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Chapter 1 

Missing Data in Repeated Measurement 

1.1 The Repeated Measurement Study 

Repeated measurement data or longitudinal data occur often in statistical 

applications. For example, in a clinical trial comparing the efficacy of a new treatment 

with that of a standard treatment, rather than measuring the main response variable only 

once on each patient, or subject, we can take several measurements over time on each 

subject. 

A Repeated measurement study differs from a longitudinal study. The latter 

generally refers to any study in which one or more response variables are repeatedly 

measured over time. The former usually imposes some restrictions on the data. One 

common restriction is that each response variable must be measured at the same time 

points. 

In this thesis, the discussion will be restricted to a repeated measurement study, 

which is defined as follows: a repeated measurement study is a study in which a 

univariate response variable is repeatedly measured at the same time points on each 

subject. It should be pointed out, however, that many of the methods discussed here can 

also be applied to more general longitudinal studies. 
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The analysis of repeated measurement data involves two major difficulties. The 

first problem is the dependence among successive observations made on the same subject. 

Multivariate methods modeling the joint distribution of the repeated measures over time 

have been developed to solve this difficulty. The other, probably the more severe 

problem is missing data. In repeated measurement studies, the data are collected over a 

period of time, which in some studies could be many years. Therefore, complete control 

over the circumstances under which measurements are obtained is not JX)ssible. The 

occurrence of missing data is more likely in repeated than in non-repeated measure 

studies, and is sometimes unavoidable. 

In recent years, many methods for coping with the missing data problem in 

repeated measurement studies have emerged from various applications. The pufJX)se of 

this thesis is to review and summarize these methods, apply some of them to a practical 

problem, and identify the needs of further research. 

1.2 The Data Structure for Repeated Measurements 

For a repeated measurement study, supJX)se there are T pre-specified time JX)ints. 

Each subject is repeatedly measured at the same T time JX)ints. If the design is balanced 

and there is no missing data, each subject will have the same number of observations. 

Let the resJX)nses on the ith subject be a T x 1 vector y;, where i = 1, ... , n. Let 

Xi be a T x p design matrix for the ith subject, and it could be defined by both the 

subject covariates and the within-subject-over-time relationships. Let {3 be a vector of 

unknown parameters, and let f (y i IZ1, P) be the multivariate density of Y; conditional 

on X; and P. Usually inferences about the unknown parameter vector P, or part of its 
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components are of most interest statistically. 

In the following sections in this chapter, the index i for the ith subject is dropped 

for convenience of notation. 

1.3 Models for Non-response 

A model for missing data, or non-response, is introduced here in order to discuss 

the missing data problem. For repeated measurements with the data structure introduced 

in the last section, let R be a T x 1 vector of indicator variables for the ith subject, 

where: 

R;, = 1 if y;1 is observed 

R;, = 0 if y;1 is missing, or having non-response. 

Let Z be a T x q matrix of covariates determining the non-response process, and 4> the 

vector of parameters of the non-response model. The multivariate density of R given y, 

X, Zand 4> can be expressed as f(Rly, x, z, 4>). 

When the non-response indicator R is given, the response vector y can be 

partitioned into f =(f 0,y\J, where y0 is an M; vector of observed components of y, and 

M; < T, and Ym is a T - M; vector of missing observations. M; varies with each subject 

according to R. 

Only y0 and R can actually be observed. The density of these observed data can 

be written as: 

(1. 1) 
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where the integration is over the sample space of Ym· 

1.4 Missing Data Hierarchy 

When analyzing data with missing observations it is very important to differentiate 

among different types of missing data mechanisms. Using the data structure and the 

model for non-response introduced in the previous two sections, the missing data 

hierarchy, originated by Rubin (1977), and further discussed by Little and Rubin (1987) 

and Laird ( 1988), can be introduced. 

Data is said to be missing completely at random (MCAR) if the non-response 

mechanism depends on neither the responses y, nor the design matrix X, i.e. 

f(Rly,Z,Z,<j>) = f(RIZ,<j)) (1. 2) 

When the probability of non-response depends on the design matrix X, but not 

on the responses y, the data is defined to be missing at random (MAR): 

f(Rly, Z,Z,<j)) = f(RIZ,Z, $) ( 1. 3) 

The non-response mechanism is said to be ignorable if the probability of R 

depends on the observed responses y0 , but not on the missing responses Ym, i.e., 

f(RIY, Z, Z, $) = f(Rly0 , Z, Z, <j)) (1.4) 

This type of non-response is called ignorable only if the likelihood based approaches is 

employed to draw inferences. When methods other than likelihood based approaches are 
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used, this type of non-response mechanism can not be ignored. This difference will be 

explained in the following section. 

Finally, if the probability of R depends on the missing values of y, Ym, the non­

response mechanism is called non-ignorable, or missing not at random. 

1.5 Approaches Dealing with Repeated Measures with Missing Data 

Several approaches are available to deal with different types of missing data 

mechanisms. 

When the missing data mechanism is MCAR, most standard analyses will be valid 

if the so-called 'Complete Case' analysis is used. Using this analysis any subject with 

missing data is deleted, and inferences can be drawn from the cases with complete 

responses left. No bias to inferences will be introduced because the non-response 

mechanism is not related to the responses. However, the resulting data set may be too 

small for useful analysis. 

In the case of MAR, since the distribution of R takes the form of (1.3), then y0 

and R can be shown to be independent. This relation can be illustrated by rewriting 

equation ( 1. 1) as: 

f(y, RjZ, Z, p, 4>) (1. 5) 

Since the distribution of R does not depend on y, it can be factored out of the integration. 

Consequently, the marginal density of y0 is simply the usual marginal density 
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(1. 6) 

So any method drawing inferences based upon the distributional properties of the 

marginal distribution of the observed data is valid in dealing with this type of non­

response mechanism. In recent years, many semi-parametric and non-parametric methods 

which can allow for the missing data with missing data mechanism being MAR were 

developed in repeated measurement analyses (Liang and Zeger, 1986; Stram, Wei and 

Ware, 1987). This type of method will be discussed further in Chapter 3. 

As mentioned before, the non-response mechanism is ignorable only in the sense 

that the inferences are drawn from likelihood based methods which are valid without the 

need of specifying a non-response model. To illustrate we can write f (yl.r, p) in the 

following form: 

f(yl.r, Pl ( 1. 7) 

where f(y0 l.r, P) is given by (1.6). The distribution of R is shown in (1. 4) since the 

non-response mechanism is ignorable. By substituting (1.4) and (1.5) in (1 . 7), it can be 

shown that the density of the observed data is: 

(1. 8) 

If the only interest is in inferences about {3, then the contribution to the likelihood 

function of P can be taken as f(y0 IZ,P). f(Rly0 ,Z,Z,4> ), in whatever form it 
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takes, can be ignored. The likelihood based approaches, which can be used to make valid 

inferences about P for ignorable missing data, have also been developed since the early 

80's ( Laird and Ware, 1983; Ware, 1985; Jennrich and Schluchter, 1986; Rochen and 

Helms, 1988 ). In Chapter 3, the likelihood based approaches will be discussed in detail, 

and Chapter 5 will present an example of the application of one of the likelihood based 

method introduced in Chapter 3. 

Ignorable missing data is a broader mechanism than MAR or MCAR, so the 

methods allowing for ignorable non-response mechanism are also valid for data with 

MAR or MCAR. Since MAR contains MCAR, the methods introduced in Chapter 2 are 

also valid for data with MCAR. The reverse is not necessarily true. Consider the 

ignorable non-response mechanism as an example. From (1.8) it can be seen that y0 and 

R are not independent, so the marginal density of y0 is no longer f (y 
O 

IZ, P) , but rather 

depends upon the non-response model. The methods for MAR non-response mechanism 

in Chapter 3 are, therefore, not valid for ignorable missing data. If the missing 

mechanism is non-ignorable, however, the analysis of the data becomes much more 

complicated. One way to deal with this problem is to model the missing data mechanism 

directly in the likelihood function to obtain maximum likelihood estimators of the 

parameters. This idea was used to analyze data with one of the most common non­

randomly missing data mechanisms, the informative right censoring. Another way to 

tackle this problem is to develop some type of protective statistics which are not sensitive 

to a certain class of non-randomly missing data mechanism. Details of these methods for 

dealing with non-randomly missing data mechanism will be provided in Chapter 4. 



Chapter 2 

Likelihood Based Methods 

2. 1 Introduction 

One of the systematic approaches for the missing data problem in repeated 

measurements is the so-called likelihood based approach. 

This method specifies a model to describe the data and estimates the parameters 

of the model using a maximum likelihood or restricted maximum likelihood approach. 

The model here allows us to use arbitrary linear models to describe the mean structure 

and model various types of covariance structure. The likelihood based methods can deal 

with incomplete data resulting from an ignorable missing mechanism. 

Laird and Ware (1982) studied the maximum likelihood estimation procedure for 

general random-effect models with incomplete data. Ware (1985) discussed maximum 

likelihood estimation for a similar model with three types of covariance structure: random 

effects, multivariate, and autoregressive time series. Szatrowski (1983) considered models 

for incomplete data with a linear covariance structure. Laird, Lange and Stram dealt with 

the random effect model and an arbitrary (fully parameterized) structure of variance. 

Rochon and Helms (1988) discussed maximum likelihood estimation for an incomplete 

repeated measurement model under an ARMA covariance structure. Jennrich and 

8 
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Schluchter (1986) and Schluchter (1988) gave a general approach of maximum likelihood 

estimation allowing the variance to take any form of the structures mentioned above 

except ARMA, plus factor analytic structure and stationary time series structures. 

This chapter will discuss the general model introduced by Jennrich and Schluchter 

(1986). The basic model is introduced in Section 2. The EM algorithm for maximum 

likelihood estimation in repeated measurements is discussed in Section 3. The various 

variance structures which can be used in the incomplete data model are discussed in 

Section 4. Section 5 follows with a brief discussion of the testing of hypotheses of 

general interests. 

2.2 The Model 

Let Yi be a T x 1 vector containing the response for the ith subject, where i = 1, 

... , n. The general model assumed for Yi can be written as: 

( 2. 1) 

where Xi is a T x p design matrix, P is a p x 1 vector of unknown regression 

parameters, and the ei are assumed to be independently distributed as N( o, I: i) . It is 

further assumed that the elements of each covariance matrix, I: i, are known functions 

of a set of q unknown parameters contained in a vector e, that is I: i =I: i (8) for i = 

1, ... , n. The regression parameters p are assumed to be independent of the covariance 

parameters e . 

Since the parameters P and 8 are independent, model (2. 1) can be viewed as two 

separate models: the model for the expected values which includes the regression 
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parameters P and the model for the covariance structure which involves the covariance 

parameters 8 . 

The expected values of responses can be modelled by the regression format in 

(2. 1). The most used models could be either the ANOVA models or the Linear Growth 

Curve models. The ANOV A models take the usual form of ANOV A: 

(2.2) 

where y;1 is the response variable for the ith subject at time point t, i = 1,2, ... ,n, 

t=l,2, .. . ,T, and g; indexes the group to which subject i belongs, with the constraints 

Lg «g
=Lt • t= Lg ( a,} gt= Lt ( a,} gt=O. The Linear Growth Curve models are in 

the following form: 

(2.3) 

where a; and b; are unknown parameters with fixed underlying values, and Xi indexes the 

independent variable for the ith subject at time t. 

The covariance model can take various forms. Details about different types of 

structures for 1: ( 8} that can be used in incomplete data models are discussed in section 

4. 

2.3 EM Algorithm 

To obtain the values of maximum likelihood estimates of the parameters, the most 

often used algorithms are the Newton-Raphson algorithm and the Fisher scoring 



11 

algorithm. However, to get maximum likelihood estimates from incomplete data, the EM 

algorithm, which was first introduced by Dempster, Laird and Rubin (1977), has to be 

employed. 

The EM algorithm is for the two steps in each iteration, the E step and the M 

step. The E step, or the expectation step, finds the expectation of some functions of the 

missing data given the observed data and current estimated parameters, and then 

substitutes these expectations for some functions of missing data, which appear in the 

complete data log-likelihood . The M step, or maximization step, simply perform 

maximum likelihood estimation of the parameters just as if there were no missing data, 

i.e. as if the functions of missing data, required in the complete maximum likelihood, 

had been filled. For details of the properties of the EM algorithm, see Dempster, Laird 

and Rubin (1977) and Little and Rubin ( 1987). 

The Hybrid EM Scoring algorithm of maximum likelihood introduced by Jennrich 

and Schluchter (1986) will be briefly discussed below. See also Jennrich and Schluchter 

( 1986) for the discussion of a Generalized EM algorithm for the restricted maximum 

likelihood. 

2.3. 1 Hybrid EM Scoring Algorithm 

Using the model described in the previous section, the log-likelihood A for y1 , 

... , Yo is 

The maximum likelihood estimations of P and 8 are obtained by maximizing (2.4). 
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For each iteration of the Hybrid EM Scoring algorithm, the first step, which is 

equivalent to the M step in an ordinary EM algorithm, uses general least squares to 

update P. The second part includes three steps which are equivalent to one E step in the 

generalized EM (GEM) algorithm to update e .  

Let e;· - N(O, E;) be a vector of complete data, and e; =y;-X/3 be a sub-vector of 

observed data for the ith subject. The steps of the algorithm are as follows: 

(1) Compute updated estimates P of P:  

n n 

( E  xiE :?x1 ) -i CE  xiE :/yi ) 
i•l  i•l  

(2.5) 

(2) Compute e; and A;, while taking updated estimates P as P and current estimates 

of the parameters of the 8 : 

( 2. 6) 

and 

(2 . 7) 

(3) Using e; and A;, compute the matrix 

(2 . 8) 

(4) Compute the updated 8 .  When E is an unstructured dispersion matrix this is 

simply: 

l; = s ( 3. 9 )  

When E =E (8 )  i s  structured, a 'Scoring step' i s  used to obtain � e :  
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( 2. 10) 

where I and s are matrices with general element of the following form: 

( 2 . 1 1 )  

( 2 . 12 )  

and I: 1 = a� I ae 1 , and then update 8 as: 

e = 0+.:10 ( 2. 13 ) 

2.3.2 Standard Error of the Parameter Estimates 

For the parameter estimates P and 8 , the standard error estimates can be 

obtained from the maximum likelihood algorithm. They can be computed either from the 

inverse of the Fisher information matrix or from the inverse of the empirical information 

matrix (Jennrich and Schluchter, 1986). However, if the EM algorithm is used, the 

information matrix of 8 is not computed. Hence the standard error estimates for 8 are 

not available. Since the usual point of interest is in inference about P , the lack of 

standard error estimates of 8 often does not matter, and under this situation, the standard 

error estimates of p , whether computed from the Fisher information matrix or empirical 

information matrix, has the same form: 
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(L z{E:;:1z1 ) -
1 ( 2 .  1 4 )  

i•l 

2.4 Models for the Variance Structure 

As stated earlier, the likelihood based methods have the flexibility to model a 

variety of covariance structures. This flexibility allows numerous choices for appropriate 

covariance structure based on our understanding of the true underlying physical or 

biological process. Even when the main interest is in the parameter fl,  a proper choice 

of covariance structure can greatly improve the efficiency of the algorithm. In this 

section, several common structures of the covariance for the incomplete data will be 

discussed. 

2. 4.1 The Incomplete Data Model 

The model introduced in Section 2.2 is the general model for complete repeated 

measurement data. For incomplete data, a similar model can be introduced as long as the 

observed measurements for each subject can be considered as a subset of a larger number 

of T measurements. 

Let Y; be a M; x 1 vector of observed data for the ith subject, and let it be thought 

of as a subvector of a T x 1 complete data vector y;'. The observed covariance matrix 

E; then can be considered as the appropriate submatrix of a larger T x T matrix E =E(O). 

This is the incomplete data model, and the EM algorithm discussed in section 2.3 can 

be used to obtain the parameter estimates for the model , as long as the mechanism of the 

missing data is ignorable, or MAR, or MCAR as discussed in Chapter 1. 

Among the various covariance structures, several important types can be used in 
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the incomplete data models and will be discussed here. Some other structures not 

described by the incomplete data model were discussed by Schluchter (1988). 

2 .4 .2 Unstructured Model 

The unstructured model, or fully parameterized model, has T(T+ 1)/2 parameters 

in 8 .  It does not impose any special feature further than the basic symmetry required for 

a covariance matrix. For example, if let T=4, the structure of the covariance is 

a 11 0 12 0 13 
0 14 

0 12 0 22 0 2 3 
0 24 ( 2 . 1 5 )  

0 13 
02 3 

0
33 

0
3 4 

0 1 4 
0 2 4 

0
3 4 

044 

Since this model does not specify any particular structure, it can be chosen when 

little or no information about the structure of the covariance is available. Furthermore, 

the unstructured model is often used as a reference to evaluate the goodness of fit of 

other models of the covariance structures. 

When T is very large and the data are highly incomplete, the unstructured model 

of I: may cause inefficiency in estimating the parameters. In this case other models for 

the covariance structures may need to be considered. 

2.4. 3  Time Series Models 

Time series models treat the terms in a subject's error vector as a short time 

series following a stationary autoregressive or moving-average process. Generally, this 



16 

model requires that the T measurements in the complete data vector y;" be equally spaced 

across time. 

The simplest of the time series models may be the first order autoregressive 

model, which is called AR(l ). An example of AR(l )  model for covariance when T=4 

is 

1 p p 2 p 3 

I: a2  
p 1 p p2 

( 2. 1 6 )  
p2 p 1 p 
p 3  p 2 p 1 

Another simple time series model is the first order moving-average model, which is 

called MA(l) .  An example of MA( l )  for covariance when T=4 is 

I: a2  

1 

p 
0 
0 

p O 0 

1 p 0 

p 1 p 
0 p 1 

( 2. 1 7 )  

All the stationary time series models, including AR(l)  and MA(l ), are special 

cases of the general autoregressive structure, or banded structure, which has a separate 

parameter for each of the lag-correlations. An example of the general autoregressive 

structure when T=4 is 

e1 e2 e3 e4 

I: 
e2 el e2 83 

e3 e2 el e2 
( 2 . 1 8 )  

04 e3 02 0 1 

where the parameter vector e 
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Intuitively, the times series models make sense when the correlation between 

repeated measurements is only functions of length of time between two measurements. 

2.4.4 Random Effects Model 

The random effect model is another general class of models that can be considered 

for the covariance structure. When the data are complete, the random effects model can 

be written as: 

( 2 . 1 9 )  

where y;° is the complete data vector, Z is a T x k known matrix, and b; and u;° are 

independent random vectors with b; - N ( o , II> ) , and u;° - N ( o , a 2 I) . 

For incomplete data, the model for the observed data y; is 

( 2 . 2 0 )  

where Z;, X; and u; contain ,  respectively, corresponding rows of Z ,  X;° and u;· which are 

observed. 

The above random effects models is indeed a special case of the incomplete data 

model where :E =Zll>Z1+a2 I. 

A linear random effects growth curve model is introduced here as a simple 

example of the random effects model . Let T=4, x1 be the independent variable at time 

point t, and y;1 and � i c  be the response and error, respectively, of ith subject at time 

point t. The model is 



1 8  

( 2 . 2 1 )  

Where X"'Le xe/ 4 ,  and � i e  are independently distributed as N(O, <1.2), t= l ,2,3,4, a; 

is the true underlying mean of y when Xe "'X and bi is the slope for the ith subject, which 

are assumed to follow a multivariate normal distribution with different means for the G 

group and common covariance matrix <r> "' { 4> iJ } : 

( 2 . 2 2 )  

Obviously this random effects linear growth curve model is a special case of the general 

model (2. 1 )  where 

( 2 . 2 3 )  

and the form of Z is 

1 (x1 -x) 

( x2 -x) 
z ;  

( x
3

-x) 1 
( 2 . 2 4 )  

1 (x4 -x) 

The simplest random effects model is the compound symmetry model, in which 

Z is a vector of l 's and <r> "'  { 4> }  . This model implies that measurements have a constant 

variance and a common correlation. An example of compound symmetry structure when 

T=4 is 

2.5 Inferences about the Model Parameters 
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o ,,
+4> 4> 4> 4> 

l:; 
4> oe

+4> 4> 4> 
( 2 . 2 5 )  

4> 4> o e+4> 4> 

4> 4> 4> o ,.
+4> 

When data are complete, the Newton-Raphson algorithm or Fisher scoring 

algorithm can usually be used to get maximum likelihood estimates of p and 8 ,  as well 

as the estimates of their standard errors, so some tests on these parameters are easily 

constructed. 

For the incomplete data, however, the EM algorithm is used to obtain the 

maximum likelihood estimators of p and 8 ,  but only the estimate of the standard error 

of P is available. Fortunately, though in many applications the only interest is on the 

regression parameters p, effective inferences such as hypothesis test about P are still 

possible to make. 

2.5. 1 General Form of Hypothesis Test 

When the EM algorithm is used, let 9 be the maximum likelihood estimate of 8 ,  

hence t i =l; i ( 9 ) , and the estimate of P takes the following form: 

n n 

( E  xit 1
1x1 ) -l ( }:  xit1

1
yi ) 

i • l  i • l  

and the estimated covariance matrix 

c = ( _E xit 1
1x1 ) -l 

1 •1 

To test a hypothesis of the form: 

( 2 . 2 6 )  

( 2 . 2 7 )  



20 

H0 : LP = q ( 2 . 2 8 )  

where L is a k x p matrix of rank k, and q is a k x 1 vector. The Wald test statistics can 

be written as: 

W = ( LP -q) I ( LCL 1) -l ( LP -q) ( 2 . 2 9 )  

Under Ho (2.28), W has an asymptotic chi-square distribution with k degree of freedom. 

The form of the estimated covariance matrix of P (2.27) is obtained from the 

expected information matrix. The validity of using it depends on the mechanism causing 

the missing data. If the missing data are caused by MAR or MCAR as defined in Chapter 

1 ,  then (2.27) is a consistent estimator of the standard error of p and can be used. If the 

missing data mechanism is ignorable but not MAR, i.e. the probability of missing 

depends in some wa upon the observed data, the covariance matrix obtained from (2.27) 

is not in general consistent. This is because the expectation step in obtaining the Fisher 

information is done under the assumption that the probability of missing depends neither 

on observed nor missing responses. See Jennrich and Schluchter (1986) for an alternative 

method for estimating C. 

2.5.2 Hypothesis Tests of Usual Interests 

The most often used model for the expected values of the parameters P , are 

probably those mentioned in Section 2.2: the ANOV A model (2.2), and the Linear 

Growing Curve model (2.3). 

For the ANOV A model (2.2), the following three tests are usually of interest: 

(1) H0: No group effect, «1 = . . .  =«G
=O. 



21 

(2) Ho: No time effect, ,1 = . • •  =• r=O . 

(3) Ho: No Group X Time interaction, ( <u )  gc=O for all g, t. 

Wald test statistics, labeled W0 , WT and War, respectively, can be constructed for the 

above three hypotheses. Asymptotically, they have (G-1), (T-1) and (G- l )(T-1) degree 

of freedom respectively, under the H0• 

For the Linear Growth Curve model (2.3), if the a; and bi in the model are 

considered as unknown fixed parameters, then the usual hypotheses of interest are 

( 1) H0: The a; are the same in all G groups, a1 =a2 = . . .  =aG 

(2) H0: The average slope is 0, ( 1/  G) L bg=O .  

(3) H0: The slope are the same in all G groups, b1 =b
2 
= . . .  =b3 • 

And if the model is the Random Effects Linear Growth Curve model described in 2.4.4, 

and a; and bi are considered as random variables in (2.22), the above three hypotheses 

become 

( 1) Ho: « 1 
=«2

= • • • =«G. 

(2) H0: ( 1 / G) L Pg=O . 

(3) Ho: P1 
=P2

= · · · =PG· 

Asymptotic Wald tests can be constructed similarly for these hypotheses. 

Notice that all the above Wald type tests are asymptotic tests which are only valid 

when the sample size n is large. The small sample adjustments to these tests are 

discussed by Schluchter and Elashoff (1990). Schluchter and Elashoff gave the 

corrections to each of the above tests and concluded that the most appropriate type of 

small-sample correction depends upon the form of the assumed covariance structure, 
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which ML procedures are used, and whether the test is a 'between groups' or 'within 

subject' test. 



Chapter 3 

Semi-Parametric Methods 

3.1 Introduction 

The classic likelihood based methods discussed in the previous chapter use 

parametric models to analyze incomplete continuous repeated measurements data which 

can be assumed to have a multivariate normal distribution. However, in many 

applications such as biomedical applications, categorical data particularly binary or 

ordered categorical data or continuous but extremely non-normal data often occur in 

repeated measurements and are liable to have missing data. Likelihood based methods 

can not be applied to these types of data. 

The earliest attempt to analyze categorical repeated measurements data was made 

by Koch et al (1977), using weighted least square methodology. Woolson and Clark 

(1984) extended this method to analyze incomplete categorical repeated measurement 

data. This method, however, requires that the covariates be categorical, and in addition, 

the sample size for the marginal responses at each time point with each category must 

be sufficiently large that the responses can be considered approximately multivariate 

normal. This qualification, of course, limits the applicability of this method. 

Recently, a class of methods based on extension of the generalized linear model 

23 
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has been developed to analyze categorical repeated measurements data. This class of 

methods, named semi-parametric methods by Davis (1991), can be applied to repeated 

measurements with both continuous and categorical responses, as long as the quasi­

likelihood formulation, such as those of Normal, Binomial, and Poisson response 

variables, is appropriate for the marginal distribution of the responses. Because this class 

of methods can allow either categorical or continuous, and even time-dependent 

covariates, it eliminates the limitations of the weighted least square method. More 

important, all these methods can incorporate missing data automatically, but they require 

the missing data mechanism to be MAR or MCAR. This is a stronger requirement than 

that of likelihood based methods, which allow for ignorable missing data mechanism. 

The backbone of semi-parametric methods is the generalized estimating equations 

method (GEE) by Liang and Zeger (Liang and Zeger, 1986; Zeger and Liang, 1986). 

Other methods quite similar to GEE but extending it in some sense include Wei and 

Stram (1988), Moulton and Zeger (1989), Prentice (1988), Zhao and Prentice (1990), 

Liang, Zeger and Qaqish (1990) and Lipsitz (1991). 

In this chapter, the GEE method will be introduced. In Section 3.2, the partial 

distribution model for GEE is introduced. In Section 3.3, the construction of GEE, the 

algorithms used to solve GEE, and the properties of its solutions will be discussed. 

Further discussions follows in Section 3.4. 

3. 2 The Model 

The primary obstacle in the analysis of non-normal repeated measurements data 

is the lack of a class of models, such as multivariate normal model, for the joint 
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distribution of the responses. The generalized estimating equation (GEE) introduced by 

Liang and Zeger (1986) is actually an extension of the generalized linear model 

estimating equation for multivariate responses. Instead of modeling the joint distribution 

of the responses, it models the marginal distribution of the multivariate responses. This 

class of methods is called semi-parametric methods because the estimating equation can 

be derived without fully specifying the joint distribution of the responses. 

Let yi = (yil,Yi2, · · · ,Yrr)' be a T x 1 vector of the responses for the ith subject, 

where T is assumed the same for every subject without losing generality, and let 

Xi = {Xil, · · · ,Xrr)' be the T x p matrix of covariates for the ith subject, i = l ,2, . ..  ,n. It is 

assumed that the marginal density of Yii has the following form: 

where cl> is nuisance scale parameter. The first two moments of Yii are 

( 3. 1) 

( 3 . 2 )  

(3.3) 

where a 1 (8i c l and a 11 (8i e ) are the first and second derivatives of a (8i e ) , 

respectively. 

First, the mean of marginal response can be related to a linear combination of the 

covariates by a link function g: 

T} it = g ( µ i C) = z.: p 

where p = ( p 1 , • • •  , p P) 1 is a p x 1 vector of parameters. 

( 3 . 4 ) 

The link function g(.) is assumed to be monotone and differentiable, and should 
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be chosen so that it maps the expectation space onto the real line. The most often used 

link functions are 

• logit function g (x) = log (x/ ( 1 -x) ) for binary responses. 

• log function g ( x) = log (x) for counts responses. 

• identity function g (x) = x for continuous responses. 

Second, the variance of y;, can be described as a function of the mean: 

where the function k is a known variance function . 

• for binary responses, k ( µi e l  =µi t
( l - µi t ) , 4>=1 . 

• for Poisson responses, k ( µi t ) =µi t
' 4> =1 . 

• for continuous responses, k=l ,  var ( y  i t ) =4> . 

3 .3  Generalized Estimating Equation 

3 .3 . 1 'Working' Correlation Matrix 

(3 . 5) 

Using the model specified above, if the observations from a subject are assumed 

independent of each other, the estimating equations can be readily obtained (Liang and 

Zeger, 1986) . Since the repeated measures from a subject are almost always correlated, 

the dependencies among the successive responses from the same subject have to be taken 

into account. 

Since no particular multivariate model is assumed, and only the marginal 

distributions of the responses are specified, the covariance usually depends on the mean. 
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Liang and Zeger (1986) introduced a 'working' correlation matrix R ( ex )  • To meet the 

requirement of being a correlation matrix, let R ( ex )  be a T x T symmetric matrix, and 

let ex be an s x 1 vector of parameters which fully characterizes R ( ex )  • The (t, t') 

element of R ( ex )  is the hypothesized correlation between y;1 and Yit· · 

The structure of the 'working' correlation matrix can be chosen among a variety 

of different forms. The simplest choice is the independent working model in which 

R ( ex )  is equal to the identity matrix. Thus, solving GEE is the same as fitting the usual 

regression model for independent data. Another choice is to completely specify the 

correlation matrix, i.e., let R ( a )  =R0 • When the specified correlation matrix Ro is very 

close to the true correlation, this model will yield great efficiency. However, it is usually 

not clear what kind of structure the true correlation matrix has. When the correlation 

structure is totally unspecified, the full parameterized model can be used. There are T(T-

1)/2 parameters to be estimated in this model. When T is very large or when there are 

too many missing data, however, it is difficult to use this model because the estimates 

of ex may not be positive. 

See Liang and Zeger (1986), Zeger and Liang (1986) for discussions of other 

possible correlation models. 

3.3.2 GEE 

Let A
1 = diag{ a 11 (0i t)} be a T x T matrix, A. 1 = di ag ( d01 tf dri 1 t > a T 

x T matrix, and D
1 

= d [ ai ( 0 ) ] /d� = A
1A

1
X

1
, also let Si = Yi -ai (0 ) . 

Define 
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(3 . 6 ) 

V; will be cov(y;) if R ( <X )  is the true correlation between y's. 

The general estimating equations is defined to be: 

0 ( 3 . 7 )  

If R ( <X ) is specified as identity matrix, (3. 7) reduced to the usual independent equations. 

As stated in the beginning of this paper, what is interested in is the effect between 

groups, and <X can be treated as nuisance parameters. Hence only the inferences about P 

need to be drawn. If the <X in (3. 7) is replaced by ex ( y, p , <I>)  , a n in_consistent 

estimator of <X when P ,  and <I> are known, and in addition, if <I> in (3. 7), which is 

generally unknown, is replaced by <$ (y, P )  , a n1n-consistent estimator of <I> when P is 

known, then equation (3.7) becomes 

L ui [ P , ex ( 13 , � ( P > > J 0 (3.8) 

i • l  

where ui ( p, « ) =Div;1 Si and � G is defined to be the solution of  equation (3.8). 

Under mild regularity conditions and given that 

(1) n 112 ( ex -a)  =OP ( l ), i.e. ex is n1n-consistent. 

(2) n 112 (<$-<I> )  =OP ( l ), i.e. <$ is nin-consistent. 

(3) 1 aex ( P , <I>) /c3cl> l �H(y, P > which is Op( l ). 

then n 112 ( p G-p) is asymptotically multivariate normal with zero mean and covariance 

matrix VO where: 
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The estimate Va of Va can be obtained by replacing cov(yJ by sisi., and P, � ,  « by 

their respective estimates. 

It can be shown that the consistency of P G and Va depends only on the correct 

choice of the mean, not on the correct choice of R ( « ) . That is, the above estimates are 

robust in the sense that they are consistent even if the correlation matrix R ( « ) is 

misspecified, given that the mean structure is correctly specified. 

For binary repeated measures data, Liang, Zeger and Qaqish ( 1990) and Lipsitz 

( 199 1 )  recommended that it is better to parameterize in terms of odds ratio. The 

estimating equations constructed this way are called GEE2 because it is the second order 

extension of the GEE in that P and a are estimated simultaneously. Under certain 

conditions, the estimates obtained here are consistent and likely more efficient than those 

obtained by the original GEE. See Chinchilli ( 1991) for more discussions on GEE2. 

3.3.3 Solving the GEE 

To compute P G , Liang and Zeger suggested a modified Fisher scoring algorithm. 

Given the current estimates of the nuisance parameters a and � ,  the following iteration 

procedure is used to obtain the estimates of P : 
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Define D=(D1 ' ,  • • •  ,D0') ' ,  and S=(S1 ' , . . .  ,S.') and let v be a nT x nT block 

diagonal matrix with V
1 

on the diagonal. Define the modified dependent variable 

Z=DP -s, and the iterative procedure (3.10) is equivalent to performing an iteratively 

reweighted least square (IRLS) algorithm. 

Liang and Zeger (1986) also suggested that the estimates of a and � at a given 

iteration can be obtained by using the current standardized Pearson residuals defined by 

where e i t depends on the current value of p . 

� can be estimated by: 

n T 

«$-1 
= L L  '?� ti (nT-p) i •1 t•l 

( 3 . 1 1 )  

( 3 .  1 2 ) 

It can be shown that this estimate is n in_consistent if the fourth moment of y;1 is finite. 

The estimation of a , which also involves the Pearson residuals, depends upon the 

choice of R (a) . The general approach is to estimate a by: 

Ruv = L 1 iu'? i v/ (nT-p) ( 3 . 1 3 )  
i • l  

Liang and Zeger (1986) gave several examples of estimating a under different choices 

of R (a)  

Prentice (1988) and Zhao and Prentice (1990) suggested making the GEE 

estimation of p and a simultaneously rather than updating the estimator of a within 

each iteration of GEE. See Chinchilli ( 1991) for a brief discussion. 
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3 . 4  Discussion 

Compared with the likelihood based methods discussed in Chapter 2, the semi­

parametric methods are a class of methods which can analyze a broader class of data. 

While the likelihood based methods can allow only for continuous responses with the 

assumption that the responses have multivariate normal distribution, the GEE method can 

allow for both continuous response even when the assumption of multivariate normal 

responses are not correct, and categorical responses. When the responses are multivariate 

normal, GEE method reduces to the likelihood based method, and equation (3. 7) reduces 

to the Fisher scoring equations in maximum likelihood. 

However, the GEE method, as well as the other semi-parametric methods 

extended from GEE, gains this advantage of allowing for a broader class of data at the 

expense of restricting its ability to handle the missing data. As mentioned in the 

introduction of this chapter, GEE can incorporate the missing data, but requires that the 

missing data mechanism be MAR or MCAR. The reason is discussed in Section 1 .5, 

where it is shown, in (1 .5) and ( 1.6), that when the missing mechanism is MAR or 

MCAR, the marginal density of the observed responses is independent of the distribution 

of nonresponse. Hence, any inference based on the marginal distributions of the observed 

responses, such as GEE, is independent of the missing data mechanism. Section 1.5 also 

explains why methods dependent upon the marginal distributions of observed responses 

cannot deal with the ignorable missing data mechanism, which can be handled by 

likelihood based methods. 

The specification of the structure of the 'working' correlation matrix in GEE is 

not as important as the specification of the structure of covariance matrix in the 
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likelihood based methods. This is because in GEE method, the assumption about the joint 

distribution of the responses is avoided by assuming only a functional form of the 

marginal distribution at each time, and treating the covariance structure as a nuisance. 

Relying on independence across subjects, consistent estimates of p and its covariance can 

be obtained even when the 'working' correlation matrix is misspecified. However, a 

proper specification of the structure of the correlation, which is close to the true 

unknown correlations, will greatly increase the efficiency of calculation. 

In some applications, especially in sociology or economics, where the growth 

curve across time for each subject, or the correlation within subject, is of primary 

interests, modelling the marginal distribution and treating the correlation as a nuisance, 

as in GEE, may be inappropriate. However, as stated in Chapter 1, the primary interest 

of many biomedical applications is to compare the between group effects, rather than the 

within subject correlations. Under this situation, the way the models are built in GEE is 

appropriate. 

Although it is assumed throughout this chapter that the data are strictly repeated 

measurements as defined in Chapter 1, GEE method can also be applied to general 

longitudinal data in which T may vary from subject to subject. Wei and Stram (1988) 

gave a model that fits a separate univariate regression to the data at each time point, so 

the regression parameters may be different at different time points. 

Although GEE method can handle a much broader class of data, it is limited when 

the responses are continuous but extremely non-normal, in which case condition (3.1) is 

no longer satisfied. In such situations, non-parametric methods, which also appear in 

recent literature, may be used to tackle the problem. No details about non-parametric 
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methods will be given here. See Davis (1991) for a review. 



Chapter 4 

Missing Not At Random 

4. 1 Introduction 

When the missing data in repeated measurements are missing not at random, it 

may not be able to get consistent estimators using the methods discussed in previous 

chapters. A general approach that can allow the for missing not at random mechanism 

in repeated measurements has not yet been developed. 

The existing approaches usually restrict the problem to a specific type of non­

randomly missing data mechanism. Two different ways to deal with non-randomly 

missing data mechanism in repeated measurement are found in literature. The first way 

is to model directly the missing data mechanism and include this model in the likelihood 

function to obtain maximum likelihood estimators of the parameters. One of the most 

common non-random missing data mechanisms is the 'informative' right censoring, i.e. 

the censoring, caused by death or withdrawal, which depends on the parameters to be 

estimated. However, in many cases, even if the missing data are suspected to be missing 

not at random, we ordinarily cannot know exactly what the missing mechanism is. And 

some missing data mechanisms are difficult to classify and hence difficult to model 

properly. 

34 
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Another method uses the concept of protective statistics. Like the robust statistics 

which are not sensitive to deviation from the normal distribution assumption, protective 

statistics are called protective in the sense that they are not sensitive to deviation from 

the missing at random mechanism. Although in general these statistics are not protective 

against any kind of non-randomly missing data mechanism, they usually provide 

satisfactory estimators in a certain type of non-randomly missing data mechanisms. 

This chapter will introduce the above two approaches. Sections 2, 3 and 4 will 

discuss the methods introduced by Margaret C. Wu et al (Wu and Carroll, 1988; Wu and 

Bailey, 1988; Wu and Bailey, 1989), which analyze the change of rate in the presence 

of informative right censoring by directly modeling the censoring process. The protective 

statistic suggested by C. Hendricks Brown (Brown, 1990) to protect against a wide class 

of non-randomly missing data mechanisms will be introduced in Sections 5 and 6. Section 

7 concludes the chapter with some discussions. 

4.2 Right Censoring Problem 

Measurements in repeated measurement studies are often right censored by a 

subject's death or withdrawal. Right censoring means that all the measurements after a 

certain time point are missing. If the probability of censoring does not depend on the 

values of the missing responses, and hence on the underlying parameters, right censoring 

is treated as a special case of ignorable missing data mechanism and the methods in 

Chapter 2 can be employed. However, if the probability of censoring depends on the 

underlying parameters, the measurement is said to be informative right censored. 

Wu and Carroll ( 1988) proposed an approach to account for censoring using a 
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general right censoring probability distribution that depend on the underlying parameters 

for the responses. They developed a likelihood ratio test to test the 'informativeness' of 

the right censoring. The also derived pseudo-maximum likelihood estimates (PMLE) for 

the response parameters under a probit right censoring model. 

Another method proposed by Wu and Bailey (1989) is the conditional linear 

model. They derived two simple non-iterative estimators of the parameters: linear 

minimum variance unbiased estimator (LMVUB) and linear minimum mean squared 

errors estimator (LMMSE). 

Wu and Bailey (1988) compared the above two methods using a variety of types 

of treatment effect and different censoring probability models. 

Assume that there are two treatment groups of sample size flt, for k =  1,2. The 

total sample size n =n1 +n2• Let there be J identical measure time points, � .  for each 

subject, with one baseline measure at t1
= 0, and J-1 follow-up time points �. j =2, 3, . . .  

J. t1 i s  the length of the study. Let y i = { Yi 1 , y i2 , • • •  , Yii 1 ) ' be the vector containing 

the measurements actually made for the ith subject, where j i5.J. If j; =J there is no data 

missing. On the other hand, if j; < J  then there are some data missing. The missing data 

may be caused by right censoring as well as other mechanisms, it is assumed that any 

missing data caused by mechanisms other than right censoring are ignorable. 

A random effect linear model is used to model the responses, in which it is 

assumed that the serial measurements of the response variable follow a linear function 

of time. Let P j = { P ii , P 12) be the unobservable vector representing the true initial value 

and slope of the response variable for the ith subject in the combined sample. For i Ek, 
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i .e. the ith subject in the combined sample belongs to the kth treatment group, where 

k= l ,2, the model of Y; is 

where 

and 

( 4 .  2 )  

x� 
[ 1 . . . 1 

] 
.1 = t .1 • •  , t · · 1 1]1 

( 4. 1) 

( 4. 3) 

( 4. 4) 

( 4 .  5 ) 

( 4 .  6)  

The objective of the study is to  estimate and compare the mean slopes of different 

treatment groups, i.e. B 12 and B22• Two approaches mentioned in section 4. 1 for 

informative right censoring in repeated measurement will be discussed in the next two 

sections. 

4.3 Modeling the Censoring Distribution 

Wu and Carroll ( 1988) introduced the direct modeling of the informative right 

censoring process. They proposed a general censoring probability functionM( <XoJ , <X 1P) 
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that depends on the individual initial value and slope. Here a = ( al ' a2 ) ' denotes a 

vector of censoring coefficients for initial value and slope, and a0J for j =2, . . .  , J are 

censoring-time parameters. The logical candidates for the distribution function are the 

Cox's proportional hazards model, logistic model, and probit model. Wu and Carroll 

used the probit censoring model: 

(4 . 7) 

where � is the cumulative probability of a standard normal variable. Usually a;  and l: P 

are unknown, but their unbiased estimates can be substituted for them in calculating the 

likelihood function. Hence the maximum likelihood procedure used here is actually a 

pseudo-maximum likelihood procedure. 

Using the pseudo-maximum likelihood procedure, Wu and Carroll derived the 

estimations of � and (X under this probit model, and referred to them as probit pseudo­

maximum likelihood estimates (PPMLE). 

Based on the pseudo-likelihood procedure, a hypothesis testing of the 

informativeness of the censoring procedure can be constructed. First the following 

hypotheses about (X can be constructed: 

Ho : <X 1 = <X2 = O. 

H1 : a2 = o and a1 ,;,. o .  

Likelihood ratio tests can be performed for the hypothesis H0 versus H 1 • When H0 is 

true, the right censoring will be non-informative with respect to � for k =  1,2. It can 

be shown, however, that when H1 is true the right censoring process will usually be 

informative with respect to �. k=l ,2. 
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Wu and Carroll also showed that, when the censoring is non-informative, the 

maximum likelihood estimate of � is the weighted least squares estimate (WLE): 

WLE ( Bk) = [L w;1 J -1 L ( w;1p 1 ) 
iEk iEk 

(4 . 8 ) 

where i(k) denotes that the ith subject of the combined sample belongs to the kth 

treatment group, and W; is the covariance of P . When all subjects have complete 

observations, it can be shown that the maximum likelihood estimate is the unweighted 

least squares estimate of Bk: 

L P 1ln ( 4 .  9 ) 
iEk 

4.4 Conditional Linear Model 

Wu and Bailey ( 1989) showed that the conditional expectation of the response 

variable slope, given the censoring time, is a monotone increasing (decreasing) function 

of the censoring time when the probit censoring coefficient for the response variable 

slope is negative (positive). So they proposed using a class of increasing functions to 

model the conditional expectations of the individual slopes with respect to censoring time. 

The simplest conditional model is a conditional linear model for the individual least 

square estimated slopes, in which a linear function is assumed. 

The form of the conditional linear model can be written as: 
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(4 . 10) 

for subject i who is from the kth treatment group, where y ok and y 1 are unknown 

parameters, ekJ are random variables with E (ekJ) =O and Var (ekJ) =a!J - The 

objective of the study is usually to estimate and compare the group slope means: 

(4 . 11) 

where E1Ek 
( • ) is the expectation taken within kth group. Notice that (4. 11) will include 

the information on censoring time in the between-group comparisons. 

Two methods were proposed by Wu and Bailey to estimate expected slopes B12 

and En- The first one is named the linear minimum variance unbiased (LMVUB) 

estimator. This method simply estimates y 1 and Y ak (k= 1,2) by weighted least squares 

and substitutes the estimates into (4.11): 

(4 . 12 )  

LMVUB estimate is 

(4 . 13 )  

The other method to estimate the expected slopes, linear minimum mean squared 

error (LMMSE) estimates, is a linear combination of the individual least squares slope 
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estimates: 

( 4 . 1 4 )  

where 

( 4 .  15) 

with nki denoting the number of participants in the kth group who were censored after 

they had j measurements of the response variable. The weights Wki are chosen to 

minimize the mean squared error under the linear model (4. 10). The variance of the 

LMMSE estimate can be written as 

( 4 .  16)  

Wu and Bailey (1988, 1989) compared of the PPMLE, LMVUB, and LMMSE, 

together with the traditional likelihood based methods introduced in Chapter 2 using 

simulated data with a missing not at random mechanism. Their results show that though 

the traditional likelihood methods generate biased estimates, all the three conditional 

linear estimates produce better results. The performance of these conditional linear 

estimates depends upon the 'true' underlying models of treatment effects. 

4.5 Protecting Against Nonrandomly Missing Data 

As mentioned in 4. 1, the exact form of the missing data mechanism in most 

problems is difficult or even impossible to specify. But more often than not, some 

qualitative information about the missing data mechanism is available. This qualitative 

information is often helpful in constructing protective estimators. 

Two simple protective estimators are proposed by Brown ( 1990). These estimators 
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are consistent if the missing data mechanism is ignorable, and each is consistent under 

a broad class of non-random mechanisms as well. Only one of the two protective 

estimators will be discussed below. 

In the rest of this section we will introduce a class of nonrandomly missing data 

mechanisms called generalized censoring mechanism (GCM), against which the protective 

estimates can protect. In the next section the specific forms of the protective estimator 

will be discussed. 

Let y be a T-dimensional vector representing the T repeated measures from a 

subject. For simplicity the subject index is omitted. The objective of the study is to make 

inference about the first and second moments of y, based on the incomplete data from 

n subjects. In order to indicate which components are missing, as before an indicator 

vector of k-dimension R is introduced. For the ith subject, � =  1 if Yi is observed, and 

Ri=0 if Yi is missing. It is assumed that (y,R) for each subject are drawn independently 

with joint density: 

f (y, z)  = n (y; µ , I: ) w ( R= z ly) ( 4 . 1 7 )  

where n(. ; . )  is the normal density and z is any k-dimensional vector of zeros and ones, 

and w ( . I - ) is the missing data mechanism. 

Notice that in model (4.17) the marginal distribution of y is specified as the 

multivariate normal, but the missing data mechanism is left unspecified . This formulation 

is based on the fact that we generally know little about the exact form of the missing data 

mechanism in most repeated measurements studies. 

As before, let y<0l denote the components of y that are observed, and y-ml denote 

the components of y that are missing. A very useful mechanism defined earlier in 



Chapter 2 is the ignorable missing data mechanism: 

Ca> (R=zly) = Ca> (R=z ly ( ol ) 

43 

( 4 . 18 )  

This class of mechanism is very restrictive, however. A broader class of missing data 

mechanism introduced by Brown is the generalized censoring mechanism (GCM). The 

GCM, which allows missingness related to y, is defined: 

w (R= (z1 , • • •  , zk) 'ly= (y1 , • • •  ,yk) 1) =h ( zly) =fl hi ( zj lYJ )( 4  . 1 9 )  
j=l 

where hi ( . I , )  , j = l ,  .. ,k, are bounded between O and 1. 

Under the GCM, missingness on each variable depends on that particular variable 

alone. GCM is only one class of nonrandomly missing mechanism. 

Under the GCM, (4. 17) becomes: 

f (y,z) = n (y; µ , 1: )h (z !y) ( 4 . 2 0 )  

Under this mechanism, it is usually require that the first variable, i.e. the baseline 

measure, be always observed. 

4. 6 Protective Estimators 

Under the GCM, the form of h's is usually unknown. If maximum likelihood 

estimates with no or few restrictions on the h's are used, the results are equivalent to the 

estimates obtained by ignoring the mechanism. This leads to Brown's proposal of 

methods other than maximum likelihood. 
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Brown ( 1990) proposed the use of method of moments to obtain estimates of the 

first and second moments of y. Since the distributions of the consistent estimators 

obtained from method of moments do not depend on the missing data mechanism, 

intuitively they might be useful when the mechanism is unknown. 

For simplicity, only the case of T=3 is considered: three repeated measurements 

are assumed for each subject. Since it is required y1 must be observed, y1 and s1 1  will 

be used to estimate the first and second moments of y 1 • Unlike y1 , however, the mean 

of all observed y2 does depend upon the missing data mechanism since by (4.20) 

( 4 . 21) 

However, the conditional distribution of y1 given y2 , y2 observed, is 

( 4 . 22) 

and it does not depend on the missing mechanism. Similarly, it can be derived that the 

distributions of both y1 I (y3 , Z3 =1) and Y1 I (y2 , y3 , z2 =Z3 =1)  do not depend on the 

missing mechanism. Brown (1990) showed that the marginal distribution of y1 and the 

above three conditional distributions, all of which do not depend on the missing 

mechanism, can lead to identifiability of µ and I! . 

Practically, by using method of moments, eight out of nine estimates can be 

obtained in the explicit forms: 



'1 2 = 

'13 = 
y ( l . . ) _y ( l . 1 ) 

1 1 +y
( l . 1 ) 

b ( l . 1 ) 3 
13  

"' s <1 . . J  
u ll 11  

8 -s ( l . l ) 
11  11 . 3  

( bN . 1 ) ) 2 

"' = b ( 1 1 . ) "' 
U l2 12 U 22 

"' b ( 1 . 1 ) "' U 13 = 13 U 33 
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( 4 . 2 3 )  

where the superscripts refer to various subsets of the sample within which the related 

calculations were carried out. For example, .v1'
1 . 1 l is the mean of yi, computed in the 

subset of the sample in which both y1 and y3 are observed, while y2 is either observed 

or not observed, and b1
1
2
11 .  l is the least squares regression coefficient of y1 on y2, 

computed in the subset of the sample in which both y1 and y2 are observed, while y3 is 

either observed or not observed. 

Estimate of another parameter, o 23 , is obtained by minimizing a residual variance 

expression for y1 given y2 and y3 : 

( 4 . 2 4 )  
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where 

( 4 . 2 5 )  

The estimate 823 =a;3 can be estimated by minimizing (4.25). 

The above procedure can be extended to problems with T > 3, i.e. problems with 

more than three repeated measures for each subject. The mean and variance of the 

baseline and all covariances involving the baseline are identifiable. The mean and 

variance of y;, j > 1, are identifiable if P ij "°o. And a jk • for j, k>  1, are identifiable if p 1j ,ieo 

and P 1k"° o .  

Brown ( 1990) also proposed another protective estimators which deals with a class 

of mixed mechanism. 

4. 7 Discussion 

Most of the statistical methods for missing data problems can allow only for the 

randomly missing mechanism or ignorable missing mechanism. The methods that can 

deal with nonrandomly missing mechanism are still not fully developed. There is no 

general approach for repeated measurement with non-randomly missing data. Although 

the two approaches introduced in this chapter are similar in that they restrict the problem 

to a certain type of non-randomly missing data, they represent two different possible 

directions in attempting to solve the non-randomly missing data problem. 
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The approaches proposed by Wu et al for the informative right censoring data 

directly model the right censoring mechanism and incorporate the mechanism into the 

likelihood function. Using simulated informative right censoring data, Wu and colleagues 

have shown that their estimates are better than the traditional likelihood based methods 

which treat missing mechanism as ignorable. Since right censoring is one of the missing 

data mechanisms that most likely to occur in repeated measurement studies, and more 

often than not, right censoring is expected to be related to responses, this approach 

provides a good alternative to the traditional likelihood based method in dealing with the 

right censoring problem. 

However, as stated above, except for very few case like the right censoring, there 

is no complete definition and classification of the nonrandomly missing data mechanism, 

so it is difficult to model the missing mechanisms direct! y. In fact, the most difficult 

aspect of nonrandomly missing data problems is that in most cases the exact missing 

mechanism for a specific data is unknown. This difficulty may explain the need for the 

protective estimators proposed by Brown. Brown's approach does not specify the missing 

data mechanism explicitly but imposes some mild conditions on the form of the 

mechanism so that a certain class of nonrandomly missing data mechanism can be 

covered. Brown used method of moments to obtain estimates of the first two moments 

that are protective against the deviation from randomly missing mechanism. This 

approach, however, also has its own restrictions. Although it can handle a relatively 

broad class of the nonrandomly missing mechanisms, it cannot protect against any kind 

of nonrandomly missing mechanism. Because it uses method of moments, it can only 

deal with a single sample at a time and, hence, loses some flexibility of incorporating 



48 

several different treatment groups into one model. 

Generally speaking, the increasing ability to handle more complex missing data 

mechanisms is obtained at the expense of imposing other assumptions on the data. The 

semi-parametric methods can only handle the missing at random mechanism, but they do 

not need the assumption of the multivariate normality of the data, and only require that 

the marginal distributions of the observed responses have a distribution of exponential 

family. The likelihood based methods, which can handle more complex ignorable 

mechanism, requires that the data be multivariate normal, although the estimates obtained 

by likelihood based methods are usually not very sensitive to the deviation from 

normality. The two approaches discussed in this chapter, which can handle some 

nonrandomly missing mechanisms, not only require the data be multivariate normally 

distributed, but also are very sensitive to deviation from normality assumption. 



Chapter 5 

The Transcranial Doppler Data 

5. 1 Introduction 

In this chapter, some of the methods discussed in previous chapters will be 

applied to analyze practical data from a clinical trial. Different methods will be compared 

and contrasted, and possible future research topics will be discussed. 

Section 5.2 will present the data set, the transcranial ultrasonic Doppler data from 

a clinical trail of a potential new treatment of cerebral vasospasm following aneurysmal 

subarachnoid hemorrhage (SAH). The severe missing data problem in this data will be 

discussed. 

In Section 5. 3, two of the approaches discussed in previous chapters, the 

likelihood based method discussed in Chapter 2 and protective estimators of Brown 

discussed in Chapter 4, will be used to analyze the data presented in Section 5.2. 

Section 5.4 contains a discussion of the results from Section 5.3. The difficulties 

with the existing methods for repeated measurement data with missing data problem will 

also be addressed, and some possible future research topics arising from the need in 

application will be examined. 

49 
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5. 2 The Transcranial Doppler Data 

The data used here is from a clinical trial of Nicardipine, a medicine newly 

developed to treat delayed cerebral vasospasm following aneurysmal subarachnoid 

hemorrhage (SAH). The clinical trial was a prospective, randomized, double-blind and 

placebo-controlled multi-center trial. A total of 906 patients with recent aneurysmal SAH 

( 0 to 7 days after SAH ) hospitalized in over 40 North American neurosurgical centers 

were involved in the study. The patients were randomized to two treatment groups 

(Nicardipine and placebo ), with 449 patients in one group and 457 patients in the other. 

The treatment was administered to each patient daily up to 14 days following SAH. The 

primary endpoints for the study were the percentage of patients achieving Good Recovery 

on the Glasgow Outcome Scale at 3 months following the SAH and incidence of ischemic 

deficits due to vasospasm (symptomatic vasospasm) during the treatment period (from 

the day the patient received the first dose to 14 days post SAH). 

A secondary endpoint in the study was the transcranial ultrasonic Doppler 

measurements, which can be used as confirmation of vasospasm. A high reading of 

transcranial Doppler indicates symptomatic vasospasm. Ideally, the transcranial Doppler 

measurements should have been recorded once a day for each patient from the day he or 

she entered the study to the 14th day after SAH or the day the patient was dropped from 

the study. If a patient entered the study on the day of SAH, and was discharged on the 

14th day after SAH, 15 transcranial Doppler measurements should have been taken, one 

baseline measurement recorded on the day of SAH and one measurement daily from the 

1st day to the 14th day post SAH. However, at the time the study was carried out (in the 

late 80's), transcranial Doppler equipment was not standard in many participating 
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centers, so none of the patients treated in those centers without transcranial Doppler 

equipment had Doppler measurements. Furthermore, in those centers equipped with 

transcranial Doppler, its availability to patients was limited. As a result, the data set 

contains a large portion of missing data. Table 5.1 shows the frequency of each missing 

category. We can see that 63. 2 % of the patients do not have even one measurement and 

1 1.2% of the patients only have one measurement. Only one patient has complete fifteen 

measurements. 

Table 5 . 1  The Frequency of Missing Data 

No measures Only one Two or more 

taken measurement measures 

Number of 573 101 232 

Patients 

Percent 63.2% 11 .2% 25.6% 

This data set includes three types of missing data. First, the data are left censored 

because patients were allowed to be entered anytime from 0 to 7 days after SAH. If a 

patient entered the study at the fourth day following SAH, his transcranial Doppler from 

day O to day 3 after SAH could not have been obtained. Second, there is right censoring 

caused by death or withdrawing from the study due to recovery. Third, there are other 
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types of missing data besides the left and right censoring, i.e., even if a patient entered 

the study at the SAH day and remained in the study until the 14th day after SAH, he or 

she might still have had missing data due to the other reasons stated above. 

The missing data mechanism in this case is suspected to be missing not at 

random. Patients treated in centers without transcranial Doppler equipment can be 

eliminated from the data set and it can be assumed that Doppler equipment among the 

centers is missing completely at random (MCAR). However, we suspected that in those 

centers with transcranial equipment a patient may have more complete Doppler 

measurements simply because he/she was diagnosed, by means of other procedures, to 

be more likely to have vasospasm. Patients in stable condition often have a single 

measurement (often at the baseline) and have missing data for the rest of the days in the 

treatment period. Since the patients in better condition are more likely to have a larger 

portion of missing data, while the patients with more complete observations usually were 

in worse condition, the missing data appears to depend on the value of the responses, 

and, thus, the missing mechanism is missing not at random. 

One way to cope with this non-randomly missing mechanism is to divide the 

patients left in the data set (patients with at least one measurement) into two subgroups 

according to the number of measurements missing. If a patient has only one measurement 

we assume that this patient was in relatively good condition and classify him or her in 

the better group; a patient with more than one measurement will be classified in the 

worse group. Then the patients with only one measurement can be deleted from the data 

set and the analysis results can be claimed valid only for the subgroup of patients in 

worse condition. In this subgroup there are only 232 patients left, with 103 patients in 
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one treatment group and 129 patients in the other. 

Even in this subgroup, more than 50% of the data is missing. Furthermore, the 

missing mechanism within this subgroup is still not ignorable. Because patients with left 

censoring entered the study late, they received proper treatments later than other patients, 

so their conditions can be assumed worse than that of other patients. Patients with right 

censoring were dropped from the study either because of death (extremely bad case) or 

because of recovery (extremely good case). In both left censoring and right censoring, 

the missing of a measurement seems to depend on the value of the responses, so the 

censoring is very likely to be informative. In order to reduce the percentage of missing 

data, and to reduce the effect of the informative left and right censoring, the maximum 

value among the measurements in day O through day 6 was used as a single baseline 

variable, y8, and the maximum among measurements in day 12  through day 14 was used 

as a single follow up measurement, YF· Since it is known that day 7 to day 11 is the 

critical period for the occurrence of symptomatic vasospasm, the measurements taken on 

these days were kept as they were in the original data set. In the next two sections, this 

modified data set is used as a 'working' data set, which will be analyzed with two 

different methods discussed in previous chapters. 

5.3 The Application of Likelihood Based Methods 

It is suspected that even in the 'working' data set the missing data mechanism may 

still not be missing at random, but since no general algorithm is available to deal with 

any type of non-randomly missing data, one way to tackle this problem is to assume the 

missing data mechanism in the 'working' data is missing at random and use the 
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likelihood based methods introduced in Chapter 2 to analyze it. 

As stated in Chapter 2, the likelihood based method models the means and the 

covariance matrix separately. Many situations can be modeled by combining different 

choices of mean and covariance structures. Six different situations are considered here, 

and the likelihood ratio tests were employed to test the goodness of fit, and to determine 

which model will be used. 

Table 5.2 lists the models we have examined, and the results of the goodness of 

fit tests. For each model fitted, the table lists a description of the model, number of 

parameters in the model, -2 A ,  chi-square statistics, the degree of freedom for the 

goodness of fit test, and Arkaike Information Criteria (AIC). AIC is also a criteria for 

the fitness of the model, the greater the value of AIC, the better the model fits the data. 

The first model in Table 5.2 is the unstructured ANOVA model. A different mean 

is modeled for each treatment group at each time point, therefore, the means model has 

fourteen parameters. No specific structure is assumed for the covariance matrix ,  thus the 

total number of parameters in the covariance model is 28. This is the most complex 

model. Every other model in the table tries to simplify the model while not increasing 

the square sum of residuals too much. Detailed discussions of the other models can be 

found in Chapter 2. 

Actually , for each model from model 2 to model 6 the likelihood ratio test is used 

to test the null hypothesis that this model holds for the data versus the alternative 

hypothesis that model 1 holds. The results listed in Table 5.2 show that the null 

hypothesis is rejected in every situation. It is also shown that the AIC of model 1 is the 

maximum among the six models. These results lead to the conclusion that the only model 



which fits the data is model 1, the unstructured covariance ANOV A model. 

Table 5.2 Summary of models fitted. 

no Model Description No.of -2A x
2 

Para. 

1 ANOVA mean model, 42 9502.8 ---

unstructured covariance matrix 

2 ANOV A mean model, 16 9625.6 123.2 

compound symmetry covariance 

matrix 

3 Linear mean model, 32 9524.6 18.2 

unstructured 

covariance matrix 

4 Linear mean model, 6 9655. 2 152.4 

compound symmetry 

covariance matrix 

5 Linear mean model, 6 9665.2 162.4 

1st order AR 

covariance structure 

6 Linear mean, random effect 8 9613.8 110.0 

model 
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df AIC 

-- -4779.4 

26 -4814.8 

10 -4790.3 

36 -4829.6 

36 -4834.6 

34 -4810.9 



Using model I ,  the model of the means has the form: 

6 6 

y1 = a +b • TRT+ r: cJ •DA YJ +  L dJ • TRTDAYJ 
J •l j•l 
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( 5. 1) 

where TRT is a binary variable which equals 1 when the patient is in one treatment 

group and -1 if in the other, and DAY1 through DAY6 are six dummy variables, their 

values assigned as: 

Measure Time DAY 1 DAY2 DAY3 DAY4 DAY5 DAY6 

Baseline(YB) 0 0 0 0 0 

7th Day 0 0 0 0 0 

8th Day 0 0 0 0 0 

9th Day 0 0 0 0 0 

10th Day 0 0 0 0 1 0 

1 1 th Day 0 0 0 0 0 I 

Follow up(YF) - 1  - 1  - 1  - 1  - 1  - 1  

TRTDAY 1 through TRTDAY6 are six dummy variables indicating the interactions 

between treatments and days, the value of TRTDA Yi is the product of TRT and DA Yi 

for j = 1 to 6. Yi is the Doppler measure for the patient, and a, b, c1 through c6 , and d1 

through d6 are fourteen parameters. The covariance part of the model does not assume 

any structure for the covariance matrix and estimates each element in the matrix as an 

independent parameter. 

The estimates of the covariance matrix are 
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3 0 17 . 5 

1 4 4 0 . 9  3 5 6 0 . 4  

1 5 9 9 . 4  3 09 2 . 2  3 7 6 3 . 8  

1 8 6 9 . 1  3 0 1 0 . 5  2 827 . 2  4 6 6 4 . 6  (5. 2)  

1 8 9 4 . 9  27  27 . 5 2 6 8 5 . 3  3 5 12 . 3  4 8 57 . 0  

2 9 37 . 5  2 2 9 9 . 2  2 4 86 . 8  3 0 54 . 8  3 8 8 0 . 2  47 8 3 . 4 

16 8 5 . 0  2 4 6 8 . 2  2 29 5 . 8  3 4 2 6 . 0  3 5 1 3 . 3  3 8 0 5 . 5  4 5 3 4 . 7  

and the estimates of the parameters in the mean model (5.1) are listed below. 

Parameter Estimate Asymptotic SE 

a 152.84 3.71 

b - 13.38 3.71 

C1 -2 1. 79 3.26 

Ci 0.53 3.04 

C3 5.93 3.3 1 

C4 3.20 3.52 

C5 -0.47 3.38 

c6 3.3 1 3.7 1 

d1 10.38 3.26 

d2 -6.14 3.04 

d3 -7. 16 3.3 1 

d4 1.52 3.52 

d5 3.52 3.38 

d6 2.83 3.7 1 

Since the study's primary purpose is to discover if significant differences in 

Doppler measures exist between the two treatment groups, two hypotheses are of 

interests. The first one tests the null hypothesis that no interactions exist between the 
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treatment effects and time effects; the second one tests the null hypothesis that there is 

no difference in Doppler measures between the two treatment groups. The results of the 

above two tests are: 

Test 

TRT 

TRT*DAY 

DF 

1 

6 

Chi-Square 

13.01 

20.53 

P-Value 

0.000 

0.002 

The null hypotheses were rejected in both tests. For the test of treatment effect, 

the difference of Doppler measurements between the two treatments are highly 

significant, this is generally in agreement with the conclusion reached after analyzing 

other endpoints in the study (C. Haley), although the significance of the interaction 

between treatment effect and time effect makes interpretation of the difference between 

the two treatment groups complicated. 

5.4 The Applications Of Brown's Method 

Brown's protective estimators discussed in Section 4.6 can provide consistent 

estimators of first and second moments when the missing mechanism is the generalized 

censoring mechanism (GCM). Although we do not know whether or not the missing 

mechanism in our data is GCM, we can apply Brown's Method to the data, and compare 

the results with the results from Jennrich 's likelihood based method. If the missing 

mechanism here is non-random, and is GCM, the results from the above two approaches 

should be different because Jennrich's method will usually generate inconsistent estimates 

in this situation. 

As discussed in Section 4.6, Brown's Method requires that every patient have a 
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baseline measurement. In order to meet this requirement, we only include those patients 

with baseline not missing in our 'working' data set. To further simplify the calculation 

we let the baseline measure y8 be y1 , the maximum value among the measurements taken 

on 7th day through 11th day after SAH be y2, and the follow up measure YP be y3, so that 

we only have three time points for each patient, in which case equations (4.23), (4.24) 

and (4.25) can be used directly to calculate estimates for each treatment group. For 

comparison, we also analyze the same data set with Jennrich's likelihood based method. 

The results from Brown's method are 

Group 1 

Variables Means Covariance 

Y1 127.53 2661.9 

Y2 154.24 3513.7 4638.8 

Y3 141.49 2847.2 3241.0 3758.9 

Group 2 

Variables Means Covariance 

Y1 134.70 3381.6 

Y2 195.72 5131.0  7786. 1 

Y3 180.92 4723.6 6959.0 7 167.9 

While the results from Jennrich's method are 



Variables 

Y 1  

Y2 

Yl 

Groupl 

127.53 

151.84 

139.69 

Group2 

134.70 

197.74 

179.76 

Covariance 

3025.5 

1687.7 

1630.0 

4333.5 

3510.5 

60 

4529.5 

Using Brown's method, we obtain separate estimates of the covariance for each treatment 

group, while with Jennrich's method we have only one set of estimates of covariance 

matrix for the combined population. We can see that the estimates of means by the two 

methods are very close to each other, but the estimates of covariance matrix by Brown's 

method tend to be larger than those by Jennrich's method. 

Both methods reject the null hypothesis that the Doppler measures from the two 

treatment groups are the same, but Jennrich's method also reveals that the interactions 

between treatment effect and time effect are significant, while Brown's method cannot 

test those interactions. 

Because the results of the two approaches are very similar, we can deduce that 

the missing mechanism here is either just ignorable, or non-random but not GCM. For 

the reasons stated in Section 5.2, we suspect that the missing mechanism for our 

'working' data is non-random rather than ignorable. 

Our conclusion that the missing mechanism is non-random but not GCM makes 

sense intuitively. For example, if a patient's baseline Doppler measure is low, he or she 

might remain in good condition throughout the study period, and have a missing measure 

for y2 or y3• The missing of y2 (or y3) for this patient depends not only on the value of 

y2 (or y3) but also on the value of y1 ; hence the missing mechanism is not GCM. 
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5.5 Discussion And Summary 

The missing data problem is very common, and sometimes unavoidable in 

repeated measurement studies. A variety of statistical approaches has been developed 

recently to deal with this problem. 

When the mechanism of missing data in a repeated measurement study is missing 

at random (MAR) or missing completely at random (MCAR), the semi-parametric 

methods discussed in Chapter 3, which model the marginal distribution of the 

multivariate responses instead of the joint distribution of the responses, can be used to 

solve the missing data problem. There are few restrictions on the semi-parametric 

methods, which can be used for continuous or categorical data, as long as the marginal 

density of the responses is from the exponential family. 

The ignorable missing data mechanism can be handled by the likelihood based 

methods discussed in Chapter 2. While this approach can deal with ignorable missing 

data mechanism, as well as MAR and MCAR, the responses must be continuous and 

multivariate normally distributed. 

However, as has been seen in the transcranial Doppler data, the missing data 

mechanism in a repeated measurement study is most likely missing not at random, a 

much more complicated class of missing data mechanism. A general approach, such as 

the likelihood based methods for ignorable mechanism and the semi-parametric methods 

for MAR and MCAR, has not been developed for this mechanism. Although there have 

been some attempts to solve this problem, as discussed in Chapter 4, numerous problems 

remains to be solved. 

First, Brown's protective estimators claim to be able to obtain consistent 
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estimators of first and second moments under the GCM mechanism, which is a broader 

class than ignorable mechanism, but it is found that in many biomedical applications, 

such as in the transcranial Doppler data, the missing of a response does not depend only 

on the value of that response itself, i.e. , in many applications the missing data 

mechanism is more complicated than GCM. Even for GCM, Brown's method requires 

that every subject have a baseline observed, which in many applications, such as in the 

evaluation of transcranial Doppler data, is not satisfied. 

Second, while much effort has been devoted to the informative right censoring 

problem, the left censoring problem, which is also common in biomedical applications 

has not been studied closely. In the transcranial Doppler trials, many patients were sent 

to small, local hospitals first, and only transferred to the participating neurosurgical 

centers when their conditions worsened. Thus these patients might have entered the study 

several days after SAH. The lest censoring caused by the delay is very likely 

informative. Since this scenario is common in clinical trials, methods dealing with 

informative left censoring also need to be developed. 

Third, the current approaches are mostly 'deal-one-type-at-a-time' . Wu's methods 

for right censoring, for example, assume that all the other missing values in the data 

except the right censoring are ignorable. But the real world hardly conforms the 'one­

type-at-a-time' approach. In the transcranial Doppler data, a typical real life application 

in biomedical researches, there is informative right censoring, informative left censoring, 

and missing other than left or right censoring also suspected missing not at random. So 

approaches able to handle complex missing data problems with several, mixed missing 

mechanisms are highly desirable. 
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Finally, all the approaches, except semi-parametric methods, assume that the data 

are continuous and normally distributed. Categorical data or continuous but not normally 

distributed data in repeated measurement studies with missing data problem can be 

properly analyzed only if the mechanism of the missing data are MAR or MCAR. The 

missing data problem for categorical data or continuous but not normally distributed data 

in repeated measurement studies remains a challenge to statisticians. 
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