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 The use of computed tomography (CT) in the care of patients has grown dramatically 

since its introduction over 30 years ago. The vast majority of the utilization research has focused 

on factors associated with the variable use in the outpatient and emergency department settings. 

This has left much of the inpatient use and variation understudied. This study has multiple aims. 

The first is to characterize the inpatient variation across multiple states and markets. The second 

is to evaluate the relationship between inpatient CT use and commercial payers across these 

areas. The third is to develop a model to evaluate the relationship between inpatient CT use and 

the characteristics of markets, hospitals, and patients. 

 The study uses a four-state convenience sample of cross-sectional data for hospitals. It 

included non-Federal, acute care hospitals that reported the performance of inpatient CT exams 

during 2015 (N=181). The literature review was used to justify the inclusion of variables in the 



 
 

 
 

study. The descriptive analyses were used to justify the appropriateness of the variables and 

methodology for testing. 

 A comparison of means demonstrated the significant differences for inpatient utilization 

between states. A univariate general linear model demonstrated a negative relationship with a 

hospital’s proportion of commercially insured patients and the inpatient utilization rate. An 

ordinary least squares multivariate linear regression was used to test for variable significance 

within each of three constructs: markets, hospitals, and patients. The results indicated that 

inpatient CT rates were positively associated with higher level of insurer concentration (market), 

positively associated with system centralization (hospitals), and negatively associated with a 

hospital’s increasing proportion of minority patient discharges (patients). 

 The study serves an important function in identifying varying patterns of CT utilization 

across the full spectrum of inpatients across multiple states, regardless of payer. It also creates 

new knowledge about how the characteristics of these markets, hospitals, and patients are related 

to inpatient use. It also provides implications for administrators, researchers, and policy makers. 

The additional knowledge and understanding provided by this research have the potential to lead 

to improvements in the appropriate and equitable use of inpatient CT exams. 
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Chapter 1: Introduction 

 

Overview 

This study is designed to understand the relationship between varying inpatient computed 

tomography (CT) utilization rates and the characteristics of markets, hospitals, and patients. The 

CT scan uses radiation-emitting technology to render and combine multiple, refined cross-

sectional images of organs and body parts to diagnose diseases, monitor disease progression, 

plan treatments, and guide procedures. 

The study uses a conceptual framework to better develop and shape the variable 

relationships. This research will address a gap in the literature specific to inpatient CT use and 

how it varies across multiple institutions and markets. This study is non-experimental, conducted 

from a cross-section of 2015 data, and without repeated measures to provide a snapshot of 

performance. 

This first chapter provides the introduction and rationale for the research. It does so by 

framing the situational issues surrounding the observed increases in CT utilization as 

background. This framework includes introducing the recent evolution of markets and observed 

relationships with hospitals and patients. Chapter 1 also introduces the literature gap and the 

aligned aims of the study. A summary of the study significance, an introduction to the conceptual 

framework, a summary of the data sources, and an overview of the remaining chapters follow 

this section. 
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Background  

Over the last several decades, the rapid expansion in the use of CT exams has led to 

healthcare advances but also to increasing financial costs and increasing radiation exposure. 

Over 80 million CT scans were performed annually as of 2010 (Levin, Rao, & Parker, 2012). An 

extension of their work showed that even the most recent growth has occurred across all settings: 

emergency department, outpatient, and inpatient (Levin, Rao, Parker, & Frangos, 2013). The 

medical imaging expenditures surpassed the $100 billion threshold for all payers in 2004, and 

doubled for Medicare between 2000 and 2006 (Iglehart, 2006, 2009). Between 1980 and 2006 

there was a seven-fold increase in the annual cumulative ionizing radiation dose attributable in 

large part to CT use (Rumack, 2010). Per the National Council on Radiation Protection & 

Measurement (NCRP), this increase meant that ionizing medical radiation in the U.S. equaled the 

annual all-source environmental exposure (Schauer & Linton, 2009). 

During the same period of rapid proliferation of CTs, the healthcare marketplace evolved 

dramatically in ways that shape resource access and utilization. Both hospitals and insurers 

underwent a dramatic amount of consolidation. Market consolidation lends itself to opportunities 

for controlling and coordinating the provision of inpatient and outpatient services (Luke, Luke, 

& Muller, 2011; Sikka, Luke, & Ozcan, 2009). For example, consolidated systems may share 

information systems that improve the transfer, continuity, and efficiency of care. In 1989, 38% of 

US acute care general hospitals were in systems (Luke, 2010). The 2014 update of the American 

Hospital Association (AHA) annual survey data revealed this had increased to 65% being in 

systems (America Hospital Association, 2016). Insurers likewise consolidated and negotiated 

competitively with hospitals over payment and utilization terms. The American Medical 

Association (AMA) reported that, as of 2014, 71% of insurer markets in the 388 largest 
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Metropolitan Statistical Areas (MSAs) were regarded as highly concentrated based on 

Department of Justice / Federal Trade Commission standards (AMA, 2016). This was an 

increase from less than 50% in the first AMA report in 2001 (AMA, 2001). This decreasing 

competition between commercial insurers and the countervailing negotiations with consolidated 

hospitals stands to compound the access to and utilization of services (Trish & Herring, 2014). 

This study takes these market forces into consideration as they interact to influence inpatient CT 

use.  

Prior work has shown that hospital characteristics are associated with health resource 

consumption and CT use. Consumption is shaped by hospital indicators of complexity such as 

system membership, size, teaching status, and ownership type. Each of these uniquely contribute 

to a hospital’s resource utilization. Systems have been shown to explicitly direct patients to 

specific hospitals based upon patient complexity (Luke et al., 2011; Sikka et al., 2009). CT use in 

particular has been noted to increase along with hospital size and complexity (Kirsch et al., 2010; 

Shafrin, 2006). Likewise, teaching hospitals regularly have higher utilization rates for CT exams, 

particularly in the emergency department (Korley, Pham, & Kirsch, 2010; Larson, Johnson, 

Schnell, Salisbury, & Forman, 2011). Larson et al. (2011) found increased CT use in the 

emergency departments (ED) of not-for-profit hospitals.  

CT utilization has also been reported to vary significantly with patient characteristics. 

Not surprisingly, increasing patient acuity leads to increasing CT use (Kirsch et al., 2010). 

However, Kirsch et al. (2010) also found that women were more likely than men to receive a CT 

scan in the ED. This showed that gender may be a factor along with observed increases that 

correlated with patient age (Broder & Warshauer, 2006). Dramatic differences have been noted 

based on race, with nonwhite patients having only 72% the utilization rate of white patients 
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(Larson et al., 2011). Collectively, these underscore the importance of taking patient 

characteristics into consideration when assessing CT utilization rates, as this study does. 

Literature Gap 

This study demonstrates that there is a literature gap involving the inpatient use of CT 

exams across multiple markets. Broder and Warshauer (2006) explicitly looked at inpatient 

usage; however, their work was limited to a single hospital. Many studies have looked beyond a 

single institution but have been limited to CT use in the emergency room and not the inpatient 

setting (Kirsch et al., 2010; Korley et al., 2010; Larson et al., 2011). Medicare data addresses the 

challenge of multiple markets and can be the source of inpatient data. However, this excludes the 

majority of inpatients who are not Medicare enrolled and is compromised by the fact that 

Medicare does not negotiate with hospitals (Bhargavan & Sunshine, 2005). The challenge of 

filling this literature gap will be addressed in the forthcoming summary of data sources. 

Purpose and Aims 

The purpose of this study is to determine if there is a relationship between inpatient CT 

utilization and the characteristics of markets, hospitals, and patients. By doing so, this study will 

contribute to the limited body of research related to inpatient CT use. The novel application of 

data will help identify which aspects of markets, hospitals, and patients are interacting to shape 

the variability observed in utilization rates. The following objectives will achieve this purpose:  

 Objective 1: To characterize the degree of variation in inpatient CT utilization rates 

across multiple hospitals, states, and markets. 

 Objective 2: To evaluate the relationship between inpatient CT performance and the 

proportion of commercial payers across multiple markets and institutions. 
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 Objective 3: To evaluate the relationship between inpatient CT use and the characteristics 

of markets, hospitals, and patients. 

Study Significance 

This study is acutely relevant given the increasing prevalence of CT utilization, the rising 

financial costs, the current public concern with potential health consequences, and the gap in 

knowledge related to drivers of inpatient use. Stakeholders affected by the implications of the 

study extend beyond academic researchers to include hospital administrators, policy makers, and 

industry regulators. Consumption patterns affect strategic planning and healthcare costs, and 

have the potential to create inadvertent health consequences such as adverse reactions to contrast 

or increased exposure to ionizing radiation. The results of this research will specifically be 

relevant in: 

a) providing insight into the variability of inpatient CT use; 

b) helping in understanding the characteristics of markets, hospitals, and patients that may 

influence inpatient CT utilization;  

c) providing a cross-sectional snapshot of baseline information to address how future 

industry consolidations may alter resource consumption; and,  

d) adding to the limited body of research about the full spectrum of inpatient CT use.  

The literature review will expand upon the inpatient use of CT resources that have been 

understudied despite becoming increasingly prevalent (Levin et al., 2013). Research into the use 

of CT scans has largely focused on emergency and outpatient settings, or exclusively on 

Medicare patients, using only descriptive techniques. In this case, the addition of a conceptual 

framework to anticipate relationships adds rigor to the contribution to fill the literature void. 
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Conceptual Framework Overview 

This study uses a conceptual framework to explain general relationships and to develop 

specific hypotheses between CT resource utilization and the characteristics of markets, hospitals, 

and patients. Using a framework in lieu of ad hoc methods to postulate variables and hypotheses 

is the ideal for reliable and robust outcomes (Bacharach, 1989; Breyer, 1987). The framework 

supports the use of independent variables that are chosen based upon their conceptual association 

with or effect upon the dependent variables.  

The framework suggests that demand for services will balance against supply to form an 

equilibrium point that may shift as external factors influence observed utilization (Allen, 2013; 

Mick & Wyttenbach, 2003). In complex markets, like healthcare, demand is particularly 

sensitive to external forces (Allen, 2013). External forces intercede and alter healthcare 

consumption patterns by changing the context within which the decision to consume is made 

(Mick & Wyttenbach, 2003).  

The external forces included as part of this study are variables aligned with the 

characteristics of markets, hospitals, or patients mentioned previously. These characteristics are 

discussed in greater detail in Chapter 4, along with the rationale for controlling for each 

hospital’s primary state of operation. This careful consideration of variables is important in the 

evaluation of secondary administrative data (Breyer, 1987). Beyer (1987) elaborates on this idea 

as the method by which one maximizes the explanatory power of a model by minimizing the 

explanatory variables. Chapter 3 provides greater details on the consideration given to and the 

prior application of conceptual frameworks to health services research. 
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Summary of Data Sources 

Medicare inpatient data and National Hospital Ambulatory Medical Care Survey 

(NHAMCS) data are well represented in the prior imaging utilization studies referenced above. 

However, this study leverages other available resources to triangulate the full spectrum of 

inpatient CT utilization and address the literature gap. To do this requires the use of five data 

sources from three different entities. The first is Intellimed, Inc., a third-party aggregator of 

hospital discharge data, which is the source of the CT utilization data. The four states of Nevada, 

Maryland, Virginia, and Washington require reporting of discharge-level data that includes the 

performance of a CT exam during an inpatient stay. Intellimed collects this data and makes it 

available commercially and to researchers. Intellimed is also the source of the majority of 

hospital data as well as half of the market and patient characteristic data. 

The second entity is the American Medical Association (AMA). The AMA is the source 

of private payer health insurance information through its annual report of insurer market 

concentrations. This annual report is used in the preparation of market data for the study. The 

AMA report (2016) is based upon 2014 market data representing all 50 states and the 388 largest 

markets, specifically.  

The third entity is the Centers for Medicare and Medicaid Services (CMS). CMS is the 

source of three different data files and routinely makes available data for research and public use. 

CMS data are used in the preparation data to characterize hospitals and patients. The data from 

each source are linked by common variables into a single master file for analysis. A complete 

review of each data source and derived variables will be provided in Chapter 4. The convenience 

sample of data includes 219 acute care hospitals across this four-state sample that reported CT 
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scan utilization in 2015. The population sample, as well as inclusion and exclusion criteria, will 

also be discussed in greater detail in Chapter 4.  

Chapter Summary and Preview of Remaining Chapters 

This chapter provided an overview of the need for better understanding of the drivers of 

inpatient CT utilization, an increasingly prevalent technology. It demonstrated how this 

increasing utilization of the technology is occurring within the context of an evolving 

marketplace. It also highlighted the need to consider hospital and patient factors in any 

investigation. The chapter provided an overview of how the framework will be applied to 

formulate and hypothesize robust variable relationships. It also explained how the investigation 

of CT use across multiple markets will help to fill a literature gap specific to inpatient settings. 

Chapter 2 expands on the presence and significance of the gap in the literature. 

There are five additional chapters to the study in which are provided a detailed literature 

review, the rationale of the framework, the methodology employed to test the hypothesized 

relationships, the analytical results, and the conclusions. Chapter 2 reviews the relevant 

literature, including a review of the observed increases in CT utilization and drivers associated 

with the increased use. It also presents the potential inadvertent consequences of CT use and 

prior attempts to curb utilization.    

The remaining chapters structurally prescribe a method for addressing the identified 

literature gap and sharing the results. Chapter 3 explains the conceptual framework and uses it to 

structure the study within the context of market, hospital, and patient characteristics. Chapter 4 

details the methods used in the research design. These include a discussion of validities, data 

sources, data management, measurement variables, and an analytical plan including the selection 
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of a statistical technique. The analytical findings are reported in Chapter 5, with their 

implications and significance discussed in Chapter 6. 
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Chapter 2: Literature Review 

 

Overview 

There is a great deal of literature on the use of and expenditures for CT scans. However, 

it is incomplete. Studies that address utilization and expenditures for all age groups are typically 

limited either to the outpatient setting or to studies within a single institution. Studies that do 

examine inpatient (IP) CT use and expenditures typically use Medicare data and so are limited to 

examining the population mostly age 65 and over. This chapter reviews this literature for insights 

that can guide this study of inpatient use of CT scans among a broad cross section of the 

population. 

Growth of Computed Tomography and Medical Imaging 

 The focus of this study is IP use. However, this section of the literature review is largely 

dedicated to reporting on the overall prevalence of CT use in health care largely through the 

limitation of an outpatient (OP), emergency department (ED), or a Medicare perspective. It 

reviews suggested drivers of these increases and the associate variables. There is also a summary 

of the reported implications of increasing CT use and attempts made to curb those increases. 

Increases in imaging utilization. 

The use of medical imaging for both the diagnosis and monitoring of disease progress has 

become a matter of routine in health care. The technology permits many minimally invasive 

procedures via CT-guidance, which compete directly with traditional open procedures (Chien & 

Abbas, 2009). Routine CT and medical imaging use is commonplace in both the OP and IP 
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world. Increasing CT technology applications have benefited the early diagnosis, monitoring, 

and even the treatment of diseases.  

The dissemination of the CT device itself has been rapid. Roemer observed in 1961 that 

in areas with higher hospital beds per capita, hospital length of stay was longer (Shafrin, 2006). 

This became known as Roemer’s Law and is synonymous with supply inducing demand when a 

third party essentially guarantees payment. An application of such a law to CT devices suggests 

that the dissemination of CT devices would result in even faster increases in utilization. 

Accordingly, Shafrin (2006) reported that a CT installed is a CT device used. This occurs at least 

in part to recover the significant capital expense and upkeep of the device. CT device 

dissemination increased more than 50% during the 10 years preceding a 2004 census (Baker, 

Atlas, & Afendulis, 2008). Without regard to causation, others reported in a more recent study 

that the greater availability of CT in an area correlated to more frequent use of each device 

(Berdahl, Vermeulen, Larson, & Schull, 2013). 

Multiple reports and studies demonstrate the escalating rates of CT use (Baker et al., 

2008; Bhargavan & Sunshine, 2005; Boone & Brunberg, 2008; Brenner & Hall, 2007; Larson et 

al., 2011). CT use increased 20 fold from 3 million performed in 1980 to 60-62 million in 2005 

and 2006 (Amis et al., 2007; Rumack, 2010). Rumack (2010) points out that the growth through 

2007 was an average of 10% annually. More recent data is difficult to locate, however a 

November 2014 study reports that the ED Medicare beneficiary portion of CT growth continued 

unabated from 2002 through at least 2012 (Levin, Rao, Parker, & Frangos, 2014). Levin et al. 

(2014) reports this is despite the suggestion of flattening CT growth in other areas. These studies 

have primarily focused on increases in some aspect of OP, ED, or Medicare patient utilization. 

This leaves the implications of IP use still largely unaddressed and relevant. 
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For Medicare beneficiaries, the rate of all physician-billed CT interpretations (both IP 

and OP) increased more than 100% per 1000 enrollees between 1995 and 2005 to a rate of 547 

CT scans per 1000 enrollees. This again increased to over 600 CTs per 1000 enrollees by 2008. 

Fewer than half of these were performed in the OP setting with the balance being performed on 

IPs and ED patients (Levin, Rao, Parker, Frangos, & Sunshine, 2011) Rate increases were also 

found across the entire patient population of one large tertiary care academic hospital from 2000 

to 2004 (Boone & Brunberg, 2008). They observed an association between CT increases and 

patient characteristics such as age, sex, and patient status (IP, OP, or ED). Utilization rates 

increased 27% in OP areas. IP rates increased at an even higher rate, 48%. And they found that 

CT use rate in the ED more than doubled by 131% over the same time. Boone and Brunberg 

(2008) reported that though ED patients accounted for only 9.6% of the 2004 visits, they were 

nearly half of all CT scans performed. The CT use rate of 558.6 CT scans per 1000 ED visits was 

nearly quadruple the rate of 121.2 CT scans per 1000 IP days (Boone & Brunberg, 2008). Larson 

et al. (2011) found that admitted ED patients had higher utilization rates than those patients who 

were discharged home. This is a logical finding given the likely higher acuity and complexity of 

patients ultimately admitted from the ED. However, these findings underscore the prevalence of 

CT use in the care and decision making process. 

The increases consistently reported throughout the literature have each been provided 

from only a few perspectives of the varying patient care environment. Many have used some 

version of the National Hospital Ambulatory Medical Care Survey (NHAMCS) to observe 

significant ED increases (Berdahl et al., 2013; Coco & O’Gurek, 2012; Feng, Pines, Yusuf, & 

Grosse, 2013; Korley et al., 2010; Larson et al., 2011; Mullins, Goyal, & Pines, 2013). Some 

have reported upon CT increases across the ED, OP, as well as the IP health spectrum selectively 
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using either Medicare data or private payer data (Bhargavan & Sunshine, 2005; Korley et al., 

2010; Levin et al., 2014). Neither set of data accurately represents a cross section of the entire IP 

population. This is because the vast majority of Medicare patients are elderly (>65 years), but 

private payer patients are children or working age adults. It follows that much of the information 

available on CT utilization relates to use in the ED, the OP setting, or Medicare populations 

given the availability of data. A few investigators have studied CT use across a complete cross-

section of the IP population, but these studies have been limited to using a single market and 

institution’s in-house data (Boone & Brunberg, 2008; Broder & Warshauer, 2006). A list of 

relevant studies addressing CT utilization can be found in Table 1. To date there has been no 

evidence of a multi-market or multi-institution study that investigates the full spectrum of the IP 

population.  

Literature findings of less appropriate utilization. 

The literature suggests that CT increases have occurred for both appropriate and less 

appropriate reasons. Usually the increased rates are appropriate, justified, and replace more 

invasive and costly procedures. These reasons, like patient complexity, are discussed in another 

section. There is also a common belief in “inappropriate utilization” as a driver (Duszak & 

Berlin, 2012, p. 695). Inappropriate utilization was the focus of a 2009 summit in Washington, 

DC entitled “Medical Imaging: Addressing Overutilization in an Era of Healthcare Reform” 

sponsored in part by the American Board of Radiology (ABR) focusing on the “identification of 

the key forces driving overutilization” (Hendee et al., 2010, p. 241). Research identified multiple 

contributing factors to this inappropriate use. These are self-referral and the fee-for-service (FFS) 

payment methodology, litigation and defensive medicine, changing practice patterns, and 

duplicate studies (Bernardy et al., 2009; Chordas, 2009; Hendee et al., 2010). 
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Table 1 
Relevant Studies of CT Utilization 

Author(s) Dataset Population Key Findings Gap/Limitation 
Berdahl et al., 
2013  

National Hospital 
Ambulatory Medical 
Care Survey 
(NHAMCS) 2003-08 
and Canadian sources 

Stratified survey ED 
visits in the U.S. and 
Canada 

1. CT scanners were more 
prevalent in the U.S. 
2. U.S. clinicians used CT 
more frequently. 

Included ED utilization of all 
ages and payers, but does not 
include IP studies. 

Boone & 
Brunberg, 
2008  

Single tertiary care 
hospital used from 
2000-2004 

CT scans performed at 
a single large level I 
trauma center 

1. OP increased 27%, ED 
increased by 131% & IP 
increased 48%. 
2. Differences existed by age 
group. 

Included ED, OP, and IP CT 
scans but only for a single 
institution. 

Bhargavan & 
Sunshine, 
2005  

1. Medicare's Medical 
Expenditure Panel 
Survey (MEPS) 2001;  
2. MedSolutions OP 
private pay imaging, 
2000. 

Nationwide utilization 
of all medical imaging 

1. Rapid increases in high-
technology modalities (MR, 
CT). 
2. Substantial variation among 
states and census regions. 

Included ED, OP, and IP 
studies, but IP portion of 
study considers only 
Medicare enrollees. 

Broder & 
Warshauer, 
2006  

CT Utilization 2000-
2005 in the ED of a 
single instituyion 

Observed practice 
patterns in the singe 
large, tertiary referral 
center ED 

1. ED CT utilization far 
exceeded ED patient volumes. 
2. Increases ranged from 51% 
to 463% by anatomy. 

Included only CT from the 
ED and at a single institution 

Coco & 
O’Gurek, 
2012  

NHAMCS 1997-99 and 
2005-07 

Stratified nationwide 
survey of ED CTs 
performed for chest 
symptoms 

1. CT rates increased 
dramatically without 
improving clinically 
significant diagnoses. 
2. Clinically nonsignificant 
diagnoses increased  

Included ED utilization of all 
ages and payers, but does not 
include IP studies and only 
for chest symptoms 
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Table 1: Continued    

Author(s) Dataset Population Key Findings Gap/Limitation 
Feng et al., 
2013  

NHAMCS 2001-2009 Stratified nationwide 
survey of CT studies 
performed in the ED 
for chest symptoms 

1. Nonurban hospitals had 
highest growth rate for ED CT 
for chest symptoms at 43%. 
2. Low frequency of PE 
diagnosis warrants better 
evidence-bases use of CT for 
chest symptoms. 

Included ED utilization of all 
ages and payers, but does not 
include IP studies and only 
for chest symptoms. 

Kirsch et al., 
2010  

Data received from a 
third party billing 
company for calendar 
year 2006 

A 41 state sample of 
CT utilization in the 
ED 

1. ED CT was used for 27% of 
admitted patients. 
2. Emergency-boarded 
physicians ordered more CTs. 

Multi-state study of CT use in 
the ED including all payers 
and hospital types, but does 
not consider IP studies. 

Korley et al., 
2010  

NHAMCS 1998-2007 Stratified nationwide 
survey of CTs and MRs 
from the ED for 
injuries 

CT and MR increases were not 
explained by an increase in 
patient acuity or life-
threatening injuries. 

Included only ED trauma, but 
did not consider IP studies 

Larson et al., 
2011  

NHAMCS 1995-2007 Stratified nationwide 
survey CT use in the 
ED 

1. A 5.9 fold increase in CT 
use (2.7M to 16.2M) during 
the study period. 
2. CT use increased at a higher 
rates in the ED. 

Included ED utilization of all 
ages and payers, but does not 
include IP studies 

Levin et al., 
2014  

Medicare Part B 
databases, 2002-2012 

CT ED use for 
Medicare patients 

1. ED CT use increased 
steadily from 2002-2012. 
2. This was despite flattening 
growth of CT in other areas.  

Included ED CT utilization 
but for only Medicare 
beneficiaries. 

Mullins et al., 
2013  

NHAMCS 2002-09 Stratified nationwide 
survey ED disposition 

Patients admitted to the ICU 
had ED CTs performed 37% of 
the time 

Included ED utilization of all 
ages and payers, but does not 
include IP studies and only 
for ICU admissions. 
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Self-referral and fee-for-service. 

Imaging self-referral and FFS payments work together to increase utilization. Hendee et 

al. (2010) describe self-referral as “the referral for a procedure in which the referring physician is 

also the service provider or has an ownership interest and benefits financially by providing the 

service” (p. 242). In 2001, the FFS reimbursement of “unnecessary imaging” (p. 171) component 

of self-referred studies was estimated to be $16 billion annually (Levin & Rao, 2004). Levin and 

Rao (2008) updated their earlier work and reinforced the roll of self-referral and fee-for-service 

in increasing utilization. Further the U.S. Government Accountability Office points out that 

though some growth “may represent appropriate increases” (p. 5), “payment policies (may) 

embody financial incentives for physicians to overuse imaging services” (Government 

Accountability Office, 2008, p. 5). 

Litigation and defensive medicine. 

The threat of malpractice liability has been reported to compel physicians to use imaging 

in the practice of defensive medicine. Hendee et al. (2010) define defensive medicine as 

“diagnostic or therapeutic measures applied principally to safeguard against possible accusations 

of malpractice rather than to benefit the patient” (p. 241). Such practice results in the exhaustive 

imaging of patients though the cost may be high and a marginal benefit that may be small or 

nonexistent. At best defensive medicine extracts the maximum medical benefit out of a medical 

imaging series. At worst it results in non-clinically significant follow up with additional 

complications and far-ranging costs for patients and health systems. An example of this is 

evident in the controversy surrounding the National Lung Screening Trial and patient 

complications resulting from what were benign, incidental findings on CT (American Cancer 
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Society, 2011). A Massachusetts Medical Society (2008) survey of members found that 28% of 

CTs were ordered in response to the perceived threat of litigation. 

Public policy can also encourage increased use. An example is the Emergency Treatment 

and Labor Act (EMTALA) of 1987. EMTALA compelled hospitals and providers to provide a 

screening evaluation to assess the validity of a patient’s emergency visit. A quick and simple 

way of demonstrating such an evaluation became ordering a CT scan even if its appropriateness 

was poor, based on patient indications. Amis et al. (2007) pointed out that the speed, reliability, 

and general efficacy of a CT allowed rapid disposition of ED patients. This speed helps to 

decrease the direct risk of litigation to the ED physician by sharing it with an interpreting 

physician. The performance of a CT, even if poorly indicated or done for defensive purposes, 

became a means of objectively demonstrating treatment. 

Changing practice patterns. 

Some have pointed to changing practice and referral patterns of some physicians and 

groups as a driver of increasing utilization. It has become common to place CT scanner in or 

adjacent to the ED. Some have suggested that this simple immediacy, despite its benefits, may 

have contributed to less appropriate use (Boone & Brunberg, 2008). This work suggests that the 

utility of and increased preference for CT is believed have shifted some of the diagnostic 

imaging away from lower and non-radiation alternatives. It also suggests that sometimes a CT is 

ordered simply because it is quick and easy, though it may be poorly indicated based on the 

patient’s presentation. 

Broder and Warshauer’s (2006) findings largely support the idea of changing practice 

standards and patterns. They found that within the ED population from 2000 to 2005, the rate of 

utilization increase varied greatly between different types of CT exams. Many types of CT 
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exams increased over that time due to a change in practice standards and diagnostic indications. 

For example, they observed a 500% increase for CT of cervical spine for indications of trauma 

due to evolving trauma standards. However, they found comparable increases in the use of head 

CT, despite neither discernable changes in actual clinical indications nor changes in neurology 

standards. Others reinforced this by observing that increases occurred despite no significant 

change in patient acuity (Korley et al., 2010; Mullins et al., 2013). Together these suggest factors 

beyond practice standards are associated with increases. One suggestion has been the increasing 

sub-specialization of medicine as a driving force behind such increases (Kirsch et al., 2010; Pitts, 

Morgan, Schrager, & Berger, 2014). Ultimately, usage has increased even when the patient 

population has not changed. 

Research on data from Medicare enrollees suggests that market penetration of CT devices 

is associated with the rate of increasing utilization (Bhargavan & Sunshine, 2005). Utilization of 

novel imaging technologies increases the fastest at the time of introduction, but begins to plateau 

as the market saturates with devices and providers. Novel therapies, increased device speed, and 

study precision can help to sustain growth in a particular modality. Other factors found to be 

positively associated with higher utilization include an increased number of general providers 

and radiology providers in a state (Bhargavan & Sunshine, 2005). While causation has not be 

demonstrated in such a complex system, either the presence of radiologists drives increasing 

utilization or the increased utilization seems to lure a greater number of radiologists per capita. 

Bhargavan and Sunshine (2005) observed that markets approaching radiologist saturation have 

diminishing rates of increase, as they reach their capacity limits, and these markets show reduced 

geographic variation.  
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Duplicate studies. 

When an ordering clinician is unaware of or unable to access a previously performed 

exam or results, the speed and efficiency of the CT has “a lower threshold for using it” (Smith-

Bindman, Miglioretti, & Larson, 2008, p. 1491). It is very quick and easy to order and perform a 

repeat study to often answer the same clinical question. Such a scenario may occur when a 

patient is transferred between facilities, but his or her studies do not transfer successfully or 

quickly due to interoperability problems. The result is what Bernardy et al. (2009) describes as 

the “incomplete availability of patients’ imaging histories, leading to duplicate studies” (p. 844). 

Reported rates vary, but America’s Health Insurance Plans (AHIP) reports that “about 20% of 

hospital radiology tests are duplicates” (p. 2), and that a “full third of imaging procedures may be 

inappropriate” (AHIP, 2008, p. 2). 

Factors influencing CT and health resource utilization. 

There are specific factors frequently reported in the literature that are associated with 

variation in CT and health resources uses. The following subsections review these factors, which 

largely reflect hospital, patient, and market factors. The findings are often limited in general 

applicability due to the previously described data limitations. These studies have often been 

restricted in scope to ED patients, outpatients, Medicare patients, or a single institution’s 

proprietary data 

System centralization. 

Many hospitals have now joined into a multihospital system (MHS), and membership in 

these systems has been shown to impact resource consumption though CT use has not been 

explicitly reported in many studies. Studies have explored the role of centralization with MHSs 

in coordinating services and shifting procedures to different facilities within systems 
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(Chukmaitov et al., 2009; Luke et al., 2011). Luke et al. (2011) investigated a multistate sample 

of 404 hospitals in 117 urban MHSs and concluded that systems appear to explicitly direct high-

risk procedures to specific facilities. These high-risk procedures require greater resources and 

were found to often be directed to higher capacity facilities. This conclusion demonstrates that 

the intensity of service utilization within an individual hospital may be explicitly controlled by 

the greater system for those in a MHS. This opportunity to better coordinate and share previously 

performed CT studies between institutions is most accessible to hospitals engaged in formal 

MHSs. These observations complement the work of others to demonstrate the relationship 

between the increasing system centralization and coordination of services to improved quality 

outcomes (A. S. Chukmaitov et al., 2009). 

Ownership type. 

For-profit and not-for-profit ownership has been associated with the way in which CT 

and health care resources are consumed. However the directionality has been mixed. Most years 

of the NHAMCS data demonstrated CT utilization rates for ED patients that were slightly higher 

in not-for-profit hospitals than in proprietary, for-profit hospitals (Larson et al., 2011). This 

analysis did not explore why for-profit ownership would be associated with lower CT use in the 

ED. Somewhat conversely, others have shown an association between for-profit ownership and 

an increase in the outpatient volume of health resource utilization (Chukmaitov, Devers, Harless, 

Menachemi, & Brooks, 2011). These authors suggest the difference may be dependent upon 

whether the service generates or loses revenue for the hospital in the outpatient fee-for-service 

setting. It is prudent to recall that the diagnosis-related prospective payment system for inpatient 

admissions fixes the reimbursement. This system makes any additional inpatient CT exams 
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function as a cost to the hospital, especially if the same scanner timer is competing with fee-for-

service outpatients. 

Payers. 

Historically the source and amount of payment for health care has affected the rate of 

resource utilization. The classic RAND Health Insurance Experiment from 1973 to 1982 

demonstrated the marginal cost sensitivities of consumers to using health care resources (Brook 

et al., 2006). It did so by varying the share of the consumer cost burden against the observed 

amount of services consumed. Resource consumption remains associated with the cost borne by 

the patient via the payer mix present in a market. Within the nationwide sample of ED visits 

reviewed by Larson et al. (2011), CT use was again associated with payer type. In 2007, patients 

with private commercial insurers demonstrated the highest rates at 14.7%. Those with Medicare 

or Medicaid had marginally lower rates (14.3%). Those with the lowest use identified as self-

paying (12.9%). The odds of receiving a CT as a privately insured patient were statistically 

significantly higher than any other class of payer. 

 Kirsch et al.’s (2010) billing data study had similar CT use patterns but more dramatic 

differences related to the payer. Their non-random, nationwide sampling of patients found that 

commercially insured patients had a CT scan used during their ED visit 15.1% of the time. The 

uninsured self-paying had a CT scan performed during 12.7% of ED visits. Kirsch et al. (2010) 

also differentiated Medicare and Medicaid as payers. Though Medicaid represented a large 

portion of all scans performed, Medicaid patients had CT utilization rates at one-third that of 

Medicare patients (22.5% vs. 7.8%). A weighted average of this study’s Medicare and Medicaid 

patients puts the proportion of publicly funded patients receiving a scan at 14.4%. This is 

consistent with the Larson et al. (2011) combined NHAMCS findings of 14.3%. 
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The control a payer has over modulating access to care and the cost burden placed on 

patients and employers is acutely relevant given the consolidation that has occurred in the insurer 

market. Employer-sponsored insurance (ESI) remains the largest segment of commercial health 

insurance. ESI covered 149 million non-elderly people in the U.S. as of May 2014 (Claxton et 

al., 2014). Further, the American Medical Association (AMA) reported that as of 2014, 72% of 

insurer markets in the 388 largest Metropolitan Statistical Areas (MSAs) were regarded as highly 

concentrated based on Department of Justice and Federal Trade Commission standards (AMA, 

2016). This was an increase from less than 50% of the largest U.S. markets in the first AMA 

report in 2001 (AMA, 2001). 

Within a given market the insurer concentration has ramifications, since hospitals and 

insurers negotiate for favorable contract terms. It has been shown that insurers exercise the 

power of their market concentration in negotiating premiums and preferential hospital contracts 

(L. S. Dafny, 2010). He noted that markets with more concentrated insurer power (i.e. less 

competition) had higher premiums and suggested that insurers were engaging in monopolistic 

price discrimination. In related work, Dafny, Duggan, and Ramanarayanan (2012) reported that 

at least 7 percentage points of the observed 60% increase in inflation-adjusted premiums 

between 1998 and 2006 were associated with decreasing competition. Guardado, Emmons, and 

Kane (2013) studied the merger of two insurers in a natural experiment and assigned a causal 

association between the increasing market share and a 13.7% single-year increase. 

Hospital size. 

There are other hospital characteristics shown to be associated with resource utilization. 

One multi-institutional study of 2006 payer data for ED visits showed that CT rates increased 

along with the annual patient volume (Kirsch et al., 2010). High-volume EDs exceeding 40,000 
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annual visits had nearly twice the CT utilization rate (17.8%) as the low-volume EDs (9.3%) 

having fewer than 20,000 annual visits. Kirsch et al. (2010) offered possible explanations. The 

volume of the ED would likely correlate strongly with the patient complexity and hospital size. 

Also, the most severe patients are ultimately expected to be admitted to the largest hospitals able 

to provide tertiary or quaternary care. In addition, they report high ED volumes may be related to 

increased accessibility of both a scanner and rapid results. This access, as previously described, 

has at times been observed to further enhance resource use (Shafrin, 2006). 

Teaching status. 

EDs with training programs have been shown to have higher scan rates. Larson et al. 

(2011) observed a modest increase in the frequency of CT use in settings considered academic. 

They used a less restrictive definition of an academic ED requiring only 10% of ED visits were 

attended by residents.  However, Korley et al. (2010) found that applying a more restrictive 50% 

visit threshold to define academic EDs resulted in more dramatic differences. They found that 

patients in an academic ED were 52% more likely to receive a CT scan than those at a 

nonacademic ED. They attributed this to trainee inexperience, the ready availability of CT, and 

the acuity of academic patients. Both studies used multiple years of the National Hospital 

Ambulatory Medical Care Survey (NHAMCS) data to look at ED patterns. 

Kirsch et al. (2010) also reported an association between the type of board certification 

and the likelihood of ordering a CT on ED patients. Board-certified emergency medicine 

physicians were significantly more likely to order a CT study on a patient than those who were 

not board certified (16.3% vs. 11.3%). These observations persisted after controlling for the 

patient age, sex, physician age, and the ED volume. Interestingly, Kirsch et al. (2010) found that 

the age of the provider was negatively related to the likelihood of ordering a CT study for a 
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patient. The oldest clinicians were significantly less likely to order a CT study than the youngest 

physicians (11.8% vs. 16.0%). These large utilization studies suggest some combination of 

physician training and the teaching aspect of the academic environment may relate to the 

likelihood of ordering a CT study on their patients. 

Case mix. 

Increasing patient acuity has been shown to increase the likelihood of receiving a CT 

exam while in the ED. This is evident by the finding that the most ill patients receiving care in 

the ED (i.e., those ultimately admitted to the hospital from the ED) have been found to have the 

highest utilization rates of CT in the entire hospital (Kirsch et al., 2010). This study showed that 

these patients are 2.5 times as likely to have a CT as those who are discharged (Kirsch et al., 

2010). Once admitted, the CT use continues in the inpatient setting, and has been observed to 

increase over time as well. One single institution study observed a 48% increase in CT use for 

inpatients between 2000 and 2005 (Boone & Brunberg, 2008).   

Patient demographics. 

Patient demographics have been associated with CT and resource utilization across 

multiple health care settings. CT utilization has been found to vary with statistical significance 

between genders (Kirsch et al., 2010). Kirsch et al. (2010) found that women were found to be 

more likely than males to receive a CT scan at 14.3% as compared to 13.8%. They observe that 

though this difference is statistically significant, it may not be clinically relevant in spite of the 

additional cost and radiation considerations. The authors also found that a patient’s age is related 

to CT use. ED CT use increased with each adult decade of life from 11.3% to 24.6%. At another 

large tertiary medical center, CT rates from 2000-2005 increased with each adult age group 

suggesting increasing needs with age and that a large elderly population may affect overall rates 
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(Broder & Warshauer, 2006). Another patient demographic observed to differentiate rates has 

been race. Larson et al. (2011) reported that in the later years of their study, white patients had a 

significantly higher rate of CT utilization than nonwhite patients. They observed 38% higher CT 

utilization rates for white than black patients in the ED (14.9% vs. 10.8%). 

Implications of increasing CT utilization. 

The American College of Radiology (ACR) reports (2009) that CT technology has 

undoubtedly saved many lives, reduced many hospital stays, improved disease detection, and 

improved ED throughput. However, these benefits have not come without costs, associated risks, 

and unintended consequences. Evaluating the clinical merit of the CT exam is beyond the scope 

of this study but deserves acknowledgement. The purpose of this section is to explore the costs 

and risks associated with CT use to underscore the importance of developing a comprehensive 

understanding of utilization patterns. This is part of the “need to focus on the potential side 

effects of these advanced imaging techniques” (p. 837) for which Dr. Rumack (2010) advocated 

as the President of the ACR. The technology has both financial costs to the U.S. health system 

and potential inadvertent health costs to those receiving scans given the technology’s use of upon 

ionizing radiation. 

Financial costs. 

Not surprisingly, as utilization has increased so has the financial cost dedicated to 

medical imaging. For example, the cost of medical imaging has increased at approximately twice 

the rate of other medical technologies (Hendee et al., 2010). The $100 billion threshold for 

medical imaging payments by all combined payers was surpassed in 2004 (Iglehart, 2006). 

Medicare’s MedPAC report (Government Accountability Office, 2008) revealed that its portion 

of medical imaging costs remained one of its fastest growing areas from 2000-2006. More recent 
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data suggest a modest curbing of Medicare's expenditure growth rate in the wake of the Deficit 

Reduction Act of 2005 that targeted advanced imaging, like CT (Lee, Duszak, & Hughes, 2013). 

However, Lee at al. (2013) found that though Medicare expenditures per CT decreased, the 

absolute spending figures did not, due to the volume increases that more than offset savings. The 

continued high costs and rapid growth have resulted in continued payer scrutiny in an attempt to 

justify the public value. Attempts to curb utilization will be reviewed later in this chapter. 

Population health costs. 

Though there are significant benefits to the use of CT, it is not without risk. The use of 

CTs creates costs beyond those easily measured as a direct financial cost. The frequent use of 

contrast in CT studies can induce nephropathy and sometimes rare life-threatening contrast 

reactions (Korley et al., 2010). Concern over ionizing radiation has attracted the interest of 

researchers and the mainstream press alike (Bogdanich W., 2010; Park, 2012; Redberg & Smith-

bindman, 2014). Study results are often repeated in lay publications and heighten public 

awareness of the potential harm of ionizing radiation. Public discourse prompted the ACR to 

publish a statement in response to the studies associating CT scans and increased cancer risk.  In 

it they stated, “Medical imaging exams have been directly linked to greater life expectancy, 

declines in cancer mortality rates, and are generally less expensive than the invasive procedures 

that they replace” (ACR, 2009, para. 1). However, the ACR conceded, “widespread use has 

resulted in increased radiation exposure for Americans.” (para. 1). Reports indicate a more than 

seven-fold increase in the cumulative ionizing radiation dose attributable to health care received 

annually in the U.S. between 1980 and 2006 (Hendee et al., 2010; Rumack, 2010). Per the 

National Council on Radiation Protection & Measurement (NCRP) this increase has gone from 

124,000 to 880,000 person-Sieverts during that time (Schauer & Linton, 2009). This seven-fold 
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increase means that as of 2006, ionizing medical radiation equaled the annual all-source 

environmental exposure to ionizing radiation in the U.S. (Hendee et al., 2010; Schauer & Linton, 

2009).  

Elevated radiation doses were again addressed in a 2011 single-institution study of 500 

transfer patients. It showed that 52.8% of patients transferred to the facility with an outside scan 

had phases of the study that were unindicated based upon ACR Appropriateness Criteria (Guite, 

Hinshaw, Ranallo, Lindstrom, & Lee, 2011). This meant that “33.3% of the total effective 

radiation dose to the patient population was due to unindicated phases” (Guite et al., 2011, pg. 

758). Applying the 50 milliSievert annual safety threshold for health care workers, as a frame of 

reference for safety, indicates that 21.2% of these patients were above it. Guite et al. (2011) also 

found that 25% of the phases were unindicated on transfer patients less than 10 years of age. This 

is concerning because children are at an elevated risk; at such a young age they have more years 

to accumulate dosage, and their bodies and cells are more sensitive to radiation while dividing 

and growing rapidly (Brenner & Hall, 2007). This is potentially compounded by the fact that 

they are also the most likely to be overdosed in the setting of a protocol that has not been 

customized to their smaller body sizes (Paterson, Frush, & Donnelly, 2001). Benner and Hall 

(2007) concluded that at 2007 CT utilization rates, the radiation from those scans will account 

for 1.5-2.0% of lifetime cancers. It was reported that while only 26% of imaging studies are 

considered advanced imaging, the vast majority of the ionizing radiation in medicine (89%) is 

attributed to advance imaging techniques like CT (Rumack, 2010). For these reasons, Smith-

Bindman et al. (2009) advocated for the evaluation of CT scan benefit within the context of 

additional radiation risk including the reduction of any unnecessary studies. 
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The challenge of patients being exposed to increasing amounts of ionizing radiation has 

led to large national efforts to educate both the public and providers to curb dosing. The U.S. 

Food and Drug Administration launched a national campaign in 2010 to reduce unnecessary 

exposure to CT, fluoroscopy, and nuclear medicine studies (U.S. Food and Drug Administration, 

2010). This included improving devices, and also followed the 2007 efforts of the Alliance for 

Radiation Safety in Pediatric Imaging’s Image Gently initiative to improve the quality and 

reduce the radiation exposure to pediatric patients through medical imaging (Goske et al., 2008). 

Also in 2007, the ACR commissioned a blue ribbon panel to assess dangers and develop 

recommendations for reducing excess utilization (Amis et al., 2007). Thirty-seven 

recommendations were created by the panel in 2007 and then revisited in 2010 to assess their 

progress (Amis & Butler, 2010). Health concerns have resulted in a partnership between the 

ACR and the Radiology Society of North America to create the RadiolgyInfo.org website 

(American College of Radiology, 2009). It serves as a portal to educate both the public and 

providers about the potential risks and benefits of imaging that uses ionizing radiation. While all 

CT exams use radiation, some modalities that do not may be adequate for the clinical question at 

hand. Others have advocated for a movement beyond purely radiation safety and quality to one 

of advocacy and the installment of a culture of "patient-focused radiology" (Rumack, 2010). 

Rumack explains that patient-focused radiology extends to include the consideration of advanced 

imaging’s potential side effects as part of the value function of risk-benefit assessment. 

However, significant challenges exist when attempting to alter practice models that are engrained 

in an organization’s culture (Dugan, Mick, Scholle, Steidle, & Goldberg, 2011). The combined 

increases in CT utilization with the observed financial costs and population health concerns have 

led many payers and policymakers alike to explore ways to curb the growth of CT use. 
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Attempts to curb utilization. 

Multiple efforts have been made to curb the perceived overutilization of CT. Within 

institutions, this has usually involved improving study selection methods. One such tool is a 

computerized physician order entry (CPOE) system augmented by imaging decision support to 

assist in the appropriate ordering of a CT. The mismatched pairing of a study to a given patient’s 

clinical indications has been identified as a source of less appropriate studies (Chordas, 2009). 

Decision support stands to indirectly limit growth by guiding providers to studies that 

demonstrated the most value. However, only recently has decision support based upon robust 

imaging appropriateness criteria become readily accessible because of its dependency on 

widespread adoption of electronic medical records (EMRs). When appropriateness criteria did 

exist in the past, these were often without much evidence basis and not integrated into CPOE 

systems (Hendee et al., 2010).  

Easy and timely access to evidence-based standards helps to guide clinicians in their CT 

ordering choices (Feng et al., 2013). The ACR has established and regularly updates its 

consensus and evidence-based “Appropriateness Criteria” to assist clinicians in ordering the best 

study for the clinical question at hand (Levin et al., 2012; Rumack, 2010). However, the ACR’s 

Appropriateness Criteria are often not easily accessible at the point of care for ordering 

physicians. Even for those institutions that have a CPOE system, the system often does not 

incorporate appropriateness criteria into any associated decision support. Institutions that have 

successfully incorporated appropriateness criteria into the decision support of their CPOE report 

as much as a 20% decrease in CT utilization (Raja et al., 2012; Rosenthal et al., 2006). Overall 

this represents a cost savings for health care, decreased radiation for patients, and decreased 

professional services revenue for interpreting physicians. 
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External entities have attempted to impose controls over the use of CT and imaging 

resources too. Payers use benchmarking for providers ordering scans in an attempt to identify 

and isolate outlying physicians. A more common technique is the use of preauthorization for 

high-tech studies (Hendee et al., 2010). Preauthorization curbs the growth in utilization rates by 

ensuring the threshold for appropriateness of study fit. It also works by simply creating a 

cumbersome process to get payer approval for many CT and other advanced imaging studies. 

Similarly, federal mandates for the use of EMRs are in part an effort to reduce inappropriate 

utilization by eliminating duplicate studies (Health and Human Services, 2013). Likewise, 

imaging facility accreditation became required per the Medicare Improvements for Patients and 

Providers Act (2008) for CT imaging Medicare reimbursement (Government Printing Office, 

2008). One aspect of accreditation is continuous quality control intended to reduce inadequate 

studies that require repeat.  

The Omnibus Budget Reconciliation Act of 1993 (Sabo, 1993) contained legislation 

intended to prevent OP imaging referrals to imaging facilities where the referring physician 

holds a significant financial interest. The goal was to remove any physician financial incentive 

for having the study performed. However, this legislation did not regulate ordering in the IP 

setting, the subject of this project. Nor did it limit interpreting physicians from recommending 

additional imaging, over watchful watching, when an otherwise equivocal study initially 

resulted. Such ambiguity and latitude in the scope of practices can result in further utilization 

increases. 

Gaps in the Literature 

 This review demonstrates that while much is known about CT utilization and expenditure 

and the factors that have driven increases in them over the last decade, much of the evidence 
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comes from the outpatient and emergency department settings. Literature that examines inpatient 

data is limited to Medicare data and therefore the 65 and over population. Single institutions may 

maintain their own repositories of data that differentiate between ED, OP, and IP scans but will 

be limited to only that one organization. OP survey data, even large multi-market sets such as the 

NHAMCS data, have been used to characterize use patterns but are limited to the ED and OP 

setting. Lastly, private payer studies have demonstrated utility in looking across both ED and OP 

settings as well as markets, but have excluded Medicare patients and IPs. It appears that there is 

no published study that has captured a multi-market perspective of the factors potentially 

influencing the performance of IP CT studies. 

Chapter Summary 

 This chapter reviewed the literature for observations about the growth of CT utilization 

across the continuum of care. It also reviewed factors that are associated with CT and health 

resource use. IP use of CT exams has been largely under-investigated, and there is an urgent 

need for a better understanding of their utilization. This exploratory study provides a single-year 

snapshot of the multi-market, multi-state IP utilization of CT exams to aid in closing the existing 

gap in the literature. IP CT use is not only an issue for administrators, academics, and payers but 

also remains a significant health risk to patients when used inappropriately. As previously 

discussed, hospital and insurer consolidation occurred concurrently with the growth in CT use. 

Many hospitals consolidated into MHSs, and many markets are now highly concentrated and 

dominated by only a few hospitals and insurers. It is conceivable that the interplay between 

markets, hospitals, and patient factors may influence IP CT utilization. The economic principles 

suggesting this will be discussed in greater detail in Chapter 3.  
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Chapter 3: Conceptual Framework 

 

Overview 

 The purpose of this chapter is to provide the conceptual basis for the organization of this 

study and the rationale for the selection of variables, their relationships, and derived hypotheses. 

This rationale will be used to explain the relationships between the various hospital, patient, and 

market inputs affecting the supply of CT resources and the subsequent demand for inpatient 

utilization of these exams as an output measure. That will be followed by a review of 

assumptions and limitations, the conceptual framework, and proposed hypotheses. These 

hypotheses, derived from the framework, will address the study objective to test the relationship 

between inpatient CT use and characteristics of markets, hospitals, and patients. The hypotheses 

will be tested against a purposefully developed secondary set of convenience data.  

Structured Research 

 Bacharach (1989) wrote of social science research and published on the criticality of 

research rooted in and aligned with theoretical concepts and structures. He contended that basing 

hypotheses in frameworks offers a perspective that frequently results in a simultaneously more 

rigorous and more contemplative rationale. Further, he asserted that theory is intended to go 

beyond simply the minimal purpose of description. Theory helps investigators to hone questions 

that they expect to ask while also reminding investigators of constructs and other perspectives 

that may have not been considered. Bacharach (1989) writes that such a framework is “a 

statement of relationships between units observed or approximated in the empirical world” (pg. 
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498). In practice, the genuine measure of a framework’s utility is not the accurate representation 

of reality, but the ability to accurately predict outcomes.  

 Bacharach (1989) provides a framework for organizing the constructs, related variables, 

and hypotheses (Figure 1). This framework includes methods to guide evaluation of the 

framework for adequacy and considers the essential falsifiability and utility of variables, 

constructs, and relationships. This includes both empirical and logical adequacy. Empirical 

adequacy is an assessment of whether observations are simply true or false. Logical adequacy 

requires that relationships must be non-tautological and that the antecedent must specify the 

consequence. 

 

Figure 1. Framework Components (Bacharach, 1989) 

Mick and Wyttenbach (2003, pg. 34) explain how “the ‘demand’ for a doctor’s services is 

never a direct function of physician supply, insurance coverage, and disease pattern.” The 

concepts of supply and demand are most often interpreted within the context of an assumed 

perfectly competitive market for a particular service or product (Mankiw, 2007). The marginal 

benefits gained from an activity, with respect to the marginal costs incurred by the rational 



 
 

34 
 

consumer, directly relate to the willingness of the market to supply or permit a particular product 

or activity as output (Mankiw, 2007). However, the lessons learned are often more broadly 

applicable to more complex markets as well, since the observed demand in more complex 

markets is often determined by more factors than simply cost. Demand is often altered by 

externalities that either increase or decrease demand as a consequence (Mankiw, 2007). 

Healthcare is an especially complex marketplace that is subject to external influences. 

These may include regulation, accreditation, health insurance coverage, preferred partnerships, 

and increasing copayments that alter utilization. One particular example is Certificate of Need 

(CON) programs, which are administered by select states. They require applicants to demonstrate 

patient need before regulators will approve the expansion of many healthcare resources, 

including new hospitals and bed expansion projects along with large capital purchases such as 

MRI or CT devices. These externalities and assumptions of the supply and demand model lead to 

a partial equilibrium within the context of all other things being equal. 

Healthcare Applications 

Aggregate healthcare resource demand and utilization were explored extensively in the 

classic RAND health insurance study (HIS) of the 1970s (Brook et al., 2006). The RAND study 

demonstrated the sensitivities of groups to cost and the resultant changes in consumption of 

healthcare resources. These changes reflect the elasticity of resource demand. As the cost burden 

increased on the insured, they consumed fewer resources. Increasing cost burden decreased the 

demand for services. Not all resources varied equally. Acute care hospital needs were the most 

inelastic and varied the least, whereas wellness care varied the most and was most likely to be 

deferred. The cost sharing of the RAND HIS experiment demonstrated the relationship between 

supply inputs, such as cost, and the subsequent demands for services. 
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 The RAND HIS also demonstrated that OP and IP services are often complementary 

from the consumer perspective and not substitutes (Brook et al., 2006). This is a critically 

important distinction when studying IP utilization of any service to ensure that services are not 

simply being performed as an OP in lieu of being performed while an IP. The opportunity to 

transfer revenues to different cost centers reflects a potentially large driver of health resource 

utilization. Market-based reforms and principles have been applied routinely in the United States 

and abroad in attempts to broaden coverage, control costs, and improve quality (Allen, 2013). 

Such was the intention with The Patient Protection and Affordable Care Act of 2010 (Claxton et 

al., 2014). 

Assumptions 

 The finite limits of knowledge are the boundaries beyond which all other possibilities are 

considered equal (Lawson, 2013). There is an accepted limit beyond measurable knowledge, 

which may still have a quantifiable impact on behavior. This limit is defined by the conceptual 

framework and exists because it is not possible for every individual to fully comprehend, 

process, or understand every iterative possibility. Still, individuals are expected to make 

decisions from which gained benefit is expected. The cognitive ability of an individual to make a 

decision within these constraints represents a fundamental assumption of the framework. 

 The provision and consumption of healthcare resources is assumed to be at stable 

equilibrium. At one extreme is the monopolistic seller who can very often set prices above what 

would be most efficient at equilibrium-level prices. The inverse situation is monopsony. 

Monopsony occurs when there is a single dominant purchaser that can drive down prices. In both 

scenarios, there is a disequilibrium in the market for goods that compromises equitability and 

efficiency. This can exacerbate the concept of information symmetry, which is needed to make 
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informed decisions. Healthcare is extremely complex and often requires a level of expertise 

attained only after years of training to make an informed utilization decision. Patients often lack 

this knowledge and are insulated from the financial cost. Physician decisions are often removed 

from financial implications by design. The result is that the decision to use a healthcare resource 

is often subsidized or completely paid for by another entity with few negative financial 

implications for the patient or the provider. Despite these required assumptions and understood 

limitations balancing the supply of and demand for services remains a popular and viable 

conceptual system of constructs by which to frame research questions.  

Conceptual Framework 

 This study’s conceptual framework is diagramed and summarized in Figure 2. It 

summarizes the various relationships between the input and output constructs. The framework 

attempts to demonstrate graphically the probable mechanisms by which the various input 

measures directly associate with the output measures. 

The input measures correspond to those previously observed in the literature review as 

representative of markets, hospitals, and patients and have been shown to have a probable 

relationship to the use of CT exams. They are the a) insurer market share, b) hospital market 

share, c) system centralization, d) payer mix, e) hospital bed count, f) teaching status, g) 

ownership type, h) case mix index, and i) minority mix. The first two input measures (a & b) 

represent indicators of the market that are anticipated to alter the demand for inpatient CT use. 

The next five variables (c through g) are hospital characteristics expected to alter the demand for 

inpatient CT use. The patient factors influencing demand (h & i) consist of case mix and 

minority mix. The input and output variables are summarized in Table 2. 
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Figure 2. Conceptual Relationship of Variables to Inpatient CT Use 

Table 2 
Input and Output Measures 

Characteristics Input Measures Output Measures 

State State 

Inpatient CT 
Utilization Rate 

Markets  a) Insurer market share 

 b) Hospital market share  

Hospitals c) System centralization 
d) Payer mix 
e) Bed count 
f) Teaching status 
g) Ownership type 

Patients h) Case mix index 
i) Minority mix 



 
 

38 
 

Given the prior healthcare resource work showing significant healthcare resource use variation 

across even small geographic areas, the state input variable is anticipated to have a strong 

influence on the demand for inpatient CT services (Bhargavan & Sunshine, 2005; Zhang, Baik, 

Fendrick, & Baicker, 2012). For this reason, this project suggests the use of state as a control 

variable.  

Study Hypotheses 

H1: Characteristics of markets will be associated with inpatient CT utilization. 

Insurer market share. The Herfindahl–Hirschman Index (HHI) is an econometric measure 

of control over a given market (ACA, 2014). It originated in production industries but was later 

applied to healthcare. In healthcare, it is a measure of an insurer’s control over its market. 

Increasing insurer control of a local market is expected to be associated with the demand for 

inpatient CT services.  

Hospital market share. The hospital HHI is also a measure of control and concentration of 

a hospital’s local market (Zwanziger & Mooney, 2005). With domination of the local market, a 

hospital faces decreased threats of competition and substitute, alternative choices by consumers. 

Also, hospitals with a high market HHI measure can more often negotiate preferential contracts 

with the commercial insurers. Therefore hospitals with higher market HHI measures (i.e., less 

competitive markets) are expected to be have associated changes in their inpatient CT rates. 

H2: Characteristics of hospitals will be associated with inpatient CT utilization rates. 

System centralization. The literature review suggest that belonging to a centralized 

system may result in associated changes in CT utilization rates. Membership provides better 

opportunities to coordinate care resources and share previously performed studies, thus reducing 

clinician demand for the repetition of prior studies. Membership also decreases the likelihood of 
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local competitors providing an adequate substitute good. Becoming a system member stands to 

increase both the local and regional market control and negotiating power. A summary of 

objectives, research questions and hypotheses is presented in Table 3. 

Table 3 
Summary of Objectives, Research Questions, and Hypotheses 
Objective 

Objective 1: To characterize the degree of variation in inpatient CT rates across the hospitals of 
multiple states and markets. 

Objective 2: To evaluate the relationship between inpatient CT performance and the proportion 
of commercial payers across multiple markets and institutions. 

Objective 3: To evaluate the relationship between inpatient CT use and the characteristics of 
markets, hospitals, and patients 
 

Research Questions Hypotheses 
 Are the market characteristics 

related to inpatient CT 
utilization? 

Hypothesis 1: Characteristics of markets 
will be associated with inpatient CT 
utilization rates. 

Are hospital characteristics 
related to the rate of inpatient CT 
utilization? 

Hypothesis 2: Characteristics of hospitals 
will be associated with inpatient CT 
utilization rates. 

Are patient characteristics related 
to inpatient CT utilization? 

Hypothesis 3: Characteristics of patients 
will be associated with inpatient CT 
utilization rates. 

 

Payer mix. The literature review showed that commercial payers tend to observe higher 

rates of CT utilization than government payers such as Medicare and Medicaid. The addition of 

payers above and beyond the fixed reimbursements for Medicare and Medicaid add to 

organizational complexity. This suggests that the superior reimbursement and increased margin 

for commercially insured patients results in a disincentive to limit or restrict the higher margin 

care in any way. Therefore it is expected that hospitals with increasing proportions of 
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commercially insured inpatients are predicted to observe changes in the use of inpatient CT 

utilization. 

Bed count. The literature review showed that bed count has been frequently used in 

health services utilization research, and that larger hospitals tend to have more complex patients. 

In many cases, the very largest hospitals in regional systems are often tertiary referral centers 

where the highest acuity patients are cared for by multiple specialty teams. This increasing 

organizational complexity frequently demands a CT examination as the standard of care. History 

suggests that a larger hospital size will be associated with increased CT utilization. 

Teaching status. The literature review demonstrated that academic hospitals, with both 

training programs and more specialized faculty care, have higher CT rates in the ED. This 

duality exists because less experienced physician trainees, who may be less knowledgeable about 

the appropriateness of a study, may order them more frequently. Also, their more advanced 

specialist supervising physicians may have more knowledge about potential study applications. 

These factors compound with the observation that academic hospitals are shown to be 

organizationally complex with many layers of care frequently resulting in higher CT utilization 

rates. This demand for services at academic centers suggests that teaching hospitals will observe 

higher rates of inpatient CT utilization. 

Ownership type. For-profit hospitals have been previously observed in the literature to 

engage focus more explicitly on revenue and costs. An unnecessarily performed inpatient CT 

exam is costly lost revenue opportunity. For-profit hospitals therefore have a greater financial 

incentive to engage in centralization and coordination of services. This focus is expected to result 

in associated changes to the inpatient CT utilization rates. Therefore, it is expected that not-for-

profit ownership will be associated with increased inpatient CT utilization. 
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H3: Characteristics of patients will be associated with inpatient CT utilization rates.  

Case mix. As presented in the literature review, the overall acuity of a hospital’s inpatient 

case mix is likely associated directly with its CT utilization patterns. Increasing case mix reflects 

increasing patient acuity. The overall patient population presents as sicker and in need of more 

comprehensive care, driving an increase in demand. The increased demand from a higher 

hospital case mix index is expected to be associated with increased inpatient CT utilization rates. 

Therefore, it is hypothesized that a decreasing case mix index will be associated with a decreased 

the patient need and demand for inpatient CT scans. 

Minority mix. It was demonstrated in the literature review that nonwhite patients both 

elect to use fewer medical imaging services and have physicians who tend to be less likely to use 

medical imaging in their delivery of care. The ascribed reasons included socioeconomic status, a 

decreased likelihood to seek medical care, suspicion of healthcare providers, health insurance 

coverage, and some instances of discrimination. Regardless of the reason, as the discharged 

proportion of patients who are nonwhite increases, the demand for inpatient CT services is 

expected to decline. Therefore as the proportion of patients identified as white decreases, the rate 

of inpatient CT utilization is anticipated to decrease.  

Chapter Summary 

This chapter provided the rationale for explaining the probable relationships between the 

input and output variables of the conceptual framework. The framework is dynamic and flexible 

within its assumptions and limitations, allowing adequate assessment of these relationships 

between market, hospital, and patient factors. The multi-institutional analysis of CT exam 

utilization across the entire inpatient population is novel and may have direct, pragmatic 

implications for administrators, policy analysts, and institutional planners. 



 
 

42 
 

 
 

 
 

Chapter 4: Methodology 

 

Overview 

This chapter provides greater detail into the methodological techniques used to conduct 

the study.  It also details the research design, data sources, and analytical techniques to be 

employed in answering the research questions and testing the hypotheses. This chapter will 

discuss data validity, data management techniques for reliability, and variable selection. This 

study will be submitted to the Virginia Commonwealth University Institutional Review Board 

(IRB) for approval as an exempted study per Title 45 Part 46 of the Code of Federal Regulations. 

No human subjects will be involved in this study, nor is there any individually identifiable 

information obtained, stored, or accessible during the conduct of this study.  

Research Design 

The study is designed to determine if inpatient CT utilization is associated with the 

characteristics of 1) markets, 2) hospitals, and 3) the hospitals’ patient populations. The study is 

a retrospective, non-experimental study of secondary data collected for administrative purposes 

(Polit & Beck, 2008). It is a correlational study design. The term “correlational study” is 

traditionally applied to studies that are purely observational or descriptive, but a statistical 

analysis is performed (Cook & Campbell, 1979). To accomplish the study aims, the design needs 

to permit an exploration of the potential correlations between the constructs of interest and their 

representative variables.  
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The study uses a four-state sample of convenience data. The data represent a complete cross-

section of hospitals, both within systems and independent, for the entirety of the calendar year 

2015.  This data has been made available through Intellimed Inc., a commercial vendor of 

aggregated of hospital discharge data. The study design examines the relative magnitude and the 

directionality of variable relationships as they are underpinned by the conceptual framework 

described in Chapter 3 (Cook & Campbell, 1979; Polit & Beck, 2008). A more robust 

experimental design would require interventions to assess the causal factors of inpatient CT 

utilization, which is not within the scope of this project. An intervention specific to and exclusive 

to radiology resource utilization would be ideal. The single cross-sectional snapshot provided by 

this retrospective study of an evolving system proves appropriate for an initial evaluation of 

market forces, hospital characteristics, and patient characteristics on multi-market inpatient CT 

utilization. 

Research Design Validity 

The validity of the research design is critical to the successful and accurate completion of 

the study. This section reviews four major types of validity that have been identified as key to the 

research design process of non-experimental studies. These validities are statistical conclusion, 

internal, construct, and external (Polit & Beck, 2008, p. 291). These concepts are summarized in 

Table 4, along with the threats they may pose and how those are being addressed in this study. 

Statistical conclusion validity. 

Statistical conclusion validity is the assessment of the actual existence of an empirical 

relationship between study variables. The primary way to support statistical conclusion validity 

in a retrospective, cross-sectional study is to maintain adequate sample size. This requires the  
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Table 4 
Summary of Validity Types, Threats, and Mitigation Techniques 
 
Validity 

 
Threats 

 
Mitigation Technique 

Statistical Conclusion Power 
Range 
 

Maintain adequate sample size / 
delimit included variables. 
Operationalize variables based upon 
prior literature. 
 

Internal Temporal ambiguity 
Selection 
Instrumentation 
Endogeneity  
Maturation 

Assess logical adequacy. 
Use instrumental variable analysis. 
Sample a full calendar year cross-
section. 
 

Construct Inadequate preoperational 
explication of constructs 

Use qualitative description. 
Operationalize based on prior 
literature. 
 

External  Poor sample representativeness Sample multiple states and 
locations. 
Demonstrate varying sample 
dimensions. 
Use comparison data 

 
careful inclusion of literature-supported variables. The maintenance of an adequate sample size 

will be discussed in greater detail later in the Power Analysis section. Also, this study will 

operationalize variables in a manner consistent with prior examples from the literature so as to 

help ensure adequate range and statistical power to detect differences.  

Internal validity. 

Internal validity is an assessment that the relationships proposed by the research design 

are in fact a true representation of reality. Internal validity threats are of particular concern in 

correlation studies due to the risk of spurious, extraneous, uncontrolled relationships in 

correlational studies (Polit & Beck, 2008, p. 295). These competing causal explanations are 

delimited during the design process by controlling for the available characteristics of markets, 

hospitals, and patients that may be associated with or related to CT utilization rates. If possible, 
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an instrumental variable analysis will be performed to assess endogeneity, the effects of 

uncharacterized variables, and the validity of relationship (Baiocchi, Cheng, & Small, 2014). 

Internal validity is also supported through an assessment of the temporal cause and effect of 

variables (Polit & Beck, 2008, p. 291). Independent variables must be the logical antecedent of 

dependent variables for the maintenance of internally valid relationships. To delimit any 

complications of selection or self-selection bias, the cross-sectional nature of this study is 

intended to include as many hospitals as possible within the four-state sample. Selection bias is a 

legitimate threat to internal validity in many studies given the investigator’s ability to potentially 

bias the study sample (Polit & Beck, 2008, p. 295). The only selection that occurs in this study, 

the determination of a hospital to participate in a system, is outside of the investigator’s control. 

Hospitals may remain independent or join systems for any number of reasons (Alexander, 

Halpern, & Lee, 1996; Keeler, Melnick, & Zwanziger, 1999). As discussed in detail in Chapter 

2, drivers include but are not limited to a desire for autonomy, protection of resources, access to 

capital, economies of scale, or financial undesirability. An indication of system membership is to 

be featured in the model and will have great implications on generalizability. Generalizability 

will be discussed in greater detail below, and will be aided by descriptive statistics.  

 Maturation is relevant to any change that occurs as a function of the passage of time 

(Polit & Beck, 2008) Institutions may have continually evolving and variable rates of CT 

utilization as a result of varying factors. Economic conditions and incentives/disincentives may 

change over the course of time. New physicians, new devices and techniques, changing patient 

demographics, new technology applications, or industry consolidation have all been previously 

noted to alter health service utilization rates (see Chapter 2). Likewise, changes may be observed 

and adopted at varying rates across different markets or states. This risk will be mitigated by 
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making the cross-sectional term of this study a full calendar year. Year-over-year trends and 

changes will not be observed with this design, but seasonal variations will be delimited to 

provide a snapshot of the current status of utilization. 

Construct validity. 

Construct validity is an assessment of how well the research design operationalizes the 

construct given the use of selected measures or variables. Polit and Beck (2008, p. 300) assert 

that this is the key to “translating the resultant evidence into practice.” They go on to report that 

secondary data studies are susceptible to the propensity of researchers to identify patterns in data 

when there may be none. This susceptibility increases when there is an “inadequate 

preoperational explication of constructs” (Cook & Campbell, 1979, p. 64). This is mitigated by 

qualitative description. Adequate qualitative description is achieved in part by offering the 

explanation with the greatest “clarity & parsimony”(Bacharach, 1989, p. 510). This project 

design takes careful consideration in the selection of variables from higher-level input and output 

constructs only after ensuring their logical adequacy. Furthermore, they are operationalized as 

indicated from the literature. Prior literature use is summarized in a later section dedicated to 

variables. 

External validity. 

External validity concerns how well the observed relationships and findings of the study 

generalize to other contexts, settings, and conditions (Polit & Beck, 2008, p. 302). It is dependent 

upon the representativeness of the sample being used as it relates to the general populations of 

hospitals, market, and insurers. Therefore representativeness is the primary threat to external 

validity. A broad, heterogeneous sample is anticipated to improve the representation of construct 

exemplars. Along with careful adherence to the study design, adequate construct representation 
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enhances the external validity of any findings (Polit & Beck, 2008, p. 302). Descriptive statistics 

will be provided for each variable as part of the results to more fully understand the limitations 

of any generalizations. The results of the four-state convenience sample of non-Federal, acute 

care hospitals will be interpreted cautiously given their exploratory nature. 

Data Sources 

 This study uses secondary data to evaluate the existence of relationships between 

hospitals, markets, their patient characteristics, and the likelihood of inpatient CT utilization. The 

six data sources that are used come from four different entities: Intellimed, Inc., the AMA, the 

American Hospital Association (AHA), and the Centers for Medicare and Medicaid Services 

(CMS). CMS is the provider of Hospital Compare, case mix, and Open Payment data. Table 5 

provides a summary of data variables, their sources, linking variables, and related characteristics.  

The sources all contain de-identified patient information. Data from each source are linked by 

common variables into a single file for analysis. 

Intellimed, Inc. is a healthcare data company that specializes in market analytics. 

Intellimed provides data associated with a patient origin, hospital market position, service line 

information, and physician resource utilization (Intellimed, 2016). Intellimed makes available to 

clients Healthcare Cost Utilization Project (HCUP) data from the Agency for Healthcare 

Research and Quality (AHRQ) on the hospitals and providers associated with each inpatient care 

episode (AHRQ, 2017). This data is aggregated from the National Uniform Billing Committee 

UB-04 form that is associated with each patient episode billed to CMS or to a private payer 

(National Uniform Billing Commitee, 2017). Inpatient care episodes have ancillary service 

indicators for the use of computed tomography services. 
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Table 5 
Summary of Data Sources, Variables, and Key Characteristics 

Data Source 
Linking 

Variable(s) Variable Key Characteristics 
Intellimed, Inc.  CMS 

hospital  
number; Zip 
code 

Inpatient CT 
utilization 

Volume of cases reported to have had a CT 
performed while an inpatient based upon 
Intellimed ancillary revenue database for CY2015. 

Discharge 
volume 

Intellimed data includes inpatient discharge-level 
detail collected from the UB-04 form for calendar 
year 2015.  

Payer mix Payer mix is calculated based upon the payer group 
from the discharge volume. 

Hospital market 
share  

Calculated based upon Intellimed discharge 
volume per zip code for each hospital. 

State Hospital addresses are provided by Intellimed 
systems. 

Bed count Reported number of licensed beds for each 
hospital. (Gresenz, Rogowski, & Escarce, 2004) 

Minority mix Hospital service mix of minority patients as 
calculated based upon counts of patient race. 

Core Based 
Statistical Area  

Reported for each hospital location. 
 

AMA, 
Competition in 
Health 
Insurance 
(2016) 

CBSA & 
Zip code 

Insurer Market 
Share 

HealthLeaders-InterStudy 2014 data reported 
private payer insurance market concentrations 
based upon CBSA, available and published by the 
AMA (AMA, 2016). 
 

AHA Annual 
Survey (2016) 

CMS 
hospital 
number 

System 
Centralization 

The AHA 2016 annual survey results showing 
system centralization categorization. 

CMS Hospital 
Compare Data 
(CMS, 2015) 

CMS 
hospital 
number 

Ownership type 
FY2015 

CMS Hospital Compare data reports ownership 
type (e.g. Government, Non-profit, Proprietary, 
etc.). 

CMS, FY 2015 
(CMS, 2017) 

CMS 
hospital  
number 

Case Mix 
FY2015 

The adjusted case mix index (CMI) for 2017 
payments is based on the billed MS-DRGs for 
Medicare claims during FY2015 and excludes 
transfers.  

CMS Open 
Payments Data 
(CMS, 2014) 

CMS 
hospital  
number 

Teaching Status 
FY2015 

CMS updates and reports every October, through 
the Open Payments system, hospitals that receive 
payment(s) under Medicare direct graduate medical 
education (GME), indirect medical education 
(IME), or psychiatric hospital IME programs for 
the upcoming fiscal year. Ref: (Ayanian & 
Weissman, 2002; CMS, 2014)  
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The American Medical Association provides an annual report of private payer health 

insurer market concentrations across the country (AMA, 2016). The 2016 AMA report is based 

upon 2014 market data from all 50 states and the 388 largest Core Based Statistical Areas 

(CBSA), a geographic area delineated for use by Federal statistical agencies (U.S. Census 

Bureau, 2017). The private payer market concentration is reported as a Hefindahl-Hirschman 

Index (HHI) measure. These HHI measures will be linked to each hospital’s corresponding 

CBSA. If the hospital is located in an area without a reported insurer HHI, i.e. an area with a 

smaller population, then the corresponding state HHI will be linked. 

The AHA annual survey results (2016) provide details related to hospitals, the services, 

they provide, facilities they operate, staffing, and physician arrangements, along with other 

institutional measures. Of particular interest is the information related to system affiliation and 

cluster taxonomy as a measure of centralization (Bazzoli, Shortell, Dubbs, Chan, & Kralovec, 

1999). The AHA categorizes hospitals in systems as follows: centralized health system, 

centralized physician/insurance health system, a moderately centralized health system, a 

decentralized health system, or an independent hospital system. These are consolidated into three 

categories for this study: centralized (centralized and physician/insurance systems), moderately 

centralized, and decentralized (decentralized and independent hospital systems). 

The Centers for Medicare & Medicare Services publicly report a case mix index file each 

year, “Hospital Compare” data and “Open Payment” information. The 2017 case mix index 

(CMI) file reports the non-transfer CMI that is based upon the Medicare patient severity reported 

by each hospital for the fiscal year 2015 (CMS, 2017). The 2017 CMI is used to adjust the CMS 

payments to hospitals to reflect the level of inpatient acuity observed at that hospital. The CMI 

reflects the average diagnosis-related group relative weight for each hospital. CMS also provides 
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basic hospital characteristic data on its “Hospital Compare” site (CMS, 2015). The CMS “Open 

Payments” program directory is the source of teaching hospital information for forthcoming 

fiscal year (CMS, 2014). For this program CMS defines a teaching hospital as any hospital 

receiving direct or indirect graduate medical education payments in the prior year (CMS, 2014).  

Working with secondary data. 

Working with secondary data for a retrospective, non-experimental study presents its own 

set of advantages and challenges. Though convenient, secondary data does not afford the 

opportunity to customize the data collected to maximize sensitivity and discriminatory ability. 

The manner, content, and time frame for data are all predetermined and collected for other 

purposes (Hulley, Cummings, Browner, Grady, & Newman, 2007). As such, the validity of 

secondary administrative data has been previously brought into question given the discordant 

purposes between the compilation of data and the goals of the research (Dismuke, 2005; Sarrazin 

& Rosenthal, 2012). For example, Dismuke (2005) reported that nonrandom systematic 

underreporting of ICD-9-CM codes for CT in administrative does occur. However, in these 

studies the gold standard truth is the revenue coding of the universal billing forms, such as those 

collected from the UB-04 for remuneration given the financial incentive to accurately report the 

completion of imaging studies on the UB-04 (Dismuke, 2005).  

As a commercial vendor of hospital discharge data, Intellimed has a vested financial 

interest in the validity, accuracy, and consistency of the data it provides. Intellimed collects and 

makes commercially available HCUP discharge data from the State Inpatient Database (SID) 

project (AHRQ, 2017). And like HCUP, Intellimed routinely and systematically defines and 

applies terms across states. This uniformity is a benefit of using a sole provider of SID data and 

ensures that the same calendar years and type of data detail are pulled for each state and treated 
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similarly. The Intellimed staff also performs checks to confirm, and edits to correct when 

necessary, data for consistency across all fields and states. When possible, they also use tools to 

help ensure validity by confirming that things such as gender codes are aligned with the logically 

plausible procedures. Also included are tests for temporally logical dates and patient age 

appropriateness. These conform to HCUP quality controls that include processing and 

performance of standard quality checks to “confirm that data values are valid, internally 

consistent, and consistent with established norms” (AHRQ, 2016). 

The AMA (2016) provides detailed information regarding their annual methodology. 

Included are data collection methods, HHI calculation techniques, background information, and 

rationale. The annually recurring report is deliberately produced in the same manner to allow 

reproducibility and year-over-year comparisons in support of valid and internally consistent 

results. 

Data collection and management. 

 Data have been managed using IBM SPSS version 22 (IBM, 2016). The Intellimed 

revenue module was queried for the discharge data detailing inpatient CT encounters and 

hospital details. CMS Hospital Compare, Open Payment, and CMI data were each downloaded 

from their respective locations previously cited. The presence and then accuracy of the CMS 

provider number was then verified for each dataset and used to merge the multiple data fields. 

Each hospital’s zip code will be used to crosswalk it to a CBSA congruent with AMA health 

insurer market data to create the final dataset. These data and their sources were reflected 

previously in Table 5. 

Unmatched, absent, or null values will be identified and quality checked after each 

merge. Doing so promotes data integrity. This method allows the investigator to readily identify 
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and preempt the loss of any missing information between unmatched data. It also preserves 

sample size, power, and the nonrandom removal of cases. This technique will be used during any 

derivation, grouping, or categorization of non-native variables from within the same dataset. 

With each iterative check of derived variables, it will also be possible to evaluate the data for 

patterns that may suggest spurious relationships between variables. Simple cross-tabulations and 

graphical arrays can reveal the frequency of two or more measures of interest. It also allows the 

investigator to make necessary adjustments to maintain reliable data (e.g. low categorical counts 

and low signal strength).  

Institutional Review Board. 

 The secondary and administrative data collected for this study contain no protected health 

information. The researcher has no access to the primary data or to any patient identifiers. As 

such, the study does not constitute human subjects research and is except from review by the 

VCU Institutional Review Board. 

Study Sample 

 The four-state sample represents a total of 181 acute care hospitals that reported 

performing inpatient CT scans during the calendar year 2015. Of the 181 hospitals, 30 (16.6%) 

are independent and 151 (83.4%) belong to MHSs (Table 6). These MHSs are spread across 16 

different CBSA-defined markets. Included hospitals may be either for- or not-for-profit 

organizations. Acute care hospitals are more appropriate for this study because they must 

compete with one another in markets in ways that other hospitals do not. This study excludes 

Veterans Administration hospitals and long-term care facilities. These operate under a different 

mandate, are centrally controlled, and do not have to compete in the common marketplace given 

their unique population of patients and conditions. Similarly, long-term acute care hospitals  
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Table 6 
Included Hospitals by State and MHS Membership, 2015 

State Independent MHS Member Total 

MD 13 30 43 

NV 3 18 21 

VA 4 67 71 

WA 10 36 46 

Total 30 151 181 

 
(LTACH) are licensed and identified as such in Intellimed data. These may be associated with a 

larger network of hospitals or referral centers, but they do not compete with acute care hospitals 

for patients. Instead LTACHs typically receive patients from an associated acute care hospital 

prior to discharging patients to a rehabilitation facility, skilled nursing facility, or home. Hence 

LTACHs have a distinct function apart from but complementary to acute care hospitals and are 

also excluded for the purposes of this study. 

Power Analysis 

Studies conducted with small samples run the risk of failing to detect an actual, real 

difference, a Type II error (Polit & Beck, 2008). This error is the failure to reject the null 

hypothesis when it is incorrect. When using previously collected secondary data, the power 

analysis is performed after data collection to assess the limits of the variable parameters. This 

helps establish confidence in the findings. 

Using multivariate regression techniques to analyze the data allows the application of a 

rule-of-thumb technique for determining power with a given sample size. Tabachnick & Fidell 

(2007) suggest a 50+8x rule-of-thumb, where x is the number of predictive variables, for 

multiple regression techniques. This study proposes the use of 11 independent variables plus 
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three binary covariates in a generalized linear model. With 14 total predictive variables and the 

resultant power calculation to exceed the 80% threshold, this requires a minimum of 162 cases. 

This is the generally supported threshold and goal for research power, and represents a four-to-

one probability of accurately rejecting a null hypothesis. With 181 cases, this study is adequately 

powered.  

This rule is adjusted for a goal of 80% power with an alpha of 0.05 and an anticipated 

moderate effect size of approximately 30%. The effect size is a quantification of actual 

difference between groups. A priori sample size calculation for multiple regression finds that 

given a 30% anticipated effect size, 80% desired power, 14 independent variables, and an alpha 

probability of 0.05, only 74 cases are needed to detect a difference (Soper, 2016). Should the 

effect size be halved to only 15%, then this increases to a minimum of 135 cases. The alpha of 

0.05 indicates a 5% chance threshold that any differences are simply the result of random 

variation. The sample size allows for an effect size of approximately 10% without committing a 

Type 1 error. Type 1 error is common in regression and correlation studies with large sample 

sizes. Such studies may observe a statistically significant finding when in fact there is no relevant 

clinical difference, for example. This situation represents the challenge of interpretive value and 

will be assessed as part of the results and conclusions. 

Model, Variables, and Measurements 

 Variables for this study are used as independent, dependent, and control variables in the 

regression model. The model evaluates associations between control, market, hospital, and 

patient variables to the observed inpatient CT utilization rates. This section provides greater 

detail about how variables are operationalized and measured, how they are associated with the 

hypotheses, and how they relate to the dependent variables of the model. 
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Model formulation. 

 The model aligns with the conceptual framework principles that predict a functional 

relationship between CT utilization rates and the independent characteristics of markets, 

hospitals, and patients. The model is as follows:  

(CT count / discharges) = f (insurer market share, hospital market share, system 

centralization, payer mix, bed count, teaching status, ownership type, case mix, minority 

mix). 

In addition to the state covariates, there are ten independent variables hypothesized to 

relate to the frequency of CT utilization. Two describe characteristics of the market, six describe 

hospital characteristics, and the remaining two reflect the local patient population. Those 

describing the market are the insurer market share and hospital market share. Those describing 

the hospital characteristics largely reflect the characteristics of an increasingly complex 

organization. They are system centralization, payer mix, bed count, teaching status, and 

ownership type. The remaining two patient characteristic variables are case mix and minority 

mix. Each variable aligns with a hypothesis described in Chapter 3, as is summarized in Table 7. 

Table 7 
Summary of Hypotheses and Variables 

Hypotheses Independent Variables 

Hypothesis 1: Characteristics of markets will be 
associated with inpatient CT utilization rates. 

 Insurer market concentration 
 Hospital market share 
 

Hypothesis 2: Characteristics of hospitals will be 
associated with inpatient CT utilization rates. 

 System centralization 
 Payer mix 
 Bed count 
 Teaching status 
 Ownership type 

 
Hypothesis 3: Characteristics of patients will be 
associated with inpatient CT utilization rates. 

 Case mix index 
 Minority mix  
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Dependent variable selection. 

The dependent variable, inpatient CT utilization rate, for this study is derived by the 

combination of two Intellimed-provided measures: the annual count of inpatient CTs performed 

as an institution and the annual number of discharges. CT utilization has been extensively 

investigated and reported in the literature and previously in Chapter 2 (Baker et al., 2008; 

Bhargavan & Sunshine, 2005; Boone & Brunberg, 2008; Brenner & Hall, 2007; Larson et al., 

2011). Discharge counts have also been applied to multiple prior studies. Alexander et al, (2009) 

did use the raw discharge volumes as a control variable in their study of community benefit and 

uncompensated care as they related to hospital characteristics. However, discharges are more 

commonly used as a means of adjusting or weighting other variables as is done in this study. 

Investigators have used hospital-level discharge volumes to calculate variables such as gross and 

net revenues per discharge (Alexander et al., 2009; Melnick & Keeler, 2007; Trinh, Begun, & 

Luke, 2010). Others have used the count of discharges to calculate HHI market share 

concentration in the same way as is proposed for this study and has been previously discussed 

(Zwanziger & Mooney, 2005). Patient discharge volumes have also been used when testing and 

comparing other models of market share concentration as well, such as those derived from bed 

counts or inpatient days (Trish & Herring, 2014). For this study, the inpatient CT utilization rate 

serves as the dependent variable in the regression analyses against state control variables and the 

market, hospital, and patient independent variables.   

State control variables. 

The control variables are derived based upon the sample state. The four states represented 

in the sample (MD, NV, VA, and WA) require three binary, numerical dummy variables to 

accurately represent the four states as regression input. The literature review previously 
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demonstrated the existence of, and hence importance of controlling for, variations across 

geographic areas. Small area variation in health resource utilization can be sizeable between 

geographic areas (Bhargavan & Sunshine, 2005; Zhang et al., 2012). This is true of imaging 

utilization in the Dartmouth Atlas’s Health Referral Regions (HRR), which are based upon 

cardiovascular and neurosurgical referral patterns. Significant differences in imaging utilization 

have been observed between both large regions and the smaller HRRs (Larson et al., 2011; 

Onega et al., 2012; Zhang et al., 2012).  

Regional and state-level distinctions have been applied to published studies of imaging 

utilization. One nationwide study placed states into regions for practical purposes and observed 

significant variation in CT use specifically within the emergency department (Larson et al., 

2011). Another observed state-to-state variation in CT use within the Medicare population as 

well (Bhargavan & Sunshine, 2005). Others include state-level granularity in their analyses 

(Kirsch et al., 2010; Luke et al., 2011). These observations underscore the importance of 

including some provision for the control of location. Without controlling for the location, it is 

conceivable that the shared statistical variation could outsize or may dilute other associations 

with clinical variation. 

For the purposes and scale of this study, treating the state as a covariate remains a 

necessity to help permit the control of other extraneous political and regulatory differences that 

may affect utilization rates from state to state, as employed by Alexander et al. (2009). States 

become the legal frame of reference for many healthcare resource determinants within the 

output/input market (e.g. Certificates of Need, health insurer licensure, ACA Exchanges, 

Medicaid determination, etc.). As such, state legislatures can impact the access and utilization of 

health resources within their borders. Within the four-state sample, only two states are 
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proximate; the Washington, DC market will straddle two states, VA and MD. In this case, the 

state covariates will effectively force the model to treat the market as two sub-distinct markets. 

The statistical control of state-level variables helps protect against extraneous variables and 

improve the design and internal validity by reducing the likelihood of spurious correlations. 

Market variables. 

This study makes use of two variables that describe markets and have been previously 

shown to be associated with healthcare resource consumption. They are detailed and 

operationalized in the following sections about insurer and hospital market shares. 

Insurer market share. 

The insurer market concentration is represented by an HHI measure and is another 

independent variable measure in the model. The literature review showed the commercial insurer 

consolidation over the years. As an index, HHI can be presented on a scale of 0.0 to 1.0. The 

Department of Justice and Federal Trade Commission measure of “highly concentrated” is an 

HHI exceeding 0.25. HealthLeaders-InterStudy (HLIS) produces the leading available data for 

commercial insurer concentration, which is used annually as a source of data for the AMA 

(AMA. 2016; Bates, Hilliard, & Santerre, 2012; Trish & Herring, 2014). The HLIS data, as 

presented in the AMA work, provides market share and insurer concentration as a function of the 

insurer-reported persons covered in an MSA region (AMA, 2016). This is somewhat limited in 

precision and discrimination, as it does not adjust for actual days admitted to reflect a hospital 

and area’s actual hospital discharge market. However, others have similarly used insurer market 

concentration at the level of the MSA in their study of how insurers drive systems to explicitly 

coordinate and share services (Trinh et al., 2010; Trish & Herring, 2014). The benefit of the 

CBSA-level method is that it provides the most granular market data available. Others have 
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evaluated insurer market power between states by using HHI at the state level but noted 

limitations in the absence of more granular data (Bates et al., 2012).  

The input market interface between insurers and hospitals is where an insurer’s pooled 

collection of covered persons is reflected in their negotiating power with providers. It is an 

important distinction recognized and utilized by others in their works (AMA, 2016; Trish & 

Herring, 2014). Trish & Herring (2014), using data from the HLIS consortium, evaluated the 

collective bargaining power of insurers’ complete portfolios of business as it appears to the 

hospital input market. This includes fully-insured risk-based coverage as well as administrative 

services sold to self-insured businesses. They found that insurance premiums fluctuated in 

response to interplay between the insurer concentration and the hospital market concentration. 

Premiums were found to be highest when both hospital and insurer concentrations were high, 

and the least when both concentrations were low and competitive (Trish & Herring, 2014). This 

seemingly supports the notion that these two are functionally competing forces for market 

dollars. 

Hospital market share. 

The hospital market share is a continuous variable observed from 0.0 to 1.0, where 1.0 

reflects a perfect monopoly. Each hospital has a weighted market share. The weighted market 

shares are calculated by using the discharged patient zip code, the smallest unit of area available 

(Zwanziger & Mooney, 2005). Such weighted market shares are calculated through a multistep 

process. The first step is to A) calculate the Herfindahl-Hirschman Index (HHI) for each zip code 

(HHIj). A zip code’s HHI is the sum of the squared proportions of each hospital servicing that 

zip code. The second step is to B) calculate the proportion of each hospital’s discharges to each 

zip code (wij). The products of the multiple A) zip code HHIs and B) each hospital’s zip code 
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proportions are then summed into a cumulative, weighted market share for each hospital (HHIi). 

This is represented arithmetically as follows:

 

where the HHIi is the HHI for the ith hospital, the wij is the proportion of discharges from the zip 

code j that are discharged from hospital i, and HHIj is the HHI for the zip code (Zwanziger & 

Mooney, 2005). An example of how to calculate HHI is included in Appendix A. This measure 

of hospital market concentration ensures that hospital competition is operationalized locally by 

actual discharges and weighted relatively. The limitation of this method is that it does not adjust 

for length of stay. Other methods for calculating market share, such as relative market bed 

counts, have been investigated alternatively but found to be largely correlative to a discharge rate 

basis (Trish & Herring, 2014). 

Hospitals variables. 

This study makes use of five variables that describe hospitals and have been previously 

shown to be associated with healthcare resource consumption. They are system membership, 

payer mix, bed count, teaching status, and ownership type.  The variables are detailed and 

operationalized in the following sections. 

System centralization. 

System centralization is identified by the AHA cluster identifier category. It has been suggested 

that studies focusing only on system membership may miss the impact of system type on quality 

outcome measures (A. S. Chukmaitov et al., 2009). The cluster type categories are reduced into 

three tiers for system members (centralized, moderately centralized, and decentralized), and there 

is a separate identifier for independent hospitals that are not in systems. These four categories are 

HHIi = ∑wijHHIj 
j 
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represented by three dummy variables representing centralized, moderately centralized, and 

decentralized with independent as the reference category. 

Payer mix. 

Payer mix is a commonly used descriptor of hospitals (Larson et al., 2011; McCullough, 

2008; Muller, 2010; Trinh et al., 2010; Trish & Herring, 2014). It is a numerical measure of the 

proportion of a facility’s inpatients who are covered by a commercial payer as compared with 

Medicare, Medicaid, or self-pay. Having a larger share of patients who are covered by 

commercial payer has been shown to result in higher CT utilization rates. Larson et al. (2011) 

showed a significant difference in emergency department CT utilization based upon the 

government origin of the third-party payer. A smaller government payer mix has also been 

observed to have a relationship with the way in which systems allocate resources between their 

hospitals (Trinh et al., 2010). For example, others showed that a decreasing proportion of 

government payers in the payer mix relates to the diffusion and adoption of radiologic 

technology (McCullough, 2008; Shin, Menachemi, Diana, Kazley, & Ford, 2012). It stands to 

reason that this confluence of factors will result in a continued association between CT use and 

payer mix in the inpatient setting. The independent variable for payer mix in this model is 

infinitely variable and may theoretically range from 0.0 to 1.0. 

Bed count. 

The staffed inpatient bed count is a measure reported by hospitals for the AHA annual 

survey and is available via Intellimed. The variable is continuous but will never be less than 25 

due to the prior decision to exclude critical access hospitals. It is a commonly used indicator for a 

hospital and expected to positively correlate with CT use. Multiple investigators have used the 

bed count to some effect in their work. Size has been positively correlated with hospital 
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efficiency (Sikka et al., 2009). It has also been positively associated with service sharing and 

efficiency (Trinh, Begun, & Luke, 2008; Trinh et al., 2010). Likewise, bed count has been used 

as a proxy for hospital complexity such that it defines the scale and scope of the organization 

(Luke et al., 2011; Muller, 2010). Interestingly, the expanded scope and improved efficiencies 

associated with bed count have been observed despite the association between the number of 

beds and uncompensated care (Alexander et al., 2009). The variable is continuous and >25. 

However, variable exploration and model requirements may additionally result in the need to 

group similarly sized hospitals together to ensure robust, meaningful findings without sacrificing 

statistical power. One example includes bed size categories < 100, 100-249, 250-399, and ≥400 

(Zwanziger, Melnick, & Bamezai, 2000). Another consideration would be the adjustment of bed 

count by patient discharge volume, but that would impair the model discriminatory ability 

between the variables. 

Teaching status. 

Multiple investigators have evaluated the effect of residency training programs on the 

utilization of healthcare resources and imaging in particular. Some have found the relevancy of 

the academic distinction due to the prior observation that CT utilization increases along with the 

level of training of the ordering physician, which likewise tends to increase at teaching 

institutions (Kirsch et al., 2010). Larson et al. (2011) evaluated hospital teaching status and CT 

utilization but defined the teaching status of an institution on the basis of the percentage of 

patient visits involving a resident or intern. Their threshold was 10% or more for deeming an 

institution to be a teaching one. Others deemed emergency departments as academic when more 

than 50% of their patient visits involved a resident or intern physician (Korley et al., 2010).  
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However, this method is not prudent for this study given the scope beyond the emergency 

department to the inpatient care areas. 

For this study, the teaching status indication is distinguished by membership in the 

American Association of Medical Colleges’ (AAMC) Council of Teaching Hospitals (COTH). 

Studies have previously used COTH members as a proxy for structural complexity to reflect 

teaching status (Alexander, Weiner, Shortell, & Baker, 2007; Moriya, Vogt, & Gaynor, 2010). 

COTH membership includes almost 400 members nationwide and is limited to hospitals that 

have at least four active and approved residency programs (AAMC, 2015), two of which must be 

in the core disciplines of surgery, medicine, pediatrics, family medicine, psychiatry, or obstetrics 

and gynecology. This study likewise uses a binary variable for teaching status to indicate its 

membership in COTH. 

Ownership type. 

Hospital ownership type has been used to distinguish between the differences in legal, 

administrative, and organizational arrangements of for-profit (FP) and not-for-profit (NFP) 

hospitals. The distinction is important because ownership type is believed to potentially affect 

the structural and strategic decisions facing an organization (Sikka et al., 2009). This study uses a 

binary numerical system to distinguish FP and NFP hospitals. Some investigators have used a 

three-category indicator that further distinguishes the NFP hospitals into a local, government-

owned sub-category (Larson et al., 2011; Moriya et al., 2010). However, the binary indication is 

more useful in this context and not uncommon (Muller, 2010; Sikka et al., 2009; Trinh et al., 

2010). This is because FP hospitals have shown greater cost sensitivity to competition driven by 

hospital consolidation than their NFP competitors (Keeler et al., 1999). Likewise, binary 

ownership indicator has also been used in other works investigating organizational resource and 
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service coordination (Muller, 2010; Trinh et al., 2010). Similarly, FP ownership has been shown 

to be associated with a decrease in uncompensated care as compared to the nonprofit groups 

(Alexander et al., 2009). However, the model will also be tested using the three category method 

that distinguishes non-Federal, local government-operated hospitals despite their limited 

numbers in the four-state convenience sample. 

Patient variables.	

This study makes use of two variables that describe the patient population and have been 

previously shown to be associated with healthcare resource consumption and medical imaging: 

case mix and minority mix. These variables are detailed and operationalized in the following 

sections. 

The independent variables available to represent patient characteristics in the model 

reflect varying degrees of patient complexity. Each hospital has a service population that is 

reflected in the characteristics of the actual patients receiving care there and not simply those 

representing the population of the surrounding areas. Patients may elect to receive care at 

different institutions around them either through self-selection or through financial incentives 

associated with the insurer, employer, and hospital relationships. This type of granularity allows 

differentiation between hospitals occupying the same census bureau areas. Two such patient 

characteristics are case mix and minority mix. 

Case mix. 

Case mix is a measure of the patient characteristics of a facility. It represents inpatient 

acuity and is measured by the Case Mix Index (CMI) for fiscal year 2015 from CMS (CMS, 

2017). This score is determined by the complexity of the facility’s Medicare patient population. 

The CMI value is calculated by summing the diagnosis-related group (DRG) weighting and then 
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dividing by the number of Medicare discharges (CMS, 2017). CMI is widely used in health 

services research despite its specificity to Medicare patients. One example in particular 

employed case mix adjustments to evaluate the performance and efficiency of large urban 

hospitals (Grosskopf & Valdmanis, 1993). They concluded that CMI utility is sustained even in 

more heterogeneous samples of patients and facilities. 

Other investigators have used CMI as variables for statistical model construction 

(O’Neill, Rauner, Heidenberger, & Kraus, 2008; Trinh et al., 2010). CMI has been described as 

“capturing the variation in both the complexity and resource-intensity of inpatient cases” in using 

it as an ideal determinant of healthcare resource utilization (O’Neill et al., 2008, p. 178). CMI 

was likewise used to represent patient complexity in the evaluation of resource sharing and the 

efficiency of systems (Nayar & Ozcan, 2008; Trinh et al., 2010). One recent example used case 

mix adjustment to understand the utilization of imaging resources in particular (Shinagare et al., 

2014). As an index score, CMI is measured on a continuous numerical scale and centered on 1.0. 

Minority mix. 

Investigators have previously represented patient characteristics with a measure of 

minority mix. Inpatient populations vary largely given the prior observations that race and 

ethnicity seem to be associated with health service utilization (Korley et al., 2010; Larson et al., 

2011). Multiple researchers have used black, white, and other as categorizations for races in 

American research. Some have used it specifically with the all-cause CT utilization in the ED to 

significant effect (Larson et al., 2011). This method has likewise been used to investigate the 

injury-related use of medical imaging in the ED (Korley et al., 2010).  Other investigators have 

observed significant associations between the indication of minority status and other imaging 

modalities. Onega et al. (2012) investigated the use of positron emission tomography, which is 
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closely related to CT. Schueler, Chu, and Smith-Bindman (2008) investigated the use of 

mammography. This has been attributed, at least in part, to a historical distrust of the medical 

system. The minority status of a hospital’s patient population was acutely relevant in 

Groeneveld, Laufer, and Garber’s work (2005). In it they demonstrated how minority patients 

were observed to have decreased access to advanced procedures. They found the diminished rate 

of advanced resource utilization was compounded when minority patients were treated at a 

hospital with relatively high minority census. They observed this pattern to be consistent across 

the 11-year study period. With findings suggesting the clinical significance of non-white status 

against all other factors, the most prudent solution to represent and preserve statistical rigor is to 

use the proportional measure of the non-white patients discharged. Therefore, the minority mix is 

the numerical proportion of all discharged patients from that facility who are reported as 

belonging to a minority group or being non-white. The variable is numeric and continuous on the 

spectrum of possible values from 0.0 to 1.0. Other combinations of categorical representations 

will be tested as the findings suggest.  

Collectively, the ten independent variables of the model align to test the construct 

relationships and association between 1) market, 2) hospital, and 3) patient characteristics. The 

model variable summary is provided in Table 8. Model performance metrics will be presented 

and reviewed for normality and representativeness. Residual differences between observed and 

predicted values will be analyzed for symmetrical distribution, central tendency, and patterns to 

assess model fit. Residual analysis will include assessments for heteroscedasticity, non-linearity, 

and outliers. Adjustments will be made using generally accepted statistical methods to correct for 

problems of fit across markets, hospitals, and patient characteristics. The selection of specific 

data analysis methods follow in the next section.  
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Table 8 

Model Variable Summary 

Type Variable Description Measure Data Type 

Control State The four states are coded using 
three dummy variables.  

State = VA, 
MD, NV, or 
WA 
 

Categorical 

Dependent CT utilization 
rate  

The inpatient count of CTs 
performed annually over the 
number of hospital discharges in the 
same calendar year. 
 

Proportion  
from 0 to 1 

Continuous  

Independent     Insurer Market 
Share 

HHI of local insurance market 
based upon the summed proportions 
of covered lives within the CBSA 
commercial market. 
 

Proportion  
from 0 to 1 

Continuous 

 Hospital Market 
Share 

The sum of a hospital’s weighted 
share of service zip codes based 
upon patient discharges 
 

Proportion  
from 0 to 1 

Continuous 

 System 
Centralization 

An ordinal indication of system 
centralization (centralized, 
moderately centralized, 
decentralized, or independent). 
 

Four levels Categorical 

 Payer Mix The percentage of discharged 
patients using a commercial 
payer/insurer. 
 

Proportion  
from 0 to 1 

Continuous 

 Bed Count  An indication of the number of 
inpatient beds reported by a hospital 
for the AHA survey. 
 

Numerical, ≥ 
25 

Discrete  

 Teaching Status An indication of whether a hospital 
has a physician residency training 
program. 
 

Categorical 
“Y” or “N” 

Categorical 

 Ownership Type An indication of For Profit / Not for 
Profit ownership. 
 

Binary “For 
Profit” = 1 

Binary 

 Case Mix An indication of the CMS DRG 
case mix index for the institution. 
 

Numerical ≥ 
0 

Continuous 

 Minority Mix The percentage of discharged 
patients identifying as a minority. 
 

Proportion  
from 0 to 1 

Continuous 
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Data Analysis 

The process of data analysis is stepwise and deliberate, and to ensure data reliability, it 

must be a continual process as well. A thorough exploration and review of all values for 

dependent, independent, and control variables will be performed. The data will be exported from 

Intellimed and merged into a single flat file representing all four states using Microsoft Excel. 

The data will then be analyzed using IBM SPSS Statistics Version 22 for Microsoft Windows. 

The dataset will be run through discrete steps consisting of data exploration, cleaning, 

descriptive analysis, and correlational analysis.  

Data quality. 

The data will be explored, evaluated, analyzed, and checked for quality using descriptive 

and univariate techniques. These include cross tabulation and a correlation matrix prior to 

multivariate statistical analysis. The results of these processes will determine any necessary 

value replacement or data transformation using acceptable statistical techniques. Part of the data 

exploration and cleaning process will be dedicated to the performance of a missing values 

analysis (MVA). It will be followed by the computation and derivation of model variables.  

Descriptive and univariate techniques to be employed will include visual representations 

of the data. MVA will be used to identify and then repair, replace, or exclude any systematically 

missing or invalid data, as necessary. Cross-tabulation, scatterplots, and histograms will assist in 

evaluating for kurtosis, skewness, and heterogeneity of data. Correlational analysis between 

variables (i.e. zero-order correlation) will demonstrate the presence or absence of normality and 

the need for any subsequent transformation of the data. This will be the means by which highly 

correlated variables, or even tautological variables, will be assessed and identified (Tabachnick 

& Fidell, 2007). In addition, the degree of variation across states, markets, and cities will be 
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described. Frequency tabulations and the supporting distributions will be demonstrated for 

categorical data. Mean, median, standard deviation, and ranges of numerical data will be 

presented as well. 

The results of the univariate analysis will dictate any necessary data transformation 

techniques. Variables will be binned, categorized, truncated, and transformed numerically as 

prescribed. Transformations are intended to help improve the fit of the model and the integrity of 

any subsequent statistical model. Univariate analysis and data exploration will then be followed 

by regression analyses, both multivariate and generalized. 

Selection of statistical techniques. 

 The study framework outlined in Chapter 3 requires the application of a regression model 

suitable for the count of event frequency. This study uses a rate ratio as a measure of event 

incidence: the count of annual CTs performed over an exposure represented by the count of 

annual discharges. Given the relatively large sample size, a multivariate regression - ordinary 

least squares (OLS) model will be given first consideration and tested for appropriateness. A 

negative binomial regression model is an alternative technique should the OLS model be found 

to be inappropriate. 

Multivariate regression. 

 Despite potential limitations with count-frequency data, a standard linear multiple regression 

that represents the relationship between utilization and multiple independent variables will be 

tested and used if appropriate. This will be a standard OLS regression model. With an adequate 

sample size, standard linear methods can be adequate for count-frequency data. The OLS 

regression will be used to represent and evaluate the relationship between the CT use rate per 

inpatient discharge and the characteristics of markets, hospitals, and patients. Regression permits 
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association and correlation between not only the dependent variable and the independent 

variables but also between the independent variables themselves in the form of shared variance 

(Tabachnick & Fidell, 2007). The assumptions of OLS are linearity, homoscedasticity, the 

absence of autocorrelation, error normality, and no multicollinearity (Borghers & Wessa, 2012). 

Standard regression techniques will permit the inclusion of variables contributing to the increase 

in R2 variance. Independent variables will be converted and adjusted as necessary and 

appropriate. 

The standard OLS model is as follows:  

(Count of INPATIENT CT Exams)/(Count of annual DISCHARGES) = X + BST 

(STATE as COVARIATE) + BIM (INSURER MARKET) + BHM (HOSPITAL 

MARKET) + BSM (SYSTEM CENTRALIZATION) + BPM (PAYER MIX) +  BBC (BED 

COUNT) + BTS (TEACHING STATUS) + BOT (OWNERSHIP TYPE) + BCMI (CASE 

MIX INDEX) + BMM (MINORITY MIX) 

The value X is a constant that equals the y-intercept of (CT utilization rate) when all of 

the independent variables are zero (0).  

Standard tests of multicollinearity, normality, and between group variances will be performed 

and reported.  

Negative binomial regression alternative. 

If the count data has unique requirements resulting from non-normality and data limits 

and fails the tests of OLS, then a generalized linear model (GLM) is needed to address the non-

normal distributions. This is not uncommon of dependent variables (DVs) that are count data and 

smaller sample sizes (Gardner, Mulvey, & Shaw, 1995). This can cause some linear regression 

methods to predict nonsensical negative events (Gardner et al., 1995; Ver Hoef & Boveng, 
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2007). Together, these may suggest the Poisson distribution as the GLM of choice to address 

both non-normality and delimited data. Gardner et al. (1995) point out that an advantage of a 

Poisson distribution is that it maintains statistical power often lost when other techniques force 

the categorization or dichotomization of DVs to adjust for data limits. 

The Poisson distribution, however, requires the mean and variance to be equal for 

accurate results. This equality is uncommon in biological or social science count data (Ver Hoef 

& Boveng, 2007). The variation often exceeds the mean, and the data are considered 

overdispersed when this happens. Closely related to but less stringent than the Poisson regression 

is the negative binomial. It will tolerate overdispersed data in addition to non-normal, delimited 

count data (Gardner et al., 1995; Ver Hoef & Boveng, 2007). Table 9 summarizes the 

appropriateness criteria for employing the negative binomial.  

 

Given count data and the limited time and space interval, a negative binomial regression 

may be appropriate. The exposure in the negative binomial is the discharge volume observed 

during the same one-year time period. The log link function of the negative binomial ensures that 

predicted counts remain non-negative. The expected value of the incidence rate DV to the linear 

function of the independent variables is as follows:  

Table 9 
Assessing the Appropriateness of the Negative Binomial Regression 
Appropriate when: 

 The occurrence of one DV event does not affect the likelihood of another. 

 The dependent variable is count data and may be an incidence rate ratio. 

 Negative values do not occur (and zeroes are rare). 

 The dependent variable is not normally distributed. 

 The data are likely overdispersed. 
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ln E(Yi | xil,…, xik) = β0 + β 1xi1 + … + βkxik; when values of  i = 1,…, n. given that β 

represents the various independent variables. 

ln(Count of INPATIENT CT Exams)/(Count of annual DISCHARGES) = X + BST 

(STATE as COVARIATE) + BIM (INSURER MARKET) + BHM (HOSPITAL 

MARKET) + BSM (SYSTEM CENTRALIZATION) + BPM (PAYER MIX) +  BBC (BED 

COUNT) + BTS (TEACHING STATUS) + BOT (OWNERSHIP TYPE) + BCMI (CASE 

MIX INDEX) + BMM (MINORITY MIX) 

The output of a negative binomial regression, assuming statistical validity, is a 

convenient tool for practical real world analysis. It may provide coefficients or rate ratios for 

estimating probabilities of different scenarios. For example, one could potentially extrapolate to 

determine the probability of inadequate equipment or staffing to handle the anticipated CT 

volumes. Likewise, the outcome could be applied to anticipate the imaging needs as institutional 

and market conditions change. 

Analytical validation. 

Tests of variable normality are necessary to confer rigor prior to executing the model. 

The Kolmogorov-Smirnov test will be used to test sample normality and goodness-of-fit for the 

OLS model (Villasenor & Estrada, 2009). A null hypothesis for this test is the normality of the 

sample. Therefore failure to reject the null means the sample is normally distributed; rejecting 

the null means the sample is not normal, but is skewed and will dictate transformation. Data 

transformation may necessitate removing extreme outlier values, log transformations, or square-

root derivations. In addition, a Levene’s test will be performed on the state and the CBSA levels. 

The Levene’s metric will evaluate the amount of variation between the sample groups. Given the 

assumption of non-normality in the negative binomial model, a non-parametric Levene 
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generalization will be necessary to test the equality of variances between samples (Nordstokke & 

Zumbo, 2010).  

Standard statistical tests will be conducted prior to the analysis of results to ensure 

analytical validity. These are tests of residuals to be performed in addition to the previously 

described efforts to identify highly correlated, collinear variables and even tautological effects 

from a singularity. Redundant variables exceeding an intra-correlation of 0.80 will be identified 

and removed from the analysis (Tabachnick & Fidell, 2007). Residuals will be evaluated for 

normality, linearity, and an absence of heteroscedasticity between the predicted values of the 

dependent variable and the errors from the actuals. These scatterplots will assist in determining if 

additional transformation of the data is necessary. Transformation techniques include log and/or 

square root transformations. The plots will be evaluated both visually and statistically. Residuals 

are ideally expected to maintain a linear relationship with the predicted dependent variable 

scores as well as remaining homogenous along the spectrum of predicted inpatient CT counts.  

An evaluation of any analytical output and residual error should include an assessment 

and consideration of the possible endogeneity of independent variables with the model error. 

This is indicative of a statistically biased regression coefficient. This consideration is not 

uncommon in outcomes research and econometric studies, particularly those involving supply 

and demand (Newhouse & McClellan, 1998). Using a lagged independent variable is one 

proposed solution for controlling and mitigating endogeneity (Muller, 2010; Newhouse & 

McClellan, 1998). In applying this principle, this study uses insurer market concentration (HHIi) 

data from 2014 as a measure in the model against the latter 2015 hospital inpatient CT count 

frequency. This is temporally logical given the negotiation of hospital reimbursement contracts 

with payers in advance of inpatient CT exam performance. However, one should expect an 
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interplay and a degree of bi-directionality between variables, both conceptually and in temporal 

arrangement. This is a fundamental challenge and limitation of any interpretation. 

Study Limitations and Assumptions 

This study provides a snapshot of a single year of inpatient CT studies performed. Given 

that it is not longitudinal, it cannot show year-over-year trends. This is a relevant limitation given 

the earlier evidence that found that both hospital and insurer consolidations continue to occur, 

especially in the wake of the ACA of 2010. As previously stated, the four-state convenience 

sample limits the generalizability of any findings. Also, this study does not explicitly address the 

hospital-physician relationship. There are multiple styles of practice arrangements in place that 

may affect physician autonomy and therefore influence the propensity to order an inpatient CT. 

Compounding the challenge is that sometimes these arrangements are mixed even within a single 

institution. It is also not within the purview of this study to assess the appropriateness of the 

individual CT exams, because individual case information is not available. Likewise, the study 

explicitly assesses neither institutional quality nor service arrangements that may affect how 

hospitals and clusters direct their patients based upon acuity or service sharing needs. It is 

understood that the charges reflected on the UB-04 do not necessarily reflect what was collected. 

Collection rates may adversely affect actual revenue. This leads to the study assumptions.  

It is assumed that charge data on the UB-04 released by the individual hospitals to their 

state agencies is accurate and complete. It is also assumed that the states of MD, NV, VA, and 

WA are complete and accurate in their aggregation of the UB-04 data when collecting and 

subsequently transferring data to Intellimed. It is further assumed that the quality checks 

performed by Intellimed are adequate for the accurate receipt and compilation of data, and that in 
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doing so they have uniformly defined measures and applied them across the multiple states 

consistently.  

Chapter Summary 

 This chapter detailed the methods to be employed during the conduct of this study. It 

provided detail regarding the research design, the study questions and hypotheses, and the 

analytical plan for addressing them. The chapter also provided further information regarding the 

data sources, variable construction and validity, and the statistical methodology. Equally 

important, it clarified the assumptions necessary to perform the study and demarcated the 

necessary limitations of that dataset that must be accepted. 
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Chapter 5: Results and Analysis 

 

Overview 

This chapter presents the results of the analytical plan that was detailed in the prior 

chapter on methodology. The chapter begins with data exploration and descriptive work. That 

work is followed by univariate results to assess normality and transformations. Finally, there is a 

formal assessment of multicollinearity before concluding with the results of multivariate 

regression. 

Data Exploration 

This data exploration section addresses missing values and the inspection for outliers. It 

also addresses the descriptive analyses of the continuous and categorical variables.  

Missing values. 

The four-state dataset of 181 acute care hospitals (non-critical access, non-VA) that 

provide inpatient CT services was reviewed for missing values. This review was achieved by 

confirming the presence of values while merging the data from the multiple data sources: 

Intellimed, CMS, the AMA, and the AHA. The variables of interest were added from the data 

tables described in Chapter 3 by matching each institution's CMS identification number. Health 

insurer data from the AMA was added manually by matching each hospital's area of service to a 

corresponding state and metropolitan area. As a result of this matching, there are no missing 

values in the final dataset. 
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Outliers.  

An assessment of multivariate outliers was performed by calculating and reviewing 

Mahalanobis Distances (Tabachnick & Fidell, 2007). There were three multivariate outliers with 

a chi square greater than 22.458 within the dataset given 6 degrees of freedom at the 0.001 

significance level (Tabachnick & Fidell, 2007). The three facilities were in three different 

markets across two states and in both urban and rural areas. There were no discernable gross 

patterns to these facilities, so they were removed from the dataset given the sensitivity of 

regression techniques to outliers. The dataset was left with n = 178 hospitals.  

Descriptive analyses of variables. 

The characteristics of the continuous variables for these remaining 178 hospitals, after the 

removal of outliers, are presented in Table 10. The value ranges, means, and standard deviations 

of these continuous variables were assessed for logical adequacy. The variable ranges were often 

observed to be broad, but no remaining values were found to be implausible. The variables' 

distributions are later assessed for normality, which is often skewed when range proportions are 

bound by set limits such as zero and 100%.   

Table 10 
Descriptive Statistics for Continuous Variables 

Variables N Minimum Maximum Mean Std. Deviation 
CTs per Discharge 178 0.15 0.71 0.38 0.101 
Market Insurer HHI 178 1498 5520 2717.72 844.422 
Market Hospital HHI 178 1564 6922 3355.51 1173.068 
Hosp. Commercial Payer % 178 0.11% 66.05% 20.07% 13.91% 
Hosp. Bed Count 178 31 927 238.48 177.991 
Patient Case Mix Index 178 0.826 2.637 1.586 0.289 
Patient Nonwhite % 178 0.27% 88.94% 30.50% 19.75% 

 
Categorical variables were assessed to ensure adequate representation of both possible 

outcomes. No proportion of observations exceeded 90% nor were any less than 10%. The 
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frequencies of the categorical variables are reported in Table 11. For the purposes of regression, 

the state and the hospital’s AHA centralization variable were later converted into three 

dichotomous dummy variables. 

Table 11 
Frequencies for Categorical Variables   
Variable Value N (%) 
State MD 43 (24.2%) 

NV 21 (11.8%) 
VA 69 (38.8%) 
WA 45 (25.3%) 

Total 178 (100%) 

Hosp. Teaching Status 1 (Y) 62 (34.8%) 
0 (N) 116 (65.2%) 
Total 178 (100%) 

Hosp. For-Profit Ownership 1 (Y) 34 (19.1%) 
0 (N) 144 (80.9%) 
Total 178 (100%) 

Hosp. AHA Centralization Centralized 57 (32.0%) 
Moderately Decentralized 36 (20.2%) 

Decentralized 55 (30.9%) 

Independent 30 (16.9%) 

Total 178 (100%) 

 
Univariate Analysis 

In follow-up to the descriptive analysis, this section contains a univariate analysis of the 

178 hospitals after the removal of Mahalanobis outliers. The data were assessed for normality 

and transformed when appropriate to address skewness and kurtosis using generally accepted 

techniques (Tabachnick & Fidell, 2007). This section also contains the results from a comparison 

of means and a univariate general linear regression (GLM).  

Assessing normality. 

Regression is dependent upon the assumption of normality for input variables that are 

continuous. The independent and dependent variable distributions were assessed for normality, 
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skewness, and kurtosis by reviewing z scores and histograms (Tabachnick & Fidell, 2007). Gross 

examination revealed instances of mildly positive skewness to the right and mild kurtosis. Only 

one variable (Hospital Bed Count) had a skewness or kurtosis value that exceeded an absolute 

1.0 value (1.629 & 3.130, respectively). The dependent variable (CTs per Discharge) was 

observed to have the least skewness with a z score of 0.480. Each continuous variable was tested 

for normality using a Kolmogorov-Smirnov (K-S) Goodness-of-Fit Test (UCLA Institute for 

Digital Research and Education, 2016). With the exception of CTs per Discharge (the DV), all 

variables significantly deviated from normal with a p value < 0.05. This suggests the need to 

transform each of these rightward skews by transforming the variables and retesting.  

Data transformations.  

Table 12 shows a summary of skewness and kurtosis both before and after 

transformation. Each of the seven continuous variables were transformed. Though not 

statistically necessary, the CTs per Discharge rate was transformed by a factor of 1000x for 

interpretive purposes as is not uncommon practice in health care utilization studies. Accordingly 

neither the skewness nor kurtosis was observed to have changed. A review of the Market Insurer 

HHI histogram revealed a bimodal distribution despite the relatively low skewness score. 

Hospitals in a market with insurer HHI greater than the 2500 threshold of "highly concentrated," 

set forth by the FTC (American Medical Association, 2016), were flagged with a binary indicator 

of 1. All other hospitals were set to 0, reflecting their lower HHI. 

The two variables with the largest skew values (Market Hospital HHI and Hospital Bed 

Count) underwent log transformations. Each of the three remaining continuous variables 

(Hospital Commercial Payer Percent, Patient Case Mix Index, and Patient Nonwhite Percent) 

had smaller initial skew values. As such, these three underwent only square root transformations. 
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Table 12  
Variable Assessment and Transformations 
Variables Before Transformation Transformation After Transformation 
CTs per Discharge Skewness z score = 0.480 New X = 1000(X) Skewness z score = .480 

Kurtosis z score = 0.529 Kurtosis z score = .529 

Market Insurer 
HHI 

Skewness z score = 0.512 X > 2500 = 1 1 (Y) = 97 (54.5%) 
Kurtosis z score = 0.456 0 (N) = 81 (45.5%) 

Market Hospital 
HHI 

Skewness z score = 0.965 New X = Log (X) Skewness z score = 0.165 
Kurtosis z score = 0.673 Kurtosis z score = -0.382 

Hosp. Commercial 
Payer % 

Skewness z score = 0.955 New X = SQRT(X) Skewness z score = -0.167 
Kurtosis z score = 0.693 Kurtosis z score = 0.038 

Hosp. Bed Count Skewness z score = 1.629 New X = Log (X) Skewness z score = -0.236 
Kurtosis z score = 3.130 Kurtosis z score = -0.372 

Patient Case Mix 
Index 

Skewness z score = 0.567 New X = SQRT(X) Skewness z score = -0.241 
Kurtosis z score = 0.819 Kurtosis z score = 0.536 

Patient Nonwhite 
% 

Skewness z score = 0.707 New X = SQRT(X) Skewness z score = -0.132 

Kurtosis z score = 0.095 Kurtosis z score = 0.407 

 
In some instances the skewness turned negative. However, in each of these five transformations 

the resulting skewness z scores were closer to zero in absolute terms. K-S testing was again 

performed for each of the remaining transformed continuous variables, and each failed to deviate 

from normality and had p-values > 0.05. Table 13 shows the resultant K-S significance for each 

continuous variable. 

Table 13 
Kolmogorov-Smirnov Significance 
Variables  K-S Sig. Transformed K-S Sig. 
CTs per Discharge 0.200 0.200 
Market Insurer HHI 0.000 n/a 
Market Hospital HHI 0.000 0.200 
Hosp. Commercial Payer % 0.000 0.200 
Hospital Bed Count 0.000 0.200 
Patient Case Mix Index 0.027 0.200 
Patient Nonwhite % 0.010 0.075 
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Comparison of means. 

In support of the first objective of the study, to characterize the degree of variation in 

inpatient CT rates across the hospitals of multiple states and markets, a comparison of means was 

performed. The mean rate of discharges with a CT was compared across each of the four states, 

representing 51 distinct markets. The means varied from a low rate of 340 discharges with a CT 

out of 1000 in the state of Washington to a high rate of just over 412 scans per 1000 discharges 

in Maryland. The Maryland rate represents a 21% increase over Washington rates. 

Table 14 shows results of the comparison of mean CT scan rates between states. 

Utilization rates varied widely and were dispersed across hospitals within the states as well. This 

can be observed in the relatively large standard deviation values for each state. Despite this large 

variation around the mean, the between-groups analysis tested positive (F4.4(3), p=0.005). 

Table 14 
Mean CT Scan Rates (per 1000 discharges) 

State Mean N Std. Deviation 

MD 412.2 43 110.6 

NV 389.1 21 99.1 

VA 393.5 69 89.1 

WA 340.0 45 99.3 

Total 384.0 178 101.2 
 

The results of the comparison of means indicate that the observed means are statistically 

significant and different by more than chance alone. This is demonstrated in the between-group 

ANOVA which can be seen in Table 15. The ANOVA had an Eta-squared value of 0.071 

indicating that 7.1% of the variance was explained by each hospital's state. This finding supports 

the use of state as a control variable as it was detailed in the conceptual framework.   
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Table 15   
Analysis of CT Rate Variance Between States     

    Sum of Squares df F Sig. 
CTs per 1000 
Discharges * 
State 

Between Groups 128355 3 4.4 0.005 

Within Groups 1683019 174 
  

  Total 1811374 177     
 

Univariate GLM. 

In support of the second objective, a univariate general linear model (GLM) was 

performed to evaluate the relationship between inpatient CT performance and the proportions of 

commercial payers. The relationship between the CT rate and the proportion of commercial 

payers was framed conceptually in the literature review and cut across multiple institutions and 

markets. The model used the normal-transformed square root of the hospital commercial payer 

mix as a solo predictor of discharges with a CT. The results demonstrated a statistically 

significant negative relationship between the two continuous variables (F5.5(1), p < .05). In 

addition, the model suggests that the single predictor variable can explain 3.0% of the variation 

in the DV (R2 = .03). 

The results of the univariate GLM are presented in Table 16. The results suggest that the 

rate of having a CT as an inpatient varies negatively with an increasing proportion of commercial 

payers. These results support the continued inclusion of the commercial payer in the full 

multivariate regression model where it will be more fully vetted. 

Assessing Multicollinearity 

This section provides the results of a Pearson correlation test and evaluates bivariate 

correlation. The concern is to ensure that adequate correlation exists for statistical purposes, but 

that not too much correlation occurs. Too much correlation between variables can lead to 
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Table 16  
Univariate GLM Results between Commercial Payers and CT Rates Estimates 

CTs per 1000 Discharges 
Variable B 95% CI 
Intercept 428.1** [388.1, 468.1] 
Commercial Payer Percent SqRt -10.6* [-19.5, -1.7] 

R2 0.03 
F 5.47*   
*p < .05. **p < .01 
 
multicollinearity or singularity, when one variable becomes a perfect or near perfect predictor of 

another. 

The bivariate correlation was performed to assess for collinearity prior to variable 

transformation. The pre-transformation bivariate correlations are presented in Table 17. As 

expected from the literature review and proposed by the conceptual model, multiple statistically 

significant correlations were observed. In total, 18 were observed. Nine were found to be 

statistically significant to weak levels (<0.3), six were to moderate levels (0.3 - 0.5), and three 

were strong correlations (>0.5) (Cohen, 1988). No bivariate correlation exceeded the very highly 

correlated threshold of 0.9, which would have suggested multicollinearity or singularity 

(Tabachnick & Fidell, 2007).  

The bivariate correlation test was repeated after transformation of the continuous variables 

to observe for changes and for desirable effects. The results are presented in Table 18. With the 

improved normality of variable distributions, elevated levels of correlation were observed 

without creating multicollinearity. This finding is a desirable effect of variable transformation 

(Cohen, 1988).  

Post-transformation, there were 20 statistically significant correlations. The number 

observed to be statistically significant to weak levels (<0.3) improved to 10, and seven were then  
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Table 17  
Multicollinearity Testing Before Transformation  

   
Insurer 

HHI 
Hospital 

HHI 
Centra
lized 

Moderately 
Centralized 

Decentr
alized 

Commercial 
Payer 

Percent 
Bed 

Count 
Teaching 

Status 
For-profit 

Owner CMI 

Insurer HHI  1 
         

Hospital HHI  .071 1 

Centralized  .031 -.048 1       

Moderately 
Centralized 

 .178* .056 -.346** 1 
      

Decentralized  -.148* -.177* -.459** -.337** 1     

Commercial 
Payer Percent 

 -.090 .136 .068 -.021 -.111 1 
    

Bed Count  .103 -.024 .038 .027 .042 .134 1 
   

Teaching 
Status 

 .089 -.138 .130 .014 -.004 .011 .535** 1 
  

For-profit 
Owner 

 .034 -.053 -.211** -.174* .479** -.341** .014 -.025 1 
 

CMI  -.045 -.110 -.057 .016 .160* .123 .624** .462** .006 1 

Nonwhite 
Percent 

 -.051 -.527** .087 -.023 -.021 .004 .253** .194** -.043 .182* 

** Correlation is significant at the .01 level (2-tailed). 
* Correlation is significant at the .05 level (2-tailed). 
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Table 18 
Multicollinearity Testing After Transformation  

  

Insurer 
HHI 

>2500 
Hospital 
HHI Log Centralized 

Moderately 
Centralized Decentralized 

Commercial 
Payer 

Percent 
SqRt 

Bed 
Count 
Log 

Teaching 
Status 

For-Profit 
Owner CMI SqRt 

Insurer HHI >2500 1 

Hospital HHI Log -0.126 1 
        

Centralized 0.095 -0.009 1 

Moderately 
Centralized .151

*
 0.040 -.346

**
 1 

      

Decentralized -0.146 -.185
*
 -.459

**
 -.337

**
 1 

     
Commercial Payer 
Percent SqRt 

-0.121 .246
**

 0.076 0.000 -.155
*
 1 

    

Bed Count Log 0.079 -0.052 0.017 0.037 0.070 .154
*
 1 

   
Teaching Status 0.076 -0.139 0.130 0.014 -0.004 -0.014 .501

**
 1 

For-Profit Owner 0.071 -0.079 -.211
**

 -.174
*
 .479

**
 -.417

**
 0.011 -0.025 1 

 

CMI SqRt -0.105 -0.120 -0.054 0.014 .162
*
 0.074 .635

**
 .458

**
 0.010 1 

Nonwhite Percent 
SqRt 

-0.002 -.556
**

 0.087 -0.050 0.015 0.008 .340
**

 .213
**

 -0.040 .247
**

 

** Correlation is significant at the .01 level (2-tailed). 
* Correlation is significant at the .05 level (2-tailed). 
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found to be at moderate levels of correlation (0.3 - 0.5). No new strong correlations (>0.5) were 

created, for a sustained tally of three. Again no bivariate correlation exceeded the very highly 

correlated threshold of 0.9. 

Multivariate Analysis 

To fulfill the third objective of the study, testing the relationship between inpatient CT 

use and the characteristics of markets, hospitals, and patients, the regression module of SPSS 

was used to create a multivariate linear regression as described in the earlier methodology of 

Chapter 4. The regression module was selected over the general linear model due to the 

exploratory nature of the study, which is better served by the former's key features. The 

regression module allows users to leverage block functionality for covariation and additional 

multicollinearity diagnostics. The previous variable transformations to dichotomous or normal 

distributions adequately satisfied a critical prerequisite for regression. Additional post-hoc 

testing was used to further evaluate the validity of the model. The resulting output allowed the 

review of the variables and constructs for statistical significance.  

Multivariate linear regression. 

The multivariate linear regression (ordinary least squares regression) was executed using 

a blocked, enter method. Block methodology was used to allow the coded state dummy variables 

to be entered as covariates. 

Table 19 shows the regression models, summary statistics, predictors, and overall fit. 

Model 1 is the states-only model controlling and demonstrates that the state dummy variables 

collectively account for 7.1% of the variance (R2 = 0.071) in the observed CT rate. This is 

consistent with the ANOVA results from the comparison of means. Model 2 builds on Model 1  
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Table 19 
Multivariate Regression Predictors of CT Rates 

CTs per 1000 Discharges 
Model 2 

Variable Model 1 B B 95% CI 
Intercept 340.0 861.7** [348.7, 1374.6] 
Covariates    
    MD 72.3 39.2 [-15.7, 94.2] 
    NV 49.1 0.9 [-58.7, 60.6] 
    VA  53.6 14.0 [-37.3, 65.2] 

Market Characteristics    
    Insurer HHI >2500  46.2* [9.8, 82.7] 
    Hospital HHI Log  -109.3 [-242.7, 24.1] 

Hospital Characteristics    
    Centralized  53.4* [8.2, 98.6] 
    Moderately Centralized  16.5 [-33.8, 66.8] 
    Decentralized  32.9 [-15.9, 81.6] 
    Commercial Payer Percent SqRt  -9.0 [-19.8, 1.8] 
    Bed Count Log  5.3 [-58.7, 69.4] 
    Teaching Status  2.3 [-33.1, 37.8] 
    For-Profit Owner  -19.6 [-68, 28.8] 

Patients    
    CMI SqRt  -59.4 [-243.3, 124.5] 
    Nonwhite Percent SqRt  -12.1* [-22.3, -1.9] 
    

R
2
 0.071** 0.222**  

F 4.42** 7.30**   
*p < .05. **p < .01 
 

by including the remaining 11 variables representing characteristics of markets, hospitals, and 

patients. Model 2 accounts for an additional 15.1% of observed variation on top of Model 1 for a 

total of 22.2% of observed variation (R2 = 0.222). Both models were statistically significant (p < 

0.01).  

Of the market characteristic variables, the full model shows that elevated levels of insurer 

concentration were positively associated with the CT rate in a statistically significant way. When 

the insurer HHI was over 2500, the observed CT rate was significantly higher (46.2, p = 0.013). 
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There was not a statistically significant relationship seen between the hospital's HHI and the CT 

utilization rate. Hospitals belonging to a centralized system were positively associated with CT 

rate (53.4, p = 0.021). No other hospital variables were found to have a statistically significant 

relationships with the DV. Of the patient characteristic variables, the full model shows that the 

square root transformed percentage of nonwhite patients was negatively associated with the CT 

rate (-12.1, p = 0.020). The interpretation of B for a square root transformed variable will be 

discussed Chapter 6. There was not a statistically significant relationship observed for the 

similarly transformed patient CMI.  

Table 20 shows the collinearity statistics for each variable of the models. The SPSS 

regression module will calculate tolerance at 1-R2, where R2 is the calculated tolerance of each 

individual IV onto the remaining independent variables as a measure of collinearity. Tabachnick 

& Fidell (2007) recommend a minimum tolerance of 0.1, which corresponds to a variance 

inflation factor (VIF) of 10.0. These values complement their multicollinearity threshold of 0.9. 

No variable in the full model has a tolerance less than 0.3, and no VIF exceeds 3.0, further 

suggesting the absence of multicollinearity.  

The full model to represent the number of discharges with a CT scan per 1000 hospital 

discharges is expressed by the following:  

Y' = 861.7 + 39.2(MD) + 0.9(NV) + 14.0(VA) + 46.2(Insurer HHI >2500) - 

109.3(Hospital HHI Log) + 53.4(Centralized) +16.5(Moderately Centralized) + 

32.9(Decentralized) – 9.0(Commercial Payer Percent SqRt) + 5.3(Bed Count Log) + 

2.3(Teaching Status) - 19.6(For-Profit Ownership) - 59.4(CMI SqRt) - 12.1(Nonwhite 

Percent SqRt) 
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Table 20 
Model Collinearity Diagnostics 

CTs per 1000 Discharges 
Model 1 Model 2 

Variable Tolerance VIF Tolerance VIF 
MD 0.674 1.483 0.342 2.923

NV 0.773 1.294 0.512 1.954

VA  0.645 1.551 0.304 3.293
Insurer HHI >2500 0.574 1.743
Hospital HHI Log 0.504 1.986

Centralized 0.426 2.348

Moderately Centralized 0.464 2.156

Decentralized 0.373 2.681

Commercial Payer Percent SqRt 0.591 1.693
Bed Count Log 0.433 2.309
Teaching Status 0.663 1.507
For-Profit Owner 0.523 1.913

CMI SqRt 0.436 2.293
Nonwhite Percent SqRt     0.509 1.965
 

Testing residuals for normality. 

One additional assumption of regression is the normality of residuals. This assumption 

can be tested visually and arithmetically. Figure 3 shows a scatterplot of the standardized 

residuals. This visual representation suggests normality given the relatively dense and uniform 

appearance of residuals (homoscedasticity) mostly within the confines of +/3.0 z scores on either 

axis. Only two institutions have a standardized residual > 3.0. 

To confirm the normality of the residuals, the skewness (0.501) and kurtosis (0.980) of 

the residual plot were again calculated. Both were below 1.0 in magnitude. Additionally, a non-

significant K-S statistic (0.075) was found, suggesting there was no statistically significant 

deviation from normality. Based upon these results, the regression model residuals appear to 

conform to the assumption of normality. With this support for the regression model's residual  
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Figure 3. Standardized Scatterplot of Regression Residuals  

 
normality, no alternative models (e.g. the negative binomial) were explored or deemed necessary 

for consideration. 

Chapter Summary 

 This chapter presented descriptive summaries of the data. The analytical steps to do so 

included an evaluation of the first two objectives using univariate methods. The proposed model 

variables were presented, evaluated, and transformed for multivariate regression adequacy. An 

assessment of multicollinearity was performed before and after a presentation of model results. 

Lastly, the normality of the residuals was tested as the final assumption of multivariate 

regression.   
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Chapter 6: Conclusions 

 

This chapter discusses the conclusions that can be inferred from the results about the 

possible implications for policy, planning, and health services research. It also offers a discussion 

of the possible limitations of the study and suggests areas for additional study. This chapter 

begins with a review of the key findings. 

Discussion and Review of Key Findings 

The primary goal of this study was to evaluate the relationship between the rate of 

inpatient CT utilization and the characteristics of markets, hospitals, and patients. This was 

accomplished through the stepwise completion of three objectives; the third objective contained 

three testable hypotheses. 

Objective 1. 

To characterize the degree of variation in inpatient hospital CT utilization rates across the 

hospitals of multiple states and markets.   

This objective was accomplished through descriptive analysis using frequencies and 

comparison of inpatient CT utilization mean rates for hospitals across multiple states comprising 

51 different markets. Statistically significant differences were found across the four states. By 

reviewing results across a multi-state sample, it is implicit that utilization also varies across 

markets. This inference is consistent with prior work that has shown significant state and 

regional variation in the utilization of imaging resources and the consumption of health services 

(Begun & Luke, 2001; Bhargavan & Sunshine, 2005).   
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 Inpatient utilization was observed to vary as much as 21% from the state with the lowest 

incidence of inpatient CT in 2015 (Washington) to the state with the highest (Maryland). These 

results underscore the continued conceptual importance of including factors that account for 

geographic differences. The results also suggest additional inquiry into the differences between 

states that may influence some of these utilization patterns.  

Objective 2. 

To evaluate the relationship of inpatient CT performance with respect to payers across 

multiple markets and institutions. 

This objective was met by performing a univariate general linear regression of the multi-

state sample of CT rates against the payer. The results were statistically significant and suggested 

that 2.5% of the variation in CT utilization rates correlates with the proportion of commercial 

payers in the hospital's mix. Though the effects were small, the potential implications are larger 

since even modest shifts in utilization stand to alter cost, radiation exposure, and revenue. It was 

intriguing to find that the relationship between the two was negative. That is, as the proportion of 

commercial payers increased for the hospital's patients, the inpatient utilization seems to 

decrease. This persisted in spite of Maryland's all-payer program, in which all payers pay the 

same rates (CMS, 2018). Even Maryland, with the highest utilization rate, showed a correlational 

sensitivity to the proportion of commercial payers.  

In the literature for outpatient and emergency department care, imaging utilization has 

been observed to increase for patients with commercial insurance (Bhargavan & Sunshine, 2005; 

Korley et al., 2010; Levin et al., 2014). This study's preliminary, exploratory findings suggest 

that the converse may be true for inpatients. One reason for this may be that the typically higher 

technical reimbursement rates for the commercially insured, paired with the outpatient fee-for-
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service environment, may result in some inpatient studies being pulled to the outpatient setting. 

Prior multi-market inpatient work looked at utilization only for the Medicare population and did 

not address varying proportions of payer populations (Levin et al., 2013). Medicare studies 

simply do not have the full cross-section of the inpatient spectrum. This study provides some 

initial baseline evidence to suggest the need for additional study and inquiry.  

Replicating this element of the study in future iterations and expanding it to include the 

array of payer types seems warranted. Additional targeted inquiry could offer a better 

understanding of the possible effects of the shifting coverage and reimbursement patterns. 

Regardless, this result underscores the utility of including payer considerations in this study and 

in the full model where other factors were considered as well. This work could serve as a catalyst 

for more detailed work directed specifically at insurer market consolidation. 

 Objective 3.  

To use a conceptual framework to test the relationship between inpatient CT use and 

characteristics of markets, hospitals, and patients. There were three hypotheses related to this 

objective: 

 H1: Characteristics of markets will be associated with inpatient CT utilization rates. 

 H2: Characteristics of hospitals will be associated with inpatient CT utilization rates 

 H3: Characteristics of patients will be associated with inpatient CT utilization rates. 

The third and final objective of the study was met by developing and executing a 

multivariate regression using variables characteristic of markets, hospitals, and patients. This 

OLS multivariate model was regressed upon transformations of insurer HHI, hospital HHI, 

system membership, the proportion of commercial payers for a hospital, the hospital's bed count, 

the hospital's teaching status, its for-profit status, the patient case mix, and the proportion of 
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minority patients in its mix of discharged patients. This was done while controlling for the state 

in which the hospital was located.  

The comparison of means for the CT utilization rate demonstrated that there were 

statistically significant differences between the states. Other pre-test measures were performed to 

ensure that the variables appropriately conformed to normality, a prerequisite of regression. 

Whenever possible, continuous variables were retained or transformed using generally accepted 

practices (e.g. Log and square root transformations) (Tabachnick & Fidell, 2007). One 

continuous variable had to be converted to a binary outcome. No multicollinearity was identified 

between the variables either before or after the transformations, which is another prerequisite of 

regression. Results were generated for the relationships between the CT utilization rate and each 

independent variable.    

Results were generated and reviewed for each independent variable. From the market 

variables, the binary indicator of a highly concentrated insurer market with an HHI > 2500 was 

found to be statistically significant (β = 46.236, Beta = 0.228, p = 0.013). This finding suggests 

that hospitals in markets with these highly concentrated insurers, when all other factors are 

constant, would expect to observe a mean CT rate that is about 46 scanned patients per 1000 

discharges higher than those hospitals in less competitive markets. The other market measure, 

hospital HHI, was not found to be statistically significant. 

From the variables representing the characteristics of hospitals, the binary indicator for a 

hospital belonging to a centralized system was found to be statistically significant (β = 53.396, 

Beta = 0.247, p = 0.021). These results indicate there is less than a 5% chance that this observed 

positive relationship was the result of the natural, random variation from within the data. In 

practical terms, this finding suggests that the mean CT rate per 1000 discharges for a hospital 
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belonging to a centralized system would be approximately 53 scanned patients higher than the 

mean of those hospitals that were not in a centralized system.  

The remaining hospital characteristic variables—teaching status, for-profit ownership, the 

proportion of commercial payers, and bed count—were not found to be statistically significant. 

Also not significant were the other indicators of hospital systemness including: moderately 

centralized, decentralized, or independent (reference group). The concept of system 

centralization may also be clinical relevant as others have found differences both in outcomes 

and in the explicit coordination of services (A. S. Chukmaitov et al., 2009; Sikka et al., 2009).  

From the variables representing the patient characteristics, only the square root of the 

proportion of nonwhite patients was statistically significant (β = -12.113, Beta = -0.227, p = 

0.020). The magnitude of the Beta, a standardized figure, suggests that this characteristic is the 

strongest predictor, corroborated by the smallest p value. The variable was also negative, 

suggesting that an increasing proportion of minority patients seen by a hospital correlates with a 

decreasing likelihood for that hospital's patients to have received a CT while an inpatient. The 

practical interpretation of this variable means that, all other things being equal, the mean of 

hospitals with a minority patient population of 64% will have nearly 24 fewer patients with a CT 

performed per 1000 discharges than the mean of hospitals with only a 36% minority population. 

It is not possible to discern from this data precisely how the variance manifests within the 

hospitals' population based upon race. That is, it cannot be determined if all patients at hospitals 

with larger minority populations have a decreased likelihood of having a CT performed on them, 

or if there is in fact a difference between the hospital's minority and nonminority populations' 

rates of CT. The other patient characteristic variable, case mix, was not found to be statistically 

significant. 
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 Post-test measures were unremarkable for the identification of multicollinearity. Variable 

tolerance levels were well above minimum thresholds. The final tested assumption of regression 

requires homoscedasticity of the residuals around the predicted values and normality of the 

residuals. The distribution of the residuals tested as normal using a K-S test for goodness-of-fit.  

These results support the study's three hypotheses, rejecting the null hypotheses that there 

are no statistically significant differences within the market variables, the hospital variables, or 

within the patient characteristic variables. Each construct had a variable that contributed 

significantly to the regression model. Table 21 shows a summary of the hypotheses, variables, 

and their related significance.  

Table 21 
Hypothesis Testing Results 

    

Hypotheses and Variables 
Variable relationship 

& significance Hypothesis Results 
H1: Characteristics of markets will be associated 
with inpatient CT utilization rates. 

  
Significant 

Insurer HHI + / significant 
Hospital HHI - / not significant 

    

H2: Characteristics of hospitals will be associated 
with inpatient CT utilization rates. 

Significant 

Centralized system + / significant 
Moderately centralized + / not significant 
Decentralized + / not significant 

Commercial Payer Proportion - / not significant 
For-Profit Ownership - / not significant 
Teaching Status + / not significant 
Bed Count + / not significant 

    

H3 Characteristics of patients will be associated 
with inpatient CT utilization rates. 

Significant 

Minority Mix Proportion - / significant 
Case Mix - / not significant 
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Conceptual and Methodological Implications 

The results support the study's proposed conceptual framework. It demonstrates how 

factors that may be conceptually associated with the constructs of the market, hospital, and 

patient may also be logically associated with inpatient utilization of resources. Each of the 

constructs contributed a statistically significant variable. Collectively, the study's variables 

explained just over 22% of the unadjusted variation in the observed inpatient CT rate. This is a 

small, approaching medium, effect size based upon the 0.12 threshold for small and 0.26 

threshold for medium (Cohen, 1992). The relative robustness of statistical outcomes and the 

outcome's congruence with the prescribed constructs seems to suggest overall adequacy and 

appropriateness of the framework.  

 This study’s results demonstrate the possibility of using linear regression methods for 

health services inquiry when the variable of interest is count data representing numbers of 

events. It is frequently necessary to use a different statistical method or design (e.g. the negative 

binomial) when regressing this type of data due to the data fundamentally being skewed (i.e. 

cannot be less than zero). If count data can be converted to a rate through an exposure variables, 

such as the number of annual discharges in this case, then a multivariate regression can suffice 

assuming all the assumptions of normality and non-multicollinearity are met. 

Implications for Stakeholders 

This study has potential implications for many. That a significant portion of the inpatient 

CT rate variation can be explained by knowing a) the state a hospital is in, b) what the local 

insurance market is like, c) whether it is in a centralized system, and d) the hospital's mix of 

minority patients should be of interest to numerous stakeholders. Administrators, health sciences 



 
 

98 
 

researchers, and health policy makers each stand to benefit from having a better understanding of 

some fundamental determinants of inpatient CT utilization.  

Hospital administrators may be keenly interested in knowing that system centralization is 

associated with increasing inpatient CT use. Some have suggested that the centralization of large 

systems perhaps makes them unwieldy and inefficient (A. S. Chukmaitov et al., 2009). 

Administrators of such institutions may see this as an opportunity to leverage appropriateness 

criteria, reduce scan redundancies, and reduce system net costs by reducing the inpatient use of 

exams. Likewise, administrators in highly concentrated insurance markets could use such 

initiatives in negotiation with insurers.   

Health sciences researchers have the laudable goal of better understanding resource 

utilization. Because of the prospective payment methodology and bundling of payments, 

inpatient utilization is often more challenging to assess that outpatient. This study serves as a 

demonstration project for a way in which researchers may want to consider assessing the 

inpatient use of scarce ancillary services resources using administrative data. It even suggests to 

researchers that market factors extrinsic to the hospital may affect inpatient utilization in ways 

that extend beyond the characteristics of the hospital system and even the actual patient 

population. 

Similarly, researchers may have an interest in better understanding the association of a 

hospital’s increasing minority patient population and decreasing inpatient CT use. The potential 

implications are multifaceted. An increasing minority population may be serving as a proxy for 

numerous socioeconomic or cultural factors that are not measured. For example, such hospitals 

may be in a more impoverished area. Minority patients may bring language or cultural barriers 

with them into the hospital that limit the performance of studies or the communication of 
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symptoms, even after they are admitted. Providers themselves may also experience an 

unconscious bias leaving them less likely to perform an exhaustive battery of studies on a 

minority patient.  

Health policy makers in general have the desire to align incentives to improve the overall 

efficiency, safety, and coordination of patient care. Reducing the absolute number of 

inappropriate scans helps in that regard by freeing up the resource for more appropriate life-

saving interventions (Rumack, 2010). Understanding the drivers of utilization is key to this. 

Policy makers may be interested to note that the state of Maryland, with the transparency of its 

all-payer system, actually has the highest observed rates of inpatient CT utilization. This could 

be completely spurious and coincidental to the all-payer system, or an unintended consequence. 

From the public health policy perspective, even if reducing inpatient utilization had no impact on 

the cost of imaging, there remains a public health argument to be made for reducing the impact 

of cumulative radiation dose and repeated contrast administration.  

Study Limitations 

  Mick and Wyttenbach (2003) expressed that the demand for health care services is "never 

a direct function of physician supply, insurance coverage, and disease pattern” (pg. 34). They 

proceeded to explain that external forces intercede to direct choices, preferences, and constraints. 

This affects both patient behavior and physician behavior. Physician agency and quantity of care 

provided can be affected by their training and their possession of asymmetric information 

(Mcguire, 2000).  How well a study models these behaviors, and what meaning can be taken 

from the results, is based upon a set of assumptions and limitations. Retrospective correlational 

studies with large sample sizes and many variables are at significant risk of spurious correlation, 

so any inferences must be caveated with this awareness. 
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Cross-sectional studies of administrative data such as this are also susceptible to 

aggregation bias (Zellner, 1962). The aggregation of all patient discharges for a year to make up 

a profile of a hospital masks the individual patient variability within that hospital’s patient 

population. Inferences from this study cannot be reduced to units more granular than the 

hospital-level. And, inferences upon individual hospitals risk ecological fallacy (Robinson, 

2011). Data containing individual patient parameters, and a study design appropriate for such an 

evaluation, could help address such concerns. 

 For the purposes of this study, it was not feasible to perform explicit endogeneity testing. 

The conceptual model allowed for the inclusion and exclusion of variables under consideration 

when constructing the dataset, but does risk omitting endogenous variables. This method leads to 

a lack of instrumental variables for testing purposes. Consideration was given for the lead and 

lag of variables to avoid simultaneity when possible during the conceptual formation of the 

study. The challenge of evaluating endogeneity is not uncommon in cross-sectional studies when 

neither controlled experimentation nor longitudinal data are available. However, possible 

endogeneity should be viewed accordingly as a possible limitation when considering or 

generalizing the results of the study. 

The four-state sample also limits the making of generalizations. With the broad range of 

utilization rates observed between the four states and the known geographic variability of health 

resource consumption, extrapolating this study's results to other states should be done with 

extreme caution without first replicating the work. All four states have certificate of need (CON) 

programs that serve as potential barriers to the deployment of advanced imaging modalities, 

affecting access that may not apply to non-CON states. Also, other advanced imaging modalities 

(e.g. MRI) may not follow the same patterns of utilization as CT. Some imaging modalities serve 
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as complementary alternatives to one another especially if the access to devices and modalities is 

limited. 

Another limitation of the study is the fact that this is a single year snapshot representing 

2015. Trended data over time is not possible with such a snapshot. This study used the most 

recent data available; however, this is a potentially significant limitation considering that insurers 

and hospitals continue to consolidate. It is conceivable that evolving market trends or even 

legislative agendas can alter local landscapes rapidly and unpredictably (e.g. Medicaid 

expansion).   

Acknowledgment of a study's limitations, however, does not discredit the findings. The 

methods for operationalizing the measured variables in this study have been previously utilized 

and detailed in the methodology. Additionally, the body of research using cross-sectional 

administrative data is sizeable. The recognition of limitations ultimately serves to strengthen the 

interpretation of results. 

Future Research  

This study identifies multiple opportunities for additional research and numerous 

questions for future investigation. Given the observed variation explained by states, future work 

could be designed to look inside states for differences. For example, are there variations within 

Maryland that account for the observed elevated rates of CT utilization? Are these rates isolated 

at a few hospitals or are they more pervasive? Does the all-payer program inadvertently limit 

alternatives to CT? Do the results extrapolate to states without CON laws? 

Future research is needed to help isolate causation between variables and to look inside 

the organization of hospital systems. The ability to trend variables over time would be helpful. 

The literature review reported on multiple trends in the factors of interest, but to isolate them in a 
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study would help to augment or refute causality. Are two variables trending together over time 

and in the same degree of magnitude? The cross-sectional snapshot does not allow for this to 

occur. Future work within hospital systems to better understand the relationship between 

centralization and inpatient CT use seems to be warranted. Are there specific determinants of 

centralization that drive increased inpatient use? And if they exist, how do they relate to 

outcomes?  

The study also lays the foundation for additional outcomes research. Once increased CT 

utilization has been observed, does it translate to improved outcomes or shortened lengths of 

stay? This is left unanswered as outcomes are beyond the scope of this study, but the benefits of 

CT are well documented in the literature (Rumack, 2010; Smith-Bindman et al., 2009). And if 

there are improvements in outcomes related to increased use, are they shared equitably? It was 

observed that hospitals with more minority patients have overall lower rates of inpatient CT use. 

Can it be determined within these hospitals that minority populations have equal treatment and 

shared outcomes?  

This study and its findings lay a beneficial groundwork for multiple avenues of additional 

research. It creates questions about policy implications, questions about public health and 

outcomes, and questions of equity. 

Conclusions  

This study serves an important function in identifying varying patterns of CT utilization 

across multiple hospitals, markets, and states. It also serves an important role in identifying 

variables associated with its increasingly prevalent use.  

This study creates new knowledge about how the characteristics of these markets, 

hospitals, and patients are related to inpatient use. The study demonstrates associations between 
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insurer control of markets, hospital system centralization of services, the minority proportion of 

patients, and the use of inpatient CT services. A better understanding of these relationships by 

administrators, policy makers, and researchers would be desirable. Through additional 

knowledge and understanding, this study may ultimately lead to improvements in the appropriate 

and equitable use of inpatient CT exams.  
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Appendix A 

 
Herfindahl-Hirschman Index (HHI) 

 
 

Step 1 

ZCA Hosp. 
Zip Code 

Discharges by 
Hospital 

HHIj 

00001 Hosp A 1500 0.320 
00001 Hosp B 800 0.090 
00001 Hosp C 350 0.020 

Totals ZCA 00001 2650 0.430 

00002 Hosp A 700 0.080 
00002 Hosp B 600 0.060 
00002 Hosp C 1250 0.240 

Totals ZCA 00002 2550 0.370 
 

Step 2 

Hosp. - ZCA Total ZCA 
discharges 

Proportion of 
discharged 

patients 
HHIj weighted 

HHIi 
Hosp A - 00001 HHI 1500 0.680 0.430 0.290 
Hosp A - 00002 HHI 700 0.320 0.370 0.120 

Hosp A - HHIi 0.410 

Hosp B - 00001 HHI 800 0.570 0.430 0.250 
Hosp B - 00002 HHI 600 0.430 0.370 0.160 

Hosp B - HHIi 0.400 

Hosp C - 00001 HHI 350 0.220 0.430 0.090 
Hosp C - 00002 HHI 1250 0.780 0.370 0.290 

Hosp C - HHIi 0.380 
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