cons idered n was obt ained with the 

MAT LAB p rogram , as s hown in Figure 4 - 9 . When the number of  

sign i f i c ant  f actors i s  chosen as 4 ,  RSD ( 0 . 0 0 0 5 )  i s  at the 

lower bound o f  the e s t imated experimental error . 

Based on t he resu l t s  f rom t he two met hods , the number of  

s i gn i f i cant f ac to rs i s  chosen as 4 .  

The var i ance , which measures the import ance of  an 
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abs t ract  factor , can be obt ained f rom the e igenvalues , 

va r i ance 
A 

__ ._7 -

( 4  - 7 )  

The var ianc e s  for the 1 s t , 2nd ,  3 rd ,  and 4 t h  most  

s igni f i cant f ac tors account for  8 1 . 7 2 ,  1 5 . 5 6 ,  1 . 7 0 ,  and 0 . 2 9%  

o f  t he total vari ance , respect ive ly . The cumulat ive vari ance 

for t he f i r s t  3 large st factors accounts for 9 8 . 9 8 %  of  t he 

t o t a l  var iance . To concentrate on the ma j or factors , the 4 t h 

mos t  s igni f i cant fac tor , though stat i st ically s igni f i cant , i s  

not cons i de red in t he fol lowing target t rans f ormat ion . 

4 - 3 - 4 Target Tran s forma t i on 

To our knowl edge , there are no bas ic factors , i .  e .  , 

phys i cochemical  parame t ers , sui table for this  probl em . Targe t 

t rans forma t ion based on typical  factors , i . e . , data columns in 

the original data  mat rix , was per formed . 

As a f i rs t  t ry ,  the spe c t ra of  solut ions 1 and 14  were 

chosen as t yp i c a l  f ac t ors because t he spe c t ra of t he other 

solut ions can be cons idered as l inear combinat ions o f  these 

two spe c t ra , as  a f i rst approxima t i on . The third typ i cal 

factor i s  a spec t rum of  one of  t he other solut ions . The 

t ransf orma t i on vector for each factor is obt ained by 

t j = S ( 1 :  3 , 1 : 3 )  - 2 . (U ( : , 1 :  3 )  . S ( 1 : 3 , 1 : 3 )  ) , . D ( : , j )  ( 4  - 8 )  



The t rans f o rma t i on mat r i x  i s  formed by 

T = [ t 1 t j  t 14 l 

The key combinat ion set i s  formed by 

Dkey = [ D ( : , 1 )  D ( : , j )  D ( : , 1 4  ) 1 

The reproduced data  matrix i s  obt a ined by 

Dr = Dkey ' T· 1 . V ( : , 1 : 3 )  , 

The re s i dual  e rror mat r i x  

E = D r  - D 

1 0 8  

( 4  - 9 )  

( 4  - 1 0 )  

( 4  - 1 1 ) 

( 4  - 1 2 )  

The t h i rd typ i cal  factor i s  chosen when t he square o f  the 

norm of  mat ri x  E ,  i .  e . , [[efj , i s  minimal . From the plot of  

[[eL vs . j ,  as s hown in Fi gure 4 - 1 0 ,  the spe ct rum of solution 

1 1  i s  cons idered t he be st choice for the t h i rd factor . 

An a l te rnat ive approach ,  whe re the spe c t ra of solutions 

1 1  and 14 were c hosen as the f i rst two factors , was attempted . 

From F i gure 4 - 1 1 t he spect rum o f  solut ion 5 i s  chosen as the 

thi rd f ac t or . 

A t h i rd approach , the spectra of solut ions 5 and 1 1  were 

chosen a s  t he f i rs t  two factors . From Figure 4 - 1 2 the 

spec trum o f  solut ion 1 4  i s  chosen as the third factor . Again 

the spe c t ra o f  solut i ons 5 and 1 4  were chosen as the f i rst two 

factors . From Fi gure 4 - 1 3 the spe ctrum of solut ion 1 1  i s  

st i l l  c hosen a s  t he t h i rd factor . 

The best  key combina t i on set i s  composed of the spec t ra 

of solut ions 5 ,  1 1 , and 1 4 , which cont ain  2 0 , 2 ,  and 0 %  (v/v)  

of e t hyl e t he r , respect ive ly . 



1 0 9  

0.5 

0 

----
� :� 

-0.5 

� 
� - 1  � � 
� 
£ 

- 1 .5 

-2 
1 3 5 7 9 1 1  1 3  

F igure 4 - 1 0 . Square o f  the norm of  the residual error mat rix 
E v� . the choice  o f  t he third signi f i cant factor when the 
spectra in mixtures 1 and 1 4  have been chosen as the 
sign i f i cant f actors . 



1 1 0  

o �----------�--------------� __ 

-0.5 

-
(\1 '-.-
Q) -1  � 
� 
-
C) 
.2 - 1 . 5 

_2 L-------------------------------------� 
1 3 5 7 9 1 1  1 3  

j 
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From t he target factor analys i s  re su l t s  i t  can be 

concl uded that a l i near combinat ion of the spe c t ra of N , N 

dime t hyl - 4 - n i t roan i l ine i n  n- hexane and ethyl e t her  i s  not a 

good mode l for t he spec t ra in mixtures of  n - hexane and ethyl 

e t he r . I n  mixture s o f  n- hexane and ethyl ethe r ,  the dye may 

exist  in t hree d i f ferent microenvi ronments . The t hree 

di f f e rent microenvi ronments may be ass igned to  n- hexane , e t hyl 

e t he r  mol ecules  not interac t i ng wi th  other et hyl e t her  

mol e c u l e s  ( segregated ethyl ether  mo lecules ) ,  and ethyl e ther 

mole cule s  interac t i ng with other  ethyl e t her  mol ecules ( et hyl 

e t he r  c lu s t e rs ) . E t hyl ether  mol ecules pre f e r  to interact 

among t hemse l ve s , and the dye is pre ferent i a l ly solvated by 

e t hyl e t he r  mol ecul es , as evidenced by the more rap i d  increase 

of  n* values wi t h  t he content o f  ethyl ether  when t he content 

of e t hy l  e t he r  i s  very low , as described in Chapt er  3 .  

There f ore , t he s e cond microenvironment may only exi s t  in  a 

mixture o f  n - hexane and ethyl ether  with a very low content of  

e t hyl e t he r . According to th es e  argument s ,  the f irst two 

typ i ca l  f ac tors should be the spect rum of  the dye in n- hexane 

and t he spec t rum of the dye in a mixture of n- hexane and e t hyl 

e t he r  w i t h  a very low content o f  ethyl e t her . When the 

cont ent of  e t hyl e t her i s  above certain value , most  of  t he 

e t hyl e ther mol ecules exist as ethyl e t her  c lusters . Any one 
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o f  the spectra o f  the dye i n  the mixtures of  n- hexane and 

ethyl ether wi t h  t he content of ethyl ether  above that value 

can be t aken as  t he t h i rd typical  factor , wi thout chang ing t he 

reproduced data s igni f i cant ly . The f l atness of  t he curve in  

Figure 4 w i t h  t he j value f rom 1 to  7 ( 1 0 0 %  to 8 %  (v/v )  of  

et hyl e t he r )  conf i rms thi s  argument . 

Evol v ing factor analys i s , 1 2 6 i .  e . , factor analys i s  of  a 

s e r i e s  of  data mat r i ces  constructed by suc cess ively adding 

spectra to the previous matri x , may be very useful to observe 

the e f f e c t s  of the e t hyl ether cont ent on the nature of n 

hexane - et hy l  e ther mixtures . Evolving target factor analys i s  

both in  t he d i re c t ion o f  increas i ng ethyl e t he r  cont ent and i n  

t he d i re c t i on o f  decreas ing et hyl content may be performed t o  

further understand solvent e f fe c t s  and test  the above 

argument s .  

I f  the above arguments about the nature of n - hexane - et hyl 

e t he r  mixtures are correct , target factor analys i s  of  t he 

spe c t ra of  other n° dye s in the mixtures should a l so give same 

or s im i l a r  re sul t s . 

The e rror i n  t h i s  experiment may come from inst rumental 

measurement s ,  impuri t i es in the dye , and impurit i e s  in  the 

solvent . Some o f  t he error sources , e . g . , t race amount s of  

wat e r , may resul t in non - random di sturbance of  the spectra of  

t he dye , requ i ri ng addi t i onal s igni f i cant factors . 
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Four s igni f i cant fact ors were found in factor analys i s  o f  

t he spe c t ra o f  N , N - dime t hyl - 4 -ni t roan i l ine in mixtures of  n 

hexane and e t hyl e t he r . The l arge st three s igni f i cant factors 

account for  9 9 %  o f  t he total variance in t he original data 

mat ri x . The pos s ib l e  reason for this  phenomenon i s  t hat  t here 

may be t hree microenvi ronments in a mixture of  n - hexane and 

e t hyl  e ther , including n - hexane , ethyl e t he r  molecules not 

interact i ng w i t h  other e t hyl ether mol ecul es  ( segregat ed e t hyl 

e ther mol e c u l e s ) ,  and ethyl ethe r  mol ecules interact ing w i t h  

o t h e r  e thyl e ther mol e cules  ( et hyl ether c lusters ) . 



Chapter 5 

Wet t ing and Wet t ing Hystere s i s  

o f  Alky l  Bonded S i l i cas in Organic -Water Mixtures 

1 1 6  
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5 - 1  I n t roduct ion 

When a l kyl bonded s i l ica is in cont act wi t h  the e luent , 

a sol id/ l i qu i d  boundary i s  formed . On t he mol ecul ar scale , 

however ,  i t  i s  more appropriate to re f e r  to t he boundary as an 

inte rpha se  region , 53 . 1 3 1  which has a f ini te width and is 

composed of t he bonded a l kyl chains , residual s i l anol groups , 

and sorbed e l uent sol vent molecules . The composit ion and 

width of the interphase region wi l l  depend on t he e luent 

compos i t i on . 

The compo s i t i on and propert ies  of  the int erphase region 

are det e rmined by interact ions be tween alkyl bonded s i l i ca and 

the e l uent on the mol ecular leve l , including cha in- chain 

int e ract i ons , cha i n - e l uent interact ions , and re sidual s i l anol 

e l uent i nte ract ions . 56 . 5 7 Wet t ing refers to the macros copic 

man i f e s t at i ons o f  such mo lecular i nt eract ions . The wet t i ng of  

bonded a l kyl phases may st rongly a f fect various 

chroma tographic behaviors o f  t he bonded phase s ,  including 

column e f f i c i ency , 6 8 dead volume , 132  solute retent ion , 59 . 6 2 , 63 

column equ i l ibrat ion t ime , 59 , 6 9  interact ions between residual 

s i l ano l s  and bas ic solut e s , 6 9 adsorpt ion of  pa i ring agent s in 

ion p a i r  chromatography , 1 3 3 and sol vent migra t i on rate in 

reversed-phase thin  layer chromat ography , 75 

Though t he wet t ing of  bonded alkyl phases has been 

studied for a long t ime , a c l ear and complete  picture of 
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we t t ing under chromatographic cond i t i ons has yet to appear . 

Mos t  wet t ing experiments for alkyl bonded phases were 

conducted on alkyl der ivat ized s i l ica  plates and cap i l l ary 

inne r surfaces ,  instead of octade cyl s i l ylated s i l ica 

part i c le s . None o f  the me thods that have been app l ied to t he 

s tudy o f  t he wet t i ng of  planar surfaces can be used to study 

porous part i c l e s . I n  our pre l iminary exper iment s ,  i t  wa s 

found t hat alkyl bonded s i l i ca in eluent s with d i f f erent 

compo s i t ions s howed d i f ferent degrees of transparency . 134 

The re f ore , opt i c a l  t ransmittance of  l ight through alkyl bonded 

s i l ic a  packed in a f l ow c e l l  was used here to study t he 

wet t ing o f  t he stat ionary phase . Bes ides opt i cal 

t ransmi t t ance measurement s ,  direct wett ing tes t s ,  dipol arity

pol ar i zabi l i ty measurement s based on t he solvatochromic 

compari son met hod , and chromatographic measurement s were a l so 

performed t o  s tudy t he we tt ing of t he stat ionary phase . I n  

direct wet t i ng t e s t s , stationary phase material s were brought 

into conta ct  w i t h  t he e luent to observed t he amount of the 

immersed ( or wet t e d )  stat ionary phase materials  and t he amount 

o f  f loat ing ( or nonwetted )  stationary phase material s .  I n  

dipo l ar i t y - polar i z ab i l i ty measurement s ,  a solvatochromic 7[* 

dye was app l ied to t he interphase region to observe t he 

dipo l ar i t y - po la r i zab i l ity in this  region . Chromatographic  

measurement s  were carried out to corre late t he we tt ing and t he 

ret ent ive behavior of t he stationary phase . 



1 1 9  

I n  t h i s  researc h ,  the we t t i ng o f  various types o f  alkyl 

bonded s i l i c a  was studied by me thods c i ted above . The e f fects  

of  t he organi c  solvent , bonding dens i t y ,  part i c l e  s i z e , pore 

s i z e , and c ha i n  l ength on we tt ing were invest igated . The 

e f f e c t s  of wet t ing on column equ i l ibrat ion t ime and solute 

retent i on we re s tudied . The nature of the wet t i ng behavior o f  

alkyl bonded s i l icas  was dis cussed . 

5 - 2  Experimental  

5 - 2 - 1  Mate r i a l s  and  Chemicals  

D i f f e rent types o f  s i l ica  and alkyl bonded s i l ica  used in 

t h i s  researc h ,  the i r  characterist ics , and t he i r  suppl iers are 

l ist e d  in Tab l e  5 - 1 . N , N- Diethyl -4 - n i t roan i l ine was obt a ined 

Frinton Laboratories  ( Vine land , NJ , USA ) . MeOH and ACN of  

HPLC grade w ere  f rom EM  Sc ience ( Gibbs town , NJ) THF of  HPLC 

grade was f rom Fi sher Scient i f i c  Company ( Fair  Lawn , NJ ) . 

5 - 2 - 2  Opt i c a l  Transmi ttance Measurement s 

Al l opt i c a l  t ransmittance measurement s were made on a 

Shimadzu UV - 2 6 5  spectrophotometer equ ipped with an int egrat ing 

sphere a t t a c hment . A f l ow c e l l  with a path length of  1 mm was 

packed w i t h  about 0 . 0 5 g of the stat ionary phase of int erest , 
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Tabl e  5 - 1 . D i f ferent types of  s i l ica and alkyl bonded s i l i ca , 
and t he i r  c harac t e r i s t i c s  

Pore Surface 
Packing Alkyl S i ze ( /l m )  s i z e area % C End- Other Producer 

mate r i a l s  bonded and shape (A )  ( m ' / g )  ( w / w )  capping characteri s t i c s  

Tian j i n No . 2 
HDG C1eH31 C 1 8  1 2 5 - 1 5 0  2 5 0 - 4 0 0  2 4 . 0 9 Chemi c a l  Manu f acturer 

(Tianj i n ,  China) 

LiChroprep 
RP- 1 8  C 1 8  2 5 - 4 0  

E .  Merck 
LiChrosorb bare (Darmstadt , Germany) 

S I  1 0 0  s i l i c a  3 0  

monomeri c ;  
Sphe r i s o rb C 1 8  5 8 0  2 2 0  7 part i a l  bonding density 

OOSl sphe r i c a l  1 .  4 7  Ilmol/m' 
Phase Separations 

monomeri c ;  (Oeeside , UK) 
Spherisorb C 1 8  5 8 0  2 2 0  1 2  yes bonding density 

00S2 sphe r i c a l  2 . 7 2 Ilmol/m' 

SUPELCOS 1 L  5 pore volume SUPELCO 
LC - 1 8 C 1 8  sphe ri c a l  1 0 0  1 7 0  yes 0 . 6  mL / g  ( B e l le f ont e ,  PAl 

5 0  
sphe r i c a l  

¥MC 2 5  pore volume 
OOS - A  1 2 0A C 1 8  sphe r i c a l  1 2 0  3 0 0  1 7  yes 1 . 0  mL/g 

1 0  
sphe r i c a l  

¥M C  2 5  pore volume 
OOS - A  2 0 0 A  C 1 8  sphe r i c a l  2 0 0  2 0 0  1 2  yes 0 . 9 5 mL/g YMC 

( W i lmington , N C )  

¥MC 2 5  pore volume 

OOS - A  3 0 0 A  C 1 8  sphe r i c a l  3 0 0  1 5 0  6 yes 0 . 7  mL/g 

YMC 1 5  monomer i c ;  pore 

Octyl 1 2 0A C 8  sphe r i c a l  1 2 0  3 0 0  1 0  yes volume 1 . 0  mL/g 

¥MC 2 5  monome r i c ;  pore 

Butyl 1 2 0A C4 sphe r i c a l  1 2 0  3 0 0  7 yes volume 1 . 0  mL/g 

¥MC 1 5  pore volume 

TMS 1 2 0 A  Cl sphe r i c a l  1 2 0  3 0 0  4 1 . 0  mL/g 



as  shown i n  F igure 3 - 5 .  
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After the stationary phase was 

equ i l ibrated w i t h  an e luent , the t ransmi ttance of the 

s t a t i onary phase / eluent sys tem at 5 5 0  nm was measured . The 

t ransm i t t e d  l ight is highly dif fuse , so an integrat ing sphere 

attachment was used for these measurement s .  

5 - 2 - 3  D i r e c t  We t t ing Te s ts  

I n  d i re c t  wet t ing t e s t s  without prewe t t ing ,  s t a t i onary 

phase  part i c l e s  were brought into cont act with an organi c 

wat e r  mixture o f  intere s t  direc t ly . A series of  3 ml -glass  

tube s w i t h  a ground glass cap  were f i l led with about 2 ml of  

organ i c - wa t e r  mixtures with di f f erent compos i t i ons . To each 

of  t he tubes was added 0 . 0 5 0  g of alkyl bonded s i l i c a . The 

tube s were c apped and shaken vigorous l y ,  then l e f t  undi sturbed 

for 24 hours t o  l e t  the part i c l e s  e i ther set t l e  to  the bottom 

o f  the t ubes o r  r i s e  above the l iquid . The amount of  the 

part i c l e s  on the bot tom o f  the tubes and the amount of  

f loat i ng part i c l e s  were observed . 

I n  d i re c t  wet t ing t e s t s  with prewe t t ing , stationary phase 

part i c l e s  were prewet t ed by organi c  modi f ier  be f ore contacting 

an organ i c - water  mixture of intere st . The procedure inc ludes 

the f ol lowing s t eps : 

1 .  A 3 ml - glas s  tube with a ground glass cap was f i l l ed 

w i t h  about 2 ml o f  organi c  modi f ier . 0 . 0 5 0  g of  
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a l ky l  bonded s i l i ca was added t o  t he tube . The tube 

was capped and shaken vigorously for 1 0  se conds . 

2 .  The t ube was l e f t  undi s turbed for 1 0  minutes to let  

t he part i c l e s  s e t t l e  to  the bot tom . 

3 .  The supernatant was removed care fully with a pasteur 

p ipet , w i t hout l e t t i ng t he part i c l e s  cont act a i r . 

4 .  About 2 ml organ i c - water  mixture of  interest was 

ca re ful ly  added al ong the wal l  into the tube without 

d i s t urbi ng t he s tationary phase part i c l e s . 

5 .  The suspens ion was s t i rred , without l e t t ing the 

part i c l e s  contact  a i r ,  to mix the residual l iqui d  

w i t h  t he added mixture . 

6 .  S t ep s  2 - 5  were repeated four t imes to  ensure t he 

comp l e t e  repl acement o f  organic mod i f ier  by the 

organ i c - water  mixture of interest . 

7 .  The amount of part i c l e s  on the bottom of  t he tube and 

t he amount of f loat i ng part i c les  were obse rved . 

8 .  The tube was capped and shaken vigorously , then l e f t  

undisturbed for 2 4  hours to  let  the part i c l e s  e i ther 

s e t t l e  t o  t he bot tom o f  the tube or rise above t he 

l iqui d . 

9 .  The amount s  of immersed and f l oat ing part i c l e s  were 

observed again . 
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5 - 2 - 4 Spe c t roscopic Measurement s 

To measure the dipol arity-pol ari zabi l ity of the 

stat i onary phas e , t he e l e c t roni c  absorpt ion spe c t ra of  a n * 

dye , N , N - d i e t hyl - 4 - n i t roan i l i ne ,  sorbed in  the stat ionary 

phase were measured a f t e r  the stationary phase was 

equ i l ibrated with  the dye solut ion in an e luent , as de scribed 

in Chapt e r  3 .  The spect roscopic  measurement s to obt ain  the n* 

values for  L iChroprep RP - 1 8  i n  Figure 5 - 3 0  were made on a CARY 

1 E  UV- V i s i b l e  spect rophotometer  equipped with a d i f fuse 

re f l e ctance a cc es sory , sett ing the bandpass to 4 nm . Al l the 

other spec t roscopic measurement s were made on a Shimadzu UV -

2 6 5  spe c t rophotome ter  equ ipped with an integrat ing sphere 

a t t a c hment , s e t t i ng the bandpass to 5 nm . The experimental 

setup for these spect roscopi c  measurement s i s  ident i c a l  to 

t ha t  for  t he opt i c a l  t ransmi ttance measurement s .  

5 - 2 - 5  Chromatographi c Measurement s 

Chromatograph i c  measurement s were per formed on a Hewle t t 

Packard 1 0 5 0  s e r i e s  l i quid chromatograph . A 1 0  x 4 . 6  mm 

LiChroprep RP - 1 8  ( 2 5 - 4 0  11m ) column was packed by Peter W .  

Carr ' s g roup a t  the Univer s i ty of Minne sot a ,  Minneapol i s . A 

7 5  x 4 . 6  mm Sphe r i sorb ODS2 ( 3 11m)  column was purchased f rom 

Me taChem Technolog i e s  ( Redondo Beach , CA ) . 
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5 - 3  Resu l t s  and D i scuss ion 

5 - 3 - 1  Opt i c a l  Transmit t ance Measurement s 

An a l kyl bonded s i l i ca/eluent system i s  composed o f  the 

s i l i c a  suppor t , t he interphase region , and t he bul k  e luent , as 

shown i n  Figure 5 - 1 . The interphase region include s res i dual 

s i l anol groups , the bonded alkyl cha ins , solvent mo lecules 

intercalated within the cha ins , and a solvent l ayer which may 

have a compo s i t ion d i f f e rent f rom the bu lk  e luent because of  

t he pre f e rent i a l  sorpt ion o f  some components in the  e luent . 

W i t h  a c hange o f  t he e luent , t he compos it ion of  t he interphase 

region c hange s , l eading to a change in t he re f ract ive index . 

There fore , the t ransmi t t ance o f  l ight through the whole system 

changes a l so . The t ransmi ttance value may be used to mon itor 

t he c hange in  the condit ion , e . g . , solvat ion or we tt ing , of  

t he int e rphase region . The thickness of  t he interphase region 

is only on t he order o f  nanometer . There fore , each interphase 

region may only have a very sma l l  e f fect  on t he t ransmit tance 

value . The e f f e c t s  o f  the interphase region are magn i f ied 

many t ime s , however ,  by the fact that l ight passes t hrough 

many interphase regions due to t he sma l l  part i c l e  s i z e , t he 

porous nature o f  t he part ic l e s , and t he sma l l  pore s i z e . The 

importance of t he interphase region can a l so be recogn i z e d  by 

i t s  volume , whic h  can be roughly est imated f rom the speci f i c  
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Figure 5 - 1 . Opt i c a l  t ransmi t t ance through an a l kyl bonded 
s i l i ca/mob i l e  phase system . The s i z es  of t he part i c l e s , 
espec i a l ly t he i nterphase regions , are exaggerated . 
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surface  area ( i n the orde r of 1 0 0  m2 /g )  and the carbon content 

of a lkyl bonded s i l i c a  ( a round 1 0 % ) . The interphase vo lume 

account s f o r  at le ast seve ral percent of the total vol ume of 

the s t at i onary phase/eluent system . 

The re f ract ive i ndex of the bulk eluent also depends on 

i t s  compos i t ion .  The transmittance change caused by the 

change in  t he re f ract ive index of the e luent can be obse rved 

by t ransmi t t ance me asurements of the bare s i l i ca ( L i Chrosorb 

8 I  1 0 0 ) / e l uent system , as shown in Figure 5 - 2 . The 

t ransmi t tance of bare s i l ica in MeOH -water is plotted aga in in 

Figure 5 - 3 , toge t he r  with the curve of the re f ract ive index of 

MeOH - wa t e r  mixtures , obt a ined us ing the data f rom re ference 

3 0 . From Fi gure 5 - 3  i t  is c l e ar that the two curves resemble 

each other and t he re i s  no s igni f i cant d i f ference in the peak 

pos it i on o f  t he two curves . The re fore , the change s in 

t ransm i t tance for t he bare s i l i ca/e luent system can be 

attributed to c hanges in the refract ive index of the eluent . 

Various phys ical  character i s t i c s , e .  g . , part i c l e  s i z e  and 

pore s i z e , may a f fec t  the absolute opt i cal transmi ttance . The 

absolute opt i c a l  t ransmittance also depends on the wave length 

used in  the measurements . The re lat ive changes in the op t i cal 

t ransm i t t ance ove r t he e luent compos it ion , not the absolute 

transm i t t ance value , howeve r ,  are most informat ive about the 

compos i t i on and s t ructure of the interphase region . 
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Figure 5 - 2 . Transmi ttance of the bare s i l ica /mob i l e  pha se 
(MeOH - wat e r , ACN - water , and THF - wate r )  system at 5 5 0  nm vs . 

mob i l e  phase compo s i t ion . 
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Figure 5 - 3 . Transmittance of the bare s i l i ca /MeOH - water 
mob i l e  phase sys tem at 5 5 0  nm vs . mob i l e  phase composit ion (A )  
and the re f ract ive index of  MeOH -water mixtures at  5 8 9 . 3  nm 
( sodium l ight ) vs . solvent composit ion ( B ) . 
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5 - 3 - 2  Transm i t t ance o f  the Alkyl Bonded S i l i ca/Eluent System 

vs . E l uent Compos i t ion 

A plot  of the t ransmittance of  HDG C1sH37 in MeOH - water 

e l uent vs . t he e luent compos i t i on i s  shown in  Figure 5 - 4 . The 

stat i onary phase was f i rst equ i l ibrated with MeOH . Then i t  

was e qu i l ibrated w i t h  e luent s contain ing decreasing amount of  

MeOH , spe c i f i ed  as  downward equ i l ibra t i on .  The percent 

t ransmi t t ance was measured once the va lue for t ransmi t t ance 

had s t ab i l i z e d  a f t e r  chang ing to a new el uent . The data f rom 

downward equ i l ibrat ion are shown by the sol id  curve in Figure 

5 - 4 . A f t e r  equ i l i brat ion with water ,  the stat ionary phase was 

equ i l ibrated w i t h  e l uent s cont aining increas ing amount of 

MeOH , and t h i s  proc e s s  is called upward equ i l ibra t i on .  The 

dashed curve i n  Fi gure 5 - 4  represent s the data f rom the upward 

equ i l ibrat i on exper iment . 

As the MeOH content , � ,  decreases ,  the curve f rom 

downward equ i l ibra t i on shows f ive dist inct regions , as shown 

in F igure 5 - 4 . I n  region 1 ,  as � change s f rom 1 0 0 %  to 5 5 % , 

the t ransmi t tance value for HDG C1sH37 increases gradual ly . 

Thi s  i s  f o l l owed by a s l i ght decrease over region 2 ,  as � 

change s f rom 5 5 %  t o  2 0 % . The changes in t ransmittance for HDG 

C1sH3 7  in t he s e  two reg ions resemble  those observed for bare 

s i l i c a  in  MeOH - water  e luent , as shown in Figure 5 - 2 . I t  can 

be concl uded t hat there i s  no drama t i c  change in  t he 
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Figure 5 - 4 . Transmi ttance o f  HDG C1sH37 in  MeOH -wat er e luent 
vs . e luent compo s i t ion . The sol id  and dashed curves were 
obt a ined f rom downward and upward equ i l ibration experiment s ,  
respect i ve l y . 
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interphase region over these e luent composit ions . I n  region 

3 ,  as � decreases f rom 2 0 %  to 1 0 % , the transmi tt ance of  HDG 

C1sH37 increases , whi ch is not consi stent the bare s i l i ca 

curve . The magnitude o f  this increase i s  sma l l . Then the 

t ransmi tt ance value de creases by a large amount in region 4 ,  

as  � decreases f rom 1 0 %  to 6 �  o , followed by a pronounced 

increase in region 5 ,  as � decreases further f rom 6% to 0 % . 

The s e  drama t i c  c hanges in the transmittance value cannot be 

caused by changes i n  the re f ract ive index o f  the e l uent . They 

mus t  be caused by s igni f icant change s in the interphase 

region . 

W it h  increas ing � ,  the curve f rom the upward 

equ i l ibrat ion experiment can be divided into four regions , 

l abe l l e d  I t hrough I V ,  as  shown in Figure 5 - 4 . I n  region I ,  

as  � increases  f rom 0 %  to 5 0 % , the transmit tance va lue for the 

HDG C1sH37 phas e  de creases gradua l ly . There i s  no dramat ic  

change i n  t he re f ract ive index o f  the interphase region . Then 

t here is an abrupt drop in the transmi ttance value over region 

I I ,  as  � increases  f rom 5 0 %  to 6 0 % , fol lowed by a sharp rise 

i n  t ransmi ttance in region I I I ,  when � increases f rom 60%  to 

6 5 % . In  region IV , as  � increases f rom 6 5 %  to 1 0 0 % , the curve 

ove rlaps w it h  the one observed 

equ i l ibrat ion experiment . 

When � i s  lowe r than 6 5 % , 

during the 

a hys tere s i s  

downward 

in the 

t ransmit t ance o f  the HDG C1sH37 phase was observed . D i f ferent 
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t ransmi t t ance values for the stat ionary phase were observed 

with  the same e l uent , depending on the eluent exposure history 

o f  the st a t ionary pha se . 

S imi l ar resul t s  we re obtained for HOG C1SH)7 in  ACN - and 

THF - wa t e r  mixtures , as shown in F igure s 5 - 5  and 5 - 6 . 

Transm i t t ance vs . composit i on plots were a l so obta ined for 

other a l kyl bonded phase s ,  as shown in  Appendix I I . Al l these 

curve s can be separated into d i f fe rent regions as in Figure 5 -

4 ,  t hough some curve s only exhibit  some o f  t he regions 

spec i f ie d  i n  Figure 5 - 4 . Al l t he reg ions are corre lat ed to or 

a s soc i at e d  w ith  d i f f e rent physical processes , based on t he 

resu l t s  f rom direct wett ing tes ts  and some other experiment s ,  

as  de sc ribed in t he f o l l owing sect ions . 

5 - 3 - 3  Theore t i c a l  Con s i derat i ons in  Di rect Wett ing Tests 

The wet t ing o f  a s t a t i onary phase part i c l e  in  an e l uent 

is a total  i mmers i on o f  t he sol i d  part i c l e  in  a l i qui d ,  i . e . , 

a sol i d /vapor interface i s  repl aced by a sol i d / l iquid 

interface . The unders tanding of such a process is instruct ive 

to e lu c i da t e  t he proces s  of interest in l iquid chromatography , 

swi tching f rom one mob i l e  phase to another mob i l e  phase . A 

contact ang l e  o f  less  than 9 0 °  i s  requ ired for t he whole  

wet t ing process  t o  be  spontaneous . For an ideal  solid  cube 

part i c l e  as s hown in Figure 2 - 2 , the whole wett ing process i s  
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Figure 5 - 5 . Transm i t t ance o f  HDG C1sH37 in ACN - water e luent 
vs . e luent compos i t ion . The sol id and dashed curve s were 
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Figure 5 - 6 . Transmit tance of HDG C1sH37 in THF - water e l uent 
vs . e luent c ompos i t ion . The sol id and dashed curve s were 
obta ined f rom downward and upward equ i l ibrat ion experiment s ,  
respec t ive l y . 
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composed o f , in  orde r , adhe s ional wett ing , immers ional 

wet t ing , and spreading we tt ing . The who le  we tt ing process  for 

a real s t a t i onary phase part i c l e , howeve r ,  is a combinat ion of 

adhe s ional we t t i ng ,  immersional wet t i ng , spreading wet t ing , 

and c ap i l l ary penetrat ion , because of  the porous nature and 

i rregu l a r  s hape of t he part i c l e . Each of  the wet t ing steps 

mus t  be spontaneous to make the whol e  wet t ing process  

spont aneous , requ i ring a contact angle  of 0 ° . Without 

sat i s fying such a cond i t i on ,  the part i c l e  tends to f l oat on 

t he surf a c e  o f  t he e l uent . Work must be done to immerse t he 

part i c l e  in  the e l uent . Such work can be provided by shaking 

or s t i rring t he suspens ion . I f  t he work requ i red i s  of  a very 

sma l l  magni tude , thermal convec t ion and regular room vibra t i on 

may cause the part i c l e  to become immersed . 

I n  t he above di scuss ion , gravitational force has not been 

cons idered . For an ideal sol id bal l  of  radius r and density 

ds , with exa c t l y  hal f  o f  t he ba l l  above a l iqu id of  dens i ty dL 

and surf a c e  t ens ion y� , as shown in Figure 5 - 7 ,  t he total 

upward force is  

F u = - yLV . cos e · 2  7Tr ( 5  - 1 )  

The downward force equa l s  to the we ight of  the bal l minus the 

we i ght of the displa ced l i qu i d ,  

Fd = ( 4 / 3 ) 7T · r 3 •  ( ds - 0 . 5 · dL ) · g  ( 5 - 2 )  

The ratio  o f  the upward force f rom surface tension to t he 

grav i t a t ional force i s  



F igure 5 - 7 . F l oatat ion o f  a so l id ba l l  on a l iquid . 
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( 5 - 3 ) 

subs t i tut i ng values typical  in RPLC , rLV 
0 . 0 7 2 7 5  N/m ( water at 

2 0 ° C ) , f) 9 3 ° , 7 9 r 5 11m , ds 2 2 0 0  kg/m3 ( fused quart z ) , dL 9 9 8 . 2  

kg/m3 ( wa t e r  at  2 0 ° C ) , and g 9 . 8  m/s2 into equat ion 5 - 3 ,  a 

rat i o  o f  1 .  4 x 1 04 i s  obt a ined . Even with a contact angl e  

very c l os e  t o  9 0 ° ,  e . g . , 9 0 . 0 1 ° , t he rat io i s  s t i l l  4 7 . These 

c a l c u l a t i ons indicate t hat for part i c l e s  with t he magni tude of  

the i r  s i ze typ i c a l  in HPLC , t he cont r ibut ion of  gravitat ional 

force on the immer s i on o f  the part i c l e s  into the e luent is in 

mos t  cases  negl igible . 

The contact angle  has no direct bearing in l iquid 

c hromat ography . The mas s  trans fer between the e luent and t he 

s t at i onary phase i s  a f f ec ted by t he i nterfacial  tens ion rSL . 

According t o  Young ' s equat ion , however ,  rSL 
can be obtained by 

knowi ng t he contact angle . From wett ing t e s t s  of  t he 

stat i onary phase part i c l e s , i t  is  pos s ible to obt ain t he 

e l uent compo s i t ion at whi c h  t he contact ang l e  becomes larger 

t han 9 0 ° . At t h i s  point , rSL 
starts to be large r t han t he 

surface t e ns i on o f  the sol i d ,  r�
· 

5 - 3 - 4 D i r e c t  We t t ing Te sts  without Prewet t ing 

F igure 5 - 8  s hows the resul t s  f rom direct wet t i ng tests  

wit hout prewe t t ing for YMC ODS -A 1 2 0A ( 2 5  11m ) in ACN-water 

mixture s . Exper imental observat ions are noted as fol l owed : 
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0/0 ACN 

Figure 5 - 8 . Octadecyl s i lylated s i l i ca ( YMC ODS - A  1 2 0A ,  2 5  �m ) 
immersed i n  and f l oated on ACN- wate r  mixture s . 0 . 0 5 0  g o f  ODS 
was added to each tube . The number below each tube indicates 
% ACN ( v/ v ) . 
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I n  2 3 %  and 2 4 %  ACN ( v/v)  aqueous mixture s , only a minut e 

amount o f  t he ODS phase i s  on t he bot tom o f  t he tube s . Al l 

the rema i n i ng ODS part i c l e s  f l oat on the surface o f  t he ACN

wat e r  mixture s . 

The amount o f  imme rsed ODS part i c l e s  start s to i ncrease 

at  2 5 % ACN a t  the expense o f  the amount of f l oat ing ODS 

part i c l e s . The amount o f  immersed ODS part i c l e s  increases 

cont inuou s l y  at 2 6 % , 2 7 % , 2 8 % ,  and 2 9 %  ACN at the expense of  

t he amount o f  f loat i ng ODS part i c l e s . The amount of  f l oat ing 

ODS part i c l e s  is st i l l  cons iderabl e  at 2 8 %  ACN . At 2 9 %  ACN , 

however ,  onl y  a minute amount o f  ODS part i c l e s  s t i l l  f l oat s on 

the surf a c e  of t he ACN- water mixture . 

S t a rt i ng f rom 2 9 % ACN , there i s  no visual ly observabl e  

changes i n  t he amount o f  immersed ODS part ic l es . with  2 9 %  and 

3 0 %  ACN , t here i s  s t i l l  a minute amount. of ODS part i c l e s  

f loat i ng . 

W i t h  3 1 %  or more ACN , only a sma l l  patch o f  f i lm f ormed 

by ODS part i c l e s  i s  s t i l l  on the surface of  the ACN - water 

mixture s . A sma l l  patch o f  f i lm pers i s t s  even in pure ACN . 

From t he above we t t ing tests  i t  can be conc luded that 3 1 %  

ACN i s  requ i red t o  make dry YMC ODS -A 1 2 0A ( 2 5  �m) part i c l e s  

wet t ed . The amount o f  immersed ODS part i c l e s  change s 

s i gn i f i cant ly i n  the range f rom 2 5 %  to 3 0 %  ACN . 

Expe r imen t a l  observat ions f rom direct wet t ing t e s t s  

w i t hout prewe t t ing o n  YMC Butyl 1 2 0A ( 2 5  11m ) in ACN - water 
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mixtures a r e  des c ribed be low : 

At 3 0 %  ACN , only a very minute amount of  butyl s i l i ca i s  

imme rsed . 

At 3 1 %  ACN , the amount o f  immersed butyl s i l i ca i s  

several t imes o f  t hat at 3 0 % ACN . However ,  t he amount of  

f l oat ing butyl s i l ic a  i s  st i l l  about 10  t ime s of  t hat 

immersed . 

At 3 2 %  ACN , t here i s  a huge increase In t he amount o f  

immersed butyl s i l i c a ,  account ing f o r  about 8 0 %  of  the total 

amount o f  butyl s i l i ca . 

W i t h  3 3 %  or more ACN , the amount of  immersed butyl s i l ica 

i s  not d i s t i ngui s habl e .  At 3 3 %  ACN , the amount of  f l oa t i ng 

butyl s i l i c a  i s  s t i l l  cons iderable . At 3 4 %  ACN , t here i s  only 

a minute amount of butyl s i l i ca f loat ing . The decrease in t he 

amount o f  f loat ing butyl s i l i ca i s  very obvious f rom 3 1 %  to 

3 5 %  ACN . 

At 3 5 % or 3 6 %  ACN , the amount of  f l oat ing butyl s i l ica i s  

ins igni f i c ant , t hough a sma l l  patch of  butyl s i l ica  f i lm 

per s i st s . The experiment al  observat ions for the two tubes are 

not dist ingu i shab l e . 

D i re c t  wet t ing t e s t s  performed for YMC Butyl 1 2 0A ( 2 5  �m) 

in ACN - wat e r  mixtures indicate that 3 5 %  ACN is  requ i red to wet 

the dry butyl s i lylated s i l i ca . The amount of immersed butyl 

s i l i ca  part i c l e s  change s sign i f i cant ly in t he range f rom 3 1 %  

t o  3 4 %  ACN . 
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Using a s ingle compos it ion to de scribe the wett ing o f  

a l kyl bonded s i l ica , howeve r ,  conceals the f a c t  that part i c l e s  

o f  the s ame stat i onary phase have d i f fe rent we ttabi l i t ie s , 

indi cated by gradual changes ln the amount of immersed 

part i c l e s . A very sma l l  percentage of  part i c l e s  is  not wetted 

even in  ACN . There fore , an ideal  wett ing test shou ld be a 

curve o f  the amount o f  immersed part i c l e s  vs . the solvent 

compo s i t i on . 

We t t ing t e s t s  on YMC ODS -A  1 2 0A ( 2 5  �m) by t i t rat ing the 

ODS suspens ion in water us ing ACN as t i t rant have a l so been 

carried out . The disappearance of the f i lm formed by ODS 

part i c l e s , as de s c ribed in the l i terature , 57 . 60 never happened , 

cons i s t ent w it h  the observat ion that a sma l l  patch o f  f i lm  

pers i s t s  even i n  ACN . The same problem exists for t i t ration 

wet t i ng t e s t s  on YMC Butyl 1 2 0A ( 2 5 �m) . One solut ion i s  to 

neg l e c t  t he smal l  patch of l ow wettabi l i ty part i c l e s  in 

dete rmining t he end - point . St i l l , one must dec ide how sma l l  

t he s i z e  o f  the f i lm i s  sma l l  enough t o  j us t i fy the arrival o f  

the end - po int . There fore , the presence of  a very sma l l  

percentage o f  l ow wettabi l i ty stationary phase makes the 

de termi nat i on of the end-point in t i trat ion wett ing tests  a 

l i t t l e  subj ect ive . Bes ides  probl ems in end - po int 

det e rmina t i on ,  wet t ing hysteres i s ,  described l ater in the 

chapte r ,  a l so makes t i t rat ion we tt ing tests  l e s s  rel iable than 

direct we t t ing t es t s  using premixed organ i c - water mixture s . 
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Part i c l e s  of  t h e  same stat ionary phase have s igni f icant ly  

di f f e rent wet t ab i l i t i e s . A more homogeneous stat i onary phase , 

however , i s  pre f e rred for high separat ion e f f i c i ency . I t  i s  

pos s ib l e  to u s e  t he direct we t t ing experiment t o  separate 

part i c l e s  w i t h  d i f f e rent we t t abi l i t i es , making stat i onary 

pha ses  more homogeneous in we t t abi l i ty . 

5 - 3 - 5  Corre l a t ion between the Resu l t s  f rom Opt i c a l  

Transm i t tance Measurement s and Those from Direct Wet t ing 

Te s t s---Phys i c a l  Origin of Regi ons I I  and I I I  

To compare the resul ts from direct wett ing tests  and 

t hose  f rom opt i cal  t ransmittance measurement s ,  t he 

t ransmi t t ance vs . compo s i t ion plots for YMC ODS -A 1 2 0A ( 2 5  �m ) 

and YMC Butyl 1 2 0A ( 2 5 �m ) in ACN -wat er mixtures are shown in 

F i gures 5 - 9  and 5 - 1 0 ,  respe c t ively . 

From F igure 5 - 9  i t  i s  c lear that the composit ion range 

for drama t i c  c hanges in op t i cal transmittance in regions I I  

and I I I , 2 5 %  to 3 0 %  ACN , is  the same as the range in which t he 

amount o f  imme rsed ODS part i c l e s  changes s igni f i cant ly . 

F igure 5 - 1 0 shows that the composit ion range for the 

dramat i c  increase in opt ical  t ransmi ttance in region I I I ,  3 2 %  

t o  3 4 %  ACN , c losely resembles  t he compo s i t ion range i n  which 

t he amount of  immersed butyl s i l i ca part i c l e s  changes 

s igni f i c ant l y , 3 1 %  to 3 4 %  ACN . 
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From t h e  compari son between the resul t s  f rom opt ical 

t ransm i t t ance measurements and those f rom direct we tt ing 

tes t s , i t  can be concluded that the drama t i c  changes in 

opt i c a l  t ransmi t tance in regions I I  and I I I  are corre lated 

with i mme r s i onal we tt ing of alkyl bonded s i l ica  part i c l e s . 

5 - 3 - 6  Re l a t i on between the Dramat ic  Transmittance Changes in  

the  Downward and Upward Equ i l ibrat ion Experiments---Phys ical  

Origin o f  Regions 4 and 5 

L iChroprep RP - 1 8 was chosen to st udy t he re lat ion between 

the dramat i c  t ransm i t t ance change s in the downward and upward 

equ i l i brat i on experiment s .  The transmi ttance vs . compos it i on 

plot for  Li Chroprep RP - 1 8 i n  MeOH -water mixtures l S  shown in 

Figure 5 - 1 1 . The downward equ i l ibrat ion exper iment depi cted 

in F i gure 5 - 1 1  ended with wat er . I f  the downward 

equ i l ibra t i on expe riment ends be fore a certain region , i ,  

appears , f rom the d i s appearance of a certain region , ] ,  in t he 

fol l owing upward equi l ibrat ion experiment , i t  can be concluded 

that region ] i s  t he reve rsal of region i .  By chang ing the 

direct ion o f  equ i l i brat ion at di f f erent el uent compos i t ions , 

di f fe rent regions i n  the downward and upward equ i l ibration 

experiment s can be related to each other , if there exi s t s  a 

re l at i onship . 

W i t h  the downward equ i l ibrat ion ending at 1 %  MeOH , in 
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Figure 5 - 1 1 . Transmi ttance o f  Li Chroprep RP - 1 8 in MeOH -water 
e l uent vs . e l uent compo s i t ion . The sol id and dashed curves 
were obta ined f rom downward and upward equ i l ibrat ion 
experiment s ,  respec t ively . 
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region 5 ,  a s  s hown in Figure 5 - 1 2 ,  a l l  the 4 regions i n  t he 

upward equ i l ibrat ion experiment s t i l l  exist . The magnitude of 

t ransmi t t ance dec rease in region I I ,  howeve r ,  i s  signi f i cant ly 

sma l l e r  t han t hat in Figure 5 - 1 1 . 

W i t h  the downward equ i l ibrat ion ending at 3 %  or 5%  MeOH , 

be fore the appearance o f  region 5 ,  as shown in Figures 5 - 1 3 

and 5 - 1 4 , region I I  disappears in the fol lowing upward 

equ i l ibrat ion experiment . This  indi cates that region I I  in 

upward equ i l ibrat ion is the reversal of region 5 in downward 

equ i l ibrat i on . 

W i t h  t he downward equ i l ibrat ion ending at 6 %  MeOH , be fore 

the appe arance o f  region 4 ,  as shown in Figure 5 - 1 5 , region 

I I I  d i s appears in 

exper iment . This  

the f o l l owing 

indicates t hat 

upward equ i l ibrat ion 

region I I I  in upward 

equ i l ibrat ion is the reve rsal of region 4 in downward 

equ i l ibra t i on . 

Cons i de r i ng t he observat ion that a l kyl bonded s i l ica  

part i c l e s  become we tted in regions I I  and I I I , i t  can be 

conc luded t hat a l kyl bonded phases are becoming nonwe tted in 

reg i ons 4 and 5 .  The e luent compos it ion at the boundary 

between region 3 and region 4 ,  is therefore de f ined as the 

nonwe t ti n g  l imi t .  Corre spondingly , the composit ion at the 

boundary between region I I I  and region I V ,  is  de f ined as the 

rewe t t i ng l imi t .  
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Figure 5 - 1 2 . Transmi ttance of LiChroprep RP - 1 8 in MeOH - water 
e l uent vs . e l uent composit ion . The solid and dashed curve s 
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Figure 5 - 1 3 . Transmi t t ance of Li Chroprep RP - 1 8 in MeOH -wat er  
e l uent vs . e l uent compos i t ion . The solid and dashed curve s 
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Figure 5 - 1 4 . Transmittance of LiChroprep RP- 1 8  in MeOH - water 
e luent vs . e l uent compo s i t ion . The solid and dashed curve s 
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Figure 5 - 1 5 . Transmit t ance of Li Chroprep RP - 1 8  in MeOH -water  
e luent vs . e l uent compos i t ion .  The solid and dashed curve s 
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5 - 3 - 7  Wet t i ng o f  Dry Alkyl s i lylated S i l i c a  by Upward 

Equ i l ibra t i on---Phys i c a l  Origin of Regions I I  and I I I  

I n  e ar l i e r  t ransmittance vs . composit ion plot s , a dry 

s t a t i onary phase was f i rst equ i l ibrated wi t h  an organi c  

modi f ie r , f o l l owed by downward and upward equ i l ibra t i on 

experiment s .  As an a l t e rnat ive approach ,  a dry a l kyl bonded 

phase was f i rst equ i l ibrated with wat e r . Then t he stationary 

phase was equi l ibrated with e luent s containing incre a s i ng 

amount of  organi c  modi f i er . The transmi ttance vs . composit i on 

p lot f or L iChroprep RP - 1 8 in MeOH -water mixtures obtained in  

such a way is  s hown i n  Figure 5 - 1 6 . The curve c l osely 

resemb l e s  the upward equ i l ibrat ion curve shown in  Figure 5 - 1 1  

and can be separated i nto four regions in the same way . The 

MeOH content at which region IV start s is def ined as the 

i n i t i a l  we t t i n g  l imi t .  The init ial  wet t ing l imit  for  

LiChroprep RP- 1 8 , 65%  MeOH ( v/v)  , i s  a l it t l e  higher than t he 

rewe t t i ng l imit , 6 3 %  MeOH ( v/v) . The resu l t s  for LiChroprep 

RP - 1 8  and other ODS phases are summari zed in Tab l e  5 - 2 . 

Though SUPELCOS I L  LC- 1 8  and Spheri sorb ODS 1 are we t ted in  

wat e r  a f t e r  initial  wet t i ng with MeOH , the init ial  we tt ing of  

thes e  phases s tart i ng with the dry state  can  only be  achieved 

w i t h  an e l uent conta ining a certain amount of MeOH . 

The t ransmi t t ance o f  the L iChroprep RP - 1 8  phase in  a i r , 

i . e . , before t he introduct ion of water , i s  only 8 . 9 % ,  which i s  



40 

35 

30 
I-
'#. 

25 
./ 

/ 
20 

/ 
I / 

/ 
." 

/ 

1 5  
0 20 

/ 
" 

/ 
/ 

40 

.- - -

I 
I 

,. ..,  I 
"" 

/ , I  

I I  \1 
I 

upward 

60 

I I I  

� 

80 

% MeOH (V/V) 

1 5 3  

IV 

1 00 
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e l uent vs . e luent composit ion . The plot was obtained by 
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Tab l e  5 - 2 . Compo s i t ion range in % MeOH (v/v ) f o r  various 
regions i n  t he wett ing o f  dry oct adecyl s i lylated s i l i ca , by 
upward equ i l ibrat ion 

S t a t i onary phase I I I  I I I  IV 

L iChroprep R P - 1 8  0 - 5 8 5 8 - 6 2 6 2 - 6 5  6 5 - 1 0 0  

SUPELCOS I L  LC - 1 8 0 - 5 3 5 3 - 5 7 5 7 - 5 9  5 9 - 1 0 0  

Spher i sorb ODS1 0 - 1 0  1 0 - 1 5 1 5 - 2 0  2 0 - 1 0 0  
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muc h  l owe r t han the value i n  the presence of  MeOH - water 

mixture s . The low t ransmit tance value in air  is  caused by t he 

l arge d i f f e rence i n  t he re f ract ive index between t he 

stat i onary phase and a i r ,  as indicated later in this  chapter . 

The t ransmit t ance o f  the LiChroprep RP - 1 8  phase i n  wate r  

i s  very l ow ,  due to t he inabi l i ty to replace a l l  t he a i r  in 

the pores between and in the Li Chroprep RP - 1 8  part ic l e s . Air 

replacement w i t h  solvent by cap i l l ary act ion i s  unfavorabl e  

when the e luent cannot wet t he stat ionary phase part i c l e s . I n  

Figure 5 - 1 6 ,  t h e  increase in t ransmi t tance in regi on I may 

re sul t  f rom a gradual repl acement of air  by the e luent . As 

t he MeOH content increases , more and more air  i s  replaced by 

t he e luent . 

For a dry a l kyl bonded s i l i ca , the bonded alkyl chains 

can only interact among t hemse lves to form a hydrocarbon f i lm 

on the surface of  t he s i l i ca support . The increase in 

t ransmit t ance in  reg ion I has been attributed to t he gradual 

rep l ac ement of a i r  by t he e luent . The di srupt ion of t he 

hydrocarbon f i lm i s  l i kely to happen in regions I I  and I I I . 

Regions 4 and 5 are the reversal of regions I I I  and I I , 

respe c t ive ly . Therefore , it  can be proposed that bonded a l kyl 

chains c o l l apse to form a hydrocarbon f i lm in regions 4 and 

5 . 7 9 , 1 35  
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5 - 3 - 8  Phys i c a l  Origin o f  Regi on 3 

From t he e f f e c t s  o f  various parame ters of alkyl bonded 

s i l i ca on the t ransmi t t ance change in region 3 ,  the phys ical  

origin  of  region 3 can be  invest igated . One parameter whi c h  

s igni f i cant l y  a f f e c t s  the magni tude of the transmit tance 

c hange in region 3 is cha in length .  YMC ODS -A 1 2 0A ( 2 5  �m ) , 

YMC Octyl 1 2 0A ,  and YMC Butyl 1 2 0A were used to study t he 

chain l ength e f f e ct s . The t ransmi ttance vs . composit ion plots  

for  YMC ODS - A  1 2 0A ( 2 5  �m ) and YMC Butyl 1 2 0A in ACN - water 

mixtures are shown in F igures 5 - 9  and 5 - 1 0 . The plot for YMC 

Octyl 1 2 0A i n  ACN - water e luent is shown in Figure 5 - 1 7 . The 

t ransmi t t ance c hange in region 3 for the octadecyl , octyl , and 

butyl phase i s  1 . 3 8 ,  0 . 2 3 ,  and 0 . 0 6 ,  respe ctively . 

The most l i kely phys ical  process involved in region 3 i s  

t he deso lvat i on o f  bonded alkyl chains . I n  eluent s with  high 

organ i c  modi f i e r  concent rat ions , the bonded alkyl chains are 

solvated by organi c  modi f i e r . 8 9 In regions 4 and 5 ,  when t he 

stat i onary phase i s  not we tt ed , the bonded alkyl c ha ins 

c o l l ap s e  onto the s i l i c a  support to form a hydrocarbon 

f i lm . 7 9 , 1 35 The re fore , a de solvat ion process should be involved 

in region 3 ,  j ust bef ore the col lapse of bonded alkyl chains . 

More organi c  modi f ie r  i s  l i kely to be enriched in t he bonded 

a l ky l  l ayer w i t h  a longe r chain length . There f ore , t he 

deso lvat ion proc e s s  should have a more signi f ic ant e f fect  on 
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Figure 5 - 1 7 . Transmi ttance o f  YMC Octyl 1 2 0A ( 1 5 �m ) in ACN
wat e r  e l uent vs . e l uent compo s i t ion . The sol id and dashed 
curves were obta ined f rom downward and upward equ i l ibrat ion 
experiment s ,  respect ively . 
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t he t ransmit tance change for alkyl bonded s i l i ca with  a longe r 

chain l engt h ,  as observed for the three YMC phases . 

5 - 3 - 9  Wet t i ng Hys teres is  

It  i s  c l ear now that the t ransmittance hystere s i s  in the 

t ransmi t tance vs . composit ion plots i s  caused by hyst eres i s  in 

the wet t ing or so lvat ion of alkyl bonded s i l ica . Sect ions 5 -

3 - 2 and 5 - 3 - 6  presented some obs ervat ions for wet t ing 

hyst e re s i s . F igure s 5 - 1 1  to 5 - 1 5 in Sect ion 5 - 3 - 6  indicate 

t hat wet t i ng hys tere s i s  becomes less  s igni f i cant as the 

downward e qu i l ibrat ion ends with increas ing MeOH content , f rom 

0 %  t o  6 % . F igure s 5 - 1 8 ,  5 - 1 9 ,  and 5 - 2 0  show the t ransmit t ance 

vs . compo s i t ion plots with the downward equ i l ibrat ion ending 

w i t h  1 0 % , 1 5 % , and 2 5 %  MeOH , respe c t ively . From Figure 5 - 2 0  

i t  can be conc luded t hat there i s  no hystere s i s  i f  t he 

direct i on o f  equ i l ibrat ion is  changed in regions 1 and 2 .  I f  

t he direct ion o f  equ i l ibrat ion i s  changed in regions 3 to 5 ,  

as shown i n  F igure s 5 - 1 1 to 5 - 1 5 , 5 - 1 8 , and 5 - 1 9 , hystere s i s  

ex i s t s  when t he MeOH content i n  the eluent i s  lower than t he 

rewe t t i ng l imi t , 6 3 %  ( v/v) . 

We t t i ng hys t e re s i s  appears when alkyl bonded s i l ica  i s  

nonwe t t e d  or not we l l  solvated . I t  coexi s t s  with s l ow 

kine t i c s , as de s c r ibed later in this  chapter . 

The existence o f  we t t i ng hysteresis  indi cates that the 
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Figure 5 - 1 8 . Transmittance of LiChroprep RP - 1 8  in MeOH - water 
e l uent vs . e l uent compo s i t ion . The sol id  and dashed curve s 
were obt a ined f rom downward and upward equ i l ibra t i on 
exper iment s ,  respe c t ively . The direct ion of  equ i l ibrat ion was 
changed at 1 0 %  MeOH . 
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Figure 5 - 1 9 . Transmittance of LiChroprep RP- 1 8  in MeOH -water 
e luent vs . e l uent compos i t ion .  The sol id and dashed curve s 
were obt a ined from downward and upward equi l ibrat ion 
exper iment s ,  re spe c t ive l y . The direct ion of  equ i l ibra t i on was 
changed at 1 5 %  MeOH . 
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Figure 5 - 2 0 . Transm i t t ance of LiChroprep RP - 1 8  in MeOH -wat er  
e l uent vs . e l uent compos i t ion . The solid and dashed curve s 
were obt a ined f rom downward and upward equ i l ibrat ion 
exper iment s ,  respect ively . The direct ion of equ i l ibrat ion was 
changed at 2 5 %  MeOH . 
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sta t ionary phase /mob i l e  phase system may not reach a 

the rmodynami c  equ i l ibr ium when the organi c  modi f i e r  content in 

the mob i l e  phas e  i s  less than the rewett ing l imit . The states 

o f  wet t i ng reached in the downward and upward equ i l i brat ion 

exper iment s shou l d  be cons ide red as me tastabl e . 

5 - 3 - 1 0 D i re ct  We tt ing Tests with Prewett ing 

The d i rec t  wett ing tes ts  without prewe t t ing have been 

correl a t e d  to upward equ i l ibrat ion experiment s .  The direct  

wet t ing t e st s  with  prewett ing shou ld  be  re lated to downward 

equ i l ibrat i on experiment s .  Wett ing hystere s i s  shou ld  a l so be 

rel at e d  to t he d i f f e rences between the resul t s  f rom d i rect 

wet t ing tests with  and without prewet t ing . 

ACN - wa t er  mixtures containing 2 3 % , 1 0 % , 1 % , 0 . 6 % ,  and 0 %  

( v/ v )  ACN have been t e sted for the wet t ing of  YMC Butyl 1 2 0A 

prewe t t e d  by ACN . After the replacement of  ACN by any of t he 

mixtures c i t ed  above , a l l  the part i c l e s  st ay on the bottom o f  

t he tube be fore shaking . The nonwe t t i ng l imit for the butyl 

phase is 0 . 6 % ACN . There fore , a contact angle  ( i f appl icable )  

l arger t han 9 0 0 , i . e . , an interfacial tens ion rSL l arger t han 

t he surface t ension of t he sol i d  rSv , i s  expected f o r  the butyl 

phase  in wat e r . The part i c les , however , remain on the bot tom 

o f  t he tube because the dens ity of the part i c l e s  is  higher 

t han wat e r . 
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r i s e  o f  the part i c l e s  above the l i quid can only be 

f ac i l i t at e d  by an upward force , which can be obt ai ned by 

bringing the part i c l e s  into contact with the gas phase . The 

contact  of t he part i c l e s with t he gas phase can be conducted 

by bring i ng a i r  bubbles to the bot tom of  the tube . The a i r  

bubb l e s  a r e  l i kely t o  attach t o  the par t i c l e s  when t he 

i nt e r f a c i a l  tension rSL i s  larger than the surface tension of 

the s o l i d  rSv , t hen l i ft  the part i c l e s  above the l iqui d . 

Shaking can br ing a i r  bubbles into contact with the part i c l e s  

or bring t he part i c l e s  into the gas phase direc t ly ,  l i f t  the 

part i c l e s  above t he l i quid . 

Af t e r  s haking , a l l  the part i c l e s  in wat e r  f l oat on the 

surf ace of  1 iquid . In  1 0 %  ACN , only a minute amount of  

part i c l e s  s t ays o n  the bottom of the tube . In  2 3 %  ACN , 

however ,  only a minut e amount of part icles  f l oat s on the 

mixture , comparabl e  with  the direct wett ing test  without 

prewe t t i ng where t h i s  occurs for 3 4 %  ACN . 

D i re ct  wet t ing tes ts  on YMC ODS -A 1 2 0A ( 2 5  �m ) ( prewetted 

by ACN ) in wat e r  gave t he same re sul t s  as those on YMC Butyl 

1 2 0A . 

D i re ct  we tt ing tests  with prewett ing are s im i l ar with t he 

t i t rat i on we t t ing test  start ing with a suspens ion of  

stat ionary phase part i c l e s  in organi c  modi f i er , using water  as 

t he t i t rant . 7 3 From t he we t t ing hys t e re s i s  phenomenon observed 

in our we t t ing t e s t s  it can be conc luded that this t i t rat ion 
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we t t ing t e s t7 3  shoul d  produce d i f f erent re su l t s  f rom the 

t i t rat ion we t t ing test  start ing with a suspension of 

stat i onary phase part i c l e s  i n  water . 57 , 60 Both of the two 

t i t rat ion we t t ing tes ts  de scr ibed in t he l i terature are 

comp l i cated by temporary high local concentrat ion of t i t rant , 

whi ch int roduces wet t ing hystere s i s  during the t i trat i on 

proce s s . 

I n  t he l i terature , there are often di f f i cult i e s  in 

produ c i ng a l kyl bonded phase suspens ions in water - r ich  

e luent s . Such a suspens i on , however , can be eas i ly produced 

u s i ng the procedure for t he direct wett ing test with  

prewe t t i ng ,  de s c ri bed i n  the experimental sect ion . 

Overa l l ,  d i rec t  we tt i ng tests are much less  informat ive 

i n  st udyi ng t he wet t i ng o f  al kyl bonded s i l ica than opt i c a l  

t ransm i t t ance measurement s .  

5 - 3 - 1 1  Wet t i ng Af f e c ted by the Characteri s t i cs of Al kyl Bonded 

S i l i c a  and by t he Nature of Organic Mod i f ier  

The compo s i t ion ranges for  di f ferent regions in the 

t ransmit t ance vs . compos i t ion plots for various alkyl bonded 

pha se s  are tabulated in Table  5 - 3 . The resu l t s  for three YMC 

ODS -A 1 2 0A p hases with di f f erent part i c l e  s i zes  show no 

corre l a t i on between t he we tt ing and the part i c l e  s i z e . From 

Tab l e  5 - 3  i t  can be seen t hat the YMC ODS -A phase with a 
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( v  Iv )  for 
plots  for 

Downward Upward 

S t a t ionary phases 1&2 3 4 5 I I I  I I I  IV 

MeOH 1 0 0 - 2 0  2 0 - 1 0  1 0 - 6  6 - 0  0 - 5 0  5 0 - 6 0  6 0 - 6 5  6 5 - 1 0 0  

HOG CUH31 
ACN 1 0 0 - 1 2 1 2 - 5  5 - 3  3 - 0  0 - 2 0  2 0 - 3 4  3 4  - 4 1  4 1 - 1 0 0  

THF 1 0 0 - 3 . 6  3 . 6 - 0 . 8  0 . 8 - 0 . 4  0 . 4 - 0  0 - 1 0 1 0 - 14 1 4 - 1 8 1 8 - 1 0 0  

MeOH 1 0 0 - 2 0  2 0 - 5  5 - 2  2 - 0  0 - 5 0  5 0 - 5 8  5 8 - 6 3  6 3 - 1 0 0  

L i Chroprep 
RP - 1 8 t  

ACN 1 0 0 - l l l l - 1 .  9 1 .  9 - 0 . 3  0 . 3 - 0  0 - 2 8  2 8 - 3 3  3 3 - 3 8  3 8 - 1 0 0  

THF 1 0 0 - 3 . 2  3 . 2 - 0  . 1 5  0 . 1 5 - 0  . 0 4  0 . 0 4 - 0  O - l l 1 1 - 14 1 4 - 1 6 1 6 - 1 0 0  

MeOH 1 0 0 - 1 0  1 0 - 0  N/A N/A N/A N/A N/A 6 0 - 1 0 0  

SUPELCOSIL LC- 1 8  
ACN 1 0 0 - 6  6 - 0  N/A N/A N/A N/A N / A  3 0 - 1 0 0  

THF 1 0 0 - 3 . 2  3 . 2 - 0  N/A N/A N/A N/A N/A 1 4 - 1 0 0  

Spherisorb 00S2 MeOH 1 0 0 - 1 5  1 5 - 0  N/A N/A N/A N/A N/A 6 0 - 1 0 0  

Spherisorb OOSl MeOH 1 0 0 - 0  N/A N/A N/A N/A N/A N/A 0 - 1 0 0  

1 0  I'm ACN 1 0 0 - 5  5 - 0  N/A N/A N/A N/A N/A 2 0 - 1 0 0  

2 S  I'm ACN 1 0 0 - 7  7 - 1  2 1 . 2 - 0 . 3  0 . 3 - 0  0 - 2 5  2 5 - 2 8  2 8 - 3 0  3 0 - 1 0 0  
1 2 0A 

YMC 5 0  I' m  ACN 1 0 0 - 1 0  1 0 - 0  N/A N/A N/A N/A N/A 2 0 - 1 0 0  

OOS - A  
2 0 0A 2 5  I'm ACN 1 0 0 - 4  4 - 0  N/A N/A N/A N/A N/A 3 0 - 1 0 0  

3 0 0A 2 5  I'm ACN 1 0 0 - 3  3 - 0  N/A N/A N/A N/A N/A 3 0 - 1 0 0  

YMC Oetyl 1 2 0A ACN 1 0 0 - 7  7 - 1 .  9 1 .  9 - 0  N/A N/A N/A 2 9 - 3 3  3 3 - 1 0 0  

YMC Butyl 1 2 0A ACN 1 0 0 - 6  6 - 0  . 6  0 . 6 - 0  N/A N/A N/A 3 2 - 3 4  3 4 - 1 0 0  

YMC TMS 1 2 0A ACN 1 0 0 - 0  N/A N/A N/A N/A N/A N/A 0 - 1 0 0  

t W i thout any p r e t re atmen t , the t ransm i t t ance vs . compo s i t ion p l o t s  f o r  
Li Chroprep R P - 1 B  in MeOH - wa t e r  and ACN- wat e r  mixtures res emb l e  the p l o t  
f o r  bare s i l ica , exhibi t ing only regions 1 and 2 and n o  hys t e re s i s . The 
data in the t a b l e  were obtained by r i ns ing L i Chroprep RP - 1 B w i t h  THF ,  
chl o r o f o r m ,  o r  1 , 2 - d i chloroethane be f ore equ i l ibrat ion w i t h  MeOH o r  ACN . 
L i Chroprep R P - 1 B  was a l ways p r e t reated with THF in t h i s  research , i f  not 
o t h e rwi s e  spe c i f i ed . Such p r e t reatment e f f e c t s  were not obs e rved f o r  the 
other s t a t i onary pha s e s  l i s t ed in the tab l e . 



1 6 6  

l arge r pore s i z e i s  easier t o  wet . More experiment al  work 

shoul d  be performed , howeve r ,  t o  obt ain a conclus ive 

rel a t ionship between the we tt ing and pore s i z e  of  alkyl bonded 

s i l i c a . 

Comparing t he resul t s  for Sphe ri sorb ODS1 and ODS2 in 

Tab l e  5 - 3 , i t  is  c l ear that the highe r t he sur face coverage of  

an O DS  pha se , the more di f f i cu l t  to wet , cons istent with other 

report s i n  t he l i te rature . 57 , 7 3 , 7 6 Chain l ength is expe cted to 

a f f e c t  the we tt ing o f  al kyl bonded s i l i ca . 57 , 76 The methyl 

phase  is obviously easier  to we t than s i l ica bonded with  

l onge r a l kyl groups , probably due to the shielding of  t he 

hydrophi l i c  s i l i c a  surface . A corre lat ion between the we t t i ng 

and chain l ength o f  al kyl bonded phase cannot be obt a ined 

s o l e l y  based on t he data presented in Table  5 - 3 , howeve r . 

The l e s s  po lar t he organi c  modi f i e r , t he l ower t he 

o rgan i c  modi f i e r  content required to wet an ODS phase , which 

agree s  w i t h  observat ions in the  l i terature73 and val idates  our 

wet t i ng t e s t  us ing opt ical  t ransmittance measurement s .  

5 - 3 - 1 2 Mon i t o ring o f  the Equ i l ibration Process by Opt i cal 

Transm i t t ance 

In  the l i terature , the s t at ionary phase equ i l ibra t i on 

proc e s s  has only been moni t ored indirect ly by measuring t he 

retent i on o f  mode l compounds . When a stat ionary phase reaches 
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equ i l ibri um , a l l  i t s  phys ical and chemical charac terist i c s , 

inc luding solute re tent ion and opt ical  transmi ttance , should 

bec ome const ant . There fore , the equ i l ibrat ion of t he 

sta t i onary phase can a l so be evaluated by measuring i t s  

opt i c a l  t ransm i t t ance . When the eluent was changed from MeOH 

to a MeOH - water mixture , the equ i l ibrat ion process  was 

moni t ored by re cording the t ransmi t t ance value o f  t he HDG 

C1sH3 7 phase as a funct ion o f  t ime . The equ i l ibrat ion 

proc e s s e s  f rom MeOH to MeOH - water mixtures in regions 2 ,  3 ,  

and 4 ,  w i t h  3 0 % , 1 5 % , and 7 %  of MeOH , respect ive l y ,  are 

plot t e d  in F i gure 5 - 2 1 . For al l t he measurement s described in 

this sect i on , t he f l ow rat e is  0 . 2 5  mL/min . 

The e qu i l ibrat ion curve s in Figure 5 - 2 1  fol low t he same 

t rend observed in Figure 5 - 4 for downward equ i l ibra t i on . The 

d i f f erent regions de f ined for t he downward equ i l ibrat ion curve 

in F igure 5 - 4  can a l so be found in t he corre sponding 

equ i l ibrat i on curves in Figure 5 - 2 1 . This imp l i e s  t hat the 

same sequence of  events result ing in changes in the wet t ing of 

t he st a t i onary phase i s  f o l l owed by the two processes . 

To show the de t a i l s  o f  the curves , t he plots in Figure 5 -

2 1  present t he equ i l ibrat ion processes for the f i rst 6 0  min . 

The comp l e t e  equ i l ibrat ion process may take a much l onger 

t ime . The t ime requ ired to bring the HDG C1sH37 phase to a 

constant t ransmi t t ance value , or equi l ibrium , from MeOH to a 

MeOH - water mixture , i s  plotted vs . the e luent composit ion in 
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F igure 5 - 2 1 . Transmitt ance of HDG C1sH37 vs . t ime . The mob i l e  
phase w a s  c hanged f rom MeOH to a MeOH -water eluent w i t h  3 0 % ,  
1 5 % ,  and 7 %  MeOH . Arabic  numbers are used to labe l dif f e rent 
regions of t he equ i l ibrat ion curves . 
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Figure 5 - 2 2 . From t he inset in Figure 5 - 2 2 , i t  can be seen 

t hat it took about 1 min to equ i l ibrate the HDG C1sHn phase 

when t he e luent was changed f rom MeOH to a MeOH - water mixture 

in region 1 .  From MeOH to MeOH -water mixtures in region 2 ,  

t he equ i l ibrat ion t ime increases with decreas ing MeOH content , 

but t he t ime requi red for equ i l ibrat ion i s  st i l l  l e s s  t han 5 

min . I n  regions 3 ,  4 ,  and 5 ,  with cp l e s s  than 2 0 % ,  t he 

equ i l ibrat ion t ime increases rapidly with decreas ing MeOH 

content . From the drama t i c  increase in the equ i l ibration t ime 

f rom region 2 to region 3 ,  i t  can be conc luded that the 

solvat i on or wet t ing o f  the HDG C1sH37 phase i s  s igni f i cant ly 

d i f f erent I n  these two regi ons . 

We t t i ng hyst ere s i s  appears when the direct ion of  

equ i l ibrat ion c hanges in regions 3 ,  4 ,  or 5 ,  indi cates t hat 

s l ow kinet i c s  may be a requ irement for the appearance of 

wet t i ng hys t e re s i s . 

5 - 3 - 1 3  Adsorpt ion of  Water  onto Re sidual S i l anol Groups 

Obs e rved by Opt ical  Transmi ttance Measurement s 

I nt e ra ct ions o f  wat er with res idual s i l anol groups are 

In t he ind i spensable in the we t t ing of a l kyl bonded s i l ica . 

t ransmi t t ance vs . compo s i t ion plot for YMC Butyl 1 2 0A in ACN-

wat e r  mixture s , as s hown in Figure 5 - 2 3 , a sma l l  decrease in 

t ransmi t t ance can be observed when the eluent i s  changed f rom 
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Figure 5 - 2 2 . Equ i l ibrat ion t ime for HDG C18H37 , from MeOH to 

a MeOH - wa t er e luent , vs . eluent composit ion . The f l at part of 

the curve is p l ot t e d  in t he inset with a di f f erent ordinate 

s c a l e . 
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F igure 5 - 2 3 . Transm i t t ance of YMC Butyl 1 2 0A ( 2 5  �m) in ACN 
wat e r  e l uent vs . e l uent composit ion . The solid and dashed 
curves were obt ained f rom downward and upward equ i l ibrat ion 
experiments , respect ively . 
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organi c  modi f i e r  t o  an organic -water mixture containing a 

sma l l  amount o f  water , which cannot be explained by the change 

in t he r e f ract ive index of the eluent . The most l i ke ly reason 

for the sma l l  decrease In transmi ttance is the adsorpt ion of  

wat e r  onto t he residual s i lanol groups . The same phenomenon 

was a l so observed for a l l  the other stationary phases tested , 

including YMC ODS - A  1 2 0A ( 2 5  Mm ) , 2 0 0A ,  and 3 0 0A . 

The equ i l ibration process for the butyl phase when the 

e l uent was changed f rom ACN to 9 8 %  ACN , then back to ACN , is 

s hown in F igure 5 - 2 4 . The equ i l ibrat ion f rom ACN to 9 8 %  ACN 

took 2 minut e s . The reve rsal process , the equ i l ibration f rom 

9 8 %  ACN to ACN , howeve r ,  took 1 2 . 6  minut es . This i s  

cons i s tent w i t h  the water adsorpt ion hypothe s i s . The strong 

interact i ons between water and res idual si lanol groups make 

t he remova l of water f rom the s i l i ca surface much more 

di f f i cu l t  than t he adsorpt ion of wat e r  onto residual s i l anol 

groups . 

The amount o f  adsorbed water may only be several 

mol e cul a r  l ayers . The opt i cal t ransmi ttance measurement s ,  

howeve r ,  can eas i ly detect such adsorpt ion . Thi s  indicates 

that t he transmittance of the stat ionary phase/e luent system 

is very sens it ive to t he change of the composit ion and 

s t ructure of the interpha se region . 
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Figure 5 - 2 4 . Transmi ttance o f  YMC Butyl 1 2 0A ( 2 5 j.lm) vs . 
t ime . The mob i l e  phase was changed f rom ACN to 9 8 %  ACN - water , 
t hen back to ACN . 



1 7 4  

5 - 3 - 1 4 E f f e c t  of Flow and Tempe rature o n  t he Equi l ibra t i on 

Proce s s  a s  t he E luent is  Switc hed f rom MeOH to Water  

As  shown i n  Figure 5 - 2 2 , it  takes a very long t ime to  

equ i l ibrate t he HDG C1BH37 phase with  wate r  as t he e luent . 

Dur i ng t he equ i l ibrat ion process , MeOH is  replaced by wat e r ,  

and , i n  addi t i on , we propose that the C1B chains on t he s i l ica 

surface a re reorgan i z ing to form a more energet ical ly 

f avorable con f i gurat ion . We quest ioned whe ther these two 

proce s s e s  occur ove r the same t ime f rame . I f  not , how much 

longer does it t ake t he C1B chains to reorgani z e  after  MeOH is 

rep l aced w i t h  wat e r ?  To answer these quest ions , the fol lowing 

experimen t s  were carried out . 

For the measurement o f  the equ i l ibrat ion t ime f rom MeOH 

to wat e r  in F igure 5 - 2 2 , the e l uent was kept at a f l ow rate of  

0 . 2 5 mL /min dur i ng the whole  equi l ibrat ion process . I f  t he 

f l ow of  wat e r  i s  stopped be f ore the stat ionary phase reaches  

equ i l ibrium , the opt i cal transmittance of the HDG C1BH3 7  

part i c l e s  keeps chang ing , as shown in Figure 5 - 2 5 . Monitoring 

o f  the t ransmi ttance i s  cont inued unt i l  a constant value i s  

f ina l l y  reached . The dependence o f  the final cons tan t 

transm i t tance on t he vo lume of wat er passed through the ce l l  

before the f low i s  s t opped i s  shown i n  Figure 5 - 2 6 . The f i nal 

cons t ant t ransmittance does not change as long as the volume 

o f  wat e r  passed t hrough the c e l l  is larger t han 4 . 3 5 mL . The 
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Figure 5 - 2 5 . Transmi ttance o f  HDG C1SH37 vs . t ime . The mob i l e  
phase w a s  changed f rom MeOH to water , a t  a f l ow rate of  0 . 2 5 
mL/min . After 4 . 3 5  mL o f  water  was passed t hrough t he f l ow 
ce l l , t he f l ow was stopped . 
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F igure 5 - 2 6 . F inal constant transmittance of HDG C1sH37 vs . 
t he volume of  water passed through the f l ow c e l l  be f ore t he 
f low was s topped . 
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f i nal constant t ransmittance a t  this point , 6 6 . 2 % ,  i s  within 

the exp e rimental  e rror o f  the constant transmi ttance when t he 

f l ow i s  not stopped , which i s  ( 6 6 . 0  ± 0 . 2 ) % .  I t  can be 

conc l uded t hat MeOH is completely replaced by wat er after  4 . 3 5 

mL o f  wat e r  i s  passed through the ce l l . Eluent repl acement i s  

a re lat ive l y  f a s t  process . We propose that the s l ow change in  

the  t ransm i t t ance a f t e r  e luent rep l acement is  caused by  C1B 

c ha i n  reorgani zat ion . 

The equ i l ibrat ion proce ss , f rom MeOH to wat e r ,  was 

mon i t ored both at 2 3 ° C  and 4 8 ° C .  The equ i l ibrat ion curves for 

t he f i rst 1 0 0  min are shown in  Figure 5 - 2 7 . For bot h 

equ i l ibrat ion processes in  Figure 5 - 2 7 ,  the e luent was kept at 

a f l ow rat e  of 0 . 2 5 mL/min . The dif fe rence between t he f inal 

const ant t ransm i t t ance values at the two tempe ratures is 

smal l .  We in terpret this  to mean that the di f f erence in  t he 

f in a l  conf i gura t ion of t he chains of  t he HDG C1BH37 phase at 

the two t emperatures is  not s igni f i cant . As shown in Figure 

5 - 2 7 , it takes much l e s s  t ime to reach equi l ibr ium at 4 8 ° C  

t han a t  2 3 ° C .  One pos sible  explanat ion i s  that cha in 

reorgan i z a t ion i s  a s l ow process and requires a sign i f i cant 

act iva t i on ene rgy . An increase in temperature can 

s igni f i can t l y  accel erate this chain reorgani z at ion process . 

Hydrocarbon f i lms formed by assoc iat ion among bonded 

a l ky l  chains in contact with water can be trans formed to a 

di f f e rent state  a f t e r  heat ing . 56 , 7 0 · 72 Gilpin et  a l . 56 , 70 , 7 1 
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Figure 5 - 2 7 . E f fec t  o f  t emperature on the equ i l ibrat ion 
process f or HDG C1sH37 when the e luent was swit ched f rom MeOH 
to wat e r . The e l uent f l ow rate was 0 . 2 5 mL/min .  
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be l i eve t hat bonded alkyl chains rearrange t o  an ext ended 

s tate  upon heat ing and remain in such a con f i gurat ion a f t e r  

cool i ng . A di f f e rent surface mode l was proposed b y  Hammers 

and Verschoor72 with convinc ing expe rimental  evidence . They 

be l i eve that a rough hydrocarbon f i lm is f i rst formed because 

the degree of orde ring among bonded alkyl chains is l ow . 

Af t e r  heat ing , the bonded alkyl chains rearrange to an 

ext ended pattern . During cool ing , a smoother hydrocarbon f i lm 

is obt a ined because o f  t he more ordered associat ions among the 

bonded a l kyl chains . Retent ion t ime s be fore heat ing were 

l arge r than the ones obtained after  heat ing . 70 , 72 Retent ion 

t imes on a col umn with a higher cool ing rate a f t e r  heat ing 

were l arger t han the one s on a column with a l ower cool ing 

rate . 72 Two elut ion peaks were obtained for one solute i f  the 

column was rapidly coo l ed whi l e  a solute was on the column . 72 

Al l o f  t h i s  evidence s t rongly favors the latter mode l . In  our 

expe ri ment , no evidence for d i f ferences in chain organizat ion 

at room tempe rature , 2 3 ° C ,  and e l evated tempe rature , 4 8 ° C ,  was 

obs e rved . A t empe rature higher than 4 8 ° C  may be requ i red to 

rearrange C chains to an ext ended state or the ext ended state 1 8  

doe s not have a big change in refract ive index . 
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5 - 3 - 1 5  Factors Affect ing the Transmittance o f  the Stat ionary 

Pha se /Eluent System 

Though t he changes in t ransmittance in t he t ransmittance 

vs . compo s i t ion plots have been assoc iated with the so lvat ion 

or we t t ing of a l kyl bonded s i l ica , it  i s  s t i l l  not c l e a r  why 

the solvat ion and we tt ing of alkyl bonded s i l i ca can int roduce 

such changes in  the transmittance of the stat ionary 

phase / e l uent system . To solve this problem , it  i s  ne ces sary 

to understand how the transmit tance of the stat ionary 

phase / e l uent syst em is af fected by various parameters of t he 

system . 

The f i rst  parameter to be invest igated i s  t he re f ract ive 

i ndex of t he e l uent . The t ransmi ttance va lues of  a bare 

s i l i c a , Li Chrosorb SI 1 0 0 , and an ODS pha se , SUPELCOS I L  LC- 1 8 , 

i n  wat e r  and var ious pure organic solvent s were measured and 

p l o t t ed aga inst  t he di f f erence in the refract ive index between 

t he s t at ionary phase and the solvent , as shown in  Figure 5 - 2 8 . 

The re fract ive index of t he stationary phase i s  taken as t hat 

of fused s i l ica , 1 . 4 5 8 . The re f ract ive index values of  fused 

s i l ica and t he so lvent s are f rom reference 1 3 6 . I t  i s  obvious 

f rom the bare s i l ica curve in Figure 5 - 2 8  that the sma l l e r  t he 

di f ference i n  t he re fract ive index between t he stat ionary 

phase and the e l uent , the higher the transmi ttance of  t he 

st a t i onary/e luent system , which i s  cons i s t ent with opt i c a l  
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Figure 5 - 2 8 . Transmit t ance of Li Chrosorb S 1  1 0 0  and 
SUPELCOS 1 L  LC - 1 8 , in wa ter and various pure organ i c  solvent s 
vs . t he di f ference in the re fract ive index between s i l ica  and 
t he solve nt . The point indicated by an arrow is for 
SUPELCOS 1 L  LC - 1 8  in  water . 
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theory f o r  a two pha se system . For the ODS curve , the above 

rul e  holds except for the point indicated by an arrow , which  

i s  for ODS i n  water . The interphase region may not form a 

d i s t i nc t  t h i rd phase when the C18 cha ins are s igni f i cant ly 

solvat ed . I n  wat e r , howeve r ,  the C18 layer on the surface of  

s i l i ca may form a dist inct third phase , le ading to the 

breakdown o f  t he rul e  holding only for a two phase system . I n  

addi t ion , t he dec rease i n  t ransmi tt ance w i t h  a n  increase i n  

t h e  r e f ract i ve index di f fe rence is  much more pronounced w i t h  

t he ODS phase as compared t o  the s i l ica phase , wh ich i s  

probably due to t h e  sma l l e r  part i c l e  s i z e  of the ODS pha se . 

The t ransmit tance values of various stat ionary phases i n  

MeOH and ACN a r e  l i sted in Table 5 - 4  to show the e f fects  of  

part i c l e  s i z e , pore s i ze , al kyl s i lylat ion , and cha i n  length  on  

t he t ransmi t t ance of the stationary phase/e luent system . 

Comparing t he t ransmi ttance values for YMC ODS -A 1 2 0A ( 2 5  �m) , 

2 0 0A ,  and 3 0 0A in ACN , i t  can be concluded t hat the pore s i ze 

doe s not have a s i gn i f i cant e f fect on the transmit tance of  the 

st a t i onary phas e / e luent sys tem . I t  i s  obvious that the larger 

the part i c l e  s i z e , the higher the transmit tance of  the 

s t a t i onary phas e/eluent system . Alkyl s i lylat ion , which  adds 

one more phase in the stat ionary phas e/e luent sys tem , 

de crease s t he t ransmittance of the stat ionary phase/e luent 

sys t em . From Table  5 - 4  it  i s  also obvious that the longer  the 

h ·  1 t h ' the larger the s i z e  of the interphase c a ln  e ng  , l .  e . , 
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Tab l e  5 - 4 . Transmittance of various stat ionary phases in ACN 
and MeOH 

Part i c l e  Pore % T 
S t at i onary phases s i z e  s i z e  

( 11m )  ( A. )  in ACN in  MeOH 

L i Chrosorb S I  1 0 0  3 0  5 9 . 9 9 5 6 . 5 1 

HDG C1sH37 1 2 5 - 1 5 0  6 1 . 5 2 5 8 . 3 7 

L iChroprep RP - 1 8  2 5 - 4 0  4 0 . 4 9 3 8 . 3 7 

SUPELCOS I L  LC - 1 8  5 1 0 0  2 6 . 1 7 2 2 . 0 7 

Sphe r i sorb ODS2 5 8 0  2 2 . 6 0 1 9 . 1 9 

Sphe r i sorb ODS 1  5 8 0  2 0 . 0 0 

YMC ODS -A 1 2 0A 1 0  1 2 0  3 9 . 0 8 

YMC ODS -A 1 2 0A 2 5  1 2 0  4 2 . 3 4 

YMC ODS - A 1 2 0A 5 0  1 2 0  5 3 . 9 8 

YMC ODS - A 2 0 0A 2 5  2 0 0  4 7 . 8 1 

YMC ODS - A 3 0 0A 2 5  3 0 0  4 1 . 8 8 

YMC Octyl 1 2 0A 1 5  1 2 0  4 6 . 9 9 

YMC Butyl 1 2 0A 2 5  1 2 0  5 3 . 1 7 

YMC TMS 1 2 0A 1 5  1 2 0  5 5 . 7 2 
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region between t he s i l i ca support and t he bu lk e luent , t he 

lower t he t ransmit tance value o f  the stat ionary phase/e luent 

system . 

The decrease in the t ransmittance upon the adsorpt ion of  

wat e r  onto t he s i l ica surf ace may be  expla ined by the addit ion 

o f  another phase , t hough very thin , in the stationary 

phase / e l uent system . I t  was a l so found that sorpt ion of  

hexadec ane to a l kyl bonded s i l i ca in MeOH , which enlarged the 

interphase region , reduced t he transmittance of the stat ionary 

pha s e / el uent system . 

5 - 3 - 1 6  I n t e rpret ing the Transmi ttance Changes in various 

Regions 

The increase in transmi ttance in region 1 is  caused by 

t he increase in the refract ive index of the e luent , as shown 

i n  F i gure 5 - 3 , which reduces the d i f ference in refract ive 

index between the stat ionary phase and the e luent . The 

t ransm i t t ance de creases in reg ion 2 because the re f ract ive 

i ndex of t he e l uent decreases . 

The increase in opt ical  transmittance in region 3 may be 

attr i buted to  the desolvat ion of the bonded alkyl chains , 

whi c h  reduce s  t he s i ze o f  the interphase region . 

When the bonded a l kyl chains col lapse on the s i l ica  

surface to  form a hydroca rbon f i lm ,  a dist inct boundary 
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Thi s 

d i s cont inuity in  substance introduces a discont inuity in 

re f ra ct ive i ndex , resul t i ng in  the dramat i c  decrease in  

t ransm i t t ance in  region 4 .  Other proce sses may also be solely 

or part i a l l y  re spons ible for the dramat ic decrease i n  

t ransmit t ance i n  region 4 .  When alkyl bonded s i l i ca is  not 

wette d , a i r  d i s so lved in the mobile  phase and mobile  phase 

vapor may accumu l at e  in the pore s in alkyl bonded s i l i ca 

part i c l e s  t o  form gas phase pockets , leading to a decrease in  

t ransmi t t ance . 

I n  region 5 ,  the rough hydrocarbon f i lm formed in region 

4 may reorgani z e  i t s e l f  to produce a smoother and denser 

l aye r . Though the dist inct boundary st i l l  exist s ,  the s i z e  of  

t he interphase reg ion i s  reduced , result ing in  t he increase in  

t ransmitt ance . Hydrocarbon f i lms formed on dif f e rent 

part i c l e s  may as soc iate with one another to reduce the 

exposure o f  the hydrophob ic f i lms to the mob i l e  phase . Such 

a proc e s s  can reduce t he number of interfaces , re sult ing in  a 

increase i n  t ransmi ttance . 

5 - 3 - 1 7 Solvatochromic Studies 

Solvatochromic studies  were conducted to corre lat e  the 

surf ace polarity o f  the stationary phase with the wet t i ng of  

the stat i onary phase s .  The n *  value for t he Li Chroprep RP-
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1 8 / e l uent sys t e m ,  measured us i ng N , N - diethyl - 4 - n i t roani l ine , 

vs . the  MeOH content i n  the eluent , � ,  i s  plotted in  Figure 5 -

2 9 . The n* value for the eluent i s  also plotted in Figure 5 -

2 9  a s  a re f erence . 

low . 

When � i s  high , howeve r ,  the retent ion of the n* dye i s  

W i t h  de c reas i ng � ,  the n* va lue o n  the curves f o r  t he 

st a t i onary phase f irst i ncrease s ,  which simply re f l ects  t he 

increase in  the dipolarity o f  t he e luent because more dye 

mo l e c u l e s  are present i n  the el uent than in t he stat ionary 

phase . Then t he curves for the stat ionary phase descend and 

devi a t e  f rom t he curve for the eluent because of the inc rease 

in  re tent ion . I n  the downward equ i l ibrat ion experiment , when 

� decreases f rom 5 0 %  to 0 % , t he n* value for the stat ionary 

phase increas es , i ndicat ing the n* dye molecules re tained by 

the s t at i onary phase are at least part i a l l y  exposed to the 

e luent . I f  the dye mole cules are ent i rely within the bonded 

C18 l aye r ,  t he desol vat ion and col lapse of the bonded C1 8 

chains wou l d  have resul ted in a de creas ing surface dipolari ty . 

Af t e r  equ i l ibrat i on with water , the de crease in  the surface 

dipo l a r i ty with � f rom 0 to 4 0 %  ma inly re f l e c t s  the de crease 

in the dipo l a r i ty o f  t he eluent because no sign i f icant change s 

in  t he wet t i ng or solvat ion of t he bonded C18 layer were 

obs e rved f rom the t ransmi ttance mea surement s ,  as shown in 

Figure 5 - 1 1 . When � i s  be low the rewett ing l i mi t , d i f f e rent 

n* values for the s t a t i onary phase were obtained with the same 
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F igure 5 - 2 9 . Dipo lar i ty for MeOH -water eluent ( spec i f ied as 
" So lvent • •  ) and LiChroprep RP - 1 8  vs . eluent composition . The 
sol i d  and dashed curve s we re obtai ned f rom downward and upward 
equ i l ibrat i on exper iment s ,  respect ively . 
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I n  t he 

same e l uent , t he nonwe tted stat ionary phase exhibits  a lower 

surface dipo l arity than the we tted stat ionary phase . The 

rewe t t i ng of Li Chroprep RP - 1 8  e l iminates the hystere s i s  in 

surface dipolarity . There is  no dramat i c  changes , or ' break ' , 

i n  surface dipolarity , as obse rved for t he t ransmittance . 

This  i s  underst andable  because dipolarity and transmi ttance 

are a f fected  by d i f ferent phys ical parameters . 

I f  t he direct ion o f  equ i l ibration is  changed in region 4 ,  

at  3 %  MeOH , before the appe arance of region 5 ,  the hystere s i s  

in surface dipolarity is  almost indist ingui shable f rom 

experiment a l  uncertaint ies , as shown in Figure 5 - 3 0 . Thi s  

i ndi ca t e s  t hat the bonded C18 laye r must have reorgani zed 

i t se l f  i n  region 5 ,  as proposed earl ier in this chapter . For 

N , N - di e t hy l - 4 - ni t roani l ine retained by the stat ionary phase , 

to reduce the exposure of the hydrophob ic part of the mol ecule 

t o  wate r - r i c h  e l uent , the mo lecule may pre fer to lie f l at onto 

t he hydrocarbon f i lm formed by col l apsed C18 chains . When t he 

bonded C18 l ayer change s from a rough f i lm to a smooth one , t he 

contact area between the dye molecule and t he hydrocarbon f i lm 

incre ase s , resu l t ing in a lower surface dipolarity i f  

contact i ng t he same eluent . 

No di f ferences in the n' value for SUPELCOS I L  LC- 1 8  with  

the  same e l uent equ i l ibrated f rom opposite direct ions are 

observe d . 
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F igure 5 - 3 0 . D ipolarity for MeOH -water e luent ( spec i f ied as 

" So lvent " )  and L i Chroprep RP - 1 8 vs . eluent compos i t ion . The 

sol id  and dashed curve s were obt ained from downward and upward 

equ i l ibrat ion experiment s ,  respe ct ive ly . 
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Though hystere s i s  i n  transmittance i s  s igni f i cant when 

t he d i rect ion of equ i l ibrat ion is changed in regions 3 ,  4 ,  or 

5 ,  hys t e re s i s  in surface dipolarity is  only s igni f i cant when 

t he d i rect ion of  equ i l ibrat ion is  changed in  region 5 .  Thi s  

i ndicates  t hat opt i cal  transmit tance is  more sens it ive to the 

c hanges i n  t he wett i ng or solvat ion of alkyl bonded s i l i ca . 

The n* values for HDG C1sH3 7 , SUPELCOS I L  LC- 1 8 , and 

Li Chroprep R P - 1 8  f rom the downward equil ibrat ion experiment 

are plotted vs . t he eluent composit ion in Figure 5 - 3 1 . When 

t he MeOH content , � ,  is be low 5 0 % , the contribution f rom the 

n* dye present ln t he e luent to the measured n* value can be 

negl e c t ed . No s ign i f i cant d i f ferences in n * value among the 

three ODS phases were observed when � i s  above 1 0 % , i . e . , when 

a l l  t he three s t at ionary phases  are s t i l l  we tted . The 

dipol a r i ty  fo r  HDG C1 sH37 is s igni f i cant ly higher than that of  

t he othe r  two ODS phases when � f a l l s  below 1 0 % , the non

wet t i ng l imit  for HDG C1SH)7 . The n* values for L i Chroprep RP-

18  are s i gn i f i cant ly lowe r than those for SUPELCOS I L  LC - 1 8 

when � i s  below 5 % ,  the non -wett ing l imit for LiChroprep RP -

1 8 . I t  s hou l d  be noted that the dipolarities  of  the two non 

wette d  ODS phases in  water deviate in oppos ite  direct ions , 

i . e . , one non -wet t e d phase has a higher dipolarity , and the 

other has a lower dipolarity than the we tted phase , indicat ing 

divers i t i e s  in  t he prope rties o f  dif ferent ODS phases . 

An a tt empt was made to corre late the surface hydrogen 
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F igure 5 - 3 1 . D ipolarity for HDG C1sH37 , SUPELCOS I L  LC- 1 8 , and 
LiChroprep RP - 1 8  in MeOH -water eluent vs . e luent compo s i t ion . 
The curves were obtained from downward equ i l ibrat ion 
experiment s .  
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bondi ng a c i di t i e s , repres t d b 1 en e y ex values , 02 of t he ODS 

phases w i t h  t he i r  we t t ing behavior . Usi ng two ex dyes , ET - 3 3 1 08 

and DCMPVP , 1 09 LiChroprep RP- 1 S  and SUPELCOS I L  LC - 1 S  were 

s tudie d . Mos t  of  the ex dye molecules , howeve r ,  are protonated 

in t he ODS phase /organic - water mixture sys t em ,  making t he ex 

value measurement impo s s ible . The access ibi l i ty of residual 

s i l anol groups , con f i rmed by the protonat ion of the ex dyes , 

may be ve ry i mport ant i n  t he wet t ing o f  t he ODS phase s . 

5 - 3 - 1 S Chromat ographic Studies 

The ret ent ion of  caffe ine on a 10 x 4 . 6  mm Li Chroprep RP -

l S  column i n  MeOH - water  e luents  was measured . The e luent f l ow 

rate  was s e t  t o  0 . 5  mL/min . The column was equ i l ibrated with  

MeOH and e luents with  decreasing MeOH cont ent . The plot of  

t he retent ion t ime of  c a f f e ine vs . the MeOH cont ent , � ,  i s  

shown i n  F igure 5 - 3 2 . I t  took a long t ime to equ i l ibrat e t he 

column and t he reproduc ibi l i ty of the retent ion dat a  i s  low . 

For e a c h  e luent , the retent ion t ime of c a f f e ine was plotted 

aga i n s t  the equ i l ibrat ion t ime . After the re tent ion t ime of 

c a f f e ine became s t abi l i z ed , more measurements were made . The 

average o f  t he stabi l i zed ret ent ion t imes was taken as the 

re t en t i on t ime o f  c a f f e i ne in t hat e luent . 

I n  F igure 5 - 3 2 ,  the retent ion t ime of  c a f f e ine on 

L iChroprep RP - 1 S init ially increases with decreas ing � .  When 
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F igure 5 - 3 2 . Retent i on of ca f f e i ne on Li Chroprep RP - 1 8  vs . 
the MeOH content in the eluent . The arrow indicates the 
d i rect ion o f  equ i l ibrat ion . 
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cp i s  l owe r than 3 . 5 % ( v  /v) , the retent ion t ime of c a f f e ine 

doe s not change s igni f i cant ly or even decreases with 

de c re a s i ng cp o  

Af t e r  equ i l ibrat ion 

e qu i l ibrated by an e l uent 

with wate r ,  

containing 3 % 

the column 

( v/v )  MeOH . 

was 

The 

retent i on t ime o f  c a f f e ine on Li Chroprep RP- 1 8 , 

( v  Iv )  of preequ i l ibrated with water�  in the e luent with 3 %  

MeOH was measured . Then the column was equ i l ibrated by an 

e l uent w i t h  1 0 %  ( v/v )  o f  MeOH . Again the ret ent ion t ime of 

c a f f e ine in the e luent with 3 %  ( v/v)  of MeOH was measured . 

The retent ion t ime of caffe ine on Li Chroprep RP- 1 8 , 

preequ i l ibrated with each o f  the e luents with 3 0 % ,  5 0 % , 5 5 % , 

6 0 % , 8 0 % , and 1 0 0 %  ( v/v ) of MeOH , in the eluent with 3 %  ( v/v )  

of  MeOH was  measured . The retent ion t ime of  c a f f e ine in the 

e l uent w i t h  3 %  ( v/v)  of MeOH vs . the MeOH content in  the 

preequ i l ibra t i on e luent is  plotted in Figure 5 - 3 3 . When the 

MeOH content in the preequ i l ibrat ion e luent is  in  the range of 

50 to 6 0 %  (v/v)  , there is  a j ump in the re tent ion t ime of  

c a f f e ine . 

The resul t s  o f  the chromatographic studi es  on Li Chroprep 

RP- 1 8  are s imi lar to those on HDG ClsH37 . 1 34 When the ODS phase 

i s  not wet t e d , c hromatographic retent ion on it  is 

s ign i f ican t l y  reduced . The nonwetted phase can only become 

more wet t e d  us ing el uent s with MeOH cont ent s c lose to the 

rewe t t i ng l imit . The column pre ssure during the retent ion 



25 �------------------------____ � 

-
.= 20 
E 

-

(1) 1 5 E .-
-
c 
.2 1 0  
-c 
(1) -
(1) 5 
a: 

O �----L-----�----�-----L----� 
o 20 40 60 80 1 00 

% MeOH (v/v) in the preequi l ibration eluent 

1 9 5  

Figure 5 - 3 3 . Re tent ion o f  c a f f e ine on LiChroprep RP - 1 8  i n  3 %  
( v/ v )  MeOH -water e luent vs . the MeOH content i n  t he 

preequ i l i brat ion e luent ( see text for explanat ion )  . 
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measurement s on L i Chroprep RP- 1 8  is  i n  the range of  3 0  t o  4 5  

atm , indi cat i ng that we tt ing e f fects are also s i gn i f i cant at 

pres sures much h i ghe r t han ambi ent pressure . 

The t ransmi t t ance o f  Spheri sorb ODS2 , which only shows 

regions 1 ,  2 ,  and 3 ,  also depends on the e luent exposure 

h i s tory i f  t he MeOH content in the eluent is less  t han 6 0 %  

( v / v )  . Chromatographi c  measurement s we re performed to study 

the e f f e c t  o f  e luent exposure history on ret ent ion to see i f  

there i s  a n  e f fec t  s imilar t o  that for the LiChroprep RP - 1 8  

phase . The retent ion o f  c a f f eine in a 2 0 %  ( v/v)  MeOH e luent 

was measured . I f  the preequ i l ibrat ion e luent is  MeOH , t he 

retention t ime o f  c a f f e ine on a 7 5  x 4 . 6  mm Spher i sorb ODS2 ( 3  

�m )  col umn i s  6 . 7 0 ± 0 . 0 4 min . I f  the preequ i l ibrat ion e luent 

is wate r , the retent ion t ime is  6 . 6 6 ± 0 . 0 4 min . The 

di f f e rence i s  s t at i s t ically not s igni f icant . The wet t ing 

hyst e re s i s  observed when the direct ion of  equ i l ibrat ion i s  

changed i n  region 3 i s  not s igni f icant enough t o  af fect  

retent i on . Opt ical  transmi ttance is  much more sens i t ive to 

the we t t i ng of ODS phases than chromatographic measurement s .  

5 - 4  Conc lus ion 

Op t ic a l  t ransmittance o f  the alkyl bonded s i l ica/eluent 

sys tem is very sensit ive to changes in the compos i t ion and 

s t ructure o f  t he interphase region . The changes in opt ical  
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t ransm i t t ance over the el uent compos i t ion can be separat ed 

into di f f e rent regi ons , which may be assoc iated with various 

phys i ca l  processes in  the interphase region , inc luding 

adsorpt ion o f  water onto re sidual s i l anol s ,  de solvat ion of 

bonded a l ky l  chains , col l apse o f  al kyl cha ins onto s i l i ca to 

f orm a rough hydrocarbon f i l m ,  and chain reorgan i z at i on to 

form a smoot h  hydrocarbon f i lm .  Other process es , e . g . , gas 

phase pocket format ion in  the pores and part i c l e  aggregat ion , 

may a l so be responsible for some of t he t ransmittance change s .  

Some c hanges in opt ical transmittance can be we l l  

correl at ed t o  t he resu l t s  f rom direct wet t ing tes t s . From 

t h i s  corre l a t ion , t he rewett ing l imit and ini t ial  wet t i ng 

l im i t  have been de f ined . Di rect wett ing tes t s , however ,  

c annot reveal the nonwett ing l imi t . 

We t t i ng hys tere s i s  can be obse rved c l early in  opt ical  

t ransmi t t ance mea surement s ,  which indicates the alkyl bonded 

s i l i c a / el ue nt sys tem may exist in metas table states , inst ead 

of t he rmodynami c  equ i l ibrium . Slow kine t i c s  may be a 

prerequ i s i t e  for  t he appearance of wett ing hystere s i s . 

D i f ferent a l kyl  bonded phases  have dif ferent we tt ing 

behaviors ,  depending on bonding dens ity ,  alkyl chain l engt h , 

e t c . Alkyl bonded phases can be wetted more easily us ing a 

l e s s  polar  organic modi f i er . 

A muc h  l onger equ i l ibrat ion t ime is  requi red i f  t he 

stat ionary phase is  nonwe tted or not we l l  solvat ed . Both t he 
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surface dipol ar i ty and solute ret ent ion are af fected by the 

wet t i ng o f  the stat ionary phase . 

S everal i mp l i c at ions for chromat ographic app l i cat ions of  

a l kyl bonded s i l ica c an  be  derived from this  research . RPLC 

shoul d  be conducted above the nonwett ing l imit , if possibl e . 

A gradi ent e lut ion should  start at an e luent composit ion above 

t he nonwe t t i ng l imit . Otherwise a long equ i l ibrat ion t ime , a 

l ow e f f ic i e ncy , and a low reproducib i l ity are expected . I f  i t  

i s  neces sary to perform chromatographi c  analys i s  below the 

nonwe t t i ng l imit , make sure the column i s  equ i l ibrated . Be low 

t he nonwe t t i ng l imit , before switching to a eluent containing 

more organi c  mod i f ier , i t  i s  recommended to rinse the column 

w i t h  pure organic modi f i er to rewet the stationary phase . 

Otherw i s e  l ower ret ent ion values are expected . 

Opt i c a l  t ransmi ttance has been we l l  estab l ished in this  

re se a r ch  t o  study the we t t ing and so lvat ion of  stationary 

phase mat e r i a l s  for RPLC . I t  i s  much more informat ive than 

other me t hods , inc luding direct we t t ing tests  and t i trat ion 

wet t i ng t e s t s . I t  is  a l so much more sens it ive to changes in 

t he interpha se region than surface dipolarity and solute 

retent i on . The me chanisms proposed for the changes in 

t ransmi t t ance i n  various regions , however , may not be unique 

interpre t a t ions and are subj ect to further test ing . 
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The work here demonstrates that inte ract ions among t he 

sta t i onary phase , the eluent , and t he solute in l iqu id 

c hromat ography are comp l i cated . The propert ies  of  t he 

sta t i onary phas e , in both norma l phase and reversed -phase 

l iqui d  c hromatography , may st rongly depend on the e luent 

compos i t i on . The interact ions of the solute with  binary 

sol vent m ixture s deviate s ign i f i cant ly f rom a l inear funct i on 

o f  t he sol vent compo s i t ion . 

The solvatochromic studi es  of the surface pol ar i ty o f  

s i l i c a  have s hown that the surface of s i l i ca in n- hexane has 

a high dipolari ty-po larizab i l i ty ,  a high hydrogen - bonding 

aci di t y  and a low hydrogen - bonding bas i c i ty . I n  n- hexane -

chlorof orm mixtures , the dipolarity-polari zabi l i ty and 

hydrogen - bonding ac idity of the s i l i ca surface are independent 

of t he solvent composit ion . The hydrogen- bonding bas ic ity of  

t he s i l i ca surface , howeve r ,  decreases as t he concent rat ion of  

chlorof orm i s  increased , which may be  attributed to hydrogen

bondi ng int eract ions between chl orof orm and the surface 

s i l anol groups . In  n- hexane - e thyl e t he r  mixtures , t he 

dipol a ri t y - po l a r i z abi l i ty o f  t he surface of  s i l i ca de creases 

as t he concentrat ion of ethyl ether is  increased . The 

s t rength of inte ract ions between ET - 3 3 , an Ci. dye , and the 

s i l ic a  sur face , as indicated by the e l e c t ronic t rans i t ion 

energy of  ET - 3 3 , also de creases with increas ing ethyl e t her 

content . Ethyl  e t her , which has a cons iderable hydrogen -
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bonding bas ic i ty , may st rongly interact with acidic surface 

s i l anol groups . Thi s  make s some st rong adsorpt ion s i t e s  

unavai l able t o  � . and � dyes , resul t ing in  a dec rease in the 

surf ac e  dipo l a r i t y - polari zabi l i ty of  s i l ica and a de crease in 

the st rength o f  i nteract ions be tween ET- 3 3  and the s i l i ca 

surf ac e . The same argument can be appl ied to the strong 

dependence of t he surface dipolar ity-polarizabi l i ty of s i l ica  

on drying o f  solvents . Water may have much st ronger 

interact i ons w i t h  sur face s i l anol groups . There fore , even a 

t race amount o f  water may st rongly af fect the surf ace 

prope r t i e s  o f  s i l i ca . Be cause of the high hydrogen - bonding 

ac idity of t he s i l i ca surface , a solvent with a high hydrogen 

bondi ng bas i c i ty i s  a st rong eluent in  normal pha se l i quid 

chromatography with s i l i ca as the stationary phase . 

� . measurements may be i nterfered with by hydrogen

bonding i nt eract ions in st rongly acidic environment s .  Such 

interference may be di f f erent for di f ferent � . dyes , result i ng 

in  the dependence o f  � . values on the nature of  � . dyes . 

Un l ike so lvent mo lecu les , due to ori entat ional or steric  

reasons , surface s i lanol group s may interact with the bas i c  

f unc t ional group i n  di f f erent � dye s a t  di f ferent st rengt hs . 

This  l eads to t he dependence o f  � measurement s on the nature 

of t he � probe s . Though the absolute � . and � values of  the 

s i l i c a  surface are d i f ferent us ing d i f f e rent � . and � probes ,  

t he same sol vent compo s i t ion dependence of the � . and � values 
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of  t he s i l i c a  surface was observed us ing di f fe rent probes . 

The method deve loped for t he solvatochromic measurement s 

o f  t he s i l i c a  surface may also be appl ied to charact e r i ze 

other sol i d  part i c l e s , e . g . , alumina . Alumina i s  cons idered 

a l i t t l e  bas i c . I f  the disparity in the �* measurement s us ing 

di f f e rent � * dyes  is caused by interf erence f rom hydrogen 

bonding i n t e ract ions , there should be no such disparity in t he 

measurements on alumina . The dependence of  the 

sol vat ochromic parameters on the solvent composit ion should 

a l so be di f f e rent f rom that for the s i l ica surface . 

Factor analys is  studies indicate that the e l e c t roni c  

absorpt ion spec t ra o f  N , N - dimethyl - 4 - n i t roan i l ine i n  14  n 

hexane - e t hyl e t h e r  mixtures containing 0 %  to 1 0 0 %  ( v/v )  of  

e t hyl e t he r  c annot be  reconstructed accurately f rom a l inear 

comb i nat ion o f  two spectra . At least three spe c t ra are 

requ i red to reproduce t he 14 spectra within the experiment al  

unce rt a int i e s . The be st combinat ion are t he spe c t ra in 

mixtures cont ain ing 0 % , 2% , and 2 0 %  (v /v)  of  ethyl ethe r ,  

respec t ive ly . I t  was proposed that the dye may exi st i n  t hree 

d i f f e rent environment s ,  n- hexane , ethyl ether mo lecules 

without interact ions with other ethyl ether mol ecul es  

( segregated e t hyl  e t he r  molecules ) ,  and ethyl e t he r  molecules 

interac t ing w i t h  othe r  ethyl ether molecules ( ethyl ether 

c lu st e r s ) . 

Opt i c a l  t ransmittance measurement s were estab l i shed in 
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t h i s  work t o  study the wett ing o r  solvation o f  alkyl bonded 

s i l i ca i n  organi c - water mixtures . Changes in  opt i cal  

t ransmi t tance of  the alkyl bonded s i l ica/e luent system ove r 

the e l uent composit ion can be separated into di f ferent 

regions , whi c h  have been corre lated with or ass igned to 

various phys i c a l  processes in the interphase region , inc luding 

adsorpt ion o f  water onto residual s i l anol groups , de solvat ion 

of bonded alkyl c hains , col lapse of bonded alkyl chains onto 

t he s i l i c a  support to form a rough hydrocarbon f il m ,  and c hain 

reorgani z at ion to form a smooth hydrocarbon f i l m .  Other 

proce s se s , e . g . , gas phase pocket format ion in  the pores and 

part i c l e  aggregat ion may also be re sponsible for some of the 

t ransmi t t ance change s .  Wett ing hystere s i s  i s  obvious f rom the 

di f fe rence i n  t he t ransmittance vs . composit ion plots with  

oppo s i t e  equ i l ibration direct ions . 

Surface s i l anol groups , whi ch are ma inly re sponsible for 

t he high surface dipo larity-polarizabi l i ty and high surf ace 

hydroge n - bonding acidity of s i l ica , are indi spensable in the 

wet t i ng o f  alkyl bonded s i l ica in organic - water mixture s . 

Re s i dual surface s i l anol groups on alkyl bonded s i l i ca are 

obvious ly avai l able for water adsorpt ion , as observed by a 

de crease i n  op t i cal t ransmittance of  the alkyl bonded 

s i l i c a / e luent system when a sma l l  amount of water was 

i nt roduced to organi c  modi f ier . 

I n  t he downward equil ibrat ion experiment , no s igni f icant 
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c hanges ln t he s t ructure and composit ion of  the interphase 
region were observed by opt ical transmittance measurement s 

unt i l  t he organi c  modi f ie r  content decreases to region 3 .  The 

increase in opt ical  t ransmi ttance with decreasing organic  

modi f i e r  content in region 3 is  attributed to the de solvat ion 

o f  bonded a l kyl chains , which reduces the s i z e  of  the 

i nt e rphase region . As the organic modi f ie r  content become s 

l ower than t he nonwett ing l imit , bonded alkyl chains may 

col l apse onto t he s i l i ca surface to form a rough hydrocarbon 

f i l m ,  whi c h  introduces a discont inuity in the re f ractive index 

between t he stat ionary phase and the eluent , result ing in a 

dramat i c  decrease in opt ical  transmittance . As the organic  

modi f i e r  content cont inues to decrease , to reduce the exposure 

of bonded alkyl chains to a wat e r - rich e luent , bonded alkyl 

chains may reorgan i z e  themselves to form a smooth hydrocarbon 

f i lm .  Such a process  may take place in region 5 .  As the s i z e  

o f  t h e  interphase region dec reases , the opt ical  t ransmittance 

increases .  Other processes , e . g . , gas phase pocke t format ion 

in  t he pores and aggregat ion among part i c l e s , may a l so be 

re spons ible  for the change s in transmi tt ance in regions 4 and 

5 .  Gas phase format ion decreases the opt ical  t ransmit tance , 

whi l e  part i c l e  aggregation may increase the t ransmi ttance by 

reduc ing t he number of interfaces . 

In  t he f o l l owing upward equ i l ibrat ion experiment , the 

d b b ded alkyl chal· ns rema ins hydrocarbon f i lm forme y on 
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unchange d  unt i l  the organi c  modi f ier content i n  the e luent i s  

i n  region I I . The physical process involved i n  region I I  has 

Regi on I I I  was proved to be the reversal of  region 4 .  As 

the organi c  modi f i er content increases above the rewett ing 

l imi t ,  a l kyl bonded s i l i ca is  rewe tted and bonded alkyl cha ins 

are resolvated . 

D i f f e rent a l kyl bonded s i l ica materials have dif ferent 

we t t ing behaviors . After initial  wet t i ng by organi c  modi f i e r ,  

some a l kyl bonded s i l ica materials exhibit only regions 1 to 

4 in the downward equ i l ibrat ion experiment . Some alkyl bonded 

s i l i c a  mat e r i a l s  remain we tted even in water , exhibit only 

regions 1 to  3 .  There are two alkyl bonded s i l ica  mat erials  

exhibi t i ng o nly regions 1 and 2 .  Lower bonding dens ity 

obv i ous l y  f ac i l i t ates wet t ing in organ i c - water mixtures .  The 

e f f e c t s  of other characteri s t i c s  of alkyl bonded s i l i ca on 

we t t ing have yet to be c l a r i f ied . Le ss  polar organi c  mod i f ier 

can wet a l kyl bonded s i l ica at a lower concentrat ion . 

Alkyl bonded s i l i ca part i c l e s  are inhomogeneous in 

we t tabi l i ty , as  proved by direct wett ing tests . The organi c  

modi f i e r  content requ i red t o  we t dry alkyl bonded s i l ica 

part i c l es f rom direct  wett ing tests  is  we l l  corre lated to the 

rewe t t i ng l imit  obtained from opt ical 

measurement s .  D i rect we tt ing tests showed 

transmitt ance 

nonwe tted that 

part i c l e s  remained immersed in the eluent unt i l  they were 
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For alkyl bonded s i l i ca 

mat e r i a l s w i t hout regions 4 and 5 ,  a certain concentrat ion of 

organi c  mod i f i e r  i s  requ i red for the init ia l  we t t ing . 

Wet t i ng hys tere s i s  appears when the direction of 

equ i l ibra t i on is changed in reg ions 3 to 5 ,  but not regions 1 

and 2 .  S l ow k i ne t i c s  may be a prerequ i s i t e  for the existence 

of wet t i ng hys teres i s . The exi st ence of wet t i ng hystere s i s  

i nd i c a t e s  that the stat ionary phase /mob i l e  phase syst em may 

not reach a the rmodynami c  equ i l ibrium when t he organi c  

modi f i e r  content i n  the mob i l e  phase i s  l e s s  than the 

rewe t t i ng l imit . 

A much  longer col umn equ i l ibrat ion t ime i s  requ i red i f  

t he e luent i s  i n  regions 3 to 5 ,  i .  e . , when alkyl bonded 

s i l i ca is not wetted or we l l  solvat ed . Column equ i l ibrat ion 

t ime i s  s igni f i cant ly reduced at an elevated temperature . In  

t he same e l uent , a sign i f i cant ly lower surface dipolarity i s  

obse rved for the nonwetted phase i f  the direct ion o f  

equ i l ibrat i on i s  changed in region 5 ,  but not region 4 .  

Solute retent ion i s  s igni f i cant ly lowe r than expected as the 

s t a t ionary phase i s  nonwetted . The wett ing hys tere s i s  

obs e rved by opt ical  transmittance when the direct ion o f  

equ i l ibrat ion i s  changed in region 3 ,  however ,  doe s not cause 

any s ign i f icant hys tere s i s  in  solute retent ion . The st rong 

e f f e c t s  o f  we t t ing on column equil ibrat ion t ime and solute 

ret ent ion indicate the importance to understand the wett ing of 
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a l kyl bonded s i l i ca . 

According to the re sul ts f rom this research , RPLC should 

be conducted above the nonwe t t i ng l imi t , if  poss ible . A 

gradi ent e lut ion should st art at a mobile  phase composit ion 

above the nonwe t t ing l imit . Otherwi se a long column 

e qu i l ibra t i on t ime ,  a low column e f f i c iency , and a l ow 

reproduc i b i l i ty  are expect�d . I f  chromatographi c  analys i s  

mus t  b e  performed be low the nonwe tt ing l imit , make sure t he 

column i s  equ i l ibrated . Below the nonwe t t i ng l imit , be fore 

swi t ch i ng t o  a mob i l e  phase conta ining more organic modi f i e r ,  

i t  i s  recommended t o  rinse the column with pure organic 

modi f ie r  t o  rewet the stat ionary phase . 

retent ion values are expected . 

Othe rwise lower 

The re are s t i l l  many unresolved mysteries in t he wet t ing 

of  a l ky l  bonded s i l i ca , e . g . , pret rea tment ef fects  observed 

f o r  L iChroprep RP - 1 8 . The mechan i sm for wett ing hystere s i s  i s  

s t i l l  very cont rovers i al . The mechani sms proposed here for 

the c hang e s  in  t ransmi ttance in various regions may not be 

uni que interpretat ions and are subj ect to further test i ng . 

Opt i c a l  t ransmi ttance i s  very sens it ive to the changes in 

the s t ructure and compo s i t ion of the interphase region i n  

solvated a l kyl bonded s i l i ca . The methodology es tabl i shed 

here for study ing the wet t ing of alkyl bonded s i l i ca may be 

used as a general  me thod to study the interact ions between 

porous part i c l e s  and a l i quid . 
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Appendix A MAT LAB Program for Determining the Number o f  
S igni f i cant Factors 

% s f a . m  s igni f i cant factor ana lys is  - a program des igned to 
help det e rmine the number of signi f i cant factors in a mat rix . 
funct ion [ l = s f a ( data )  
% data=data matrix 
f ormat short e 
[ r ,  c l  = s i z e  ( dat a )  ; 
[ u , s , vl =svd ( data , O ) ; 
for  j = l : c  
ev ( j  ) = s  ( j  , j ) * s ( j  , j ) ; 
rev ( j  ) = ev ( j  ) / ( ( r  - j + 1 )  * ( c  - j + 1 )  ) ; 
end 
sev ( c+ 1 ) = O ;  
sdf ( c + 1 ) = O ;  
for k=c : - l : 2 
sev ( k ) = s ev ( k+ 1 ) +ev ( k )  ; 
sdf ( k ) =sdf ( k + 1 ) + ( r - k+ l ) * ( c - k + l )  ; 
end 
for l = l : c - l  
re ( l ) =sqrt ( sev ( l + l ) / ( r* ( c - l ) ) ) ; 
ind ( 1 ) =re ( 1 ) / ( c - l ) A 2 ;  
end 
s emi logy ( ind , ' ok ' ) 
x l abe l ( ' FACTOR LEVEL ' )  
y l abe l  ( '  I ND ' ) 
pause 
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Appendix B Transmittance vs . Composit ion Plots 

Al l t he t ransmi ttance vs . composit ion plots ci ted in 

Tab l e  5 - 3  are shown here except those whi ch have appeared in 

Chap t e r  5 ,  i nc luding the plots for HDG C1sH37 ( Figures 5 - 4 , 5 -

5 ,  and 5 - 6 ) , Li Chroprep RP - 1 8  in MeOH -water ( Figure 5 - 1 1 ) , YMC 

Octyl 1 2 0A ( 1 5 �m) in ACN - water ( Figure 5 - 1 7 ) , YMC Butyl 1 2 0A 

( 2 5  �m )  i n  ACN - water ( Figure 5 - 2 3 ) . The plot for YMC ODS -A 

1 2 0A ( 2 5  �m)  in ACN-water from 0 %  to 50% ACN has been shown in 

F igure 5 - 9 . The plot from 0 %  to 1 0 0 %  ACN is  shown here . The 

sol i d  and dashed curves were obta ined from downward and upward 

equ i l ibrat ion experiments , respect ive ly . All  these curve s can 

be s eparated into di f ferent regions as in Figure 5 - 4 , t hough 

some curve s only exhibit some of the regions spec i f ied in 

Figure 5 - 4 . For some stat ionary phase /mobile  phase syst ems , 

opt i c a l  t ransm i t t ance measurement s were only conducted from 0 %  

to 3 0 %  o r  0 %  to 5 0 %  organi c  mod i f ier because the de so lvat ion 

proc e s s  or t he nonwe tt ing of the stat ionary phase only 

happened at relat ively low organic modi f ier content s . The 

p l o t s  are arranged in the order as in Table 5 - 3 . 



2 2 0  

F igure B - 1 .  Transmittance o f  L iChroprep RP - 1 8 i n  ACN -water 
e luent vs . e luent compos i t ion . The solid and dashed curves 
were obt a i ned f rom downward and upward equ i l ibrat ion 
experiment s I respect ive ly . 



2 2 1  

43 

3 
2 � 

.- -
- I IV 

38 - .-

4 
I ... 

� , 
I- \ 

ffl. 
\ , 
, I 

5 , III 
33 II ' 

, 

, 
, I 

LiChroprep RP-18  , I 

28 rI 
0 5 1 0  1 5  20 25 30 

% TH F (V/V) 

Figure B - 2 . Transmi ttance of Li Chroprep RP - 1 8  in THF -water 
e luent vs . e luent compos it ion . The sol id and dashed curves 
were obta ined f rom downward and upward equ i l ibrat ion 
expe riment s ,  respec tively . 
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F igure B - 3 . Transmi ttance of SUPELCOS I L  LC- 1 8  in MeOH- water 

e luent vs . e luent composit ion . The sol id and dashed curves 

were obta ined f rom downward and upward equ i l ibrat ion 

experiment s ,  respect ively .  
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Figure B - 4 . Transmi ttance of SUPELCOS IL  LC - 1 8 in ACN -water 
e l uent vs . e luent compos it ion . The sol id and dashed curves 
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F igure 8 - 5 . Transmittance of SUPELCOS I L  LC - 1 8 in THF -water 
e l uent vs . e luent compos it ion . The sol id and dashed curves 
were obta ined f rom downward and upward equ i l ibrat ion 
experiments , respect ive ly . 
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F i gure B - S . Transmittance of YMC ODS -A 1 2 0A ( 1 0 �m) in ACN 
wat e r  e luent vs . el uent compo sit ion . The solid and dashed 
curves were obtained from downward and upward equ i l ibrat ion 
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F igure 8 - 9 .  Transmi t t ance o f  YMC ODS -A 1 2 0A ( 2 5 �m) i n  ACN
wat e r  e l uent vs . e l uent composit ion . The solid and dashed 
curve s were obt ained f rom downward and upward equil ibrat ion 
expe r iment s ,  re spect ively . 
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F i gure B - 1 0 . Transmittance of YMC ODS -A 1 2 0A ( 5 0  �m) in ACN 
wat e r  e l uent vs . e luent compos it ion . The solid and dashed 
curve s were obta ined f rom downward and upward equ i l ibration 
exper iments , respective ly . 
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wat e r  e l uent vs . e luent compos i t ion . The solid and dashed 
curves were obta ined from downward and upward equ i l ibrat ion 
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F igure B - 1 2 . Transmi ttance o f  YMC ODS -A 3 0 0A ( 2 5  �m ) i n  ACN
wat e r  e luent vs . e luent compos i t ion . The sol id and dashed 
curves were obta ined f rom downward and upward equ i l ibrat ion 
exper iment s ,  respe c t ively . 
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