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Modern main memory is primarily built using dynamic random access memory

(DRAM) chips. As DRAM chip scales to higher density, there are mainly three prob-

lems that impede DRAM scalability and performance improvement. First, DRAM

refresh overhead grows from negligible to severe, which limits DRAM scalability and

causes performance degradation. Second, although memory capacity has increased

dramatically in past decade, memory bandwidth has not kept pace with CPU perfor-

mance scaling, which has led to the memory wall problem. Third, DRAM dissipates

considerable power and has been reported to account for as much as 40% of the total

system energy and this problem exacerbates as DRAM scales up.

To address these problems, 1) we propose Rank-level Piggyback Caching (RPC) to

alleviate DRAM refresh overhead by servicing memory requests and refresh operations

in parallel; 2) we propose a high performance and bandwidth efficient approach, called



SELF, to breaking the memory bandwidth wall by exploiting die-stacked DRAM as

a part of memory; 3) we propose a cost-effective and energy-efficient architecture

for hybrid memory systems composed of high bandwidth memory (HBM) and phase

change memory (PCM), called Dual Role HBM (DR-HBM). In DR-HBM, hot pages

are tracked at a cost-effective way and migrated to the HBM to improve performance,

while cold pages are stored at the PCM to save energy.



CHAPTER 1

INTRODUCTION

1.1 Background and Problem Statement

The capacity of main memory keeps increasing, which is mainly driven by the

growing memory requirements of new applications, and the increasing number of

processing cores in a single chip. Dynamic Random Access Memory (DRAM) has

been used as the main memory in computer systems for decades. However, DRAM-

based memory systems are mainly facing three scalability problems.

First, DRAM cells leak charge over time, causing stored data to be lost. There-

fore, periodic refreshes are required to ensure data integrity. Commodity DRAM

refreshes cells at rank level, resulting in an entire rank being unavailable during a

refresh period. As DRAM density keeps increasing, more rows need to be refreshed

during a single refresh operation, which causes higher refresh latency and significantly

degrades the overall memory system performance [1]. Currently refresh overhead has

become the biggest restriction for DRAM scalability, making it increasingly important

to reduce refresh overhead [2].

Second, although memory capacity has increased dramatically in past decade,

memory bandwidth has not kept pace with CPU performance scaling, which has led

to the memory wall problem [3]. Die-stacked DRAM (a.k.a., on-chip DRAM) provides

much higher bandwidth and lower latency than off-chip DRAM. It is a promising

technology to break the “memory wall”. However, on-chip DRAM is not large enough

to fully replace off-chip DRAM. Therefore, on-chip DRAM is used either as a cache

(i.e., DRAM cache) or as a part of memory (PoM). A DRAM cache design would suffer

1



from more page faults than a PoM design as the DRAM cache cannot contribute

towards capacity of main memory. In the meanwhile, obtaining high performance

requires PoM systems to swap requested data to the on-chip DRAM. Existing PoM

designs fall into two categories — line-based and page-based. The former ensures

low off-chip bandwidth utilization but suffers from a low hit ratio of on-chip memory

due to limited temporal locality. In contrast, page-based designs achieve a high hit

ratio of on-chip memory while at the cost of moving large amounts of data between

on-chip and off-chip memories, leading to increased off-chip bandwidth utilization

and significant system performance degradation. How to achieve a similar high hit

ratio of on-chip memory as page-based designs and eliminate excessive off-chip traffic

involved is a big challenge.

Last, traditional DRAM-based memory systems are also facing the power issue

besides the memory wall problem. DRAM dissipates considerable power and has been

reported to account for as much as 40% of the total system energy [4, 5, 6]. This prob-

lem exacerbates as DRAM capacity increases. Therefore, emerging non-volatile mem-

ories (NVMs), such as Spin-Transfer Torque RAM (STT-RAM) and Phase Change

Memory (PCM), are gaining interest as DRAM alternatives as they have near-zero

standby power. However, NVMs have lower memory bandwidth and longer access la-

tency than DRAM, aggravating the memory wall problem. Since die-stacked DRAM

has the potential to break the memory wall but its capacity is insufficient to fully

replace DRAM memory, a die-stacked DRAM/NVM hybrid memory system could

be a promising way to build a high performance, large capacity, and energy efficient

memory system. In order to fully exploit high performance (i.e. high bandwidth and

low latency) offered by die-stacked DRAM and large capacity offered by NVM, hot

pages should be migrated to die-stacked DRAM to improve performance and cold

pages should be stored in NVM to save energy. Therefore, how to identify hot pages

2



is very critical. Prior work regarding DRAM/NVM hybrid memory systems [7, 8, 9,

10] has been proposed. However, the ways used to track page hotness in prior work

are costly due to redesigning the memory controller (MC) or extending translation

lookaside buffer (TLB). Moreover, the hot page stays at NVM until its access count

exceeds the migration threshold, which could miss lots of opportunities to improve

performance. Therefore, it is very promising to design a cost-effective and energy

efficient architecture for die-stacked DRAM/NVM memory systems.

1.2 Proposed Approaches

Figure 1 shows the architecture of modern memory systems, which could consist

of traditional DRAM, die-stacked DRAM and emerging NVMs. As stated in Section

1.1, each component has its own limitations. In order to build a high performance,

large capacity, and energy efficient memory system, we propose three approaches to

address these three scalability problems, respectively, as shown in Figure 1.

First, to mitigate DRAM refresh overhead, we propose a caching scheme, called

Rank-level Piggyback Caching, or RPC for short, based on the fact that ranks in

the same channel are refreshed in a staggered manner. The key idea is to cache the

to-be-read data in a rank (e.g. Rank 1) to its adjacent rank (e.g. Rank 2) before

Rank 1 is locked for refresh. Each rank reserves or over-provisions a very small area,

denoted as a cache region, to store the cached data. The cache regions from all ranks

are organized in a rotated fashion. In other words, the cached data for the last rank is

stored in the first rank. When a read request arrives at a rank undergoing refresh, the

memory controller first checks the cache region in the next rank in the same channel;

if the requested data is cached, the memory controller services the request from the

cache without waiting for the refresh operation to complete, which reduces memory

access latency and improves system performance.

3



CPU Die-stacked 
DRAM

LLC

Memory Bus

DRAM NVM

RPC

SELF

DR-HBM

Fig. 1. The architecture of modern memory systems. The proposed approaches

address problems in different memory technologies, which are circled with dotted

lines.

Second, to achieve a similar high hit ratio of on-chip memory as page-based

designs, and eliminate excessive off-chip traffic involved, we propose SELF, a high

performance and bandwidth efficient approach. The key idea is to SElectively swap

Lines in a requested page that are likely to be accessed according to page Footprint,

instead of blindly swapping an entire page. In doing so, SELF allows incoming re-

quests to be serviced from the on-chip memory as much as possible, while avoiding

swapping unused lines to reduce memory bandwidth consumption.

Last, we propose a cost-effective and energy-efficient architecture for die-stacked

4



DRAM/NVM memory systems, especially for HBM/PCM memory systems, called

Dual Role HBM (DR-HBM). In DR-HBM, the HBM plays two roles and is divided

into two parts. A small portion of which, called HBM cache, is used as a cache for

the PCM. The remaining HBM is used as a part of main memory. Furthermore, the

HBM cache is also used to track page hotness without additional hardware support.

In order to improve performance and reduce writes to the PCM, we propose three

techniques. First, CSM (cache on the second miss) increases the effectiveness of HBM

cache and reduces PCM traffic by avoiding to cache singleton pages which contain only

single useful data blocks; Second, hot pages are migrated in batches to amortize TLB

shoot-down overhead; Third, we propose Hot First LRU (HF-LRU) page replacement

policy and increase the weight of write operations to reduce writes to the PCM.
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CHAPTER 2

ALLEVIATING DRAM REFRESH OVERHEAD

2.1 Introduction

Modern main memory is primarily built using dynamic random access memory

(DRAM) cells. A DRAM cell consists of one access transistor and one capacitor. Each

DRAM cell stores one bit of data as electrical charge in the capacitor; over time charge

will leak from the capacitor and can cause data loss. Therefore, DRAM requires an

operation called refresh that periodically restores electrical charge in capacitors to

ensure data integrity.

Each DRAM cell is refreshed every 64ms (or 32ms above 85 ◦C) as specified by

the JEDEC standards [11]. This time period is called retention time. All DRAM rows

are refreshed within this time period. The total time spent on refresh operations is

proportional to the number of rows in a DRAM device (a.k.a. a chip). Initially all

DRAM rows are refreshed sequentially within one refresh operation, which causes

long periods of memory unavailability. To avoid this long latency, all DRAM rows in

a bank are divided into 8K groups, and each group is refreshed within a time period

of 64ms/8K = 7.8µsec (3.9µsec at high temperatures). This time duration is called

refresh interval, denoted as tREFI. The memory controller sends a refresh command

to DRAM devices once every tREFI. The time duration of one refresh command

is referred to as refresh cycle, denoted as tRFC. Each DRAM row is composed of

thousands of bits. The size of each row is referred to as page size, and the capacity of

a DRAM device is the number of rows in a device times the page size. The page size

has remained between 1KB to 2KB for several DRAM generations while the number
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of rows per device has scaled linearly with DRAM device capacity. As the capacity of

the DRAM device increases and the refresh interval remains unchanged, the refresh

cycle increases quickly since more DRAM rows need to be refreshed in each refresh

operation. As a result, it takes a longer time and more energy to complete a refresh.

The observation that motivates this work is that commodity DRAM refreshes

cells at rank level. As a result, an entire rank is locked up and cannot serve any

pending memory request while being refreshed. Thus, a read request arriving at a rank

that is being refreshed is forced to wait until the refresh operation is completed, which

would increase read latency and degrades system performance. As memory technology

scales to higher densities, for example, 16Gb DRAM device that has been defined in

DDR4 SDRAM standard [12], performance degradation and energy consumption that

attributes to refresh grow from negligible to severe. Currently refresh overhead has

become the biggest restriction for DRAM scalability, making it increasingly important

to reduce refresh overhead [2].

Our goal is to alleviate the performance degradation due to DRAM refresh op-

erations. As ranks within a channel are refreshed in a staggered fashion, while one

rank is being refreshed, the remaining ranks can still service memory requests. In

light of this, we propose RPC (Rank-level Piggyback Caching) [13], a scheme that

allows concurrent refresh and memory access in a DRAM system. The basic idea is

to cache the data that will be likely accessed during the next refresh period to an

adjacent rank in the same channel before the target rank is locked. As such, read

requests issued to a rank which is being refreshed can be served from another rank

without waiting for the refresh to complete. Without being blocked during refresh,

the read latency can be significantly shortened and system performance in terms of

instructions per cycle can be improved.
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2.2 Background and Motivation

A modern DRAM-based memory system has one or more memory controllers,

each of which manages one or more channels. Each channel has independent com-

mand, address, and data buses, allowing different channels to be accessed concur-

rently. Each channel is composed of a number of ranks that share the channel band-

width and operate simultaneously to service memory requests. Each rank can further

divided into DRAM chips and within each chip, there are a number of banks (typ-

ically 8 banks) which can be accessed in parallel as well. Each bank consists of a

two-dimensional array of DRAM cells. A DRAM cell consists of one access transistor

and one capacitor. Each DRAM cell can store one bit of data as electrical charge in

the capacitor. All the access transistors in the same column connect their capacitors

to a wire called bitline. An access transistor is controlled by a wire called wordline

which is shared by a row of DRAM cells. DRAM cells sharing a wordline form a

DRAM row. Each bitline connects to a sense amplifier, a row of which is known as

row buffer which is used to sense and amplify the voltage of each bitline [14]. A bank

can be further sub-divided into many subarrays, with each having its own row buffer

(a.k.a. local row buffer). However, only one subarray can be accessed at a time since

all subarrays share the global bitlines. All subarrays’ row buffers are connected to a

global I/O buffer. The memory controller reads/writes data from/to the I/O buffer

through the bank’s I/O bus.

A bank supports four types of operations: activation (ACT or RAS), read/write

(CAS), precharge (PRE) and refresh (REF). To retrieve data from DRAM cells, the

row which contains the requested data must first be activated (or opened) to put the

entire row’s content into the row buffer through bitlines. Then the requested data

can be retrieved from the row buffer by decoding the column address. If subsequent
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requests access the same row in the same bank, a row hit happens, otherwise a row

miss occurs. There are two row buffer management policies: open page and close

page [15]. In the open page mode, the accessed row is not closed until a different

row within the same bank is accessed. The activation operation can be obviated if

it is a row hit. Otherwise the memory controller first needs to close the row and

precharges bitlines for the next activation, which causes extra latency and power

consumption [16]. Therefore, the open page mode is more suitable for workloads

with good access locality. In contrast, in the close page mode, the memory controller

proactively closes the row and precharges bitlines as soon as an access is over, which

provides a consistently fair latency. It is clear that the close page mode is beneficial

for workloads with poor access locality, such as, the multi-core environments where

there could be mutual interferences from different applications.

2.2.1 DRAM Refresh

Due to capacitor current leakage, each DRAM cell needs to be refreshed peri-

odically to maintain data integrity. DRAM cells are refreshed in the unit of a row.

A refresh operation consists of two steps. First, data in the refreshing row is read

out and written back to the cells to restore each capacitor’s charge, which is actually

the activation operation. Then the bitlines are precharged for the next refresh oper-

ation. Hence, the refresh operation is functionally equivalent to an activation plus a

precharge operation. The time taken to refresh one row is known as row cycle time

(tRC), which is the time used to activate and precharge one row. DRAM cells have

varying retention time [17] and the JEDEC standards specify a minimum of 64ms (or

32ms at high temperatures), which means all DRAM rows must be refreshed within

this time period. Initially, there were relatively few rows in a bank, therefore it was

viable to refresh all DRAM rows in succession within retention time. This is referred
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to as bursty refresh mode. However, refreshing all DRAM rows in bulk incurs high la-

tency, which becomes unacceptable as the number of DRAM rows in a bank increases

to tens of thousands. To avoid this high latency, JEDEC supports distributed refresh

mode, in which DRAM rows in a bank are divided into 8K groups. The memory con-

troller issues a refresh command to refresh one group every tREFI which is equal to

64ms/8k = 7.8µsec (3.9µsec at high temperatures). The time spent on refreshing one

group is known as refresh cycle or tRFC, which is a function of tRC. The tREFI has

remained unchanged for several generations, but tRFC increases linearly as DRAM

chip scales to higher densities. tRFC/tREFI is defined as refresh duty cycle (RDC)

[18], the percentage of time that the DRAM system spends on doing refresh. Table

1 shows several refresh related parameters under different chip densities. Values for

16Gb chip are extrapolated. The number of rows (Row Num.) in a bank doubles

as the density of DRAM chip is doubled, as does the number of rows refreshed in

each refresh operation (Rows/REF) because the total number of refresh operations

(Refresh Num.) in the retention time period remains constant. Therefore, the tRFC

increases linearly as DRAM density increases, as does the RDC.

Table 1. Refresh related parameters under different DRAM densities.

Chip Density 1Gb [19] 2Gb [20] 4Gb [21] 8Gb [22] 16Gb
Retention Time(ms) 64/32 64/32 64/32 64/32 64/32

Row Num. 16K 32K 64K 128K 256K
Refresh Num. 8K 8K 8K 8K 8K

Rows/REF 2 4 8 16 32
tREFI(µs) 7.8/3.9 7.8/3.9 7.8/3.9 7.8/3.9 7.8/3.9
tRC(ns) 51 51 51 51 51

tRFC(ns) 110 160 260 350 450
tRFC/tREFI 1.41% 2.05% 3.34% 4.34% 5.77%

tRFC/tREFI (> 85 ◦C) 2.82% 4.11% 6.68% 8.68% 11.54%
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Fig. 2. Performance degradation with various chip capacities in the normal temper-

ature range (≤ 85 ◦C). The geometric mean values are 21.7% and 24.7% for the

PARSEC and SPLASH-2 benchmark suites, respectively.

2.2.2 Refresh Penalty

In theory, a refresh scheme at any granularity is valid as long as all cells can

be refreshed timely. However, commodity DRAM refreshes cells at rank level, which

means all chips in a rank and all banks in a chip are refreshed in a lockstep manner. A

rank which is undergoing a refresh cannot serve any memory access. In other words,

refresh and memory access are mutually exclusive to each other at the granularity of

a rank, which is the main contributing factor of refresh penalty [23].

As shown in Table 1, the tRFC is growing dramatically with chip density in-

creases, which aggravates the refresh penalty. The RDC increases to 11.54% when

DRAM chip capacity increases to 16Gb, which means a rank spends 11.54% of the

time refreshing. Therefore, the refresh overhead is no longer trivial and will degrade

system performance significantly. Figure 2 shows the performance degradation due to

refresh compared to an ideal case without refresh. When DRAM chips scale to 16Gb,

the performance degradation can be as high as 42.4% for memory latency sensitive

workloads and the geometric mean values are 21.7% and 24.7% for the PARSEC and

11



SPLASH-2 benchmark suites, respectively. The performance degradation becomes

more severe as DRAM chip density increases, demonstrating that it is increasingly

important to alleviate refresh overhead in high density memory.

2.2.3 Limitations of Existing Solutions

JEDEC specifications define the refresh scheduling flexibility: up to eight refresh

commands can be postponed or issued in advance. Stuecheli et al. [1] proposed

Elastic Refresh (ER), which leverages the 8-tREFI refresh scheduling flexibility to

hide refresh penalty. ER prioritizes DRAM accesses over DRAM refresh operations

by postponing refresh operations to decrease the probability of conflicts between them.

Every refresh command needs to wait an elastic window period determined by the

average idle time of the rank and the number of already postponed refresh commands

to avoid interfering with demand requests. In fact, previous work DUE [24] makes

use of the flexibility in issuing refresh operations by scheduling them when the rank

queues are idle. ER further defers refresh operations for an extra time period after the

rank becomes idle to service the incoming requests with priority, but the postponed

refresh commands need to be enforced immediately when the number of postponed

refresh commands hits the 9-tREFI limitation. However, ER becomes less effective

as DRAM scales [23], [25]. The increasing tRFC makes the refresh latency hard to

be hidden as the average rank idle period is shorter than tRFC. Moreover, ER incurs

extra delay when it incorrectly predicts a time period as idle when it actually has

pending requests.

A read request arriving at a rank which is undergoing a refresh operation needs

to wait until the refresh operation completes. In the worst case scenario it must wait

for tRFC. To shorten the tRFC, Fine Granularity Refresh (FGR) was proposed in the

DDR4 SDRAM Standard [12]. FGR defines three refresh modes with different refresh
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rates (i.e. tREFI). They are 1x mode, 2x mode and 4x mode respectively, and the

memory controller can switch between them on the fly. The 1x mode is the same as

the traditional refresh scheme defined in [11], in which each refresh command is issued

every tREFI1x = 7.8µsec. The 2x and 4x modes require that refresh commands are

issued two and four times as frequently as 1x mode. Due to the increasing number of

refresh commands, fewer rows need to be refreshed during a single refresh. Therefore,

the tRFC is reduced accordingly in the 2x and 4x modes. Table 2 shows that the

tREFI and tREC parameters under different refresh modes vary with different DRAM

densities. Values for 16Gb DRAM chips which are not decided in the DDR4 standard

[12], are extrapolated based on the previous values of low densities; we use the 8Gb

chip as the default DRAM chip in our experiments. The refresh cycle is reduced as

the refresh rate increases. We implement FGR in DRAMSim2 [26] and run different

benchmarks in PARSEC 2.1 [27] and SPLASH-2 [28] benchmark suites to observe the

performance of FGR.

Table 2. tREFI and tRFC parameters in different refresh modes with various DRAM

densities.

Refresh Mode Parameter 2Gb 4Gb 8Gb 16Gb

1x mode
tREFI1x (µs) 7.8/3.9 7.8/3.9 7.8/3.9 7.8/3.9
tRFC1x (ns) 160 260 350 450

2x mode
tREFI2x (µs) 3.9/1.95 3.9/1.95 3.9/1.95 3.9/1.95
tRFC2x (ns) 110 160 260 350

4x mode
tREFI4x (µs) 1.95/0.975 1.95/0.975 1.95/0.975 1.95/0.975
tRFC4x (ns) 90 110 160 260

Figure 8 shows the performance (IPC) of FGR in the two-rank and four-rank

systems. All results are normalized to the 1x mode. In the two-rank DRAM sys-

tem, the performance of both 2x and 4x modes are worse than 1x mode. There are

two reasons: 1) tRFC reduces linearly but not proportionally as the refresh rate in-
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creases, which means 2xtRFC2x is larger than 1xtRFC1x, and 2xtRFC4x is larger than

1xtRFC2x too; 2) Both PARSEC and SPLASH-2 benchmark suites are composed of

multi-thread and memory-sharing programs, which are memory-intensive workloads

(detailed analysis can be found in Section 2.4.3). In the memory-intensive case, the

average rank idle period is even shorter than tRFC4x, so the refresh penalty cannot

be hidden. Thus an application only needs to wait for one tRFC1x in the 1x mode,

it may experience 2 (or 4) stalls in the 2x (or 4x) mode because of the increasing

refresh rate. The total time spent on doing refresh is longer than that in 1x mode,

which causes performance degradation in the 2x mode and 4x mode. In the four-rank

system, the average performance of 2x and 4x modes are better than that in the two-

rank system, respectively. For dedup benchmark, both 2x and 4x modes even perform

better than 1x mode. The reason is that the increasing number of ranks reduces the

probability of conflicts between memory requests and DRAM refreshes, thereby the

DRAM system can get benefit from the reduced tRFC. Overall, FGR is not suitable

for memory-intensive workloads.

All refresh schemes discussed above could become ineffective when DRAM scales

to high densities or workloads become memory-intensive. Therefore, we propose RPC

to mitigate refresh overhead.

2.3 Architecture and Design

2.3.1 DRAM Refresh Characterization

A DRAM-based memory system usually consists of multiple ranks. Each rank

works independently even though all of the ranks share the same channel bandwidth.

Commodity DRAM refreshes at rank level. The memory controller issues a refresh

command to a rank every tREFI. Each refresh operation lasts for a duration of tRFC.
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Fig. 3. Staggered refresh in ranks within the same channel.

Thus the available time interval between two contiguous refresh operations equals to

tREFI−tRFC. When a rank receives a refresh command from memory controller, all

banks in the rank are refreshed concurrently. Therefore, no memory access is allowed

to a rank where a refresh is undergoing. Fortunately, only one rank is allowed to

be refreshed at a time to meet power budget. All ranks in the same channel are

refreshed in a staggered fashion, as shown in Figure 3. There is no time overlap

between different refresh commands occurred to different ranks. In this case, other

ranks in the same channel can still service DRAM accesses normally when one rank is

being refreshed. However, a request arriving at the rank which is being refreshed still

needs to wait until the refresh operation completes, which increases the read latency.

In the worst case, the waiting time is tRFC, which is an order of magnitude longer

than a typical read response. Hence, system performance is degraded significantly and

the longer running time in turn increases static energy consumption. It is increasingly

important to mitigate refresh overhead.

2.3.2 The RPC Architecture

The design goal of RPC is to alleviate refresh overhead by serving memory

requests and refresh operations that are issued to the same rank in parallel. Since

ranks in the same channel are refreshed in a staggered manner, the remaining ranks
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Fig. 4. The RPC architecture. The to-be-read data is cached in an adjacent rank

before the target rank is locked and each rank reserves or over-provisions a cache

region to store the cached data. All cache regions are organized in a rotated fashion.

in the same channel are still available when a rank is being refreshed. Based on this

DRAM characteristic, we propose RPC to mitigate refresh overhead. The idea is

to cache those data which will be read during the next refresh period, and store it

to an adjacent rank before the target rank is locked. The data is populated to the

cache in a piggyback manner in which data is cached when it is accessed, rather than

prefetching it to the cache in the adjacent rank in a bursty fashion. In our design,

only read requests are taken into consideration and this is due to two reasons: 1)

read requests are latency sensitive because applications cannot proceed until data is

retrieved; 2) write requests can be cached in a write buffer and flushed to memory in

batches asynchronously. The design of RPC is shown in Figure 4. Each rank reserves

or over-provisions an area, called a cache region, to store the cached data; the size

of the cache region is a configurable parameter in later performance evaluations so

that we can gauge the impact of cache size. The cache region placed on rank i only

services memory requests addressed to its previous rank i - 1, and all cache regions

are organized in a rotated fashion. In particular, cached data from the last rank, N

- 1, is stored at rank 0. When a read request arrives at a rank where a refresh is

undergoing, the memory controller first checks the cache region in the “next” rank

in the same channel; if the required data is cached, the memory controller can serve
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the read request without waiting for the refresh operation to complete, which reduces

refresh overhead and improves system performance. However, the effectiveness of

RPC depends on cache hit ratio.

2.3.3 Cache Design

As shown in Figure 4, the CPU sends requests to the memory controller in the

form of transactions. First, a transaction is enqueued into the transaction queue if

there is spare space; then it is translated into DRAM commands (e.g. ACT, CAS,

PRE etc.) and enqueued into the command queue. To achieve high row hit ratio,

modern memory controllers commonly adopts FR-FCFS (first-ready first-come-first-

serve) scheduling policy [29], which prioritizes DRAM commands that cause row

hits over other commands, including those that were issued earlier. If no command

results in a row hit, then FR-FCFS schedules commands according to arrival se-

quence, i.e., FCFS. A key advantage of this scheduling policy is that it retains the

temporal locality in the application access pattern. Meanwhile, the row hit ratio

is also related to the address mapping policy. In this work, we use the “chan-

nel:row:column:bank:rank”address mapping policy, which is commonly deployed in

state-of-the-art memory controllers. In this address mapping, the row bits are placed

as MSBs to maximize the row hit ratio while keeping ranks and banks interleaving.

We run the full PARSEC benchmark suite to observe the memory access locality. For

brevity, three representative benchmarks are chosen to be shown in Figure 5a, and

other benchmarks have similar results as the ferret benchmark. The Y axis repre-

sents the relative row number in a channel, which can be calculated by Equation 2.1.

Notations used in the equation are listed in Table 3.

17



0

500000

1000000

1500000

2000000

2500000

10000 10010 10020 10030 10040 10050 10060 10070 10080 10090 10100

R
el

at
iv

e 
R

o
w

 N
u

m
b

er

Access Sequence

bodytrack canneal ferret

(a) Access locality of three representative benchmarks.

0

500000

1000000

1500000

2000000

2500000

10000 10010 10020 10030 10040 10050 10060 10070 10080 10090 10100

R
el

at
iv

e 
R

o
w

 N
u

m
b

er

Access Sequence

rank 0 rank 1

(b) Access locality of the cannel benchmark in each rank.

Fig. 5. Access locality of PARSEC benchmark suite running on two-rank DRAM

system. X-axis represents access sequence and Y-axis is the row number calculated

by Equation 2.1. 100 consecutive memory accesses are randomly chosen to show.

row num = NUM ROWS ∗NUM BANKS ∗ rank +NUM ROWS ∗ bank + row

(2.1)

All benchmarks show very strong temporal locality except canneal, which shows

poor access locality. However, the cache region is only used for the to-be-refreshed

rank instead of the global scope (i.e. the whole channel). We further break down
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Table 3. Notations used in Equation 2.1.

Variables Description
NUM ROWS the total number of row in a bank
NUM BANKS the total number of bank in a rank

rank accessed rank number
bank accessed bank number
row accessed row number

row num relative row number in a channel

the access pattern of canneal benchmark and study the locality of data access on

each individual rank. From Figure 5b, we can observe that the temporal locality in

each rank is also good even though the overall perceived temporal locality is poor.

All of these memory accesses happen after the LLC (last level cache), although some

of them have good temporal locality, which means all accesses are missed in the

LLC. That is because the size of a row is much larger than a CPU cache line, and

a row typically contains 16 to 32 CPU cache lines. Therefore, it is possible that the

successive requests access different CPU cache lines but the same DRAM row.

Based on the above observations, DRAM accesses have a strong temporal locality,

which means recently accessed rows will likely be accessed again in the near future.

Therefore, the cache region is implemented as a LRU (Least Recently Used) cache,

where the least recently used data will be evicted and recently accessed data will

be saved. We note that the cache region is different from caches in the CPU. CPU

caches are used to speed up accesses while the cache region in RPC is used to increase

data availability during the interval when the target rank is being refreshed, and the

entire cache region will be invalidated after the refresh completes. As mentioned in

Section 2.2, the granularity of read/write operations in a bank is a DRAM row, thus

the size of a cache line is set to the same as the size of a DRAM row (i.e. page size).

As shown in Figure 3, the piggyback caching is executed during the available time
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interval between two continuous refresh operations. Since the cache regions adopt

LRU algorithm, in which only recently accessed rows will be cached, we start the

piggyback caching a number of cycles ahead of next refresh operation, and end at the

beginning of next refresh operation. This time interval is called the caching interval,

the length of which is referred to as tCI. The tCI is also configurable. For example, a

rank starts to be refreshed at t, the next refresh operation will start at t+ tREFI. So

the piggyback caching begins at t+tREFI−tCI, and ends at t+tREFI. Algorithm

1 shows the pseudocode of RPC in each rank.

2.3.4 Implementation Overhead

To implement RPC, each rank needs to have a dedicated cache region or be

over-provisioned to accommodate cached data, and the size of it should be an integer

multiple of the page size. To track which row is cached, the memory controller also

needs to maintain a tag list for each cache region. Each entry is a 64-bit physical ad-

dress which consists of the channel number, rank number, bank number, row number

and column number. The number of entries in each tag list equals to the cache size

divided by the page size (i.e. the total number of rows in the cache region). Therefore,

the total storage overhead in the memory controller is determined by the cache size,

the number of ranks in a channel, and the number of channels. For example, in a

single channel and four-rank DRAM system, if the cache size is 16KB and the page

size is 1KB, then the total storage overhead in the memory controller is 512 bytes,

which is negligible. In addition, copying data to an adjacent rank consumes energy.

However, the energy consumption is negligible due to the short caching interval, as

demonstrated in Section 2.4.2. RPC can reduce the runtime of applications, as a

result, it reduces the static energy consumption of DRAM system.
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Algorithm 1 The work procedure of RPC

Input: tCI, cache size
Variables: curretn time t, next refresh time tNR
1: while DRAM is running do
2: while tNR - tCI ≤ t < tNR do . caching start
3: if a memory request comes then
4: if the accessed row is cached then
5: move the cache line to list head;
6: else
7: if cache region is not full then
8: copy the accessed row to a spare cache line;
9: inset the cache line to list head;
10: else
11: invalidate the tail cache line;
12: copy the accessed row to the tail cache line;
13: insert the last cache line to list head;
14: end if
15: end if
16: end if
17: t++;
18: end while . caching over
19: while tNR ≤ t < tNR + tRFC do . refresh start
20: if a memory request comes then
21: if it is a read request then
22: if the required row is cached then
23: return the cache line to the CPU;
24: else
25: wait until the refresh is completed;
26: end if
27: else
28: handled normally;
29: end if
30: end if
31: t++;
32: end while . refresh over
33: if t ≥ tNR + tRFC then
34: invalidate the entire cache region;
35: tNR = tNR + tREFI;
36: end if
37: memory requests are handled normally;
38: t++;
39: end while
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2.4 Evaluation

2.4.1 Evaluation Methodology

To evaluate the effectiveness of our approach, we implement RPC in DRAMSim2

[26] and together use MARSSx86 [30] as the front-end processor to run benchmarks.

The detailed system configuration is shown in Table 4. The PARSEC 2.1 [27] and

SPLASH-2 [28] benchmark suites are used to evaluate our approach. Both of them

are multi-thread and memory-sharing benchmark suites. We run all benchmarks for

100 million cycles to warm up the cache and the following 100 million cycles to collect

the statistics. The 8Gb DRAM chip is used in our evaluation, and the DRAM chip

parameters are set according to the Microns data sheet [22]. The refresh related

parameters are listed in Table 1. All simulations are run under normal temperature

range (≤ 85 ◦C). The instructions-per-cycle (IPC) is used as the performance metric

throughout the evaluation.

Table 4. Configuration of Simulators.

Processor
1/4 cores, 4GHz, out-of-order
128-entry instruction window

L1-D/L1-I Cache 128KB/128KB, 8-way associative

LLC
64B cache-line, 8-way associative

shared, 2MB

Memory
Controller

32/32-entry transaction/command queue
FR-FCFS [29], open page policy, 64bits I/O bus
channel:row:column:bank:rank address mapping

DRAM
DDR3-1333 [22], 8Gb

1 channel, 2/4 ranks per channel
8 banks/rank, 128K rows/bank, 1024 columns/row

For comparisons, we also implement state-of-the-art FGR [12] and No Refresh

refresh schemes in DRAMSim2. The FGR includes three different refresh modes

with different refresh rates, which are 1x, 2x and 4x modes. Note the 1x mode is
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the conventional refresh scheme in modern memory controllers. The refresh related

parameters of each mode are listed in Table 2. The No Refresh scenario is an ideal

case where there is no refresh operation. The reason for assessing No Refresh is to

quantify the best possible performance in terms of IPC. In the runs, we also vary the

number of ranks since our design targets rank-level caching and this parameter has a

large impact on the overall system performance. As multi-core becomes increasingly

prevalent as a means to further increase flops and hence main memory can be shared

by multiple cores, contention in the memory system is anticipated to be more severe.

Therefore in the evaluations, we also test a four-core scenario to gauge the scalability

of our approach.

2.4.2 Design Space Exploration

In our design, both the size of cache region (a.k.a. cache size) and the length

of caching interval (tCI) are configurable. As the system performance and over-

head are sensitive to these two parameters, we conduct a design space exploration

to determine the optimal values for the two parameters before the performance eval-

uation. The PARSEC 2.1 benchmark suite is used to evaluate. To determine the

optimal cache size, memory controller starts caching data at the end of last refresh

(i.e. tCI = tREFI − tRFC). As shown in Figure 6, with 8KB, 16KB and 32KB

cache region, RPC improves the system performance by 4.9%, 8.1% and 8.6% on

average, respectively. To balance between hardware cost and performance, 16KB is

used as the optimal value for cache size, which is equivalent to 16 rows. Based on the

optimal cache size, we test three different values of tCI, which are integer multiple

of the refresh cycle (tRFC ). As shown in Figure 7, the 1xtRFC tCI is sufficient to

achieve almost all the performance margin due to the usage of LRU cache algorithm

and the limited cache size. Therefore, 1xtRFC is chosen as tCI for subsequent runs.
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Fig. 6. The performance of RPC with various cache size, normalized to the 1x mode

refresh scheme.
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Fig. 7. The performance of RPC with various tCI, normalized to the 1x mode refresh

scheme.

2.4.3 Single-Core Simulation Results

With the optimal cache size and the length of the caching interval (tCI), we

next compare RPC to FGR and No Refresh schemes. All benchmarks are run on a

single-core and single-thread system, and the evaluation results with regard to the

different number of ranks are shown in Figure 8. It is clear that for all benchmarks
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(a) 16GB two-rank memory system.
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(b) 32GB four-rank memory system.

Fig. 8. Performance comparisons among FGR, RPC and No Refresh schemes with

various number of ranks in a single-core system. RPC outperforms all FGR modes

and improves system performance by 8.1% (8.7%) and 9.6% (10.8%) on average for

PARSEC and SPLASH-2 benchmark suites in the two-rank (four-rank) system, re-

spectively.

there is a large performance gap between 1x mode and No Refresh. Compared to

No Refresh, the geometric mean of performance degradation is 17.4% (PARSEC)

and 23.9% (SPLASH-2) for a two-rank system, and 13.7% (PARSEC) and 12.7%

(SPLASH-2) for a four-rank system. In particular, the performance degradation of

ocean noncont benchmark is up to 48.5%. From these results we have two observa-

tions. First, most benchmarks in these two benchmark suites are memory-intensive

workloads and memory system design has a huge impact on application performance.

Second, conflicts between accesses and refreshes are reduced as the number of rank

increases, because less memory requests go to each rank comparing to two-rank sys-
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tems. As a result, the performance of 2x and 4x modes are worse than that of the

1x mode in most cases. And the performance of 2x and 4x modes in the four-rank

system is better than that in the two-rank system.

It is shown in Figure 8 that RPC outperforms all FGR modes, because it can

serve memory requests and refreshes concurrently while FGR becomes ineffective

for the memory-intensive workloads as discussed in Section 2.2.3. RPC improves

the system performance by 8.1% (8.7%) and 9.6% (10.8%) on average for PARSEC

and SPLASH-2 benchmark suites in the two-rank (four-rank) system, respectively.

And RPC is comparable to the ideal case (around 95% of No Refresh). However,

the performance improvement of canneal is less than 1% due to the poor temporal

locality as shown in Figure 5a.

2.4.4 Four-Core Simulation Results

All runs are repeated on a four-core system with one thread per core to gauge the

effectiveness in a multi-core environment, and the evaluation results with regard to

the different number of ranks are shown in Figure 9. Since memory access becomes

more intensive in these runs, comparing 1x mode to No Refresh, the performance

degradation increases to 26.9% (15.2%) and 25.5% (14.4%) on average for PARSEC

and SPLASH-2 benchmark suites in the two-rank (four-rank) system, respectively.

On average, the performance of both 2x mode and 4x mode are worse than the 1x

mode as expected. In contrast, RPC improves the system performance by 10.7%

(8.6%) and 9.3% (12.2%) on average for these two benchmark suites in the two-rank

(four-rank) system, respectively. And RPC can still achieve around 93% performance

of No Refresh scheme, thus RPC scales very well in the multi-core environments.
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Fig. 9. Performance comparisons among FGR, RPC and No Refresh schemes with

various number of ranks in a four-core system. RPC outperforms all FGR modes

and improves system performance by 10.7% (8.6%) and 9.3% (12.2%) on average

for PARSEC and SPLASH-2 benchmark suites in the two-rank (four-rank) system,

respectively.

2.5 Related Work

Refresh Reduction. Ghosh et al. [31] proposed Smart Refresh to eliminate

unnecessary refresh operations. It leverages the characteristics that a read/write is

equivalent to refresh due to the destructive access. Each row is bounded to a counter

which gets reset whenever the row gets read out or written to. However, Smart

Refresh requires very high storage overhead in the memory controller (e.g. up to

1.5MB in a 32GB memory system) [32], [33], and its effectiveness depends on the

working set. RAIDR [32] proposed by Liu et al. also aims to reduce the number

of refreshes. RAIDR uses the knowledge of cell retention times to group DRAM
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rows into retention bins and applies different refresh rates to different bins. As a

result, rows containing leaky cells are refreshed at a normal rate, while most rows are

refreshed less frequently. However, this retention-aware approach requires an accurate

retention time profile which is hard to be determined due to the Variable Retention

Time (VRT) [34, 35, 36].

Some software solutions were also devised to reduce refreshes. RAPID proposed

by Venkatesan et al. [37] exploits retention time variations among different DRAM

cells. The pages with longer retention time are allocated with priority over those with

shorter retention time. The refresh rate is determined by the page with the shortest

retention time among all allocated pages. However, RAPID has the same risk as

RAIDR due to the variation in retention time, which may cause data reliability issue.

In addition, its effectiveness depends on the utilization of the memory pages. Flikker

[38] is another software solution to save refresh power by reducing the number of

refreshes. In Flikker system, data is divided into critical and non-critical data. The

portion of memory containing critical data is refreshed at the regular refresh rate,

while the other is refreshed at a much lower rate to save power, which inevitably

leads to retention errors. However, Flikker requires substantial modifications (to

application, OS, DRAM chips) to implement it. All of the above mentioned refresh

reduction solutions are orthogonal to our approach.

Refresh Pausing. Nair et al. [18] proposed Refresh Pausing to alleviate refresh

overhead by allowing refresh operations to be interruptible. As a result, memory

requests arriving during the refresh period can be serviced in a timely manner via

pausing the on-going refresh operation. However, refresh operations have to be paused

and resumed very frequently under memory-intensive workloads. In addition, the

refresh operations become uninterruptible if DRAM rows are refreshed in a staggered

or pipelined way [33].
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Refresh Scheduling. Elastic Refresh (ER) [1] is proposed to mitigate refresh

overhead. It leverages the refresh scheduling flexibility: up to eight refresh commands

can be postponed. The basic idea is to avoid interferences between DRAM refreshes

and memory requests that come outs during refresh periods by postponing the refresh

commands for a predicted time period, which is based on the average idle period of a

rank and the number of postponed refresh commands. In contrast to DUE [24], ER

defers the refresh commands even when the to-be-refreshed rank is idle. However,

ER becomes less effective under memory-intensive workloads since the average rank

idle period is too short to hide the refresh period. Moreover, ER can adversely incur

extra delay when it incorrectly predicts a time period as idle as discussed in Section

2.2.3.

Mukundan et al. [33] propose Delayed Command Expansion (DCE) and Pre-

emptive Command Drain (PCD) respectively, to mitigate refresh overhead. DCE

intentionally withholds admission of memory requests into the command queue if

the target rank is being refreshed to prevent them from wasting command queue re-

sources. PCD prioritizes commands that map to the to-be-refreshed rank to drain

these commands before the rank is refreshed. In doing so, PCD can make more room

for other commands that map to other ranks, thereby increasing parallelism among

ranks during refresh period.

Concurrent Refresh. Chang et al. [25] and Zhang et al. [23] proposed concur-

rent refresh mechanisms, both of which increase the refresh granularity to a subarray

so that refreshes and accesses can be serviced concurrently in different subarrays in

the same bank. RPC distinguishes itself from those concurrent architectures in the

following respects. First, our solution does not rely on the underlying DRAM organi-

zation and can be applied to a broad category of DRAM organizations. Second, it is

hard to eliminate conflicts completely between accesses and refreshes as each subarray
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contains dozens of rows. Bursty conflicts might happen when workloads have strong

locality as shown in Section 2.3.3. In contrast, depending on the caching policy and

cache size, RPC is able to reduce the probability of conflict between memory access

and refresh to a lower level.
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CHAPTER 3

ARCHITECTING DIE-STACKED DRAM AS A PART OF MEMORY

3.1 Introduction

Recent advances in die-stacking technology have made it possible to integrate

a large amount of DRAM in the same package of a processor. A processor and on-

chip DRAM are interconnected by a high-density, low-latency through-silicon vias

(TSVs). This technology has the potential to overcome the memory wall problem [3]

by providing an order of magnitude higher bandwidth and much lower latency for on-

chip DRAM. Prior work [39, 40, 41, 42, 43, 44] has proposed using die-stacked DRAM

as a hardware-managed last-level cache (i.e., DRAM cache). As the technology for

manufacturing die-stacked DRAM matures, the size of die-stacked DRAM could be

tens of gigabytes by integrating multiple DRAM stacks on a 2.5D interposer [45,

46]. Therefore, using die-stacked DRAM as a DRAM cache would squander a large

fraction of total memory space as the DRAM cache is invisible to the OS. Without

fully exploiting the memory capacity offered, applications with a large working set

would suffer a higher rate of page faults and therefore slowdown due to frequent

accesses to backend storage.

An alternative to using die-stacked DRAM as a cache is to use it as part of an

OS-visible memory space (i.e., PoM). In such a heterogeneous memory system, data

residing in on-chip DRAM is serviced at high bandwidth and low latency, while data

residing in off-chip DRAM is serviced at low bandwidth and high latency. However,

naively treating on-chip DRAM as a part of memory space renders the PoM design less

effective. To obtain high performance, on-chip DRAM needs to play two roles at the
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same time in a PoM architecture. The on-chip DRAM is not only a part of memory

space but also a cache for off-chip DRAM. In other words, requested data is swapped

or migrated to on-chip DRAM and victim data is swapped out to off-chip DRAM.

This swapping process can be done by either the OS or hardware. For OS-managed

approaches, the OS needs to monitor all page usage and migrate hot pages to the

on-chip DRAM. OS-invoked page migrations result in page table updates and TLB

shoot-downs, which are costly operations. Therefore, the page migrations under the

OS control cannot occur frequently so that hot pages in a short period of time could

not be migrated to the on-chip DRAM, resulting in performance loss. In contrast, in

a hardware-managed PoM architecture, the migration is transparent to OS, and can

be initiated at anytime when data is required. Hence, the hardware-managed PoM is

a promising design and we only consider hardware-managed PoM in this work.

Current PoM designs [47, 48] fall into two categories based on the granularity

at which they swap data: line-based and page-based (or segment-based). The line-

based design uses off-chip bandwidth efficiently as all swapped lines are demanded.

However, the line-based design could suffer from low hit ratio due to poor temporal

locality at the main memory layer as highly referenced cache lines have already been

filtered out by L1 and L2 caches. The page-based design swaps data at a coarser

granularity (typically 1-4KB), thus achieving a higher hit ratio by exploiting spatial

locality in the large granularity. However, the page-based design would waste precious

off-chip bandwidth as some lines may not be touched before they are swapped out.

The inefficient usage of off-chip bandwidth could lead to performance degradation,

especially for data-intensive applications.

To take advantage of both line-based and page-based PoM designs while avoiding

their respective drawbacks, we propose SELF [49], a high performance and memory

bandwidth efficient approach to using die-stacked DRAM as a part of memory. SELF
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only swaps those lines in a requested page that are likely to be accessed according to its

page footprint. In doing so, SELF enables most incoming requests to be serviced from

on-chip memory while avoiding swapping unused lines to save memory bandwidth.

3.2 Background and Motivation

As more cores are integrated into many-core chips to improve processing capa-

bilities and parallelism, the growth in core count requires a commensurate increase

in memory bandwidth. However, memory speeds have not kept pace with CPU per-

formance scaling, which has led to the memory wall problem [3]. Die-stacked DRAM

has been advocated as a promising technology to break the memory bandwidth and

latency wall. It provides an order of magnitude higher bandwidth and lower access

latency than off-chip DRAM due to the dense TSVs buses [50]. However, the capacity

of die-stacked DRAM is insufficient to fully replace off-chip DRAM due to technolog-

ical constraints [41, 48]. Thus, die-stacked DRAM and off-chip DRAM will co-exist

in future systems, and die-stacked DRAM can be used either as a cache or as a part

of main memory. Most prior work [40, 41, 42, 43, 44, 51, 52, 53] advocates using

die-stacked DRAM as a giant cache between the last level cache (LLC) and main

memory, and copes with challenges of tag storage overhead, hit ratio, hit/miss la-

tency and off-chip traffic etc. However, DRAM cache is invisible to the OS. In other

words, DRAM cache cannot contribute towards the main memory capacity, which

could lead to non-negligible performance loss due to increased page faults, especially

for modern server applications with a large working set size (WSS). As the technology

for manufacturing die-stacked DRAM matures, the size of die-stacked DRAM in each

package could be up to tens of gigabytes. In this case, using die-stacked DRAM as a

cache could waste a large fraction of total memory space.

Therefore, researchers have proposed using die-stacked DRAM as a part of mem-
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ory [48, 47, 54, 55] instead of a cache. However, we can only get marginal benefits

if the die-stacked DRAM is naively treated as a part of memory [55]. To obtain

high performance, highly referenced pages or lines need to be migrated to die-stacked

DRAM to take advantage of its high bandwidth and low access latency. This migra-

tion process can be performed by the OS or hardware.

3.2.1 OS-managed PoM

OS-managed PoM approaches need to track page usage to identify highly refer-

enced pages. For an on-chip DRAM with a capacity of N pages, the OS should choose

the top-N most referenced pages and map them into the on-chip memory at run-time.

However, the operating system has a limited capability to get such information from

the page table as the reference bit in each page table entry (PTE) cannot differentiate

which pages are most referenced. A typical solution is to use a counter in each PTE

to record the number of LLC misses per page, which would require extra hardware

support [56]. At the end of each epoch or interval (e.g. 100K cycles), the OS sorts

pages based on the access count and migrates the top-N hottest pages which are

resident in off-chip memory to the on-chip memory. At the same time, these pages

which are resident in on-chip DRAM but not belonging to the top-N hottest pages

are migrated back to off-chip DRAM. Then the OS has to update the page table to

reflect new mappings and invalidate corresponding translation lookaside buffer (TLB)

entries (i.e., TLB shoot-down) for consistency. Therefore, the data migration under

the OS control results in high overhead of sorting, copying pages back and forth be-

tween on-chip and off-chip memories, and TLB shoot-downs. As such, OS-managed

migration cannot be performed frequently, which could miss many opportunities to

improve performance by migrating pages that are highly referenced in short periods

of time. In addition, OS-managed data migration can only occur at a page granu-
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larity (typically 4KB). When a significant fraction of data lines are not referenced,

such page granularity transfers become very inefficient in terms of off-chip memory

bandwidth. In a word, OS-managed PoM approaches could neither exploit the full

benefits of on-chip DRAM at a coarse-grained interval nor utilize the off-chip memory

bandwidth efficiently at a page granularity.

3.2.2 Hardware-managed PoM

Hardware-managed PoM can avoid page table updates, TLB shoot-downs and

page sorting by maintaining a hardware-managed remapping table, which records

real locations after swapping. The remapping table is updated by hardware without

involving the OS after each data migration completes. Hence, the data migrations

under hardware control could occur whenever the requested data is not resident in the

on-chip memory, which could potentially improve the system performance. According

to swapping granularity, hardware-managed PoM designs fall into two categories: line-

based and page-based.

3.2.2.1 Line-based PoM

The line-based design swaps data at a line granularity. The small line granularity

ensures a low utilization of off-chip bandwidth, since all lines swapped into the on-chip

memory are demanded without wasting off-chip bandwidth. However, the line-based

design falls short of exploiting abundant spatial locality, and temporal locality at the

main memory layer is usually very poor as it has already been filtered out by the

L1 and L2 caches. As a result, the line-based design suffers from a high miss rate

of on-chip memory, accessing off-chip memory with low bandwidth and long access

latency frequently.
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Fig. 10. The performance of a state-of-the-art page-based PoM design [47] with

different page sizes. All requests are serviced from on-chip memory in the ideal case.

On average, the page-based design performs best at the page size of 4KB.

3.2.2.2 Page-based PoM

The page-based design swaps data at a page (1-4KB) granularity. Compared

to the line granularity, the large page granularity exploits abundant spatial locality,

which could result in a higher hit ratio. Hence, the performance can be potentially

improved as most misses in the LLC will likely be serviced from the on-chip memory

at high memory bandwidth and low access latency. However, the large swap granu-

larity could increase off-chip traffic as some unneeded lines of a swap-in page are also

swapped in on-chip memory. The increase of off-chip traffic prolongs latency of off-

chip accesses as the off-chip bandwidth is often overloaded, thus offsetting the benefit

of hight hit ratio. Figure 10 shows the performance of state-of-the-art page-based

PoM design while varying page size from 256B to 4KB. The results show that there is

no one page size that can fit all cases. Smaller page sizes even degrade performance

in some applications (e.g., dedup). On average, the page-based design performs best

at the page size of 4KB. However, there is still a big performance gap between the

best page-based design and the ideal case. The root cause is that the coarse page
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granularity cannot avoid wasting off-chip bandwidth, leading to saturation. In the

case of off-chip bandwidth saturation, all requests to off-chip memory need to wait a

long time in the transaction queue of memory controller, and are serviced sequentially,

significantly degrading system performance.

In conclusion, the line-based design uses off-chip memory bandwidth efficiently

but suffers from a low hit ratio due to limited temporal locality. In contrast, the page-

based design provides a higher hit ratio by exploiting spatial locality, while wasting

off-chip bandwidth due to swapping useless data. To take advantages of both line-

based and page-based designs while avoiding their drawbacks, we propose SELF, a

high performance and bandwidth efficient approach to using on-chip DRAM as a part

of memory.

3.3 Architecture and Design

In order to gain similar high hit ratio as the page-based design while avoiding

unnecessary off-chip traffic due to swapping useless data lines, we propose to selec-

tively swap data lines of a page that are likely accessed during the page’s residency in

on-chip memory instead of blindly swapping an entire page. However, current remap-

ping table of the page-based design does not support partial swapping as it cannot

differentiate which data line has been swapped due to its page granularity.

3.3.1 Remapping Table Design

To achieve partial swapping of a page, we design two remapping tables at the

granularity of page and line, called remapping page table (RPT) and remapping line

table (RLT), respectively. The RPT is used to track pages’ physical locations after

swapping while the RLT records all data lines’ physical locations in each page. In

other words, the RPT tells where the requested page is and the RLT further indicates
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Fig. 11. Direct remapping and corresponding remapping tables.

where the requested line is. With the cooperation of RPT and RLT, SELF can only

swap those lines in a page that are likely accessed in the future to save off-chip

bandwidth. In the PoM design, each LLC miss must first look up the remapping

table to determine the actual physical location of the requested data. Then the

memory controller can decide where to fetch the requested data from either on-chip

memory or off-chip memory. In theory, data in the off-chip memory can be swapped

to any location of on-chip memory in a similar way to a fully associative cache. In

this case, we may need to search the entire remapping table in the worst case. As

accessing the remapping table is on the critical path, searching the whole remapping

table could cause excessive latency. To reduce the remapping table lookup time, we

adopt direct-remapping, which is similar to the direct mapped concept in a cache

design. In other words, a page or a data line in the off-chip memory can only be

swapped to a specific location in the on-chip memory.

Figure 11 shows direct remapping applied in an example of memory system, in

which the on-chip memory has a capacity of N pages, and the off-chip memory has
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3N pages. Figure 11a shows direct page-remapping and corresponding RPT. Under

the direct page-remapping, a page is only allowed to be swapped with another page

mapped to the same entry of the RPT. For example, page A, page B, page C, page D

are mapped to entry 0 of the RPT, thus they can be swapped with each other. Figure

11b shows direct line-remapping and corresponding RLT. It works in a similar way

of the direct page-remapping. Due to the use of direct remapping, every remapping

information can be retrieved with a single access to a corresponding entry. The RPT

is indexed by the least significant log2N bits of the requested physical page number

(PPN) and the RLT is indexed by the least significant log264N bits of the requested

line address. However, both RPT and RLT are on the critical path, each LLC miss

needs to go through them sequentially. How to reduce or hide access latency of

these two remapping tables plays an important role to the system performance. The

RPT is small due to the use of coarse granularity. For the evaluated memory system

consisting of 4GB on-chip DRAM and 12GB off-chip DRAM, the number of the

RPTs entries is one million and each entry is a four elements tuple with two bits for

each element. Therefore, the size of RPT is 1MB. However, the RPT could be more

than ten megabytes as the on-chip DRAM keeps increasing. In order to be scalable

and reduce access latency, we store the RPT in the on-chip memory and use a small

SRAM (32KB), called RPT cache, to cache it. The RPT cache is indexed by the least

significant log2K bits of the physical page number, where K is the total number of sets

in the RPT cache. And the least significant log2N bits of the PPN is used as a tag.

The RPT cache is expected to gain a high hit ratio because of a good spatial locality

provided by the page granularity. In contrast, the RLT has a poor spatial locality

due to the use of fine-grained granularity and it is very large (64MB in our evaluated

system). Therefore, we choose to store the RLT in the on-chip memory only without

caching it, which causes an extra access to the on-chip memory as each request must
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Fig. 12. The data layout of on-chip memory after co-locating each data line with its

corresponding RLT entry.

first look up the RLT to determine the physical location of the requested line. To

hide the access latency of RLT, SELF co-locates each data line with its corresponding

RLT entry. This technique is also used in [40, 48]. To implement the co-located RLT,

we sacrifice memory space of one data line in each 2KB DRAM row, and use it to

store RLT entries for other 31 data lines. Thus, each RLT entry can have up to 2

bytes, leaving 2 bytes unused in each row. Figure 12 shows the data layout of on-chip

memory after co-locating each data line with its corresponding RLT entry. In order

to support the co-located RLT, we reserve 1/32 off-chip memory space. The reserved

space could be used for data that will not be swapped. Therefore, for a requested

line address X in on-chip memory, its actual physical address equals to X + X/31.

In doing so, a data line and its corresponding RLT entry can be streamed out in one

access. If the requested line is present in the on-chip memory by checking the RLT

entry, we can directly use the data line just read out together with the RLT entry,

without any extra access to the on-chip memory. If the RLT entry identifies that the

requested line is in the off-chip memory, then a second access for the desired location

in off-chip memory is performed.
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3.3.2 Page Swapping

In the direct page-remapping, some pages (e.g., 4 pages in our system) are

mapped to the same entry, and they compete for one location in the on-chip mem-

ory. When and which page should be swapped to the on-chip memory depends on

the swapping policy. Ideally, the swapping policy should choose the hottest page

in a certain period of time to be swapped to the on-chip memory, so that most in-

coming requests can be serviced from the on-chip memory. The most direct way is

to record the number of accesses to each page during an interval by associating a

counter with each page, then choose the page with the highest number of accesses

to be swapped to the on-chip memory. However, the ideal swapping policy is too

costly to implement in hardware. The simplest way is to swap the page to on-chip

memory once it is demanded, which could cause frequent page swapping, especially

when two pages mapped to the same entry are accessed in an interleaved fashion. As

a result, the requested two pages are swapped back and forth, leading to saturating

the off-chip bandwidth and wasted energy. In fact, pages residing in off-chip memory,

called off-chip pages, are competing with the page residing in on-chip memory, called

on-chip page. An off-chip page should be swapped to the on-chip memory as long

as it is hotter than an on-chip page. Based on that, we employ a cost effective way

by using a competing counter (CC) [47] to record the relative number of accesses. If

the requested page is in the on-chip memory, the CC is decreased by 1, otherwise it

is increased by 1. Once the CC is larger than the swap threshold, the off-chip page

which is being accessed is swapped with the on-chip page. In our system the swap

threshold is set to 8 (Section 3.4.7), so each CC only needs 4 bits. Due to address

alignment, each CC is allocated 8 bits, some of which can be reserved for future use.

To track page activity, each RPT entry is appended a CC.
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3.3.3 Page Footprints

To achieve partial swap of a page, we need to predict which data lines in the page

will be requested between two consecutive swap-in operations of the page and only

swap those lines to reduce memory bandwidth consumption when a page swapping

occurs. A lot of previous work [57, 58, 59, 60] demonstrate repetitive access patterns

in commercial workloads. In other word, a data line that was accessed in current

interval will likely be accessed in next interval. A page footprint records which data

lines were accessed between two consecutive swap-in operations of the page. Based on

that, we use page footprints to predict which lines in a page are likely accessed, which

is similar to the Footprint Cache [41]. However, in main memory there is no tag array

that can be used to record page footprints. Therefore, we redesign TLB to add a bit

vector in each TLB entry to record a page footprint and also add a bit vector in each

page table entry accordingly. The number of bits in a bit vector is equal to the page

size divided by the data line size, thus each page footprint is typically 64 bits. If each

core has a TLB of 32 entries, the storage cost of page footprints in the TLB is 256

bytes per core. The additional storage cost for page footprints in the page table is

negligible since the page table is stored in main memory or disk. As all data requests

have to lookup TLB, SELF can set the corresponding bits of the bit vector without

extra accesses to the TLB, and the page footprint obtained from TLB can be directly

used in the page swapping process without extra accesses to the page table either.

Thus, recording page footprints in the TLB is a cost effective way.

However, recording page footprints in the TLB could cause incoherent problem in

a multi-core system. As the page footprints’ incoherency would not affect programs’

correctness, we do not take any coherent action except any of these two cases occurs

to reduce maintenance overhead of page footprints. 1) When a TLB entry is evicted,
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the page footprint from TLB bitwise OR with its corresponding page footprint in the

page table and the result is saved in the page table but not synchronized with TLBs

to improve prediction accuracy; 2) When a page is swapped to on-chip memory, its

page footprints both in TLBs and the page table are reset to store the latest access

information to reduce overpredictions (i.e. a data line is not requested but it was

predicted). In either case, the related page table entry is updated. We update the

page table through a system call to the page table walk. In the second case, the

physical address is converted to a virtual address before the page table walk. We

maintain a modified inverted page table to translate physical addresses to virtual

addresses. Different virtual page mapped to the same physical page are stored in a

linked list. Since updating the page table is not on the critical path and the page

table can be accessed concurrently, the impacts of updating page table is negligible

on the performance.

3.3.4 Line Location Prediction

As discussed in Section 3.3.1, we can save one access to the on-chip memory when

the requested line is resident in on-chip memory by streaming the data line and RLT

entry together. However, for the off-chip access (i.e., the requested line is resident

in the off-chip memory), the RLT in the on-chip memory is accessed first to get the

physical location of the requested line, then the off-chip memory is accessed according

to the physical location. In this case, the off-chip access is serialized and occurs only

after accessing on-chip memory. To break the serialized off-chip accesses, we reuse

the RPT to predict line locations as the RPT itself has the information about page

locations and most data lines in a page are likely to have the same location as its page.

We use page locations obtained from the RPT to predict the locations of requested

lines. If the line is predicted to be in off-chip memory, the predicted location in the
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Fig. 13. Overview of SELF architecture. When the competing counter (CC) is larger

than the swap threshold, SELF selectively swaps lines in the requested page according

to its page footprint. Otherwise, SELF uses page location to predict the requested

line location to reduce latency of off-chip accesses.

off-chip memory will be accessed in parallel with on-chip access. If the prediction

is correct, the line from off-chip location is used and the latency of RLT access is

hidden. If the requested line is found in on-chip memory by checking the RLT entry,

then the prediction is ignored. In the worst case, the requested line is in off-chip

but it is predicted to be in a wrong off-chip location, a second access to the off-chip

location still need to be performed.

3.3.5 Put Everything Together

The SELF integrates all techniques presented in above sections, as shown in

Figure 13, where the on-chip memory accounts for a quarter of the total capacity.

For other ratios, SELF works similarly, but the storage overhead of the RPT and

RLT may be slightly different. ¶ A request from the processor accesses the TLB

to get its physical address (PA) of the requested data, and set corresponding bit in

its page footprint at the same time. · The RPT cache is accessed if the request is

missed in the LLC. If the request is a cache miss, then a corresponding RPT entry is

loaded to the RPT cache. Otherwise, a RPT entry related to the request is accessed.
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According the real location of the requested page, the CC of the accessed RPT entry

is updated. If the CC is larger than the swap threshold, SELF selectively swaps those

lines of the requested page to on-chip memory according to its page footprint obtained

from step ¶ and resets its CC and page footprint. Otherwise, SELF uses the page

location to predict the requested line location. If the requested line is predicted in

off-chip memory, the predicted location in off-chip will be accessed in parallel with

on-chip access, or only on-chip access will be issued if the requested line is predicted

in on-chip memory. ¸ The RLT entry and a data line are returned together from the

on-chip memory. According to the RLT entry, if the real location of the requested

line is in the on-chip memory, the data line is used to service the request directly

and ignore any prediction. If the real location of the requested line is in the off-chip

memory and was predicted correctly, memory controller only needs to wait until the

requested data returned from the off-chip memory. In this case, latency of retrieving

the RLT is avoided as it was issued in parallel with off-chip access to the predicted

location in step ·. However, if the real location of the requested line is in the off-chip

memory and was wrongly predicted, then an access to the real location in the off-chip

memory is performed.

In a word, all techniques applied in SELF work in concert to enable most in-

coming requests to be serviced from on-chip memory while avoiding swapping unused

lines to save memory bandwidth. SELF also reduces latency of off-chip accesses by

smartly reusing the RPT as a line location predictor.

3.3.6 Overhead Comparison

We compare the storage overhead of SELF with state-of-the-art line-based and

page-based designs, called CAMEO [48] and PoM [47], respectively. Table 5 shows

the storage overhead of these three designs under a memory system composed of
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4GB on-chip DRAM and 12GB off-chip DRAM. In such a system, there are 1 million

entries in the RPT. Each entry occupies 2 bytes (one byte is allocated to a CC and

the other byte is used to store page locations). Thus, the storage overhead of the RPT

is 2MB. Moreover, as discussed in Section 3.3.1, each DRAM row needs to sacrifice

one data line out of 32 data lines to implement the co-located RLT. Therefore, the

total storage overhead of RPT and RLT is 4GB/32 + 2MB = 130MB. Compared

to CAMEO and PoM, first, SELF requires additional storage space in the TLB, 256

bytes per core, to record page footprints. Second, SELF needs more SRAM space

than CAMEO. However, SELF could have higher prediction accuracy as CAMEO

only uses 512 bytes to record last accessed locations and relies on them to predict

requested line locations. Third, SELF consumes more space of on-chip DRAM than

PoM and CAMEO, but it is still negligible, only 3.2% of the total capacity. In

summary, SELF introduces more storage overhead than CAMEO and PoM, but it

achieves two conflicting goals of high hit ratio of on-chip memory and low off-chip

traffic.

Table 5. Storage Overhead Comparison.

Storage CAMEO PoM SELF

TLB N/A N/A 256B/core
SRAM 512B 32KB 32KB

on-chip DRAM 128MB (3.1%) 2MB (0.05%) 130MB (3.2%)

3.4 Evaluation

3.4.1 Evaluation Methodology

We use a full system and cycle accurate simulator, MARSSx86 [30], with a de-

tailed DRAM simulator, DRAMSim2 [26], for our evaluations. The DRAMSim2 is
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modified to support multiple memory instances. We use two instances of DRAMSim2

with different configurations [22] to model both on-chip DRAM and off-chip DRAM.

The evaluated memory system consists of 4GB on-chip memory and 12GB off-chip

memory. We use a system composed of 16GB off-chip DRAM without on-chip DRAM

as our baseline system. Table 6 shows the system configuration in our study.

Table 6. System Configuration.

CPU
Core 8 cores, 3.2GHz out-of-order, 4 issue width

L1-D/L1-I cache 8-way, 128KB/128KB, 2 cycles
L2 cache 8-way, private 1MB, 8 cycles

L3 16-way, shared 16MB, 24 cycles
RPT cache 4-way, 32KB, 2 cycles, LRU replacement

Die-stacked DRAM
Bus frequency 1.6GHz (DDR 3.2GHz)

Channels/Ranks/Banks 8/1/8
Bus Width 128 bits per channel

tCAS-tRCD-tRP-tRAS 11-11-11-28

Off-chip DRAM
Bus frequency 800MHz (DDR 1.6GHz)

Channels/Ranks/Banks 2/1/8
Bus Width 64 bits per channel

tCAS-tRCD-tRP-tRAS 11-11-11-28

We use the PARSEC 2.1 [27] benchmark suite to evaluate our design. PARSEC

2.1 includes emerging applications ranging from computer vision to financial analytics.

And it is a multi-threaded and memory-sharing benchmark suite, thus it is suitable

for evaluating memory system. Each benchmark of PARSEC has defined a range of

interest (ROI) to represent the workload and we checkpoint each benchmark at the

beginning of the ROI. We launch simulations from checkpoints with warmed caches

and page footprints to achieve a steady state. Each benchmark runs for 500 million

instructions with simlarge input dataset to collect statistical data.
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Fig. 14. Performance comparisons. On average, CAMEO and PoM improve perfor-

mance by 9.5% and 9.9%, respectively, while SELF improves performance by 26.9%,

which is 85% of the ideal case.

3.4.2 Performance Results

We compare SELF with CAMEO [48] and PoM [47]. We also compare these

three designs against an ideal memory system composed of all on-chip DRAM with-

out off-chip DRAM. The ideal memory system is also set to 16GB for fair comparison.

We use instructions per cycle (IPC) as our performance metric. Figure 14 shows the

performance results of various designs, which are normalized to the baseline system.

On average, SELF improves performance by 26.9%, which is 85% of the ideal case.

However, CAMEO and PoM improve performance by 9.5% and 9.9%, respectively.

From the figure we can see CAMEO in some benchmarks, e.g., freqmine and ray-

trace, is even worse than the baseline system. There are two possible reasons for

the surprising results. On the one hand, the temporal locality of these workloads is

very poor, thus most requests are serviced from the off-chip memory. On the other

hand, the line location predictor (LLP) used in CAMEO cannot work well with these

workloads as the LLP simply uses last accessed location to predict the requested line

48



location. The two aspects together cause the worse performance than the baseline

system. PoM in some workloads, e.g., fluidanimate, also performs worse than the

baseline system. The main reason is that these workloads have a poor spatial locality

which causes PoM to exhibit a low hit ratio of on-chip memory although it swaps at

a page granularity. In this case, the coarse swap granularity could easily saturate the

off-chip bandwidth, leading to a long latency for off-chip accesses. However, SELF

performs steadily in all benchmarks by combining all benefits from CAMEO and PoM

while avoiding their shortcomings.

3.4.3 Hit Ratio and Off-chip Traffic

To further understand the above performance results, we collect data about two

important performance metrics, hit ratio of on-chip memory and off-chip traffic, as

shown in Figure 15. Figure 15a shows the percentage of requests serviced from the

on-chip memory. Figure 15b shows how much data is read from the off-chip memory.

We simulate write requests in the evaluation but write traffic is not calculated as

write requests are not on the critical path. We compare SELF with CAMEO and

PoM, all results are normalized to the baseline. For simplicity, we analyze these three

designs respectively.

First, CAMEO gains the lowest hit ratio of on-chip memory among these three

designs, only 28% on average. As CAMEO can only capture temporal locality due to

the fine-grained line granularity used to swap data from off-chip memory to on-chip

memory. Therefore, the strength of workloads’ temporal locality decides the hit ratio

of on-chip memory. The freqmine and swaptions have a very low hit ratio, less than

5%, thus most requests are serviced from off-chip memory. That is why their off-chip

traffic is almost the same as the baseline. In general, CAMEO produces the least

off-chip traffic, 37% of the baseline, as every data line read from the off-chip memory
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Fig. 15. Two import performance metrics (a) hit ratio of on-chip memory and (b) off-

chip traffic. All results are normalized to the baseline. SELF achieves an average hit

ratio of 76% while reducing off-chip traffic to 46% of the baseline system. Although

PoM obtains the highest hit ratio, 89% on average, it also causes the highest off-chip

traffic, 153% on average.

are demanded although it gains the lowest hit ratio of on-chip memory.

Second, PoM design obtains the highest hit ratio of the fast memory, 89% on
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average. However, it also causes the highest off-chip traffic, 153% on average. Both

high hit ratio and heavy off-chip traffic are attributed to the large page granularity

used to swap data between on-chip and off-chip memories. Figure 15b shows swap-

tions and fluidanimate workloads have a very high off-chip traffic, especially for the

fluidanimate workload, which causes almost an order of magnitude higher off-chip

traffic than the baseline system. The high off-chip traffic could easily lead to saturat-

ing the off-chip bandwidth. As a result, requests missed in the on-chip memory need

to wait for a very long time in the transaction queue of memory controller, which

explains why fluidanimate gets the worst performance with PoM design, as shown in

Figure 14.

Last, our proposed SELF achieves an average hit ratio of 76%, which is close

to PoM design, and meanwhile reduces the off-chip traffic to 46% of the baseline

system. The high hit ratio indicates page footprint has a low rate of underprediction,

i.e., a data line is demanded but it was not predicted. In contrast, the low off-chip

traffic indicates page footprint has a low rate of overprediction, i.e., a data line is not

demanded but it was predicted. Therefore, the page footprint is a good predictor

for a page’s spatial pattern. SELF takes advantage of page footprint to do partial

swapping of a page to achieve both high hit ratio of on-chip memory and low off-chip

traffic. Moreover, SELF reuses the RPT to predict line locations of off-chip accesses

to shorten access latency. These techniques together ensures that SELF outperforms

CAMEO and PoM designs on average.

3.4.4 Prediction Accuracy

In SELF, we reuse the RPT to predict the requested line location based on the

location of page which the requested line belongs to. For assessing the accuracy of

RPT, we first describe five possible cases that can occur: 1) the requested line is in
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the on-chip memory and the RPT predicted correctly; 2) the requested line is in the

on-chip memory but the RPT predicted wrong; 3) the requested line is in the off-chip

memory but it was predicted in the on-chip memory; 4) the requested line is resident

in the off-chip memory and the RPT gave a right off-chip location; 5) the requested

line is resident in the off-chip memory but the RPT gave a wrong off-chip location.

Case 2, 3 and 5 are mispredicted cases, but have different misprediction penalties.

In case 2, the request can still be serviced from the on-chip memory quickly, but

energy and off-chip bandwidth consumed by off-chip access is wasted. In case 3, off-

chip access is performed after on-chip access, increasing access latency. The penalty

of case 5 is the sum of case 2 and 3. Table 7 shows the breakdown of prediction

accuracy. In summary, the RPT achieves an average accuracy of 85.5% across all

workloads.

Table 7. The breakdown of prediction accuracy.

Served by Prediction Percentage

On-chip
On-chip 75.5%
Off-chip 4.1%

Off-chip
On-chip 4.8%

Off-chip (right) 10%
Off-chip (wrong) 5.6%

Overal Accuracy 85.5%

3.4.5 Energy Analysis

Figure 16 compares various designs in terms of energy per access. The energy per

access is defined as total energy consumed by on-chip and off-chip memories without

considering peripheral wires divided by the number of read and write requests. The

results are normalized to the baseline system. We calculate power consumption based

on the Micron Power Calculator [61] and the Micron DDR3 data sheet [22]. We modify
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Fig. 16. Energy consumption. On average, CAMEO, PoM and SELF reduce energy

per access by 31.3%, 27.6% and 47.9%, respectively.

power parameters according to the power number reported in [62] for the on-chip

memory. The results show that CAMEO, PoM and SELF reduce energy consumption

by 31.3%, 27.6% and 47.9%, respectively. Comparing these designs, CAMEO has zero

overprediction while PoM has the most overpredictions among these three designs.

Each overprediction wastes energy and increases off-chip traffic. The increased off-chip

traffic may prolong the execution time, resulting in more static energy consumption.

Therefore, PoM consumes more energy than CAMEO on average, especially for the

fluidanimate workload as it causes the highest off-chip traffic, as shown in Figure

15b. Running the freqmine workload, CAMEO even consumes more energy than the

baseline system. As this workload gets a very low hit rate of on-chip memory, most

requests still need to access the off-chip memory to get the requested data after first

accessing the on-chip memory, which causes a lot of extra on-chip accesses, compared

to the baseline system where each request only requires one off-chip access. These

extra on-chip accesses cause CAMEO to consume more energy than the baseline
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Fig. 17. Hit ratio of RPT cache across different cache size.

system. However, SELF reduces energy consumption across all workloads due to its

high hit ratio of on-chip memory and low off-chip traffic.

3.4.6 Sensitivity to RPT Cache Size

We adopt a RPT cache to shorten access latency of the RPT. If a request hit

in the RPT cache, the requested page location can be obtained quickly. Otherwise,

the request needs to access the on-chip memory instead to get a corresponding RPT

entry, which causes a much longer latency. Therefore, the effectiveness of the RPT

cache is crucial to the system performance. Figure 17 shows the hit ratio of the RPT

cache when we change its size from 8KB to 64KB. From the figure, all workloads can

get a high hit ratio even with a 8KB RPT cache. On average, the hit ratio is 77.5%,

83.5%, 85.8% and 87%, respectively. The hit ratio of the RPT cache can be improved

marginally by increasing the cache size after the RPT cache reaches 32KB. Thus, we

choose 32KB as the RPT cache size.
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Fig. 18. Performance sensitivity to various swap thresholds (6, 8, 12, and 16).

3.4.7 Sensitivity to Swap Threshold

In SELF system, page swapping occurs when the CC is larger than the swap

threshold. Thus, the swap threshold is closely related to the system performance.

We perform a sensitivity study of swap threshold on the system performance and

Figure 18 shows the results. There is no one swap threshold that can fit all work-

loads. For example, ferret and swaptions prefer small swap threshold as their spatial

localities are strong. The earlier requested page is swapped to the on-chip memory,

the better performance SELF can achieve. In contrast, for freqmine and raytrace

benchmarks, the performance is improved as the swap threshold increases. However,

the performance becomes worse in most workloads when the swap threshold is set to

16. The high swap threshold could make most pages have no chance to be swapped to

on-chip memory, causing most requests to be serviced from off-chip memory. In this

case, SELF could be degraded to the baseline system. For example, the performance

of ferret is close to the baseline system when the swap threshold is set 16. There-

fore, the ideal value of swap threshold should be configured according to the access
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pattern of each workload. However, we set it to 8 as a good trade-off since SELF

achieves the best performance on average in this case. To improve the adaptability

of swap threshold in the future, we are trying to use several small regions in on-chip

memory as sampling regions and apply different swap thresholds for them. The swap

threshold which can produce the highest benefit in current interval is adopted for the

next interval. In doing this, the swap threshold is changed dynamically to adapt to

the access pattern.

3.5 Related Work

DRAM Cache. A large body of previous work [39, 40, 41, 42, 43, 44, 51, 52,

53, 63] has proposed using on-chip DRAM as a hardware-managed cache between the

LLC and main memory. DRAM caches can also be classified into two categories by

caching granularity: line-based and page-based. These two categories have the same

problems stated in this work. To alleviate the over-fetching problem of the page-

based design, Footprint Cache [41] and Unison Cache [42] use a footprint predictor

to identify and fetch only those lines within a page that will be requested during

the page’s residency in the DRAM cache. In doing so, they eliminate the excessive

off-chip traffic associated with page-based cache designs, while preserving their high

hit ratio. They are similar to our work but the on-chip DRAM is used as a cache and

the tag array provides sufficient information about page footprints while this kind of

information is missing in the main memory layer.

Part-of-Memory (PoM). DRAM cache has the advantage of being transparent

to the OS. However, DRAM cache cannot contribute towards capacity of main mem-

ory, which could lead to non-negligible performance loss. Thus, many researchers

advocate using die-stacked DRAM as a part of memory. Some hybrid approaches

managed by both software and hardware have been proposed besides the hardware-
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managed PoM designs. Meswani et al. [54] propose the first-touch hot-page (FTHP)

approach to managing a heterogeneous memory architecture (HMA). This approach

needs support from both hardware and software. An access count is added to each

TLB and page table entry to track the number of page accesses. At the end of an

epoch, all pages whose access count is larger than the hotness threshold θ are treated

as hot pages. The OS selects first N (N is the size of the die-stacked DRAM) hot

pages to place in the stacked memory and updates corresponding PTEs. If the num-

ber of hot pages is more than N, the OS increases the hotness threshold, otherwise

decreases it. In the case when the size of hot pages is less than N, the OS adopts

first-touch policy to allocate requested pages in the stacked memory until it is used

up. Although this approach makes use of hardware to fasten page profiling, the page

table updates and TLB shoot-downs handled by the OS are still very costly, as dis-

cussed in Section 3.2.1. Thereby, page migrations cannot happen so frequently that

many opportunities to improve performance could be missed.

Oskin et al. [55] propose a software-managed and hardware-assisted approach to

use die-stacked DRAM as a part of memory. This approach leverages two techniques

to make it be feasible. The first is a hardware-assisted TLB shoot-down to accelerate

this process; the second is a software-implemented prefetcher that extends classic

hardware prefetching algorithms to the page level. This approach requires simpler

hardware than our approach, however, it performs data migration between on-chip

and off-chip memories at a granularity of page, resulting in waste of the off-chip

memory bandwidth.
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CHAPTER 4

PAGE PLACEMENT IN DIE-STACKED DRAM/NVM MEMORY

SYSTEMS

4.1 Introduction

The demand for memory capacity and bandwidth keeps increasing, which is

mainly driven by the growing memory requirements of new applications, and the

increasing number of processing cores in a single chip. However, the conventional

DRAM-based memory systems cannot meet these needs due to scalability and power

issues. First, the bandwidth of DRAM has not kept pace with processor scaling, which

has led to the memory wall problem [3]. Second, DRAM dissipates considerable power

and has been reported to account for as much as 40% of the power consumed by a

high-end server [4]. The problem exacerbates with the increasing DRAM capacities,

making such servers less energy proportional. Fortunately, emerging memory tech-

nologies provide some desired features, such as high performance, high density, and

low power, but there is no single memory technology that owns all desired features.

Thus, a hybrid architecture could be a promising way to build a high performance,

large capacity, and energy efficient memory system.

To achieve this goal, we combine high bandwidth memory (HBM) and phase

change memory (PCM) to constitute a hybrid memory system as they have comple-

mentary features. HBM [46] is a type of die-stacked DRAM and has the potential to

overcome the memory wall problem by providing an order of magnitude higher band-

width and lower latency than conventional DRAM, but its capacity is limited (cur-

rently several gigabytes). PCM is a byte-addressable non-volatile memory (NVM),

58



thus it has near-zero standby power. Compared to conventional DRAM, PCM can

offer high density, but it has longer access latency (∼2x for reads and 8x-16x for

writes [64]) and limited write endurance. Due to their limitations, neither HBM nor

PCM can replace conventional DRAM solely as a main memory. Thus, we combine

them to form a hybrid memory system to take advantage of HBM and PCM while

avoiding their disadvantages as many as possible. In order to fully exploit high per-

formance (i.e. high bandwidth and low latency) offered by HBM and large capacity

offered by PCM, hot pages should be migrated to HBM to improve performance and

cold pages should be stored in PCM to save energy. Therefore, how to identify hot

pages is very critical. A lot of work regarding DRAM/NVM hybrid memory systems

[7, 8, 9, 10] has been proposed. RaPP [9] adopts a modified multi-queue [65] to

profile page access and migrate top ranked pages to DRAM. RaPP is demonstrated

to be effective to identify hot pages. However, it requires a sophisticated memory

controller to maintain the Multi-Queue structure. HSCC [10] tracks page access via

extending page table and translation lookaside buffer (TLB) and fetches those NVM

pages whose access counts become larger than a given threshold into DRAM. Tracking

page access in TLB incurs synchronization cost due to page sharing between different

cores, especially when the number of cores is high. In summary, existing solutions

track page hotness via redesigning memory controller or extending TLB. Therefore,

they can be costly to be implemented. Moreover, the hot page migration only occurs

when the number of page accesses exceeds the threshold, which could miss lots of

opportunities to improve performance.

We propose a cost-effective and energy-efficient architecture for die-stacked DRAM

/NVM memory systems, especially for HBM/PCM memory systems, called Dual Role

HBM (DR-HBM) [66]. In DR-HBM, HBM plays two roles and is divided into two

parts. A small portion of which, called HBM cache, is used as a cache for PCM.
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The remaining HBM and PCM together constitute the main memory. In our design,

the HBM cache has two purposes. On one hand, the HBM cache is used to bridge

performance gap between the last level cache (LLC) and PCM, and absorb write

requests to prolong PCM’s lifetime. On the other hand, the HBM cache is also used

to track page access. A page whose access count is higher than the migration thresh-

old is going to be migrated to the HBM. In doing so, hot pages reside in the HBM

cache before migration and then reside in HBM after migration. As a result, most

requests will be serviced from the fast memory including HBM and the HBM cache,

improving system performance1. Moreover, we propose three techniques to improve

performance further and reduce writes to the PCM. First, CSM (cache on the second

mis) increases the effectiveness of HBM cache and reduces PCM traffic by avoiding to

cache singleton pages that contain only single useful data blocks; Second, hot pages

are migrated to HBM in batches to amortize TLB shoot-down overhead; Last, we

propose Hot First LRU (HF-LRU) page replacement policy and increase the weight

of write operation to reduce writes to the PCM. The experimental results show that

DR-HBM outperforms two state-of-the-art hybrid memory systems, called RaPP [9]

and CAMEO [48], respectively. Compared to the baseline without page management,

DR-HBM improves the performance by 63% while reducing energy consumption by

32.9% on average.

4.2 Background and Motivation

4.2.1 Emerging Memory Technologies

Die-stacked DRAM is a new memory technology where multiple DRAM dies are

stacked vertically to form a DRAM stack. DRAM dies in each DRAM stack are con-

nected by high-density, low-latency through-silicon vias (TSVs) [67]. A DRAM stack
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can be stacked on top of or next to (“2.5D stacking”) a processing chip. By integrat-

ing multiple stacks on a 2.5D interposer, the capacity of die-stacked DRAM could be

more than ten gigabytes. However, it is still insufficient to fully replace conventional

DRAM [41, 48]. As die-stacked DRAM are integrated in the same package with the

processor, avoiding the conventional pin-count limits on both the memory and proces-

sor packages, die-stacked DRAM can provide an order of magnitude higher bandwidth

and lower latency than conventional off-package DRAM. For example, a single DDR3

channel clocked at 1600 MHz can provide a peak bandwidth of 12.8GB/s. Thus, a

typical memory system that is equipped with 2-4 channels can provide a bandwidth of

25.6GB/s-51.2GB/s. While a single stack of die-stacked DRAM with eight channels,

each of which has 128 bits at a data transfer speed of 1Gbps, can provide a peak

bandwidth of 128GB/s in total. Similarly, a stacked memory system that includes 4

stacks can offer a bandwidth of 512GB/s. As the die-stacking technology becomes

mature, die-stacked memory systems could provide even higher bandwidth by inte-

grating more DRAM stacks in the on-chip package. Therefore, die-stacked DRAM

technology has been widely embraced by industry as a viable solution to the “Mem-

ory Wall”problem [3]. Multiple industry standards such as High Bandwidth Memory

(HBM) [46] and Hybrid Memory Cube (HMC) [45] have emerged to support this

technology. In this work, we choose HBM as a representative of die-stacked DRAM.

As DRAM-based memory system is consuming an increasing proportion of the

power budget, power consumption becomes a major concern while scaling. Non-

volatile memory, such as PCM, is attracting more attention as a promising candidate

for next generation memories [7, 8, 68, 69, 70, 71, 6]. PCM has the same organization

as DRAM [6], but is a type of non-volatile memory. A PCM-based memory system

has one or more memory controllers, each of which manages one or more channels.

Each channel is composed of several ranks (1-4). A rank is a collection of PCM chips
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that together feed the 64-bit data bus. A rank is typically partitioned into 8 banks.

Each bank consists of a two-dimensional array of PCM cells. A PCM cell consists

of an access transistor and a storage resistor made of a chalcogenide alloy. With the

application of heat, the alloy can be switched between two states, amorphous and

polycrystalline. The amorphous phase has high resistance, whereas polycrystalline

phase has low resistance. The difference in resistivity between the two states can

be three to five orders of magnitude. Thus, some intermediate resistances that are

achieved by controlling the proportion of the two states in a PCM cell have made

it possible to store multiple bits per cell (MLC) [72]. The data stored in the cell is

retrieved by sensing the alloy’s resistance by applying very low power. Compared

to conventional DRAM, PCM can offer higher capacity, especially for MLC PCM,

and much lower static power. However, PCM has longer access latency (about 2x for

reads and 8x-16x for writes) than DRAM and limited write endurance. These two

drawbacks hinder PCM from being a replacement of DRAM.

In summary, both die-stacked DRAM and PCM cannot fully replace conventional

DRAM separately due to their own limitations. However, there is clear incentive

for combining these two technologies into a hybrid memory system as they have

complementary features.

4.2.2 Hybrid Memory Systems

There have been a number of research efforts on managing and architecting

hybrid/heterogeneous memory systems [48, 47, 54, 7, 8, 9, 73, 74, 10, 75, 76, 77].

Most of them are comprised of two memory technologies with different characteristics.

For generality, the memory that has lower access latency but smaller capacity is called

fast memory. On the contrary, the memory that has higher access latency but larger

capacity is called slow memory. The fast memory can be organized in two ways.
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Fig. 19. Typical hybrid memory system architectures.

One way is to architect the fast memory as a cache/buffer for the slow memory, as

shown in Figure 19a. In this hierarchical architecture, the fast memory is a hardware-

managed cache and it is transparent to OS. Therefore, applications can run without

being modified. This architecture is good for a small fast memory (up to hundreds

of megabytes). When the fast memory becomes larger, such as several gigabytes,

the system loses a non-negligible portion of main memory space as the fast memory

cannot contribute to overall main memory capacity, leading to a higher rate of page

fault for capacity-constrained workloads and degrade system performance.

The other way is to organize the fast and slow memories together as a flat-

addressable main memory, as shown in Figure 19b. Both the fast and slow memories

are visible to the OS. For such system organization, the main challenge is to intel-

ligently place and migrate data between the different memories to ensure optimal
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performance and energy efficiency. CAMEO [48] migrates requested data lines to the

fast memory on demand and swap victim lines out to the slow memory. In other

words, data swap occurs once the requested data is not in the fast memory. This ap-

proach is originally designed for the hybrid memory system composed of die-stacked

DRAM and off-package DRAM (i.e. conventional DRAM). The frequent data swaps

have low impact on off-package DRAM, whereas they will add overhead and wear

out PCM memory quickly since PCM has higher write latency, higher write energy

and limited write endurance. Thus, migrating the requested data on demand is not

suitable for hybrid memory systems where the slow memory is a NVM. A lot of work

regarding DRAM/NVM hybrid memory systems [7, 8, 9, 10] has been proposed to

migrate hot pages to DRAM and store cold pages in NVM. PDRAM [7] tracks page

access in the memory controller where each page is associated with a write counter.

Hot pages whose write count are larger than a given threshold are migrated to the

fast memory. However, the migrations target frequently written pages, leaving read-

intensive pages in the slow memory. HSCC [10] tracks both read and write accesses

via extending page table and TLB. Recording page access in the TLB is straightfor-

ward, but incurs high synchronization overhead due to page sharing between different

cores, degrading system performance. RaPP [9], a page placement policy, adopts a

modified multi-queue (MQ) [65] to rank memory pages. MQ defines M LRU queues

of page descriptors, numbered from 0 to M−1. Each descriptor includes the physical

page number (PPN), a reference counter, and an expiration time. The descriptors

in queue M − 1 represent the pages that are most frequently accessed. On the first

access to a page, its descriptor is placed in the tail of queue 0. At the same time, its

expiration time is set to CurrentT ime+LifeT ime. Every time the page is accessed,

its reference counter is increased by 1. If a descriptor is in queue i, it will be upgraded

to queue i + 1 once its reference counter reaches 2i+1. On the contrary, a page will
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be demoted and its descriptor is placed at the tail of the immediately inferior queue

if the page is not accessed before it is expired. A page demoted twice without any

intervening accesses is removed from the MQ. A page stored in the slow memory is

scheduled for migration to the fast memory after its reference counter reaches the

migration threshold. This approach is demonstrated to be effective, but it requires

a sophisticated memory controller to maintain the MQ structure. It is costly to re-

design the memory controller. In summary, the ways used to profile memory access in

existing hybrid memory systems are costly due to redesigning the memory controller

or extending TLB. Moreover, the hot page stays at the slow memory until its ac-

cess count exceeds the migration threshold, which could miss lots of opportunities to

improve performance. To solve this problem, we propose a cost-effective and energy-

efficient architecture for die-stacked DRAM/NVM memory systems, especially for

HBM/PCM memory systems, called Dual Role HBM (DR-HBM).

4.3 Architecture and Design

As PCM is slower than DRAM and has limited write endurance, researchers

have proposed to employ a small DRAM buffer on top of PCM [68, 75] to shorten

access latency and reduce the number of writes to PCM. However, this approach is

not suitable for the hybrid memory system composed of HBM and PCM due to two

reasons. First, HBM could be up to tens of gigabytes as the die-stacking technology

becomes mature. Thus, using HBM as a cache would squander a non-negligible

portion of memory space as HBM is not visible to OS. Second, architecting HBM

as a huge cache between the LLC and main memory incurs high storage overhead

for tags. For example, 1GB DRAM cache with 64-byte blocks requires 96MB of tag

storage [39]. Based on these reasons, we divide HBM into two parts. A very small

part (e.g. 128MB), called HBM cache, is used as a hardware-managed cache and the
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Fig. 20. The architecture of DR-HBM. The miss table (MT) and hot page buffer

(HPB) are reserved in HBM cache.

remaining is used as a part of main memory, as shown in Figure 20. It is worth noting

that the HBM cache is only used to cache the pages residing in the PCM and will

be bypassed if the requested pages are located at HBM. Our design goal is to cache

the hot pages in a short period of time at the HBM cache and store long-term hot

pages at HBM directly. In doing so, most requests will be serviced either from the

HBM cache or from HBM directly, minimizing the access to PCM. As a result, the

performance is improved and the lifetime of PCM is prolonged.
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4.3.1 HBM Cache Design

The HBM cache is designed to bridge the latency gap between LLC and PCM,

and absorb write requests to prolong PCM’s lifetime. In order to achieve this goal,

we need to ensure a high hit ratio of the HBM cache and a low miss penalty. As most

frequently accessed data lines have already been filtered by CPU caches (i.e. L1, L2,

and LLC), the temporal locality is poor at the main memory layer [41]. We adopt a

page granularity at which requested data is loaded to the HBM cache to exploit spatial

locality. As a result, the hit ratio of HBM cache can be improved. When a request

is missed at the HBM cache, the entire requested page is read out from the PCM

memory and then is written to the HBM cache. The miss penalty is directly related

with PCM’s row buffer management and address mapping policies. In order to reduce

the miss penalty, we use the open page [15], a row buffer management policy, for

PCM to avoid activation operations for subsequent data lines in the requested page.

Moreover, we adopt the “channel:row:column:bank:rank”address mapping policy to

maximize the row hit rate of PCM as the row bits are placed as most significant bits

(MSB). In doing so, the missed page can be loaded to the HBM cache quickly to

reduce miss penalty.

4.3.2 HBM Cache Bypassing

Compared with conventional DRAM, PCM provides higher density but it has

longer access latency. Hence, PCM has lower bandwidth than DRAM with the same

number of channels and ranks. Due to the memory wall problem, lower bandwidth

could make this problem even worse, leading to performance degradation. Therefore,

we should alleviate PCM traffic as much as possible. We adopt page granularity to

load pages to the HBM cache. On one hand, the coarse granularity can improve
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Table 8. Workload Statistics.

Memory
Workload

Percent of Hot page Hot page
LLC Memory

singleton min # page
intensity pages access percent MPKI footprint

Low
gobmk 15.9% 67 37.4% 3.0 848MB
astar 6.6% 128 38.4% 3.4 4.6GB

Medium

facesim 16.2% 64 30.1% 9.3 7.5GB
mcf 23.8% 343 24.6% 10.1 786MB

sjeng 3.8% 128 17% 16.7 5.5GB
libquantum 22.6% 262 56.4% 13.6 1.1GB

High

bwaves 14.9% 117 37.2% 27.1 23.8GB
milc 14.2% 64 41.5% 23.2 10.9GB

cactusADM 18.8% 56 11.5% 23.1 17.3GB
canneal 17.6% 68 18.9% 26.6 5.4GB

lbm 11.6% 128 44.2% 31.0 12.8GB

hit ratio of the HBM cache. On the other hand, the page granularity could waste

bandwidth as some fetched pages could not be reused before they are evicted from the

HBM cache. Our experiments show that a non-negligible portion of pages contains

only single useful data line (typically 64 bytes). Such pages are called singleton pages

[41]. Table 8 shows most workloads have more than 10% of singleton pages. As

caching singleton pages wastes PCM bandwidth and HBM cache capacity, we devise

a simple but effective policy, called cache on the second miss (CSM), to avoid caching

singleton pages in the HBM cache. To achieve that, we maintain a miss table (MT)

to record which pages are missed one time at the HBM cache. The MT and HBM

cache are accessed in parallel, as shown in Figure 20. When a request missed at the

LLC reaches the HBM cache, the request is serviced from the HBM cache if it is a

hit. There are two cases if a request is missed at the HBM cache: 1) The requested

PPN does not exist in the miss table. The requested page is treated as a singleton

page. Therefore, the HBM cache is bypassed and the request is serviced directly from

PCM. Meanwhile, the requested PPN is inserted into the miss table. In this case,
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only the requested data line is read out instead of reading the entire requested page

from PCM to save bandwidth; 2) The requested PPN exists in the miss table. As the

first missed data line is likely cached in CPU caches, the second miss indicates the

requested page is not a singleton page. Hence, the entire requested page is loaded to

the HBM cache and the requested PPN is removed from the miss table. In a word,

CSM increases the effectiveness of HBM cache and reduces PCM traffic by avoiding

to cache singleton pages, thereby improving system and saving energy.

4.3.3 Page Migration

In an HBM/PCM hybrid memory system, we face the same problem as other

hybrid memory systems - which pages should be placed in the HBM. That is important

for performance and PCM’s lifetime. As tracking all page accesses is very costly, DR-

HBM only tracks active pages that are cached in the HBM cache since tracking

non-active pages is useless. Each cached page is tracked by using a counter to record

the number of accesses. Compared with previous page tracking methods, our method

is cost-effective due to two reasons. 1) The HBM cache is very small compared to the

entire memory space; 2) DR-HBM does not need additional hardware support. When

a page is evicted from the HBM cache and its access count is higher than a given

threshold that is called migration threshold, the page is identified as a hot page. To

figure out the migration threshold, we have conducted experiments on a test system

where main memory only consists of PCM. The HBM cache with the same size as

DR-HBM system is applied on top of the PCM to profile the minimum number of

access of hot pages during their residency in the HBM cache. In our experiments, we

define a workload’s hot pages as the most frequently accessed pages that contribute

to 70% of total page accesses. A hot page could be loaded to the HBM cache for

many times, we only record the highest number of access among all residencies in the
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HBM cache. Table 8 shows most workloads’ hot pages are accessed at least 64 times

during their residencies in the HBM cache. Therefore, we choose 64 as the migration

threshold in our system.

The page migration can be performed either by hardware or by OS. The hardware-

managed page migration is transparent to OS and can be done quickly. However, it

needs complicated hardware support and also need to maintain a remapping table

to record new page mappings. For each request missed in the LLC, the remapping

table has to be looked up, adding extra latency for memory access. For the OS-

managed page migration, the OS directly updates page table instead of maintaining

a remapping table, and issue necessary TLB flushing instructions on each core of the

system where there potentially is a stale TLB entry to keep consistent with the OS

page table. This process is know as a TLB shoot-down. TLB shoot-down incurs high

overhead and impacts system performance [78, 79]. As a result, the OS-managed

page migration cannot occur frequently. Mark et al. [55] propose a hardware-assisted

TLB shoot-down to speed up the TLB shoot-down process by using a specific hard-

ware. However, we try to avoid using complicated hardware to make our design to

be practical. Therefore, we adopt the OS-managed approach to migrate hot pages.

To cope with the high overhead of TLB shoot-down, we propose a lazy migration

policy by deferring page migrations. In other words, when a page is evicted from the

HBM cache and its access count is higher than the migration threshold, the page is

copied to a buffer, called hot page buffer (HPB), instead of migrating the hot page

to HBM immediately. When the HPB is full, all buffered hot pages are migrated to

HBM in a batch. After the migration process finishes, the page table is updated and

TLBs are flushed in a batch to amortize the shoot-down overhead [80]. To support

page table update, We maintain a global inverted page table to translate physical

addresses to virtual addresses. Different virtual pages mapped to the same physical
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page are stored in a linked list. In order to service read requests for hot pages that

are being migrated, the HPB is cleared after the new page mappings are finalized.

Therefore, the HPB is still accessible during migration process and is designed to be

accessed in parallel with the HBM cache to improve performance, as shown in Fig-

ure 20. However, the write requests and following read requests for being migrated

pages must be paused until the migration finishes [81]. These requests have to be

done at the new memory location for correctness. Long write pauses hurt application

responsiveness and performance. Although a large HPB is helpful to amortize TLB

shoot-down overhead, we adopt a HPB with 32 entries (i.e. 32 pages) as a good trade

off since a large HPB could prolong write pauses. Moreover, we use two hot page

buffers to store evicted hot pages from the HBM cache alternatively. When a HPB

is full and is scheduled to be migrated, the other HPB is used to store evicted hot

pages. In doing so, the migration and eviction processes can be proceeded in parallel.

4.3.4 Write Reduction

As the write requests to PCM not only wear it out, but also increase the effective

read latency by almost 2X, causing significant performance degradation [64, 71], the

writes to PCM should be minimized as much as possible. To this end, we analyze

four possible cases that can occur when a page is evicted from the HBM cache, as

shown in Table 9. Hot pages do not need to be written back to PCM whether they

are dirty or not. However, the cold and dirty pages still need to be written back

to PCM . Based on these observations, we reduce the number of writes from two

aspects. First, as the hot pages are expected to be migrated to HBM, we devise a

new page replacement policy, called Hot First LRU (HF-LRU). The HBM cache is

implemented as a set associative cache. When a set is full and a page needs to be

evicted, the oldest hot page is selected for cache replacement. If there is no hot page
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in this set, then the traditional LRU policy is applied to choose the least recently

used page for replacement. Second, due to the asymmetric read/write performance of

PCM, we increase the weight of write to migrate more write intensive pages to HBM.

The access count is increased by two for each write request while it is increased by one

for each read request. In doing so, write intensive pages get higher chance to become

hot pages. reducing the number of write-back. In other words, the probability of

occurrence of case 4 is reduced. As a result, the number of writes to PCM is reduced

by applying these two methods together.

Table 9. Page Eviction Cases in HBM Cache.

Case Hot Dirty Written back

1 3 5 5

2 3 3 5

3 5 5 5

4 5 3 3

4.4 Evaluation

4.4.1 Evaluation Methodology

We implement DR-HBM with zsim [82] and DRAMSim2 [26] simulators. Zsim

is a fast x86-64 and Pin-based [83] multi-core simulator. We add page table and TLB

modules to support page migration. DRAMSim2 is a cycle accurate and detailed

memory system simulator and is modified to support multiple memory instances. We

use two instances of DRAMSim2 with different configurations to model HBM and

PCM. The evaluated memory system consists of 4GB HBM and 32GB PCM and is

managed at a page granularity (4KB). The parameters of HBM are set according

to the DDR3 specification [22] except bus frequency and width. We double the bus

frequency and width as HBM has lower access latency and higher bandwidth than
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Table 10. System Parameters.

CPU
Core 16 cores, 3.2GHz in-order

L1-D/L1-I cache 8-way, 64KB/64KB, 2 cycles
L2 cache 8-way, private 256KB, 8 cycles

L3 16-way, shared 16MB, 24 cycles

HBM (4GB)
Bus frequency 1.6GHz (DDR 3.2GHz)

Channels/Ranks/Banks 8/1/8
Bus Width 128 bits per channel

tCAS-tRCD-tRP-tRAS 11-11-11-28 (cycles)
HBM cache 128MB, 16-way HF-LRU replacement

PCM (32GB)
Bus frequency 400MHz (DDR 800MHz)

Channels/Ranks/Banks 2/1/8
Bus Width 64 bits per channel

tCAS-tRCD-tRP-tRAS 11-40-100-52 (cycles)
Read/write on row buffer hit 1.72 pJ/bit

Read and write on row buffer miss 79.46 pJ/bit and 1642.75 pJ/bit

DDR3. Timing and energy parameters of PCM are referred to [69]. We use a system

composed of the same amount of HBM and PCM without page management as our

baseline. We also implement CAMEO [48] and RaPP [9], two state-of-the-art hybrid

memory systems, for comparison. Table 10 shows the system configuration in our

study.

We evaluate a number of workloads with different memory access patterns from

SPEC CPU2006 [84] and PARSEC 2.1 [27]. Gobmk, astar, mcf, sjeng, libquantum,

bwaves, milc, cactusADM and lbm are selected from SPEC CPU2006. Facesim and

canneal are selected from PARSEC. Based on the LLC miss per thousand instruction

(MPKI), we classify all workloads into three categories: low (MPKI < 5), medium (5

6 MPKI < 20), high (MPKI > 20). The LLC MPKI indicates the memory intensity.

We select variety of workloads with different memory intensities for evaluation. Table
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Fig. 21. Performance comparisons. On average, CAMEO and RaPP improve perfor-

mance by 25% and 37.1%, respectively, as compared to the baseline, while DR-HBM

improves performance by 63%.

8 shows the LLC MPKI and memory footprint for each workload. The evaluation is

performed by launching 16 processes and each core executes a copy of the workload.

In our experiments, the HBM cache is set to 128MB and the migration threshold is

set to 64. We study the sensitivity of these two parameters in Section 4.4.6.

4.4.2 Performance Results

We compare the performance of DR-HBM with CAMEO and RaPP. We use

instructions per cycle (IPC) as the performance metric. Figure 21 shows the per-

formance results of these systems, which are normalized to the baseline. Compared

to the baseline, CAMEO and RaPP improve the performance by 25% and 37.1%

on average, respectively, while DR-HBM improves performance by 63% on average.

Although RaPP outperforms CAMEO on average, CAMEO works better in some

workloads, such as gobmk, mcf, libquantum etc. To understand the results, we also

collect the percentage of requests serviced from the fast memory (i.e. the hit ratio
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Fig. 22. Hit ratio of fast memory. Baseline, CAMEO, RaPP and DR-HBM achieve

an average hit ratio of 4.2%, 56.6%, 63%, and 97.2%, respectively.

of fast memory), as shown in Figure 22. In our DR-HBM system, the hit ratio of

fast memory is calculated as the number of requests that are serviced from HBM and

the HBM cache divided by the number of total requests. From these two figures,

it is clearly shown that the performance increases linearly with the hit ratio of fast

memory. Without data migration, the baseline system only achieves an average hit

ratio of 4.2%. However, CAMEO, RaPP and DR-HBM improve the hit ratio of fast

memory to 56.6%, 63% and 97.2% on average, respectively, by migration hot data to

the fast memory. As CAMEO swaps data at a fine (64B) granularity, RaPP should

achieve a higher hit rate than CAMEO due to migrating data at a coarser (4KB)

granularity. On the contrary, CAMEO achieves higher hit rate than RaPP in some

workloads. As a result, CAMEO outperforms RaPP in these workloads. There are

three reasons for this surprising results. First, these workloads have a good temporal

locality as CAMEO could achieve a high hit ratio of fast memory; Second, a hot page

in RaPP system has to wait until its reference count reaches the migration threshold

before being migrated to the fast memory. As discussed in Section 4.2.2, the hit
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ratio of fast memory is reduce by deferring page migrations, while CAMEO swaps

requested data on demand; Third, RaPP migrates data at a page granularity, which

takes longer time than CAMEO to finish the migration. As a result, the hit ratio

of fast memory is reduced further. Therefore, RaPP achieves lower hit ratio than

CAMEO in the workloads where the temporal locality is strong. However, DR-HBM

always achieves the highest hit ratio of fast memory among all evaluated systems due

to three reasons. First, the requested pages are loaded to HBM cache on the second

time, improving the hit ratio of HBM cache; Second, loading a page to fast memory

is faster than swapping a page between slow and fast memories; Third, we alleviate

the miss penalty of HBM cache by adopting open page policy and maximizing the

row hit rate of PCM, as stated in Section 4.3.1. Consequently, DR-HBM outperforms

CAMEO and RaPP constantly across all workloads.

4.4.3 Write Traffic on PCM

As the writes traffic on PCM not only wears it out, but also increases the effective

read latency, write traffic on PCM is an important metric for evaluating our system.

Figure 23 shows the write traffic on PCM of all evaluated memory systems. The

results are normalized to the baseline. On average, CAMEO, RaPP and DR-HBM

reduce the write traffic on PCM by 29.4%, 26.6% and 89.6%, respectively. CAMEO

even increases the writes to PCM in some workloads, which is attributed to swapping

requested data on demand. Although swapping the requested data to the fast memory

(i.e. HBM) could potentially alleviate the write traffic on the slow memory (i.e.

PCM), each swap also causes a write-back to the PCM. When the write traffic reduced

by swapping cannot offset the write traffic increased by swapping, the write traffic

on PCM is increased. For example, CAMEO generates 40% more write traffic on

PCM than the baseline in workload milc as where CAMEO only gains 45% hit rate
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Fig. 23. The write traffic on PCM. Compared to the baseline, CAMEO, RaPP and

DR-HBM reduce the write traffic on PCM by 29.4%, 26.6% and 89.6% on average,

respectively.

of the fast memory. Similarly, RaPP also generates more writes to PCM than the

baseline when the hit rate of fast memory is low, such as cactusADM. Since RaPP

migrates hot data at a coarser granularity than CAMEO, RaPP generates more write

traffic on PCM than CAMEO on average. However, DR-HBM reduces the writes to

PCM significantly in all workloads due to two reasons. First, the HBM cache absorbs

a lot of write requests, reducing the write traffic on PCM; Second, the proposed

optimizations for write reduction reduce the number of write-back. As a result, the

lifetime of PCM is prolonged. In our system, the main source of write traffic on

PCM is the evictions from HBM. As the hot pages are migrated to HBM, the victim

pages that are no longer hot are evicted and written back to PCM when the HBM is

full. Hence, the workloads with more hot pages cause more write traffic on PCM. As

shown in Table 8, the size of hot pages equals to the percent of hot pages times the

whole workload’s memory footprint. Workload bwaves that has the most hot pages

causes the highest write traffic on PCM among all workloads.
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Fig. 24. Energy consumption. Compared to the baseline, CAMEO, RaPP and DR-

HBM reduce the energy consumption by 6.3%, 3% and 32.9% on average, respectively.

4.4.4 Energy Consumption

To evaluate the energy efficiency of DR-HBM, we calculate energy consumption

of all evaluated systems. We calculate the energy consumption of HBM based on Mi-

cron Power Calculator [61], while that of PCM is calculated based on the parameters

shown in Table 10. Figure 24 shows the results, which are normalized to the baseline.

On average, CAMEO, RaPP and DR-HBM reduce the energy consumption by 6.3%,

3% and 32.9%, respectively. Although CAMEO and RaPP improve the performance

by 25% and 37.1%, respectively, CAMEO and RaPP only save little energy than the

baseline due to additional energy consumed by data migration. The saved energy due

to performance improvement is mostly offset by increased energy due to data migra-

tion. From Figure 23, both CAMEO and RaPP in workload bwaves generate more

write traffic on PCM than the baseline. As a result, CAMEO and RaPP consume

more energy than the baseline in bwaves workload. As shown in Table 10, PCM has

asymmetric read and write energy cost. A write operation consumes several times
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higher energy than a read operation when they are both missed in the row buffer.

Therefore, RaPP saves less energy than CAMEO as RaPP has higher write traffic on

PCM on average. As DR-HBM always achieves the highest performance and the low-

est write traffic on PCM across all workloads, DR-HBM is the most energy efficient

system among all evaluated memory systems.

4.4.5 Overhead Analysis

In our experiments, we use 128MB out of 4GB HBM as a cache for the PCM.

In the HBM cache, we reserve 3.5KB space for the miss table. There are 512 entries

and each entry occupies seven bytes. And we also reserve space for two HPBs. As

discussed in Section 4.3.3, each HPB has 32 entries. Each HPB entry consists of

a PPN and 4KB data. Two HPBs consume 256.5KB HBM. In total, we reserve

260KB space in the HBM cache. We compare the storage overhead of DR-HBM with

CAMEO [48] and RaPP [9]. Table 11 shows the storage overhead under a memory

system composed of 4GB HBM and 32GB PCM. DR-HBM does not require any

SRAM storage as DR-HBM does not need additional hardware support, which makes

it easy to be implemented. However, RaPP needs a non-negligible space (126KB)

in the memory controller. CAMEO consumes 2X HBM space as DR-HBM since

CAMEO needs to store a remapping table. As DR-HBM allocates a small portion of

HBM as a cache of PCM, DR-HBM consumes more HBM space than RaPP system,

but it is still negligible (3.1%). However, the HBM cache improves the performance

and reduces the number of writes to PCM. More importantly, the HBM cache is also

used to identify hot pages. Therefore, DR-HBM is a cost-effective hybrid memory

system.
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Table 11. Storage Overhead Comparison

Storage CAMEO RaPP DR-HBM

SRAM 512B 126KB N/A
HBM 320MB (7.8%) 24MB (0.59%) 128MB (3.1%)

4.4.6 Sensitivity Study

4.4.6.1 Migration Threshold Sensitivity Analysis

We investigate the performance sensitivity of DR-HBM to the migration thresh-

old. Figure 25 shows the performance under different migration thresholds. The

results show there is no one migration threshold that fits all cases. For example,

gobmk, mcf and libquantum workloads perform better with a lower migration thresh-

old. As these workloads have a small memory footprint, lower migration threshold

makes more pages be migrated to the fast memory, increasing the hit rate of fast

memory. On the contrary, workloads with a large memory footprint, such as bwaves

and lbm, gain better performance when the migration threshold is higher. The reason

is that higher migration threshold can prevent over-migration, increasing the effec-

tive capacity of the fast memory and reducing the number of evictions from the fast

memory to the slow memory. However, DR-HBM achieves the best performance on

average when the migration threshold is set to 64. Therefore, we set the migration

threshold to 64 in our experiments.

4.4.6.2 HBM Cache Size Sensitivity Analysis

We gauge the performance of DR-HBM while varying the size of HBM cache.

Figure 26 shows the normalized IPC under different HBM cache sizes. Most workloads

gain higher performance while increasing the HBM cache size. There is obvious

performance improvement when the HBM cache is increased from 64MB to 128MB.
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Fig. 26. Performance sensitivity to the HBM cache size (64MB, 128MB, and 256MB).

However, the performance of bwaves degrades while enlarging the HBM cache. In our

design, the HBM cache is allocated from the HBM. The main memory space shrinks

while enlarging the HBM cache. As bwaves has a large memory footprint, enlarging

the HBM cache causes more page faults, leading to performance degradation. Since

the performance can be improved marginally by increasing the HBM cache size after

it reaches 128MB, we choose 128MB as a good HBM cache size.
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4.5 Related Work

Hierarchical hybrid memory systems. A lot of previous work [68, 63, 39,

40, 41, 42, 43, 44, 51, 52, 53, 75, 85] has proposed architecting the fast memory

as a cache/buffer to the slow memory. Qureshi et al. [68] propose using a small

DRAM buffer on top of the PCM to improve the performance. Meanwhile, several

techniques have been proposed to reduce the number of writes to the PCM memory

and improve the wear-leveling. Jin et al. [75] propose a similar PCM-based hybrid

memory system. In which, a small DRAM is used to cache writes to PCM pages.

The DRAM buffer is managed by an age-based lazy caching policy (ALC). The ALC

policy determines whether a PCM page is qualified to be cached in the buffer. A

PCM page with higher write count has a higher chance to be buffered, reducing the

writes to old pages. Therefore, the wear-leveling of PCM is improved. A lot of work

regarding hybrid memory systems composed of die-stacked DRAM and off-package

DRAM [63, 39, 40, 41, 42, 43, 44, 51, 52, 53] has been proposed. The main objectives

of these work are to improve the hit ratio of DRAM cache, reduce the tag overhead

and save off-package bandwidth. However, the main drawback of hierarchical hybrid

memory systems is that the cache/buffer cannot contribute to the overall memory

space. In this case, the system could lose a non-negligible portion of memory space

when the fast memory becomes large. For example. HBM could be up to several

gigabytes. Therefore, we architect HBM/PCM as a flat-addressable hybrid memory

system.

Flat-addressable hybrid memory systems. Besides PDRAM [7] and RaPP

[9] discussed in Section 4.2.2, prior work [10, 54] has been proposed to architect the

fast memory as a part of main memory. The common idea is to migrate hot pages to

the fast memory to improve system performance. To identify hot pages, these systems
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track page hotness by redesigning memory controller or extending TLB. Therefore, it

is costly to implement these system. However, DR-HBM does not require any hard-

ware changes. Islam et al. [74] demonstrate that prefetching is a effective technique

for hybrid memory systems. A Markov-like prefetcher works better than CAMEO in

some workload. Actually, the HBM cache of DR-HBM system is like a prefetcher and

tracks page access of prefetched pages. In other words, we combine prefetching and

profiling together in the HBM cache. Therefore, DR-HBM is a cost-effective archi-

tecture. Kannan et al. propose HeteroOS [76], which is an OS-level solution for man-

aging memory heterogeneity in virtualized system. HeteroOS make the guest-OSes

heterogeneity-aware and extracts rich OS-level information to provide smart memory

placement reducing page migrations. Furthermore, HeteroOS combines the power of

the guest-OSes information about applications with the hypervisor’s hardware con-

trol to track page hotness and migrate hot pages to the fast memory. Compared with

HeteroOS, DR-HBM is more generic as HeteroOS is designed for virtualized systems.

Yu et al. [77] propose bandwidth-aware memory placement and migration policies

for hybrid memory systems. These policies are orthogonal and can be applied in our

work for page migration.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, we make following contributions to improve the performance

and energy efficiency of memory systems.

First, we propose RPC to alleviate DRAM refresh overhead. RPC allows con-

current refresh and memory access in a DRAM memory system by piggyback caching

the to-be-read data to an adjacent rank as all ranks in the same channel are refreshed

in a staggered fashion. As a result, read requests issued to a rank which is being

refreshed can be serviced from the adjacent rank if the requested data is cached,

without waiting for the refresh operation to complete. The implementation of RPC

only requires minor modifications to the memory controller and negligible storage

cost in each rank. Our evaluation results show that RPC outperforms FGR schemes

and improves the system performance by 8.6% and 12.2% on average for PARSEC

and SPLASH-2 benchmark suites, respectively.

Second, we propose SELF, a a high performance and bandwidth efficient ap-

proach to architecting on-chip DRAM as a part of memory. SELF selectively swaps

lines in a requested page according to its page footprint instead of swapping an entire

page blindly. In doing so, SELF increases the hit ratio of on-chip memory while avoid-

ing swapping unnecessary lines to reduce off-chip bandwidth consumption. Moreover,

SELF reuses the remapping page table to predict line location to reduce latency of

off-chip accesses. As a result, SELF improves performance by 26.9% while reducing

energy per access by 47.9% on average, compared to the baseline system of the same
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capacity.

Last, we propose DR-HBM, a cost-effective and energy-efficient architecture for

hybrid HBM/PCM memory systems. In DR-HBM, the HBM plays two roles and is

divided into two parts. A small portion of which, called HBM cache, is used as a cache

for the PCM. The HBM cache is used to bridge the latency gap between LLC and

PCM, and absorb write requests to prolong PCM’s lifetime. Meanwhile, the HBM

cache is also used to track page hotness without additional hardware support. The

remaining HBM and PCM together constitute the main memory. Furthermore, we

propose three techniques to improve performance and reduce writes to the PCM. First,

CSM increases the effectiveness of HBM cache and reduces PCM traffic by avoiding to

cache singleton pages which contain only single useful data blocks; Second, hot pages

are migrated in batches to amortize TLB shoot-down overhead; Third, we propose

Hot First LRU (HF-LRU) page replacement policy and increase the weight of write

operations to reduce writes to the PCM. As we only exploit generic characteristics

of HBM and PCM, DR-HBM is also applicable to other die-stacked DRAM/NVM

memory systems. The experimental results show that DR-HBM outperforms two

state-of-the-art hybrid memory systems, CAMEO and RaPP. Compared to the base-

line without page management, DR-HBM improves the performance by 63% while

reducing energy consumption by 32.9% on average.

5.2 Future Work

As there is no single memory technology that owns all desired features, such as

high density, high bandwidth, and low power, hybrid/heterogeneous memory systems

are very promising to meet the memory requirements of modern applications. In a

heterogeneous memory system, there are multiple bandwidth sources with different

bandwidths. As the memory wall problem continues to be a major performance

85



bottleneck, how to fully exploit bandwidth that is available at the memory system is

critical to the system performance, especially for bandwidth-intensive applications.

DAP [85] points out delivered bandwidth of a hybrid memory system starts to decrease

after the hit ratio of fast memory is higher than a certain number. Therefore, blind

pursuit of high hit ratio of the fast memory will not result in high performance.

Studies on how to dynamically control hot data migration between fast and slow

memories to fully utilize all bandwidths in a hybrid memory system could be one of

good directions for future research.

Moreover, in the DR-HBM, some workloads gain performance improvement while

increasing the HBM cache size. However, other workloads’ performance is degraded

while increasing the HBM cache size, especially for the workload with a large memory

footprint. Therefore, there no one cache size that can fit all cases, as discussed in

Section 4.4.6.2. Studies on how to dynamically adjust the HBM cache size to achieve

optimum performance according the workloads’ access pattern could also be a good

direction for the future work.
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