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Abstract

ESTIMATING THE RESPIRATORY LUNG MOTION MODEL USING TENSOR DECOMPOSI-
TION ON DISPLACEMENT VECTOR FIELD

By Kingston Kang

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Major Director: Nitai Mukhopadhyay, Associate Professor, Department of Biostatistics

Modern big data often emerge as tensors. Standard statistical methods are inadequate to deal with

datasets of large volume, high dimensionality, and complex structure. Therefore, it is important to

develop algorithms such as low-rank tensor decomposition for data compression, dimensionality

reduction, and approximation.

With the advancement in technology, high-dimensional images are becoming ubiquitous in the

medical field. In lung radiation therapy, the respiratory motion of the lung introduces variabilities

during treatment as the tumor inside the lung is moving, which brings challenges to the precise

delivery of radiation to the tumor. Several approaches to quantifying this uncertainty propose using

a model to formulate the motion through a mathematical function over time. [Li et al., 2011]

uses principal component analysis (PCA) to propose one such model using each image as a long

vector. However, the images come in a multidimensional arrays, and vectorization breaks the spatial

structure. Driven by the needs to develop low-rank tensor decomposition and provided the 4DCT

and Displacement Vector Field (DVF), we introduce two tensor decompositions, Population Value



Decomposition (PVD) and Population Tucker Decomposition (PTD), to estimate the respiratory lung

motion with high levels of accuracy and data compression. The first algorithm is a generalization

of PVD [Crainiceanu et al., 2011] to higher order tensor. The second algorithm generalizes the

concept of PVD using Tucker decomposition. Both algorithms are tested on clinical and phantom

DVFs. New metrics for measuring the model performance are developed in our research. Results of

the two new algorithms are compared to the result of the PCA algorithm.



Chapter 1

Introduction

1.1 Background Knowledge

Functional analysis methods and algorithms can be used to interpolate and extrapolate data. However,

with the advent of the big data era, modern large datasets often exhibit features including large

data volume, high data dimensionality, and complex data structure which render most traditional

statistical methods inadequate, since most standard methods and algorithms scale exponentially

with data volume (size). The phrase ‘curse of the dimensionality’ [Bellman, 2015] is frequently

used to describe that the number of elements in a high-dimensional and large-scale data increases

exponentially as the dimensionality of the data increases, which eventually leads to the inability

or inadequacy of standard machine learning algorithms dealing with datasets with extremely high

volume, dimensionality, and complex structures [Cichocki et al., 2016]. Modern big data sets

often emerge and are more efficiently presented and stored as multi-dimensional arrays, which

are often referred to as tensors. On top of the high data volume, the complex and rich structural

information in the data adds an additional layer of difficulty in analyzing tensors, which are

multidimensional array of structured data. Therefore, it is very important to develop machine

learning algorithms such as low-rank tensor decomposition for dimensionality reduction, data

compression, and approximation. In this dissertation, we focus on introducing two new low-rank
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tensor decomposition and approximation algorithms with a specific application on displacement

vector field to build a respiratory lung motion model. We will be explaining the terminology

displacement vector field in Chapter 2 and the two new algorithms in Chapters 4 and 5.

Tensor decomposition is able to decompose high-dimensional datasets with complex multi-

dimensional structures (we will refer to such datasets as tensors) into their intrinsic factor tensors

or matrices and core tensors or matrices (definitions are given in Chapter 5). In fact, the well-

known statistical method principal component analysis, which can be accomplished through either

Eigen decomposition (spectral decomposition) [Chatterjee et al., 1997, Abdi, 2007a] or singular

value decomposition [De Lathauwer et al., 1994], is the most basic and special example of tensor

decomposition in two-dimensional case [Vasilescu and Terzopoulos, 2003]. In fact, researchers have

generalized these commonly known decompositions in two-dimensional case to higher dimensional

tensors [Cardoso, 1991, Yang et al., 2006, Cardoso, 1990, Abdi, 2007b, De Lathauwer et al.,

2000a, Grasedyck, 2010, Savas and Eldén, 2007]. Through tensor decomposition, we are able

to store high volume data as highly compressed low-rank tensors [Kolda and Sun, 2008]. The

original high volume tensor can be reconstructed or approximated through operations on those

decomposed factor and core tensors and matrices. Tensor decomposition achieves high level data

compression and dimensionality reduction through dissecting data into relevant and irrelevant parts

[Verstraete et al., 2008, Fukuhara et al., 2013, Orús, 2014, Szalay et al., 2015]. The level of data

compression can be performed on datasets with more than 1050 entries to a manageable size of 107

or less [Oseledets and Tyrtyshnikov, 2009, Dolgov et al., 2014, Kazeev et al., 2013, Kressner et al.,

2014, Vervliet et al., 2014, Dolgov and Khoromskij, 2015, Liao et al., 2015].

Due to the advancement in technology and apparatus, high volume large data are becoming

ubiquitous in the medical field [Doi, 2007, Lindner, 2004, Marro et al., 2016, Chung and Kim,

2015, Rosenkrantz et al., 2016, Chen et al., 2014, Picano et al., 2014]. 3D+Time images (such as

4D CT scans) are commonly used in assisting medical procedures. Such large high-dimensional

medical images can have billions of elements with rich and complex structures. Thus, it is natural
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to store high dimensional medical images as tensors (multi-dimensional arrays) to retain both

the high volume and the complex data structures. However, due to the extremely high volumes,

high-dimensional images are difficult to analyze.

In this dissertation, the specific type of tensor data we are dealing with is five-dimensional

(5D) displacement vector field derived from 4D CT lung scans (4DCT) obtained to help with

planning radiation therapy. We will present how these 4DCT images are obtained and how the 5D

displacement vector field is derived. We believe that understanding the process of data collection

is crucial for performing any type of analysis. The displacement vector field is used to build a

respiratory motion model which will help with planing radiation treatment. Previous research in

this area includes average motion model and PCA-based motion model. This paper [McClelland

et al., 2013] gives a good review of the current respiratory motion models available. We will be

explaining the PCA-based motion model in Chapter 3 and use that as the current standard, since

PCA-based model achieved better performance over average motion model [Li et al., 2011].

1.2 Radiation Therapy for Lung Cancer

Cancer is the leading cause of death worldwide [Ries et al., 2006, Jemal et al., 2008] and lung cancer

is the most common type of cancer. The three main types of lung cancer include non-small cell lung

cancer which accounts for about 85% of lung cancer, small cell lung cancer, and lung carcinoid

tumor. Depending on the stage of cancer and other factors, external beam radiation therapy (EBRT)

can be used as a treatment or in combination with other treatments. In EBRT, the precise delivery

of radiation to the tumor while reducing the radiation exposure to the surrounding healthy tissue

is one of the primary concerns. Due to the respiratory motion of the lung, the tumor inside the

lung is constantly moving, which makes it harder to achieve an accurate delivery of radiation to the

tumor. The error in external radiation treatment introduced by the respiratory motion of the lung is

rather significant [Keall et al., 2006]. Currently, there are two common techniques of reducing the
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errors of radiation delivery introduced by respiratory motion of the lung. The first method is called

deep inspiration breath hold (DIBH), where patients take a deep breath and hold his or her breath

during the radiation treatment period. By holding the breath, we can minimize the lung motion

due to respiration [Rosenzweig et al., 2000]. However, DIBH has its drawbacks including complex

setup, increased time for treatment delivery, high level of patient cooperation, and technical support

[Hanley et al., 1999]. The other method is free breathing technique, where patients are allowed to

breath freely throughout the entire treatment delivery. Regardless of the methods, they all have their

own advantages and drawbacks. However, the comparison of the two methods is not the focus of

this dissertation. We focus on developing statistical methods and algorithms to increase the accuracy

of radiation delivery using the free breathing technique. Currently, research solves this problem

by developing a respiratory motion model for each patient. This model will be developed prior to

radiation treatment and used throughout the radiation treatment. Our primary goal is to improve the

current respiratory motion model by developing algorithms with better prediction accuracy and a

higher level of data compression.

We believe that having some background knowledge about the radiation planning stage is helpful

for readers to understand the problem and the data that we will be using in this dissertation. After

deciding to receive radiation as an option for treating lung cancer and before actually receiving the

treatment, every patient must undergo a simulation stage during which a computed tomography (CT)

scanner will take multiple transverse slice images of a patient’s lung. These images will be used to

help doctors and radiation physicists with planing the radiation treatment and dose re-evaluation.
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Chapter 2

Displacement Vector Field and Respiratory Lung Motion

2.1 Data Collection Procedures and Data Structures

The data we will be using to estimate the respiratory lung motion model is called the displacement

vector field (DVF), which is a five-dimensional array of structured data (fifth-order tensor). A good

understanding of the data structure of the DVF data is crucial for performing any statistical analysis

and modeling. The best way to reveal and understand DVF data structure is through looking at the

data collection procedures.

Before receiving any radiation treatment, patients must undergo a simulation stage during which

a CT scanner will take multiple images of a patient’s lung. During a CT scanning, numerous x-ray

beams and a set of electronic x-ray detectors rotate around the patient measuring the amount of

radiation passing through the body, which in turn reveals the amount of radiation being absorbed by

the scanned body parts. A computer will process the data and generate a 2D transverse slice plot of

the scanned body parts in gray scales for each rotation. Different body parts absorb radiation by

different degrees. The difference in the abilities to absorb radiation will be reflected by different

intensities of gray in the 2D plot. The scanner will first take a 2D transverse slice at a starting

location in one rotation, and it will move a couple millimeters and take another 2D transverse slice.

It will repeat this process until the entire lung area of the patient is covered. Due to the advancement
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in technology, modern CT scanners are able to acquire multiple transverse slices in a single rotation,

which also shortens the time of the entire CT scanning process.

The following is an example of a 2D transverse slice (Figure 2.1a) taken by a CT scanner plotted

in gray scales. We can store this 2D image as a matrix (Figure 2.1b). The number of rows and

columns of the matrix is directly determined by the total number of pixels in the original image.

Typically, a transverse slice has a resolution of 512 by 512. After cropping the images close to the

anatomy, the sizes of a cropped image will be reduced and will vary from patient to patient. The

images we received are cropped and are about 300 by 450. When storing a 2D transverse slice as a

matrix, there are about 300 rows (the size of r) and 450 columns (the size of c) in the matrix.

(a) A 2D Transverse Slice


pixel11 pixel12 . . . pixel1c
pixel21 pixel22 . . . pixel2c

...
... . . . ...

pixelr1 pixelr2 . . . pixelrc


(b) Saved as an r-by-c matrix

Figure 2.1: A 2D Transverse Slice Saved as an r-by-c Matrix

When we stack multiple 2D transverse slices together, we will have a 3D image representation

(Figure 2.2a) of a patient’s lung. The 3D object can be stored as a third order tensor (Figure 2.2b).

The border of the tensor in Figure 2.2b is for the purpose of demonstration only. Here we will

be explaining the concept of a tensor and its related elements in the context of DVF rather than

designating a separate chapter for tensors alone.

A tensor is a multi-dimensional array of structured data. A basic concept in tensor is mode

which is the same as the order of a tensor, and both mode and order quantify the dimensions of

a tensor. For example, Figure 2.3 is a three-dimensional array, which is a third order tensor with

three modes. Another basic concept in tensor is fiber, which is a vector in a given mode. The third

order tensor shown below (Figure 2.3) has three modes. Each cube in the tensor corresponds to
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(a) Multiple 2D transverse slices (b) Saved as a third order tensor

Figure 2.2: Multiple 2D Transverse Slices Saved as a Third-order Tensor

an element or a voxel in the 3D image obtained by stacking multiple 2D images. The green cubes

together form a fiber in the first mode (called a mode-1 fiber); the blue cubes form a fiber in the

second mode (mode-2 fiber); and the yellows cubes form a fiber in the third mode (mode-3 fiber).

An element in the tensor can be represented using a lower case letter and its position can be referred

using subscripts. For example, the red cube can be referred to as x2,5,3. The concept of fiber is

important because some techniques used in some algorithms introduced in Chapters 3 and 5 require

different manipulations of fibers in tensor. We will explain the techniques in the chapters in which

the algorithms are introduced and discussed.

Figure 2.3: Fibers in a third order tensor

In order to capture the motion of the lung, we need to acquire multiple 3D images of the lung

stored as tensors at different time points within a breathing cycle (Figure 2.4). An entire breathing

cycle is evenly divided into ten segments with a total of ten time points, one time point at the

beginning of each segment. These time points are referred to as phases. A 3D image of the lung is

acquired at each phase as shown in Figure 2.4). Typically, we acquire multiple 3D images of the
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lung over multiple breathing cycles and then combine all the images to take a phase-wise average.

Figure 2.4: Tensors at Ten Phases Within One Breathing Cycle

Unlike 4DCT where each voxel has a value that represents intensity of its color, each cube in

the DVF tensor data is not just one value but a vector of length three. This vector is referred to

as the displacement vector, and this is where the DVF gets its name. We will first explain what

displacement vector is and then how we obtain the displacement vector through applying image

registration on 4DCT in the following paragraph. Displacement vector is a concept in physics and

refers to a vector whose length is the shortest distance from the initial to the final position of a

point in space. We will use an example (Figure 2.5) in 2D space to help familiarize readers with

this concept. Imagine a point whose location is at the origin at time T1. This point moves to a new

location at time T2. The vector ~v = (a, b) , which is of length 2, pointing from the origin to the new

location, is the displacement vector that both quantifies the magnitude and gives the direction of

the motion of this point from the initial position to the final position within this 2D space. Simply

stated, the displacement vector is the difference or the subtraction between the positions of this

point at T2 and T1. In the case of DVF data, the displacement vector is in 3D space and is of length

three. These three elements will be referred to as three different coordinates (cor1, cor2, cor3).

The displacement vector in the DVF data is obtained by registering all images at all phases

onto the same reference image through image registration. This registration is done patient-wise.

Different patients are most likely to have different reference images. The displacement vector

for each voxel (defined to be any of the discrete elements comprising a three-dimensional entity
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Figure 2.5: Displacement Vector in 2D Space

[Merriam-Webster.com. Merriam-Webster, 2018. Web. 16 Feb 2018.]) at any given phase provides

the displacement of the corresponding anatomical locations from the reference image to the observed

CT images at the given phase. For example, the difference between the image at phase 1 and the

reference image is obtained by registering the image at phase 1 onto the reference image. The

difference at each voxel or element (we will use the two words interchangeably) between the

reference image and the image at phase 1 is a displacement vector of length three, which describes

the element’s motion and its new position at phase 1 from the reference image. Image registration

is a topic that contains a lot of interesting study and research. The images we used have been

pre-registered (thanks to Matthew Riblett). Because image registration is not the focus of our

research, we will not be discussing the techniques and processes of image registration in greater

detail. If readers are interested, we refer them to these articles [Lucas et al., 1981, Mattes et al.,

2003, Collignon et al., 1995, Maes et al., 1997, Maintz and Viergever, 1998, Studholme et al.,

1996, Pietrzyk et al., 1994, Zitova and Flusser, 2003, Dzingwa and Hayes, 2017, Oliveira and

Tavares, 2014].

To summarize the DVF structure, it is a fifth order tensor with 5 modes (Figure 2.6). The first

mode of DVF is the total number of rows in a 2D cropped transverse slice saved as a matrix, which

is about 300 and can vary from patient to patient. The second mode is the total number of columns

in a 2D cropped transverse slice saved as a matrix, which is about 400 and can also vary from

patient to patient. The third mode is the total number of 2D transverse slices taken, which is about
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100 and can also vary from patient to patient. The fourth mode is the total number of phases, which

is a fixed number of 10. The fifth mode is the displacement vector in a 3D space derived from CT

scans by registering images at each phase onto a reference image, which is of length 3. In general,

one set of DVF for one patient contains about 360 millions (300× 400× 100× 10× 3) elements.

To put that in the unit of computer memory, it is about 2 gigabytes worth of data per patient.


mode1 : mode2 : mode3 : mode4 : mode5 :

# of rows in # of cols in # of # displacement
a transverse a transverse transverse of vector

slice slice slices phases (cor1, cor2, cor3)
300ish 400ish 100ish 10 3


Figure 2.6: Size of each mode is a displacement vector field (DVF)

The large size and high dimensionality of DVF data renders most traditional statistical and

functional modeling inadequate. DVF is associated with a subject’s lung anatomy, and therefore

the distances between two elements in DVF are associated with actual physical meanings. If two

elements in DVF tensor are next to each other, they represent tissues that are also close to each other

in the subject’s lung. Images are acquired over a period of time as represented by the measure of

phase. Therefore, the structure of the DVF contains both spatial and temporal components and is

multi-relational, which is another obstacle in analyzing the data.

2.2 Challenges Related to Analyzing Large-scale,

High-dimensional, and Multi-relational Data

The challenges related to analyzing DVF are the massive size, high dimensionality, and multi-

relational (both temporal and spatial relations) structure. In later chapters, we will be discussing

the current algorithm, a principal component analysis (PCA) based algorithm, used to estimate

the respiratory lung motion from DVF. We will explain how the algorithm works together with its
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advantages and drawbacks. Following this, we will introduce the two new algorithms and eventually

compare them to the current PCA algorithm.

2.3 Clinical Displacement Vector Field Data

In this section, we will present the detailed structure and size of the ten sets of clinical DVF data

that we will be using for analysis. These DVF are all obtained from Massey Cancer Center, School

of Medicine, Virginia Commonwealth University.

The ten sets of DVF data belong to ten different patients. Each patient has their own set of DVF.

To prepare DVF data for analysis, the data has to be registered. Image registration takes some time

and has its own field of important and interesting study and research. Here we present the size of

each mode in each set of DVF data in Table 2.1 and Table 2.2 .

Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 300 450 110 10 3

Table 2.1: Size of One Set of Clinical Full Lung DVF

Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 210 143 94 10 3
2 230 143 112 10 3
3 222 130 104 10 3
4 246 128 106 10 3
5 326 238 128 10 3
6 280 180 116 10 3
7 300 170 128 10 3
8 278 164 80 10 3
9 304 148 108 10 3

Table 2.2: Sizes of Nine Sets of Clinical Half Lung DVF
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Table 2.1 shows the size of a set of DVF that contains a patient’s both lungs, whereas the second

table summarizes the sizes of 9 sets of one-lung (including a patient’s either left or right lung in

each set) DVFs, which is why the size of 2nd mode in the second table is almost half of the size of

the 2nd mode in Table 2.1. We will refer to the DVF that contains both lungs as clinical full lung

DVF and the one-lung DVF as clinical half lung DVF. We first obtained a set of full lung DVF.

After applying our models on the full lung DVF, it showed promising results. We then requested

more clinical DVF data. Because of the time consumption of registering images, we only use half

lung DVF. Using half lung DVF not only saves us time on image registration but also shortens the

time it takes to run our motion model algorithms. Most importantly, we have no reasons to doubt

that the result of the algorithm performance will be affected by whether it is a set of DVF of both

lungs or one lung. The size of the full lung DVF data is about 2.2 gigabytes, and the remaining nine

sets are about half the size of the full lung DVF. All ten sets of DVF have 10 phases as described

earlier in this chapter.

The size of each DVF varies realistically based on the size of each patient. This is not an

accident but a natural occurrence as the medical facility, imaging instrument, and other setting are

always changing from patient to patient. This is the reason why we cannot pool the information

across patients even though the breathing motion of different patients are expected to share some

similarities. All the clinical DVF are de-identifed.

2.4 Phantom Displacement Vector Field Data

With the help from Matthew Riblett who generated the simulated DVF data from a phantom lung,

we are able to test our algorithms not only on clinical DVF but also on simulated DVF.

Because simulating DVF is quite time consuming, we acquired four sets of simulated DVF with

varying levels of noise added. Each set of simulated DVF also has its noiseless version of DVF

which can serve as ground truth. Before presenting the size of the simulated DVF, we will first
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include a brief description of the four sets of simulated DVF, which is provided by Matthew.

Each of the included models shares a common base model (M1), but have their own distinct

modifications.

M1: Base Model (Spine, Ribs, Lungs, Carina)

The M1 model serves as the base model for approximating the size, location, and scope of

thoracic anatomy and physiology as observed by a simple CT scan.

M2: Modified Base Model (Spine, Ribs, Lungs, Carina)

The M2 model modifies the base model introducing a smaller subject and, correspondingly,

adjusting the size and location of subject anatomy (most notably the lungs and ribs). The respiration

excursion for this model is also greater than that of the base model. The vessel trees within the

lungs have also been ascribed a modest motion trajectory, unlike those of the base model.

M3: Modified Base Model (Spine, Ribs, Lungs, Carina)

The M3 model modifies the base model by adjusting the magnitude of patient respiration along

the superior-inferior axis for each lung as well as slight variations in anatomical structure size

(specifically, lungs and ribs). Instead of perfectly symmetrical motion, this model introduces a

difference in excursion between the right and left lungs. (We eventually only used half lung in our

analysis so the asymmetry in motion did not play any role.)

M4: Modified Base Model (Spine, Ribs, Lungs, Carina)

The M4 model modifies the base model by reducing the magnitude of patient respiration along

the superior-inferior axis as well as slight variations in anatomical structure size (specifically, lungs

and ribs). The magnitude of motion is significantly less than that of the base model and is intended

to approximate shallow respiration.

Due to the large size of simulated DVF, we took the same practice and eventually only used half

lung simulated DVF. Below we present the sizes of each simulated half lung DVF. The simulated

sets of DVF have the same dimension, but the anatomy in the simulated sets of DVF are different.
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Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 512 256 100 10 3
2 512 256 100 10 3
3 512 256 100 10 3
4 512 256 100 10 3

Table 2.3: Sizes of Four Sets of Simulated Half Lung DVF
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Chapter 3

Current Statistical Method of Estimating the Respiratory

Lung Motion Model

3.1 Principal Component Analysis Based Respiratory Lung Motion

Model

The current method that is being widely adopted and used to estimate the respiratory lung motion

model is a principal component based (PCA) algorithm ([Li et al., 2011]). We will present and

discuss this PCA method in terms of the algorithm and its advantages and drawbacks. Readers can

refer to [Li et al., 2011] for more detail regarding this method.

3.2 Algorithm

The PCA-based method utilizes a common technique in dealing with high-order tensor data called

vectorization. In the DVF data, when fixing the phase and coordinate in the displacement vector (of

length 3), we are left with a third-order tensor. The PCA-based algorithm can be broken down into

three steps. For each third order tensor for a given coordinate at a given phase within a breathing

cycle, the PCA based algorithm first unfolds a third-order tensor data into a long vector by stacking

the mode-1 fibers into a long vector (Step 1). The algorithm repeats this procedure for all 10 phases
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(Step 2) and combines all long vectors into a matrix (Step 3). Each long vector obtained from step

1 corresponds to a column in the newly-formed matrix in step 3. The number of columns in the

matrix corresponds to the number of phases in a breathing cycle. These three steps are repeated for

each coordinate in the displacement vector in the DVF data and the newly-formed matrix for each

coordinate are then stacked by row into a larger matrix, which is a second-order tensor that contains

all the data from the fifth-order DVF tensor data. These procedures are summarized visually in the

following figure (Figure 3.1) .

Figure 3.1: PCA based motion model

Once we form the new matrix in step 3, we will apply a standard PCA analysis on the matrix.
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The PCA paper recommended keeping two eigenvectors and eigenvalues. The paper analyzes a

total of eight patients and, for the majority of the DVF data analyzed, keeping two eigenvectors

explains more than 80% of the total variance. We will be following this tradition when applying this

PCA algorithm to our DVF data. However, we do want to point out at this point that the percentage

of variance explained can vary from patient to patient and it is not uncommon to encounter a

circumstance where keeping 2 eigenvectors and eigenvalues will not explain more than 80% of the

total variance. In the paper, the performance of the PCA algorithm is accessed by MSE. We argue

that MSE is not the best model performance indicator in this case. We will be explaining our choice

and introducing new metrics for model performance assessment in chapter 6.

The performance of the PCA model will be assessed from multiple facets and be compared to

our algorithms. The rationale of choosing metrics for performance measurement and comparisons

will be discussed in the Chapter 6 as well.

3.3 Advantages, Drawbacks, and Limitations

The vectorization of a tensor in the first step of the PCA-based algorithm combined with column

and row bindings of the vectorized tensor makes it possible for us to apply a standard PCA analysis

on the DVF data. The advantages of this PCA-based algorithm include its simplicity, time efficiency,

and relatively good accuracy with small MSE. However, the vectorization of the tensor data is also

the drawback of the PCA-based algorithm, because the algorithm is unable to fully exploit the

structures after vectorizing a high-order tensor. In Chapter 2, we discussed that the spatial structure

of DVF has actual physical meanings. And this spatial structural information is damaged by the

vectorization process in the PCA-based analysis. We propose new algorithms that both keep the

data structure and meanwhile trying to maintain high efficiency in terms of processing and modeling

time and accuracy.
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Chapter 4

Estimating the Respiratory Lung Motion Model Using

Population Value Decomposition on DVF

4.1 Introduction and Chapter Layout

The default population value decomposition (PVD) [Crainiceanu et al., 2011] is a newly-proposed

algorithm to analyze a large population of two-dimensional images. The primary application of

PVD is to reduce the size of a population of large two-dimensional images (can be seen as a

second-order tensor) to a manageable size. The detailed descriptions of PVD can be found in this

paper [Crainiceanu et al., 2011]. Because DVF is a fifth-order tensor, PVD cannot be directly

applied due to the high-dimensionality of DVF. We will briefly present PVD to familiarize readers

with algorithm and from there we will introduce the revised PVD and give a detailed description of

the steps taken to apply the revised PVD to our fifth-order tensor DVF data.

4.2 Default Population Value Decomposition

We first give the definition of default PVD and then we will give a pictorial representation to explain

and help readers understand the algorithm.
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Definition 4.2.1. If Yi, i = 1.2...., n, is a sample of two-dimensional images of size F by T , then a

population values decomposition (PVD) is

Yi = P Vi D + Ei,

where P and D are population-specific matrices of size F×A and B×T, Vi is an A×B-dimensional

matrix of subject specific coefficients, and Ei is an F × T -dimensional matrix of residuals.

The primary application of PVD is to reduce the dimension of a population of two-dimensional

images to a manageable size. PVD will decompose a two-dimensional image stored as a second

order tensor or matrix into a product of P, V, and D plus the residual matrix. The representation of

PVD below illustrates the dimension (denoted in parentheses under each block) reduction.

Yi

(F×T )

= P

(F×A)

Vi

(A×B)

D

(B×T )

+ Ei

(F×T )

Here Yi represents a two-dimensional image stored as a matrix of size F × T, and i is a an

indicator that can stand for subject, visit, or other meaningful indicator depending on the source of

image data. P and D are population specific matrices, which remain the same for each Yi. They are

of dimension F × A and B × T. Vi is a subject specific matrix, which is unique to each Yi. Vi is of

dimension A×B, where A and B are much smaller than F and T. The PVD algorithm effectively

achieves data reduction by storing the two population specific matrices P, D and the much smaller

subject specific matrix Vi . Each original image Yi is approximated by taking the product of P , Vi,

and D. The accuracy of approximation can be controlled. We will now describe how to compute

the default PVD, which will eventually reveal how the accuracy of approximation is controlled.
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4.3 The Default Population Value Decomposition Algorithm

The default PVD consists of two steps. The first step involves computing the singular value

decomposition (SVD) for each two-dimensional image as below and keeping the first Li leading

columns (left singular vectors) from Ui to make a new matrix ULi
. The choice of Li can be based

on various criteria (including variance explained, signal-to-noise ratio, or other practical standard).

Yi
F×T

= Ui
F×F

Σi
F×T

VT
i

T×T
.

After repeating this step for all Yi, we will combine all ULi
matrices by columns to make an

F × L-dimensional matrix U as below. The number of columns (L) of the larger U matrix is equal

to the sum of the number of columns for each ULi
matrix. Repeat the above two steps for the Vi

matrices to obtain a larger V matrix.

U = [UL1|, ..., |ULn ] ;

V = [VL1 |, ..., |VLn ] .

The second step in PVD is to perform the spectral decomposition on F × F -dimensional

matrix UUT , where U is obtained by combining ULi
matrices across images. Because U contains

information across all images, the spectral decomposition is performed on a population level. We

will keep the first A leading eigenvectors of UUT to form a new F × A-dimensional matrix P.

The product of P (P TU) gives us the best rank A approximation of P. We can also approximate

the subject level ULi
matrix by replacing the larger U matrix with the corresponding ULi

matrix.

We will apply the same procedures to the larger V matrix, where we will keep the first B leading

eigenvector of V to form a new matrix D. We can then obtain the best rank B approximation of

D ≈ D(DTV ) [Ye, 2005, Eckart and Young, 1936, Golub and Van Loan, 2012, Trefethen and

Bau III, 1997].
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The singular value decomposition on the subject level together with the spectral decomposition

on the population level completes the PVD. We can approximate each two-dimensional image

through the following steps:

Yi = UiΣiV
T
i

≈ ULi
ΣLi,Ri

V T
Ri

≈ P{P TULI
ΣLi,Ri

(V T
Ri
DT )}D

= PViD.

We compress data efficiently by only storing much smaller subject-specific matrices Vi and

population-specific matrices P and D, where P is of dimension F × A, D is of dimension B × T,

and Vi is of size A×B instead of the entire population of F × T images. Each 2D image can then

be approximated by take the product of P, Vi, and D.

4.4 The Revised Population Value Decomposition

Before generalizing and applying PVD to fifth-order tensor DVF, we noticed that the efficiency of the

default PVD algorithm can be improved. Therefore we will revise part of the PVD algorithm here.

In the second step of calculating the default PVD, before computing the spectral decomposition, we

have to compute UUT first, which is computationally expensive and actually unnecessary. Because

the purpose of the second matrix decomposition is to find the leading eigenvectors for UUT , which

can be achieved through a simpler and more expedient mechanism. Therefore, we are revising the

step in the default PVD algorithm. We will skip the calculation of UUT and directly compute the

singular value decomposition on U.

U = PUΣUV
T
U .
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We will use the first A leading eigenvector from PU to form our P matrix. We can obtain the best

rank A approximation of U the same way as we do in the spectral decomposition.

U ≈ P (P TU).

We can illustrate that the new revised PVD is equivalent to the default PVD in terms of the final

result as below.

Compute the singular value decomposition of U .

U = PUΣV T .

Then we have:

UUT = PUΣV T (PUΣV T )T

= PUΣV TV ΣTP T
U .

Because V and PU are both unitary matrices, V TV is the identity matrix, and P T
U = P−1U . Therefore,

the above equation is eventually reduced to the form of spectral decomposition of UUT :

UUT = PUΣV T (PUΣV T )T

= PUΣV TV ΣTP T
U

= PUΣ2P T
U

= PUΣ2P−1U .
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4.5 Generalization of the Revised Population Value Decomposition

to the Fifth Order Displacement Vector Field Data

In the previous chapter, we discussed the drawbacks of PCA. When vectorizing DVF, which is

fifth-order tensor, the spatial structure that has actual physical meaning is broken. We would like

to keep the structure of DVF as intact as possible. Therefore, we believe that PVD, which is a

matrix-based algorithm, can be helpful. However, as described earlier in this chapter, PVD can

be applied to a population of two-dimensional images but cannot be directly applied to our fifth

order DVF tensor data due to the high dimensionality. To generalize the PVD algorithm to the fifth

order DVF tensor data, it is crucial to thoroughly understand the DVF data collection procedures,

structures, and the meaning of each of its five dimensionalities (refer to Chapter 2).

Figure 4.1: Unfold Coordinates and Perform SVD on each Transverse Slice

We will stack the coordinates and then compute the singular value decomposition for each

stacked transverse slice composed by stacking all three coordinates at a given phase, which is of

size F by T , illustrated in the above Figure 4.1. There are a total of 10 phases in our DVF data,

and we will repeat the above procedure for all slices at all phases. Then we only take the leading

eigenvectors in each singular value decomposition to get a best low-rank approximation of the
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corresponding original transverse slice as illustrated in the left side of Figure 4.2 below. The number

of eigenvectors to be kept can be based on criteria including percentage of variance explained,

signal to noise ratio, and other practical reasons. In our practice, we choose the percentage of

variance explained to be the criterion. The third mode in the DVF data corresponds to the total

number of transverse slices at a given phase, which can be quite large. Therefore, we are computing

a significant number of the singular value decompositions at this stage of our algorithm. Current

algorithm and computer architecture allows the computation of singular value decomposition to

be completed fairly quickly for tall and skinny matrices [Benson et al., 2014, Faverge et al., 2017].

Because we are stacking the three displacement vector coordinates by rows (shown in Figure 4.1),

the resulting matrix fits the tall and skinny category. The size of the final matrices are determined

by the DVF tensor data, which will vary from patient to patient. We do observe empirically that

the computation of the individual SVD for each slice for a given phase at this stage is not very

time-consuming even though we used the default SVD algorithm in R base package and did not

adopt the faster algorithms for tall and skinny matrices in the above referenced articles. We will

discuss the time consumption and efficiency of the algorithm in chapter 7 in more detail.

After computing the SVD on the subject level, we will combine all the U∗ij matrices into a

larger U matrix and follow the second step in the revised PVD to calculate the singular value

decomposition of U on the population level. Here i is an indicator for phase, which goes from 1 to

10. j is an indicator for transverse slices under a given phase, which goes from 1 to Z, where Z is

the total number of transverse slices, which varies from patient to patient. Based on the percentage

of variance explained criterion, we take a certain number of leading A eigenvectors from UU to

make a P matrix. PP TU gives us the best rank A approximation of U. Repeat the second step in

the revised PVD for the V matrix, which is obtained from combining all the V ∗ matrices. These

steps are illustrated on the right side of Figure 4.2.

Figure 4.3 illustrates how we can approximate the original slice 1 at phase 1. Other slices can

be approximated in a similar fashion. Data compression is achieved via storing the much smaller
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Figure 4.2: Revised PVD on DVF

subject-specific V matrices (shown as V11 in Figure 4.3) and population-specific matrices P and D.
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Figure 4.3: Reconstruction of a Transverse Slice
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Chapter 5

Estimating the Respiratory Lung Motion Model Using

Population Tucker Decomposition on DVF

5.1 Introduction and Chapter Layout

Because PVD does not require the vectorization of DVF data, it retains more of the structure of

DVF as compared to the PCA based algorithm. But the iterative transverse slice-wise SVD is

performed in order to generalize this matrix-based (SVD) algorithm to a fifth-order DVF tensor.

The advantages of PVD over PCA are discussed in Chapter 7. We would like to further retain

more of the structure of DVF and progress from a matrix-based algorithm to a truly high-order

tensor-based algorithm. In this chapter, we will be presenting to the readers our second algorithm to

estimate the respiratory lung motion model. We refer to this algorithm as the Population Tucker

Decomposition (PTD). While this algorithm is original, the idea is inspired by both the PVD and

Tucker Decomposition, which is a general form of Canonical Polyadic (CP) decomposition.

We will be explaining to our readers how the PTD algorithm works, which will show that this

is a natural progression from PVD to PTD. We will again be using examples and figures to help

readers understand the PTD algorithm. To understand PTD, one must be familiar with the concepts

of PVD and Tucker Decomposition. We skip the explanation of PVD algorithm and advise readers

to refer to previous chapters or [Crainiceanu et al., 2011] for details regarding PVD or the revised
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PVD. However, we will be explaining the basic CP decomposition and Tucker Decomposition

first and show how to compute the Tucker Decomposition. At the end, we will introduce the new

algorithm PTD and show the natural progression from PVD to PTD by combining the ideas and

concept of PVD with the third-order Tucker Decomposition.

5.2 New Concepts and Basic Definitions in Tensor Network and

Decomposition

Tucker Decomposition (TD) [Oh et al., 2017, Hoff et al., 2016, Li et al., 2017] belongs to the family

of low-rank tensor decompositions [Zhou et al., 2017, Cichocki et al., 2016, Yan et al., 2015, Rauhut

et al., 2017]. It can be seen as a generalization of Canonical Polyadic Decomposition (CPD)

[Lebedev et al., 2014, Zou et al., 2016, Wu et al., 2017, Cohen et al., 2015] , which itself can been

seen a generalization of Singular Value Decomposition to a higher order tensor. One can also say

that singular value decomposition is a special case of Canonical Polyadic Decomposition applied

to only second-order tensor. We believe that SVD is a well-established and understood algorithm,

and therefore will not be spending time explaining SVD. Readers can refer to [De Lathauwer et al.,

1994] and [Golub and Reinsch, 1970] for more information. We will present to our readers CPD

and progress to TD and their relative concepts.

5.2.1 Mode-n Product and Multilinear Product

In order to understand CPD, we have to introduce some new yet basic definitions in tensor network

and decomposition to our readers.

The first new definition we need to introduce is called the Mode-n product between a tensor and

a matrix.

Definition 5.2.1. Mode-n product of a tensor A ∈ RI1×I2×···×IN , where Ik represents the size of the

28



k−th mode (k = 1, 2, ..., N ), and a matrix B ∈ RJ×In yields a tensor

C ∈ RI1×···×In−1×J×In+1×···×IN

with entries

ci1,...,in−1,j,in+1,...,iN =
In∑

in=1

ai1,...,in,...,iN bj,in .

This operation is written as:

C = A×n B.

We denote a tensor using a capital letter with an underline, a matrix with a capital letter, and an

entry in a tenor using a lower case letter with subscripts representing the position at its corresponding

mode. The best way to become familiar with new concepts is by example. We present to our reader

an example of mode-2 product of a tensor with a matrix below. Here A is a 3rd order tensor whose

modes are all of size 2 and B is a 3-by-2 matrix. Because the size of all three modes of tensor A

is 2, we can technically preform mode-n product between tensor A and matrix B on any mode of

tensor A. Here we choose to perform the mode-2 product.

Figure 5.1: Mode-2 Product of 3rd Order Tensor and 3-by-2 Matrix

Based on the definition of mode-n product, the final product tensor C will be a 3rd order tensor

whose sizes of all three modes are 2, 3, and 2, respectively. Each entry in the product tensor C can

29



be calculated using the definition one by one. The calculation of the entries in the final product

tensor can be seen as the dot product between every mode-2 fiber from tensor C and each row from

matrix B. We calculate the entry c1,1,1 as an example.

To progress from mode-n product, we will now present the definition of multilinear product

of a tensor with multiple matrices, where these matrices are often referred to as factor matrices or

component matrices, and the tensor is referred to as the core tensor.

Definition 5.2.2. Multilinear product of a core tensor G ∈ RR1×R2×···×RN and factor matrices

B(n) ∈ RIn×Rn for n = 1, 2, . . . , N gives

C = G×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN .

And this operation is written as:

C = JG,B(1), . . . , B(N)K.

The superscript (n) on the factor matrices B(n) indicates for which mode a particular factor

matrix B(n) is. Therefore, the superscript (n) matches the n in the mode-n product. The size of the

mode of the final product tensor C is determined by the size of the first mode in the factor matrices.

As long as readers are familiar with mode-n product, multilinear product of a core tensor is

basically preforming mode-n product multiple times with different factor matrices. We will not be

giving an example for this definition.

5.2.2 Kronecker Product and Mode-k Matricization

Next we will give the definition for Kronecker product for tensor. There are two types of Kronecker

products: the left Kronecker product and the right Kronecker product. Here we present the definition

for the left Kronecker product:
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Definition 5.2.3. The left Kronecker product of tensors A ∈ RI1×I2×···×IN and B ∈ RJ1×J2×···×JN

yields a tensor

C ∈ RI1J1×I2J2×···×INJN

with entires

ci1j1i2j2,...,iN jN
= ai1,...,iN bj1j2,...,jN .

This operation can be written as:

C = A⊗L B.

In the above definition of left Kronecker Product, we introduce a new notation ci1j1i2j2,...,iN jN

that has not been mentioned before. This notation is called the little-endian notation, which derives

from Jonathan Swift’s Gulliver’s Travels in which the little-endians are a political faction who

breaks their eggs at the small end.

Definition 5.2.4. i = i1i2, . . . , iN is a multi-index which takes all possible combinations of values

of indices, i1, i2, . . . , iN , for in = 1, 2, . . . , In, n = 1, 2, . . . , N in the following specific order

convention:

i1i2, . . . , iN

=i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + · · ·+ (iN − 1)I1 · · · IN−1.

The little-endian convention is the reverse lexicographic ordering. As one might expect, there is

also a big-endian convention. Different programing softwares use different ordering conventions.

The kronecker product for matrices is also necessary for understanding the computation of TD

and is a much easier definition to grasp compared to its definition in tensor. We will not present the

definition here.
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In Chapter 3, we discussed the vectorization of a tensor. Here will will present another technique

in dealing with tensor data: matricization.

Definition 5.2.5. X(k) is the mode-k matricization, which arranges the mode-k fibers of X as

columns into a matrix.

The best way to understand this definition is to give a figure representation. In Figure 5.2, we

have a 3rd-order tensor and we present the three matricizations of this tensor.

Figure 5.2: Three Matricizations of a 3rd-order Tensor

5.3 Tucker Decomposition

We mentioned at the beginning of this chapter that CP decomposition is a generalization of SVD to

higher order tensor. While CP decomposition can be expressed using multiple different notations,

we will be summarizing CP decomposition using the multilinear product definition we introduced

in the previous section. The CP decomposition (sometimes also referred to as the PARAFAC or

CANDECOMP) can decompose any n-th order tensor X ∈ RI1×I2×···×IN into a space diagonal

(defined later) core tensor Λ ∈ RR×R×···×R and n factor matrices B(N) [Hitchcock, 1928, Harshman,
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1970, Carroll and Chang, 1970], and can be written as:

X = Λ×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN ,

or

X = JΛ, B(1), B(2), . . . , B(N)K.

Figure 5.3: CP Decomposition of a 3rd-order Tensor

Figure 5.3 presents what the CP decomposition does to a 3rd order tensor. Here we have a

3rd-order tensor X ∈ RI×J××K , which can be decomposed into a multilinear product between a

space diagonal core tensor (defined below) Λ ∈ RR×R××R and three factor matrices A ∈ RI×R,

B ∈ RJ×R, and C ∈ RK×R. The core tensor Λ only has non-zero entries on the space diagonal of

the core tensor Λ.

Definition 5.3.1. A tensor Λ ∈ RI×I×I is a space diagonal tensor if its element rijk = 0 for all

i, j, k = 1, 2, ..., I except where i = j = k.

Compared to the CP decomposition, Tucker decomposition is less memory-consuming [Khorom-

skij and Khoromskaia, 2007] and provides a more flexible and general decomposition of any nth
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order tensor in the sense that it will result in a much smaller core tensor, even though not space

diagonal, and smaller factor matrices. The Tucker decomposition will decompose any nth order

tensor X ∈ RI1×I2×···×IN into a product of core tensor G ∈ RR1×R2×···×RN and n factor matrices

B(N). We can summarize Tucker Decomposition using the multilinear product definition:

X = G×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN ,

or

X = JG,B(1), B(2), . . . , B(N)K.

The multilinear product notations for both CP decomposition and Tucker decomposition are very

similar. The difference is that CP decomposition will result in a space diagonal core tensor where

the only non-zero entries are on the space diagonal, whereas the Tucker decomposition will result

in a general core tensor where usually all entries in this core tensor are non-zero. However, the

core tensor from the Tucker decomposition are usually much smaller (RN << IN ), as are the

factor matrices. Because of this reason and the fact that it gives us more flexibility in choosing

the size of the core tensor, we prefer using Tucker decomposition over CP decomposition. In

fact, CP decomposition can be seen as a special case of Tucker decomposition [Bergqvist and

Larsson, 2010]. Regarding the theory, applications, and connection between CP decomposition and

Tucker decomposition, readers can refer to [Bergqvist and Larsson, 2010]. Both CP and Tucker

decomposition have a long history. For more details regarding both algorithms, readers can refer

to [Kolda and Bader, 2009, Sears et al., 2009, Grasedyck et al., 2013, Comon, 2014, Cichocki

et al., 2015, Huang et al., 2016]. In Figure 5.4, we present the figure representation of the Tucker

decomposition.
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Figure 5.4: Tucker Decomposition of a 3rd-order Tensor

5.4 Computing the Tucker Decomposition

To compute the Tucker decomposition, we will use the higher order orthogonal iteration (HOOI)

algorithm [Liu et al., 2014, Sheehan and Saad, 2007, De Lathauwer et al., 2000b] which utilizes

higher order singular value decomposition (HOSVD) [Haardt et al., 2008, Huang et al., 2008, Hoge

and Westin, 2005, Afra et al., 2014]. We will explain to readers how to compute the Tucker

decomposition using an example of a 3rd-order tensor.

The computation of Tucker decomposition utilizes the following equivalence:

X = JG,B(1), B(2), B(3)K

⇔ X(1) = B(1)G(1)(B
(3) ⊗B(2))

X(2) = B(2)G(2)(B
(3) ⊗B(1))

X(3) = B(3)G(3)(B
(2) ⊗B(1)).

Here X(1), X(2), and X(3) are the three mode-k matricizations of the third-order tensor X. B(k)

is the factor matrix, obtained by taking the left orthogonal matrix of SVD of X(k). After solving the
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B(k), we need to obtain the core tensor through the following steps:

X = JG,B(1), B(2), B(3)K

= G×1 B
(1) ×2 B

(2) ×3 B
(3)

X ×1 B
(1)T = G×1 B

(1) ×2 B
(2) ×3 B

(3) ×1 B
(1)T

X ×1 B
(1)T = G×1 B

(1) ×1 B
(1)T ×2 B

(2) ×3 B
(3)

X ×1 B
(1)T = G×1 (B(1)TB(1))×2 B

(2) ×3 B
(3)

X ×1 B
(1)T ×2 B

(2)T ×3 B
(3)T = G.

JX,B(1), B(2), B(3)K = G.

From the third line to fourth we can move the term B(1)T on the right side of the equation ahead

based on the following tensor matrix product operation law.

Lemma 5.4.1. Given a tensor X ∈ RI1×I2×···×IN , a matrix A ∈ RJ×In , and another matrix

B ∈ RK×Im ,

X ×n A×m B = X ×m B ×n A.

if In 6= Im.

From the fourth line to the fifth line, we will use the following tensor matrix product operation

law.

Lemma 5.4.2. Given a tensor X ∈ RI1×I2×···×IN , a matrix A ∈ RJ×In , and another matrix

B ∈ RK×J ,

X ×n A×n B = X ×n (BA).

The truncated HOSVD does not result in the best low multilinear rank approximation, even

though the low multilinear rank approximation is always a well-posed problem. The truncated
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HOSVD does satisfy the quasi-best approximation property (De Lathauwer et al., 2000a). The

quasi-best approximation property states that

‖X − JG,B(1), B(2), · · · , B(N)K‖ ≤
√
N‖X −XBest‖,

where XBest is the best low multilinear rank approximation of X ∈ RI1×I2×···×IN for a given tensor

norm J·K.

We achieve the optimal approximation by minimizing a Frobenius Norm cost function J =

‖X − JG,B(1), B(2), B(3)K‖2F . We minimize this cost function J using the higher order orthogonal

iteration (HOOI), which is an alternating least square (ALS) based algorithm. Again, using a

third-order tensor X ∈ RI1×I2×I3 as a example, here is how to find the best low multilinear rank

approximation using the HOOI:

1. Initialize factor matrices B(1), B(2), and B(3) using HOSVD

a) for i = 1, 2, 3 G← X ×p 6=i {B(p)T }.

b) Update B(i) ← Ri leading left singular vectors of G(i).

2. Repeat step 2 and 3 until J = ‖X − JG,B(1), B(2), B(3)K‖2F converges.

This ALS type algorithm can be easily extended to any N th-order tensor X ∈ RI1×I2×···×IN ,

1. Initialize factor matrices B(1), B(2), · · · , B(N) using HOSVD

2. Repeat

a) For i = 1 to N do

b) G← X ×p 6=i {B(p)T }.

c) Update B(i) ← Ri leading left singular vectors of G(i).

d) End for
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3. Stop repeat if the cost function J = ‖X − JG,B(1), B(2), · · · , B(N)K‖2F converges.

Another algorithm for HOOI using randomization for large scale data [Zhou et al.m 2015] is

also available but we will not list the detailed steps of the algorithm here. While other sophisticated

algorithms for Tucker decomposition with different constraints are also available [Phan and Cichocki,

2011; Zhou et al., 2012; Constantin et al., 2014; Jeon et al., 2016], we will not discuss their

advantages or drawbacks as they are not the focus of this dissertation. If readers are interested in

learning more about this topic, please refer to the articles referenced above and this book [Cichocki

et al., 2016] for more information.

5.5 Population Tucker Decomposition

After introducing the new concepts and basics of computing Tucker decomposition, in this chapter

we dive into our new algorithm, which we call the Population Tucker Decomposition (PTD). The

name Population Tucker Decomposition arises from the fact that this algorithm is essentially a

combination of the idea of PVD and Tucker Decomposition, which is in turn a natural progression

from PVD. We will illustrate the ideas behind PTD by detailing the steps.

The steps of PTD can be summarized in Figure 5.5. In the left part of the figure, each grey cuboid

represents a third-order tensor obtained by fixing the phase index and stacking the three coordinates

vertically in DVF data. Therefore, we will end up with a total ten cuboids each representing a

unique phase in a breathing cycle. For each cuboid, we perform a Tucker decomposition using the

HOOI to achieve the best low multilinear rank approximation of each cuboid. Comparing this to

the PVD algorithm (as shown below in 5.6), we jump from a matrix-based algorithm to a truly

high order tensor-based algorithm. The similarity between PTD and PVD at this stage is that the

first step in both algorithm is performed on a subject-level. However, one should not confuse the

definition of subject-level in PTD and PVD. In the case of PVD, the subject-level decomposition
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Figure 5.5: Population Tucker Decomposition

happens on each individual two-dimensional image, whereas in the case of PTD, the subject level

decomposition refers to the best low multilinear rank approximation for each individual phase.
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Figure 5.6: Revised PVD on DVF

Once we obtained the Tucker decomposition, we will combine all the corresponding subject

factor matrices Ai, Bi, Ci to make larger factor matrices A, B, and C. We may refer to these

matrices A, B, and C as population factor matrices since they contain factor matrix from each

phase. The second step is to perform SVD on the population factor matrices. The similarity between

PVD and PTD at this stage is that this step is performed on a population-level. We keep the leading

singular vectors from UA, UB, UC in the SVD, which will be referred to as UAL
, UBL

, and UCL
. The

best low-rank approximation of the population and subject factor matrices can be obtained through

the following steps:

A ≈ UAL
UT
AL

A

Ai ≈ UAL
UT
AL

Ai
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B ≈ UBL
UT
BL

B

Bi ≈ UBL
UT
BL

Bi

C ≈ UCL
UT
CL

C

Ci ≈ UCL
UT
CL

Ci.

Subsequently, each cuboid can be approximated through the following steps:

Xphasei
≈ JRi, F1i, F2i, F3iK;

F1i = UAL
UT
AL

Ai;

F2i = UBL
UT
BL

Bi;

F3i = UCL
UT
CL

Ci;

where i = 1, · · · , 10 and represents 10 phases.

As can be observed from the above equations, the factor matrices are not population-specific

because they include indicator i. The core tensor is also subject-specific since it depends on i.

This is not the result we desire. We would like to have a result similar to PVD where we only

want to store population specific factor matrices, which do not change across different phases, and

subject-specific core tensors that are unique to each phase. That way we achieve the best data

compression and utilize less memory space by storing only three factor matrices and ten core tensors

since there are ten phases. In order to avoid directly storing the core tensor Ri and factor matrices

F1i, F2i, and F3i, we will be performing the following calculations to approximate each phase and

to further compress the data using the two lemmas introduced earlier:

Xi ≈ JRi, F1i, F2i, F3iK
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= Ri ×1 F1i ×2 F2i ×3 F3i

= Ri ×1 UAL
UT
AL

Ai ×2 UBL
UT
BL

Bi ×3 UCL
UT
CL

Ci

= Ri ×1 U
T
AL

Ai ×1 UAL
×2 UBL

UT
BL

Bi ×3 UCL
UT
CL

Ci

= R∗i ×1 UAL
×2 UBL

UT
BL

Bi ×3 UCL
UT
CL

Ci (R∗i = Ri ×1 U
T
AL

Ai)

= R∗i ×1 UAL
×2 U

T
BL

Bi ×2 UBL
×3 UCL

UT
CL

Ci

= R∗i ×2 U
T
BL

Bi ×1 UAL
×2 UBL

×3 UCL
UT
CL

Ci

= R∗∗i ×1 UAL
×2 UBL

×3 UCL
UT
CL

Ci (R∗∗i = R∗i ×2 U
T
BL

Bi)

= R∗∗∗i ×1 UAL
×2 UBL

×3 UCL
(R∗∗∗i = R∗∗i ×3 U

T
CL

Ci)

= JR∗∗∗i , UAL
, UBL

, UCL
K,

where R∗∗∗i = Ri ×1 U
T
AL

Ai ×2 U
T
BL

Bi ×3 U
T
CL

Ci.

Through the above operations, we are able to obtain population-specific factor matrices UAL
,

UBL
, and UCL

that do not depend on indicator i and phase-specific core tensor R∗∗∗i that does depend

on indicator i.
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Chapter 6

Model Performance Comparisons

So far, we have introduced to our readers three motion models. The first one is a PCA-based

algorithm. The second one is the matrix-based PVD algorithm. The last one is the tensor-based PTD

algorithm. To assess and compare the performance of each of the three models, we are going to first

apply these algorithms to both clinical and simulated DVF data. We have one set of clinical full lung

DVF data and nine sets of clinical half lung DVF data. On top of that we have four sets of simulated

half lung DVF data. The size of each clinical and simulated DVF data is listed below. (Even though

the size of the clinical half lung DVF tensors is in the same ballpark, and the size of the simulated

half lung DVF tensors is exactly the same, the DVF tensors are still very different in terms of the

anatomical shape and size of each patient. Their tumor location and scanning location also differ in

machinery and technology. Even in the simulated DVF tensors, the anatomy is intentionally set

to differ from patient to patient. All the aforementioned differences are unavoidable and compose

major obstacles in combining information across different patients to make an overall cross-patient

population model.)
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Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 300 450 110 10 3

Table 6.1: Size of one Set of Full Lung Clinical DVF

Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 210 143 94 10 3
2 230 143 112 10 3
3 222 130 104 10 3
4 246 128 106 10 3
5 326 238 128 10 3
6 280 180 116 10 3
7 300 170 128 10 3
8 278 164 80 10 3
9 304 148 108 10 3

Table 6.2: Sizes of Nine Sets of Half Lung Clinical DVF

Set 1st mode 2nd mode 3rd mode 4th mode 5th mode

1 512 256 100 10 3
2 512 256 100 10 3
3 512 256 100 10 3
4 512 256 100 10 3

Table 6.3: Sizes of Four Sets of Simulated Half Lung DVF

6.1 Model Performance Metrics

The performance of the PCA, PVD, and PTD models will be assessed using multiple criteria. Some

of the criteria are adopted from the PCA papers (meanwhile some used in the PCA paper will not

be recommended by us). Some of the criteria are newly developed and used in this dissertation. In
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the PCA paper, authors used MSE on the absolute differences between the reconstructed images

and the original images on a voxel level. Authors of the PCA paper argue that smaller MSE values

indicate a better model. We argue that MSE is not an ideal metric for measuring model performance

due to the following reason: the actual anatomical body parts do not occupy the entire area of an

image. On top of that, some anatomical body parts have no or little motions (such as ribs and spine).

Therefore the DVF tensor is relatively sparse (with many elements of zero or close to zero values).

Many voxels have no change from one phase to the next phase. The following Figure 6.1 contains

ten plots of coordinate 3 in transverse slices 61 from the clinical full lung DVF data at all ten phases

within a breathing cycle. Intensity of colors represents the magnitude of an element’s value in DVF,

which in turn represents magnitude of motion of the corresponding element or voxel.
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Figure 6.1: Full Lung DVF Transverse Slice 61 Coordinate 3 From Phase 0 to Phase 4
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The color scales for all plots in Figure 6.1 are the same. As can be observed, the number of

pixels whose changes of color from one phase to the next phase that are observable by naked human

eyes at this level of resolution is relatively low compared to the total number of pixels in a given

slice. This means that the majority of the pixels in any given slices has a change of value of almost

zero from one phase to the next. When models are performed and images are reconstructed, these

voxels will have an absolute difference between the reconstructed image and the original image

of almost zero, which will in turn dilutes the MSE value. Therefore, a good model with relatively

accurate reconstructed images compared to the original images will have small MSE. However,

a small MSE does not imply a good model (which can be observed in the tables which will be

presented in this chapter later). Due to the aforementioned reason, we do not recommend using MSE

as a metrics for model performance, especially in terms of judging the accuracy of the reconstructed

images compared to the original images. With that being said, we will still record the MSE values

in case readers are interested.

Instead of MSE, the performance of each models will be assessed in the following aspects and

compared using the following metrics:

1. Data compression level: Each algorithm is able to compress the tensor data and store the

information in the original tensor data using either matrices or tensors of much smaller sizes.

Therefore we will record the reduced data size (we will refer to this as the number of free

parameters) together with a percentage where the reduced data size is compared to the original

image size;

2. Accuracy of reconstructed images: This criterion is related to the first one. As the accuracy

of the reconstructed images are dependent on the level of data compression, which is in turn

controlled by the level of percentage of variance explained set in each data reduction step.

Therefore we will record the percentage of variance explained in each data reduction step;

For the PCA algorithm, there is a one step data reduction, so there will be one percentage
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recorded. Whereas for the PVD and PTD algorithms, there are two percentages recorded

since they are two-step data reduction algorithms (refer to Chapter 4 and 5), and the total

percentage of variance explained after the two-step data reductions is difficult to summarize

using one percentage (we will give a more detailed explanation of this in Chapter 7);

3. Count of voxels with large absolute difference: Since we are concerned about voxels with

large absolute difference between the reconstructed and the original images, we will record the

number of voxels whose absolute difference between the reconstructed and original images is

greater than a certain threshold (in our analysis, we pick the threshold to be 0.15 cm and 0.20

cm, which we believe are reasonable but can definitely be adjusted if needed).

4. Computation time: CPU time. We record CPU time just to make sure that each algorithm can

complete in a reasonable amount of time. (We believe that the new algorithms (PVD and PTD)

can be sped up by using more advanced decomposition algorithms and parallel computing.

But speeding up the algorithm is not the focus of this dissertation.) The architecture of the

computer we used for testing all three models are listed below:

a) 54 Dell PE R620/R630 servers with CentOS 6.8 and 7.3 64 bits Linux OS

b) 1336 cores /2672 Threads using Intel Xeon 56XX processors (2.67GHz to 3.4GHz)

c) 9TB RAM ( 128GB-200GB per node)

d) 360 TB parallel file system network storage running Intel IEEL lustre with 100TB

backup storage with InfiniBand connection.

e) 30TB internal disk storage ( 120GB-900GB per node SSD drives)

f) 40GB InfiniBand network connections to all nodes and storage.

g) 380TB Network backup storage running daily backup

h) Fail-over redundant master servers
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6.2 Performance of PCA based Motion Model

Here we first present the result of PCA-based algorithm on the full lung DVF dataset. The size

of this set of DVF can be found in Table 4.3. For this model, we follow the guidelines in the

PCA paper [Li et al., 2011] and kept two eigenvectors. Because there are a total of 10 phases,

keeping two eigenvectors will result in storing compressed data that is 20% of the original data

size. Therefore this model will use 20% of the original data size to approximate the entire DVF

data. In fact every PCA model we performed follows this guideline provided in the PCA paper [Li

et al., 2011], therefore for both the 9 sets of half lung DVF and the 4 sets of simulated DVF, the

percentage of the free parameters, which is the size of the compressed data, is always 20% of the

original DVF data size. The result of applying PCA model on the full lung DVF is presented below

in Table 6.4. Table 6.4 summarizes the performance of PCA model in the four aspects we described

in the previous section ‘Model Performance Metrics’. We also recorded the MSE in case readers

are interested, but again we do not recommend using MSE as a model performance metric.

PCA on Full Lung DVF

Free Parameters (%) 89100000 (20%)
Percentage of Variance Explained 89%
0.15 cm - Max (h) 7231415 (16.23h)
0.20 cm - Max (h) 3423442 (7.68h)
Max (cm) 1.58
MSE 1.90e10−3

CPU time (sec) 367

Table 6.4: Performance of PCA on Clinical Full Lung DVF

Here we present the results of PCA based algorithm on 9 sets of half lung DVF datasets. For the

majority of the half lung DVF (besides set 1 and 4), keeping two Eigen vectors is able to explain

more than 80% of the total variance.

For the simulated DVF, we perform the model on the noisy DVF, and the voxel level absolute
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PCA Performance on Half Lung DVF Set 1 DVF Set 2 DVF Set 3

Free Parameters (%) 16936920 (20%) 22102080 (20%) 18008640 (20%)
Percentage of Variance Explained 49.5% 86.8% 87.5%
0.15 cm - Max (h) 1484809 (17.53h) 535741 (4.85h) 263257 (2.92h)
0.20 cm - Max (h) 645274 (7.62h) 227163 (2.06h) 135149 (1.50h)
Max (cm) 14.25 3.52 3.64
MSE 5.39e10−3 1.06e10−3 1.03e10−3

CPU time (sec) 24 42 46

Table 6.5: Performance of PCA on Clinical Half Lung DVF Set 1, 2, and 3

PCA Performance on Half Lung DVF Set 4 DVF Set 5 DVF Set 6

Free Parameters (%) 20026368 (20%) 59587584 (20%) 35078400 (20%)
Percentage of Variance Explained 59.3% 87.9% 90.6%
0.15 cm - Max (h) 1689800 (16.88h) 1675138 (5.62h) 437299 (2.49h)
0.20 cm - Max (h) 905234 (9.04h) 879379(2.95h) 159943 (0.91h)
Max (cm) 2.09 3.04 1.26
MSE 2.42e10−3 1.03e10−3 0.68e10−3

CPU time (sec) 37 122 167

Table 6.6: Performance of PCA on Clinical Half Lung DVF Set 4, 5, and 6

PCA Performance on Half Lung DVF Set 7 DVF Set 8 DVF Set 9

Free Parameters (%) 39168000 (20%) 21884160 (20%) 29154816 (20%)
Percentage of Variance Explained 94.95% 82.5% 93.7%
0.15 cm - Max (h) 660726 (3.37h) 790609 (7.23h) 317941 (2.18h)
0.20 cm - Max (h) 266175 (1.36h) 273182 (2.50h) 94871 (0.65h)
Max (cm) 0.95 1.94 0.45
MSE 0.67e10−3 1.11e10−3 0.64e10−3

CPU time (sec) 241 42 59

Table 6.7: Performance of PCA on Clinical Half Lung DVF Set 7, 8 , and 9

error is calculated by comparing the reconstructed DVF to the noiseless DVF. It is worth mentioning

that in all 4 sets of simulated DVF, PCA performs extremely well in terms of the percentage of

variance explained (above 99%) by keeping two Eigen vectors.
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PCA on Simulated Half Lung DVF Set 1 DVF Set 2

Free Parameters (%) 78643200 (20%) 78643200 (20%)
Percentage of Variance Explained 99.8% 99.9%
0.15 cm - Max (h) 29442668 (74.8h) 157869 (0.40h)
0.20 cm - Max (h) 12166792 (30.9h) 54068 (0.14h)
Max (cm) 0.49 0.27
MSE 7.57e10−3 1.59e10−3

CPU time (sec) 811 1299

Table 6.8: Performance of PCA on Simulated Half Lung DVF Set 1 and 2

PCA on Simulated Half Lung DVF Set 3 DVF Set 4

Free Parameters (%) 78643200 (20%) 78643200 (20%)
Percentage of Variance Explained 99.8% 99.6%
0.15 cm - Max (h) 20471819 (52.1h) 72281 (0.18h)
0.20 cm - Max (h) 6517063 (16.6h) 0 (0h)
Max (cm) 0.45 0.19
MSE 6.14e10−3 1.22e10−3

CPU time (sec) 1163 325

Table 6.9: Performance of PCA on Simulated Half Lung DVF Set 3 and 4

6.3 Performance of Revised Population Value Decomposition

In this section, we present the results of revised PVD algorithm (which we will simply call the

PVD or the PVD algorithm) on the clinical full lung DVF, clinical half lung DVF, and simulated

DVF dataset. Because the PVD algorithm is a two-step data reduction method, we need to choose

the bottom threshold for the percentage of variance explained in each data reduction step. The

total percentage of variance explained is hard to describe and summarize with one number. We

are unable to provide a formula for the total percentage of variance explained after two-step data

reduction, but believe that the result might take a function form of the two percentages chosen in

both data reduction steps. Therefore we recorded the two percentages in both data reduction steps

in the performance tables. Once the bottom thresholds of the percentage of variance explained are

51



determined for both data reduction steps, the algorithm is able to find the minimum number of

singular values needed to meet the percentage threshold, and only keep the selected leading singular

values with their corresponding singular vectors.

In order to obtain a result from the PVD model, which can be later fairly compared to the result

of PCA model, we originally tried to match the total number and percentage of free parameters

between the PCA and PVD algorithm. The idea behind doing so is that we would like to see when

the data is compressed to the same size by both algorithms, which algorithm is able to achieve

a more accurate approximation by looking at the rest of the performance metrics including the

number of voxels with an absolute difference between the reconstructed and original images greater

than the set thresholds (0.15 cm and 0.20 cm). However, based on our empirical experience, we

realize that matching the number of free parameters is not necessary, because the PVD algorithm

uniformly achieves better approximation with fewer free parameters on every set of clinical DVF

data tested. We briefly discussed the comparison here so that reader will understand the original

rationale of how we choose the percentages of variance explained in both data reduction steps in the

PVD algorithm. We are not alleging that the same or similar percentage should be used on all DVF

data. We will further discuss the comparisons among different model results in Chapter 7. Again

MSE is recorded in case readers are interested.

PVD on Full Lung DVF

Free Parameters (%) 1882650 (0.42%)
Percentage of Variance Explained 98% & 98%
0.15 cm - Max (h) 186746 (0.42h)
0.20 cm - Max (h) 39668 (0.09h)
Max (cm) 0.85
MSE 3.93e10−4

CPU time (sec) 1383

Table 6.10: Performance of PVD on Clinical Full Lung DVF

Next we present the results of PVD algorithm on 9 sets of clinical half lung DVF datasets. For
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each set of DVF in this category, we choose a similar but yet slightly different level of percentage of

variance explained in both data reduction steps in the PVD algorithm, which are recorded.

PVD Performance on Half Lung DVF Set 1 DVF Set 2 DVF Set 3

Free Parameters (%) 513846 (0.61%) 1795674 (1.62%) 1091370 (1.21%)
Percentage of Variance Explained 95% & 95% 99% & 99% 98% & 98%
0.15 cm - Max (h) 287850 (3.40h) 4896 (0.04h) 13851 (0.15h)
0.20 cm - Max (h) 153843 (1.82h) 2219 (0.02h) 5331 (0.06h)
Max (cm) 4.30 0.79 0.50
MSE 0.97e10−3 0.10e10−3 0.20e10−3

CPU time (sec) 102 153 109

Table 6.11: Performance of PVD on Clinical Half Lung DVF Set 1, 2, and 3

PVD Performance on Half Lung DVF Set 4 DVF Set 5 DVF Set 6

Free Parameters (%) 6656372 (6.64%) 1944954 (0.65%) 1442260 (0.82%)
Percentage of Variance Explained 95% & 95% 97% & 97% 98% & 98%
0.15 cm - Max (h) 110782 (1.11h) 146462 (0.49h) 15586 (0.09h)
0.20 cm - Max (h) 38808 (0.39h) 38947 (0.13h) 4098 (0.02h)
Max (cm) 0.98 0.67 0.40
MSE 0.40e10−3 0.31e10−3 0.16e10−3

CPU time (sec) 202 820 369

Table 6.12: Performance of PVD on Clinical Half Lung DVF Set 4, 5, and 6

PVD Performance on Half Lung DVF Set 7 DVF Set 8 DVF Set 9

Free Parameters (%) 720910 (0.37%) 784506 (0.72%) 622216 (0.43%)
Percentage of Variance Explained 97% & 97% 97% & 97% 96% & 96%
0.15 cm - Max (h) 169894 (0.87h) 16921 (0.15h) 130428 (0.89h)
0.20 cm - Max (h) 38697 (0.20h) 3277 (0.03h) 30781 (0.21h)
Max (cm) 0.49 0.37 0.42
MSE 0.43e10−3 0.27e10−3 0.40e10−3

CPU time (sec) 385 236 264

Table 6.13: Performance of PVD on Clinical Half Lung DVF Set 7, 8, and 9
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For the simulated DVF, we perform the PVD model on the noisy DVF, and the absolute error is

calculated by comparing the reconstructed DVF to the noiseless DVF.

PVD on Simulated Half Lung DVF Set 1 DVF Set 2

Free Parameters (%) 875488 (0.22%) 935744 (0.24%)
Percentage of Variance Explained 99.9% & 99.9% 99.9% & 99.9%
0.15 cm - Max (h) 29892842 (76.0h) 5210 (0.013h)
0.20 cm - Max (h) 12615631 (32.1h) 0 (0h)
Max (cm) 0.50 0.16
MSE 7.60e10−3 1.61e10−3

CPU time (sec) 1270 1375

Table 6.14: Performance of PVD on Simulated Half Lung DVF Set 1 and 2

PVD on Simulated Half Lung DVF Set 3 DVF Set 4

Free Parameters (%) 875488 (0.22%) 935744 (0.24%)
Percentage of Variance Explained 99.9% & 99.9% 99.9% & 99.9%
0.15 cm - Max (h) 29892842 (76.0h) 5210 (0.013h)
0.20 cm - Max (h) 12615631 (32.1h) 0 (0h)
Max (cm) 0.50 0.16
MSE 7.60e10−3 1.61e10−3

CPU time (sec) 1270 1375

Table 6.15: Performance of PVD on Simulated Half Lung DVF Set 3 and 4

6.4 Performance of Population Tucker Decomposition

In this section, we present the results of PTD algorithm on the clinical full lung DVF, clinical half

lung, and simulated half lung dataset. In the previous section, we mentioned that for the PVD

algorithm, we need to choose the bottom threshold for percentage of variance explained in both

data reduction steps. Once the threshold is set, PVD is able to find the minimum number of singular

values and vectors needed to achieve that threshold. In turn, the number of singular values and
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vectors determine the compressed data size. However, in the case of PTD, the logic is reversed

in the first-step data reduction. In the first-step data reduction in PTD, Tucker decomposition is

used, and we will need to decided the core tensor size, which in turns determines the size of the

compressed data. Once the core tensor size is given, the algorithm using HOOI is guaranteed to find

the best low multilinear rank approximation of the original tensor in terms of the Frobenius norm (a

cost function introduced in Chapter 5). Because at step one data reduction, we perform a tucker

decomposition on each of ten third-order tensors, one at each phase (refer to Chapter 5 regarding

algorithm steps and process). When the size of the core tensor is determined first, the compressed

tensor will have different percentage of norm explained for third-order tensor at different phase.

The percentage of norm explained is calculated through the following steps:

percentnorm = 1− fnorm(residual)

fnorm(oDV F )
,

where, fnorm(residual) is the Frobenius norm of the error, which is the difference between the

approximated DVF (aDVF) and the original DVF (oDVF) and fnorm(oDV F ) is the Frobenius

norm of the original DVF (oDVF). At this point, we do not know a principled approach to choose

the optimal core tensor size. The chosen core tensor sizes in the first step is through trial and error.

In the second data reduction step, the logic of PTD is the same as that of PVD.

PTD on Full Lung DVF

Free Parameters (%) 742420(0.17%)
Percentage of Variance Explained 91-95% & 95%
0.15 cm - Max (h) 7873 (0.02h)
0.20 cm - Max (h) 2623 (0.006h)
Max (cm) 0.42
MSE 8.30e10−5

CPU time (sec) 4428

Table 6.16: Performance of PTD on Full Lung DVF
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Here we present the results of PTD algorithm on 9 sets of half lung DVF datasets.

PTD Performance on Half lung DVF Set 1 DVF Set 2 DVF Set 3

Free Parameters (%) 1017575 (1.2%) 1263507 (1.14%) 1351714 (1.5%)
Percentage of Variance Explained >99% & 95% 90-95% & 95% 94-97% & 95%
0.15 cm - Max (h) 0 (0h) 2848 (0.03h) 942 (0.01h)
0.20 cm - Max (h) 0 (0h) 1506 (0.01h) 250 (0.003h)
Max (cm) 0.07 0.87 0.29
MSE 1.40e10−6 7.13e10−5 2.76e10−5

CPU time (sec) 654 2976 1254

Table 6.17: Performance of PTD on Simulated Half Lung DVF Set 1, 2, and 3

PTD Performance on Half lung DVF Set 4 DVF Set 5 DVF Set 6

Free Parameters (%) 1477784 (1.5%) 771042 (0.29%) 1201134 (0.68%)
Percentage of Variance Explained 40-73% & 95% 89-94% & 95% 92-97% & 95%
0.15 cm - Max (h) 128470 (1.28h) 6811 (0.02h) 62 (0.0003h)
0.20 cm - Max (h) 50106 (0.50h) 2178 (0.007h) 0 (0h)
Max (cm) 1.49 0.41 0.17
MSE 0.83e10−3 7.27e10−5 2.57e10−5

CPU time (sec) 3960 5040 2820

Table 6.18: Performance of PTD on Half Lung DVF Set 4, 5, and 6

PTD Performance on Half lung DVF Set 7 DVF Set 8 DVF Set 9

Free Parameters (%) 1228812 (0.63%) 1380806 (1.26%) 1329818 (0.91%)
Percentage of Variance Explained 93-97% & 95% 94-96% & 95% 94-98% & 95%
0.15 cm - Max (h) 484 (0.002h) 44 (0.0004h) 0 (0h)
0.20 cm - Max (h) 58 (0.0003h) 0 (0h) 0 (0h)
Max (cm) 0.24 0.16 0.07
MSE 3.39e10−5 3.20e10−5 2.08e10−5

CPU time (sec) 3600 1644 2406

Table 6.19: Performance of PTD on Half Lung DVF Set 7, 8, and 9
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For the simulated DVF, we perform the PTD model on the noisy DVF, and the absolute error is

calculated by comparing the reconstructed DVF to the noiseless DVF.

PTD on Simulated Half Lung DVF Set 1 DVF Set 2

Free Parameters (%) 6030504 (1.53%) 4307676 (1.10%)
Percentage of Variance Explained 100% & 95% 100% & 95%
0.15 cm - Max (h) 29368597 (74.7h) 5000 (0.013h)
0.20 cm - Max (h) 12482683 (31.7h) 0 (0h)
Max (cm) 0.50 0.16
MSE 7.55e10−3 1.60e10−3

CPU time (sec) 72720 71352

Table 6.20: Performance of PTD on Simulated Half Lung DVF Set 1 and 2

PTD on Simulated Half Lung DVF Set 3 DVF Set 4

Free Parameters (%) 5965580 (1.52%) 5430568 (1.38%)
Percentage of Variance Explained 100% & 95% 100% & 95%
0.15 cm - Max (h) 20816848 (52.9h) 42572 (0.11h)
0.20 cm - Max (h) 6913448 (17.6h) 0 (0h)
Max (cm) 0.47 0.19
MSE 6.13e10−3 1.23e10−3

CPU time (sec) 74052 51912

Table 6.21: Performance of PTD on Simulated Half Lung DVF Set 3 and 4
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Chapter 7

Discussion on Model Performance and Future Work

7.1 Chapter Layout

In this chapter, we will be discussing and comparing the performances of PCA, PVD, and PTD

algorithms. Meanwhile we will present some advantages and drawbacks of PVD and PTD based on

both theoretical reasons and empirical experience. At the end of each section, we will briefly give

some interpretation of the results for PVD and PTD algorithms and discuss some future work that

can be done in this area of research.

7.2 Discussion on Revised Population Value Decomposition

Based on the table comparisons shown in the previous chapter, PVD shows consistent better results

in terms of data compression and accuracy of approximation on the clinical DVF tensors compared

to the PCA algorithm. The PVD algorithm runs about 4 times longer than PCA, but we believe 23

minutes (as in the case of clinical full lung DVF) is still reasonably fast. We will discuss the time

consumption of the algorithm in this section later.

Below we present to readers the performance comparison between PCA and PVD on the full

lung DVF set. As can be seen in Table 7.1, PVD requires less free parameters to achieve a higher

percentage of variance explained. The numbers of elements with an absolute difference between
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the reconstructed and original DVF above the 0.15 cm and 0.20 cm thresholds are much smaller in

PVD than those in PCA. PVD also reduces the maximum absolute difference (measured by Max

(cm) to 0.85cm almost half of PCA.

PCA on Full Lung PVD on Full Lung

Free Parameters (%) 89100000 (20%) 1882650 (0.42%)
% of Variance Explained 89% 98% & 98%
0.15 cm - Max (h) 7231415 (16.23h) 186746 (0.42h)
0.20 cm - Max (h) 3423442 (7.68h) 39668 (0.09h)
Max (cm) 1.58 0.85
MSE 1.90e10−3 3.93e10−4

CPU time (min) 6.12 23.05

Table 7.1: Performance of PCA and PVD on Full Lung DVF
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Figure 7.1: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Full Lung DVF

59



Besides the summary tables, we will also attach a tail-portion density plot of the absolute error

between the reconstructed DVF and the original DVF. In the density plot, the x-axis is the absolute

error on a voxel level between the reconstructed and original DVF. The red curve represents the

density of absolute error for PCA algorithm, and the blue curve represents the density of absolute

error for PVD algorithm. As shown in Figure 7.1, the tail portion of the PVD curve is below the

PCA curve suggesting less frequent large deviation of PVD over PCA.

Here we will show the table and tail portion density plot comparisons of PCA and PVD on

all half-lung DVF, but we will not give further discussion on each individual set of DVF since the

performance comparisons between PCA and PVD are very consistent with the comparison for the

full lung DVF.

PCA on Half Lung PVD on Half Lung

Free Parameters (%) 16936920 (20%) 513846 (0.61%)
% of Variance Explained 49.5% 95% & 95%
0.15 cm - Max (h) 1484809 (17.53h) 287850 (3.40h)
0.20 cm - Max (h) 645274 (7.62h) 153843 (1.82h)
Max (cm) 14.25 4.30
MSE 5.39e10−3 0.97e10−3

CPU time (sec) 24 102

Table 7.2: Performance of PCA and PVD on Half Lung DVF Set 1
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Figure 7.2: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 1
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 22102080 (20%) 1795674 (1.62%)
% of Variance Explained 86.8% 99% & 99%
0.15 cm - Max (h) 535741 (4.85h) 4896 (0.04h)
0.20 cm - Max (h) 227163 (2.06h) 2219 (0.02h)
Max (cm) 3.52 0.79
MSE 1.06e10−3 0.10e10−3

CPU time (sec) 42 153
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Figure 7.3: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 2
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 18008640 (20%) 1091370 (1.21%)
% of Variance Explained 87.5% 98% & 98%
0.15 cm - Max (h) 263257 (2.92h) 13851 (0.15h)
0.20 cm - Max (h) 135149 (1.50h) 5331 (0.06h)
Max (cm) 3.64 0.50
MSE 1.03e10−3 0.20e10−3

CPU time (sec) 46 109

Table 7.4: Performance of PCA and PVD on Half Lung DVF Set 30 1 2 3
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Figure 7.4: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 3
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 20026368 (20%) 6656372 (6.64%)
% of Variance Explained 59.3% 95% & 95%
0.15 cm - Max (h) 1689800 (16.88h) 110782 (1.11h)
0.20 cm - Max (h) 905234 (9.04h) 38808 (0.39h)
Max (cm) 2.09 0.98
MSE 2.42e10−3 0.40e10−3

CPU time (sec) 37 202
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Figure 7.5: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 4

64



PCA on Half Lung PVD on Half Lung

Free Parameters (%) 59587584 (20%) 1944954 (0.65%)
% of Variance Explained 87.9% 97% & 97%
0.15 cm - Max (h) 1675138 (5.62h) 146462 (0.49h)
0.20 cm - Max (h) 879379(2.95h) 38947 (0.13h)
Max (cm) 3.04 0.67
MSE 1.03e10−3 0.31e10−3

CPU time (sec) 122 820

Table 7.6: Performance of PCA on PVD on Half Lung DVF Set 50.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 7.6: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 5
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 35078400 (20%) 1442260 (0.82%)
% of Variance Explained 90.6% 98% & 98%
0.15 cm - Max (h) 437299 (2.49h) 15586 (0.09h)
0.20 cm - Max (h) 159943 (0.91h) 4098 (0.02h)
Max (cm) 1.26 0.40
MSE 0.68e10−3 0.16e10−3

CPU time (sec) 167 369

Table 7.7: Performance of PCA and PVD on Half Lung DVF Set 60.0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 7.7: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 6
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 39168000 (20%) 720910 (0.37%)
% of Variance Explained 94.95% 97% & 97%
0.15 cm - Max (h) 660726 (3.37h) 169894 (0.87h)
0.20 cm - Max (h) 266175 (1.36h) 38697 (0.20h)
Max (cm) 0.95 0.49
MSE 0.67e10−3 0.43e10−3

CPU time (sec) 241 385
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Figure 7.8: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 7
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 21884160 (20%) 784506 (0.72%)
% of Variance Explained 82.5% 97% & 97%
0.15 cm - Max (h) 790609 (7.23h) 16921 (0.15h)
0.20 cm - Max (h) 273182 (2.50h) 3277 (0.03h)
Max (cm) 1.94 0.37
MSE 1.11e10−3 0.27e10−3

CPU time (sec) 42 264
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Figure 7.9: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 8
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PCA on Half Lung PVD on Half Lung

Free Parameters (%) 29154816 (20%) 622216 (0.43%)
% of Variance Explained 93.7% 96% & 96%
0.15 cm - Max (h) 317941 (2.18h) 130428 (0.89h)
0.20 cm - Max (h) 94871 (0.65h) 30781 (0.21h)
Max (cm) 0.45 0.42
MSE 0.64e10−3 0.40e10−3

CPU time (sec) 59 264
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Figure 7.10: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Half Lung DVF
Set 9
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Now, we present the table comparisons between PCA and PVD on simulated DVF tensors

followed by tail portion distribution on absolute error on a voxel level.

Simulated DVF Set 1 PCA PVD

Free Parameters (%) 78643200 (20%) 875488 (0.22%)
% of Variance Explained 99.8% 99.9% & 99.9%
0.15 cm - Max (h) 29442668 (74.8h) 29892842 (76.0h)
0.20 cm - Max (h) 12166792 (30.9h) 12615631 (32.1h)
Max (cm) 0.49 0.50
MSE 7.57e10−3 7.60e10−3

CPU time (sec) 811 1270

Table 7.11: Performance of PCA and PVD on Simulated DVF Set 10.0 0.1 0.2 0.3 0.4 0.5
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Figure 7.11: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Simulated Lung
DVF Set 1
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Simulated DVF Set 2 PCA PVD

Free Parameters (%) 78643200 (20%) 935744 (0.24%)
% of Variance Explained 99.9% 99.9% & 99.9%
0.15 cm - Max (h) 157869 (0.40h) 5210 (0.013h)
0.20 cm - Max (h) 54068 (0.14h) 0 (0h)
Max (cm) 0.27 0.16
MSE 1.59e10−3 1.61e10−3

CPU time (sec) 1299 1375
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Figure 7.12: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Simulated Lung
DVF Set 2
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Simulated DVF Set 3 PCA PVD

Free Parameters (%) 78643200 (20%) 920208 (0.23%)
% of Variance Explained 99.8% 99.9% & 99.9%
0.15 cm - Max (h) 20471819 (52.1h) 21221841 (54.0h)
0.20 cm - Max (h) 6517063 (16.6h) 7024940 (17.9h)
Max (cm) 0.45 0.47
MSE 6.14e10−3 6.19e10−3

CPU time (sec) 1163 798
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Figure 7.13: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Simulated Lung
DVF Set 3
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Simulated DVF Set 4 PCA PVD

Free Parameters (%) 78643200 (20%) 920208 (0.23%)
% of Variance Explained 99.6% 99.9% & 99.9%
0.15 cm - Max (h) 72281 (0.18h) 43065 (0.11h)
0.20 cm - Max (h) 0 (0h) 0 (0h)
Max (cm) 0.19 0.18
MSE 1.22e10−3 1.23e10−3

CPU time (sec) 1163 1015
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Figure 7.14: Tail Portion Density Plot of the Absolute Error for PCA and PVD on Simulated Lung
DVF Set 4
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The performance on the simulated DVF tensors based on our metrics are practically indistin-

guishable between PCA and PVD. But we suggest readers put more weight on the results from

clinical DVF tensors. Because in all four cases of simulated DVF, the percentage of variance

explained are all very high (>99%) in both PCA and PVD, which is not realistic because neither

algorithms are able to achieve this level when applied to the clinical DVF tensors. The phantom

DVF is too simple and deterministic, whereas the real human respiratory motion is way more

complicated than a phantom can mimic.

For the clinical DVF tensors, the advantages of PVD algorithm over PCA results from retaining

more structure of the DVF tensor data by avoiding vectorizing the DVF tensor. PVD exploits features

in the first two modes of the DVF tensor data using an iterative matrix-based algorithm (SVD) and

shows better result than PCA in terms of data compression and accuracy of approximation. The

time consumption of PVD is consistently higher than PCA on each case of clinical DVF we tested,

because PCA algorithm vectorizes the entire DVF tensor and performs only one SVD, whereas PVD

performs a series of SVD on individual two-dimensional slices. The number of SVD performed

depends on the DVF tensor size. We will not repeat the exact algorithm steps and process. Readers

can refer to Chapter 4 for details. PVD does require more CPU time, but it is still within practical

limit, which makes it usable in clinical setting. We also want to give a brief discussion on the

interpretation of the results of the PVD algorithm from a mathematical and statistical point of view.

Each SVD in the first step of PVD finds large components (leading left singular vectors) in the

subspace spanned by the rows of a particular transverse slice and large components (leading right

singular vectors) in the subspace spanned by the columns of the same transverse slice under a given

phase. Therefore, the first step in PVD is to find spatial components (mode 1 and 2 in the DVF).

In the second step of PVD, the combined U and V matrices contains large mode-1 and mode-2

components across transverse slices and phases. Therefore, the second step is decomposing both

spatial and temporal aspects of DVF. The leading left and right singular vectors are for the subspace

spanned by both the mode-3 (number of transverse slices) and mode-4 fibers (phases) in the DVF,
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whose clinical interpretation would be hard to understand, since the second step of PVD is not

able to separate the spatial and temporal components. This complication of the PVD algorithm is

improved in the PTD algorithm, which we will discuss in the next section.

What we are not able to achieve with respect to analyzing DVF is to discover a universal way

to determine the optimal percentages of variance explained in both data reduction steps of PVD,

which will require a cost function and can be subjective, which we will leave as future work. In our

research, the percentages were determined through trial and error.

7.3 Discussion on Population Tucker Decomposition

In this section, we will be discussing the performance of PTD compared to PVD. We will not be

discussing the comparisons between PCA and PTD, because the advantage is obvious and we are

more interested to see if the progression form PVD, a matrix-based iterative algorithm, to PTD, a

tensor-based iterative algorithm, gives us better result in terms of data compression and accuracy of

approximation.

Below we present the comparisons between PVD and PTD applied to the full lung DVF data.

Based on the table summary, PTD achieve a better result in terms of data compression and accuracy

of approximation. The time consumption of PTD is higher than PVD. Followed by the table is the

plot of the tail portion density of the absolute error. The red curve is PVD and the blue curve is

PTD. As shown in the full lung DVF case, the PTD curve is below the PVD curve suggesting less

voxels with large deviations.
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PVD on Full Lung PTD on Full Lung

Free Parameters (%) 1882650 (0.42%) 742420(0.17%)
% of Variance Explained 98% & 98% 91-95% & 95%
0.15 cm - Max (h) 186746 (0.42h) 7873 (0.02h)
0.20 cm - Max (h) 39668 (0.09h) 2623 (0.006h)
Max (cm) 0.85 0.42
MSE 3.93e10−4 8.30e10−5

CPU time (min) 23.05 73.8

Table 7.15: Performance of PVD and PTD on Full Lung DVF
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Figure 7.15: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Full Lung DVF
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Next we present the results of PTD algorithm on 9 sets of half lung DVF datasets. For set 1

below, the accuracy of approximation from PTD is drastically (but not uniformly) better than PVD.

As shown in the table below for DVF set 1, the number of voxels with an absolute difference above

0.15 cm and 0.20 cm is reduced to 0 in the case of PTD. PVD has a better data compression for

this case, but we believe PTD can achieve a better level of data compression in sacrifice of some

accuracy of approximation. Followed by the table is the tail portion distribution of the absolute

error.
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 513846 (0.61%) 1017575 (1.2%)
% of Variance Explained 95% & 95% >99% & 95%
0.15 cm - Max (h) 287850 (3.40h) 0 (0h)
0.20 cm - Max (h) 153843 (71.82h) 0 (0h)
Max (cm) 4.30 0.07
MSE 0.97e10−3 01.40e10−6

CPU time (sec) 102 654

Table 7.16: Performance of PVD and PTD on Half Lung DVF Set 10 1 2 3 4
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Figure 7.16: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 1
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 1795674 (1.62%) 1263507 (1.14%)
% of Variance Explained 99% & 99% 90-95% & 95%
0.15 cm - Max (h) 4896 (0.04h) 2848 (0.03h)
0.20 cm - Max (h) 2219 (0.02h) 1506 (0.01h)
Max (cm) 0.79 0.87
MSE 0.10e10−3 7.13e10−5

CPU time (sec) 153 2976
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Figure 7.17: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 2
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 1091370 (1.21%) 1351714 (1.5%)
% of Variance Explained 98% & 98% 94-97% & 95%
0.15 cm - Max (h) 13851 (0.15h) 942 (0.01h)
0.20 cm - Max (h) 5331 (0.06h) 250 (0.003h)
Max (cm) 0.50 0.29
MSE 0.20e10−3 2.76e10−5

CPU time (sec) 109 1254
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Figure 7.18: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 3
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 6656372 (6.64%) 1477784 (1.5%)
% of Variance Explained 95% & 95% 40-73% & 95%
0.15 cm - Max (h) 110782 (1.11h) 128470 (1.28h)
0.20 cm - Max (h) 38808 (0.39h) 50106 (0.50h)
Max (cm) 0.98 1.49
MSE 0.40e10−3 0.83e10−3

CPU time (sec) 202 3960
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Figure 7.19: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 4
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 1944954 (0.65%) 771042 (0.29%)
% of Variance Explained 97% & 97% 89-94% & 95%
0.15 cm - Max (h) 146462 (0.49h) 6811 (0.02h)
0.20 cm - Max (h) 38947 (0.13h) 2178 (0.007h)
Max (cm) 0.67 0.41
MSE 0.31e10−3 7.27e10−5

CPU time (sec) 820 5040
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Figure 7.20: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 5
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 1442260 (0.82%) 1201134 (0.68%)
% of Variance Explained 98% & 98% 92-97% & 95%
0.15 cm - Max (h) 15586 (0.09h) 62 (0.0003h)
0.20 cm - Max (h) 4098 (0.02h) 0 (0h)
Max (cm) 0.40 0.17
MSE 0.16e10−3 2.57e10−5

CPU time (sec) 369 2820
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Figure 7.21: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 6
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 720910 (0.37%) 1228812 (0.63%)
% of Variance Explained 97% & 97% 93-97% & 95%
0.15 cm - Max (h) 169894 (0.87h) 484 (0.002h)
0.20 cm - Max (h) 38697 (0.20h) 58 (0.0003h)
Max (cm) 0.49 0.24
MSE 0.43e10−3 3.39e10−5

CPU time (sec) 385 3600
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Figure 7.22: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 7
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 784506 (0.72%) 1380806 (1.26%)
% of Variance Explained 97% & 97% 94-96% & 95%
0.15 cm - Max (h) 16921 (0.15h) 44 (0.0004h)
0.20 cm - Max (h) 3277 (0.03h) 0 (0h)
Max (cm) 0.37 0.16
MSE 0.27e10−3 3.20e10−5

CPU time (sec) 236 1644
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Figure 7.23: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 8
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PVD on Half Lung PTD on Half Lung

Free Parameters (%) 622216 (0.43%) 1329818 (0.91%)
% of Variance Explained 96% & 96% 94-98% & 95%
0.15 cm - Max (h) 130428 (0.89h) 0 (0h)
0.20 cm - Max (h) 30781 (0.21h) 0 (0h)
Max (cm) 0.42 0.07
MSE 0.40e10−3 2.08e10−5

CPU time (sec) 264 2406
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Figure 7.24: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Clinical Half
Lung DVF Set 9
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Now, we present the table comparisons between PCA and PVD on simulated DVF tensor

followed by tail portion distribution on absolute error on a voxel level.

Simulated DVF Set 1 PTD PVD

Free Parameters (%) 6030504 (1.53%) 875488 (0.22%)
% of Variance Explained 100% & 95% 99.9% & 99.9%
0.15 cm - Max (h) 29368597 (74.7h) 29892842 (76.0h)
0.20 cm - Max (h) 12482683 (31.7h) 12615631 (32.1h)
Max (cm) 0.50 0.50
MSE 7.55e10−3 7.60e10−3

CPU time (sec) 72720 1270
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Figure 7.25: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Simulated Lung
DVF Set 1
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Simulated DVF Set 2 PTD PVD

Free Parameters (%) 4307676 (1.10%) 935744 (0.24%)
% of Variance Explained 100% & 95% 99.9% & 99.9%
0.15 cm - Max (h) 5000 (0.013h) 5210 (0.013h)
0.20 cm - Max (h) 0 (0h) 0 (0h)
Max (cm) 0.16 0.16
MSE 1.60e10−3 1.61e10−3

CPU time (sec) 71352 1375

Table 7.26: Performance of PVD and PTD on Simulated DVF Set 20.00 0.05 0.10 0.15
0.
0

0.
5

1.
0

1.
5

2.
0

Error

D
en
si
ty

PVD
PTD

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Error

D
en
si
ty

PVD
PTD

0.00 0.05 0.10 0.15

0.
00

0.
04

0.
08

Error

D
en
si
ty

PVD
PTD

0.00 0.05 0.10 0.15
0.
00
0

0.
00
4

0.
00
8

Error

D
en
si
ty

PVD
PTD

Absolute Errors

Figure 7.26: Tail Portion Density Plot of the Absolute Error for PVD and PTDD on Simulated Lung
DVF Set 2
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Simulated DVF Set 3 PTD PVD

Free Parameters (%) 5965580 (1.52%) 920208 (0.23%)
% of Variance Explained 100% & 95% 99.9% & 99.9%
0.15 cm - Max (h) 20816848 (52.9h) 21221841 (54.0h)
0.20 cm - Max (h) 6913448 (17.6h) 7024940 (17.9h)
Max (cm) 0.47 0.47
MSE 6.13e10−3 6.19e10−3

CPU time (sec) 74052 798
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Figure 7.27: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Simulated Lung
DVF Set 3
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Simulated DVF Set 4 PTD PVD

Free Parameters (%) 5430568 (1.38%) 920208 (0.23%)
% of Variance Explained 100% & 95% 99.9% & 99.9%
0.15 cm - Max (h) 42572 (0.11h) 43065 (0.11h)
0.20 cm - Max (h) 0 (0h) 0 (0h)
Max (cm) 0.19 0.18
MSE 1.23e10−3 1.23e10−3

CPU time (sec) 51912 1015
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Figure 7.28: Tail Portion Density Plot of the Absolute Error for PVD and PTD on Simulated Lung
DVF Set 4
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One thing that seems to be common across all results of clinical half lung DVF data with one

exception (set 4) is that PTD is able to achieve better accuracy of approximation as measured by the

number of voxels with an absolute difference above 0.15 cm and 0.20 cm and maximum absolute

difference. The one exception is in clinical half lung DVF set 4, where PVD has a slight better

accuracy of approximation. However, looking carefully at the data compression level for this set,

PVD’s compressed data is more than 4 times larger than PTD. The performance for clinical DVF set

2 is very similar. We are able to conclude that PTD shows some if not uniform advantage over PVD,

which results from retaining the entire DVF structure and exploits features in the first three modes

in the DVF tensor data at step one data reduction (refer to Chapter 5). The time consumption is

drastically higher than PVD, because PTD utilizes an iterative (HOOI) algorithm to find the best low

multi-linear rank approximation in step one data reduction. This problem in tensor decomposition

is non-deterministic polynomial-time (NP) hard and takes time. The trade-off between accuracy

of approximation and time consumption can be a subjective call in our opinion because PVD’s

performance is already very satisfying. For the simulated DVF, the performance between PVD and

PTD are nearly indistinguishable. But the PTD algorithm does take longer to complete due to its

iterative nature. We believe the results on clinical DVF tensors are more realistic.

The PTD algorithm is able to retain the DVF tensor structure. PTD works different from PVD

and PCA in the sense that both PCA and PVD let users set the percentages of variance explained

threshold first, and the algorithms will find the best low rank approximation that achieves the set

threshold. Whereas, PTD requires us to set the size of the core tensor, and the algorithm is able to

find the best low multilinear rank approximation using a core tensor of the given size. Then the

percentage of norms explained can be calculated later (refer to Section 6.4). We are not able to

provide a guideline for readers to follow in terms of finding the optimal core tensor size in analyzing

DVF. But there are some literature regarding this particular topic that readers can refer to [Chen

et al., 2013, Chen et al., 2015].

There is no particular reason why we chose to stack the three coordinates of the displacement
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vector along mode 1 of DVF. Technically one can stack the three coordinates along any one of

the first three modes of DVF. The only difference is that the variations across the coordinates

are present in the subspace spanned by mode-1 fibers if coordinates are stacked along mode 1,

in subspace spanned by mode-2 fibers if coordinates are stacked along mode 2, and in subspace

spanned by mode-3 fibers if coordinates are stacked along mode 3. When performing the Tucker

decomposition on the third-order tensor obtained by stacking the coordinates, we packed all the

spatial information in the first step of PTD, and Tucker decomposition finds the best low multi-linear

rank approximation though HOOI for each third-order tensor with respect to Frobenius norm. The

factor matrices for each mode are multi-linearly related through the core tensor. The population

factor matrices obtained through combing phase-specific factor matrices computed by Tucker

decomposition in the first step only contains temporal information. Therefore, the SVD for each of

the three population factor matrice in the second step of PTD finds large components for the row

and column subspaces of the corresponding mode along the phase dimension. The actual clinical

interpretation still requires a more thorough study and research.

In the end we will discuss the time consumption of PTD, the HOOI algorithm is iterative and

can be time consuming. But in the first data reduction step of PTD, the 10 tensors, one at each

phase, can be performed on distributed system using parallel computing to speed up the algorithm.

We believe that this advantage of PTD is especially helpful as the dimensionality of the tensor

increases. Because PCA based algorithm requires vectorization of the entire tensor and performs

only one step of data reduction and will not be able to take advantage of parallel computing and

might have problems in coupling with bigger tensors (which we are not able to test). As for PVD,

since there are already efficient algorithm for SVD for tall and skinny matrices, using distributing

systems with parallel computing at step 1 data reduction will most likely results in wasting too

much on distributing jobs to different systems and communicating between different systems, all

of which remain to be tested. Unfortunately, we are not able to code and test a parallel version

of PTD algorithm, which will be left as future work and some articles on this topic are emerging
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[Sidiropoulos et al., 2014, Sidiropoulos et al., 2014, Austin et al., 2016].
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Appendix

Appendix A

.1 Revised PVD Algorithm

In this Appendix, we include all the algorithms for performing PVD and PTD. The purpose of each

algorithm, input class, and output are included and explained at the beginning of each algorithm.

We also include additional algorithms for plotting slices to identify voxels with large deviations and

examples of running the PVD, PTD, and plotting images.

To read in .mat files, one can use the ‘R.atlab’ package in R. The PVD algorithm does not

require any dependent packages besides some R base functions including ‘svd’. The PTD algorithm

requires the ‘rTensor’ package in R.

Listing .1: Revised PVD in R

#The f o l l o w i n g a l g o r i t h m p e r f o r m s t h e P o p u l a t i o n Value Decompos i t i on

g e n e r a l i z e d t o a f i f t h −o r d e r t e n s o r by f i r s t u n f o l d i n g t h e f i f t h mode

a long mode 1 and p e r f o r m i n g SVD by f i x i n g mode 3 and 4 . Then a l g o r i t h m

t h e n combines a l l t h e l e a d i n g l e f t and r i g h t s i n g u l a r v e c t o r s a c r o s s mode

3 and 4 i n t o two l a r g e U and V m a t r i c e s and p e r f o r m s SVD on each o f t h e

two l a r g e U and V m a t r i c e s .

# i n p u t needed :
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# r s : a 3− l e v e l ( [ [ sub ] ] [ [ phase ] ] [ [ dim3 ( t r a n s v e r s e s l i c e ) ] ] ) n e s t e d l i s t o f 2D

a r r a y s [ dim1∗ 3(DVF c o n t a i n s x , y , z cor ) , dim2 ]

#p1 : t h e p e r c e n t a g e ( be tween 0 and 1) o f v a r i a n c e e x p l a i n e d i n s t e p−one PVD

da ta r e d u c t i o n

#p2 : t h e p e r c e n t a g e ( be tween 0 and 1) o f v a r i a n c e e x p l a i n e d i n s t e p−two PVD

da ta r e d u c t i o n

# o u t p u t

#an a p p r o x i m a t e d f i f t h −o r d e r t e n s o r

pvd<− f u n c t i o n ( r s , p1 , p2 ) {

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / p v d s t e p 1 . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / combineuv . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / p v d s t e p 2 . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / r e c o n . R ’ )

i f ( p1 <0 | | p2 <0 | | p1 >1 | | p2 >1) { s top ( " p1 and p2 must be from [ 0 , 1 ] ! " ) }

i f ( t y p e o f ( r s ) ! =" l i s t " ) { s top ( " The f u n c t i o n pvd on ly t a k e s a l i s t a s an i n p u t .

" ) }

i f ( t y p e o f ( r s ) ==" l i s t " )

{

p r i n t ( " i n p u t c l a s s check p a s s e d . " )

i f ( ! i s . n u l l ( dim ( r s ) ) ) { s top ( " The f i r s t / s u b j e c t l e v e l i n i n p u t d a t a

s h o u l d have l e n g t h a t l e a s t 1 . " ) }

i f ( i s . n u l l ( dim ( r s ) ) && l e n g t h ( r s ) >0)

{

p r i n t ( " The f i r s t / s u b j e c t l e v e l check p a s s e d . " )

i f ( ! i s . n u l l ( dim ( r s [ [ 1 ] ] ) ) )

{ s top ( " The second / phase l e v e l i n i n p u t d a t a s h o u l d have l e n g t h

a t l e a s t 1 . " ) }

i f ( i s . n u l l ( dim ( r s [ [ 1 ] ] ) ) && l e n g t h ( r s [ [ 1 ] ] ) >0)
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{

p r i n t ( " The second / phase n e s t e d l e v e l check p a s s e d . " )

i f ( ! i s . n u l l ( dim ( r s [ [ 1 ] ] [ [ 1 ] ] ) ) )

{ s top ( " The t h i r d / t r a n s e v e r s s l i c e l e v e l i n i n p u t d a t a

s h o u l d have l e n g t h a t l e a s t 1 . " ) }

i f ( i s . n u l l ( dim ( r s [ [ 1 ] ] [ [ 1 ] ] ) ) && l e n g t h ( r s [ [ 1 ] ] [ [ 1 ] ] )

>0)

{ p r i n t ( " The t h i r d / t r a n s e v e r s s l i c e n e s t e d l e v e l check

p a s s e d . " ) }

}

}

}

p r i n t ( " S t ep 1 : P e r f o r m i n g s u b j e c t− l e v e l SVD . . . " )

s v d r s<−p v d s t e p 1 ( r s , p1 )

p r i n t ( "PVD s t e p 1 s u c c e e d e d . " )

p r i n t ( " S t a c k i n g m a t r i c e s f o r PVD s t e p 2 s u c c e e d e d . . . " )

uv<−combineuv ( s v d r s )

p r i n t ( " S t a c k i n g m a t r i c e s f o r PVD s t e p 2 s u c c e e d e d . " )

p r i n t ( " S t ep 2 : P e r f o r m i n g p o p u l a t i o n− l e v e l SVD . . . " )

pd<−p v d s t e p 2 ( uv , p2 )

p r i n t ( "PVD s t e p 2 s u c c e e d e d . " )

p r i n t ( " S t ep 3 : R e c o n s t r u c t i n g t e n s o r /DVF . . . " )

app r<− r e c o n ( s v d r s , pd )

p r i n t ( " R e c o n s t r u c t i o n s u c c e e d e d . " )

re turn ( app r )

}

Listing .2: Revised PVD Step-one in R

#The f o l l o w i n g a l g o r i t h m p e r f o r m s t h e f i r s t s t e p da ta r e d u c t i o n i n PVD

a l g o r i t h m and r e t u r n s t h e SVD f o r each t r a n s v e r s e s l i c e as a 4− l e v e l [ [ sub
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] ] [ [ phase ] ] [ [ dim3 ( t r a n s v e r s e s l i c e ) ]][[3− t u p l e ( d , u , v ) ] ] n e s t e d l i s t

# i n p u t needed :

# s : a 3− l e v e l [ [ sub ] ] [ [ phase ] ] [ [ dim3 ( t r a n s v e r s e s l i c e ) ] ] [ dim1 , dim2 ] n e s t e d

l i s t o b j e c t o f images from s u b j e c t ( s ) .

#p1 : p e r c e n t o f v a r i a t i o n s e x p l a i n e d i n f i r s t s t e p o f PVD( ∗ 1)

# ( ∗ 1) : t h e p e r c e n t o f v a r i a n c e e x p l a i n e d i n SVD i s c a l u l a t e d as t h e p e r c e n t o f

t h e sum o f t h e squared s i n g u l a r v a l u e s from 1 t o k .

p v d s t e p 1<− f u n c t i o n ( r s , p1 ) {

b_ t _ svd<−Sys . t ime ( )

I <− l e n g t h ( r s )

P <− l e n g t h ( r s [ [ 1 ] ] )

Z <− l e n g t h ( r s [ [ 1 ] ] [ [ 1 ] ] )

X <− dim ( r s [ [ 1 ] ] [ [ 1 ] ] [ [ 1 ] ] ) [ 1 ]

Y <− dim ( r s [ [ 1 ] ] [ [ 1 ] ] [ [ 1 ] ] ) [ 2 ]

s v d r s <− v e c t o r ( ’ l i s t ’ , I )

# per fo rm SVD ( Y=UDV^T )

#u <− v e c t o r ( ’ l i s t ’ , I )

# v <− v e c t o r ( ’ l i s t ’ , I )

# s igma <− v e c t o r ( ’ l i s t ’ , I )

# l i s t o f u <− l i s t ( )

# l i s t o f v <− l i s t ( )

f o r ( i i n 1 : I )
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{

s v d r s [ [ i ] ] <− v e c t o r ( ’ l i s t ’ , P )

f o r ( p i n 1 : P )

{

s v d r s [ [ i ] ] [ [ p ] ] <− v e c t o r ( ’ l i s t ’ ,Z )

f o r ( z i n 1 : Z )

{

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] <− svd ( r s [ [ i ] ] [ [ p ] ] [ [ z ] ] , LINPACK=

FALSE)

# a p p r o x i m a t e SVD based on v a r i a t i o n s e x p l i a n e d p1

t h r e s h o l d

var <− 0

# f o r ( k i n 1 : 4 ) # f o r a f i x e d number o f Vi f o r each

s u b j e c t s e t t o . I t was s e t t o 4 because t h e max

number f o r Vi i s 4 i n t h e p r c e d u r e where Vi i s n o t

f i x e d t o a c h i e v e a c e r t a i n p e r c e n t a g e o f

v a r i a t i o n s .

f o r ( k i n 1 : l e n g t h ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d ) ) # f o r

d i f f e r e n c e s i z e o f Vi f o r each s u b j e c t

{

var <− var+ s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d [ k ]^2 / sum ( (

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d ) ^2 )

# i f t h e v a r i a n t i o n s e x p l i a n e d i s above a

c e r t a i n p e r c e n t a g e t h e n s t o p

i f ( var > p1 ) break # f o r d i f f e r e n t s i z e o f Vi

f o r each s u b j e c t

}

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $u <− s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $u [ , 1 : k ]

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v <− s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v [ , 1 : k ]

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d <− s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d [ 1 : k ]

}
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}

}

e _ t _ svd<−Sys . t ime ( )

e _ t _svd−b_ t _ svd

return ( s v d r s )

}

Listing .3: Revised PVD Step-two in R

#The f o l l o w i n g a l g o r i t h m p e r f o r m s t h e second l e v e l r e d u c t i o n on combined U and

V based on p2 p e r c e n t a g e o f v a r i a t i o n s e x p a l i n e d c r i t e r i o n and r e t u r n s a

l i s t o f P & D w i t h a reduced s i z e

# i n p u t needed :

# uv : a l i s t c o n t a i n i n g U & V

#p2 : p e r c e n t o f v a r i a n c e e x l a i n e d i n t h e second s t e p o f PVD( ∗ 1)

# ( ∗ 1) : t h e p e r c e n t o f v a r i a n c e e x p l a i n e d i n SVD i s c a l u l a t e d as t h e p e r c e n t o f

t h e sum o f t h e squared s i n g u l a r v a l u e s from 1 t o k .

p v d s t e p 2<− f u n c t i o n ( uv , p2 ) {

X<−dim ( uv [ [ 1 ] ] ) [ 1 ]

Y<−dim ( uv [ [ 2 ] ] ) [ 1 ]

U<−uv [ [ 1 ] ]

V<−uv [ [ 2 ] ]

p r i n t ( dim (U) )

p r i n t ( dim (V) )

b_ t _ s svd<−Sys . t ime ( )

pd<−v e c t o r ( ’ l i s t ’ , 2 )

svdu <− svd (U)
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o b j e c t . s i z e ( svdu )

va ru <− 0

l i s t o f p <− l i s t ( )

f o r ( x i n 1 :X)

{

va ru <− va ru +svdu $d [ x ]^2 / sum ( ( svdu $d ) ^2 )

l i s t o f p [ [ x ] ] <− svdu $u [ , x ]

i f ( va ru > p2 ) break

}

svdv <− svd (V)

o b j e c t . s i z e ( svdv )

va rv <− 0

l i s t o f d <− l i s t ( )

f o r ( y i n 1 :Y)

{

va rv <− va rv +svdv $d [ y ]^2 / sum ( ( svdv $d ) ^2 )

l i s t o f d [ [ y ] ] <− svdv $u [ , y ]

i f ( va rv > p2 ) break

}

pdf ( p a s t e ( " s i n g u l a r _ v a l u e _ of _U" , " pdf " , sep =" . " ) )

p l o t ( svdu $d )

dev . o f f ( )

pdf ( p a s t e ( " s i n g u l a r _ v a l u e _ of _V" , " pdf " , sep =" . " ) )

p l o t ( svdv $d )

dev . o f f ( )

# be c a r e f u l P here i s t h e m a t r i x i n PVD

# b e f o r e i t was t h e i n d e x f o r phase
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P <− do . c a l l ( cbind , l i s t o f p )

D <− do . c a l l ( cbind , l i s t o f d )

p r i n t ( dim ( P ) )

p r i n t ( dim (D) )

pd [ [ 1 ] ] <−P

pd [ [ 2 ] ] <−D

return ( pd )

e _ t _ s svd<−Sys . t ime ( )

e _ t _ ssvd−b_ t _ s svd

}

Listing .4: Revised PVD Constructing Cross Population U and V in R

#The f o l l o w i n g a l g o r i t h m combines u , v from t h e f i r s t s t e p da ta r e d u c t i o n i n

PVD

# i n p u t needed :

# s v d r s : SVD f o r each t r a n s v e r s e s l i c e as a 4− l e v e l [ [ sub ] ] [ [ phase ] ] [ [ dim3 (

t r a n s v e r s e s l i c e ) ]][[3− t u p l e ( d , u , v ) ] ] n e s t e d l i s t

#pd : a l i s t c o n t a i n i n g P & D

combineuv<− f u n c t i o n ( s v d r s ) {

I <− l e n g t h ( s v d r s )

P <− l e n g t h ( s v d r s [ [ 1 ] ] )

Z <− l e n g t h ( s v d r s [ [ 1 ] ] [ [ 1 ] ] )

uv <− v e c t o r ( ’ l i s t ’ , 2 )

l i s t o f u <− l i s t ( )

l i s t o f v <− l i s t ( )

# combine each s u b j e c t ’ s each v i s t ’ s U and V
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f o r ( i i n 1 : I )

{

f o r ( p i n 1 : P )

{

f o r ( z i n 1 : Z )

{

l i s t o f u [ [ ( P∗Z ) ∗ ( i −1)+Z∗ ( p−1)+z ] ] <− s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $u

l i s t o f v [ [ ( P∗Z ) ∗ ( i −1)+Z∗ ( p−1)+z ] ] <− s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v

}

}

}

U <− do . c a l l ( cbind , l i s t o f u )

V <− do . c a l l ( cbind , l i s t o f v )

uv [ [ 1 ] ] <−U

uv [ [ 2 ] ] <−V

re turn ( uv )

}

Listing .5: Revised PVD Constructing Subject Level Vi in R

#The f o l l o w i n g a l g o r i t h m r e c o n s t r u c t s V_ i p z m a t r i x f o r each s u b j e c t ( i ) a t each

phase ( p ) and each t r a n s v e r s e s l i c e ( z ) .

# i n p u t needed :

# s v d r s : SVD f o r each t r a n s v e r s e s l i c e as a 4− l e v e l [ [ sub ] ] [ [ phase ] ] [ [ dim3 (

t r a n s v e r s e s l i c e ) ]][[3− t u p l e ( d , u , v ) ] ] n e s t e d l i s t

#pd : a l i s t c o n t a i n i n g P & D

b u i l d v<− f u n c t i o n ( s v d r s , pd ) {
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b_ t _ r e c o n _v<−Sys . t ime ( )

# c o n s t r u c t Vi

P<−pd [ [ 1 ] ]

D<−pd [ [ 2 ] ]

v <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s ) )

f o r ( i i n 1 : l e n g t h ( s v d r s ) )

{

v [ [ i ] ] <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s [ [ 1 ] ] ) )

f o r ( p i n 1 : l e n g t h ( s v d r s [ [ 1 ] ] ) )

{

v [ [ i ] ] [ [ p ] ] <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s [ [ 1 ] ] [ [ 1 ] ] ) )

f o r ( z i n 1 : l e n g t h ( s v d r s [ [ 1 ] ] [ [ 1 ] ] ) )

{

v [ [ i ] ] [ [ p ] ] [ [ z ] ] <− matrix ( 0 , nrow=dim ( P ) [ 2 ] , nco l =dim (

D) [ 2 ] )

i f ( l e n g t h ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d ) <2)

{

# here b l o c k m a t r i x m u l t i p l i c a t i o n can be used

i f dim ( p ) [ 1 ] i s t o o b i g

v [ [ i ] ] [ [ p ] ] [ [ z ] ]<− ( t ( P )%∗%s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ]

$u )%∗%( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d%∗%diag ( 1 ) )%∗

%( t ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v )%∗%D)

}

e l s e

{

# here b l o c k m a t r i x m u l t i p l i c a t i o n can be used

i f dim ( p ) [ 1 ] i s t o o b i g

v [ [ i ] ] [ [ p ] ] [ [ z ] ] <− ( t ( P )%∗%s v d r s [ [ i ] ] [ [ p ] ] [ [ z

] ] $u )%∗%diag ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d )%∗%( t (

s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v )%∗%D)

115



}

}

}

}

e _ t _ r e c o n _ img<−Sys . t ime ( )

e _ t _ r e c o n _ img−b_ t _ r e c o n _ img

o b j e c t . s i z e ( v )

re turn ( v )

}

Listing .6: Revised PVD Reconstructing Tensors in R

#The f o l l o w i n g a l g o r i t h m r e c o n s t r u c t s t h e image u s i n g P & D w i t h reduced s i z e s

.

# i n p u t needed :

# s v d r s : SVD f o r each t r a n s v e r s e s l i c e as a 4− l e v e l [ [ sub ] ] [ [ phase ] ] [ [ dim3 (

t r a n s v e r s e s l i c e ) ]][[3− t u p l e ( d , u , v ) ] ] n e s t e d l i s t

#pd : a l i s t c o n t a i n i n g P & D

r e c o n<− f u n c t i o n ( s v d r s , pd ) {

b_ t _ r e c o n _ img<−Sys . t ime ( )

# R e c o n s t r u c t a l l images

P<−pd [ [ 1 ] ]

# p r i n t ( dim ( P ) )

D<−pd [ [ 2 ] ]

# p r i n t ( dim (D) )

a p p r s <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s ) )

f o r ( i i n 1 : l e n g t h ( s v d r s ) )
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{

a p p r s [ [ i ] ] <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s [ [ 1 ] ] ) )

f o r ( p i n 1 : l e n g t h ( s v d r s [ [ 1 ] ] ) )

{

a p p r s [ [ i ] ] [ [ p ] ] <− v e c t o r ( ’ l i s t ’ , l e n g t h ( s v d r s [ [ 1 ] ] [ [ 1 ] ] ) )

f o r ( z i n 1 : l e n g t h ( s v d r s [ [ 1 ] ] [ [ 1 ] ] ) )

{

a p p r s [ [ i ] ] [ [ p ] ] [ [ z ] ] <− matrix ( 0 , nrow=dim ( P ) [ 1 ] , nco l =

dim (D) [ 1 ] )

i f ( l e n g t h ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d ) <2)

{

# here b l o c k m a t r i x m u l t i p l i c a t i o n can be used

i f dim ( p ) [ 1 ] i s t o o b i g

a p p r s [ [ i ] ] [ [ p ] ] [ [ z ] ]<−P%∗%( ( t ( P )%∗%s v d r s [ [ i

] ] [ [ p ] ] [ [ z ] ] $u )%∗%( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $d%

∗%diag ( 1 ) )%∗%( t ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v )%∗%

D)%∗%t (D) )

}

e l s e

{

# here b l o c k m a t r i x m u l t i p l i c a t i o n can be used

i f dim ( p ) [ 1 ] i s t o o b i g

a p p r s [ [ i ] ] [ [ p ] ] [ [ z ] ] <− P%∗%( ( t ( P )%∗%s v d r s [ [ i

] ] [ [ p ] ] [ [ z ] ] $u )%∗%diag ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z

] ] $d )%∗%( t ( s v d r s [ [ i ] ] [ [ p ] ] [ [ z ] ] $v )%∗%D)%∗%

t (D) )

}

}

}

}

e _ t _ r e c o n _ img<−Sys . t ime ( )
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e _ t _ r e c o n _ img−b_ t _ r e c o n _ img

o b j e c t . s i z e ( a p p r s )

re turn ( a p p r s )

}

# save ( apprs , f i l e =" / home / kangk4 / d i s s e r t a t i o n / da ta / pvd _ apprs . rda " )

Listing .7: Restructure a Fifth-order Tensor in R

#The f o l l o w i n g a l g o r i t h m r e a a r a n g e s t h e image s t r u c t u r e from

# ( 1 ) a 1− l e v e l l i s t o f 5D [ dim1 , dim2 , dim3 , phase , ( DVF c o n t a i n s x , y , z cor ) ]

a r r a y s or

# ( 2 ) a 2− l e v e l l i s t o f 5D [ dim1 , dim2 , dim3 , phase , ( DVF c o n t a i n s x , y , z cor ) ]

a r r a y s ∗ ( a )

# i n t o a 3− l e v e l ( [ [ sub ] ] [ [ phase ] ] [ [ dim3 ( t r a n s v e r s e s l i c e ) ] ] ) n e s t e d l i s t o f 2D

a r r a y s [ dim1∗ 3(DVF c o n t a i n s x , y , z cor ) , dim2 ] aka f o r each s u b j e c t a t each

phase f o r each t r a n s e v r s e s l i c e , t h e a l g o r i t h m i s s t a c k i n g t h e t r a n s v e r s e

s l i c e f o r each ( x , y , z ) cor i n DVF t o make a long m a t r i x .

#∗ ( a ) The re as on we have two t y p e s o f i n p u t s t r u t u r e i s because t h a t t h e

readMat f u n c t i o n ( from R . math lab package ) w i l l some t imes r e t u r n a l i s t

w i t h one o f two d i f f e r e n t s t r u c t u r e s . In case ( 2 ) t h e second l e v e l i s a

dummy l e v e l . The l e v e l ( s ) i n e i t h e r ( 1 ) or ( 2 ) s h o u l d have l e n g t h 1

assuming you are r e a d i n g i n " . mat " f i l e per p a t i e n t u s i n g t h e readMat

f u n c t i o n .

# i n p u t needed :

# s : t h e o r i g i n a l DVF image i s s t o r e d as a l i s t o f e i t h e r s t r u t u r e ( 1 ) or ( 2 )

l1o5dTOl3o2d <− f u n c t i o n ( s ) {

i f ( t y p e o f ( s ) ! =" l i s t " ) { s top ( " The f u n c t i o n l1o5dTOl3o2d on ly t a k e s a

l i s t a s an i n p u t . " ) }
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i f ( t y p e o f ( s ) ==" l i s t " )

{

i f ( ! i s . n u l l ( dim ( s ) ) ) { s top ( " The f i r s t l e v e l i n i n p u t d a t a s h o u l d have

l e n g t h e x a c t l y 1 . " ) }

i f ( i s . n u l l ( dim ( s ) ) )

{

I<− l e n g t h ( s )

i f ( ! i s . n u l l ( dim ( s [ [ I ] ] ) ) )

{

P <− l e n g t h ( s [ [ 1 ] ] [ 1 , 1 , 1 , , 1 ] )

X <− l e n g t h ( s [ [ 1 ] ] [ , 1 , 1 , 1 , 1 ] )

Y <− l e n g t h ( s [ [ 1 ] ] [ 1 , , 1 , 1 , 1 ] )

Z <− l e n g t h ( s [ [ 1 ] ] [ 1 , 1 , , 1 , 1 ] )

COR <− l e n g t h ( s [ [ 1 ] ] [ 1 , 1 , 1 , 1 , ] )

order <− 1

}

i f ( i s . n u l l ( dim ( s [ [ I ] ] ) ) && i s . n u l l ( dim ( s [ [ I ] ] [ [ 1 ] ] ) ) ) { s top ( "

D e t e c t e d a second n e s t e d l e v e l t h a t does n o t meet

c r i t e r i o n . The second n e s t e d l e v e l i n i n p u t d a t a s h o u l d

have l e n g t h e x a c t l y 1 . " ) }

i f ( i s . n u l l ( dim ( s [ [ I ] ] ) ) && ! i s . n u l l ( dim ( s [ [ I ] ] [ [ 1 ] ] ) ) )

{

P <− l e n g t h ( s [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , 1 , , 1 ] )

X <− l e n g t h ( s [ [ 1 ] ] [ [ 1 ] ] [ , 1 , 1 , 1 , 1 ] )

Y <− l e n g t h ( s [ [ 1 ] ] [ [ 1 ] ] [ 1 , , 1 , 1 , 1 ] )

Z <− l e n g t h ( s [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , , 1 , 1 ] )

COR <− l e n g t h ( s [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , 1 , 1 , ] )

order <− 2

}

}
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}

r s <− v e c t o r ( ’ l i s t ’ , I )

f o r ( i i n 1 : I )

{

r s [ [ i ] ] <− v e c t o r ( ’ l i s t ’ , P )

f o r ( p i n 1 : P )

{

r s [ [ i ] ] [ [ p ] ] <− v e c t o r ( ’ l i s t ’ ,Z )

f o r ( z i n 1 : Z )

{

r s [ [ i ] ] [ [ p ] ] [ [ z ] ] <− matrix ( 0 , nrow=X∗COR, nco l =Y)

f o r ( cor i n 1 :COR)

{

i f ( order ==1) { r s [ [ i ] ] [ [ p ] ] [ [ z ] ] [ ( X∗ ( cor−1) +1) : ( X∗ cor )

, ] <− s [ [ i ] ] [ , , z , p , cor ] }

i f ( order ==2) { r s [ [ i ] ] [ [ p ] ] [ [ z ] ] [ ( X∗ ( cor−1) +1) : ( X∗ cor )

, ] <− s [ [ i ] ] [ [ 1 ] ] [ , , z , p , cor ] }

}

}

}

}

re turn ( r s )

}

Listing .8: Supplemental Algorithm for Computing Voxel-based Absolute Errors in R

#The f o l l o w i n g a l g o r i t h m w i l l c o n v e r t a t h r e e− l e v e l ( [ [ sub ] ] [ [ phase ] ] [ [ dim3 (

t r a n s v e r s e s l i c e ) ] ] ) [ dim1 , dim2 ] l i s t o f 2D a r r a y s i n t o a m a t r i x by ( 1 )

c o n v e r t i n g 2D a r r a y s i n t o a v e c t o r f o r each l e v e l−one+l e v e l−two+l e v e l−
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t h r e e l i s t e l e m e n t and ( 2 ) rowbind−i n g each v e c t o r i n t o a l o n g e r v e c t o r

l3o2dTOv<− f u n c t i o n ( l ) {

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / mtov . R ’ )

sub <− l e n g t h ( l )

phase <− l e n g t h ( l [ [ 1 ] ] )

Z <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] )

dim1 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ [ 1 ] ] [ , 1 ] )

dim2 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ [ 1 ] ] [ 1 , ] )

dim <− dim1∗dim2

sdim <− dim1∗dim2∗Z

td im <− sdim∗ phase

v <− rep ( 0 , td im ∗ sub )

m <− matrix ( 0 , nrow=dim1 , nco l =dim2 )

f o r ( i i n 1 : sub ) {

f o r ( j i n 1 : phase ) {

f o r ( z i n 1 : Z ) {

m <− l [ [ i ] ] [ [ j ] ] [ [ z ] ]

v [ ( td im ∗ ( i −1)+sdim∗ ( j −1)+dim∗ ( z−1) +1) : ( td im ∗ ( i −1)+sdim

∗ ( j −1)+dim∗z ) ]<−mtov (m)

}

}

}

re turn ( v )

}

Listing .9: Supplemental Algorithm for Reconstructing a Fifth-order Tensor in R

#The f o l l o w i n g a l g o r i t h m w i l l v e c t o r i z e a m a t r i x by s t a c k i n g i t s columns

mtov<− f u n c t i o n (m) {

m <− data . matrix (m)

dim1 <− dim (m) [ 1 ]

dim2 <− dim (m) [ 2 ]
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v <− rep ( 0 , dim1∗dim2 )

f o r ( i i n 1 : dim2 ) {

v [ ( dim1∗ ( i −1) +1) : ( dim1∗ i ) ] <− m[ , i ]

}

re turn ( v )

}

#The f o l l o w i n g a l g o r i t h m w i l l c o n v e r t v e c t o r i z e a t h r e e−d i m e n s i o n a l (3D) a r r a y

by v e c t o r i z e each 2D s l i c e t h e n c b i n d t h o s e v e c t o r s t o form one m a t r i x .

And f i n a l l y v e c t o r i z e t h e one m a t r i x i n t o a long v e c t o r

t h r e e d t o v<− f u n c t i o n ( t h r e e d ) {

dim1 <− l e n g t h ( t h r e e d [ , 1 , 1 ] )

dim2 <− l e n g t h ( t h r e e d [ 1 , , 1 ] )

dim3 <− l e n g t h ( t h r e e d [ 1 , 1 , ] )

m <− matrix ( 0 , nrow=dim1∗dim2 , nco l =dim3 )

array <− array ( 0 , dim=c ( dim1 , dim2 ) )

f o r ( i i n 1 : dim3 ) {

array <− t h r e e d [ , , i ]

m[ , i ] <− mtov ( array )

}

v <− mtov (m)

re turn ( v )

}

#The f o l l o w i n g a l g o r i t h m w i l l c o n v e r t a 4D a r r a y s i n t o a m a t r i x by ( 1 )

v e c t o r i z i n g each 3D a r r a y i n t o a long v e c t o r and ( 2 ) cb ind−i n g v e c t o r s

from d i f f e r e n t p ha se s (4 t h d i m e n s i o n ) i n t o a m a t r i x

fou rd tom<− f u n c t i o n ( f o u r d ) {

dim1 <− l e n g t h ( f o u r d [ , 1 , 1 , 1 ] )

dim2 <− l e n g t h ( f o u r d [ 1 , , 1 , 1 ] )

dim3 <− l e n g t h ( f o u r d [ 1 , 1 , , 1 ] )
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dim4 <− l e n g t h ( f o u r d [ 1 , 1 , 1 , ] )

m <− matrix ( 0 , nrow=dim1∗dim2∗dim3 , nco l =dim4 )

array <− array ( 0 , dim=c ( dim1 , dim2 , dim3 ) )

f o r ( i i n 1 : dim4 ) {

array <− f o u r d [ , , , i ]

m[ , i ] <− t h r e e d t o v ( array )

}

re turn (m)

}

#The f o l l o w i n g a l g o r i t h m w i l l c o n v e r t a 5D a r r a y s i n t o a m a t r i x by ( 1 )

c o n v e r t i n g a 4D a r r a y s i n t o a m a t r i x and ( 2 ) s t a c k i n g each m a t r i x from t h e

DVF ( x , y , z ) (5 t h d i m e n s i o n ) i n t o a l o n g e r m a t r i x

f i v e d t o m<− f u n c t i o n ( f i v e d ) {

dim1 <− l e n g t h ( f i v e d [ , 1 , 1 , 1 , 1 ] )

dim2 <− l e n g t h ( f i v e d [ 1 , , 1 , 1 , 1 ] )

dim3 <− l e n g t h ( f i v e d [ 1 , 1 , , 1 , 1 ] )

dim4 <− l e n g t h ( f i v e d [ 1 , 1 , 1 , , 1 ] )

dim5 <− l e n g t h ( f i v e d [ 1 , 1 , 1 , 1 , ] )

dim <− dim1∗dim2∗dim3

m <− matrix ( 0 , nrow=dim∗dim5 , nco l =dim4 )

array <− array ( 0 , dim=c ( dim1 , dim2 , dim3 , dim4 ) )

f o r ( i i n 1 : dim5 ) {

array <− f i v e d [ , , , , i ]

m[ ( dim∗ ( i −1) +1) : ( dim∗ i ) , ] <− fou rd tom ( array )

}

re turn (m)

}

#The f o l l o w i n g a l g o r i t h m w i l l c o n v e r t a l i s t o f 5D a r r a y s i n t o a m a t r i x by ( 1 )

c o n v e r t i n g 5D a r r a y s i n t o a m a t r i x f o r each l e v e l−one l i s t e l e m e n t and
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( 2 ) rb ind−i n g each m a t r i x i n t o a l o n g e r m a t r i x

l tom<− f u n c t i o n ( l ) {

sub <− l e n g t h ( l )

dim1 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ , 1 , 1 , 1 , 1 ] )

dim2 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ 1 , , 1 , 1 , 1 ] )

dim3 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , , 1 , 1 ] )

dim4 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , 1 , , 1 ] )

dim5 <− l e n g t h ( l [ [ 1 ] ] [ [ 1 ] ] [ 1 , 1 , 1 , 1 , ] )

dim <− dim1∗dim2∗dim3∗dim5

m <− matrix ( 0 , nrow=dim∗sub , nco l =dim4 )

array <− array ( 0 , dim=c ( dim1 , dim2 , dim3 , dim4 , dim5 ) )

f o r ( i i n 1 : sub ) {

i f ( dim5 == 1) {

array <− l [ [ i ] ] [ [ 1 ] ] [ , , , , ]

m[ ( dim∗ ( i −1) +1) : ( dim∗ i ) , ] <− fou rd tom ( array )

}

i f ( dim5 > 1) {

array <− l [ [ i ] ] [ [ 1 ] ] [ , , , , ]

m[ ( dim∗ ( i −1) +1) : ( dim∗ i ) , ] <− f i v e d t o m ( array )

}

}

re turn (m)

}

Listing .10: An Example of Running Revised PVD in R

t _ s t a r t<−Sys . t ime ( )

. l i b P a t h s ( )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / l1o5dTOl3o2d . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / pvd . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / l3o2dTOv . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / pden . R ’ )
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source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / p d e n f i x . R ’ )

#### Read i n image da ta ####

l i b r a r y (R . m a t l a b )

# case01<−readMat ( ’ / home / kangk4 / d i s s e r t a t i o n / da ta / T e n P a t i e n t s H a l f L u n g / DVFmat /

case01 . mat ’ )

# save ( case01 , f i l e =" / home / kangk4 / d i s s e r t a t i o n / da ta / T e n P a t i e n t s H a l f L u n g / RDA /

case01 . rda " )

# I f you have t h e DVF saved as an R o b j e c t , t h e n use t h e f o l l o w i n g w i l l be

f a s t e r

load ( " / home / kangk4 / d i s s e r t a t i o n / d a t a / T e n P a t i e n t s H a l f L u n g /RDA/ r s c a s e 0 1 . r d a " )

# load ( " / home / kangk4 / d i s s e r t a t i o n / da ta / d v f x . rda " )

dvf<− l i s t ( r s c a s e 0 1 )

#make a l i s t c o n t a i n i n g a l l s u b j e c t s

s<− l i s t ( dvf )

s t r ( s )

pvd _ s t a r t<−Sys . t ime ( )

r s<−l1o5dTOl3o2d ( s )

a p p r s<−pvd ( r s , . 9 5 , . 9 5 )

v r s<−l3o2dTOv ( r s )

v a p p r s<−l3o2dTOv ( a p p r s )

d i f v e c<−abs ( vapprs−v r s )

save ( d i f v e c , f i l e =" / home / kangk4 / d i s s e r t a t i o n / d a t a / pvd _ d i f v e c _ c a s e0 1 . 1 . r d a " )

l e n g t h ( d i f v e c )

l e n g t h ( d i f v e c [ d i f v e c > 0 . 2 0 ] )

l e n g t h ( d i f v e c [ d i f v e c > 0 . 1 5 ] )

mse_ pvd<−sum ( d i f v e c ^2 ) / l e n g t h ( d i f v e c )

mse_ pvd

max ( d i f v e c )
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pvd _end<−Sys . t ime ( )

pvd _end−pvd _ s t a r t

.2 PTD Algorithm

Listing .11: PTD in R

#The f o l l o w i n g a l g o r i t h m p e r f o r m s P o p u l a t i o n Tucker Decompos i t i on on a f i f t h −

o r d e r t e n s o r by f i r s t u n f o l d i n g t h e f i f t h mode a long mode−1 and t h e n

p e r f o r m i n g Tucker Decompos i t i on on a t h i r d−o r d e r t e n s o r when f i x i n g mode 4

and combin ing f a c t o r m a t r i c e s f o r mode 1 , 2 , and 3 a c r o s s mode 4 mode−

wise and p e r f o r m s a SVD on each o f t h e t h r e e combined p o p u l a t i o n f a c t o r

m a t r i c e s .

# i n p u t needed :

# t n s r : 5 th−o r d e r t e n s o r (DVF)

# dim1 : s i z e o f t h e f i r s t d i m e n s i o n o f t h e core t e n s o r

# dim2 : s i z e o f t h e second d i m e n s i o n o f t h e core t e n s o r

# dim3 : s i z e o f t h e t h i r d d i m e n s i o n o f t h e core t e n s o r

#p1 : p e r c e n t a g e o f SVD o f t h e combined f i r s t f a c t o r m a t r i x

#p2 : p e r c e n t a g e o f SVD o f t h e combined second f a c t o r m a t r i x

#p3 : p e r c e n t a g e o f SVD o f t h e combined t h i r d f a c t o r m a t r i x

# i n p u t

#an a p p r o x i m a t e d f i f t h −o r d e r t e n s o r

p t d<− f u n c t i o n ( t n s r , dim1 , dim2 , dim3 , p1 , p2 , p3 ) {

r e q u i r e ( " r T e n s o r " )

t c 2<− t n s r
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i f ( p1 <0 | | p2 <0 | | p3 <0 | | p1 >1 | | p2 >1 | | p3 >1) { s top ( " p1 and p2 must be from

[ 0 , 1 ] ! " ) }

i f ( t y p e o f ( t c 2 ) ! =" S4 " ) { s top ( " The f u n c t i o n pvd on ly t a k e s a l i s t a s an i n p u t . "

) }

i f ( t y p e o f ( t c 2 ) ==" S4 " ) { p r i n t ( " i n p u t c l a s s check p a s s e d . " ) }

t e n s o r d i m 1<−dim ( t c 2 ) [ 1 ]

t e n s o r d i m 2<−dim ( t c 2 ) [ 2 ]

t e n s o r d i m 3<−dim ( t c 2 ) [ 3 ]

t e n s o r d i m 4<−dim ( t c 2 ) [ 4 ]

t e n s o r d i m 5<−dim ( t c 2 ) [ 5 ]

r t c 2<−as . t e n s o r ( array ( 0 , dim=c ( t e n s o r d i m 1 ∗ t en so rd im5 , t enso rd im2 , t enso rd im3 ,

t e n s o r d i m 4 ) ) )

f o r ( i i n 1 : t e n s o r d i m 5 ) {

r t c 2 [ ( t e n s o r d i m 1 ∗ ( i −1) +1) : ( t e n s o r d i m 1 ∗ i ) , , , ]<− t c 2 [ , , , , i ]

}

A<−matrix ( 0 , nrow= t e n s o r d i m 1 ∗ t en so rd im5 , nco l =dim1∗ t e n s o r d i m 4 )

B<−matrix ( 0 , nrow= tenso rd im2 , nco l =dim2∗ t e n s o r d i m 4 )

C<−matrix ( 0 , nrow= tenso rd im3 , nco l =dim3∗ t e n s o r d i m 4 )

S<−array ( 0 , dim=c ( dim1 , dim2 , dim3 , t e n s o r d i m 4 ) )

p r i n t ( " S t ep 1 : P e r f o r m i n g s u b j e c t− l e v e l Tucker Decompos i t ion . . . " )

f o r ( i i n 1 : t e n s o r d i m 4 ) {

t u c<− t u c k e r ( r t c 2 [ , , , i ] , r a n k s =c ( dim1 , dim2 , dim2 ) ,max_ i t e r =100 , t o l =1e−15)

p r i n t ( t u c $norm_ p e r c e n t )

A [ , ( ( i −1)∗dim1 +1) : ( i ∗dim1 ) ]<− t u c $U [ [ 1 ] ]

B [ , ( ( i −1)∗dim2 +1) : ( i ∗dim2 ) ]<− t u c $U [ [ 2 ] ]

C [ , ( ( i −1)∗dim3 +1) : ( i ∗dim3 ) ]<− t u c $U [ [ 3 ] ]
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S [ , , , i ]<− t u c $Z@data

}

p r i n t ( dim (A) )

p r i n t ( dim (B) )

p r i n t ( dim (C) )

p r i n t ( dim ( S ) )

p r i n t ( "PTD s t e p 1 s u c c e e d e d . " )

p r i n t ( " S t ep 2 : P e r f o r m i n g p o p u l a t i o n− l e v e l SVD . . . " )

svda<−svd (A)

X<−dim (A) [ 1 ]

v a r a <− 0

l i s t o f a <− l i s t ( )

f o r ( x i n 1 :X)

{

v a r a <− v a r a + svda $d [ x ]^2 / sum ( ( svda $d ) ^2 )

l i s t o f a [ [ x ] ] <− svda $u [ , x ]

i f ( v a r a > p1 ) break

}

svdb<−svd (B)

X<−dim (B) [ 1 ]

va rb <− 0

l i s t o f b <− l i s t ( )

f o r ( x i n 1 :X)

{

va rb <− va rb +svdb $d [ x ]^2 / sum ( ( svdb $d ) ^2 )

l i s t o f b [ [ x ] ] <− svdb $u [ , x ]

i f ( va rb > p2 ) break
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}

svdc<−svd (C)

X<−dim (C) [ 1 ]

v a r c <− 0

l i s t o f c <− l i s t ( )

f o r ( x i n 1 :X)

{

v a r c <− v a r c + svdc $d [ x ]^2 / sum ( ( svdc $d ) ^2 )

l i s t o f c [ [ x ] ] <− svdc $u [ , x ]

i f ( v a r c > p3 ) break

}

p r i n t ( "PTD s t e p 2 s u c c e e d e d . " )

nA <− do . c a l l ( cbind , l i s t o f a )

nB <− do . c a l l ( cbind , l i s t o f b )

nC <− do . c a l l ( cbind , l i s t o f c )

p r i n t ( dim ( nA ) )

p r i n t ( dim ( nB ) )

p r i n t ( dim ( nC ) )

p r i n t ( " S t ep 3 : R e c o n s t r u c t i n g t e n s o r /DVF . . . " )

nS<−as . t e n s o r ( array ( 0 , dim=c ( dim ( nA ) [ 2 ] , dim ( nB ) [ 2 ] , dim ( nC ) [ 2 ] , t e n s o r d i m 4 ) ) )

l i z <− l i s t ( ’ mat1 ’=nA , ’ mat2 ’=nB , ’ mat3 ’=nC )

f o r ( i i n 1 : t e n s o r d i m 4 ) {

An<− t ( nA )%∗%A [ , ( ( i −1)∗dim1 +1) : ( i ∗dim1 ) ]

Bn<− t ( nB )%∗%B [ , ( ( i −1)∗dim2 +1) : ( i ∗dim2 ) ]

Cn<− t ( nC )%∗%C [ , ( ( i −1)∗dim3 +1) : ( i ∗dim3 ) ]

l i z <− l i s t ( ’ mat1 ’=An , ’ mat2 ’=Bn , ’ mat3 ’=Cn )

nS [ , , , i ]<− t t l ( as . t e n s o r ( S [ , , , i ] ) , l i z , ms=c ( 1 , 2 , 3 ) )

}
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n t<− t t l ( nS , l i s t ( nA , nB , nC ) , ms=c ( 1 , 2 , 3 ) )

p r i n t ( " R e c o n s t r u c t i o n s u c c e e d e d . " )

re turn ( n t )

}

Listing .12: Supplemental Algorithm for Restoring Tensors in R

l i b r a r y ( r T e n s o r )

vtom<− f u n c t i o n ( v , c ) {

# c i s t h e number o f ph ase s

i f ( c l a s s ( v ) == ’ numer ic ’ ) {

r <− l e n g t h ( v ) / c

m <− matrix ( v , nrow=r , nco l =c )

}

re turn (m)

}

mto l<− f u n c t i o n (m, mode1 , mode2 , mode3 , mode4 , mode5 ) {

mdim1<−dim (m) [ 1 ]

mdim2<−dim (m) [ 2 ]

s e c<−mdim1 / mode5

t n s r<−array ( 0 , dim=c ( mode1 , mode2 , mode3 , mode4 , mode5 ) )

f o r ( i i n 1 : mode5 ) {

f o r ( j i n 1 : mode4 ) {

t n s r [ , , , j , i ]<−array (m[ ( ( i −1)∗ s e c +1) : ( i ∗ s e c ) , j ] , dim=c (

mode1 , mode2 , mode3 ) )

}

}
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re turn ( t n s r )

}

norm<− f u n c t i o n ( t n s r , mode1 , mode2 , mode3 , mode4 ) {

approxnorm<−array ( 0 , dim=c ( mode1 , mode2 , mode3 , mode4 ) )

approxnorm<−s q r t ( t n s r [ , , , , 1 ] ^ 2 + t n s r [ , , , , 2 ] ^ 2 + t n s r [ , , , , 3 ] ^ 2 )

re turn ( approxnorm )

}

b i n a r y<− f u n c t i o n ( approxnorm , s t a n d a r d ) {

approxnorm [ approxnorm < s t a n d a r d ]<−0

approxnorm [ approxnorm >= s t a n d a r d ]<−1

re turn ( approxnorm )

}

Listing .13: An Example of Running PTD in R

. l i b P a t h s ( )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / ppden . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / p d e n f i x . R ’ )

source ( ’ / home / kangk4 / d i s s e r t a t i o n / code / s o u r c e / p t d . R ’ )

r e q u i r e ( " t i c t o c " )

r e q u i r e ( " r T e n s o r " )

load ( " / home / kangk4 / d i s s e r t a t i o n / d a t a / T e n P a t i e n t s H a l f L u n g /RDA/ r s c a s e 1 0 . r d a " )

t c 2<−as . t e n s o r ( r s c a s e 1 0 )

t e n s o r d i m 1<−dim ( t c 2 ) [ 1 ]

t e n s o r d i m 2<−dim ( t c 2 ) [ 2 ]

t e n s o r d i m 3<−dim ( t c 2 ) [ 3 ]

t e n s o r d i m 4<−dim ( t c 2 ) [ 4 ]

t e n s o r d i m 5<−dim ( t c 2 ) [ 5 ]
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r t c 2<−as . t e n s o r ( array ( 0 , dim=c ( t e n s o r d i m 1 ∗ t en so rd im5 , t enso rd im2 , t enso rd im3 ,

t e n s o r d i m 4 ) ) )

f o r ( i i n 1 : t e n s o r d i m 5 ) {

r t c 2 [ ( t e n s o r d i m 1 ∗ ( i −1) +1) : ( t e n s o r d i m 1 ∗ i ) , , , ]<− t c 2 [ , , , , i ]

}

n t<−p t d ( tc2 , 8 0 , 3 0 , 3 0 , 0 . 9 5 , 0 . 9 5 , 0 . 9 5 )

p t de nd<−Sys . t ime ( )

p tdend−p t d s t a r t

e r r o r<−nt−r t c 2

save ( e r r o r , f i l e =" / home / kangk4 / d i s s e r t a t i o n / d a t a / p t d _ e r r o r _ c a s e1 0 . r d a " )

l e n g t h ( d i f v e c [ d i f v e c > 0 . 1 5 ] )

l e n g t h ( d i f v e c [ d i f v e c > 0 . 2 0 ] )

max ( d i f v e c )

mse_ pvd<−sum ( d i f v e c ^2 ) / l e n g t h ( d i f v e c )

mse_ pvd

.3 Supplemental Plotting Algorithm

Listing .14: Supplemental Algorithm for Plotting Tail Portion Density Plot of Voxel-based Absolute

Errors R

l i b r a r y ( g g p l o t 2 )

l i b r a r y ( r e s h a p e 2 )

ppden<− f u n c t i o n ( pca , pvd , name ) {

d1<−d e n s i t y ( pca )
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d2<−d e n s i t y ( pvd )

pdf ( p a s t e ( name , " pdf " , sep =" . " ) )

par ( mfrow=c ( 2 , 2 ) )

p l o t ( range ( d1$x , d2$x ) , range ( 0 , 2 ) , t y p e =" n " , x l a b =" E r r o r " , y l a b =" D e n s i t y " )

l i n e s ( d1 , c o l =" r e d " )

l i n e s ( d2 , c o l =" b l u e " )

l egend ( " t o p r i g h t " , l egend =c ( "PVD" , "PTD" ) ,

c o l =c ( " r e d " , " b l u e " ) , l t y =1)

p l o t ( range ( d1$x , d2$x ) , range ( 0 , 1 ) , t y p e =" n " , x l a b =" E r r o r " , y l a b =" D e n s i t y " )

l i n e s ( d1 , c o l =" r e d " )

l i n e s ( d2 , c o l =" b l u e " )

l egend ( " t o p r i g h t " , l egend =c ( "PVD" , "PTD" ) ,

c o l =c ( " r e d " , " b l u e " ) , l t y =1)

p l o t ( range ( d1$x , d2$x ) , range ( 0 , 0 . 1 ) , t y p e =" n " , x l a b =" E r r o r " , y l a b =" D e n s i t y " )

l i n e s ( d1 , c o l =" r e d " )

l i n e s ( d2 , c o l =" b l u e " )

l egend ( " t o p r i g h t " , l egend =c ( "PVD" , "PTD" ) ,

c o l =c ( " r e d " , " b l u e " ) , l t y =1)

p l o t ( range ( d1$x , d2$x ) , range ( 0 , 0 . 0 1 ) , t y p e =" n " , x l a b =" E r r o r " , y l a b =" D e n s i t y " )

l i n e s ( d1 , c o l =" r e d " )

l i n e s ( d2 , c o l =" b l u e " )

l egend ( " t o p r i g h t " , l egend =c ( "PVD" , "PTD" ) ,

c o l =c ( " r e d " , " b l u e " ) , l t y =1)

dev . o f f ( )
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}

Listing .15: Supplemental Algorithm for Plotting Cross-phase Animation in R

du# a n i m a t i o n

setwd ( " / User s / K i n g s to n / Desktop / dummy" )

a = 2

b = 1

s l i c e = a∗b

phase = 10

f o r ( i i n 1 : phase ) {

# c r e a t i n g a name f o r each p l o t f i l e w i t h l e a d i n g z e r o

i f ( i < 10) {name = p a s t e ( " 000 " , i , " p l o t " , sep =" " ) }

i f ( i < 100 && i >= 10) {name = p a s t e ( ’ 00 ’ , i , ’ p l o t ’ , sep = ’ ’ ) }

i f ( i >= 100) {name = p a s t e ( ’ 0 ’ , i , ’ p l o t ’ , sep = ’ ’ ) }

# s a v e s t h e p l o t as a . png f i l e i n t h e work ing d i r e c t o r y

png ( p a s t e ( name , " png " , sep =" . " ) , u n i t s =" px " , wid th =2400 , h e i g h t =2100 ,

r e s =300)

par ( mfrow=c ( a , b ) )

# f o r ( j i n 1 : s l i c e ) {

# s =20∗ ( j −1)+1

# image ( r s c a s e 0 2 [ , , s , i , 3 ] , c o l=h e a t . c o l o r s ( 1 0 0 ) , z l i m=range ( u n l i s t (

r s c a s e 0 2 [ , , 8 1 , , 3 ] ) ) , main=p a s t e ( " s l i c e " , s , " phase " , i −1, sep =" " ) )

image ( nt@data [ , , 2 1 , i ] , z l im =range ( u n l i s t ( r t c 2 @d a t a [ , , 2 1 , 1 ] ) ) , main= p a s t e

( " r e c o n s t r c u t e d " , " s l i c e " , 2 1 , " phase " , i −1, sep =" " ) )

image ( r t c 2 @d a t a [ , , 2 1 , i ] , z l im =range ( u n l i s t ( r t c 2 @d a t a [ , , 2 1 , 1 ] ) ) , main=

p a s t e ( " a c t u a l " , " s l i c e " , 2 1 , " phase " , i −1, sep =" " ) )

# }
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dev . o f f ( )

}

# i n t e r m i n a l run c o n v e r t ∗ . png −d e l a y 7 −l oop 0 lung . g i f

Listing .16: An Example of Plotting Cross Transverse Slices with Large Voxel-based Deviations in

R

t _ s t a r t<−Sys . t ime ( )

. l i b P a t h s ( )

l i b r a r y ( t i c t o c )

l i b r a r y ( r T e n s o r )

l i b r a r y ( g p l o t s )

l i b r a r y ( " RColorBrewer " )

l i b r a r y ( ComplexHeatmap )

l i b r a r y ( c i r c l i z e )

source ( ’ / Users / K i n g s t o n / Desktop / s o u r c e / p c a s o u r c e . R ’ )

source ( ’ / Users / K i n g s t o n / Desktop / s o u r c e / t e n s o r i z a t i o n . R ’ )

source ( ’ / Users / K i n g s t o n / Desktop / s o u r c e / l1o5dTOl3o2d . R ’ )

source ( ’ / Users / K i n g s t o n / Desktop / s o u r c e / l3o2dTOv . R ’ )

source ( ’ / Users / K i n g s t o n / Desktop / s o u r c e / mtov . R ’ )

load ( " / Users / K i n g s t o n / Desktop / pca _ d i f v e c _ c a s e1 0 . r d a " )

p c a c a s e 1 0 v e c<−d i f v e c

pcacase10mat<−vtom ( pcacase10vec , 1 0 )

p c a c a s e 1 0 t n s<−mtol ( pcacase10mat , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 , 3 )

pcacase10norm<−norm ( p c a c a s e 1 0 t n s , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 )

p c a c a s e 1 0 b i<−b i n a r y ( pcacase10norm , 0 . 1 5 )

p c a t 5 0 p 1<−pcacase10norm [ , , 5 0 , 1 ]

p c a t 5 1 p 1<−pcacase10norm [ , , 5 1 , 1 ]

p c a t 5 2 p 1<−pcacase10norm [ , , 5 2 , 1 ]
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p c a t 5 3 p 1<−pcacase10norm [ , , 5 3 , 1 ]

p c a t 5 4 p 1<−pcacase10norm [ , , 5 4 , 1 ]

load ( " / Users / K i n g s t o n / Desktop / pvd_ d i f v e c _ c a s e1 0 . 1 . r d a " )

pvdcase10vec<−d i f v e c

pvdcase10mat<−pvdvtom ( pvdcase10vec , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 , 3 )

p v d c a s e 1 0 t n s<−pvdmtot ( pvdcase10mat , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 , 3 )

pvdcase10norm<−norm ( p v d c a s e 1 0 t n s , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 )

p v d c a s e 1 0 b i<−b i n a r y ( pvdcase10norm , 0 . 1 5 )

pvdt50p1<−pvdcase10norm [ , , 5 0 , 1 ]

pvdt51p1<−pvdcase10norm [ , , 5 1 , 1 ]

pvdt52p1<−pvdcase10norm [ , , 5 2 , 1 ]

pvdt53p1<−pvdcase10norm [ , , 5 3 , 1 ]

pvdt54p1<−pvdcase10norm [ , , 5 4 , 1 ]

load ( " / Users / K i n g s t o n / Desktop / p t d _ e r r o r _ c a s e1 0 . r d a " )

p t d c a s e 1 0 t n s r<− e r r o r

p t d c a s e 1 0 t n s<− p t d t t o t ( p t d c a s e 1 0 t n s r , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 , 3 )

p tdcase10norm<−norm ( p t d c a s e 1 0 t n s , 3 0 4 , 1 4 8 , 1 0 8 , 1 0 )

p t d c a s e 1 0 b i<−b i n a r y ( p tdcase10norm , 0 . 1 5 )

p t d t 5 0 p 1<−p tdcase10norm [ , , 5 0 , 1 ]

p t d t 5 1 p 1<−p tdcase10norm [ , , 5 1 , 1 ]

p t d t 5 2 p 1<−p tdcase10norm [ , , 5 2 , 1 ]

p t d t 5 3 p 1<−p tdcase10norm [ , , 5 3 , 1 ]

p t d t 5 4 p 1<−p tdcase10norm [ , , 5 4 , 1 ]

load ( " / Users / K i n g s t o n / Desktop / r awcase10 . r d a " )

raw<−r awcase10

rawcase10<−r awcase10 [ [ 1 ] ]
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r a w c a s e 1 0 t 5 0 p 1<−r awcase10 [ , , 5 0 , 1 ]

r a w c a s e 1 0 t 5 1 p 1<−r awcase10 [ , , 5 1 , 1 ]

r a w c a s e 1 0 t 5 2 p 1<−r awcase10 [ , , 5 2 , 1 ]

r a w c a s e 1 0 t 5 3 p 1<−r awcase10 [ , , 5 3 , 1 ]

r a w c a s e 1 0 t 5 4 p 1<−r awcase10 [ , , 5 4 , 1 ]

rawmax<−max ( r awcase10 t50p1 , rawcase10 t51p1 , rawcase10 t52p1 , rawcase10 t53p1 ,

r a w c a s e 1 0 t 5 4 p 1 ) +100

rawmin<−min ( r awcase10 t50p1 , rawcase10 t51p1 , rawcase10 t52p1 , rawcase10 t53p1 ,

r a w c a s e 1 0 t 5 4 p 1 )

rawmed<−median ( c ( r awcase10 t50p1 , rawcase10 t51p1 , rawcase10 t52p1 , rawcase10 t53p1 ,

r a w c a s e 1 0 t 5 4 p 1 ) )

c o l o r s =c ( seq ( rawmin , rawmed , l e n g t h =50) , seq ( rawmed , rawmax , l e n g t h =50) , seq ( rawmax

, 5 0 0 0 , l e n g t h =10) )

r a w p a l e t t e<−c o l o r R a m p P a l e t t e ( c ( " b l a c k " , " w h i t e " , " r e d " ) ) ( n =512)

c o l o r s =c ( seq ( rawmin , rawmed , l e n g t h =50) , seq ( rawmed , rawmax , l e n g t h =50) )

r a w p a l e t t e 2<−c o l o r R a m p P a l e t t e ( c ( " b l a c k " , " w h i t e " ) ) ( n =512)

r a w c a s e 1 0 t 5 0 p 1 p c a<−r a w c a s e 1 0 t 5 0 p 1

r a w c a s e 1 0 t 5 0 p 1 p c a [ which ( p c a t 5 0 p 1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 1 p 1 p c a<−r a w c a s e 1 0 t 5 1 p 1

r a w c a s e 1 0 t 5 1 p 1 p c a [ which ( p c a t 5 1 p 1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 2 p 1 p c a<−r a w c a s e 1 0 t 5 2 p 1

r a w c a s e 1 0 t 5 2 p 1 p c a [ which ( p c a t 5 2 p 1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 3 p 1 p c a<−r a w c a s e 1 0 t 5 3 p 1

r a w c a s e 1 0 t 5 3 p 1 p c a [ which ( p c a t 5 3 p 1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 4 p 1 p c a<−r a w c a s e 1 0 t 5 4 p 1

r a w c a s e 1 0 t 5 4 p 1 p c a [ which ( p c a t 5 4 p 1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

rawcase10 t50p1pvd<−r a w c a s e 1 0 t 5 0 p 1

rawcase10 t50p1pvd [ which ( pvd t50p1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000
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r awcase10 t51p1pvd<−r a w c a s e 1 0 t 5 1 p 1

rawcase10 t51p1pvd [ which ( pvd t51p1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

rawcase10 t52p1pvd<−r a w c a s e 1 0 t 5 2 p 1

rawcase10 t52p1pvd [ which ( pvd t52p1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

rawcase10 t53p1pvd<−r a w c a s e 1 0 t 5 3 p 1

rawcase10 t53p1pvd [ which ( pvd t53p1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

rawcase10 t54p1pvd<−r a w c a s e 1 0 t 5 4 p 1

rawcase10 t54p1pvd [ which ( pvd t54p1 > 0 . 1 5 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 0 p 1 p t d<−r a w c a s e 1 0 t 5 0 p 1

r a w c a s e 1 0 t 5 0 p 1 p t d [ which ( p t d t 5 0 p 1 > 0 . 0 3 0 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 1 p 1 p t d<−r a w c a s e 1 0 t 5 1 p 1

r a w c a s e 1 0 t 5 1 p 1 p t d [ which ( p t d t 5 1 p 1 > 0 . 0 3 0 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 2 p 1 p t d<−r a w c a s e 1 0 t 5 2 p 1

r a w c a s e 1 0 t 5 2 p 1 p t d [ which ( p t d t 5 2 p 1 > 0 . 0 3 0 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 3 p 1 p t d<−r a w c a s e 1 0 t 5 3 p 1

r a w c a s e 1 0 t 5 3 p 1 p t d [ which ( p t d t 5 3 p 1 > 0 . 0 3 0 , a r r . i n d = TRUE) ]<−5000

r a w c a s e 1 0 t 5 4 p 1 p t d<−r a w c a s e 1 0 t 5 4 p 1

r a w c a s e 1 0 t 5 4 p 1 p t d [ which ( p t d t 5 4 p 1 > 0 . 0 3 0 , a r r . i n d = TRUE) ]<−5000

# par ( mfrow = c ( 2 , 5 ) )

# heatmap . 2 ( as . m a t r i x ( rawcase10 t50p1pca ) , c o l=r a w p a l e t t e , main = "PCA−C10T50P1

" , t r a c e c o l =NA , d e n s i t y . i n f o =’none ’ , key=FALSE )

par ( mfrow = c ( 3 , 5 ) , mar = c ( 3 , 1 , 1 , 0 ) )

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 0 p 1 p c a [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PCA−

C10T50P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 1 p 1 p c a [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PCA−

C10T51P1 " , axes =FALSE)
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image ( as . matrix ( t ( r a w c a s e 1 0 t 5 2 p 1 p c a [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PCA−

C10T52P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 3 p 1 p c a [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PCA−

C10T53P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 4 p 1 p c a [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PCA−

C10T54P1 " , axes =FALSE)

image ( as . matrix ( t ( r awcase10 t50p1pvd [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PVD−

C10T50P1 " , axes =FALSE)

image ( as . matrix ( t ( r awcase10 t51p1pvd [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PVD−

C10T51P1 " , axes =FALSE)

image ( as . matrix ( t ( r awcase10 t52p1pvd [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PVD−

C10T52P1 " , axes =FALSE)

image ( as . matrix ( t ( r awcase10 t53p1pvd [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PVD−

C10T53P1 " , axes =FALSE)

image ( as . matrix ( t ( r awcase10 t54p1pvd [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PVD−

C10T54P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 0 p 1 p t d [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PTD−

C10T50P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 1 p 1 p t d [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PTD−

C10T51P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 2 p 1 p t d [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e 2 , main = "PTD−
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C10T52P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 3 p 1 p t d [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PTD−

C10T53P1 " , axes =FALSE)

image ( as . matrix ( t ( r a w c a s e 1 0 t 5 4 p 1 p t d [ 3 0 4 : 1 , ] ) ) , c o l = r a w p a l e t t e , main = "PTD−

C10T54P1 " , axes =FALSE)
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