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4.5 Generalization of the Revised Population Value Decomposition

to the Fifth Order Displacement Vector Field Data

In the previous chapter, we discussed the drawbacks of PCA. When vectorizing DVF, which is

fifth-order tensor, the spatial structure that has actual physical meaning is broken. We would like

to keep the structure of DVF as intact as possible. Therefore, we believe that PVD, which is a

matrix-based algorithm, can be helpful. However, as described earlier in this chapter, PVD can

be applied to a population of two-dimensional images but cannot be directly applied to our fifth

order DVF tensor data due to the high dimensionality. To generalize the PVD algorithm to the fifth

order DVF tensor data, it is crucial to thoroughly understand the DVF data collection procedures,

structures, and the meaning of each of its five dimensionalities (refer to Chapter 2).

Figure 4.1: Unfold Coordinates and Perform SVD on each Transverse Slice

We will stack the coordinates and then compute the singular value decomposition for each

stacked transverse slice composed by stacking all three coordinates at a given phase, which is of

size F by T , illustrated in the above Figure 4.1. There are a total of 10 phases in our DVF data,

and we will repeat the above procedure for all slices at all phases. Then we only take the leading

eigenvectors in each singular value decomposition to get a best low-rank approximation of the
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corresponding original transverse slice as illustrated in the left side of Figure 4.2 below. The number

of eigenvectors to be kept can be based on criteria including percentage of variance explained,

signal to noise ratio, and other practical reasons. In our practice, we choose the percentage of

variance explained to be the criterion. The third mode in the DVF data corresponds to the total

number of transverse slices at a given phase, which can be quite large. Therefore, we are computing

a significant number of the singular value decompositions at this stage of our algorithm. Current

algorithm and computer architecture allows the computation of singular value decomposition to

be completed fairly quickly for tall and skinny matrices [Benson et al., 2014, Faverge et al., 2017].

Because we are stacking the three displacement vector coordinates by rows (shown in Figure 4.1),

the resulting matrix fits the tall and skinny category. The size of the final matrices are determined

by the DVF tensor data, which will vary from patient to patient. We do observe empirically that

the computation of the individual SVD for each slice for a given phase at this stage is not very

time-consuming even though we used the default SVD algorithm in R base package and did not

adopt the faster algorithms for tall and skinny matrices in the above referenced articles. We will

discuss the time consumption and efficiency of the algorithm in chapter 7 in more detail.

After computing the SVD on the subject level, we will combine all the U∗ij matrices into a

larger U matrix and follow the second step in the revised PVD to calculate the singular value

decomposition of U on the population level. Here i is an indicator for phase, which goes from 1 to

10. j is an indicator for transverse slices under a given phase, which goes from 1 to Z, where Z is

the total number of transverse slices, which varies from patient to patient. Based on the percentage

of variance explained criterion, we take a certain number of leading A eigenvectors from UU to

make a P matrix. PP TU gives us the best rank A approximation of U. Repeat the second step in

the revised PVD for the V matrix, which is obtained from combining all the V ∗ matrices. These

steps are illustrated on the right side of Figure 4.2.

Figure 4.3 illustrates how we can approximate the original slice 1 at phase 1. Other slices can

be approximated in a similar fashion. Data compression is achieved via storing the much smaller

24



Figure 4.2: Revised PVD on DVF

subject-specific V matrices (shown as V11 in Figure 4.3) and population-specific matrices P and D.
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Figure 4.3: Reconstruction of a Transverse Slice
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Chapter 5

Estimating the Respiratory Lung Motion Model Using

Population Tucker Decomposition on DVF

5.1 Introduction and Chapter Layout

Because PVD does not require the vectorization of DVF data, it retains more of the structure of

DVF as compared to the PCA based algorithm. But the iterative transverse slice-wise SVD is

performed in order to generalize this matrix-based (SVD) algorithm to a fifth-order DVF tensor.

The advantages of PVD over PCA are discussed in Chapter 7. We would like to further retain

more of the structure of DVF and progress from a matrix-based algorithm to a truly high-order

tensor-based algorithm. In this chapter, we will be presenting to the readers our second algorithm to

estimate the respiratory lung motion model. We refer to this algorithm as the Population Tucker

Decomposition (PTD). While this algorithm is original, the idea is inspired by both the PVD and

Tucker Decomposition, which is a general form of Canonical Polyadic (CP) decomposition.

We will be explaining to our readers how the PTD algorithm works, which will show that this

is a natural progression from PVD to PTD. We will again be using examples and figures to help

readers understand the PTD algorithm. To understand PTD, one must be familiar with the concepts

of PVD and Tucker Decomposition. We skip the explanation of PVD algorithm and advise readers

to refer to previous chapters or [Crainiceanu et al., 2011] for details regarding PVD or the revised
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PVD. However, we will be explaining the basic CP decomposition and Tucker Decomposition

first and show how to compute the Tucker Decomposition. At the end, we will introduce the new

algorithm PTD and show the natural progression from PVD to PTD by combining the ideas and

concept of PVD with the third-order Tucker Decomposition.

5.2 New Concepts and Basic Definitions in Tensor Network and

Decomposition

Tucker Decomposition (TD) [Oh et al., 2017, Hoff et al., 2016, Li et al., 2017] belongs to the family

of low-rank tensor decompositions [Zhou et al., 2017, Cichocki et al., 2016, Yan et al., 2015, Rauhut

et al., 2017]. It can be seen as a generalization of Canonical Polyadic Decomposition (CPD)

[Lebedev et al., 2014, Zou et al., 2016, Wu et al., 2017, Cohen et al., 2015] , which itself can been

seen a generalization of Singular Value Decomposition to a higher order tensor. One can also say

that singular value decomposition is a special case of Canonical Polyadic Decomposition applied

to only second-order tensor. We believe that SVD is a well-established and understood algorithm,

and therefore will not be spending time explaining SVD. Readers can refer to [De Lathauwer et al.,

1994] and [Golub and Reinsch, 1970] for more information. We will present to our readers CPD

and progress to TD and their relative concepts.

5.2.1 Mode-n Product and Multilinear Product

In order to understand CPD, we have to introduce some new yet basic definitions in tensor network

and decomposition to our readers.

The first new definition we need to introduce is called the Mode-n product between a tensor and

a matrix.

Definition 5.2.1. Mode-n product of a tensor A ∈ RI1×I2×···×IN , where Ik represents the size of the
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k−th mode (k = 1, 2, ..., N ), and a matrix B ∈ RJ×In yields a tensor

C ∈ RI1×···×In−1×J×In+1×···×IN

with entries

ci1,...,in−1,j,in+1,...,iN =
In∑

in=1

ai1,...,in,...,iN bj,in .

This operation is written as:

C = A×n B.

We denote a tensor using a capital letter with an underline, a matrix with a capital letter, and an

entry in a tenor using a lower case letter with subscripts representing the position at its corresponding

mode. The best way to become familiar with new concepts is by example. We present to our reader

an example of mode-2 product of a tensor with a matrix below. Here A is a 3rd order tensor whose

modes are all of size 2 and B is a 3-by-2 matrix. Because the size of all three modes of tensor A

is 2, we can technically preform mode-n product between tensor A and matrix B on any mode of

tensor A. Here we choose to perform the mode-2 product.

Figure 5.1: Mode-2 Product of 3rd Order Tensor and 3-by-2 Matrix

Based on the definition of mode-n product, the final product tensor C will be a 3rd order tensor

whose sizes of all three modes are 2, 3, and 2, respectively. Each entry in the product tensor C can
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be calculated using the definition one by one. The calculation of the entries in the final product

tensor can be seen as the dot product between every mode-2 fiber from tensor C and each row from

matrix B. We calculate the entry c1,1,1 as an example.

To progress from mode-n product, we will now present the definition of multilinear product

of a tensor with multiple matrices, where these matrices are often referred to as factor matrices or

component matrices, and the tensor is referred to as the core tensor.

Definition 5.2.2. Multilinear product of a core tensor G ∈ RR1×R2×···×RN and factor matrices

B(n) ∈ RIn×Rn for n = 1, 2, . . . , N gives

C = G×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN .

And this operation is written as:

C = JG,B(1), . . . , B(N)K.

The superscript (n) on the factor matrices B(n) indicates for which mode a particular factor

matrix B(n) is. Therefore, the superscript (n) matches the n in the mode-n product. The size of the

mode of the final product tensor C is determined by the size of the first mode in the factor matrices.

As long as readers are familiar with mode-n product, multilinear product of a core tensor is

basically preforming mode-n product multiple times with different factor matrices. We will not be

giving an example for this definition.

5.2.2 Kronecker Product and Mode-k Matricization

Next we will give the definition for Kronecker product for tensor. There are two types of Kronecker

products: the left Kronecker product and the right Kronecker product. Here we present the definition

for the left Kronecker product:
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Definition 5.2.3. The left Kronecker product of tensors A ∈ RI1×I2×···×IN and B ∈ RJ1×J2×···×JN

yields a tensor

C ∈ RI1J1×I2J2×···×INJN

with entires

ci1j1i2j2,...,iN jN
= ai1,...,iN bj1j2,...,jN .

This operation can be written as:

C = A⊗L B.

In the above definition of left Kronecker Product, we introduce a new notation ci1j1i2j2,...,iN jN

that has not been mentioned before. This notation is called the little-endian notation, which derives

from Jonathan Swift’s Gulliver’s Travels in which the little-endians are a political faction who

breaks their eggs at the small end.

Definition 5.2.4. i = i1i2, . . . , iN is a multi-index which takes all possible combinations of values

of indices, i1, i2, . . . , iN , for in = 1, 2, . . . , In, n = 1, 2, . . . , N in the following specific order

convention:

i1i2, . . . , iN

=i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + · · ·+ (iN − 1)I1 · · · IN−1.

The little-endian convention is the reverse lexicographic ordering. As one might expect, there is

also a big-endian convention. Different programing softwares use different ordering conventions.

The kronecker product for matrices is also necessary for understanding the computation of TD

and is a much easier definition to grasp compared to its definition in tensor. We will not present the

definition here.
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In Chapter 3, we discussed the vectorization of a tensor. Here will will present another technique

in dealing with tensor data: matricization.

Definition 5.2.5. X(k) is the mode-k matricization, which arranges the mode-k fibers of X as

columns into a matrix.

The best way to understand this definition is to give a figure representation. In Figure 5.2, we

have a 3rd-order tensor and we present the three matricizations of this tensor.

Figure 5.2: Three Matricizations of a 3rd-order Tensor

5.3 Tucker Decomposition

We mentioned at the beginning of this chapter that CP decomposition is a generalization of SVD to

higher order tensor. While CP decomposition can be expressed using multiple different notations,

we will be summarizing CP decomposition using the multilinear product definition we introduced

in the previous section. The CP decomposition (sometimes also referred to as the PARAFAC or

CANDECOMP) can decompose any n-th order tensor X ∈ RI1×I2×···×IN into a space diagonal

(defined later) core tensor Λ ∈ RR×R×···×R and n factor matrices B(N) [Hitchcock, 1928, Harshman,
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1970, Carroll and Chang, 1970], and can be written as:

X = Λ×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN ,

or

X = JΛ, B(1), B(2), . . . , B(N)K.

Figure 5.3: CP Decomposition of a 3rd-order Tensor

Figure 5.3 presents what the CP decomposition does to a 3rd order tensor. Here we have a

3rd-order tensor X ∈ RI×J××K , which can be decomposed into a multilinear product between a

space diagonal core tensor (defined below) Λ ∈ RR×R××R and three factor matrices A ∈ RI×R,

B ∈ RJ×R, and C ∈ RK×R. The core tensor Λ only has non-zero entries on the space diagonal of

the core tensor Λ.

Definition 5.3.1. A tensor Λ ∈ RI×I×I is a space diagonal tensor if its element rijk = 0 for all

i, j, k = 1, 2, ..., I except where i = j = k.

Compared to the CP decomposition, Tucker decomposition is less memory-consuming [Khorom-

skij and Khoromskaia, 2007] and provides a more flexible and general decomposition of any nth
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order tensor in the sense that it will result in a much smaller core tensor, even though not space

diagonal, and smaller factor matrices. The Tucker decomposition will decompose any nth order

tensor X ∈ RI1×I2×···×IN into a product of core tensor G ∈ RR1×R2×···×RN and n factor matrices

B(N). We can summarize Tucker Decomposition using the multilinear product definition:

X = G×1 B
(1) ×2 B

(2) · · · ×N B(N) ∈ RI1×I2×···×IN ,

or

X = JG,B(1), B(2), . . . , B(N)K.

The multilinear product notations for both CP decomposition and Tucker decomposition are very

similar. The difference is that CP decomposition will result in a space diagonal core tensor where

the only non-zero entries are on the space diagonal, whereas the Tucker decomposition will result

in a general core tensor where usually all entries in this core tensor are non-zero. However, the

core tensor from the Tucker decomposition are usually much smaller (RN << IN ), as are the

factor matrices. Because of this reason and the fact that it gives us more flexibility in choosing

the size of the core tensor, we prefer using Tucker decomposition over CP decomposition. In

fact, CP decomposition can be seen as a special case of Tucker decomposition [Bergqvist and

Larsson, 2010]. Regarding the theory, applications, and connection between CP decomposition and

Tucker decomposition, readers can refer to [Bergqvist and Larsson, 2010]. Both CP and Tucker

decomposition have a long history. For more details regarding both algorithms, readers can refer

to [Kolda and Bader, 2009, Sears et al., 2009, Grasedyck et al., 2013, Comon, 2014, Cichocki

et al., 2015, Huang et al., 2016]. In Figure 5.4, we present the figure representation of the Tucker

decomposition.

34



Figure 5.4: Tucker Decomposition of a 3rd-order Tensor

5.4 Computing the Tucker Decomposition

To compute the Tucker decomposition, we will use the higher order orthogonal iteration (HOOI)

algorithm [Liu et al., 2014, Sheehan and Saad, 2007, De Lathauwer et al., 2000b] which utilizes

higher order singular value decomposition (HOSVD) [Haardt et al., 2008, Huang et al., 2008, Hoge

and Westin, 2005, Afra et al., 2014]. We will explain to readers how to compute the Tucker

decomposition using an example of a 3rd-order tensor.

The computation of Tucker decomposition utilizes the following equivalence:

X = JG,B(1), B(2), B(3)K

⇔ X(1) = B(1)G(1)(B
(3) ⊗B(2))

X(2) = B(2)G(2)(B
(3) ⊗B(1))

X(3) = B(3)G(3)(B
(2) ⊗B(1)).

Here X(1), X(2), and X(3) are the three mode-k matricizations of the third-order tensor X. B(k)

is the factor matrix, obtained by taking the left orthogonal matrix of SVD of X(k). After solving the
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B(k), we need to obtain the core tensor through the following steps:

X = JG,B(1), B(2), B(3)K

= G×1 B
(1) ×2 B

(2) ×3 B
(3)

X ×1 B
(1)T = G×1 B

(1) ×2 B
(2) ×3 B

(3) ×1 B
(1)T

X ×1 B
(1)T = G×1 B

(1) ×1 B
(1)T ×2 B

(2) ×3 B
(3)

X ×1 B
(1)T = G×1 (B(1)TB(1))×2 B

(2) ×3 B
(3)

X ×1 B
(1)T ×2 B

(2)T ×3 B
(3)T = G.

JX,B(1), B(2), B(3)K = G.

From the third line to fourth we can move the term B(1)T on the right side of the equation ahead

based on the following tensor matrix product operation law.

Lemma 5.4.1. Given a tensor X ∈ RI1×I2×···×IN , a matrix A ∈ RJ×In , and another matrix

B ∈ RK×Im ,

X ×n A×m B = X ×m B ×n A.

if In 6= Im.

From the fourth line to the fifth line, we will use the following tensor matrix product operation

law.

Lemma 5.4.2. Given a tensor X ∈ RI1×I2×···×IN , a matrix A ∈ RJ×In , and another matrix

B ∈ RK×J ,

X ×n A×n B = X ×n (BA).

The truncated HOSVD does not result in the best low multilinear rank approximation, even

though the low multilinear rank approximation is always a well-posed problem. The truncated
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HOSVD does satisfy the quasi-best approximation property (De Lathauwer et al., 2000a). The

quasi-best approximation property states that

‖X − JG,B(1), B(2), · · · , B(N)K‖ ≤
√
N‖X −XBest‖,

where XBest is the best low multilinear rank approximation of X ∈ RI1×I2×···×IN for a given tensor

norm J·K.

We achieve the optimal approximation by minimizing a Frobenius Norm cost function J =

‖X − JG,B(1), B(2), B(3)K‖2F . We minimize this cost function J using the higher order orthogonal

iteration (HOOI), which is an alternating least square (ALS) based algorithm. Again, using a

third-order tensor X ∈ RI1×I2×I3 as a example, here is how to find the best low multilinear rank

approximation using the HOOI:

1. Initialize factor matrices B(1), B(2), and B(3) using HOSVD

a) for i = 1, 2, 3 G← X ×p 6=i {B(p)T }.

b) Update B(i) ← Ri leading left singular vectors of G(i).

2. Repeat step 2 and 3 until J = ‖X − JG,B(1), B(2), B(3)K‖2F converges.

This ALS type algorithm can be easily extended to any N th-order tensor X ∈ RI1×I2×···×IN ,

1. Initialize factor matrices B(1), B(2), · · · , B(N) using HOSVD

2. Repeat

a) For i = 1 to N do

b) G← X ×p 6=i {B(p)T }.

c) Update B(i) ← Ri leading left singular vectors of G(i).

d) End for
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3. Stop repeat if the cost function J = ‖X − JG,B(1), B(2), · · · , B(N)K‖2F converges.

Another algorithm for HOOI using randomization for large scale data [Zhou et al.m 2015] is

also available but we will not list the detailed steps of the algorithm here. While other sophisticated

algorithms for Tucker decomposition with different constraints are also available [Phan and Cichocki,

2011; Zhou et al., 2012; Constantin et al., 2014; Jeon et al., 2016], we will not discuss their

advantages or drawbacks as they are not the focus of this dissertation. If readers are interested in

learning more about this topic, please refer to the articles referenced above and this book [Cichocki

et al., 2016] for more information.

5.5 Population Tucker Decomposition

After introducing the new concepts and basics of computing Tucker decomposition, in this chapter

we dive into our new algorithm, which we call the Population Tucker Decomposition (PTD). The

name Population Tucker Decomposition arises from the fact that this algorithm is essentially a

combination of the idea of PVD and Tucker Decomposition, which is in turn a natural progression

from PVD. We will illustrate the ideas behind PTD by detailing the steps.

The steps of PTD can be summarized in Figure 5.5. In the left part of the figure, each grey cuboid

represents a third-order tensor obtained by fixing the phase index and stacking the three coordinates

vertically in DVF data. Therefore, we will end up with a total ten cuboids each representing a

unique phase in a breathing cycle. For each cuboid, we perform a Tucker decomposition using the

HOOI to achieve the best low multilinear rank approximation of each cuboid. Comparing this to

the PVD algorithm (as shown below in 5.6), we jump from a matrix-based algorithm to a truly

high order tensor-based algorithm. The similarity between PTD and PVD at this stage is that the

first step in both algorithm is performed on a subject-level. However, one should not confuse the

definition of subject-level in PTD and PVD. In the case of PVD, the subject-level decomposition
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Figure 5.5: Population Tucker Decomposition

happens on each individual two-dimensional image, whereas in the case of PTD, the subject level

decomposition refers to the best low multilinear rank approximation for each individual phase.
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Figure 5.6: Revised PVD on DVF

Once we obtained the Tucker decomposition, we will combine all the corresponding subject

factor matrices Ai, Bi, Ci to make larger factor matrices A, B, and C. We may refer to these

matrices A, B, and C as population factor matrices since they contain factor matrix from each

phase. The second step is to perform SVD on the population factor matrices. The similarity between

PVD and PTD at this stage is that this step is performed on a population-level. We keep the leading

singular vectors from UA, UB, UC in the SVD, which will be referred to as UAL
, UBL

, and UCL
. The

best low-rank approximation of the population and subject factor matrices can be obtained through

the following steps:

A ≈ UAL
UT
AL

A

Ai ≈ UAL
UT
AL

Ai
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