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THE ROLE OF CERAMIDE IN NEUTROPHIL ELASTASE INDUCED 
INFLAMMATION IN THE LUNGS  
 
 
Sophia Karandashova, M.S., Honors B.S. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University 
 
 
Virginia Commonwealth University, 2018 
 
 
Advisor: Judith A. Voynow, M.D. 
Professor, Edwin L. Kendig Jr. Professor of Pulmonology 
Department of Pediatrics, Division of Pediatric Pulmonology 
 
 
 

Alterations to sphingolipid metabolism are associated with increased pulmonary 

inflammation, but the impact of inflammatory mediators, such as neutrophil elastase (NE), on 

airway sphingolipid homeostasis remains unknown. NE is a protease associated CF lung disease 

progression, and can be found in up to micromolar concentrations in patient airways. While 

sphingolipids have been investigated in the context of CF, the focus has been on loss of cystic 

fibrosis transmembrane conductance regulator (CFTR) function. Here, we present a novel 

observation: oropharyngeal aspiration of NE increases airway ceramides in mice. Using a 

previously characterized mouse model of NE-induced inflammation, we demonstrate that NE 

increases de novo ceramide production, which is likely mediated via increased SPTLC2 levels. 
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Inhibition of de novo sphingolipid synthesis using myriocin, an SPT inhibitor, decreases airway 

ceramide as well as the release of pro-inflammatory signaling molecules induced by NE. 

Furthermore, in a retrospective study of the sphingolipid content of CF sputum—the largest of its 

type in this patient cohort to date, we investigated the association between NE and sphingolipids. 

There were linear correlations between the concentration of active NE and ceramide, 

sphingomyelin, and monohexosylceramide moieties as well as sphingosine-1-phosphate. The 

presence of Methicillin-resistant Staphylococcus aureus (MRSA) positive culture and female 

gender both strengthened the association of NE and sphingolipids, but higher FEV1 % predicted 

weakened the association, and Pseudomonas aeruginosa had no effect on the association between 

NE and sphingolipids. These data suggest that NE may increase sphingolipids in CF airways as it 

did in our in vivo model, and that this association is stronger in patients that have worse lung 

function, are female, and whose lungs are colonized with MRSA. Modulating sphingolipid 

homeostasis could provide novel pharmacological approaches for alleviating pulmonary 

inflammation. 
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Chapter 1: Introduction 
 
 
 
 

I. An Overview of Cystic Fibrosis. 

Cystic fibrosis (CF) is an autosomal recessive disease that is caused by loss of functioning 

cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is an ion channel, 

responsible for chloride and bicarbonate transport across the plasma membrane. It also regulates 

other ion channels such as the epithelial sodium channel (ENaC) (33, 126, 144). When a genetic 

mutation causes the absence or malfunction of CFTR, a variety of organ systems can be affected, 

depending on the severity of the disease, including the lungs, pancreas, gastrointestinal system, 

sweat glands, and reproductive organs. The most common mutation in Caucasians of Northern 

European descent, the population in which the CF incidence is highest, is c.1521_1523delCTT 

(p.Phe508del or F508del, known colloquially as CFTRΔF508 or  ΔF508), a class II mutation (9, 

18). 

Genetic Basis of Cystic Fibrosis. In total there are currently over two thousand known 

CFTR mutations, which can affect CFTR protein biosynthesis, localization, and functionality (18). 

Disease-causing mutations have been organized into six classes (Class I-VI) (7, 33). In class I 

mutations, functional CFTR protein is not synthesized due to nonsense, frameshift or splicing 

mutations; truncated CFTR are degraded in the endoplasmic reticulum. Thus, no CFTR protein is 

present on cell plasma membranes. Class II mutations likewise yield a loss of CFTR protein on 

plasma membranes; this class of mutation, caused by missense and deletion mutations, produces a 
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misfolded CFTR protein that is subsequently targeted for degradation. Patients with class III 

mutations have gating defects; their cells produce non-functional CFTR that is localized to the 

plasma membrane, but does not conduct ions or regulate other channels. Class IV mutations 

include missense mutations that produce CFTR with decreased chloride conductance— there is 

some residual function, but the channel is inefficient. Patients with class V mutations have fully 

functioning CFTR, but the protein is expressed at a low level due to splicing or missense mutations 

that reduce CFTR biosynthesis. Finally, class VI mutations include missense mutations that 

produce CFTR that is unstable when incorporated into the plasma membrane; thus, there is rapid 

turnover of the protein. Patients with class I, II, and III, mutations on average have a more severe 

CF phenotype, whereas patients with class IV, V, and VI mutations usually have milder disease, 

as they maintain some residual CFTR function (33, 144). 

Cystic Fibrosis Lung Disease. Although many organ systems can be affected depending 

on the severity of the mutations, lung disease is the predominant cause of morbidity and mortality 

in CF (144). Loss of CFTR function has multiple consequences on the airways, including: reduced 

hydration of airway surface liquid, increased airway surface liquid acidity, poor mucociliary 

clearance, and abnormal mucus tethering and function (33). These conditions cause retention of 

abnormal mucus in the airways leading to infections with opportunistic organisms (33). CF lung 

disease is typified by recurring cycles of infection and neutrophilic inflammation (144), leading to 

bronchiectasis— transmural injury to the bronchi with airway inflammation, loss of mucociliary 

clearance, and patulent bronchial regions that retain infected sputum. This progressive airway 

injury leads to gradual loss of lung function, and ultimately respiratory failure that necessitates 

lung transplantation. 
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The dominant pathology in CF is considered to be a failure to clear microbial infections, 

resulting in a toxic pro-inflammatory local microenvironment in the airway (24). Children with 

CF have repeated viral and bacterial respiratory infections, with microbes such as Haemophilus 

influenzae and Staphylococcus aureus, and lung damage is caused both directly and indirectly by 

their bodies’ inflammatory responses (44). As patients age and airway injury progresses, they 

become more susceptible to infection by Gram-negative bacteria. These include environmental 

microorganisms such as Pseudomonas aeruginosa, a prevalent bacterial pathogen in CF, which 

usually only causes disease in immunocompromised patients (24, 91). With repeated infection and 

colonization of the airways by viruses, bacteria— including atypical mycobacteria, and fungi— 

including Aspergillus sp., the patient’s immune system responds with chronic inflammation, which 

contributes to lung damage, leading to more recurrent infections, and subsequently more 

inflammation. 

This vicious cycle of pulmonary infection and inflammation in CF begins early. 

Neutrophils and the serine protease neutrophil elastase (NE) are detectable in patient 

bronchoalveolar lavage (BAL) within three months after birth, although less than half of the infants 

assayed had indications of an active pulmonary infection or a patient history consistent with 

previous infections (103, 109, 121). This implies that several factors contribute to the development 

of the maladaptive inflammation present in CF airways, and indeed there are many studies 

demonstrating that CFTR-deficiency alters immune system function, including aberrant responses 

in inflammatory cells and airway epithelium (17, 23, 43, 126). Likewise, lung damage begins early; 

computed tomography scans have shown that patients with CF can have bronchiectasis within the 

first year of life (120). The development of bronchiectasis in patients with CF is strongly associated 

with inflammatory proteases; neutrophil-derived proteases such as NE, cathepsin G, and proteinase 
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3, as well as macrophage-derived proteases like cathepsin S, and matrix metalloproteinase 9 (75, 

112, 113). In particular, NE is strongly associated with the development of CF (113, 121) and non-

CF bronchiectasis (19). This protease can degrade a variety of proteins (58, 142), including 

opsonins and proteins involved in the innate immune response such as lactoferrin and lysozyme 

(142), which help control infection in the lungs. Furthermore, NE digests components of the 

extracellular matrix (8, 61) and the peptides generated from extracellular matrix degradation also 

function as pro-inflammatory mediators (150). Not surprisingly, NE is also associated with the 

development of emphysema in chronic obstructive pulmonary disease (COPD) (8). 

Neutrophil Elastase and Cystic Fibrosis Lung Disease. CF airways have up to micromolar 

concentrations of NE, which further stimulates an inflammatory response (142) as well as the 

production of MUC5AC, a prominent airway mucin (37, 62, 143, 146) that increases the risk for 

airway mucus obstruction (35). Release of proteolytically active NE injures the airway epithelium, 

triggering the release of pro-inflammatory signaling molecules. In vitro studies have shown that 

NE upregulates IL8 in human airway epithelial cell culture (84). Administering NE to mouse 

airways initiates an inflammatory response, increasing the concentration of pro-inflammatory 

cytokines, including keratinocyte chemokine (KC; murine homologue of CXCL8/IL8) (143) and 

High Mobility Group Box 1 (HMGB1) (47) in murine BAL. HMGB1 is an alarmin that further 

stimulates neutrophilic inflammation, and is another biomarker that correlates with CF lung 

disease severity (20, 73). HMGB1 activation of the Receptor for Advanced Glycation Endproducts 

(RAGE) is a feature of airway inflammation observed in COPD (29). The concentration of 

inflammatory biomarkers like NE and HMGB1 in sputum and BAL predict lung disease 

progression in CF (43, 76, 121). Given that chronic infection and rampant inflammation are 

characteristic of CF lung disease, eliminating pulmonary infections and decreasing inflammation 
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are two of the primary therapeutic approaches to CF (33, 43). While antibiotic therapy is a staple 

of CF therapy, there remains a need for effective anti-inflammatory therapy (33, 43). 

Current and Upcoming Treatments of Cystic Fibrosis Lung Disease. First and foremost 

in the therapeutic repertoire of CF patients is daily airway clearance, to facilitate the removal of 

the abnormal, tenacious mucus from the airways (33, 81). The biological purpose of airway mucus 

is to trap bacterial pathogens and help clear them from the airways (145). In CF, this mechanism 

is hindered; mucus lingers in patient airways, and can even form a mucus plug, clogging the airway 

(11). Patients are given nebulized mucolytics like dornase alfa or therapy with hypertonic saline, 

to facilitate removal of mucus via airway clearance techniques such as chest physiotherapy or the 

high frequency chest wall compression therapy vest (152). Antibiotics become a mainstay of 

treatment early in life, with administration of oral antibiotics for H. influenzae and S. aureus 

bronchitis in children (33, 70). After the first culture of P. aeruginosa, patients are given antibiotics 

aimed at eradicating this pathogen: a three month regimen of oral ciprofloxacin and inhaled colistin 

or one month of inhaled tobramycin (30, 98, 104, 130). Both treatments have comparable efficacy, 

between 70 and 80%, for eliminating P. aeruginosa. Eradication of P. aeruginosa is important, as 

persistent infection with this species is associated with poorer outcomes, including a more rapid 

decline of lung function.  

Patients with CF present with repeated flare-ups or exacerbations of bronchitis, labeled 

pulmonary exacerbations. These are diagnosed using clinical signs and symptoms— including 

increased cough and sputum production— and are usually accompanied by a significant drop in 

lung function (123). Depending on the bacteria present in the airways and the severity of 

symptoms, patients may be treated with oral or intravenous antibiotics and increased airway 

clearance (30, 81). Some patients become severely ill during pulmonary exacerbations, requiring 
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further support with supplemental nutrition and oxygen (33). Effective treatment of exacerbations 

is critical, as an increasing rate of exacerbations is associated with a more rapid decline in patient 

lung function and increased morbidity and mortality (28, 123, 149). Several therapies are used to 

maintain health and reduce the incidence of pulmonary exacerbations: inhaled dornase alfa and 

hypertonic saline, mentioned already as therapeutic staples for CF, as well as a variety of inhaled 

antibiotics, and oral azithromycin (33). 

Since the successful identification of the CFTR gene in 1989, the holy grail of CF 

therapeutics has been correction or replacement of the mutant gene using molecular therapies. 

There has been a recent breakthrough in non-viral CFTR gene therapy in patients with CF, patients 

showed a modest improvement in lung function after a year of therapy— including a statistically 

significant increase of approximately 3.7% in forced expiratory volume in 1 second (FEV1)— but 

the treatment requires further vetting before it can be approved for clinical use (3). There has also 

been an advent of innovative molecular therapies that target specific CFTR defects over the past 

decade. These include “corrector” drugs that increase the localization of CFTR to the plasma 

membrane and “potentiator” drugs that increase CFTR function when on the plasma membrane. 

Ivacaftor, a “potentiator” drug that increases CFTR-mediated chloride transport in most class III 

and IV mutations, thereby restoring mucociliary function in vitro using primary airway epithelial 

cells, is the first of these small molecule therapies to be approved for clinical use (25, 27, 77, 102, 

111, 138, 139, 154). Clinical trials proved that ivacaftor is highly efficacious in patients with class 

III mutations, resulting in an average increase in FEV1 of 10% and reducing the incidence of 

pulmonary exacerbations by 40% (26). A second small molecule therapeutic has been designed 

for patients homozygous for the c.1521_1523delCTT (p.Phe508del) mutation. This therapy is a 

combination of two drugs, a “corrector” and a “potentiator”— lumacaftor and ivacaftor, 
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respectively (138). This combination therapy increased FEV1 by 3% and reduced the frequency of 

pulmonary exacerbations by 30% in patients homozygous for c.1521_1523delCTT (p.Phe508del) 

(12). The modest increase in lung function with this combination therapy appears be due to 

ivacaftor destabilizing “corrector” drugs, resulting in a lower dosage (21, 140). Thus, effective 

molecular therapies for c.1521_1523delCTT (p.Phe508del), the most common CFTR mutation, 

are still needed, as are drugs for Class I mutations to facilitate promoter read-through for premature 

stop codons and to prolong mRNA half-life. 

In CF, acute and chronic neutrophilic inflammation in the lungs contributes to irreversible 

lung damage. Although there are many innovative treatments in development, including gene 

therapy and new CFTR-targeting molecular drugs, investigators have been less successful in 

developing effective anti-inflammatory agents. The steroid prednisone has been shown to increase 

forced vital capacity (FVC) in CF patients, but the many drawbacks of long-term systemic steroid 

use, including increased risk of opportunistic infection, CF related diabetes, and growth failure, 

limit its usefulness in CF (32, 43). Although research has spanned decades, only high-dose 

ibuprofen and chronic oral azithromycin have been identified as effective agents (33). High-dose 

ibuprofen has been shown to slow the rate of lung function decline in teenagers, and reduced 

neutrophil migration into the lungs (63-65). However, this approach is seldom used; the danger of 

gastrointestinal bleeds and renal toxicity necessitate regular tests to determine the levels of 

ibuprofen in patient blood in order to minimize the risk of either complication occurring (43). 

Chronic use of azithromycin may increase risk for resistant atypical mycobacteria and therefore, 

if mycobacteria are cultured from sputum, this therapy is discontinued (122). Current avenues of 

research into inflammation in CF include investigations of compounds that promote rapid 

resolution of infection, and those that would protect against damage mediated by proteases (33). 
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In order to develop more efficacious anti-inflammatory therapy, a more in-depth understanding of 

the factors that contribute to inflammation in CF is necessary, as a potential therapeutic must 

potently reduce inflammation but not interfere with the patient’s ability to resolve infection (43). 

Until a cure for CF is developed, there is a need for efficacious anti-inflammatory therapies, as 

profound airway inflammation is a key driver of progressive lung disease in CF (14, 43, 112). 

 

II. Animal Models of Cystic Fibrosis. 

Translational research uses animal models in order to better understand disease 

pathogenesis, and for the development of novel therapeutics. An ideal animal model would both 

recapitulate the development of human disease and have anatomical and molecular similarities that 

would make it a viable candidate for testing new therapeutics. There are many animal models that 

approximate CF lung disease, including several in mice, and in at least three other species— rats, 

ferrets, and pigs (66). Each animal model has benefits and drawbacks. CF, at its core, is the 

consequence of a genetic mutation that causes the absence or dysfunction of CFTR at the plasma 

membrane; thus, the majority of CF animal models were created by deleting the CFTR gene. 

Genetically Modified Mouse Models. Mouse models are the most prolific and best 

characterized of the animal models of CF currently in existence; they were the first animal models 

of CF to be developed (38). As a whole, mice are relatively easy to work with, and there exist well-

defined methods for genetic manipulation. Consequently, there is an abundance of mouse models 

with CFTR knockout and knock-in mutations, on various genetic backgrounds (66). Recently, the 

popularity of mice with CFTR dysfunction as a model of CF has begun to wane, due to several 

key drawbacks. First, the relatively short lifespan of mice makes them a poor model for studying 
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the progression of chronic diseases, including lung disease in CF (66). Furthermore, unlike 

humans, mice with CFTR dysfunction do not develop spontaneous lung disease, nor do they 

spontaneously develop mucus obstruction or chronic airway bacterial infection (38, 157). In part, 

this is likely due to the fact that mice have an alternative chloride channel that compensates for 

loss of CFTR (66), and lack a proton (H+) cotransporter that is present in pigs and humans that 

increases airway acidity (118). Mice with CFTR dysfunction may be better used to study CFTR 

dysfunction in other organ systems, such as the gastrointestinal tract (24, 144). 

The βENaC mouse model, which overexpresses said epithelial sodium channel, has also 

been touted as a possible model for CF (157). This model is relevant to CF because in epithelial 

cells with mutant CFTR, the ENaC channel is uninhibited and increases influx of sodium causing 

apical surface dehydration (157). These mice more closely approximate spontaneous CF 

pulmonary disease than mice with CFTR dysfunction, presenting with depleted airway surface 

liquid, reduced mucociliary clearance and airway mucus obstruction, as well as chronic airway 

inflammation (157). However, unlike human patients, these mice do not develop spontaneous lung 

infections (157).  

Non-murine Animal Models of Cystic Fibrosis. CFTR-deficient ferrets are a well-

characterized animal model rapidly gaining popularity in CF research (66). These ferrets have 

comparable CFTR expression in their lungs to that observed in humans, and neonatal ferrets with 

CFTR dysfunction develop spontaneous lung infections, which they have difficulty clearing (60, 

128). Like humans with CF, CFTR-deficient ferrets also present with defects in mucociliary 

clearance in the lungs (127). On the other hand, CFTR-knockout ferrets are more difficult and 

costly to maintain than mice. These animals have a high incidence of meconium ileus, with up to 

75% of animals dying within the first two days of life without surgical intervention (128). 
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CF rats are a relatively new model, initially described by Tuggle et al. in 2014 (136). In 

terms of pulmonary phenotype, CFTR knockout rats have decreased chloride conductance, 

decreased airway surface liquid, and increased intracellular mucus in the airways. Like many other 

animal models of CF (66), CFTR knockout rats do not have baseline differences in inflammation 

at birth, when compared to wild-type littermates (136). Much remains unknown regarding CFTR-

deficient rats, including whether they recapitulate CF pulmonary disease as they age and their 

susceptibility to bacterial infection. The major drawback of the CF rat model is that its 

characteristics have yet to be fully explored. 

Within the past decade, we have seen the advent of larger animal CF models. CFTR 

knockout and p.Phe508del homozygous pigs were described in 2008 (108). Pigs have a long life 

span, allowing for more in-depth studies of disease pathogenesis, and longitudinal trials for 

describing the effects of long-term use of different therapies (66). Like human patients, CF pigs 

develop lung disease spontaneously, although they demonstrate comparable levels of neutrophils 

and inflammatory markers as their wild-type littermates. Additionally, newborn pigs with CFTR 

dysfunction cannot successfully clear S. aureus infection (108, 125). On the other hand, pigs are a 

far more difficult model to work with. They are significantly more expensive for husbandry and 

care. Newborn pigs with CFTR-deficiency also require significant veterinary care early in life; 

100% of CFTR-knockout pigs develop meconium ileus, necessitating surgery for the animals to 

survive (79). 

A Mouse Model of Neutrophil Elastase-induced Inflammation. In summary, none of the 

mouse models discussed recapitulate the clinical course of lung disease seen in human patients. 

They do not demonstrate the spontaneous infections and inflammation that are the clinical 

characteristics of CF lung disease in humans. On the other hand, non-murine animal models of 
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CF, while more representative than mice, are also more burdensome both economically and in 

terms of manpower needed to maintain them.  

To investigate the role of NE in regulating inflammation in CF airways, we chose to use a 

previously characterized mouse model of NE-induced inflammation and goblet (mucous) cell 

metaplasia (47, 143). This model is intended for investigating the effects of NE, and the 

downstream inflammatory signals triggered by NE, on the airway. Three doses of proteolytically 

active NE derived from human sputa, at a concentration comparable to that seen in the airways of 

patients with CF and chronic bronchitis (84, 124), are delivered by oropharyngeal aspiration on 

days 1, 4, and 7 (143). NE stimulates a robust inflammatory response in mouse lungs; within 24 h 

after the installation of the last NE dose (day 8), there is an influx of macrophages, neutrophils, 

and eosinophils and increasing airway concentrations of pro-inflammatory cytokines, including 

KC (143) and HMGB1 (47), readily detectible in mouse BAL. Goblet cell metaplasia, which 

begins on day 8, peaks on day 11 (143). This model has been useful for investigating NE-induced 

pulmonary oxidative stress (78), inflammatory mediators regulated by NE (47, 143), and has been 

used to test anti-protease and anti-inflammatory therapies (47). However, this model is not CFTR-

deficient, and therefore not useful for evaluating the impact of loss of CFTR on innate immune 

function or overexuberant inflammation in the lungs. While our chosen model has many of the 

same benefits and drawbacks as other mouse models, it focuses on the effects of NE and 

neutrophilic inflammation— a crucial factor in CF lung disease. Because sphingolipids are 

reported to regulate inflammation (42, 74, 119) and the host response to infection (96, 131), we 

sought to determine whether alteration in airway sphingolipids were involved in NE-induced 

airway inflammation in vivo. 
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III. Sphingolipids and Inflammatory Lung Disease 

Sphingolipid Structure and Biosynthesis. Sphingolipids are complex, bioactive lipids; 

they are canonically known as components of plasma membranes and extracellular fluids, but have 

more recently been recognized to be signaling molecules that can act both intra- and extracellularly 

(42). The sphingolipid ceramide forms the backbone of all other sphingolipids (Figure 1). 

Ceramide is composed of a sphingoid base, a long-chain amino alcohol, and an amide-linked fatty 

acid of various chain lengths (137). In mammalian cells, sphingosine (18-20 carbon chain lengths) 

and non-hydroxy fatty acids (typically, 16-24 carbon chain lengths) are the predominant 

constituents of ceramide (137). Sphingoid bases like sphinganine (dihydrosphingosine) and 

phytosphingosine (1,3,4-trihydroxydihydrosphingosine) and other fatty acids (e.g. 2-hydroxy fatty 

acids) can also be components of ceramide in mammals, but these are significantly rarer (137). 

Ceramide can be produced through three major pathways: 1) de novo sphingolipid 

biosynthesis, 2) sphingomyelin hydrolysis by sphingomyelinases (SMases), and 3) degradation of 

complex sphingolipids (Figure 2) (74, 137). The first, rate-limiting step of de novo sphingolipid 

synthesis is catalyzed by serine palmitoyltransferase (SPT), a multimeric protein, predicted to be 

an octamer, consisting of three major subunit types— SPT long chain 1, 2, and 3 (SPTLC1-3, 

LCB1-3) (57). Regulation of SPT expression and modulators of SPT activity are under 

investigation but currently poorly understood (15, 16, 41, 89). It has been postulated that SPT 

activity could be affected by the ratio of SPTLC2 to SPTLC3, with SPTLC2 responsible for the 

production of d18:1/18:0 and long chain ceramides, including d18:1/22:0, d18:1/24:0, and d18:1/24:1 (68), and 

SPTLC3 responsible for the production of shorter chain ceramides like d18:1/14:0 and d18:1/16:0 (56). 

Orosomucoid-like protein isoform 3 (ORM (yeast)-like protein isoform 3, ORMDL3) (15, 89) and 

Reticulon-4 (RTN4; also referred to as Neurite OutGrowth inhibitor, NOGOB) (16, 115) are 
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known negative regulators of SPT activity. Additionally, downregulation of microRNA miR-137, 

181c, -9 or 29a/b, increases SPT expression and thus activity (41). Ceramide synthases (CerS), of 

which there are six different isoforms (CerS1-6, LASS1-6), are responsible for forming the 

different chain lengths of amide-linked fatty acids on ceramide (Table 1). CerS show both 

substrate and tissue specificity, with the predominant species in the lungs reported to be CerS2 

(93). Interestingly, different chain lengths of fatty acids on ceramide are not only generated by 

different CerS, but also have different biological activities (137). Regulation of CerS activity is 

currently under investigation; recent data indicate that CerS activity can be modulated post-

translationally by the formation of hetero-and homodimers between different CerS (e.g. CerS2 and 

CerS5) (67). In cells, both SPT and CerS can be localized to the endoplasmic reticulum, where de 

novo sphingolipid occurs. In the SMase pathway, sphingomyelin is hydrolyzed into ceramide via 

the action of SMases. Six isoforms of SMase have been identified in mammalian cells— acid 

SMase, four varieties of neutral SMase, and alkaline SMase. SMases that produce ceramide 

associated with signaling are associated with the plasma membrane and with the endoplasmic 

reticulum (137). Finally, the third pathway to ceramide production is the scavenger pathway, 

wherein complex glycosphingolipids are broken down into sphingosine via lysosomal enzymes; 

ceramide is again synthesized from sphingosine via CerS (92). 
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Figure 1. Composition of d18:1/14:0 ceramide. A ceramide consists of a sphingoid base such as 

sphingosine ranging from 18 to 20 carbon chain lengths (an 18:1 sphingosine, above, framed in 

blue), and an amide-linked fatty acid, usually between 14 and 36 carbon chain lengths (14:0, above, 

framed in red). 
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Figure 2. Pathways to ceramide synthesis. De novo biosynthesis of ceramide is a multi-step 

process. The first step is catalyzed by SPT, which combines serine and palmitoyl-CoA into 3-

ketosphinganine. Next, 3-ketosphinganine is reduced to sphinganine (dihydrosphingosine) via a 

reductase. Sphinganine is converted to dihydroceramide by a CerS. Finally, dihydroceramide is 

converted by a desaturase to ceramide. In the sphingomyelinase pathway, sphingomyelin, a major 

plasma membrane component, is degraded by SMases to produce ceramide. The salvage pathway 

involves the breakdown of complex sphingolipids into sphingosine in lysosomes, followed by 

conversion of sphingosine to ceramide via CerS (74, 137). 
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Table 1. Ceramide synthases produce ceramides using acyl-CoA of different chain lengths, 

resulting in ceramides with different fatty acid chain lengths. 

Ceramide Synthase Acyl Chain Length Specificity 
CerS1 18-carbon 
CerS2 20-, 22-, 24-, 26-carbon 
CerS3 22-, 24-, 26-carbon 
CerS4 18-, 20-carbon 
CerS5 16-carbon 
CerS6 14-, 16-carbon 
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Sphingolipids and Inflammation. Regardless of the pathway producing the sphingolipid, 

these bioactive lipids are important contributors to the inflammatory response— ceramide, 

ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P) regulate inflammation when 

released by cells (74, 119). Ceramide, in particular, is considered to be pro-inflammatory, and 

recent findings indicate that ceramide can initiate a signaling cascade via the inflammasome, 

eventually resulting in the activation of caspase 1, and the release of pro-inflammatory cytokines 

including IL1β and KC (132). Ceramides of various chain lengths are induced by different 

stressors, and consequently facilitate cell and tissue-specific responses (48). For example, in the 

airway epithelium, neutral SMase is upregulated by oxidative stress, e.g. cigarette smoke, and this 

change is associated with increased ceramide levels in COPD (22). On the other hand, inhibition 

of vascular endothelial growth factor receptors stimulated de novo sphingolipid synthesis and 

facilitates the overproduction of acid SMase in rodent models of emphysema (95). Finally, direct 

intratracheal administration of an analogue of d18:1/12:0 ceramide into murine airways triggers the 

synthesis of long-chain ceramides, septal apoptosis and emphysema (95). In the lungs, 

sphingolipid metabolism is closely related to inflammation, and increases in ceramide favor the 

development of pathological inflammation (42). Importantly, several sphingolipid species affect 

neutrophil biology (34). In ulcerative colitis, CerS2 and CerS6 have opposing regulatory effects 

on neutrophil chemotaxis into tissue (34). In the intestine, several sphingolipids affect various 

neutrophil functions including phagocytosis, generation of oxidants, and production of neutrophil 

extracellular traps (34). 

Sphingolipids and Inflammatory Respiratory Diseases. Among the earliest connections 

discovered between pulmonary inflammation and increased levels of sphingolipids was the 

association between acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) and 
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ceramide overexpression. Ceramide and glycosphingolipids are known to be increased in the BAL 

of patients with ARDS (106). Likewise, in pulmonary edema, increased acid SMase activity leads 

to higher levels of ceramide in fluids and tissue (45), and pharmacological inhibition of SMase 

activity or genetic ablation of acid SMase in animal models decreased pulmonary inflammation 

and edema (141). 

Sphingolipids in Asthma. Sphingolipids have been shown to contribute to the development 

of lung diseases typified by chronic inflammation. Asthma, a lung disease that varies in severity, 

is characterized by chronic airway inflammation, increased mucus production, and airflow 

obstruction (87). Patients with asthma have been found to have elevated levels of S1P in their 

airways; this sphingolipid metabolite has been shown to stimulate airway hyperresponsiveness and 

inflammation in asthma models (86, 135). Likewise, animal models of allergic asthma demonstrate 

increased airway S1P and ceramide (85, 97). De novo ceramide synthesis has also been linked with 

asthma; a single nucleotide polymorphism that results in altered expression of ORMDL3, a 

negative regulator of SPT activity, has been linked to childhood asthma by a Genome-Wide 

Association Study (80). Interestingly, inhibiting sphingosine kinase activity, and therefore S1P 

production, mitigates airway inflammation in rodent models of asthma (85, 97). FTY720, an 

analogue of sphingosine, inhibits the activity of sphingosine kinase and interacts with S1P 

receptors after it is phosphorylated (74). FTY720 has been shown to decrease ceramide levels in 

the lungs and concurrently alleviate airway hyperresponsiveness, inflammation, and mucus 

production in an allergic mouse models of asthma (89). 

Sphingolipids in Chronic Obstructive Pulmonary Disease. In COPD, a disease 

characterized by chronic inflammation in the airways, sphingolipid moieties facilitate the onset 

and progression of lung disease (42). In emphysema, ceramide accumulates in alveolar epithelia 
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and induces alveolar epithelial cell apoptosis and inflammation (42, 94). Analysis of sputum 

samples from patients with COPD reveals an increase in various sphingolipids, including 

ceramides, in patients who smoked compared with nonsmoking COPD patients (133). 

Environmental stresses, such as cigarette smoke, hypoxia, and chronic inflammation, 

downregulate CFTR expression; therefore, it is possible that loss of CFTR may be a shared 

mechanistic link driving the progression of lung disease in COPD and CF (101). However, there 

is a paucity of data published on airway sphingolipids in patients with CF, therefore, it is not yet 

known whether there are similarities between the airway sphingolipid profiles in COPD and CF. 

Sphingolipids in Cystic Fibrosis. The maladaptive, hyperinflammatory response to airway 

infection characteristic of CF lung disease is associated with altered lipid homeostasis, including 

sphingolipids. Studies of sphingolipid imbalance in CF have focused on changes that result from 

CFTR dysfunction (10, 132). In human airway and nasal cells that have dysfunctional CFTR (51, 

96, 132), alterations in ceramide expression are attributed to loss of CFTR activity. However, 

examining sphingolipid biosynthesis in experiments with human airway epithelial cell lines has 

yielded contradictory results, and different pathways have been implicated as responsible for 

changes in sphingolipid expression. Hamai et al. demonstrated that decreasing CFTR expression 

through genetic manipulation or expressing mutant p.Phe508del in airway epithelial cell lines 

results in increased intracellular sphingosine, sphinganine, and sphingomyelin, as well as d18:0/16:0, 

d18:1/22:0, d18:1/24:0, and d18:1/26:0 ceramide, with concurrent decreases in d18:1/18:1 and d18:0/18:0 

ceramide (51). As decreased expression of CFTR was also associated with increased protein 

SPTLC1, the authors link CFTR dysfunction and de novo sphingolipid biosynthesis (51). In 

contrast, Yu et al. observed that decreased or mutant CFTR affects the function of acid SMase in 

human airway epithelial cell lines, with CFTR-deficient cells expressing less acid SMase and 
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producing less ceramide in response to P. aeruginosa infection (156). A similar defect in acid 

SMase activity in response to P. aeruginosa was observed in CFTR knockout mice (156). 

There are several mouse models with different Cftr mutations which display varying levels 

of deficiency in Cftr function (158), and, much like experiments with human airway epithelial cell 

lines, disparate results regarding changes in ceramide levels. One variable is whether in Cftr-null 

mice, the deficiency in gut Cftr is corrected by replacement with intestinal fatty acid binding 

protein-driven human CFTR. The impact of gut correction is that these mice do not require a 

special cholesterol rich diet and the change in diet affects sphingolipid homeostasis (132). 

Teichgräber et al. tested two different strains of Cftr-deficient, gut-corrected mice (CFTRtm1Unc-

Tg(FABPCFTR) and B6.129P2(CF/3)-CFTRTgH(neoim)Hgu); in both mouse models, loss of Cftr appears 

to result in increased acid SMase and decreased ceramidase activity, which increases ceramide 

production and decreases breakdown, respectively (132). Ceramide accumulation and 

inflammation in gut-corrected Cftr-deficient mice can be abrogated by decreasing the activity of 

acid SMase, whether by knocking down expression of the protein though genetic manipulation or 

through the use of SMase inhibitors (132). Guilbault et al., in contrast, observed decreased 

ceramides in the lung tissue of Cftr-knockout mice; treatment with fenretinide induced ceramide 

synthesis and corrected this defect, also improving the ability of these mice to clear P. aeruginosa 

pulmonary infections (49). Fenretinide has multifactorial effects on de novo ceramide synthesis, 

inducing SPT activity but also inhibiting conversion of dihydroceramide to ceramide and 

downregulating CerS5 expression (40, 155). Although studies in CFTR-deficient mouse models 

report both increased (46) and decreased (49) ceramide in mouse airways, normalizing pulmonary 

ceramide levels in these animals decreases pro-inflammatory signals (46, 49). 
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The impact of sphingolipids on CF lung disease in humans remains largely unexplored. To 

the extent of our knowledge, limited data are available regarding the sphingolipid content in the 

sputum and lung tissue of patients with CF. What data are available indicate that, like in COPD 

(92, 93), increased levels of several ceramide moieties are associated with poorer lung function 

and increased inflammation (133). Brodlie et al. analyzed the ceramide content of late-stage 

diseased CF lungs from lung transplant recipients, describing an increase in ceramide in the lower 

airways (13). They observed correlations between d18:1/16:0, d18:1/18:0, and d18:1/20:0 ceramide moieties 

and markers of neutrophilic inflammation— NE and myeloperoxidase (13). In CF versus non-CF 

sputum, Quinn et al. observed that sphingomyelin d18:1/14:0, d18:1/15:0, d18:1/16:1, and d18:1/16:0 as well 

as two d18:1/16:0 glycosphingolipids, tetraglycosylceramide and lactosylceramide were elevated 

(100). In a single subject with CF followed for 4.2 years, ceramide was consistently increased 

during treatment of pulmonary exacerbation (99). There are also limited data that indicate acid 

SMase may play a role in increased ceramide in patients with CF. Two early Phase II clinical trials 

reveal that treating patients with CF with amitriptyline (1, 83, 107), an acid SMase inhibitor, 

marginally increases lung function (FEV1 % predicted). However, these trials had very limited 

numbers of subjects, and await confirmation in larger prospective trials. 

 

IV. Hypothesis and Specific Aims. 

Ceramide is a bioactive sphingolipid, a driver of pulmonary inflammation (74) that also 

negatively affects host antimicrobial responses (117, 132). In the current paradigm, ceramide 

accumulation in CF is attributed to dysregulation of sphingolipid homeostasis due to the loss of 

functional CFTR (132). However, elevated levels of ceramide have been correlated with 
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neutrophilic inflammation in lung tissue from patients with CF and in sputum from patients with 

COPD (13, 133), and is likewise increased in airway diseases typified by acute inflammation (106, 

141). Additionally, administration of the protease porcine pancreatic elastase induces de novo 

synthesis of ceramide in a mouse model of emphysema (134). NE, a serine protease and major 

inflammatory mediator in the CF airway, is a biomarker for lung disease progression in patients 

(113, 121). We hypothesize that NE and ceramide create an inflammatory feedback loop, wherein 

NE increases ceramide biosynthesis, which subsequently potentiates neutrophilic inflammation, 

thereby increasing local NE levels, resulting in a correlation between NE activity and ceramide in 

the lungs. In order to test this hypothesis, we proposed the following aims. In Aim 1, we tested 

whether NE increases airway ceramide levels in Balb/C mice, using a mouse model of intratracheal 

NE administration that causes airway inflammation (47). In Aim 2, we determined if inhibiting 

ceramide biosynthesis mitigates NE-induced inflammation in Balb/C mice. Finally, in Aim 3, we 

analyzed sputum samples collected from subjects with CF to determine whether levels of active 

NE in sputum correlate with airway ceramide levels, and whether these levels vary with clinical 

status. This dissertation alters the current CFTR-centric paradigm of the regulation of sphingolipid 

homeostasis in the lungs of patients with CF, and tests whether altered sphingolipid homeostasis 

is required for NE-induced airway inflammation.   
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Chapter 2: Methods 
 
 
 
 

I. A Mouse Model of Neutrophil Elastase-induced Inflammation. 

A mouse model of NE-induced inflammation and mucous (goblet) cell metaplasia has been 

developed and characterized in both male C57BL/6J and Balb/C mice. Male Balb/C mice, 6 to 8 

weeks of age, (Jackson Laboratories, Bar Harbor, ME) were maintained and treated as per an 

approved IACUC protocol at Virginia Commonwealth University (VCU) (AD10000870). On days 

1, 4 and 7, following isoflurane anesthesia, mice were administered NE (50μg, 42μM; SE563, 

Elastin Products, Owensville, MO) or vehicle control by oropharyngeal aspiration (Figure 3). To 

test the effect of the inhibition of de novo sphingolipid synthesis, mice were administered myriocin 

(SPT inhibitor, 0.3mg/kg; 35891-70-4; Cayman Chemicals, Ann Arbor, MI (89, 134)) or a vehicle 

control by intraperitoneal (IP) injection 2h prior to aspiration of NE or vehicle control on days 1, 

4 and 7. In all experiments, mice were euthanized with Euthasol (200-071; Virbac, Carros, France) 

at 4h, 8h, or 24h (day 8) following the final aspiration dose on day 7. After euthanasia, mice were 

carefully dissected. First, the thoracic cavity was opened, the sternum and ribs resected to expose 

the heart and lungs, and the diaphragm carefully cut. Using a 1mL syringe, blood was collected 

from the right and left ventricles, and diluted 1:5 in 0.5M ethylenediaminetetraacetic acid (EDTA). 

To isolate plasma from blood, samples were centrifuged for 10 min at 1500 ×g at 4°C, and the 

supernatant aliquoted and stored at -80°C. The cut to the chest was then extended to the neck, 

carefully exposing the trachea, and a thread looped underneath it. An intravenous catheter 
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(24G×3/4” Exel Safelet Catheter) was inserted into the trachea, the needle slowly removed, and 

looped thread tied securely to hold the catheter in place inside the trachea. A 1mL syringe, 

containing sterile normal saline (1mL), was attached to the catheter. The lungs were perfused with 

saline, and BAL extracted from the lungs. Lungs were extracted from the thoracic cavity and 

separated, with one lung snap-frozen in liquid nitrogen and the second stored in formalin. 

Bronchoalveolar Lavage, Cell Counts, Cytospins. Collected BAL samples were 

centrifuged (500×g, 10 min), and the supernatant, to be used for cytokine and sphingolipid 

analyses, was aliquoted and stored at -80°C. The cell pellet was re-suspended in 0.5mL of ACK 

(Ammonium-Chloride-Potassium) Lysing Buffer to lyse any red blood cells present, mixed 

thoroughly, and centrifuged (500×g, 10 min). The lysing buffer was removed, and the cell pellet 

re-suspended in 0.1mL saline. A sample of 10µL of BAL cell pellet was aliquoted and mixed with 

trypan blue for cell count with a haemocytometer. A sample of 1×105 cells per slide were used for 

each cytospin and centrifuged (800rpm, 3min), with two slides prepared per mouse. Slides were 

air-dried overnight prior to staining with PROTOCOL HEMA3 Fixative and Solutions, as per 

manufacturer’s instructions (122-911; Fisher Scientific, Hampton, NH). In summation, slides were 

dipped in Fixative solution (5×), followed by Stain 1 (5×), and Stain 2 (5×), with excess solution 

allowed to drain after every immersion. Slides were rinsed in distilled water and air-dried prior to 

mounting with VectaMount Permanent Mounting Medium (H-5000; Vector Laboratories, 

Burlingame, CA), and applying a glass coverslip. 

Cytokine Quantitation by Sandwich ELISA. The concentration of KC in BAL fluid was 

measured by sandwich ELISA (MKC00B; R&D Systems, Minneapolis, MN), per the 

manufacturer’s instructions. In summation, a mouse KC standard stock solution was reconstituted 

with calibrator diluent (1000 pg/mL stock) and serially (1:2) diluted in Calibrator Diluent with the 
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final solutions being as follows: 1000 pg/mL, 500 pg/mL, 250 pg/mL, 125 pg/mL, 62.6 pg/mL, 

31.3 pg/mL, 15.6 pg/mL, and 0 pg/mL (diluent alone). A volume of 50µL Assay Diluent and 50µL 

of standard, control, or sample was added to each well and mixed thoroughly. Microtiter strips that 

were in use were covered with provided adhesive and incubated at room temperature for 2h under 

gentle agitation. After incubation, samples were aspirated, and the wells thoroughly washed five 

times with Wash Buffer (400µL per well, per wash). Mouse KC Conjugate (100µL) was added to 

each well, the well covered with a new adhesive strip, and the plate incubated at room temperature 

for 2h under gentle agitation. After incubation, samples were again aspirated, and the wells 

thoroughly washed five times with Wash Buffer (400µL per well, per wash). Next, 100µL of 

Substrate Solution were added to each well, mixed gently, and incubated for 30 min, in the dark, 

at room temperature. Finally, 100µL Stop Solution were added to end the reaction, mixed 

thoroughly, and the optical density at λ=570 nm for each well determined using a 

spectrophotometer. Concentrations of KC in each sample were determined using the standard 

curve. 

Lung Homogenization. Frozen lungs were manually homogenized with a mortar and 

pestle and suspended in 300-500µL of either QIAzol (15596026; ThermoFisher Scientific, 

Waltham, MA), for later processing for RNA analysis or in a total cell lysis buffer (50mM Tris, 

pH 7.5, 150mM NaCl, 1mM EDTA, 1mM dithiothreitol (DTT), 1mM phenylmethanesulfonyl 

fluoride (PMSF), 1× protease inhibitor (P8340) , and 1× phosphatase inhibitor (P5726),  Sigma-

Aldrich, St. Louis, MO) for protein analysis.  

Sample Processing for Q/RT-PCR. Total RNA was isolated from tissue homogenate by 

using QIAzol (15596026; ThermoFisher Scientific, Waltham, MA) and then processed as per 

manufacturer’s instructions. In summation, after the sample was homogenized and QIAzol added, 
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for every mL of QIAzol, 0.2 mL of chloroform was added to the sample. After capping the tube 

securely, samples were vigorously shaken of 15-20 sec, then allowed to sit for 3 min at room 

temperature. Samples were centrifuged at 12000×g at 4°C, for 15 min. The aqueous phase, present 

at the top of the tube, was transferred to a new microfuge tube, and 0.5mL (per initial mL of QIAzol 

used) of isopropanol and 5µL of glycogen was added to each sample and mixed thoroughly by 

vortexing. Samples were incubated at -20°C overnight, and then centrifuged at 12000×g at 4°C, 

for 10 min. The supernatant was aspirated and discarded, with care taken not to disturb the pellet. 

A volume of 75% ethanol (1mL for every mL of QIAzol Lysis Buffer used) was added, and the 

sample centrifuged at 7500×g for 5 min, at 4°C. The supernatant was removed, and the sample 

spun again at 7500×g for 5 min, at 4°C so that any remaining ethanol could be aspirated. The RNA 

pellet was briefly air-dried at room temperature, for no more than 5-10 min, and then dissolved in 

25µL of diethyl pyrocarbonate (DEPC)-treated water, warmed to 55-60°C for 10 min. RNA was 

quantified by determining sample absorbance at λ=260/280, and diluted for DNAse treatment.  

A sample of 5µg RNA was treated with DNase (18068-015, ThermoFisher Scientific, 

Waltham, MA), according to the manufacturers protocol. In summary, 5µg RNA was combined 

with 5µL DNase I Reaction Buffer and 5µL DNase I (Amplification Grade) and brought to a 

volume of 50µL with DEPC-treated water. Each sample was mixed thoroughly and then incubated 

for 15 min at room temperature. Next, 5µL of 25mM EDTA was added to each sample to stop the 

reaction, and samples were incubated at 65°C for 10 min. DNase-treated RNA was quantified by 

determining sample absorbance at λ=260/280 and diluted in DEPC-treated water for Q/RT-PCR. 

Q/RT-PCR was performed on a SDS 7300 machine (Applied Biosystems). In summary, 5µL of 

diluted RNA was combined with 15µL of master mix, consisting of: 10µL qScript XLT One-Step 

RT-qPCR ToughMix, ROX (2X) (95133-500, Quanta Biosciences), 1µL 20X TaqMan Assay 
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Reagent (primer and probe mix), and 4µL DEPC-treated water in each sample well. Universal 

amplification conditions were used: 50°C for 30 min, then 95°C for 2 min, and finally 40 cycles 

of 95°C for 15 sec followed by 60°C, 1 min. 

Q/RT-PCR was performed to determine if administering NE modulated the expression of 

genes relevant to sphingolipid synthesis (Table 2) in mouse lungs. Mouse β-actin (4352341E; 

ThermoFisher Scientific, Waltham, MA) was used as an endogenous control. The relative level of 

gene expression was calculated using the ΔΔCT method, which represents the fold difference in 

gene expression, corrected for expression of an endogenous control gene, and then normalized to 

control treated samples. 
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Table 2. List of target genes assayed by Q/RT-PCR. 

Target Gene Primer IDa 
SPTLC1 Mm00447343_m1  
SPTLC2 Mm00448871_m1 
β-actin Mm00607939_s1 

 

a Primers acquired from ThermoFisher Scientific (Waltham, MA). 
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Figure 3. Overview of the treatment protocol for NE aspiration. Mice received 3 doses of NE, 

with a dose delivered via oropharyngeal aspiration on days 1, 4, and 7. After euthanasia, at 4, 8, 

or 24 h (day 8) after final NE dose, lungs and BAL were harvested. 
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Sample Processing for Western Blot. After homogenization, samples were sonicated three 

times for 15sec and incubated with agitation for 1h, at 4°C. Homogenates were clarified by 

centrifugation (16,000×g, 4°C, 30 min). The resulting supernatant was the lung lysate protein, 

ready for quantitation and storage at -80°C in single use aliquots for western blot. A DC Protein 

Assay (5000116; BioRad, Hercules, CA) was used to determine sample protein concentrations, as 

per the manufacturer's instructions. 

Western Blot. Mouse whole lung lysate (50μg) or BAL (40μL) were separated by 

electrophoresis on a 4-20% SDS-PAGE gel (17000436; BioRad Hercules, CA), transferred to a 

nitrocellulose membrane, and blocked with 5% nonfat milk in 15mM Tris, 150mM NaCl, 0.1% 

Tween-20 (TBST). Membranes were incubated in mouse monoclonal anti-HMGB1 (sc-56698; 

1:5000 in 5% Milk/TBST; SantaCruz Biotechnology, Dallas, TX), rabbit polyclonal anti-SPTLC1 

(15376-1-AP; 1:5000 in 5% Milk/TBST; Proteintech, Chicago, IL), rabbit polyclonal anti-

SPTLC2 (ab23696; 0.5µg/mL in 5% Milk/TBST; AbCam, Cambridge, United Kingdom), mouse 

monoclonal anti-NOGO (sc-271878; 1:1000 in 5% Milk/TBST; SantaCruz Biotechnology, Dallas, 

TX) or anti-ORMDL3 (ABN417; 1:1000 in 2%BSA/TBST; Millipore, Billerica, MA) primary 

antibody overnight at 4°C, followed by either HRP-conjugated goat anti-mouse antibody (SC-

2005, SCBT, Dallas, TX) or HRP-conjugated goat anti-rabbit antibody (7074,Cell Signaling 

Technology, Danvers, MA). Antigen-antibody complexes were visualized by chemiluminescence 

(ECL Plus; RPN2132; GE Healthcare Life Sciences, Piscataway, NJ), as per the manufacturer’s 

instructions. Membranes with whole lung lysate were washed three times, 10min each, in TBST 

and re-probed with a monoclonal antibody against β-actin (A5441; 1:5000 in 5% Milk/TBST; 

Sigma, St. Louis, MO) to confirm equivalent protein loading. Densitometry of target bands was 
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determined by ImageJ Software (116), normalized to actin, and then compared to average control 

values in each experiment. 

 

II. Analyses of Sputum from Subjects with CF. 

Subject Demographics and Sputum Collection. Subjects were recruited from the VCU CF 

Center. The study was approved by the Institutional Review Board at VCU (HM12402); subjects 

or parents/guardians provided written informed consent before enrollment into the VCU 

Biospecimen Repository and for participation in the CF Foundation Registry. Fifteen subjects were 

selected for this retrospective study. Two sputum samples per subject, one collected during a 

hospitalization for a pulmonary exacerbation and a second sample collected during an outpatient 

visit within six months of that hospitalization, were analyzed. All subjects spontaneously 

expectorated sputum and had mild-to-moderate (FEV1 50-98% predicted) or severe (FEV1<50% 

predicted) obstructive lung disease. Inclusion criteria consisted of: age greater than or equal to 6 

years old, and positive sweat chloride test. Exclusion criteria included: inability to perform 

spirometry, inability to spontaneously expectorate sputum, current treatment with tricyclic 

antidepressants, which have been demonstrated to inhibit acid SMase activity (e.g. 

amitriptyline)(6), or lung transplantation. There were no further exclusion criteria concerning 

medication use or participation in other research studies. Subject demographics are detailed in 

Table 3. 

An aliquot of sputum was sent for bacteriology cultures, performed according to CF 

Foundation standard protocols at the beginning of therapy (114). Any remaining aliquots of 

sputum were visually separated from saliva and oral detritus, and stored for later analysis at -80°C. 
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Table 3. Subject demographics. 

Subject  Gender Age CF Genotype 
Clinical 
Status 

FEV1 
% 
predicted 

MRSA  P. aeruginosa 

1 
M 21 

c.1022_1023insTC, 
c.1521_1523delCTT 

H 65 + - 
O 80 + - 

2 
M 25 

c.1521_1523delCTT, 
c.2825delT 

H 44 + - 
O 59 + - 

3 
F 19 

Unknown 
H 21 - + 
O 27 - + 

4 
M 16 

c.1521_1523delCTT,  
c.1021T>C 

H 58 + - 
O 73 + - 

5 
M 17 

c.1521_1523delCTT,  
c.1680-1G>A 

H 28 - - 
O 33 - + 

6 
M 39 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 60 + - 
O 57 + - 

7 
F 15 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 42 - + 
O 39 - + 

8 
F 19 

c.1521_1523delCTT,  
c.54-5940_273+10250del21kb 

H 33 - + 
O 28 - + 

9 
M 37 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 41 - + 
O 48 - + 

10 
M 20 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 42 - + 
O 49 + + 

11 
F 13 

c.1521_1523delCTT, 
c.3909C>G 

H 50 + - 
O 59 + + 

12 
F 16 

c.1521_1523delCTT,  
c.1397C>A 

H 26 - + 
O 27 - + 

13 
F 18 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 39 + - 
O 45 + - 

14 
F 17 

c.1521_1523delCTT, 
c.1400T>C 

H 26 - + 
O 28 + + 

15 
M 12 

c.1521_1523delCTT, 
c.1521_1523delCTT 

H 84 - - 
O 82 - - 

 
H, hospitalization; O, outpatient clinic visit; M, male; F, Female; +, positive culture; -, negative 

culture. 

  



36 
 

Sputum Processing. Frozen sputum samples were thawed on ice. Afterwards, samples 

were weighed, and mixed with an equal volume (1:1, weight (mg):volume (mL)) of normal saline 

with 10% Sputolysin (0.1% DTT; Calbiochem/EMD Millipore, Billerica, MA). Diluted sputum 

samples were mixed by vortexing at room temperature for 15-30 sec. Next, samples were 

incubated at 37°C for 15 min. After mixing samples gently by inversion, they were centrifuged at 

25000×g for 30 min at 4°C to collect the sputum supernatant which was immediately aliquoted 

and either used for measuring NE activity or sent for sphingolipid analysis. 

Neutrophil Elastase Activity Assay. NE activity in sputum supernatants was measured 

using a chromogenic microtiter plate assay with Succinyl-Ala-Ala-Pro-Val-p-nitroanalide (3mM, 

in 50% DMSO; Sigma-Aldrich, St. Louis, MO) as the substrate, as detailed previously (39, 146). 

In summation, NE standards, using human sputum-derived active NE (SE563, Elastin Products, 

Owensville, MI), were made at concentrations of: 30, 15, 7.5, 3.75, 1.875, 0.94, 0.47, 0.23 and 0 

µg/mL in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Buffer (0.125M HEPES, 

pH 7.5, 0.125% Triton-X 100). A volume of 100µL of standard or sample was mixed with 100µL 

of saline in the wells of a 96-well plate, and 50µL of substrate were added to each well. Absorbance 

at λ=405nm was read with a spectrophotometer for 3 min. NE activity (µg/mL) was plotted against 

the slope of the increase of absorbance (OD/min). The concentration of active NE was expressed 

in nM, extrapolated from the standard curve (30, 15, 7.5, 3.75, 1.875, 0.94, 0.47, 0.23 and 0 

µg/mL). 
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III. Sphingolipid Analysis.  

Both BAL fluid (350µL) and sputum supernatants were assessed for sphingolipid content 

by the Lipidomics/Metabolomics Core at VCU, using reverse phase high-performance liquid 

chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) (119, 

151). In summary, samples were processed to extract lipids as follows. After transferring samples 

into borosilicate tubes with a Teflon-lined cap (#60827-453, VWR, West Chester, PA), 2mL of 

CH3OH, 1mL of CHCl3 and the internal standard cocktail (250pmol of each sphingolipid species, 

dissolved in a final total volume of 10µl of 7:2:1 ethanol:methanol:water) were added.  Contents 

were dispersed by applying an ultra sonicator (30sec, at room temperature), and the resulting 

single-phase mixture incubated at 48°C overnight. Samples were cooled, and 150µl of 1M KOH 

in CH3OH added. After sonication, samples were incubated in a shaking water bath ( 37°C, 2h). 

Glacial acetic acid (12µl) was added to bring the extract to neutral pH. Samples were centrifuged, 

the supernatant transferred to a new tube, and dried using a Speed Vac. Dried sample residue was 

reconstituted in 0.5 mL of the starting mobile phase solvent for LC-MS/MS analysis and sonicated 

briefly for 15sec. After centrifugation for 5min in a tabletop centrifuge, supernatant was transferred 

to autoinjector vials for analysis. Sphingolipids were separated by reverse phase liquid 

chromatography using a Supelco 2.1 (i.d.) × 50 mm Ascentis Express C18 column (Sigma, St. 

Louis, MO) and binary solvent system (flow rate, 0.5 mL/min) with the column oven set to a 

temperature of 35°C. 

Samples separated by reverse phase chromatography were nebulized, charged using an 

electrospray ionization source, and resolved in an AB Sciex 5500 quadrupole/linear ion trap 

(QTrap) (SCIEX Framingham, MA) operating in a triple quadrupole mode. Q1 and Q3 were set to 

pass molecularly distinctive precursor and product ions (or a scan across multiple m/z in Q1 or 
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Q3), using N2 to collisionally induce dissociations in Q2 (which was offset from Q1 by 30-120 

eV); the ion source temperature was set to 500°C. 

Samples were assayed for the following sphingolipids: sphingosine, sphinganine, S1P, 

sphinganine-1-phosphate (Sa1P), as well as sphingomyelin, ceramide, monohexosylceramide 

moieties with the following fatty acid chain lengths— d18:1/14:0, d18:1/16:0, d18:1/18:1, d18:1/18:0, d18:1/22:0, 

d18:1/24:1, d18:1/24:0, d18:1/26:1, and d18:1/26:0. For sphingolipid nomenclature (for example, d18:1/14:0), the 

first number describes the sphingoid base (18:1 represents sphingosine) and the second the fatty 

acid chain (14:0 for a 14-carbon chain). 

 

IV. Statistical Analyses. 

Mouse Data. Quantitation of sphingolipids— ceramide, monohexosylceramides, 

sphingosine, sphinganine, S1P, Sa1P, and sphingomyelin in BAL, BAL total cell numbers 

differentials, BAL cytokine levels, as well as relative mRNA and protein expression were 

compared among the treatment groups using either Mann-Whitney U Tests (Wilcoxon Rank Sum 

Test), or, if there were more than two conditions, using one-way nonparametric ANOVA analyses 

(Kruskal-Wallis Test) with post hoc multiple comparison adjustments using Mann-Whitney U 

Tests (Wilcoxon Rank Sum Test) (GraphPad Prism, La Jolla, CA ). Data are presented as mean ± 

SEM, with differences of p<0.05 considered statistically significant. 

Human Data. For human samples, we used a two-tailed, nonparametric paired statistical 

test: the Wilcoxon Signed Rank Test, to determine whether there were significant differences 

between stable and exacerbated sputum measures for sphingolipid levels, and for the concentration 
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of active NE, and FEV1 % predicted using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, 

CA)(153). Differences between groups were considered significant at p<0.05. We used linear 

correlation to determine the association between concentrations of active NE and sphingolipid 

levels using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA). Again, p-value of less 

than 0.05 was considered statistically significant. 

Data were also analyzed using a linear mixed model (148), to determine the likelihood of 

an association between the concentration of NE and various sphingolipids, as well as whether (i) 

bacterial culture positive for methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas 

aeruginosa, (ii) patient lung function, or (iii) patient sex, modified the association. A p-value less 

than 0.05 was considered statistically significant. 

 
 
 
 
 
 

Chapter 3: Results 
 
 
 
 

I. Neutrophil Elastase Induced Changes in Sphingolipid Levels in Mouse Airways. 

Oropharyngeal Aspiration of Neutrophil Elastase Increased the Levels of Ceramide in 

Murine Airways. Previously, it has been shown that oropharyngeal aspiration of NE causes airway 

inflammation in mice (47, 143); we used this model to determine whether NE-induced 

inflammation correlated with increased airway sphingolipids. As detailed previously (47, 143) and 

in the Methods section, mice were administered three doses of NE or vehicle control on days 1, 4, 

and 7 (Figure 3). At 4h (n=4 animals per group), 8h (n=4 animals per group), or 24h (n=14 control, 
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n=16 NE) after the final dose of NE was administered, mice were euthanized, and BAL and tissue 

samples collected for analysis. In order to characterize the sphingolipid profile associated with 

airway inflammation in this model, sphingolipid concentrations in BAL were determined by 

HPLC-ESI-MS/MS (Tables 4-7). 

First, we assessed BAL for the presence of sphingomyelin, ceramide, and 

monohexosylceramide moieties (d18:1/14:0, d18:1/16:0, d18:1/18:1, d18:1/18:0, d18:1/22:0, d18:1/24:1, d18:1/24:0, 

d18:1/26:1, and d18:1/26:0) as well as sphingosine, sphinganine, S1P and Sa1P. Levels of these 

sphingolipids after aspiration of NE were compared with controls at the same time point— 4, 8, 

or 24h after the third and final NE dose was administered. To track overarching trends in 

sphingolipid levels, we calculated the sum of sphingomyelin, ceramide, and 

monohexosylceramide moieties, reported as total sphingomyelin (Table 4), total ceramide (Table 

5), and total monohexosylceramide (Table 6), respectively, and depicted in Figure 4. At 24h, we 

observed that mice administered NE demonstrated a 2.5-fold increase in total ceramide, a 

statistically significant difference (p<0.001) from the levels observed in control treated animals 

(Table 5, Figure 4). However, the levels of total sphingomyelin (Table 4) and 

monohexosylceramide (Table 6), and likewise levels of sphingosine, sphinganine, S1P and Sa1P 

(Table 7) did not differ significantly between control and NE groups at 24h. Analyzing the 

different ceramide moieties present in BAL revealed that total ceramide was increased due to 

statistically significant increases in long chain ceramides. Specifically, levels of d18:1/22:0, d18:1/24:0 

and d18:1/24:1 ceramide moieties increased by approximately 145% (p= 0.003), 211% (p=0.001), 

and 256%, (p=0.001), respectively (Table 5, Figure 5). There was also a statistically significant 

increase in d18:1/26:0 ceramide (Table 5), but the levels of the moiety present in murine BAL— 

below 10 pmol/mL— led us to conclude the effects of this ceramide were likely negligible. 
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Analyzing individual sphingomyelin and monohexosylceramide moieties revealed no further 

statistically significant differences in sphingolipid levels between control and NE groups at 24h 

(Table 4, 6). However, there were trends towards increased d18:1/22:0, d18:1/24:1, d18:1/24:0 

sphingomyelin moieties at 4 and 8h after NE was administered compared to controls. Similarly, 

there were no significant variations in sphingolipid levels between animals that were administered 

vehicle control versus NE at either 4 or 8h when the total sphingolipids or individual moieties were 

analyzed (Tables 4-7). 
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Table 4. Levels of sphingomyelin moieties in BAL in mice administered vehicle control or NE. 

 4ha 8hb 24hc 
Sphingomyelin 
(pmol/ml) 

Control NE Control NE Control NE 

d18:1/14:0 18.48±0.89 23.25±2.42 26.03±6.25 23.9±3.21 17.70±0.68 27.68±3.48 
d18:1/16:0 584.53±13.68 676.33±32.12 641.73±31.68 735.20±20.40 1196.73±103.19 1371.26±154.38 
d18:1/18:1 48.20±0.94 51.68±4.40 52.23±4.74 56.20±1.66 1630.47±252.92 2232.50±475.68 
d18:1/18:0 527.83±12.34 609.70±26.59 520.20±63.91 625.70±9.29 2073.24±274.02 2075.27±284.77 
d18:1/20:0 1243.18±11.63 1260.18±46.95 1280.58±80.29 1322.23±70.25 2867.21±265.25 2936.53±300.19 
d18:1/22:0 378.65±12.60 536.75±27.06 374.58±44.72 555.47±79.14 258.48±20.90 414.88±40.11 
d18:1/24:1 260.63±4.17 383.43±24.19 296.33±25.99 424.03±56.12 232.93±13.63 514.47±58.21 
d18:1/24:0 182.23±6.14 247.95±16.21 206.85±28.06 293.30±47.27 138.83±11.04 282.31±29.03 
d18:1/26:1 14.63±0.43 16.68±1.77 17.35±3.26 19.37±2.72 6.86±1.19 11.31±1.66 
d18:1/26:0 18.63±0.92 19.03±1.76 21.35±3.89 22.57±2.59 7.99±1.57 12.74±2.20 
Totald 3276.97±39.07 3824.96±168.32 3437.27±195.57 4077.94±189.75 10470.43±1154.85 11669.64±1437.65 

 

a BAL collected at 4h (n=4 per group). b BAL collected at 8h (n=4 control, 3 NE, respectively). c BAL collected at 24 h (n=16 control, 

n=14 NE). d Total sphingomyelin represents the mean of a summation of individual sphingomyelin moieties at each time point; total 

sphingomyelin at 24 h is also shown in Figure 2. Samples were collected and processed using LC-MS/MS. Data are expressed as mean 

± SEM pmol/mL BAL fluid, with comparisons between control and NE treated groups at each time point. There are no statistically 

significant differences in sphingolipid profile at each time point.  
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Table 5. Levels of ceramide moieties in BAL in mice administered vehicle control or NE. 

 4ha 8hb 24hc 
Ceramide 
(pmol/ml) 

Control NE Control NE Control NE 

d18:1/14:0 0.20± 0.02 0.13±0.02 0.24±0.07 0.14±0.01 5.83±1.35 3.43±0.88 
d18:1/16:0 245.02±28.27 120.47±13.9 236.23±31.64 124.73±4.25 89.31±16.33 110.17±15.30 
d18:1/18:1 5.14±0.33 3.15±0.15 5.31±0.37 5.00±1.00 17.01±2.79 21.33±4.87 
d18:1/18:0 3.14±0.64 1.92±0.08 2.14±0.23 3.40±1.65 8.96±1.36 10.18±1.96 
d18:1/20:0 4.99±0.30 3.25±0.54 4.97±0.70 6.34±3.28 8.41±1.03 13.34±2.23 
d18:1/22:0 22.72±2.70 19.01±1.84 22.96±3.15 25.38±5.56 29.23±4.85 63.81±10.89* 
d18:1/24:1 85.41±3.39 46.86±3.51 69.74±7.90 79.41±21.95 76.91±9.26 227.03±38.19* 
d18:1/24:0 91.54±19.27 67.93±10.44 104.52±5.79 101.96±19.20 98.85±10.66 268.46±41.43* 
d18:1/26:1 6.32±0.15 4.03±0.25 7.12±0.60 5.91±0.79 8.70±1.04 8.79±1.73 
d18:1/26:0 5.03±0.10 3.25±0.23 5.79±0.55 4.72±0.67 3.79±0.72 7.05±0.62* 
Totald 469.52±40.10 270.01±16.92 459.04±39.52 357.00±55.31 349.34±32.57 738.52±96.90* 

 

a BAL collected at 4h (n=4 per group). b BAL collected at 8h (n=4 control, 3 NE, respectively). c BAL collected at 24 h (n=16 control, 

n=14 NE). d Total ceramide represents the mean of a summation of individual ceramide moieties at each time point; total ceramide at 

24 h is also shown in Figure 2. Samples were collected and processed using LC-MS/MS. Data are expressed as mean ± SEM pmol/mL 

BAL fluid, with comparisons between control and NE treated groups at each time point. *, p<0.05, when compared to control animals 

at the same time point. Ceramide moieties d18:1/22:0, d18:1/24:1, and d18:1/24:0 at 24 h are also displayed in Figure 3.  
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Table 6. Levels of monohexosylceramide moieties in BAL in mice administered vehicle control or NE. 

 4ha 8hb 24hc 
Monohexosylceramide 
(pmol/ml) 

Control NE Control NE Control NE 

d18:1/14:0 1.24±0.17 1.61±0.20 1.17±0.19 1.60±0.21 1.92±0.44 2.35±0.46 
d18:1/16:0 20.35±1.95 14.02±0.80 20.20±1.33 20.25±2.85 39.83±7.22 28.40±4.08 
d18:1/18:1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.02 0.18±0.06 
d18:1/18:0 0.14±0.04 0.33±0.08 0.03±0.02 0.12±0.09 0.41±0.11 0.43±0.09 
d18:1/20:0 0.98±0.15 1.21±0.25 0.74±0.14 0.95±0.03 0.63±0.12 0.71±0.17 
d18:1/22:0 12.40±1.23 12.70±2.03 13.51±3.45 13.24±2.61 12.23±2.70 7.97±2.28 
d18:1/24:1 22.28±4.38 22.49±2.09 30.93±5.01 31.41±3.23 12.30±3.61 12.17±7.31 
d18:1/24:0 55.70±2.70 69.15±7.77 64.75±5.45 80.42±11.69 22.99±6.19 22.31±11.11 
d18:1/26:1 4.89±0.21 5.22±0.75 5.11±0.21 7.45±1.77 2.18±0.58 0.74±0.39 
d18:1/26:0 1.23±0.25 1.14±0.09 1.01±0.10 1.51±0.32 0.44±0.20 1.00±0.31 
Totald 119.20±8.51 127.88±12.69 137.46±13.58 156.94±17.84 144.71±20.21 193.79±26.34 

 

a BAL collected at 4h (n=4 per group). b BAL collected at 8h (n=4 control, 3 NE, respectively). c BAL collected at 24 h (n=16 control, 

n=14 NE). d Total monohexosylceramide represents the mean of a summation of individual monohexosylceramide moieties at each time 

point; total monohexosylceramide at 24 h is also shown in Figure 2. Samples were collected and processed using LC-MS/MS. Data are 

expressed as mean ± SEM pmol/mL BAL fluid, with comparisons between control and NE treated groups at each time point. There are 

no statistically significant differences in sphingolipid profile at each time point   
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Table 7. Levels of sphingosine, S1P, sphinganine, and Sa1P in BAL in mice administered vehicle control or NE. 

 4ha 8hb 24hc 
Sphingolipid 
(pmol/ml) 

Control NE Control NE Control NE 

sphingosine 15.00±1.21 26.04±0.96 20.12±1.33 23.12±3.33 70.83±24.31 64.18±28.68 
S1P 5.34±0.19 6.50±0.42 7.85±1.03 8.20±1.03 4.58±0.90 9.90±3.83 
sphinganine 1.97±0.30 1.86±0.25 1.88±0.37 3.17±1.03 2.64±0.53 7.90±3.38 
Sa1P 0.50±0.02 0.56±0.03 0.44±0.07 0.43±0.03 1.59±0.40 3.11±1.25 

 

a BAL collected at 4h (n=4 per group). b BAL collected at 8h (n=4 control, 3 NE, respectively). c BAL collected at 24 h (n=16 control, 

n=14 NE). Samples were collected and processed using LC-MS/MS. Data are expressed as mean ± SEM pmol/mL BAL fluid, with 

comparisons between control and NE treated groups at each time point. Sphingosine levels in BAL as 24 h — as sphingosine is the 

sphingoid base component within the sphingolipid moieties assessed— are also shown in Figure 2 as total sphingosine. There are no 

statistically significant differences in sphingolipid profile at each time point. 
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Figure 4. Total sphingolipid analysis of BAL from mice treated with control vehicle or NE. 

Mice were treated with NE (50µg; 42µM) or control vehicle by oropharyngeal aspiration on days 

1, 4, and 7. BAL (1mL) was harvested on day 8. The levels of total sphingomyelin (A), ceramide 

(B), sphingosine (C) and monohexosylceramide (D) in 350µL of murine BAL, measured by 

HPLC-ESI-MS/MS, were increased at 24h (day 8) after final NE administration compared to 

vehicle control. The data show sphingolipid content of BAL in pmol/mL, summarizing 2 

experiments, n=16 control, n=14 NE. Data (mean ± SEM) were compared by Mann-Whitney U 

(Wilcoxon Rank Sum) Test; ***, p<0.001. These data have been published (59). 

 

 



48 
 

 



49 
 

Figure 5. Analysis of ceramide chain length in BAL of mice treated with control vehicle or 

NE. Mice were treated with NE (50µg, 42µM) or control vehicle on days 1, 4, and 7. BAL (1mL) 

was harvested on day 8. The ceramide levels in murine BAL (350µL) were measured by HPLC-

ESI-MS/MS at 24h after final NE administration compared to vehicle control. Ceramide d18:1/22:0 

(A), d18:1/24:1 (B), d18:1/24:0 (C) moieties were increased. The data show sphingolipid content of BAL 

in pmol/mL, summarizing 2 experiments, n=16 control, n=14 NE. Data are summarized as mean 

± SEM and compared by Mann-Whitney U (Wilcoxon Rank Sum) Test; **, p<0.01, ***, p<0.001. 

These data have been published (59). 
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Administering Neutrophil Elastase Increased the Concentration of SPTLC2 Protein in 

Murine Lungs. To determine how NE modulated ceramide levels, we investigated whether NE 

stimulated de novo ceramide synthesis by modulating SPT expression. We analyzed the protein 

expression levels of the two best-characterized subunits of SPT, the enzyme responsible for the 

rate-limiting step of de novo sphingolipid synthesis. At 4 and 8h, SPTLC2 protein expression did 

not differ between mice administered NE and those given vehicle control (Figure 6). In contrast, 

at 24h, the level of SPTLC2 protein in whole lung lysates was increased in NE-treated animals by 

approximately 2.5-fold (p<0.001) (Figure 7). The levels of SPTLC1 protein were decreased, 

dropping by approximately 30% (p=0.019) compared to control treated mice at the same time point 

(Figure 7).  

To determine whether the observed changes in SPT subunits’ protein concentration 

reflected a change in transcription, we assessed the levels of SPTLC1 and SPTLC2 mRNA in 

mouse lungs using Q/RT-PCR. Interestingly, there were no significant changes in SPTLC1 or 

SPTLC2 mRNA levels detectable in mouse lungs at 4, 8, or 24h following the final NE exposure, 

compared to vehicle controls (Figure 8). 

There are two known modulators of SPT activity— ORMDL3 and RTN4 (15, 16), but their 

effect on the expression of SPT are unknown. Since an increase in SPT expression could be 

accompanied by a change in the levels of ORMDL3 or RTN4, we investigated the expression of 

these proteins in mouse whole lung lysates. Protein expression of ORMDL3 and RTN4 was 

unchanged in NE-treated mice compared to controls at 24h (p=0.068 and p=0.579, respectively) 

(Figure 9), although there was a trend towards increased levels of ORMDL3 in NE-treated 

animals. Thus, currently, we have no evidence to support a role for ORMDL3 or RTN4 to regulate 

SPT activity or expression in this mouse model. Therefore, the increase in d18:1/22:0, d18:1/24:0 and 
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d18:1/24:1 ceramide (Table 5, Figure 5) was likely due to increased SPT enzymatic activity due to 

increased expression of SPTLC2. 
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Figure 6. Oropharyngeal aspiration of NE did not alter the level of SPTLC2 in murine lungs 

at 4 or 8h. Representative western blots of SPT long chain subunit 2 in mouse lung lysates at 4h 

(A) and 8h (B) after the final oropharyngeal aspiration of vehicle control or NE. In the top panel, 

representative westerns for SPTLC2 and actin are shown. In the bottom panel, the relative 

densitometries of bands are presented following normalization to actin and average control, 

expressed as percent of control. Data are presented as mean ± SEM, summarized from 1 

experiment (4h, 8h, n=4 mice per group) and compared by Mann-Whitney U (Wilcoxon Rank 

Sum) Test; ***, p<0.001. 
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Figure 7. Oropharyngeal aspiration of NE altered expression of SPTLC1 and SPTLC2 in 

mouse lungs. Representative western blots of SPT long chain subunits 1 and 2 in mouse lung 

lysates at 24h after administration of NE or control vehicle, probed for SPTLC1 (A, B), or SPTLC2 

(C, D) after the final oropharyngeal aspiration of vehicle control or NE. In the top panel (A, C), 

representative westerns for SPTLC1 or SPTLC2 and actin are shown. In the bottom panel (B, D), 

the relative densitometries of bands are presented following normalization to actin, shown as 

percentage of average control. Data are expressed as mean ± SEM; summarized from 2 

experiments, n=10 mice per group, and compared by Mann-Whitney U (Wilcoxon Rank Sum) 

Test; ***, p<0.001; *, p<0.05. These data have been published (59). 
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Figure 8. Q/RT-PCR analysis of SPTLC1 and SPTLC2 expression in the lungs of mice at 4, 

8, and 24 h after exposure to control vehicle or NE. Relative expression of SPTLC1 (A) and 

SPTLC2 (B) mRNA in mouse lung lysates at 4, 8, or 24h after the final oropharyngeal aspiration 

of vehicle control or NE. RNA was isolated from frozen murine lungs using QIAzol, a Trizol 

reagent, and the levels of target mRNA expression determined using Q/RT-PCR. SPTLC1 and 

SPTLC2 were normalized to β-actin, the endogenous control, and expressed relative to controls at 

the same time point using the ΔΔCt method. Data are summarized from 1 (4h, 8h) or 3 (24h) 

experiments, n=4 per group (4h, 8h) or n=11 or 12 (24h, control, SPTLC1 and SPTLC2, 

respectively), n=15 (24h NE). Data are expressed as mean ± SEM and compared by Mann-

Whitney U (Wilcoxon Rank Sum) Test; p>0.05.  
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Figure 9. Oropharyngeal aspiration of NE did not alter the concentration of RTN4 or 

ORMDL3 in murine lungs at 24h. Representative western blots of RTN4 and ORMDL3 in 

mouse lung lysates at 24h after the final oropharyngeal aspiration of vehicle control or NE (A). 

The relative densitometries of bands are presented following normalization to actin and shown as 

percent of average control, with relative densitometry for RTN4 depicted in panel in (B) and 

ORMDL3 in (C). Data are expressed as mean ± SEM; summarized from 2 experiments (n=10 

mice per group) and compared by Mann-Whitney U (Wilcoxon Rank Sum) Test. 
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II. Inhibiting SPT Activity Decreased Ceramide Expression and Airway Inflammation. 

Inhibiting SPT Activity Decreased Neutrophil Elastase-induced Ceramide Expression. 

To verify that increased ceramide in the BAL from mice administered NE was due to an increase 

in de novo biosynthesis of ceramide, we pre-treated mice with intraperitoneal injections of 

myriocin or vehicle control on days 1, 4, and 7 and euthanized mice at day 8, 24h after final 

administration of NE. Myriocin is a fungus-derived inhibitor that forms covalent bonds at the 

active site of SPT and irreversibly inhibits enzyme activity (147). In order to characterize the 

sphingolipid profile associated with pre-treatment with myriocin prior to induction of airway 

inflammation in this model, sphingolipid concentrations in BAL were determined via HPLC-ESI-

MS/MS (Tables 8-11). The variability among the three experiments in murine response to NE, 

warranted analysis of the data as percent of control (% of control), with sphingolipid profile in 

control animals as 100% for each of the three experiments.  

Administering myriocin to mice abrogated NE-induced changes in the expression of 

d18:1/22:0 (p=0.005) and d18:1/24:1 (p=0.011) ceramide; both ceramide moieties decreased by 

approximately 34% compared to levels in BAL in mice pre-treated with a vehicle control before 

NE was administered (Table 9, Figure 10). Similarly, there was a downward trend in the levels 

of d18:1/24:0 ceramide, which decreased by about 27% (p= 0.077). Thus, we observed a downward 

trend in the levels of total ceramide, which dropped by approximately 18% in mice pre-treated 

with myriocin in comparison to vehicle control prior to oropharyngeal aspiration of NE, but not a 

statistically significant difference (p= 0.111) (Table 9, Figure 10). Pre-treatment with myriocin 

also decreased levels of d18:1/26:1 and d18:1/26:0 ceramide (Table 9). However, as in prior 

experiments, the levels of the moiety present in murine BAL— below 15pmol/mL— led us to 

conclude the effects of these two ceramide moieties were likely negligible.  
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Pre-treatment with myriocin also decreased levels of d18:1/14:0 sphingomyelin by about 24% 

compared to animals pre-treated with vehicle control (Table 8); however, as the levels of this 

sphingomyelin moiety was not increased by NE compared to controls, we did not pursue this 

further. Similarly, we observed an increase in d18:1/22:0, d18:1/24:1, d18:1/24:0, and d18:1/26:1 

sphingomyelin (Table 8) and d18:1/24:1 and d18:1/26:1 monohexosylceramide (Table 10) in mice 

administered NE compared to vehicle control. There were no statistically different alterations in 

these sphingolipids in mice pre-treated with myriocin prior to NE, compared to those pre-treated 

with vehicle control before NE, so we did not pursue these trends further. 

Interestingly, pre-treatment with myriocin did not significantly affect the levels of 

monohexosylceramide (Table 10), sphingosine, sphinganine, S1P, or Sa1P (Table 11). Likewise, 

myriocin did not alter the expression of SPTLC2 protein in mouse lung lysates (Figure 11). Thus, 

ceramides generated via the de novo pathway significantly contributed to the increased ceramide 

levels observed in BAL after NE exposure. 
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Table 8. Levels of sphingomyelin moieties in BAL in mice administered myriocin prior to aspiration of vehicle control or NE. 

Sphingomyelina 
(% of control) 

Control NE Myriocin NE + Myriocin 

d18:1/14:0 100.01±3.17 100.53±6.99 77.72±6.34 76.71±5.29+ 
d18:1/16:0 93.58±3.61 106.62±7.19 84.74±3.07 101.51±5.10 
d18:1/18:1 100.00±4.08 148.30±16.41 87.49±4.79 147.22±21.84 
d18:1/18:0 100.00±3.43 106.76±6.09 82.80±3.86 98.10±5.69 
d18:1/20:0 100.00±5.06 93.36±5.57 90.58±3.95 96.10±7.70 
d18:1/22:0 100.00±2.56 184.78±16.03* 98.10±6.43 143.28±20.49 
d18:1/24:1 100.00±3.03 144.51±8.83* 90.14±5.28 137.51±14.46 
d18:1/24:0 100.00±3.42 159.94±10.89* 93.07±7.35 140.01±16.38 
d18:1/26:1 100.02±4.56 149.89±9.24* 93.70±3.85 1400.76±14.56 
d18:1/26:0 99.99±5.01 129.02±10.39 92.68±5.59 135.58±16.98 
Total 100.00±2.88 128.68±7.65 90.86±4.21 122.89±11.87 

 

a BAL collected from n= 15 per group, except NE+myriocin where n=14. Samples were collected and processed using LC-MS/MS. 

Data are expressed as mean ± SEM, after normalizing to average control within each experiment. *, p<0.05, when compared to control 

animals at the same time point; +, p<0.05, when compared to NE-treated animals at the same time point. 
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Table 9. Levels of ceramide moieties in BAL in mice administered myriocin prior to aspiration of vehicle control or NE. 

Ceramidea 
(% of control) 

Control NE Myriocin NE + Myriocin 

d18:1/14:0 100.16±5.43 95.67±14.33 102.09±10.73 82.08±4.55 
d18:1/16:0 99.99±5.89 99.82±10.15 78.83±6.62 89.57±7.77 
d18:1/18:1 103.44±15.30 147.83±12.86 119.63±13.19 128.52±22.35 
d18:1/18:0 100.01±7.58 115.39±16.09 107.43±16.58 109.32±14.63 
d18:1/20:0 100.00±7.78 116.87±11.56 95.46±11.36 94.33±6.27 
d18:1/22:0 100.00±5.17 175.75±13.24* 100.89±12.21 123.67±7.21+ 
d18:1/24:1 100.00±5.56 204.20±16.47* 92.53±7.83 151.21±9.92+ 
d18:1/24:0 100.00±5.89 178.95±15.07* 85.65±5.85 139.27±9.02 
d18:1/26:1 100.03±4.03 212.57±20.81* 82.25±6.54 162.20±15.59 
d18:1/26:0 100.00±4.95 198.52±19.91* 84.57±5.15 159.05±15.08 
Total 100.00±5.03 150.65±11.00 * 85.98±6.48 123.33±8.52 

 

a BAL collected from n= 15 per group, except NE+myriocin where n=14. Samples were collected and processed using LC-MS/MS. 

Data are expressed as mean ± SEM, after normalizing to average control within each experiment. *, p<0.05, when compared to control 

animals at the same time point; +, p<0.05, when compared to NE-treated animals at the same time point. 
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Table 10. Levels of monohexosylceramide moieties in BAL in mice administered myriocin prior to aspiration of vehicle control 

or NE. 

Monohexosylceramidea 

(% of control) 
Control NE Myriocin NE + Myriocin 

d18:1/14:0 100.27±7.87 91.55±5.55 91.12±8.53 99.97±12.29 
d18:1/16:0 100.01±8.53 98.89±8.00 91.85±10.25 83.63±9.04 
d18:1/18:1 58.49±12.65 89.63±24.80 110.18±42.43 118.10±31.99 
d18:1/18:0 100.21±6.31 309.59±105.34 161.88±31.17 178.23±81.15 
d18:1/20:0 99.95±6.82 128.19±19.20 105.53±10.84 100.56±8.11 
d18:1/22:0 100.04±7.42 133.77±10.96 107.57±12.50 115.10±7.11 
d18:1/24:1 100.00±7.77 148.05±13.13* 112.96±15.25 144.02±13.85 
d18:1/24:0 100.00±5.69 127.44±10.42 96.44±10.00 113.80±11.24 
d18:1/26:1 100.07±5.29 152.11±15.73* 114.57±15.06 148.86±9.58 
d18:1/26:0 99.98±5.67 211.06±32.05 106.78±13.27 148.57±18.22 
Total 100.00±5.93 128.20±9.74 100.96±10.66 115.86±10.20 

 

a BAL collected from n= 15 per group, except NE+myriocin where n=14. Samples were collected and processed using LC-MS/MS. 

Data are expressed as mean ± SEM, after normalizing to average control within each experiment. *, p<0.05, when compared to control 

animals at the same time point. 
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Table 11. Levels of sphingosine, S1P, sphinganine, and Sa1P in BAL in mice administered myriocin prior to aspirating vehicle 

control or NE. 

Sphingolipida  
(% of control) 

Control NE Myriocin NE + Myriocin 

sphingosine 100.09±6.86 123.91±9.89 94.64±7.55 137.98±14.29 
S1P 99.39±7.97 132.09±10.89 94.09±9.48 143.70±12.58 
sphinganine 100.74±5.94 113.81±9.34 109.71±7.97 108.58±7.97 
Sa1P 106.69±14.93 136.94±24.33 94.61±13.54 151.32±24.31 

 

a BAL collected from n= 15 per group, except NE+myriocin where n=14. Samples were collected and processed using LC-MS/MS. 

Data are expressed as mean ± SEM, after normalizing to average control within each experiment. There are no statistically significant 

differences in sphingolipid profile among these four groups. 
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Figure 10. BAL sphingolipid analysis following myriocin pretreatment followed by NE or 

control vehicle. Mice were exposed to control vehicle or myriocin (0.3 mg/kg IP) 2h prior to NE 

or control vehicle on days 1, 4, and 7; BAL and mouse lungs were harvested on day 8. Sphingolipid 

concentration in BAL (350µL) was determined by HPLC-ESI-MS/MS. Expression of total 

ceramides (A) and ceramide d18:1/22:0 (B), d18:1/24:1 (C), d18:1/24:0 (D) in BAL were increased 

following NE exposure. With the addition of myriocin, a significant decrease in d18:1/22:0 and 

d18:1/24:1 ceramide was observed, with non-significant decreases for the d18:1/24:0 chain length and 

total ceramide. Data were normalized to the average control and compared using nonparametric 

one-way ANOVA (Kruskal-Wallis Test), with post hoc analyses among treatment groups using 

Mann-Whitney U (Wilcoxon Rank Sum Test). Data represent the sum of 3 experiments expressed 

as mean ± SEM, with n=15 animals per group except NE+myriocin (n=14). ***, p<0.001; **, 

p<0.01; *, p<0.05; n.s., not significant, p>0.05. These data have been published (59). 



68 
 

 

  



69 
 

Figure 11. Oropharyngeal aspiration of NE increased the concentration of SPTLC2 in 

murine lungs at 24h; pre-treatment with myriocin did not abrogate this effect. Mice were 

administered myriocin (0.3 mg/kg IP) or vehicle control on days 1, 4, and 4 prior to oropharyngeal 

aspiration of NE or vehicle control; BAL and mouse lungs were harvested on day 8. Representative 

western blots of SPT long chain subunit 2 in mouse lung lysates at 24h (A) after the final 

oropharyngeal aspiration of vehicle control or NE. In the top panel, representative westerns for 

SPTLC2 and actin are shown. In the bottom panel, the relative densitometries of bands are 

presented following normalization to actin and average control, expressed as percent of control. 

Data are presented as mean ± SEM, summarized from 2 experiments (n=8 mice per group) and 

compared by Mann-Whitney U (Wilcoxon Rank Sum) Test; *, p<0.05; n.s., not significant, 

p>0.05. 
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Myriocin Alleviated Aspects of Neutrophil Elastase-induced Inflammation. We 

measured the levels of inflammatory markers and quantity of inflammatory cells present in murine 

BAL in order to determine the effects of myriocin mediated inhibition of SPT activity on NE-

induced inflammation. Administering myriocin to mice prior to aspiration of NE induced a 36% 

decrease in the levels of KC (p=0.021) and 44% drop in the levels of HMGB1 (p=0.015) present 

in murine BAL (Figure 12). Pre-treatment with myriocin decreased the total leukocytes (total 

white blood cell count, total cell count) in mouse BAL by about 11% (Figure 13); a change that 

was not statistically significant. Likewise, while proportion of neutrophils present decreased by 

roughly 4% in the BAL of mice pre-treated with myriocin prior to oropharyngeal aspiration of NE 

(Figure 13), this drop was also not statistically significant. 
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Figure 12. The effect of myriocin on NE-induced KC and HMGB1 in BAL. Administration of 

myriocin (0.3 mg/kg) prior to oropharyngeal aspiration of NE decreased the level of BAL KC, 

compared to mice that received control vehicle prior to NE treatment, as determined by ELISA 

(n=13 per group in control, myriocin alone and NE+myriocin, n=14 in NE) (A). NE-induced 

expression of HMGB1 in BAL was decreased with myriocin administration (n=13 NE and n=12 

NE+myriocin) (B) a representative blot, and relative densitometry, normalized to HMGB1 

expression against average expression with NE (percentile). Data summarized mean ± SEM of 3 

experiments, with groups compared by Mann-Whitney U (Wilcoxon Rank Sum) Test; ***, 

p<0.001; +, p=0.021; *, p=0.014. These data have been published (59). 
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Figure 13. Total cell counts and percent neutrophils in BAL following pretreatment with 

myriocin or control vehicle and aspiration of NE or control vehicle. Aspiration of NE induced 

an increase in BAL total leukocytes (total cell count) (A), and in percent neutrophils (B). 

Administration of myriocin (0.3 mg/kg) by IP injection prior to NE administration did not change 

total cell count (total leukocytes) in murine BAL (A), or the percent neutrophils present in the 

BAL (B), compared to mice that received a vehicle control IP injection. Groups were compared 

by nonparametric ANOVA test (Kruskal-Wallis), with post-hoc comparisons among groups using 

Mann-Whitney U Tests (Wilcoxon Rank Sum Test); data are summarized from 3 experiments as 

mean ± SEM, with n= 15 per group (vehicle control, myriocin alone, NE alone), n=14 in 

NE+myriocin group; ***, p<0.001. These data have been published (59). 
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III. Associations between Sphingolipids, Neutrophil Elastase, and Clinical Status in Cystic 

Fibrosis Sputum. 

Sputum Sphingolipids Increased During Hospitalization. We evaluated the sphingolipid 

profiles of sputum from CF patients by comparing intrasubject levels between hospitalization and 

outpatient visit to determine if there were any trends associated with more airway inflammation 

(hospitalization) versus less inflammation (outpatient visit). Three sphingolipid moieties 

demonstrated a statistically significant increase when the subjects were hospitalized for pulmonary 

exacerbation: d18:1/14:0 ceramide by about 50% (p= 0.022), d18:1/24:1 ceramide by about 37% (p= 

0.041), and d18:1/24:0 monohexosylceramide by about 38% (p=0.026) (Figure 14C-E). As expected, 

lung function, measured as FEV1 % predicted, was significantly decreased during hospitalizations 

for pulmonary exacerbations compared to outpatient clinic visits (p=0.0182) (Figure 14A). There 

was a 5% difference between the average FEV1 % predicted during outpatient visits and during 

hospitalization (Figure 14A). On the other hand, the sputum concentrations of active NE collected 

during hospitalizations for CF pulmonary exacerbations were not significantly different from 

samples collected during outpatient visits (p=0.468) (Figure 14B). However, this lack of 

difference in level of active NE was likely because our sputum donors had relatively high levels 

of chronic neutrophilic inflammation, as most had severe lung disease. Similar findings have been 

reported by others (105). 

However, in contrast to the ceramide and monohexosylceramide species which increased 

for individuals during hospitalization (Figure 14C-E), there were no other intrasubject significant 

differences in sphingolipid levels between these two time points for other species: sphingomyelins 

(Figure 15), total ceramide and other ceramide species (Figure 16), monohexosylceramides 

(Figure 17), and sphingosine, sphinganine, S1P, and Sa1P (Figure 18). The lack of more 
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significant differences between hospitalization and outpatient visits may be due to the severity of 

lung disease in this patient population reflected by the high NE levels at both time points in many 

subjects. 

  



77 
 

 

  



78 
 

Figure 14. Differences in lung function and sputum concentrations of active NE and 

sphingolipids in patients with CF between hospitalization and outpatient visit. Sputum 

samples were collected during the course of hospitalization or during an outpatient visit (n=15 per 

group) and processed as described in the Methods. Lung function, expressed as FEV1 % predicted, 

varied between the two groups; there was a statistically significant decrease in lung function during 

hospitalization for CF pulmonary exacerbation (A). Active NE was measured by a chromogenic 

microtiter plate assay; there was a wide range of NE activity among patients, but no statistically 

significant difference between the two sample groups (B). Sphingolipid content was measured by 

HPLC-ESI-MS/MS. Sputum concentrations of d18:1/14:0 ceramide (C), d18:1/24:1 ceramide (D) and 

d18:1/24:0 monohexosylceramide (E) varied with clinical status, with increased concentrations of 

these sphingolipids found in samples collected during hospitalization. The differences between the 

two groups were statistically significant (*, p<0.05). Data (mean ± SEM) were compared by 

Wilcoxon Signed Rank Tests. These data have been submitted for publication. 
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Figure 15. Sputum concentrations of sphingomyelin in patients during hospitalization for a 

pulmonary exacerbation and during an outpatient visit. Sputum samples were collected during 

hospitalization or during an outpatient visit (n=15 per group) and processed as described in the 

Methods. Sphingolipid content was measured by HPLC-ESI-MS/MS. Sputum concentrations of 

total sphingomyelin (A) and d18:1/14:0, d18:1/16:0, d18:1/18:0, d18:1/18:1, d18:1/20:0, d18:1/22:0, d18:1/24:0, 

d18:1/24:1, d18:1/26:0, d18:1/26:1 sphingomyelin moieties (B-K). The differences between the two groups 

were not statistically significant. Data (mean ± SEM) were compared by Wilcoxon Signed Rank 

Tests. These data have been submitted for publication.
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Figure 16. Sputum concentrations of ceramide in patients during hospitalization for a 

pulmonary exacerbation and during an outpatient visit. Sputum samples were collected during 

hospitalization or during an outpatient visit (n=15 per group) and processed as described in the 

Methods. Sphingolipid content was measured by HPLC-ESI-MS/MS. Sputum concentrations of 

total ceramide (A) and d18:1/16:0, d18:1/18:0, d18:1/18:1, d18:1/20:0, d18:1/22:0, d18:1/24:0, d18:1/26:0, d18:1/26:1 

ceramide moieties (B-I). The differences between the two groups were not statistically significant. 

Data (mean ± SEM) were compared by Wilcoxon Signed Rank Tests. These data have been 

submitted for publication. 
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Figure 17. Sputum concentrations of monohexosylceramide in patients during 

hospitalization for a pulmonary exacerbation and during an outpatient visit. Sputum samples 

were collected during the course of hospitalization or during an outpatient visit (n=15 per group) 

and processed as described in the Methods. Sphingolipid content was measured by HPLC-ESI-

MS/MS. Sputum concentrations of total monohexosylceramide (A) and d18:1/14:0, d18:1/16:0, d18:1/18:0, 

d18:1/18:1, d18:1/20:0, d18:1/22:0, d18:1/24:1, d18:1/26:0, d18:1/26:1 monohexosylceramide moieties (B-J). The 

differences between the two groups were not statistically significant. Data (mean ± SEM) were 

compared by Wilcoxon Signed Rank Tests. These data have been submitted for publication. 
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Figure 18. Sputum concentrations of sphingosine, sphinganine, S1P, and Sa1P in patients 

during hospitalization for a pulmonary exacerbation and during an outpatient visit. Sputum 

samples were collected during the course of hospitalization or during an outpatient visit (n=15 per 

group) and processed as described in the Methods. Sphingolipid content was measured by HPLC-

ESI-MS/MS. Sputum concentrations of sphingosine (A), sphinganine (B), S1P (C), Sa1P (D). The 

differences between the two groups were not statistically significant. Data (mean ± SEM) were 

compared by Wilcoxon Signed Rank tests. These data have been submitted for publication. 
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A Rise in Sphingolipid Concentration Correlated with Increasing Proteolytically Active 

NE in Sputum from Cystic Fibrosis Patients. Based on our in vivo experiments with 

oropharyngeal aspiration of NE, which revealed that NE increased long chain ceramide levels, we 

tested whether levels of sputum sphingolipids correlate with NE activity. We found that as the 

concentration of active NE in sputum increased, so did the concentration of a wide variety of 

sphingolipids. There were linear correlations between the concentrations of active NE and total 

sphingomyelin (r2=0.198; p=0.014), total ceramide (r2=0.152; p=0.033), total 

monohexosylceramide (r2=0.229; p=0.007), and S1P (r2=0.257; p=0.004) (Figure 19) in subject 

sputa. 

The concentrations of several different sphingomyelin moieties directly correlated with 

levels of active NE. There was a linear correlation between active NE and sphingomyelin d18:1/14:0 

(r2=0.364; p<0.001), d18:1/18:1 (r2=0.156; p=0.031), d18:1/22:0 (r2=0.293; p=0.002), d18:1/24:1 (r2=0.295; 

p=0.002), and d18:1/24:0 (r2=0.141; p=0.041) (Figure 20). When assessing the association of active 

NE and ceramide of various chain lengths, we observed a statistically significant linear correlation 

between active NE and ceramide d18:1/22:0 (r2=0.148; p=0.036) and d18:1/24:0 (r2=0.262; p=0.004) 

(Figure 21A-B). Finally, two specific monohexosylceramide moieties increased with increasing 

NE activity— d18:1/16:0 (r2=0.273; p=0.003) and d18:1/24:0 (r2=0.164; p=0.026) (Figure 21C-D). 

Overall, we observed that sputum concentrations of various sphingomyelin, ceramide and 

monohexosylceramide moieties directly correlated with sputum NE activity. 
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Figure 19. A linear correlation between the concentration of active NE and total 

sphingomyelin (A), total ceramide (B), total monohexosylceramide (C) and S1P (D) in CF 

sputum. Sputum samples were collected (n=30 samples, from 15 donors), and processed as 

described in the Methods. Total sphingolipid content was measured by HPLC-ESI-MS/MS, and 

the concentration of active NE in sputum was assessed using an NE activity assay. There was a 

linear correlation between the concentration of active NE and total sphingomyelin (r2=0.198; 

p=0.014), total ceramide (r2=0.152; p=0.033), total monohexosylceramide (r2=0.2293; p=0.007), 

and S1P (r2=0.257; p=0.004) in CF sputum (A through D, respectively). These data have been 

submitted for publication.  
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Figure 20. Linear correlations between the concentration of active NE and five 

sphingomyelin moieties in CF sputum. Sputum samples were collected (n=30 samples, from 15 

donors), and processed as described in the Methods. Sphingomyelin content was measured by 

HPLC-ESI-MS/MS, and the concentration of active NE in sputum was assessed using an NE 

activity assay. Most likely contributors to the observed increase in total sphingomyelin consisted 

of d18:1/14:0 (r2=0.364; p<0.001), d18:1/18:1 (r2=0.156; p=0.031), d18:1/22:0 (r2=0.293; p=0.002), d18:1/24:1 

(r2=0.2945; p=0.002), and d18:1/24:0 (r2=0.141; p=0.041) sphingomyelin (A through E, 

respectively). These data have been submitted for publication. 
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Figure 21. Linear correlations between the concentration of active NE and two ceramide and 

two monohexosylceramide moieties in CF sputum. Sputum samples were collected (n=30 

samples, from 15 donors), and processed as described in the Methods. Ceramide and 

monohexosylceramide content was measured by HPLC-ESI-MS/MS. The concentration of active 

NE in sputum was assessed using an NE activity assay. The sphingolipid moieties that likely 

contributed to the increase in total ceramide were d18:1/22:0 (r2=0.148; p=0.036) (A) and d18:1/24:0 

(r2=0.262; p=0.004) ceramide (B). The sphingolipid moieties that likely contributed to the increase 

in total monohexosylceramide were d18:1/16:0 (r2=0.273, p=0.003) (C) and d18:1/24:0 (r2=0.164, 

p=0.026) monohexosylceramide (D). These data have been submitted for publication. 
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IV. Modifying Factors That Alter Correlations between Sphingolipids and Neutrophil 

Elastase in Cystic Fibrosis Sputum. 

The presence of bacteria in sputum, severity of lung disease, and patient gender modified 

the association between active NE and certain sphingolipid moieties in CF sputum. In sputum 

samples that were culture positive for MRSA, there was a statistically significant, stronger 

association between active NE and d18:1/14:0 sphingomyelin (p=0.0034), d18:1/24:0 ceramide (p=0. 

0257), as well as total monohexosylceramide (p=0. 0064), due to changes in d18:1/14:0 and d18:1/16:0 

monohexosylceramide (p=0.0007and p=0.003, respectively) (Table 12). Surprisingly, the 

presence of P. aeruginosa in sputum did not significantly affect the associations between 

sphingolipids and active NE. FEV1 (% predicted) affected the association between d18:1/14:0 

sphingomyelin (p=0.0318) and active NE and d18:1/14:0 monohexosylceramide (p=0. 0403); the 

higher the lung function, the weaker the association between active NE and these two d18:1/14:0 

sphingolipid moieties (Table 12); the change was statistically significant. Finally, the subject’s 

gender significantly affected the association between d18:1/14:0 sphingomyelin (p=0.0015) and 

d18:1/14:0 monohexosylceramide (p=0.0472) and active NE. Females had a statistically significant, 

stronger association between those two sphingolipid moieties and active NE (Table 12). 
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Table 12. Modifying factors that influence the association between NE and sphingolipids in sputum from CF patients. 

Modifying Factors Sphingolipid Change in Slope Standard Error p-value 

MRSA  
Positive Culture 

Sphingomyelin d18:1/14:0 0.233 0.06406 0.0034 
Total Monohexosylceramide  0.183 0.05539 0.0064 
Monohexosylceramide d18:1/14:0 13.816 3.0586 0.0007 
Monohexosylceramide d18:1/16:0 0.367 0.09921 0.003 
Ceramide d18:1/24:0 0.591 0.2324 0.0257 

FEV1 % predicted 
Sphingomyelin d18:1/14:0 -0.164 0.06836 0.0318 
Monohexosylceramide d18:1/14:0 -8.823 3.8738 0.0403 

Female Gender 
Sphingomyelin d18:1/14:0 0.282 0.07023 0.0015 
Monohexosylceramide d18:1/14:0 8.105 3.6967 0.0472 

 

These data have been submitted for publication. 

  



96 
 

 
 
 
 
 

Chapter 4. Discussion 
 
 
 
 

I. Neutrophil Elastase Increased Airway Ceramide in a Mouse Model of Neutrophil Elastase-

induced Inflammation. 

Chronic infection and maladaptive, neutrophilic inflammation are characteristic of CF lung 

disease; consequently, eliminating pulmonary infections and decreasing inflammation are two of 

the primary therapeutic approaches to CF (33, 43, 144). Despite decades of research, safe and 

effective anti-inflammatory therapy remains an unmet need. NE, a neutrophil-derived protease, is 

a major contributor to lung injury and development of bronchiectasis in CF (113, 121) and 

emphysema in COPD (8). In this study, we make a novel observation: that exogenous NE increases 

the levels of ceramide in a mouse model of NE-induced, sterile inflammation. We demonstrate 

that NE specifically increases ceramide production via the de novo pathway, likely mediated via 

increased SPTLC2 protein levels. Sphingolipid metabolism is closely linked to inflammation in 

the lungs; increasing the concentration of ceramide favors the development of pathological 

inflammation (42), both in diseases with acute onset like pulmonary edema (45) as well as more 

chronic inflammatory diseases like CF and COPD (42, 94, 133). Our findings suggest that 

ceramide may mediate the induction of pro-inflammatory cytokines, whose release is stimulated 

by NE, which would be especially relevant in the context of inflammatory lung disease. Thus, the 

significance of our findings is a new paradigm of a potential self-perpetuating cycle of 
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inflammation in the CF airways: NE promotes ceramide production, which upregulates neutrophil 

chemokines, KC and HMGB1, thereby increasing neutrophilic inflammation and local NE load.  

Ceramide moieties have a broad repertoire of pro-inflammatory activities (42), and the 

properties of ceramide are dependent on fatty acid chain length (48), though this phenomenon has 

yet to be fully explored. Thus, increased synthesis of ceramide moieties of different chain lengths 

is likely an important factor contributing to inflammation. In the context of neutrophilic 

inflammation, recent studies indicate that ceramide and other bioactive sphingolipids have a 

profound effect on neutrophil migration and function (34). First, in a mouse model of multiple 

sclerosis, different pools of ceramide regulate neutrophil migration—d18:1/24:0 ceramide 

upregulates Cxcr2 mRNA expression (5), while d18:1/16:0 inhibits Cxcr2 expression and neutrophil 

adhesion (31). Moreover, both exogenous and intracellular ceramide are important for neutrophil 

phagocytic function. For example, a rise in ceramide production correlates with the culmination 

of oxidative burst (34). Conversely, introducing exogenous short chain ceramides can inhibit IgG-

induced phagocytosis (34). In our model of NE-induced inflammation, we observed increases in 

d18:1/22:0, d18:1/24:0 and d18:1/24:1 ceramide moieties, which was reflected by a statistically significant, 

2.5-fold increase in total ceramide (Figure 4). Likewise, in a mouse model of emphysema, where 

a bolus of porcine pancreatic elastase was delivered intratracheally to injure the airways, Tibboel 

et al. (2013) observed increases in d18:1/22:0, d18:1/24:0 and d18:1/24:1 ceramide. However, they also 

described increases in other, shorter chain ceramides as well as two dihydroceramides (134). Since 

myriocin, a suicide inhibitor of SPT (147), alleviated elastase-induced changes in lung function 

and the increase in BAL ceramides, authors attributed the upregulation of ceramide to de novo 

sphingolipid synthesis (134). However, they also observed changes in the expression of 
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ceramidases and acid SMase after elastase injury, over a 21-day time course. In contrast, we chose 

to focus on the enzyme responsible for the rate-limiting step of de novo ceramide synthesis: SPT. 

SPT is a critical enzyme in de novo ceramide synthesis, but its structure and subunit 

stoichiometry in mammals is still under debate (115). It is speculated that the active site(s) of SPT 

are likely formed by a heterodimer of SPTLC1 and either SPTLC2 or SPTLC3 (56). We detected 

a 2.5-fold increase in SPTLC2 protein levels at 24h after delivery of the final NE dose, compared 

to animals that aspirated vehicle control (Figure 5). We also observed a 30%, statistically 

significant decrease in SPTLC1. However, due to lack of a reliable antibody SPTLC3 was not 

assessed. The ratio of SPTLC2 to SPTLC3 within the multimeric protein may influence the 

enzymatic activity of SPT, and an increase in SPTLC2 may facilitate the production of d18:1/18:0 

and long chain ceramides, including d18:1/22:0, d18:1/24:0, and d18:1/24:1 (56). Thus, the increase in long 

chain ceramide moieties we observed is consistent with increased SPTLC2 protein and activity, 

especially as the rise in ceramide levels was noted at the same time point as increased expression 

of SPTLC2. 

Currently, the regulatory mechanisms that control SPT protein expression and activity are 

poorly defined (15, 16, 41, 89). Our data suggest that NE upregulates SPTLC2 by a post-

transcriptional mechanism, as we did not detect a change in SPTLC1 and SPTLC2 mRNA at 24h, 

or at earlier time points (Figure 6). One mechanism that could increase SPT protein is 

downregulation of microRNA miR-137, 181c, -9 or 29a/b, which would permit increased 

transcription and/or translation of SPT (41), though the former would be reflected by increases in 

mRNA. We also assessed the expression of two known modulators of SPT activity— ORMDL3 

and RTN4 (15, 16), in the lungs. Neither ORMDL3 nor RTN4 protein levels were significantly 

different when comparing animals that were administered a vehicle control versus NE (Figure 7). 
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Thus, administering NE does not appear to influence de novo sphingolipid production by 

modulating known negative regulators of SPT activity. This supports the idea that the observed 

increase in SPTLC2 affects the enzymatic activity of SPT in our mouse model of NE-induced 

inflammation. 

Pre-treating mice with myriocin, an SPT inhibitor, prior to administering NE, reduced 

ceramide expression at 24h. There was a trend towards decreased total ceramide, due to statistically 

significant decreases in d18:1/22:0 and d18:1/24:1 ceramide moieties and downward trend in d18:1/24:0 

ceramide, in mice administered myriocin prior to NE aspiration. Interestingly, pre-treatment with 

myriocin did not significantly alter the expression profile of other sphingolipids present in BAL, 

with the exception of d18:1/14:0 sphingomyelin, which was not induced by NE. Likewise, myriocin 

did not alter the expression of SPTLC2 protein in mouse lungs.  

Notably, inhibiting SPT activity using myriocin, decreased ceramide levels as well as NE-

induced expression of pro-inflammatory signaling molecules in murine BAL, including KC and 

HMGB1. Mice that were administered NE had approximately 40% neutrophils, compared to mice 

administered control vehicle which had approximately 5-10% neutrophils in BAL. However, 

neither the total number of leukocytes nor the proportion of neutrophils present in the BAL were 

significantly decreased when mice were administered an SPT inhibitor. These data corroborate the 

fact that NE can activate several signaling pathways that perpetuate neutrophil dominant airway 

inflammation (142), and while ceramide may provide yet another link between NE and cytokine 

expression, inhibiting de novo ceramide synthesis does not abrogate all of the pro-inflammatory 

effects stimulated by NE. This apparent disconnect between KC levels and neutrophil cell counts 

has been observed previously. In a model of myocardial infarction, suppression of KC using 

neutralizing antibodies did not decrease the influx of neutrophil that occurs shortly after an infarct 
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is induced (88). One possible pro-inflammatory signal that stimulates neutrophil chemotaxis in our 

model is IL33. Full length IL33 is intracellular, a non-histone DNA-binding protein that regulates 

gene expression. IL33 is released from damaged and necrotic cells and can be cleaved by 

neutrophil-derived proteases, including NE, into its mature form (69). Mature IL33, like HMGB1, 

is an alarmin and extracellular cytokine. IL33 has been detected in airway epithelium from patients 

with CF (110), and while IL33 is not directly chemotactic toward neutrophils, it potentiates 

neutrophil recruitment (4, 110). Other possible contributors that could stimulate neutrophil influx 

in our model includes bioactive lipids such as leukotriene B4 (LTB4). LTB4 is a secondary 

chemoattractant released by leukocytes, including neutrophils and macrophages, and contributes 

to both neutrophil activation and migration (2) (82). Finally, components of the complement 

system are major mediators of inflammation in a variety of diseases, and recent data indicate 

complement has a role in pulmonary inflammation in CF (50). Complement effectors C3a and 

C5a, could be involved with neutrophil influx in our model. A mouse model of pancreatic elastase-

induced abdominal aortic aneurysm demonstrated that neutrophil recruitment was dependent on 

the alternative pathway of complement activation (90). This led to production of C3a and C5a, 

which subsequently stimulated neutrophil recruitment to the site of injury (90). It is likely that 

modifying ceramide levels alone is beneficial but not sufficient to block all NE-triggered pro-

inflammatory pathways that facilitate neutrophilic inflammation in our mouse model of NE-

induced inflammation. 

There are limitations associated with this study, directing the focus of future research based 

on these data. First, we chose to focus on SPT and de novo sphingolipid biosynthesis. We have yet 

to evaluate whether NE changes expression or activity of SMases, CerS, or components of the 

salvage pathway in vivo to increase ceramide accumulation (Figure 2). SMases convert 
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sphingomyelin into ceramide. Generation of long chain ceramides, such as those we observed in 

our model, may also be due to increased expression of specific CerS. CerS are downstream of SPT 

in the de novo sphingolipid biosynthetic pathway, and are also involved in the salvage pathway 

(137). CerS2 and 5 are highly expressed in the lung (93), and CerS2 regulates the generation of 

d18:1/22:0, d18:1/24:1 and d18:1/24:0 ceramides (67, 93). Additionally, one of the major limitations of 

studying the biological effects of long chain ceramide moieties, is that there is no reliable method 

of delivering exogenous long chain ceramides into cells, due to difficulties with cellular uptake. 

On the other hand, generation of novel inhibitors that would affect the activity of specific ceramide 

synthases, thereby limiting production of ceramides of different chain lengths, would propel our 

understanding of the mechanisms further. Overall, our data support the concept that more than one 

pathway of ceramide production are stimulated by NE, as d18:1/24:0 ceramide, one of the moieties 

increased after administration of NE, trended downwards but was not significantly decreased when 

animals were pre-treated with myriocin.  

Based on the novel mechanism we describe, de novo ceramide production may be induced 

by NE in airways of patients with chronic inflammatory lung diseases. This provides novel targets 

for anti-inflammatory therapeutics. We propose that this association between NE and ceramide 

may be present in patients that suffer from acute and chronic neutrophilic inflammation in the 

lungs, such as those with CF or COPD, who demonstrate high levels of NE in airway surface fluid 

(142). Thus, in the clinical portion of this project, we sought to determine whether there is an 

association between NE activity and sphingolipid profiles in the CF airway. 
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II. Associations Between Neutrophil Elastase and Sphingolipids in Cystic Fibrosis Sputum. 

Our retrospective study of the sphingolipid content of CF sputum is the largest of its type 

in this cohort to date and is the first study investigating the association between NE and 

sphingolipids. Sputum sphingolipid levels varied among patients and with clinical status, 

demonstrating statistically significant increases in d18:1/14:0 ceramide, d18:1/24:1 ceramide, and 

d18:1/24:0 monohexosylceramide during hospitalization for CF pulmonary exacerbation. Assessing 

the levels of active NE and sphingolipid content of sputum samples, we observed a linear 

correlation between concentrations of NE and sphingolipids present in the sputum of patients with 

CF. Increasing active NE was associated with higher levels of a variety of sphingolipids in sputum, 

with statistically significant linear correlations between the levels of active NE and the 

concentrations of total sphingomyelin, ceramide, monohexosylceramide, and S1P (Figure 19). 

The greatest variety in different chain-length sphingolipids that increased with elevated NE 

activity were sphingomyelin moieties. In contrast, with ceramide, there were statistically 

significant linear correlations between active NE and d18:1/22:0 and d18:1/24:0 ceramide, both of which 

we saw increase in the BAL of our in vivo model of NE-induced inflammation. Finally, there were 

two monohexosylceramide moieties that increased with a rise in NE activity. Our study confirmed 

the existence of an association between NE and sphingolipid content in CF sputum. Taken in 

concert with published data relevant to COPD (133) and CF (13, 100), our data suggest that 

neutrophilic inflammation contributes to the abnormal sphingolipid levels observed in the lungs of 

patients with CF, possibly exacerbating an imbalance caused by CFTR dysfunction. 

The role of sphingolipids in the pathogenesis of CF lung disease in humans remains largely 

unexplored, though an association between increased ceramide and neutrophilic inflammation has 

been noted previously in CF lung tissue (13). To our knowledge, limited data are available 
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regarding the sphingolipid content in the BAL or sputum of patients with CF. Blood biomarkers 

are often preferable, due to ease of collection. Recent studies by Guilbault et al. demonstrated 

decreased ceramide in serum from CF patients, compared to healthy controls, particularly in 

d18:1/14:0, d18:1/20:1, d18:1/22:1, d18:1/24:0 ceramide moieties (49). In contrast, Brodlie et al. observed 

increased ceramide in explants of human lung tissue from CF subjects compared to non-CF 

controls (13). Also, they described an association between markers of neutrophilic inflammation 

and elevated d18:1/16:0, d18:1/18:0, and d18:1/20:0 ceramide (13). Furthermore, in CF sputum, Quinn et 

al. also observed that sphingomyelin d18:1/14:0, d18:1/15:0, d18:1/16:1, and d18:1/16:0 as well as two d18:1/16:0 

glycosphingolipids, tetraglycosylceramide and lactosylceramide, were elevated when compared to 

non-CF sputum (100). In a single subject with CF followed for 4.2 years, ceramide was increased 

during treatment of pulmonary exacerbation (99). These studies support our conclusion, that 

sphingolipids are increased locally in the CF airways, emphasizing the importance of looking at 

both systemic and local changes in sphingolipid profile in lung diseases. 

Methicillin-resistant S. aureus (MRSA) and P. aeruginosa are two of the most common 

bacterial pathogens that chronically infect CF airways. Thus, we examined whether the presence 

of MRSA and P. aeruginosa in sputum modified the association between active NE and the 

concentrations of various sphingolipids. While ceramide metabolites are critical components in 

host responses to various bacterial, viral and fungal infections (92, 117), in a recent study that 

focused on sputum metabolomics and bacteriology, Quinn et al. determined that the sputum levels 

of sphingolipids, including sphingomyelin, ceramide, and lactosylceramide, did not correlate with 

the multitude of bacterial genera they observed in the CF sputum (100). Our data revealed that the 

presence of MRSA modified the association of active NE and d18:1/14:0 sphingomyelin, d18:1/24:0 

ceramide and total monohexosylceramide— likely due to d18:1/14:0 and d18:1/16:0 
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monohexosylceramide (Table 12). The presence of MRSA in patient sputum strengthened the 

association between active NE and the concentrations of these sphingolipids. This is notable, as 

others have reported that CFTR-deficient mice are more susceptible to S. aureus infection, and that 

an imbalance between sphingosine and ceramide appears to be the culprit (131). In contrast, we 

observed no modifying effects when sputum cultures were positive for P. aeruginosa. This 

corroborates the data reported by Yu et al., in which the presence of P. aeruginosa stimulated acid 

SMase activity and ceramide synthesis in normal airway epithelial cells and wild-type mice, but 

not in CFTR-deficient cells or Cftr knockout mice (156). Cftr knockout mice are more susceptible 

to P. aeruginosa infection, possibly due to a decrease in sphingosine and increase in ceramide in 

their airways caused by lower enzymatic activity of acid ceramidase (96).  

MRSA or P. aeruginosa infection of the lungs can lead to decreased lung function, detected 

as a drop in FEV1 % predicted, indicating a flare or exacerbation of CF lung disease— a CF 

pulmonary exacerbation. FEV1 is known to be inversely associated with NE in CF (76), but, we 

wanted to determine whether patient lung function modified the association between NE and 

sphingolipids. Most of our subjects were adults with severe (FEV1<50% predicted) obstructive 

lung disease. Thus, the differences in lung function between outpatient visits and hospitalization, 

while statistically significant, were relatively small: a 5% drop in FEV1 % predicted during 

hospitalization. When the data collected from all 30 samples were analyzed using a linear mixed 

model, we observed that higher FEV1 % predicted weakened the association between NE and 

sputum sphingolipid content, i.e., the better the lung function, the weaker the association between 

active NE and d18:1/14:0 sphingomyelin and d18:1/14:0 monohexosylceramide (Table 12). 

Lastly, there are data that indicate that gender affects the progression of CF, with female 

patients having increased morbidity and shorter life expectancies (53, 129). Thus, we assessed the 



105 
 

effect of patient gender on the correlation between active NE and sphingolipids. There was an 

increased association between two sputum sphingolipids— d18:1/14:0 sphingomyelin and d18:1/14:0 

monohexosylceramide, and NE in female subjects (Table 12); the same two sphingolipid moieties 

that had stronger associations with active NE with poorer lung function. However, five out of 

seven of the female subjects participating in our study had severe lung disease, with the other two 

having moderate lung disease as defined by FEV1 % predicted criteria. Of the eight male subjects 

that provided sputum samples, three had mild, four had moderate, and only one had severe lung 

disease. Thus, it is possible the change in correlation between NE and d18:1/14:0 sphingomyelin and 

d18:1/14:0 monohexosylceramide with gender reflected the poorer lung function in female than in 

male subjects in our study. On the other hand, sphingolipids in serum and plasma are known to 

vary between genders (52). For example, healthy female subjects have increased d18:1/18:0, d18:1/22:0 

and d18:1/24:0 dihydroceramide moieties in the blood, and overall demonstrate a trend towards higher 

levels of dihydroceramides (52). The significance of these sex-related influences on sphingolipid 

and NE associations remains to be determined. As we and others (13, 99, 100) have demonstrated, 

local changes in pulmonary sphingolipid levels do not necessarily reflect those seen systemically 

(49). Thus, it is critical to determine whether there is gender-based variability in airway 

sphingolipid profiles. 

While our analysis of CF sputum demonstrates a possible relationship between active NE 

and de novo sphingolipid biosynthesis, our study has several limitations. First, the number of 

samples assessed in this study was low, with a total of fifteen subjects participating in the study. 

As all of the sputum samples in the VCU Biospecimen Repository are spontaneously expectorated, 

this limits sample availability; only a fraction of patients with CF— those with severe mutations— 

spontaneously expectorate sputum, especially when not hospitalized for CF pulmonary 
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exacerbation. Additionally, most of the subjects had severe (FEV1<50% predicted) obstructive 

lung disease, as was reflected by the low, but still statistically significant, difference in FEV1 % 

predicted when patients were hospitalized for CF pulmonary exacerbation versus outpatient visits. 

Concentrations of active NE in sputum did not differ significantly between samples collected 

during hospitalization versus outpatient visits, likely because our sputum donors had relatively 

high levels of chronic neutrophilic inflammation, as most had severe lung disease. Similar 

observations have been reported by others (105).  

 

III. Future Studies: In Vitro, In Vivo, Ex Vivo. 

Future studies will focus on mapping the signaling pathways that connect NE, 

inflammation, and sphingolipid synthesis, describing the metabolic pathways that contribute to 

NE-induced ceramide, and evaluating whether CFTR dysfunction and bacterial infection modulate 

these pathways. The presence of a strong Lipidomics Core at VCU gives our lab a unique 

opportunity; using quantitative lipidomic analyses, we can investigate sphingolipid homeostasis in 

the airways by using cellular and animal models as well as biological samples.  

Establishing an in vitro cell culture model would provide a more tractable system to 

investigate the mechanisms behind NE-induced changes in sphingolipid generation. However, 

which cell type or types are responsible for the NE-induced increases in ceramide detected in 

murine BAL, as well as those responsible for the associations between active NE and various 

sphingolipids in CF sputum, are currently unknown. Brodlie et al. potentially localized the increase 

in ceramide in the lower airways to epithelial and inflammatory cells using immunohistochemistry 

(13). The first step of establishing an in vitro model would involve determining whether the 
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sphingolipid profile observed in NE-treated cells recapitulates that of our mouse model of NE-

induced inflammation or the association observed in CF sputum. If so, we could use these cells to 

approximate NE-induced changes in sphingolipid production in the lungs.  

If we determine that NE treatment alters sphingolipid homeostasis and increases ceramide 

accumulation in differentiated cultures of primary human tracheal epithelial cells, we could 

examine whether reactive oxygen species (ROS) are required for this mechanism by inhibition of 

oxidative stress prior to and during NE treatment. NE is known to increase free iron and oxidative 

stress in airway epithelial cells (36). ROS can affect sphingolipid homeostasis by affecting both 

enzymatic activity and cellular levels of enzymes involved in sphingolipid production (72). On the 

other hand, ceramide, sphingosine, and S1P have been reported to modulate cellular redox via a 

variety of methods. For example, ceramide can stimulate NADPH oxidase activity, xanthine 

oxidase and enzymes in the mitochondrial respiratory chain to generate ROS (72).  We could also 

test whether inhibiting key enzymatic steps involved in the different pathways of ceramide 

production, using genetic silencing or pharmacologic inhibition, modulates the production of ROS, 

as well as the biosynthesis and release of pro-inflammatory chemokines and cytokines. 

More than one cell type could contribute to NE-induced changes in sphingolipid 

metabolism, and an in vitro model may prove difficult to establish. If so, we would undertake a 

more in-depth study of the pathways that contribute to the increase in ceramide induced by NE 

using our translational model. We could assess the effect of inhibiting the SMase pathway on 

ceramide production and neutrophilic inflammation in our model using desipramine. Inhibition of 

both de novo and SMase-derived ceramides could act in an additive or synergistic fashion to 

mitigate neutrophilic inflammation. Localized gene silencing using RNA interference (RNAi), by 

delivering siRNA to the lungs, could be used to verify our results with pharmacological inhibitors. 



108 
 

Appropriate methods for evaluating siRNA distribution and quantifying expression levels in tissue 

have been described previously (54). Thus, RNAi could be used to further dissect the metabolic 

pathways that contribute to the NE-induced increase in ceramide. Additionally, intranasal delivery 

of siRNA has been demonstrated in other animal models, including a rhesus macaque model used 

to study severe acute respiratory syndrome (71), and may allow for not only knockdown of SPTLC 

and SMase, but also of specific CerS. 

Finally, we have yet to investigate whether CFTR deficiency could influence NE-induced 

inflammation and airway sphingolipid levels. Administering NE to Cftr-knockout mice may 

provide a model that more closely approximates inflammation in CF lung disease. It is possible 

we would observe upregulation and downregulation of different sphingolipid species due to 

alteration in enzyme expression in Cftr-knockout mice. We could also investigate how bacterial 

infection interacts with our model of NE-induced inflammation and alters pulmonary sphingolipid 

profiles. While most bacteria do not produce sphingolipids, many are able to repurpose host-

derived sphingolipids to promote virulence (55). For example, some intracellular pathogens can 

use ceramide-enriched lipid microdomains or rafts to enter cells, while other bacteria scavenge 

sphingolipids for incorporation into their cell membranes (55, 74). Thus, we are well-positioned 

to decipher the contribution of NE, CFTR, and bacterial infection on sphingolipid homeostasis. 

Future clinical trials should include a study group of patients with CF that have a greater 

range of lung function; including healthier patients with milder mutations which would allow us 

to determine whether the severity of CFTR dysfunction affects sphingolipid expression in 

individuals. The study protocol should include sputum induction, to elicit the collection of airway 

secretions from those that do not spontaneously produce sputum. Likewise, collecting induced 
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sputum would allow for a much larger, more varied study group. Consequently, a larger future 

trial could be used to determine whether gender could affect airway sphingolipid homeostasis.  

In summary, this dissertation describes a novel mechanism that modulates inflammation 

and de novo ceramide biosynthesis in mouse lungs, induced by oropharyngeal aspiration of human 

NE. Analysis of sphingolipids in CF sputum detected a link between NE and long chain ceramide 

generation. Therefore, a similar mechanism may exist in humans: endogenous NE in CF could 

contribute to persistent inflammation in the human airway. Our results prompt a paradigm shift in 

our understanding of sphingolipid homeostasis in CF, as a novel pathway likely contributes to 

persistent airway inflammation: a potential feed-forward mechanism of neutrophilic inflammation 

and ceramide accumulation. While there is compelling published evidence that sphingolipid 

homeostasis plays an important role in innate immune function and regulation of inflammation in 

inflammatory lung diseases, the cellular sources of these effects are poorly understood. Our lab is 

positioned to further evaluate the molecular and cellular mechanisms that govern the contribution 

of NE-induced ceramide to inflammation. In aggregate, our results merit further exploration to 

elucidate biological pathways in human tissues and identify new therapeutic targets to control the 

excessive and injurious inflammation in CF lung disease.  
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