
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2018 

Climate Change and Mountaintop Removal Mining: A MaxEnt Climate Change and Mountaintop Removal Mining: A MaxEnt 

Assessment of the Potential Dual Threat to West Virginia Fishes Assessment of the Potential Dual Threat to West Virginia Fishes 

Lindsey R F Hendrick 
Virginia Commonwealth 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Terrestrial and Aquatic Ecology Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5291 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=scholarscompass.vcu.edu%2Fetd%2F5291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5291?utm_source=scholarscompass.vcu.edu%2Fetd%2F5291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


	

 

CLIMATE CHANGE AND MOUNTAINTOP REMOVAL MINING: A MAXENT 

ASSESSMENT OF THE POTENTIAL DUAL THREAT TO WEST VIRGINIA FISHES 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

by 

Lindsey R. F. Hendrick 

Master of Science, Virginia Commonwealth University 2018 

Bachelor of Science, Hollins University 2016 

 

Director: Daniel J. McGarvey, Ph.D. 

Associate Professor 

Center for Environmental Studies 

 

Virginia Commonwealth University 

Richmond, Virginia 

April 2018 

  



 ii 

Table of Contents 

 

List of Tables and Figures ……………………………………………………...……….…….... iii 

Abstract ………………………………………………………………………………………...... v 

Introduction ……………………………………………………………………………………… 7 

Methods…………………………………………………………………………………………... 9 

Results ……………………………………………………………………………………...…... 15 

Discussion ……………………………………………………………………………………… 16 

Acknowledgements ………………………………………………………………………..…… 23 

References ……………………………………………………………………………………… 24  



 iii 

List of Tables and Figures 

 

Table 1. Subset of all NHDplus V2, StreamCat, and derived climate  

 variables considered in the initial Maximum Entropy (MaxEnt)  

 species distribution models………………………………………………………………32 

Table 2. Summary information on the fit and structure of the Maximum  

 Entropy (MaxEnt) species distribution models. For each species, the  

 number of occurrence records (n) used to build the model and the  

 MaxEnt regularized training gain (rtg) are shown with the exponential  

 of the rtg in parentheses. MaxEnt % contribution and permutation  

 importance diagnostics are also shown for each covariate that was  

 retained in a species' final model………………...………………………………………33 

Table 3. Given as percentages, differences in the median MaxEnt raw score  

 between the RCP 4.5 and RCP 8.5 climate scenarios, relative to the  

 historical scenario. Values given for the Ohio River Basin (ORB) and  

 within the MTR buffer (MTR). Calculated as: % change =  

 [future median raw score – historical median raw score]  

 ÷ historical median raw score x 100. ………………………………………………...….36 

Figure 1. A conceptual diagram of the MaxEnt species distribution  

 Modeling method, using data and results for the Striped 

Shiner.…………………………………………………………………………...……….37 

Figure 2. Boxplots of the distributions of MaxEnt raw scores. Box  

 elements are standard percentiles (see key). For each species, the  



 iv 

 distributions of raw scores across the Ohio River Basin (ORB; blue boxes)  

 and within the MTR buffer (MTR; green boxes) are shown for historical  

 data as well as the RCP 4.5 and RCP 8.5 mid-century climate change  

 scenarios. Mann-Whitney test p-values (paired sample tests using  

 individual stream segments as replicates) comparing historical MaxEnt  

 raw scores with future projections are shown for the RCP 4.5 and RCP 8.5  

 results within the MTR buffer. …………………………………………………………38 

Figure 3. Infographic summary of MaxEnt modeling results for the  

 Striped Shiner. Illustration at upper-left demonstrates the basic stream  

 warming phenomenon that motivated this study. Plot at upper-right shows the  

 percent contributions of the eight covariates that were retained in the final  

 MaxEnt model. Histograms at center-left show distributions of MaxEnt raw  

 scores (log10 scale) throughout the MTR buffer for historical model projections  

 and the RCP 4.5 and RCP 8.5 future scenarios. A boxplot of calculated  

 MaxEnt raw scores at sites of known presence is superimposed on the  

 histograms. Bar chart at center-right shows the dramatic difference in  

 predicted habitat suitability (i.e., average percent change in MaxEnt raw 

 scores) among the RCP 4.5 and RCP 8.5 projections. Maps at bottom show  

 the spatial distribution of stream segments within the MTR buffer that  

 were predicted to have high and low habitat suitability values under  

 historical and future conditions. A high-resolution copy of this infographic  

 is available for download at 

https://doi.org/10.6084/m9.figshare.6089831………………............................................40



 v 

Abstract 

CLIMATE CHANGE AND MOUNTAINTOP REMOVAL MINING: A MAXENT 

ASSESSMENT OF THE POTENTIAL DUAL THREAT TO WEST VIRGINIA FISHES 

 

By Lindsey R. F. Hendrick, Bachelor of Science 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2018 

Major Director: Daniel J. McGarvey, Ph.D., Center for Environmental Studies 

 

Accounts of species’ range shifts in response to climate change, most often as latitudinal 

shifts towards the poles or upslope shifts to higher elevations, are rapidly accumulating. These 

range shifts are often attributed to species ‘tracking’ their thermal niches as temperatures in their 

native ranges increase. Our objective was to estimate the degree to which climate change-driven 

shifts in water temperature may increase the exposure of West Virginia’s native freshwater fishes 

to mountaintop removal surface coal mining. Mid-century shifts in habitat suitability for nine 

non-game West Virginia fishes were projected via Maximum Entropy species distribution 

modeling, using a combination of physical habitat, historical climate conditions, and future 

climate data. Modeling projections for a high-emissions scenario (Representative Concentration 

Pathway 8.5) predict that habitat suitability will increase in high elevation streams for eight of 

nine species, with marginal increases in habitat suitability ranging from 46-418%. We conclude 
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that many West Virginia fishes will be at risk of increased exposure to mountaintop removal 

surface coal mining if climate change continues at a rapid pace.
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Introduction 

 

Quantifying and predicting species’ responses to climate change is an active area of 

research in biogeographical and conservation science (e.g., Moritz et al. 2008; Angert et al. 

2011; Newman et al. 2011). In the Northern Hemisphere, species are responding by shifting their 

ranges to the north or to higher elevations (e.g., Hickling et al. 2006; Chen et al. 2011; Comte & 

Grenouillet 2013). These latitudinal and elevational range shifts may be a result of species 

‘tracking’ their thermal niches as temperatures in their historical, native ranges increase 

(Parmesan 2006; Comte et al. 2013; Freeman & Class Freeman 2014). If so, range shifts should 

be most likely for vagile species that are physically capable of long-distance movements and for 

ectothermic species that have narrow thermal tolerances (Calosi et al. 2008; Deutsch et al. 2008). 

Freshwater fishes of the central Appalachian region, eastern North America, may be 

particularly likely to shift to higher elevations in response to a warming climate. Like most 

primary freshwater fishes, they are obligate ectotherms that may encounter stressful or lethal 

conditions as ambient temperatures increase (see Farrell 2011). Furthermore, most rivers in this 

region have a primarily east-west orientation; they flow off the Appalachian range west to the 

Ohio River, which is also a predominantly westward flowing river that originates near the 

Pennsylvania-New York border (~42 N latitude), or they flow east to the Atlantic Ocean. Thus, 

the topography and elevation of the Appalachian range may provide opportunities for freshwater 

fishes to shift their ranges upslope, while latitudinal shifts to the north will not be feasible for 

many populations.  

Unfortunately, fishes that shift to higher elevations in central Appalachia will often 

encounter another threat: increased exposure to mountaintop removal (MTR) surface coal 
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mining. Mountaintop removal mining is pervasive throughout central Appalachia and is 

particularly common in the state of West Virginia. Damages to aquatic biota may occur through 

acute loss of headwater streams (via burial by valley fill) or chronic degradation of water quality 

and instream habitat further downstream (Bernhardt et al. 2012). Empirical reports of MTR 

impacts on native fishes range from the individual-level toxic effects of selenium, a common 

byproduct of MTR that causes teratogenic deformities (Lemly 1993; Palmer et al. 2010), to 

assemblage-level effects including decreased species richness and lower population densities 

(Hitt and Chambers 2015). Habitat models also suggest that MTR may have a ‘repulsive’ effect 

on fish distributions, pushing them further downstream (Hopkins and Roush 2013). 

In this study, we used Maximum Entropy (MaxEnt) species distribution models (SDMs) 

to assess whether climate change and MTR may pose an interactive threat to the native fishes of 

West Virginia. This was a two-step process in which we first used physical habitat and historical 

climate data to build SDMs for a subset of the native fishes of West Virginia. We then predicted 

future habitat suitability under two mid-century climate change scenarios. For each species and 

future climate scenario, we assessed changes in habitat suitability for streams in close proximity 

to MTR operations. However, our intent was not to model the effects of MTR on West Virginia 

fishes per se. Instead, we characterized the degree to which climate change may increase fish 

exposure to MTR via warming-induced upslope range shifts. Notably, our analyses focused on a 

subset of non-game fishes. Other investigators have studied climate change and MTR effects on 

West Virginia game fishes, such as Brook Trout (Salvelinus fontinalis Mitchell; e.g., Ries and 

Perry 1995), but little is known about the potential consequences for the region’s diverse non-

game fishes.  
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Specific research objectives were to: (i) build SDMs for nine non-game fish species that 

are broadly representative of the native ichthyofauna of West Virginia; (ii) predict changes in 

habitat suitability under two mid-century climate scenarios; and (iii) use the projected habitat 

suitability maps to identify species that are likely to migrate to higher elevations, thereby 

increasing their exposure to MTR.  

 

Methods 

 

Fish Data 

 

We selected nine non-game fish species from the families Catostomidae, Cottidae, 

Cyprinidae, and Percidae. These four families constitute the majority of native fish diversity in 

West Virginia and an abundance of occurrence records were available for species in each family. 

Within families, species were selected at random and in proportion to the overall richness of the 

respective family. For instance, four species were selected from Cyprinidae, the most diverse 

family, but only two species were selected from the less diverse Catostomidae. Presence-only 

occurrence records for each of the nine species were obtained from the spatially-explicit 

Ichthymaps digital database (Frimpong et al. 2016). Notably, we included occurrence records 

throughout the entire Ohio River Basin, the parent drainage to most West Virginia rivers. 

Incorporating species’ complete ranges throughout the Ohio River Basin, rather than truncated 

ranges within West Virginia, ensured that the MaxEnt ‘background’ samples (see ‘Species 

Distribution Models’ below) would be representative of all habitats available to the modeled 

species. This was important because an incomplete background sample can generate strong bias 
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in MaxEnt results (Elith et al. 2011). To account for potential spatial bias in the Ichthymaps 

occurrence records (e.g., spatial clustering in the locations of samples that are close to a 

university), we applied a spatial thinning algorithm to the occurrence data. Using the spThin 

package in R (Aiello-Lammens et al. 2015), we applied a nearest neighbor search radius of 10 

km to each Ichthymaps occurrence record. Fewer than 2% of all occurrence points were within 

10 linear km of each other. We therefore concluded that geographic sampling bias was not a 

significant concern and retained all of the occurrence data in model development.  

 

River Network, Physical Habitat, and Climate Data 

 

The 1:100,000 scale National Hydrography Dataset Plus, Version 2 (NHDplus V2; 

McKay et al. 2012) digital stream network, clipped to the Ohio River Basin, was used as a 

common physical template for all fish occurrence records, environmental covariates (i.e., 

predictor variables), and SDMs. In the NHDplus V2, every digital stream segment has a unique 

‘COMID’ identifier; these COMIDs were used to cross-reference all fish occurrence and 

covariate data to their respective locations within the Ohio River Basin. Physical habitat 

covariates were obtained from the NHDplus V2 attribute tables and the Stream-Catchment 

dataset (StreamCat; Hill et al. 2016). These physical habitat covariates were selected to represent 

four broad classes of potential effects on fish habitat: topographic, geologic, hydrologic, or 

urban. For example, select topographic covariates included elevation, channel slope, and 

catchment area, while urban covariates included dams and roads.  

Historical (1960-1990) and mid-century (2041-2060) climate data were downloaded from 

WorldClim, Version 1.4 (Hijmans et al. 2005), as 30 arc-second resolution grids. Mid-century 
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data were obtained for two Representative Concentration Pathway scenarios (RCPs): RCP 4.5 

served as a mid-range emissions scenario (Thomson et al. 2011) and RCP 8.5 served as a high 

range emissions scenario (Riahi et al. 2011). The RCP 4.5 climate scenario is characterized by a 

divergence from fossil fuel use and an increase in sustainable land-use; this scenario estimates a 

2.4° C mean temperature increase beyond pre-industrial levels (Thomson et al. 2011). 

Alternatively, the RCP 8.5 climate scenario is an increasing emissions pathway which assumes 

increased fossil fuel use and no climate change mitigation (Riahi et al. 2011); this scenario is 

characterized by a mean temperature increase of 4.9° C above pre-industrial levels (Raftery et al. 

2017). For both RCPs, mid-century projections were downloaded for six general circulation 

models: BCC-CSM1-1 (Wu et al. 2014), CCSM4 (Gent et al. 2011), GFDL-CM3 (Donner et al. 

2011), GISS-E2-R (Schmidt et al. 2014), HadGEM2-CC (Martin et al. 2011), and MRI-CGCM3 

(Yukimoto et al. 2012). All climate grids were then re-projected to a common 1 km resolution 

grid spanning the entire Ohio River Basin. Next, ensemble mean averages were calculated for 

monthly air temperature and monthly precipitation in each 1 km grid cell (i.e., 12 monthly air 

temperature and precipitation values in each cell), under both RCP 4.5 and RCP 8.5. All grid 

calculations were performed with ESRI ArcMap 10.5 software (Environmental Systems 

Research Institute, Redlands, California). Gridded air temperature and precipitation values were 

then appended to the NHDplus V2 stream network by superimposing the climate grids directly 

onto the digital stream network, using System for Automated Geoscientific Analyses Version 

2.1.4 software (Institute of Geography, Physical Geography Section, Hamburg University). From 

these data, we calculated mean annual streamflow for every digital stream segment in the Ohio 

River Basin using the Ohio River Basin-specific linear regression model of Vogel et al. (1999); 

their model predicts discharge as a linear function of drainage area, precipitation, and air 
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temperature. We then calculated mean annual stream temperature using the logistic regression 

model of Segura et al. (2015); their model predicts stream temperature as a sigmoid function of 

air temperature.  

Finally, we generated a Pearson correlation (r) matrix for all of the NHDplus V2, 

StreamCat, and derived climate variables (discharge and stream temperature) and used it to 

screen highly correlated covariates (|r| ³ 0.70) from the models. From the remaining variables, a 

subset of 30 covariates that are potentially relevant to freshwater fishes was selected (see Table 1 

for the complete covariate list with definitions and units of measure). 

 

Species Distribution Models 

  

 MaxEnt (American Museum of Natural History, New York, New York) was used to 

build the SDMs because it outperforms other modeling techniques when working with presence-

only data, rather than presence-absence data (Elith et al. 2006). A complete discussion of the 

MaxEnt algorithm and why it is uniquely suited to presence-only data is beyond the scope of this 

article. Interested readers should consult the excellent tutorial of Phillips (2017) and the 

methodological reviews of Elith et al. (2011) and Merow et al. (2013). Here, we present only the 

settings and outputs that are necessary to critique or duplicate our SDMs. However, we note that 

our models used the MaxEnt ‘raw’ output, rather than the logistic output. MaxEnt raw output is 

an index of habitat suitability; values can range from zero (categorically unsuitable habitat) to a 

theoretical maximum of one (the best possible habitat), though in practice, most values will be 

much smaller than one because the raw output values across all habitat units used to fit the model 

must sum to one. MaxEnt logistic output is interpreted as the probability of presence, ranging 
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from 0-1. Logistic output is often used because it is intuitively similar to logistic regression. 

Unfortunately, MaxEnt logistic output requires independent information on species’ detection 

probabilities; without this information, MaxEnt uses default settings (that are not appropriate for 

many datasets) to generate logistic output (Elith et al. 2011). We lacked estimates of species’ 

detection probabilities for the Ichthymaps samples and therefore did not use the MaxEnt logistic 

output.  

 Briefly, our modeling process was as follows (see Figure 1). Historical species 

occurrence and environmental covariate data were used to build a MaxEnt model for each of the 

nine fishes. For each modeled species, a ‘background’ sample was created by randomly selecting 

20% of the complete landscape (i.e., 20% of all NHDplus V2 stream segments within the Ohio 

River Basin). This was necessary to implement the core MaxEnt logic of comparing covariate 

values at known occurrence sites (i.e., the ‘sample’ distribution) with a random sample of 

background sites (see description of the MaxEnt ‘regularized training gain’ below). To avoid 

overfitting the models and to ease interpretation of individual covariate effects, we constrained 

the MaxEnt models to simple hinge and quadratic features (see Elith et al. 2011). 

 An iterative process was then used with standard MaxEnt diagnostics to sort through the 

30 potential covariates and select those that were the most effective predictors of a given species’ 

occurrence. These diagnostics included the MaxEnt percent contribution and permutation 

importance summary tables for individual covariates as well as the covariate jackknife plots. 

Percent contribution is a heuristic estimate of the relative contribution of each covariate that is 

included in a model; larger values indicate covariates that contribute more information. 

Similarly, permutation importance is greatest for covariates that contribute the most information; 

it is a measure of the change in model fit when values of a given covariate are randomly shuffled 
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among sites. Jackknife plots illustrate the effect of a given covariate by showing the change in 

model fit when that covariate is removed from the model; a large change indicates a covariate 

that contributes a relatively large amount of information to the model. 

 The MaxEnt regularized training gain was used as an index of model fit. Regularized 

training gain is a measure of the distance between a multivariate distribution of covariates at 

randomly selected background sites (i.e., a random sample of the entire landscape that a species 

could potentially inhabit) and a corresponding distribution of covariates at sites of known species 

occurrences (Elith et al. 2011). Hence, a large training gain indicates an affinity for a narrow 

range of environmental conditions, relative to the broader landscape, while a small training gain 

suggests a lack of specialized habitat requirements (i.e., the distribution of covariates at 

occurrence sites mirrors the background distribution; Merow et al. 2013). We also used the 

exponential transformation of the MaxEnt regularized training gain for each SDM to aid in 

model evaluation. The exponential of the regularized training gain is the ratio of habitat 

suitability between sites of known occurrence and randomly selected background sites. 

Exponential values much larger than one are indicative of species with specialized habitat 

requirements; because these specialist species occupy a narrow range of habitats, relative to the 

complete range of available habitats, SDMs can more efficiently discriminate between suitable 

and unsuitable habitat.  

 Once a final MaxEnt model had been specified for each of the nine fish species, habitat 

suitability was projected to a mid-century time horizon (2014-2060) under the RCP 4.5 and RCP 

8.5 climate change scenarios. This was accomplished by substituting future values of the 

climate-driven covariates (streamflow, stream temperature, and precipitation) for the historical 

values used to build and parameterize each model. Then, by comparing aggregate distributions of 
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MaxEnt raw output values among historical and future landscapes, we were able to estimate 

potential shifts in habitat suitability for each fish species. 

Finally, we used a spatial querying process to identify stream segments that are likely to 

be impacted by MTR operations in the state of West Virginia. We began with a digital map of all 

active MTR permit boundaries from the West Virginia Department of Environmental Protection 

(http://tagis.dep.wv.gov/home/Downloads; downloaded on 24 October 2017). A 10 km radial 

buffer was then built around each of the MTR sites in ArcMap. The 10 km buffer provided an 

estimate of the potential ‘spatial footprint’ of MTR effects on local aquatic ecosystems; in 

several instances, significant effects of MTR on aquatic biota have been documented at 

downstream distances >10 km (e.g., Pond et al. 2008; Lindberg et al. 2011; Bernhardt et al. 

2012). By using the MTR buffer to query potentially impacted stream reaches from the complete 

river network, we were able to test the hypothesis that climate change is likely to increase 

exposure of West Virginia fishes to MTR.  

Comparisons between historical and future SDM projections were made using the 

nonparametric one-sided Mann-Whitney U test. This test compares the distribution of ranks 

between two unpaired datasets. The datasets are combined and each value is ranked from 

smallest to largest. From this rank distribution, the average ranks of the members of each group 

are calculated; a large difference between the groups’ mean ranks suggests the distributions are 

distinct. The U-statistic indicates how often the rank of a member of one group exceeds the rank 

of a member of the second group.  

 

Results 
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Complete MaxEnt results for each of the nine species, including sample sizes, model fit 

diagnostics, and indices of importance for individual covariates, are shown in Table 2. Summary 

statistics for all MaxEnt habitat suitability predictions are illustrated in Figure 2. Under the RCP 

4.5 climate scenario, significant increases (Mann-Whitney: P < 0.001) in habitat suitability were 

predicted within the MTR buffer for the two darters (Etheostoma), but none of the remaining 

species (Figure 2). However, under the RCP 8.5 scenario, habitat suitability was predicted to 

significantly increase within the MTR buffer for eight of nine species (Table 3). Among RCP 8.5 

projections, these increases ranged from +46% to +418%, relative to the historical habitat 

suitability values, with a median increase of +125% (Table 3). Only the Silverjaw Minnow 

(Notropis buccatus Cope) was predicted to experience a decrease in habitat suitability within the 

MTR buffer. Differences in MaxEnt predicted habitat suitability among the RCP 4.5 and RCP 

8.5 mid-century scenarios are illustrated in Figure 3 using the Striped Shiner (Luxilus 

chrysocephalus Rafinesque) as an example. 

 

Discussion 

 

Our results generally support the hypothesis that directional range shifts in response to 

climate change among West Virginia’s freshwater fishes will occur as upslope shifts to high 

elevation streams. Under the RCP 8.5 climate scenario, habitat suitability is likely to increase for 

eight of nine species in streams in close proximity to MTR; percent change in suitability exceeds 

+100% for several species. Results are more nuanced for streams within the MTR buffer under 

the RCP 4.5 scenario; some species are projected to experience reduced habitat suitability while 

for other species suitability is estimated to increase. Expected shifts in habitat suitability across 
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the Ohio River Basin mirror the shifts projected for streams within the MTR buffer. In general, 

under the RCP 4.5 scenario suitability across the Ohio River Basin shifts minimally. Under the 

RCP 8.5 scenario, increased habitat suitability is estimated for most species, though shifts are 

considerably smaller than shifts expected within the MTR buffer.  

Under the RCP 4.5 climate scenario, the Greenside Darter (Etheostoma blennioides 

Rafinesque) and the Rainbow Darter (Etheostoma caeruleum Storer) are projected to experience 

shifts in habitat suitability of +19% and +29% within the MTR buffer, respectively. 

Interestingly, the darters (Etheostoma) are the only species expected to experience increases in 

suitability within the MTR buffer under the low emissions scenario (Table 3). Models for both 

species included mean annual streamflow and mean January precipitation (Table 2). Potentially, 

historic hydrological conditions approached the lower bound of the physiological threshold of 

the Greenside and Rainbow Darters. Therefore, changes in streamflow and precipitation under 

the RCP 4.5 scenario would benefit the species. Projected increases in habitat suitability within 

the MTR buffer are even greater for the Greenside Darter (+119%) and Rainbow Darter (+154%) 

under the RCP 8.5 climate scenario. Conversely, the Silverjaw Minnow is the only species 

predicted to experience declining habitat suitability within the MTR buffer under RCP 8.5 (Table 

3). This reverse trend in suitability may indicate that the functional thresholds of the Silverjaw 

Minnow will be exceeded under either climate scenario. For this species, projected shifts in 

habitat suitability within the MTR buffer are -33% and -31% for RCP 4.5 and RCP 8.5, 

respectively. However, the distribution of raw scores between historical and RCP 4.5 and RCP 

8.5 scenarios were not significantly different (Figure 2). The Silverjaw Minnow model included 

runoff, mean annual streamflow, and January and June precipitation (Table 2). Thus, 

hydrological changes under the RCP 4.5 and RCP 8.5 climate scenarios are expected to 
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exacerbate historically unsuitable conditions for the Silverjaw Minnow. This reserve trend in 

suitability persisted across the Ohio River Basin.  

 

Climate Change Effects — Flow vs Temperature 

 

Because ambient temperature is a primary determinant of habitat suitability for 

ectotherms, we expected stream temperature to be an important predictor of fish species presence 

(Deutsch et al. 2008; Coulter et al. 2014). Surprisingly, this was not the case; stream temperature 

was not included in any of the final models (see Table 2). Nevertheless, our results suggest that 

aquatic habitat in upslope, high elevation streams is likely to become more suitable by mid-

century, particularly under an RCP 8.5 climate scenario.  

The apparent lack of a strong temperature effect may be a result of the modeled species 

having broad thermal tolerances. At historical occurrence sites, the widest ranges of winter and 

summer stream temperature values for a given species (i.e., stream temperature ranges among all 

sites of known presence) spanned 2.74° C (Creek Chub (Semotilus atromaculatus Mitchell); min. 

= 0.38° C; max. = 3.12° C) and 6.24° C (Silverjaw Minnow; min. = 22.72° C; max. = 28.96° C), 

respectively. Conversely, the narrowest ranges of historical winter and summer stream 

temperatures for a given species spanned 2.62° C (Striped Shiner; min. = 0.40° C; max. = 3.02° 

C) and 5.53° C (Mottled Sculpin (Cottus bairdii Girard); min. = 23.36° C; max. = 28.89° C), 

respectively. In all cases, species’ historical winter and summer temperature ranges encompassed 

a large fraction of the historical temperature range across the entire Ohio River Basin: historical 

winter and summer stream temperatures spanned 2.76° C (min. = 0.36° C; max. = 3.12° C) and 

6.32° C (min. = 22.69° C; max. = 29.01° C), respectively. Together, these observations suggest 
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that each of the nine modeled fishes would be physiologically capable of occupying most or all 

of the streams in the Ohio River Basin, if mean winter or summer stream temperature were the 

sole determinant of habitat suitability. The fact that documented occurrences of each of the 

modeled species were limited to a subset of streams within the Ohio Basin suggests that other 

factors than stream temperature are fundamental in regulating fish species’ presences. With 

specific reference to MaxEnt, the fact that historical sample temperatures exhibit so much 

overlap with the background temperatures indicates that mean winter and summer stream 

temperatures may not be useful for discriminating between suitable and unsuitable fish habitat.  

Instead, species’ responses to climate change were driven primarily by hydrology. In 

each model, hydrologic variables were among the best predictors of fish occurrence (Table 2). 

For example, mean annual streamflow was included in every model and in eight of nine cases, it 

was the first or second best covariate when ranked by MaxEnt percent contribution statistics 

(13.5-42.4%). Other covariates that represent hydrology or a dimension of the hydrologic cycle 

included summer and winter precipitation (one of which was included in every model), runoff 

(included in eight of nine models), and the baseflow index (included in six models). Importantly, 

these differing hydrology covariates did not provide redundant information. When calculated 

across the entire Ohio River Basin, Pearson correlation coefficients among these covariates never 

exceeded the collinearity threshold of |r| > 0.70 and in several instances, were much lower. For 

instance, correlations between mean annual streamflow and January precipitation, and between 

streamflow and June precipitation were r < 0.01 and r = -0.40, respectively. Furthermore, 

January and June precipitation were not highly correlated (r = 0.35). Thus, we concluded that the 

various hydrologic covariates (streamflow, precipitation, runoff, baseflow index) represented 
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different dimensions of the hydrologic cycle and were therefore appropriate for inclusion in the 

same models.  

In retrospect, the strong effect of hydrology was not surprising, given that hydrology is 

widely regarded as a “master” variable in lotic ecosystems (Poff et al. 1997). Streamflow is a 

dynamic integration of many physical processes occurring across the landscape. Though it is 

clearly a function of precipitation, streamflow is also influenced by the geologic and antecedent 

factors that regulate surface runoff, soil water, and groundwater dynamics (Poff et al. 1997). In 

this way, streamflow becomes an efficient indicator of many different yet interrelated influences 

on aquatic habitat (McGarvey and Terra 2016). Effects of these hydrologic influences range from 

direct, individual-level physiological and behavioral mechanisms (Poff and Allan 1995; Poff et 

al. 1997; Mims and Olden 2011) to emergent patterns in species’ distributions and overall 

richness (Power et al. 1995; Wenger et al. 2011; McGarvey 2014). We therefore believe it is 

logical that streamflow, rather than stream temperature, proved to be a primary determinant of 

habitat suitability in the fish models.   

 

Are the Model Predictions Cause for Concern? 

 

Our results suggest that, in a warming climate, habitat suitability for eight of the nine 

modeled species is likely to increase in high elevation streams near MTR operations. But we 

cannot prove that any of our predicted changes in habitat suitability will come to pass, or that the 

study species will in fact migrate to streams within the MTR buffer. We therefore conclude with 

some general thoughts on the relevance of our modeling process and findings. 
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First, we emphasize that the RCP 4.5 and 8.5 climate change scenarios, though heuristic 

in nature, are broadly recognized by the scientific community as valid and entirely plausible. 

Indeed, Smith et al. (2011) have shown that global warming of 2° C beyond pre-industrial levels 

may be achieved as early as 2030 and that 4° C warming may occur as soon as 2060. Similarly, 

Betts et al. (2011) estimate global mean temperature will increase by 4° C above pre-industrial 

levels between 2060-2070. Others propose global mean temperature is highly likely to exceed 

the 2° C benchmark by 2030, citing a likely temperature increase that ranges from 2-4.9° C by 

2100 (Raftery et al. 2016). Collectively, these reports show, despite uncertainty, that the range of 

outcomes bracketed by the RCP 4.5 and RCP 8.5 climate scenarios are plausible and could be 

reached by mid-century. 

Second, there are relatively few migration barriers in the rivers and streams of West 

Virginia that would categorially prevent fishes from migrating to higher elevations near MTR 

sites. Numerous lock-and-dam structures exist along the mainstem Ohio, Kanawha, and 

Monongahela Rivers in West Virginia but these are permeable to fish movement and the number 

of large impassible dams on westward flowing, Ohio River tributaries is modest in comparison to 

other eastern U.S. states (USACE 2016). Using a GIS, we performed a manual search for large 

dams that would prevent upstream fish movement and identified 10: Hawks Nest (inclusive of all 

upstream dams on the mainstem New River), Summersville, Sutton, Taylor Fork, Shannonpin 

Mine, Cheat Lake, Tygart, R.D. Bailey, Upper Mud River No. 2A, and East Lynn. The total 

length of stream channel that was upstream of one of these dams and within the MTR buffer was 

1,440 km, or ~9% of the 15,732 km of total stream channel within the buffer. Less conspicuous 

barriers could also constrain future fish movement. For instance, road crossings and culverts 

often impede fish movement (Warren and Pardew 1998; Januchowski-Hartley et al. 2013). This 
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is a point of concern because the density of road crossings was a good predictor of fish 

occurrence, and therefore selected as a final predictor variable, for eight of the nine modeled 

species (Table 2). Currently, we do not have comprehensive data that could be used to 

incorporate road crossings into our analyses in a spatially explicit manner. But we do note that 

most of the fishes in this study have broad ranges that historically include some mid- to high-

elevation streams. Thus, it is likely that even in a landscape that is highly fragmented by road 

crossings, some potential colonists are already present near the MTR buffer sites and therefore 

capable of moving to them in a changing climate. 

Third, we submit that our specific results may be broadly representative of a large 

fraction of the complete, native ichthyofauna of West Virginia. Our study species were randomly 

selected from the families Catostomidae, Cottidae, Cyprinidae, and Percidae. Together, these 

four families include 114 non-game fish species and represent 64% of all native fishes in West 

Virginia. As noted above, the model-predicted shifts in high-elevation habitat suitability were 

generally positive (i.e., increasing suitability) for eight of nine species. Thus, we believe it is 

logical to predict that habitat suitability for many of the remaining fishes will respond in a 

similar manner. 

 Finally, although we did not model MTR effects on fishes per se, we posit that the 

predicted tendency for habitat suitability to increase near MTR sites is, of itself, legitimate cause 

for concern. The most acute, negative effect of MTR on freshwater fishes will be direct habitat 

loss as MTR overburden is dumped as valley-fill, effectively eliminating headwater streams. 

Further downstream, chemical contaminants will accumulate through leaching and as coal is 

washed to lower its sulfur-content. Toxicants from MTR are known to cause infertility (Palmer 

et al. 2010), teratogenic deformities (Palmer et al. 2010), and death among individual fishes 
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(Ferreri et al. 2004), as well as population- and assemblage-level declines in fish abundance and 

diversity (Ferreri et al. 2004; Hitt and Chambers 2015). In southern West Virginia, more than 

750 km of high elevation streams have already been buried by MTR waste and chronic effects of 

MTR are now impacting 2800-4300 km of additional stream habitat (Bernhardt et al. 2012). 

Thus, we conclude that the combined effects of climate change and MTR are likely to pose very 

real and significant threats to many of West Virginia’s native freshwater fishes by mid-century. 
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Table 2. Summary information on the fit and structure of the Maximum Entropy (MaxEnt) 
species distribution models. For each species, the number of occurrence records (n) used to build 
the model and the MaxEnt regularized training gain (rtg) are shown with the exponential of the 
rtg in parentheses. MaxEnt % contribution and permutation importance diagnostics are also 
shown for each covariate that was retained in a species' final model. 
 

Species Covariate % contribution 
Permutation 
importance 

Catostomidae    
Catostomus commersonii Catchment area 41.8 54.9 
n = 2478 Mean annual streamflow 24.4 12.0 
rtg = 0.614 (1.848) Mean June precipitation 11.7 11.7 

 Catchment runoff 7.6 6.3 
 Catchment road crossings 4.4 0.8 
 Catchment BFI 4.2 2.8 
 Catchment elevation 4.1 8.3 
 Stream order 1.7 3.2 
    

Hypentelium nigricans Catchment area 47.8 55.4 
n = 2716 Mean annual streamflow 31.6 26.4 
rtg = 0.565 (1.759) Catchment elevation 9.6 9.1 

 Mean June precipitation 3.1 2.9 
 Catchment road crossings 2.9 1.1 
 Catchment BFI 2.7 2.6 
 Catchment water table depth 2.3 2.4 
    

Cottidae    
Cottus bairdii Catchment BFI 18.0 7.4 
n = 893 Catchment area 17.0 24.1 
rtg = 1.166 (3.209) Catchment elevation 16.7 28.5 

 Catchment runoff 13.6 21.8 
 Mean annual streamflow 13.5 9.4 
 Catchment sand 9.0 4.5 
 Catchment road crossings 6.5 1.0 
 Mean June precipitation 5.7 3.2 
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Table 2 (continued) 
 
 
Cyprinidae 
Campostoma anomalum Catchment area 42.1 46.8 
n = 3156 Mean annual streamflow 34.7 33.4 
rtg = 0.540 (1.716) Mean June precipitation 5.5 6.7 

 Catchment elevation 5.2 6.6 
 Catchment runoff 4.9 2.9 
 Catchment road crossings 3.8 0.6 
 Catchment BFI 2.4 1.0 

 Catchment Fe2O3 1.4 1.9 
    

Notropis buccatus Catchment runoff 30.6 7.6 
n = 1892 Mean annual streamflow 21.8 7.0 
rtg = 0.869 (2.385) Catchment area 19.5 47.7 

 Catchment road crossings 8.4 1.2 
 Catchment BFI 5.6 4.9 
 Stream order 3.9 7.1 
 Catchment open water 3.9 0.1 
 Mean June precipitation 3.2 12.1 
 Mean January precipitation 3.2 12.3 
    

Luxilus chrysocephalus Mean annual streamflow 42.4 38.0 
n = 460 Mean January precipitation 24.3 31.9 
rtg = 1.613 (5.018) Catchment area 8.6 7.7 

 Catchment wetness index 7.9 3.7 
 Catchment organic matter 5.9 4.8 
 Catchment BFI 4.6 9.7 
 Catchment runoff 4.4 1.7 
 Catchment elevation 1.9 2.6 
    

Semotilus atromaculatus Catchment area 48.9 68.9 
n = 3146 Mean annual streamflow 31.8 13.0 
rtg = 0.510 (1.665) Catchment road crossings 7.0 1.1 

 Mean June precipitation 5.0 6.0 
 Catchment runoff 3.8 3.8 
 Stream order 2.2 5.0 
 Catchment elevation 1.3 2.3 
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Table 2 (continued) 
 
 
Percidae 
Etheostoma blennioides Catchment area 47.4 50.4 
n = 2617 Mean annual streamflow 30.8 25.8 
rtg = 0.597 (1.817) Catchment elevation 11.1 16.3 

 Catchment open water 3.2 0.1 
 Catchment runoff 3.1 3.7 
 Catchment road crossings 2.6 0.3 
 Mean January precipitation 1.8 3.3 
    

Etheostoma caeruleum Catchment area 42.8 44.0 
n = 2365 Mean annual streamflow 25.3 19.2 
rtg = 0.625 (1.868) Catchment elevation 16.9 21.4 

 Mean January precipitation 5.4 7.2 
 Catchment road crossings 4.9 0.2 

  Catchment runoff 4.7 8.0 
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Table 3. Given as percentages, differences in the median MaxEnt raw score between the RCP 
4.5 and RCP 8.5 climate scenarios, relative to the historical scenario. Values given for the Ohio 
River Basin (ORB) and within the MTR buffer (MTR). Calculated as: % change = [future 
median raw score – historical median raw score] ÷ historical median raw score x 100. 
 

    RCP 4.5   RCP 8.5 
Species   ORB MTR  ORB MTR 
Catostomidae      
 Catostomus commersonii 1 -1  30 46 

 Hypentelium nigricans 1 -1  45 61 
Cottidae       
 Cottus bairdii 2 -2  53 66 
Cyprinidae      
 Campostoma anomalum  2 -3  64 88 

 Notropis buccatus -20 -33  -29 -31 
 Luxilus chrysocephalus 75 -1  636 418 
 Semotilus atromaculatus 1 -3  36 47 

Percidae       
 Etheostoma blennioides 6 19  70 119 
  Etheostoma caeruleum 13 29   81 154 
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Figure 2. Boxplots of the distributions of MaxEnt raw scores. Box elements are standard 
percentiles (see key). For each species, the distributions of raw scores across the Ohio River 
Basin (ORB; blue boxes) and within the MTR buffer (MTR; green boxes) are shown for 
historical data as well as the RCP 4.5 and RCP 8.5 mid-century climate change scenarios. Mann-
Whitney test p-values (paired sample tests using individual stream segments as replicates) 
comparing historical MaxEnt raw scores with future projections are shown for the RCP 4.5 and 
RCP 8.5 results within the MTR buffer.   
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Figure 3. Infographic summary of MaxEnt modeling results for the Striped Shiner. Illustration at 
upper-left demonstrates the basic stream warming phenomenon that motivated this study. Plot at 
upper-right shows the percent contributions of the eight covariates that were retained in the final 
MaxEnt model. Histograms at center-left show distributions of MaxEnt raw scores (log10 scale) 
throughout the MTR buffer for historical model projections and the RCP 4.5 and RCP 8.5 future 
scenarios. A boxplot of calculated MaxEnt raw scores at sites of known presence is 
superimposed on the histograms. Bar chart at center-right shows the dramatic difference in 
predicted habitat suitability (i.e., average percent change in MaxEnt raw scores) among the RCP 
4.5 and RCP 8.5 projections. Maps at bottom show the spatial distribution of stream segments 
within the MTR buffer that were predicted to have high and low habitat suitability values under 
historical and future conditions. A high-resolution copy of this infographic is available for 
download at https://doi.org/10.6084/m9.figshare.6089831.  
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