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C l oning , Expression ,  Purif ication and Characterization of 
Domain B of Wheat Germ Agglutinin 

ABSTRACT 

A dissertation submitted in part ial fulfil lment of the 
requirements for the degree of Doctor of Philosophy at 
Virginia Commonwealth University. 

Ann C .  Rice 

Virginia Commonwealth University 

Advisor : Christine S .  Wright , Ph . D .  

Wheat germ agglutinin ( WGA ) belongs to a fami l y  of 

dimeric chitin binding l ectins specific for N-acetly-D-

glucosamine ( GlcNAc ) and N-acetyl-D-neuraminic acid ( NeuNAc ) .  

The polypeptide chain consists of a tandem repeat of four 

conserved 4 . 3  kDa domains ( A ,  B, C ,  D) stabilized by four 

disulfide bonds . Saccharide binding occurs in the dimer 

interface where domains of di f f erent subunits are in contact 

(A with D, B with C ) . An aromatic amino acid rich pocket on 

one domain ( suf ficient for saccharide binding ) and a polar 

region on the contacting domain constitute a complete binding 

site.  Saccharide binding aff inities may differ among the four 

unique sites ( eight/dimer ) due to sequence divergence .  Two 

equivalent sites /monomer were detected in solution . However , 

conclusive evidence is lacking as to their locations on the 
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dimer . To delineate individual specificities and dimerization 

requirements , it was des irabl e  t o  isolate and characterize 

each site independently.  

This thesis describes an expression system by which 

single WGA domains can be ef ficiently generated as functional 

proteins .  The B-domain was c loned first , because binding was 

observed at this site in several WGA-ol igosaccharide crystal 

complexes . Two B-domain sequences were cloned varying at 

residue 28 ( Ala+Ser ) . I n  a putative domain dimer the polar 

Ser2 8 would mimic an H-bond observed t o  stabilize NeuNAc in 

the WGA B-site from the contacting C-domain . The domains were 

expres sed as fusion proteins from which they were 

proteolytical ly separated and isolated in high yields . The 

recombinant domains were shown to associate with chitin ( poly­

GlcNAc ) • The correct tertiary structure was inferred by 

saccharide binding ability and antibody recognition . Al l 

cysteines were found to be in disu l f ide linkages . I s othermal 

titration calorimetry showed that ( GlcNAc ) 3'4 binding to both 

B-domain mutants is seven-fold weaker than to WGA ( Kd=3 . 5 x l O -4M 

versus O .  54xlO-4M ) . Binding of N-acetylneuraminyl - lactose was 

undetectable.  Gel filtration , Mass  spectral and NMR anal ysis 

indicated that the recombinant domains exist as monomers in 

solut ion . Thus , the complete WGA binding si te was not 

reproduced and the low a f f inity ref l ects onl y  the interactions 

of the saccharide with the aromatic pocket . 



INTRODUCTION 

PROTEIN CARBOHYDRATE INTERACTIONS 

Protein-carbohydrate interactions mediate a variety of 

phys iol ogical functions . In animal s ,  these include l ymphocyte 

migration , neuronal cel l  adhesion throughout development 

( Rademacher et al . ,  1 9 8 8 ) , hepatic removal of asialo s erum 

glycoproteins ( Drickamer , 1 9 9 1 ;  Lee, 1 9 9 2 ) , metastasis ( Sharon 

and Lis , 1 9 8 9 ) , and glycoprotein hormone-receptor activation 

( Sairam , 1 9 8 9 ; Kobata , 1 9 9 2 ) . Cel l  surface glycosylation 

patterns have been ident ified which are species specific , 

tis sue specific , and immunogenic . Viruses with surface 

glycoproteins acquire the spec ies and tissue specific 

glycosylation patterns of the 

( Rademacher et al . ,  1 9 8 8 ) . 

cel l  from which they bud 

The virus can use these 

glycosylation patterns to evade the host immune system and to 

determine cel l  types it can infect due to carbohydrate pattern 

recognition by specific cel l  surface receptors . Several 

diseases have been identif ied in which abnormal glycosylation 

patterns occur on certain membrane bound or s ecreted 

glycoproteins . Ongoing research consists of determining 

whether this is  the cause or the result of the di sease 

( Rademacher et al . ,  1 9 8 8 ; and Kobata ,  1 9 92 ) . Understanding 

1 
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the molecular basis of the protein-carbohydrate interaction is  

important for many areas of research such as  cancer , 

embryology , aging and immunology . 

LECTINS 

Non-enzymatic carbohydrate binding proteins are 

classified into two categories , those of immune and those of 

non-immune origin . Lectins represent the carbohydrate binding 

proteins of non- immune origin . The protein - carbohydrate 

interaction is highly specific in which the lectin recogni zes 

a particular saccharide or polysaccharide inc luding the 

anomeric conformation and linkage ( Rademacher et al. , 1 9 8 8 ) . 

Although lectins have been identified in all  forms of life,  

plant lectins are the best characterized ( Sharon and Lis , 

1 9 8 9 ; Drikamer , 1 9 9 1 ) .  

Plant lectins were discovered more than 1 0 0  years ago, 

yet their physiological function is  still speculation . They 

were initially classified based on the source of erythrocytes 

they agglutinated . It  was eventually determined that the 

interaction leading to agglutination depended on the presence 

of specific saccharides , and that agglutination could be 

blocked or reversed by addition of the saccharide. P lant 

lectins are now extens ively used as a tool to identify 

specific saccharides on various  cell surfaces or 

glycoproteins . Lectins have been identified in a wide variety 
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of plants . Those within related famil ies of plants usually  

have s imi lar sequences and saccharide specificities ( Et z l er ,  

1 9 8 5 ) . 

Chitin Binding Lect ins 

The chitin binding lectins are a wel l characterized 

f ami ly of plant lectins . Chitin is  a polymer of B 1-4  linked 

N-acetyl -D-glucosamine ( GlcNAc ) res idues . Members of this 

fami ly contain one, two or four chitin binding domains . The 

chitin binding domain encompasses 30 - 4 3  amino acids with 

many highly conserved res idues , including cysteine, glycine, 

aromatic and ac idic res idues ( Wright et al . ,  1 9 9 1 ; Raikhel et 

al . ,  1 9 9 3 ) . The tertiary structures have been determined f or 

wheat germ agglutinin ( WGA ) , which has 4 copies of this domain 

( Wright , 1 9 7 7 ) and for hevein ,  which consists of a s ingle 

domain ( Rodriguez -Romero et al . ,  1 9 9 1 ;  Andersen et al . ,  1 9 9 3 ) . 

The chitin binding domain has an irregularly folded structure 

which is  held together by 4 intra-chain disulfide bridges . 

The a-carbon backbone of the chitin binding domain , derived 

from the wheat germ agglutinin ( WGA ) crystal structure 

( Wright , 1 9 7 7 ; Wright et al . ,  1 9 9 1 )  is  illustrated in Figure 

1 .  

The chitin binding domain sequence exists in a wide 

variety of plant proteins . Rice (Oryza sati va ) ,  barley 

( Hordeum vul gare ) ,  rye ( Secale cereale ) ,  couch grass  
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43 

Figure 1 .  a-Carbon Backbone of the Chitin Binding Domain . The 
S-S boxes represent the disu lf ide bridges .  The three 
tyrosines , which function in saccharide binding are shown on 
the right side of the molecule in the orientation they appear 
in the domain B binding site . An -OB at position 1 9  
represents a Ser which is  part o f  the domain B aromatic 
pocket . Amino acids at positions 2 8  and 2 9  contribute to the 
binding site in an opposing domain in WGA . 
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(Agropyrum repen s ) ,  false brome grass  (Bra chypodium 

sylvat icum ) and WGA (Triti cum a esti vum ) lectins all  contain 4 

tandem repeats of the domain . The stinging nett le lectin 

(Urtica di oica a ggluti nin, UDA )  consists of two tandem chitin 

binding domains . Proteins which contain a single chitin 

binding domain with an unrelated carboxy-terminal sequence are 

two wound inducible proteins from potato , basic chitinases 

from kidney bean ( Phaseolus vulgarus ) ,  tobacco ( Ni coti a n a  

tabacum ) ,  potato (Solanum tuberosum ) ,  poplar ( Populus 

trichocarpa ) and rice , and other lectins from potato , thorn 

apple (Da tura stramon i um ) and tomato (Lycopersi con 

esculentum ) .  Hevein from the latex of rubber trees ( Hevea 

bra s i li ensi s )  and Ac-AMP I and Ac-AMP2 from Amaranth caudatus 

consist of only one chitin binding domain sequence ( Raikhel , 

et al . ,  1 9 9 3 ) . The amino acid sequences of some of these 

chitin binding domains are al igned in Figure 2 .  The high 

degree of sequence simil arity over a broad spectrum of plants 

indicates an extremely important phys iological function of the 

chitin binding domain ( Raikhel  et al . ,  1 9 9 3 ) . pos s ible 

evolutionary conservation of the structure leads to the 

speculation that the two and four domain proteins arose from 

gene duplication events of an original single chitin binding 

domain ( Wright et al . ,  1 9 9 1 ) .  
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Figure 2 .  Amino Acid Alignments of Chitin Binding Domains . 
The top l ine of each section is the sequence of WGA I .  The 
sections correspond to each domain of the 4 domain proteins . 
The disu lfide l inkage s are indicated only for the first 
sequence l isted . The amino acids for the other proteins are 
shown only if they dif fer from the WGA I sequence . Dots 
indicate spaces skipped to optimi ze al ignment . WGA is wheat 
germ agglutinin , BL is barley lectin , RL is rice lectin , UDA 
is stinging nettle , RC is rice chitinase , PVC is kidney bean 
chitinase , WIN 1 & 2 are wound inducible proteins from potato , 
STC is  potato chitinase , TC i s  tobacco chitinase , WIN 8 ,  6 2B 
& 6 2C are wound inducible proteins from poplar , and HEV is  
hevein ( Parsons et al . ,  1 9 8 9 ; Shinshi et  al . ,  1 9 9 0 ; Wright et  
al . ,  1 9 9 1 and references therein ; Davis et  al . ,  1 9 9 1 ;  Huang et  
al . ,  1 9 9 1 ;  Van Burren et al . ,  1 9 9 2 ; Raikhel et  al . ,  1993  and 
references therein ) .  
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WHEAT GERM AGGLUTININ (WGA) 

Background 

8 

The most extensively characteri zed chitin binding protein 

is  WGA . Originally , a mouse tumor cell agglutinating activity 

was identified in a wheat germ lipase extract ( Aub et al . ,  

1 9 6 3 ) .  Wheat germ agglutinin was isolated from this extract 

in 1 9 6 7  as the agglutinating agent . N-Acetyl-D-Glucosamine 

monomers and dimers could inhibit or reverse the agglutination 

( Burger and Goldberg , 1 9 6 7 ; Burger ,  1 9 6 9 ) . Wheat germ 

agglutinin was also found to bind N-Acetyl -Neuraminic acid 

( NeuNAc ) ( Peters et al . ,  1 9 7 9 ; Monsigny et al . ,  1 9 8 0 ) . Amino 

acid compositional analys is of WGA revealed a high Gly and 

half-Cystine content ( Allen et al . ,  1 9 7 3 ;  Privat et al . ,  

1 9 7 4 a ;  Nagata and Burger ,  1 9 7 4 ; Rice and Et z ler , 1 9 7 5 ) . 

Molecular weight determination by sedimentation studies and 

polyacrylamide gel electrophoresis ( PAGE )  showed that WGA 

exists as a 35 , 0 0 0  Da dimer under physiological conditions and 

as a 1 7 , 5 0 0  Da monomer at low pH or in the pre sence of 

denaturants and reducing agents ( Al len , et al . ,  1 9 7 3 ;  Privat 

et al . ,  1 9 7 4 a ;  Nagata and Burger ,  1 9 7 4 ; Rice and Et z ler , 1 9 7 4 ; 

Rice and Et z ler , 1 9 7 5 ) . The binding constants for various 

GlcNAc and NeuNAc derivatives were measured by a variety of 

techniques ( Lotan and Sharon , 1 97 3 ;  Nagata and Burger , 1 9 7 4 ; 

Rice and Et z ler , 1 9 7 4 ; Privat et al . ,  1 9 7 4 a ;  Privat et al . ,  

1 9 7 4 b ;  Privat et al . ,  1 9 7 6 ; Midoux et al . ,  1 9 8 0 ; Kronis and 
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Carve r ,  1 9 8 2 ) .  In 1 9 7 7 , the crystal structure of WGA was 

solved at 2 . 2  A resolution ( Wright , 1 9 7 7 ) ,  prior to 

determination of the complete amino acid sequence ( Wright et 

al . ,  1 9 84 ) . Crystallographic studies have def ined the sugar 

binding interactions ( Wright , 1 9 8 0 ; Wright , 1 9 8 4 ; Wright , 

1 9 9 2 ) . 

Functional Characteristics 

The physiological function of WGA is still obscure . 

Wheat germ agglutinin from the wheat Triticum aestivium exists 

as three almost identical isoforms , I ,  II & III ( Figure 2 ) . 

The se correspond to genes A ,  D & B ,  respectively , with each 

isoform being encoded on a different diploid genome of this 

hexapl oid wheat ( Raikhel and Wilkins , 1 9 8 7 ) . The WGA rnRNA and 

protein were localized in the tissues of the wheat embryo and 

seedling that are in direct contact with the external 

environment ( Triplett and Quatrano , 1 9 8 2 ; Mi shkind et al . ,  

1 9 8 3 ; Mansfield et al . ,  1 9 8 8 ; Raikhel et al . ,  1 9 8 8 ; Mansfield 

and Raikhel , 1 9 9 0 ) . Certain insect larvae fed large 

quantities of WGA took almost twice as long to reach maturity 

( Chrispeel s  and Raikhel , 1 9 9 1 ) .  It was proposed that WGA 

binds to the epithelial lining in the gut of these l arvae and 

interferes with nutrient absorption . Based on these 

observations and the fact that chitin is not found in plants , 

although it is  endogenous to many plant pathogens , it has been 
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suggested that WGA functions in plant defense ( Chrispee l s  and 

Raikhel , 1 9 9 1 ) . 

Structural Characteristics of WGA 

Under physiological conditions WGA exists as a dimer of  

identical monomers . Each monomer is  composed of four tandem 

repeats of the chitin binding domain . The domains are 

referred to as A, B, C & D ,  starting from the amino-terminus 

as schematically il lustrated in Figure 3A . The two monomers 

align head to tail to form the dimer . Domain A of one monomer 

opposes domain D of the other monomer and domain B of one 

opposes domain C of the other . Saccharide binding occurs in 

the dimer interface between two opposing domains ( Wright , 

1 9 8 0 ) • 

A typical saccharide binding site consists of an aromatic 

pocket on one domain and a polar region on the oppos ing 

domain . The saccharide lies in the aromatic pocket and is  

stabi li z ed by H-bonds contributed from the oppos ing domain . 

Each domain has an aromatic pocket and is  capable of 

saccharide occupancy ( Wright , 1 9 8 4 ; Wright , 1 9 92 ) . Only the 

A ,  B and C domains contain polar regions . Comparison of the 

amino acid re sidues from all 4 domains which interact with the 

saccharide indicates that the aromatic region is more 

conserved than the polar region ( Figure 2 ) . The deviations 

from complete sequence conservation result in 4 different 
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A 

B 

o 
Figure 3 .  Schematic Representation of the Dimerization in 
WGA . A ,  two WGA monomers are depicted al igned head to tail 
with the domains A - D identified and arrows indicating the 
location of saccharide bindirtg . B ,  the two monomers are 
depicted looking down the dimer interface . Al l potential 
saccharide binding sites are represented by ' sacc ' The 
residues in the binding site are des ignated by the single 
letter amino acid code . The residues adjacent to ' sacc ' 
constitute the aromatic pocket . The polar residues from the 
opposing domain are linked to the sacc by dashes which 
represent H-bonds . 
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types of binding sites i n  WGA . The WGA dimer contains two of 

each of the four types of binding sites yielding a total of 

eight potential saccharide binding sites ( Figure 3B ) . The 

aromatic pocket alone is sufficient for saccharide binding as  

indicated by the fact that the monomeric single domain protein 

hevein binds to chitin ( Van Pari j s  et al . ,  1 9 9 1 )  and the 

terminal NeuNAc of a glycopeptide binds in the WGA domain A 

aromatic pocket , which lacks the polar region from the 

oppos ing domain ( Wright , 1 9 9 2 ) . Here , to simpl ify the 

terminol ogy , each binding site is  referred to by the domain 

which contributes its aromatic pocket . For example , the B 

site refers to the site composed of the domain B aromatic 

pocket and the domain C polar region ; the C site is composed 

of the C aromatic pocket and the B polar region . 

Crystal structure studies of several types of WGA­

saccharide complexes reveal saccharide binding at each of the 

potential sites , but not in all  8 sites simultaneously . For 

instance , occupancy by ( GlcNAc ) 2  was observed in both of the 

B and D sites ( Wright , 1 9 84 ) . The B aromatic pocket makes 

more van der Waal s  contacts and was speculated to pos sess a 

higher ligand af finity than the D pocket , which lacks one of 

the aromatic residues . The terminal NeuNAc of neuraminyl 

lactose ( NeuLac ) was observed in the B sites only ( Wright , 

1 9 9 0 ) . However ,  binding of the terminal NeuNAc res idues from 

a bivalent sialic acid containing glycopeptide was detected in 
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The crystal lattice 

structure may interfere with occupancy of some of the 8 

potential sites in these WGA- saccharide crystal complexes .  

Extens ive van der Waal s  and H-bond contacts contribute to 

the saccharide-WGA interactions ( Wright , 1 9 8 4 ; Wright , 1 9 8 7 ; 

Wright , 1 9 9 0 ) . The contacts in the B site ( domain B aromatic 

pocket and domain C polar region ) are described here and are 

similar for the other binding sites . Figure 4 depicts a 

stereo view of the domain B binding site occupied by 

( GlcNAc ) 2' Binding contacts on the GlcNAc and NeuNAc occur at 

the N-Acetyl group , the pyranose ring and an equatorial -OH on 

the ring carbon ad j acent to the N-Acetyl ring carbon . The 

aromatic pocket consists of 3 tyrosine residues ( domain 

positions 2 1 ,  2 3  and 3 0 ) and a Ser ( position 1 9 ) .  The 

aromatic res idues at positions 2 3  and 30 make van der Waals 

contacts with the saccharide ring and contribute a hydrophobic 

surface for the N-Acetyl methyl group , re spectively . The Ser 

interacts through an H-bond with the N-Acetyl carbonyl oxygen . 

The opposing C-domain contributes H-bonds from polar residues 

at domain positions 2 8  and 2 9 . A Glu in domain position 2 9  

forms an H-bond with the N-Acetyl arnido group o f  both GlcNAc 

and NeuNAc . A Ser in domain position 2 8  contributes an 

additional H-bond to the carboxylate of NeuNAc ( Wright , 1 9 90 ) . 

Solution binding studies of GlcNAc and NeuNac 

ol igosaccharides indicate that there are 2 independent but 
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Figure 4 .  Stereo view o f  the WGA domain B binding site 
occupied by (GlcNAc ) 2� The GlcNAc disaccharide is  shown with 
solid bonds . Atoms involved in the protein/saccharide 
interactions are enlarged . The partia l ly solid circ les 
repre sent oxygen atoms , the partially shaded circles represent 
nitrogen atoms . Hydrogen bonds are depicted by double dashed 
lines . The amino acid residues are identified by the single 
amino acid letter code ; numbering is  according to the domain 
position . ( B )  indicates the residue is from domain B of one 
monomer . ( C )  indicates the res idue is from domain C on the 
opposing monomer . 
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equivalent binding sites per WGA monomer ( Privat et al 1 9 7 4 b ;  

Nagata and Burger , 1 9 7 4 ; Mideux e t  a I , 1 9 8 0 ; Kronis and 

Carve r ,  1 9 85 ) . These studies do not provide any evidence for 

which of the 8 potential sites are occupied . However , they do 

suggest involvement of tyrosine , tryptophan and ac idic 

res idues . Domains A ,  B and D have tyrosines and domains C and 

D have tryptophans in their aromatic pocket s .  

RATIONALE 

In order to determine which of the 8 possible domain 

sites delineated in the crystal structure correspond to the 4 

sites that bind saccharide with equivalent aff inities in 

solution , each of the 4 types of sites wou ld have to be 

characteri zed independently . Based on crystal binding 

studies , one can speculate that the sites occupied in solution 

are the B and C sites , because these are the two highly 

occupied s ites in the bivalent sialoglycopeptide-WGA complex 

( Wright , 1 9 9 2 ) . Since fewer saccharide contacts are observed 

at the A and D sites , they are l ike ly to be weaker binding 

site s ,  and binding at these latter sites may not be detectable 

in solution . 

The long term proj ect goal is  to generate each domain 

binding site using recombinant techniques and quantitatively 

characterize the saccharide af finities and specificities . Due 

to the unavailabil ity of specific proteolytic c leavage sites 
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between domains in the intact protein , and due t o  the protease 

resistant nature of WGA , it is improbable that the intact 

protein cou ld be proteolytically fragmented into single domain 

units ( Wright , et al . ,  1 9 8 4 ) . 

Since the B site is  the best characteri zed and the most 

highly occupied site ( as determined by crystallographic 

analysis ; Wright , 1 9 8 4 ; Wright , 1 9 9 2 ) ,  domain B was cloned 

first in the present study . In the event that the recombinant 

domains self-associate in the same fashion as the opposing B 

and C domains do in WGA , two identical saccharide binding 

sites should be generated in the interface . The likel ihood 

that domain B dimers could form in solution is substantiated 

by the observation that several H-bonds and numerous van der 

Waals contacts exist in the WGA B/c interface ( Figure 5 ) . 

These contacts inc lude an H-bond between Tyr30  -OH ( domain B )  

and Glu 2 9  COO- ( domain C ) , a water mediated H-bond between 

Tyr 3 0  ( domain B )  and the amide nitrogen of Ser28  ( domain C ) , 

and two reciprocal H-bonds between the backbone a-NH and a-CO 

groups of Phe 2 6  ( domain B )  and Leu2 6  ( domain C )  ( Wright , 

1 9 8 7 ) • The latter two backbone H-bonds wil l  only form if  

re sidue 2 7  of both domains is  a glycine . Replacement of this 

residue by a threonine in monomeric hevein prevents the same 

type of domain-domain contact . In WGA , many other contacts 

stabi lize the as sociation between opposing monomers . 

To recreate the WGA domain B site accurately , we 
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repre sent H-bonds . 
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postulated that a n  Ala t o  Ser mutation would have t o  be 

introduced at domain position 2 8  ( Figure 3 B ) . This would 

allow the formation of an additional B-bond from the polar 

region to the carboxylate of NeuNAc , if NeuLac were to bind . 

I f  our hypothesis was correct , this additional B-bond would 

yield a tighter complex resulting in a better binding constant 

compared with the unmodified B domain . I f ,  however ,  the 

binding s ite was not faithfully reproduced by dimeri zation of 

the B-Ala28  ( BA )  or B-Ser 2 8  ( BS )  domain molecules ,  the 

magnitude of the binding constants should ref lect only the 

binding contributions from the aromatic pocket residues . 

We speculated that we would be able to obtain correctly 

folded and functional proteins produced in E. coli because 

functional recombinant barley lectin has been isolated from E .  

coli ( Schroeder and Raikhel , 1 9 9 2 ) . Barley lectin is  highly 

homologous to WGA with the 32  eys res idues in identical 

locations , and with similar saccharide specificity and cross­

reactivity with anti-WGA antibodies . 

This report describes the cloning , expres sion and 

puri fication systems of recombinant BA and BS domain proteins . 

In  this work,  the 4 3  residue monomeric protein hevein was used 

as a model system because its cDNA was made available to us 

( Broekaert et al . ,  1 9 9 0 ) . Bevein is  very similar to the WGA 

domains in sequence and structure and hevein also binds chitin 

( Rodriguez-Romero et a1. , 1 9 8 9 ; Van Parijs et a1 . ,  1 9 9 2 ; 



Andersen et al . ,  1 9 9 3 ) . 

1 9  

The protocols developed to 

succe s s fully generate functional recombinant hevein were 

subsequently applied to the BA and BS sequences . The modi fied 

BS clone was generated by synthesizing its cDNA and using PCR 

to generate the site directed change for the native BA 

sequence . Chitin binding and antibody recognition assays were 

used to indicate that the domains were correct ly folded . The 

oligomeric state of the recombinant domains were assessed 

using gel filtration chromatography and mass  spectral 

analysis . Finally , isothermal titration calorimetry ( ITC ) was 

used to assess binding between the domain B proteins and 

GlcNAc and NeuNAc . 



MATERIALS AND METHODS 

DNA METHODOLOGY 

Standard Techniques 

Al l general DNA cloning techniques used are adapted from 

standard protocols ( Maniatis et al . ,  1 9 8 2 ; Berger and Kimmel 

1 9 8 7 ; Sambrook et al . ,  1 9 8 9 ) . Restriction enzymes , l igases , 

polymerases and nucleotides were purchased from New England 

Biolabs ( NEB ) , united States Biochemical ( USB ) , or GIBCO BRL , 

and were u sed according to the manufacturer ' s  recommendations . 

Bacteria, Media & Ant ibiotics 

E .  coli type TB 1 was used for a l l  cloning work . The 

E .  coli were grown in modi fied LB media , in which casamino 

acids were used in place of bactotryptone ( l Og casamino acids , 

5g  yeast extract , 5g NaCI , 19  glucose/ liter ) .  Bacteria were 

grown at 37°C with rapid shaking to ensure aeration . Al l 

plasmids contained the fl-Iactamase gene which renders cells  

containing the plasmid resistant to ampicil l in .  Therefore , 

bacteria containing plasmids were grown in the presence of 

5 0�g/ml ampicillin ( amp ) . 

2 0  
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Competent cells  

E .  coli  cel l s  were made competent to take in exogenous DNA 

by the CaC12 method ( Maniatis et al . ,  1 9 8 2 ; Berger and Kimmel 

1 9 8 7 ; Sambrook et al . ,  1 9 89 ) . Brie f ly , cells  were grown to 

mid log phase , chilled on ice for 1 0  min , pelleted at 2 5 0 0  x 

g ,  and resu spended in half the original volume with ice cold 

CaC12 buf fer ( 1 0mM Tris , 5 0mM CaC12 , pH 8 . 0 ) . They were then 

incubated on ice for 10 min and repe11eted . The cells  were 

resuspended in 1 / 1 5  original volume with ice cold CaC12  bu f fer 

and 1 0 0pl  were used for each transformation experiment . 

Transformation of Competent Cells  

Fre shly prepared competent cells  were used for a l l  

trans formations . DNA from ligation reactions or c losed 

circular p1asmids was incubated with the competent cell s  for 

3 0  min on ice . The cells  were subjected to heat shock ( 4 2°C ) 

for 2 min and then 0 . 5m1 warm media was added . They were then 

incubated at 37°C for 1 hr . Aliquots were spread on modified 

LB media/amp plates and grown overnight at 3 7 °C .  

Plasmid I solation 

Bacteria containing plasmids were lysed using the alkali­

lysis method ( Maniatis et al . ,  1 9 8 2 ; Berger and Kimmel 1 9 8 7 ; 

Sambrook et al . ,  1 9 89 ) . For mini-plasmid preps ( from 1 0ml 

overnight cultures) the plasmid was isolated by extracting the 
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cell lysate with phenol /chloroform and ethanol precipitating 

the DNA . Qiagen columns ( Qiagen Inc . ) were used according to 

the manufacturer ' s  protocol to isolate plasmids in the cell 

lysate from larger ( I O O - S O O ml )  overnight bacterial cultures . 

E lectrophoresis 

High melting ( 0 . 8  - 2 . 0% )  DNA grade agarose gels  were 

used to separate DNA fragments greater than 1 5 0  base pairs in 

length.  Electrophoresis was done in a mini submarine rig 

us ing a TBE buf fer system ( 8 9mM Tris ,  89mM borate , 2 SmM EDTA )  

at a constant voltage ( 80V ) until the bromophenol blue dye 

band had migrated more than hal f  way across the gel . Smaller 

fragments of DNA were ident ified on 8 %  polyacrylamide gel s .  

These were run i n  the TBE buffer system at a constant current 

of 3SmAmps . Bands were visualized by ethidium bromide 

staining under UV light . 

I solation of DNA Fragments 

DNA fragments were isolated from the electrophoresis gels  

by electroelution . The ethidium bromide stained bands were 

s l iced out of the gel and placed in 1 2 , 00 0  - 1 4 , 00 0  Molecular 

Weight Cut Off ( Fisher Scientific ) dialysis tubing with TBE 

buf fer . The DNA was electroeluted from the gel into the 

buf fer in the dialysis tubing . The DNA was precipitated from 

the bu ffer with cold ethanol . 
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Synthetic DNA 

DNA was synthesized in the DNA Core Facility of the 

Department of Microbiology and I mmunology , Virginia 

Commonweal th University . The �ynthesized ol igonucleotides are 

l isted in Table 1 .  They were deblocked in NH.OH at 55°C 

overnight in a tightly sealed tube and desiccated in a speed 

vac evaporator ( Savant ) .  The DNA was resuspended in 0 . 2 5 ml 

sterile deionized water . DNA less  than 3 5  nucleotides was 

isolated u sing Water ' s  Sep-pak C - 1 B  columns following the 

manufacturer ' s  protocol . DNA longer than 35  nucleotides was 

purif ied by gel electrophoresis using BM urea / 1 2 %  

polyacrylamide gel s  i n  TBE buffer . The DNA was visualized by 

uv shadowing on TLC plates containing a fluorescent indicator . 

The band representing the full length DNA chain was extracted 

from the acrylamide by soaking the gel s lice in 3M ammonium 

acetate at 4°C overnight . 

DNA Seguencing 

The USB Sequenase 2 . 0  kit was used for DNA sequencing 

according to the manufacturer ' s  protocol . This protocol 

follows the Sanger dideoxy method for sequencing . The 35SadATP 

used for radiolabel ling the sequencing reactions was purchased 

from New England Nuclear . Reaction products were resolved on 

1 0 %  acrylamide /BM urea gel s  and visualized by autoradiography . 

Synthetic DNA oINSSS and the pUC 1 9  universal forward primer 
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Table 1 .  Synthesized Oligonucleotides 

oBWH. 9 0 

oBWB . 9 0 

oBWH . 1 8  

oBWB . 1 8  

oINSSS 

03 . 2 1 0  

CCC AAG CTT TTA TTA GTC AGC TCT GCA GGG ACC ACC 
CTG GCA ACC GGC GCC GCA ATA TTC GGA ACC GAA TCC 
GCA GTA ACC GTA CTG GGA 

GGG GGA TCC AGG GGG GAG CAA TGC GGT TCC CAG GCT 
GGT GGT GCT ACC TGC ACC AAC AAC CAG TGC TGC TCC 
CAG TAC GGT TAC TGC GGA 

CCC AAG CTT TTA TTA GTC 

GGG GGA TCC AGG GGG GAG 

GAA TTA ATT CGA GCT CGG 

ATT CGG CGC CGA ATC CGC AGT AAc C 

Ol igos are listed 5 '  to 3'.  
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were u sed a s  the primers for the sequencing reactions . 

Plasmids 

The plasmid pMal-P was purchased from NEB . This plasmid 

encodes the maltose binding protein ( MBP ) with its leader 

sequence which targets the protein to the periplasmic space . 

The MBP protein coding region is  followed by the Factor Xa 

( FXa ) recognition sequence and a multicloning site . The 

plasmid has the tac promoter ,  so protein production is induced 

with isopropylthio-B-galactoside ( IPTG ) . HEV N was the gift 

of Dr . Natasha Raikhel , Michigan State University , and 

contains the sequence encoding the 4 3  amino acid hevein domain 

( Broekaert , et al . ,  1 9 90 ) . The plasmids pUC 18 and pFS 1 4NSD 

were the gifts of Dr . Darrel l  Peterson , Virginia Commonwealth 

Univers ity and Dr . Jian Z heng , Ortho Labs ( Zheng , et al . ,  

1 9 9 2 ) . pUC 1 8  is  a high copy number c loning plasmid . 

pFS 1 4NSD encodes the EAC truncated core antigen ( core '" 1 7 , 00 0  

Da ) from Hepatitis B Virus ( HBV ) . This construct expresses 

the core antigen in E . coli after the bacteria have reached 

stationary phase without requiring IPTG induction and contains 

convenient restriction enzyme sites for c loning to the "3 ' end 

of the core sequence to express  proteins as core fusion 

proteins . 
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Cells  for MaP- fusion protein production were grown in 

3 0 0 ml modified LB media to an absorbance at 6 0 0nm • 0 . 6 .  Then 

IPTG was added to a final concentration of 0 . 3mM and the cells  

were grown for another 1 . 5  - 2 hrs . Core-fusion protein 

producing cel l s  were grown in TNY media ( lOg casamino acids , 

1 0 9  yeast extract , 5g NaC I , 19  dextrose / l iter ) .  A 0 . 5ml 

aliquot of a 1 0 ml overnight culture was added to 3 0 0 ml of 

media . This culture was grown for = 4hrs and then added to 2 0  

liters o f  media . The 2 0  liter culture was grown in a wel l  

aerated fermenter maintained a t  3 7°C . Optimal fusion protein 

expre ssion was obtained after 2 4 - 3 0  hrs . 

Osmotic Shock 

Osmotic shock was performed on the E . coli producing the 

MBP-hevein fusion protein to release the periplasmic space 

proteins . Briefly ,  the cell s  were harvested by centrifugation 

( = 4 0 0 0  x g ,  4°C , 10 min ) were resuspended at 1 / 1 5th volume in 

the sucrose solution ( 2 0%  sucrose , 1 0mM Tris , 1 5 0mM NaC I , pH 

8 . 0 )  and incubated for 30 min on ice . The cells  were 

pel l eted , resuspended in the same volume with sterile ice cold 

water , and incubated for 30 min on ice .  The cells  were again 

pelleted and the supernatant containing periplasmic space 

proteins was further processed to obtain the fusion protein . 
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Lysing Bacteria 

The cells harvested from 20 liter cultures of E. coli 

producing the BBV core antigen-recombinant domain fusion 

proteins were resuspended in 3 0 0 - 5 0 0  ml water . The cells were 

lysed at 1 2 0 0  psi in an Aminco French Pressure Cell using the 

continuous flow adaptation . The particulate matter was 

pel leted by centrifugation ( - 8 0 0 0  x g ,  4°C , 3 0  min )  and the 

fusion proteins were purified from the supernatant . 

SDS-PAGE 

Polyacrylamide gels were run us ing the Laemmeli system 

( Laemmeli , 1 9 7 0 ) .  Gels were prepared as 1 2 , 1 5 ,  or 1 8 %  

acrylamide resolving gel and 6 %  acrylamide stacking gel . A 

Boe f fer system with 8cm x 8cm size plates and 0 . 7 5mm spacers 

was used . Generally , 5�g of protein were l oaded per lane . 

Running conditions were constant current at 3 5mAmps until the 

bromophenol blue dye band was at the bottom of the resolving 

gel .  The gel was stained with 1 %  Coommassie Brilliant Blue R 

in 1 0 %  acetic acid and 5 0 %  methanol for several hours and 

destained overnight in 7 . 5 %  acetic acid and 5 %  methanol . 

MBP-Bevein Fusion Protein Purification 

MBP-Bevein fusion protein present in the periplasmic space 

protein preparations extracted by osmotic shock was purified 

by amylose affinity chromatography . The amylose column 
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( prepared a s  indicated by NEB i n  Protocol s  f or MBP Vectors ) 

was equil ibrated in 1 0mM Tris , 1 5 0mM NaCl , 1 %  Tween 2 0 , pH 8 . 0  

buf fer . The first f l ow through fraction , as monitored by 

absorbance at 2 80 nm,  was reapplied to the column . The column 

was washed wel l  with buffer and then the fusion protein was 

eluted with equil ibrating buf fer containing 1 0mM maltose . 

This yie lded relatively pure fusion protein as indicated by a 

single band on SDS-PAGE. 

HBV Core Antigen-Recombinant Domain Fusion Protein 

Purif ication 

The HBV core antigen ( core ) -recombinant domain fusion 

proteins made were core-hevein ( CH ) , core-BS ( CBS ) , which is 

the core-WGA domain B Ser 2 8  mutant fusion protein and core-BA 

( CBA ) , which is the core-nat ive WGA domain B Ala2 8 fusion 

protein . They were purified according to the protocol of 

Z heng et al ( 1 9 9 2 ) for purification of core protein with 

slight modifications subsequently made in the procedure by Dr . 

Darrel l  Peterson ( personal communication ) .  The cells were 

lysed under 1 2 0 0  psi , the cell  lysate supernatant was brought 

to 4 5 %  ( NH4 )  2S04 saturation and the protein pellet obtained 

after centrifugation was dialyzed against 50mM s odium 

phosphate , pH 6 . 8  overnight at 4°C . The dialysate was applied 

to a hydroxylapatite column ( made according to Jenkins , 1 9 6 2 ) 

equilibrated in the same bu ffer . The column was washed with 
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1 .  5 - 2 liters of buf fer , until the absorbance at 2 8 0nm 

dropped bel ow 0 . 1 5 .  The f l ow through fraction was collected 

and precipitated again at 4 5 %  ( NH4 ) 2S04 saturation . This 

latter ( NH4 )  2S04 pellet was_ resuspended in 50mM sodium 

phosphate buf fer , pH 6 . 8  and applied to a Sepharose CL4B 

( Pharmacia ) column equil ibrated in the same buf fer . The core­

fusion protein containing fractions ( identif ied by e lution 

profile position as the second peak and the maj or peak 

reported by Z heng et al . ,  1 9 9 2 ) were pooled and concentrated 

again by prec ipitation at 4 5  % ( NH4 )  2S04 saturation and dialyzed 

against 1 0mM Tri s ,  15 0mM NaCI , 2mM CaCI2 f pH 8 . 0 .  This 

purif ication protocol optimally yielded = 1g fusion protein , 

which consisted primarily of the core antigen-recombinant 

domain fusion protein with some fusion protein degradation 

products as determined by SDS-PAGE and western blot analysis . 

Tryps in Digestion of the Core-Recombinant Domain Fusion 

Proteins 

To separate core from the recombinant domain under 

investigation , trypsin digestion was performed at a 1 :  1 0 0  

molar ratio of trypsin t o  fusion protein , i n  1 0mM Tris , 1 5 0mM 

NaC I ,  2mM CaCI2 , pH 8 . 0 .  Trypsin digestion was either carried 

out in buf fer alone or in the presence of 2M guanidine-HCI as 

described in the Results section . 
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Reduction/Alkylation of MBP-Hevein Fusion Protein 

A 50 fold molar excess of dithioerythretol ( Sigma 

Chemical Co . ) to expected cysteine residues was used to 

achieve complete reduction of all disulfide bonds in the MBP­

hevein fusion protein . The reaction was performed in 1 0mM 

Tris buffer , pH 8 . 8  at 5 0°C for 3 0  min . A 1 0 0  fold molar 

excess of iodoacetamide to cysteine residues was subsequently 

added and the sample was incubated at 50°C for another hour . 

Western Blot Analysis 

The protocol of Burnette ( 19 8 1 ) was followed for western 

blot analysis . Fol lowing SDS-PAGE the acrylamide gel was 

soaked in transfer buffer ( 2 0mM Tris , 1 50mM glycine , 2 0 %  

methanol )  for = 1 0  minutes . One sheet o f  0 . 45pm 

nitrocellulose ( Kodak ) and 4 pieces of * 1  Whatman filter paper 

were cut to the s ize of the resolving gel and wetted in the 

transfer buf fer . The trans fer layers were stacked on the 

bottom electrode of the Mi ll ipore Polyblot " semi-dry " transfer 

apparatus taking care to exclude air bubbles . Two sheets of 

filter paper were laid down first , followed by the sheet of 

nitrocel lulose , the gel , two more sheets of filter paper and 

then the top electrode . The transfer was accomplished using 

constant current at 2 .  5mAmps per cm2 of gel , but not 

exceeding 2 0 0mAmps for 3 0  - 4 5  minutes .  Following transfer 

the gel was soaked in Coommassie Brilliant Blue stain and the 
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nitrocellulose sheet was soaked in 2 5ml blocking buf fer ( 1 0mM 

Tris , 1 5 0mM NaCl , 1 %  w/v BSA, pH 8 . 0 ) . The solution was 

shaken gently at room temperature for 2 hours , then an 

appropriate dilution of antiserum ( 1 : 2 5 0 0  polyclonal rabbit 

anti-WGA ( Sigma Chemical Co . ) ;  1 : 1 0 0 0  polyclonal rabbit anti­

core the generous gift of J .  Zheng and D.  Peterson ) was added 

to the blocking buf fer . Incubation overnight at room 

temperature was followed by removal of the first antibody 

buffer and washing 3 times with wash buf fer ( 10mM Tris 0 . 5M 

NaC I , O .  1 % v /v Tween 2 0 , pH 8 . 0 ) . The blot was then incubated 

with the second antibody in 1 0mM Tris , 1 5 0mM NaCI , 1% w/v BSA, 

pH B . O  bu f fer and 1 0�l horseradish peroxidase ( HRP ) conj ugated 

goat-anti-rabbit antisera was added . After 2 hours at room 

temperature the blot was washed again 3 times with buf fer , 

then developed with a solution of 8ml of TBS buf fer ( 1 0mM 

Tris , 1 5 0mM NaC I , pH B . O )  and 2ml 4 -chloronaphthol ( 2 5mg /ml in 

ethanol ) and 5�1 H202 • Immunoreactive bands developed within 

5 minutes . 

Protein Concentration Determination 

The Pierce BCA protein assay kit was u sed for most 

protein concentration determinations according to the 

manufacturer ' s  protocol . BSA provided with the kit was the 

protein standard used . The molar extinction coefficients 
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( WGA=2 9 , 3 2 0  M-1cm- l ;  hevein= 1 3 ,  6 0 0  M-1cm- l ;  BS & BA=4 3 2 0  M-1cm- l ) 

and absorbance measurement s at 2 8 0nm were used to determine 

protein concentrations of purified proteins . 

Fluorometry 

A Shimadzu f luorometer was used to detect the intrinsic 

tryptophan f luorescence intensity for the chitin binding assay 

and the shifts in Am� of WGA, nHev and rHev after incubation 

with tri- and tetra-GlcNAc oligosaccharides . One ml of sample 

was used for each measurement . The samples were excited at 

2 9 0nm ,  at the maximum absorbance of tryptophan . Fluorescence 

intens ity values were determined at the emission A� for WGA 

and hevein ( 34 9  & 34 7 nm,  re spectively ) .  Shifts in A� were 

monitored by scanning between 3 2 0  - 3 7 0nm for hevein and WGA . 

Chitin Binding Assay 

A chitin binding as say was developed to screen for the 

presence and function of the recombinant domain proteins 

( hevein , BS and BA ) .  Chitin was weighed into an Eppendorff 

tube and 1 . 2ml of the test protein solution was added . 

Amounts of protein used were nhev=8 . 3IJg Iml , rhev=2 5IJg Iml , 

WGA=4 2IJg/ml , BA=4 2 01Jg/ml and BS=3 3 0lJg/ml . The tube was laid 

on its side to maximize  surface exposure and incubated at room 

temperature for 1 hour . The chitin was pelleted in a 

microfuge and the relative amounts of protein remaining in the 
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supernatant were determined by either intrinsic tryptophan 

f luorescence or protein concentration determination using the 

Pierce BCA kit . 

Amino Acid Compositional Analysis 

Amino acid compos itional analyses were performed in the 

Protein Core Facility in the Department of Biochemistry and 

Molecular Biophysics Department , Virginia Commonwealth 

University , Richmond , VA . Single time point acid hydrolyses 

were performed on samples of hevein , BS and BA at varying 

stages of purity . Most samples were reduced and alkylated 

before hydrolysi s . 

N-Terminal Sequencing 

N-terminal sequence analysis of the recombinant proteins 

was done by automated Edman degradation at the Protein Core 

Fac ility in the Department of Biochemistry and Molecular 

Biophysics , Virginia Commonwealth University , Richmond , VA . 

Mass  Spectral Analys is 

Matrix Assisted Laser Desorption Ionization - Time of 

Fl ight ( MALDI-TOF ) mass spectral analysis was performed at the 

Dana Farber Cancer Institute , Boston , MA on samples of the BA 

protein . Samples were prepared in 5 0  roM sodium phosphate 

bu ffer/pH 6 . 8 ,  with 35 fold molar excess ( GlcNAc ) 3 ' and at 
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pH<2 . 0  that would yield between 10-20  pmoles in 0 . 5�l . Mass 

spectral ( MALDI-TOF ) analysis was performed by Commonwealth 

Biotechnologies , Inc . , Richmond , VA on samples of the BS 

protein in water . The analysis were performed using two types 

of matrices , a-cyano and sinapinic acid . 

Free Sulfhydryl Determination 

The free sulfhydryl determination for rHev was performed 

by Dr . Darrell  Peterson , Dept . of Biochemistry ,  Virginia 

Commonwealth University , us ing 5 , 5 ' -dithiobis ( 2 -nitrobenzene ) . 

The free sulfhydryl content of the BA and BS proteins was 

determined by alkylation with SO molar excess of iodoacetamide 

over protein in the presence of 6M guanidine-HCl . The moles 

of carboxymethyl cysteine was quantitated by amino ac id 

compositional analysis . 

HPLC Gel Filtration 

The HPLC SEC 2 0 0 0  GF column purchased from Phenomenex was 

used to estimate molecular weights of BS and BA . The column 

was equil ibrated in 5 0mM sodium phosphate , 1 5 0mM NaCl , pH 6 . S  

and operated at a flow rate of 1 ml /min . The elution profile 

was monitored at 2 S0nm. Molecular weight standards used were 

bovine serum albumin ( BSA ) at 64 , 0 0 0  Da , soybean trypsin 

inhibitor ( SBTI ) at 2 1 , 50 0  Da , ribonuclease A ( RNAsa A )  at 

1 3 , 7 0 0  Da and bovine pancreatic trypsin inhibitor ( BPTI ) at 
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6 , 4 0 0  Da . A linear regres sion of retention time vs log 

molecular weight yielded a regress ion coefficient of 0 . 9 9 8 . 

HPLC Reverse Phase CC- 1 8 )  

Reverse-phase HPLC was used t o  help identify the 

recombinant domain proteins and determine their purity . The 

column ( Spherisorb RP- 1 8 , 4 . 6mrn x 2 5cm, 5 micron , Column 

Resolution Inc . ) was equilibrated in 0 or 1 0 %  ( v/v ) 

acetonitri l e ,  0 . 1 % ( v/v ) tri f luoroacetic acid in water ( TFA ) . 

The column was developed at Iml /min us ing a gradient of 0 or 

1 0 %  solvent B to 5 0 %  solvent B in 25 or 20 min , respectively . 

The elution profile was monitored at an absorbance of 2 2 0  or 

2 8 0 nrn .  

Isothermal Titration Calorimetry C ITC) 

I sothermal titration calorimetry experiments were done to 

determine the binding constants and thermodynamic parameters 

of the saccharide binding to BS , BA , hevein and WGA . Samples 

were prepared in 5 0mM sodium phosphate , pH 6 . 8  and degassed 

prior to each experiment . Protein concentrations were 0 . 2 4  -

0 . 7mM for BA and BS , 0 . 0 8 7mM for native hevein and 0 . 1 7mM for 

WGA . Protein concentrations were determined by absorbance 

measurements using calculated molar extinction coefficients . 

Theoretical saccharide concentrations in the dropping syringe 

were either 10 or 2 0mM . The protein solution was loaded into 
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the sample cell o f  the MicroCal Omega instrument , taking care 

to remove all air bubbles . The solution was stirred at 4 0 0  

rpm throughout the experiment . For each experiment 1 5 - 2 0  1 0,.,1 

injections ( of 1 0  sec duration ) were made at 3 minute 

interval s .  The heat ( Q ,  area under each peak ) was corrected 

for injection of saccharide into buf fer alone and the 

cumulative heat released ( QT ) vs the ligand concentration was 

plotted to generate a binding isotherm ,  us ing a non-linear fit 

according to the binding equation : 

Q=V [ M ]  ( n4 HK. [ L ]  / l+K. [ L ] ) ( 1 )  

where V is the cell volume , [ M ]  is  the molar concentration of 

protein , n is the number of ligand binding sites per 

macromolecule , 4H is the enthalpy of binding , K. is the 

as sociation constant and [ L ]  is the molar concentration of 

free ligand ( Freire , 1 99 0 ;  Wiseman et al , 1 9 8 9 ) . 



RESULTS 

PLASMID CONSTRUCTS GENERATED 

We chose to express the recombinant proteins as fusion 

proteins to facilitate purification and isolation of the 4 3  

amino acid residue domains . Al though two types of fusion 

protein systems were employed , we could isolate the 

recombinant domains from only one . Bevein was the first 

protein cloned and expressed in order to develop the protocols 

to be appl ied to the domain B proteins . A total of five 

constructs were generated to produce the three recombinant 

domains . The amino acid sequences of these domains ( rhev , BS 

and BA ) are shown in Figure 6 .  

The sequence encoding the mature hevein protein was 

initially cloned into the pMal-P express ion vector to be 

expressed as a maltose binding protein ( MBP ) fusion protein 

( MBP-Bev ) • The pMal-P vector is a commercially available 

vector , which is des igned to express high levels  of fusion 

protein .  Ideally , the fusion protein is purified on an 

amylose af finity column and the fus ion partners separated by 

cleavage with FXa . 
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BA 
RHEV 
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3 8  

Figure 6 .  Amino Acid Sequences of the Recombinant Domains . 
BS , WGA domain B-Ser2 8 mutant ; BA, native WGA domain B-Ala2 8 
sequence ; rHev , recombinant hevein sequence . Only residues in 
the BA and rHev sequences differing from the BS sequence are 
indicated . 



The Hev-N plasmid contains the hevein cDNA . 
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Figure 7 

depicts the c loning protocol utilized to generate the MBP-hev 

fus ion construct . The DNA sequence encoding the 4 3  amino acid 

mature hevein protein is flanked by a 5 '  Sma I restriction 

enzyme site and a 3 '  Hind I I I  restriction enzyme site in the 

Hev-N plasmid . The multi-cloning site ( site with numerous 

unique restriction enzyme recognition sequences ) of pMal-P has 

a Stu I restriction enzyme site located 5 '  of a Hind I I I  site . 

Stu I and Sma I both produce blunt ended products . The hevein 

sequence was isolated from Hev-N by cleavage with Sma I and 

Hind I I I  and ligated into pMal-P at the Stu I and Hind I I I  

site s ,  yielding the pMN vector . pos itive clones were 

identified by the Bgl II restriction enzyme digestion pattern 

( Figure 8 )  and verif ied by Western blot analysis described 

later . Bgl I I  c leaves once in the vector and once in the 

insert to release a 1 ki lobase fragment ( lane 6 ) . The MBP-Hev 

fusion protein was expressed and purified according to the 

protocol described in Materials  and Methods . The extent of 

digestion with FXa was monitored by a shift in molecular 

weight si ze on SDS-PAGE from MBP-Hev fusion protein ( 4 6  kDa )  

t o  MBP ( 4 2  kDa ) alone . Applying the protocol recommended by 

NEB , digestion was found to be inefficient , although the FXa 

activity was verified by its ability to hydrolyze a 

colorimetric substrate ( N-Benzoyl-I-E-G-R-p-nitroanilide , 

Sigma Chemical Co . ) .  Thus , the MBP-fusion protein system was 
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Figure 8 .  Bgl I I  Digestion of pMN . The f irst lane on the 
left shows molecular weight markers .  Lanes 1 - 6  are plasmids 
extracted from different colonies and digested with Bgl I I . 
The arrow indicates the excised 1 kilobase band from the 
positive c lone . 
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abandoned a s  the fu sion protein expression system for this 

proj ect . 

To place the hevein cDNA into another expression vector 

required subcloning into an intermediate vector with useful 

restriction enzyme cleavage sites . The protocol utilized for 

cloning the hevein cDNA into pUC 1 8  is depicted in Figure 9 .  

The pUC 1 8  vector was chosen because of its extensive multi­

cloning s ite . Hence , pMN and pUC 1 8  were cleaved with Sst I 

and Hind I I I . In  pMN , this releases a 1 8 0  base pair fragment 

containing the FXa recognition sequence followed by the hevein 

cDNA . In  pUC 1 8  both s ites are in the multi-cloning site . 

The 1 8 0  base pair hevein fragment was then isolated as 

described in Materials  and Methods and l igated us ing T4 DNA 

ligase into the pUC 1 8  vector at the compatible  restriction 

enzyme sites . This cloning protocol produced p 1 8N in which 

the FXa-hevein coding sequence i s  flanked by numerous 

restriction enzyme sites . The FXa site was maintained in this 

construct due to location and availability of  restriction 

enzyme s ites . positive clones were identified by Ssp I 

restriction enzyme digestion patterns ( data not shown ) . There 

is  one Ssp I site within hevein and one site in the vector , 

which releases a 6 4 0  base pair fragment . 
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Figure 9 .  p1 8-N Construction . 
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I n  the next expre s s ion vector heve i n  was f u sed t o  the C ­

t e rm i n u s  o f  t he HBV core a n t i g e n  ( core ) . T h i s  s y s tem wa s 

c h o s e n  bec a u s e  the core a n t i g e n  i s  expr e s s e d  at moderate 

l e ve l s  without req u i r i n g  i nduc t ion . The core prot e i n  i s  

pu r i f ied f a i r l y  e a s i l y  f rom E . c o l i  e x t ract s  ( Z heng , e t  a l . ,  

1 9 8 9  and D .  Peterson personal c ommu n ic a t i o n ) .  F i gure 1 0  

d e p i c t s  the c l on i n g  protocol u t i l i zed t o  generate the core­

heve i n  f u s ion prot e i n  c o n s t ruc t . The p l a smid pFS 1 4 NSD encodes 

t he c ore a n t i g e n  with a 3 '  Eco R I  s i te . There is an E c o  R I  

s i te a t  the 5 '  end o f  the FXa recogn i t i o n  sequence i n  p 1 8N .  

To f u s e  t he heve i n  c DNA to the C - te rmin u s  o f  t h e  core a n t i g e n  

3- n t he c o r r e c t  r e a d i n g  f rame requ ired d i g e s t io n  o f  bot h 

p l a s m i d s  with Eco R I  and f i l l i ng i n  the re s u l t i ng 5 '  overhan g s  

w i t h  t he K l e now f ragme nt o f  DNA pol ymera s e . The Eco R I  and 

K l e now were heat inact ivated . Both p l asmids were subseque n t l y  

c l eaved w i t h  Af l I I I . The core a n t i g e n  sequence wa s i s o l at e d  

a s  a n  8 0 0  b a s e  pair f ragment f r om t h i s  d i g e s t i o n . I n  p 1 8N a 

5 0 0  b a s e  p a i r  f ragment 5 '  of the heve i n  c �NA was r e l e a sed and 

the rema i n i n g  1 8 N p l a smid was i s o l ated . The core a n t i g e n  

sequence w a s  t he n  l i gated 5 '  o f  t he heve i n  g e n e  into the p 1 8 N 

vector t h rough the Af l I I I  and b l u nt ended s i t e s . p o s i t ive 

c l on e s  were ide n t i f ied by c l eav i n g  p l asmids w i t h  B g l  I I ,  whi c h  

c l eave s once i n  heve i n  and once i n  c o r e  t o  r e l e a s e  a 3 5 0  b a s e  

p a i r  f ragme n t  ( F igure 1 1 ) , and ver i f ied b y  we s tern b l o t  
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Figure 1 1 .  pCB Digestion with Bgl I I . Lane 1 is  the plasmid 
lineari zed with Nco I .  Lane 2 is the plasmid digested with 
Bgl I I . The arrow indicates the 350  base pair fragment 
released from a positive clone . 
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analysis described later . This clone produces a core-hevein 

fus ion protein , which was purified as described in Materials  

and Methods . The core-hevein fusion protein retains the FXa 

recognition sequence between core and hevein . The FXa never 

e f f iciently released hevein from core , but trypsin was found 

to be e ffective for the proteolytic separation as described 

later under purification of the recombinant domains . S ince 

this expression system was effective , the domain B sequences 

were subsequently cloned in a s imi lar fashion into the core 

antigen fus ion construct . 

Generation of the WGA domain B Serine ( BS )  clone involved 

DNA synthesis of the complete sequence . This sequence was 

amplified u sing the polymerase chain reaction ( PCR ) and 

ligated in place of hevein in pCH . Figure 12 shows the PCR 

strategy utilized to obtain the domain BS cDNA . Two synthetic 

90 nucleotide chains were prepared , oBWH . 9 0 and oBWB . 9 0 ,  which 

encode approximately hal f of the desired protein and which 

contain Hind I I I  and Bam HI  restriction enzyme sites on their 

5 '  ends , respectively . They overlap in 2 1  base pairs , which 

were annealed and elongated to generate the full length double 

stranded clone . The elongation reaction was carried out using 

each 9 0-0l igomer at 2 5 0nM and the thermostable Vent polymerase 

( NEB ) according to the manufacturer ' s  recommendations . This 
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Figure 1 2 . pCBS PCR . ( a )  The solid l ines represent the 
synthetic oligonucleotide primers , oBWB . 90 and oBWB . 9 0 .  The 
vertical lines represent the 2 1  bp overlap of the 9 0 -mers , 
which can anneal to each other . The hollow arrows indicate 
the elongation products of the oligonucleotide primers . ( b )  
repre sents the product o f  the elongation reaction . ( c )  
depicts the second set o f  shorter primers , oBWB . 18 and oBWS . 1 8 
as small  arrows , which are used to PCR amplify the elongation 
product . ( d )  depicts the product of the PCR amplif ication 
reaction . 
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reaction consisted of 5 PCR cycles of 1 minute at 94°C ,  1 

minute at 52°C ,  and one-ha l f  minute at 72°C .  Two synthetic 1 8  

nucleotide chains , oBWH . 1 8 and oBWB . 1 8 ,  identical t o  the 5 '  

ends of each 9 0-0Iigomer , were used for the amplification 

reaction . The amplification reaction used 5 Jll of  the 

elongation reaction as the template , 1JlM concentration of each 

1 8 -ol igomer and Vent polymerase at 94°C for 1 minute , 3 7 °C for 

1 minute , and 7 2 °C for one-half minute for a total of  3 5  

cycles . Figure 1 3A shows the products of the PCR elongation­

amplification reaction . The PCR product ( BS cDNA ) was 

isolated and c leaved with Bam HI and Hind I I I  so it could be 

ligated into the plasmid at compatible restriction sites . 

Figure 1 4  shows the cloning strategy utili zed to obtain the 

core-BS fusion protein construct . The plasmid pCH was cleaved 

with Bam HI and Hind I I I . The BS sequence was ligated 3 '  of 

the core antigen in place of hevein at the compatible 

restriction en zyme sites . The complete FXa recognition 

sequence was omitted in this clone since FXa digestion was 

never e ffective . However , Arg was retained to allow trypsin 

digestion to cleave the core-BS fusion protein . positive 

clones were identified by Pst I restriction enzyme digestion 

pattern , which cleaves once in the BS sequence and once in 

core releasing a 3 1 0  base pair fragment ( Figure 1 3B ) . positive 

clones were verified by DNA sequencing through the entire 

inserted region . Fusion protein production was verified 
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Figure 1 3 .  pCBS PCR and Digestion with Pst I .  A shows the 
PCR product from the elongation and amplif ication reactions . 
Lane 1 is molecular weight markers . Lane 2 is  1 5�l  of the 
1 0 0�l PCR reaction . The arrow indicates the - 1 6 0  base pair 
PCR product . B shows the Pst  I digestion pattern of pCBS . 
Lane 1 is the products  of the Pst I digestion of pCBS . Lane 
2 is molecu lar weight markers . The arrow indicates the 3 1 0  
base pair excised fragment i n  the correct clone . 
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by western blot analysis . 
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The clone produces a core-WGA 

domain B Serine ( CBS ) fusion protein , which was purified as 

described in Materials and Methods for the core-recombinant 

domain fusion proteins . 

Generation of the WGA domain B Alanine ( BA )  clone 

involved PCR amplif ication of the 5 '  hal f of the BS sequence 

with 2 nucleotide changes in one primer . This primer encodes 

an alanine instead of a serine at domain position 2 8 .  The PCR 

product is ligated in place of the 5 '  hal f  of the BS sequence . 

Figure 1 5  shows the cloning strategy utili zed to obtain the 

core-BA fus ion protein construct . The end of one PCR primer , 

03 . 2 1 0 ,  contains the 3 '  - half of the Ssp I recognition 

sequence ( S sp I produces blunt ended products ) ,  the 2 

nucleotide changes and 1 7  nucleotides that can anneal to the 

sequence being ampli fied . The other PCR primer , oINSSS , has 

a Bam HI recognition sequence and can anneal S '  of the BS 

sequence . Amplification was carried out using pCBS as a 

template and oINSSS and 03 . 2 1 0 ,  at 3�M , as the PCR primers for 

25 cyc les at 9 0°C 1 . 5  min , 3 0 DC 1 min and 7 2 °C 1 min . The PCR 

product was isolated and c leaved with Bam H I . pCBS was 

partially digested with Ssp I ,  s ince there are 2 s ites in the 

plasmid . One Ssp I s ite i s  located in the des ired cloning 

site and the other is  located 6 0 0  base pair away in the 
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vector . The lineari zed plasmid band was isolated and cleaved 

with Bam HI to allow discrimination of the products cleaved at 

dif ferent Ssp I s ites and to produce the appropriate end for 

ligation purposes .  The higher molecular weight plasmid band , 

which contains the restriction enzyme digested ends at the 

desired locations , was isolated . The PCR product was l igated 

into the plasmid at the compatible sites . Clones with the 2 

nucleotide changes were identified by digesting with Nar I ,  

which releases an 8 7  base pair fragment in BA compared to a 

1 0 3  base pair f ragment in BS ( Figure 1 6 ) . The 2 nucleotide 

changes were verified by DNA sequencing . This clone makes a 

core-WGA domain B Alanine ( CBA ) fusion protein , which is  

purif ied as described in  Materials and Methods for  the  core­

recombinant domain fus ion proteins . 
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Figure 1 6 . Dige st ion o f  pCBA and pCBS with Nar I .  Lane 1 i s  
pCBS digested with Nar I .  Lane 2 is pCBA dige sted with Nar I .  
Lane 3 is molecu lar weight marke r s . The upper arrow i ndicate s 
the 1 0 3  base pair band released f rom pCBS upon Nar I 
dige stion . The lower arrow indicat e s  the 8 7  base pair band 
relea sed f rom pCBA upon digestion with Nar I .  
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WESTERN BLOT ANALYS IS OF FUS ION PROTEINS 

We stern blots analyses were performed on both the MBP­

and core-fus ion proteins using anti-WGA antisera to identi fy 
the presence of the recombinant domains and provide some 

evidence supporting a correctly folded domain . 

MBP-Hevein Western Blot 

The MBP-Hevein fusion protein was purif ied as described 

in Materials and Methods . A western blot was performed on the 

MBP-Hevein fusion protein using commercially available 

polyclonal anti-WGA antisera . Cell extracts from cultures 

containing the plasmid without the hevein cONA insert , pMal-P , 

did not react with this antisera indicating that the anti-WGA 

antibodies were recogniz ing the hevein domain and not MBP 

( data not shown ) . Figure 17  depicts a western blot and 

corre sponding SOS-PAGE gel in which some samples were never 

exposed to reducing agents ( lanes 1 -2 ) ,  some samples were run 

under typical reducing SOS-PAGE conditions ( lanes 5 - 1 0 ) and 

some samples were reduced and alkylated prior to 

electrophoresis ( lanes 3 -4 ) . The antisera recognized the non­

reduced and the reduced samples equally wel l  ( lanes 2 & 6 ) , 

but the reduced and alkylated minimally ( lane 4 ) .  Native 

hevein ( nHev ) treated under the same conditions ( lanes 1 ,  3 & 

5 )  i s  also shown on this blot and gel .  The nHev did not stain 

with Coommassie or cross-react with the anti-WGA antisera . We 
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Figure 1 7 . MN Western Blot . A is a western blot probed with 
anti-WGA . B is  the corresponding 80S-PAGE gel .  Lanes 1 ,  3 & 
5 are native hevein ( =4 8 0 0  Oa ) . Lanes 2 ,  4 & 6 - 9 are MBP­
hevein fus ion protein ( -4 6 , 0 0 0  Oa ) . Lane 10 is BSA ( -64 , 0 0 0  
Oa ) and WGA ( = 1 7 , 0 0 0  Oa ) as  molecular weight markers . Lanes 
1 & 2 are non-reduced . Lanes 3 & 4 are reduced and alkylated . 
Lanes 5 - 9 are reduced . 
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su spect that the lack o f  antibody cross-reactivity is due t o  

the small  size  ( 4 8 00  Da ) o f  hevein and the minimal amount of 

material loaded on the gel .  The inability to detect the 

s ingle domain protein by SDS-PAGE or western blot analysis 

indicated the s ingle recombinant domain proteins were going to 

be difficult to identify during purification . 

Core Antigen-Recombinant Domain Western Blot Analysis 

Fusion proteins produced by core-Hevein , CBS and CBA 

clone s that were positive by plasmid restriction digestion 

pattern , were subj ected to western blot analysis to verify the 

pre sence of the recombinant domain in the fusion protein . The 

core antigen-recombinant domain fusion proteins were puri f ied 

as described in Materials and Methods . Core-BA cell extracts 

were assayed for recognition with both anti-WGA and anti-core 

antisera ( Figure 1 8 ) .  Bands in identical locations at the 

expected molecular weight size  for the fusion protein ( 2 3 , 00 0  

Da ) reacted with both antibodies ( lanes 1 ,  2 ,  6 & 7 ) , 

indicating that the fusion protein was produced . Lack of  

recognition of core by  anti-WGA and WGA by  anti-core implied 

that there was no cross-reactivity of the antibodies . The 

lower bands in the fusion protein lanes ( lanes 1 ,  2 ,  6 & 7 )  

react predominately with anti-core antibodies indicating that 

these lower bands are degradation products of the fusion 

protein in which the recombinant domain is one of the f irst 
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Figure 1 8 .  CBA We stern Blot . A shows a western blot and B i s  
the corresponding SOS-PAGE gel .  Lanes 1 and 6 are CBA whole  
cell  extracts .  Lanes 2 and 7 are the CBA Cl4B pooled 
fractions . Lanes 3 and 8 are core . Lanes 4 and 9 are WGA . 
Lane 5 is  a molecular weight marker ( 2 1 , 50 0  Da ) . Lanes 1 - 4 
were probed with anti-WGA . Lanes 5 - 9 were probed with anti­
core . The upper arrow indicates the fusion protein ( -2 3 , 0 0 0  
Oa ) .  The lower arrow indicates core ( - 1 7 , 0 0 0  Da ) .  
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fragments lost . Simi larly t o  hevein,  the l iberated 

recombinant domain ( SA )  is not detected with either anti-WGA 

antibodies or Coommassie stain ( lanes 1 & 2 ) . Core-hevein and 

Core-BS western blots were also probed with anti-WGA 

antibodies ( data not shown ) . Both reacted with a 2 3 , 0 0 0  

molecular weight size band a s  expected for the fusion protein 

( = 1 7 , 0 0 0  Da for core plus -5000 Da for the recombinant 

domain ) . 

RECOMBINANT DOMAIN PURIFICATION 

This section describes the separation , isolation and 

identif ication of the recombinant domains . 

Trypsin Digestion 

Since FXa cleavage did not successfully l iberate 

recombinant hevein and the FXa site ( I-E-G-R-X , X any amino 

acid except P )  contains an Arg , trypsin was used to c leave the 

core-hevein fusion protein . The FXa recognition sequence was 

maintained in the core-hevein fusion protein construction 

because of the presence of restriction enzyme c loning sites . 

Only the Arg was present in the CBA and CBS constructs , s ince 

they were derived from completely synthetic DNA . The extent 

of c leavage was monitored by a shift from fusion protein 

molecular weight size ( 2 3 , 00 0  Da ) to core molecular weight 

size ( 1 7 , 0 0 0  Da ) by SDS-PAGE . In  developing a protocol for 



efficient trypsin digestion 

experienced . I n  1 0mM tris , 

6 7  

several difficulties were 

1 5 0mM NaCl , 2mM CaCl2 f pH 8 . 0  

buf fer , trypsin digest ion of the core antigen-recombinant 

domain fusion proteins was found to be incomplete . The 

l iberated recombinant domain proteins were isolated in soluble 

form in the supernatant after core and the remaining fusion 

protein were precipitated at 4 5 %  ( NH4 ) 2S04 saturation . In  an 

ef fort to improve the yield , an additional trypsin digestion 

was performed in the presence of 2M guanidine-HCl . Some 

difficulties were experienced when the fusion protein 

precipitated in the presence of 2M guanidine-HCl . 

Subsequently it was determined that precipitation could be 

avoided , if the protein concentration was kept below =2 . 5  

mg/ml during trypsin digest ion in 2M guanidine-HCI . SDS-PAGE 

indicated a nearly complete shift of the fusion protein band 

to the core band . Figure 19 shows the digestion pattern for 

CBS and CBA with the molecular weight size band shifts from 

partially digested fusion protein in physiological buffer 

( lanes 3 and 4 )  to nearly total cleavage in 2M Guanidine-HCl 

( lanes 1 and 2 ) . The recombinant domain was recovered from 

this trypsin digest by precipitation of cor� antigeri as a 

result of lowering the pH to =4 . 5  with 1 0 %  acetic acid . The 

supernatant containing the recombinant domain protein was 

desal ted by dialysis . The dialysate was lyophilized or 

concentrated in a speed vac evaporator and yielded =2 0mg of 
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Figure 1 9 . CBS & CBA Trypsin Digest Gel . Lanes 1 & 2 are the 
CBS and CBA trypsin digests in 2M guanidine . Lanes 3 & 4 are 
the CBS and CBA trypsin digests in physiological buf fer . The 
upper arrow indicates the fus ion protein ( =2 3 , 0 0 0  Da ) . The 
lower arrow indicates core ( = 1 7 , 0 00  Da ) .  
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rhev and - 2 0 -5 0mg o f  the domain B proteins . 

Further characteri zation ( described below ) revealed three 

maj or products of the trypsin digest ion , core , an arginine 

rich peptide from the C-terminus of core and the recombinant 

domain protein . The core protein is extremely stable and not 

significantly proteolytically degraded , which facilitates 

isolation of the recombinant domain proteins . The BS and BA 

proteins have only one other potential trypsin cleavage site 

3 residues from the C-terminus . Loss of this short piece 

would not be expected to affect the domain ' s  structure and 

function . Rhev has 3 potential trypsin sites at positions 6 ,  

1 0  and 4 2 . N-terminal sequencing ( described below ) indicated 

a single cleavage site at the Arg in the FXa site . Thus , it 

is unlike ly that a signi ficant amount of trypsin cleavage 

occurred at either of the potential trypsin cleavage site s ,  

Arg6 o r  Lys 1 0 . Although the poss ibility of cleavage at Lys4 2  

one residue removed from the C-terminus was not investigated , 

cleavage at this re sidue would not be expected to affect the 

hevein structure or function . This result is consistent with 

the finding that WGA was found to be resistant to enzymatic 

proteolysis in the native state ( Wright , et al . ,  1 9 84 ) . 

I solation and Identification of the Recombinant Domain 

Proteins 

To assess the presence of remaining core antigen in the 
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supernatant after trypsin digestion , aliquots of rhev , BS and 

BA samples were analyzed by 50S-PAGE . Oirect evidence for the 

pre sence of the recombinant domains at various stages of 

purif ication was obtained from amino acid compositional 

analyses , which revealed high Cys contents . 

In the case of rhev , undigested core fusion protein was 

pre sent . Therefore it was further purif ied by P30  gel 

fil tration column . Figure 2 0  depicts an 1 S %  50S-PAGE of the 

precipitate ( lane 2 )  and supernatant ( lane 3 )  of the trypsin 

digested material precipitated with acid . The P30  column was 

equi librated with 50mM sodium phosphate buffer , pH 6 . S ,  and 

eluted fractions were monitored by absorbance at 2 S 0nm ( Figure 

2 1 ) . Fractions which corresponded to elution profile peaks 

were pooled and analyzed by 50S-PAGE . The third and maj or 

peak showed only a low molecular weight band on 50S-PAGE . 

Amino acid compositional analysis of the pooled third P30  peak 

yie lded a high Cys content indicating that this fraction 

probably contained the chitin binding domain protein . A high 

Arg content indicated the presence of other digestion 

products . Those fractions were further resolved on a reverse 

phase HPLC C - 1 S  column ( Figure 2 2A ) . 

Fractions which corresponded to absorbance peaks at 2 2 0nm 

were e luted from the C - 1 S  column , dried and their amino acid 

composition determined . The composition of the peak which 

eluted at 22 min retention time indicated a Cys rich peptide 
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Figure 2 0 . Products o f  the Acid Precipitation of Trypsin 
Digest . Lane 1 is 2 1 , 50 0  Da molecular weight marker . Lane 2 
is precipitated material from the acid precipitation of the 
trypsin digest . Lane 3 is material from the supernatant from 
the acid precipitation of the trypsin digest . The top arrow 
indicates fusion protein ( =2 3 , 0 0 0  Da ) .  The middle arrow 
indicates core ( = 1 7 , 0 0 0  Da ) .  The lower arrow indicates the 
low molecular weight material ,  which was eys rich and Arg 
rich . 
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Figure 2 1 .  P30  Elution Profile . Elution profile of the 
supernatant from the acid precipitation of the trypsin digest 
appl ied to the P30 column . 
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Figure 2 2 .  C- 1 8  Elution Profiles . A is the elution profile 
of rHev u sing a gradient of 0 - 1 0 0  % CH)CN and monitoring 
elution at 2 2 0  nm . B is the elution profile of BA . C is  the 
elution profile of BS . The gradient for BA and BS was 10 - 5 0  
% CH)CN and was monitored at 2 8 0  nm .  
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s imi lar t o  that o f  hevein . A smaller Arg rich peak eluted at 

1 3  min . The composition of this peak was consistent with the 

Arg rich C-terminal region of core . 

In the case of BS and BA , SDS-PAGE analysis showed that 

there was no evidence of contamination by core antigen . These 

samples were directly applied to the reverse phase HPLC column 

to further assess their purity ( Figure 22B  and C ) . The 

fractions corresponding to the maj or peaks were submitted for 

amino acid compositional analysis . An amino acid 

compositional analysis representative of this peak in each C-

18  profile is  shown in Table 2 .  They correlate well  with the 

expected Cys-rich compositions for the recombinant domains .  

However ,  the amino acid residues which oxidi ze easily , such as 

cysteine , showed a low yield . The glycine content was lower 

than expected in this particular amino acid composition for BS 

and BA , but it gave the expected value in other compositional 

analyses .  

N-terminal sequence analysis was performed to determine 

the purity of the rhev and BS samples ( Table 3 ) . Both rhev , 

purified by C- 1 8 ,  and BS , purif ied by gel filtration 

chromatography , yielded the N-terminal sequence G-E-Q . This 

was the expected sequence , if trypsin cleaved at the desired 

Arg . 
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Table 2 .  Amino Acid Compositional Analysis 

rHEV BS BA 
obs exp obs exp obs exp 

Asx 7 . 3  ( 7 )  7 3 . 5 ( 4 )  3 3 . 6 ( 4 )  3 
Glx 4 . 6 ( 5 )  6 6 . 8 ( 7 )  7 6 . 9 ( 7 )  7 
CMC 6 . 3 ( 6 )  8 6 . 5 ( 7 )  8 6 . 8 ( 7 )  8 
Ser 3 . 6 ( 4 )  4 3 . 1 ( 3 )  3 2 . 4 ( 2 )  2 
Gly 6 . 0 ( 6 )  6 5 . 7 ( 6 ) ·  1 1  5 . 7 ( 6 )  1 1· 
His 0 . 8 ( 1 )  1 0 0 
Thr 1 .  0 ( 1 ) 1 1 . 8  ( 2 )  2 2 . 0 ( 2 )  2 
Ala _b 1 4 . 0 ( 4 )  4 4 . 9 ( 5 )  5 
Arg 0 . 5  ( 1 ) 1 1 .  0 ( 1 )  1 1 . 0  ( 1 )  1 
Tyr 0 . 5  ( 1 )  1 1 . 8  ( 2 )  3 2 . 1  ( 2 )  3 
Val 0 . 2  ( 0 )  0 0 0 
Met 0 0 0 
Trp not done 3 0 0 
Phe 0 0 . 9  ( 1 )  1 1 . 0 (  1 )  1 
lIe  0 . 2 ( 0 )  0 1 .  3 ( 1 ) "  0 1 . 4  ( 1 ) "  0 
Leu 2 . 2  ( 2 )  2 0 
Lys 1 . 8 ( 2 )  2 0 -: 
Pro 1 . 1  ( 1 )  1 1 . 2  ( 1 )  

a Gly was unexpectedly low in these samples ; 
standards were abberrantly high . 

b The Ala peak in this sample was not resolved 
peak . 

c The value for BS and BA represents an abnormal 
probably an artifact and not an amino acid . 

Table 3 .  N-Terminal Seguencing 

rHev G-E-Q 

BS G-E-Q 

0 
0 
1 

probably the 

from the Gly 

peak which is 
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Free Sul fhydryl Determination 

In WGA and nhevein , all  the Cys residues exist in 

disul fide bonds ( Wright , 1 97 7 ;  Rodriguez-Romero , et al . ,  1 9 9 1 ;  

Andersen , et al . ,  199 3 ) . Thus , the free cysteine content was 

determined for the recombinant domains to provide evidence 

supporting a correctly folded structure . For rhev , no free 

sul fhydryls were detected using 5 , 5 ' -dithio-bis ( 2-nitrobenzoic 

acid ) . The number of free sulfhydryls in the BS and BA 

domains was determined by alkylation of the protein in the 

presence of denaturant . As apparent from Table 4 ,  no 

carboxymethyl-Cys was detected by amino acid compositional 

analysis . Thus , all  the cysteines present in our recombinant 

domains are in disul fide bonds . 

MOLECULAR WE IGHT DETERMINATION 

This section describes the experiments performed to 

determine the ol igomeric state of the domain B proteins ( BS 

and BA ) .  Conclu sions drawn will  help to assess whether the 

domain B binding site is generated . 

HPLC-Gel Filtration Chromatography 

The recombinant domain B proteins were analyzed by BPLC 

gel fi ltration chromatography to estimate their molecular 

weights . The predicted molecular weights of BS and BA based 

on their cDNA sequences , are 4 3 7 5  and 4 35 8 , respectively . A 



Table 4 .  
Domains 
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Free Sulfhydryl Determination of the Recombinant 

Moles of eys/Mole of Protein 

acid hydrolysis 
alkylation 

acid hydrolys is 
reduction & alkylation 

acid hydrolysis 

BA o 

BS o 

o 

o 

3 . 2 ( 3 ) � 

6 . 8 ( 7 )  

a low values were the result of anomalous distribution of the 
carboxymethyl cysteine peaks 



8 1  

molecular weight o f  =4 , 8 0 0  was estimated for BS from the 

retention time by graphical analysis ( See Figure 2 3 ) . This 

result indicates that BS is  a monomer under the experimental 

conditions employed . We presume that the BA domain would also 

migrate =5 , 0 0 0  Da as the two proteins only differ by one amino 

acid . I n  experiments performed at lower ionic strength ( 50mM 

sodium phosphate , pH 6 . 8 )  the molecular weight estimate for BS 

was = 1 0 , 0 0 0  ( data not shown ) . This large discrepancy suggests 

that there is  an appreciable error as sociated with this type 

of determination for low molecular weight proteins . Since the 

retention times appear to be critically dependent on the ionic 

strength of the buffer used , it is  important to test a range 

of buffer conditions and select molecular weight standards in 

a suitable range in order to deduce reliable molecular weight 

estimates by this method . 

Ma ss Spectral Analys is 

Mass  spectral analyses were also performed to assess the 

oligomeric state of the domains as a more sens itive technique . 

Samples of BA submitted for mas s  spectral analysis contained 

between 10 and 20 pmoles of BA in 0 . 5�l and were prepared at 

pH 6 . 8 ,  pH < 2 and in the presence of ( GlcNAc ) 3  ( Table 5A ) . 

The results indicate that under all conditions the primary 

species present was the monomer ( c4 50 0  Da ) .  Small amounts at 

the dimeric , trimeric and tetrameric masses were also 
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Figure 2 3 .  Gel Filtration Chromatography. The molecular 
weight standards used are BSA, SBT! , RNAse A and BPT! with 
their estimated molecular weights indicated . 
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Table 5 .  Mass  Spectral Analysis of BA and BS 

A .  
Relative Mass  Amounts of BA ( % ) -

pH 6 . 8  pH<2 +ligand 

Mas s  

4 3 3 0  85  8 0  95  

4 62 5  95  92  94 

8 6 9 2  1 7  

8 9 6 5  1 8  2 3  2 6  

9 2 4 5  1 7  2 6  2 0  

1 3 , 4 2 5  1 7  1 7  

1 3 , 9 8 0  1 6  1 7  

1 8 , 7 7 0  1 3  

2 2 , 3 7 0  1 2  

B .  
Relative Mass  Amounts of BSb 

4 1 5 3  1 0 0  

4 3 4 2  7 3  

a .  MALDI -TOF experiment performed by the Dana Farber Cancer 

Institute , Boston , MA 
b .  MALDI-TOF experiment performed by Commonwealth 

Biotechnologies , Inc . ,  Richmond , VA 
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observed . Two peaks were observed in approximately equal 

ratios in all spectra , because this particular BA sample 

contained two species differing by 3 amino acids on the N­

terminus ( G-S-R ) . Subsequently , a sample of BS with a s ingle 

N-terminus was submitted for mass  spectral analysis ( Table 

5B ) . This sample gave two peaks which correspond to mas ses of 

the full length BS sequence and the BS sequence truncated by 

a dipeptide lost from the C-terminus ( A-D ) . 

SACCHARIDE BINDING STUDIES 

Saccharide binding studies were performed to assess the 

functional characteristics of the recombinant chitin binding 

domains . Saccharide binding capabilities would infer that the 

domains are correctly folded . 

As sociation With Chitin 

A crude chitin binding as say was performed to screen the 

saccharide binding function of the recombinant domains . 

Chitin i s  an insoluble GlcNAc polymer and the only known 

natural ligand of hevein . This as say takes advantage of the 

insoluble nature of chitin . The presence of  unbound hevein , 

was monitored by the intrinsic tryptophan f luorescence of its 

three tryptophans .  A f luorescence scan of the supernatant , 

after precipitation of the chitin , revealed the relative 

amount s of unbound protein ( Figure 2 4 ) . WGA , nHev and rHev 
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Figure 2 4 . Intrinsic Tryptophan Fluorescence after I ncubation 
with I ncreasing Amount s of Chitin . Fluorescence emission scan 
of nhev in the supernatant after incubation with increasing 
amounts of chitin for 1 hr , then precipitating the chitin . 
Excitation A was 2 9 0nm .  Emission A was scanned from 3 1 0-4 0 0nm .  
The top curve was incubated with no chitin . Each successive 
decreasing curve was incubated with 5 ,  1 0 ,  2 5 ,  5 0  or 1 0 0mg 
chitin , respectively .  
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in f luorescence intensity upon 

amounts of chitin indicating 

binding ( Figure 2 5 ) . To test the possibility of nonspeci f ic 

protein-chitin as sociation , a parallel study with the core 

antigen indicated a complete lack of binding . 

The amounts of unbound recombinant domain B protein were 

asses sed using the Pierce BCA protein determination assay 

( Table 6 ) . Although the changes were small compared with 

those seen in the f luorescent studies for rhev , a reproducible 

decrease in protein concentration as a function of increasing 

chitin was observed for both BS and BA indicating specific 

binding . 

(GlcNAc ) n __ -2B�1�' n�d�i�n�gL-�A�s�s�e�s�s�e�d� __ �b�y __ �I�n�t�r�i�n�s�i�c� __ �T=r�y�p�t�o�p�h�a�n 

Fluore scence 

The two tryptophans in the hevein binding site proved 

useful to study the binding of ( GlcNAc ) n  ( n=1-4 ) ol igomers by 

fluorometry . For this assay , a shift in the A� upon addition 

of saccharide is indicative of a change in polarity of the 

environment of the tryptophan residues ( Privat et al . ,  1 9 7 4a ) . 

with rHev , nHev and WGA a blue shift was observed in A� with 

addi tion of ( GlcNAc ) 3U ( Table 7 ) . A s imilar shift had 

previously been reported for WGA ( Privat , et al . ,  1 9 7 4 a ;  Lotan 

and Sharon , 1 9 7 3 ) .  Since the aromatic residues are involved 

in van der Waals contact s with the saccharide as seen in the 
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Figure 25 . Percent Relative Intrinsic Fluore scence . The 

intrinsic tryptophan fluorescence intensity of unbound WGA , 

nHev , rHev and core ( in the supernatant from the chitin 

binding assay ) , with increasing chitin relative to the 

intensity with no chitin . 



Table 6 .  Chitin Association of the Domain B Proteins 

chitin (mgl 

BS o 

5 0  

BA o 

5 0  

prot (mgl 

0 . 4 0 5  

0 . 3 3 4  

0 . 5 1 6  

0 . 4 5 2  

Protein concentration i n  the supernatant after incubation 
with and without chitin . 

8 8  



Table 7 .  
Binding. 

prot 

WGA 

nhev 

rhev 
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Fluorescence Emission Am ... Shift upon Saccharide 

saccharide 

( GlcNAc ) 3 
( GlcNAc ) 4 

( GlcNAc ) 3 
( GlcNAc ) 4 

( GlcNAc ) 3 
( GlcNAc ) 4 

Emiss . 
nrn 

3 4 9  
3 4 2  
3 4 2  

3 4 7  
3 4 2  
3 4 2  

3 4 7  
3 4 2  
3 4 2  

All1x 

Fluore scence Am� of WGA nHev and rHev with no saccharide , 
( GlcNAc ) 3  and ( GlcNAc ) . .  
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crystal structure o f  WGA , i t  was expected that the same would 

be true for hevein .  This i s  again supportive evidence that 

the protein binds saccharide and is therefore probably folded 

correctly . 

Saccharide Binding Asses sed by Isothermal Titration 

Calorimetry 

The binding of GlcNAc oligomers and NAc-Neuramin lactose 

( NeuLac ) to BS , BA , nhev and WGA was studied using isothermal 

titration calorimetry ( ITC ) . Figure 2 6  shows typical binding 

isotherms obtained with the BS and BA proteins titrated with 

( GlcNAc ) 3 . The purity of the BS and BA samples was conf irmed 

by reverse phase HPLC and amino acid compositional analysis . 

The BS sample was subjected to N-terminal sequencing to verify 

the location of trypsin cleavage . The BS and BA proteins that 

were titrated with ( GlcNAc ) .  had 2 N-termini differing by 3 

residue s .  Native hevein was assayed for ( GlcNAc ) 4 binding 

only , due to l imited amounts of protein . 

Table 8 shows binding constants and other thermodynamic 

parameters for these binding events . These data indicate that 

the recombinant domain B proteins bind the WGA specific 

saccharide . However ,  the binding is -7 times weaker ( Kd -4 . 0  

x 1 0 -4M )  compared with that in the four domain lectin WGA ( Kd 

= 0 . 54 x 10-4M ) , and - 2 0  times weaker compared with native 

hevein ( Kd = 0 . 1 9  x 1 0 -4M ) . Binding of ( GlcNAc ) 2  and NeuLac to 
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Figure 2 6 .  ITC Binding I sotherms . A is  the binding isotherm 

obtained for BA titrated with ( GlcNAc ) ]  at 2 5°C and O . 4 4mM 

protein concentration . B is  the binding isotherm obtained for 

BS titrated with ( GlcNAc ) ]  at 2 5°C and O . 3 6mM protein 

concentration . 



Table 8 .  BS, BA, nHev and WGA ITC Results 

BA 
( GICNAC ) )  

( GICNAC ) 4  
( G ICNAC ) 2  

NeuLac 

BS 
( GICNAC ) )  

( GICNAC ) 4  
( GICNAC ) 2  

NeuLac 

nHev 
( GICNAC ) 4  

WGA 

Kd AH TAS ( oc )  

x 1 0. 4 ( M )  kcal/mol kcal/mol 

2 . 9 8  - 1 . 1 1 3 . 6 0. ( 2 5 ) 
3 . 2 7  - 1 . 4 1  3 . 1 7 ( 3 0. )  
2 . 4 2 - 0. . 8 7 4 . 0. 5 ( 3 0. )  
3 . 5 2 - 0. . 8 3 3 . 9 6 ( 3 5 )  
4 . 7 6 - 1 . 5 0. 2 . 9 4 ( 3 0. )  
No binding detected 
No binding detected 

5 . 2 5  - 1 . 8 7 2 . 4 3 ( 2 5 )  
5 . 1 2 - 1 . 6 3 2 . 7 5 ( 3 0. )  
2 . 1 4 - 1 . 6 2 3 . 2 9 ( 3 0. )  
4 . 7 2  - 1 . 3 1 3 . 2 2 ( 3 5 )  
3 . 4 5  -3 . 9 0.  0. . 4 8 ( 3 0. )  
No binding detected 
No binding detected 

0. . 1 9 -3 . 1  3 . 0. 9 ( 3 0. )  

( GICNAC ) 3 0. . 5 4 
a2-3 Neulac 3 . 8 8 

- 8 . 2 3  
-0. . 3 9 

-3 . 2 1 ( 3 0. )  
4 . 2 9 ( 3 0. )  

AG 

kcal/mol 

-4 . 7  
-4 . 7  
-4 . 9  
-4 . 8  
-4 . 4  

-4 . 3  
-4 . 4  
-4 . 9  
-4 . 5  
-4 . 4  

-6 . 1 9 

-5 . 0.2 
-4 . 6 8 

n C 

1 1 . 5  
1 0. . 7  
1 1 . 8  
1 1 . 3  
1 1 . 1  

1 0. . 7  
1 0. . 7  
1 1 . 2 
1 0. . 8  

0. . 5  2 . 0.  

0. . 6  4 . 6  

so 

3 . 3 9 
3 . 0. 9  
3 . 5 8 
3 . 3 3 

3 . 0. 8 
2 . 4 1  
2 . 8 6 
2 . 32 

0. . 9 3 

2 . 2  1 . 4  1 1 . 8 6 
2 . 5  0. . 5  3 . 9 3 

9 2  

Values were determined us ing ITC . ' n '  values are per monomer . 
For BS and BA , n was held constant during analysis . For WGA 
and nHev all  variables were al lowed to f loat during analysis . 
C is def ined as K. x molarity of the protein solution . SD 
refers to the standard deviation of fit of the theoretical 
binding isotherm to the actual data points . 



9 3  

BS and BA was not detectable under the conditions used in 

these ITC experiments .  Table 9 compares observed binding 

constants for WGA with those of other investigators .  



Tabl e  7 .  Comparison of WGA Dissociation Constants 

Kd X 1 04 1M} 

Rice Bains Privata 
ITC ITC W fluor 

GlcNAc 2 5 . 0  14 . 5  
( GlcNAc ) 2  1 . 9  2 . 2  
( GlcNAc ) 3  0 . 5 4 0 . 9 0 0 . 5 0 
( GlcNAc ) 4  0 . 8 1 0 . 4 35  
( GlcNAc ) 5  0 . 5 3 
a 2 - 3  Neul ac 3 . 8 8 
a2 - 6  Neul ac 

n /monomer 2 . 2  2 1 

N&B K&C 
eg. dial . nmr 

7 . 6  
0 . 5  
0 . 1 2 

8 . 7  
5 3  

2 

Comparison o f  Kd values obtained using different methods . Rice i s  data 
presented here . Bains is data from Bains , et aI , 1 9 9 2 . Privat is data from 
Privat , et aI , 1 9 7 4 a .  N&B i s  data from Nagata and Burger ,  1 9 7 4 . K&C is  data 
from Kronis and Carver , 1 9 8 2 . ITC is I sothermal Titration Calorimetry , W 
f luor i s  intrinsic tryptophan f luorescence , eq . dial . is  equi librium dialysis , 
nmr i s  nuclear magnetic resonance . 
a One binding s ite per monomer was as sumed to derive these values . 

10 
� 



DISCUSSION 

RESTATEMENT OF OBJECTIVES 

The goal of the proj ect was to develop a protocol to 

express , purify and characterize domain B of  WGA , and 

ultimately to study the WGA domain B binding site . This 

protocol wi l l  eventually be appl ied to the other domains and 

their binding s ites . A WGA binding site consists of 

contributions from two opposing domains . The saccharide lies 

in an aromatic pocket on one domain and is stabilized by polar 

residues on the opposing domain . Since each domain contains 

an aromatic pocket and most of the domains contain the polar 

region , two potential saccharide binding sites exist between 

a pair of opposing domains ( see Figure 3B ) . A complete WGA 

binding site would be generated in a dimer of single domains , 

i f  they associated as opposing domains do in the WGA dimer . 

Domain B of WGA was c loned and expressed in , two forms 

varying at position 2 8 .  One has the native sequence with 

Ala 2 8  ( BA )  and the other has the mutated sequence with Ser2 8 

( BS )  . In WGA, the two saccharides GlcNAc and NeuNAc bind 

identical ly in the B-site except that an additional H-bond 

exists between bound NeuNAc and the Ser2 8 -OB of domain C .  A 

putative dimer of domain B with a Ser at position 2 8  would 

9 5  
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a l l ow this same H-bond t o  be formed and thus would faithfully 

reproduce the WGA B-site . Characterization of the recombinant 

domains includes evidence supporting a correctly folded 

structure , oligomeric state determination
· 

and saccharide 

binding ability . 

CLONING« EXPRESSION AND PURIFICATION OF THE RECOMBINANT DOMAIN 

PROTE INS 

C loning of the Domain B cDNA Sequences 

The BS cDNA was generated by completely synthesiz ing the 

desired sequence as this was the most expedient approach for 

making the exact sequence desired . Subsequently PCR mediated 

si te directed mutagenesis was used to generate the point 

mutation to make the BA clone ( Val lette et al . ,  1 9 8 9 ; Hems ley 

et al . ,  1 9 8 9 ) . In designing the primers for the Ser-'Ala 

mutation , we intentionally altered the Nar I restriction 

enzyme site . Changing this site allowed positive clones to be 

identified by the restriction enzyme digestion pattern , 

al leviating the need to screen colonies by DNA sequencing . An 

alternate , less e f f icient approach to generate the BS sequence 

by PCR mediated site directed mutagenesis , would have required 

the incorporation of many changes in the hevein cDNA that we 

had available ( a  WGA cDNA was not available ) . Using PCR 

mediated site directed mutagenesis techniques , would have 

required at least three independent changes in the DNA 
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sequence t o  modi fy the res idues involved i n  saccharide 

binding , and 12 or more to completely change from the hevein 

sequence to the domain B sequence . Each change would be 

extremely labor intensive , requiring screening colonies for 

the desired c lone and verifying the c lone by DNA sequencing . 

Fus ion Protein Express ion 

By following the protocol described , three dif ferent 

chitin binding domain proteins were successfully expres sed in 

E . coli  as fusion proteins and i solated in yields suf ficient 

for characterization . The primary reason for choosing a 

fus ion protein system was to facilitate purification of the 

recombinant domains . Since the fusion proteins could be 

eas ily purified in large quantities , we only had to develop a 

system to separate the fusion partners and isolate the 

recombinant domain . 

Expression of the recombinant domains without a fusion 

partner would have required developing a purification 

protocol .  However ,  it was uncertain i f  the single domain 

proteins could be tracked by their saccharide binding abi l ity 

or by antibody recognition . The latter could be ruled �ut as  

we  demonstrated that anti-WGA antibodies did not detect the 

single domain proteins by Western blot analyses ( Figures 1 7  

and 1 8 ) . I n  addition , hevein antibodies were not commercially 

available and we could not generate our own antibodies due to 
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a lack o f  sufficient amounts o f  native hevein . It  was also 

not pos s ible to express the domain without an N-terminal 

methionine . The presence of this extra residue may 

conceivably have af fected the folding or function of the 

domain . Conversely , expres sion of the recombinant domains 

without fusion partners would have provided some information 

as to the ability of the domains to spontaneous ly fold 

correctly . However ,  whether the disulfide rich WGA would fold 

spontaneously or require assistance in folding by chaperonins 

or disul f ide exchange proteins was unknown . 

Both types of fus ion proteins were easily purif ied in 

large quantities . The moderate leve l s  of protein expres sion 

in the core- fusion protein expression system was advantageous ,  

because many recombinant proteins expres sed at high leve l s  

become sequestered i n  inclus ion bodies ( Tsu j i ,  e t  al . ,  1 9 8 7 ; 

Schroeder and Raikhe l ,  1 9 92 ) . The protein in the inclusion 

bodies generally has to be solubilized under denaturing 

conditions . Removal of the denaturant al lows the protein to 

refold . It was deemed better to avoid inclusion bodies ,  s ince 

there is no assurance of obtaining a functional protein . 

Fusion Protein Cleavage 

The maj or obstac le encountered with i solating the 

recombinant domains was proteolytic c leavage between the 

fusion partners . Trypsin was used to carry out the cleavage 
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reaction in the HBV core antigen-fusion protein system because 

Factor Xa proved ineffective . This may be due to the fact 

that a disu l f ide bridge exists three residues removed from the 

cleavage site . The proximity of this disulfide bond may 

restrict the flexibility of this peptide to attain the 

conformation necessary for recognition by the protease . 

I n  addition , problems were experienced with determination 

of the optimal conditions for trypsin digestion . In Tris 

bu ffered sal ine , pH 8 . 0 ,  trypsin released only a sma l l  amount 

of recombinant hevein , and the BS and BA domain proteins from 

their respective HBV core antigen- fusion partners . However ,  

i n  2 M  guanidine-HCl trypsin digestion yielded almost complete 

separation of the recombinant domain . This indicates that 

some of the recombinant domain proteins may be on the inside 

of the core particle and , therefore , are inaccessible to 

trypsin digestion until the core particle is  dissociated . I t  

is  known that the core antigen produced recombinantly forms a 

native-type viral core particle ( Z heng , et al . ,  1 9 92 ) . The 

individual core antigen monomers in the construct which was 

used are disu l f ide cross-l inked into dimers . In 2M guanidine­

HCl the core particle dissociates into disul f ide bound core 

dimers ( Dr .  Darrel l  L .  Peterson , personal communication ) ,  

which was verified in our lab using gel f i ltration 

chromatography ( data not shown ) . Another problem experienced 

with the trypsin digestion was precipitation of the core-
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fusion proteins in 2 M  guanidine-HCI .  However ,  i f  the 

concentration of the fusion protein was kept below 2 . 5  mg/ml , 

this problem was alleviated . Yields of recombinant protein 

obtained were dependent on the e f f iciency of the proteolytic 

cleavage of the fusion protein . Optimal yields obtained were 

between 1 0 -5 0mg/ 2 0  liter culture . 

TERTIARY STRUCTURAL CHARACTERIZATION 

One would not predict that a highly disulfide rich 

protein , known to lack other stabil i z ing secondary structural 

elements ,  would fold correctly when produced in a bacterial 

expre s sion system ( reducing environment ) .  However , Schroeder 

and Raikhel ( 1 9 9 2 ) have recently succeeded in purifying active 

recombinant barley lectin ( homologous to WGA ) from E .  coli 

without using a fusion protein system . This is  remarkable , 

because the four domains of the polypeptide chain have to fold 

independently and form only intra-domain disulf ide bridges .  

I n  this study , recombinant barley lectin was solubilized from 

inclusion bodies by incubation in a redox buf fer , which 

promotes i someri zation of incorrectly folded proteins . Active 

protein was i solated by GlcNAc a f finity chromatography . Thus 

it was demonstrated for this four domain protein that 

s ignificant amounts of correctly folded protein could be 

prepared when allowed to reoxidi ze . As additional structural 

evidence , this recombinant material could be crysta l l ized 
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under identical crystal l i zation conditions and with the same 

c rystal packing as found for WGA ( Wright et al . ,  1 9 9 3 ) . This 

encouraged us in our belief that correctly folded s ingle 

domains could be successfully_ cloned and expressed . 

While we have no unequivocal evidence which allows u s  to 

conclude that correctly folded recombinant domains were 

produced , the observed data are highly suggestive of a hevein­

like tertiary structure . The most convincing evidence is that 

the domains can bind ol igosaccharides . This is  based on 

several dif ferent types of experiments . 

evidence addressing the conformational 

Other experimental 

aspects of the 

recombinant domains , also supports a correct tertiary 

structure . 

Role of the Disulfide Bridges 

The experimental resu lts presented above indicated that 

a l l  the eys res idues are in disulfide l inkages in the three 

recomb inant domains produced ( rhev , BA and BS ) .  The presence 

of free eys residues would have precluded a " native WGA-like 

domain" structure . 

The four disulfide bridges in each domain of WGA are 

crucial to maintaining the tertiary structure . This was 

concluded from the studies of Erni et al ( 1 9 8 0 ) , who showed 

that WGA loses activity upon reduction and alkylation in the 

absence of a denaturant . No intermediate states of partially 



1 0 2  

reduced protein were observed when less than molar ratios of 

reductant to Cys residues was used . This evidence implies 

that part ially reduced stable species are not formed . Another 

intere sting observation made by Erni et al ( 1 9 8 0 )  was that 

some activity could be retained when the protein was reduced 

and alkylated in the presence of saccharide . However ,  there 

was no evidence to suggest which disulfides bridges remained 

intact and which were unprotected and thus susceptible to 

reduction . 

To assess whether alternate disulfide pairings could 

exist and maintain the intact aromatic pocket , the structure 

of WGA domain B was examined on computer mode l s . Model 

bui lding showed that at most three alternate disul f ide 

pairings could exist , which would not dramatically perturb the 

pos ition of the residues involved in saccharide binding . As 

illustrated in Figure 2 7 , the native disul fide pairings are 

between Cys 3  and Cys l 8 , Cys l2 and Cys24 ,  Cys 1 7  and Cys3 l ,  and 

between Cys 3 5  and Cys4 0 .  I nspection of the distances between 

the 5y atoms of Cys 3  to Cys 2 4  and Cys 1 2  to Cys l 8  indicated 

that they approach within 2A , a normal distance for a 

disul fide bond . Cys l 7  and Cys 35 could also form a disu l f ide 

bridge . However ,  this would leave Cys3 1  and Cys 4 0  unpaired 

and most l ikely reduced ( Figure 2 7 ) .  For the purpose of  this 

discu s sion , a functional structure implies that the domains 

possess  identical disulfide pairings as in WGA . It i s  
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F igure 2 7 . Alternat ive Disu l f ide Pairings . The s o l id lines 
above the sequence represent the native d i s u l f ide pairings . 
The dashed l ines below the sequence repre sent the potential 
a lternate disul f ide pairing s ,  which wou ld not dramat ica l ly 
d i sturb the general fold o f  the Co backbone .  
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pos s ible , however ,  that other tertiary structures also may 

exhibit sugar binding activity . 

Antibody Recognition 

Western blot analysis probed with anti-WGA confirmed· the 

presence of  the recombinant domains as fusion protein 

partners .  Antibody recognition of the MBP-hevein fusion 

protein impl ied that hevein had enough sequence or structural 

similarity to cross-react with anti-WGA antibodies . 

Strong antibody recognition of the non-reduced and 

reduced hevein fusion protein samples indicated that rhev in 

the MBP- fu sion protein could pos sibly be folded correctly as 

purif ied and possibly refold before transfer to the western 

blot membrane . Evidence which corroborates our hypothes i s  

that disu lfide rich domains can refold correctly when the 

reductant and SDS are diluted during Western blot analysis , 

comes from two other independent techniques . It  has been 

observed that active disul f ide rich proteins can be recovered 

after reduction and reoxidation ( Yang , 1 9 6 7 ; Schroeder and 

Raikhe l , 1 9 92 ) .  As another example , the Southwestern assay 

was employed to identify functional DNA binding proteins 

( Farre l l , et al . ,  1 9 90 ) . The protein refolds when the gel i s  

equi l ibrated in the transfer buf fer before blotting to a 

membrane and i s  ident ified by binding to a radiolabel led DNA 

ligand . 
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Conversely , the antibodies could recognize sequence , 

which would be identical in both the reduced and non-reduced 

sample s . We also have no direct evidence whether the 

polyc lonal anti-WGA antibodies recognize  sequence or 

structure . Their polyclonal nature suggests that they 

probably recognize both . According to Sigma , the antibodies 

are raised against non-reduced WGA . This would sugge st that 

at least some of the antibodies recognize  structure . 

The lack of antibody recognition of the reduced and 

alkylated hevein fus ion protein could be due to a loss of 

structural epitopes ,  which would suggest that structure is 

recogniz ed .  If only the sequence was recognized by the 

antibodies , the loss of recognition of the alkylated domain 

may be due to the additional bulky carboxy-methyl groups . 

Unfortunately , the native hevein domain could not be 

detected by the anti -WGA antibodies on the Western blot . This 

may have several explanations . Due to its small  compact fold,  

the domain may pass through the membrane upon transfer , or it 

may not adhere to the hydrophobic membrane because it is 

deficient in al iphatic res idues . It  is  also possible that it 

eluted out of the gel during equilibration in the transfer 

bu f f e r ;  or , perhaps , it reoxidi zed to a structure not 

recognizable by the antibody . Alternatively , there may not be 

suff icient amino acid sequence recognition by the anti-WGA 

antibodies , since hevein i s  only 6 5 %  identical to WGA in 
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sequence . Recognition o f  the core fusion proteins , but not of 

the degradation products by anti-WGA antibodies ( Figure 1 8 ) 

argues for the view that the recombinant domain B proteins , 

l ike hevein , are not detectable by western blot analysis . 

This may simply be a characteristic of this unique disul fide 

rich protein .  

Preliminary Structural Studies 

Preliminary ef forts to investigate the tertiary structure 

of BS and BA using NMR and crystallographic techniques ,  have 

shown that the recombinant B-domain proteins behave much l ike 

hevein . The I-Dimens ional NMR spectrum of the BA domain was 

found to compare wel l  with a spectrum of native hevein in 

terms of chemical shifts and line widths ( Dr .  Hans C .  Siebert , 

unpublished results ) .  Initial crystallization attempts showed 

that both the recombinant BS and BA domain proteins 

c rysta lli z e  under the same conditions as nhevein . 

Crystal li zation requires the presence of Ca- ions . 

I n  summary , every technique employed has provided strong 

evidence that the recombinant domains are structurally very 

simi lar to native hevein . Although we suspect that the 

recombinant domains are folded correctly , definitive evidence 

wil l  have to await crystallographic or NMR structural 

analysis . 
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QUATERNARY STRUCTURE DETERMINATION 

The ol igomeric state of the recombinant domain B proteins 

was investigated in view of the fact that only dimers can 

recreate the complete WGA B-binding site . The results based 

on gel filtration chromatography and mas s  spectrometry 

techniques have suggested that single domains behave as  

monomers i n  solution . 

Our initial assumption that there is a high probability 

that single B-domains could dimerize was based on structural 

evidence . In WGA the contacts between opposing domains B and 

C are stabilized by four H-bonds and many van der Waals  

interactions . Two of the H-bonds occur between the backbone 

carbonyl and amide groups of residue 2 6  on both domains ( see 

Figure 5 ) . The residues involved can only come sufficiently 

c lose to make these H-bonds if  the carboxyl linked residue 

( 2 7 )  is a glycine in both domains . The presence of a s ide 

chain at residue 2 7  would obstruct dimerization . This is  

consistent with the finding , that all proteins of the chitin­

binding f amily thus far characteri zed as dimers , have a 

conserved Gly in position 2 7 . On the other hand , in proteins 

known to function as monomers , residue 27 is  not conserved 

( Wright et al . ,  1 9 9 1 ) .  For instance , monomeric hevein has a 

threonine in position 2 7 , which precludes formation of the 

same two inter-domain H-bonds ( van Pari j s ,  et al . ,  1 9 9 1 ) .  

Since the recombinant domain B sequences include a Gly in 
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position 2 7 , the same interactions present i n  the B/c 

interface of WGA are possible . However , it is  dif ficult to 

estimate whether these contacts are sufficient for 

dimerization . In  WGA many other inter-subunit interactions 

are present that stabilize the dimer . These include - 2 0  H­

bonds , that occur not only between two opposing domains , but 

also between non-opposing domains and extensive van der Waals  

inter-subunit contacts ( Wright , 1 9 8 7b ) . 

Several pieces of evidence have also suggested that 

dimerization is  not es sential for saccharide binding . Privat 

et al ( 1 9 7 6 ) have shown that oxidation of a single Trp residue 

resulted in dissociation of the WGA dimer and approximately 

three fold weaker binding to the saccharide . The three fold 

weaker binding could be attributed to the loss of the polar 

contributions from the opposing domain . The fact that a 

number of monomeric chitin binding proteins bind GlcNAc 

( chito-oligosaccharides ) , provides additional evidence that a 

s ingle aromatic pocket is  suf ficient for saccharide binding 

( Wright et al . ,  1 9 9 1 ) .  This evidence has suggested that 

dimerization is  not a requirement for saccharide binding , but 

it can increase the binding affinities as a result of 

additional stabilizing H-bond interactions . 

Ma s s  Spectral Analysis 

Mas s  spectral analysis of the BA domain provided evidence 
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for the presence o f  primarily monomers ( Table 5 ) . Diminishing 

amounts of dimers , trimers and tetramers were observed in some 

spectra indicating that under some conditions aggregation may 

occur . The particular sample investigated was from a trypsin 

digest which had produced two N-termini ( see above ) .  However ,  

there i s  no reason to believe that three additional residues 

at the N-terminus would affect the solubility , aggregation or 

dimerization potential of the domain . Since the mas s  

spectrometry sample was dried o n  a screen , there i s  a 

possibil ity that aggregates formed in the drying proces s .  

Mas s  spectral analysis ,  carried out at a later date on a 

sample of BS which was homogeneous with respect to a single N­

terminus , revealed only monomeric species ( Table 5 ) . 

The weak tendency to aggregate may be explained 

considering the solubi lity l imits of the single domain 

proteins . WGA is a relatively insoluble protein having 

solubility limits =2 . 5  mg /ml at neutral pH . Simi lar low 

solubility may apply to the recombinant domains . Although , 

the maximum solubility of the domains was not determined , it 

was est imated to be 5 - 1 0  mg /ml . Precipitates which formed 

upon storage were analyzed for their amino acid compositions . 

These were found to be identical to those of the soluble 

protein ( data not shown ) . 
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Unpublished NMR data o f  the BA domain are consistent with 

our results . The I -Dimensional NMR spectrum was very s imilar 

to the spectrum of native hevein and did not suggest the 

presence of aggregate s  ( Dr .  H .  Siebert , personal 

communication ) .  

In summary , the combined evidence presented here , which 

is based on gel filtration , mass  spectrometry and NMR dat a ,  

supports our conclusion that the recombinant domains are 

monomeric . The functional studies should therefore ref lect 

only the saccharide interactions that occur in the aromatic 

pocket . It is thus likely , that the four H-bonds predicted to 

stabilize a dimeric recombinant domain structure are not 

sufficient to maintain a dimeric species in solution . 

FUNCTIONAL CHARACTERI ZATION 

Saccharide binding of the recombinant domains was 

assessed by several independent techniques .  On one hand we 

chose a simple chitin binding assay to qualitatively e stablish 

binding . In  addition , fluorescence spectroscopy was used to 

monitor GlcNAc binding to WGA and hevein . On the other hand , 

ITC ( a  more sensitive technique ) was used to quantitatively 

assess  binding constants and thermodynamic parameters . The 

results have allowed us to conclude that the GlcNAc­

ol igosaccharides bind at the aromatic binding pocket . 
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Howeve r ,  binding was found t o  be weak a s  compared t o  WGA and 

hevein . Measurable binding is only observed for larger GlcNAc 

ol igomers and not for the disaccharide or NeuLac . Independent 

evidence , suggesting GlcNAc binding at the aromatic s ite , 

comes from preliminary chemically induced dynamic polari zation 

NMR ( CI DNP-NMR ) studies by B . C .  Siebert ( personal 

conununication ) .  These experiments have shown that the s ignals  

pertaining to two of the three tyrosines in  the binding s ite 

( presumably the two more highly exposed Tyr2 1 and Tyr2 3 ) , 

could be suppressed in the presence of GlcNAc-oligomers . 

Carbohydrate-lectin interactions are relatively weak , 

because the binding sites are located on the surface and are 

exposed to sol vent ( Imberty et al . ,  1 9 9 3 ) . For example , 

estimates of binding constants ( Kd )  for the binding of GlcNAc­

oligomers and NeuLac to WGA range from 10-3 to 10 -5M using a 

variety of techniques ( Table 9 and re ferences within ) .  

Simi lar ly , weak binding has been observed for other lectins 

such as Con A ( Kd = 1 0-4 to 1 0-6M ; Mandal et al . ,  1 9 9 4 ) ,  pea 

lectin ( Kd = 1 0-3 to 1 0-6M ; Stubbs et al . ,  1 9 8 6 ) and Winged Bean 

Lectin ( Kd = 1 0-4M ;  Schwarz et al . ,  1 9 9 1 ) . For WGA, disruption 

of the dimer results in approximately three fold weaker 

binding ( Privat et al . ,  1 9 7 6 ) . Thu s ,  in the case of the 

graminea lectins , the af finity is  strongest when the molecule 

is  a dimer . In  contrast ,  lectins like Con A and pea lectin 

( legumes ) and Winged Bean Lectin have one saccharide binding 
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site per monomer and each s ite functions independently for the 

mu ltimeric proteins . 

The forces driving the saccharide binding to WGA, Con A 

and Winged Bean Lectin are enthalpic in nature ( AH --6 to - 1 9  

kcal /mol ; TAS = - 2  t o  - 1 4  kcal /mol ) ( Munske et al . ,  1 9 8 4 ; 

Kronis and Carve r ,  1 9 8 5 ; Schwarz et al . ,  1 99 1 ;  Bains et al . ,  

1 9 9 2 ; MandaI et al . ,  1 9 94 ) .  Changes in the magnitudes and 

s igns of the enthalpy and entropy terms are sensitive to 

structural changes that accompany ligand binding . The 

patterns observed in all these studies suggest that the 

binding interactions are es sentially of a polar nature ( H­

bonds and van der Waals  contacts dominate )  ( Eftink and 

Biltonen , 1 9 8 0 ; Imberty et al . ,  1 9 9 3 ) . 

To explain why our binding aff inities are so low,  several 

questions can be addres sed : 1 )  Is the identity of the binding 

site the s ame as that in WGA? 2 )  To what extent i s  

dimerization necessary for binding ? 

that the binding site is  extended? 

3 )  Is there any evidence 

4 )  I s  there a preference 

for certain saccharides ?  These questions will  be addres sed in 

the discussion below . 

Chitin Binding 

The chitin binding experiments were only useful as  an 

initial screening test to assess saccharide binding function . 

In  the case of hevein , the presence of the three t ryptophan 
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Binding was 

demonstrated as a function of increasing amounts of chitin in 

the s ample ( Figures 24 & 2 5 ) . Comparison of rhev with nhev 

revealed weaker binding for the recombinant material . 

Direct comparisons of BS and BA with rhev could not be 

made in the chitin binding assay because of the different 

methods used to quantitate the protein . S ince the binding 

sites of the domain B proteins contain tyrosine residues , 

binding was monitored by a protein concentration determination 

assay ( Table 6 ) . The protein concentrations used in the BS 

and BA as says were ten fold higher as compared with those used 

for hevein . The low degree of binding observed for BA and BS 

may be a result of the higher protein concentration used , and 

thus could be rationalized in terms of saturation of the 

available sites on the chitin . Tyros ine f luorescence 

spectroscopy would have provided a more viable alternative 

method . In such an assay protein concentrations similar to 

those u sed in the hevein assay may have yielded more realistic 

results . 

Intrinsic Tryptophan Fluorescence A.n Shift of WGA, nHev and 

rHev in the Presence of Oligosaccharides 

It was known from previous studies on WGA, that the 

intrinsic tryptophan fluorescence spectrum is perturbed as a 

function of saccharide binding ( Wright , 1 9 8 4 ; Privat et al . ,  
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1 9 7 4 a ) . This sugge sted the presence of Trp residues in the 

saccharide binding site . Similar behavior is  observed here 

( Table 7 )  when WGA , rHev and nHev were incubated with 

( GlcNAc ) JU .  The observed blue shift indicates that the 

saccharide is likely to bind and shield the t ryptophan 

sidechains from the aqueous environment . Other investigators 

have used intrinsic tryptophan fluorescence of WGA to 

determine binding constants for GlcNAc ol igosaccharides ( Lotan 

and Sharon , 1 9 7 3 ; Privat et al . ,  1 9 7 4a ) . These calculations 

were not made with the recombinant hevein , because even though 

a s l ight increase in fluorescence intensity was observed 

concurrent with the blue shift , the values were not very 

consistent . This may have been due to inaccuracy in 

pippeting . The increase in fluorescence intensity upon 

saccharide binding is presumably due to exclusion of water 

around the tryptophan residues , which quenches the 

f luore scence emission . The BS and BA domains , which have 

tyrosines instead of tryptophans in the binding site , were not 

subj ected to this assay . As an alternative technique , which 

was not pursued , O- ( 4 -methyl umbelliferyl ) -glycosides could 

have been used to carry out a direct comparison between the 

binding affinities of all three recombinant proteins . 

ITC BINDING STUDIES 

I sothermal titration calorimetry is a technique by which 
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both binding constants and thermodynamic parameters can be 

determined in the same experiment .  This technique measures 

binding directly in terms of the heat absorbed or evolved for 

each stepwise addition of ligand . From the binding isotherm 

the energy components , AS and AH , are derived . The magnitude 

and sign of AH and AS provide information as to the 

interactions that dominate the binding event . Other methods 

traditional ly used for determining binding constants were less 

suitable for this study . For example , equilibrium dialysis 

posed difficulties , because of the small differences in 

molecular weight between the domain proteins and the 

ol igosaccharides . This technique would have required 

avai lability of radiolabelled ligands and dialysis tubing with 

a very narrow molecular weight range in the case of the tri­

and tetra-saccharides .  Fluorescence spectrometry , using 

f luorescence- labelled saccharides ,  would have provided an 

alternative method for determination of the binding constants 

( Privat et al . ,  1 9 7 4 b ;  van Landschoot et al . ,  1 9 7 7 ) .  However , 

both of these techniques do not yield direct information as  to 

the energetics of the reaction ( AH & AS ) .  

Consideration of Experimental Conditions and Data Analysi s  

The proper choice of experimental conditions is  crucial 

to obtain reliable and meaningful results . Condi tions have to 

be chosen such that the heat released ( or absorbed ) is  greater 
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than the background heat of dilution , and such that it 

detectably decreases with each additional injection of ligand 

over 1 0 - 2 0  in j ections . One important l imitation of the 

technique , which may have posed obstacles to definitive 

answers , consists of the requirement of large amounts of 

protein in order to perform the experiment optimally . In  

trying to recover the protein after each experiment , 

s ignificant losses occurred because of the small dif ferences 

in molecular weight between the trisaccharide and protein 

( �4 , 0 0 0  Da ) .  This limited the amounts of protein that could 

be recovered for additional experiments .  Moreover , it was 

neces sary to perform several experiments at dif ferent 

temperatures to obtain ACp values . However , since the A H  

values calculated a t  dif ferent temperatures revealed 

incons istencie s ,  reliable ACp values could not be calculated 

in any of the binding experiments .  

Ideal experimental conditions require protein 

concentrations that , when multiplied by the as sociation 

constant , yield values ( C )  between 10 and 1 0 0  ( C  = K. x 

[ prot ] tot ) C ranges between 1 and 1 0 0 0  are generally 

acceptable ) .  This product C describes the binding isotherm,  

which is  sigmoidal in  shape . Extremely flat ( c< 1 )  or  

extremely steep curves ( C-+oo ) , do  not yield use ful information . 

In the experiments carried out here , C varied between 0 . 5  and 

4 . 6  ( Table 8 ) . To improve the binding isotherm,  higher 
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protein concentrations would be necessary . However ,  due to 

solubility considerations this was not feasible with the 

recombinant domains . Interestingly , Bains et al ( 1 9 9 2 ) 

performed their ITC experiments us ing protein concentrations 

which yielded C values between 0 . 1 5 and 0 . 7 .  However ,  in 

their calculations 4 binding sites per molecule have to be 

considered . 

The decis ion to use ( GlcNAc ) 3 as the spec ific saccharide 

to carry out quantitative binding studies of each recombinant 

domain , was based on previous studies with WGA which showed 

that the aff inity of ( GlcNAc ) 3 was optimal ( Privat et al . ,  

1 9 7 4 a ;  Bains et al . ,  1 9 92 ) . Increasing affinities were 

reported as a function of ( GlcNac ) -oligomer length up to 

( GlcNAc ) 3 . This suggested an extended binding site for WGA . 

The Ka was essentially constant for longer ol igomers . 

There are three parameters which can be varied ( n ,  Ka , 

aH ) in equation 1 ( see above ) when analyzing the data . 

Wiseman et al ( 19 8 9 ) recommended holding one of these 

variables constant , especially when working at low C values . 

Thu s , prior knowledge of the stoichiometry can be applied to 

fix the number of binding sites ( n ) . 

BS and BA , n was held constant 

proteins , which pos sess only one 

( Table 8 ) . Alternatively , one 

In the data analysis for 

at 1 for the monomeric 

saccharide binding site 

could perform a single 

in j ection experiment from which aH can be determined by 
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graphical analysis . This involves plotting dQ/d [ l igand l tot as  

a function of [ ligand l tot / [ protein l tot to  obtain the  binding 

isotherm . A value for 4H can be obtained from the 

intersection of the binding isotherm with the y-axis . This 

value can subsequently be held constant for the analysis of 

the titration data . However , the C value has to be 

sufficiently high so that the binding isotherm intersects the 

Y-axis at the true 4H . Very weak binding ( as in the case of 

the recombinant domain B proteins ) produces a binding isotherm 

that generally intersects the Y-axis below the true 4H . Thus , 

we conc luded that it was reasonable to hold n constant as 

otherwise an accurate 4H could not be obtained . 

I n  the data analysis of WGA and nHev , all three variable 

parameters were allowed to float . This yielded n values of 

4 . 4  and 4 . 9 , for ( GlcNAc ) 3  and NeuLac binding to WGA ( Table 

8 ) , and agrees with earlier predictions of 4 sites /WGA dimer 

( Privat et al . ,  1 9 7 4 b ;  Kronis and Carver , 1 9 8 2 , Bains et al . ,  

1 9 9 2 ) • I f  n was held constant , the only value that would 

yield a satisfactory fit of the data points was a value of 8 .  

Considering the prior knowledge of 4 sites/dimer , this value 

seemed unreasonable . Limi tations of this type of data 

analysis can be encountered with weak binding , as is the case 

with WGA and the recombinant domains . 

The rel iability of the experimental data quoted in Table 

8 ,  can be judged by the magnitudes of the standard deviations 
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These values reflect the goodness  o f  fit o f  the 

theoretical binding isotherm to the experimental data . As 

apparent from Table 8 the values obtained were small  « 4  for 

the recombinant domains and <12 for WGA ) and comparable to the 

va lues quoted by Bains et al ( 1 9 9 2 ) ( SO = 8 to 3 2 ) .  

Comparison of the Saccharide Af finities of BS versus BA 

BS and BA behaved simi larly in all ITC experiments with 

re spect to both binding constants and thermodynamic parameters 

( Table 8 ) . The ( GlcNAc ) 304 ol igosacchar ides bound with s imilar 

binding constants to both recombinant proteins ( Kd =2 . 1  to 

5 .  3 x l O-4M )  . We therefore concluded that the mutation at 

position 28 had no effect on GlcNAc binding , as expected . 

Binding was not detected with ( GlcNAc ) 2  or NeuLac under the 

experimental conditions used . However ,  it cannot be ruled out 

that the disaccharide may bind weakly and that detection is 

beyond the limits of the experimental conditions used . 

Analysis of the energetics  accompanying binding of 

( GlcNac ) 3 also revealed comparable values for BS and BA . 

positive values were obtained for T�S ( 3  to 4 kca l /mol ) and 

small  negative values were obtained for �H ( -0 . 8  to - 1 . 9  

kcal /mol ) ( Table 8 ) . The magnitude and sign of these values 

indicate that the binding event is  entropically driven with 

only small enthalpic contributions . This trend is 

characteristic of changes in the electrostatic or hydrophobic 
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environments and can also b e  indicative of conformational 

changes ( Ream et al , 1 9 9 2 ; Eftink and Biltonen , 1 9 8 0 ) . 

Comparable values were obtained for the binding of both 

( GlcNAc ) 3H to BA ( Table 8 ) . However ,  ( GLcNAc ) � binding to BS , 

carried out at higher protein concentration ( =3mg/ml ) ,  

displayed some variations in the thermodynamic parameters . It  

is  pos sible that these values may not be reliable , if  the 

higher protein concentration caused aggregation . 

As postulated above , the binding aff inities of BS and BA 

could only be distinguished using the trisaccharide NeuLac , if  

these mutants formed true 2 - fold related dimers in  solut ion 

reminiscent of the mode of domain/domain as sociation in WGA 

( Wright , 1 9 8 7 ) . Since NeuLac binding to WGA was shown to be 

weak ( Kd =3 . 88x lO -4M ) , our inability to detect NeuLac binding 

with the BS and BA proteins was not surprising . Judging from 

the difference in the known binding constants for NeuLac 

versus ( GlcNAc ) 3 binding to WGA ( Kd ' S  of 3 . 88xlO -4 and 0 . 54 x l O -4 

M ,  respectively ) ,  an approximately seven fold weaker affinity 

was expected for NeuLac binding in case of a putative BS 

dimer . A further decrease in the binding aff inity would have 

been estimated for the putative BA dimer . Our finding that 

the recombinant domains are monomeric , further explains the 

absence of binding as judged by this technique . It  i s  

doubtful , that even if much higher protein concentrations were 

used , binding could be detectable with this trisaccharide . 
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The binding interactions from the aromatic pocket alone 

are identical in WGA for these two types of saccharides 

( GlcNAc and NeuNAc ) ,  and involve two B-bonds ( see Figure 3B ) 

( Wright , 1 9 9 0 ) . In the WGA dimer NeuLac is  stabilized by two 

B-bonds across the domain/domain interface ( Figure 4 ) . One 

corresponds to the interaction between the amido NB of the 

saccharide and Glu2 9 ,  which is  also present when GlcNAc is 

bound . The other B-bond is unique to NeuLac binding and is  

between the carboxylate group of the saccharide and the OB of 

Ser2 8 . 

Comparison of Saccharide Binding of the Recombinant Domains 

versus WGA 

For comparison purposes , binding studies were also 

performed on WGA using identical saccharides .  As apparent 

from Table 8 ,  much weaker binding aff inities and different 

trends for �B and �S were obtained for BS and BA, in 

comparison to those for WGA . Binding of ( GlcNAc ) 3 to BS and 

BA is eight fold weaker compared with its binding to WGA ( Kd 

= 4 x l O -4M and O . 5x 1 0-4M,  respectively ) ( Table 8 ) . This may be 

attributed to the monomeric nature of the recombinant domains . 

The auxil iary B-bond present between Glu29  ( from domain C )  and 

the amido NB group of GlcNAc in the WGA B-site is absent in 

the saccharide complexes of the monomeric single domain 

proteins . This B-bond and numerous van der Waals  contacts 
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between the saccharide and domain C could account for the 

slightly better AG and the higher association constants in WGA 

( Table 8 ) . Moreover ,  rearrangement and displacement of 

solvent , expected to differ substantially in the single domain 

versus the multi-domain situation of WGA, have to be taken 

into account when interpreting the AH and AS contributions to 

the free energy of binding . These values differ in both 

magnitude and sign . In the case of WGA, binding is  

accompanied by a negative AH and TAS ( -8 . 2  kcal/mol and - 3 . 2  

kcal /mol , respectively ) ( Table 8 ) . This trend is  consistent 

with an enthalpically driven binding event involving H-bonding 

and van der Waals  contacts in protein / ligand interactions 

( E ftink and Biltonen , 1 9 8 0 ) . 

In  contrast , the thermodynamic parameters obtained with 

the s ingle domain proteins , although low in magnitude , suggest 

an entropically driven event ( AH=- 1 . 3  kcal/mol ; TAS=3 . 3  

kcal /mol ) ( Table 8 ) , in which hydrophobic or electrostatic 

interactions are expected to dominate ( Eftink and Biltonen , 

1 9 8 0 ) . This result is difficult to rationalize in terms of 

the binding interactions observed in the WGA- ( GlcNAc ) 2 complex 

( Wright , 1 9 8 4 ) . In  the crystal structure of all complexes 

examined , three H-bonds are formed with the non-reducing 

terminal GlcNAc res idue . Two of these are made with residues 

in the aromatic pocket and the third is  the auxiliary H-bond 

from domain C ( Figure 4 ) . H-bonds typically contribute =2  
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kcal each t o  �B . While a positive �S value suggests that 

hydrophobic interactions are involved , the hydrophobic 

contacts are expected to be weak and restricted only to 

contacts between apolar atoms of the three tyrosine residues 

and the N-Acetyl methyl group and the apolar parts of the 

saccharide ring . Nevertheless , hydrophobic interactions may 

be the logical driving force for saccharide binding in the 

case of the single domain proteins . The small  change in 

enthalpy may suggest that little heat gain is  associated with 

displacement of solvent by the saccharide in comparison to 

WGA . Conceivably , the gain in entropy may ref lect a lesser 

degree of conformational restrictions of the protein in 

addition to apolar inter-atomic contacts and ef fects caused by 

the release of ordered water around the aromatic residues .  A 

positive �S and negligible �B can also indicate the 

involvement of either electrostatic forces or conformational 

changes . There is  no evidence for either from the crystal 

structure . 

The dimeric multi-domain situation in WGA represents a 

much more complex system, as both global inter-subunit 

ad justments and rearrangements of larger networks of ordered 

solvent may contribute substantially to the overa l l  ligand­

binding energetics . For instance , a tightening of the dimer 

structure , suggesting a loss of rotational and translational 

freedoms , was observed in the NeuLac-WGA crystal structure 
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when comparing atomic temperature factors relative to the 

unliganded structure ( Wright , 1 9 90 ) . 

Comparison of (GlcNAc ) 4  Binding Between nHevein and the 

Recombinant Domains 

Comparing the B domain binding constants to that of 

hevein suggests that hevein has a binding site with =20 fold 

higher aff inity for ( GlcNAc ) 4 . This large dif ference may be 

accounted for by the dif ferent character of the aromatic 

pocket in hevein , which contains two tryptophan residues . The 

equal enthalpy and entropy component s suggest that both are 

driving the binding interactions in hevein ( TI1S=3 . 0 9 kca l /mol i 

I1H=-3 . 1  kcal /mol ) .  The larger enthalpy change observed for 

hevein , can be interpreted in terms of stronger van der Waals  

interactions present in the hevein- ( GlcNAc ) 4 complex . In  

contrast to the tyrosine residues in domain B ,  tryptophan 

re sidues al low more extensive van der Waals stacking 

interactions with the pyranoside rings of the two adj acent 

GlcNAc residues at the non-reducing end of the 

tetrasaccharide . 

Evaluation of the WGA ITC Binding Results 

Table 9 summarizes the binding constants for GlcNAc 

ol igomers and NeuLac measured by different investigators using 

various techniques .  Except for the values based on 



1 2 5  

equil ibrium dialysis ( Nagata and Burger , 1 9 1 1 ) ,  a l l  the Kd 

values compare within a factor of two of the data presented 

here . This variation is  not large and probably ref lects 

dif ferences in the exact technique employed . For example , 

only hal f of the potential binding sites in WGA contain a Trp 

res idue . Thus monitoring the intrinsic tryptophan 

f luore scence as a function of GlcNAc binding probably ref lects 

binding at those sites only . 

The results presented here on ( GlcNAc ) 3 binding compare 

wel l  with those obtained by Bains et al ( 1 9 9 2 ) using ITC 

( Table 9 ) . The binding constants we obtained agree to within 

a factor of two ( Kd ""0 . 54x10-4M versus ""0 . 9x10-4M )  ( Table 9 ) . 

Although the magnitudes of �G were also in good agreement ( �G= 

-5 . 0  kcal /mol versus -5 . 5  kcal/mol , Bains et al l ,  the enthalpy 

and entropy parameters showed significant discrepancies ( �H =-

8 . 2 3 kcal /mol versus - 1 6 . 0  kca l /mol , and for T�S ""-3 . 2 1  

kcal /mol versus - 1 0 . 4  kcal /mol ) .  It is  possible that this 

difference is  related to the dif ferent buffer conditions used . 

The titrations of Bain et al ( 1 9 9 2 ) were performed at higher 

ionic strength and pH than used in these studies .  Such 

variations could have caused signif icant variation in �H and 

�S ( E ftink and Biltonen , 1 9 8 0 ) . 

The results obtained for Neulac binding to WGA reflect 

extremely weak binding ( Kd=3 . 9x 1 0-4M )  and may not be rel iable . 

However ,  the Kd value was comparable with those quoted by 
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Kronis and Carver ( 1 9 8 2 ) based on NMR titration data 

Analysis of our data in terms of the 

energetics of the binding of this trisaccharide , suggests that 

the reaction is  entropically driven with a · signif icant 

positive T&S value ( 4 . 3  kcal /mol ) and a negligable enthalpic 

contribution &H ( - 0 . 3 9 kcal /mol ) .  These trends are similar to 

those observed for the recombinant domains . However ,  they are 

in contrast with Kronis and Carver ( 19 8 5 ) , who reported both 

a larger negative value for &H ( - 1 3 . 3  kcal /mol ) and T&S ( -9 . 5  

kcal /mol ) .  Although the &G values are in close agreement 

( Rice ,  =-4 . 7  kcal /mol ; Kronis and Carver , =-3 . 8  kcal /mol ) ,  we 

have no explanation for the discrepancies in &H and &S . It  is  

possible that they are related to our failure to perform the 

ITC titration at sufficiently high protein concentrations 

( C=0 . 5 ) , or to dif ferences in experimental conditions ,  such as 

the choice of buf fers and ionic strength ( Rice used 5 0mM 

sodium phosphate , pH 6 . 8 ;  Kronis and Carver used 1 0 0mM sodium 

phosphate , 1 5 0mM NaCl , pD 6 . 1 ) . The trends in the enthalpy 

and entropy changes reported by Kronis and Carver ( 1 9 8 5 ) 

compare , however ,  very closely with those quoted by Bains et 

al ( 1 9 9 2 ) for ( GlcNAc ) 2  and ( GlcNAc ) J  binding , and with values 

reported for other lectin-saccharide studies ( Munske et al . ,  

1 9 8 4 ; Schwarz et al . ,  1 99 1 ;  MandaI et al . ,  1 9 94 ) . These 

trends suggest that H-bonding and van der waal s forces 

dominate lectin-saccharide binding interactions . 
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CONCLUSION 

In conclusion , we have developed an efficient protocol 

for generating functional recombinant WGA domains , which are 

capable of binding GlcNAc-ol igosaccharides .  I t  has been 

established from the intrinsic f luorescence data and 

prel iminary NMR studies , that the domain binding site is 

identical to that of WGA consisting of three aromatic 

res idues .  As in WGA , the binding site is extended in terms of 

allowing maximal interaction with a GlcNAc oligomer which is  

at least a trimer in length . However ,  the binding strength of 

all  sacc harides tested was found to be substantially lower . 

This was explained based molecular weight determination , which 

suggested that the recombinant B-domain proteins are 

monomeric . We conc luded , therefore , that interactions from 

the aromatic pocket alone contribute to the observed binding 

parameters and are sufficient for GlcNAc binding , and that the 

entire WGA binding site ( B-C domain contact ) could not be 

reproduced . Neverthe less , the expression system described 

here now opens up the possibil ity to study the folding of the 

disu l fide stabili zed domain by site directed mutagenesis . 
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