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CHAPTER 1I.

INTRODUCTION

1.1 Thesis objectives,

The objectives of this thesis are

1. to provide a comprehensive guide to using Pocock's
group sequential method for clinical trials and

2. to show by computer simulations that the group
sequential method is appropriate when wusing the 1logistic
regression model.

In section 1.2, <clinical trials are defined with an
emphasis on Phase III clinical trials. The primary intent of
sections 1.2 and 1.3 1is to describe <clinical trial
characteristics which suggest that interim analyses are
desirable. 1In section 1.4, it is shown that interim analyses
should not <consist of performing the wusual significance
tests. Chapter 1, then, describes the basis for the
development of the group sequential method.

Chapter 2 describes the group sequential method in
detail '(objective #1) and chapter 3 includes the results of

the Monte Carlo study (objective #2).



1.2 Clinical trials.

In order for a new treatment to gain acceptance by
clinicians, its safety and efficacy must be proven. Clinical
trials serve this purpose. The new treatment is
systematically evaluated in four phases. The initial
investigation, -a Phase I study, provides data collected by
observing the effect of the treatment on healthy volunteers
or on patients who are not candidates for conventional
therapy. The objective of a Phase I study is generally to
assess the safety and tolerability of the treatment. For
example, in studying a new drug, a Phase I study may be used
to investigate acceptable dose levels. Additionally,
pharmacological studies to determine absorption and
bioavailability of the drug should be implemented (Lesser,
1983). The sample size of a Phase I study is small in order
to reduce human exposure to a new treatment.

In Phase II studies, subjects are patients with
symptoms of the disease for which the treatment is
intended. The purpose of these studies is to collect further
data on treatment efficacy and safety in diseased subjects
(Neiss and Boyd, 1984). Sufficient data should be collected
to determine if the treatment has a therapeutic effect which
warrants further study.

Once the safety of the treatment has been determined,
a Phase III study is initiated to compare the effectiveness

of the new treatment to a control treatment (eg. placebo or



well-accepted treatment). Treatment comparisons may be of the
following types:

l. a new drug or therapy vs. a standard drug or

therapy;

2. a surgical treatment vs. a medical treatment;

3. two or more accepted treatments;

4, a drug or therapy vs. placebo or no treatment and

5. different forms of the same treatment.
If the new treatment is found to be more beneficial than the
control treatment, a Phase IV study would be conducted to
measure the effects of chronic usage and to determine new
uses for the treatment (Smith, 1976). -

The largest body of the scientific literature on clinic-

al trials focuses on Phase III studies; we will do likewise
in this paper. A Phase 1III study can be defined as a
randomized, controlled clinical trial. It consists of four
essential steps; patient selection, randomization to treat-
ment, treatment period, and statistical analysis (Juhl,
1982). Trial entry criteria are specified and only patients
satisfying these criteria are selected. If the criteria are
comprehensive, the treatment differences may be small due to
heterogeneity in the stﬁdy population but results may be more
widely applicable. If criteria are restrictive, the contrary
may be true; that is, a statistical difference is more likely
to be found due to homogeneity in the study population, but

the results may not be broadly generalized to the population



at large. Therefore, when considering the patient population
to be studied, one should consider the magnitude of the
treatment differences expected as well as limitations on
generalizations of results. After a patient is selected for a
clinical trial, randomization is performed to remove
systematic bias in the allocation of patients to treatment
groups and, based on sampling theory, to validate statistical
tests and estimation procedures. Pocock (1979) describes
randomization schemes appropriate for clinical trials. It is
essential that one consider the experimental design of the
trial and the prognostic variables to be controlled when
choosing a randomization scheme. Once randomized to
treatment, the treatment period begins during which the
responses of interest are observed. Armitage (1960)
classifies response variables into four types; those reported
by the patient, those observed by clinical examiners or by
use of some technical apparatus, those involving a change in
medical care and life or death. Response data is collected
and a statistical analysis is conducted to determine if the
treatments differ.

One feature that distinguishes clinical trials from
other experimental designs is that subjects do not ordinarily
enter the trial all at once. Typically, patients enter
sequentially and, consequently, the length of patient entry
may be <considerable, particularly if the incidence of the

disease being studied is low or if the trial is limited to a



single medical center. Responses are then observed serially
and investigators may be tempted to do an interim analysis on

the data as it accumulates.

1.3 Reasons for doing interim analyses

Pocock (198l1) has suggested five possible reasons for
doing interim analyses on accumulating data:
l. to insure that the trial protocol 1is being
followed;
2. to monitor for adverse effects to treatment;
3. to check for problems in data collection;
4. to maintain enthusiasm for the trial and
5. to look for a significant difference between
treatments which may warrant stopping the trial.
Proper administration of the trial should solve problems
relating to reasons #1 and #3. One would hope that Phase I
and Phase II studies would identify the toxic effects of the
treatment and therefore eliminate reason #2. However, since
the patient entry criteria and sample size in a Phase 1III
study may differ markedly from Phase I and Phase II studies
of the treatment, additional toxic effects may be observed.
For example, the patient population in a Phase II study may
be more heterogenous, and therefore, toxic effects may show
up in subgroups of the population which were not represented
in the earlier studies. Reason #2 then may be sufficient
reason for doing an interim analysis with the intent of

discontinuing treatment or changing the treatment protocol to



remove the toxic effects. Reason #4 would be particularly
relevant for long-term trials or multi-center trials where
one might be tempted to satisfy the curiousity of
investigators by providing information on the progress of the
trial. Supplying data on treatment comparisons, however,
would most certainly bias patient selection which in turn
lends uncertainty to the wvalidity of the statistical
analysis. Additionally, knowledge of unexpected results may
diminish enthusiasm for the trial. However, information
unrelated to response variables, such as the number of
patients entered in specified strata, may be provided which
may placate trial participants without sacrificing blindness.

The fifth reason is valid from an ethical as well as an
economical viewpoint, the former being of greater importance
in a clinical trial. Ethically, it is desirable to stop the
use of a less beneficial treatment in favor of a superior
treatment so as to decrease the number of patients exposed to
the inferior treatment. Moreover, stopping a trial early
decreases the overall length of the study and the sample
size; these two factors should be economically attractive to
supporters of clinical trials.

The reason for doing an interim analysis should be
clear to the trial organizers so that a stopping rule may be
formulated. A stopping rule is some «criteria which when
satisfied dictates stopping the clinical trial. For example,

achievement of a statistically significant difference between



treatments appears to be the correct criterion for stopping a
trial. Yet, in practice, due to the complexity of clinical
trials, other factors besides statistical significance must
be considered. Secondary response variables may be an
important factor, and therefore, it may be decided to
continue the trial in order to collect adequate data for
measuring the effects of these additional variables. Hence,
the decision to stop would not be made on the basis of one
response variable.

Another factor to consider would be the effectiveness of
the treatments on subgroups of the patients in the study. An
interesting example of a clinical trial stopped early due to
treatment differences in subgroups is a study done by the
Coronary Drug Project Group (1972) to measure the effects of
dextrothyroxine on the mortality rate of coronary patients.
The dextrothyroxine-placebo difference in overall mortality
was not significant, but dextrothyroxine generally manifested
significantly higher mortality rates for subgroups of the
data. In remaining subgroups, favorable (but not
statistically significant) results were observed early in the
study but the trend was towards less favorable results as_the
study progressed. The sample size for these subgroups was
considered to be too small to warrent continuing the trial.
Therefore, the study was discontinued. Additional factors may
be considered in formulating a stopping rule depending on the

nature of the clinical trial. Whatever criteria are used,



statistical results are an integral part of the stopping rule
and should serve as an objective guide for making decisions
(Pocock, 1981).

The complexity of formulating a stopping rule should
not deter <clinical trial organizers from outlining, a
priori, the specific criteria that warrant stopping the
trial. However, as Pocock (1978) and McPherson (1974) point
out, interim analyses are commonly done with no well defined
stopping rules. A survey of 40 clinical trials (Pocock, 1978)
revealed that 33 assessed interim results. All of these
trials had been in progress at least two years at the time of
the survey. In this two year period, 23 trial investigators
had 1looked at their data at least 4 times, implying that
interim analyses are done frequently. Yet 22 of the 33
investigators had devised no formal or informal stopping
rules. This may suggest that the majority of investigators
were not looking at their data with the intent of stopping
the trial even if one treatment demonstrated superiority.
Their reason for doing an interim analysis, therefore, is of
questionable validity. Six trial investigators used repeated
significance testing as their stopping rule. As stated above,
a statistically significant treatment difference should not
constitute a stopping rule but is important in formulating
the stopping rule. Furthermore, there are problems with using
the results of repeated significance tests. This will be

discussed in the following section.



1.4 The problem with repeated signifi —

Repeated significance testing is defined as the
periodic performance of a statistical analysis on
accumulating data to determine if a significant difference
between treatments exists. Intuitively one might think that
as the number of significance tests performed increases, one
would expect to find a significant difference purely by
chance. 1In fact, if one performs enough significance tests,
any level of nominal significance can be achieved eventually.

This phenomenon is referred to as "sampling to a
foregone conclusion" (Cornfield, 1966). Mathematically it can
be shown to be a consequence of the law of the iterated
logarithm (Anscombe, 1954).

For example , given N independent and normally

distributed random variables, X ,X ,...,X with unit variance

1 2 N
and mean p, the critical region for testing H :u=0 vs. H :
o a
p#0 is
N
15> x 1 2Nz ;
i=l i 1-072
where =z a is the upper 1-@/2 critical point for the
1-Y%2

standard normal distribution. The level of significance ( )
for this fixed sample size test is equal to

N
PLIS. x| 2Nz . P01
i=1l i 1-Y%2

If this test 1is done repeatedly, the 1level of

significance increases to a limit of one by the law of the
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iterated logarithm which states for any K (Rao, 1973) that

p[|f$;x'| > K Yn infinitely often] = 1

1=1 i

Since K can be set to any zl-a/Z' any level of significance
may be reached with probability one if testing 1is done
extensively.

Armitage, McPherson and Rowe (1969) have computed the
exact probabilities of finding a significant difference when
no difference exists using a method of numerical integration.

Given that X ,X ,...,X are random variables independently

1 2 N
distributed N(p,1l), the test statistic for testing H :pu=0 vs.
N o
H :p#0 is S = 1> X |. The density function of S is defined
a N i=1l i N
recursively by Yy
N-1 -1 2
f (s) = f (u) (2TT) expl-(s -u) /2] du,
N N N-1 N
e -y &s gy
N-1 N N N
0 , otherwise
where y = 2z YN with alpha chosen as for a fixed sample

N 1- dz2
size test. The probability of finding a significant

difference when none exists at or before N observations is P
N
where Yy
N-1
P =1 - £ (u) du.
N N
'
N
The results of these computations are shown in Table

1, which is an abridged version of Table 2 from Armitage et
al. (1969). The probabilites in Table 1 clearly support the

previously stated results of the 1law of the iterated
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Table 1. Probability of detecting a significant difference
using repeated tests (N) at an (@ significance level when the
null hypothesis 1is true and when sampling from a normal

distribution with known variance.

a .05 .02 .01

z 1.960 2.336 2.576
N

1 0.050 0.020 0.010
2 0.083 0.035 0.018
3 0.107 0.046 0.024
4 0.126 0.055 0.029
5 0.142 0.062 0.033
10 0.193 0.088 0.047
25 0.266 0.126 0.070
50 0.320 0.156 0.088
100 0.374 0.187 0.107
500 0.487 0.259 0.152

1000 0.530 0.288 0.172
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logarithm, which is that repeated significance testing
inflates the alpha level and increases the chance of making
a type I error. For example, if a statistical test is
repeated four times (which 1is not uncommon 1in clinical
trials) at a level of significance of .05, the chance of
making a type I error would be about 2.5 times that level
(0.126). It is interesting to note that 10 tests repeated at
a nominal significance 1level of .01 maintains a true
significance level of approximately .05.

Probabilities for the binomial case were lower than the
normal case for equivalent N, which Armitage et al. (1969)
explain as being due to the conservativeness of the binomial
test. For the exponential case, probabilities were very close
to those for the normal case differing only in the third
decimal place.

In a subsequent paper, McPherson and Armitage
(1971) looked at the effect of repeated testing when the null
hypothesis is not true. The sampling distribution 1is as
described for the null case. The probabilities in Table 2
refer to the probability of crossing an upper boundary which
is equivalent to stopping when S 2 y . The results show that
repeated testing increases poer, Nwhich is what we might
expect due to the relationship between the probability of a
type I error (d) and the probability of a type II error (B).

That is, as d increases, B decreases and therefore the power
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Table 2. Probability of detecting a significant difference

using repeated tests (N) at an d significance level when the

null hypothesis is not true and when sampling from a normal
distribution with unit variance.

(upper boundary only)

N
a B 10 25 50
.05 0 0.097 0.132 0.160

0.5 0.497 0.815 0.962
1.0 0.925 0.998 0.998
1.5 0.998 1.000 1.000
.02 0 0.044 0.063 0.078
0.5 0.341 0.695 0.933
1.0 0.854 0.998 1.000
1.5 0.995 1.000 1.000
.01 0 0.024 0.035 0.044
0.5 0.247 0.594 0.893
1.0 0.784 0.995 1.000

1.5 0.990 1.000 1.000
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(1-B) increases. So, even though the power of detecting a
difference 1is increased by repeated testing, it is done at
the expense of increasing the probability of incurring a type
I error.

Decreasing the risk of making a type I error is
especially important in clinical trials. For example, when
comparing a new treatment to a standard treatment, falsely
rejecting H would 1lead to the acceptance of an' inferior
treatment byothe medical community and to the rejection of a
treatment once considered acceptable. However, falsely
accepting H would result in no change in acceptable medical
practice. Ogviously, the former error is less desirable. A
statistical method for maintaining alpha at an acceptable
level is needed.

Table 1 and Table 2 <clearly demonstrate that p-values
resulting from repeated classical significance test cannot be
interpreted in the usual manner. Instead, a stopping rule
must be formulated which considers the number of interim
analyses to be performed and the desired overall significance

level. The design of the clinical trial, therefore, will be

determined by the stopping rule (Armitage, 1960).



CHAPTER II.

GROUP SEQUENTIAL METHOD

2.1 Introduction,

Whereas interim analyses are justified, particularly
for ethical reasons, a statistical method which allows
repeated testing while maintaining an acceptable overall
significance level is desirable.

In the 1940's, Wald (1947) developed the sequential
test whose characteristic feature is that the decision to
continue testing is based on the outcome of observations as
they are made. That is, after each observation one of the
following three decisions is made:

1. accept H ;
o
2. reject H or
3. continueothe trial.
The sample size, therefore, is not predetermined and, on the
average, is substantially smaller than the sample size for a
fixed sample size design.

Armitage (1960) further developed the work of Wald to

apply sequential methods to clinical trials. This methodology

15



requires that patients enter sequentially, in pairs, and are

randomly allocated to treatment. The response time should be
short relative to the expected length of patient accrual.
Consequently, as the response time increases, the maximum
number of pairs available for analysis decreases while the
number of pairs in the trial increases. Therefore, the
objective of decreasing the number of patients exposed to an
inferior treatment would not be served when the time to
response is prolonged. '

Analysis 1is done after every pair of observations,
thereby requiring a constant vigil over the accumulating
data. This 1last requirement is necessary so that immediate
action may be taken when a sequential boundary is crossed,
where crossing a boundary is equivalent to rejecting or
accepting the null hypothesis.

There are some obvious problems associated with
applying the <classical (also referred to as fully or
continuous) sequential method to <clinical trials. In
practice, it is difficult to continually keep data in the
proper form for analysis. This is particularly difficult in a
multicenter trial where administration of the trial is
already complicated by the needlfor extensive data monitoring
for quality assurance (Bendush et al., 1984). An additional
problem is that patients usually do not enter in pairs and,
if they did, it is likely that they would not be well-matched

on important prognostic variables (Friedman et al., 1981).
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This problem has been addressed by the development of
sequential tests which do not require that patients enter in
pairs {(Hoel et al, 1976). Also, patient responses are often
prolonged. Armitage (1960) states that a sequential procedure
should not be considered if the time to response is more than
half the maximum expected 1length of patient entry. A
classical sequential design, then, would be inappropriate in
studies of treatments for chronic diseases (e.g. cancer).
Since the sample size is dependent on the outcomes of the
observations, even the most generous trial sponsor may feel
uneasy about the indeterminant length of the trial. Another
major disadvantage of the classical sequential method is that
it is not well-received by <clinicians whose depth of
statistical knowledge does not extend beyond the use and
interpretation of the wusual significance tests (Pocock,
1981) .

An approach designed to address these problems
associated with the classical sequential method is called the
group sequential method. 1Instead of analyzing the data after
each pair of patients, significance tests are performed on
data accumulating from groups of patients (2n, n patients on
each treatment). The maximum number of tests (N) to be done
is predetermined, therefore the maximum length of the trial
is known. An overall significance level (d) is maintained by
using a more stringent nominal significance level (A') for

each of the repeated significance tests.
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2.2 Group sequential design.

2.2.1 General description.
For a group sequential design, patients are expected
to enter sequentially and be randomly allocated , wusing a
permuted block design, to one of two treatments (A or B),
such that after 2n patients have entered the trial, there are
n patients on each treatment (Pocock, 1977). The response

variable is assumed to be normally distributed with mean, n

2 A

and p , and common variance, ¢ . For testing the two-sided
B
hypothesis; H :p -p =0 vs. H :n -p =§ , the test statistic
o A B a A B
at the i th test is (Pocock,1977)
i
D =% (X -X )/ i, i=1,...,N
_ i j=1 Aj Bj 2
D is normally distributed with mean p and variance C
i D D
where
i — -—
u =EID] =1/i E[>_(X -X )]
D i j=1 Aj Bj
= 1/i (i*p - i*p )
A B
=R - A
A B
and '
2 - 1 - —
¢ =varlD ] = var [1/i Zl(x - X )l
D i 2 23= Aj 2Bj

1/i [i(6 /n) + i (& /n)]

2
2 ¢ /in.
The «critical region of the likelihood ratio test may be
expressed as
2

D/l20 /(in)] > 2z , i =1,...,N.
i c
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2
Letting 2z = D/ (26 /(in)i, the test may be expressed as
i i
l'z2 | 2z, 1i=1,...,N,
) i c
where z is the «critical value corresponding to the
c

appropriate significance level (d'). When the above

relationship 1is true, reject H , claiming a treatment
o
difference, and consider stopping the clinical trial. When

the relationship is false, do not reject H and continue the
o
trial. If 2 < z at the Nth test, the trial terminates and a

N C
claim of no treatment difference is made.

2.2.2 Level of significance.

From section 1.4, it follows that a nominal level of
significance (A') must be computed so that, at the Nth test,
the predetermined overall 1level of significance (@ is
maintained. To do so, the maximum number of tests (N) and the
desired overall level of significance must be specified. By
inverse interpolation, z and ' may be obtained from Table 1.

c

For example, for N = 10, the entries of interest (to 5

decimal places) from Table 1 are

a .05 .02 .01
z 1.9600 2.3263 2.5758
C
0.19336 0.08776 0.04738

To maintain an d level of .05 , we must test at an @' 1level

between .01 and .02.
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To find A', do the following interpolation:

.08776 - .04738 .08776 - .05
i ’
2.3263 - 2.5758 2.3263 - z
c
which yields that z = 2.5596 which is the standard
c
normal deviate corresponding to ' = .0106. Results are given

in Table 3 (Pocock, 1977, Table 1) for N in the range 2 to 20
and a= .05or .0l. Note that as the number of interim
analyses increases, the nominal significance level (d')
decreases.

For example, suppose an investigator decides to
perform a maximum of 5 statistical tests with an overall d
level of .05. The appropriate z is 2.413 corresponding to Q'
of .0158. Then, H 1is rejecteg at the ith test, for i =
lyceayd, if Z. > 2?413. Each test is repeated at the same
nominal signifiéance level.

The nominal significance level is dependent on the
maximum number of tests (N) and the overall significance
level, not on the number of patients in each group (2n). The
latter follows from section 1.4, where it was demonstrated
that the probability of finding a significant difference when
none exists (P ) depends on the number of observations (N).
Likewise, for Ehe group sequential method, the overall level

of significance achieved depends on the number of tests (N)

performed at an d' level. To control d, therefore, the choice

of A' depends on N.
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Table 3. Nominal significance level (d') and corresponding

normal deviate z required when performing repeated two-sided
c

significance tests (N).

Overall Significance Level

a = 0.05 a-= 0.01

N a' z a' z

c c
2 0.0294 2.178 0.0056 2.772
3 0.0221 2.289 0.0041 2.873
4 0.0182 2.361 0.0033 2.939
5 0.0158 2.413 0.0028 2.986
6 0.0142 2.453 0.0025 3.023
7 0.0130 2.485 0.0023 3.053
8 0.0120 2.512 0.0021 3.078
9 0.0112 2.535 0.0019 3.099
10 0.0106 2.555 0.0018 3.117
11 0.0101 2.572 0.0017 3.133
12 0.0097 2.585 0.0016 3.147
15 0.0086 2.626 0.0015 3.182

20 0.0075 2.672 0.0013 3.224
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When repeatedly testing at a constant ' level, it is
possible that the results of the Nthtest show no significant
difference at the ' level but the final p-value is less than
ad. Some statisticians (O'Brien and Fleming, 1979, Canner,
1976 and Peto,1981) have suggested varying the significance
level so that more stringent levels are used for the initial
tests while the significance level for the Nth test would be
approximately equal to d. For example, O'Brien and Fleming
(1979) found the following nominal significance levels
appropriate for N-group design with = .05 (d' approximated

from O'Brien and Fleming, 1979, Table 1);

N 5 4 3
a' .0001 .0004 .0009
1
a' .001 .004 .017
2
a' -008 .020 .048
3
a' .023 .043
4
' .041
as
Pocock (1981) has shown that, when H 1is true and

a
power 1is greater than .80, these designs require a larger

sample size than a design with constant nominal significance
level. For example, the 5-group varying significance level
design shown above, with 1-8=.90, would require approximately
10% more patients than the 5-group constant significance
level design. However, if all five tests are performed (i.e.
Z <z, fori=1,...,4), the sample size for the former

i c
design will be 15% less than the sample size for the latter
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design. Compared to a fixed sample size design, the sample
size for the varying significance level design is 3% larger.
In fact, O'Brien and Fleming (1979) have shown that their
method 1is "nearly identical" to a fixed sample size method,
unless the observed treatment difference is very large, 1in
which case early termination is possible. So for small
treatment differences, there appears to be little advantage
to these designs over a fixed sample size design.
Nevertheless, if the treatment difference is small, O'Brien
and Fleming's method may show significant results at the Nth
test while Pocock's method may not. An example given by
O'Brien and Fleming (1979) illustrates this point. However,
it should be noted, that the example is somewhat inadequate
for comparing the two methods. Pocock's method requires group
sizes larger than 10 for a binary response and approximately
equal numbers of patients on each treatment arm to maintain
prespecified @ and B levels (Pocock, 1977). In the example,
though, the group size for one treatment arm was 7 and the
group size for the other treatment arm was 14. If the
treatment arms were of equivalent size (i.e. both equal to
14), Pocock's method would also terminate showing significant
results. So, O'Brien and Fleming's method may be useful for
finding important differences at the Nt test when sample
size is small and power inadequate for use of Pocock's method

(Pocock, 1982).

Furthermore, Pocock (1982) has shown, using a
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numerical integration minimization procedure, that an optimum
design  (i.e. a design with monotonically increasing
significance levels and minimum sample size) is not
considerably different from a constant significance 1level
design with reasonable power (1-8= .9 or .95). For example,
a 5-group varying significance level design, with d=.05 and
1-B=.95, G;= .0165 while for the constant level design Q@' =
.0158. Subsequently, the sample size for the two designs are
nearly equivalent. So if power is adequate for detecting an
important difference, there appears to be no advantage to

varying the significance levels.

2.2.3 Power and sample size.

During the design phase of a clinical trial, it is
essential to do power calculations to ascertain the required
sample size for detecting the smallest important clinical
difference (Weiss et al., 1983, Armitage,1979, Freiman et al.
1978) . Sample size requirements from power calculations
should be compared to the expected rate of patient accrual
and the length of the trial to determine the feasibility of
the trial. If an investigator finds that the sample size
needed for detecting a prespecified treatment difference
cannot be achieved, the trial should be either abandoned or
expanded into a multicenter trial.

A survey of the published reports of 71 "negative"

randomized controlled clinical trials (i.e. trials where the
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null hypothesis of no treatment difference was not rejected)
showed that the majority of the trials lacked sufficient
power for detecting an important clinical difference (Freiman
et al., 1978). An jmportant clinical difference (& ) was
defined as a 25% or 50% decrease in response rate from the
control response rate (binomial response). For § = 25%, 80%
of the trials had power less than .50 and only 7% had power
greater than or equal to .80. For §= 50%, the results were
somewhat better: 44% of the triéls had power less than .50
and 31% had power greater than or equal to .80. It is
impossible to determine if power was inadequate because
sample size requirements were not fulfilled since, as Freiman
et al. (1978) point out, few details of prior planning are
provided in published reports. Interestingly, only 1 trial
report stated the  and B levels that were considered before
the start of the trial and 14 mentioned that a larger sample
size was needed.

In a survey (Pocock, 1978), already referred to in
section 1.3, 34 of the 40 trial investigators revealed that
the required sample size was specified before beginning the
trial. Only 18 investigators used power calculations, 8 of
which based their calculations on a difference of 100% (not
the smallest importdnt difference). However, the patient
accrual rates were not adequate for achieving the required
sample sizes resulting in excessively protracted trials or

inadequate power. Pocock (1978) stated that "until all trial



26

organizers obtain a truly realistic assessment of the
potential patient accrual ... the problem of poor accrual
will continue to ruin a large proportion of clinical trials."
Therefore, the importance of considering the results of power
calculations in light of the practical aspects of the trial
(i.e. the expected number of patients and length of the
trial) should not be underestimated by trial investigators.
To do power calculations, it is necessary to specif&
an overall level of significance (d),- the smallest clinically

important treatment difference (8), and the probability (1-8)

of detecting §. For a fixed sample size test (N=1), the

2
sample size (2n) is computed as follows assuming & is known:
2 2
2n = 2 * (z + 2z ) * 20 /
a B 5
for H : p - =8&. Similarly, for a group sequential
a A B
design, the size of the groups (2n) is dependent on the

2 2
number of interim analyses (N),d, B and 26 / . From section

l.4, we saw that repeated testing increased power as a
increased. However, if the nominal significance level is made
more stringent with more testing, the power decreases
(McPherson, 1982). 1It is necessary to find 2n such that the
power of the trial is maintained. Pocock (1977 and 1981) uses
numerical integration methods to find the required values of
2n. These values are given in Table 4 for d = .05 or .01, B=

.75, .90 or .95 and N from 1 to 10.
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Table 4, Average number of two-sided tests (M) until trial

termination and number of patients per group (2n) required

under Ha: pA—u = &, using various group sequential designs
B

2
for responses normally distributed with known variance & .

a-=0.05

N M 2n * M 2n * M 2n *

1 1 27.75 1 42.04 1 51.98
2 1.58 15.48 1.41 23.12 1.31 28.39
3 2.19 10.85 1.88 16.11 1.71 19.73
4 2.80 8.40 2.36 12.43 2.12 15.19
5 3.41 6.87 2.84 10.14 2.53 12.38
6 4.02 5.83 3.32 8.57 2.94 10.46
7 4.63 5.06 3.80 7.44 3.35 9.07
8 5.24 4.48 4.28 6.57 3.77 8.01
9 5.85 4.02 4.76 5.90 4.18 7.17
10 6.46 3.65 5.24 5.35 4.59 6.50

a= 0.01
- - I—&: !!IQ” - =

N M 2n * M 2n * M 2n *

1 1 42.25 1 59.54 1 71.27
2 1.64 23.14 1.47 32.24 1.37 38.42
3 2.30 16.10 2.00 22.32 1.83 26.52
4 2.96 - 12.39 2.53 17.14 2.29 20.34
5 3.62 10.09 3.06 13.93 2.75 16.52
6 4.27 8.53 3.59 11.75. 3.22 13.93
7 4.93 7.39 4.12 10.18 3.68 12.04
8 5.58 6.52 4.65 8.98 4.14 10.63
9 6.23 5.85 5.18 8.03 4.61 9.50
10 6.89 5.29 5.71 7.27 5.07 8.60

2 2
* Multipy each entry by ¢ /6 .
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From Table 4, +the maximum sample size may be
determined by 2n * N; this is the number of patients needed
if one fails to reject H by the N-1 test. For example, for N
=5, d= .05 and 1-8 = ?90, the additional number of patient
reSPogseg required prior to eaqh test would be approximately
10 6/6 . 5so at thg f;rst test, the sample size should be
approximately 10 o /& and at the second test, the sample
size should be approximately 20 c:'2 / 82. Until trial
termination, continue accumulating data so at the fifth test
the maximum sample size of 50 6’2/62 is reached.

An operating characteristic curve is wuseful for
measuring the feasibility of a trial when an investigator is
uncertain about the expected treatment difference but is
fairly certain of the expected maximum sample size. In fact,
Freiman et al. (1978) recommend constructing operating
characteristic curves before any trial is undertaken.

Table 5 (McPherson, 1982, Table I) gives operating
characteristics for a fixed sample size design and for 5
group sequential designs. The table may be generalized for
sample sizes larger than 80 by computing K where K = 2nN/80.
Each treatment difference (scaled by ¥26) should be divided
by YK so that the powers in the table still hold. For a given
sample size, power may be determined for a range of treatment

differences and for a range of N. As expected, power

increasés with decreasing N and with larger treatment

differences.
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Table 5. Operating characteristics of 6 group sequential
designs with overall 1level of significance of 0.05 and

maximum sample size of 80.

N 1 2 4 5 8 10
2n 80 40 20 16 10 8
a 0.050 0.030 0.018 0.016 0.012 0.011

8/ {24) 1-B
0.1 0.09 0.08 0.08 0.07 0.07 0.07
0.2 0.24 0.22 0.19 0.19 0.18 0.17
0.3 0.48 0.43 0.39 0.38 0.36 0.35
0.4 0.72 0.67 0.62 0.61 0.60 0.58
0.5 0.89 0.86 0.82 0.81 0.80 0.79
0.6 0.97 0.95 0.94 0.93 0.93 0.92
0.8 1.00 1.00 1.00 1.00 1.00 1.00

1.0 1.00 1.00 1.00 1.00 1.00 1.00
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Since the most important feature of a group sequential
design 1is the extent to which it enables a trial to stop
early (Pocock, 1981), the average sample size is of greater
interest than the maximum sample size. The average sample
size 1is equal to the product of the average numbgr of tests
required when H 1is true and the group size (2n). Recall

a
that, under H , the sample size is dependent on the

observations obzerved. Therefore, the number of tests
performed (M) is a random variable. Given the distribution of
M, the E[M] may be computed. The E[M] is the expected number
of tests required under H (M). In other words, the M is the
number of significance tzsts the investigator will probably
need to do in order to find a significant difference between
treatments. Values for M are given in Table 4 (Pocock, 1978).
The average number of patients required for a trial is equal
to 2nM. For example, for a 5-group design with d=.01 and 1-8
=.95, the group size should be 16.52*0‘2/62 and M would be
2.75. So, on the average, a significant result may be
expected at the third test.

As N increases, 2nM decreases for any given power and
level of significance. Therefore, it seems that frequent
testing results in exposing fewer patients to an inferior

treatment. This point will be explained further in the next

section.
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2.2.4 Choice of N.

In the preceding sections, we have assumed that N is
known. Since @' and 1-B depend on the maximum number of tests
to be performed (N), the choice of N is important.

From sections 2.2.2 and 2.2.3, it may be seen that as
N increases, more stringent levels of @' are required and,
subsequently, to maintain a specified power, a larger maximum
sample size is required. An advantage, though, to frequent
testing 1is a savings in the average number of patients
needed. So if H 1is true, the sample size will decrease with
increasing N; coiversely, if H 1is true, the sample size will
increase with increasing N. oFor example, compared to the
number of patients required in a fixed sample size design,
the maximum sample size for N = 2 is 10% larger while the

average sample size is 22% smaller. Further comparisons to a

fixed sample size are given below.

$ increase in % decrease in
N 2nN 2nM
3 15 28
5 21 31
7 24 33
9 26 33
20 33 33

For N > 7, the maximum sample size continues to increase
while there 1is no savings in the average sample size. So
there appears to be no advantage in doing more than 7
significance tests if reduction in total sample size is the
primary motivation for using a group sequential method.

The limit for N, then, may be set at 7. The task of
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choosing the "best" N still remains. In <choosing N, an
investigator should consider the following factors:

1. the maximum length of time of the trial;

2, the expected rate of patient entry;

3. the time lag between patient entry and response;

4. practical arrangements for trial meetings and

5. uncertainty associated with the treatment

difference estimate.

The relevance of the first 4 factors to the choice of N is
obvious. The length of the trial may be predetermined by the
availability of funds or by the investigators. Interim
analyses then may be timed to be equally spaced within the
limits of the length of the trial. 1In order to maintain a
given power, adequate numbers of patients must be accumulated
between tests. With knowledge of the rate of patient entry,
the group sizes (2n) in Table 4 serve as a guide for spacing
the interim analyses. Also, the length of time to response
must be considered, since it is the number of patient results
available for analysis that dictates the actual group size.
The fourth factor is particularly relevant for multicenter
clinical trials where it is necessary to schedule trial
meetings well in advance. It may be appropriate to schedule
interim analyses to coincide with trial meetings.

The fifth factor, uncertainty in the estimate of the
treatment difference, leads to problems in accurately

determining the maximum sample size required for a specified



33

power to be attained. As a consequence, N cannot be carefully
chosen. If the treatment difference is estimated as the
smallest clinically important difference and power is between
.90 and .99, the problem is not critical since the sample
size will be adequate for large differences. The problem is
critical, though, when 1investigators consider the 1largest
plausible difference (McPherson, 1982). Uncertainty
associated with the latter, therefore, may lead to an
underestimation of sample size, more frequent testing and
increased risk of not rejecting H when H 1is false.
McPherson (1982) takes oa Bayegian viewpoint to
describe the effect of the uncertainty associated with the
treatment difference on the choice of N. To illustrate this
effect, the influence of the prior distribution of the
treatment difference estimate on maximum sample size and
average sample size is measured. If there is a great deal of
uncertainty associated with the estimate (a disperse prior
distribution), but a 1large treatment effect 1is plausible,
frequent testing (N from 5 to 10) was found to be optimum. If
there is a strong biological basis for expecting a treatment
difference, but smaller trials have shown no treatment
difference, a fixed sample size test was shown to be optimum.
If there 1is a high degree of certainty associated with the
estimate and large effects are not expected, 2 to 4 tests
were found to be optimum. These results then may serve as

further guidelines for choosing N in conjunction with the
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first four factors mentioned.

2.3 Group sequential analysis,

2.3.1 P-values

Commonly, a statistical test results in the reporting
of a p-value which is the probability of finding a treatment
difference as great or greater than the one observed if H is
true. For the group sequential method, at each test, g p-
value corresponding to Z is compared to the nominal
significance 1level. 1If si;nificance is found at the first
test, analysis' of the results may be treated as if from a
fixed sample size test. That is, an investigator may report
an exact p-value corresponding to the Z_ computed from the
data. However, for subsequent tests,1 it is necessary to
compute an overall p-value. In other words, the p-value
corresponding to z for i from 2 to N should not be reported.
Fairbanks and Mad;en (1982) give tables of overall p-values
for d= .05 or .01 and N from 1 to 5 , computed by numerical
integration. These values, ford=.05, are shown in Table 6
(Fairbanks and Madsen, 1982, Tables 1 and 3 abridged).

For example, suppose an investigator decided to do a
maximum of 5 tests. At the fourth test, say Zi equaled 2.6.

The treatment difference, then, may be reported as

significant at the .04 level.
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P-values for a 2-sided significance test

is rejected

o

Final observed

0.0094

0.0094
0.0345

0.0094
0.0278
0.0416

0.0094
0.0242
0.0357
0.0447

0.0094
0.0221
0.0319
0.0398
0.0464

H is

0.0052

0.0052
0.0318

0.0052
0.0248
0.0395

0.0052
0.0211
0.0333
0.0429

0.0052
0.0189
0.0294
0.0378
0.0447

accepted.

0.0026

0.0026
0.0304

0.0026
0.0233
0.0385

0.0026
0.0195
0.0322
0.0421

0.0026
0.0172
0.0282
0.0369
0.0441

0.0014

0.0014
0.0298

0.0014
0.0225
0.0381

0.0014
0.0187
0.0317
0.0418

0.0014
0.0163
0.0277
0.0366
0.0438

Table 6,
A. When H
z i 2.2 2.4
C

1.960 1 0.0278 0.0164
2.178 1 0.0278 0.0164
2 0.0486 0.0397
2.289 1 0.0164
2 0.0332
3 0.0460
2.361 1 0.0641
2 0.0299
3 0.0404
4 0.0488

2.413 1

2

3

4

5

B. When

1.0 1.4
0.3174 0.1616
0.3214 0.1703
0.3236 0.1732
0.3251 0.1749
0.3262 0.1762

0.1096
0.1213
0.1246
0.1265
0.1277

0.0718
0.0867
0.0906
0.0926
0.0938

0.0634
0.0681
0.0702
0.0715

0.0541
0.0565
0.0579

0.05(
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2.3.2 Confidence intervals.

The observed treatment difference is an estimate of
the true treatment difference. It is useful, therefore, to
construct a confidence interval to obtain an indication of
the precision of the estimate. The probability that the
confidence interval contains the true treatment difference is
specified as 1-Qd. Restated, if sampling were performed
continuously, (1-A)100% of the intervals computed would
contain the true treatment difference.

The limits for the confidence interval at the ith test
may be computed as follows (Jennison and Turnbull, 1984):

D - (N26/\(in)) z

lower limit

i c
upper limit = D + [(V26/V(in)] z
i c
where 2z 1is the critical value corresponding to d' for a N-
c
group sequential analysis. Refer to Table 3 to find the

correct z for a 95% (A@=.05) or 99% (d=.01) confidence
c
interval. For example, for a 5-group sequential analysis, the

appropriate =z is 2.413 for a 95% confidence interval or

c
2.986 for a 99% confidence interval. For a 90% confidence

interval, wuse z from the following table (Jennison and
c

Turnbull, 1984):
z

4

c
1.876
1.993
2.068
2.122
2.164
2.198
2.226
2.245
0 2.270.

HWOOONAAUL&EWN
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2.4 One-sided group sequential method.

If a directional difference is expected, a one-sided
test may be appropriate, since it is more powerful than a 2-
sided test. However, power is less than O for a difference in
the unexpected direction; that is, one is penalized for
asking the wrong question (Hays, 1963). Since clinical trials
may reveal results which are the reverse of what was
expected, perhaps Armitage (1960) is correct in stating that
"one-sided significant tests are inappropriate, in most, if
not all, medical trials." Ethics, however, may preclude doing
a two-sided test when comparing a standard treatment to a new
treatment (Demets and Ware, 1980). Continuing a trial to find
a new treatment inferior to a standard treatment may
unnecessarily expose patients to the inferior treatment. A
one-sided test would allow trial termination when the
treatments were found to be equivalent or the new treatment
was found to be better than the standard treatment.
Additionally, if an investigator is certain of a directional
difference and is only interested in testing the significance
of this difference, the choice of a one-sided test is
correct. But, 1if the new treatment has some unattractive
qualities (e.g. expensive, possible toxic effects, difficult
to administer) and the standard treatment 1is reasonably
effective, a conservative test (i.e. two-sided test) may be
more appropriate. The choice of a one-sided or a .two-sided

test, therefore, depends on the investigator's depth of
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knowledge of the treatments under study.

Demets and Ware (1980) modified Pocock's two-sided

group sequential method to a one-sided method for testing H :

o
p > B . At the ith test, reject H if Z > z and accept Ho
.A B o o i c
if Z < -z . The critical values, computed following the
i c

methods of Armitage et al. (1969), are given for N from 2 to
10 in Table 7 (Demets and Ware, 1980). As expected, the
nominal significance levels for the one-sided test (Table 7)
are less stringent than the corresponding nominal
significance levels for the two-sided test (fable 3).

With a one-sided test, a trial may be terminated with

acceptance of H . However, from Table 8 (Demets and Ware,
o

1980), M under H 1is approximately equal to N; therefore, the
o

savings in patients exposed to the inferior treatment is

minimal. For example, with N=4, 1-8=.90 and <&=.05, the
average sample size under H is 3.81*10.29 0"2/62 and the
maximum sample size is 4*10.39 6;/62, a difference of about
2 0'2/ 62 patients.

Compared to the two-sided test (Table 4), the one-
sided test affords an appreciable savings in maximum sample

size. For a design with N=7, 1-8=.90 and @=.05, the maximum

2 2
sample size (2nN) for the two-sided test is 52.08 o /& vs.
2 2
43.33 0 /& for the one-sided test. The average sample sizes,
2 2 2 2

for the designs above, are 28.27 ¢ /§ and 22.41 G /&,

respectively, also important savings in sample size. The
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Iable 7. Nominal significance level &' and corresponding

normal deviate z required when performing repeated one-sided
c

significance tests (N).

T R . . . e . . . s . . . . e o ——————————————————————————————

&' =0.05 o' = 0.01

N ! z o & z

. c c
2 0.0306 1.876 0.0057 2.532
3 0.0232 1.993 0.0042 2.637
4 0.0193 2.068 0.0034 2.705
5 0.0169 2.122 0.0030 2.754
6 0.0152 2.164 0.0026 2.793
7 0.0140 2.198 0.0024 2.823
8 0.0130 2.226 0.0022 2.84¢8
9 0.0124 2.245 0.0021 2.870

10 0.0116 2.270 0.0020 2.889
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Table 8. Average number of one-sided tests (H) until trial
termination and number of patients per group (2n) using
various group sequential designs for responses normally

2
distributed with known variance ¢ .

D D S 0 T B Wt s e e . o D S e W . s W D D e e ———— ~ ——————— ——_—— i~ -

H WO ooJdO Wb Wl

&= 0.05

Under H Under H

Q a
1-B8=0.80 1-8 = 0.90 1-8 = 0.95
N M M 2n * M 2n * T 2n *
1.94 1.51 13.87 1.38  19.01 1.29  23.85
2.88 2.05 9.76 1.82 13.31 1.65 16.65
3.81 2.59 7.57 2.27  10.29 2.03 12.85
4.75 3-o 4 6.20 2.72 8.42 2.41 10.48
5.68 3.68 5.26 3.17 7.13 2.79 8.88
6.61 4 22 4.58 3.62 6.19 3.18 7.71
7.54 4.77 4.06 4.07 5.48 3.56 6.81
8.47 5.31 3.64 4.52 4.92 3.94 6.11
0 9.40 5.85 3.31 4.97 4.46 4.33 5.54

= 0.01

Under H Under H

Q a
1-B8= 0.80 1-B8= 0.90 1-8=0.95
N M " 2n * M 2n * M 2n *
2 1.99 1.57 22.07 1.45 28.39 1.35 34.20
3 2.98 2.17 15.37 1.95  19.71 1.78 23.68
4 3.96 2.78 11.85 2.46 15.16 2.22 18.18
5 4.95 3.38 9.66 2.97  12.33 2.66 14.79
6 5.94 3.98 8.17 3.48 10.42 Bl 12.48
7 6.93 4.58 7.09 4.00 9.02 3.55 10.80
8 7.91 5.18 6.25 4.50 7.96 4.00 9.52
9 8.90 5.79 5.61 5.01 7.13 4.44 8.54
10 9.89 6.39 5.08 5.53 6.46 4.88 7.73

2 2
* multiply each entry by ¢ /§
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maximum and average sample sizes for a one-sided group
sequential design are consistently smaller than the
comparable two-sided group sequential designs. Therefore,
when correctly chosen, a one-sided group sequential method is
advantageous if the primary objective is to decrease the

number of patients exposed to an inferior treatment.

2.5 Generalization of the group sequential method.

Pocock (1977) has shown that the group sequential
method 1is appropriate for <clinical trials with design
characteristics varying from those described here. For trials
with more than two treatments, a separate group sequential
design for each treatment comparison or a global significance
test is recommended.

If data analysis is scheduled at equally spaced time
intervals, the size of the group is 1likely to vary. A
simulation study showed that the latter had essentially no
effect on estimates of @ and B when using a group sequential
method. Similar results were shown when stratifying, though
some 1loss of power was evident when there were unequal
treatment numbers within strata.

Pocock (1977) has also shown that the same nominal
significance levels hold for a wide variety of response
variables. That is, by simulation, estimates of otand B were
found to be very close to required levels.

For a normal response with unknown variance, the trial
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terminates at the i th test if t > ¢t
_ | i 20in-1) o
5000 simulations, g4 pinimal loss of power was observed when

. Based on

applying group sequential designs for t-tests (Pocock, 1977).

To compare two exponential means, A and A , a group
sequential F test with o' as in Table 3 wgs foSnd to be
appropriate (Pocock, 19775. Simulations showed that estimates
of the true overall significance were close to the required
o. Alsa, power was maintained when using sample sizes
computed wusing Table 4 and multiplying each entry by
(nA /A1 .

A B

A normal approximation of the Wilcoxon test was also
found to be appropriate for a group sequential design
(Pocock, 1977). Consider trial termination at the ith test
if {IR -[in(2in+1)1/2}

A > z
inY[(in/6)+(1/12)] C .

where R is the sum of the ranks for treatment A.
A
For a binary response, there was no loss of power, for

N 2 5 and n 2 10. The test statistic, at the ith test, is the

following: Y2 [R (in-R )-R (in-R )]
U = A B B A
i \Tin(R +R ) (2in-R -R )] '
A B A B

where R 1is the number of responses on treatment A and R is
A B
the number of responses on treatment B. U has a «chi

distribution with 1 df. Trial termination should be

considered when U > z . Use of the Yates continuity
i c

correction or the Fisher-Irwin Exact test is found to be less

accurate for the group sequential analysis than the test
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based on U (Pocock, 1977).
i

Pasternack and Shore (1980) have shown that Pocock's
adaptation for binary data is appropriate for epidemiological
data. Results of simulations (Pasternack and Shore, 1981)
have shown that the group sequential method for 2 X 2 tables
is robust for moderate variations in group size, stratified
analysis wusing the Mantel-Haenszel statistic (without the
continuity correction) and unequal sample sizes. Table 4 may
be wused to compute group sizes by making the following
substitutions for 6?/82:

1. for a prospective study, use
2

p (1-p)/(p -p )
2 1
where p 1is the estimated proportion of patients
with thé attribute and the disease, p is the
estimated proportion of patients wizhout the
attribute and with the disease and p = (p +p )/2;
2. for a retrospective study, use the samé ag above
except p is the estimated prevalence of the
attribute in the diseased population and p is
equal to (1/2) p {1+e/(1l+p (e-1)]} where o is2 the
the estimated odés ratio. -
Gail et al. (1981) have shown, for the log rank test,
that the results of simulations are consistent with
theoretical values proposed by Pocock for the normal case

when tests are performed at intervals of equal numbers of

deaths (d). The following test statistic is computed at times
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£ , & peeagt 3
d 24 Nd
id id -1/2
z2 =[2_(U=-P)1/L S_P (1-P )] , i=1,..,N.
i k=1 k k k=1 k k

where U =
k
patients on treatment A in the trial at time t and known to
id
have survived for time t or longer. Once again, Table IV
k

may be used to compute the additional number of deaths
-2

required before each analysis by multiplying entries by 6

0 , treatment AT
1l , treatment 3]. P 1is the proportion of

where, under H , the hazard ratio is exp(®©).

It |is aexpected from these results that the group
sequential method may be generalized for a wider variety of
responses. In the following section, we will examine how well

the Pocock design behaves when using the logistic regression

model.



CHAPTER III.
GROUP SEQUENTIAL METHOD

APPLIED TO THE LOGISTIC REGRESSION MODEL

3.1 Description of the logistic regression model.

The logistic regression model 1is wuseful if the
éreatment response is dichotomous and if covariates must be
taken into consideration when measuring treatment effects
(Schoenfeld, 1982 and Kleinbaum et al., 1982). Generally, a
dichotomous response may be defined as success (Y=1) or
failure (¥Y=0). The probability of a success given K
independent variables is modelled by the logistic function as

P(Y =1) = [1 + exp(-gg)]

where X' = (1, X ,...,X ) is the vector of independent
1 K
variables and B=(B8.,8 ,...,B) is the vector of model
- 01 K

parameters. The logistic function is continuous and
monotonically increasing from 0 to 1. The shape of the
logistic curve is sigmoid with asymptotes at P=0 and P=1.
These properties suggest a wide range of applications
in the biological and chemical sciences (Ashton, 1972). Early
papers (Reed and Berkson, 1929 and Berkson, 1951) showed the
appropriateness of the 1logistic function for modeling

chemical processes. Further applications have been described

45
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in the biomedical sciences, primarily in epidemiological

studies (Kleinbaum et al., 1982) and in dose-response

analyses (Cox, 1970).

An iterated transformation on P reduces the nonlinear

function to a function linear in the B's as follows;

P=(1+ exp(j§§)]-
P-l= 1 - exp(-8X)
P/1-P = exp(q}f)
ln(P/1-P) = §§

The function 1n(P/1-P) 1is commonly referred to as the
logit(P) (an abbreviation for logistic unit) and is seen to
be an expression for the log odds since P/1-P is the odds of
obtaining a success. Two sets of independent variables , say

X and X , may be compared by the log odds ratio (ln OR):
1 T2
In OR = logit(P ) - logit(P ) = B(X - X).
1 2 . | 2
Given n observations, Y seeesY » where Y has a
n
Bernoulli distribution given X, the probability of success

[P(¥=1)] for the ith response is

-1 -1
p=1[1 + exp(-8x )] = [exp(Bx )] [1 + exp(fx )]
i ) S ! i

and the probability of a failure [P(Y=0)] for the ith

response is 1
l1-p = (1 + exp(Bx )] .
i i
In order to make statistical inferences about the

effects of the independent variables on the probability of a

success, it is first necessary to estimate the parameters
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q), Bl,..., BK. Three procedures available are the weighted
least squares procedure (Grizzle et al., 1969), minimum chi-
square procedure (Ashton, 1972) and the maximum 1likelihood
procedure. The latter procedure is preferred since maximum
likelihood estimators -are based on sufficient statistics
(Cox, 1970) and are asymptotically efficient (Rao, 1973).
Also for the case we consider in the following section, the
weighted 1least squares and minimum chi—square procedures are
not applicable since the model contains a continuous
covariate and the sample sizes are relatively small.

To find maximum likelihood estimators, the likelihood
function is required. The likelihood function for a sequence

of Bernoulli variables is

n Y; 1-y,
L(P) =TT p (1-p ) + for p=p ,...+4p + SO

i=1 i i 1 n

n Y, ¥l
L(B) = TT {lexp(Bx )] [l+exp(Bx )1} ' [l+exp(Bx )]

- i=1 TTi i i
n -1
= TT exp(y Bx ) [l+exp(Bx )]
i=1 i 7i !
n -1

n
= exp(jfi Y.ﬁf.’ TT [1+exp(§§_)]
i= iT7i i=1 1

The log likelihood (LL) is

LL(B) = Z y Bx Zl 10g[l+exp(Bx )]
i=1 ~~i
K n K
=> B Z - > log[l+exp(z B x )]
3=0 i=1 1] 1 i=1 j=0  j ij
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The maximum likelihood estimators of ﬂ ,...,/3 may be found

by solving the following K+1 11ke11hood equations

simultaneously;

45.L,L((})/{>ﬁ~ = 0
A closed form solution does not exist so a Newton-Raphson
procedure is used to solve the equations iteratively.
To use the Newton-Raphson procedure, the column vector

of first derivatives of LL with respect to fp (the score

—~

vector) and the matrix of second derivatives of LL with

respect to must be computed. The score vector is defined as
th

U(P) where the 1 entry is

n n —1

5LL((3)/6(5 Z Z

epo/}x [1+exp ﬁx
i=1 11 i J 1]

il j ij
The matrix of second derivatives is defined as -I( ) where

the (1,m) entry is

2 n k
& LL(P) /8B (3 = -2 X x exp) fx [1+epo{}x
~ 1l ' m

1=1 il im j=0"3 ij j ij

I(p) is Fisher's information matrix; therefore, the variance-
-1/\
covariance matrix V(ﬂ) is equal to I ().

To begin the iterative procedure, an initial estimate

A

of ﬁ, say p , 1is required. The first iteration, then is
~0

given by
3 (p u(f)
+ Vv U .
E ~0 ~0 -0
The i th 1terat10n is given by
~ ~ N A
{3=(3 + v ) up .
~i "i-1 ~i-1 ~i-1
The iterative procedure stops when Ip :
~i-
is a vector of small positive numbers (e.g., 0.000001). Then

< E, where E

T
=
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. is the maximum likelihood estimator of
23

Once the maximum 1likelihood estimators have been
obtained, hypothesis tests on the 's may be performed.

Suppose the independent variable, X , is an indicator

_ 1
variable such that x = 0 indicates the ith patient is on
il
treatment A and «x = 1 indicates the ith patient 1is on
il
treatment B. To measure a treatment effect, then, test H :

0
=0 vs H : 3 #0.
1 a 1

Three asymptotic hypothesis tests available are

l. the likelihood ratio test,
2. the efficient scores test and
3. Wald's test.

For the likelihood ratio test, the test statistic is
A0 ~

=20 LL((3) - LL((D) ]

A0 ~ -

where {} is the maximum likelihood estimator under the null

hypothesis (i.e. for the restricted model). Hence, assuming
0
A
no treatment effect ((} =0), (3 estimates (3, [ ,...,ﬂ .
1 o~ 0 2 K
For the efficient scores test, it is only necessary to

compute the maximum likelihood estimators under the null
0
hypothesis (@ ). The score statistic (again for testing P =0)
= 1
is given by
0 0 .0
U(p yrvep) U(p )
where U and V are the score vector and the variance-
covariance matrix, respectively, under the alternative

hypothesis (i.e. for the full model).
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Wald's statistic for testing a treatment effect is
2
A

B,
Var (g

where Var(('il) is the (2,2) ent}:y of V(P).

All three statistics have an asymptotic chi-square
distribution with one degree of freedom. Therefore each
statistic may be compared to the 1 - X critical point for the
chi-square distribution. The square root of a chi-square
statistic with 1 df , say z ., is distributed N(0,1) with
critical point at z . ’

1-972

For the group sequential method using the 1logistic
model, at the ith test, it is necessary to determine if z >
z where z 1is the upper 1 - &®'/2 critical point as givenlin

c c
Table 3.

3.2 Description of the Monte Carlo study.

A Monte Carlo study is designed to derive a numerical
solution, considered to be otherwise intractable, from a
given model. The model simulates a real system (Rubinstein,
1981). In this paper, the real system is a clinical trial,
where the data are defined by the logistic function. Several
models are defined to determine the amount of variation in
the numerical solutions obtained from the simulations. Each
simulation represents a single <clinical trial. Repeated
independent simulations constitute a Monte Carlo study.

For this Monte Carlo study, the model of interest is
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the following logistic regression model:
Inlp/(1-p)] = B + X + ﬁ X,
) 0 11 22
where xl 1s equal to 0 if the patient is on treatment A and is
equal to 1 if the patient is on treatment B, and X is a
continuous covariate. A few examples of a coitinuous
covariate are age, weight and blood pressure. The covariate
is defined as continous since the logistic regression model
is equivalent to a Mantel-Haenzel test if the independent
variables are all discrete. Pasternack and Shore (1981) have
already shown that Pocock's method is appropriate for the
Mantel-Haenzel test. An interaction term is not included in
the model since testing Ho:pl=0 would no longer Dbe
meaningful.
A range of values for the true parameters ﬁo,ﬁa and az
were computed. The intercept, ﬂo, is the 1ln odds when X =0

I
and X =0. So

2
ﬁ = 1lnlp /(1-p )1}
0 A A
where p 1is the probability of success for an individual on
A
treatment A with covariate value of 0. ﬂ was computed for p

0
= .4, .6 and .8. The 1ln odds ratio for comparing treatment A

to treatment B is @ regardless of the wvalues of the
1
covariate. This follows since

ln [P /(1-P )] = +(4X and 1ln [P /(1-P )] = + 3+ Ax ,
A A p0 ,% 2 B B QJ @ e 2
and therefore, In [P (1-P )/P (1-P )] =(5 Iy
A B B A 1
where p is the probability of success on treatment B. Bl was
B

computed for values of p and p diven in Table 9. Note PA is
A B
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chosen to be greater than P with no loss of generality.
B

An acceptable range for ﬂ is obtained by assuming
2

that x2 affects the probablity of a success [P(Y=1)] and then

computing @2 for various pairs of values (x and p), with
i2 i

p and @ as specified above.

0 1

A total of 36 models are defined for the Monte Carlo
studies and are given in Table 10. Of the 36 models, 24
represent the nonnull case, pI#O (models- 1-24) .and 12
represent the null case,[31=0 (models 25-36).

The purpose of this study is to determine if éocock's
boundaries are appropriate when performing hypothesis tests
for the logistic regression model. Therefore, as required for
a group sequential design, a maximum number of tests (N), an
overall 1level of significance (&) and power (l—ﬂ) must be
predetermined. For this study, N =5 and o= .05 which
correspond to a critical value, z , of 2.413 (Table 3). The
three test statistics, (the likelghood ratio test statistic,
the score statistic and Wald's statistic) are then compared
to 2.413 for the 2-sided test of H : 3 =0 vs Ha: plﬁo. The

o 1

group size (2n), for power l-ﬂ = .90, 1is detergined by

multiplying 10.14 (Table 4) by p (1-p)/(p —pB) , where
A

P=(p +p )/2. See Table 9 for values of p and p and their
A B A B

corresponding group sizes.
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Table 9. Group sizes for l-ﬂ = .90 and for various p and p -
A B

MODELS p p GROUP SIZE
A B
1-4 0.4 0.3 230
5-8 0.4 0.2 54
9-12 0.6 0.5 250
13-16 0.6 0.4 64
17-20 0.8 0.7 190
21-24 0.8 0.6 54
25-28 0.4 0.4 22
29-32 0.6 0.6 28

33-36 0.8 0.8 26
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Table 10. Monte Carlo study models.

Non-null case Null case (@ =0)
1

Model

o> wNh -

o Jownm

po pl Pz Model po Pz

-.4055 .4418 -4 25 -.4055 -4
" . -2 26 " -2
N " 2 27 " 2
n n 4 28 n 4
-.4055 .9808 -4 29 .4055 -4
n n -2 30 n -2
n " 2 31 n 2
n n 4 32 n 4
.4055 .4055 -4 33 1.3863 -4
" " -2 34 " -2
= " 2 35 " 2
n " 4 36 8 4
.4055 .8109 -4
n n -2
n n 2
n n 4
1.3863 .5390 -4
n n _2
n n 2
n n 4
1.3863 .9808 -4
n n -2
n n 2
n n 4
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For each model, 2n observations are generated for each
test up to a maximum of 5 tests. There are an equal number of
observations on each treatment so x =0 for i = l1,...,n and
xil=1 for i = n+l,...,2n. The cont;ious covariate, X is
generated as a normal random variate with mean 0 and iiriance
l. With respect to the mean and variance, there is no loss of
generality because it is analagous to scaling a given

covariate, say x2', so that

xl_fl
X =
2 SD(x ')
2
Given X ,X and the parameters p ,P ,p 5 the
il i2 g ¥l +2
probablity of success (p ) is computed as
i
exp Bx
p = ___~-i
i 1 + exp Bx
~~i
To generate the y 's, 2n uniform variates (u ) are generated
i i
and compared to p . If p > u then y =1 and, likewise, if p
i i i i i

< u then y =0.
i i
Empirical estimates of o for the null case (models 25-
36) and empirical estimates of l-ﬂ for the non-null case
(models 1-24) are computed based on 500 independent
simulations for each model. The ﬁ is measured for the non-
null case.

The program for carrying out the simulations is

written in PROC MATRIX (SAS) and may be found in Appendix 1.
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3.3 Monte Carlo study results and discussion.
3.3.1 Parameter estimates.

As described in section 3.2, the maximum likelihood
estimators (MLE) of the model parameters are computed for
each trial simulation. The MLE's of consistently
underestimate the true parameters when ; = +.4055 by
approximately 8%. The absolute differenceg between the
estimates and the true parameters ranged from .010 to .116.
For ﬂo= 1.3863, the MLE's overestimated the true parameter by
approximately 3% with the absolute difference ranging from
.008 to .214.

The MLE's for p overestimate the true parameter
values by approximately li% for a treatment difference uvf .1
and by approximately 20% for a treatment difference of .2.
The absolute differences range from .015 to .223.

The absolute values of the MLE's for P are greater
then the true parameters by an average of 6%.2 The absolute

differences between the true and estimated parameters range

from .022 to .646.

3.3.2 Non-null case results.

To determine if the sample sizes specified by Pocock
(Table 4) are appropriate when using the logistic regression
model, power is estimated for the non-null models (1-24). For
all models, the estimated power is less then the expected
theoretical power of .90 (see Table 11). From Table 11, the

maximum estimated power is .814 for model 6 (pz=‘2) when
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performing the likelihood ratio test. The minimum estimated
power is .445 for model 13 ([32=-4). The effect of the
absolute magnitude of (3 is readily apparent. It is
legitimate to consider ﬁz in terms of its absolute value
since it is the absolute value which reflects the importance
of ﬂz to the model. For example,/3 = -4 and +4 both indicate
that the covariate strongly iifluences. outcome but in
opposite directions. The average estimated powers for models
with lpzl = 4 and for models with lﬂzl = 2 are respectively
.521 and .700. It appears, then, that as the influence of the
covariate on outcome increases, the power decreases
appreciably.

To confirm that the loss of power 1is due to the
addition of the covariate to the model, several models
without ﬁ are simulated. A power of .90 would be expected
based on ihe work of Pasternack and Shore (1981) and Pocock
(1977). The average estimated powers for models with p of
.4, .6 and .8 are .93, .84 and .72, respectively. ForAnon-
null case models when performing LRT, the average estimated
powers are .77 (models 2,3,6 and 7), .69 (models 10.11.14 and
15) and .70 (models 18,19,22'and 23). For models with p =.4
and .6, there is a considerable loss of power (.16 and 615,
respectively) when including lp2I=2 in the model. It is
interesting to note that the power when pA=.8 is 18% 1less

than expected. The simulation studies by Pasternack and Shore

(1981) ans Pocock (1977) do not contradict these results
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since their pA's ranged from .3 to .55.

A comparison of the results for the three test
statistics reveals that the estim;ated power for the
likelihood ratio test (LRT) is always greater than the
efficient scores test (EST) and, in turn, the EST is always
more powerful than Wald's test (WT) (Table 11). For models
with Ip | = 4, WT is, on the average, 2.4% less powerful than
the ESTzand 3.3% less powerful than the LRT. For models with
Ip |l = 2, WT is, on the average, 1% less powerful than the
ES% and 2% less powerful than the LRT. Therefore, it seems
that WT becomes more conservative compared to the LRT or EST
as I3 | increases.

2 Given N=5, power=.90 and &=.05, M, for Pocock's
method, is 2.84. However, since the estimated power is
considerably 1less than .90 for all models, it is expected
that the number of tests to trial termination would be
greater than 2.84. This is, indeed, the case. For IFEI = 4,
the average number of tests to termination ranges from 3.83
to 4.15 (Table 12, LRT). This 1is consistent with the
theoretical value for the M which is 4.04 (Pocock, 1977 Table
3). Likewise for Iﬂ I. = 2, the average number of tests to
termination ranges %rom 3.15 to 3.65 (Table 12, LRT)
corresponding to the theoretical value of 3.41 for power of
.75 (Table 4).

For all models, on the average, WT requires the

maximum number of significance tests to trial termination.
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However, considering the standard deviations, the three tests
do not differ significantly. All three statistical tests
averaged approximately 4 significance tests for trial

termination given I3 I=4 and approximately 3.5 given |I[ |=2.
2

3.3.3 Null case results,

To determine if the Pocock boundaries (z 's in Table
3) are appropriate for the logistic regressionc model, the
size is measured for the null models (25-36). From Table 13,
it appears that size is consistent with the expected level of
significance of .05. Size ranges from .028 to .067. Averaged
over all three statistical tests, the size is .045.

The conservativeness of WT is once again apparent. For
all models, the size for WT is less than the size for LRT and
EST by approximately .016 and .009, respectively.

The average number of tests to termination for the

null case models is approximately 5 (4.90+.51) as expected.

3.4 Conclusions and suggestions for future work.

For the models simulated, Pocock's boundary when
performing a maximum of 5 tests at an overall significance
level of .05 (z =2.413) is appropriate. The risk of making a

c
type I error is minimally changed by the addition of a

covariate to the logistic model.
The sample sizes given in Table 4 are inadequate for
maintaining a power of .90. When computing sample size for a

given power and maximum number of tests, the influence of a
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covariate on outcome must be considered. Further simulation
studies may be designed to determine the appropriate sample
sizes for a range of ﬂ to maintain a given power. It would
also be interesting to measure the effect on power when
modelling more than one covariate.

In conclusion, it appears that Pocock's group
sequential method cannot be generalized for the logistic
regression model by simply using the wvalues given in Tables 3

and 4 without considerable loss of power.
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Table 1l. Estimated power for the non-null case when
performing the likelihood ratio test (LRT), the efficient
scores test (EST) and Wald's test (WT) based on 500

simulations for each model.

| 1=2 | |=4
(32 e,

Model LRT EST WT Model LRT EST WT
2 .742 .742 .742 1 .478 .474 .468
3 .728 .728 .720 4 .524 .522 .512
6 .814 .808 .792 5 .583 .565 .519
7 .812 .800 .782 8 .628 .610 .563
10 .704 .702 .692 9 .468 .464 .458
11 .654 .652 .648 12 .488 .480 .470
14 .716 .706 .698 13 .497 .487 .445
15 .672 .666 .658 16 .496 .482 .456
18 - .704 .704 .700 17 .568 .576 .572
19 .756 .752 .742 20 .596 .588 .582
22 .659 .659 .638 21 .558 .548 .514
23 .679 .657 .651 24 .529 .515 .467

MEAN .720 .715 .705 .535 .526 .502
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Table 12. The average number of tests until trial termination

and standard deviation* based on 500 simulations for each
model.
| 1=2
FE
Model LRT EST WT
2 3.40 (1.44) 3.40 (1.44) 3.43 (1.42)
3 3.49 (1.45) 3.51 (1.43) 3.55 (1.42)
6 3.15 (1.50) 3.20 (1.49) 3.36 (1.42)
7 3.28 (1.42) 3.31 (1.42) 3.42 (1.37)
10 3.46 (1.47) 3.47 (1.47) 3.50 (1.46)
11 3.65 (1.45) 3.66 (1.45) 3.69 (1.44)
14 3.55 (1.47) 3.59 (1.45) 3.69 (1.40)
15 3.58 (1.45) 3.63 (1.42) 3.71 (1.38)
18 3.51 (1.49) 3.52 (1.49) 3.56 (1.48)
19 3.35 (1.45) 3.36 (1.44) 3.42 (1.43)
22 3.66 (1.46) 3.72 (1.42) 3.89 (1.30)
23 3.54 (1.32) 3.63 (1.29) 3.75 (1.29)
i =4
ﬁ;
Model LRT EST WT

1 4.14 (1.31) 4.16 (1.30) 4.20 (1.27)
4 3.90 (1.45) 3.92 (1.43) 3.96 (1.41)
5 3.90 (1.38) 4.02 (1.30) 4.17 (1.16)
8 3.64 (1.47) 3.77 (1.41) 4.04 (1.19)
9 4,15 (1.33) 4.18 (1.31) 4.21 (1.27)
12 4.12 (1.33) 4.15 (1.31) 4.16 (1.30)
13 4.02 (1.40) 4.05 (1.38) 4.26 (1.16)
16 3.95 (1.41) 4.02 (1.37) 4.19 (1.22)
17 3.97 (1.36) 3.89 (1.39) 3.92 (1.38)
20 3.83 (1.42) 3.86 (1.40) 3.90 (1.37)
21 3.90 (1.42) 4.03 (1.31) 4.24 (1.11)
24 3.93 (1.36) 3.99 (1.33) 4.24 (1.11)

* Standard deviation in parentheses.
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Table 13. Estimated size for the null case when performing

the 1likelihood ratio test (LRT), the efficient scores test

(EST) and Wald's test (WT) based on 500 simulations for each

model.

Model LRT EST WT
27 .067 .059 .042
28* .039 .041 .028
29 .040 .031 .030
30 .051 .045 .035
31 .065 .056 .039
32% .037 .024 .039
33 .058 .049 .031
34 .056 .043 .035
35 .071 .065 .053
36 .048 .048 .048

MEAN .053 .046 .037

* Based on 350 simulations.
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//HRO9 JAM J08 (7953,4B0%9,30,5),J0Y.4=LE,CLASS=E
/*SFTUP FEXPEZCTED EXECUTINN TIME [S ONE HOJR
/*ROYTE PRINT R4T4al
7/ EXEZ SAS,RESION=1nn0K
*%*TH]S [S PROSRAM IS STORED IN WYLBUR FILE #THESIS:
Fddkd bbb hrhrhrbrrtbhrrrbbrrhrrrrrhrrrrrrtrtrhrrrdhiid i
* DESCRIPTINN OF THE SIMULATION *
THF OSJECTIVE IS Tn TEST THE ADPOROPRIATENESS OF
POCOCK’S GROUP SEQUENTIAL BOUMDARIZS AND SAMPLE
SIZFS FOR THE LOGISTIC REGRESSION MODEL.
THE “ODEL IS
LN(P/(1=P) = BO + 8B1+X] + B2xX2
WHERE X1 =_0 INDICATES TREATMEMT A AND X2 = |
INDICATFS TPRATMENT B AND X2 [S A ZONTINUOUS
COVARIATE. THE EXPECTED ALPHA LEVEL IS .05 AND
THE RXPECTED BFTA LEVREL IS .90. THE MAXIMUM
MIMBER OF TESTS (N) PER TRIAL IS 5. ESTIMATES 9F
ALDHA ND RETA WILL PF ~NOMOUTEN FOR FACH TEST
STATIST!IC,

tdhbthhrtbhrrtrrdtr bbb hbrbrbhbrrrrrirhiehire il

A4 % A& % & % 4 4 * F *
O S S A A

*

TITLE OUTPUT FOR MNDEL 403

DROY. MATRIX 3

N = 270 3 +** [MPUT SAMPLE SIZE:
G = N#/10s ** GROUP SIZEs
B =1.3863 .9£08 4 3 #+ [NPUT PARAMETERS 3
*++ [NITTAL VALUES:
S = 03
C = 03
SUMBETA = 0/0/03
T_AALD = N3 P_WALD = 03 TWN_SS = O3
T_LR = O P_LR = 03 TLR_SS = O:
T_SS = N3 P_SS = 0t TSS_SS = 0%
ZZ_FM =1-0-=1/1 Oo/Z1 0oz 1 =170 1 07 1 1 13
7ZRM =1 =-1/1 O/ 1 13
++* INPUT VALUES FOR X0, X1 AND X2: .
XN = J(N,1,1)% +* CREATF A ZOLUMN VECTOR 0OF ONES3
X1_0 = JiG,1,1)s ** COLUMN VECTOR OF 5 ONIS3
X1_1 = J(3,1,0)3 +%* COLUMN VEZTOR OF G5 ZFEROESS

X1A = X1_O//X1_1:
Vo= YVAZ/XIAZZXVAZZXIA /XA
FREE X1_0 XI_1 XAz



BESINS ** STMULATION RUN STARTS HERE;

X2 = NOQMAL(J(NGI1,0))s <% COLUMN VECTNR OF MNOPMAL RANDOM
VAQRTATES WITH MEAN O AMD SD 13

+++ ENQM THE DESIGN MATRIX Xs
Y = XOI Y] 1iX2:

+++* FIND THE PONBABILITY OF SUCCESS (P) 3
NUM =.EXP(X*37)3
D = UM #/ (1+NUM)3

«+* ASSIGN A PESPONSE TN EACH P
Y = P = UNIFORM(J(N,1,0))3
Y = (SIGN(Y) + XN)#/23

TEST = O
FLAG_N =
ELAG._ LR
FLAG_<S
SETASUM

START? *% M INTCAL TRIAL™ STARTS HERZ:
TEST = TEST + I3
T = TEST#2#G;3

*+* NEIGHTED LEAST SQUARES ESTIYATES FOR INITIAL VALUES:
TT = 1:Ts P = X2(TT, )3

P DESIGN(SIGN(INT(P#/.44)) +J(T,1,2)+(3*X1(
SSIZES = D(,+)s Il = LOC(SSIZES)$ SSIZES = SS
P = P*Y(TT, ) P = P(Il,)
P P#/SSIZES3 NP = NROW(P) 3

DO T =1 TO NP3

IF P(I1,1)<=0 THEN P(1l,1)=,5#/(MAX(SSIZES(I,1)//5))3

IF P(I,1)>=1 THEN P(I,1)=1=~(.5#/(MAX(SSIZES([,1)//5)))%

END:

= LOG(P#/(1-P))3
SS =(SSIZES#P#(1-P))s Z_FM = ZZ_F¥(II,)
ALSE = INV(Z_FMs*DIAG(SS)*Z_FY)*Z_FM’*DIAG (SS)*F3



*xx NENTOMN=PRAPHION [TERATINON PRNOCEDJRES
BETA = ALSE
XPY = X(V1eT,)2+Y(1:T,)s
FLASG = N3
ITERATS = Os
EPS1 = Q.M
EPS2 = 0.01+EPSI s
NN NYHILE (FLAG=9):
ITERATE = ITERATE + 13
IF MAX(ABS(=X(1:T,)*BETA)) > 174,573 THEN DOs
C=C+ 13
S = S+13
[F S=5N00 THEN DO:
CHECK = 33BETASUM = 0O/0/N3
S =S - 13
GOTO FINISH:
ENDs

6O To BEGIN:
END s

(J(T 1 ,1) + EXP(=X(12T, )*BETA))##=-13
XPY = (X(1 2T, )72*])zs
[#(J(T,1,1)=1)3

[ 1T, 2% ([ X (12T, ))s

DELTA = SOLVE ((1#/T),(U#/T))s
I[F SSO(A3S(DELTA)#((ARS(BETA)+J(3,1,EPS1))##-1))<FDbS2 THEN

BSTA = BETA + DELTA:
FNDs

N —cC—
oo

BETASUYM = RETA + BETASUM;
V. = INV(I):

++% NEIGHTED LEAST SQUARES ESTIYATES FOR INITIAL VALUES:
TT = 1:Ts P = X2(TT,)s

P = DESIGN(SISGMC(INT(P#/.44))+J(T,1,2))73
SSIZES = 2(,+): 11 = LOC(SSIZES)s SSIZES = SSIZES(11,)
P = P*xY(TT,):P = P(I],)3
P = P#/SSIZESs MNP = NROW(P)3
DO I =1 Tn NPs
IF P(I,1)<¢=0 THEN P(I,1)=.5#/(4AX(SSIZES(I,1)
IF P(I,1)>=1 THEM P(I,1)=1=(,5#/(MAX(S51ZE5 (]
EMND3

/75
1)
= LOG(P#/(1-P )3

55 =(SSIZESH#P#(1=P )i Z_QM = 7Z_D4(I1,)3
NLSERM = [NV (Z_RYs#DIAG(SS )#Z_RM)*Z_RM7+DI AG(SS )*F 3

FLAG=]3

))s
//5))):5))



++* EATOMN=RAPHSON ITERATION PROCENIRF FOR THE RSNUCEN MODEL:S
BETA_RY = ALSENM;:
X_RY = LOEWY2:
XPY_RM = X_RM(1¢T,)2*Y(12T,)s
FLAG = Nt
ITERATZ2 = O3
EPS1 = 9.0 3
EPS 2 0.0l*EPS1| 3
7 NHILE (FLAG=N)s
ITERATE2 = ITERATE2 + 13
IF MAX(ABS(=-X_PM(1:T,)*BETA_RY)) > 174.673 THEN DOz
C=C + 13
S = S+13
IF S=530 THEN DO
CHEZK = 3383ETASUM = 0/N/N%

S =S =13
GOTO FINISHs
END s

G TO 3EGINg
EMD s

[_OM = (J(T,1,1) + EXP(=X_RU(IsT,)*BETA_RM) )##~1]3
U_RM = XPY_RM = (X_RY4(1:T,)’*]_RM):
[_PM = T _DPM#(J(T,1,1)=1_R¥)s:

[_NM = X_ M (12T )7« (I_RM@IX_RM (13T, ))3
NDELTA = SOLVEC((I_DPM#/T) , (U_RM#/T)) 3
IF SSQ(ABS(DELTA)#((ARS(BETA_RM)+J(2,1 ,FPS1))##=] ))<EPS2 THEN FLAG=1
BETA_RM = BETA_RM + DELTA:
FND e

[F FLAG_N =0 THEN DOs
*x*NALD’S STATISTIC3
WALD = (SETA(2,1)##2) # (1#/V(2,2))3
Z_WALD = SQRT(ANALD):
IF Z_NALD > 2.413 THEN DOs
T_NALD = TEST + T_WALD3
TW_SS = TW_SS + (TEST##2)3

FLAG_WN = 13
END3
ELSE IF TEST = S5 [HEN P_WALD = P_IALD + 13

ENDs
IF FLAS_LR = O THEN DO3s



**xl [KELIK™D RATI’) TEST:
B_LL = SETA: X=X3 LINK LOGLIKEs LL_FM
B_LL = BETA_RM:s ¥XX=X_RM: LINX LOGLIKE: TLL_RM
LR_STAT = -2 # (LL_RQM - LL_Fu);
IF LR_STAT <= O THEN LR_STAT = .1I:
Z_LP = SORT(LR_STAT):
IF Z_LR > 2.413 THEN DOs
T_LR = TEST + T_LRs
TLR_SS = TLR_SS + (TEST##2)3
FLAG_LR = 1|3
ENDs
FLSS IF TEST = 5 THEN P_LR = P_LR + I3
ENDs
IF FLAG_SS = N THEN DOs3

r—

([}
I~
-
o0 o

«***SCORE STATISTICs
BETA_RM( 1 ,1)//0//BETA_RM(2,1)3
(J(T,141) + EXP(=X(123T,)*B_S)) ##-13
XPY = (X(1sT,)**[_S)3
I_S#(J(T,1,1)=1_S)s
LT ) 2> (I_S@ X(1:T,))s
SCORE_ST = U_S” * [INV(I_S) « U_S3s
Z_SS = SQRT(SCORE_ST)s
IF Z2_SS > 2.413 THEN NO:
T_SS = TEST + T_SS:
TSS_SS = TSS_SS + (TEST##2)s
FLAG_SS = 13
END2
ELSE IF TEST = 5 THEN P_SS = P_SS + I3

-

~
nwuOumnn
oo

ENDs

CHECK
FIMNISH: IF (TEST
S =S+
AVG_RETA BETASUM #/ TEST:
SUMBETA SUMBETA + AV5G_BETA:
IF S=570 THEN DO3s

FLAS_W + FLAG_LR + FLAG_SS:
5) OR (CHECK = 3) THEN DOs

NOTE RESULTS FOR WALD STATISTIC:
Y_NALD = (T_WNALD + (5 * P_WALD)) #/ (50n-C)s
SOW=SQRT( ((TW_SS5+(254P_NALD))=((500-C)I#(ASN_WALD##2)))#/(499~C))3
H2_N = (T_WALD) #/ (500-P_ANALD-C):
3DW2 =SQRT((TW_SS=((5N0=P_ANALD=")#(ASMN2_N##2)))#/(499=-P_nALN=C))s

POWER_H = | = (P_WALD #/(500-C))3
PRINT M_+ALD SDW M2_W SOW2 POWNER_W3



NOTE RESULTS FOD TLTXELIYYD 2ATIN STATISTICS

M_LR = (T_LR + (5 « P_LR))#/ (500-C) 3
SNL= SORT(((TLR_SS+(25#P_LR))=((5M=CI% (ASN_LR4#2))) #/( 499-C))3
M2_LR= (T_LR) #/ (500-P_LR-C)3
SDL2 = SQRT((TLP_SS=((500-P_LR-C)#(ASN2_LR##2)))#/(499-P_LR-C))3
POWER_LR = 1 = (P_LR #/(50M-C))s

PRINT M_LR SDL M2_LR SDL2 POWER_LR:

NOTE RESULTS FOQ SCORE STATISTIC:
M_SS = (T_SS + (5 * D_SS)) #/(5M=T)3
SDS= SART (((TSS_SS+(25#P_SS))=((500~C)# (ASN_SS##2)))#/(499-C))3
M2_5S = (T_SS) #/ (500-P_S5-C)3s
SNS2 = SNRT((TSS_SS=((500=P_SS=C)I#(ASN2_SS##2 )))#/(409-P_55-C))3
POWZR_SS =1 = (P_S5S #/(500-C))s
DINT M_SS SNS M2_SS SNS2 POWER_SS3

LASTBETA SUMBETA #/ (570-C)3
DIF_3ETA Bs - LASTBSETA:
TOTE COMPARE MAONEL PARAMETFRS TO FSTIMATESS
PRINT R LLASTBETA DIF_BETAs

MNTE MUMBER OF ITERATIVE PROCEDURES THAT DID MOT CONVERGE:
PRINT 3

STOP:
EMD3
ELSE S0TO BEGINg
ENNe
ELSE 6GOTO START:

ex+ SUBRPOUT INE Tn COMPUTE THE LIKELIH400D3
LGLIXE:

'L o= Y(1eT,)2 * (VX(1:T,)*B_LL) = SUMCLOGCI(T, 1 ,1)+ EXP (YN (12T, )*B_LL)))3
ET' DM
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