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Abstract 

ASSESSING THE RELATIVE INFLUENCES OF ABIOTIC AND BIOTIC FACTORS ON A 

SPECIES’ DISTRIBUTION USING PSEUDO-ABSENCE AND FUNCTIONAL TRAIT 

DATA: A CASE STUDY WITH THE AMERICAN EEL (Anguilla rostrata) 

 

By Taylor Woods, Bachelor of Science 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2018 

Major Director: Daniel J. McGarvey, Ph.D., Center for Environmental Studies 

 

Species’ distributions are influenced by abiotic and biotic factors but direct comparison 

of their relative importance is difficult, particularly when working with complex, multi-species 

datasets. Here, we present a flexible method to compare abiotic and biotic influences at common 

scales. First, data representing abiotic and biotic factors are collected using a combination of 

geographic information system, remotely sensed, and species’ functional trait data. Next, the 

relative influences of each predictor variable on the occurrence of a focal species are compared. 

Specifically, ‘sample’ data from sites of known occurrence are compared with ‘background’ data 

(i.e. pseudo-absence data collected at sites where occurrence is unknown, combined with sample 

data). Predictor variables that may have the strongest influence on the focal species are identified 

as those where sample data are clearly distinct from the corresponding background distribution. 

To demonstrate the method, effects of hydrology, physical habitat, and co-occurring fish 
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functional traits are assessed relative to the contemporary (1950 – 1990) distribution of the 

American Eel (Anguilla rostrata) in six Mid-Atlantic (USA) rivers. We find that Eel distribution 

has likely been influenced by the functional characteristics of co-occurring fishes and by local 

dam density, but not by other physical habitat or hydrologic factors. 
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Introduction 

 Characterizing the effects of biotic and abiotic influences on species’ distributions and 

community structure is a long-standing challenge in ecology (Hutchinson 1957, Chase and 

Leibold 2003). To make this endeavor more tractable, abiotic and biotic effects have often been 

conceptualized as distinct levels in a series of nested, hierarchal filters that sort regional species 

pools into local communities (Poff 1997, Jackson et al. 2001). Notably, abiotic effects tend to 

comprise the higher, large-scale levels of the hierarchal filter model, while biotic influences 

comprise the lower, local-scale levels. In this way, species from a regional pool must navigate a 

series of relatively coarse-scale filters, such as physiological thermal constraints, before they can 

potentially take up residence at a particular locality. Then, to become a successful colonist, a 

species must navigate the final local-scale filter: coexistence within the previously established 

community.  

 Perhaps due to the inherent complexity of characterizing biotic interactions within natural 

communities, evidence for the role of abiotic filtering in nature has accumulated more quickly 

than for biotic filtering, particularly at landscape or regional scales (Lawton 1999, Morales-

Castilla et al. 2015). But with global change and other large-scale perturbations rearranging 

species’ distributions and creating novel communities, ecologists are now earnestly working to 

enhance understanding of biotic influences (Parmesan and Yohe 2003, Gallardo and Aldridge 

2013). For instance, improved methods to incorporate biotic interactions in species distribution 

models are an active area of inquiry (Guisan and Thuiller 2005, Wisz et al. 2013). Yet despite 

this progress, two key developments remain that would greatly benefit basic and applied research 

on biotic filtering: (1) improved methods to efficiently and systematically characterize biotic 



8 
 

influences within complex multi-species communities; and (2) a framework to quantify and 

directly compare the relative importance of abiotic and biotic factors. 

 Methods to characterize biotic interactions are often based upon records of pairwise 

species’ co-occurrences (Connor and Simberloff 1979, Gotelli and McCabe 2002). For example, 

species distribution models seeking to incorporate biotic influences on the distribution of a focal 

species have made use of heterospecific occurrence records, abundances, and co-occurrence-

based indices as biotic predictor variables (e.g. Leathwick and Austin 2001, Meier et al. 2011). 

Unfortunately, inferences based on co-occurrence data may be compromised by the fact that 

multiple processes can sometimes lead to the same co-occurrence patterns (Peres-Neto 2004, 

Cazelles et al. 2016). Direct observational evidence of pairwise interactions (positive, negative, 

or otherwise) can overcome these limitations, but such empirical data are difficult to obtain and 

only available for a relatively small number of species pairs (Bascompte and Jordano 2007, 

Connor et al. 2013). Furthermore, biotic influences may manifest as direct or indirect 

associations between many species that are not well-described by pairwise scenarios (Wooton 

1994). Methods to efficiently characterize biotic interactions within complex, multi-species 

datasets (the ‘biotic milieu’ of McGill et al. 2006) are therefore needed (Tylianakis et al. 2008, 

Gallien et al. 2017). 

The second development – a framework to assess the relative importance of abiotic and 

biotic factors – is necessary because differing scales are often used to characterize abiotic and 

biotic influences (Wiens 2011, Staniczenko et al. 2017), which makes direct comparison 

difficult. Abiotic factors are commonly represented by coarse-scale environmental surveys or 

standardized data from a geographic information system, while biotic interactions are evaluated 

at finer scales, often through experimental studies (Jackson et al. 2001, Ovaskainen et al. 2017). 
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Also hindering direct comparisons are the assumptions and logistical hurdles that must be 

navigated when scaling up from the fine-scale biotic data (e.g. point observations) to the larger 

scales at which abiotic data are most often available (Araújo and Luoto 2007, Funk et al. 2016). 

As noted above, a hierarchal filtering framework that a priori assumes abiotic habitat filtering is 

dominant at coarser scales while biotic influences are paramount at finer scales is often used to 

integrate abiotic and biotic data in a single, regional analysis (Pearson and Dawson 2003, 

Boulangeat et al. 2012). But large-scale species distribution and co-occurrence patterns may arise 

from habitat filtering, biotic interactions, or a combination of both processes (HilleRisLambers et 

al. 2012, Cadotte and Tucker 2017). Thus, new tools are needed to facilitate direct comparisons 

of abiotic and biotic influences at common scales. 

 In this study, we demonstrate a method to quantify then compare abiotic and biotic 

influences on the distribution of a focal species. The method uses a combination of physical 

habitat and functional trait data to first quantify abiotic and biotic conditions across a large 

landscape, then uses species’ presence and ‘pseudo-absence’ samples (see next paragraph) to 

assess the relative importance of abiotic and biotic influences on the focal species’ known 

occurrences. Functional trait analyses emphasize species’ physiological, morphological, and 

behavioral characteristics, rather than their taxonomic identities (McGill et al. 2006, Frimpong 

and Angermeier 2010). They are ideal for assessing biotic influences in multi-species datasets 

because traits often regulate biotic interactions (e.g. resource competition among species with 

similar feeding behaviors; MacArthur and Levins 1967). Functional trait data can also be 

aggregated into assemblage- or community-level summaries of biotic influences (Carmona et al. 

2016), then contrasted with abiotic variables. 
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 Pseudo-absence samples are a solution to the ‘problem’ of presence-only data (Pearce 

and Boyce 2006). When presence-absence data are available, a traditional discrimination method 

such as logistic regression can be used to assess the effect of a given variable on a focal species’ 

distribution (Guisan and Zimmermann 2000). However, presence-only data require alternative 

approaches, one of which is to use pseudo-absence samples to characterize the entire range of 

conditions that are potentially available to a focal species, then compare this range with 

conditions at sites of known occurrence (Hirzel et al. 2002). This is the basic method applied in 

Maximum Entropy species distribution modeling (Phillips et al. 2006) and, more generally, point 

process generalized linear models (Renner et al. 2015): a ‘sample’ distribution representing 

conditions at verified presence locations is compared with a random ‘background’ sample, 

representing conditions throughout the potential range (Elith et al. 2011). By comparing sample 

and background distributions, it is possible to determine whether the focal species is responsive 

to a given predictor variable. If so, it will occur in only a subset of the available conditions, as 

indicated by sample and background distributions that exhibit modest or minimal overlap (see 

Fig. 1 of Merow et al. 2013). 

Here, we apply the logic of pseudo-absence sampling by using the degree of sample-

background overlap (SBO) to assess, at a common spatial scale, the relative effects of abiotic and 

biotic variables on a focal species’ distribution. Notably, while species’ presence and pseudo-

absence samples have most often been compiled for abiotic variables (for use in species 

distribution models), the basic SBO approach is applicable to any variable that can be ‘mapped’ 

to the area of interest (Hirzel et al. 2002). However, our goal is not to model the distribution of a 

focal species per se. Rather, by comparing SBO for suites of abiotic and biotic variables, we seek 
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to systematically infer whether the focal species’ distribution is more closely associated with 

abiotic or biotic influences. 

As an empirical context, we focus on the contemporary (records collected between 1950 

– 1990) distribution of the American Eel (Anguilla rostrata) in six Mid-Atlantic (USA) rivers. 

The American Eel has a unique life history that makes it an ideal study organism for a 

comparison of abiotic and biotic influences. Eels are catadromous (ocean spawning) fishes with 

tremendous migratory capabilities and they are not believed to undergo a juvenile imprinting 

process (Gagnaire et al. 2012). Thus, the range of freshwater habitats that an individual Eel can 

potentially colonize is very large. Furthermore, Eels are semelparous and panmictic; adults 

spawn only once and do so within large aggregations of conspecifics. This ‘all eggs in one 

basket’ strategy minimizes the probability that selective forces will drive diversification in local 

habitat use among distinct populations or lineages (Oliveira 1999). Together, these life history 

characteristics suggest that freshwater habitat selection by upstream migrating elvers (juvenile 

Eels) is a ‘real-time’ function of the Eel’s perception of local habitat conditions or assemblage 

structure (of resident fishes), rather than an imprinted or inherited response. 

Using a combination of contemporary Eel occurrence records with data on local 

hydrology and physical habitat (abiotic influences), as well as functional trait data for local fish 

assemblages (biotic influences), our objectives are: (1) to use a combination of species’ 

occurrence and functional trait data to quantify potential biotic influences within regional stream 

networks; and (2) assess the relative importance of abiotic and biotic influences on the regional 

distribution of the American Eel. 
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Material and methods 

Study area and spatial framework 

 This study includes six of the major Mid-Atlantic (USA) river basins within the native 

range of the American Eel (Jenkins and Burkhead 1993): the Potomac, Rappahannock, York, 

James, Chowan, and Roanoke rivers (Fig. 1). To facilitate direct comparisons among variables, 

all hydrologic, physical habitat, and fish data were aggregated within ‘subwatersheds’ or 12-digit 

Hydrologic Units from the US Geological Survey (2012) Watershed Boundary Dataset. 

Subwatersheds are currently the smallest spatial units included in the Watershed Boundary 

Dataset; a total of 1,407 subwatersheds exist within the six major river basins, with a mean 

surface area of 89.3 km2 (SD = 40.5 km2). They were chosen for this study because they 

maximized our ability to match Eel occurrence records with independent data on hydrology and 

habitat data at local spatial scales. 
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Figure 1. Map of the six Mid-Atlantic, USA drainages that defined our study region (i.e. total landscape 
for this study). The extent of each drainage is bounded by dark grey lines and the smaller subdivisions 

within each drainage show all potential subwatersheds. Also shown are the locations of sample 
(representing conditions at sites where the American Eel is known to occur) and pseudo-absence 

(representing a random sample of landscape conditions) subwatersheds that were determined to provide 
adequate data and were therefore included in the analysis (see text). 

Hydrologic data and subwatershed selection 

 Selection of subwatersheds for use in our analyses began with a survey of available 

hydrology data, as these data were the most limiting of the three data classes that we 

incorporated (hydrologic, physical habitat, and biotic). Hydrologic metrics were calculated from 

daily discharge records, downloaded for all stream gauges located within the six study basins via 

the US Geological Survey’s Water Data for the Nation website 

(<https://waterdata.usgs.gov/nwis>). Within each subwatershed that contained at least one 
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stream gauge, we used three criteria to determine which gauge data would be used to represent 

local hydrology (Fig. 2). First, we queried gauges with a minimum of 20 years of nearly 

continuous (periodic instances of several days or weeks of missing data were acceptable) 

discharge records between the 1955 – 1985 water years (i.e. 1 October – 30 September; n = 158 

gauges with sufficient records). This ensured that our hydrologic metrics would be broadly 

representative of contemporary flow conditions (Gan et al. 1991) and temporally consistent with 

the majority of fish occurrence records (collected between 1950 – 1990 in our study basins; see 

Huang and Frimpong 2016 and ‘Fish and biotic/functional trait data’ section below). Second, we 

identified subwatersheds with more than one internal gauge (n = 5), determined which gauge was 

closest to the downstream terminus or ‘pour point’ of each subwatershed, then removed gauges 

that were further upstream. This process narrowed the pool of suitable Hydrologic Units with 

representative flow data to 153 subwatersheds. 

 

< Figure 2. Map illustrating the process to 
select subwatersheds used in this study. Four 
hypothetical scenarios are shown for 
subwatersheds that were: (a) not considered 
due to absence of an internal stream gauge 
(white, thin grey outline); (b) eliminated from 
the analysis due to inadequate flow data (e.g. 
internal gauge supplied flow data outside of 
water years 1960 – 1980; see text); (c) 
eliminated from further analysis due to 
inadequate fish sampling effort (≤ 10th 
percentile of sample densities; see text); and 
(d) retained for further analysis, with 
adequate fish and flow data (white with 
heavy black outline). 
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Hydrology in each of the remaining subwatersheds was then characterized with a subset 

of the Indicators of Hydrologic Alteration (IHA) metrics (Richter et al. 1996). Sixteen IHA 

metrics were selected to represent the five primary flow regime components: magnitude, 

frequency, duration, timing, and rate of change (Olden and Poff 2003). IHA metrics were 

calculated with the ‘IHA’ package (Law 2013) in R (R Core Team 2017), then appended to a 

subwatershed × IHA metrics matrix. From this matrix, we calculated Pearson’s correlation 

coefficients and removed correlated metrics (│r│≥ 0.6), taking care to retain at least one 

variable from each flow regime component (see Table 1). 

 

Table 1. Hydrologic, physical habitat, and functional trait variables used in the analysis following 
elimination of collinear variables. Each of the 27 predictor variables is described including units and 
statistics used for summaries at the subwatershed (CV = coefficient of variation, MD = median, MN = 
mean, %TRT = trait modality proportion). For hydrologic variables, the flow regime component 
represented by the predictor variable is shown in parentheses. 

Variable Code Description SumStat 

Hydrology   

Apr  April stream flow (ft3/s) (Magnitude) MD, CV 

Bsflw Baseflow index (ft3/s) (Magnitude) CV 

DtMn Julian date of annual minimum flow (Timing) MD 

HFlwCnt Count of high flow periods above the 75th percentile (Frequency) CV 

HFlwDur Duration of high flow periods (Duration) CV 

Rev Number of reversals from rising to falling rates (Rate of change) CV 

Physical habitat   

Area Catchment surface area (km2)  MN 

DmDns Density of dams per catchment area (dams/ km2)  MN 
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DmStr Volume of dams per catchment surface area (m3/km2)  MN 

Elev Catchment elevation (m) MN, CV 

Rnff Catchment runoff (mm) MN, CV 

Functional traits    

Fec Fecundity (# eggs) per female per spawning season  MN 

IncbTm Incubation time from embryo fertilization to hatch (hours) MN 

SeasLen Length of spawning season (# months) MN 

Loc Locomotion mode: metric indicating morphology and locomotion  

LocAccl Accelerators: ambush predators with large caudal fins  %TRT 

LocAng Anguilliform swimmers with eel-like bodies  %TRT 

LocCrp Creepers: bottom rovers with subterminal mouths %TRT 

LocCrsr Cruisers: active swimmers with streamlined body forms %TRT 

LocHgr Huggers: benthic fishes adapted to cling to substratum %TRT 

LocMnvr Maneuverers with laterally compressed body forms  %TRT 

LocStbl Mode unique to Paddlefish (Polyodon spathula) %TRT 

 

Physical habitat data 

 Stream habitat within each of the identified subwatersheds was represented by the 

1:100,000 scale National Hydrography Dataset version 2 (‘NHDv2’; McKay et al. 2012). All 

NHDv2 stream segments within each of the 153 selected subwatersheds (see above) were 

queried then appended with physical habitat characteristics from the original NHDv2 attribute 

tables and the StreamCat database (Hill et al. 2016). StreamCat variables represent local habitat 

conditions, including both natural and anthropogenic variables (e.g. land cover, urban land use 
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and geologic data), and are distributed at both catchment (i.e. the landscape that is immediately 

adjacent to a given stream segment, exclusive of landscapes further upstream) and watershed 

scales (i.e. the entire, cumulative landscape that is upstream of and contributing flow to a given 

segment; see Hill et al. 2016). From StreamCat and NHDv2, we selected a suite of 22 catchment-

scale physical habitat metrics to represent instream fish habitat, such as stream order and channel 

slope (Schlosser 1991). Catchment-scale metrics from StreamCat were selected, rather than 

watershed-scale, to better emphasize local conditions. For each of these physical habitat metrics, 

we calculated subwatershed means, medians, maximums, and coefficients of variation (CV), 

based upon the entire population of stream segments within a given subwatershed. Subwatershed 

summary statistics for each physical habitat metric were then appended to a subwatershed × 

habitat variable matrix and correlated variables (│r│ ≥ 0.6) were removed (see Table 1). 

 

Fish and functional trait data 

 Fish occurrence records were obtained from the IchthyMaps database (Frimpong et al. 

2015, 2016) for each of the 153 subwatersheds that satisfied our hydrologic criteria (see above). 

IchthyMaps is a compilation of contemporary fish records (collected between 1950 – 1990) that 

were assembled from multiple sources, then geo-referenced to their respective digital stream 

segments in the NHDv2. Within the study region, IchthyMaps provided a total of 32,463 fish 

occurrence records (distributed among 139 species), 559 of which were American Eel records. 

To account for potential sampling bias in the aggregated IchthyMaps data (i.e. under-sampled 

subwatersheds), we screened subwatersheds that contained low numbers of fish samples 

following McGarvey et al. (in press). Briefly, we calculated sample density as the total number 

of IchthyMaps observations (i.e. total number of occurrence records, regardless of species’ 
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identity) within a given subwatershed, divided by the total length of all stream segments within 

that subwatershed. This helped to detect subwatersheds that were vulnerable to under-sampling 

bias. Subwatersheds with fish sample densities below the 10th percentile (i.e. ≤ 3.0 occurrences 

per km of stream channel; median fish sample density = 11.3, CV = 1.3) were removed (n = 16) 

from the dataset. 

 Fish species’ functional traits were then used to quantify biotic influences within each of 

the remaining subwatersheds (n = 137). We first compiled all IchthyMaps records within each 

subwatershed and converted the species list into a master species’ presence matrix (subwatershed 

× species). Next, we collected functional trait data for each species through an extensive 

literature review, inclusive of the four data sources reported in Mims et al. (2010): (1) regional 

fish atlases (i.e. ‘The fishes of…’ texts); (2) primary and secondary literature publications; (3) 

the online FishBase (<www.fishbase.org>) and FishTraits (<www.fishtraits.info>) databases; 

and (4) keyword internet searches. For species’ traits with multiple published values, we retained 

observations that were reported from localities that were closest to our study area. For instance, 

functional trait descriptions from the Freshwater Fishes of Virginia (Jenkins and Burkhead 1993) 

were prioritized over other sources for many of our trait values. Functional trait data were then 

compiled into a species × trait matrix and categorical variables were re-coded as binary dummy 

variables. 

Finally, functional trait summaries were calculated for each subwatershed. Mean, median, 

and maximum values were calculated for numeric traits while proportions (% trait modality) 

were calculated for categorical traits. Importantly, we omitted American Eel traits from the 

subwatershed trait summaries because our objective was to detect interspecific trait influences on 

contemporary Eel occurrences; we sought only to determine which traits of co-occurring species 
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may affect Eel habitat select, not to define whole assemblage trait profiles or to assess 

intraspecific effects. We then compiled subwatershed trait summary values into a subwatershed 

× trait matrix and removed highly correlated variables (│r│≥ 0.7; see Table 1).  

 

Comparing sample and background distributions 

 After each of the above screening and data preparation steps was complete, our final 

dataset consisted of 24 subwatersheds with confirmed American Eel presences and 113 pseudo-

absence (i.e. Eel presence was unknown) subwatersheds (Fig. 3, step 1). Thus, we had 24 sample 

units and 137 background units (i.e., the combined landscape of 113 pseudo-absences and 24 

samples; see Hirzel et al. 2002, Elith et al. 2011) to use in our analyses. We then implemented a 

random permutation algorithm to assess similarities between the sample and background 

distributions for each of the physical habitat, hydrologic, and functional trait variables. 

Permutations were used instead of direct, static comparisons of the complete sample and 

background distributions for each variable because we did not wish to overfit our results, thereby 

leading to low transferability or generality (Thomas and Bovee 1993, Chatfield 1995).  



20 
 

 

Figure 3. Workflow diagram of the procedure to compute permuted sample-background overlap (SBO) 
and Mann-Whitney U statistics for each of the predictor variables included in this study. Major steps in 
the process are identified with numbers and explained in the Materials and Methods (main text). Here, 

the total landscape consisted of all subwatersheds within the six study river basins. 

 In each of 1000 permutations, we randomly selected (without replacement) 12 of the 24 

sample units and 60 of the background units (Fig. 3, step 2). These permuted sample sizes 

preserved the original, approximate ratio of sample:pseudo-absence units (~ 1:5) and ensured 

that our results would not be biased by unbalanced representation of the sample or pseudo-

absence data in any given permutation. We then compared the randomized sample and 

background distributions for each of the physical habitat, hydrologic, and functional trait 

variables with a 2-step process (Fig. 3, step 3). First, we quantified sample-background overlap 

(SBO) as the literal area of overlap between continuous sample and background distributions 
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(i.e. superimposed probability distribution functions), with potential values ranging from 1 

(perfect overlap) to 0 (no overlap). SBO values close to 1 suggest that sample and background 

units are both random samples from the complete landscape (i.e. sample values for the predictor 

variable do not differ with respect to the background values, Ho). Alternatively, SBO values 

much smaller than 1 imply that sample units are nonrandom with respect to the landscape (i.e. 

the sample values encompass a relatively small subset of the complete range of background 

values, indicative of a selective process, HA; see Hirzel et al. 2002). 

For each permutation and all predictor variables, SBO was calculated with equation 4 of 

Mouillot et al. (2005); their equation 4 was conceived as a metric of overlap in the trait densities 

of two co-occurring species, using kernel density functions (see also Mason et al. 2008, 2011). 

Our application of Mouillot et al. (2005) was, however, fundamentally different; while the 

original authors interpreted a high degree of overlap among kernel functions as evidence of 

potential competition, we sought to identify variables with minimal overlap as evidence of a 

strong, non-random influence on Eel distribution. Because many of the variables considered here 

were non-normal and/or contained zero values (e.g. dam density), we applied a ln (x + 1) 

transformation to all continuous variables. All kernel density estimates were calculated with the 

density function (Gaussian kernels and default bandwidth and n settings) in the stats package in 

R. 

 In the second step, nonparametric Mann-Whitney U-statistics were used to determine 

whether permuted sample values were consistently higher or lower than permuted background 

values for each of the physical habitat, hydrologic, and functional trait variables. Two-sided 

statistics were used because we did not expect a priori that Eel sample values would consistently 

be higher or lower than background values for most of the predictor variables; we sought only to 
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document whether the sample and background distributions were consistently different. In each 

permutation, we calculated and recorded the U-statistic from a 2-sided Mann-Whitney test for 

each variable, using the wilcox.test function in R. U-statistic values were then interpreted relative 

to the magnitude of deviation from an equal ranking of sample and background values (i.e. U = 

360). U values closer to zero indicated that sample distribution values were consistently ranked 

higher or were larger than background values, whereas U values approaching the maximum (i.e. 

U = 720) indicated that sample values were consistently ranked lower or were smaller than 

background values for a given variable. 

As a final step, we used a multivariate SBO approach to assess the collective effect of 

each of the three classes of variables on Eel distributions throughout the study rivers. For each 

class of predictor variable, nonmetric multidimensional scaling (nMDS) was used to build a 2-

dimensional ordination of the sample and background data. Ninety-five percent confidence 

ellipses, or ‘hypervolumes’ (Blonder et al. 2014), were interpolated for the sample points and 

background points in each ordination plot, with the regions defined by the background ellipses 

indicating the expected hypervolume for a random sample of the complete landscape. We then 

visually assessed the degree of overlap between sample and background hypervolumes to 

determine whether Eel occurrences were nonrandom with respect to the background 

hypervolume for each of the three predictor variable classes. We did not, however, use 

permutations to perform repeated comparisons of the sample and background hypervolumes. 

Instead, we used the complete sample and background data (n = 24 and 137, respectively) to 

perform a single multivariate SBO analysis for each of the three classes of predictor variables. 

For each predictor class, we calculated a Gower dissimilarity matrix (Gower 1971) that included 

all variables within the class (i.e. three independent subwatershed × subwatershed dissimilarity 
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matrices), the used the dissimilarity matrices to perform nMDS. Gower dissimilarities were 

calculated with the ‘FD’ package (Laliberte et al. 2014), nMDS was performed with the ‘vegan’ 

package (Oksanen et al. 2017), and confidence ellipses were plotted with ‘ggplot2’ (Wickham 

2009) in R. 

 

Data deposition 

The raw data and code for analyses are found on figshare: 

<https://doi.org/10.6084/m9.figshare.5481205.v3> (Woods and McGarvey 2017). 

 

Results 

Permuted statistics for individual predictor variables 

 Of the three predictor variable classes, hydrologic variables generally exhibited the 

highest SBO values (median SBO = 0.83, CV = 0.06; Fig 4a), suggesting that contemporary 

occurrences of the American Eel are not strongly associated with specific hydrologic conditions. 

Only bsflwCV had low permuted SBO values (< 0.75; Fig. 4a) and U values that strongly 

deviated from the line of equality, with sample values consistently larger than background values 

(Fig. 4b). Sample and background distributions differed minimally with respect to the remaining 

hydrologic variables. In comparison, physical habitat variables appeared to have greater 

influence on the contemporary Eel distribution (median SBO = 0.76, CV = 0.16; Fig 4a). In the 

physical habitat class, low permuted SBO values were observed for dmDnsMN and elevMN 

(Fig. 4a). U values showed that sample observations were consistently larger than background 

observations for dmDnsMN, but the opposite trend was observed for elevMN (Fig. 4b). Overall, 

the functional trait data class had the lowest SBO values (median SBO = 0.69, CV = 0.32), with 
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particularly low permutation values for locMnvr, locCrsr, incbTm, and seasLen (Fig. 4a). 

Sample distribution values of locMnvr and seasLen were higher than background, whereas 

locCrsr and incbTm background values exceeded sample values (Fig. 4b). 

 

Figure 4. Boxplots (25th, 50th, and 75th quartiles) showing permutation results as sample-background 
overlap (SBO; panel a) and Mann-Whitney U-statistic (panel b) values. Boxplot colors denote the three 
classes of predictor variables: hydrologic (white, black outline), physical habitat (grey hatched, black 

outline), and functional traits (black, white outline). In panel b, the horizontal line at U = 360 represents 
rank equivalence between sample and background distribution values. Below the rank equivalence line, 
sample distribution values are, on average, larger than background values for the variable in question. 
Above the rank equivalence line, sample distribution values are smaller than background values for the 

variable in question. 
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Multivariate hypervolumes 

Consistent with permutation results 

for individual variables, comparisons of the 

multivariate sample and background 

hypervolumes for the three data classes 

indicated that functional traits may have the 

overall strongest influence on Eel 

occurrence. Sample and background 

hypervolumes exhibited extensive overlap 

for hydrologic variables (Fig. 5a). Overlap 

between sample and background 

hypervolumes was intermediate for 

physical habitat variables (Fig. 5b). 

Hypervolume overlap was smallest for the 

functional trait data class, with 

approximately 50% overlap observed 

between the sample and background 

hypervolumes (Fig. 5c).  

 

 

 

< Figure 5. Nonmetric multidimensional scaling 
(nMDS) ordination plots for the hydrologic (a), 
physical habitat (b), and functional trait (c) data 
classes. Hypervolumes are shown as 95% 
confidence ellipses for sample (light grey) and 
background (dark grey) data. Points represent 
individual subwatersheds from the sample 
distribution (light grey triangles) and the 
background distribution (dark grey circles). 
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Discussion 

Abiotic and biotic influence on American Eel distribution 

 Within six Mid-Atlantic rivers, we compared abiotic and biotic conditions at confirmed 

American Eel presence sites (the sample distribution) against a representative sample of 

conditions across the entire landscape where Eel occurrence was unknown (the background 

distribution). In general, results indicated that the sample distribution was more closely 

associated with physical habitat and the functional traits of co-occurring fishes than with 

hydrology.  

Dam density appeared to have one of the strongest influences on Eel distribution. This 

result seemed intuitive because it is well-known that dams prevent migratory Eels from reaching 

upstream tributaries (Wiley et al. 2004, Machut et al. 2007) and can influence Eel distributions 

more than other local scale, abiotic factors (Hitt and Roberts 2012). However, the direction of 

influence of dam density values was surprising: rather than associating with low dam densities, 

the Eel sample distribution suggested that Eels may be associated with relatively high dam 

densities. This counterintuitive result may be explained by a tendency for Eels to aggregate near 

dams. Prior studies have shown that Eel densities increase near dams and suggested that this may 

result from large congregations of Eels that gather downstream of impassable barriers (Machut et 

al. 2007). We mapped our Eel presence records against georeferenced dam locations and found 

that the sample distribution may have included multiple sites that were downstream of an 

impassible dam (these sites would have high dam density values) and therefore represented the 

upstream limits of potential Eel migration (see Appendix, Fig. A1). If so, the strong association 

between Eel presence and high dam density may be an artifact of higher probability of Eel 
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capture at these sites, rather than a preferential selection of subwatersheds with high dam 

densities per se.  

We found that local hydrology may play a minimal role in determining Eel presence. The 

only variable within this class that showed an effect on Eel distribution (bsflwCV) seems to 

suggest that the sample distribution may be associated with habitat characterized by variable or 

unpredictable flows. These results are surprising because Eels are migratory and might therefore 

be expected to associate with specific, predictable flow conditions (Bunn and Arthington 2002). 

One possible explanation for the lack of a strong, consistent Eel-flow relationship is that the set 

of hydrologic predictor variables did not include the flow components that are truly of greatest 

importance to migratory Eels. Nonetheless, these results are consistent with studies that failed to 

identify strong associations between Eel populations and local abiotic variables (Smogor et al. 

1995, Wiley et al. 2004). 

Overall, functional trait characteristics tended to be important in differentiating sample 

and background distributions. To explain these results, we group the trait variables into two 

categories: reproductive behavior and locomotion. Reproductive trait results indicate that Eels 

may associate with heterospecific fishes that have high reproductive capacities shown through 

shorter incubation times and longer spawning seasons. Locomotion traits suggest that Eels are 

highly associated with heterospecifics that exhibit maneuvering locomotion modes, but not with 

cruising species. Taken together, these functional trait results may suggest that Eels locally 

coexist with a suite of traits that provide lowered resource competition and increased prey 

availability. Eels are thought to compete with cruising species whose active streamlined body 

forms make them superior predators to comparatively slow anguilliform species (Sinha and 

Jones 1967) and our results suggest Eels may select sites with lower proportions of these species. 
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Alternatively, Eels may favor coexistence with maneuvering species because these 

comparatively sluggish locomotion modes make them less adept competitors and easier prey. 

 

Functional traits as proxies for biotic interactions 

 Pairwise (species × species) approaches have traditionally been used to study biotic 

interactions, with methods ranging from basic null models to more recent developments in 

network analysis. However, these approaches can be computationally impractical because the 

number of species pairs that may potentially interact grows quickly as the number of locally co-

occurring species increases (Morales-Castilla et al. 2015). In the present context, information on 

138 pairwise associations would be needed to fully account for all direct biotic interactions 

between the American Eel and locally co-occurring heterospecifics. More efficient methods to 

account for biotic interactions are clearly needed.  

Using functional traits to generalize processes that are logistically difficult to quantify on 

a species × species basis is currently an active area of research. For example, body size may be 

used to estimate dispersal in metacommunity frameworks (De Bie et al. 2012), multidimensional 

trait classifications can be used to link species to their ecosystem functions (Winemiller et al. 

2015), and knowledge of trait performance in relation to the environment may be used to predict 

community responses to abiotic filtering (Webb et al. 2010). Here, we demonstrated a general, 

flexible method to quantifying biotic interactions using community functional traits. The 

question now is whether the observed sample-background trait differences truly convey the 

influence of biotic interactions. Direct, empirical evidence linking traits to interaction effects 

through measurable changes in population growth rates is currently lacking (Alexander et al. 

2016). But obtaining this empirical evidence may be difficult or impossible, given that relatively 
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few species pairs exhibit strong interactions (e.g. predation or obligate mutualism), while weak 

interactions (e.g. size-dependent competitive encounters) may be common. Therefore, less 

specific methods that use functional traits to infer species’ ecosystem roles may be a better way 

to operationalize traits-based approaches to biotic interactions (McGill et al. 2006). 

Our study demonstrates two benefits of a such a generalized, traits-based approach. First, 

as noted above, community trait analyses are more computationally feasible and less data-limited 

than biotic filtering studies that rely upon large numbers of pairwise species contrasts. Second, 

removing taxonomy from the study of biotic interactions makes results transferable between 

disparate regions and at coarser spatial scales. Therefore, our traits-based results are potentially 

relevant to anguillids globally, whereas taxonomic analyses will necessarily change with 

turnover in the composition of local fish assemblages. Anguillids demonstrate this benefit 

particularly well because freshwater Eels worldwide exhibit similar life histories and results 

derived from one species of Anguilla may be transferrable to congeners (Haro et al. 2000). For 

example, our results for American Eel distribution may apply to European Eel (A. anguilla) or 

New Zealand Longfin Eel (A. dieffenbachia) distributions. 

 

SBO logic as a flexible tool to compare abiotic and biotic influences 

Hierarchal frameworks have traditionally presumed that biotic filtering is a local-scale 

process. However, it is now recognized that biotic filtering can also drive species distribution 

patterns at large spatial scales (Kraft et al. 2015). A need for methods that directly compare 

biotic and abiotic influences at common scales has therefore emerged and we conclude by 

discussing some limitations and benefits of our method to make such comparisons. 
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One potential caveat in our results is the possibility that inferred biotic effects (i.e. 

functional traits with low permuted SBO values and high magnitude U) could be artifacts of 

abiotic filtering processes that regulate species’ presences and, by extension, perceived 

functional trait patterns. For instance, our observation that Eels are highly associated with the 

prevalence of maneuvering (locomotion mode) heterospecifics could be artefactual if dams have 

a strong influence on the presence of maneuvering fishes. In this case, we do not believe that our 

biotic filtering results are spurious. Using linear regression, we found no evidence that that the 

proportion of maneuvering fishes was indicative of species composition downstream of dams 

(F1,111 = 1.19, p = 0.278). However, we acknowledge that post-hoc tests to confirm that a given 

functional trait result is not an artifact of another abiotic variable will often be necessary, either 

for discrete pairs of variables (e.g. linear regression) or entire networks of variables (e.g. 

structural equation modeling). 

 Perhaps the greatest benefit of our approach is that the use of a background distribution 

that incorporates sample and pseudo-absence data leads to stronger inferences than studies based 

solely on an empirical sample distribution. By evaluating the sample distribution in the context 

of a regional background distribution, we can begin to identify variables that truly drive filtering 

processes, whereas methods that omit an additional background context can only summarize 

observed species-habitat associations. Therefore, this framework may provide a powerful context 

for selecting covariates in species distribution models.  For instance, a logical next step from our 

analysis would be to develop formal models of American Eel habitat suitability, using results 

from the SBO procedure to inform the covariate selection process. But the extent of our data (i.e. 

not a continuous representation of the entire range of the American Eel) limited our ability to 

conduct a robust distribution modeling analysis. The full potential of our framework may be best 
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measured by applying more extensive datasets to our framework and selecting the ‘top’ ranked 

variables from the SBO procedure for inclusion in the species distribution models.  

 The SBO framework is flexible and can be applied to numerous species in diverse 

settings and at varying spatial scales. Thus, we believe this approach has potential to shed new 

light on the relative roles of abiotic and biotic filtering in community assembly. Importantly, our 

approach is readily compatible with a growing number of publicly available climate, physical 

habitat, functional trait, and species’ occurrence datasets. To quantify the ‘biotic background’, 

we used community mean functional trait values, but the framework is flexible enough to 

accommodate any number or class of predictor variables. For instance, future studies could 

include emergent indicators of community traits, such as functional diversity indices (Villéger et 

al. 2008), or measures of phylogenetic similarity. A better understanding of the role that biotic 

filtering plays in regulating community assembly will also benefit conservation efforts, 

particularly when predicting community responses to global change (Blois et al. 2013).  
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Figure A1. An illustration of a subwatershed exhibiting high dam density, effectively preventing the Eels 
from moving further upstream. Downstream of large, impassible dams, Eels tend to congregate and are 

therefore more easily captured during stream surveys. 
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