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I .  INTRODUCTION 

Tetracyc lines , or igina l ly isolated i n  the late 1 9 4 0's 

and early 1 9 5 0 ' s  from the myce l ium of S treptomyces , have 

achieved maj or importance as therapeutic and prophylactic 

agents agai ns t  a wide range of i nfections i n  human and 

veter i nary med i c ine . They have a l s o  achieved great 

importance in agriculture where they are widely used to 

promote weight gain  in l ivestock . Commerc i a l  production , 

duri ng 1 9 5 8  i n  the United States a lone was 1 2 0  tons with a 

value of approximately $ 1  m i l lion per ton . 

The c l inical  importance of these compounds has 

s t imulated e fforts to def i ne thei r  mode of action a s  

inhibitor s of bacteri a l  reproduction . Antibiotics having 

a s  many func t i onal groups a s  the tetracyclines may have many 

modes of action . The problem faci ng the re search worker i s  

t o  determine the relative contribution of each mode o f  action 

in  a g iven b i ological system a s  a function of antibiotic 

concentration . I f  a l l  parts of a biological system are 

exposed to an equiva lent antibiotic concentration , one might 

expect that the degree of i nhibition of the vari ous 

sub-component systems would be propor tional to the relative 

stabi lities  of the reaction products of the antibiotic and 

the sub-component system . The mos t  critical  reaction from 

the s tandpoint of c e l lular reproduct i on would then represent 

the point of the pr imary b i ochemic a l  les ion or the s i te of 
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action . The type of reaction would be the mode of ac tion for 

the biolog ical  sys tem . For a g iven biological  system i t  i s  

probable that there i s  one c r i tical  reaction which i s  most 

sensitive to the antibiotic , but thi s  reac tion may not be the 

same for every biolog ical  sys tem ( see Sne l l  and Cheng ( l )  for 

an exce l lent d i scuss ion of the d i f f i culties  of def ining a mode 

of tetracyc l ine action) . Many investigator s presently feel 

that the pr imary b i ochemical l e s ion inf l icted upon susceptible 

bac ter ia  by tetracyc l ines is a genera l inhibition of protein 

synthe s i s  ( 2 , 3 , 4 ) . Therefore it  was felt  that the study of 

severa l  measures  o f  inhibi tion , particularly cell  reproduc tion 

and pro�e in synthe s i s , in the presenc e  of several tetracyc l ine s 

might be a u seful way o f  studying modes of tetracyc l i ne action . 

Biological  activ i t i e s  of a large number of compounds 

obtained quantina t ively under identical dond i tions and in a 

prec i s e  manner are required to estab l i sh structure-activity 

relationships . Presently ava i lable activities  for tetracyc l ine 

antibiotics  have been summa r i zed by Barrett ( 5 ) , Boothe ( 6 )  and 

Plakunov ( 7 ) . Many of the se activities  have been obtained 

under cond i tions such that the results par a l l e l  c linical 

activ i t i e s . Thu s , some compounds may not have achieved 

equ i l ibr ium with the test system . Some activities  have been 

obta i ned for the purpose of s tudyi ng antibiotic r e s i stance 

whi l e  s t i l l  o ther s have been obta ined in widely varying and not 

ea s i ly i nterrelatable bio log i ca l  te st systems . Consequently , 

quantitative ac tivit�es suitable for s truc ture-activity 

relationships have not been reported for most tetracyc l i ne s . 
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The present work was undertaken to obtain activities suitable 

for s tructure-activi ty relationships and which are 

pertinent to both bacterial  reproduction and the proposed 

mode of action . The activi ties obtained should inc lude 

both clinically  active and "inactive " tetracyc l ine antibiotics . 

I I . Literature Survey 

A .  Tetracyc l i ne s  - Nomenclature , General Properties and 

Biological Activity 

The i s olation in 1 9 4 7  o f  the broad spectrum antibiotic ,  

chlorte tracyc l ine , from Streptomyces aureofac iens was  followed 

by the dis covery of oxytetracycl ine in 1 950 and tetracycl ine 

in 1953 . The c l inical  use fulne s s  o f  the se compounds prompted 

the i s olation , synthes i s  and characteri z ation of a large number 

of derivatives , degradation products and s imilar compounds with 

a wide range o f  antibiotic  properties . The e lucidation of the 

s tructure of the tetracycl ine s has been a ma j or achievement in 

natural product chemi s try ( 8). The structure o f  chlortetracy­

cl ine , e s tab l ished on chemi cal  grounds and confirmed by X-ray 

analy s i s  ( 9 ) , i s  shown as ( I )  in Fig . I .  The ring numbering 

and lettering system shown serve as the bas i s  for the 

nomenc lature of mos t  of the tetracycline s . Several analogs 

with altered nuc l e i  are also  shown in Fig . I .  
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II ][ 

F igure I .  The Tetracyc l ine s 

( I )  7 -Chlorotetracyl ine 

( I I )  diD-do-tetracyc l i ne 

( I I I )  5a ( 6 ) -Anhydrotetracyc l ine 

( IV )  7 -Chloro-Sa ( l la ) -dehydrotetracyc line 

(V )  I sotetracyc l i ne 

4 
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The s tereochemi s try of the compounds i s  depicted in ( l )  

of F ig .  I .  The 4 - d imethylamino-group , the 4a- and Sa-hydrogens , 

the 6-methyl - a nd the l 2 a - hydroxy- are a l l  in the a lpha 

or i entation . Epimer i zation by general  ac id-ba se  cata lys i s  of 

the 4 - d imethylamino -group in neu tr a l  solutions occur s rapidly 

and g ives  r i s e  to the so-ca l led 4 -epitetracyc l ines ( 1 0 ) . 

Synthetic compound s epimer ic a t  both the Sa- and 6a- position 

have been reported . The Sa-epitetracyc l i ne i s  e s sentially 

inac tive whi l e  the 6 -deoxy- 6-epite tracycl ines are reported to 

be only s l ightly d i f f erent from the norma l 6-deoxy- der ivative 

( 6} .  

A . l .  A-Ring Mod if ications 

The 2 -carboxamide-group has been mod if ied in severa l  ways . 

The 2-acety l - 2-decarboxamido-tetracyc l ines have been prepared 

biosynthetically  and are e s sent i a l ly i nactive as antibac ter ia l s  

( S ) . Dehydration of the carboxamide yields  the nitr i le , a 

modif ication which i s  a l so s a id to result in loss  of activity 

( S ) . Sever a l  compound s which are c l inica l ly useful because of 

their i ncreased wa ter solubi l ity have been prepared by employing 

the Mannich reaction to form a methylene br idge between the 

amide nitrogen and various primary amine s . Hydro lys i s  back to 

the parent compound is probably respons ible for the ac tivity of 

these der ivative s ( 6 ) . 

The d imethylamino group at  carbon 4 can be epimer i z ed ;  it  

can  be quatern i z ed by  treatment with  methyl iodide or  other 

agents and it can be replaced by hydrogen . All  of these  

compounds are r epor ted to  have reduced ant ibacter i a l  activity . 



The 4 -N-ethyl-methyl-amino a s  wel l  a s  the 4 -N-methyl-amino 

der ivative have been prepared and are r eported to pos s e s s  

biological activ ity . 

6 

The �2a-hydroxy-group may be e l iminated by reduction with 

z i nc and ammonium hydroxide or by catalytic reduc tion of the 

l 2 a - formyloxy der ivative . In  these  antibiotics  nhe phenolic 

diketone moiety is  conjuga ted with the ketone at  carbon l .  

Such conjugation i s  said to be re spons ible for the loss  of 

activ i ty by this  c ompound . The 4a ( l 2 a ) -anhydrotetracyc l ines 

have been prepared by pyrolysi s  of the l 2a-acetoxy der ivatives 

and are r eported to have minimal antibac ter ial  activity . The 

l 2 a- f ormyloxy- a nd l 2a-acetoxy- der iva t ives are r eported to 

pos se s s  activ i ty s o l e ly becau s e  of their hydr o ly s i s  to the 

parent compound s .  

A . 2 .  B-Ring Modi f ications 

5 - Hydroxytetracyc l ine wa s the second tetracyc l ine antibiotic 

i solated from Streptomyce s  and wa s the f ir s t  t o  have its 

structure d e l i neated ( 8 ) . I t s  c l inical u t i l i ty ha s been proven 

throughout the last  2 0  year s . The Sa ( l l a ) -dehydrotetracyc l i ne s , 

( IV )  i n  F ig . I ,  are a l so produced biosynthe tica l ly and are 

g ener a l ly r egarded a s  being inactive ( 6 ) . 

A . 3 .  C-Ring Modif ications 

In s trong a c id solutions , tetracyc l ines are dehydrated to 

form anhydro te tracyc line s , ( I I I )  in F ig .  I ,  whi l e  in a lka l ine 

solutions i sotetracyc line s , ( V )  in F ig . I ,  are formed . Both 

modi f ications r e sult in compounds which are tradi ti ona lly  

regarded a s  inact ive or a s  pos s e s si ng an a l tered spec trum of 
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antibacter ial  activ i ty ( 5 , 6 ) . The i sotetracyc l i ne nuc leu s has 

such d i f f erent conf orma t ions avai lable to it  that its lack of 

activity should probably not be u t i l i zed i n  s truc ture-ac tivity 

relationships . The c linically useful 6 -demethyltetracyc l ine s 

are produced biosynthetica l ly , whi le the 6-deoxy-6-epitetra­

cyc l ines are the result o f  catalytic hydrog enation reac tions . 

Both type s of compound s a s  we l l  a s  the 6-deoxy- 6 -demethyl­

tetracyc l i ne s , ( I I )  i n  F ig . I ,  are potent ant ibac ter ial  agents . 

In  addi tion , the 6 -methylene tetracyc l ines have been prepared 

and are a l s o  ac tive antibacter ial  substanc e s . 

A . 4 .  D-Ring Modif ications 

7 -Chlortetracyc l ine , ( I )  i n  F ig .  I ,  and 7 -bromotetracycl i ne 

are produced biosynthe t ic a l ly and are among the mo st potent 

tetracyc l i ne antibiotic s .  The acid stabi l i ty of the 

6-d eoxy - 6 -demethyl-te tracyc l ines ha s a l lowed the chemical 

substitution of the aromatic D-r ing at  positions 7 and 9 and 

a number of antibac ter i a l  substances with a wide range of 

activ i ties  have been reported . The ava i labi l i ty of the se 

der ivatives made possible  our present attempt at  quantitative 

correlations of struc ture and activ i ty . 

A . S .  Struc ture-Ac tiv i ty Generali zations 

Modif ications of the A-r ing which are not readily  rever s ible 

by s imple aqueous hydrolys i s  lead to drastic reduc tions in 

biolog ical activ i ty .  The mos t  notable exceptions are the 

4 -dedimethylamino-tetracyc l ine s which retain about 5 0 %  of the 

biolog ic a l  activ i ty of the ir parent compound . In  contras t ,  the 

4 - epitetracyc l ines are e s sentially inac tive . P lakunov ( 7 )  
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s tudied s everal tetracycl ines with altered A-r ing systems a s  

well a s  several compound s s truc turally analogous t o  the A-r ing 

of tetracycl ine and concluded that thi s r ing i s  the most 

important part of the tetracycl ine nucleu s .  He f ound that 

alterations of it may produce compounds with a d i f f erent 

antibac ter ial spec trum which are probably exerting an effec t  

by a dif ferent mode of ac tion (v itamin K antagon i sm i s  proposed ) .  

Modif ications of the substituents at  carbons 5 ,  6 ,  7 and 

9 produce der ivatives with quantitatively d i f f erent activities  

but  do not produce the extreme d i f f erences in activ i ty seen 

with A-r ing modif ications . These compound s would seem to offer 

the best pos s ibil i ty for structure-act ivity correlations and 

Colai z z i ,  Knevel and Martin  ( ll ) have repor ted l imi ted 

correlations of biolog ical activity with Hammett- s igma value s 

for these  der ivatives . 

The oxygen func t i ons at  pos i t ions 1 0 ,  ll and 1 2  appear to 

be important for biolog ical activ i ty s i nc e  alterations of thi s  

chromophoric group lead t o  very inac tive compounds . The se 

grouping s  are also one of the mos t  l i kely s i te s  for metal ion 

chelation , a phenomena which ha s always been expec ted to play 

a large role mn the activ i ty of the se antibiotic s ( 1 2 ) . 

A .  6 .  Ac idity Constants of the Tetracycl ines 

The normal tetracycl ine nucleus , ( I )  and ( I I )  in F ig . I, 

ha s three mea surable pKa value s i n  the vic inity of 3 ,  7 . 5  

and 9 ,  Table I ,  see page 61j Stephens et . al . ,  ( 1 3 )  have 

def ined three ioni zable groups , (A ) , ( B )  and ( C ) correspond i ng 

to these values a s  ind icated in F ig . I I .  Thi s a s s ignment o f  
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the observed pKa values t o  spec i f ic functions ha s been the 

subject of some controversy ( 1 4 ,  1 5 ) , but it is now genera lly 

agreed that the f ir s t  pKa i s  attr ibutable to the 

tr icarbonylmethane sys tem (A) , the second to the phenolic 

d iketone moiety ( C )  and the third to the ammonium cation ( B )  

I t  i s  recog n i zed that in many compounds con s iderable over lap 

may exi s t  between the ioni zation of the second and third groups 

( 1 6 )  • 

B .  Tetracyc lines - Biochemica l  Ba s i s  of their Antibiotic 

Act iv i ty 

I t  i s  g ener a l ly a s sumed that a l l  the tetracyc l ines have 

s im i lar mode s  of ac tion . Thi s  view i s  ba sed upon the 

s imilarity of their s truc ture s ,  the fact that the bac ter iostatic 

effects  of the mos t  active compound s occur at  s imi lar 

concentrations and the common occurrence of cross-resi stance . 

Never thele s s , i nve s tiga tor s have occas iona l ly noted 

d i s s imilar i t ie s , part icular ly in the ni tro-reduc ta se system and 

in c e l l  wal l  synthe s i s . Cross-re s i stance i s  seen with a great 

many other struc tur a l ly d i s s imi lar antibiotics and it  probably 

does not have any bearing on the mode of bac ter iostatic action . 

Also , there i s  a large d i f f erence in the concentrations at  which  

bac ter iosta tic e f fects are  seen in some le ss  common tetracyc l i ne s .  

The resolution o f  these problems , undoubtedly , depend s o n  the 

test system . 

B .  l .  Effect on Rate of C e l l  Reproduc tion 

The ant ibac ter i a l  activ i ty of the tetracyc l ines ha s been 
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evaluated i n  various media  against many pathogenic and 

non-pathogenic organ i sms . The data ha s usually been presented 

as the minimum concentration of drug necessary to prevent 

v i s ible growth dur i ng a spec i f i ed time per iod . These value s , 

the so-c a l led MIC or p value s , have been tabulated by La skin 

( 1 7 ) . The wide range o f  MIC va lue s obtained for a g iven 

tetracyc l ine by d i f f erent i nvestiga tors is the reason why 

these activ i t i e s  are not useful in making structure-activity 

correlations . 

The effec t  of the antibiotics on the rate of cell  d iv i s ion 

ha s been studied by turbidimetr ic , viafule plate and tota l cell  

count methods .  Rates of growth mea sured by turbid imetr ic 

method s f orm the bas i s  for the biological  activities compi led 

by Boothe ( 6 ) , Barrett ( 5 ) , P lakunov ( 7 )  and Benbough and 

Morr i s son ( 1 8 ) . These methods were  c r i t i c i zed by Ha sh et . a l . , 

( 1 9 )  s i nc e  they are sensi tive to c e l l  volume in addition to 

cell  number . They c la im that cell  vo lume may change during 

tetracyc l i ne inhibition . The Coulter Counter can be used to 

observe chang e s  i n  c e l l  volume . C e l l  vo lume changes , other 

than those norma l ly a s sociated with the exponential  growth 

cyc l e , however , were  not seen in cultures inhibi ted with low 

tetracyc l ine concentrations ( 2 0 ) . Jones and Morr i sson ( 2 1 )  

have pointed out that the ir turbidimetr ic data were correlated 

wi th c e l l  weight , which to them is the mos t  meani ngful and 

only exponential  growth parameter . They be l ieve that changes 

in cell  number s are only exponential  becau se of exponential 

chang e s  in cell mas s  and that therefore turbidimetr ic measures 
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were more meaning fu l . Data to be pre sented later make it  c lear 

that measurements of culture turbidity and c e l l  numbers may be 

d i fferent dur ing normal and inhibited c e l l  growth . 

C iak a nd Hahn ( 2 2 ) , Jone s  and Mor r i s son ( 2 1 )  and Garrett 

and Brown ( 2 3 )  d emonstrated that exponenti a l  growth i s  

ma inta ined in  cultures conta ining low tetracyc l ine concentrations . 

They propo sed k inetic equa tions which expre s sed the dependence 

of the growth rate constants upon tetracyc l ine concentration . 

Changes  in  this dependence at  higher antibiotic concentrations 

have been interpre ted as ind icating a change in the predominant 

mode of action . 

B .  2 .  Effec ts on Oxidation and Re spiration 

Eagle  and Saz  ( 2 4 ) , Snel l  and Cheng ( 1 )  as  wel l  a s  Laskin 

(1 7 )  r eviewed the effects  of the antibiotics on respiration and 

on the oxidation of var ious substrates . The pronounced 

inhibition in mo st cultures of the se parameter s was one of the 

f ir s t  areas s tudi ed . Cheng and Sne l l  ( 2 5 )  reported 5 0 %  

inhibition o f  o0 2 in  resting E scher ichia coli  and 

Staphylococcu s aureus by a s  l ittle a s  2 x 1 0 - 6 M 

oxytetracyc l ine . At the same concentration severa l 

tetracyc l ine analogs : 5a ( lla ) -anhydro-5-hydroxy-tetracycline , 

4 -dedimethylam i no-oxytetracycl ine and 2-acety l - 2 -decarboxamido-

oxytetracyc l ine , compounds not normal ly cons idered 

bacter i o static , cau s ed inhibitions of 4 6 ,  59 and 2 3 % , 

r e spect ively . Crema and Barol i  ( 2 6 )  repor t that oxytetracyc l i ne 

was a lmo st without e f f ec t  on the r espiration of S . curcio when 

the organism wa s in the resting state , whi l e  a s  l ittle a s  
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0 . 1  to 1 . 0  mcg . /ml . o f  drug inhibited re spiration by 5 0  to 6 0 % 

at  the beginning of the log pha s e . This observat ion wa s 

conf irmed by Wong , Barban and Aj l ( 2 7 )  who r eport 9 0 %  

inhibition o f  re spiration i n  pro l i f erating cultur e s , by 0 . 1 3 

mcg . /ml o f  oxytetracycl ine . 

A large number o f  r eport s  documenting inhibition of 

oxidat ion of compounds involved in  carbohydrate metabo l i sm 

have been reviewed ( 1 7 , 2 4 ) . The se  effects  are now thought 

to be due to an inhibition of enzyme f ormation or to the 

appearance of an add i t iona l mode of ac tion due to the extremely 

high concentrations of antibiotic employed . S ince inhibition 

o f  severa l o f  these  system s , pyruv ic " hydrogenlya se " , amino 

ac id dec arboxy l a s e ,oC-amylase , a lanine dehydrogena se  and 

polynuc l eotide phosphoryla s e , occur in in v i tro systems wi th 

preformed enzyme s , the inhibi tions can not be solely a scribed 

to faulty protein synthe s i s . La skin ( 17 ) , however , ha s 

conc luded that " in no ins tance i s  there compell ing evidence 

to sugg e s t  that the primary s ite of ac tion is involved among 

thes e  effects  on oxidation and r e spiration . "  

B .  3 .  Effects  on Protein Synthe s i s  in Cultur e s  

I n  l 9 5 0 ,  Ga le  and Paine ( 2 8 )  reported that chlortetracyc l ine 

inhibited protein synthe s i s  in  S .  aureus. Thi s  s tudy showed that 

the antibiotic inhibi ted " c ombined g lutamate " formation , but not 

free g lutamate accumu la tion in wa shed c e l l  suspens ions . Hahn and 

Wi s seman ( 2 9 )  noted that adaptive enzyme f ormation wa s inhibited 

in E .  c o l i  by both chlortetracyc l ine and oxytetracyc l i ne . They 

a ttr ibuted this to a general  inhibition of protein synthe s i s . 
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Ga le and Folkes ( 3 0 )  conf irmed that wa shed suspens ions of 

S. aureus do not incorporate g lutamate into protein in the 

pre s ence of growth inhibitory concentrations of tetracyc line ;  

a 9 0 %  inhibition o f  rate o f  incorporation a t  1 mcg . /ml . of 

e i ther chlortetracyc l ine or oxytetracyc line wa s observed . 

They a l so noted that inhibition of nuc leic ac id synthe s i s , 

rate of free g lutamate accumu la tion and rate of glucose 

fermentation took place at  higher antibiotic concentrations 

and that the two antibiotic s d i f f ered quantitatively in the ir 

effect  on thes e  parameter s .  Park ( 3 1 )  and Sa zykin and Bori sova 

( 3 2 )  in shor t communications , conf irmed the preferential 

inhibition of protein synthe s i s . Park also  noted that 

funhibition of c e l l  wa l l  synthe s i s  required higher antibiotic 

concentrat i ons , 50 mcg . /ml . Neverthe l es s , Cheng and Snel l  

( 1 ) , unaware of Park's r eport , have c la imed that the use  of 

D , L-Glutamate by Gale and co-worker s had not e l iminated the 

pos s ib i li ty of a preferenti a l  inhibition of D-Glutamate into 

c e l l  wal l  mater i a l . Ha sh , Wishnick and Miller ( 1 9 )  have 

r eported that c e l l s  treated with tetracyc l ine show increased 

c e l l  wal l , hexosamine s and r i bonuc�e ic acid ( RNA) but decreased 

protein and deoxyr ibonuc leic ac id ( DNA) as compared with 

contr o l  c e l l s . S imilarly , the incorporation of c�4 -labeled 

lys ine , a lanine and g lutamic a c id into the cytoplasmic protein , 

i s o lated in  a manner so that c e l l  wa l l  protein wa s e l iminated , 

wa s greatly inhibited by tetracyc l ine at 0 . 1 ,  0 . 5  and 1 . 0  

mcg . /ml . and chlortetracyc l ine at  1 . 0  mcg/ml . Incorporation 

of c l 4_a lanine into c e l l  wa l l  material wa s not inhibited at 
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1 . 0  mcg . /mL o f  c hlortetracyc l ine , but wa s inhibited at 

50 mcg . /ml . ;  tetracyc l i ne had no effec t  on this incorporation 

at  5 0  mcg . /m l . The kinetic s of incorporation of the amino 

acids into cytoplasmic prote in  revea led that inhibitrnon was 

immediate . Mor r i s son et . a l . ,  ( 1 8 ,  2 1 )  provided further 

evidence in support of the theory that the ma j or effec t  of 

the tetracyc l ine s is an impa irment of protein synthe s i s . 

v / 
Cer ny and Haberman (3 3 )  have made kinetic mea surements of the 

inhibition of protein and nuc l e ic a c id synthes i s  in cultures 

o f  E .  coli C at  tetracyc l i ne concentrations of 20  to 5 0  

mcg . /ml . They found an immediate c e s sation of protein 

s ynthe s i s  f o l lowed by a latter , complete inhibition of nuc leic 

acid synthe s i s . The s e  concentrations are suff ic i ent to cause 

c e l l  death and it is unfortunate that the se workers d id not 

employ addi t iona l lower antibiotic concentrations . Holmes and 

W i ld ( 3 4 ) , dur i ng the course of investigatroons of the synthes i s  

o f  abnorma l r ibosomal RNA , have reported a l s o  a t  high 

chlortetracycl ine concentra tions , results s imi lar to those of 

v / 
Cerny and Haberman . They observed an immediate cessation of 

protein  synthes i s  and continued RNA synthe s i s . Several 

addi t iona l tetracyc l ine ana log s have a l so been stud ied and 

s imilar f inding s reported ( 3 5 ,  3 6 ) . Their mea surements were 

completed approximately within the time of one culture 

g eneration cycle and they did not observe the inhibition of 

muc leic  ac id synthes i s  which occur s at  longer growth time s . 

These authors seem to feel  that r ibosoma l precur sor RNA 

accumu lated under antibiotic treatment i s  not only the result 
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spec i f ic s t imulatory effect o f  the tetracyc line s . 

Numerous investigator s have reported that the 
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tetracyc l ine s inhibit the  formation of adaptive enzyme s . Sne l l  

and Cheng ( l )  a s  we l l  a s  La skin ( 1 7 )  have l i s ted these 

inves t igat ions and have empha s i zed the low concentrations of 

antibiotic needed to inhibit these phenomena . S�rm et . a l,, ( 3 7 )  

i n  addi t ion to Hahn and Wis seman ( 2 9 ) , have tr ied to interpret 

their data as meaning that tetracyc l i ne caused an impairment of 

the over a l l  protein synthe s i z ing abi l i ty . These authors showed 

that the inhibition o f  g lutamic ac id decarboxylation was re lated 

to the synthes i s  of the enzyme and not to a lack of nec e s sary 

co-factor s . 

Sne l l  and Cheng ( l )  have cautioned against drawing such 

general  conc lus ions from thi s  type of data . They be l ieve that 

an inhibition of adaptive enzyme f ormation might not be 

suf f ic iently critical  to account for bac ter iosta s i s . They were 

a l so not sure at that t ime , 1 9 6 1 , that an inhibition of protein 

synthe s i s  would be able to cause the effects  observed in bac ter i a l  

culture s .  They , however , f e l t  that blocking a reaction in the 

e lectron transport sys tem or an impairment of c e l l  wa l l  synthe s i s  

wou ld b e  suf f ic iently cr i tica l . A n  over a l l  inhibition of 

protein  synthes i s  is presently thought to be c r itica l enough to 

cause bac ter iosta s i s . 

B . 4 .  Effects  on Cel l-Free Nitro-reduc ta se Systems 

Ear ly reports  ind icated that high concentrations of 

chlortetracyc l ine were capable of uncoupling oxidative pho s ­

phorylation in  norma l mitochondr ia ( 3 8 )  a s  we l l  a s  i n  r a t  liver 
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and brain s l ic e s  ( 3 9 ) . An  interference with  orthophosphate 

uptake wa s conf irmed in  the s tud i e s  of Van Meter et . a l . , ( 4 0 ) . 

The inhibition by c hlortetracyc line in rat l iver mitochondr ia 

at low adenos ine tr iphosphate (ATP ) a nd phosphate concentrations 

wa s shown to be reversed by added Mg ions . S imilar inhibi tions 

and meta l ion r ever s a l  were reported for oxytetracyc l ine and 

tetracyc l ine by Brody , Hurwitz and Bain ( 4 1 ) . The se reports 

suggested that the inhibition of protein synth e s i s  repor ted by 

Gal e  and Pa ine ( 2 8 )  might be due to di sruption of the e lectron 

transport system ,  a lthough a s imilar inhibition of nuc l e ic a c id 

synthe s i s  might have been expected . Inhibition wa s postulated 

to occur because of interactions with meta l lo-enzyme s known to 

be important in these  systems . Miura e t . a l . ,  ( 4 2 )  showed that 

oxytetracyc l ine wa s able to r educe incorporation of P3 2  into 

a c id soluble phosphorus in  intac t r e sting cultures of S. aureus 

at growth inhibitory concentrations . However , these  

experimental r e sults  in add ition to  being highly non- spec i f ic , 

could be interpreted a s  due to the improper use  of controls . 

Contr o l  c e l l s  were a l lowed to enter the log pha se  of growth 

whi le inhibited c e l l s  d id not leave the stationary pha se of 

growth . In a r ev i ew of oxidative phosphorylat ion , Brody ( 4 3 )  

reached the conc lus ion that the uncoupling caused by the se  

antibiotic s wa s non-spec i f ic and was most probably the result  

of r emoval  of e s sential  metal ions. Hunter and Lowry ( 4 4 )  in 

a later rev iew d i sagreed with thi s  v iewpoint because of the large 

Mg ion/tetracyc l ine ratio r equired to rever se the inhibition . 

However , they be l i eved that inhibition of these mamma l ian 
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sys tems by tetracyc lines occur s at such high concentrations 

as to make unlike ly the postulate that this type of activity 

is r esponsible  for the compound ' s  antibiotic ac tivity 

Goma z kov ( 4 5 ) , Santi ( 4 6 )  and Morikawa e t . a l . ,  ( 4 7 )  have 

recently studied thes e  inhibitions and a l s o  noted that the 

high antibiotic concentra tions required for inhibition make 

this an unlikely mode of action in bac teria l c e l l s . 

The pos sibility sugge s ted by this ear ly work , that 

tetracyc line s f unc tion as inhibitor s by chelation of e s s entia l 

meta llo-enzyme system s , prompted Sa z and co-worker s to search 

for other similar bacteria l systems . Saz  and Maramur ( 4 8 )  

r eported the inhibition of a c e l l-free nitro-reducta se  system 

by chlortetracyc line in 1 9 5 3 . The r ever sal  of this inhibition 

by manganese  ions  was reported by S a z  and S lie ( 4 9 ,  5 0 ) . 

The se  extrac ts were capabl e  of mediating the r eduction of 

a large number of aryl compounds ( 5 1 )  a s  we l l  a s  the reduc tion 

of nitrate to nitrite . The aryl nitro reduction wa s inhibited 

by chlortetracyc line , but not oxytetracyc line and neither 

compound interfered with nitrate r educ tion . 

In addition to chlortetracyc line , sever a l  of  its 

degradation products were active inhibitor s of the reduc ta s e , 

i . e .  aureone amide , aureomycinic acid , anhydrotetracyc line , 

isochlortetracyc line and 4 -dedimethylamino-aureomycinic acid . 

Several  o f  these  compounds were a l s o  ac tive in reducta se  

experiments performed with whole  c e l l s , a l though they are not 

a l l  bacteriostatic agents . 
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Further s tud i e s  ( 5 2 )  with more pur if ied nitro-reductase 

systems showed that they r equired ATP , d iphosphopyridine 

nuc leotide (DPN ) a nd a d i carboxyl ic ac id a s  wel l  a s  cyste ine 

and manganese ions . If  r educed d iphosphopyr idine nuc leotide 

(DPNH ) wa s u sed in place of DPN and L-ma la te , the r educ tion 

of aryl n i tro compounds wa s no long er inhibited by 

chlortetracyc l ine . 

As a r e su l t  of these  experiments ,  S a z  and co-worker s 

proposed that chlortetracyc l ine wa s an inhibitor of the 

formation of DPNH from L-ma late and DPN . They thought that 

it accomp l ished this inhibi tion by preventing fur ther 

metabol i sm of oxa loacetic a c id , the ma j or product of the 

DPN-malate reac tion . I t  wa s known tha t oxa loacetic 

decarboxyl a s e  ha s a manganese ion requirement and this enzyme 

wa s the pre sumed s ite of action . The s ite of action wa s 

proposed to be spec i f ic for the chlor ine conta ining 

tetracyc l ines  a s  oxytetracyc l ine or tetracyc l ine did not 

inhibit the s y stem . The a b i l i ty of the inactive as we l l  a s  

active chlor ine containing tetracyc l ines t o  inhibit the system 

made i t  a poor choice for the s i te of antibacterial action of 

these  compound s .  

Saz  and a s soc iates  next d irected their attention to 

purif ied extracts obta ined from both sens it ive and r e s i s tant 

E .  co l i . These  more highly pur if ied extrac t s  reta i ned some 

but not a l l  of the or ig ina l  nitro-reducta se  activ i ty . While  

the extracts were no  longer able  to  reduce DPN to DPNH , i . e . , 

they were devoid of mal ic dehydrogenase  activity , they were 
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s t i l l  able t o  r educe chloramphenicol o r  �-nitrobenzoic acid . 

S i nce  this r educ tion of p-nitrobenzoic a c id wa s inhibited by 

chlortetracyc l ine they were f orced to conc lude that the ir 

prev i ously proposed mechan i sm was not correct for the new 

r educ tase  ( 5 3 ) . 

Extracts obta ined from sensit ive c e l l s  were shown to be 

greatly stimulated by f lavin mononuc leotide and manganese ions 

whi l e  tho s e  from r e s i stant c e l l s  were not stimulated . Kinetic 

exper iment s demonstrated that the extract s  from sens itive 

c e l l s  ox id i z ed stoichiometr ic amounts of DPNH in the reduction 

o f  FMN and the produc tion of p-aminobenzoic acid . Saz  and 

Martinez  ( 5 4 )  interpreted the se  results to mean that f lavin 

and mangane se  were loos e ly a s soc iated as co-factor s with 

enzymes in sens itive c e l l s  while  they were more tightly bound 

in r e s i s tant c e l l s . Plakunov ( 5 5 )  i n  a s tudy o f  resi stant 

s trains  has ,  however , r eported that the d i f ferences are mor e  

l ikely a scr ibable t o  d i f f erenc e s  in the relative amounts of 

FMN and f lav in adenine dinuc leotide ( FAD ) f ound in r e s i s tant 

and s en s itive strains  of S .  aureus . 

The hypothes i s  that tetracyc l ines  inhibit by interfering 

with f lavins ha s been s tudied by Yag i  e t . a l . ( 5 6 ) . They 

showed that the mode of ac tion of the se compound s in the 

inhibit ion of D-amino ac id oxida se  was by complexation with 

FAD . They f ound that chlortetracyc l ine formed highly s table 

complexes with r ibof lav i n ,  FMN and FAD . They a l so showed that 

the kinetic s of inhibition of the oxidation of D , L-alanine by 

the enzyme-FAD preparation could be explained by a s suming the 



rever s ible formation of an inactive chlor tetracyc l ine-FAD 

complex . 

Continued puri f ication of the reduc tase system by S a z  
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and Martinez ( 57 , 5 8 ) has not demonstrated that i t  i s  the s i te 

of bac teri a l  res i s tance to chlortetracyc l ine . They i solated 

a protein- stab i l i z ed enzyme preparation which catalyzed the 

reduc tion of 2 , 6 -dichloropheno lindophenol . This  enzyme 

preparation wa s inhibited by chlor tetracyc l i ne when prepared 

from sensitive but not when prepared from r e s i s tant strains . 

However , chlortetracyc l ine inhibited the reduct ion of 

ferricyanide and s timulated the reduction of cytochrome c by 

extracts prepared from both sens itive and r e s i s tant strains . 

V i l lanueva ( 5 9 )  in  a study of the nitro-reducta se of extracts  

from both sensi t ive and r e s i s tant Nocardia ha s recently 

reached the conc lus ion that there is no difference in 

reductase activ i ty . 

Krfmery and a s sociates ( 6 0 )  have continued work on the 

hypothe s i s  that development of tetracyc l ine r e s i s tance as we l l  

a s  a poss ible mode of action l i e s  in the e lectron transport 

cha i n . They have shown that triphenyltetrazol ium chlor ide 

reduction by whole c e l l s  of sens i t ive stra ins but not by who le 

cells of r e s i s tant strains is  inhibi ted by oxytetracyc l ine . 

The degree of  inhibi t ion var ied markedly with the type of 

carbon source in the growth media . Further s tudi e s  ( 6 1 )  showed 

that malate a nd lacta te dehydrogena s e  (MDH , LDH ) activities  

dif fered in  s en s i t ive and r e s i s tant s trains . Re s i s tant c e l l s  

( 6 2 )  were a l so not able t o  reduce tel lurite ( K
2

Te0
3

) whi le 
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the sensitive stra ins had this abi l i ty , but were inhibited by 

oxytetracyc l i ne . Crude c e l l-free preparations which catalyzed 

MDH ,  LDH and N03 reduc tion showed s imi lar dif ferenc e s  among 

sensitive and resistant s trains . Recently ( 6 3 )  these worker s 

have reported that cytochrome oxidas e  activity in sensi tive 

strains of S .  aureus , E .  coli  and Brucella abortis  are 

inhibited by short exposure to oxytetracyc l ine . Re si s tant 

s tra ins are not affected under the u sual aerobic conditions 

but are inhibited only under anaerobic cond itions . The se 

worker s be lieve that oxytetracyc l i ne interferes with microbial 

enzyme systems involved in elec tron transport and that 

resistant s trains have developed a l ternate pathways . Severa l  

other worker s bel ieve , however , that resi stance to �etracy­

c lines is a s soc iated with an a l tered permeab i l i ty of the c e l l s  

( 6 4 , 6 5 ,  6 6 ) . 

Colai z z i ,  Knevel  and Mar tin ( 1 1 )  used mammal ian cytochrome 

C oxido-reductase system to obta in biolog ical activities for 

use  in struc ture-ac tivity corre lations .  Whi le many of the 

active tetracyc l ine s were inhibitor s of this system ,  severa l  

tetracyc l ine s which a r e  not considered bac teriostatic were 

equ a l ly good inhibitor s . The author s felt  that this might 

be explained by dif ferences in abi l i ty to permeate c e l l  wal l s . 

However , S a z  and co-worker s ( 5 1 )  have previou s ly noted that 

such reasoning wa s not va l id in exp laining difference s  in 

activity in the ir nitro-reductase system . The high 

c oncentrations ( lo - 3 �) of antibiotic nece s sary for inhibition 

of this  sys tem are typical of results obta ined with mammal ian 

system s . 



B .  5 .  The Nature of  C e l l -Free Protein S ynthe s i z i ng 

Systems - Translation of the Genetic Code 
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The purpose o f  thi s  section i s  to summar i z e  the exi sting 

knowledge of c e ll-free protein synthe s i z ing systems . In this  

way , the reader may have a better under stand ing of the effects 

of tetracyc l ines upon the se systems and can judge whether 

the se effects are suf f ic ient to account for the inhibition of 

growth of whole c e l l s . In  add i tion , several  recent experiments 

that have led to new and detai led mode l s  of thi s  system wi l l  be 

d i scus sed . 

Trans lation refers to the proc e s s  in the synthesis  of 

proteins by which a particular sequenc e of nuc leotide ba ses  

in mes s enger RNA (mRNA) determine a specific  sequence of  

amino acids in a polypeptide cha i n .  Translation i s  

accomp l i shed b y  the interac tion o f  three  c la s ses of 

macromo lecules : mRNA , the spec i f ied amino ac id cova lently 

l i nked to transfer RNA ( tRNA ) and a comp lex r ibonuc leoprotein 

cal led a r ibosome . Severa l exc e l lent review ar ticles  have 

appeared recently which descr ibe exi sting knowledge of the 

system in deta i l  (67, 68 , 69, 70). 

The bas ic components of a s imple  c e l l-free protein  

synthes i z ing system are : 

l .  Ribosome s 

2 .  mRNA 

3 .  Arninoacyl tRNA (AAtRNA) 

4 .  Ribosome a s sociated ini tiation factor s ,  f 1 and f 2 

». Non-r ibosome a s soc iated ( supernatant ) enzyme s , T and G 
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6 .  Guanos ine - 5� Triphosphate ( GTP ) 

I n  addition to these bas ic components , a ce l l - free 

system usual ly includes a buf fer , pH 7-8 ; monovalent inorganic 

s a l ts ; divalent salts or a polyamine polypeptide ; and a 

sul fhydryl reducing agent . 

More complex sys tems , or alternate ly more crude systems , 

may generate within the sys tems AAtRNA and these sys tems 

require addi tional ly ATP , pyruvate kinase (PK ) , phosphoenol 

pyruvate ( PEP ) , amino acids (AA )  , soluble RNA ( sRNA) and 

aminoacyl synthetase s .  A few experiments have been performed 

with systems that generate mRNA s imul taneously and these 

require DNA , DNA-dependent RNA polymerase and appropriate 

nucleotide s . 

B .  5 . a .  Ribo somes 

Bacterial  ribosome s are complex aggregates which cons i s t  

of  6 0 - 6 5 %  RNA and 3 0 - 3 5 %  prote in . They serve a s  a template 

for the assemb ly of peptide bonds between AAtRNA molecules 

held on the ribosomal surface . I n  addition to thi s  inactive 

role , it is thought that peptide synthetase enzyme s as we l l  

as initiation enzymes may b e  an integral part of  the normal 

ribosomal surface . Because the s i te of  action of  tetracycl ines 

is  presumed to be on the ribosomal surface , a detailed 

des c ription of  ribosomal structure wi l l  be presented . 

Ribosomal particles  partic ipate in a series of  revers ible 

as sociation reactions which are i llustrated in Fig . I I I . 

The species  active ly associated with protein synthe s i s  has 

been shown to be the 70 S ribosomes ( 71) ,  which have a 
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Figure I I I . Ribosomes , Components , Subunits , As sociation and 

D i s sociation Reactions , Shaded c ircles depic t the ribosoma l 

partic les , scrambled l ine s depict the ribosoma l ribonuc leic 

acids and s - shaped lines depict the ribosomal proteins for 

which the ind icated S values refer to the sedimentation 

values of the origina l  ribosome subuni ts . 



molecular weight of  approximately 2 . 7  x 1 06 and a d iameter 
0 

of  about 2 0 0  A .  They dimeri z e  i n  solutions of high Mg ion 

concentration in an apparently non-phys iolog ica l reac tion , 

2 6  

they a l so undergo an apparent shape change i n  EDTA solutions . 

The d i s sociation of  7 0  S r ibosome s to 5 0  S and 3 0  S subunits  

occur s at  Mg ion concentrations s imi lar to those found in 

bacteri a  ( 7 0 ,  7 2 ) . The d i s soc iation of 70 S r ibosomes to 

subunits  i s  inhibited by sulfhydry l  blocking agents or 

polycationic polyamines a s  we l l  as high Mg ion concentrations 

( 7 3 , 7 4 ) . Moore ( 7 5 ) , in a s tudy of the effects  of chemica l 

reagents on subunit a s soc iation , ha s conc luded that hydrogen 

bond formation e i ther between nuc leotide ba s e s  or between a 

nuc leotide base and a phosphate group are respons ible for 

this a s soc iation . 

The 3 0  S submm i t  cons i s ts of a s ing le RNA molecule , 

1 6  S rRNA , with a molecular weight of approximately 0 . 6  x 1 0
6

, 

and a t  lea st 1 5  spec i f ic prote ins ( 7 6 ) . The 5 0  S subunit 

cons i s ts of  2 molecu l e s  of RNA , one a 2 3  S rRNA and the other 

a 5 S rRNA , as wel l  as at  leas t  19 spec i f ic prote ins ( 7 7 ) . 

The 5 S spec i e s  of rRNA wa s f ir st i so lated in 1 9 6 4  by 

Ros sett et . a l . ( 7 8 ) and wa s shown to be d i s t inc t from sRNA 

which ha s a s imilar sedimentation coe f f ic ient . The entire 

nuc leotide sequence of 5 S rRNA from KB carc inoma c e l l s  ha s 

been determined by Suther land , Carr ier a nd Setlow ( 7 9 ) , and 

a l s o  that of E .  col i ,  by Brownlee and Sanger ( 8 0 )  and Brownlee , 

Sanger and Barre l l  ( 8 1 ) . This r i bosoma l RNA l ike 1 6  S and 

2 3  S rRNA conta ins no unusua l nuc leotide s .  



2 7  

The secondary s tructure of  thi s  relative ly new rRNA i s  

also  thought t o  b e  s i milar  t o  that of  both 1 6  S and 2 3  S rRNA . 

I t  cons i s ts partly of  double stranded hel ical regions and 

partly of non-hydrogen bonded s i ngle s trands ( 8 2 ) . Extens ive 

s tudi e s  on the phy s i cal  and chemical properties of rRNA have 

been reviewed ( 8 5 ) . 

The 5 '  terminal nuc leotide sequences of E .  col i 1 6  S and 

2 3  S rRNA have been determined by Takanami ( 8 3 ,  8 4 ) . These 

determinations show that the two rRNA ' s  are d i s tinct species . 

The prote in components of  r ibosome s  have been s tudied in 

considerable detai l .  The large number of  prote ins indicated 

i n  Fig . I I I , have been i solated and s tudied by : end-group 

ana lys i s  ( 8 6 ) , ultracentri fugation ( 8 7 ,  8 8 ) , s tarch gel 

electrophore s i s  ( 8 6 ) , polyacrylami de gel electrophores i s  

( 7 6 , 7 7 , 8 7 , 9 0 , 9 1 )  and chromatography on 

carboxyme thylcel lulose ( 9 1 )  and Sephadex ( 9 1 )  They are unique 

proteins wi th d i s t inct amino acid analys i s  ( 8 9 ,  9 1 ,  9 2 )  and are 

not the result of aggregate s formed during preparation . The 

large number o f  r ibosomal  proteins argues against the theory 

that rRNA could serve as a mRNA for their  synthe s is . Ribosomal  

RNA doe s not  contain enough trinucleotide s to  synthe s i ze thi s  

many large , d i s tinct prote ins ( 7 0 ) . 

I t  s eems l ikely that ribosomal  proteins play d i s tinct 

and non- i nterchangeable roles ( 9 3 , 9 4 , 9 5 ) . Thei r  functional 

spe c i f i c i ty has been inve s tigated by a degradation -

recomb ination technique . In  these experiments the proteins are 

partially spl i t  from the ribosomal subuni ts with C sC l  ( Fig . I I I )  
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and the l i berated core particles  and split  prote ins are 

separated , isolated and identif ied . Normal  r ibosome func tion 

can be achieved by mixing the isolated components . Ribosomes 

reconstituted in thi s  manner but lacking one or more split 

proteins have been shown i n  some cases to lack one or more , 

but not a l l , r ibosoma l functions ( 9 4 ) . This technique ha s 

been u sed to show that streptomycin sensi tivity , resistance 

and dependence l i e  with the 2 3  S core particle and not with 

the split prote ins ( 9 6 , 9 7 ) . Sensitivi ty and resistance have , 

however , been shown to l i e  i n  the prote in frac tion of the 

core partic l e s  and not in the rRNA ( 9 8 ) . 

EDTA treated r ibosomes conta in a l l  known r ibosome 

components but probably because they have dif ferent hydro­

dynamic proper ties  they lack certa in spec ific  ribosoma l functions 

( 9 9 )  • 

Treatment of  r ibo some s with LiC l  causes a loss of 

protein components s imi lar to that which i s  produced by cSC l . 

L iC l -r ibosomes are now known to be identical to the particles 

found in bacterial culture s  inhibited by chloramphenicol ( 1 0 0 ) . 

The se r ibosoma l  particles  are probably the same a s  those found 

in tetracyc l ine i nhibited cultures  ( 3 4 , 3 6 ) . Such r ibosomes 

are thought to be norma l  precur sor par tic les . 

The effect  of Mg ion concentration on the a s soc iat ion­

d i s sociation of  r i bosomes is outl ined in F ig . I II . I t  ha s 

recently been shown that Mg ion i s  required to neutra l i ze the 

phosphate g roups in the r ibosoma l  RNA . "Norma l "  7 0  S r ibosome s 

ex i s t  i n  an ionic environment in which the ratio of 
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r ibosomal-bound Mg ion to ioni zed r ibosomal pho sphate is  0 . 5  

( 7 2 , 1 0 1 ,  1 0 2 , 1 0 3 ) . Cationic groups , such a s  ca++ , NH4
+ , 

spermidine or putr e sc ine , in the proper concentrations are 

a l so capable of cata l y z i ng the formation of functiona l 

r ibosomes ( 7 2 , 1 0 2 , 1 0 4 , 1 0 5 , 1 0 6 , 1 0 7 ) . 

B .  5 . b .  Mes senger Ribonuc leic Acid 

The existence of a spec ies  of rapidly synthe s i zed ,  unstable 

RNA , c a l led mRNA , wa s pred icted in a review by Jacob and 

Monod ( 1 0 8 ) in 1 9 6 1 . The demonstration of the exi stence of 

such a spec i e s  ha s been accomp l i shed by exper iments ba sed on 

two phenomena : i t s  rapid rate of synthe s i s  and turnover a s  

compared with rRNA o r  sRNA and a l s o  the synthe s i s  of thi s  type 

of RNA in phag e - i nf ec ted c e l l s . The pred icted function of mRNA 

wa s that i t  carr ied the information of the genetic code from 

DNA to the r ibo somal template , where it directed the sequence 

of add ition of  amino acids  into protein . Evidence in support 

of this predic tion ha s been rev i ewed by S impson ( 1 0 9 )  and a l s o  

b y  S i nger and Leder ( 1 1 0 )  . Conv inc ing ev idence for t h i s  role 

has been found in  the demonstration of  mRNA in peptide­

synthe s i z ing polysome s ( r ibosome-mRNA aggregate s )  ( 1 1 1 ) , in 

the synthe s i s  of  phage proteins of known sequence by bacter ia l 

systems d irec ted by phage mRNA ( 1 1 2 ) and in the coinc idence of 

amino ac id sequence and nuc leotide sequence of synthetic 

polyr ibonuc leotides ( 1 1 3 ) . 

Trans lation of  the code i s  not accomp l i shed by a d irect 

interaction of  an amino ac id with a spec i f ic tr inuc leotide 

sequence ( codon ) of a mRNA , but rather through an intermed iate 
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adaptor mo lecule , tRNA , cova lently linked to a n  amino acid . 

The tRNA conta ins a spec i f ic trinuc leotide sequence ( anticodon) 

that recogn i z e s  the codon . The codons which direct the 

incorporation into protein  of particular amino acids have been 

determined by studies  of the bind ing of AAtRNA ' s  to r ibosoma l ­

codon , where  the codon wa s e i ther a trinue leotide ( 1 1 4 ) o r  a 

polyr ibonuc leotide of known sequence ( 1 1 5 ) . S imilar i ly 

incorpora tion of AAtRNA ' s  into protein in systems directed by 

polyr ibonuc leotide s of known s equence ( 1 1 6 )  has a l so been used 

to determine the codons which d irect the incorporation of 

part icular amino acids . The four common nuc leotide bases  

when uti l i z ed in  a trinuc leotide code can be arranged in 6 4  

poss ible combina tions . S ince there a r e  only 2 0  amino acids , 

degenerac ie s  might be expected and indeed are found in the 

code . The i solation of s everal d i f f erent tRNA ' s  capable of 

accepting a g iven amino a c id ha s led to the speculation that 

there may be a particular tRNA corresponding to each dodon . 

D i ff erent leuc ine-tRNA spec i e s  have been shown to s elec tively 

bind to d if f erent codons ( 1 1 7 ) . However , i t  i s  unlikely that 

this is the c a s e  for a l l  tRNA molecules ( 1 1 8 ) . 

To account for the known degenerac ies  in the coae , Crick 

has introduced a theory of codon - anticodon pa ir ing , cal led 

the " Wobble Hypothe s i s "  ( 11 9 ) . This theory states that the 

bind ing of the f ir s t  two bas e s  of the codon ( 5 '  to 3 ' )  with the 

appropr iate bases  of the anticodon ( 3 ' to 5' ) fol lows s trict 

Watson-Crick  hydrogen bond ba se pair ing . The interaction of 

the third ba se of the codon with the third ba se of the anticodon 
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i s  not spec i f ic , but ha s certain a l lowable exception s . These 

exceptions are not random but may be pred icted by a cons idera ­

tion of the bond d i s tances as soc iated with the non-classical 

hydrogen bondi ng of codon to anticodon . The sing le exception 

to the known c ode degenerac i e s  occurr i ng i n  the third ba se of 

the codon is in those sequence s  capable of cod ing for the 

initiator , N-formyl -methiony l - tRNA ( N-F-met-tRNAf ) where 

degenerac i e s  in the f ir s t  ba se of the codon exi st ( 12 0 )  

I nterpretation o f  this  phenomena has not been made . 

S i nce i t  i s  known that hydrogen bondi ng between 

trinuc leotides is not suff ic i ently s trong to s tabi l i z e  mRNA­

AAtRNA complexes ,  the s tabl i l i z i ng role of the ribosome must be 

empha s i zed . 

B .  B . c .  Transfer Ribonuc leic  Ac id  

The adaptor mol ecule , tRNA , i s  a re latively smal l  molecule , 

4 - 5  S ,  which forms an e ster with activaned ami no acids  i n  the 

pre s ence of amino ac id syntheta s e . Thi s reaction i s  a 

relatively wel l  under stood area of biochemistry ; it i s  depicted 

in schematic form in F ig .  IV and ha s been de scr ibed in severa l  

reviews ( 1 2 1 , 1 2 2 ) . That tRNA func tions a s  an adaptor molecule 

ha s been shown by demonstrating that cysteine-tRNA , chemic a l ly 

converted to a lanine - tRNA , leads to the incorporation of  a lanine 

i n  place of cyste ine into protein ( 1 2 3 ) . 

The nuc leotide sequence s  of at leas t  four tRNA mo lecules  

have been determined complete ly ( 1 2 4 , 1 2 5 ,  1 2 6 , 1 2 7 ) . A common 

feature of thes e  and a l l  other tRNA ' s  which have been s tud ied 

is a termina l  . . .  pCpCpA nuc leotide s equence . I t  i s  thi s part 
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F igure IV . The Formation of Aminoacyl Transfer Ribonuc leic 

Ac id . (A ) Binding of ATP and an amino acid to the enzyme . 

( B )  Forma tion o f  a n  " activated amino ac id . " ( C )  Binding 

of tRNA to the enzyme . ( D )  Displacement of the origina l  

adenylate bound t o  the enzyme b y  the termina l adenylate of 

the tRNA . ( E )  Forma tion of the e ster , AAtRNA . 

3 2  
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of the molecule which accepts the amino ac id ( see Fig . IV) 

and which is probably involved in the binding of the AAtRNA to 

the 5 0  S r ibosomal subunit ( 1 2 8 ) . 

I n  add i tion to the above mentioned amino acid accepting 

s i te , each spec ies  of tRNA mus t  conta in a region which enables 

it to accept , exc lu s ively , the proper amino a c id ( recogni tion 

s i te )  and a l so a reg ion which conta ins  the appropr iate anticodon 

for the amino a c id accepted . Reg ions in tRNA which might contain 

these s ites have been predicted on the ba s i s  of a c lover - leaf 

secondary s truc ture postulated for tRNA . This is shown in a 

general manner , fol lowing Ful ler and Hodg son ( 1 2 9 )  in Fig . V .  

This structure was f ir s t  proposed by Holley et . a l . ( 1 2 4 )  for 

yeast ala-tRNA . I t  i s  ba sed on s tudies  of hydrogen bonding and 

the results of X-ray d i ffrac tion studies  which have shown that 

tRNA ' s  exi s t  in par tly helical and partly non-helical  conforma­

tions . A pos s ible codon - anticodon interaction , shown in 

F ig . VI  ha s been g iven by Ful ler and Hodg son ( 1 2 9 ) . 

B .  S . d .  A Mode l  of C e l l-Free Protein Synthe s i s  

The sequence of events i n  a cell-free protein synthe s i z ing 

system is shown in F ig . V I I . They may be outl i ned a s  fol lows : 

Step 1 .  - Binding of a 3 0  S r ibosomal subunit to a mRNA . 

Step 2 .  - Formation of the ini tiation complex . 

a .  - Al ignment of the codon for N-F-met- tRNAf on 

the r i bosomal surface so that i t  may bind to 

the anticodon , i . e . , creation of the N-F-met­

tRNAf or peptidyl binding s i te . 
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F igure V .  Schematic Diagram o f  the Proposed C lover-Leaf 

Structure of Transfer Ribonuc leic Ac id s . Hydrogen bond s 

are i nd icated a s  l ines l i nking the strand s . The number of 

nuc leotides i n  each s i ng le stranded loop i s  indicated 

within the loop . X ind icates a nuc leotide which var i e s  

with the tRNA spec ies , r i s  pseudour idylic a c id , T i s  

thymidylic  ac id , DMG i s  d imethylguanylic  acid . 
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F igure V I . Codon - Ant icodon Interaction . Hydrogen 

bonds are i ndicated by double l ine s l inking the r ibo­

nuc l e ic ac ids ; depicted by shaded l i ne s . A hel ical  

relat ionship i s  impl ied between the anticodon loops 

of the tRNA ' s  and the mRNA . Only the anticodon arms 

of the tRNA ' s  are shown , see F igure V .  
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Figure V I I . A Model o f  Cell-Free Protein Synthe s i s . 

Shaded half-circles depict 3 0  S r ibosoma l subunits , 

shaded circles depict 5 0  S ribosomal subunits , a wavy 

line depicts mRNA and tRNA ' s  are depicted by the 

symbo l ,  � , the s-shaped curve depicts a protein . 
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F igure VI I .  
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b .  - Bind i ng o f  N-F-met- tRNAf to the r ibosome-codon 

in a reac tion which i s  s t imula ted by and may 

require the initiation factor s and GTP to form 

the so-cal led initiation complex . 

Step 3 .  - Attachment of  the 5 0  S subunit to the initiation 

complex to form a monosome . Thi s binding s imulna-

neou s ly creates a binding s i te for AAtRNA . The 

aminoacyl bidding s ite corre spor.ds to the 3 '  end of 

the me s senger . l 

Step 4 .  - Binding to the aminoacyl s ite on the 7 0  S r ibosome . 

E i ther AAtRNA a lone or the complex AAtRNA-GTP-T may 

f i l l  thi s s ite , where T is a supernatant protein . 

Step 5 .  - Formation of the peptide bond . N-F-met-AAtRNA would 

be the f ir s t  peptide formed on the ribosome . Thi s  

react ion may b e  cata lyzed b y  a tightly bound r ibosomal 

peptidyl syntheta s e . 

S tep 6 .  - Pulsation (Movement)  of  the r ibosome . 

a .  Remova l of tRNAf from the peptidyl s i te ,  either 

to an exi t  s i te or directly runto the surrounding 

solution . 

1 r f  attachment of  a 7 0  S r ibosome to mRNA occur s  in Step l 
rather than a 3 0  S subuni t ,  then both peptidyl and aminoacyl 
binding s ites may be created at that t ime . Al ignment of the 
codon may be such that N-F-met- tRNA may bind to either site . 
I f  bind ing to the aminoacyl s i te occur s , then trans location of 
N-F-met-tRNA is required before the next step . Step 3 is then , 
of cour se , not nece s sary . Steps 1 to 3 may be repeated to form 
a polysome with d i fferent r ibosomes attaching to the same mRNA 
a f ter incorporation of about ten amino acids into a polypeptide . 
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b .  - A s imul taneous shift o f  the mRNA and 

N-F-met-AAtRNA on the r ibosome surface so 

that a new codon is a l igned under the 

aminoacyl  s ite and the peptidyl tRNA occupies 

the peptidyl s i te . 

Step 6 i s  accompanied by hydroly s i s  of GTP 

catalyzed by G ,  a r ibosome-dependent GTPase . 

Step 7 .  - Steps 4 ,  5 and 6 are repeated to form an increas ing ly 

longer peptide cha i n .  

Step 8 .  - Chain termination and release . 

a .  - E i ther repetition of Step 4 i s  prevented by 

a l ignment of a nonsense codon wi th the aminoacyl 

s i te or Step 5 is prevented by occupation of the 

aminoacyl s ite by a non-func tional sRNA bound by 

the nonsense codon . ( Such a nonfunc tional sRNA 

which bind s  to r ibosome-nonsense codon ha s not 

as yet been found ) . 

b .  - Hydroly s i s  of the peptidyl-tRNA on the r ibosome 

followed by e j ec tion of the peptide and tRNA or 

removal of an intact peptidyl-tRNA from the 

r i bosome and subsequent hydroly s i s  to peptide and 

tRNA . 

Several s teps in the proposed mode l have been s tudied in  

great  deta i l  and their nature i s  at  least partially  unders tood . 

A lack of spec if ic techniques has prevented thorough inves tigation 

of some of the other steps . 
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Step l .  - B ind ing o f  a 3 0  S subunit to mRNA . 

Attachment of  mRNA to the 3 0  S subunit rather than the 

5 0  S subuni t  wa s demons trated by Okamoto and Takanami ( 1 3 0 ) . 

Bind ing of mRNA to 7 0  S r ibosomes has been presumed to occur 

through the attachment to the 3 0  S subunit and not because of 

the forma tion of some new s i te which does not exi s t  on either 

subunit a lone . Moore ( 1 3 1 ,  1 3 2 )  has presented evidence that 

there i s  only one binding s ite for mRNA on 7 0  S ribosomes and 

that poly C and poly U compete for this site . The attachement 

of mRNA ' s  to r ibosome s is thought to invo lve only sing le 

s trand ed regions of the mRNA , s ince double s tranded mRNA ' s  

do not bind ( 1 3 3 )  . Thi s  observation accounts for the strong 

bind ing of poly U to r ibosomes since i t  ex ists  a s  a random coil  

above 4 ° C .  The length of mRNA bound to ribosome s has been 

e s t imated to be about 2 7  nuc leotide s .  This estimate is  ba sed 

upon the number of nuc leotide s which are protec ted from 

r i bonuc lease hydroly s i s  by the ir attachment to r ibosomes . Moore 

( 7 5 )  ha s u sed chemical modif ications of r ibosome s and/or mRNA 

to study their interac tion . He found that the mo st likely 

groups involved in the bind ing were amine groups in the rRNA 

and the phes phate backbone of the mRNA . 

Step 2 .  - Format ion of the initiation complex . 

S ince r ibosomes d irec ted by natural mRNA ' s  synthe s i z e  

comp lete prote ins there mu st b e  control mechani sms whereby initial 

read ing of  mRNA by r ibosomes i s  restric ted to a specif ic s i te . 

Such control might resu l t  from attachment of r ibosomes at a 

spec i f ic si te on mRNA . This mechanism would not be suf f ic iently 
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strict to a l low proper pha s i ng of the mRNA readout , s ince the 

only requirement for binding i s  that the mRNA be s i ng l e  

s tranded . ( Pha s ing i s  the a l ignment of  the f irst  ba se of a 

tr inuc leotide codon whos e  trans lation i s  des ired on the 

r ibosome , so that it spec i f ie s  the readout . When a l ignment 

is such that the second or third bas e  specify the code 

readout then the read ing of the mRNA is said to be out of pha se . )  

In  1 9 6 1 , Wa l ler ( 1 3 4 )  d i scovered that me thionine wa s the 

NH2 -termina l  group in at least 4 5 % of a l l  E .  co l i  proteins . 

Fol lowing this repor t ,  Marcker and Sanger ( 1 3 5 )  observed that 

one spec ies of met- tRNA could be formylated (met- tRNAf ) while  

other spec ies could not  be  formy lated (met-tRN� ) . A l ikely 

f ormyl donor wa s s hown to be N 1 0-Formy l - tetrahydrofolic a c id 

( 1 3 6 )  . They showed that formylation occurred only a f ter 

formation of  the AAtRNA and that an enzyme d i s tinc t  from 

methionyl synthe ta s e  wa s involved . C lark and Marcker ( 1 3 7 )  

observed that N-F-met from N-F-met-tRNAf was incorporated into 

the NH2 -terminal position of prote ins synthes i zed by a c e ll-free 

extract .  Later ( 1 3 8 )  they showed tha t c e l l-free extracts 

directed by poly UG and capable of formylating met-tRNAf 

produced proteins in which more than 5 0 % of the NH2 - terminal 

groups were N -F -met . This f inding seemed to explain Wa l ler ' s  

early repor t ( 1 3 4 ) . 

Adams and Capecchi ( 1 3 9 )  showed tha t N-F-met-ala- ser-a sp-

-phe- thr- was the initial amino acid sequence in R 17 phage 

coat protein produced by an extract directed by R 17 me s senger . 

S ince the identical s equence without the initial N-F-met wa s 
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found i n  endogenous coat protein , these worker s proposed 

that N-F-met-tRNAf was the univer sal  bac ter i a l  chain initiator , 

but that in some cases  e i ther the termina l N-Formyl or the 

N-F-met groups were removed by hydrolysi s .  Webster , Eng lehardt 

a nd Z inder ( 1 4 0 )  �eported s imilar f inding s . Capecchi ( 1 4 1 ) , 

We i sbach and Red f i e ld ( 1 4 2 )  and Lugay and Aronson ( 1 4 3 )  have 

s tudi ed the hydroly s i s  of NH2 - termina l formate in cell - free 

extracts and have attempted to i solate the respons ible enzyme . 
� 

Vinuela , Sala s and Ochoa ( 14 4 )  found that a l l  v iral prote ins 

as wel l  as the coat proteins synthe s i zed in systems directed 

by MS- 2  phage RNA had N-F-met as the NH2 -terminal group . 

In add i t ion to demonstrating that N-F-met from 

N-F-met-tRNAf wa s the f ir s t  amino a c id incorporated into 

protein by c e l l -free extract s . C lark and Marcker ( 1 3 7 , 1 3 8 ) 

proposed that the d i f f iculty in a s s igning a codon to met-tRNA 

might be due to the ex i s tence of two dif ferent codons , one 

codon for met- tRNAf a nd another for met-tRNAm . Sundararaj an 

and Thach ( 1 4 5 )  have estab l i shed that binding of met-tRNAf to 

r i bosome s i s  best when AUG i s  the codon , but other triplets 

a l s o  code for it at  high Mg ion concentrations . Met-tRNAm 

i s  only coded for by AUG . They showed that N-F-met- tRNAf 

wa s c apable of pha s i ng the reading of  synthetic mRNA ' s ,  

such a s  AUGG ( U l n · I n  the presence of N-F-met-tRNAf bind ing 

of val-tRNA in response to the second triplet , GUU , wa s 

s t imu lated . Out o f  pha s e  bind ing of  other AAtRNA ' s  in  

response to  UGG or GGU wa s suppressed . Binding experiments 

with other synthetic mRNA' s , inc lud ing several with the AUG 

codon not a t  the 5 '  termini , gave s imilar results . B inding 
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above background d id not occur at low Mg ion concentrations 

if the AUG codon wa s located at the 3 '  end of the mRNA . 

Thach ,  Dewey , Brown and Doty ( 14 6 )  reported s imi lar results 

when incorporation of amino ac id i nto protein wa s used rather 

than r ibosome-codon bindi ng . They noted that if  an AUG 

codon appeared in a mRNA at a position internal to another 

AUG , thi s  second codon a lways  d irected the incorporation of 

met-tRNAm . They felt  tha t a l ignment of the AUG codon at the 

peptidyl s ite spec i f ied chain initiation by N-F-met-tRNAf , 

whi l e  a lignment of the codon at the aminoacy l s i te spec i f i ed 

chain continuation with met-tRNAm · Leder and Bur s z tyn ( 1 4 7 )  

have confirmed the se f ind ing s  on phas ing o f  readout by 

u s i ng AUG ( U ) n as a mRNA and measur ing the incorporation of 

met ,  val and phe . They a l so showed that N-F-met-tRNA bound 

dur i ng binding exper iments wa s not displaced from r ibosomes 

by the addition of other AAtRNA ' s .  Thi s  f indi ng in conj unction 

with later results of Nomura , Lowry and Guthr ie ( 1 4 8 )  show that 

binding of N -F -met-tRNAf ha s relevance in peptide synthesis . 

A solution to the pu z z l ing enigma that c e l l - free extrac ts 

d irected by synthetic mRNA ' s  requ ire higher Mg ion concentra­

tions than those direc ted by endogenous mRNA was sugge sted by 

Clark and Marcker ( 13 7 ) . They noted that met-tRNAf bind s to 

r ibosome-codon at much lower Mg ion concentrations than those 

which are nec es sary for bind i ng met-tRN� . Thi s  observation 

was a l s o  reported by Sundararaj an and Thach ( 1 4 5 ) . Nakamoto 

and Kolakof sky ( 1 4 9 )  have shown that the Mg ion optimum of a 

system incorporating phe-tRNA but d irec ted by a mRNA which 
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a l lows incorporation of N-F-met- tRNAf wa s greatly lowered by 

inc luding the l atter AAtRNA in the reaction mixture . 

Kolakof sky and Nakamoto ( 1 5 0 )  studied the Mg ion dependency 

of extracts d irec ted by MS- 2  viral RNA . They found a lowered 

Mg ion optimum and a large s t imulation of over a l l  

incorporation when a formyl donor system wa s added t o  the 

extract .  The synthes i s  of coat prote in and a l s o  other viral 

proteins wa s shown to fol low this pattern . 

Clark and Marcker ' s  original suppos i tion ( 1 3 7 ) that 

N-F-met-tRNAf wa s capable of initiating prote in synthe s i s  

because the formamide bond resembl ed a peptide bond wa s shown 

to be f a l s e  by these same worker s ( 1 3 8 , 1 5 1 ) . They 

demonstrated that met- tRNAf as wel l  as N-F-met-tRNAf could act 

a s  an initiator , Leder and Bur s z tyn ( 1 4 7 )  and a l so Sa l a s  

et . a l . , ( 1 5 2 )  conf irmed t h i s  r e su l t . Leder and Bur s z tyn ( 1 4 7 )  

sugges ted that formylat ion might take place af ter attachment 

to the r ibosome-codon . They showed that this type of r ibosoma l 

formylation wa s pos s ible . Economou and Nakamoto ( 1 5 3 )  have 

stud ied the kinetic s of the formylat ion reac tion and conc luded 

that the reaction is so fast  that met- tRNAf would be formylated 

before binding to r ibosomes in any extrac t capable of 

performing the reaction . I t  mu st , however , be conc luded that 

the unique abi l i ty of N-F-met-tRNAf to ini tiate protein  

synthes i s  l ie s  in the tRNAf port ion of the mo lecule and not 

in the formamide bond itself . 

Incorporation of met- from met-tRNAm into interna l  portions 

of peptides synthe s i z ed by c e l l-free extracts wa s reported by 

Thach et . a l . ,  ( 1 4 6 ) . Clark and Marcker ( 1 5 1 )  conf irmed thi s  
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f indi ng i n  systems directed by bac ter iophage RNA , Stanley 

et . a l . ,  ( 1 5 4 )  and Salas et . a l . ,  ( 1 5 5 )  reached s imi lar 

conc lusion s  u s i ng synthetic mRNA ' s  conta ining the AUG codon . 

In summary , these results  have been interpreted a s  

r e f l ec ting the exi stence of two binding s ites o n  the ribo some . 

This theory states that N-F-met-tRNAf can unique ly bind to 

the peptidyl s i te in response to the AUG codon , whi le 

met-tRNAm is bound when the AUG codon is a l igned with the 

ami noacyl s i te . Ma tthaei and Voig� ( 1 5 6 )  have demonstrated 

the exi stence of bind i ng s ites on the r ibosome-codon with 

two d i f ferent Mg ion optima , one of which binds N-F-met-tRNAf 

and the other which bind s  met-tRNAm . 

The reac tiv i ty , in the absence of supernatant factor s , 

of r ibosoma l bound -N-F-met-tRNAf with puromyc in ( Pm)  is  

cons i stent with  the conc lus ion that N-F-met- tRNAf occupies 

the peptidyl s ite ( 1 5 1 , 1 5 8 ) . Other r ibosoma l -codon bound 

AAtRNA ' s  do not have thi s  reactivity in the absence of super­

natant . Her shey and Thach ( 1 5 9 )  have repor ted that the Pm 

reaction i n  their extrac ts , a s  we l l  a s  the forma tion of the 

d ipeptide N-F-met-phe wa s strongly stimulated by GTP and 

supernatant enzyme s . They propose that N-F-met-tRNAf i s  

initia l ly bound t o  the aminoacyl si te o f  the r ibo some and 

is  then transferred i n  a GTP-dependent step to the peptidyl 

site - this  ha s been termed the sing l e  entry s i te model . 

Alternate ly , b i nd i ng may occur d irectly with the peptidyl s i te 

but a GTP-dependent chemical activation of the bound met-tRNAf 

must then occur before d ipeptide formation - thi s  ha s been 
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termed the peptidyl s ite activation mod e l . 

Stanley et . a l . ,  ( 1 5 4 ) and Salas  et . a l . , ( 1 5 5 )  have 

i solated two protei n  components , f 1 and f 2 , from salt washings 

of E .  coli  r ibosomes . These  proteins are required for the 

trans lation of natura l  mes seng er s , but not for synthetic mRNA , 

unle s s  they conta in the AUG codon . Trans lation of synthetic 

mRNA ' s  which conta i n  AUG i s  greatly s t imulated by the se factor s . 

This stimulation results  from an  i ncreased i ncorpora tion of 

met-tRNAf but not met-tRNAro . The se f ac tors s timulate 

incorporation only at  low Mg ion concentrations and do not 

promote the bindi ng of other AAtRNA ' s . Ander sen , Bretscher , 

C lark and Marcker ( 1 6 0 )  and Thach , Dewey and Myko la j ewyc z 

( 1 6 1 )  and Leder and Nau ( 1 6 2 )  have substantiated these results  

and have shown that the binding promoted by thes e  f ac tors is  

stimulated by addi tion of GTP . I t  seems l ikely that in the 

presence of the se factors and GTP , N-F-met-tRNAf is bound 

e ither directly to , or rapidly transferred to , the peptidyl 

s ite . Bind i ng , in their absence , may be to the aminoacyl s ite . 

S im i lar f ac tor s have been i so lated by Eisenstadt and 

Brawerman ( 1 6 3 , 1 6 4 ) and Revel  and Gros ( 1 6 5 ,  1 6 6 ) . The se 

authors have also noted the pos s ible exi stence of a third 

factor , retarded on DEAE-c e l lulose , which  may s t imu late or 

may be an  e ssentia l requirement for the bind i ng of r ibosome s 

to mRNA in the presence of DNA . 

Step 3 .  - Attachment of the 5 0  S subunit to the initiation 

complex . 

Bind i ng of AAtRNA ' s  to 3 0  S subuni t s  ha s been s tud ied 

by Kaj i ,  Su zuka and Ka j i  ( 1 6 7 ) and Pestka and Nirenberg ( 1 6 8 ) . 
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They have f ound that a t  high Mg ion concentrations , speci f ic 

binding of AAtRNA ' s  occur s with one s ite of the subunit . 

The add i tion of 5 0  S subunits ( 1 6 9 )  causes a 2 - 3  fold increase 

in the observed bind i ng , pre sumably by creating an additiona l 

bind i ng area . This may be an extra point of attachment of 

the tRNA at  the same bind ing s i te or an entirely new binding 

s ite . S ince bind i ng in the presence of 5 0  S subunits has 

d i f f erent metal ion cofactor requirements ( 1 6 8 ) , it  most 

like ly ref lec ts a new binding s i te . Matthae i  and Milberg 

( 1 7 0 )  have interpreted the ir results on the kinetics of AAtRNA 

binding in terms of the creation of a new s ite upon addition 

of 5 0  S subunits . Igarashi and Ka j i  ( 17 1 )  have shown that 

phe- tRNA bound to 3 0  S subunit-codon is d i s soc iated by 

add i tion of 5 0  S subunits  and tha t such prebound AAtRNA ' s  are 

not incorporated into peptides . This result indicated that 

bind i ng of AAtRNA to 3 0  S subunits is non- func tiona l and 

extraneous . 

Recently , however , Nomura and Lowry ( 1 7 2 )  have 

reinvestigated the area . They showed that f - 2  phage RNA 

directs the binding of  N-F-met-tRNAf to 3 0  S subunits at low 

Mg ion concentrations and that such bind ing i s  not stimulated 

by the add ition of 5 0  S subunits . Thi s  bind ing was stimulated 

by the initiation factor s , f� and f 2 , and by GTP when 

salt-wa shed r ibo soma l subunits  were s tud ied . The viral RNA 

d id not d ir ec t  the binding of phe- , leu- , lys- , tyr- , or 

va l -tRNA or met-tRNAro to 3 0  S subunits . These AAtRNA ' s  were 

bound however to 3 0  S subunits at high Mg ion concentrations , 
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when appropr iate synthetic polyribonuc leotides  were used . 

This binding wa s s t imulated by the addition of 5 0  s subunits 

a s  had been prev iously  reported ( 1 6 8 , 1 6 9 ) . The se results 

ind icated that b i nd ing of N-F-met-tRNAf to 30 S subunits is 

d i f f erent from the binding of other AAtRNA ' s .  Nomura , Lowry 

and Guthrie ( 1 4 8 )  in a s imi lar contrast , have repor ted that 

the addi t ion of  5 0  S subunits  to N-F-met-tRNAf bound to 

3 0  S subunit-codon does not cause d i s soc iation of the bound 

AAtRNA ; rather the N-F-met-tRNAf is now bound to 7 0  S 

r ibosome s . 

Nakada and Kaj i ( 1 7 3 )  had shown earl ier that native ( a s  

opposed t o  d i s soc iated ) 3 0  S and 5 0  S subunits  do not combine 

in 1 0 - 2  � Mg ion , but are able to synthe s i z e  polyphenyla lanine 

in the presence of poly U .  The r ibosome found assoc iated 

with poly U in these exper iments is  a 7 0  S r ibosome . The se 

resu lts  indicate that mRNA catalyzed the assoc iation of native 

subunits . Eisenstadt and Brawerman ( 1 7 4 ) have found s imilar 

a s soc iation of  native subunits  i n  the presence of f - 2  phage 

RNA and bel ieve such monosomes are more active in prote in 

synthe s i s  than 7 0  S r ibosome s . They bel ieve that 7 0  S r ibosomes 

must d i s soc iate pr ior to partic ipating in peptide synthe s i s . 

Mangiarotti and Schles s inger ( 1 7 5 )  developed very gentle 

extract ive techniques to s tudy polysome d i s tr ibution in 

E .  col i . With the se technique s ,  they showed ( 17 6 )  that E .  coli . 

do not conta i n  free 7 0  S ribosomes but rather have a pool of 

d i s sociated 30 S and 50 S subunits . Kaempfer , Me selson and 

Ra skas ( 17 7 ) conf irmed the exi s tence of such a subunit pool by 
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growing E .  c o l i  i n  heavy and l ight i sotope media . They found 

that r ibosomes produced in heavy media d i s soc iated and 

reas soc iated in very short t ime periods with r ibosoma l 

subunits  synthe s i z ed subsequently i n  l ight media . Subunits , 

however , once synthes i z ed did  not equi librate with rRNA or 

r ibosoma l proteins . 

Mang iarotti and Schle s s inger ( 1 7 6 )  and Nomura and Lowry 

( 17 2 )  were led by their quite d i f f erent exper iments to 

propose that protein synthes i s  is initiated by attachment of 

a 3 0  S subunit to mRNA af ter which a 5 0  S subunit is added . 

H i l le , Mi l ler , Iwaki and Wahba ( 1 7 8 )  have conf irmed the 

b i nd ing stud i e s  of Nomura and Lowry . They a l so showed that 

N-F-met-tRNA bound to 30 S subuni t s  - codon ( in the presence 

o f  f 1 , f 2 and GTP ) wa s able to react with Pm when 5 0  S 

subunits  were added . Ghosh and Khorana ( 17 9 )  have studi ed 

the binding of N-F-met-tRNAf to 3 0  S subuni t s  in the presence 

of poly (AUG) n or poly ( UG ) n . They conf irmed the bind ing , 

the requ irement for initiation f ac tor s and GTP in the bind ing 

and were  able to i so late the ternary complex by sucrose 

dens i ty gradient  c entr ifugation . The i solated complex wa s 

ab�e to form a d ipeptide , N-F-met-me t ,  when 5 0  S subunits  and 

met-tRNAm were added to i t . A s imi l ar complex conta i ning 7 0  S 

r ibosomes instead of the 3 0  S subunit wa s a l s o  capable of 

forming the d ipeptide . They a lso  showed that binding of cys- , 

val-tRNA or met-tRNAm to 3 0  S subunits  occurred only at  high 

Mg ion concentration . A complex formed at high Mg ion 

concentration with 3 0  S subunits , poly (AUG ) n , N-F-met - tRNAf 
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and met-tRNAm wa s a l so i solated . This complex wa s not able 

to form a d ipeptide upon the addition of 50 s subunits . 

These results  support the conclusion that only N-F-met-tRNAf 

b i nd s  in a func tiona l manner to 3 0  S subunits  - codon . 

Ohta , Sarkar and Thach ( 1 8 0 )  have observed a lower Mg ion 

optimum for GTP - f l - f 2 s t imula ted binding of N-F-met- tRNAf 

to 7 0  S r ibosomes ( 5m�) than to 3 0  S subunits ( 8  - 9mM) . They 

postulate that this might ind icate that the 7 0  S r ibosome is  

attached to codon easier than the 3 0  S subunit . They are 

aware ,  however , that extrac tive procedure s  and storage 

cond i t ions play a role in r ibosomal Mg ion dependency and that 

the d i f f erence in the two optima i s  not large . 

Step 4 .  - Bind ing to the aminoacyl s i te on the 7 0  S 

r ibosome . 

The bind i ng of AAtRNA ' s  to r ibosomes i s  a wel l  known 

phenomena which ha s been reviewed by several author s ( 1 2 8 , 

1 8 1 ,  1 8 2 ) . Exper iments designed to test for thi s binding have 

been u sed to e stabl ish  the genetic code ( 1 1 4 , 1 8 3 , 1 8 4 ) . 

Gi lbert ( 7 1 , 1 8 5 ) , Cannon , Krug and Gi lber t ( 1 8 6 )  and Bretscher 

( 18 2 )  wer e among the early worker s to establ i sh that AAtRNA ' s  

were a s s oc i a ted with ribosome s dur ing protein synthe s i s  in 

bacter ial extra c t s . Nirenberg and Leder ( 1 1 4 ) showed that 

such spec if ic  binding occurred in the absence of prote in 

synthes i s  and developed a convenient a s say method to te st 

the b i nd ing . This  method , which involves adsorption of the 

complex on c e l lulose ester f i lter s , has been widely used in 

binding investigations . Igarashi and Ka j i  ( 1 7 1 )  showed that 
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AAtRNA ' s  bound to 7 0  S r ibo somes i n  the absence o f  prote in 

synthes i s  were  i ncorporated in the NH2 -termina l  pos ition of 

peptid e s  when prote in synthe s i s  was initiated . Wettstein and 

Noll  ( 1 8 7 ) have employed rad ioac tive tRNA to determine that 

2 or 3 AAtRNA ' s  were bound per r ibosome dur ing protein 

synthe s i s . Igara shi and Ka j i  ( 17 1 )  have obta ined a s imilar 

result with saturation bind ing curves . They a l so showed that 

the aminoacyl s ite of 7 0  S r ibosome s wa s more read i ly occupied 

than the peptidyl s ite by phe-tRNA in the absence of GTP and 

enzyme s . Matthaei and Mi lberg ( 1 7 0 )  obta ined simi lar results 

by studying the kinetic s of AAtRNA bind i ng . 

Ar l i nghau s ,  Schaef fer and Schweet  ( 1 8 8 )  have demons trated 

the exi s tence of two types of AAtRNA binding to rabbit 

reticulocyte r ibosome s . One mode is  non-enzymatic , non-GTP­

dependent , whi le the other requires the presence of GTP and 

enzyme s . The exi s tence of an enzymatic and GTP-dependent 

bind ing of an AAtRNA other than N-F-met- tRNA or N-acetyl-phe­

tRNA ( 18 9 )  ha s been demonstrated in E .  coli extrac ts , very 

recently ( 1 9 0 ,  1 9 1 , 1 9 2 ) . Previous fai lures  to do so may 

ref lect d i f f erenc e s  in cha in initiation or may be the result 

of inadequate r ibosome pur if ication technique s .  

Moldave et . a l . ,  ( 1 9 3 , 1 9 4 , 1 9 5 )  have isolated complexe s 

of the supernatant enzyme , Transferase I ,  from rat l iver 

preparations and showed that thi s  enzyme bound GTP and AAtRNA . 

They sugge sted that thi s complex wa s involved in the binding 

of AAtRNA ' s  to r ibosome s . Al lende , Monro and Lippman ( 1 9 6 )  

have reported the i solation from E .  col i  of 2 or 3 prote ins , 

Tu , Ts and G ,  from the non-r ibosoma l ( supernatant) por tion of 
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extracts which are d i stinct from the components o f  the AAtRNA 

synthe s i z ing system and which are necessary for peptide bond 

synthe s i s . Allende and Wei s sbach ( 1 9 7 )  identif ied a complex 

s imi lar to that reported by Moldave between GTP and E .  coli 

initiation fac tor preparations . GDP wa s able to replace 

GTP in thi s  complexation but ATP , CTP , UTP AND GMP were not 

able to compete with GTP . The heat instabi lity and the 

chromatographic behavior of the protein invo lved in the 

f ormation of the complex suggested that the binding wa s with 

the supernatant enzyme T .  Al lende , Seed s , Conway and 

Wei s sbach ( 1 9 8 ) have now reported that the or igina l  initiation 

fac tor preparations conta ined trace s  of T and that the removal 

of this protein caused a los s of bind ing activity . Separately 

i so lated T enzyme wa s shown to pos s e s s  the origina l  

comp lexation a b i l i ty . They i s o lated a T - GTP complex on 

cellulose ester f i lters . 

Ravel ,  Shorey and Shive ( 1 9 9 )  i ndependently observed 

s imi lar complexation in mixtures  of GTP , phe-tRNA and super­

natant factor preparations . They showed tha t GTP wa s initially 

hydrolyz ed to GDP by binding to the protein and that following 

this s tep , GDP wa s further bound in a complex with AAtRNA . 

Gordon ( 2 0 0 )  wa s able to i sola te a complex of GTP which 

wa s formed by T in the pre s ence of AAtRNA . Later , he 

propo sed a two s tep bind ing scheme of GTP to T,  fol lowed by 

f ormation of a ternary complex with AAtRNA ( 2 0 1 ) . Lucas-Lenard 

and Haenni ( 1 9 1 )  have isolated thi s  same ternary complex and 

report that it is capable of binding to the ami noacyl s i te 



of 7 0  S r ibosome s . When highly pur if ied r ibosome s are 

emp loyed , bind ing of thi s  complex to r ibosome s is much 

greater than bind ing of AAtRNA a lone . GDP i s  not able to 

subs titute for GTP i n  r ibosoma l bind ing , a lthough it forms 

a ternary complex with T and AAtRNA . They have also  shown 

that AAtRNA bound to the aminoacyl s i te in the presence of 

T a nd GTP i s  able to form a d ipeptide if the peptidyl s i te 

ha s previou sly  been occupied . 

Step 5 .  - Formation of the peptide bond . 

53  

The forma tion of the peptide bond between peptidyl-tRNA 

and the cx2 -amine of the AAtRNA i s  shown a s  g iven by Watson 

( 67 )  in F ig . V I I . Monro and Marcker ( 2 0 2 )  and Monro ( 2 0 3 )  

have recently shown that N-F-met i s  bound to the 5 0  S 

subunit when i t  i s  e ster if ied with the termina l hexanuc leotide 

fragment of tRNAf . They demonstrated that N-F-met bound to 

5 0  S subunits  i n  this way i s  capable of forming the model 

d ipeptide , N-F-met-Pm . This Pm reaction i s  not enhanced by 

GTP and the b i nd i ng must be carr ied out in ethanolic solution . 

The 5 0  S subunits  u t i l i zed were as free of initiation and 

supernatant enzymes as it is pre sently pos sible to prepare 

( 4  X NH4 C l  wa shed ) and the Pm reacb�dn cata lyzed by the se 

subunits  const i tutes good evidence that the peptide synthetase 

enzyme is  a part of  the r ibosome . 

Luc a s -Lenard and Haenni ( 1 9 1 )  report that d ipeptide but 

not tripeptide formation occurs on 7 0  S r ibosomes ( 4  X NH4C l  

wa shed ) between prebound N-Acetyl-phe-tRNA and added phe-tRNA . 

Forma tion of thi s d ipeptide i s  not enhanced by the supernatant 



enzyme G .  I n  thi s study phe- tRNA wa s added a s  the ternary 

complex between phe- tRNA , GTP and supernatant enzyme T .  

S tep 6 .  - Pul sation (Movement ) of the r ibosome . 

Wettstein and Noll  ( 1 8 7 ) have proposed that their data 

indicated that tRNA from the peptidyl s i te wa s transf erred 

to a loo sely attached " ex i t "  s ite a f ter formation of a 

peptide bond . The ir proposal  wa s based on the number of 
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tRNA molecules found a s socia ted with the r ibosome dur ing 

prote in synthe s i s . Fur ther evidence concerning the exi stence 

of  such a s i te ha s not been pre sented to date . I ndeed , 

evidence that a spec if ic tRNA leaves  the r i bosome i s  not 

ava i lable and probably w i l l  not be ava i lable until very highly 

pur if ied preparations of tRNA are obtained . Our pre sent 

picture of the se steps is ba sed on the proposa l s  of Wa tson 

( 6 7 ) • 

L ipmann e t . a l . ,  ( 2 0 4 , 2 0 5 )  have proposed tha t  the mo st 

l ikely func tion of their ribosome-dependent GTPa se , G,  is  to 

cause the pulsation or contractile movement of  the r ibosome . 

They have shown that one mo lecule of GTP i s  hydrolyzed for 

each pept ide bond formed ( 2 0 3 )  and Luca s -Lenard and Haenni 

( 1 9 1 )  have shown that this  GTP hydro lysis  occur s af ter 

d ipeptide formation . 

Step 8 .  - Cha i n  termina tion and relea se . 

I t  i s  we l l  known that cel l-free systems d irected by 

natura l  mRNA ' s  release the ir peptide s into the superna tant 

( 7 0 )  whi le systems d irec ted by synthetic homopo lyrner s retain 

the produc t peptide on the r ibosome ( 7 1 ) . I t  ha s been shown 



that nonsense codon s produced in bac teriophage mutants cause 

the release of incomplete proteins ( 2 0 6 ) . These codons ,  UAA 

( ochre ) ,  UAG ( ambre ) ,  and UGA , lead to termination of peptide 

cha in growth in sys tems d irec ted by mRNA ' s  from the mutant 

s trains or phage s . Synthetic mRNA ' s  which contain these 

codons a l s o  terminate prote in synthe s i s  ( 2 0 6 ) . Last et . a l . ,  

( 2 0 7 )  have shown that the mRNA AUG-UUU- (A) n synthe s i zes  the 

peptide met-phe-polylys i ne whi le AUG-UUU-UAA- (A) n which i s  

phased t o  read the cha in termination codon UAA , d irec ts the 

synthe s i s  of polylys ine only . S imilar results were obtained 

with o ther synthetic mRNA ' s containing termination codons . 

These  worker s proposed that the absence of met-phe- tRNA in 

the supernatant in the exper iment u t i l i z ing AUG-UUU-UAA- (A) n 

indicated that hydrolysis  of peptidyl-tRNA occurred on the 

r ibosome . That i s , the cha i n  termination codon , UAA , not 

only terminated peptide synthes i s  but caused r ibosoma l 

hydroly s i s  of the completed peptide . Unl ike AAtRNA ' s  ( 2 0 8 ) , 

peptidyl -tRNA ' s ,  e . g .  polylysyl-tRNA ( 2 0 9 ) , are re latively 

stable in the supernatant of cel l-free systems . Therefore , 
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i t  s eems l ikely that hydro lys is  o f  the ester may occur o n  the 

r ibosome . Kur iki  and Kaj i  ( 2 1 0 )  have shown tha t tRNA obta ined 

by hydr o ly s i s  of peptidyl-tRNA is no longer capable of 

accepting new ami no ac id . 

Capecchi ( 2 1 1 )  ha s i solated an R 1 7  phage mutant whose 

RNA terminates peptide f ormation in its  coat protein premature ly . 

By contr o l li ng the supply of amino acids  to a cel l-free sys tem 

d irec ted by thi s  mRNA he i so lated a protein , R fac tor , which 
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i s  neces sary f o r  the rej ec tion o f  the peptide from r ibosomes . 

This R fac tor does not catalyze  hydroly s i s  of peptidyl -tRNA 

i n  the absence of r ibosome s . The exi s tence of an R factor 

has not been shown in other preparat ions and it is not known 

whether it i s  of general importance .  Bretscher ( 2 1 2 )  has 

used Capecchi ' s  system to search for a nonsense tRNA . Such 

a tRNA i s  one which would be c apable of interacting with 

the nonsense codon and thereby cause cha in termination . He 

demons trated that cha in termination occur s in systems which 

are uti l i z ing highly pur i f i ed tRNA ' s  and proposes  that i t  is 

very unl ikely that such a nonsense tRNA exists . 

B .  6 .  The Effect  of  Tetracyc l ines on C e l l-Free Protein 

Synthes i z i ng Sys tems 

In an ear ly s tudy of the mode of chloramphenicol ac tion 

Rendi and Ochoa ( 2 1 3 )  mentioned , without suppor ting data , 

that oxytetracyc l ine i nhibited amino acid incorporation in 

their cell-free system . They were u s i ng a c e l l - free system 

directed by synthetic polyr ibonuc leotide s . Franklin  ( 2 1 4 )  

reported exper iments which showed that chlortetracyc l ine 

i nhibited leuc ine incorporation in rat l iver and in E .  coli  

cell-free systems . Inhibition of the system derived from 

E .  coli  wa s greater than that observed with the  sys tem from 

rat l iver . C hlortetracyc l ine caused a 9 0 %  inhibition of 

leuc i ne incorporation in the E .  coli  system at  a concentration 

of 4 X l o - 4� .  Chlortetracycline d id not affect  the formation 

of leu-tRNA by e i ther extract but did prevent incorporation 

of preformed leu-tRNA into protein . S imilar results were 



obtained with oxytetracyc l i ne and tetracyc l ine . Laskin and 

Chan ( 2 1 5 )  have shown that c e l l-free systems d irected by 
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poly U were i nhibi ted equa l l y  b y  tetracyc l i ne ,  chlortetra­

cyc l ine , oxytetracyc l ine and 6 -demethy l - 7 -chlortetracyc l ine 

but that 4 -dedimethylamino - 5 -hydroxytetracyc l i ne was only 

a bout 1/1 0  as potent . They a l so reported that tetracyc l ine 

d i d  not affect  the formation of phe-tRNA . Suarez and Nathans 

( 2 1 6 )  and Day ( 2 17 )  have repor ted s imi lar i nhibi tions of 

phe-tRNA i ncorporation . Suarez and Nathans ( 2 1 6 ) reported 

that inhibition wa s rever sed by the addi tion of r ibosome s -

poly U but not by the add i tion of phe-tRNA or supernatant 

extract .  Hierowski ( 2 18 )  has shown that lys ine , proline and 

phenylalanine i ncorporation i s  inhibited in systems d irec ted 

by synthetic polyr ibonuc leotide s . Okamoto and Mi zuno ( 2 1 9 )  

and Maxwe l l  ( 2 2 0 )  have reported inhibition of cel l-free 

sys tems in  which incorporation of a lgal  protein hydrolyzate 

wa s d irec ted by endogenous mRNA . Rif i no e t .  a l . ,  ( 2 2 1 )  have 

reported that s ever a l  tetracyc l i ne der ivatives are ac tive 

inhibitor s of poly U d irected phenylalanine incorporation but 

noted that i sochlortetracyc l i ne , an inactive antibacter ial , 

wa s an inhibitor of endog enous mRNA d irected incorporation . 

Because of thes e  report s  i t  has been as sumed that tetra­

cycl ines cause a genera l inhibition of amino acid i ncorporation 

by c e l l - free systems , Tur ley , Thomas and Sne l l  ( 2 2 2 )  have 

recently i nvestigated the incorporation of 2 0  d i ff erent amino 

acids i nto protei n  by a c e l l -free system from E .  coli  d irected 

by endogenous mRNA . They found that i ncorporation of 18 of 



these amino acids was inhibited at low leve ls  of  oxytetracy­

c l ine . Cys te ine and tryptophan incorporation were not 

inhibited at low leve l s  of oxytetracycl ine and the ir 
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incorporation was s t imul ated at high leve l s  of oxytetracyc line . 

The authors postulated that this s timulation may be due to 

induced codon misreading or that the se amino ac ids might be 

incorporated into prote in by a non-ribosomal system . 

B .  6 . a .  E f fects o f  Tetracyc l ines in terms o f  the mode l  

o f  Ce l l-Free Protein Synthe s i s  

I nterfe rence with Step l .  - B inding o f  a 3 0  S subuni t  

t o  mRNA . 

Hierowsk i  ( 2 1 8 )  has reported that the inhibition by 

tetracycl ines of the incorporation of  AAtRNA ' s  into prote in 

is  more pronounced in sys tems in which polyribonuc leotides 

serve as the me ssenger than i n  sys tems directed by endogenous 

mRNA . She noted that tetracyc l ine did not change the Mg ion 

optima of these system . Polypeptide synthe s i s  directed by 

poly C in the presence of chlortetracycl ine ( 4 5� �) was inhibited  

by  7 5 % . Les s  inhibition was  observed when poly  U ( 7 0 % ) , poly A 

( 5 6 % ) , poly U§A1 ( 5 0 % )  or poly UC ( 2 5 % )  were used as me s sengers . 

I t  was mentioned that the binding of  poly U to ribosomes was 

not a ffected by tetracy c l ine . Suare z and Nathans ( 2 1 6 )  

f · d h · 1 
· · · 1 4c 1 con l rme t l S  resu t ln an experlment us lng -po y U .  

Connamacher and Mandel  ( 2 3 3 )  have also  reported that tetracycl ine 

did not prevent the formation of  ribosome - codon complexe s . 

They showed that tetracycl ine was , however ,  ab le to bind to 

poly U in EDTA smlution s . Day ( 2 1 7 )  has reported binding to 



5 9  

poly U and poly A i n  the absence o f  Mg ion a s  wel l  a s  a t  

severa l  Mg ion concentrations . Kohn ( 2 2 4 )  has reported that 

metal ions are nec e s sary for binding to DNA . Maxwel l  ( 2 2 5 )  

ha s recently shown that cultures  o f  B .  megater ium inhibited 

by tetracyc l ine are able to form polysome s . The se results 

constitute a body o f  evidence that tetracyc lines do not inter­

f ere with the attachment of mRNA ' s  to r ibosome s , but that the 

par ticular mRNA used in a c e l l-free system does af fect the 

degree of inhibition produced by tetracyc l ine s . 

I nter f erence with Step 2 .  - Formation of the initiation 

complex . 

Exper iments des igned to test the hypothes i s  that 

tetracyc l ine inhibits the f ormation of the initiation complex 

have not been performed . However , exper iments have been 

performed which sugge s t  that tetracyc line does not interfere 

with binding to the peptidyl s ite on 7 0  S r ibosomes . 

Gotte sman ( 2 2 6 )  ha s recently stud ied the binding of polylysyl-

tRNA to r ibosome s . I t  i s  be l i eved that thi s peptidyl- tRNA 

e ither b i nd s  d irectly to or i s  rapidly trans located to the 

peptidyl s ite on 7 0  S r ibosome s . Ribosoma l bound polylysyl­

tRNA i s  c apable of reacting with puromyc in ( Pm )  to form 

polylysyl-Pm ( 2 2 6 , 2 2 7 )  and thi s produc t i s  released from the 

r ibosome under certain c ircumstance s .  Chlortetracyc l ine does 

not prevent the bind i ng of this peptidyl- tRNA tm r ibosome s 

( 2 2 6 , 2 2 8 , 2 2 9 )  nor does i t  prevent the reac tion or release 

of bound polylysyl -tRNA with puromyc in . I f  r ibosomes with 

prebound polylysyl-tRNA are mixed with lys-tRNA in the absence 
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o f  GTP and superna tant enzyme s , a s ing le lys ine is  added to 

the polylysyl on the r ibosome ( 1 9 1 ) . Tetracyc l ine prevents 

thi s  add i tion whi le chloramphenicol does not prevent thi s 

s ing le peptide bond formation . S imi larly , r ibosome s containing 

prebound N•acetyl-phe-tRNA ( a  presumed initiator of poly u 
d irected systems ) react with Pm and release N-acetyl-phe-Pm 

into the supernatant . Chlortetracyc l ine doe s not prevent 

e i ther the reac tion o£ the relea s e . Chlortetracyc l ine , 

however , does par t i a l ly prevent the addi tion of phe-tRNA to 

r ibosomes conta ining prebound N-acetyl-phe-tRNA . The phe- tRNA 

which i s  bound to the ribosomes i s  able to f orm a d ipeptide 

with the N-acetyl-phe-tRNA . 

The above results  are consi s tent with the general idea 

that tetr acyc l ines do not af fect AAtRNA bind i ng to the peptidyl 

s ite but rather they inhibi t bind i ng of AAtRNA ' s  to the 

aminoacyl s ite . D irect evidence for this type of inhibition 

is pres ented in  the f o l lowing sections . 

Interf erence with S tep 3 .  - Attachment of 5 0  S subunits 

to the Initiation complex . 

Thi s s tep ha s not been studied direc tly , but Day ( 2 17 ) 

ha s shown that i so lated 3 0  S subunits  containing bound 

tetracyc l ine are able to f orm 7 0  S r ibosomes upon the add i tion 

of 5 0  S subunit s . 

Suzuka , Kaj i and Kaj i ( 1 6 9 )  and Vazquez and Monro ( 2 3 0 )  

have shown that tetracyc l ine prevents the binding o f  AAtRNA ' s  

to 3 0  S subunit s  - codon and a l so prevents the s timulation 

of bind i ng observed when 5 0  S subunits are added . Binding of 
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AAtRNA ' s  t o  3 0  S subuni t s  - codon ha s now been shown t o  be 

non-functiona l unless the AAtRNA i s  N-F-met-tRNAf . I t  is  

gowever , generally  agreed that the stimulat ion of binding 

observed when 5 0  S subunits are added i s  due to the creation 

of the ami noacy l  s ite . 

I t  seems unlikely that tetracyc l ines interfere with 

step 3 if i ndeed such a s tep is i nvolved in prote in synthesis . 

I nterference with Step 4 .  - Bind i ng to the aminoacyl s i te 

of r ibosome s . 

Hierowski ( 2 18 )  u s ed sucrose den s i ty gradient centr ifuga­

t ion to show that binding of  phe-tRNA to 70 S r ibosomes-codon 

i s  partially  inhibited ( 6 0 % )  by chlortetracyc l ine . The se 

stud i e s  were  conduc ted at 1 2  mM Mg ion and it is probable that 

phe-tRNA i s  c apable of enter ing the peptidyl si te as wel l  a s  

the ami noacyl s ite under the se c ircums tances . Suare z  and 

Nathans ( 2 1 6 )  have shown that the bind ing of N-acetyl-phe-

tRNA at  2 0  mM Mg ion is inhibited by chlortetracyc l ine . The 

maximum inhibition obta i nable at very high tetracycline 

concentrat ions wa s 5 0 % . C lark and Chang ( 2 3 1 )  observed s imi lar 

i nhibi t ion ( 4 0 % )  of  AAtRNA binding to rabbit reticulocyte 

r ibosomes i n  the presence of the transfer enzyme s . They a l so 

showed that tetracyc l ine d id not i nterfere with the puromyc in 

reaction in systems synthes i z ing protein . Vazque z and Monro 

( 2 3 )  have noted inhibi t ion of poly A directed lys- tRNA ( 5 1 to 

6 1 % )  a s  wel l  a s  poly U d irected phe-tRNA binding ( 3 8  to 5 2 % ) . 



Because of these reports , i t  ha s been genera l ly as sumed 

that tetracyc l ine s prevent binding of AAtRNA ' s  to only one 

s ite on the r ibosome - codon . S i nce these experiments were 

carr ied out under condi tions which favor binding to the 

ami noacyl s ite , these i nve stigators have proposed that this 
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i s  the s ite of tetracyc l ine action . The recent reports of 

Gottesman ( 2 2 6 )  and Lucas-Lenard and Haenni ( 1 9 1 ) , mentioned 

ear l ier , have substantiated thi s  conc lus ion . I t  should be 

noted , however , that Wolfe  and Hahn ( 2 3 2 )  were only able to 

demons trate a very sma l l  inhibition of phe-tRNA binding to 

r ibosome s - poly U by sucrese dens i ty gradient centrifugation . 

S imilar ly , La skin ( 1 6 )  ha s s tated that he wa s only able to 

demonstrate a sma l l  inhibition ( 3 0 % )  of thi s  binding in 

exper iments util i z i ng the technique of c e l lulose ester 

f i ltration . He emphas i zed the poor quantitative nature of 

these  experiments . I t  would seem ,  that the conc lusive 

experiment ha s not as yet been performed . 

I nterference with Step 5 .  - Formation of the peptide 

bond . 

I n  the pre sence of tetracyc l ine , the abi l i ty of prebound 

polylysyl-tRNA to react with Pm has been demonstrated by 

Gotte sman ( 2 2 6 ) . Thi s  result and the abi l i ty 0f prebound 

N-acety l-phe-tRNA to react with either Pm or bound phe- tRNA 

in the presence of tetracyc l i ne , demonstrated by Luca s-Lenard 

and Haenni ( 1 9 1 ) , i nd icates that s tep 5 is not inhibited . 
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I nterference with S tep 6 .  - Pul sation (Movement)  of  the 

Ribosome . 

S i nce i t  i s  thought that release of  Pm - peptides occurs 

by norma l ribosomal pul s ation and thi s  is not inhibited by 

te tracy c l ine , i t  is unl ikely that te tracyclines inhibi t  this 

s tep in protei n  synthe s i s . 

I nterference with Step 8 .  - Chain termination and release . 

E f fects o f  tetracycl ine on thi s  step have not been studied . 

B .  6 . b .  Binding o f  Tetracycl ines to Ribosomes . -

The pre sumed mode of  tetracyc line action es tablished by 

these exper iments i s  that of  a d i rect competition with 

AAtRNA ' s  for the aminoacyl b inding s i te on 70 S ribosomes . I t  

i s  unl ikely that tetracy c l ine inhibi tion i s  due to a n  indirect 

e f fect  caused by binding of  tetracycline to some other ribo­

s omal s ite , s ince a l l  other ribosomal functions appear normal . 

Direct binding to the aminoacyl s i te has , of  course , not 

been demons trated . Connamacher and Mandel ( 2 2 3 )  have , however ,  

shown by equ i l ibrium dialys is  and by sucrose dens i ty gradient 

centri fugation , that tetracycl ine is  bound to 70 S E .  coli 

and B .  cereus ribosome s . When experiments were conducted at 

low Mg ion concentrations , the tetracycl ine was largely 

associated with the 3 0  S subuni t .  Ribosome s prepared from 

preincubated extracts , so that endogenous mRNA activity was 

low , showed a reduced abi l i ty to bind tetracyc l ine . Las t ,  

I z ak i  and Sne l l  ( 2 3 3 )  were unable to show any binding of  

tetracycl i ne to  a ribosome sediment produced by  centri fugation 

in sucrose . Thi s  failure may be due to a l ack of  endogenous 
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mRNA in their preparations or to the ir sed imentation technique 

which may require s tronger binding than bind i ng demonstrated 

by sucro se density grad ient c entr ifugation . Day ( 2 3 4 )  ha s 

substantiated the f i nd ing s of Connamacher and Mandel ( 2 2 3 )  

that tetracyc l ine i s  a s sociated with the 7 0  S r ibosomes 

dur i ng sucrose density gradient centr ifugation . He showed 

that tetracyc l ine can bind to e ither 3 0  S or 5 0  S subunits . 

Tetracyc l i ne , that i s  bound to e ither of the se subunits i s  

able t o  d i s soc iate and rebind t o  the other subunit if  i t  i s  

added . A l l  o f  the sucros e  den s i ty gradient centrifugations 

repor ted by Day �ere  conducted on r i bosome - tetracyc l ine 

migtures that had been subj ected to extensive d ialysis  pr ior 

to centr ifugation . Day calculated that approximately 1 mole 

of tetracyc l i ne is  a s sociated with 1 mole of 70  S ribosome s 

and that 1 mole of tetracyc l ine i s  a s sociated with 2 mo les 

of  e i ther 30 S or 50 S subunits . He a l so showed that ribosome s 

contai ning bound tetracyc l ine were not able to bind phe-tRNA 

or incorporate phe-tRNA i nto prote in af ter addition of 

supernatant enzyme s . Day ( 2 3 5 )  later showed that the cellu lose  

ester f i l tration technique a l so indicated that tetracyc l i ne 

bound to r�bosome s .  

Recently , Maxwel l  ( 2 3 6 )  has shown that large quantities  

of tetracyc l ine are found a s sociated with the sediment of  

und i a ly z ed r ibosome - tetracycl ine mixtures  a f ter high  speed 

centr i fuga tion . He found about 3 0 0  molecules  of  rever sibly 

a s s oc iated tetracyc l ine per 70 S r ibosome . I t  i s  d i f f icult 



to say if  the tetracycl ine a s soc iated with the r ibosomes 

under these  c ircums tanc e s  is the result of binding or of 

entrapment .  However , if  the se sediments were subj ected to 

dialysis  or an addi tional centr ifugation through sucrose 
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and then binding s tudied by sucrose  dens ity grad ient 

centr ifugation , a sma l l  amount of tetracycl ine remained with 

the polysome s or r ibosome s . Sedimentation at low Mg ion 

concentrations revea led that mos t  of the tetracyc l ine was 

a s sociated with the 3 0  S subunits . 

In  the l ight of these experiments , i t  seems l ikely that 

tetracyc l ine does bind to r i bosome s ,  probably the 3 0  S 

subuni t , and that such binding i s  capable of preventing 

attachment of AAtRNA ' s  to the aminoacyl s ite . 



I I I . EXPERIMENTAL 

A .  Mater i a l s  and Equipment 

A .  1 .  Tetracyc l i ne Der ivativ e s  
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The antibiotic s used i n  this study were the generous 

g if t s  of Dr . James H .  Boothe , Leder le Laborator ies , Pear l 

River , N .  Y . , and Dr . Char les  R .  Stephens ,  Charles Pfi zer 

Laborator i e s , Groton , Conn . .  They have been identif ied by 

their ultraviolet absorption spectra . The wave lengths of 

several absorption maxima and the absorptiv i ty at these 

maxima are g iven i n  Table I .  The spectra were obtained from 

solutions buf f ered a t  pH 6 . 6 5 with phosphate buffer ( 0 . 2  M) . 

Solutions of the samples  of 7 -amino - 6-demethyl-6 -deoxy­

tetracyc l ine and 9-nitro- 6 -demethy l - 6-deoxy-tetracyc line had 

" shoulder s "  in their absorption spectra at approximately 

4 0 0  mp . Thes e  solutions were separable into two spots by 

thin layer s i l ica  gel  chr omatography . The solvent system for 

this chromatography was a mixture ( 2 : 2 : 3 : 3 ) of  phosphate 

buf f er ( 0 . 2  �' pH 6 . 6 5 ) , ethanol ,  butanol and ethyl acetate . 

It seems l i kely that the se samples contain trace quantities 

of 5a ( 6 ) -anhydrote tracyc l i ne s ,  however , they were used without 

further puri f ication . 

A .  2 .  Escherichia coli  

E scher ichia c o l i  W wa s obtai ned as  a frozen pa ste . 2 I t  

was cultured over several growth cyc les in broth and on agar 

plate s . An i solate from a s ing le colony was used to inoculate 

2Genera l  B iochemica ls , Chagrin  Fal l s , Ohio . 



Tab le I . - The Tetracyc l ines . 

Tetracyc l ine Ana loga pKa Va luesb Ultraviolet Abs orpt ion Spectrac 

max .'1 m}l Abs orpt ivity x lo-4 

7 -N itro-dm-do-tetracyc l ine 360 , 2 6 5  l .  3 ,  1 . 6  

7 -Chloro-dm-tetracyc line 3 . 3 ,  7 .  3 ,  9 . 3  ( 2 3 7 ) 3 6 7 , 2 7 5  1 . 4 ,  1 . 5  

7 -Chlorotetracyc l ine 3 . 3 , 7 . 4 ,  9 . 3  ( 2 3 7 ) 368 , 2 7  5 l . l , 1 . 4 

Tetracycl ine 3 . 3 , 7 .  7 ,  9 . 5  ( 2 3 7 ) 3 58 ,  2 7 5  1 . 5 , 1 . 5  

5 -Hydroxytetracyc line 3 . 6 ,  7 . 4 ,  9 . 1  ( 2 38 ) 3 5 5 , 2 7 5  1 . 4 ,  1 . 5  

7 -Amino-dm-do-tetracyc l ine 400 , 340 ,  2 7 8  0 . 4 ,  l . l , 

9-Amino-dm-do-tetracycl ine 344 , 2 8 2  l .  3 ,  1 . 2  

drn-do-tetracyc l ine 3 . 5 , 7 .  9 ,  9 . 7  ( 17 ) 348 ,  2 7 3  l .  3 ,  1 . 7  

a .  dm-do- is 6-demethy l-6-deoxy - , while dm- is  6-demthyl-6-epihydroxy- . 
b .  Numbers in parenthes is indicate l iterature referenc e . 
c .  Values g iven were obta ined in 0 . 2  M phosphate bu f fer , pH 6 . 6 5 �  

a Mode l DK�2 Ratio Recording Double Beam Spectrophotometer , Beckman Instruments , 
Palo Alto , Cal i f .  was used . 

1 . 4 

0'\ 
-...) 



Tab le I .  - ( c ent . )  

Tetracyc l ine  Ana log pKa Va lues 

7 -Brorno-drn-do-tetracyc l ine  

9-Nitro-drn-do-tetracyc l ine 

4 -Dedirnethy l arnino-tetracyc l ine  5 . 97 ,  8 . 56 ( 1 3 )  

9 -D irnethy larnino-drn-do-tetracyc l ine 

5a ( 6 ) -Anhydrotetracyc l ine 

1 2 a-Deoxytetracyc l ine  

Tetracyc l ine  rnethiod ide 3 . 56 ,  7 . 80  ( 1 3 )  

5a ( l la ) -Dehydroc nlorotetracyc l ine 

7 -Chloro- i s otetracyc l ine 3 . 9 ,  6 . 7 ,  7 . 9 ( 2 3 8 )  

2 -Cyano- 2 -decarboxarnidotetracJClme 

Ultraviolet Absorpt ion Spectra 

max . rnu Absorpt ivity x lo-4 

3 50 ,  2 7 2  0 .  7 '  1 . 4 

4 1 5 ,  3 54 '  2 8 5  0 . 4 ,  0 . 7 ,  1 . 1  

360 , 2 7 2  l . l , 1 . 3  

34 6 ,  280 0 . 8 ,  0 . 7  

4 2 5 ,  2 68 1 . 2 ,  5 . 0  

4 5 0 ,  3 3 0 , 2 6 5  0 . 2 ,  l .  3 ,  1 . 7  

3 5 0 , 300 , 2 7 5  l .  6 ,  1 . 4 ,  1 . 6  

408 , 2 7 0  1 . 1 , 2 . 1  

344 , 288 0 .  3 ,  1 . 7  

360 , 2 7  5 0 . 9 ,  1 . 0 

0"1 
(X) 



a nutrient agar s lant . This  s l ant was s tored at 3 ° C  and 

maintained by monthly trans fers . I t  served as the source 

of the tes t  organ i s m .  For experiments in dextrose-salts 

broth another s lant was prepared from organisms which had 

grown through several  cycles in this  broth . 

A .  3 .  Culture Broths 

6 9  

The culture broth used for activity determinations was 

a high peptone media  containing in a volume of l L . , 40 g .  

casein hydrolysate ( GB I  # 2 0 ) 2 , 1 5  g .  yeast autolysate ( GBI # 1 2 0 ) 2 , 

3 g .  K2 H P04
3 and 0 . 7  g .  KH2 Po4 . 3 The pH o f  thi s  broth was 

constant throughout the experiments at 6 . 6 5 .  The divalent 

cation content of  the broth was estimated to be equivalent 

to about l o - 3  M calcium ion by means of  a divalent cation 

e lectrode . 4 For exper iments at pH 6 . 2  or 7 . 4 ,  the broth 

contained in addition to the peptones either 0 . 5  g .  K2HP04 and 

2 . 5  g .  KH2Po4 or 2 1 . 8 5  g .  K2 HP04 and 1 . 7  g .  KH2P04 , respective ly . 

S imilar divalent cation concentrations were observed in the se broths . 

The dextrose-salts  broth ( pH 6 . 7 ) contained in each l iter , 

1 0  g .  dextrose ,  3 g .  (NH4 ) 2 so4 , 6 g .  K2HP04 and 8 g .  KH2P04 . 

A l l  broths were f i l tered through ce l lulose ester membranes 5 

( 0 . 2 2 p dia . pores ) and autoclaved prior to use . 

3Al l unspeci fied chemicals  were analytical reagent grade . 

4orion Re search I nc . , Cambridge , Mas s . 0 2 1 3 9  

5Mi l l ipore Corporation , Bed ford , Mas s . 



A .  4 .  Cul ture Turbidity and Colorimetry 

A d i f f raction grating color imeter6 equipped with a red 

sensitive phototube in conj unction with matched l/2 inch 

square cuvettes was used . Culture turbidity was measured 

at 6 5 0  mp . Absorbance o f  orcinol reaction mixture s was 

measured at 6 5 0  mp whi l e  that of Folin-Lowry reactions was 

measured at 7 5 0  mp . 

A .  5 .  Total Ce l l  Counts 

An electronic particle counter7 was used . The counter 

was equipped with a 3 0  p orifice and two threshold pulse  

70  

height analy zers . Ins trument s ettings whi ch gave satis factory 

results were : 

1/ Aperture Current , 0 . 7 0 7 ;  1 /Amp l i fi c ation , l/4 ; 

Matching Switch , 3 2  H ;  Gain , 1 0 0 ; Lower Thre shold , 1 0  and 

Upper Thre shold , o f f . These settings were es tab l ished by s i ze 

frequency analy s i s  of  latex suspens ions o f  known particle s i ze 

as wel l  as  suspensions of  E .  col i  W .  

Cel l s  were counted in a s a l ine - formal dehyde solution 

which had been f i l tered to remove particulate contamination . 

Background counts in thi s  fluid were 2 0 0  to 6 0 0  partic les 

per 50 l ambda . The formaldehyde concentration in the counting 

fluid was e i ther 0 . 2  or 1 % . The h i gher concentration gave 

constant values for total ce l l s  over a 2 4  hour period whi l e  

6 spectronic  2 0 , Bausch and Lomb , Roches te r ,  N .  Y .  

7coulter Counter Mode l B ,  Coulter E lectronics , Inc . 
Hialeah , F l a . 



the lower concentration a l lowed some growth ( 1  to 5 % )  in 

the f ir s t  ten minutes a f ter samples  were removed from the 

culture . 

B .  Methods 

B .  1 .  Escherichia c o l i  Growth 

7 1  

A broth culture was a l lowed t o  grow for 1 2  hour s at 

3 7 . 5 °C .  A d i lution of this cul ture , whose growth was 

measured turbidimetr ica l ly ,  wa s a l lowed to grow into the log 

phase . When a concentration of 1 x 1 0 8 organisms/ml . wa s 

obtai ned , 2 ml . samples  were used to i noculate nine replicate 

1 0 0  ml . volume s of broth conta ined in loosely capped 5 0 0  ml . 

f la sks . The f la s k s  were  sfuaken i n  a constant temperature 

water bath8 at 3 7 . 5 ° C . Freshly prepared antibiotic solutions 

were  added i n  1 ml . volumes to 8 of  the 9 repl icate cultures 

af ter 2 , 7 0 0  s econds of growth . 

Exper iments d e s igned to s tudy time of mnset of inhibition 

were performed with culture s  of e ither 2 0 0  ml . per 1 L .  f la sk 

or 3 5 0  ml . per 2 L .  f la s k . 

B .  2 .  Viable Count Method 

One ml . sampl e s  of the cultures  were obta ined at 9 0 0  or 

1 , 8 0 0  s econd i nterva l s . A minimum of 8 samples was obtained 

from each culture . Sample s were d iluted with ster i l e  0 . 9 % 

sal ine so lution so that 1 0 0  to 2 0 0  organisms/ml . would result . 

One ml . of  this aaspension wa s pipetted onto each of 5 agar 

plate s . Agar plates had previou sly been made by add i ng 

8American Instrument Company , S i lver Spring , Md . 



approximately  1 5  ml . of  s terile mel ted Peptone-Casein Agar 

U . S . P . 9 to s terile plastic petri dishes ( 1 0 0  x 15 mm . ) .  

After spreading the bacterial  suspension over the surface of  

the plate , approximately 5 ml . o f  warm agar was  added . When 

the agar had solidified  the p l ates were incubated at 3 7 . 5 ° C . 

The colonies  which were visible a fter 3 6  to 4 8  hours of  

incubation were counted with the aid o f  an e lectronic 

reg i s ter . 1 0  The mean number of  colonies v i s ible on the 

5 plate s from e ach s ample was used to calculate the number 

o f  v i ab le organisms in the original culture . 

B .  3 .  Total Count Method 

One ml . culture s amples  were obtained at the same time 

7 2  

a s  the s ample s ased for viab le c e l l  counts . They were placed 

in· bottles containing appropriate volume s of  the s al ine -

formaldehyde counting f luid so that a concentration o f  1 0 , 0 0 0  

to 3 0 , 0 0 0  organisms per 5 0  l ambda was obtained . The mean o f  

.4 counts per s amp l e  was corrected for background noise , but 

not coincidence and used to calculate the total number of cel l s  

i n  the original culture . 

B .  4 .  Nuc leic  Acid and the - P rotein Determinations 

Appropriate volumes of  cul ture ( 0 . 5  to 25 ml . )  were f i l tered 

under vacuum through 25 mm .  diameter cel lulose e s ter membranes 

( 0 . 2 2 )1 di a .  pores ) which had previous ly been treated to 

extract detergent . Culture s amples  were obtained at times 

s imi lar to those at which viable and total cel l  counts were made . 

9 Fisher Scienti fic , Fairlawn , N .  J .  
l O  0 0 1 C I t t 0 0 0 f f  1 N Y Amerl can Optlca ompany , ns  rumen DlVlS lon , Bu a o ,  . . 
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I t  wa s necessary t o  r emove the detergent impregnated 

in these membranes ( 2 3 9 )  s ince i t  reacted with the orc i nol 

reagent a nd gave high blank value s , if  not removed . Detergent 

extra c t ion  was accomp l i shed by suspendi ng f i lters  in cold 

d i s t i l led water ( 4  L .  per 1 0 0  f i lter s )  and then boi l i ng the 

suspens ion for 1 5  m i nute s . Thi s  proc e s s  was repeated 3 t imes 

w i th f r e sh cold water . F i l ters  treated i n  thi s  manner were 

s tored i n  d i s t il led water for t ime s no longer than 4 8  hour s .  

These f il ter s were able to r e t a i n  E .  coli  qua n t i ta tive ly and 

gave m i n imal a nd constant blank reactions with the orc inol 

reagent . 

Af ter culture samples  were collec ted on  the f ilter s ,  

the r e t a i ned bacter i a  wer e  wa shed with 0 . 9 % s a l i ne solution 

under v acuum . The washed s amples were prec ipita ted by 

layer i ng ,  without v acuum , 2 ml . of t richloracetic acid (TCA) 

over the f il ter s for 5 minute s . TCA soluble material  was 

r emoved by app l ic a tion of vacuum a nd 2 ml . of 9 5 %  ethanol 

l ayered over the f i lters for 5 m i nu te s . After remova l  of the 

ethanolic  extrac t ,  the f i lters  with retained nuc leic acids 

and proteins  wer e  placed i n  screw cap test  tubes . Two ml . of  

5 %  TCA was added a nd the tubes were placed i n  a boi l i ng water 

bath for twe nty minutes .  

Nuc leic  Ac id DeterminatieftB 

One ml . a liquot s  of the hot-TCA soluble mater ial  were 

r emoved from the cooled tube s . Three ml . of  the orc i no l  

reagent wer e  added a nd after heat i ng i n  a boi li ng water bath 

for 2 0  m i nutes ,  the absorption at 6 5 0  � of the cooled solution 



was mea sured . This absorption wa s corrected for that 

produced when an equal volume of s teri le broth wa s appl ied 

7 4  

to the f ilter s instead o f  culture . I t  was neces sary to prepare 

separate blank reactions for each lot of f il ter s and each lot 

of broth . The orc i no l  reagent wa s pur if ied , mixed and used 

accordi ng to the method s of Schneider ( 2 4 0 ) . It i s  a 

solution of recrysta l l i z ed orc inol ( 0 . 6 6 % ) , FeC l 3 ( 0 . 3 3 % )  and 

5% TCA in concentrated hydrochloric acid . 

The quantity reported a s  " Nuc leic  Ac id s "  i s  the corrected 

absorbance due to a 1 2 . 5  ml . culture sampl e  in an orc inol 

reac tion volume of 4 ml . S ince only the logari thm of a 

quantity proportional to nuc leic  a c id concentration was needed 

to calculate g eneration rate constants the absorbance was 

used directly rather than a proportiona l quantity obtained 

by r eference to a s ta ndard curve . A s tandard curve for the 

a s say procedure was prepared by f i lter i ng var iou s  volume s of 

cultur e . An example is shown in F ig .  VI I I . I t  and other 

standard curves prepared with E .  c o l i  extr ac ts were  l inear 

throughout the tested rang e s . Standard curve s were also  

prepared with  highly polymer i zed yea s t  RNAl l  and also  with 

s a lmon sperm DNAl l . They were found to be l inear throughout 

the tested conc entration range (as  high as 6 0  mcg . /ml . of 

e ither RNA or DNA) . The RNA had an absorptivity of  0 . 0 2 3  em . 

2/mcg . and a negative i ntercept of  0 . 0 4 2  whi le the DNA had 

an absorptivity of 0 . 0 0 4  cm . 2/mcg . Mixture s  of DNA and RNA 

produced absorbanc es equivalent to those  ca lculated from the 

l lcalbiochem , Box 5 4 2 8 2 , Los Angel e s , California 
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F igure VI I I . Cal ibration Curves for " Nuc l e ic Ac id s "  

and " Prote i n "  Determinations .  The amounts o f  

"Nucleic Ac ids " o r  " Protein"  found b y  the a s says 

are l inear ly related to the amount of culture 

f i l tered . 
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sum o f  the two Beer ' s  law equations . 

Maa �e and K j eldgaard ( 2 4 0 )  have estimated the DNA : RNA 

ratio i n  c e l l s  a s  a function of growth rate . They f ind this 

ratio to be about 1 : 1 0 in rapidly dividing c e l l s . While  in 

s lowly d ividing c e l l s  the ratio of DNA : RNA was reduced to 

about 1 : 4 .  U s ing the se f igur e s  and the absorptivities for 

yeas t  RNA and salmon sperm DNA g iven above one can ca lculate 

that the contribution of DNA to the quantity cal led " Nuc leic 

Acids " in thi s work rang e s  from about 2 to 5 % . S ince thi s  

i s  the case  it  might have been more proper t o  report the 

results  a s  " Ribonuc leic Acid s "  rather than " Nuc leic Ac ids "  

but s ince there i s  a contribution to thi s  quantity by DNA in 

thes e  exper iments the more g eneral term wa s preferred . 

Another reason for preferring this term i s  that in tetracyc l ine 

i nhibited c e l l s  the DNA : RNA ratio might be dif ferent than 

that found in norma l c e l l s . 
v � The results of Cerny and 

Habermann ( 3 3 ) , however , indicate that thi s  ratio does not 

change very muc h . 

Prote in Determinations 

The TCA solution was completely removed from the tube s 

containing the f ilter s ,  by vacuum aspiration . The f i lter s 

with retained protein precipitate were covered with 1 . 5  ml� 

of a trypsin  solution- ( 1 8 ) 10  mcg . /ml in 0 . 0 0 5  � NH40H and 

0 . 0 5 � (NH4 ) 2C03 - .  The suspended f i l ter s were stirred 

vigorou s l y  and a llowed to digest for 2 hours ( the same results 

were obtained af ter a s  much a s  48  hour s of digestion) . I t  wa s 
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nece s sary t o  utili z e  tryps in digestion rather than s trong 

a lka l i , because the c e llulose e s ter membrane s were hydro­

l y z ed and gave very high b la nk reactions in the pre sence of 

s trong alka l i . The resulting solution wa s u sed a s  a sample 

for protein determination by the Folin-Lowry method . The 

r eagents were added directly to the tubes and the absorbance 

of the colored solutions mea sured at 7 5 0  rnp .  B lank reac tions 

were prepared by f i l ter ing s teri le broth and u sed to correct 

the absorbance of the samp le s . The Fol in-Lowry reagents were 

prepared , standardi z ed and used according to the methods of 

Layne ( 24 2 ) . A solution of cupric sulfate ( 0 . 0 1% ) , sodium 

tartrate ( 0 . 0 2 % )  and sodium carbonate in  0 . 1  N NaOH was added 

to the prote i n  solution ( 5  ml . per tube ) and a f ter 10 minutes ,  

0 . 5  m l . of 1 . 0  N Folin-C iocal teu phenol reagentl 2  was added . 

The quantity reported as  " Prote i n "  i s  the corrected 

absorbance due to a 2 5  ml . sample of culture in a f inal 

reaction volume of 6 . 5  m l . A s  in  the previous ly mentioned 

case  of " Nuc leic Ac ids "  absorbance wa s used directly rather 

than a proportional quant i ty obtained from a calibration 

curve . A standard curve for the a s say procedure wa s prepared 

by f il ter ing various volnmes of E .  coli  culture s . An example 

is shown in  F ig . V I I I . I t  and other s tandard curves prepared 

with E .  coli  extract s  were linear throughout the tested range s . 

I t  i s , however , we l l  known ( 2 4 2 )  that the Folin-Lowry reaction 

1 2wi l l  Scientif ic I nc . ,  Baltimor e , Md . 2 1 2 2 4  
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-�oe s  not a lway s  fol low Beer ' s  law . Standard curves were also 

prepared with bovi ne serum albuminl l  and pancreatic trypsin . ll  

Adherence to  Beer ' s  law wa s observed i n  the case of the a lbumin 

i n  the tested concentration range (as high as 45 mcg . /ml . )  

whi l e  Beer ' s  law was only followed for tryp s in concentrations 

of l e s s  than 2 5  mcg . /ml . The a lbumin had an absorptivity of 

0 . 0 0 8  cm . 2/mcg . whi l e  the initial absorptivi ty of the trypsin 

was 0 . 03 4  cm . 2jmcg . The dec i s ion to uti l i z e  the absorbance 

of Folin-Lowry reaction mixtures  d irectly in the calculation 

of the term cal l ed " Protein"  wa s based , therefore , f ir stly 

on the fact that the avai lable standard curves with E .  coli  

extracted by the exper imental method were l inear and secondly 

on the rea l i zation that conversion of absorbance to concentra­

tion of  some s tandard protei n  would be val id only if  the 

s tandard protei n  were the same , in respect to non-linear i ty of 

absorbance and absorptiv i ty ,  as the experimental ly measured 

proteins . Such standard proteins were not avai lable . 



IV . RESULTS AND DISCUSS ION . 

A . E ffect  o f  Tetracy c l ines on Rate Cons tants for Ce l l  

Divis ion . 

I t  has previou s l y  been s hown ( 2 2 )  that the e f fect o f  

7 9  

low concentrations o f  tetracy c l ine on an exponentially dividing 

culture is to cause a reduction i n  the generation rate constant , 

that i s : 

[ N ]  Eq . ( 1 )  

When the t ime , t ,  i s  greater than 3 0  minute s after ant ibiotic 

add i t ion and where [N° ] is the concentration o f  cells in  the 

culture 3 0  minutes a fter antibiotic  add i tion , N is the con­

centration of ce l l s  at any later time , ked is the generation 

rate cons tant for ce l l  d iv i s ion in  the presence of  antibiotic 

and k�d is  the generation rate cons tant i n  the absence o f  

antibiot i c . Generation rate con s tants f o r  c e l l  divis ion , 

ked ' o f  cultures i nh i b i ted by 1 8  tetracycl ines have been 

measured by v i able , kv , and by tota l , kt , c e l l  count methods . 

Typical  results  o f  the s e  exper iments are shown in Fig . I X  and 

F i g . X .  These exper iments can a l l  be quanti tative ly de scr ibed 

by Eq . ( 1 ) . Generation rate constants obtained from the f i t  

o f  t h i s  exper imental data t o  Eq . ( 1 )  as we l l  as data t o  be 

presented l ater are given in Tables  I I  and I I I . Te sts  for 

the f i t  of e xperimental data to Eq . ( 1 )  were found to be highly 

s igni f icant  in cases  where data obtained at time s greater than 

30 minutes but l e s s  than 4 hours after  antibiotic  addit ion 

were used . 
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F igure I X . An Example of Viable Cell  Generation Rate 

Curve s . The logarithm of the number of viable cells  a s  

a func tion of time of growth in culture s  with var ious 

concentrations of 9-Nitro-dm-do-tetracyc l ine . The 

s lope s , kv , are g iven in Table I I I . 
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F igure X .  An Example of Tota l C e l l  Generat ion Rate 

Curve s . The logar i thm of the total number of c e l l s  a s  

a func tion o f  time of growth in cultur e s  with var ious 

concentrations of  9 -N itro-dm-do-tetracyc l i ne . The 

s lopes , kt , are g iven in Table I I I . 
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Tab le I I . - F irst Order Generat ion Rate C onstants ,  

- 1  4 sec . x 10 , for E .  c o l i  W Cu ltures Inh ibited by 

var ious Tetracyc l ine Ant ib iotic s ,  M x 106 . 

M 

Tetracyc l ine 

0 . 000  5 . 57 5 . 8 5  

0 . 599  3 . 80 4 . 4 6  

0 . 898 3 . 2 3 2 . 97 

1 . 198 2 . 27 1 .  96 

1 . 4 9 7  1 . 4 9  1 .  7 6  

1 . 7 96 1 . 10 1 . 2 5 

7 -Chlorotetracyc l ine 

0 . 000 5 . 4 1  5 . 94 

0 . 24 6  4 . 8 2  4 . 5 1 

0 . 4 9 2  3 . 48  3 . 3 3 

0 . 7 88 2 . 3 3 2 . 17 

0 . 98 5  2 . 16 1 . 84 

1 .  2 3 1  0 . 5 2 0 . 9 3 

8 2  

5 . 07 

3 . 8 5  

2 . 89  

2 . 10 

1 . 4 5  

1 .  2 7  

5 . 80 

4 .  97 

3 . 5 3 

2 . 14 

2 . 16 

0 . 5 1 



Tab le I I . - ( c ont . )  8 3  

M kv kp kna -, 
5 -Hydroxy tetracyc l ine 

0 . 000 5 .  7 5a 
5 . 7 9 5 . 97 

0 . 5 3 7  4 . 7 1  3 . 4 9  3 .  7 5 

0 . 87 8  4 . 04 3 . 4 7  

0 . 87 8  3 .  7 5b 

1 . 07 3 2 . 2 5 2 . 24 2 . 14 

1 .  3 7 6  2 . 2 3 2 . 24 2 . 4 0  

1 .  3 7 6  2 . 2 0 

7 -Chloro-dm-tetracyc l inec 

0 . 000 5 . 4 2  5 . 0 2 5 . 90 

0 . 2 2 1  4 . 99 4 . 4 1  5 . 2 6 

0 . 44 1  3 . 37 3 . 0 5  3 . 68 

0 .  7 06 1 . 4 6  1 . 1 3 1 .  s o  

0 . 88 2  0 . 5 5 0 . 68 1 . 06 

dm-do-tetracyc lined 

0 . 000 5 . 89 5 . 0 5 5 . 2 5  

0 . 97 8  4 .  58 4 . 5 5 4 .  7 7  

1 .  9 5 5  3 . 6 5  3 . 4 2  3 . 50 

2 .  97 2 2 . 7 6  2 . 57 2 . 4 7  

3 . 9 10 1 . 4 6  1 .  5 7  1 . 6 5  

4 . 888  0 . 84 1 . 07 0 . 97 

a .  An average va lue , determined on severa l d i fferent 
days . 

b .  Values of  kt which were used in tne c a lcu lat ion of 
the v iab le inh ibitory rate c onstant , k� . 

c .  dm- is 6-demethy l-6-ep ihydroxy- . 
d .  dm-do- is 6-demethy l-6-deoxy- . 



Tab le I I . - (cont . )  

M e kp kt k n a  

7 -Bromo-dm-do-tetracyc l ined 

0 . 000 5 . 8 9  5 . 4 1  5 . 8 9  

2 . 4 68 4 . 2 9 3 . 7 8 3 . 5 2 

4 . 9 38 2 . 7 0 2 . 59 2 . 2 9 

7 . 406  l .  26  l .  s o  l .  s o  

9 . 87 6  0 . 8 5  0 . 5 5 

7 -Ch loro- i s otetracyc l ine  

0 . 000  5 .  7 1  5 . 2 6 5 . 40  

16 3 . 4 9  5 . 8 1  4 . 74 5 . 3 9 

3 2 2 . 30 5 .  7 1  4 . 86 5 . 5 3 

l 2a-Deoxytetracyc l ine 

0 . 000 5 .  7 1  5 . 26 5 . 40  

7 9 . 14 3 . 90 3 . 6 9  3 . 59 

1 5 6 . 0 3  l .  59  l .  57  0 . 9 5 

Sa ( l la ) -Dehydrochlortetracyc l ine 

0 . 000 5 .  7 1  5 . 26 5 . 40 

1 5 0 . 68 5 . 2 3  4 . 26 4 . 5 5 

2 97 . 06 4 . 64 4 . 0 3 4 . 66 

2 -Cyano-2 -decarboxam ido-tetracyc l ine 

0 . 000  5 .  7 1  5 . 2 6 5 . 40  

3 3 . 16 5 . 94 4 . 92 5 . 44 

1 28 . 88 5 . 88 4 . 6 3 4 .  7 2  

e .  Va lue s o f  kt were obta ined with 0 . 2  % HCHO in 
the d i lut ing s olut ion , see Experimenta l .  

8 4  



Table I II . - F irst Order Generat ion Rate Constants , sec- 1  x 104 , for E .  c o l i  w .  

Cu ltures Inhibited by Tetracyc l ines , M X 106 , and the Fract ion of Viable to 

Tota l  C e l l s  Present at the Start , el , and at the End , e5 of the Experiments . 

kv k
a 

kp k b b M t na e l e5 

7 -Amino-dm-do-tetracyc l inec 

0 . 000 5 . 84 5 . 87 5 . 4 6  5 . 9 3 0 . 84 0 . 8 1  

0 . 4 9 3  4 . 9 3 4 . 80 4 .  3 2  4 .  7 2  0 . 80 0 . 96 

0 . 98 5  3 .  7 1  3 . 8 3  3 . 36 3 . 66 0 . 7 5  0 . 6 3 

1 . 4 7 8  2 . 98 3 . 0 5 2 . 74 2 .  7 7  0 . 68 0 . 62 

l .  97 1 2 . 4 1  2 . 4 1  l .  96  2 . 02 0 . 7 2 0 . 7 1 

a .  Va lues of kt · we re obta ined with 0 . 2  % HCHO in the d i luting s olut ion , see 
Exper imenta l . 

b .  e was c alculated from Eq . ( l )  us ing the va lues ked and N° , obtained by 
regress ion ana lys is of the orig ina l  data . 

c .  dm-do- is 6-demethy l-6-deoxy- . 

co 
lJl 



Tab le I I I . - ( c on t . )  

M kv ka 
t 

9-Amino-dm-do-tetracyc l ineC 

0 . 000 5 . 84 5 . 87 

0 . 474 5 . 27 5 . 27 

0 . 94 8  4 . 06 4 . 59 

1 . 4 2 1  3 . 7 9  3 .  7 3  

1 . 89 5  3 . 06 -

5a ( 6 ) -Anhydrotetracyc l ine 

0 . 000 5 . 82 5 . 6 2 

4 . 4 7 7  5 . 00 5 . 4 6  

8 . 9 5 3  4 . 38 4 . 67 

1 3 . 4 30 4 . 12 3 . 88 

17 . 907  - 3 . 32 

kp kn a  

5 . 4 6  5 . 9 3 

4 . 6 1  4 . 86 

3 . 9 1 4 . 08 

3 . 38 3 . 44 

3 . 02 3 . 17 

5 . 40  5 . 90 

4 . 70 4 . 90 

3 . 7 9 3 . 87 

3 . 2 5 3 . 4 5  

2 . 56 2 . 7 7 

e£ 

0 . 84 

0 . 74 

0 . 87 

0 . 7 2  

0 . 9 1 

0 . 69 

0 . 7 9  

0 . 64 

eg 

0 . 8 1  

0 .  7 4  

0 . 40  

0 . 80 

1 .  2 1  

0 . 3 5 

0 . 52 

0 . 90 

OJ 
0'\ 



Table I II . - ( c ont . )  

M kv k� 
7 -Nitro-dm-do-tetracyc l inec 

0 . 000 5 . 8 2  5 . 62 

0 . 1 1 1  5 . 68 5 . 50 

0 . 2 2 2  4 . 20 4 . 7 5  

0 . 3 3 3  3 . 17 3 . 8 2  

0 . 444 2 . 4 5  2 . 8 2  

9 -Nitro-dm-do-tetracyc l inec 

0 . 000 6 . 10 5 . 86 

2 . 3 3 7  4 . 7 7  5 . 37 

4 . 67 4  3 . 9 3 4 . 11 

7 . 0 1 1  2 . 9 3 2 . 96 

9 .  348 l .  9 5  2 . 02 

kp kna 

5 . 4 0  5 . 90 

4 . 86 5 . 44 

3 . 88 4 . 32 

3 . 1 1 3 . 5 2 

2 . 19 2 . 59 

5 . 8 1  6 . 14 

5 . 07 5 . 1 5 

3 . 48  3 . 54 

2 . 8 2  2 . 55 

l .  9 2  1 . 8 5 

e� 

0 . 9 1 

0 . 67 

0 . 74 

0 .  7 2  

1 . 00 

0 . 74 

0 . 97 

0 . 68 

0 . 8 2  

0 . 69 

e� 

l .  2 1  

0 . 8 7  

0 . 3 3 

0 . 28 

0 . 6 1 

1 . 0 5 

0 . 4 1  

0 . 5 3 

0 . 7 7 

0 . 62 

00 
-..J 



Table I I I . - ( c ont . )  

M kv It� kp kna �f .eb 
5 

4 - Dedimethy lamino-tetracyc l ine 

0 . 000 6 . 10 5 . 86  5 . 8 1  6 . 14 0 . 74 1 . 0 5 

3 . 0 30  5 . 2 7 5 . 39 4 . 6 3 5 . 0 1 0 . 7 9 0 . 67 

6 . 060 4 . 3 2 4 . 50 3 . 96 4 . 3 0 0 . 8 0  0 . 53 

9 . 091  3 . 4 3  3 . 80 3 . 58 3 . 5 1 0 . 86 0 .  50 

1 2 . 12 1  3 . 17 3 . 12 2 . 97 3 . 04 0 . 6 5 0 . 7 0 

9-Dimethylamino-dm-do-tetracyc l inec 

0 . 000 6 . 2 5 6 . 09 5 . 4 5  5 . 4 0  0 . 66 0 . 8 3  

3 . 4 6 7  5 . 60 5 . 7 1 5 . 0 1 5 . 00 0 . 87 0 . 74 

6 . 9 3 5  4 . 32 4 . 69 3 . 92 3 . 99 0 . 7 0 0 . 4 1  

10 . 40 2  3 .  34 3 . 4 7  3 . 0 9  3 . 5 1 0 . 60 0 . 50 

1 3 . 87 0  2 . 8 3 2 .  94 2 . 4 0  2 . 56 0 . 74 0 . 6 3 

Tetracyc l ine methiod ide 

0 . 00 6 . 2 5 6 . 09 5 . 4 5  5 . 4 0  0 . 66 0 . 8 3 

6 3 . 4 8  4 . 87 5 . 14 4 . 0 3  4 . 2 6 0 . 8 3 0 . 56 

1 2 6 . 9 5 3 . 02 3 . 39 2 . 7 8 2 . 9 1 0 .  I l 0 . 4 2  
OJ 
OJ 



Generation rate constants for cell  divis ion have been 
� 

obtained by two d i f ferent methods , by viable counts , kv , and 

by tetal c e l l  counts , kt . I t  can be seen in Table I I I  that 

rate constants for mos t  cultures obtained by the two methods 

are apparently identical , within experimental error . 

However ,  i n  these cultures the concentrations o f  cel l s  

a t  any time as  determined b y  the two methods were quite 

d i f fe rent . This i s  shown in Fig . XI for cultures inhibi ted 

by 7 - amino - 6 - demethyl - 6 -deoxy-te tracycl ine . S imilar results 

were obtained with the other tetracycl ines tes ted by both 

methods . The fraction of viable ce l l s  to total cel l s , e ,  

8 9  

would be 1 i f  there was no d i f ference between the concentration 

of c e l l s  measured by the two methods . This  f raction , � '  has 

been calculated f rom the regre s s ion f i t  of the experimental 

data to Eq . ( 1 )  for the tetracy c l ines tested by the two 

method s . Values o f  e at two cul ture growth time s : e1 , 9 0 0  

s econds a f ter  antibiotic addi tion and 85 , 1 5 , 3 0 0  seconds 

a fter antibiotic addition , are given in Table I I I . I t  

should be noted that values o f  e calculated in this  manner 

are very s en s i tive to sma l l  d i f ference s in generation rate 

constants . Despite thi s  sens i t ivity , € remains relatively 

cons tant in mos t  cultures throughout the time o f  antibiotic 

i nhibi t ion . I n  those cases where i t  does vary , i t  doe s not 

appear to be con s i s tently related to antibiotic concentration . 

The average value of  e in these  cultures i s  about 0 . 6 .  At 

higher antibiotic concentrations when generation rate cons tants 

obtained by the viable count method are negative , thi s  fraction 
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ANTBOTIC CONe. COUIT METHOD 
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o.oo 0 ... 
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1 .9 7  • 0 

Time , hr . 

Examples of the Difference Between Total 

and Viable C e l l  Generation Rate Curve s .  The logarithm 

9 0  

o f  either the total number o r  the number of v iable cells  

a s  a func tion of t ime of  growth in culture s  with var ious 

concentrations of 7 -Amino-dm-do-tetracyc l i ne . The 

s lope s , kt or kv , are g iven in Table I I I . 



9 1  

has value s  o f  0 . 1  o r  0 . 0 1 .  I t  i s  not pos s ible in the present 

work to conclude w i th certainty that the tetracycl ines are 

acting solely a s  growth inhibitors and not as both 

bacteriostatic and bactericidal agents . However ,  i f  

there i s  a n  antibiotic induced cell  death , i t  is  not large . 

Rather i t  seems mos t  l ikely that the d i f ference in cell 

concentrations obtained by the two me thods i s  caused by the 

format ion o f  s ingle colonies by more than one viable cell . 

I nclusion o f  a sur factant in the viable cell di luting solution 

did not , howeve r , greatly a ffect this  fraction . The use of 

the higher formaldehyde concentration in the di luting fluid 

for total counts made thi s  fraction , e ,  more cons tant . 

Garrett and Brown ( 2 2 )  and Garrett , Mi ller and Brown 

( 2 4 3 )  have observed that generation rate constants for cell 

divi s ion obtained in the presence o f  tetracycl ine obey the 

re lationship : 

i f f  kcQ>O Eq . ( 2 )  

I 
whe re ked may be e i ther kv or kt , ked i s  the inhibitory rate 

cons tant for ce l l  divis ion and [ Te l is  the antib iotic 

concentration . This equation was obtained by simpl i f ication 

of a more general relationship : 

Eq . ( 3 )  

where K i s  a cons tant . The der ivation o f  the se equations 

will  be pre sented in  a later section of this  the s is . 

The generation rate cons tants obtained in the pre sent 

work can be described by Eq . ( 2 )  but not by Eq . ( 3 ) . Typ ical 

' , ,  



examples o f  the f i t  o f  experimental data to thi s  expre s s ion 
_ ,  

are shown in Figures XI I , X I I I ,  XIV and XV . Values o f  the 

I inhibi tory rate con s tan t ,  ked ' obtained by app l ication o f  

regres s ion analy s i s  t o  the experimentally determined 

generation rate con s tants and the antibiotic concentrations 

in the cultures are given in Table IV . Thes e  values are 

e s timates of the activi ty of the tetracycl ines which should 

be sui table for use in s tructure- activity relationships . 

B .  E f fect o f  Tetracyc l ines on Rate Constants for 

Protein and Nuc l e i c  Aci d  Synthe s i s . 

I t  was mentioned i n  the l i terature survey that many 

inves tigators have observed that tetracyclines cause an 

inhibition of protein synthe s i s  in bacterial  culture s .  The 

results of two typical experiments in which the rates of 

9 2  

prote i n  synthe s i s  i n  E .  col i cultures inhibited by tetracyclines 

were s tudied a re shown in Fig .  XVI and XVI I . The se results 

can be described by an equation s imilar to Eq . ( 1 ) : 

[ P ] = [ P O ]  ekPt , Eq . ( 4 )  

when the time , t ,  i s  greater than 3 0  minutes a fter antibiotic 

addition and where [ P0 ] i s  the concentration o f  prote in in 

the ce lls  30  minutes a fter antibiotic addi tion , [ P ]  i s  the 

protein concentration in the cel l s  at any later time and k p 

i s  the generation rate cons tant for prote i n  synthes i s  in 

presence of antib iotic . The generation rate cons tant for 

prote in synthe s i s  in the absence of antibiotic , k� , i s  

identical with the generation rate constant f o r  cel l  division 

in the absence o f  antib iotic , k�d · Value s o f  kp are g iven in 
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F igure X I I .  The Linear Dependence of Generation Rate 

Constants , kv , kp a nd kna , upon Tetracyc l ine Concentra­

t ions . The line shown i s  the average inhibitory 

rate constant , kivg ' it and va lues of k� , k� and k�a 

are g iven in Table IV . 
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F igure X I I I . The Linear Dependence o f  Generation Rate 

9 4  

Constants ,  kv , kt , kp and kna , upon 9-Nitro-dm-do 

tetracyc l i ne concentration . The slope of the line shown 

i s  the average inhibitory rate constant , klvg , i t  and 

values o f  k� , kf_ , k� and kAa. are g iven in Table IV . 
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F igure XIV . The L inear Dependence of Generation Rate 

Constant s , kv , kt , kp and kna , upon Concentration of 

9-Dimethylamino-dm-do-tetracyc l ine . The s lope of the 

l ine s hown is the average inhibitory rate constant , 

k�vg ' i t  and values of k� , kf , k� and k�a are g iven 

in Table IV . 
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Table IV . - Inhibitory Rate Cons tants , 1./M- sec . , for Inhibition o f  E . coli  W by 

Various Tetracyc l ine s . 

Tetracycl ine Analoga -ki -ki -ki -ki -ki b 
v t p na avg 

7 -Ni tro-dm-do-tetracyc l ine 8 3 3 . 5 1 6 5 6 . 7 6 7 3 5 . 6 8 7 6 9 . 1 9 7 4 8 . 7 8 * *  

7 -Chloro-dm-te tracyc l ine 5 9 1 . 8 6 - 4 6 0 . 2 5 5 3 6 . 4 8 5 1 7 . 2 1 

7-Ch lorotetracyc l ine 3 8 7 . 7 7 - 3 9 6 . 1 4 4 2 0 . 2 0 4 0 1 . 3 7 

Tetracyc l ine 2 6 7 . 8 4 - 2 7 9 . 9 7 2 6 7 . 9 5 2 7 1 . 5 0 

5 -Hydroxytetracy c l ine 2 7 5 . 1 9 - 2 5 4 . 7 9 2 5 1 . 8 3 2 5 7 . 1 5 

7-Amino-dm-do- tetracycl ine 1 7 9 . 0 1 1 7 5 . 9 0 1 7 4 . 0 8 1 9 7 . 9 5 1 8 1 .  7 3 * *  

a .  dm-do- i s  6 -demethy l - 6 -deoxy- , whi le dm- i s  6 -demethyl - 6 -epihydroxy- . 
b .  Tested by ana lys is  of  covariance to determine i f  s ign i f icant d i f ferences 

exi sted between the inhib itory rate constant determined by us ing a l l  values of  genera­
tion rate constants col lective ly ,  ki

v , and ind ividual inhibitory rate constants 
determined separately . The symbo l  � �ndicates sign i f i cant d i fferences at P) 0 . 9 5 ,  whi l e  
* *  indicates s igni f icant a t  P> 0 . 9 7 5 . S e e  f o r  example , S tee l , P. .  and Torrie , 0 . , 
" Principles and P rocedure s of  S tatistic s " , McGraw H i l l  Book Co . ,  I nc . , New York , N . Y . , 
( 1 9 6 0 )  pp . 1 7 4 . 

1.0 
-...) 



Tab l e  I V . - ( cont . )  

Tetracyc l ine a n a l o g  

9 - Amino-dm-do-te tracyc l ine 

dm- do- tetracy c l ine 

7 - Bromo- dm-do - t e tracyc l ine 

- k i 
v 

1 5 5 . 5 3 

1 0 3 . 6 2 

9 - N i tro - dm-do- tetracy c l ine 4 3 . 4 0 

4 - Dedime thy l amino - te tracyc l ine 2 5 . 3 9 

9 - D imethy l amino-dm-do- t e tracyc l ine 2 6 . 2 2 

S a (6 ) -Anhydrote t r a cyc l ine 1 2 . 7 5 

1 2 a - Deoxytetracyc l ine 

Te tracyc l ine me thiodide 2 . 5 4 

S a ( l l a ) -Dehydrochlorote tracyc l ine 

7 - Ch loro- i s ot e t racyc l ine 

2 - Cyano - 2 -decarboxamido - te tracyc l i ne 

- k i 
t 

1 5 1 . 2 3 

6 2 . 6 8 

4 3 . 1 5 

2 3 . 2 9 

2 4 . 6 2 

l 3 .  81 

2 . 6 3 

2 . 1 2 

0 . 3 6 

- k i 
p 

1 2 8 . 82 

86 . 7 0 

4 6 . 0 9 

4 2 . 9 1 

2 2 . 2 4 

2 3  . l l 

1 5 . 9 1 

3 . 85 

l .  9 6  

0 . 2 5 

- k i 
n a  

1 4 6 . 1 3 

9 2 . 9 3 

5 1 . 4 2 

4 7 . 86 

2 5 . 4 5 

2 0 . 7 3 

1 7 . 2 3 

2 . 3 7 

2 . 1 0 

0 . 4 2 

no a c t iv i ty obs e rved 

no a c t ivi ty obs e rved 

- k i 
avg 

b 

1 4 5 . 0 3 * 

9 4 . 4 2 * 

5 1 . 7 9 

4 4 . 3 3 

2 4 . 0 9 

2 3 . 6 7 * *  

1 5 . 4 8* *  

2 . 6 2 c 

2 . 1 8C 

0 . 3 4 c 

c .  I n s u f f i c i ent d a t a  ava i l ab l e  for t e s tinq by a n a l y s i s  o f  cova r i ance . 

I.D 
co 
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F igure XVI . An Example of Generation Rate Curves for 

Protein Synthe s i s . The logar ithm o f  the " Protein"  

f ound in E .  coli  cultures a s  a function of time of  

growth i n  the pre sence of various concentrations of  

9 -N i tro-dm-do-tetracycl ine . The s lope s , kp , are g iven 

in Table I I I . 
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Tab le s  I I  and I I I  for the 1 8  antibiotics  s tudied . I t  can be 

seen that the se value s  are e i ther identical with or are 

very close to the values of kv or kt observed in any given 

culture . 

1 0 1  

�eneration r ate cons tants for prote in synthe s i s  obtained 

by regres s ion analy s i s  from Eq . ( 4 )  are in agreement with an 

equation s imilar to Eq . ( 2 ) : 

Eq . ( 5 )  

where k� i s  the inhibi tory rate constant for protein synthe s i s . 

Values o f  kp do not f i t  an equation s imilar  to Eq . ( 3 ) . Fig . 

XII , XI I I , XIV and XV are examples o f  the fit  of values o f  kp 

to Eq . ( 5 ) . Values o f  the inhibi tory rate cons tants for 

protein synthe s i s  are given in Tab le I V .  

The results o f  two typical experiments i n  which the rate s 

o f  nuc leic acid synthe s i s  in culture s inhibited by tetracycl ines 

were s tudied are shown in Figures XVI I I  and XI X .  The se 

experiments did not show an increased rate o f  nucleic  acid 

synthes i s  in inhibi ted  cul tures as sugges ted by several 

inve stigators ( 1 8 , 3 0 , 3 6 ) but rather showed a decreased 

amount o f  nucleic  acids corre lated to the observed inhib ition 

of cel l  divis ion . The data from these exper iments a l so f i t  

a n  expre s s ion s imilar t o  Eq . ( l ) : 

[ NA] = [ NA0 ] eknat , i f f  kga>kna� Eq . ( 6 )  

when the time , t ,  is  greater than 3 0  minutes after  antibiotic 

addition and where [NA0 ] i s  the concentration o f  nucleic ac ids 

in the cells  30 minutes after antibiotic addition , [NA] i s  

the nuc leic a c i d  concentration in the ce l l s  a t  any later time 
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F igure XVI I I . An Example of Generation Rate Curves for 

Nuc leic  Ac id Synthe s i s . The logar i thm o f  " Nuc l e ic Ac ids " 

f ound in  E .  c o l i  culture s  a s  a function of time of 

growth in  the pre sence of various concentrations of 

9 -N i tro-dm-do-tetracyc l ine . The slope s , kna , are g iven 

in Table I I I . 
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F igure XIX . An Example of Generation Rate Curves for 

1 0 3  

Nuc leic  Ac id Synthe s i s . The logar i thm o f  "Nuc leic Ac ids "  

found i n  E .  c o l i  culture s  a s  a function of time o f  

growth i n  the pre sence of various concentratQons o f  

diD-do-tetracyc l ine . The s lopes , kna ' are g iven in 

Table  I I I . 



and kna i s  the generation rate cons tant for nucleic acid in 

the presence o f  antibiotic . The generation rate constant 

1 0 4  

for nucleic  ac id s ynthes i s  i n  the absence of  antibiotic , kga , 

i s  identical  to the generation rate cons tant for ce ll  divis ion 

in the absence of antibiotic , k�d · Generation rate constants 

obtained from the f i t  of experimental data to Eq . ( 6 )  are 

given in Tables I I  and I I I . I t  can be seen that these values 

are e i ther i dentical to or very s imi lar to the values o f  

kv , kt o r  kp observed in any given culture . 

Generation rate cons tants obtained from Eq . ( 6 )  are 

in excellent agreement with an equation s imi lar to Eq . ( 2 } : 

Eq . ( 7 )  

whe re k i i s  the inhibito ry rate constant for nucleic acid 
na  

synthe s i s . Figure s XI I ,  XI I I , XIV and XV are examples of  the 

f i t  o f  va lue s o f  kna to Eq . ( 7 ) . Values of the inhibitory 

rate cons tants derived from Eq . ( 7 )  are l i s ted in Table I V .  

Value s o f  kna do n o t  f i t  a n  equation s imilar t o  Eq . ( 3 ) . 

As mentioned above , the values o f  kv , kt , kp and kna 

for any given culture are e i ther identical or very s imi l ar . 

There fore , values of  the respective inhibitory rate constants , 

I I I I d b . ' 1  � h kv , k t , k or kna ' would be expecte to e slml ar . n e ave 
p 

tes ted  the hypothe s i s  that the se constants are experimentally 

ind i s tingui shable and find no s tatistically s igni f i cant 

dif ferences between the individual values and an average 

inhibitory rate constant , k�vg ' for 7 of the antibioti cs . 

Stati s tically s igni ficant d i f ferences were found , Table I V ,  

for the 6 o the r antibiotics tes ted . Suff icient data was not 
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ava i lable t o  test the other antibiotics  i n  this fashion . This 

s imple  analy s i s  of covari ance te s t  did not consider the error 

invo lved in the determination of the individual generation 

rate constants . I t  seems l ikely that within present experimental 

accuracy the 4 generation rate cons tants , viable and total cell 

divis ion , protein and nuc l e i c  acid synthe s i s , are the same 

for a l l  antibiotics . That i s  a one-to-one relationship , balanced 

growth , is found among the se parameters not only in contro l 

cul tures but also  in antibiotic inhibited culture s . 

I f  balanced growth i s  indeed maintained in tetracycline 

inhibited cultures then the average inhibito ry rate constant , 

k�vg in Table I V ,  would be the bes t  measure o f  tetracycline 

activity to use in s tructure-activi ty relationships . 

C .  Time o f  Onset o f  Tetracyc l ine Inhibition of Whole 

Cell Culture s . 

The fact that inhibited cultures exhibit  paral lel  rates 

o f  cell divis ion , prote in and nuc l e i c  acid synthe s i s  is not 

in accord w i th the interpretation of previous experiments 

( 1 8 ,  3 0 , 3 4 , 3 6 ) . These experiments were e i ther s ingle 

point measurements or kinetic experiments which were carried 

out only during t ime s immediately preceeding antibiotic 

addition . The se expe riments reported e i ther decreased 

protei n/ce l l  and increased nuc l e i c  acid/ce l l  or inhibition 

of rate o f  prote in synthes i s  and s timulation o f  rate o f  

nucleic acid s ynthe s i s . 
V /  

However ,  Cerny and Habermann ( 3 3 )  

in a kinetic experiment covering several generations showed 

parallel  rates o f  protein and nucleic acid synthe s i s  with 

different t ime s of onset of action . The i r  work was done at 



antibiotic concentrations 1 5  times higher than those 

presently employed , which caused complete inhibition and 

undoubtedly cell  death . 

The agreement of exper imental data with Eq . ( L ) , Eq . 

1 0 6  

( $ )  o r  Eq . ( ¢ )  wa s only observed for data obta ined approxima tely 

3 0  minutes af ter antibiotic addi tion . Dur ing thi s initial 

t ime per iod cultures appeared to maintain growth rates s imi lar 

to tho s e  observed in control s . Thi s can be observed in the 

exper iments shown in F igures IX , X ,  XI , XVI , XVI I , XVI I I  and 

XIX . S imi lar observations were made in the other experiments 

not shown . Figure XX shows an experiment des igned to document 

this observa tion . I t  can ea s i ly be seen that the onset of 

inhibition for a l l  parameter s is  cons iderably beyond the time 

of antibiotic addi tion . Viable plate counts , not shown , 

par a l l e led tho se obta ined by the total count method . Thi s  

exper iment ha s been reproduced at a dif ferent oxytetracyc l ine 

conc entration with s imi lar results . In addi tion , Fig . XX 

shows that the time of onset of recovery from inhibition 

upon d i lution of cultures into antibiotic free media is not 

immed iate e i ther , but a l so exhibits a lag time . I t  was 

thought that both inhibition of and recovery of protein syn­

the s i s  occurred s l ightly before the other parameters are aff ected . 

In order to test  the observation on time of onset of inhibition 

an exper iment wa s performed in a dextrose-salts  broth where 

the rate of c e l l  d iv i s ion in control cultures wa s 1/2 that in 

the high peptone broth . Thi s  s ing le exper iment ,  Fig . XXI , 

sugg e s t s  that prote in synthe s i s  measured by the Fo lin-Lowry 

technique and a l so c e l l  ma ss  as measured by turbidity might be 
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F igure XX . T ime o f  O n s e t  o f  and Recovery F r om Oxytetracy­

c l ine Inhibition i n  Peptone Broth C u l tur e s . Genera t i o n  rate 

curves for tota l c e l l s , nuc l e i c  a c id synthe s i s  a nd pro t e i n  

synthe s i s  i n  t h e  pre s ence o f  1 . 3 8 x l o - 6 � 5 -Hydroxytetra ­

cycl i ne and a one - to - e l even d i lu t i on i n to a n t i b i o t i c  -

free med ia of the i nh i b i ted c u l tur e . The gener a t i on r a te 

curve f o r  pro t e i n  synthe s i s  has been transpo s ed by sub­

trac t i ng 0 . 5  f r om a c tu a l  v a l u e s  of Lne " Pr o t e i n . "  The 

genera tion rate c o n s ta n t s , sec . - 1  x 1 0 4 , f o r  the und i luted 

c u l tur e s  are g iven i n  Table II exc ept f or v a lu e s  obta i ned by 

measur i ng cu lture tur b i d i ty ( no t  s hown ) whi c h  were 5 . 6 3 a nd 

2 . 1 9 before and a f ter a n t i b i o t i c  add i t i on , r e spec t iv e ly . The 

values of the generation r a t e  c o n s t a n t s  in the d i luted c u l ture 

wer e  k t 5 . 4 3 ;  kp = 5 . 0 9 ;  kna = 4 . 6 1 ;  kv ( not s hown ) = 5 . 3 3  

and for c u l ture turb i d i ty = 4 . 7 6 . 

The t ime o f  a n t i b i o t i c  add i t i o n  wa s 4 , 4 7 0  sec . and the 

t ime o f  d i lution wa s 1 0 , 8 5 0  sec . The t im e s  o f  onset o f  

inh i b i t io n  and the t im e s  o f  o n s e t  o f  r ecovery c a lc u l ated a s  

the inter s e c t i on o f  the regr e s s ion l i ne s , r e spec t i v e l y  i n  

sec . , wer e : f or protein synthe s i s , 6 , 2 0 0  a n d  1 1 , 8 0 0 ;  f or 

turbid ity , 6 , 4 0 0  and 1 1 , 5 0 0 ; f o r  nuc l e i c  a c i d  synthe s i s , 

6 , 4 0 0  and 1 2 , 4 0 0 ;  and for c e l l  d iv i s ion - tota l 7 , 1 0 0  a nd 

1 2 , 5 0 0  and viable , 6 , 5 0 0  a nd 1 2 , 2 0 0 . 
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F igure XXI . Time of Onset of Oxytetracyc line Inhibition of  

Cultures in Dextrose-Sa lts Broth . Generation rate curves 

1 0 9  

for nuc leic acid synthe si s ,  protein synthes i s  and culture 

turbidity in the presence of 1 . 1 6 x 1 0- 6� 5-Hydroxytetra­

cycline . The generation rate curve for nuc leic acid 

synthesis  has been transposed by adding 2 . 0  to the actual 

value of lne "Nucleic Ac ids . "  Values of  generation rate 

constants , sec . -1  x 10 4 , in the absence and presence of 

antibiotic respectively , were : kna = 2 . 1 3 and 0 . 5 6 ;  kp = 2 . 6 2 

and 0 . 3 7 ;  kt ( not shown ) = 2 . 4 4 and 0 . 1 2 ;  and for turbidity 

2 . 5 4 and 0 . 3 7 .  

The time of antibiotic addition was 8 , 9 0 0  sec . The 

times of onset of inhibition , sec . , ca lculated a s  the inter­

cept of the regre s sion lines were : for protein synthesi s ,  

9 , 9 0 0 ,  for turbidity , 1 0 , 3 0 0 ;  for cell division , 1 0 , 7 5 0 ; and 

for nuc leic acid synthesis , 1 4 , 2 0 0 . 
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inhibited sooner than nuc leic acid synthe s i s . Cell divis ion , 

not shown , was inhibited at an intermediate time . The exis tence 

of the s e  d i f ferent l ag times explains the dis crepancy between 

parallel  equ i l ibrium inhibition rate s observed in thi s  work 

and non-parallel amounts of nucleic acid and prote in per cell 

reported by o thers ( 1 8 , 3 0 , 3 4 , 3 6 ) . Experiments per formed 

in cul ture med i a  whi ch do not al low rapid rates of cell  

divis i on would  be expecte d  to accentuate thi s  d i f ference in 

times o f  onse t  o f  inhibi tion . 

Thi s  o rder o f  inhibition and recovery is  cons i stent with 

the hypothe s i zed primary inhibi tion o f  prote in synthes i s  

fol lowed b y  a secondary , indirect inhibition of  cell divis ion 

and nucleic  acid synthe s i s  due to a lack of  prote in . 

D .  E f fe c t  o f  Broth pH Changes  on  Tetracyc line-Inhibited 

Culture s . 

Jones and Morris son ( 2 0 )  and Benbough and Horris son ( 1 7 )  

have reported that when the pH o f  culture media o f  known free 

metal ion concentration i s  varied , the inhibition produced 

is proportional only to the " mo lecular " , presumab ly zwitterionic , 

species  o f  several tetracyclines . Connamache r ,  Mande l and 

Hahn ( 6 6 )  have recently reported data on the uptake o f  

tetracycline in  B .  cereus cultures at pH 6 . 7  and 7 . 3  and 

at two Mg ion concentrations which are in qual itative agree­

ment with the hypothe s i s  o f  Jones and Horr i s son . 

Because the s l ow growth rate characteristics  o f  E .  coli 

w in dextro s e -s a lts broth made it  unlikely that the 

tetracyc l ines would  be suffic iently stable it was not 

pos sible  to ver i fy these  results for other te tracyclines in 
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a media o f  known free metal ion concentration . However , 

experiments in peptone broth are con s i s tent with these results 

at two broth pH values where free metal ion concentration would 

be expected to be constant . Figure XXI I  shows a plot o f  

Eq . ( 2 )  f o r  experiments at p H  6 . 2  and 6 . 6 5 .  The concentration 

o f  tetracycl ine is adj us ted to reflect the concentration of 

zwitterionic form rather than the total concentration . 

Experiments at a broth pH o f  7 . 4 ,  where a much lower free 

me tal ion concentration would be expected because of the 

higher HP04
- concentration , do not f i t  the s ingle l ine 

plotted in Fig . XXI I . Activities  obtained with 5 a ( 6 ) ­

anhydrotetracycline ( pH 6 . 2  and pH 6 . 6 5 )  and 4 - dedimethyl­

amino-tetracycline ( pH 6 . 6 5 and pH 7 . 4 )  do not f i t  such a 

s imple concept e i ther , Table V .  The se tetracycl ines have , 

however ,  unusual pKa ' s .  

I n  addition to the growth-rate dependent d i fference in 

time of onset o f  inhibi tion o f  the various culture parameters , 

there i s  a lag time observed before any parameter is  inhibited , 

Fig . XXI . Two general explanations are pos s ible for thi s  

l a g  time . Firs t ,  a finite time may b e  required t o  es tablish 

equ i l ibrium concentrations within the cell s . Second , antibiotic 

may permeate the cell and arrive at the receptor s i te but 

require finite time to exert a measurable e f fect . 

Bes ides causing a change in the degree o f  equ i l ibrium 

inhibition produced by a given total antibiotic concentration , 

broth pH changes are also  capable o f  changing the growth-rate 

independent lag time for onset o f  inhibition . Figure XXI I I  

shows an experiment identical to that pre sented previously , 
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F igure XXI I . The Linear Dependence of Generation Rate 
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Constants upon Concentration o f  Zwitter ionic Chlortetra-

cyc l ine . Constants were obta ined at two broth pH value s , 

6 . 1 5 and 6 . 6 5 .  Values of generation rate constants 

obta ined at  a higher broth pH value , 7 . 4 ,  and , therefore ,  

a higher HP04 = concentration do not f it thi s  s ingle line . 

The s lope of the line shown i s  4 7 0  L/M- sec . 
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Table V . - F irst  Order Generat ion Rate Cons tant s , sec- 1 x 104 , 

and Inhibitory Rate C onstant s , L/M-s ec . ,  f or E .  c o l i  w in 

Various Broth C u l tures Inhib ited by Several  Tetracyc l ines . 

7 -Chlorotetracyc l ine , peptone broth , pH 6 . 2  

0 . 000  5 . 56 5 . 50 4 . 88 

0 .. ll.92 4 . 9 5 4 . 55 4 . 66 

0 . 384 4 . 06 3 . 50 3 . 38 

0 . 57 5  3 . 0 1 2 . 69 2 . 7 1 

0 . 7 6 7  2 . 10 1 .  78 1 . 86 

-4 6 1 . 1 1 -484 . 15 -4 17 . 52 -4 54 . 28**  

Sa ( 6 ) -Anhydrotetracyc l ine , peptone brot h ,  pH 6 . 2  

0 . 00 5 . 56 5 . 50 4 . 88 

4 . 67 4 . 7 1 4 . 68 3 . 90 

9 . 34 3 . 94 3 . 2 3 3 . 4 5  

14 . 0 1 3 . 35 2 . 57 2 . 92  

18 . 68 1 .  7 3  1 . 99 2 . 3 5 

- 1 9 . 27 - 19 . 54 - 1 2 . 9 5 - 1 7 . 2 5 **  

* *  S ig n i f icant d i f ferences between inh ib itory rate  constants 
determ ined by analy s is of c ovar ianc e as  expla ined in 
Tab le IV . 



Table  v . - ( cont . )  

106 M kt kp kna k i 
avg 

4 -Ded imethy l amino-tetracyc l in e ,  peptone broth , pH 7 . 4 

0 . 00 4 .  57 5 . 2 2 4 . 7 6 

3 .  34 3 . 87 5 . 0 1  3 . 96 

6 . 6 5 3 . 3 3 3 .  7 3 3 . 48 

9 . 96 2 .  7 1  3 . 0 3 3 . 00 

1 3 . 24 2 . 0 9  2 . 1 3 2 . 54 

k i - 1 8 . 48 - 24 . 7 0 - 16 . 3 2 - 1 9 . 8 3 ** 

7 -Chlorotetracyc l in e ,  pH 6 . 7 ,  dextrose-sa lts broth 

0 . 000 2 . 39 2 . 30 2 . 18 

0 . 16 3  2 . 07 1 .  92  2 . 0 1 

0 . 32 7  0 . 97 0 . 84 0 .  7 9  

0 . 4 90 0 . 39 0 . 51 0 . 50 

0 . 6 5 5  0 . 2 2 0 . 38 0 . 37 

k i - 368 . 34 - 3 1 5 . 8 1  - 3 12 . 59 - 3 3 2 . 2 5 

* *  S ign i f icant d i f ferences between inhib itory rate constants 
dete rmined by ana lys is of  c ovar iance as  exp la ined in 
Table  IV .  

1 1 5  



F igure XXI I I . The E f f e c t  of Broth pH on Time o f  O n s e t  of 
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Oxytetracy c l ine I nhib i t i on . Genera t ion r a t e  curve s ,  done on 

s epara te days a t  two peptone broth pH v a l ue s , f o r  c e l l  

d i v i s ion- b y  the to t a l  c ount me thod ana f or c u l ture 

turb i d i ty in the presence of two d i f f er e n t  c oncentr a t ions o f  

5 - Hydroxy t e tr a c yc l i ne . The g ener a t i on r a t e  curve s f o r  c e l l  

d iv i s ion have been transposed b y  subtr a c t i ng 3 . 0  f r om the 

a c tual value o f  Lne ( orga n i sms/ml . x l o - 6 ) .  The g ener a t i on 

rate constant s , sec . - 1 x 1 0 4 , i n  the absence and pr e senc e 

of antibiot i c , re spec tively , f o r  c e l l  d i v i s io n , were 5 . 1 6 

and 2 . 2 0 a t  pH 6 . 6 5 and 4 . 7 5  and 2 . 3 0  a t  pH 7 . 4 ,  and f o r  

turb i d i ty wer e , 5 . 6 3 and 2 . 1 9 a t  pH 6 . 6 5 a n d  5 . 5 6 a n d  2 . 2 1 

a t  ph 7 . 4 .  

The t ime s of a n t i b i o t i c  add i t ion were 4 , 4 7 0  s ec . a t  ph 

6 . 6 5 and 5 , 4 0 5  sec . at pH 7 . 4 .  The t im e s  o f  o n s e t  of 

inhibi tion , sec . , c a l c u la ted a s  the inte r s ec t i o n  o f  the 

reg r e s s ion l i nes were f o r  c e l l  d iv i s ion 7 , 1 0 0  and 6 , 2 0 0  and 

for turbid i ty 6 , 4 0 0  and 5 , 9 0 0  a t  pH 6 . 6 5 a nd 7 . 4 ,  r e s pec t i v e ly . 



1 1 7  

+ 3 -

+ 2 -

+ 1 -

s:: 0 0 -·rl .jJ C1l H 
- 1 -.jJ s:: Q) u 
- 2 -s:: 0 u ---' 

Q) 
- 3 -

s:: ...:l 
- 4 - ,.H 6.65 ,H 7.4 

0 • TOTAL 

"' • TURBIDtTY 
- 5 -

- 6 -

1 2 3 4 

T ime , hr . 

F igure XXI I I . 



1 1 8  

Fig . XX , except that the pH o f  the broth was 7 . 4  instead o f  

6 . 7 .  The lag for onset o f  inhibition o f  protein synthesis  

( me as ured a s  cel l  mas s )  and ce l l  divis ion are seen to  be  

shortened by  two-thirds . The equil ibrium amount o f  inhibition 

achieved by two d i f fe rent total oxytetracycl ine concentrations 

was the s ame i n  both experiments . I f  the hypothes i s  o f  Jones 

and Mor r i s son ( 2 0 )  i s  correct , then the concentration of 

zwitterioni c species present in the broth mus t  be the same in 

both experiments . The nature o f  the initial inhibi tory process  

mus t  be quantitative ly d i fferent i n  these experiments . I t  

seems mos t  l ikely that the proces s  o f  permeation into the 

cel l s  is a f fecte d  by the pH change and that thi s  is the proces s  

respons ible for the growth-rate i ndependent lag time observed 

in the s e  experiments . 

Arima and I z ak i  ( 6 4 , 2 4 4 , 2 4 5 )  have s tudied permeation 

o f  oxytetracy c line in sens i tive and res i s tant cells  at high 

antibiotic concentrations and found that i t  depends upon an 

energy requ iring proce s s . Franklin ( 6 5 )  has veri fied a 

glucose-dependent uptake at low concentrations o f  tetracycline 

and chlortetracy c l ine . The condition o f  the cells  in these 

cultures i s  so  d i f ferent from the cel l s  in the present work 

that it is hard to make meaningful comparisons . However , i t  

i s  c l e a r  that the abi li ty to permeate the ce l l s  is  a n  important 

factor in antibiotic  activity , whether thi s  proces s  is an 

inactive or an active di ffus ion . E i ther proces s  might be 

expected to be sensitive to the broth pH . 



E .  K inetic Mode l s  for Inh ibition o f  Bacterial Cultures 

by Tetracyc l i ne s . 

S tudi e s  of the k inetics o f  inhibi tion o f  ce l l  growth 

are capabl e  of provi ding in formation of a type other than 

1 1 9  

the estimate s o f  rel ative potencies o r  the estimates o f  order 

of onset of inhibition which have been mentioned above . 

Kinetic s tudies  can provide information which is  useful in 

testing proposed mode l s  of antibiotic activity . Any proposed 

mode l of tetracy c line activity should be consistent with 

several results of the present study . 

The se are : 

a .  Exponential  growth i s  maintained in cultures inhibited 

by l ow concentrations o f  tetracyc l ines ; see Eq . ( 1 ) ,  ( 4 )  and 

( 6 )  • 
b .  The generation rate constants for ce l l  divi s ion , 

prote in and nuc leic  acid synthes i s  are the same in any given 

tetracyc line-inh i b i ted culture , kcd�O . 

c ,  Rate cons tants for inhibited cultures are l inearly 

dependent upon the f i r s t  power of the antibiotic concentration ; 

see Eq . ( 2 )  , ( 5 )  and ( 7 )  . 

d .  Ant ib io t i c  inhibition i s  reversed by di lution into 

antibiotic  free med i a , Fig . XX . 

I n  addi tion , it  seemed l ikely that : 

1 .  P rote in synthes i s  i s  inhibi ted be fore ce l l  divis ion or 

nucl e i c  ac id synthe s i s . 

2 .  Permeation o f  antibiotic into ce l l s  i s  important and 

might be responsible  for the l ag in time of onset of inhibition . 



A s imple mode l which des cribes the kinetics o f  ce ll  

div$s i on observed in E .  coli  culture s inhibited by  low 

tetracycl ine concentrations has been proposed by Garrett , 

Mil ler and Brown ( 2 4 3 ) . I t  assumes equ i l ibrium ( K )  

between free E .  co l i  ( Ef ) and tetracycline ( T c )  t o  form 

inhibited E .  coli  ( Ei ) :  
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E f + T c  .J<..t: Ei Eqj ( 8 )  

and i t  a l s o  a s s ume s that the rate o f  generation o f  total 

E .  coli  ( E t ) i s  proportional to the concentration of free 

E .  c o l i 'f  

Eq . ( 9 )  

When the fraction of inhibited E .  coli ( � ) i s  calculated 

from Eq . ( 8 )  : 

� E ·  K [ T e l  l Eq . Et 1 + K [ Te l  

and when s ub s t i tuted i n  Eq . ( 9 } , one obtains : 

d ( Et ) = k�d ( l  - � )  Et = k�d ( l  - �K:..:........::...[ T:._c:....;l:..__ ) 
l + K [Te l a t 

S ince it  i s  found experimental ly that , 

d E t Eq . 
ked 

( Et ) 
d t 

by comb ining Eq . ( ll }  and Eq . ( 1 2 )  ' one obtains :  

ked 
kgd l - K [TcJ Eq . 

l + K [Te l 

f E ( 3 )  When K [Tc ] i s  much 
which is a rearrangement o q .  · 

( 1 0 )  

Eq . ( l l }  

( 1 2 )  

( 1 3 )  

less  than 1 ,  a " l imiting case " , then Eq . ( 1 3 )  i s  equivalent to 

Eq . ( 2 ) , where k; . d .  
= k� . d .  

K .  



Thi s  simp l e  kinetic  mode l is con s istent with re sults 

outlined as a, c arrl d.. I t  does not consider the observations 

outl ined in b ,  1 and 2 .  Consequently , i t  does not lead to 
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Eq . ( 2 )  i n  a biochemi cally  meaningful fashion . Garrett et . al . 

( 2 4 3 )  have tried to exp l ain why this  l in;iting case of  Eq , ( 1 3 )  

i s  obs erved during tetracyc l ine inhibi tion by postulating 

that there are d i f ferences between rates of  protein synthes i s  

and the rates o f  c e l l  divis ion in inhibited cultures . The 

present report has shown that this is mos t  probab ly not true , 

result b ,  and i t  would be helpful i f  another hypothes is were 

advanced to explain thi s  adherence to the l imiting case o f  

E q . ( 1 3 )  . 

A model cons i stent with the results outl ined above has 

been sought w i thin the proposed b i ochemical mode of  action . 

This  mode l a s s umes that tetracyclines bind to the aminoacyl 

site  of ribosome s and thereby prevent the binding of  AAtRNA . 

The evidence for this  mode of  action has been presented in 

the l i te rature survey . I f  the usual type o f  enzyme- inhibitor 

kinetics is f o l l owed it would be expect�d that thi s  mode o f  

action would generate a n  inverse re lationship between rate o f  

protein synthe s i s  and inhibitor concentration . However ,  a 

growing E .  coli  culture i s  not  the normal in vitro test  systero . 

Such a culture w i l l  not have constant  concentrations o f  s ubs trate 

or enzyme s . It was thought , therefore , that a mode l which 

a ll owed the se  concentrations to vary with the ti�e of growth 

and a l s o  the inhibitor concentration , might lead to results 

s imi l ar to that observed in the experimental cultures . 
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Conditions have not been found such that the proposed 

model  generates outputs which agree with the exper imental 

data . The model  wi l l  be pre sented , however , s i nce it or a 

s imple var iation of i t  may be con s i s tent with the exper imenta l 

observations when other conditions are tr ied . 

The model , F ig .  XXIV , i s  pre sented i n  terms of some 

of the reactions i nvo lved in protein synthes i s  in a bacter ial 

culture . The s implest  model  invo lving the lea s t  number of 

reactions ha s been pos tulated as a starting point . Reac tants 

are expres s ed in terms o f  concentration i n  bhe tota l culture . 

The model  s tates  that there i s  a rever s ible pa s sage of 

tetracyc l ines  from out s ide the c e l l s  ( Tc ' )  into the c e l l s  

( Tc ) , Eq . ( 14 ) . T h i s  s tep ha s been ignored i n  initial model s . 

Tetracyc l ine s inside the c e l l s  bind to r ibosome-RNA ( R )  and 

form a complex ( R • Tc )  which i s  not capable o f  synthe s i z ing 

protein , Eq . ( 1 5 ) . Norma l r i bo some s-mRNA complexes are , of 

cour se , c apable of bind i ng sub s trate ( S ) , AAtRNA and forming 

a peptide bond ( P )  on the r ibosoma l sur face , Eq . ( 1 6 ) . 

Peptide bond f orma tion frees the aminoacyl s ite of the 

r ibosome-mRNA complex and a l lows either tetracyc l i ne or AAtRNA 

to bind . 

Two steps , Eq . ( 17 )  and ( 1 8 ) , have been i nc orporated 

i nto the mode l  with the expectation that they might lead to 

results d i f fe�ent from ordinary enzyme kinetic s .  The f ir s t  

o f  these steps i s  that substrate i s  synthe s i z ed from substrate 

precur sors ( S ' )  i n  a reaction which ha s been pre sumed to 

proceed at  a rate proportiona l to the concentration of prote in 
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Tc ' K1 
< Tc 

Ka 
R + Tc � R ·Tc � 

R + s & R · S k , , � p + R  
I k 8 .. s · C,P, 

s 

p Ca \ R 

P;. * 'b (  R +  R · S + R ·Tc ) + � p 

F igure XXIV . Propo s ed Mode l  o f  Tetracyc l i ne Inhib i t ion of Pro-

t e i n  S y n th e s i s  i n  Bacter i a l  Cu l tur e s . Tc ' is the c oncentr a t i on 

o f  t e t r a c y c l ine i n  the cu l ture bro t h ,  Tc i s  the c oncentrat ion 

w i th i n  the c e l l s , R is r i bo s om e s  - mRNA - peptidy l tRNA , S i s  

AAtRNA , P i s  t h e  p e p t i d e  bond c o n c e n tr a t i o n , S '  a r e  AAtRNA pre-

cur s or s , S '  are AAtRNA d egradation produc t s , P t is the tot a l  

pro t e i n  c onc e ntra t i o n  w i t h i n  the c e l l s , q wa s 0 . 4  and oC wa s 2 0 . 
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i n  the cul ture . That i s ,  the rate o f  this synthes i s  step has 

been pre s umed to be proportional to P .  The proportionality 

constant uti l i zec , c 1 , i s  a pseudorate cons tant and contains 

in addi tion to the concentrations of  the precursors , the 

fraction of the total number of peptide bonds in the culture 

whi ch are part of the enzymes cataly z ing this  reaction , i . e .  

aminoacyl synthetas es . S ubs trate i s  also  lost , non-enzymatically , 

in  thi s  mode l by hydrolys i s ,  Eq . ( 17) . The second d i f ferentiating 

feature of thi s  mode l is that it  postulates that a fraction 

o f  the product peptide bonds are ribosomal precursor proteins 

and that these prote ins give rise to new ribosomes , Eq . ( 1 8 ) . 

The constant , c 2 , uti l i zed in thi s  step i s  also  a pseudo-rate 

constant which contains the concentration of  rRNA in the 

culture as we l l  as the fraction of total peptide bonds which 

are ribo s oma l peptides . However ,  the as sumption that c 1 
or c2 are cons tants , which has been employed , is  probably 

not valid . The concentration of tRNA or rRNA per ce l l  mis;ht 

be re lative ly cons tant , but the concentration of the se species 

in the culture is  undoubtedly not constant . They are probab ly 

increas ing at the s ame rate as the number of ce l l s  in the 

cul ture . Perh aps there are o f f setting change s in other subs trate 

or ribosomal precur sors and there fore , thi s  approach , because 

of i ts s imp l i c i ty , was tr ied f i rs t .  

The concentration o f  tota l prote in ( P
t

) present i n  the 

culture has been a s s umed to be the sum of the ribosoma l 

and non-r ibosomal prote in , Eq . ( 1 9 ) . For the se calculat ions 

it was a s s umed that ribosomes were 4 0 %  protein ( q )  and that 
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there are 2 0  peptide bonds in the average E .  coli protein pc) . 

The di f ferential equations , Eq . ( 2 0 )  through ( 2 6 ) , 

derived from thi s  mode l are g iven in Table VI . They are too 

complex to be solved by ordinary integration . They do 

however ,  lead to a s imple  express ion for the rate of total 

prote in synthe s i s : 

0/oe q )  [ P ]  Eq . ( 2 7 )  
d t 

Thi s  equation s tre s s e s  the important role played by oc and 

q in determining the nature of the P
t output in the model . 

The above mode l i s  based upon the concentration of the 

various reactants in the total culture . I f  one were to write 

a s imi lar mode l based upon the concentrations per ce ll one 

might be j us t i f ied in a s s uming a s teady-state in R . S 1  in 

which case : 

[ R · s I l [ S  I l Eq . ( 2 8 )  

+ [ S  I l 

where the s uperscript ( I ) i s  used to de signate concentrations 

per individual ce ll  rather than in the total culture and Rt 
is the concentration of a l l  forms of r ibosome s within the cel l .  

While  thi s  equation cannot b e  substituted into Eq . ( 2 7 ) , i t  

ind icates that the model might b e  tes ted under two general 

conditions , when s is  greater than Km and when S is  less than 

S ince ordinary integration methods are not use ful , the 

model ha s  been te s ted by analog s imulation . An unsealed 

an�log computer program is given in Fig . XXV . The mode l is 

too big ( too many integrations ) for the avai lable analog 



Tab le V I . - The Different ial Equ a t i on s  from a Mode l of  

Tetracyc l in e  Inhibit ion o f  P rote in Synthes is in  

Bacter ial  Cu lture s .  

d Tc 1 
d t 

d Tc 
d t 

d R · Tc 
d t 

d R 
d t 

d s 
d t 

d R •S 
d t 

d p 
d t 

k_ 1 (Tc ) 

k l (TC I �  
k_ 2 [R · Tc ) 

k 2 ( R ] (TC ) 

k_2 (R · TC ]  

k_ 3 [R · S ] 

k 3 [R ]  [ S ] 

k
1 

(Tc 1 ) 

k_ 1 (Tc ) - k2 (R ] (Tc ] + 

k_ 2 [R · TC )  

k2 [ R ]  [TC ] + k4 [R · S ] 

k 3 [R ] [ S ] + c 2 [P ] 

+ 
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Eq . ( 2 0 )  

Eq . ( 2 1) 

Eq . ( 2 2 )  

Eq . ( 2 3 )  

Eq . ( 24 )  

Eq . ( 2 5 ) 

Eq . ( 2 6 )  



F igure XXV . An Unsealed Ana log Computer Program for 

the Solution of the D i f f erential Equa tions of the 

Propos ed Mode l  of Tetracyc l i ne Inhibition of Protein  

Synthes i s  i n  Bac ter ial  Culture s .  
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computer1 3  and could only be part i a l ly tes ted with this 

ins trument . I n  add i tion , mos t  analog computers are only 

able to perform accurate calculations over about 2 log 

cycle s . The s e  d i f f iculties  were overcome by us ing the 

I nternational Bus iness  Machines 1 1 3 0  digital  computerl 4  

with associ ated Continuous Sys tems Mode ling Package . The 

actual program uti l i zed  i s  given , in F i g . XXVI , in ordinary 
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analog computer symbo l s . E i ghty analog e lements were avai lable 

for use wi th thi s  package and the output i s  accurate over 

several log cycle s . 

S ince the value s  for initial  concentrations o f  reactants 

and rate constants which were tried did not lead to outputs 

which agreed with the e xperimental data , the va lues will  

not  be  de s cribed in  detai l .  The value s tried are l i s ted in 

Table VI I . When Km was greater than S ,  no conditions could 

be found where the output was s imilar to experimental data , 

even when Tc ' and Tc were zero . Whi l e  i t  was pos s ible to 

obtain an exponential increase o f  total prote in synthe s i s , 

ba lanced growth was not maintained . That i s , the ratio 

of ( S ) to ( R) was not constant . These experiments were 

unfortunately performed before the need to uti l i z e  a value 

o f � larger than l was rea l i zed . Inspection o f  the results 

reveals  that thi s  would not have changed the results o f  the se 

experiments , however ,  other condi tions might be found where 

1 3 . TR 2 0 ,  Elec tron ic Assoc iates Inc . , Long Branch , 
N .  J .  

1 4 . We are grateful to Mrs . L i l l i an Kornhaber o f  the 
Department o f  B i ometry , Medical Col lege of  Virginia , for 
performing the se calculations . 



F igure XXVI . The Continuous Systems Modeling Package 

Prog ram Used in  the Search for Solutions to the 

D i f f erential Equations from the Proposed Mode l of 

Tetracyc l ine Inhibition of Prote in Synthe s i s  in 

Bac ter i a l  Cultur e s . 
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Table  VII . - C omp i l a t ion of  C ond i t i on s  Which Were Emp loyed to  Test the Mode l of 

Tetracyc l ine Inhib it ion of  Prot e in Synthe s is in Bacter i a l  C u lture s .  

Ident ity # so Ro Po 
t k3 k_ 3 k4 � cl c 2 k

7 

A 3 . 7 50 0 . 07 5  0 . 0 3 0 . 02 0 . 004 1 . 2  6 0 . 20 1 . 4 1 . 0  0 . 008 

B 3 .  7 50 0 . 07 5  0 . 0 3 0 . 02 0 . 004 1 . 2  6 0 . 2 0 1 . 4 1 . 1  0 . 008 

c 0 .  37 5 0 . 07 5  0 . 0 3 0 . 02 0 . 004 1 . 2  60 . 20 1 . 4 1 . 0  0 . 008 

D 0 . 37 5  0 . 07 5  0 . 0 3 0 . 10 0 . 02 0  6 . 0  60 . 20 7 . 0 5 . 0  0 . 04 0  

E 3 .  7 50 0 . 7 50 0 . 30 0 . 10 0 . 02 0  6 . 0  60 . 20 7 . 0 5 . 0  0 . 04 0  

F 0 . 37 5  0 . 07 5  0 . 0 3  1 . 00 0 . 02 0  6 . 0  6 . 0 2  7 . 0 5 . 0  0 . 040  

G 1 0 . 37 5  0 . 07 5  0 . 0 3 1 . 00 0 . 200 6 . 0  6 . 20 7 . 0 5 . 0 ,  0 .  04 0 
2 5 . 5 , 
3 6 . 0 , 
4 6 . 5  

H 1 0 . 37 5  0 . 07 5  0 . 0 3 1 . 00 0 . 200 6 . 0  6 . [20 10 . 0 ,  6 . 0  0 . 040 
2 1 5 . 0  

I 1 0 . 37 5  0 . 07 5  0 . 0 3 0 . 10 0 . 02 0  6 . 0  60 . 20 1 . 6 5 ,  0 . 5  0 . 040 
2 1 .  7 5 ,  
3 1 . 8 5 

J 1 0 . 37 5  0 . 07 5  0 . 0 3 100 . 00 20 . 000 6 . 0  0 . 26 2 . 0 ,  0 . 5  0 . 004 
2 2 . 4 ,  
3 2 .  5 ,  f-' 

w 
4 3 . 0  0 



Tab l e  V I I . - ( cont . )  

I . D .  # so Ro R • S0 P
o pg k 3 k_ 3 k4 � c l c 2 k7 

K 1 0 . 37 5  0 .  07 5 - - 0 . 0 3 0  100 . 0  2 0 . 0  6 . 0  0 . 26 12 . 0  2 . 5  0 . 02 0  

K 2 0 . 1 5 0  0 . 300 0 . 02 2 5  0 . 0 2 5  0 . 04 6  100 . 0  2 0 . 0  6 . 0  0 . 26 1 2 . 0  2 . 5  0 . 02 0  

L 1 0 . 1 50 0 . 0 30 0 . 02 2 5  0 . 02 5  0 . 04 6  100 . 0  2 0 . 0  6 . 0 0 . 26 1 2 . 0  2 . 6 ,  0 . 02 0  
2 2 o 7 1 
3 2 .  8 ,  
4 3 .  0 ,  
5 3 . 2 5 ,  
6 3 . 5  

M l 0 . 1 50 0 . 0 30 0 . 0 2 2 5  0 . 0 2 5  0 . 04 6  100 . 0  2 0 . 0  6 . 0  0 . 26 1 2 . 0  3 . 5  0 . 2 50 ,  
2 0 . 500 , 
3 1 .  000 , 
4 2 . 500 , 
5 5 . 000  

N 0 . 1 3 5  0 . 0 30 0 . 017 5 0 . 0 5 5  0 . 074 100 . 0  2 0 . 0  6 . 0  0 .  2 6  2 . 5  0 . 5  0 . 004 

0 0 . 4 0 5  0 . 090 0 . 0 5 2 5  0 . 0 5 5  0 . 1 1 2  100 . 0  20 . 0  6 . 0  0 . 2 6 2 . 5  0 . 5  0 . 004 

p 0 . 100 0 . 0 28  0 . 1 100 0 . 0 55  0 . 0 18 100 . 0  2 0 . 0  6 . 0  0 .  2 6  2 . 5  0 . 5  0 . 004 

Q 0 . 244 0 . 07 1  0 . 06 3 5  0 . 2 3 9  0 . 066 100 . 0  20 . 0  6 . 0  0 . 2 6 2 . 5  0 . 5  0 . 004 

a .  For exper iments A to Q inc lus ive va lues of kl , k_ 1 , k2 , k_2 , Tc ' ,  and Tc were not 

used . For experiment s  A t o  0 inc lus ive , was programmed as  1 .  
I-' 
w 
I-' 



Tab l e  V I I . - ( c on t . )  

I dent ity # Tc 0 k2 k_2 Tc ' O k
l 

k_ l 

Q 2 l 1000 . 00 2 0 0 . 000 

Q 3 l ,  2 ,  3 100 . 00 2 0 . 00 0  

Q 4 3 10 . 00 2 . 000 

Q 5 3 1 . 00 0 . 2 0 0  

Q 6 2 0  0 . 10 0 . 02 0  

Q 7 20 , 80 , 240 0 . 0 1 0 . 00 2  

Q 8 240 0 . 0 2 ,  0 . 00 5  0 . 00 2  

Q 9 240 0 . 0 1 0 . 00 1 ,  0 . 004 , 
0 . 0 10 ,  0 . 020 

Q 10 24 0 0 . 0 1 ,  0 . 10 

Q l l  - 0 . 10 0 . 020 50 , 100 , l 0 . 1  
150 , 200  

b .  For exper iment s  Q 2 t o  Q l l ,  inc l u s ive , the values of so , Ro , R · S0 , Po , 0 Pt , 
k 3 , k_ 3 , k4 , kffi , C 1 , C 2 , and k7 wh ich were u s ed were the s ame as  those g iven above 
under Ident ity # Q . 

f--' 
w 
N 



1 3 3  

thi s  would not be true . 

Conditions which allowed an exponential increase o f  

total prote in and where ( S )  and ( R )  increased exponential ly 

at the same rate were found when ( S )  was greater than K and m 

Tc ' and Tc were equal to zero . However ,  when Tc ' or Tc were 

di f ferent from zero , it was not poss ible to f ind conditions 

o f  Eq . ( 14 )  and/or Eq . ( 1 5 )  such that prote in synthes i s  was 

maintained at a reduced exponential rate . Rather the rate 

of prote in  synthe s i s  a lways decreased initial ly and then 

incre ased to the rate occurring in the ab sence of antibiot ic . 

I t  was not poss ible to f ind conditions which maintained the 

i n i t i a l  reduced rate of prote in synthe s i s  for time s as long 

as those  seen experimental ly . I n  addition , the rate constants 

evaluated from the initial  inhib ited protein synthe s i s , Tab le 

VI I ,  did not have a l inear dependence upon the total antibiotic 

concentration . 

Several variations o f  the mode l have been sugges ted 

by the present work . When ( S )  is less  than �m , value s  of 

rate cons tants were rej ected because the rate of prote in 

synthe s i s  was not f irst-order . The se non-exponential re sults 

might have been caused by the value of oC uti l i zed . These value s 

o f  rate constants might lead to exponential protein synthes i s  

and ( S )  and ( F )  might be produced in proportionate amounts i f  

a larger number were uti l i zed for oC 

When ( S )  i s  greater than Km , the mode l as presently 

s tated appe ars to be inherently balanced , i . e .  after e s tab l ish­

ment o f  equi l ibria  between antibiotic and ribosome s it re turns 
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to the rate o f  prote in  synthes i s  preva i l ing be fore addition 

o f  antibiotic . Perha lt  t 1 ps a erna e va ue s of rate cons tants 

can be found which would prolong the time of establ i shment of 

thi s  equi l ibria . The s tatement o f  the equi l ibria between 

Tc ' and Tc  is not exact as expre ssed in Eq . ( 1 4 )  . It has 

only been used in a very l imited manner .  Expre s s ion of thi s  

equi l ibria  in terms o f  the concentration of tetracycl ine in 

the broth ( Tc ' ) and the concentration within an individual 

c e l l  (Tci ), might be a de s i rable way of a l tering the present 

model  such that attainment o f  equi l ibria between antib iotic 

and ribosomes is not achieved . 

I f  the s e  changes are not sufficient , then the e f fect 

o f  variation of the pseudo-rate cons tants ,  c1 and C 2 , 

\vi th time and w i th tetracycline concentration should be 

cons i dered . The concentrations of e i ther tffiJA or rRNA in 

the cul ture whi ch are contained in these " cons tants " 

undoubtedly change during culture growth . I t  seems l ikely 

that tetracy c l ines  would indirectly af fect these " constants " 

by v irtue of the i r  secondary inhibi t ion of nucleic  acid 

synthe s i s . The present work has uti l i zed the se parameters 

as cons tants solely  because this was the s imp l e s t  and easiest 

procedure . The introduction of such a mod i f i cation would 

nece s s i tate a very large number o f  integrations and is pro-

bab l y  not practical .  I t  would require a great deal more 

knowledge about metabol i c  events within the inhibited bacterial  

c e l l s  than i s  presently known in a quantitative manner . I t  

should b e  rea l i zed that the present work as we l l  a s  others 



( 1 8 ,  3 0 , 3 3  and 3 4 )  has measured e f fects on synthe s i s  of 

und i f ferenti ated nuc leic  acids and not on the individual 

species  of ribonuc leic  acids . 

Another a l ternative to the present mode l would be to 

formulate a s imi lar mode l on the bas i s  of concentrations per 

ce l l  and then sum the se concentrations over the number o f  
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ce l l s  which exi s t  a t  any given time . I n  this type of a mode l 

i t  should be pos s ible to make certain s impl i fying assumptions :  

such a s  s teady- s tate concentrations o f  various intermediates , 

perhaps R · S ,  tRNA and rRNA . The summation o f  values over 

indices which change with time and inhibitor concentration 

doe s , however , present unusual problems in analog s imulation 

and has not been uti l i zed in  thi s  s tudy . 
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V .  Summary 

S ixteen of the 1 8  tetracycl ine s under inve stigation 

have been shown to inhibi t  c e l l  divis ion , prote in synthesis  

and nuc l e i c  ac id synthe s i s  in cultures of exponenti a l ly 

dividing E .  c o l i  W .  The number o f  cell s  i n  inhibited cultures 

has been obtained as a function of time of growth by viable 

and by total ce l l  count methods . Sma l l  diffe rences found between 

the total number of c e l l s  and the number of viable ce l l s  are 

not b e l i eved to be related to the e ffect of the tetracyclines 

in  these  culture s . Rather the se  d i fferences are felt  to be 

c aused by aggregation o f  viable ce l l s  during the assay for 

v i ab l e  c e l l s . A f i l te r  technique us ing detergent-extracted 

c e l lulose e s ter membranes was devel oped to isolate TCA-ethanol 

precipitates of the E .  col i ce l l s  as a function of the time 

o f  growth . The hot TCA soluble extract o f  these precipitate s 

was used to measure nucleic  ac ids by the orcinol reaction . 

The hot TCA insolub l e  material  remaining on the fi lter was 

tryps in-dige s ted and the protein  content e s t imated by the 

Fol in-Lowry a s s ay . 

At l ow concentrations o f  these  tetracycl ines , inhibition 

is produced after an initial  time l ag during which no e ffect 

on the te s ted culture parameters was seen . After thi s  l ag 

time , a l l  tes ted culture parameters could be de scribed by 

f i r s t  order k inetic expre s s ions , such as ; Eq . ( 1 ) , ( 4 ) and 

( 6 ) . Generation rate cons tants for te tracy c l ine- inhibi ted 

cultures ,  kv , kt , kp , kna 1 have been obtained from the 
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l e a s t  s quares f i t  o f  the exper imental data t o  these equations . 

I t  s eems mos t  l ike ly that generation rate constants obtained 

for a l l  culture parame ters are identical  for any given 

culture ; that i s , balanced growth is mainta ined . Thi s  result , 

a lthough not s tr i ctly in  agreement with previous reports i s  

exp lained b y  the f a c t  that previous exper iments were e i ther 

only s ingle-point  measurements or were not determined over 

a suffi c ient number of generations such that equi l ibrium 

inhibitionwwas not observed by these workers . 

Generation rate cons tants for a l l  cul ture parameters 

were found to be l inearly related to the concentration of 

the tetracyc l ine ana log  in  the culture , Equations ( 2 ) , ( 5 )  

and ( 7 ) . The proportional i ty constant s , k� , kf , k� , k�a ' o f  

the s e  re l ationships have been determined . When the data for 

a l l  culture parameters were treated together a s ingle 

proportional ity cons tant , k�vg ' was obtained . Thi s  value 

i s  a measure o f  the antibacte r i a l  potency o f  the tetracycl ine 

analog . These  potencies  are thought to be sui tab le for use 

in s tructure-activi ty relationships s ince they are kinetic 

cons tants determined by several  d i f ferent a s s ay me thods . 

The s imple  mode l o f  Garrett , Mi l ler  and Brown ( 2 4 3 )  

which attempts to expl a in the l inear re lationship o f  

generation rate constants t o  antibiotic  concentration has 

been pre sented . The i nadequacy o f  the kinetic exp l anation 

proposed by thi s  mode l has been noted and attempts have been 

made to derive a more satis fac tory mode l of te tracycl ine 

inhib i tion . A mode l based on the b iochemical mode o f  action 
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o f  the tetracy c l ines was proposed . T h i s  model was investigated 

to see i f  i t  might l e ad directly to the l inear re lationship 

o f  generation rate constants to antibiotic concentration . 

I t  was fe l t  that thi s  might result  from the inclusion of 

reactions leading to the growth o f  " subs trate " and " enzyme " 

concentrations in  add i tion to the usual enzyme-kinetic 

reactions . Cond i t i on s  such that the mode l generated output 

cons i s tent with the experimenta l l y  observed type of inhibition 

were not found . O f  course , a l l  condi tions were not tes ted . 

Several mod if i cations o f  the mode l have been sugges ted such 

that the experimental  results  might be exp la ined by thi s  

type o f  mode l but because o f  the l arge number o f  differential 

equations which need to be s olved the se have not been te sted . 

The time o f  onset o f  inhibi tion was approximately 3 0  

minutes ( l  l/2  generation s )  in  these culture s . Thi s  time 

and the t ime o f  recovery from inhibition upon di lution into 

antibiotic- free med i a  was observed to be shorter for the 

inhibi tion of prote i n  s ynthe s i s  than for the inhibition of 

cell divi s i on or nucl e i c  acid synthe s i s . This difference in 

time o f  onset o f  inhibi tion was espe c i a l ly pronounced when 

the broth was changed such that the rate of growth was 

reduced . Under the se condi t ions the time of onset o f  

inhibi tion o f  prote in  synthe s i s  d i d  not vary whi le the time 

o f  onset o f  inhibition o f  c e l l  divis ion and nuc leic  acid 

synthes i s  were increased . An increase in broth pH vailiue , 

achieved by changing total phosphate as we l l  as  phosphate 



ion ration , decreased the time of onset of inhibition of 

c e l l  mas s  and c e l l  div i s ion . These  exper iments can be 

mos t  ea s i ly expla ined if  one assumes that inhibition of 

nuc leic  ac id synthes i s  and inhibi tion of cell  divis ion are 

the result of a pr ior inhibition of prote�n synthes i s . In 

addi tion there i s  a f inite lag time , which is  broth pH 

sensitive , before prote in  synthe s i s  is inhibited . 

1 3 9  

Thi s interpretation i s  cons i s tent with , and these 

resu l t s  are further evidence tha t ,  the pr imary mode of ac tion 

of tetracyc lines  is to cause an inhibition of protein  synthes i s . 

S inc e a l l  tetracyc l ine s behaved qua l i tatively the same it  

seems mo st l ikely that they are  a l l  acting by  the same 

mechani sm .  However , this cannot be said with certa inty 

s ince the d i fferences  between time of onset of inhibi tion 

of protein synthes i s  and the times of onset of inhibition of 

c e l l  d iv i s ion and nucleic  acid synthe s i s  were only measured 

for culture s  inhibited by oxytetracyc line . Indeed it should 

be emphas i zed that these  conc lus ions with regard to the mode 

of act ion of  oxytetracycl i ne are based on a s ing le exper iment ,  

F ig . XXI . 
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