
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2018

OPTIMIZATION FOR STRUCTURAL EQUATION MODELING: OPTIMIZATION FOR STRUCTURAL EQUATION MODELING:

APPLICATIONS TO SUBSTANCE USE DISORDERS APPLICATIONS TO SUBSTANCE USE DISORDERS

Mahsa Zahery
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer Sciences Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5261

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5261?utm_source=scholarscompass.vcu.edu%2Fetd%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Mahsa Zahery, February 2018

All Rights Reserved.

OPTIMIZATION FOR STRUCTURAL EQUATION MODELING:

APPLICATIONS TO SUBSTANCE USE DISORDERS

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

MAHSA ZAHERY

Master of Science from Chalmers University of Technology in Sweden, 2010

Bachelor of Science from Azad University of Central Tehran in Iran, 2007

Director: Dr. Tomasz Arodz,

Associate Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

February, 2018

TABLE OF CONTENTS

Chapter Page

Table of Contents . i

List of Tables . iii

List of Figures . v

Abstract . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions of the Dissertation 4

1.3 Structure of the Proposal . 5

2 Background . 8

2.1 Structural Equation Modeling . 8

2.1.1 Popularity of SEM . 10

2.2 OpenMx . 11

2.2.1 Factor analysis . 13

2.2.2 Ordinal data and threshold models 15

2.3 Optimization in SEM . 16

2.4 Fit functions in OpenMx . 16

3 Optimization methods . 19

3.1 Gradient-based Algorithms . 20

3.1.1 Unconstrained Nonlinear Algorithms 20

3.1.1.1 Steepest Descent (Gradient descent) 20

3.1.1.2 Conjugate Gradient 21

3.1.1.3 Newton’s Method . 21

3.1.1.4 Broyden-Fletcher-Goldfarb-Shanno 22

3.1.2 Constrained Nonlinear Algorithms 22

3.1.2.1 Primal methods . 23

3.1.2.2 Sequential Quadratic Programming 24

3.1.2.3 Quadratic Programming 25

i

3.2 Optimizers within OpenMx . 26

3.2.1 NPSOL . 27

3.2.2 SLSQP . 27

4 Methodology . 28

4.1 Introduction to CSOLNP . 28

4.2 CSOLNP: Algorithm . 33

4.2.1 Initialization . 33

4.2.2 Find a feasible direction . 34

4.2.3 Solution to QP algorithm . 36

4.2.4 Convergence . 37

4.3 Conclusion . 38

5 Performance comparison of CSOLNP, NPSOL and SLSQP on thresh-

old and continuous models . 39

5.1 Comparison of the optimizers on threshold models 40

5.1.1 Comparison of optimizers’ runtime averaged over 250 datasets

40

5.1.2 Comparison of optimizers’ runtime averaged over 250 dif-

ferent starting values . 46

5.2 Comparison of optimizers on continuous models 50

5.2.1 Comparison of optimizers’ runtime over 250 different datasets 50

5.2.2 Comparison of optimizers’ runtime over 250 different start-

ing values . 51

5.3 Conclusion . 51

6 Application of CSOLNP within OpenMx on drug use 53

6.1 Statistical analysis . 54

6.2 Comparing optimizers’ runtime on the Swedish Data 57

6.3 Conclusion . 57

7 Profiling optimizers and memory consumption comparison 59

7.1 Valgrind . 59

7.2 Callgrind . 61

7.2.1 Callgrind results . 62

7.3 Massif results . 65

7.4 Conclusion . 66

8 Enhancing CSOLNP’s performance . 67

ii

8.1 Analytical gradients . 67

8.2 Analytical Jacobians . 71

8.3 Central difference approximation 71

8.4 Infeasible initial point . 72

8.5 Conclusion . 75

9 Conclusion . 77

Appendix A Akaike information criterion (AIC) and Bayesian informa-

tion criterion (BIC) . 80

References . 81

Vita . 90

iii

LIST OF TABLES

Table Page

1 mean and median values of runtime for the three optimizers when

run 250 times on different datasets modeled with a 1-factor threshold

model with sample of size 1000 and mvn absolute error tolerance value

of 1e-3. 43

2 mean and median values of runtime for the three optimizers when

run 250 times on different datasets modeled with a 1-factor threshold

model with sample of size 1000 and mvn absolute error tolerance value

of 1e-7. 43

3 mean and median values of runtime for the three optimizers when

run 250 times with different starting values. The model is a 1-factor

threshold model run on a sample of size 1000 and mvn absolute error

tolerance value of 1e-3. 46

4 A sample of the Swedish dataset on drug abuse. The dataset consists

of four features being medical and criminal records for each pair of

the twins, siblings or half-siblings. Features are binary variables being

0 for no medical or criminal record and 1 for presence of medical or

criminal records. 53

5 Goodness-of-fit statistics for bivariate ACE models fitted to drug abuse

ascertained from medical and criminal records, in designs including

twins, full siblings and half siblings. os: number of observed statistics,

ns: number of pairs, ep: number of estimated parameters, df: de-

grees of freedom, -2ll: minus twice the log-likelihood of the data, AIC

Akaike information criterion, hom: homogeneity model without qual-

itative or quantitative sex differences in ACE sources of variance, qn:

quantitative sex differences in ACE sources of variance, ql: qualita-

tive and quantitative sex differences in ACE sources of variance, with

either sex-specific genetic factors in males (Ams) or females (Afs), or

sex-specific shared environmental factors in males (Cms) or females (Cfs) 55

iv

6 Estimates of proportions of variance and covariance accounted for by

additive genetic, shared and unique environmental sources for drug

abuse ascertained from medical (DAM) and criminal (DAC) records,

in designs including twins, full siblings and half siblings. Amc gender-

common additive genetic contributon in males, Ams, male-specific ad-

ditive genetic contribution, Am additive genetic contribution in males,

Af additive genetic contribution in females, Cm shared environmen-

tal contribution in males, Cf shared environmental contribution in

females, Em unique environmental contribution in males, Ef unique

environmental contribution in females, rgmf genetic correlation across

males and females. *Covariance due to genetic factors in common with

females (Amc); **covariance due to male-specific genetic factors 56

7 x1, x2, x3 and x4 are the decision variables. obj is short for final objec-

tive value. evals (AG) stands for evaluations with analytical gradients

available to the optimizer and evals (NG) stands for evaluations with

numerical gradients. 70

8 x1, x2, x3 and x4 are the decision variables. obj is short for final objec-

tive value. evals (AJ) stands for evaluations with analytical Jacobians

available to the optimizer and evals (NJ) stands for evaluations with

numerical Jacobians. 72

9 x1, x2, x3 and x4 are the decision variables. obj is short for final

objective value. NG/NJ stands for numerical gradients and Jacobians.

AG stands for analytical gradients option on. AJ stands for evaluations

with analytical Jacobians available to the optimizer and AJ/AG stands

for evaluations with analytical gradients and Jacobians. 73

10 x1, x2, x3 and x4 are the decision variables. obj is short for final

objective value. NG/NJ stands for numerical gradients and Jacobians.

AG stands for analytical gradients option on. AJ stands for evaluations

with analytical Jacobians available to the optimizer and AJ/AG stands

for evaluations with analytical gradients and Jacobians. 73

v

LIST OF FIGURES

Figure Page

1 Path diagram of three latent variables and two observed variables as

well as correlations and path coefficients 9

2 Path diagram of a 1-factor, 3-variate factor model 14

3 Threshold model for ordinal data with three categories 0, 1, and 2. 15

4 A Flowchart of CSOLNP’s algorithm. Starting with initial set of free

variables x0, and Lagrange multipliers u0, the search directions dkx and

dku are found by solving a QP subproblem. Finding an appropriate

step length α, CSOLNP updates the free variables and Lagrange mul-

tipliers. If the difference between the current objective value and the

previous objective value is less than the optimality tolerance, the point

estimates are considered to be converged, and CSOLNP reports the

final set of free variables as the optimum. Otherwise, the Hessian

matrix H is updated, and CSOLNP continues with the next iteration. . . 32

5 Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and

(c) SLSQP on a 1 factor threshold model with sample of size 1000 and

mvn absolute error tolerance of 1e-3. The blue lines show the median

of the distributions and the red dashed line represents the mean. 41

6 Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and

(c) SLSQP on a 1 factor threshold model with sample of size 1000 and

mvn absolute error tolerance of 1e-7. The blue lines show the median

of the distributions and the red dashed line represents the mean. 42

7 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 vari-

ables and 2 factors for a sample of size 1000 with mvn absolute error

tolerance of 1e-3 to 1e-7. Runtimes are averaged over 250 data simulations. 44

vi

8 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 variables

and 2 factors for a sample of size 10,000 with mvn absolute error

tolerance of 1e-3 to 1e-7. Runtimes are averaged over 250 data simulations 45

9 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 variables

and 2 factors for a sample of size 20,000 with mvn absolute error

tolerance of 1e-3 to 1e-7. Runtimes are averaged over 250 data simulations. 45

10 Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c)

SLSQP when run on threshold model with 1 factor and absolute error

tolerance of 1e-3 on sample of size 1000. The distribution is formed

by running the models 250 times with different starting values. The

blue lines show the median of the distributions and the red dashed line

represents the mean. 47

11 Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c)

SLSQP when run on threshold model with 1 factor and absolute error

tolerance of 1e-7 on sample of size 1000. The distribution is formed

by running the models 250 times with different starting values. The

blue lines show the median of the distributions and the red dashed line

represents the mean. In all the cases, the mean and the median are

very close to each other. 48

12 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 vari-

ables and 2 factors for a sample of size 1000 with mvn absolute error

tolerance reduced from 1e-3 to 1e-7. Runtimes are averaged over 250

replications of the models with different starting values. 49

13 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 vari-

ables and 2 factors for a sample of size 10000 with mvn absolute error

tolerance reduced from 1e-3 to 1e-7. Runtimes are averaged over 250

replications of the models with different starting values. 49

vii

14 Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for

threshold models with (a) 5 variables and 1 factor, and (b) 5 vari-

ables and 2 factors for a sample of size 20000 with mvn absolute error

tolerance reduced from 1e-3 to 1e-7. Runtimes are averaged over 250

replications of the models with different starting values. 50

15 Runtimes of CSOLNP, NPSOL and SLSQP for continuous models with

(a) 5 variables and 1 factor, and (b) 5 variables and 2 factors for

samples of sizes 1000, 10000 and 20000. Runtimes are averaged over

250 different data simulations. 51

16 Runtimes of CSOLNP, NPSOL and SLSQP for continuous models with

(a) 5 variables and 1 factor, and (b) 5 variables and 2 factors for

samples of sizes 1000, 10000 and 20000. Runtimes are averaged over

250 different starting values. 52

17 Runtime of optimizers on real data with a threshold model with 1

factor and 4 variables. 57

18 summary of Callgrind output . 61

19 profiling results for CSOLNP, NPSOL and SLSQP with multivariate

normal absolute error tolerance of (a) 1e-3, (b) 1e-4, (c) 1e-5, (d) 1e-6

and (e) 1e-7. 63

20 CSOLNP’s memory consumption on the Swedish data with mvn ab-

solute error tolerance of 1e-3 . 66

viii

Abstract

OPTIMIZATION FOR STRUCTURAL EQUATION MODELING:

APPLICATIONS TO SUBSTANCE USE DISORDERS

By Mahsa Zahery

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Dr. Tomasz Arodz,

Associate Professor, Department of Computer Science

Substance abuse is a serious issue in both modern and traditional societies.

Besides health complications such as depression, cancer and HIV, social complications

such as loss of concentration, loss of job, and legal problems are among the numerous

hazards substance use disorder imposes on societies. Understanding the causes of

substance abuse and preventing its negative effects continues to be the focus of much

research.

Substance use behaviors, symptoms and signs are usually measured in form of

ordinal data, which are often modeled under threshold models in Structural Equation

Modeling (SEM). In this dissertation, we have developed a general nonlinear optimizer

for the software package OpenMx, which is a SEM package in widespread use in

the fields of psychology and genetics. The optimizer solves nonlinearly constrained

optimization problems using a Sequential Quadratic Programming (SQP) algorithm.

We have tested the performance of our optimizer on ordinal data and compared the

results with two other optimizers (implementing SQP algorithm) available in the

ix

OpenMx package. While all three optimizers reach the same minimum, our new

optimizer is faster than the other two.

We then applied OpenMx with our optimization engine to a very large population-

based drug abuse dataset, collected in Sweden from over one million pairs, to investi-

gate the effects of genetic and environmental factors on liability to drug use. Finally,

we investigated the reasons behind better performance of our optimizer by profiling

all three optimizers as well as analyzing their memory consumption. We found that

objective function evaluation is the most expensive task for all three optimizers, and

that our optimizer needs fewer number of calls to this function to find the minimum.

In terms of memory consumption, the optimizers use the same amount of memory.

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Substance abuse is a major health problem in today’s societies. Serious medical

problems including cancer, heart disease, and AIDS are directly linked to substance

abuse. According to the 2014 World Drug Report of the United Nations Office on

Drugs and Crime, between 3.5 and 7% of the worlds population aged 1564 used an

illicit drug in 2012. Approximately 0.6% of the population can be categorized as

problem drug users (United Nations Office on Drugs and Crime [1]). In the US,

the lifetime prevalence of drug use disorder (drug abuse or dependence) has been

estimated at 10.3% [2].

Substance abuse does not only impact people at personal levels, many social

problems such as driving under the influence, violence, stress and child abuse are

direct consequences of substance abuse. Besides the personal and social costs it

imposes on a society, the financial cost associated with this problem is enormous.

According to the National Institute on Drug Abuse (NIDA), only the health care cost

for using tobacco, alcohol and illicit drugs is around $165 billion in US. Including the

costs associated with crimes and lost productivity, the overall cost is around $700

billion [3]. Yet, despite the enormous health, social and financial costs, substances

continue to be commonly used all around the world.

The etiology of substance use, abuse and addiction with the aim of preventing

its adverse effects has been the focus of research for many years. Numerous studies

confirm that both genetic and environmental factors make an individual susceptible

1

to substance abuse [4, 5, 6, 7, 8, 9]. Environmental factors are the factors in an

individual’s surrounding that increase the person’s liability to drug abuse. Genetic

factors make up for the inherited component in such liability.

The human genome contains 3 billion of nucleotide base pairs. These base pairs

are building blocks of our DNA. They are located in the 23 pairs of chromosomes

within the nucleus of our cells. Chromosomes store our genetic information. They

contain thousands of genes. Most of these genes are polymorphic meaning that there

are two or more alternative forms of the same gene. Single nucleotide polymorphisms

(SNP) are the most common type of genetic variation in humans, but for complex

traits such as substance use, it is unlikely that one gene is responsible for the large

portion of variation. Instead multiple genes control such complex traits. Such traits

are called polygenic traits. Twin studies are helpful in studying polygenic traits.

As for environmental factors, There are two sources for total environmental vari-

ation in a trait: shared and specific. Shared environmental influences are those that

are shared between twins. For example, a family’s Socioeconomic status is the same

for both twins in the family. Specific or nonshared environmental factors are those

factors that affects one twin but not the other. For example, twins can have unique

experiences at school. The individual shocks that either twin might receive indepen-

dently of their co-twin account for unique or specific environmental factors.

Twin studies are favored by scientists who seek to study the effects of genetics and

environment on human development [10, 11, 12, 13]. Identical twins (monozygotic)

who share 100% of their genes can only be different due to the environmental factors.

Additionally, if the twins are raised in the same house, many of the environmental

factors are the same for them. For such twins, the differences between the individuals

are caused by their unique experiences. On the other hand, identical twins might be

raised separately. Such twins can be compared against each other to find the effect

2

of environmental factors in human development. The same classification is true for

non-identical twins (dizygotic) who share 50% of their genes. They can be raised

together or separately. Non-identical twins can also be studied to test the impacts

between genes and environment. Twin studies have contributed immensely to finding

the reasons why individuals are susceptible to substance abuse [14, 15, 16, 17, 12, 18,

19, 20, 21, 22, 23].

Substance use behavior can be measured in form of ordinal data. Behavioral

data are often of binary (yes/no responses) or ordinal (none/some/a lot) type, which

are inherently less accurate than continuous measures. One common approach with

binary/ordinal data is to assume that there is an underlying, normally distributed

continuous variable for each binary/ordinal variable [24]. For example, in substance

use behavior, sensitivity to the rewarding experience of drug use may form part of

the underlying propensity to use substances frequently.

Such liability is typically thought of as being due to the additive effects of a

large number of factors each of small effect, which the central limit theorem predicts

will generate a normal distribution of liability [24, 25]. Thresholds on this liability

distribution delimit binary or ordinal response categories. For binary data, ”yes”

responses are observed above a threshold, while ”no” responses are observed below

that. For ordinal data, the number of thresholds is one fewer than the number of

categories in the data. For example, subjects with liability below the first threshold

have observed response value of none. Subjects with liability in between the first and

second thresholds have observed response value of some and those with liability above

the second threshold have observed value of a lot.

Assuming an underlying threshold model, substance use behavior can be studied

by modeling likelihood of the observed drug use response patterns in the data. To do

this, Structural Equation Modeling (explained in details in background chapter) is a

3

useful analytical framework.

1.2 Contributions of the Dissertation

In this study, we developed an optimizer for the software package OpenMx,

which is a free, open-source, widely popular SEM package that runs inside R, and

is available as an R package on the Comprehensive R Archive Network (CRAN) [26,

27]. Our optimizer solves general nonlinearly constrained problems using a Sequential

Quadratic Programming (SQP) algorithm. We have compared the performance of our

new optimizer with its peer optimizers in OpenMx, and obtained favorable results for

ordinal datasets: our developed optimizer runs faster and is more consistent than the

other two.

We then applied this newly developed OpenMx optimizer to a Swedish substance

abuse dataset collected from the medical and criminal registries, and studied the

quantitative and qualitative contributions of genetic and environmental components

ascertained through these different sources. The results show a significant contri-

bution of genetic factors, and a moderate contribution of environmental factors in

susceptibility to drug abuse. Both components are higher in males than in females,

and higher through criminal records than medical records.

Next, we compared the performance of the optimizers on the Swedish data set

and found results consistent with those of the synthetic datasets. We then profiled

all three optimizers with Valgrinds’ profiling tool Callgrind. We also used Valgrind’s

heap profiler tool Massif to compare memory usage of the optimizers [28].

Finally, several important features were added to our optimizer to enhance its

performance in the presence of analytical gradients and Jacobians. We also imple-

mented the central difference approximation method for our optimizer to enable the

user to choose between forward and central approximation methods for calculating

4

numerical gradients/Jacobians when the analytical gradients/Jacobians are not man-

ually provided to the optimizer. Moreover, we improved the optimizer’s performance

by guiding the optimizer to find a feasible search direction when the initial points are

infeasible.

1.3 Structure of the Proposal

The rest of this proposal is organized as follows. Chapter 2 provides a background

on the research conducted in this dissertation. Structural Equation Modeling (SEM)

is covered in section 2.1. Section 2.2 describes OpenMx as one of the most popular

SEM software packages, with discussions of factor analysis and threshold models in

subsections 2.2.1 and 2.2.2 respectively. Section 2.3 highlights the role of optimiza-

tion in SEM. Section 2.4 covers standard maximum likelihood and full information

maximum likelihood fit functions in OpenMx.

Chapter 3 discusses optimization methods used in our research briefly. Gradient-

based algorithms are discussed in subsection 3.1. Unconstrained nonlinear algorithms

are explained in section 3.1.1 with steepest descent in section 3.1.1.1, conjugate gra-

dient in section 3.1.1.2, Newton’s method in section 3.1.1.3 and BroydenFletcher-

GoldfarbShanno algorithm in section 3.1.1.4. Constrained nonlinear algorithms are

explained in section 3.1.2 with subsections primal methods in section 3.1.2.1 and Se-

quential Quadratic Programming and Quadratic Programming in sections 3.1.2.2 and

3.1.2.3 respectively. The chapter ends with section 3.2 which discusses the other two

optimizers within the OpenMx package (NPSOL and SLSQP) in subsections 3.2.1

and 3.2.2.

Chapter 4 discusses the newly developed optimizer (CSOLNP) for the OpenMx

package. Section 4.1 provides an introduction to the optimizer CSOLNP. Section 4.2

explains CSOLNP’s algorithm in detail, including the optional arguments that can

5

affect the speed and accuracy with which the solution may be found.

Using simulated data, chapter 5 provides performance comparison between three

optimizers on both threshold and continuous models. Section 5.1.1 provides the

comparison results of the optimizers’ runtime averaged over 250 different replications

of data for threshold models. Section 5.1.2 provides the comparison results of the

optimizers’ runtime averaged over 250 replications of different threshold models with

different starting values. Section 5.2 analyzes the performance of the optimizers on

continuous models, with the same simulation setup as threshold models explained in

sections 5.2.1 and 5.2.2. A conclusion section on the performance of the optimizers

on threshold and continuous models is presented in section 5.3.

Chapter 6 describes the application of the CSOLNP optimizer to data on drug

use. Section 6.1 discusses the statistical models to be used. Section 6.2 presents

the conclusion of our research on drug use, and section 6.3, provides a figure of

the performance comparison of the optimizers’ runtime on the drug abuse dataset

collected from Sweden.

We discuss the optimizers’ profiling results in chapter 7. Section 7.1 explains

Valgrind [28] as a popular profiling suite and a summary of the tools available within

this program. Section 7.2 explains Valgrind’s profiling tool Callgrind in details, and

is followed by subsection 7.2.1 where the results of running Callgrind on the three

optimizers are presented. In section 7.3, we explain Valgrind’s heap profiler Massif

and present the results of comparing memory usage of the optimizers. In section 7.4,

the chapter is summarized.

In chapter 8, we present several features that we added to CSOLNP to improve

its performance. In section 8.1, analytical gradients are discussed, followed by section

8.2 where we explained analytical Jacobians. Section 8.3 discusses central difference

approximation, and finally in section 8.4, we explain how CSOLNP solves the problem

6

of infeasible initial point. Finally, in chapter 9 we summarize all the chapters and

present the conclusions from the dissertation.

7

CHAPTER 2

BACKGROUND

2.1 Structural Equation Modeling

Structural Equation Modeling (SEM) is a set of statistical methods to fit models

to data. Users typically begin SEM with an explicit hypotheses which are then

represented in a parametric model for variances, covariances and (optionally) means

of measures of interest. The model is then fitted to data to see whether the model is

rejected using various statistical criteria. [29, 30, 31].

There are two types of variables in SEM: latent variables and observed variables.

Latent variables are the set of variables that are not directly measured. They are

inferred from a set of variables that are directly observed and measured using tests

and surveys, called observed or manifest variables. Latent variables may be referred

to as factors or constructs, particularly when a set of similar items are used to measure

a trait of interest, such as IQ, substance use or depression.

The history of SEM [32, 33] goes back to the development of linear regression

models where dependent observed variables are predicted using a set of weighted

independent observed variables that minimizes the sum of squared residual errors.

A regression model consists of only observed variables. Sometimes, however, inves-

tigators will posit that there exists a variable which was not measured, but which

generates covariances among the variables that were measured. Factor analysis [34]

is an example of a SEM that includes latent variables.

With SEM, we can test hypothesized patterns of causal and correlational rela-

tionships among a set of observed and latent variables. Causal relationships between

8

Fig. 1. Path diagram of three latent variables and two observed variables as well as

correlations and path coefficients

variables indicate that one variable is the result of the occurrence of the other variable.

This is also referred to as cause and effect. Correlational relationship between vari-

ables describes the size and direction of a relationship between two or more variables.

With correlation, we can not automatically infer that the change in one variable is

the cause of the change in the other variable. In Fig. 1, we illustrate a path diagram

of three latent variables, and two observed variables and the causal and correlational

relationships between them [35].

In Fig. 1, D and E are observed variables shown with rectangles. A, B and

C are latent variables enclosed in circles. Another distinction between variables are

dependent and independent variables. In this figure, D and E are dependent variables.

These are the variables that we try to predict. A, B and C are independent variables.

They help in predicting the dependent variables D and E.

The single-headed arrows from A to D, B to D and E, and C to E define causal

relationships in the model. A, B and C at the head of the single-headed arrows

are the causes, while D and E at the tail of the arrows are the effects. There are

9

two single-headed arrows between D and E. There is a feedback-loop or reciprocal

causation between these two observed variables. This means D and E cause each

other.

Double headed arrows between correlations. In Fig. 1, A and C are correlated.

C also correlates with B. But A and B are not correlated. So, although A correlates

with C and C correlates with B, we cannot necessarily conclude that A is correlated

with B. Also, although A and B both cause dependent variable D, this does not

imply that they are correlated.

p and q in Fig. 1 are correlation coefficients. r, s, w, x, y and z correspond to

causal paths between latent and observed variables and are called path coefficients.

These are simply the weights from the regression analyses.

Regardless of the data type, SEM involves four main steps: model specification;

model identification; model estimation; and model testing. Each of these steps are

explained in the context of one of the most popular SEM software packages called

OpenMx in section 2.2.

2.1.1 Popularity of SEM

SEM is popular for the following reasons:

• In early work fitting SEMs, data were usually summarized as covariance or

correlation matrices, because the likelihood (the quantity we wish to maximize)

can be evaluated very rapidly, regardless of sample size. Today, models are

more likely to be fitted to the raw data because it is convenient when there are

missing observations, and certain models (such as mixture distributions) can

only be distinguished by using the likelihood of each observation separately.

• Datasets have become larger and the statistical models have become more so-

10

phisticated. SEM is capable of testing complex theoretical models as well as

handling a large number of variables to deal with such complex models.

• There is always a measurement error associated with observed variables. Be-

fore SEM, measurement errors and data analysis were handled separately. In

addition to being capable of analyzing latent and observed variables together,

SEM can model measurement errors associated with them as well.

• SEM software packages have become more and more user-friendly, and hence

they are easier to use and understand.

One of the most famous SEM packages used widely in the field of psychology

and genetics is OpenMx, explained in the next section.

2.2 OpenMx

OpenMx is a free, open source, platform-independent SEM package that is avail-

able as an R package on the Comprehensive R Archive Network (CRAN). OpenMx

designs a statistical model to test a hypothesis using a dataset [26, 27]. The front end

of OpenMx is written in R, providing users with better data management, statistics

and graphics, while the backend is written in C++ for its superior computational

performance.

• Model specification: OpenMx’s approach to any SEM or statistical modeling

analysis starts with model specification. Model specification involves determin-

ing every relationship and parameter in the model that is of interest. During

this step, a theoretical model is developed mathematically so that it can be

tested with observed data. In SEM, a model is said to fit perfectly when its

expected covariances and expected means exactly match those in the data.

11

Model specification in OpenMx can be done in both matrix-style and path-style

[36]. Matrix-style method specifies the matrices that are used to compute the

expected covariance and mean structure of the observed and latent variables.

With matrix-style method, models are specified in terms of matrix algebra.

Path-style method uses functions such as mxPath() to specify the model’s re-

gression and correlation paths between observed and latent variables. A valu-

able feature of the path approach is that a path diagram can be generated, and

this may be a mathematically complete model description if certain rules are

followed [37, 38].

• Model identification: The next step is model identification. In SEM, the knowns

are mainly the variances and covariances of the observed variables and the

unknowns are model parameters. A model is considered identified if one and

only one best value can be implied for each unknown parameter, using known

information.

• Model estimation: Next is model estimation. In this step, a fit function is

used to minimize the difference between model-implied and observed covariance

matrices. Maximum likelihood and several variants of least squares are the most

popular fit functions. However, in OpenMx users have the freedom to define

their own objective functions.

• Model testing: The final step is model testing, where the model is tested to see

how well the data fit the model. Different fit indices are reported in OpenMx for

goodness of fit including Chi Square, Root Mean Square Error of Approximation

(RMSEA), Akaike Information Criterion (AIC) and Bayes Information Criterion

(BIC) [39, 40, 41, 42, 43]

12

In the next section, OpenMx’s approach to analyze factor models is explained in

detail.

2.2.1 Factor analysis

Factor analysis attempts to find a smaller set of variables (latent variables) to

represent the variance-covariance of the observed variables. The aim is to preserve

the relationships between the observed variables using another set of variables that

are not observable, but generate the observed covariances. There are two different

approaches to factor analysis:

• Exploratory factor analysis (EFA): EFA attempts to explore the relationship

between observed variables and factors, with no specific hypothesis. The aim

is to find a model that fits the data. EFA typically proceeds by eigenvalue

decomposition of the observed correlation matrix. The number of factors is

usually taken to be the number of eingenvalues greater than unity.

• Confirmatory factor analysis (CFA): CFA confirms that a subset of observed

variables are represented by each factor. In CFA, specific hypotheses are mod-

eled, and then tested to see whether the sample data confirm that model.

As an example of factor analysis, a path diagram of a 1-factor, 3-variate factor

model is represented in Fig. 2.

The latent variable F represents the common variation among the observed vari-

ables V1, V2 and V3. The regression of an observed variable on a factor is inter-

preted as factor loading, denoted by λ1, λ2, λ3. Correlations between variables are

represented with two-headed arrows. Here, the only two-headed arrows are autocor-

relational (from the same variable to itself); they represent the variables’ variances,

denoted by σ2
V 1, σ

2
V 2, σ

2
V 3 and σ2

F .

13

Fig. 2. Path diagram of a 1-factor, 3-variate factor model

To represent the model in matrix form, we can describe the model algebraically.

Considering p observed variables, m factors and n subjects, a factor model can be

written as:

Yij = biXj + Eij

Where i = 1, ..., p variables and j = 1, ..., n subjects. Yij’s represent observed variables

for each subject. Xj are factor scores, which are values of each factor for each of the

subjects j in the sample. bi’s are factor loadings. Eij is unique for each observed vari-

able, and explains the variability beyond that explained by common factors. Factor

loadings are estimated as:

ΣY Y = BPB′ + E

Where ΣY Y is a p by p covariance matrix of observed variables, B is a p by m matrix

of factor loadings, P is an m by m covariance matrix of the common factors, and E

is a p by p matrix of specific variances.

14

2.2.2 Ordinal data and threshold models

Variables that are not measured on continuous scale, but have limited number of

categories are called categorical variables. Categorical variables that have logical or-

dering are referred to as ordinal variables. Ordinal data are modeled under threshold

models [24, 44]. Each ordinal variable is assumed to be predicted by an underlying

normally distributed latent continuous variable. Thresholds on the latent continu-

ous variables delineate the proportion of the observations in each category. These

proportions are obtained by calculating the integral over the relevant segment of the

distribution. Fig. 3 illustrates thresholds on a normally distributed continuous vari-

able underlying a 3-category ordinal variable. Because the normal distribution has

no explicit integral, it has to be evaluated numerically, but this comes with limited

precision. The higher the precision, the more CPU time is required, but insufficient

precision can cause issues during optimization. In chapter 7, we report results of

investigating precision and CPU time.

Fig. 3. Threshold model for ordinal data with three categories 0, 1, and 2.

15

2.3 Optimization in SEM

To highlight the role of optimization in SEM, we provide an overview of SEM

approach to test a statistical model. SEM tests a hypothesis of interest in the following

steps:

1. The researcher develops a theory.

2. Supporting data is gathered.

3. Alternative models are designed to test the theory.

4. Alternative models are fitted to data.

5. Fit statistics of the models are compared to find the model that best fits data.

Fitting a model to data involves calculating the model’s expectation for the

data which is in the form of expected covariances and means. To determine how

well the data fit the model, model’s expectation is compared to the data using a fit

function. This comparison is done by calculating a measure of the difference between

the observed (data covariance) and expected covariance matrices and means. This

measure is called the function value. SEM aims at finding the values of the model’s

free parameters that minimize the function value. In other words, an optimizer is used

to find the best set of parameters to minimize the misfit between data and model.

2.4 Fit functions in OpenMx

OpenMx offers several fit functions; in this dissertation, maximum likelihood is

used almost exclusively, so these are defined in this section;

• Maximum Likelihood fit function:

16

Given a data set with N rows and p variables with an observed covariance

matrix S, and a model with an expected covariance matrix Σ, and assuming

a multivariate normal distribution, the maximum likelihood function value is

defined as:

G2 = (N − 1)(ln |Σ| − ln |S|+ tr(SΣ−1)− p)

This function is effectively the difference in log-likelihood between a saturated

model where the observed covariance is the expected matrix, and the expected

covariance matrix. If there is a model for the means, then the maximum likeli-

hood function value is defined as:

G2
M = (N − 1)(ln |Σ| − ln |S|+ tr(SΣ−1)− p+

N

N − 1
(x− µ)′Σ−1(x− µ) + 1)

here x is the observed vector of means x, and µ is the expected mean vector.

Under certain regularity conditions [45], G2 and G2
M are asymptotically dis-

tributed as chi2 with degrees of freedom equal to the difference between the

number of observed statistics and the number of parameters in the model.

• Full Information Maximum Likelihood (FIML)

FIML is used to specify a separate likelihood calculation for each row in the

data matrix. This is very useful when the data has missing values.The reason

is that FIML uses the raw data as input and hence can use all the available

information in the data. Therefore if some of the measures are missing at a row,

that row of data contributes less to the misfit, while a row with all the entries

available contributes fully to the misfit computation.

Having k variables measured for an individual i in a vector xi, the full informa-

17

tion maximum likelihood function value is defined as:

−2 lnL =
N∑
i=1

(−k ln 2π + ln |Σi|+ (xi − µi)′Σ−1i (xi − µi))

The expected covariance matrix Σ and expected mean vector µ have their size

adapted to the rows and columns that exist in the k variables which exist

for individual i. Note that this function is not a difference between the log-

likelihood of a saturated model and the fitted one, but simply the log of the

likelihood itself.

18

CHAPTER 3

OPTIMIZATION METHODS

The standard form for a nonlinearly constrained optimization is:

min f(x) (3.1)

subject to :

g(x) = 0

lh ≤ h(x) ≤ uh

lx ≤ x ≤ ux ,

where:

f(x) : Rn → R is the objective function,

g(x) : Rn → Rme are the equality constraint functions,

h(x) : Rn → Rmi are the inequality constraint functions,

lh, uh are the lower and upper bounds for inequalities, and

lx and ux are the bounds for decision variables.

The objective function and the constraints can be linear or nonlinear. The aim is

to find a combination of decision variables that results in the lowest objective function

value in case of minimization or highest in case of maximization, while satisfying all

the constraints.

Optimization algorithms can be classified as constrained and unconstrained algo-

rithms. Since most optimization algorithms are gradient-based, an overview of these

methods are provided as well as the most popular algorithms for constrained and

unconstrained methods that use gradient information for finding the solution.

19

3.1 Gradient-based Algorithms

Gradient-based algorithms perform in two steps: finding 1) a search direction

and 2) a step size to move along this direction. This two-step process is known

as line search. Using gradient information, the first step involves finding a search

direction that improves the objective function. The second step involves the decision

of how far to proceed along this direction before hitting the constraints. Eventually,

the direction and the step size that improve the objective value, while satisfying the

constraints would be chosen [46, 47].

3.1.1 Unconstrained Nonlinear Algorithms

Unconstrained optimization refers to the problem of optimizing an objective func-

tion without any constraints on the decision variables. We discuss gradient-descent

and conjugate gradient methods as two gradient-based methods for unconstrained

nonlinear problems in the next two sections.

3.1.1.1 Steepest Descent (Gradient descent)

This method uses the gradient vector at each point as the search direction for

each iteration. The idea is that the objective function f(x) decreases with the fastest

rate in the direction of negative gradient:

dk = −∇f(xk)

The rate of change is given by the norm of gradient vector ||∇f(x)||.

Steepest descent method zigzags in the feasible region of the problem. This

behavior means that the algorithm does not choose the fastest path towards the

solution. Zigzaging towards the solution results in the algorithm to faster find the

20

descent direction in the few first iterations, but it gets very slow towards the end of

the routine when the problem is close to convergence.

To overcome this problem, the method of conjugate gradient was developed,

which takes into account the information from the previous descent directions in

order to avoid redundant steps in the next iterations. At each iteration k, the negative

gradient vector at current iteration is combined with the previous iterations’ descent

directions to find a new conjugate direction for the next iteration [48, 49].

3.1.1.2 Conjugate Gradient

The method starts with the starting point x0. The negative gradient descent

direction is computed: d0 = −∇f(x0). Next, line search is performed to find the

step length α0 alongside d0. The current point is updated by x1 = x0 + αd0. At this

iteration we have enough information to find a conjugate direction: dk = sk+βkdk−1

where sk is the descent direction at point xk where k > 0: sk = −∇f(xk) and βk is:

(
||∇f(xk)||
||∇f(xk−1)||

)2

The next point is then updated by xk+1 = xk + αkdk. The algorithm iterates until

∇f(x) ≈ 0 [50, 51].

3.1.1.3 Newton’s Method

Newton’s method is derived from a second-order Taylor series expansion of the

objective function about an initial point x0 in the following form:

f(x) = f(x0) +∇f(x0)T (x− x0) +
1

2
(x− x0)TH(x0)(x− x0) ,

21

where H(x0) is the Hessian matrix. Newton’s method updates point estimates using

the following formula:

x = x0 −H(x0)−1∇f(x0) ,

which is obtained by setting the differentiation of Taylor series expansion with respect

to x equal to 0. Here, the search direction is obtained by H(x0)−1∇f(x0) and the

step size is 1 [52, 52, 53].

3.1.1.4 Broyden-Fletcher-Goldfarb-Shanno

The most popular method for unconstrained optimization is Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method. BFGS is an iterative algorithm where it uses the

information from the previous iterations to find a new search direction that improves

the objective value. Instead of calculating the exact inverse of the Hessian H(x0)−1,

BFGS provides an approximation to the inverse of the Hessian matrix, and hence is

considered a quasi-newton algorithm [54, 55, 56]. This algorithm is explained in more

details in the next chapter.

3.1.2 Constrained Nonlinear Algorithms

For general nonlinear optimization with constraints, gradient-based algorithms

are considered converged when the Karush-Kuhn-Tucker (KKT) conditions are satis-

fied. KKT conditions are first order necessary conditions to determine if a constrained

local optimum has been found [57, 58]. These conditions are summarized as:

1. The optimal point (x∗) must be feasible.

2. The gradient of the Lagrangian must be zero at the optimal point:

∇f(x∗) +

mi∑
i=1

λi∇hi(x∗) +
me∑
j=1

λj∇gj(x∗) = 0

22

3. Complementary slackness: for each inequality constraint:

λihi(x) = 0

Now to make sure the optimal point is not a saddle point or a maximum point, second

order optimality conditions should be imposed:

wT∇L2(x∗, λ∗)w > 0 ∀w ∈ T ′, w 6= 0 ,

where T ′ is the tangent space for feasible points:

T ′ = {v : ∇hj(x∗)v = 0 ∀j ∈ {j : λj > 0},∇g(x∗)v = 0}

The tangent space gives us the set of directions in which one we move from x∗ while

still staying within the feasible set [59, 60].

We discuss Sequential Quadratic Programming (SQP) and Quadratic Program-

ming (QP) as well as barrier methods (interior point methods) and primal methods

as constrained optimization techniques in the next sections.

3.1.2.1 Primal methods

Primal methods start with a candidate point in the feasible region and remain

in the feasible region to find an optimal solution. The aim is to find candidate point

estimates that decrease the objective function at each iteration, while staying in the

feasible region. So the objective function is constantly decreased and the constraints

are always satisfied at each iteration. This is achieved by finding a search direction

23

dk that is both descending and feasible. this means the following should hold for dk:

∇f(x)Tdk < 0

∇hi(x)Tdk < 0

∇gi(x)Tdk = 0

f(x)Tdk < 0 implies descending direction for the objective function f(x). ∇hi(x)Tdk <

0 and gi(x)Tdk = 0 imply that feasibility is increased by moving in the direction tan-

gential to the active set for hi(x)’s and parallel for the gi(x)’s.

Gradient projection methods are a category of primal methods. They are mo-

tivated from steepest descent algorithms. The algorithm works by moving in the

direction of the negative gradient, and then projects it onto working surface formed

by active constraints to find the direction of movement. This algorithm is explained

more in the next chapter in the context of our developed optimizer.

3.1.2.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is the most popular constrained opti-

mization technique. SQP optimizes a quadratic approximation of the objective func-

tion subject to linearly approximated constraints. Such problem is called Quadratic

Programming (QP). The objective function is often converted to a merit function

which is used as a criterion to determine whether a candidate point is better than the

previous point estimate where the objective function is improved and the constraints

are satisfied [61, 47].

Since an SQP method solves a QP at each iteration, we explain QP in more

details. This will help in understanding the basis of all the three optimizers available

in OpenMx.

24

3.1.2.3 Quadratic Programming

QP is an special case of Nonlinear Programming where the objective function is

a quadratic function of decision variables and the constraints are linear functions of

these variables [62, 63].

QP is the problem of finding a vector x of decision variables such that the fol-

lowing quadratic function is minimized:

min 1
2
xTHx+ fTx

subject to:

g(x) = 0

h(x) ≤ 0

x ≥ 0 ,

where: H ∈ Rn×n, f ∈ Rn, and g(x) and h(x) are respectively equality and inequality

constraints where g(x) : Rn → Rme and h(x) : Rn → Rmi .

There are several methods to solve a QP problem, some of them being: Inte-

rior point methods, augmented Lagrangian methods, active set methods and conju-

gate gradient methods. An unconstrained quadratic programming problem is most

straightforward to solve. Simply setting the derivative of the objective function equal

to zero and solving the problem would give us the solution to the QP problem. The

conjugate gradient method is the most common approach to a QP problem when the

objective function is convex and there are only equality constraints. If inequality con-

straints are involved, interior point, augmented Lagrangian and active set methods

are mostly preferred. We now describe the most general approaches for solving QP

problems and explain them in more details in the remainder of this section.

Interior point or barrier methods try to reach to the optimum by passing through

25

the interior of the feasible region. This class of methods attempts to restrict the

constraints into the objective function by creating a barrier function which limits the

optimizer to iterate only in the feasible region. The algorithm starts by adding slack

variables to any inequality constraints and covert them to equality constraints as the

following:

h(x) ≤ b → h(x) + s = 0

s ≥ 0

It then continues by converting the x ≥ 0 constraint to a barrier term that is added

to the objective function. The objective function f(x) is modified to the following

after a barrier term is added:

min f(x)− µ
∑n

i=1 lnxi

The term lnxi is undefined for xi < 0. A large value of µ gives the analytic center

of the feasible region. As µ gets smaller and approaches 0, the optimal solution

is found. To find the solution to the barrier problem, KKT conditions are formed

and then solved by Newton’s method iteratively. At each iteration, a new search

direction is found. Next step would be finding the steplength α which is found using

backtracking approach [64, 65].

The following section provides brief explanation of two different implementations

of the SQP algorithm within OpenMx software: NPSOL and SLSQP. Our developed

optimizer CSOLNP is explained in details in the methodology section.

3.2 Optimizers within OpenMx

Apart from our developed optimizer CSOLNP, two other optimization engines

are available in OpenMx: NPSOL and SLSQP. These optimizers are briefly reviewed

26

in the following sections.

3.2.1 NPSOL

NPSOL (short for Nonlinear Programming at Systems Optimization Laboratory

at Stanford ([66]) was the only available optimizer either in Mx (OpenMx’s prede-

cessor package developed in Fortran) or OpenMx since the early 1990’s. NPSOL is

a SQP method which finds the solution by applying line search on the augmented

Lagrangian merit function. The optimizer solves a QP subproblem at each iteration.

The QP subproblem is solved using subroutines from the LSSOL package which is a

FORTRAN package developed at the same lab for solving constrained linear least-

squares and convex quadratic programming. The solution to the QP subproblem

determines the search direction. The Hessian matrix for QP subproblem is updated

using BFGS. Finally the iteration ends by specifying a step length which provides

sufficient decrease in the merit function. NPSOL is written in Fortran, and can

be called from Fortran, C and C++ programs. NPSOL is licensed under Stanford

Business Software Inc.

3.2.2 SLSQP

SLSQP (short for Sequential Least-Squares Quadratic Programming) is a SQP

method which solves the QP subproblem by solving its equivalent linear least squares

problem. SLSQP is available through NLopt collection [67] which is an open source

library for nonlinear optimization, and is developed in C.

27

CHAPTER 4

APPLICATION OF CSOLNP WITHIN OPENMX ON DRUG USE 1

CSOLNP, short for C++-based optimizer for Solving Nonlinear Programs, is a C++

implementation of the R package RSOLNP [69] and is developed as one of the opti-

mizers available in the OpenMx package [26, 27]. Mx and OpenMx used to perform

optimization using only NPSOL [66]. Recently, SLSQP from NLopt collection [67]

has been added to OpenMx. Similar to NPSOL and SLSQP, CSOLNP solves non-

linear problems by applying the SQP method to a linearly constrained augmented

Lagrangian objective function. While all three optimizers use SQP method, the im-

plementations are different.

4.1 Introduction to CSOLNP

CSOLNP solves general nonlinear problems of the form presented in formula 3.1.

It is an iterative algorithm which solves a QP subproblem at each major iteration. QP

is a special case of Nonlinear Programming optimization where the objective function

is quadratic and the constraints are linear. Each major iteration starts by solving

a linearly constrained problem with an augmented Lagrangian objective function of

the following form:

1Based on the publication [68]: Zahery, Mahsa, Hermine H. Maes, and Michael C. Neale. ”CSOLNP:
Numerical Optimization Engine for Solving Non-linearly Constrained Problems.” Twin Research and Human
Genetics 20, no. 4 (2017): 290-297.

28

min f(x)− ykg(x) + (ρ
2
)||g(x)||2

subject to :

Jk(x− xk) = −g(xk)

lx ≤ x ≤ ux

The inequality constraints are converted to equality constraints by adding slack

variables:

h(x) + s = 0, s ≥ 0

for h(x) ≤ 0 constraints, and:

h(x)− s = 0, s ≥ 0

for h(x) ≥ 0 constraints. The superscript k denotes the iteration number, and Jk is

the Jacobian matrix:

Jk =
∂g

∂x
|xk

The original objective function is converted to an augmented Lagrangian func-

tion which incorporates a penalty term (ρ), as well as a Lagrange multiplier term

(y). The penalty term is used to penalize the objective function if the current point

estimation is violating the constraints, while the Lagrange multiplier is used to reduce

the computational cost imposed by updating the penalty term at each iteration. The

augmented Lagrangian objective function plays the role of a merit function measuring

the quality of each iteration for finding a better point estimate.

The augmented Lagrangian objective function is a very common choice for a

merit function ([70]). This method does not have the drawback of penalty methods in

terms of having to face an ill-conditioned unconstrained problem with huge gradients.

29

For penalty methods, the penalty parameter is increased at each iteration to ensure

that the unsatisfied constraints are penalized more severely, which eventually helps

the optimizer stay close to a feasible region. Hence, optimization is achieved when

the penalty parameter is increased to infinity while the term ||g(x)||2 is close to zero

suggesting that no constraints are violated. But increasing the penalty parameter to

infinity can result in increasing the condition number of the problem to infinity as the

algorithm proceeds. Condition number is the sensitivity of the output of a system

with respect to small errors in the input. Hence a large condition number implies that

small changes in the input data can make drastic changes in the solution of a system.

A system with a large condition number is called ill-conditioned and its solution is not

reliable. The augmented Lagrangian method uses a Lagrange multiplier term which

avoids ill-conditioning by stopping the penalty parameter from approaching infinity.

After converting the problem to an augmented Lagrangian function with lin-

earized constraints, CSOLNP continues with a feasibility check of the current point.

The region that is bounded by the constraints of the problem is called the feasible

region. Any point in this region is called feasible. If the current point is feasible,

CSOLNP continues with finding an optimal solution in the feasible region. Other-

wise, a phase 1 Linear Programming (LP) procedure is applied to find a feasible

point.

A two-phase LP technique approaches the optimal solution of a system in two

phases, feasibility seeking, and optimality seeking. In phase 1, an auxiliary problem

is constructed by introducing artificial variables. Artificial variables do not have any

physical meaning. They are only introduced to the problem to find a feasible solution.

In phase 1, one artificial variable is added for each inequality and equality con-

straints. The original problem is then replaced with the sum of these artificial vari-

ables. Since artificial variables should not become part of an optimal solution to the

30

original problem, they have to be zero at the feasible solution, and subsequently the

sum of them should equal to zero. Hence, the goal is to minimize the new objective

function subject to the constraints of the original problem. If the minimum objective

value is zero, then the original problem has a feasible solution. This feasible solu-

tion is used as the starting point for phase 2 where the original objective function is

minimized for finding the optimal solution.

After finding a feasible point, a QP subproblem is solved to find the search

direction. By approximating the objective function quadratically, the QP subproblem

preserves the nonlinearity of the original objective function. Also, the constraints

make the original problem easy to solve. An obvious choice of a QP subproblem

would have the following format:

min ∇f(xk)T (x− xk) + 1
2
(x− xk)TH(x− xk)

subject to:

∇g(xk)T (x− xk) + g(xk) = 0

∇h(xk)T (x− xk) + h(xk) = 0 ,

where:

∇ denotes the first derivative, and H is an approximation to the hessian of the

Lagrangian of the objective function L(xk, uk).

Here, the objective function is obtained by the quadratic approximation of the

original objective function at the current estimate xk, and the constraints are the

linear approximations of the actual constraints at the same point estimate. After

the direction dkx = x − xk is found, CSOLNP proceeds by finding a step length (α)

that satisfies all the constraints and provides sufficient decrease in the augmented

Lagrangian merit function. The next iteration starts from the new point estimate

31

xk+1 = xk + αdkx.

The solution of each QP subproblem is a search direction towards a better point

estimate. Eventually, after each iteration of SQP algorithm, a better approximation,

xk+1, is constructed. The sequence of these approximations are hoped to converge to

a solution for the original constrained nonlinear problem. A flowchart of CSOLNP

algorithm is provided in Fig. 4.

Start with x = x0, u = u0, and H = I

Find dkx and dku by forming a QP subproblem

Find an appropriate α, such that: M(xk + αdkx) <M(xk) where M is the merit function

Update x, u: xk+1 = xk + αdx, u
k+1 = uk + αdu

converged?

stop

Update H, and set k = k + 1

yes

no

Fig. 4. A Flowchart of CSOLNP’s algorithm. Starting with initial set of free variables

x0, and Lagrange multipliers u0, the search directions dkx and dku are found by

solving a QP subproblem. Finding an appropriate step length α, CSOLNP

updates the free variables and Lagrange multipliers. If the difference between

the current objective value and the previous objective value is less than the

optimality tolerance, the point estimates are considered to be converged, and

CSOLNP reports the final set of free variables as the optimum. Otherwise, the

Hessian matrix H is updated, and CSOLNP continues with the next iteration.

32

4.2 CSOLNP: Algorithm

We discuss details of CSOLNP’s algorithm in sections ???. What occurs at each

iteration of both the SQP algorithm and the QP subproblem will be explained. Next,

the choice of step length α, and the convergence criteria will be discussed.

4.2.1 Initialization

Given the objective function and the constraints, CSOLNP starts with setting

the following control parameters. All of these parameters except the penalty param-

eter can be user-defined. The default values for these parameters are provided in

parentheses:

1. Maximum number of major iterations (iterations of the SQP algorithm = 400)

2. Maximum number of minor iterations (iterations of the QP subproblem = 800)

3. Penalty parameter ρ (= 1)

4. Perturbation parameter δ in finite differences method for finding the numerical

gradient (= 1e-7)

5. Tolerance on feasibility and optimality (= 1e-12)

After setting these parameters, the objective function and the constraints are evalu-

ated. Next, the Lagrange multipliers are initialized to a vector of zeros with length

equal to the total number of constraints; in case there are no constraints, it is set to

zero. An augmented parameter vector containing the inequality evaluations at the

starting point as well as free variables’ starting values is created. The corresponding

Hessian matrix is initialized with the identity matrix for the first iteration.

33

4.2.2 Find a feasible direction

The first major iteration of the SQP algorithm starts by scaling the objective

value, the constraints and the free variables. The gradients and the Jacobians are

calculated numerically using the forward difference approximation method:

f ′(x) ≈ f(x+ δ)− f(x)

δ

The default value for the perturbation parameter (δ) is 1e-7. The candidate point

is then checked for feasibility. If it is not feasible, a phase 1 Linear Programming

procedure is performed to start the QP algorithm with a feasible point. CSOLNP

implements phase 1 with a combination of Affine Scaling Method and Gradient Pro-

jection Method in the sense that the feasibility direction is found using the Affine

Scaling Method, while the step to move along this direction is found using the Gra-

dient Projection Method.

The Affine Scaling Method is a simplified variant of Karmarkar’s algorithm [71].

The basic idea behind this method is to start with a point lying in the interior (inside

the boundaries) of the feasible region, and move in the direction of negative gradient

descent to reduce (for minimization) the objective value at the fastest possible rate.

Moving towards the direction of negative gradient descent, we might fall out of the

feasible region. To have more space for reducing the objective value before hitting the

boundaries of the feasible region, the Affine Scaling Method changes the coordinates

of the feasible point to be placed at equal distance from the boundaries. In other

words it transforms the feasible region to place the current point at its center. So for

34

a standard LP problem of the form:

min cTx

subject to:

Ax = b

x ≥ 0

Where A is of size m by n. x and c are vectors of n elements and b is a vector of

m elements, the Affine Scaling Method aims at moving in the direction of negative

gradient of the objective function which is −c. Moving in this direction, the objective

value is reduced, but we may violate Ax = b. To avoid this, −c is projected into the

null space of matrix A which is the set of all feasible direction vectors. This projection

is:

P = I − AT (AAT)−1A

hence, the projected gradient is Pc and the feasible direction would be −Pc. The

last part of the Affine Scaling Method is to have the projected gradient near the cen-

ter of the feasible region. This way, there is more room for further iterations of the

algorithm. For this purpose, the current point x is rescaled to the point X = D−1x,

where D is a diagonal matrix of the elements of vector x. This changes the LP

problem to minimizing cTDX, subject to ADX = b and X ≥ 0. Subsequently the

projection becomes P = I − ÃT (ÃÃT)−1Ã, where Ã = AD. So, the projected gra-

dient is P c̃ with c̃ being Dc. The new point is then xk+1 = xk − αP c̃, where α is

the step length which is obtained by the Gradient Projection Method as the following:

α =

xi−ui
vi

, if vi < 0

xi−li
vi
, if vi > 0

35

Where v is the search direction obtained by the Affine Scaling Method, and li and

ui are respectively the lower and upper bounds for xi. The objective value and the

constraints are re-evaluated in case the starting point has been replaced with a feasible

one. The merit function is also evaluated at the candidate point.

4.2.3 Solution to QP algorithm

At each iteration of the QP algorithm, a new search direction is found. this

procedure starts by calculating the gradient of the merit function using the forward

difference method. Next, the Hessian matrix is updated. If this is the first itera-

tion of the QP algorithm, the algorithm considers the identity matrix as the Hessian

approximation. Otherwise, a quasi-Newton approximation to the Hessian of the La-

grangian is calculated. In general, when the Hessian of the problem is dense (most of

the matrix elements are nonzero), the quasi-Newton approximation can be a better

choice, as it saves the computation time per iteration. CSOLNP uses the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton approximation to the Hessian at

each iteration of the QP algorithm:

Hk+1 = Hk + 1
yT d

yyT − HddTH
dTHd

Where H is the Hessian matrix, d is xk+1 − xk, and y is the change in the gradient:

gk+1 − gk.

The QP algorithm finds the search direction using the Newton’s method. The

search direction is obtained by Cholesky factorization of the Hessian matrix:

Hkdk = −gk

The Newton algorithm is considered to converge when all the constraints and free

36

variables’ bounds are satisfied.

After finding the search direction, CSOLNP looks for a step length to move

along this direction. The algorithm continues by finding a new temporary point:

xk+1 = xk+dk. This point is not yet considered a new estimate for the next iteration.

It is necessary to figure out the length of the step to move along the direction from

the current point towards this temporary point. The step size is found using a binary

search method: the interval between the current point and the temporary point is

searched for a step size that results in the lowest merit function. The search continues

until this interval is less than some tolerance.

Having the search direction and the step size, CSOLNP finds the next point

estimate:

xk+1 = xk + αdk

and a new iteration of the QP algorithm starts.

4.2.4 Convergence

The QP algorithm stops if the difference between the objective value at the

current iteration of the QP algorithm and the previous iteration is less than the

optimality tolerance. The vector of free variables, the Hessian matrix, as well as

the objective value and the Lagrange multipliers (in case there are constraints) are

updated, and a new iteration of the SQP algorithm (major iteration) is started.

Similar to the convergence of the QP subproblem, the problem is converged when

the difference between the current objective value and the previous objective value is

less than the optimality tolerance. Additionally the constraints are satisfied to within

the feasibility tolerance.

37

4.3 Conclusion

We have developed a numerical optimization engine called CSOLNP for solving

nonlinear constrained problems. CSOLNP is based on the R package RSOLNP. which

implements a Sequential Quadratic Programming algorithm to solve general nonlinear

problems with nonlinear objective functions and constraints.

Solving a Quadratic Programming subproblem at each iteration, CSOLNP finds

a search direction that minimizes the objective function. The next step is to find an

appropriate step length which best minimizes the merit function. The merit function

is the augmented Lagrangian conversion of the original objective function. This is

achieved by backtracking line search method where the points between the current

point and a candidate point (obtained by taking a full-size step along the search

direction) are tested for being the next point estimate. The point that has better

minimized the merit function is considered for the next iteration of the SQP algo-

rithm. The optimizer converges when both the optimality and feasibility tolerances

are satisfied.

38

CHAPTER 5

PERFORMANCE COMPARISON OF CSOLNP, NPSOL AND SLSQP

ON THRESHOLD AND CONTINUOUS MODELS

In all structural equation modeling (SEM) techniques, alternative models are designed

to test a hypothesis of interest. These models are fitted to data to find the best set of

parameters that minimizes the difference between models and data. To minimize the

misfit between the models and data, SEM needs optimization, which unfortunately

is not an exact science. Optimization problems have different landscapes to search,

and the best search algorithm depends somewhat on the features of the landscape.

OpenMx offers three optimizers, which differ in their abilities to find the solution.

We have compared the performances of CSOLNP, NPSOL and SLSQP on a variety

of threshold models (this is a complex problem that is subject to local minima) as

well as continuous data. Maximum Likelihood Estimation (MLE) is used as fit func-

tion for threshold models to estimate factor loadings and thresholds. The likelihood

function is the joint probability of the latent continuous variables underlying the set

of ordinal variables, and is defined as multivariate integration of the distribution over

the intervals defined by the thresholds. For multivariate normal integration, we use

Alan Genz’s SADMVN routine [72]. The precision with which SADMVN computes

the multivariate normal integration is varied between 1e-3 to 1e-6 in our simulations

to compare the performances of CSOLNP, NPSOL and SLSQP. Other varying ele-

ments in our simulations are the number of latent variables (factors) and the sample

sizes.

The models are run with 1 and 2 factors on datasets of size 1000, 10000 and 20000

39

samples. The performances of the three optimizers are tested on different threshold

and continuous models. All the simulations in this dissertation are run on a Linux

Beowulf cluster with the following computing resources:

– 42 Dell PE R630/R620 servers with CentOS/Redhat 6.7 64 bits Linux OS

– 800+ cores using Intel Xeon 56XX processors (2.67GHz to 3.4GHz)

– Total 5+TB RAM (80GB-128GB per node)

– 450TB network attached storage with 500TB backup storage

– 10TB internal disk storage (120GB-900GB per node)

– 40GB InfiniBand network connections to all nodes and storage

– Fail-over redundant master servers

5.1 Comparison of the optimizers on threshold models

The performances of CSOLNP, NPSOL and SLSQP are compared on threshold

models [44] with 5 variables and 1 to 2 factors. Performance was compared with

respect to runtime of the optimizers when multivariate normal (mvn) integration

absolute error tolerance is reduced from 1e-3 to 1e-7.

5.1.1 Comparison of optimizers’ runtime averaged over 250 datasets

We ran threshold models with 1 and 2 factors on samples of 1000, 10000 and

20000 sizes respectively. Each model is run 250 times with different datasets. To

provide a better understanding of the distribution of runtimes, we present histograms

of runtime of the three optimizers on a 1 factor threshold model with sample of size

1000 and two extreme mvn absolute error tolerances, 1e-3 in Fig. 5 and 1e-7 in Fig. 6.

40

The blue line represents the median of the distribution and the red dashed line is the

mean.

(a) (b)

(c)

Fig. 5. Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c) SLSQP

on a 1 factor threshold model with sample of size 1000 and mvn absolute error

tolerance of 1e-3. The blue lines show the median of the distributions and the

red dashed line represents the mean.

Looking at Fig. 5(a), we can see that for CSOLNP, the mean and median are

very close to each other. The same holds true for SLSQP (Fig. 5(c)). In NPSOL

41

(a) (b)

(c)

Fig. 6. Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c) SLSQP

on a 1 factor threshold model with sample of size 1000 and mvn absolute error

tolerance of 1e-7. The blue lines show the median of the distributions and the

red dashed line represents the mean.

(Fig. 5(b)), since the distribution is right skewed and the tail is stretched away from

the peak, the mean and the median may seem to be close to each other but they

are not actually as close as these values are in CSOLNP and SLSQP. In table 1, we

provide the exact values of the mean and the median for all the three optimizers.

42

Optimizer mean median

CSOLNP 67.301 65.977

NPSOL 102.528 68.423

SLSQP 74.281 70.557

Table 1. mean and median values of runtime for the three optimizers when run 250

times on different datasets modeled with a 1-factor threshold model with

sample of size 1000 and mvn absolute error tolerance value of 1e-3.

As Table 1 suggests, the mean and the median in NPSOL are not close to each

other. The same holds true for Fig. 6 where the same model is run with mvn absolute

error tolerance of 1e-7. In Table 2, we present the mean and the median of the runtime

distribution for this case.

Optimizer mean median

CSOLNP 2322.957 2310.191

NPSOL 2019.684 1610.321

SLSQP 2195.522 2152.008

Table 2. mean and median values of runtime for the three optimizers when run 250

times on different datasets modeled with a 1-factor threshold model with

sample of size 1000 and mvn absolute error tolerance value of 1e-7.

Table 2 provides similar results to Table 1 in that NPSOL’s mean and median are

far apart from each other, while for CSOLNP and SLSQP, these values are very close

to each other. NPSOL’s histograms in Fig. 5(b) and Fig. 6(b) are also very similar,

both skewed to the right with long tails. This suggests that in NPSOL, the median

is a better measure for central tendency of the distribution, but the stretched tail in

Fig. 5(b) and Fig. 6(b) suggests that the variance around the median is very high.

43

This makes NPSOL an unreliable choice of optimizer. For CSOLNP and SLSQP, the

mean and the median are very close to each other and the distribution is less skewed.

These two optimizers are more reliable as they provide consistent results with less

variance.

based on the histograms, we illustrate the mean value of the optimizers’ runtime

for 250 simulations in logarithmic scale on threshold models with 1 and 2 factors on

samples of size 1000 in Fig. 7, 10000 in Fig. 8 and size 20000 in Fig. 9. The mean

value is presented for different mvn absolute error tolerances ranged from 1e-3 to 1e-7.

We also compared the final objective values at which the three optimizers stop. The

relative difference between the final objective values are less than 0.5%, and hence

not shown.

(a) (b)

Fig. 7. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors for a

sample of size 1000 with mvn absolute error tolerance of 1e-3 to 1e-7. Runtimes

are averaged over 250 data simulations.

In all the threshold models shown in this section, the optimizers take more time

as the requested numerical integration precision for absolute error tolerance is reduced

from 1e-3 to 1e-7. This is expected as smaller absolute error tolerance dictates the

accuracy of numerical integration. Since there is no closed form solution for the

44

(a) (b)

Fig. 8. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors

for a sample of size 10,000 with mvn absolute error tolerance of 1e-3 to 1e-7.

Runtimes are averaged over 250 data simulations

(a) (b)

Fig. 9. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors

for a sample of size 20,000 with mvn absolute error tolerance of 1e-3 to 1e-7.

Runtimes are averaged over 250 data simulations.

integration of the multivariate normal distribution, it is carried out numerically to

a particular degree of numerical precision. However, the more precise the integral

calculation, the longer it takes. In these tests, NPSOL is in general the slowest

optimizer, and CSOLNP is the fastest.

45

5.1.2 Comparison of optimizers’ runtime averaged over 250 different start-

ing values

We ran the same 1 factor and 2 factor threshold models with sample sizes 1000,

10000, and 20000 with 250 different starting values and compared their runtime.

Starting values can easily affect the optimizers’ trajectory to find the solution, and

hence can provide important information about optimizers’ performance.

We provide two histograms of runtime of the three optimizers in Fig. 10 and 11.

The histograms are obtained by running a 1-factor threshold model on a sample of

size of 1000 with mvn absolute error tolerance of 1e-3 in Fig. 10, and 1e-7 in Fig. 11.

The blue line represents the median of the distribution and the red dashed line is the

mean. Similar to the previous section’s results, NPSOL’s distribution is skewed and

has a stretched tail in Fig. 10. Table 3 shows the values of the mean and the median

for all the optimizers in this case. In this table, we see that the mean is almost twice

the median for NPSOL, while for CSOLNP and SLSQP, these values are almost the

same.

Optimizer mean median

CSOLNP 59.48888 58.8894

NPSOL 105.514 58.585

SLSQP 75.42213 72.89215

Table 3. mean and median values of runtime for the three optimizers when run 250

times with different starting values. The model is a 1-factor threshold model

run on a sample of size 1000 and mvn absolute error tolerance value of 1e-3.

We choose the mean as a measure for central tendency of the distribution of

optimizers’ runtime. Fig. 12, 13 and 14 illustrate the results for threshold models with

46

(a) (b)

(c)

Fig. 10. Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c) SLSQP

when run on threshold model with 1 factor and absolute error tolerance of

1e-3 on sample of size 1000. The distribution is formed by running the models

250 times with different starting values. The blue lines show the median of

the distributions and the red dashed line represents the mean.

1 and 2 factors on samples of 1000, 10000 and 20000 sizes when mvn absolute error

tolerance is reduced from 1e-3 to 1e-7. The results are averaged over 250 replications

of the same models with different starting values.

CSOLNP appears to be a better choice of optimizer for threshold model anal-

47

(a) (b)

(c)

Fig. 11. Histogram of optimizers’ runtime for (a) CSOLNP, (b) NPSOL and (c) SLSQP

when run on threshold model with 1 factor and absolute error tolerance of

1e-7 on sample of size 1000. The distribution is formed by running the models

250 times with different starting values. The blue lines show the median of

the distributions and the red dashed line represents the mean. In all the cases,

the mean and the median are very close to each other.

ysis, due to its faster performance, and greater reliability. We see NPSOL as an

inconsistent optimizer with largest standard deviations in most of the cases. The

histograms of optimizers’ runtime proves the inconsistent behaviour of NPSOL as the

48

(a) (b)

Fig. 12. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors for

a sample of size 1000 with mvn absolute error tolerance reduced from 1e-3 to

1e-7. Runtimes are averaged over 250 replications of the models with different

starting values.

(a) (b)

Fig. 13. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors

for a sample of size 10000 with mvn absolute error tolerance reduced from

1e-3 to 1e-7. Runtimes are averaged over 250 replications of the models with

different starting values.

optimizer’s runtime distribution is heavily skewed with long tail. SLSQP takes longer

than CSOLNP in all the cases except some rare cases where absolute error tolerance

is 1e-7. Since the default value for mvn absolute error tolerance in OpenMx is 1e-3,

49

(a) (b)

Fig. 14. Runtimes of CSOLNP, NPSOL and SLSQP in logarithmic scale for threshold

models with (a) 5 variables and 1 factor, and (b) 5 variables and 2 factors

for a sample of size 20000 with mvn absolute error tolerance reduced from

1e-3 to 1e-7. Runtimes are averaged over 250 replications of the models with

different starting values.

we think it is safe to conclude that CSOLNP is a better choice of optimizer for ordinal

data and threshold model analysis.

5.2 Comparison of optimizers on continuous models

Next, we compared the runtime performance of CSOLNP, NPSOL and SLSQP

when fitting a factor model to continuous data. The analyses involve data from

5 variables with 1 or 2-factor model. Since multivariate normal integration is not

required to calculate the likelihood for continuous data, the mvn parameter value is

irrelevant.

5.2.1 Comparison of optimizers’ runtime over 250 different datasets

Fig. 15 illustrates runtime of the three optimizers on continuous models with 1

and 2 factors on samples of 1000, 10000 and 20000 sizes respectively. The results are

averaged over 250 simulations. The final objective values are almost identical for the

50

(a) (b)

Fig. 15. Runtimes of CSOLNP, NPSOL and SLSQP for continuous models with (a)

5 variables and 1 factor, and (b) 5 variables and 2 factors for samples of

sizes 1000, 10000 and 20000. Runtimes are averaged over 250 different data

simulations.

optimizers and hence not shown.

5.2.2 Comparison of optimizers’ runtime over 250 different starting val-

ues

Fig. 16 illustrates runtime of the three optimizers on continuous models with 1

and 2 factors on samples of 1000, 10000 and 20000 sizes respectively. Results are

averaged over 250 replications of models with different starting values. The final

objective values are almost identical for the three optimizers and hence not shown.

5.3 Conclusion

We compared the performance of the three optimizers available in the package

OpenMx over threshold and continuous models. We ran the optimizers on threshold

models with 5 variables and 1 or 2 factors with samples of size 1000, 10000 and 20000.

We compared the runtime of the optimizers as the multivariate normal integration

precision is increased from 1e-3 to 1e-7. In one scenario, we ran such models over 250

51

(a) (b)

Fig. 16. Runtimes of CSOLNP, NPSOL and SLSQP for continuous models with (a) 5

variables and 1 factor, and (b) 5 variables and 2 factors for samples of sizes

1000, 10000 and 20000. Runtimes are averaged over 250 different starting

values.

different datasets. In another scenario, we ran the models with 250 different starting

values. For both scenarios, we compared the mean value of the distributions. We

also compared the optimizers’ runtime on continuous models with the same number

of variables and factors on the same sample sizes.

For threshold models, CSOLNP performs faster than the other two optimizers.

We compared the optimizers’ runtime distribution and the distributions’ mean and

median and found CSOLNP and SLSQP to be more reliable and consistent than

NPSOL.

For continuous models, we compared the mean and median for runtime distri-

butions of the optimizers for 250 different dataset as well as 250 different starting

value scenarios. We did not find any difference between these values for any of the

optimizers. Also, the optimizers’ runtimes differ only very slightly. No optimizer

consistently outperforms the others for continuous models.

52

CHAPTER 6

APPLICATION OF CSOLNP WITHIN OPENMX ON DRUG USE 1

Using the newly developed optimization package, we have studied a very large drug

abuse dataset collected in Sweden from over one million people to investigate the

genetic and environmental contributions in liability to drug use. These cases are

ascertained from medical and criminal registries. Table 4 provides a sample of how

this dataset looks like.

Med1 Crime1 Med2 Crime2

1 0 0 0 0

2 1 1 0 0

3 1 0 0 1

4 0 1 1 1

5 1 1 0 1

Table 4. A sample of the Swedish dataset on drug abuse. The dataset consists of

four features being medical and criminal records for each pair of the twins,

siblings or half-siblings. Features are binary variables being 0 for no medical

or criminal record and 1 for presence of medical or criminal records.

We used OpenMx to model the contributions of genetic and environmental risk

factors to liability to drug abuse under threshold models [74]. Additive genetic (A),

shared (C) and unique (E) environmental factors were included to our model.

1Based on the publication [73]: Maes, Hermine H., Michael C. Neale, Henrik Ohlsson, Mahsa Zahery,
Paul Lichtenstein, Kristina Sundquist, Jan Sundquist, and Kenneth S. Kendler. ”A Bivariate Genetic
Analysis of Drug Abuse Ascertained Through Medical and Criminal Registries in Swedish Twins, Siblings
and Half-Siblings.” Behavior genetics 46, no. 6 (2016): 735-741.

53

6.1 Statistical analysis

We used a correlated factor model to estimate the contribution of shared and

unique genetic and environmental factors between the medical and criminal assess-

ments for drug abuse. Both quantitative and qualitative sex differences in the sources

of differences in drug abuse were tested. quantitative analysis across males and fe-

males determines whether the estimates of heritability are the same across the sex

whereas qualitative analysis focuses on whether the same genetic or environmental

factors contribute to both males and females. We tested the following six models:

1. No consideration of quantitative or qualitative differences in ACE components

of variances across males and females. i.e. the A, C and E components were

constrained to be equal across males and females.

2. Consideration of quantitative sex differences in ACE components of variances.

i.e. A, C, and E were freely estimated in both males and females. On the other

hand, the correlations between these latent factors were constrained.

3. Consideration of qualitative and quantitative sex differences in ACE compo-

nents with male-specific genetic factors.

4. Consideration of qualitative and quantitative sex differences in ACE compo-

nents with female-specific genetic factors.

5. Consideration of qualitative and quantitative sex differences in ACE compo-

nents with male-specific shared environmental factors.

6. Consideration of qualitative and quantitative sex differences in ACE compo-

nents with female-specific shared environmental factors.

54

These models were fitted with a range of acceptable starting values for the A and

C parameters. We used CSOLNP as OpenMx’s optimization engine for finding the

model with the lowest -2 log-likelihood. Table 5 illustrates goodness-of-fit statistics

for fitting bivariate ACE models to data from medical and criminal records. Best

fitting model is highlighted in bold.

Model os ns ep df -2ll AIC

hom 5,482,904 1,370,726 19 5,482,885 1,097,748.2 -9,868,021.8

qn 5,482,907 1,370,726 26 5,482,881 1,096,939.8 -9,868,822.2

qlAms 5,482,907 1,370,726 29 5,482,878 1,096,890.7 -9,868,865.3

qlAfs 5,482,907 1,370,726 29 5,482,878 1,096,918.0 -9,868,838.0

qlCms 5,482,907 1,370,726 29 5,482,878 1,096,909.8 -9,868,846.3

qlCfs 5,482,907 1,370,726 29 5,482,878 1,096,912.7 -9,868,843.4

Table 5. Goodness-of-fit statistics for bivariate ACE models fitted to drug abuse as-

certained from medical and criminal records, in designs including twins, full

siblings and half siblings. os: number of observed statistics, ns: number of

pairs, ep: number of estimated parameters, df: degrees of freedom, -2ll: mi-

nus twice the log-likelihood of the data, AIC Akaike information criterion,

hom: homogeneity model without qualitative or quantitative sex differences

in ACE sources of variance, qn: quantitative sex differences in ACE sources

of variance, ql: qualitative and quantitative sex differences in ACE sources

of variance, with either sex-specific genetic factors in males (Ams) or females

(Afs), or sex-specific shared environmental factors in males (Cms) or females

(Cfs)

Table 6 illustrates the parameter estimates. The best fitting model included

male-specific genetic factors, in addition to the gender-common genetic factors which

were estimated separately for males and females. The variance component estimates

for data from medical records (DAM) in males were: additive genetic, 59%; shared

55

Amc+Ams=Am Cm Em Af Cf Ef Rgmf

DAM 0.35+0.24=0.59 0.13 0.28 0.52 0.07 0.41 0.82

DAC 0.21+0.45=0.66 0.20 0.15 0.59 0.15 0.26 0.39

DAM-DAC covariance 0.62*/0.76** 1.00 0.40 0.61 1.00 0.38

Table 6. Estimates of proportions of variance and covariance accounted for by additive

genetic, shared and unique environmental sources for drug abuse ascertained

from medical (DAM) and criminal (DAC) records, in designs including twins,

full siblings and half siblings. Amc gender-common additive genetic contrib-

uton in males, Ams, male-specific additive genetic contribution, Am additive

genetic contribution in males, Af additive genetic contribution in females, Cm

shared environmental contribution in males, Cf shared environmental contri-

bution in females, Em unique environmental contribution in males, Ef unique

environmental contribution in females, rgmf genetic correlation across males

and females. *Covariance due to genetic factors in common with females

(Amc); **covariance due to male-specific genetic factors

environment 13%; and unique environmental influences including measurement error,

28%. For females these estimates were respectively 52, 7 and 41%. For data from

criminal records (DAC), these estimates were, respectively, 66, 20 and 15% for males

and 59, 15 and 26% for females. We also found out that genetic factors were sub-

stantially shared between DAM and DAC in both males (62% for genetic factors in

common with females, and 76% for male-specific genetic factors) and females (61%).

Shared environmental factors were completely shared in both sexes while specific envi-

ronmental were moderately shared (40 and 38% respectively for males and females).

Estimates of the genetic correlations across males and females were 0.82 for DAM

and 0.39 for DAC. This suggests that mostly the same genetic factors contributed to

DAM in males and females, while for DAC, different genetic factors contributed in

both sexes.

56

6.2 Comparing optimizers’ runtime on the Swedish Data

We have compared runtime of optimizers on the swedish data as well, and the

results are consistent with the synthetic data discussed in chapter 4. Fig. 17 represents

the runtime of CSOLNP, NPSOL and SLSQP on swedish drug abuse dataset modeled

by a threshold model with 1 factor and 4 variables. The runtimes are compared across

different multivariate normal absolute error tolerance values, from 1e-3 to 1e-7.

Fig. 17. Runtime of optimizers on real data with a threshold model with 1 factor and

4 variables.

6.3 Conclusion

In this study we applied bivariate genetic structural equation modeling to a very

large population-based drug abuse dataset collected in Sweden from over one mil-

lion people, and analyzed all possible pairs of twins (MZ, DZ, full and half-siblings)

to find contributions of genetic and environmental factors in liability to drug abuse.

The results showed substantial heritability and moderate contributions of shared en-

vironmental factors to drug abuse. Both of these factors were higher in males versus

females, and higher for drug abuse ascertained through criminal than medical records.

In the end, we presented a comparison of the optimizers’ runtimes on this dataset.

CSOLNP converged faster than NPSOL and SLSQP in all five scenarios with mvn

57

absolute error tolerance decreasing from 1e-3 to 1e-7.

58

CHAPTER 7

PROFILING OPTIMIZERS AND MEMORY CONSUMPTION

COMPARISON

In order to figure out the reasons behind CSOLNP’s superior performance, we aimed

at profiling all the three optimizers to find the bottlenecks of each algorithm, and see

whether we can further improve CSOLNP’s performance.

7.1 Valgrind

A profiler is a tool to optimize a program by analyzing the program and reporting

on its resource usage such as memory, CPU cycles, and so on. The profiling output

provides details about the patterns and peaks of resource consumption. This enables

the user to determine if there is a bottleneck in the code, and if so, where the problem

is concentrated.

The standard C profiler is gprof, the gnu profiler. Intel VTune is another C

profiler. Both can be run on a C/C++ program. R has profiling tools as well, but

they cannot be extended into other languages called within R. We found Valgrind to

be the only tool suitable for our purposes. It can be called on our R code and can be

extended to the C++ backend of OpenMx.

Valgrind is a set of multipurpose programming tools used as a debugger, memory

mismanagement detector as well as a profiler and a memory consumption analyzer.

It is an excellent free tool suite available on Linux and OS X’s platforms for all

programming languages, although the main aim of developing this tool is for C and

C++ programs due to being more prone to memory bugs.

59

Valgrind’s default tool is Memcheck which is used for detecting memory leaks by

checking memory usage such as calls to malloc and free or new and delete in C++.

The following are amongst the most popular errors detected by Memcheck:

– use of uninitialized memory

– reading or writing after an allocated block

– reading or writing memory after a block is freed

– forgetting to free a pointer

– releasing a memory block that is already released

Other tools contained in Valgrind wrapper are as the following:

– Cachegrind: a cache profiler collecting statistics about cache misses by simu-

lating a machine with a split L1 cache and a unified L2 cache. Cachegrind is

capable of identifying which lines of the source code have caused cache misses.

Basically it monitors:

• L1 instruction cache reads and misses

• L1 data cache reads and read misses, writes and write misses

• L2 unified cache reads and read misses, writes and writes misses.

– Callgrind: An extension to Cachegrind which analyzes function calls. This is

the tool we used to profile our three optimizers’ performances. We explain

Callgrind in more details in the following section.

– Massif: Heap memory profiling tool. Massif analyzes memory consumption

throughout the program. It gives an overview of the memory used over time.

We used Massif to compare memory usage of our three optimizers.

60

– Helgrind: Thread debugging tool that analyzes the code for presence of different

synchronization errors in programs that use POSIX Threads.

In the following section, we provide details about Valgrind’s profiling tool Callgrind

followed by the results of running Callgrind on our drug abuse problem.

7.2 Callgrind

Callgrind is a profiling tool that counts function calls and the CPU instructions

executed within each call and produces a tree of calls which helps analyze the perfor-

mance of the program in use. To profile with Callgrind, Valgrind is called as: valgrind

–tool=callgrind code callgrind arguments

Since Memcheck is the default tool for Valgrind, in order to use Callgrind, Val-

grind has to be called with Callgrind as the preferred tool. With the above command,

the program starts to run (of course more slowly than without being triggered by Val-

grind). At the end, a summary of the total number of instructions is provided to the

user. Fig. 18 provides a screen shot of how this summary looks like:

Fig. 18. summary of Callgrind output

The number 22417 is the process id. Ir stands for Instructions Read. Ir counts

are the number of instructions executed at the machine level (the number of assembly

instructions). Fig. 18 suggests that about 7 million Instructions are read when running

this program.

Callgrind measures the cost of each function as the total number of events occur-

ring within that function. Cost of functions can be exclusive or inclusive. By default,

61

the call counts are exclusive. Exclusive cost of a function includes only the time

spent in that function (in terms of Ir) and not in the functions that it calls. Inclusive

cost of a function includes the time spent in all functions called within that function,

whether directly or indirectly. Exclusive costs help find Highly-traffic functions by

looking for functions with the highest counts.

7.2.1 Callgrind results

We ran Callgrind on Swedish drug abuse dataset, which has data on 1.4 million

twins, half- and full-siblings. Four binary variables are analyzed, being criminal and

medical records for each pair. We ran a one-factor threshold model on this dataset

with different multivariate normal absolute error tolerance values from 1e-3 to 1e-7,

and the results are provided in Fig. 19

Fig. 19 shows the runtime of each optimizer in terms of the four most costly

routines called within each run from the front-end in R to the back-end in C++ and

back to the front-end. These routines are:

– Data handling in R: Handling data objects in the front-end at the beginning

and the end of the program. This routine consists of serialization of R objects

to C++ objects and vice versa.

– Computing the objective function: Full Information Maximum Likelihood fit

function is computed

– Data access for objective function calculations: Handling missing data and

filtering out the missing values

– Multivariate normal integration: A FORTRAN subroutine for calculating mul-

tivariate normal integration

62

(a) (b)

(c) (d)

(e)

Fig. 19. profiling results for CSOLNP, NPSOL and SLSQP with multivariate normal

absolute error tolerance of (a) 1e-3, (b) 1e-4, (c) 1e-5, (d) 1e-6 and (e) 1e-7.

– other

Multivariate normal integration is a subroutine called within objective function

evaluation. We have considered the cost of function evaluation exclusive of this sub-

63

routine. For mvn absolute error tolerance of 1e-3 and 1e-4, objective function compu-

tation is the most costly function. As the mvn absolute error tolerance is increased,

it is the multivariate normal integration routine that takes the most time. This is

expected as increasing the precision of numerical integration increases the runtime.

In general, since multivariate normal integration is done at each objective function

evaluation, we can say the function evaluation routine is the most expensive task.

Multivariate normal integration is a subroutine called within objective function

evaluation. We have considered the cost of function evaluation exclusive of the cost of

this subroutine. For mvn absolute error tolerance of 1e-3 and 1e-4, objective function

computation (excluding the numerical integration) is the most costly function. As the

mvn absolute error tolerance is reduced (i.e. precision goes up), it is the multivariate

normal integration routine that takes the most time. In general, since multivariate

normal integration is done at each objective function evaluation, we can say the

function evaluation routine is the most expensive task for all values of mvn, with

multivariate normal integration taking up a larger proportion time of the function

evaluation routine as mvn absolute error tolerance is decreased.

CSOLNP is the fastest optimizer except for the case where mvn absolute error

tolerance is 1e-5. For this value of mvn absolute error tolerance, NPSOL is the fastest.

Just as with the previous results for simulated data, NPSOL behaves inconsistently.

For larger values of mvn absolute error tolerance (1e-3 and 1e-4), it takes the longest,

while for the smallest ones (1e-5 to 1e-7) it converges faster.

We believe the main reason behind the faster performance of CSOLNP is due

to the numerical gradient computation routine for this optimizer. CSOLNP uses

a forward difference approach for finding numerical gradients, while SLSQP uses

central difference approach. NPSOL uses forward difference by default, but in case

the optimizer cannot find the optimum, it switches to central difference. This is the

64

exact case for NSPOL with tolerance values of 1e-3 and 1e-4. The optimizer failed to

reach to the same minimum as the other two optimizers, even after switching to the

central difference approach.

7.3 Massif results

For the purpose of comparing memory consumption of the optimizers, we used

Valgrind’s heap profiler tool, Massif. Massif registers the memory used by the code

at different times. It can be used to identify where and when the program allocates

memory on the heap with the aim to either reduce the amount of allocated memory

or to release it earlier in the program. To use Massif, Valgrind should be called as:

valgrind –tool=massif program

Massif provides a graph of the memory consumption similar to Fig. 20. Massif

takes a snapshot of memory usage at certain points during runtime of the program.

The bars represent these snapshots. In Fig. 20, Massif has taken 52 snapshots, one per

heap allocation/deallocation. Massif reduces the number of snapshots as the program

runs longer. The default value for maximum number of snapshots is 100. If the

number of snapshots exceeds this number, Massif will throw away the old snapshots

in favor of the new ones. Fig. 20 shows memory consumption of CSOLNP when

run on the Swedish drug abuse dataset (see 6) with a one-factor threshold model and

multivariate normal absolute error tolerance value of 1e-3. The figure shows CSOLNP

takes 752.0 MB of memory. The x-axis is the number of bytes allocated/deallocated

on the heap. There was no difference between optimizers’ memory consumption for

different values of mvn absolute error tolerance, and hence the Massif graphs for those

cases have not been shown.

65

Fig. 20. CSOLNP’s memory consumption on the Swedish data with mvn absolute

error tolerance of 1e-3

7.4 Conclusion

We profiled CSOLNP, NPSOL and SLSQP with Valgrind’s profiling tool Call-

grind which counts the number of instructions (at machine level) within each function

to find the most expensive functions. We ran Callgrind on the drug abuse dataset and

found function evaluations excluding the numerical integration to be the most costly

routine for all the three optimizers. As we increased the precision for multivariate

normal integration tolerance, computation of multivariate normal integration became

the most expensive routine. We also used Valgrind’s heap profiling tool to compare

memory consumption of the optimizers. All the optimizers used the same amount of

memory.

66

CHAPTER 8

ENHANCING CSOLNP’S PERFORMANCE

We added several features to CSOLNP to improve the performance of the optimizer.

These features include: handling analytical gradients; analytical jacobians; the ca-

pability of using central difference approximation for computing numerical gradients;

and handling infeasible starting points are amongst these features. This chapter

provides details about each of these novel features.

8.1 Analytical gradients

We improved the performance of CSOLNP by adding the capability of handling

analytical gradients to the optimizer. Previously, CSOLNP would have calculated

the gradients at each iteration numerically using forward difference approximation,

even in cases where the gradients were made available by the user.

We solved problem 71 in Hock & Schittkowski [75] available by FORTRAN li-

brary E04UCF/E04UCA with all the three optimizers in the presence of analytical

gradients and without them. This library software is essentially identical to NPSOL.

The problem has a nonlinear objective function, bounds on decision variables as well

as linear and nonlinear inequality constraints.

67

The problem may be described as follows:

min f(x) = x1x4(x1 + x2 + x3) + x3

subject to the bounds :

1 ≤ x1 ≤ 5

1 ≤ x2 ≤ 5

1 ≤ x3 ≤ 5

1 ≤ x4 ≤ 5

to the general linear constraint :

x1 + x2 + x3 + x4 ≤ 20

and to the nonlinear constraints :

x21 + x22 + x23 + x24 ≤ 40

x1x2x3x4 ≥ 25

The implementation in OpenMx is as follows:

l i b r a r y (OpenMx)

m1 <− mxModel (” example ” ,

mxMatrix (name=”pars ” , nrow=4, nco l =1, f r e e=TRUE, lbound

=1, ubound=5, va lue s=c (1 . 0 1 , 2 , 3 , 4 . 9)) , mxAlgebra (pars

[1 , 1] ∗ pars [4 , 1] ∗ (pars [1 ,1]+ pars [2 ,1]+ pars [3 , 1])+pars

[3 , 1] , name=”obj ”) , mxFitFunctionAlgebra (” obj ”) ,

mxConstraint (pars [1 , 1] + pars [2 , 1] + pars [3 , 1] + pars

[4 , 1] < 20) , mxConstraint (pars [1 , 1] ˆ 2 + pars [2 , 1] ˆ 2 +

pars [3 , 1] ˆ 2 + pars [4 , 1] ˆ 2 < 40) , mxConstraint (pars

[1 , 1] ∗ pars [2 , 1] ∗ pars [3 , 1] ∗ pars [4 , 1] > 25))

68

m1 <− mxRun(m1)

m1$pars$values

m1objvalues

m1$output$evaluat ions

m2 <− mxModel (” exampleWithAnalyticalGrads ” ,

mxMatrix (name=”pars ” , nrow=4, nco l =1, f r e e=TRUE, lbound

=1, ubound=5, va lues=c (1 . 0 1 , 2 , 3 , 4 . 9) , l a b e l s=paste (” x

” , 1 : 4 , sep =””)) , mxAlgebra (pars [1 , 1] ∗ pars [4 , 1] ∗ (pars

[1 ,1]+ pars [2 ,1]+ pars [3 , 1])+pars [3 , 1] , name=”obj ”) ,

mxAlgebra (cbind (2∗ pars [1 , 1] ∗ pars [4 , 1] + pars [4 , 1] ∗ pars

[2 , 1] + pars [4 , 1] ∗ pars [3 , 1] , pars [1 , 1] ∗ pars [4 , 1] , pars

[1 , 1] ∗ pars [4 ,1]+1 , pars [1 , 1] ˆ 2 + pars [1 , 1] ∗ pars [2 , 1] +

pars [1 , 1] ∗ pars [3 , 1]) , name=”objgrad ” , dimnames=l i s t (

NULL, paste (”x ” , 1 : 4 , sep =””))) , mxFitFunctionAlgebra (

a lgebra=”obj ” , g rad i en t=”objgrad ”) , mxConstraint (pars

[1 , 1] + pars [2 , 1] + pars [3 , 1] + pars [4 , 1] < 20) ,

mxConstraint (pars [1 , 1] ˆ 2 + pars [2 , 1] ˆ 2 + pars [3 , 1] ˆ 2 +

pars [4 , 1] ˆ 2 < 40) , mxConstraint (pars [1 , 1] ∗ pars [2 , 1] ∗

pars [3 , 1] ∗ pars [4 , 1] > 25))

m2 <− mxRun(m2)

m2$pars$values

m2objvalues

m2$output$evaluat ions

We considered the starting values as x = (1.01, 2, 3, 4.9). In model m1, the

gradients are computed numerically using forward difference approximation in case

69

of CSOLNP and NPSOL, and central difference approximation in case of SLSQP. In

model m2, the gradient vector is provided to the optimizers.

The optimal solution is at the point x = (1.0, 4.74, 3.82, 1.37). While CSOLNP

and NPSOL reach the solution, SLSQP struggles in finding the minimum. SLSQP

find the solution at x = (1, 1, 1, 1) with objective value equal to 4. It appears that

SLSQP ignores the constraints totally and finds the solution to the unconstrained

problem. Both CSOLNP and NPSOL are capable of finding the solution with all the

linear and nonlinear constraints being satisfied at the solution. CSOLNP reaches to

the solution in fewer number of function evaluations compared to NPSOL. Both of the

optimizers perform faster when analytical gradients are provided. This is expected

as the presence of analytical gradients should decrease the number of calls to the

objective function and hence reduce the number of function evaluations.

A summary of the three optimizers’ performance on this problem, as well as how

implementing analytical gradients, has enhanced CSOLNP’s performance is provided

in Table 7.

Optimizer x1 x2 x3 x4 obj evals(AG) evals(NG)

CSOLNP 1.00 4.74 3.83 1.37 17.01 1211 1717

NPSOL 1.00 4.74 3.83 1.37 17.01 3176 3290

SLSQP 1 1 1 1 4 NA NA

Table 7. x1, x2, x3 and x4 are the decision variables. obj is short for final objective

value. evals (AG) stands for evaluations with analytical gradients available to

the optimizer and evals (NG) stands for evaluations with numerical gradients.

As Table 7 suggests, CSOLNP needs 1,211 function evaluations to find the opti-

mum in the presence of analytical gradients. When the gradients are not provided to

the optimizer, CSOLNP needs 1,717 function evaluations to calculate the gradients

70

numerically and find the solution. As for NPSOL, the optimizer needs 3,176 function

evaluations when analytical gradients are provided, and 3,290 evaluations when they

are absent. Both optimizers have used forward difference approximation method for

numerical computation of the gradients. Also, CSOLNP reaches the minimum faster

than NPSOL as the number of evaluations is fewer with CSOLNP regardless of the

presence or absence of the analytical gradients. We have not shown the number of

evaluations for SLSQP as the optimizer cannot find the solution from these starting

values.

8.2 Analytical Jacobians

Next, we added the capability of handling analytical Jacobians to CSOLNP

for the the problems where the optimization involves satisfying some constraints.

Jacobian matrix is the matrix of partial derivatives of each constraint with respect to

the decision variables. We solved the same problem provided in the previous section

with CSOLNP, NPSOL and SLSQP. We considered two scenarios:

– Both analytical gradients and Jacobians are provided

– Only analytical Jacobians are provided

As expected, Table 8 shows that the presence of analytical Jacobians decreased the

number of function evaluations even further. However, these improvements require

specialized knowledge and explicit programming on behalf of the user, which may not

always be available or convenient.

8.3 Central difference approximation

We implemented central difference approximation as an alternative to forward

difference approximation which is the default numerical approach for gradient compu-

71

Optimizer x1 x2 x3 x4 obj evals(AJ) evals(AJ & AG)

CSOLNP 1.00 4.74 3.83 1.37 17.01 1573 1067

NPSOL 1.00 4.74 3.83 1.37 17.01 1136 268

SLSQP 1 1 1 1 4 NA NA

Table 8. x1, x2, x3 and x4 are the decision variables. obj is short for final objective

value. evals (AJ) stands for evaluations with analytical Jacobians available to

the optimizer and evals (NJ) stands for evaluations with numerical Jacobians.

tation in CSOLNP. Central difference approximation calculates the gradient at each

point twice, one at x+δ and one at x−δ. δ is a small perturbation parameter referred

to as gradient step size. Central difference calculates the gradient by the following

formula:

f ′(x) ≈ (f(x+ δ)− f(x− δ))
2δ

The default value for δ in CSOLNP is 1e-7. SLSQP uses Central difference

approximation by default. NPSOL uses forward difference approximation by default,

but if it cannot find the optimum, it switches to central difference.

We ran the same example with CSOLNP using forward and central difference

approximation. The results are provided in Table 10. We have excluded NPSOL and

SLSQP from the table. The reason is that NPSOL cannot be commanded by the user

to use central difference from the start, and SLSQP is already using central difference

and cannot find the solution.

8.4 Infeasible initial point

There are situations where the initial point is infeasible meaning that the in-

equality constraints are not satisfied at the starting point. This situation cannot be

handled by RSOLNP. To start the optimization procedure from a feasible starting

72

Optimizer x1 x2 x3 x4 obj NG/NJ AG AJ AJ/AG

CSOLNP 1.00 4.74 3.83 1.37 17.01 2725 1355 2437 1067

Table 9. x1, x2, x3 and x4 are the decision variables. obj is short for final objective

value. NG/NJ stands for numerical gradients and Jacobians. AG stands

for analytical gradients option on. AJ stands for evaluations with analytical

Jacobians available to the optimizer and AJ/AG stands for evaluations with

analytical gradients and Jacobians.

Optimizer x1 x2 x3 x4 obj NG/NJ AG AJ AJ/AG

CSOLNP 1.00 4.74 3.83 1.37 17.01 1717 1211 1573 1067

NPSOL 1.00 4.74 3.83 1.37 17.01 3290 3176 1136 268

SLSQP 1.00 1.00 1.00 1.00 4 NA NA NA NA

Table 10. x1, x2, x3 and x4 are the decision variables. obj is short for final objective

value. NG/NJ stands for numerical gradients and Jacobians. AG stands

for analytical gradients option on. AJ stands for evaluations with analytical

Jacobians available to the optimizer and AJ/AG stands for evaluations with

analytical gradients and Jacobians.

point, we overcame this difficulty by replacing the objective function with the sum

of violated inequalities, and optimizing the parameters with respect to this new ob-

jective function. The solution to this problem will then be used as the starting point

for the original problem (original objective function).

73

We solved the following problem with CSOLNP:

min f(x) = x5 (8.1)

subject to :

x1, x2, x3, x4 ≥ −1

x1 + x2 + x3 + x4 ≤ x5

x1 = x22

The starting point is x = (0.1, 0.1, 0.1, 0.1,−1). This point is infeasible as x5 is -1 and

hence the constraint x1 + x2 + x3 + x4 < x5 is violated. To find a feasible direction,

CSOLNP changes the original problem to the following:

min f(x) = x1 + x2 + x3 + x4 − x5 (8.2)

subject to :

x1, x2, x3, x4 ≥ −1

The modified problem 8.2 converged in 2 iterations with an objective value of -0.49

and the solution at point x = (−0.0582,−0.2414,−0.2197,−0.2197,−0.4961). This

new feasible point is then treated as the starting point for the original problem 8.1.

The original problem converged in 12 iterations with final objective value of -4 and

the optimum at x = (−1,−1,−1,−1).

We also solved the same problem we solved in the previous sections with an

infeasible point x = (1, 5, 5, 1). The point does not satisfy the constraint x21 + x22 +

x23 + x24 ≤ 40, and hence is infeasible. To find a feasible direction, CSOLNP replaces

the objective function f(x) = x1x4(x1+x2+x3)+x3 with the violated constraint, and

solves the problem with no constraints. This problem converges in two iterations and

finds the optimum at x = (1.50769, 3.98851, 3.98851, 1.50769) with the new objective

74

value of 25.548. We can now solve the original problem with this new point and in

the presence of all the constraints. The solution is found in 2,177 evaluations.

8.5 Conclusion

We enhanced CSOLNP’s performance by adding the capability of handling ana-

lytical gradients and Jacobians, as well as implementing central difference approxima-

tion to be used alongside forward difference which is the default numerical gradient

computation approach in CSOLNP. We also improved CSOLNP’s performance in

finding a feasible search direction when the starting point violates one of the inequal-

ity constraints.

Given all the three optimizers have the capabilities of handling analytical gradi-

ents and Jacobians, we tested these features on a problem from Hock & Schittkowski

[75]. We ran all three optimizers on this problem and compared the final objective

value and the optimum point. We considered different scenarios for our tests:

– Gradients and Jacobians need to be calculated numerically due to the absence

of analytical gradients and Jacobians.

– Only analytical gradients are available to the optimizers.

– Both analytical gradients and Jacobians are available.

– Analytical Jacobians are available but analytical gradients are not available.

Both CSOLNP and NPSOL reached the solution, but SLSQP failed to find a fea-

sible solution. CSOLNP reached the solution faster in the case of numerical compu-

tation of gradients and Jacobians. With Analytical gradients and Jacobians available

to the optimizers, NPSOL’s number of function evaluation dropped dramatically.

75

For central difference approximation, we only ran CSOLNP, as SLSQP could not

find the solution to this problem, and NPSOL uses forward difference by default and

cannot be prompted to use central difference approximation from the start. We com-

pared the number of function evaluations with and without analytical gradients and

Jacobians. The number of function evaluations decreased as the analytical gradients

and Jacobians were fed into the model.

Finally, we tested CSOLNP on the same problem with an infeasible starting

point, as well as a new problem with a simple linear objective function and constraints.

CSOLNP could find a feasible search direction in both cases.

76

CHAPTER 9

CONCLUSION

There are inherent difficulties in substance abuse assessment. Behavioral data are

mostly of binary or ordinal type, which makes them less accurate than continuous

type. A common approach to model ordinal data is to consider a latent, normally

distributed continuous variable underlying each ordinal variable. This way, an ordinal

variable with 3 categories, for instance, is assumed to follow a normal distribution

that is cut to three partitions by two thresholds. The latent continuous variables

are only observed when being above or below any of the thresholds. With such an

approach to ordinal data, the etiology of substance use behavior can be investigated

using Structural Equation Modeling (SEM).

In this dissertation, we have developed an optimization engine for the package

OpenMx which is a popular SEM software for estimation of a wide variety of statistical

models. Our newly developed optimizer solves general nonlinear optimization prob-

lems using Sequential Quadratic Programming algorithm. We have compared the

performance of our optimizer with two other implementations of the SQP method

available in OpenMx package. While the optimizers usually reach the same mini-

mum, our optimizer is faster and more consistent than the other two when tested on

threshold models for ordinal data.

We then applied our newly developed optimizer within OpenMx on a drug abuse

dataset collected in Sweden from more than 1 million people to find the contribution

of genetic and environmental components in liability to drug abuse as ascertained

through medical and criminal records. Modeling twin and sibling data, we found a

77

substantial contribution of genetic factors and a moderate contribution of environ-

mental factors to likelihood of drug abuse. Males showed higher heritability than

did females. Vulnerability to environmental factors was also higher in males than

in females. Moreover, both of these factors were higher for drug abuse ascertained

through criminal records than medical records.

We compared optimizers’ performance on the drug abuse dataset. Similar to the

results we got from running threshold models on simulated data, we found CSOLNP

to be faster than NPSOL and SLSQP on the drug abuse dataset as well. We then

used the Valgrind tool suite to profile the optimizers. We used Callgrind to find the

most expensive functions in the three optimizers. The function evaluation routine

(excluding its calls to numerical integration routine) was the most time-consuming

part. As the multivariate normal integration precision increases, the most expensive

function is the multivariate normal integration routine sadmvn [72] which is called

many times within each function evaluation. We also compared memory consumption

of the optimizers. We used Massif, a heap profiler tool available in Valgrind for this

purpose. All three optimizers consumed very similar amount of memory.

Finally we improved CSOLNP’s performance in several aspects. We added the

capability of handling analytical gradients and Jacobians to the optimizer. We added

central difference numerical gradient approximation to CSOLNP. Finally, we im-

proved CSOLNP’s performance in dealing with infeasible starting points. We achieved

this by replacing the objective function with the sum of inequalities and finding the

optimum with respect to this new objective function. After finding a feasible initial

point, we solve the original problem.

We tested all these features on a problem from FORTRAN library E04UCF/E04UCA

and compared the results across the three optimizers. CSOLNP and NPSOL were

capable of finding the solution while SLSQP failed at satisfying the constraints. Fi-

78

nally, I hope my contributions to the OpenMx R package will prove useful for many

years to come.

79

Appendix A

AKAIKE INFORMATION CRITERION (AIC) AND BAYESIAN

INFORMATION CRITERION (BIC)

Akaike information criterion (AIC) [76] is a fit index to compare the quality of a set

of statistical models for a given dataset. AIC is based on information theory, and is

designed to choose a model that minimizes the Kullback-Leibler distance [77] between

the model and the data. It is defined as:

AIC = −2 lnL+ 2(p+ 1) ,

where L is the likelihood of the model given the data and p is the number of free

parameters in the model. The second term is a penalty term to avoid overfitting.

Bayesian information criterion (BIC) [78] is another fit index for model selection.

Similar to AIC, it provides a trade-off between model accuracy and model complexity.

BIC is defined as:

BIC = −2 lnL+ 2(p+ 1) ln(N) ,

where N is the sample size, and the other terms are the same as described in the

definition of AIC.

80

REFERENCES

[1] United Nations Office on Drugs and Crime. World drug report 2010. United

Nations Publications, 2010.

[2] Wilson M Compton et al. “Prevalence, correlates, disability, and comorbidity

of DSM-IV drug abuse and dependence in the United States: results from the

national epidemiologic survey on alcohol and related conditions”. In: Archives

of general psychiatry 64.5 (2007), pp. 566–576.

[3] US Department of Health, Human Services, et al. “The health consequences of

smokingfffdfffdfffd50 years of progress: a report of the Surgeon General”. In:

Atlanta, GA: US Department of Health and Human Services, Centers for Dis-

ease Control and Prevention, National Center for Chronic Disease Prevention

and Health Promotion, Office on Smoking and Health 17 (2014).

[4] Kenneth S Kendler et al. “The structure of genetic and environmental risk fac-

tors for common psychiatric and substance use disorders in men and women”.

In: Archives of general psychiatry 60.9 (2003), pp. 929–937.

[5] Jacquelyn L Meyers and Danielle M Dick. “Genetic and environmental risk

factors for adolescent-onset substance use disorders”. In: Child and adolescent

psychiatric clinics of North America 19.3 (2010), pp. 465–477.

[6] Eivind Ystrom et al. “Genetic and environmental risk factors for illicit sub-

stance use and use disorders: joint analysis of self and co-twin ratings”. In:

Behavior genetics 44.1 (2014), pp. 1–13.

81

[7] Susan E Young et al. “Genetic and environmental vulnerabilities underlying

adolescent substance use and problem use: general or specific?” In: Behavior

genetics 36.4 (2006), pp. 603–615.

[8] Kenneth S Kendler, John Myers, and Carol A Prescott. “Specificity of genetic

and environmental risk factors for symptoms of cannabis, cocaine, alcohol,

caffeine, and nicotine dependence”. In: Archives of General Psychiatry 64.11

(2007), pp. 1313–1320.

[9] Kenneth S Kendler et al. “Specificity of genetic and environmental risk factors

for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives,

stimulants, and opiates in male twins”. In: American Journal of Psychiatry

160.4 (2003), pp. 687–695.

[10] Regina A Shih, Pamela L Belmonte, and Peter P Zandi. “A review of the

evidence from family, twin and adoption studies for a genetic contribution to

adult psychiatric disorders”. In: International review of psychiatry 16.4 (2004),

pp. 260–283.

[11] K Silventoinen et al. “The genetic and environmental influences on childhood

obesity: a systematic review of twin and adoption studies”. In: International

journal of Obesity 34.1 (2010), pp. 29–40.

[12] Christian J Hopfer, Thomas J Crowley, and John K Hewitt. “Review of twin

and adoption studies of adolescent substance use”. In: Journal of the American

Academy of Child & Adolescent Psychiatry 42.6 (2003), pp. 710–719.

[13] Robert Plomin. “The role of inheritance in behavior”. In: (1990).

[14] Auke Tellegen et al. “Personality similarity in twins reared apart and together.”

In: Journal of personality and social psychology 54.6 (1988), p. 1031.

82

[15] Kathleen McCartney, Monica J Harris, and Frank Bernieri. “Growing up and

growing apart: a developmental meta-analysis of twin studies.” In: Psycholog-

ical bulletin 107.2 (1990), p. 226.

[16] Kenneth S Kendler et al. “A test of the equal-environment assumption in twin

studies of psychiatric illness”. In: Behavior genetics 23.1 (1993), pp. 21–27.

[17] Nancy L Segal. Entwined lives: Twins and what they tell us about human be-

havior. Dutton/Penguin Books, 1999.

[18] Kenneth S Kendler et al. “Illicit psychoactive substance use, heavy use, abuse,

and dependence in a US population-based sample of male twins”. In: Archives

of general psychiatry 57.3 (2000), pp. 261–269.

[19] Kathleen R Merikangas et al. “Familial transmission of substance use disor-

ders”. In: Archives of general psychiatry 55.11 (1998), pp. 973–979.

[20] Roy W Pickens et al. “Heterogeneity in the inheritance of alcoholism: a study

of male and female twins”. In: Archives of General Psychiatry 48.1 (1991),

pp. 19–28.

[21] Arpana Agrawal and Michael T Lynskey. “Are there genetic influences on ad-

diction: evidence from family, adoption and twin studies”. In: Addiction 103.7

(2008), pp. 1069–1081.

[22] Kenneth S Kendler et al. “Genetic and familial environmental influences on

the risk for drug abuse: a national Swedish adoption study”. In: Archives of

general psychiatry 69.7 (2012), pp. 690–697.

[23] Ming T Tsuang et al. “Genetic influences on DSM-III-R drug abuse and depen-

dence: A study of 3,372 twin pairs”. In: American journal of medical genetics

67.5 (1996), pp. 473–477.

83

[24] Michael C Neale et al. “Methodological issues in the assessment of substance

use phenotypes”. In: Addictive Behaviors 31.6 (2006), pp. 1010–1034.

[25] Erich Leo Lehmann. Elements of large-sample theory. Springer Science & Busi-

ness Media, 1999.

[26] Steven Boker et al. “OpenMx: an open source extended structural equation

modeling framework”. In: Psychometrika 76.2 (2011), pp. 306–317.

[27] Michael C Neale et al. “OpenMx 2.0: Extended structural equation and statis-

tical modeling”. In: Psychometrika (2015), pp. 1–15.

[28] Valgrind Developers. “Valgrind”. In: Web page at http://valgrind. org (2000–

2005) (2010).

[29] Jodie B Ullman and Peter M Bentler. Structural equation modeling. Wiley

Online Library, 2003.

[30] Laura Klem. “Structural equation modeling.” In: (2000).

[31] Natasha K Bowen and Shenyang Guo. Structural equation modeling. Oxford

University Press, 2011.

[32] Victoria Savalei and Peter M Bentler. “Structural equation modeling”. In:

Corsini encyclopedia of psychology (2010).

[33] Singgih Santoso. Structural Equation Modeling. Elex Media Komputindo, 2011.

[34] Charles Spearman. “” General Intelligence,” objectively determined and mea-

sured”. In: The American Journal of Psychology 15.2 (1904), pp. 201–292.

[35] MCCL Neale and Lon R Cardon. Methodology for genetic studies of twins and

families. Vol. 67. Springer Science & Business Media, 2013.

[36] Steven M Boker et al. “OpenMx User Guide”. In: Release 1 (2012), pp. 0–1919.

84

[37] Albert Maydeu-Olivares and John J McArdle. Contemporary psychometrics.

Psychology Press, 2005.

[38] Steven M Boker, JJ McArdle, and Michael Neale. “An algorithm for the hierar-

chical organization of path diagrams and calculation of components of expected

covariance”. In: Structural Equation Modeling 9.2 (2002), pp. 174–194.

[39] Scott I Vrieze. “Model selection and psychological theory: a discussion of the

differences between the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC).” In: Psychological methods 17.2 (2012), p. 228.

[40] Hirotugu Akaike. “Factor analysis and AIC”. In: Selected Papers of Hirotugu

Akaike. Springer, 1987, pp. 371–386.

[41] Daire Hooper, Joseph Coughlan, and Michael Mullen. “Structural equation

modelling: Guidelines for determining model fit”. In: Articles (2008), p. 2.

[42] Michael W Browne, Robert Cudeck, et al. “Alternative ways of assessing model

fit”. In: Sage focus editions 154 (1993), pp. 136–136.

[43] JM Linacre and BD Wright. “Chi-square fit statistics”. In: Rasch Measurement

Transactions 8.2 (1994), p. 350.

[44] Douglas S Falconer. “The inheritance of liability to certain diseases, estimated

from the incidence among relatives”. In: Annals of human genetics 29.1 (1965),

pp. 51–76.

[45] James H Steiger. “Tests for comparing elements of a correlation matrix.” In:

Psychological bulletin 87.2 (1980), p. 245.

[46] David G Luenberger. Introduction to linear and nonlinear programming. Vol. 28.

Addison-Wesley Reading, MA, 1973.

85

[47] Stephen Wright and Jorge Nocedal. “Numerical optimization”. In: Springer

Science 35 (1999), pp. 67–68.

[48] Jan Snyman. Practical mathematical optimization: an introduction to basic

optimization theory and classical and new gradient-based algorithms. Vol. 97.

Springer Science & Business Media, 2005.

[49] Mordecai Avriel. Nonlinear programming: analysis and methods. Courier Cor-

poration, 2003.

[50] Trond Steihaug. “The conjugate gradient method and trust regions in large

scale optimization”. In: SIAM Journal on Numerical Analysis 20.3 (1983),

pp. 626–637.

[51] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient

method without the agonizing pain. 1994.

[52] Joseph-Frédéric Bonnans et al. Numerical optimization: theoretical and practi-

cal aspects. Springer Science & Business Media, 2006.

[53] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[54] Charles George Broyden. “The convergence of a class of double-rank mini-

mization algorithms 1. General considerations”. In: IMA Journal of Applied

Mathematics 6.1 (1970), pp. 76–90.

[55] Roger Fletcher. “A new approach to variable metric algorithms”. In: The com-

puter journal 13.3 (1970), pp. 317–322.

[56] David G Luenberger and Yinyu Ye. “Linear and nonlinear programming. In-

ternational series in operations research & management science”. In: Springer,

Berlin. doi 10 (2008), pp. 978–.

86

[57] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

[58] Harold W Kuhn and Albert W Tucker. “Nonlinear programming”. In: Traces

and emergence of nonlinear programming. Springer, 2014, pp. 247–258.

[59] Alberto Cambini and Laura Martein. Second order optimality conditions. Uni-

versità di Pisa, Dipartimento di statistica e matematica applicata all’economia,

1997.

[60] Roberto Cominetti. “Metric regularity, tangent sets, and second-order opti-

mality conditions”. In: Applied Mathematics and Optimization 21.1 (1990),

pp. 265–287.

[61] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta

numerica 4 (1995), pp. 1–51.

[62] Frédéric Delbos and Jean Charles Gilbert. “Global linear convergence of an

augmented Lagrangian algorithm for solving convex quadratic optimization

problems”. PhD thesis. INRIA, 2003.

[63] Katta G Murty and Feng-Tien Yu. Linear complementarity, linear and non-

linear programming. Vol. 3. Citeseer, 1988.

[64] Sanjay Mehrotra. “On the implementation of a primal-dual interior point

method”. In: SIAM Journal on optimization 2.4 (1992), pp. 575–601.

[65] Irvin J Lustig, Roy E Marsten, and David F Shanno. “Interior point methods

for linear programming: Computational state of the art”. In: ORSA Journal

on Computing 6.1 (1994), pp. 1–14.

[66] Philip E Gill et al. User’s guide for NPSOL (version 4.0): A Fortran package

for nonlinear programming. Tech. rep. DTIC Document, 1986.

87

[67] Steven G Johnson. The NLopt nonlinear-optimization package. 2014.

[68] Mahsa Zahery, Hermine H Maes, and Michael C Neale. “CSOLNP: Numerical

Optimization Engine for Solving Non-linearly Constrained Problems”. In: Twin

Research and Human Genetics 20.4 (2017), pp. 290–297.

[69] Alexios Ghalanos and Stefan Theussl. “Rsolnp: general non-linear optimization

using augmented Lagrange multiplier method”. In: R package version 1 (2012).

[70] Lorenz T Biegler et al. “Large-scale PDE-constrained optimization: an in-

troduction”. In: Large-Scale PDE-Constrained Optimization. Springer, 2003,

pp. 3–13.

[71] Narendra Karmarkar. “A new polynomial-time algorithm for linear program-

ming”. In: Proceedings of the sixteenth annual ACM symposium on Theory of

computing. ACM. 1984, pp. 302–311.

[72] Alan Genz. “Numerical computation of multivariate normal probabilities”. In:

Journal of computational and graphical statistics 1.2 (1992), pp. 141–149.

[73] Hermine H Maes et al. “A Bivariate Genetic Analysis of Drug Abuse Ascer-

tained Through Medical and Criminal Registries in Swedish Twins, Siblings

and Half-Siblings”. In: Behavior genetics 46.6 (2016), pp. 735–741.

[74] Michael Neale and Lon Cardon. Methodology for genetic studies of twins and

families. Vol. 67. Springer Science & Business Media, 1992.

[75] Willi Hock and Klaus Schittkowski. “Test examples for nonlinear program-

ming codes”. In: Journal of Optimization Theory and Applications 30.1 (1980),

pp. 127–129.

88

[76] Hirotogu Akaike. “Information theory and an extension of the maximum likeli-

hood principle”. In: Selected Papers of Hirotugu Akaike. Springer, 1998, pp. 199–

213.

[77] Solomon Kullback and Richard A Leibler. “On information and sufficiency”.

In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[78] Gideon Schwarz et al. “Estimating the dimension of a model”. In: The annals

of statistics 6.2 (1978), pp. 461–464.

89

VITA

Mahsa Zahery was born in Tehran, Iran. She graduated from high school in May

2002, and received her Bachelor of Science in Computer Engineering with major in

Software at the Azad University of Central Tehran in February 2007. In September

2008, Mahsa began her graduate studies in the field of Bioinformatics & Systems

Biology at Chalmers University of Technology in Sweden. She did her master thesis

in TU Delft in the Netherlands. Mahsa received her Master of Science degree in July

2010. She then started her Ph.D. in the department of Computer Science at Virginia

Commonwealth University in September, the same year. She got her second master’s

degree, in the field of Computer Science in May 2013. Mahsa is a music lover and

enjoys singing in her spare time.

90

	OPTIMIZATION FOR STRUCTURAL EQUATION MODELING: APPLICATIONS TO SUBSTANCE USE DISORDERS
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Contributions of the Dissertation
	Structure of the Proposal

	 Background
	Structural Equation Modeling
	Popularity of SEM

	OpenMx
	Factor analysis
	Ordinal data and threshold models

	Optimization in SEM
	Fit functions in OpenMx

	 Optimization methods
	Gradient-based Algorithms
	Unconstrained Nonlinear Algorithms
	Steepest Descent (Gradient descent)
	Conjugate Gradient
	Newton's Method
	Broyden-Fletcher-Goldfarb-Shanno

	Constrained Nonlinear Algorithms
	Primal methods
	Sequential Quadratic Programming
	Quadratic Programming

	Optimizers within OpenMx
	NPSOL
	SLSQP

	 Methodology
	Introduction to CSOLNP
	CSOLNP: Algorithm
	Initialization
	Find a feasible direction
	Solution to QP algorithm
	Convergence

	Conclusion

	 Performance comparison of CSOLNP, NPSOL and SLSQP on threshold and continuous models
	Comparison of the optimizers on threshold models
	Comparison of optimizers' runtime averaged over 250 datasets
	Comparison of optimizers' runtime averaged over 250 different starting values

	Comparison of optimizers on continuous models
	Comparison of optimizers' runtime over 250 different datasets
	Comparison of optimizers' runtime over 250 different starting values

	Conclusion

	 Application of CSOLNP within OpenMx on drug use
	Statistical analysis
	Comparing optimizers' runtime on the Swedish Data
	Conclusion

	 Profiling optimizers and memory consumption comparison
	Valgrind
	Callgrind
	Callgrind results

	Massif results
	Conclusion

	 Enhancing CSOLNP's performance
	Analytical gradients
	Analytical Jacobians
	Central difference approximation
	Infeasible initial point
	Conclusion

	 Conclusion
	Appendix Akaike information criterion (AIC) and Bayesian information criterion (BIC)
	References
	Vita

