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Abstract 

 

USEFULNESS OF THE CAPTIATM SYPHILIS IGG EIA TEST METHOD AND REVERSE 

ALGORITHM FOR DETECTION OF SYPHILIS INFECTION IN A PUBLIC HEALTH 

SETTING 

 

By Patricia A. Armour, MPA, MT(ASCP) 

 

A dissertation submitted in partial fulfillment of the requirements for a degree of  

Doctor of Philosophy at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2018 

 

Major Director: Teresa Nadder, PhD, MLS(ASCP)CM  Chairman and Associate Professor,  

Department of Clinical Laboratory Science 

 

 

Syphilis, a systemic sexually transmitted disease, is on the rise in the US, with infection rates 

the highest recorded since 1994 according to the CDC.  Useful laboratory testing is an important 

diagnostic tool for determining individual syphilis infection and preventing community-wide 

disease spread. 

The purpose of this study was to determine the usefulness of a specific automated treponemal 

test method, the CaptiaTM Syphilis IgG EIA, and the syphilis reverse algorithm interpretation for 

detecting syphilis infection among patients seeking care in a public health clinic. The study 

employed a retrospective, nonexperimental descriptive correlational design with data collected 

between 2012-2013 from 4,077 public health clinic patients with 21% of the patients diagnosed 

with syphilis infection.   



 

 

There was a statistically significant difference between the CaptiaTM Syphilis IgG and the 

Fujirebio Serodia TP-PA test results; between the CaptiaTM Syphilis IgG Signal to Cutoff (S/CO) 

and the MacroVue RPR titer continuous variables; and between the reverse and traditional 

syphilis interpretation algorithms.  The reverse algorithm using the CaptiaTM Syphilis IgG test 

method provided more useful performance measures with a sensitivity of 82%; specificity of 

99%; accuracy of 95%; positive likelihood ratio of 63.06 and negative likelihood of 0.18 than the 

traditional algorithm using the MacroVue RPR test method.  Statistical comparison of the area 

under the curve (AUC) for the continuous variables, CaptiaTM Syphilis IgG S/CO and RPR titer, 

concluded that the Syphilis IgG AUC (0.9500) was higher than the RPR titer (0.8155) indicating 

greater accuracy for detecting syphilis infection. 

This was the first study to determine that the CaptiaTM Syphilis IgG, the S/CO value, and 

reverse algorithm are useful diagnostic predictors of syphilis infection among public health clinic 

patients.  The data from this study can be utilized by future researchers and scientists who are 

developing or improving syphilis detection methods.  

 



 

1 
 

 

 

 

 

Chapter 1: Introduction 

 

 

 

 

Syphilis, a systemic sexually transmitted disease (STD), is on the rise in the United States 

(US).  According to the Centers for Disease Control and Prevention (CDC) National Overview 

of Sexually Transmitted Diseases report (2017), the total case counts and rates of syphilis 

infection are the highest recorded since 1994.  Reported syphilis cases declined significantly 

from the early 1990s through 2005, when cases began steadily climbing (Figure 1).   

 
Figure 1.  Reported Cases of Syphilis (Total and by Stage), United States, 1990-2016.  

Adapted from “Sexually Transmitted Disease Surveillance 2016”, p 86, by Centers for Disease Control 

and Prevention, 2017. 
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The total number of syphilis cases reported in 2016 (88,042) represents a 17.8% increase from 

2015 (74,702).  The rate of primary and secondary (P&S) syphilis, the most infectious stages, 

has also been rising since 2000 with over a four-fold increase from 5,979 cases in 2000 to 27,814 

cases in 2016 (Table 1).  Increased P&S cases have been identified among gay, bisexual, and 

other men who have sex with men (collectively referred to as MSM), which is of public health 

significance due to the increased likelihood of acquiring and transmitting human 

immunodeficiency virus (HIV) if the person is infected with syphilis (Patton, Xu, Nelson & 

Weinstock, 2014).  The highest P&S syphilis rates in 2016 were among men aged 25-29 years 

(48.5/100,000 population), among men in the Western region (12.6/100,000 population), and 

among black men (23.1/100,000 population (CDC, 2017). 

Syphilis is a multi-system disease caused by the bacterium, Treponema pallidum subsp. 

pallidum, herein after referred to as T. pallidum.  The disease progresses in overlapping stages; 

and if left untreated, can be associated with significant complications.  The initial infection 

begins with exposure to an infectious syphilitic lesion, which may be in a genital (e.g. cervix, 

penis) or extragenital (e.g., rectum, oral cavity) location (LaFond & Lukehart, 2006).  Once 

infected, the individual progresses through primary, secondary, and early latent syphilis stages, 

which are collectively referred to as early syphilis.  Symptoms that develop during these stages 

are nonspecific and typically resolve spontaneously without antibiotic treatment.  However, 

without treatment, the T. pallidum organisms will migrate throughout the body and infect other 

organs (e.g., brain, heart, or eye).  An individual is considered to be infectious during the early 

syphilis stages (infection of one year or less).  Once the disease progresses to the late syphilis 

stage (infection greater than 1 year), the individual is no longer considered to be infectious; 

however, the long-term complications of untreated syphilis infection may not appear for 10-20  
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Table 1  

 

Reported Syphilis Cases (Total and by Stage), United States, 1990-2016 

Year 

Total 

syphilisa  

Primary 

and 

Secondary  Latentb 

1990 135,590 50,578 81,147 

1991 128,719 42,950 81,345 

1992 114,730 34,009 76,654 

1993 102,612 26,527 72,665 

1994 82,713 20,641 59,620 

1995 69,359 16,543 50,953 

1996 53,240 11,405 40,553 

1997 46,716 8,556 37,078 

1998 38,289 7,007 30,439 

1999 35,386 6,617 28,189 

2000 31,618 5,979 25,059 

2001 32,286 6,103 25,677 

2002 32,919 6,862 25,597 

2003 34,289 7,177 26,680 

2004 33,423 7,980 25,068 

2005 33,288 8,724 24,225 

2006 36,958 9,756 26,830 

2007 40,925 11,466 29,024 

2008 46,292 13,500 32,346 

2009 44,832 13,997 30,404 

2010 45,844 13,774 31,683 

2011 46,040 13,970 31,712 

2012 49,915 15,667 33,914 

2013 56,482 17,375 38,748 

2014 63,450 19,999 42,993 

2015 74,702 23,872 50,343 

2016 88,042 27,814 59,600 
aTotal includes stage of syphilis not stated. bLatent includes early, late, unknown duration and 

neurosyphilis stages. Note: Adapted from “Sexually Transmitted Disease Surveillance 2016”, p 86, by 

Centers for Disease Control and Prevention, 2017. 

 

years from the initial infection.  These complications can involve the heart (cardiovascular 

syphilis) and central nervous system (neurosyphilis) (Larsen, Pope, Johnson & Kennedy,1998).   

More recently, Woolston et al. (2015) reported a cluster of ocular syphilis cases, mainly in 
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MSM, occurring in Seattle and San Francisco within a short time period from December 2014 to 

March 2015.  This unusual occurrence led CDC to release a clinical advisory notifying 

healthcare providers of an increase in ocular syphilis, especially among the MSM population.  

Ocular syphilis can lead to blindness or could be a symptom of disease progression to the 

neurosyphilis stage (CDC, 2015).   

An infected woman can transmit T. pallidum organisms to the fetus at any stage (early or 

late) of infection, thus leading to congenital syphilis (CS).  Miscarriage, stillbirth and early infant 

death can result from the overwhelming fetal infection.  If the child survives, there are other 

malformations of teeth, joints, and legs that may occur along with deafness (Genc & Ledger, 

2000; Larsen et al., 1998).  According to CDC surveillance data (2017), the CS rate in the US 

had been declining with a low of 8.4 cases per 100,000 live births in 2012.  However, there was a 

rapid increase (86.9%) between 2012-2016 with a rate of 15.7 cases per 100,000 live births 

reported nationally in 2016.  The 2016 syphilis rate represents a 27.6% increase relative to 2015 

(12.3 cases/100,000 live births) and included 41 cases of syphilitic stillbirths.  The highest 

reported CS cases in 2016 were in the West (25.6 cases/100,000 live births).  The increase in CS 

infections parallels the increase in syphilis infection in women.  Syphilis is a treatable disease 

and CDC considers a case of CS to be a sentinel public health event that reflects a breakdown in 

prevention activities within public health and health care systems.  The major opportunities to 

prevent syphilis transmission during pregnancy are primary prevention of syphilis infection 

among reproductive age women and men who have sex with women (MSW), and prevention of 

fetal transmission among pregnant women who already have syphilis infection.  Accurate 

laboratory testing for syphilis infection is a critical component of these prevention efforts 

(Bowen, Su, Torrone, Kidd & Weinstock, 2015). 
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Syphilis Diagnosis 

Syphilis is a multi-system disease that progresses in overlapping stages, and the infected 

person may be asymptomatic during the later stages.  Diagnosis requires use of multiple 

laboratory tests along with an interpretation algorithm combined with clinical evaluation to 

determine if an individual is currently infected or was previously infected.   

Infection with T. pallidum induces an antibody response with Immunoglobulin (Ig) M 

detectable within two weeks and IgG within four weeks of infection.  IgM antibodies persist for 

approximately 18 months after successful treatment, and IgG antibodies usually persist for life.  

The antibodies do not provide immunity, as a person can be re-infected with syphilis even after 

successful antibiotic treatment (Cortez & Greenwald, 2014). 

Diagnostic laboratory tests for syphilis include either direct identification of T. pallidum or 

serologic tests for antibodies.  Darkfield microscopy or molecular testing of the exudate from the 

suspected lesion can be used to perform direct identification of T. pallidum.  Serologic tests 

include treponemal and nontreponemal antibody assays.  Treponemal serologic tests detect 

antibodies (IgG and/or IgM) to T. pallidum.  Because IgG antibodies may persist for life even 

after successful treatment, treponemal diagnostic tests cannot distinguish between active or 

previously treated syphilis infections.  A second nontreponemal test must be performed to 

differentiate an active syphilis infection.  Treponemal tests are highly sensitive and specific for 

syphilis infection.  Tests available in the US include enzyme immunoassays (EIA), 

chemiluminescent immunoassays (CIA), microbead immunoassays (MBIA), T. pallidum passive 

particle agglutination (TP-PA) and fluorescent treponemal antibody absorption (FTA-ABS).  

Testing can be performed either manually or using an automated analyzer.  Nontreponemal tests 

detect antibodies directed against lipoidal antigens that are released when cells are infected with 
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T. pallidum, an indirect measurement of syphilis infection.  Nontreponemal antibodies usually 

disappear within a year or two after successful antibiotic treatment.  Nontreponemal tests are 

highly sensitive but have lower specificity for syphilis infection (more false positives); therefore, 

a treponemal test must be performed to confirm the syphilis infection.  Nontreponemal tests 

available in the US include Venereal Disease Research Laboratory (VDRL), rapid plasma reagin 

(RPR), and toluidine red unheated serum test (TRUST).  These tests are usually performed 

manually and are labor intensive (Association of Public Health Laboratories [APHL], 2009; 

CDC, 2011; Larsen et al., 1998). 

There are a number of limitations with the syphilis serologic assays.  False positive results 

can occur with either treponemal or nontreponemal tests.  Nontreponemal tests detect antibodies 

against lipoidal antigens, which can be elevated in conditions that are unrelated to syphilis 

infection.  Conditions that could cause false positive nontreponemal test results include 

autoantibodies (lupus), viral infections (HIV, hepatitis C virus), bacterial infections (pneumonia, 

endocarditis), parasitic infections (malaria), and noninfectious causes (stroke, malignancy).  

Treponemal tests can cross-react with other treponemal diseases such as yaws or pinta.  Other 

causes of false positive treponemal tests include autoimmune disease, diabetes, alcoholic 

cirrhosis, viral infections, pregnancy or cryoglobulinemia.  False negative results can occur with 

either treponemal or nontreponemal tests.  Nontreponemal flocculation tests are subject to the 

prozone effect, in which high titers of lipoidal antibody cause a false negative result by 

overwhelming the test antigen sites.  Persons with latent syphilis, especially pregnant women 

with HIV, may have false negative nontreponemal tests.  Treponemal tests may be falsely 

negative if the level of antibody is below the detectable limit of the assay.  Co-infection with 
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HIV may cause false negative results with either treponemal or nontreponemal tests (Cortez & 

Greenwald, 2014). 

Laboratory diagnosis of syphilis infection is challenging because current test methodologies 

are serologically based and depend on detection of antibodies.  Syphilis antibody levels can vary 

depending on the disease stage; therefore, the CDC and APHL recommend a multi-tier or 

cascade approach to syphilis testing using either the traditional or reverse algorithm.  The 

traditional algorithm starts with a nontreponemal test, such as the RPR, with reactive tests 

reflexed to a treponemal test, such as the Fujirebio Serodia TP-PA for confirmation.  The reverse 

algorithm starts with a treponemal test, such as the CaptiaTM Syphilis IgG EIA, with reactive 

tests reflexed to a nontreponemal test, such as the RPR.  If the RPR is nonreactive, then testing 

with a second, different treponemal test, such as the TP-PA, is necessary to resolve the 

discordance (APHL, 2009; CDC, 2011). 

Because the treponemal EIA, CIA and MBIA tests can be automated, many clinical and some 

public health laboratories are offering these tests as the initial syphilis screening test, thus, 

employing the reverse algorithm.  Automated testing platforms provide significant cost savings 

in laboratory staff time over the manual nontreponemal test methods.  The decision to implement 

a new test methodology, such as an automated syphilis test, is based on several considerations 

such as cost, equipment, training, assay sensitivity and specificity.  In addition, the laboratorian 

must know the prevalence of syphilis within the test population because it will impact the 

predictive value of the test (Zanto, 2010). 

Syphilis is a complicated disease to diagnose because of its ability to mimic other diseases 

and the overlapping stages of disease progression.  While there are multiple different serologic 

testing platforms available, there is variability in the sensitivity and specificity of each assay.  
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This variability is particularly important when reverse algorithm screening is utilized.  If a highly 

sensitive treponemal test is used for initial screening, then CDC recommends that an equal or 

higher sensitivity test should be used for the second treponemal test in the event of discordant 

results with the nontreponemal test.  If a lower sensitivity test is used and the second treponemal 

test is negative, there is a potential for assumption that the initial test was a false positive, which 

could have deleterious effects on the patient’s health as well as allowing the spread of disease 

within the community (Binnicker, Jespersen & Rollins, 2012).   

The semi-quantitative signal to cutoff (S/CO) or index value generated by automated 

treponemal assays may be useful for resolving discordant results with reverse algorithm testing.  

The S/CO value is proportional to the amount of T. pallidum antibody present in the infected 

person’s serum. When there are discordant results between the initial treponemal screening and 

the nontreponemal reflex test, a high S/CO value could be predictive of a positive second 

treponemal test.  If a standard cut off S/CO value for a “true positive” treponemal test could be 

identified for the automated initial test, then the second confirmatory treponemal test may not 

have to be performed.  This could result in cost savings for the testing laboratory and expedite 

turnaround time.  Currently, reporting the S/CO value is not recommended by syphilis test 

manufacturers and is not listed in the package insert approved by the US Food and Drug 

Administration (FDA).  The CDC suggested in the 2015 Syphilis treatment guidelines that the 

usefulness of these semi-quantitative values should be investigated further (CDC, 2015). 

Syphilis tests can be performed in any accredited clinical laboratory in the US; however, 

public health laboratories provide a unique testing environment because they are usually 

associated with a public health STD clinic.  Individuals who are underserved in the traditional 

healthcare system predominantly access these clinics.  STD clinic populations typically include 
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racial/ethnic minorities, young persons, MSM and women who have sex with women (WSW).  

These populations often have high STD rates.  The prevalence of disease in the population tested 

has an impact on the predictive value of a diagnostic test.  As prevalence increases, so does the 

positive predictive value of the diagnostic test, thus STD clinics would provide sufficient 

numbers of infected persons for determining the usefulness of syphilis tests (Galen & Gambino, 

1975).  STD clinics are particularly important for men who are less likely than women to seek 

preventive care.  Patients prefer to access STD clinics rather than primary care due to 

confidentiality, expertise and convenience.  These clinics serve a public health function of 

identifying index patients and preventing further spread of disease through contact investigation 

(Cellum et al., 1997; Pathela et al., 2015).  Public health laboratories (PHLs) operate as 

diagnostic and reference labs as well as provide subject matter expertise to their public health 

agency partners.  As diagnostic laboratories, PHLs ensure that testing is performed following the 

latest CDC disease guidelines and they communicate on a regular basis with agency partners to 

ensure that their laboratory services meet STD prevention and surveillance needs.  As a reference 

laboratory, PHLs provide confirmatory testing and act as the conduit to CDC specialized 

laboratories for supplemental testing.  PHLs also serve as subject matter experts for both clinical 

and private laboratory partners as well as public health agencies.  PHLs are qualified to act as 

applied research centers and provide assistance to their agency partners for evaluation of the 

effectiveness of new test methods, such as direct syphilis testing using molecular methods 

(APHL, 2011; APHL 2017).  

Research Question and Hypotheses 

With the increase in syphilis infection in the US, it is imperative that laboratories utilize the 

most useful syphilis test methodology available.  Providing the correct answer regarding syphilis 
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infection ensures treatment can be given early to prevent further disease spread or long-term 

health complications.  Many laboratories in the US are utilizing automated testing platforms for 

syphilis testing in order to increase efficiency; and additional research is needed to provide data 

to laboratorians making decisions about test methods to use in their facilities.  

There are gaps in the current body of knowledge regarding the accuracy and reproducibility 

of a specific syphilis EIA test, the CaptiaTM Syphilis IgG, for detecting syphilis infection.   The 

CaptiaTM Syphilis IgG EIA method was one of the first EIA syphilis tests approved by the FDA 

in 2001.  Though the sensitivity and specificity of the test have been reported, there is little 

research regarding the predictive value of the CaptiaTM Syphilis IgG test when utilized in the 

reverse algorithm for diagnosis (Halling et al., 1999; Lefevre, Bertrand & Baurlaud, 1990; 

Reisner, Mann, Tholeken, Waite & Woods, 1997; Siletti, 1995; Young, Moyes, McMillan & 

Patterson,1992; Young, Moyes & Ross, 1995).  Additionally, a review of current literature did 

not find studies on the predictive value of the CaptiaTM Syphilis IgG S/CO value for detecting 

syphilis infection (Loeffelholz & Binnicker, 2012; Wong et al., 2011; Yen-Liberman, Daniel, 

Means, Waletzky & Daly, 2011).  Most of the research on the usefulness of the reverse and 

traditional test algorithms has been performed either on stored serum samples or in the clinical 

setting.  Further, there is limited research comparing the two algorithms in a public health setting 

with patients who may be at increased risk for syphilis infection.  This study would be the first to 

evaluate the reverse algorithm test combination of CaptiaTM Syphilis IgG, RPR, and TP-PA for 

its usefulness in the diagnosis of syphilis.  It would also be the first analysis of the usefulness of 

the CaptiaTM Syphilis IgG EIA assay S/CO value for detection of syphilis infection.   

The purpose of this study was to determine the usefulness of a specific automated test 

method, the CaptiaTM Syphilis IgG EIA, and the syphilis reverse algorithm interpretation for 



 

11 
 

detecting syphilis infection among patients seeking care at public health clinics.  The target 

construct was syphilis infection and the proposition for the research question is that more useful 

syphilis testing will improve syphilis detection.  The process (syphilis test results and S/CO 

value) and outcome (traditional and reverse algorithm interpretations) domains of the 

Donabedian Quality Framework provide the theoretical framework of the study.  The specific 

research question and hypotheses to be addressed in the study are: 

 RQ1: What is the usefulness of the CaptiaTM Syphilis IgG EIA test   

 method and the reverse algorithm for detection of syphilis infection in a public health 

 population? 

  H1o: Among patients seeking STD services at a large western region   

  metropolitan public health clinic, there will be no difference between the CaptiaTM 

  Syphilis IgG EIA and Fujirebio Serodia TP-PA test results. 

H2o: Among patients seeking STD services at a large western region 

metropolitan public health clinic, there will be no difference in diagnostic 

interpretation of the CaptiaTM Syphilis IgG EIA S/CO value and the Becton 

Dickinson MacroVue RPR titer test result. 

  H3o: Among patients seeking STD services at a large western region   

  metropolitan public health clinic, there will be no difference between the syphilis  

  traditional and reverse algorithm interpretations.  

Study Design 

The study employed a retrospective, nonexperimental descriptive correlational design to 

address whether the CaptiaTM Syphilis IgG EIA test and the syphilis reverse algorithm provide 

useful diagnostic information about syphilis infection.  All data used for the study was collected 
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as purposive convenience samples during two calendar years from January 1, 2012 through 

December 31, 2013.  The study data was collected as part of standard public health practice 

within the STD clinic at a large western region metropolitan (greater than two million 

population) public health clinic and included syphilis test results from patients with no syphilis 

disease as well as those in early (primary, secondary, early latent), and late latent stages of 

disease.  

Inclusion criteria for the study are males and females 18 years and older who were seen in 

the public health STD clinic, met the STD clinic criteria for syphilis testing and had all three 

syphilis tests (Syphilis IgG, RPR and TP-PA) performed with clinically diagnostic test results on 

each sample collected.  Exclusion criteria included males and females under 18 years of age, 

those who did not visit the STD clinic, those that did not have three syphilis tests performed, 

samples that tested invalid by the Syphilis IgG test and samples that tested inconclusive by the 

TP-PA test method. 

The study assumptions included the following: a) the study population was representative of 

patients seeking STD services at the public health clinic, b) all patient-related variables and 

laboratory outcome data were correctly entered into the study data spreadsheets, and c) all 

clinical samples were collected and handled following standard laboratory procedures. 

The study variables included both descriptive and observed laboratory test variables.  

Descriptive variables included gender, age, reason for clinic visit, infection diagnosis, and 

syphilis stage.  Observed variables included the CaptiaTM Syphilis IgG test result and S/CO 

value, Becton Dickinson MacroVue RPR qualitative test result and titer value, Fujirebio Serodia 

TP-PA test result, syphilis traditional and reverse algorithm serologic laboratory interpretation, 

and clinical diagnosis of syphilis based on chart review. 
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Summary 

 

Syphilis infection is on the rise in the US and there can be serious health implications for the 

men, women and babies that become infected.  Accurate diagnosis of syphilis infection is 

necessary to ensure that treatment is started as early as possible.  Current syphilis diagnostic tests 

are based on detection of antibodies in the infected person’s blood.  There is variability in the 

sensitivity and specificity of each of the current FDA approved test methods.  New instrument 

testing platforms that allow for automation of treponemal syphilis testing provide an efficient, 

cost-saving mechanism for initial syphilis screening.  This change to initial treponemal testing 

required establishment of a reverse syphilis test algorithm.  There are limited studies on the 

usefulness of specific combinations of diagnostic serologic tests within the reverse algorithm.  

This study expanded the body of knowledge regarding syphilis testing by utilizing an automated 

test method, the CaptiaTM Syphilis IgG EIA, for initial syphilis screening followed by RPR and 

TP-PA within a reverse testing algorithm.  This study was also the first to determine the 

usefulness of the CaptiaTM Syphilis IgG S/CO value for predicting syphilis confirmatory testing.  

The high STD rates among individuals seeking care at public health clinics and the diversity of 

the population provided a unique setting for the study.   

Organization of Remaining Chapters 

The study is presented in five chapters followed by a list of references.  Chapter Two 

provides a review of the literature concerning the history of syphilis infection, laboratory 

diagnostic testing, description of laboratory test usefulness criteria and literature gaps.  Chapter 

Three describes the study design and methodology including framework, selection of variables, 

data collection, validity, reliability, human subjects protocol and chapter summary.  Chapter Four 
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presents the study results.  Chapter Five concludes with discussion of the data analysis, 

limitations, conclusions and recommendations for potential future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 
 

 

 

 

 

Chapter 2: Literature Review 

 

 

 

 

The following chapter will present the background information necessary for a discussion of 

how to determine the usefulness of the CaptiaTM Syphilis IgG EIA test method for the detection 

of syphilis infection in a public health setting.  General information regarding the history of 

syphilis infection, characteristics of Treponema pallidum, syphilis disease stages, syphilis 

diagnostic tests, laboratory test usefulness criteria, public health implications of syphilis 

infection, and clinical interpretation of diagnostic test results based on traditional and reverse 

algorithms will be provided.  The accuracy of current syphilis test methodologies will also be 

discussed along with issues relating to resolving discordant results between test methods.  

Finally, a summary will be provided regarding gaps in literature related to the use of the 

CaptiaTM Syphilis IgG test method in a public health setting. 

History of Syphilis 

An ancient disease, syphilis was the cause of a major pandemic crossing international 

boundaries and affecting a multitude of people in the later years of fifteenth century Europe.  The 

pandemic began in Europe in 1495, spread to India in 1498 and then entered China in 1505.  This 

pandemic provided the first documented cases of syphilis infection.  There are three theories of 

the origin of the syphilis pandemic – the New World or Columbian theory, the Old World or pre-

Columbian theory, and the Unitarian theory (LaFond & Lukehart, 2006; Singh & Romanowski, 

1999). 
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The Columbian theory dates the beginning of the syphilis pandemic to 1493 following the 

return of Christopher Columbus, his crew, and captured slaves from voyages to the New World 

(Haiti, West Indies and the Americas).  This theory proposes that syphilis was endemic among 

the New World natives. The disease had developed into a mild form, which, when introduced 

into the naïve, susceptible Old World (Europe) population became aggressively virulent resulting 

in a worldwide pandemic.  Anthropological findings on exhumed human bones have shown 

indications of venereal syphilis in New World bones but not in pre-Columbian Old World bones, 

thus lending support for the Columbian theory (Armelagos, Zuckerman, & Harper, 2012; 

Crosby, 1969; Rothschild, 2005; Singh & Romanowski, 1999). 

The pre-Columbian theory proposes that syphilis was endemic in the Old World but was not 

recognized until the end of the 15th century when the organism mutated to a more virulent strain, 

and the pandemic began.  This theory is disputed by testing of archeological remains that do not 

exhibit indicators of syphilis lesions in Old World exhumed bodies (Armelagos et al., 2012; 

Tampa, Sarbu, Matei, Venea, & Georgescu, 2014). 

The Unitarian theory proposes that venereal syphilis is the same disease as the nonvenereal 

yaws, bejel and pinta treponemal illnesses.  Each of these venereal and nonvenereal diseases is 

caused by a different T. pallidum subspecies.  Crosby (1969) explains that the Unitarian theory is 

based on the assumption that treponematosis or infection with any T. pallidum subspecies is all 

the same disease but symptoms are manifested differently based on culture, climate, and hygiene.  

The treponemal organism only infects humans and cannot survive outside the body for more than 

a few minutes.  Transmission and survival depends on its ability to adapt to different climates 

and human interactions.  According to this theory, treponemal organisms first infected humans in 

Africa thousands of years ago, where the moist climate allowed the organism to survive on 
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human skin without causing significant damage.  This disease manifestation is called yaws and is 

still present in Africa, Asia and Latin America.  With the migration of humans to drier areas, the 

treponemal organism had to retreat off the skin surface into the human body, thus developing a 

nonvenereal disease which could be transmitted in unhygienic crowded conditions.  This 

manifestation is called bejel and is still present in the Middle East.  As human hygiene improved, 

the treponemal organism retreated further unto the human body attacking bones, blood vessels, 

and the central nervous system.  Following Darwinian theory, the organism further adapted so 

that it could be transmitted only by contact with moist infected surfaces during intimate human 

contact such as sexual intercourse.  This adaptation developed into venereal syphilis 

transmission, which is the most common T. pallidum infectious presentation in the world today.  

Modern genetic studies showing that the three treponemal subspecies are genetically distinct and 

had separate evolutionary paths have disproven the Unitarian theory (Frith, J., 2012; Harper, 

Zuckerman, Harper, Kingston & Armelagos, 2011).    

Syphilis treatment options in the pre-antibiotic era were harsh and could be physically 

harmful.  Since it was believed that syphilis was a New World disease, the initial treatments used 

New World plants such as the guaiac tree.  The guaiac tree bark was made into a drink, which 

the infected person consumed and then sat in a sweat bath, which raised the person’s body 

temperature for extended periods of time.  Because T. pallidum is heat sensitive, the resulting 

fever from the sweat bath may have been more responsible for reducing syphilis symptoms than 

the guaiac tree drink.  In 1917, Julius Wagner-Jauregg infected patients with another fever 

inducing organism, malaria, which at the time could be controlled by quinine and the resultant 

fevers appeared to have an effect on reducing neurosyphilis symptoms.  Mercury and bismuth 

salts were also used as syphilis treatments during the 19th and 20th century.  In 1908, Paul Ehrlich 
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discovered an arsenic compound, arsphenamine (Salvarsan), which was lauded as a “magic 

bullet” and the treatment of choice until the discovery of penicillin by Alexander Fleming in 

1928.  Penicillin was introduced as a treatment for syphilis in 1943 and is still the antibiotic of 

choice (Frith, 2012; Tampa, et al. 2014). 

Biology of Syphilis Infection 

Syphilis is a systemic sexually transmitted disease (STD) that is caused by the spirochete or 

corkscrew shaped bacterium, Treponema pallidum subsp. pallidum.  Three other pathogenic T. 

pallidum subspecies cause nonvenereal illnesses in humans, T. pallidum subsp endemicum 

causes bejel; T. pallidum subsp. pertenue causes yaws; and T. pallidum subsp. careteum causes 

pinta.  For the purpose of this dissertation, T pallidum will be referred to as T. pallidum when 

discussing syphilis infection, detection and treatment. 

The primary host for T. pallidum infection is humans.  While the organism can live for years 

inside humans, it does not survive for long outside the human body and cannot be cultured in a 

clinical laboratory.  The organism can only be propagated in rabbits, which is not practical for 

routine testing in a clinical laboratory.  The infected rabbits are the main source of material for 

laboratory research experiments and test method antigen.  This inability to culture T. pallidum 

created difficulties for early researchers trying to discover the cause of syphilis infection and 

continues to create problems for modern syphilis researchers (LaFond & Lukehart, 2006; Singh 

& Romanowski, 1999; Tipple & Taylor, 2015).   

Syphilis infection progresses through a series of overlapping stages (Figure 2).  Initial 

transmission is primarily through sexual contact, either genital (vagina, penis) or extragenital 

(fingers, anus, tongue, mouth, throat).  The T. pallidum organism is also able to cross the 

placental barrier resulting in maternal transmission to the fetus (congenital syphilis).  Infection  
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Figure 2. Schematic Representation of the Course of Untreated Syphilis in an Immunocompetent Person.  

Adapted from “Laboratory diagnosis of sexually transmitted infections, including human 

immunodeficiency virus”, by Unemo, et al, 2013, World Health Organization publication, p.107. 

Retrieved from http://www.who.int/reproductivehealth/publications/rtis/9789241505840/en/ Copyright 

2013 by World Health Organization. Adapted with permission.  

 

could also occur at any stage of the disease by transfusion of contaminated blood, which rarely  

occurs today due to strict federal guidelines regarding pretesting of all blood products for 

syphilis prior to use.  Because of their corkscrew shape, spirochetes are able to propel rapidly 

through liquid and gel-like materials.  Once T. pallidum gains access to the human body through 

skin to skin or mucous membrane contact with infected ulcers, the organism rapidly moves 

through micro abrasions in the dermis, enters the bloodstream and is disseminated to other 

organs and tissues.  T. pallidum begins replication at the inoculation site and induces an 

inflammatory response that results in a painless chancre or ulcer within about three to six weeks.  

This painless chancre is a reservoir of spirochetes and is, therefore, highly infectious.  However, 

it may be in a location (vaginal, anal, or pharyngeal) that is not easily seen by the infected 

http://www.who.int/reproductivehealth/publications/rtis/9789241505840/en/


 

20 
 

person.  This is the primary stage of syphilis, and the risk of infection among exposed contacts is 

approximately 30%.  However, the chancre seen in primary syphilis can also be caused by other 

genital ulcer diseases (GUD) such as genital herpes, autoimmune disease, chancroid, trauma, or 

neoplasm which further complicates the diagnosis of a syphilis infection (Cohen, Klausner, 

Engleman, & Philip, 2013; Golden, Marra, & Holmes, 2003; Ho & Lukehart, 2011; LaFond & 

Lukehart, 2006).  

If untreated, the syphilis chancre heals spontaneously in three to eight weeks; however, T. 

pallidum has now penetrated various anatomical sites such as the central nervous system, eye 

and placenta.  LaFond and Lukehart (2006) theorize that because T. pallidum has a slow 

metabolism, it is able to survive under the immune system radar, thus allowing the organism to 

replicate slowly and re-seed other organ systems without generating a massive immune response.  

Once the chancre heals, the infection has moved to the secondary stage; however, the infected 

person is still capable of transmitting syphilis infection through contact with infectious body 

fluids. The infectivity rate was extremely high (50%-75%) among partners of persons with 

primary and secondary syphilis in the era before penicillin and has only dropped to 30% 

infectivity in the post-penicillin time period (Golden et al., 2003).   

The most common symptom of secondary syphilis is a disseminated maculopapular rash.  

Other illnesses causing similar rashes include HIV, psoriasis, tinea versicolor, scabies, and 

streptococcal pharyngitis, thus making it difficult to differentiate syphilis from other infections 

based on symptomology alone.  Syphilis is often referred to as the “great imitator” because of the 

variety of other symptoms that can be exhibited during the course of infection. These symptoms 

may include weight loss, muscle aches, hair loss, eye inflammation, stiff neck, headache, and a 

variety of skin eruptions.  Secondary syphilis symptoms resolve without treatment; however, 
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about 24% of untreated cases will develop a recurrence of symptoms within four years from 

initial infection (Domantay-Apostal, Handog, & Gabriel, 2008; Golden et al, 2003; Ho & 

Lukehart, 2011).   

After the secondary symptoms have resolved, the T. pallidum spirochetes are still present, 

mainly in the liver and spleen of the untreated person.  If the person remains untreated, the 

disease enters the latent phase, which is characterized by a lack of symptoms.  Latent disease is 

divided into early latent (the first year after secondary syphilis symptom resolution) and late 

latent (any year after the first year of symptom resolution).  Early latent syphilis is considered to 

be infectious because there is a 24% chance of relapse to secondary syphilis.  Late latent syphilis 

is considered noninfectious by sexual contact; however, T. pallidum can still cross the placental 

barrier and infect the fetus in utero.  Additionally, at this stage, T. pallidum could still be 

transmitted by a blood transfusion.  The latent stage can last many years without any symptoms 

(Fenton et al., 2008; Singh & Romanowski, 1999). 

Tertiary syphilis (late syphilis with clinical manifestations) includes gummatous and 

cardiovascular syphilis.  Tertiary syphilis progresses slowly, with clinical illness occurring from 

1 to 46 years after initial infection, and is noninfectious.  Because syphilis infection may be 

asymptomatic, an infected person treated with penicillin for another infection such as 

streptococcal pharyngitis, might not even know that they had been infected with syphilis.  

Widespread antibiotic use for other diseases is one reason that tertiary syphilis is rarely seen in 

developed countries.  Cardiovascular syphilis typically involves the aorta with potential for 

aneurysms or valve insufficiency involvement.  Approximately 10% of persons with untreated 

syphilis will develop cardiovascular symptoms.  Gummatous syphilis lesions mainly affect the 

skin, bone, or liver and are typically benign; however, lesions can also occur in the brain or 
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heart, which may result in serious health complications.  Approximately 15% of persons with 

untreated syphilis will develop gummatous lesions (CDC, 2015; Golden et al., 2003; LaFond & 

Lukehart, 2006). 

Neurosyphilis can occur at any syphilis infection stage and is a result of T. pallidum entering 

the central nervous system (CNS).  In early neurosyphilis, approximately 5% of infected patients 

will develop symptoms such as severe headache, confusion, and stiff neck, which are usually 

seen in stroke or meningitis.  Neurological symptoms such as vertigo, personality changes, and 

insomnia may also be present.  Up to 20% of untreated patients may develop deafness and/or 

ocular abnormalities.  Late neurosyphilis occurs during the tertiary stage with onset from 2-50 

years after initial infection (Golden et al., 2003). 

Congenital syphilis is a result of transmission of T. pallidum through the placental barrier or 

during vaginal delivery if the infant comes in contact with an infected lesion.  According to 

Soreng, Levy and Fakile (2014), pregnant women who are infected with syphilis have a higher 

risk for late-term miscarriage or still-birth (25%) or neonatal demise (11%).  The infected child 

may be asymptomatic when born; therefore, it is important for the mother to be tested for 

syphilis prior to delivery.  Untreated congenital syphilis symptoms are varied in the early stage 

and can include hepatomegaly, excessive nasal discharge, lymphadenopathy, and bone 

abnormalities.  Deafness can occur in the late congenital syphilis stage along with facial and joint 

abnormalities (Genc & Ledger, 2000; Singh & Romanowski, 1999). 

Syphilis and HIV have an interconnected relationship.  Both infections are sexually 

transmitted and it is possible to have both infections at the same time.  Lynn and Lightman 

(2004) described the “dangerous combination” of the two diseases.  HIV infection may change 

the presentation of syphilis symptoms and disease progression, as well as disrupt syphilis 
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treatment.  The genital ulcers present during early syphilis may increase the potential for HIV 

transmission.  Zetola and Klausner (2007) reported that some experts believe there may be an 

increased risk of developing neurosyphilis if the person is co-infected with HIV.  Chesson, 

Pinkerton, Irwin, Rein and Kassler (1999) used a mathematical model to estimate that syphilis 

infection could result in approximately 1000 new cases of HIV in the US.  Bergman et al. (2013) 

reported that persons infected with syphilis are at increased risk (two-to-five-fold) of HIV co-

infection.  Branger, Van Der Meer, Van Katel, Juriaans and Prins (2009) reported that syphilis 

infection might increase the HIV viral load and decrease the T-lymphocyte cells bearing the 

cluster of differentiation 4 (CD4) receptor.  The CD4 lymphocytes are referred to as “helper” 

cells and initiate the body’s immune response to a pathogen.  HIV infects and destroys the CD4 

lymphocytes. A decrease in the CD4 count indicates further progression of the HIV infection, 

which can impact the syphilis treatment regimen (CDC, 2017; McKenzie & Williams, 2015).  

Pathophysiology of Syphilis Infection 

Upon introduction in the human body, T. pallidum induces an immune response primarily 

against lipoproteins TpN47, TpN17, and TpN15 which are embedded in the outer leaflet of the 

organism’s cytoplasmic membrane.  Antibodies produced against these lipoproteins are the basis 

for multiple treponemal test methods.  Treponemal IgM antibodies develop in approximately two 

weeks and treponemal IgG antibodies appear within four weeks of infection.  In primary syphilis, 

both treponemal IgM and IgG antibodies are detectable within three days to one week of the 

appearance of the painless chancre.  Following successful treatment, detectable levels of 

treponemal IgG antibodies will persist for many years; whereas, IgM antibodies decrease to 

undetectable levels within 6 to 12 months.  The treponemal antibodies do not provide immunity  
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and a person can be re-infected with syphilis after successful treatment (Cortez & Greenwald, 

2014; Ho & Lukehart, 2011; LaFond & Lukehart, 2006; Sena, White & Sparling, 2010).   

The human body will also produce nonspecific IgG and IgM antibodies in response to lipid 

material released by the damaged cells when invaded by T. pallidum and from cardiolipin on the 

T. pallidum cell surface.  These nontreponemal antibodies, termed “reagin,” typically appear in 

serum within 21 days to 6 weeks of initial exposure; and they subsequently disappear from 

serum following successful syphilis treatment.  Detection of nontreponemal antibodies may be 

indicative of reinfection (Ratnam, 2005; Sena et al., 2010).   

Because T. pallidum cannot be cultured, early researchers had to rely on infecting human 

subjects to understand syphilis biology.  For many centuries, it was believed that the same 

organism caused all STDs.  In the mid-18th century, a Scottish physician, John Hunter inoculated 

the penis of a healthy male with material from the infected urethral discharge of another person.  

The healthy person developed both syphilis and gonorrhea symptoms; thus, for many decades, 

physicians believed that both diseases were caused by the same organism.  In 1831, Philippe 

Ricord proved scientifically that syphilis and gonorrhea were distinct diseases (LaFond & 

Lukehart, 2006; Tampa, et al, 2014). 

History of Syphilis Diagnostic Testing 

The history of syphilis diagnostic testing involves multiple breakthroughs in direct, 

nontreponemal, and treponemal testing over the past 100 years.  These major breakthroughs are 

shown in Table 2 and are further described in this section. 

Direct testing linking T. pallidum spirochetes to syphilis was successfully performed in 1905 

when Schaudin and Hoffman used a modified Giemsa stain to observe spirochetes in lesions 

from infected persons.  This method was not reproducible by other researchers, but in 1909,  
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Table 2 

 

History of Syphilis Test Development 

 

Date Author Accomplishment 

Direct treponemal tests 

1905 Schaudin and Hoffman Linked T. pallidum with syphilis infection 

1909 Coles Described use of darkfield illumination 

1964 Yobs, Brown and Hunter Developed the DFA-TP test 

1991 Noordhoek, Wolters, DeJonge and 

von Embden 

Applied NAAT to the diagnosis of 

neurosyphilis in CSF 

Nontreponemal tests 

1906 Wasserman, Neisser and Bruck Developed complement fixation test 

1946 Harris, Rosenberg and Riedel Developed VDRL test 

1957 Portney, Carson and Smith Modified the VDRL to create the USR test 

1961 Portney,Bossak, Falcone, and Harris Modified the USR to create RPR 

1983 Petit, Larsen, and Harbec Modified USR to create TRUST 

Treponemal antibody tests 

1949 Nelson and Mayer Developed the TPI test 

1957 Deacon, Falcone and Harris Developed the FTA test 

1964 Hunter, Deacon and Meyer Modified the FTA by addition of sorbent, 

FTA-ABS test 

1967 Rathlev Developed the TPHA test 

1969 Cox, Logan and Norins Modified TPHA to a micromethod (MHA-TP) 

1975 

2000 

2001 

Veldekamp and Visser 

Fujirebio, Inc. 

Trinity Biotech 

Developed treponemal ELISA 

Developed first FDA approved EIA test 

Modified MHA-TP by adding gelatin particles 

to create TP-PA test  
Note: Adapted from A Manual of Tests for Syphilis (pages 42-52) by Larsen, Pope, Johnson, & Kennedy, 

1998, Washington, DC: American Public Health Association, Copyright 1998 by American Public Health 

Association. 

 

Coles used darkfield microscopy to observe the distinctive spirochetal motility in samples from  

infected lesions.  A direct fluorescent antibody T. pallidum (DFA-TP) test was developed by 

Yobs, Brown and Hunter in 1964.  Nucleic acid amplification tests (NAAT) such as the syphilis 

polymerase chain reaction (PCR) were described in 1991 by multiple researchers.  Noordhoek, 

Wolters, De Jonge and von Embden applied PCR testing to the diagnosis of neurosyphilis in 

cerebrospinal fluid (CSF) (Larsen, Pope, Johnson, & Kennedy, 1998).     
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Wasserman, Neisser and Bruck developed the first nontreponemal serologic test, the 

complement fixation test, in 1906; however, it would be 40 more years before the test was 

standardized by Harris, Rosenberg and Riedel in 1946.  The standardized test was named for the 

laboratory that developed the method, the Venereal Disease Research Laboratory (VDRL).  The 

VDRL test provided a method for syphilis screening that could be performed in a clinical 

laboratory.  Portney, Carson and Smith further modified the VDRL test in 1957 to remove the 

requirement for heating serum before testing and plasma was identified as an additional 

specimen type.  The modified test was referred to as the unheated serum reagin (USR) test.  

Additional modifications to the USR test followed in 1961, when Portney, Bossak, Falcone and 

Harris developed the rapid plasma reagin (RPR) test, which improved test readability by adding 

charcoal particles and allowed use of a disposable slide.  In 1983, Petit, Larsen and Harbec 

modified the RPR by adding a red paint pigment for visualizing a positive reaction and the test 

was referred to as the toluidine red unheated serum test (TRUST) (Larsen et al., 1998).   

Treponemal serologic tests have also advanced since they were first developed in 1949.  

Currently, treponemal serologic tests can be performed on automated laboratory analyzers, 

which increases laboratory productivity and efficiency.  The T. pallidum immobilization (TPI) 

test first developed by Nelson and Mayer in 1949, required the use of T. pallidum (Nichols 

strain) that had to be grown in rabbit testes and then purified into an antigen.  The test was labor 

intensive and not applicable for general clinical laboratory use.  In 1957, Deacon, Falcone and 

Harris developed a fluorescent treponemal antibody (FTA) test that could be standardized and 

performed with a fluorescent microscope.  Hunter, Deacon and Meyer improved FTA sensitivity 

in 1964 by adding a sorbent, which removed nonspecific antigens produced by nonpathogenic 

treponemes present in normal human body flora.  This fluorescent treponemal antibody 



 

27 
 

absorption (FTA-ABS) test was widely used by clinical laboratories for syphilis diagnosis; 

however, it still required use of a fluorescent microscope.  In 1967, Rathlev developed the T. 

pallidum hemagglutination assay (TPHA), which could be macroscopically performed in a test 

tube.  The micro-hemagglutination assay for antibodies to T. pallidum (MHA-TP) test was a 

modification of the TPHA developed in 1969 by Cox, Logan and Norris.   The test could be 

performed in a microtiter plate, which allowed for use of smaller reagent amounts (Larsen et al., 

1998).  The MHA-TP was further modified by the Fujirebio Corporation in 2000 and 

incorporated gelatin particles in the test method, which eliminated nonspecific reactions with 

plasma samples and could be read macroscopically on a microtiter plate.  The proprietary test is 

marketed in the US as the Serodia T. pallidum passive particle agglutination (TP-PA) test 

(Fujirebio, 2006).   

In 1975, Veldekamp and Visser developed the first treponemal enzyme-linked 

immunosorbent assay (ELISA).  The ELISA test method provides a measured colorimetric or 

color change final test result; thus, reducing the subjectivity involved with the visual 

interpretation of the MHA-TP or TP-PA serologic treponemal test result.  The ELISA’s 96-well 

microplate test format allows for many samples to be analyzed at the same time and the 

procedure could be automated for high-volume testing.  Automation removes human error due to 

inaccurate pipetting, incomplete washing or incorrect incubation time periods from the test 

method, thus improving test sensitivity (Yolken, 1979).  In 2001, the U.S. Food and Drug 

Administration (FDA) approved the first treponemal EIA test method, the CaptiaTM Syphilis-G 

test (Trinity Biotech).  The CaptiaTM Syphilis-G utilized a wild type, whole cell sonicated T. 

pallidum antigen, Nichols strain for T. pallidum IgG antibody detection.  Since 2001, multiple 

other FDA approved or cleared treponemal testing methods including CIA and MBIA have been 
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developed.  These treponemal assays utilize either wild type or recombinant treponemal antigens 

(TpN15, TpN17, or TpN47) to detect IgG and/or IgM antibodies. These tests can be performed 

either manually or using an automated instrument platform. (Hoover & Park, 2015; Larsen et al., 

1998; Malm, et al., 2015; Morshed & Singh, 2015, Sena, et al 2010).   

Current Syphilis Diagnostic Testing 

Current diagnostic laboratory testing for syphilis depends on either direct detection of T. 

pallidum or measurement of the serologic response to T. pallidum infection (Table 3).  Each test 

has advantages and limitations depending on the stage of syphilis infection, and no single test is 

optimal for diagnosis of syphilis infection at every stage. 

Direct detection methods.  Darkfield microscopy, used for direct detection of T. pallidum, 

requires a specialized microscope with a darkfield condenser and qualified technical staff to 

perform the test.  The specimen type is an exudate from an active lesion; however, testing cannot 

be performed on oral lesions due to inability to visually differentiate between benign oral 

spirochetes and T. pallidum.  The presence of spirochetes with the morphological characteristics 

and motility of T. pallidum provides a definitive diagnosis of primary or secondary syphilis.  

Infected persons with darkfield microscopy positive tests may be serologically nonreactive due 

to delayed antibody response (Ratnam, 2005; Unemo et al., 2013). 

The FDA does not currently approve DFA-TP testing; however, some public health and 

reference laboratories have completed non-FDA method validation studies and offer the test.  A 

specialized fluorescent microscope and trained technical personnel are required to perform the 

test using a fluorescein-labeled anti-T. pallidum globulin.  The specimen source is exudate from 

an active lesion. The test detects T. pallidum antigen, and a positive result provides a definitive  
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Table 3 

 

Syphilis Test Characteristics 

 

Characteristic Direct Detection Nontreponemal Treponemal 

Principle Identify treponemes 

or treponemal DNA 

in lesion exudates 

T. pallidum induces production of 

reagin or antibodies to lipoidal 

material released from damaged 

cells. 

Reagins react with cardiolipin 

 

T. pallidum infection 

induces production of 

specific antibodies (IgM, 

IgG) 

Treponemal tests detect 

IgG, IgM or total 

IgM/IgG antibodies to T. 

pallidum 

 

Examples Dark Field 

Microscopy 

DFA 

NAAT 

PCR 

 

RPR 

VDRL 

TRUST 

 

TP-PA 

MHA-TP 

FTA-ABS 

EIA 

CIA 

MBIA 

POC 

 

Advantages Most specific 

diagnosis of early 

syphilis 

Automated RPR with high 

throughput 

Rapid turnaround time and 

inexpensive reagent (manual) 

Objective interpretation 

(automated methods) 

Can revert to negative after 

specific therapy- useful to 

monitor response to therapy 

 

Automated 

(EIA,CIA,MBIA) with 

high throughput 

Improved detection 

during early and late 

infection 

Objective interpretation 

(automated methods) 

Specific for treponemal 

infection 

 

Limitations Labor intensive, 

subjective result 

(manual) 

Specialized 

equipment 

Technically 

competent staff 

required 

Non-FDA approved 

methods 

Can’t differentiate 

treponemal subspecies 

Labor intensive, subjective 

result (manual) 

Specialized equipment 

(automated) 

Low throughput (manual) 

Nonspecific-subject to biologic 

false positive results 

Limited sensitivity in early 

primary syphilis and late latent 

syphilis 

Potential for prozone effect  

Labor intensive, 

subjective result (manual)

Specialized equipment 

(automated) 

Low throughput 

(manual) 

Usually positive, even 

after successful treatment 

Not useful in monitoring 

therapy 

 

Note: Adapted from “Current Trends in Donor Testing to Detect Syphilis Infection” by Cortez & 

Greenwald (2014) in Current Infectious Disease Reports, p. 423. Copyright 2014 by Springer. Adapted 

with permission. 
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diagnosis of primary syphilis (Ratnam, 2005; Unemo, Ballard, Ison, Lewis, Ndoma & Peeling, 

2013). 

NAAT or PCR tests for T. pallidum are not currently approved by the FDA.  As with DFA-

TP tests, some public health laboratories offer the test following completion of method validation 

studies.  Specialized test equipment for extraction and analysis, reagents with probe/primer sets 

specific for T. pallidum, and trained personnel are required to perform NAAT or PCR testing.  

The specimen sources include lesion exudate, tissue, or body fluid.  The test detects T. pallidum 

deoxyribonucleic acid (DNA) and a positive result provides a definitive diagnosis of primary 

syphilis (Liu, Rodes, Chen, & Steiner, 2001; Ratnam, 2005; Unemo et al., 2013). 

Serological test methods.  Nontreponemal serological tests measure the non-specific reagin 

antibodies released in early syphilis infection. These IgG and IgM antibodies are not specific for 

treponemal infection and can be elevated in multiple other conditions such as autoantibodies 

(lupus); viral infections (HIV, hepatitis C); bacterial infections (pneumonia, endocarditis); 

parasitic infections (malaria) and noninfectious causes (stroke, malignancy).  Due to their low 

specificity, there is potential for biological false positive test results; therefore, the CDC 

recommends that all reactive nontreponemal tests be reflexed to a treponemal test for 

confirmation of syphilis infection when using the traditional syphilis test algorithm.  In the US, 

three FDA approved nontreponemal tests are currently available: RPR, VDRL, and TRUST.  The 

tests utilize a reagent antigen mixture composed of cardiolipin, lecithin, cholesterol, and a 

visualization agent to bind the non-specific reagin antibodies present in the infected person’s 

serum.  The final reaction is read either microscopically or macroscopically, depending on the 

test method.  The nontreponemal tests can be diluted or titrated to an endpoint, thus providing a 

numerical indicator for monitoring syphilis treatment.  CDC recommends that posttreatment 
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titers should be performed by the same laboratory using the same initial test method.  A rise in 

titer following treatment could indicate either treatment failure or syphilis reinfection.  Following 

successful treatment, nontreponemal antibodies disappear within one to two years.  In some 

instances, treated patients may become “serofast” resulting in a low reactive nontreponemal titer 

for life.  This most often occurs among patients treated in late stages of syphilis infection or 

those who have multiple reinfections.  Test limitations include prozone reactions, which occur 

when large amounts of nontreponemal antibodies in the patient’s serum overwhelm the test 

antigens resulting in a nonreactive or false negative test result. (Larsen et al., 1998; Sena et al., 

2010; Unemo et al., 2013).   

Nontreponemal tests are usually performed manually; however, in 2016, the FDA cleared the 

first nontreponemal automated assay for clinical laboratory use. The Gold Standard Diagnostics 

AIX1000 automated analyzer uses proprietary Gold Standard Diagnostics RPR reagents to 

automate the entire testing process from sample dilution to result interpretation.  The analyzer 

can perform qualitative RPR screens and semi-quantitative titers (1:2 to 1:256) with result 

interpretation based on a proprietary pattern recognition algorithm (FDA, 2015; Gold Standard, 

2016).  In 2017, BioRad announced FDA clearance for a dual treponemal total IgG and IgM 

antibody and RPR multiplex assay that can be performed on its proprietary BioPlex 2200 

automated flow cytometry analyzer.  This assay provides the first fully automated 

treponemal/nontreponemal dual assay which detects IgG/IgM antibodies to T. pallidum and 

reagin antibodies.  It will also perform an RPR titer (1:2 to 1:64) which further reduces labor 

costs and allows laboratories to develop more efficient workflows (FDA, 2017). 

Treponemal tests are highly sensitive and specific for T. pallidum antibodies and remain 

reactive for years with and without treatment.  Treponemal tests cannot differentiate between 
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active and past infection; therefore, additional testing with a nontreponemal test is recommended 

to assist with determining disease stage.  Treponemal tests also cannot differentiate between 

treponemal subspecies.  Since 1975, multiple different types of treponemal tests that detect T. 

pallidum IgG, IgM or total IgG and IgM antibody levels have been developed and are FDA 

cleared or approved for use in the US (Table 3).  All treponemal tests are based on binding of the 

treponemal antigen present in the test reagents with the treponemal antibody present in the 

infected person’s serum.  The FTA-ABS test is a labor-intensive manual method that utilizes a 

slide stain and a fluorescent microscope to visually detect the antigen/antibody reaction.  The 

TP-PA and MHA-TP are labor-intensive manual methods that utilize treponemal antigen 

sensitized red blood cells or gel particles mixed with the patient’s serum to visualize the resultant 

agglutination if treponemal antibodies are present. The treponemal immunoassays, EIA, CIA or 

MBIA, can be automated and involve use of either antigen coated wells or beads to detect 

treponemal antibodies present in the patient’s serum. An automated analyzer detects the resultant 

color change or light emission and a test result is electronically generated.   Point of care (POC) 

treponemal assays are easy to use, individual, manual tests that utilize a lateral flow strip or flow 

through device that is coated with treponemal antigen to detect treponemal antibodies.  The test 

result is read visually.  Only one POC treponemal test has received FDA clearance as a waived 

test, the Diagnostics Direct Syphilis Health Check test. (Larsen et al., 1998; Matthias et al. 2016; 

Sena et al., 2010; Unemo et al., 2013). 

Syphilis Test Interpretation 

Syphilis is a multisystem disease that progresses in stages and the symptoms can mimic 

multiple other diseases.  The clinical diagnosis of syphilis infection requires correlation of the 

patient’s history and physical examination with the laboratory test results.  This is especially 
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problematic because in certain stages, e.g. secondary and latent, there may be no symptoms.  

Syphilis serologic testing requires an immune response from the host, and immunoglobulin class 

and concentration can vary depending on the disease stage.  Further, diseases such as HIV can 

interfere with the immune response resulting in either false negative or false positive syphilis 

tests.  Because of these issues, the diagnosis of syphilis infection must be determined by 

performance of a combination of treponemal and nontreponemal tests.  There is a dynamic 

relationship between syphilis antibody production and the stage of disease with treponemal IgM 

antibodies appearing first at about 2 weeks post infection, followed by treponemal IgG, and then 

nontreponemal IgG/IgM at about 4 weeks post infection.   There is a steady downward decrease 

in the presence of nontreponemal antibodies during the latent and tertiary syphilis stages, while 

treponemal IgG antibodies remain present at high levels during all stages (Figure 3).  Because of 

this dynamic, a single syphilis serologic test is insufficient for syphilis diagnosis and all tests 

performed must be interpreted based on the patient’s current symptoms, prior infections, sexual 

history, and STD risk (Soreng, Levy & Fakile, 2014). 

Further complicating the establishment of serodiagnosis of syphilis infection is the wide 

variation in the sensitivity and specificity of each syphilis diagnostic test depending on the stage 

of infection, the disease prevalence in the population tested, and the standard used for 

comparison in the published study (Cantor, Pappas, Daeges & Nelson, 2016; Levett, et al, 2015).  

Additionally, the sensitivity and specificity of the treponemal EIA, CIA and MBIA tests may 

provide varied results based on the treponemal antigen(s) (e.g., wild type, TpN15, TpN17, or 

TpN47) utilized by the test kit manufacturer to detect IgG and/or IgM antibodies (Levett, et al, 

2015).  Darkfield microscopy sensitivity in the primary and secondary stages can vary from 50-

100% due to the subjectivity of the test method and the technical skill of the microscopist.  As   
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Figure 3. Syphilis Staging and Antibody Response.   

From “Serologic Testing for Syphilis: Benefits and Challenges of a Reverse Algorithm” by Soreng, Levy 

& Fakile, 2014, Clinical Microbiology Newsletter,36, p.198. Copyright 2014 by Elsevier.  Reprint with 

permission. Also “Diagnostic tools for preventing and managing maternal and congenital syphilis: an 

overview” by Peeling & Ye, 2004, Bulletin World Health Organization, 82, p.442.  Copyright 2004 by 

World Health Organization.  Reprint with permission.  

 

shown in Table 4, nontreponemal and treponemal tests all have excellent sensitivity (99%-100%) 

for detection of syphilis infection in the secondary stage; but there is wide variability in the other 

stages, especially in the primary infectious stage.  Specificity for all test methods is high ranging 

from 95% for darkfield microscopy to 98% for nontreponemal tests. 

The CDC (2011) recommends a multi-tier or cascade approach to syphilis testing using either 

a traditional or reverse sequence algorithm.  The traditional algorithm (Figure 4) starts with a 

nontreponemal test, such as the RPR, VDRL, or TRUST.  Because the nontreponemal test does 

not detect T. pallidum specific antibodies, the possibility of a biological false positive result may  
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Table 4 

 

Sensitivity and Specificity of Selected Syphilis Test Methods by Disease Stage  

 

 Sensitivity during stage of infection, average % (range) Specificity 

Test Primary Secondary Latent Tertiary Nonsyphilis 

Direct      

  Darkfield 76(50-100)a,b,c,e 76(50-100)a,b,c,e Not available Not available 95(85-100)a,b 

Treponemal      

  FTA-ABS 88(70-100)a,c,e,f 100c,e,f 100c,e,f 96c,e,f 97(94-100)a,f 

  TP-PA 90(69-100)a,c,d,f 100c,d,f 100c,d,f 94c 97(95-100)a,f 

  EIA,CIA,MBIA 89(57-100)a,d,e,f,g,h 100(97-100)d,f,g,h 93(75-100)d,f,g,h 100f 96(80-100)a,e,f,h 

Nontreponemal      

  VDRL 79(70-100)a,c,d,e,f,g 99(96-100)c,d,e,f,g 83(52-100)c,d,e,f,g 66(36-96)c,d,e,f 98(96-99)a,e,f 

  RPR 89(77-100)a,c,e,f,g 99(97-100)c,e,f,g 93(53-100)c,e,f,g 70(37-94)c,e,f 98(93-99)a,e,f 

 

Note:  Data from aDiagnostic tools for preventing and managing maternal and congenital syphilis: an overview by Peeling & Ye (2003) in Bulletin 

of the World Health Organization, p.440; bComparison of Methods for the Detection of Treponema pallidum in Lesions of Early Syphilis by 

Cummings, et al (1995) in Sexually Transmitted Diseases, p.368; cLaboratory diagnosis of sexually transmitted infections, including human 

immunodeficiency virus by Unemo, et al (2013) in World Health Organization, p109;dThe sensitivity of syphilis assays in detecting different 

stages of early syphilis by Manavi, et al (2006) in International Journal of STD & AIDS, p70;eLaboratory methods of diagnosis of syphilis for the 

beginning of the third millennium by Wicher,et al. (1999) in Microbes and Infection, p1037-1042;fNovel Treponema pallidum Serologic Tests: A 

Paradigm Shift in Syphilis Screening in the 21st Century by Sena et al. (2010) in Clinical Infectious Diseases, p.701;gIt is Time to Use Treponema-

Specific Antibody Screening Tests for Diagnosis of Syphilis by Loeffelholz & Binnicker (2012) in Journal of Clinical Microbiology, p.3.hNew 

Proteins for a New Perspective on Syphilis Diagnosis by Smith, et al. (2013) in Journal of Clinical Microbiology, p.109
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Figure 4. Traditional Syphilis Test Algorithm and Laboratory Interpretation.   

Adapted from: “Discordant Results from Reverse Sequence Syphilis Screening-Five Laboratories, United 

States, 2006-2010” in CDC (2011) Morbidity and Mortality Weekly, p.7; and “Recent Trends in the 

Serologic Diagnosis of Syphilis” by Morshed & Singh (2015) in Clinical and Vaccine Immunology, p. 

139. Copyright 2015 by American Society for Microbiology. Adapted with permission. 

 

occur; therefore, the CDC recommendation is to reflex a reactive or positive nontreponemal test 

result to a treponemal test, such as TP-PA, for confirmation of syphilis infection.  

The reverse sequence algorithm (Figure 5) begins with a treponemal test, such as an EIA, 

CIA or MBIA.  Because the treponemal test cannot differentiate between past and current 

infection, a reactive or positive test must be reflexed to a nontreponemal test such as the RPR, 

VDRL or TRUST.  If the nontreponemal test is nonreactive or negative, then the CDC 

recommendation is to test the sample with a second treponemal test, for example the TP-PA, as  
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Figure 5. Reverse Sequence Syphilis Test Algorithm and Laboratory Interpretation.   

Adapted from: “Discordant Results from Reverse Sequence Syphilis Screening-Five Laboratories, United 

States, 2006-2010” in CDC (2011) Morbidity and Mortality Weekly, p.7; and “Recent Trends in the 

Serologic Diagnosis of Syphilis” by Morshed & Singh (2015) in Clinical and Vaccine Immunology, p. 

139. Copyright 2015 by American Society for Microbiology. Adapted with permission. 

 

the “tie-breaker” (CDC, 2011; CDC, 2015; Morshed & Singh, 2015; Soreng, et al, 2014; Zanto, 

2010). 

There is a potential for discordant results with either algorithm because of varying sensitivity 

and specificity levels of each of the tests utilized as well as the disease stage when the samples 

were collected and the population tested.  The issue of discordant results using the reverse 
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sequence algorithm for syphilis diagnosis has caused confusion in the medical and public health 

community.  When three different tests are performed, the possible combinations for test result  

interpretations can become complex, especially when each test has a different sensitivity and 

specificity as shown in Table 4 (Binnicker, 2012; Caswell, Hathorn & Manavi, 2016; Morshed & 

Singh, 2015).   

Due to the increase in automated treponemal testing, the CDC provided interpretation 

recommendations to healthcare providers in 2011 for testing performed using the reverse 

sequence algorithm.  The recommendations were based on a CDC retrospective study of data 

(n=140,176) from five laboratories that performed the reverse sequence algorithm during 2006-

2010.  The five laboratories were divided into low prevalence populations (n=3), such as 

managed care organizations, and high prevalence populations (n=2), such as public health STD 

clinics.  Of the total samples tested, 4,834 (3.4%) had a reactive EIA (Trep-Sure or Trep-Check) 

or CIA (Liaison) test.  Of those reactive samples, 2,734 (56.7%) were RPR nonreactive. These 

discordant samples were further tested by either TP-PA or FTA-ABS with 866 (31.6%) testing 

nonreactive.  This high discordance level may indicate higher false positive results with the 

reverse algorithm; however, the CDC study did not compare the reverse and traditional 

algorithms because the testing at each laboratory was performed on different samples.  Also, 

without clinical correlation, the reverse algorithm positive results could be due to detection of 

latent syphilis, prior treated syphilis, early syphilis or false positive results.   Based on prior 

published studies showing lower specificity and sensitivity of the FTA-ABS, the CDC 

recommended that the FTA-ABS should not be used as the second treponemal test in the reverse 

sequence algorithm to confirm discordant results.  Because of its high sensitivity and specificity, 

CDC recommended use of the TP-PA test as a confirmatory treponemal test (CDC, 2011).  
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Mishra et al. (2011) conducted a retrospective, population based study (n = 3,092,938) of the 

impact of the reverse sequence algorithm testing at the Public Health Laboratory–Toronto 

(PHLT) in the Greater Toronto Area of Ontario, Canada.  From 1998-2005, the PHLT utilized 

the traditional algorithm starting with an RPR for syphilis screening.  In 2005, PHLT began 

using the reverse sequence algorithm starting with an EIA (Enzygnost Syphilis) followed by 

confirmatory testing of discordant results performed using either TP-PA, FTA-ABS or MHA-TP.  

The results of the study were similar to the 2011 CDC study with a higher reverse algorithm 

positive rate (2.24%) versus the traditional positive rate (0.59%).   As with the CDC study, this 

could indicate detection of prior treated disease, but it could also be an indication of early 

(primary) or latent syphilis.  In fact, the study further described the finding that early syphilis 

was detected in 0.59% of the 9,137 patients who were EIA reactive and RPR nonreactive.   

These cases would have been undiagnosed if only the traditional algorithm were utilized.  

Tong et al. (2013) conducted a cross-sectional study of syphilis serology results for 24,124 

patients in a high syphilis prevalence (11.40%) hospital setting in China between December 2011 

and May 2013.  Each patient sample was tested with RPR, TP-PA, and CIA.  The subjects 

included outpatients, inpatients, and patients receiving routine health screening.  Using the 

results of all three serological tests, the study compared three different testing algorithms: the US 

traditional algorithm, the US reverse sequence algorithm and the European Centers for Disease 

Prevention and Control (ECDC) algorithm.  The ECDC algorithm differs from the US algorithms 

in that it starts with a treponemal test and reflexes to a second treponemal test if reactive.  The 

nontreponemal test is not performed in the ECDC algorithm.  The study evaluated the diagnostic 

accuracy of each of the algorithms against the clinical diagnosis.  The traditional algorithm had a 

missed diagnosis (RPR nonreactive) rate of 24.2% (665 of 2,749 TP-PA reactive samples) and a 
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sensitivity of 75.81%.  The sensitivity of the reverse sequence (99.85%) and ECDC (99.38%) 

algorithms was consistently higher than the traditional algorithm.  The syphilis stage of each of 

the positive samples and the ability of each algorithm to detect positivity at each stage were 

determined.  While the traditional algorithm performed well for detecting secondary syphilis at 

99.18% (362/365), it performed poorly for all other stages with sensitivity ranges of 67.8% 

(primary) to 78.28% (early latent).  Both the reverse and ECDC algorithms were highly 

diagnostic for syphilis infection at all stages with sensitivity ranges from 95.83% to 100%.  

Binnicker, Jespersen & Rollins (2011) performed a direct comparison of the traditional and 

reverse sequence algorithms in a clinical setting on a population with a low prevalence (0.6%) 

for syphilis.  Prospective samples (n=1,000) were sent to the testing laboratory for routine 

syphilis screening using the reverse algorithm.  Initial treponemal testing was performed using 

the BioRad BioPlex 2200 syphilis IgG MBIA.  All samples were also tested by RPR.  With the 

reverse sequence algorithm, 15 of the 1,000 samples (1.5%) were reactive; four samples (0.4%) 

were reactive with the traditional algorithm.  The four reactive RPR samples were also TP-PA 

and MBIA reactive.  Of the 11 remaining MBIA reactive samples, five were reactive by TP-PA 

with three samples confirmed as prior treated syphilis and two samples staged as latent syphilis.  

The remaining six samples were TP-PA and RPR nonreactive and were determined to be false 

positive based on chart review for a false reactive rate of 0.6%.   Because the reverse algorithm 

was able to identify two additional latent syphilis cases, the authors suggest that their study 

further supports the possibility of enhanced sensitivity for syphilis detection with the reverse 

sequence algorithm. 

Park et al, (2011) performed a cross-sectional retrospective analysis of discordant reverse 

sequence algorithm testing within a low prevalence population in a large clinical setting.   
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Reverse algorithm testing was performed using the Diasorin Liason automated analyzer for 

initial CIA analysis.  Reactive samples were reflexed to RPR, and discordant RPR nonreactive 

samples were then reflexed to TP-PA testing.  Syphilis test results from 21,623 analyses were 

queried with 2% (439/21,623) CIA reactive.  There were 58% (255/439) discordant results 

(CIA+/RPR-) within the low prevalence study population.  All patients with discordant test 

results were clinically evaluated for syphilis infection and, if determined to be infected and not 

previously treated, offered antibiotic treatment.  Reflex TP-PA testing performed on those 

patients resulted in 72% (184/255) reactive and 28% (71/255) nonreactive.  Of the TP-PA 

reactive patients, 57% (105/184) had a history of treated syphilis.  Of the 79 TP-PA reactive 

patients with no history of syphilis infection, 64% (51/79) received antibiotic treatment for 

syphilis infection based on clinical assessment and risk factors.   There were 28 pregnant females 

in the study with 43% (12/28) having discordant test results (CIA+/RPR-/TP-PA+) and 17% 

(5/12) reporting prior syphilis infection.  Antibiotic therapy was provided to 92% (11/12) of the 

pregnant women.  The remaining pregnant women (52%) also had discordant test results 

however the TP-PA was nonreactive (CIA+/RPR-/TP-PA-).  These women had no history of 

syphilis infection and were presumed to have false positive CIA test results.   The authors 

concluded that, when using the reverse algorithm in a low prevalence population, performance of 

a second treponemal test provided valuable information for detecting syphilis infection when test 

results were interpreted based on a patient risk assessment and clinical examination. 

Rourk, Nolte, and Litwin (2016) analyzed the impact of implementation of the reverse 

syphilis algorithm at the Medical University of South Carolina.  South Carolina has a primary 

and secondary syphilis rate of 5.7 per 100,000 population which is considered to be a moderately 

high syphilis prevalence rate.  Clinical samples were initially tested using a syphilis EIA 
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(BioPlex 2200 syphilis IgG multiplex MBIA) as the screening assay.  Reactive EIA samples 

were reflexed to RPR with titer and discordant nonreactive RPR samples were reflexed to TP-PA 

testing.  Between July 22, 2013 and February 16, 2015, 10,060 patients were tested for syphilis 

with 502 (5%) reactive on the initial EIA screen and 352 nonreactive by reflex RPR (70.1% 

discordance).  When the discordant samples were tested with TP-PA, 103 samples were 

nonreactive and identified as potentially falsely reactive by initial EIA screening.  However, as 

seen in studies discussed earlier, this study identified an increase in either latent syphilis or 

untreated/unknown treatment of past syphilis with 21 cases (8.7% of the EIA reactive/RPR 

nonreactive/TP-PA reactive) that would not have been identified if the facility were using the 

traditional algorithm.  Additionally, two cases of early primary or secondary syphilis were also 

identified in the nonreactive RPR group.  Using the traditional algorithm, a nonreactive RPR test 

would have resulted in no additional treponemal testing and no treatment.  The authors 

emphasized the importance of performing a second treponemal test when results are discordant 

and correlation with medical history. 

Gratix, et al (2012) also identified an increase in diagnosis of late latent syphilis using the 

reverse algorithm in their study performed in the Edmonton, Canada public health laboratory.  

Prior to 2007, public health laboratory syphilis testing was performed using the traditional (RPR 

first) algorithm.  In September 2007, the laboratory switched to the reverse treponemal  

algorithm using the Abbott Architect Syphilis CIA in order to increase diagnostic sensitivity and 

specificity as well as utilize the high throughput screening capability of an automated analyzer.  

As previously shown in Figure 3, nontreponemal RPR antibody titers are slow to rise in early 

syphilis and decline over time becoming nonreactive in untreated late syphilis which leads to 

lower sensitivity for syphilis detection at this stage when using the traditional algorithm.  This 
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study, using aggregated syphilis data from 2004 to 2009, was performed to analyze the impact on 

the identification of primary and latent syphilis cases following implementation of the reverse 

algorithm.  The study found that the number of late latent syphilis cases doubled following 

implementation of the reverse algorithm.  Using the traditional algorithm, there were 97 late 

latent syphilis cases (0.07%) identified from 2004-2007.  Using the reverse algorithm, there were 

137 cases (0.14%) identified from 2007-2009.  Additionally, there were 3 cases of discordant 

primary syphilis (EIA reactive/RPR nonreactive) identified using the reverse algorithm.  Of the 

137 late latent syphilis cases, 81 were RPR nonreactive and diagnosis would have been missed 

with the traditional algorithm.  Treatment of late latent syphilis cases can reduce the chance for 

tertiary disease complications.  Of those 81 cases, there were 18 pregnant women who were at 

potential risk for maternal transmission of syphilis infection to their unborn child.   

Laboratories using the reverse algorithm should consider the sensitivity of both the initial 

screen and the second confirmatory treponemal tests when choosing test methods.  Zhang et al. 

(2012) performed an analytical sensitivity analysis of five different treponemal assays including 

BioPlex 2200 Syphilis IgG (Bio-Rad), Liaison Treponema (Diasorin), Trep-Sure (Phoenix Bio-

Tech), Captia Syphilis-G (Trinity Biotech), and Serodia TP-PA (Fujirebio).  For the analysis, 10 

well-characterized treponemal positive clinical samples were serially diluted (two-fold dilutions) 

to produce a set of 10 dilutions with gradually decreasing syphilis antibody levels for each 

sample.  All five methods were tested with each sample panel, that is, the initial undiluted serum 

and the 10 serial dilutions, to determine the number of dilutions required to reach a negative test 

result.  All five methods were positive for the undiluted samples.  The BioPlex, Liason and 

Captia methods were positive for three serial dilutions.  The Trep-Sure was positive for seven 

dilutions and the TP-PA was positive at 10 dilutions suggesting high sensitivity for these test 
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methods.  Laboratories have options when choosing which treponemal tests to include in reverse 

sequence algorithm testing.  The authors suggest that if a highly sensitive test is used as the 

initial screening assay and a less sensitive test is used for confirmation, there is a possibility of a 

false negative result with the second test.  This could further complicate the clinical management 

of the patient as the healthcare provider may consider the initial screening test to be a false 

positive. 

Castro et al. (2013) performed an extensive study of 290 well-characterized stored serum 

samples analyzed with nine different treponemal assays to determine the analytical sensitivity of 

each assay.  The assays included the FTA-ABS (Zeus Scientific), Liaison (DiaSorin), SD 

BIOLINE Syphilis 3.0 POC (Standard Diagnostics), INNO-LIA Immunoblot (Innogenetics), 

BioELISA (BioKit), Captia IgG (Trinity Biotech), Trep-ID (Trinity Biotech), and Trep-Sure 

(Trinity Biotech).  Median end point titers were calculated for each test method.   Results varied 

from the most sensitive (Trep-Sure 1:512) to the least sensitive (FTA-ABS 1:4).  Based on the 

low sensitivity of the FTA-ABS, the authors recommended that its use as a confirmatory test 

should be reevaluated.   Castro, et al. (2013) also recommended that laboratories considering 

using the reverse sequence algorithm should not use a less sensitive second confirmatory test. 

The CDC 2015 STD treatment guidelines recognized the increase in laboratories performing 

automated treponemal assays as the initial syphilis screening test.  These automated testing 

platforms increase laboratory efficiency due to high volume throughput and the ability to 

interface with Laboratory Information Management Systems (LIMS), which decreases 

typographical errors due to manual test result entry.  An automated test platform also reduces 

operator error due to fatigue and provides an objective test result because the instrument 

interprets the optical reading to determine the final result.   With the recent (2016-2017) FDA 
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clearance of a nontreponemal automated RPR analyzer (Gold Standard Diagnostics AIX1000) 

and approval of an automated RPR assay for the Bioplex 2200 analyzer, laboratories will now 

have another option for improving laboratory efficiency using the traditional algorithm. 

There are advantages and disadvantages to the use of either the traditional or reverse syphilis 

screening algorithms.  Both algorithms require additional testing to confirm the initial result and, 

as with any laboratory test, clinical correlation is required for disease diagnosis.  Due to the 

potential for false biological positives with nontreponemal tests, the traditional algorithm 

requires performance of a second treponemal test for confirmation.  If the second test is 

nonreactive, the initial nontreponemal test could be considered to be a false positive.  The 

traditional algorithm has a long history of test performance and correlation with disease staging.  

CDC continues to recommend the traditional algorithm; however, multiple studies have indicated 

that the algorithm may have low sensitivity in various syphilis disease stages.  The reverse 

algorithm also requires confirmation of an initial reactive treponemal test.  In order to distinguish 

past from active infection, the CDC recommends follow-up with a nontreponemal test.  If there 

is discordance between the treponemal and nontreponemal test results, then a second treponemal 

test is recommended to identify if syphilis infection is likely.  This additional testing adds to 

laboratory costs, increases turnaround time, and may increase the cost of public health disease 

investigations due to either initial false positive tests or prior treated infections.  However, recent 

studies have shown an increased sensitivity and specificity when using the reverse algorithm 

within certain populations and disease stages. (Cortez & Greenwald, 2014; CDC, 2011; CDC, 

2015; Loeffelholz & Binnicker, 2012; Park, et al., 2011; Sena et al., 2010; Young et al., 1992). 

The 2015 CDC STD syphilis treatment guidelines state that the reverse sequence algorithm 

can identify persons with past syphilis infection, those with untreated or partially treated syphilis, 
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and persons with false positive results that can occur in a low prevalence setting.  Their 2011 

recommendation continues to be that a person with a reactive treponemal screening test should 

have a quantitative nontreponemal test performed automatically by the testing laboratory, as the 

results of both tests will guide treatment management.  If there is discordance, that is the 

nontreponemal test is nonreactive, then a second treponemal test, preferably a test based on 

different antigens from the initial treponemal test and with a higher sensitivity, should be 

performed.  Additionally, healthcare providers should also perform a clinical evaluation, 

including sexual risk assessment, prior history of syphilis infection and prior syphilis treatment.  

If the second treponemal test is reactive (positive) and the person has a prior history of syphilis 

treatment, then no further treatment is needed unless the sexual history suggests potential 

reexposure.  If there is a potential for reexposure, CDC recommends retesting of the patient with 

a nontreponemal test in two to four weeks to check for early syphilis infection.  Those persons 

without a history of syphilis treatment should be treated for late latent syphilis.  While late latent 

syphilis is not considered infectious, antibiotic treatment may prevent progression to tertiary 

syphilis in the infected person.  If the physical examination suggests a recent infection, then the 

person would be treated as a primary syphilis case.  If the second treponemal test is nonreactive 

and there is a low epidemiologic risk and clinical probability for syphilis, then further treatment 

is not indicated (CDC, 2015).  

Treponemal Immunoassay Index Values 

In order to calculate the test result for the patient’s specimen, each of the automated 

treponemal immunoassays compares an optical reading for the patient’s specimen to the reading 

for a standard that has an antibody concentration at a cutoff value determined by the test kit 

manufacturer.  The cutoff value must be listed in the manufacturer’s test kit package insert, 
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which was approved by the FDA.  Optical readings below the cutoff value are considered to be 

nonreactive, and those above the cutoff value are considered to be reactive.  Some immunoassays 

may also include an equivocal range of readings, which may require repeat testing with a new 

specimen.  Each specimen tested will have a numerical (quantitative) optical reading, which, 

depending on the instrument, may be referred to as an Index value, Signal to Cutoff (S/CO) 

value, or Antibody Index (AI).  The treponemal immunoassay tests report only qualitative test 

results (nonreactive, reactive, equivocal); however, the numerical or quantitative optical reading 

may be useful in resolving the discordant results that can occur with the reverse sequence 

algorithm, or to provide a semi-quantitative estimate of the likelihood of an infection.  Reporting 

this numerical value is not included in the FDA cleared or approved manufacturer’s instructions 

for any of the treponemal EIA, CIA or MBIA test methods and would require additional non-

FDA method validation of the test method.  The 2015 CDC STD Syphilis treatment guidelines 

state that recently published studies have demonstrated correlation of a high quantitative optical 

reading with a positive TP-PA test result.  CDC further recommends that these findings should 

be investigated to determine their clinical significance (CDC, 2015). 

Wong et al. (2011) compared the performance of the Trep-Sure EIA against the VDRL, using 

674 specimens collected in a public health clinic with a high prevalence (9.4%) of syphilis.  The 

authors found a strong correlation between the Trep-Sure index value and the TP-PA test result.  

For the Trep-Sure assay, an index value <1.0 is considered nonreactive.  The study identified 14 

specimens with an index value between 0.200 to 0.999, which were reported as nonreactive.  

Follow up testing of the 14 specimens revealed that 43% (6/14) were TP-PA reactive.  The 

authors were unable to perform clinical correlations to determine if the patient was infected with 
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syphilis; however, they propose that flagging elevated index values on nonreactive samples may 

alert healthcare providers to perform additional clinical follow up.   

Dai et al. (2014) performed a study to determine if the S/CO ratio of the Architect Syphilis 

TP CIA test could be used to predict the confirmatory TP-PA result with 100% accuracy, thus 

eliminating the requirement to perform a second confirmatory test in the reverse algorithm.  The 

study was performed on serum samples collected from patients hospitalized at an integrated 

cancer center in China.  The prevalence of syphilis within this population was 3.3%.  All samples 

(n=8,980) were tested initially with the Architect Syphilis TP with reactive samples reflexed to 

TP-PA for confirmation.  All Architect Syphilis TP reactive samples were also tested with the 

TRUST nontreponemal assay.  The study concluded that 100% of the samples with an S/CO 

ratio of 9.9 were reactive when confirmed by TP-PA.  Of the 319 screen reactive samples, 87 

(27%) had S/CO ratio of 9.9 or greater and were TP-PA reactive.  The authors proposed that 

these samples did not require confirmatory TP-PA testing because of the elevated S/CO value.  

The ECDC syphilis algorithm recommends reflex to a second treponemal test for all initially 

reactive treponemal tests.  In this study, all 319 samples would have required a second test.  The 

authors proposed a modified algorithm that included performing the nontreponemal TRUST test 

with reflex to TP-PA if negative and the S/CO value was between 1.0 and 9.9.  Those samples 

with S/CO value greater than or equal to 9.9 were considered to be confirmed positive without 

running the TP-PA test.  Following the modified algorithm, 34.8% (n=111) of the samples would 

require a second TP-PA and 65.2% (n=208) would not require a second test, resulting in savings 

in reagent costs and staff time for the laboratory and more rapid turnaround time for test results. 

Yen-Liberman, et al. (2011) further confirmed the usefulness of syphilis MBIA index values 

for resolving discordant reverse algorithm test results.  They performed an analysis of 142 
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samples collected from a low-prevalence (3%) clinic population that tested reactive with the 

BioPlex 2200 Syphilis IgG assay.  The samples were further tested with the Trep-Sure EIA with 

77% (110/142) testing reactive. The authors were able to determine that a quantitative AI value 

of 6.0 on the BioPlex 2200 was 100% specific for confirmation by a second treponemal (Trep 

sure EIA) test.  Using this laboratory established cutoff value, the laboratory could decide to not 

perform the second treponemal test, thus, saving time and resources. 

Berry and Loeffelholz (2016) performed a retrospective, descriptive analysis of specimens 

screened for syphilis at University of Texas Medical Branch between January and May 2014 to 

analyze the impact of instituting a modified reverse syphilis algorithm using the BioPlex Syphilis 

IgG MBIA antibody index (AI) to determine the necessity of additional TP-PA testing.  The 

overall patient population included high risk incarcerated persons (28%) and miscellaneous 

inpatient and outpatient hospital patients (9%) along with low risk obstetrical/gynecological 

(OB/GYN) patients (63%).  The syphilis reactive rates within the studied patient population were 

1.8% for OB/GYN, 7.5% for incarcerated persons and 5% for miscellaneous hospital patients.  

Because prior published studies had identified a false reactive rate of 0.6% when using the 

reverse algorithm in low prevalence populations, the University modified the reverse algorithm 

used at their facility for all syphilis screening to reflex to both an RPR titer and a TP-PA when 

the initial treponemal test was reactive or equivocal.  This modification differs from the 

recommended CDC algorithm which does not require performing a confirmatory TP-PA test if 

the RPR test is reactive and is similar to the modification utilized at the western regional 

laboratory where the dissertation study was performed.  Among all patient populations tested in 

the study, 665 had an initial reactive Bioplex Syphilis IgG test result.  Of those reactive samples, 

430 (65%) had an AI greater than or equal to 8 and 99.3% (427/430) were confirmed reactive by 
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TP-PA.  The authors conclude that based on this study, they could reduce laboratory workload 

by eliminating TP-PA testing on those 427 samples with an AI greater or equal to 8 thus 

resulting in laboratory cost savings and a reduction in turnaround time for completed test results.  

The authors also found nine instances among the incarcerated and OB/GYN populations where 

both the Bioplex and RPR tests were reactive, but the TP-PA was nonreactive.  They conclude 

that this discordance could be due to the higher sensitivity of the Bioplex treponemal assay 

which has been documented in prior studies.  The authors discuss the possibility of utilizing the 

AI value to decrease the number of confirmatory tests, but it could also be used to interpret 

discordant test results. 

Laboratory Test Usefulness 

There are multiple statistical measures that have been utilized to evaluate the usefulness of a 

laboratory diagnostic test.  Various authors have used the terms usefulness and accuracy 

interchangeably, and there are no standard criteria for determining which statistical measures are 

associated with each term. (Aamir & Hamilton, 2014; Bossuyt, Reitsma, Linnett & Moons, 2012; 

Galen & Gambino,1975; Guyatt, Tugwell, Feeny, Hagman & Drummond, 1986; Hulley, 

Cummings, Bowner, Grady & Newman, 2013; Kaplan, 1990; Linnett, Bossuyt, Moons, & 

Reitsma, 2012; Lord, Staub, Bossuyt & Irwig, 2011; Vihinen, 2012).  This section will discuss 

literature review of definitions various authors have used for diagnostic test usefulness.  

A single statistical measure does not provide sufficiently complete information to determine 

the usefulness of a diagnostic test.  According to Aamir and Hamilton (2014), a useful laboratory 

test should be able to detect or confirm a disease, provide information about disease progression, 

and/or quantify the disease abnormality.  An abnormal (typically positive) test should be highly 

associated with disease presence.  A normal (typically negative) test should be highly associated 
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with disease absence.  The accuracy or efficiency of a laboratory test is determined by the 

percentage of patients correctly identified as either having or not having the disease for which 

they have been tested.  The authors suggest the statistical measures of sensitivity, specificity, 

accuracy, predictive values, and likelihood ratios can be used to determine laboratory test 

usefulness.  

Hulley et al. (2013) describes five determinants of usefulness: reproducibility (provides the 

same results when the test is repeated), accuracy (degree that the measurement corresponds to 

the true value or disease state), feasibility (costs, risks, acceptability), effect on clinical decisions, 

and effect on clinical outcome.  A test may be accurate, but may not improve patient outcomes 

and, therefore, may not be useful.   

Kaplan (1990) discusses five crucial test characteristics that impact clinical interpretation.  

He divides the five characteristics into two groups: characteristics that assist with test judgment 

(reliability and accuracy) and characteristics that assist with diagnostic probability (sensitivity, 

specificity, and predictive values, both positive and negative).  According to Kaplan, clinicians 

approach disease diagnosis by successively revising diagnostic probabilities.  Only the history 

and physical may be available when the clinician first assesses the ill patient; and as diagnostic 

test results become available, the clinician revises the disease probability by correlating the test 

results with the history and physical.  A laboratory test result must always be interpreted based 

on clinical assessment of the patient.  

Galen and Gambino (1975) state that laboratory test usefulness cannot be interpreted only in 

terms of normal or abnormal test results.  They introduced the concept of the predictive value, 

how accurately a test predicts the presence or absence of disease, for determining the usefulness 

of a laboratory test.  They also included sensitivity, specificity, and prevalence or incidence as 
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important variables for determining laboratory test usefulness.  Galen and Gambino further 

emphasized the importance of a good physical examination and history as “essential for the 

effective use of laboratory tests” (p.18).   The authors provided the following list of laboratory 

testing functions that can help define a “good” test from a “bad” test: 

• Provide a correct diagnosis in a patient known to be sick. 

• Provide a prognosis in a patient with a known disease. 

• Provide an indication as to whether or not a disease is present in its early or 

subclinical stages in an otherwise “healthy” person. 

• Provide data for monitoring the level of therapeutic drugs, or the effects of drugs , 

or both. 

• Provide data that may indicate whether or not disease might develop at some 

future time, that is, delineation of risk factors. 

Guyatt, et al. (1986) states that a clinically useful test is able to accurately distinguish 

between disease and non-disease states and quantitate disease severity.  Accuracy should be 

established by independent comparison of the test against a gold standard with consideration of 

test method precision.  If a gold standard is available, then sensitivity and specificity should be 

calculated to determine accuracy.  Guyatt, et al. further states that the most powerful method for 

measuring a test’s usefulness is to determine likelihood ratios.  A likelihood ratio is the 

likelihood of a test result given disease (sensitivity) divided by the likelihood of a test result 

given no disease (specificity).  Grimes and Schulz, (2005), Hulley et al., (2013), Jaeschke, 

Guyatt and Sackett (1994), Kent and Hancock (2016) all state that likelihood ratios are a 

powerful determinant of the clinical usefulness of a test.  A likelihood ratio of one provides no 

information about the probability of disease presence; whereas the higher the likelihood ratio is 
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above one, the better the probability that the test result is ruling in the presence of disease.  A  

guide for likelihood ratio magnitude as recommended by Jaeschke et al. (1994) and Kent and 

Hancock (2016) is presented in Table 5.  

Table 5 

 

Likelihood Ratio (LR) Interpretation 

 

 Strong evidence for 

ruling in diagnosis 

Moderate evidence for 

ruling in diagnosis 

Weak evidence for 

ruling in diagnosis 

Positive LR above 10 between 5 and 10 between 2 and 5 

 Strong evidence for 

ruling out diagnosis 

Moderate evidence for 

ruling out diagnosis 

Weak evidence for 

ruling out diagnosis 

Negative LR less than 0.1 between 0.1 and 0.2 between 0.2 and 0.5 

  

Vihinen (2012) further discusses test accuracy as a statistical measure that can be calculated 

using the values in a 2x2 contingency table.  Accuracy is calculated as the percentage of patients 

who are correctly identified by the test as either having or not having the disease (true positive 

plus true negative divided by the total contingency table number).  Using the same calculation, 

Galen and Gambino (1995) define the term efficiency rather than accuracy to describe the ability 

of a test to detect a specific disease.  Ball (2014) also uses the term efficiency as synonymous for 

accuracy to represent the “number of correct diagnoses as a percentage of all the diagnoses” (p. 

210).  Vihinen (2012) states that accuracy may provide a more comprehensive statistical measure 

than the row-wise (predictive values) and column-wise (sensitivity and specificity) measures 

within the contingency table.  For this dissertation, accuracy, as described by Vihinen, will be the 

term used to calculate the percent of all results that are true results, whether positive or negative. 

Contingency table.  Sensitivity, specificity, predictive values, likelihood ratios, accuracy, 

and prevalence can be calculated from a 2x2 contingency table.  The table contains dichotomous 

results showing the number of patients with the disease and a positive test result (true positive), 
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number of patients who do not have the disease and a positive test result (false positive), number 

of patients who do not have the disease and have a negative test result (true negative), and 

number of patients who have the disease and have a negative test result (false negative).  The 

contingency table shown in Table 6 provides formulas for sensitivity, specificity, predictive 

values, likelihood ratios, accuracy, and prevalence calculations.  

Table 6 

 

Diagnostic Test Measures: Calculation of Sensitivity, Specificity, Predictive Values, Likelihood 

Ratios, Accuracy, and Prevalence 

 

Adapted from: Designing Clinical Research by Hulley, et al (2013). Philadelphia, PA: Lippincott 

Williams & Wilkins, p.177. Copyright 2007 by Lippincott Williams & Wilkins; “How to evaluate 

performance of prediction methods? Measures and their interpretation in variation effect analysis” by 

Vihinen, M. (2012), BMC Genomics, 18(13), p. 5. Copyright 2012 by Vihinen: Licensee BioMed Central 

Ltd; “Refining clinical diagnosis with likelihood ratios” by Grimes, D.A. & Schulz, K.F. (2005), The 

Lancet,365, p.1501. Copyright 2005 by Elsevier Limited. 

 

Sensitivity measures the ability of the diagnostic test to correctly identify or screen in the 

presence of disease within the tested population (positive test result).  Specificity measures the 

ability of the diagnostic test to correctly identify or screen out those patients who do not have the 

disease (negative test result).  These measures are independent of the prevalence of disease 
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 True classification (Gold Standard)  

 Positive Test 

(Disease) 

Negative Test  

(No Disease) 

Total Measure 

Positive Test a 

True-positive 

(TP) 

b 

False-positive 

(FP) 

a + b Positive predictive 

value (PPV) = 

a/(a+b) 

Negative Test c 

False-negative 

(FN) 

d 

True-negative 

(TN) 

c + d Negative 

predictive value 

(NPV) = d/(c+d) 

Total a + c b + d a+b+c+d  

Measure Sensitivity = 

a/(a+c) 

Specificity = 

d/(b+d) 

 Accuracy= 

a+d/a+b+c+d 

  Positive 

likelihood ratio= 

sensitivity 

1-specificity 

 

Negative 

likelihood ratio= 

1-sensitivity 

specificity 

 Prevalence =   

(a+c)/(a+b+c+d) 
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within the tested population.  Predictive values are influenced by the disease prevalence within 

the population and provide a measure of the proportion of tested patients who either have or do 

not have the disease.  The positive predictive value (PPV) of a test is the percentage of true 

positives divided by the total of true and false positives.  The negative predictive value (NPV) is 

the percentage of true negatives divided by the total of true and false negatives.  Prevalence is 

estimated by dividing the total number of cases with the disease by the total number in the 

population at risk of having the disease.  Typically, lower disease prevalence results in lower 

positive predictive values.  Likelihood ratios (LR) measure how likely it is that the test result 

rules in the disease in question and uses both the sensitivity and specificity measure to calculate a 

single result.  A positive LR is calculated as sensitivity/(1-specificity) and a negative LR is 

calculated as (1-sensitivity)/specificity.  Likelihood ratios are independent of disease prevalence; 

these values do not vary in different populations or settings and can be applied to a specific 

patient.  Likelihood ratios are reported as either positive (greater than one) or negative (less than 

one) (Aamir & Hamilton, 2014; Galen & Gambino, 1975; Grimes, D.A. & Schulz, K.F. 2005; 

Hulley et al., 2013; Kaplan, 1990; Motulsky, 2014; Polit & Beck, 2012).  

Attia (2003) discusses the properties of diagnostic tests that can be calculated from the 2x2 

contingency table formulas shown in Table 6.  The measures of sensitivity, specificity and 

predictive values reflect population characteristics.  In order to visually see the impact of disease 

prevalence on predictive values and LRs, calculations were performed on an example population 

of 10,000 using a test with 99% sensitivity (a very good test) and 95% specificity.  As the 

prevalence increased from 1% to 10% in the example population with the sensitivity and 

specificity held constant, the PPV also increased; however, the LRs do not change.  In the low 

prevalence population seen in Table 7, the PPV is 16.7% which means there is approximately a  
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Table 7  

 

Impact on Predictive Value and Likelihood Ratio at 1% Disease Prevalence for a Test with 99% 

Sensitivity and 95% Specificity 

 

 

17% probability that a positive test result represents a person with the disease.  Performing  

highly sensitive tests in a low prevalence population may lead to higher false positive test results, 

which can lead to over treatment, anxiety and additional testing.  

As the prevalence increased to 10% as shown in Table 8, the PPV also increased to 68.8%, 

which means there is approximately a 69% probability that a positive test result indicates the 

person has the disease.  In Tables 7 and 8, the likelihood ratios did not change as the prevalence 

changes.  With a positive LR of 19.8, the likelihood of a patient with a positive test result having 

the disease tested for increased by approximately 20-fold, regardless of the prevalence in the 

population.   

Because predictive values reflect disease presence in the population testing, Attia (2003), 

Grimes and Schulz (2005), and Kent and Hancock (2016) suggest that LRs should be used by the 

healthcare provider to interpret test results for an individual patient.  Laboratory test results 

should be interpreted in correlation with a clinical assessment of the patient and LRs allow the 

healthcare provider to refine the clinical diagnosis for that specific patient.  Clinical laboratories 

do not report LRs for each laboratory test; however, as a component of method verification for  

establishing a new FDA approved test method and during day to day operation, laboratories 

 

  Positive Test 

(Disease) 

Negative Test  

(No Disease) 

Total Measure 

Positive Test 99 495 594 16.7% PPV 

Negative Test 1 9405 9406 100.0% NPV 

Total 100 9900 10000  

Measure 99% sensitivity 95% specificity  95% accuracy 

  19.8 +LR .001 -LR  1% prevalence  
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Table 8 

 

Impact on Predictive Value and Likelihood Ratio at 10% Disease Prevalence for a Test with 

99% Sensitivity and 95% Specificity 

 

 

gather data that could be placed in a 2x2 contingency table.  Therefore, all measures including 

LRs, could be calculated if requested. As shown in Table 5, LR values could be used to 

determine strong, moderate, or weak evidence of disease.  Attia (2003) states that a useful test 

provides a high positive likelihood ratio (+LR) and a small negative likelihood ratio (-LR). 

Bayes’ nomogram.  According to Attia (2003) and Kent and Hancock (2016), additional 

value for the usefulness of a clinical test for a specific patient can be obtained if the LR is plotted 

on a Bayes’ nomogram to provide an estimation of the probability of disease.  Use of the Bayes’ 

nomogram requires an estimate of the pretest probability of disease, which is based on either 

clinical decision rules or the clinician’s assessment after performing a history and examination of 

the individual patient, not the prevalence of disease in the population.  For example, if a patient 

in a low syphilis prevalence (1%) population presents to the healthcare provider with a history of 

multiple unprotected sexual encounters but no specific symptoms to suggest syphilis, the 

healthcare provider may assign a pretest probability for syphilis infection of 30% based on 

history and clinical assessment. From the data presented in Table 7, the PPV for the syphilis test 

in a 1% prevalence population is 16.7%.  Using this information, the healthcare provider would 

interpret a positive result in this low prevalence population at about 17% probability that the test 

  Positive Test 

(Disease) 

Negative Test  

(No Disease) 

Total Measure 

Positive Test 990 450 1440 68.8% PPV 

Negative Test 10 8550 8560 99.9% NPV 

Total 1000 9000 10000  

Measure 99% sensitivity 95% specificity  95% accuracy 

  19.8 +LR .001 -LR  10% prevalence  
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represented syphilis infection.  An LR could provide additional information for interpreting the 

syphilis test result.  The Bayes’ nomogram shown in Figure 6 plots the 30% pretest probability 

from the clinical assessment performed by the healthcare provider on the first axis and the +LR 

of 19.8 for the test obtained from Table 7 on the second axis.  A straight edge is used to draw a 

line connecting the two axes, and the connecting point on the third axis is the posttest 

probability.  In the example in Figure 6, the posttest probability is now approximately 88% that 

the patient has syphilis.  Calculating LR values and making them accessible could provide 

healthcare practitioners with another tool to incorporate the results of diagnostic testing into 

clinical decision making, especially with discordant syphilis test results. 

Receiver operating characteristic (ROC) plots.  Zweig and Campbell (1992) discuss the 

use of ROC plots for determining diagnostic test accuracy.  A ROC plot or curve graphs the 

sensitivity and specificity of each test data point across the complete range of observed results.  

When determining sensitivity and specificity, a decision threshold must be used to differentiate a 

normal from an abnormal value.  If the decision threshold is varied over the entire range of 

possible results, the sensitivity and specificity will move in opposite directions.  When one 

increases, the other decreases; therefore, each decision threshold will have a corresponding 

sensitivity/specificity pair.  The ROC curve provides a visual representation of these pairs and, 

therefore, the ability of the test to discriminate disease from non-disease.  The y-axis of the ROC 

curve reflects sensitivity (true-positives) and is calculated only from the subgroup that is positive 

in the presence of disease.  Sensitivity is defined as: (number of true-positive test 

results)/(number of true-positive + number of false-negative test results).  The x-axis reflects 1- 

specificity (false-positive) and is calculated only from the subgroup that is negative in the 

in the absence of disease.  A false positive is defined as: (number of false-positive  
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Figure 6. Example Bayes’ Nomogram with 30% Pretest Probability and +LR 19.8  

Nomogram template from: “Moving beyond sensitivity and specificity: using likelihood ratios to help 

interpret diagnostic tests” by Attia (2003) in Australian Prescriber, p. 112. Copyright 2003 by NPS 

Medicine. 

 

results)/(number of true-negative + number of false-positive results).  Disease prevalence is not a 

factor in calculating the ROC curve because the true- and false-positive values are calculated 

from two different subgroups.  An ideal test exhibits a ROC curve that passes through the upper 

left corner (100% true-positive and 0% false-positive).  A diagonal 45-degree line drawn from 

the lower left corner to the upper right corner indicates that the test cannot discriminate between 

a true- and false-positive result; therefore, tests following or below the diagonal line would be 
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considered useless or inaccurate.  The area under the curve (AUC) on the ROC plot ranges from 

0.5 (those tests on or below the diagonal line) for a useless test to 1.0 (those tests in the upper left 

corner) for a perfect test.  The closer the AUC is to 1.0, the higher the diagnostic accuracy of the 

test.  A ROC curve will determine which test is better when two test results are interpreted 

independently against the same gold standard (Guyatt et al., 1986).  

Diagnostic test evaluation.  Linnet et al. (2012) discuss their optimal approach for 

evaluating the accuracy of a diagnostic test.  They suggest use of sensitivity, specificity, 

predictive values, ROC curves and likelihood ratios as statistical measures of accuracy.  They 

further suggest that the diagnostic test evaluation should be carried out in a population that is 

suspected of having the target disease, preferably with study participants chosen on the basis of 

predefined symptoms and/or signs of the disease.  All participants should be independently tested 

with both the gold standard reference and the index test with laboratory personnel blinded to the 

results of either test.  Because laboratory test results can vary due to disease progression, it is 

important to correctly classify each participant as diseased or nondiseased and include the 

disease stage if possible.  When comparing the accuracy of two tests, the statistical measures 

recommended by Linnet and colleagues are McNemar’s test or comparison of AUC values.  

Bossuyt et al. (2012) discusses clinical utility as another term for diagnostic test usefulness.  

Clinical utility refers to the extent that a new diagnostic test improves health outcomes in 

comparison with the current best alternative test.  The four key elements of clinical utility of 

diagnostic testing include: a) preventing premature death and/or restoring or maintaining 

functional health, b) guiding treatment and clinical management decisions, c) evaluating tests at 

the group level, and d) comparison to current standard best practice.  Accurately identifying 

patients with the suspected disease is an essential condition for determining clinical utility; 
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however, test accuracy can vary due to the spectrum of disease being tested.  In studies of 

diagnostic test accuracy, the authors stress the importance of clearly defining the target 

condition.  Lord et al. (2011) defines the target condition as the “classification of disease you 

wish to detect” (p. 2).  This classification should be determined using the best available evidence 

based criteria for the disease.  Clearly defining the target condition will enhance the validity of 

diagnostic test accuracy studies.    

Because all laboratory tests must be interpreted based on clinical correlation with the ill 

person, it is important to also include the purpose for ordering laboratory tests in the 

determination of laboratory test usefulness.  Kaplan (1990) describes three purposes for ordering 

laboratory tests: diagnosis, monitoring therapy, and screening.   

Diagnosis would ideally require a test with high sensitivity (positive for most people with the 

disease) and high specificity (negative for most people without the disease), thus resulting in 

100% PPV and NPV values.   This rarely occurs with current diagnostic test methods as tests 

with high sensitivity typically have low specificity and vice versa.  However, when ordering tests 

for diagnostic purposes, there are two main uses.  The first use is to absolutely rule out a disease 

and the second use is to absolutely confirm a disease.  In order to absolutely rule out that a 

person does not have a disease, a test with high sensitivity should be used because a negative 

result produces a high NPV, meaning the clinician can be confident that a negative test result 

indicates no disease.  For the second use, in order to absolutely rule in or confirm a disease, a test 

with high specificity should be used because a positive result produces a high PPV, signifying 

that the clinician can be confident that a positive test result indicates presence of disease.  

Monitoring therapy typically means performing the same test repeatedly during a treatment 

regimen time period.  For this purpose, a test that is precise (reproducible) and accurate is 
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preferable.  Sensitivity, specificity, and predictive values have a lower usefulness for this 

purpose. 

Screening would require a test that detects early stages of a disease or condition.  The disease 

may be in an asymptomatic stage, but early detection would prevent further spread or be in a 

stage that is easily treated or cured.  Ideally a test would have 100% sensitivity, specificity, and 

predictive values.  Because these tests do not currently exist, the clinician is faced with a tradeoff 

between sensitivity and specificity.  A test with high sensitivity will also have a high NPV, 

which means that few false negatives would occur; however, the tradeoff in low specificity 

means a higher number of false positives would also occur.  If screening a population with low 

prevalence of disease, there will be a number of persons with positive results; but only a small 

number will actually have the disease (low PPV).  A highly specific test will have a higher PPV 

but a lower NPV, which means that a positive result indicates disease; but more false negatives 

and missed cases of the disease may be observed.  The choice for determining which test to order 

for disease screening will be between a highly sensitive test that may result in a higher number of 

additional confirmatory tests or a highly specific test that may result in missing a higher number 

of diseased persons.  The choice will depend on the benefit of early disease detection for the 

patients as well as the cost and risk of additional diagnostic follow up.  

Ideally every diagnostic test would provide the correct result (presence or absence of disease) 

in 100% of the patients tested.  However, currently there are no diagnostic tests that meet the 

ideal criteria.  As sensitivity increases, specificity decreases and vice versa.  Predictive value of 

laboratory tests is influenced by disease prevalence within the tested community with a higher 

disease prevalence associated with a higher predictive value of a positive test.  Galen and 

Gambino (1975) provide suggestions shown in Table 9 for determining which statistical method  
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Table 9 

 

Attributes for Determining Preferable Statistical Measure of a Diagnostic Test 

 

Preferable statistical measure       Attribute 

Highest Sensitivity (100%) • Serious disease that should not be missed AND 

• Disease is treatable AND 

• False-positive results do not lead to serious 

psychological or economic trauma to the patient 

Highest Specificity (100%) • Serious disease but is not treatable or curable AND 

• Knowledge of absence of disease has psychologic or 

public health value AND 

• False-positive results can lead to serious psychologic or 

economic trauma to patient 

High Predictive Value • Treatment of false-positive might have serious 

consequences 

Highest Efficiency 

(Accuracy) 
• Serious disease that is treatable AND 

• False-positive and false-negative results are essentially 

equally serious or damaging 
Adapted from: Beyond Normality The Predictive Value and Efficiency of Medical Diagnoses by Galen & 

Gambino (1975). New York, NY: John Wiley & Sons, pages 50-51. Copyright 1975 by John Wiley & 

Sons. 

 

is preferred when deciding which laboratory test to order.  According to Galen and Gambino 

(1975), for serious diseases that are treatable and false-positive results do not cause serious harm, 

it is preferable to use a test with high sensitivity.  The consequences of missing the disease 

outweigh the consequences of a false positive test result, (e.g., treatable infectious diseases such 

as STDs can have serious public health consequences).  For serious diseases that are not 

treatable, it is preferable to use a test with high specificity. In this case, false positive results can 

cause serious psychological or economic trauma to the patient (e.g. detection of multiple 

sclerosis).  For diseases where treatment can have serious consequences, it is essential to use a 

test with high predictive values (e.g. detection of occult cancers can lead to disastrous 

consequences if treatment is given and the cancer is not there).  For serious diseases that are 

treatable, it is preferable to use a test with high efficiency or accuracy.  In this case false-positive 
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and false-negative results have essentially the same serious or damaging consequences (e.g. 

myocardial infarction or diabetes).  

Cost analysis.  Cost should also be considered when determining diagnostic laboratory test 

usefulness.  Hernandez (2003) discusses the need for further studies that address both clinical 

efficacy and cost effectiveness of laboratory testing.  He provides a review of a model developed 

by John Pfister, MS, (AAM), the acting director of the Wisconsin State Laboratory of Hygiene 

(WSLH) for assessing public health laboratory testing.  The model is composed of three partly 

overlapping circles that represent assay performance, epidemiology, and costs.  The assay 

performance circle contains the familiar laboratory performance criteria of sensitivity, 

specificity, quality assurance, and turnaround time.  However, as laboratories are being required 

to do more with less as budgets are cut, it is imperative that directors and managers identify the 

value-added component for a given laboratory test.  This involves looking outside the laboratory 

to determine the cost effectiveness, cost benefit, or cost utility of their operation.  The 

epidemiology factors of disease prevalence and risk indicators within a tested population can 

affect how useful a laboratory test is for ruling in or ruling out a disease.  The direct and indirect 

costs of laboratory testing also have an impact on assessing the value of laboratory tests.  Pfister 

suggests that when developing testing strategies for newer tests the factors of assay performance, 

epidemiology, and costs should all be considered.   Hernandez (2003) states that healthcare 

consumers, both employers and patients, are concerned about the quality of health care as well as 

reasonable costs.  Pfister’s schematic model (Figure 7) could provide a basis for laboratories to 

include not only laboratory test costs when determining the value of a test, but also the 

downstream costs of developing cost effective algorithms, identifying the costs associated with 
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Figure 7.  Schematic Model for the Appropriate Selection and Use of Laboratory Tests.  

Reprint from “Public health applications of new laboratory technologies for communicable diseases”, by 

Pfister, J. (1997), Wisconsin State Laboratory of Hygiene Results, Spring, p. 7. Copyright 1997 John 

Pfister.  Reprinted with permission. 

 

false-negative and false-positive test results, and providing consultation services for suggesting 

effective testing strategies. 

Owusu-Edusei, Peterman and Ballard (2011) performed a cost effectiveness analysis of the 

traditional and reverse syphilis screening algorithms using a cohort decision analysis to estimate 

the expected costs and effects (including follow-ups and overtreatment) of the two algorithms.  A 

cohort of 200,000 individuals, which included 1,000 current infections and 10,000 previous 

infections were analyzed.  The estimated cost effectiveness ratios were $1,671 for the reverse 

algorithm and $1,621 for the traditional algorithm.  The study assumed a low prevalence rate of 

0.5% with 5% of the population previously infected.  The low prevalence rate implies that the 
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positive predictive value of the syphilis test would also be low.  Using those assumptions, the 

higher cost of the reverse algorithm test could be due to the inability of syphilis EIA tests to 

differentiate active from prior disease, thus leading to additional testing.  The authors suggest 

that further studies should be conducted to assess the cost effectiveness of the algorithms in 

higher prevalence populations.  The authors used the Medicare reimbursement rate ($5 for RPR 

and $6 for EIA) rather than a laboratory calculated test cost to determine cost effectiveness.  

Chuck, Ohinmas, Tilley, Singh and Jacobs (2008) performed a cost effectiveness analysis of 

the traditional and reverse algorithms using a cohort simulation model constructed with public 

health data from the Alberta Health Ministry.  Labor was considered a cost driver in the delivery 

of syphilis testing services, which included laboratory testing and non-laboratory activities, such 

as community search for patients, contacting patients, patient treatment, chart review, and 

follow-up.  The study was performed in prenatal (syphilis prevalence 0.08%) and nonprenatal 

(syphilis prevalence 1.9%) populations.  The study determined that the overall (prenatal and 

nonprenatal populations) incremental cost effectiveness ratio for the reverse algorithm was less 

costly and more effective than the traditional algorithm.  The reverse algorithm would save $461 

(Canadian) to produce one additional correct diagnosis.  This study used laboratory test costs 

based on internal laboratory accounting data.  The study stated that cost per test included kit, 

labor and supplies, but did include the labor calculation details nor identify if indirect costs were 

included in the cost.  The cost per test for RPR and EIA was listed as $2.22 and $4.75, 

respectively. 

Owusu-Edusei, Koski and Ballard (2011) performed a cohort decision analysis to determine 

the health and economic outcomes of the traditional and reverse algorithms in both low and high 

prevalence settings.  The study concluded that both algorithms detected and treated the same 
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number of individuals; however, the traditional algorithm was more cost effective in the low 

prevalence setting ($1,400 vs $1,500 per adverse outcome prevented) and more cost saving 

($102,000 vs $84,000) in the high prevalence setting.  The cost difference is likely due to the 

additional confirmatory tests that must be performed with the reverse algorithm.  In this study, 

the authors varied the laboratory testing costs between $1 and $24 to identify a threshold cost.  

They identified that in a low prevalence setting, when the treponemal test cost was below $5.80, 

the reverse algorithm was more cost effective than the traditional algorithm.  In high prevalence 

settings, when the treponemal cost was below $1.80, the reverse algorithm was more cost saving 

than the traditional algorithm. 

Berry & Loeffelholz (2016) performed a cost analysis of the potential savings if the TP-PA 

confirmatory test was only performed on Bioplex Syphilis IgG MBIA reactive samples with an 

AI between 1.1 and 7.9.  Based on results of their study, reactive samples with AI values above 

7.9 were 100% confirmed positive by TP-PA.  The cost analysis was performed using laboratory 

generated time studies for the analytical labor component and their reagent costs.  The study 

calculated the cost savings using their current modified reverse algorithm (reactive or equivocal 

Bioplex Syphilis IgG reflexed to both RPR titer and TP-PA) versus an algorithm based on 

performance of TP-PA testing only on samples with an AI of 1.1 and 7.9.  Samples with AI 

value equal to or above 8.0 would be assumed to be confirmed positive and additional TP-PA 

testing, as required by their modified reverse algorithm, would not be performed.  The annual 

number of TP-PA tests performed using their modified algorithm was 1,786.  There were 1,155 

samples with AI values equal to or greater than 8.0.  If those samples were assumed confirmed 

and not tested further, then there would be a 65% (1155/1786) reduction in TP-PA confirmatory 

testing.  The laboratory labor cost of performing the 1,786 tests was $1,459.43 with reagent cost 



 

  68 

of $5,994.32.  The laboratory labor cost of performing 631 TP-PA tests was $510.80 with 

reagent cost of $2,118.29.  The labor cost savings using the AI as a benchmark for reflex 

confirmatory testing would be $948.63 with reagent cost savings of $3,876.02 for a total annual 

savings of $4,824.65. 

Other authors have used only the reagent costs to discuss pricing differences in the reverse 

and traditional syphilis algorithms.  Sena, et al. (2010) states that the difference in reagent cost 

for nontreponemal RPR ($0.25) versus treponemal EIA ($5) along with test volume and labor 

costs are limiting factors in program decisions to adopt the reverse algorithm.  Binnicker and 

Loeffelholz (2011) discuss the advantages of automated syphilis testing in reducing “hands on” 

staff time and increasing sample throughput.  They further emphasize that labor is the 

laboratory’s highest direct cost and recognize that laboratories with the highest test volume could 

benefit the most from automated syphilis testing.  However, they also mention that even lower 

volume laboratories could benefit if multiple immunoassays could be combined on one 

instrument.  This is especially true for diseases of public health significance, with many vendors 

automating HIV, syphilis, and hepatitis testing onto one instrument so that all tests could be 

performed on the same sample at the same time.     

The previous studies provided a wide range of laboratory test costs; however, there is little 

backup evidence as to how the costs were calculated.  When determining the cost effectiveness 

of a test method, it is important to incorporate well-defined laboratory test costs.  Wilkinson,  

Dilts, Woolf, and Lifshitz (2011) define and identify the following costs for determining a 

laboratory test price: 

• Cost: the supply, labor and overhead dollars spent on a product or service. 

• Direct cost: expenses that can be traced back to a billable test (end product).  Expenses 
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include reagents, consumables, equipment, and “hands on” staff time.  Equipment may be 

rented, leased or purchased and direct costs should include any ongoing service 

agreements.  Rental or lease payments may be paid on a monthly basis or bundled into 

the reagent kit purchase price.  Depreciation costs for owned laboratory equipment that 

meets the capital cost criteria should be included in direct costs (Wawrzynski & Hall, 

2013).  

• Variable costs: expenses that change proportionately with test volume.  Increased volume 

equals increased reagent costs. 

• Fixed costs: expenses that do not vary with test activity.  Fixed costs include staff 

salaries, fringe benefits, analyzer service, proficiency test service, or rent.  

• Indirect costs: costs not directly related to the test being performed and usually calculated 

by administration using an allocation formula.  Sometimes referred to as overhead, these 

costs can include utilities or waste disposal, licenses, secretarial support, supervisory or 

administration salaries, human resources, or information technology support 

(Wawrzynski & Hall, 2013). 

• Salary costs: includes salary and fringe benefits.  Salary can account for 60% to 80% of 

the laboratory budget.  Fringe benefits include Social Security, health insurance, or 

pension plans and can add 16% to 28% to the base salary. 

• Operating costs: expenses to produce a product; often a one-time use such as reagents, 

consumables, or electricity.  Once the item has been used, it is of no further production 

value. 

• Capital costs: items such as computers, analytical equipment, or physical laboratory 

facility that can be re-used again after production.  There are three criteria that must be 
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met in order to qualify as a capital item: 

- Time: item must have a useful life of longer than one year. 

- Price: minimum dollar amount, usually $1,000 to $5,000, designated by the 

institution for qualification as a capital item. 

- Purpose: usually replacement of old equipment or purchase of new equipment 

to use for new methods or services. 

As proposed by Wilkinson, et al., (2011), microcosting is a mechanism used to derive the 

cost of producing a laboratory test.  The total direct labor and supply cost of producing a single 

test is first determined and that cost is used as a starting point to determine the fully loaded 

(direct and indirect) cost based on test volume.   

Most laboratory testing is performed in batches or continuous “runs” of multiple samples 

over one or more shifts.  A run is determined by many factors, including clinical expectations, 

test type, the laboratory operating hours, laboratory workflow, and the manufacturer’s FDA 

approved or cleared test procedure.  A run typically includes all reagent, consumable, quality 

control (QC), and calibration costs necessary to produce a test result.  A run may be performed 

all at once or many times during a shift.  A batch may be a group of tests that are performed after 

the initial controls are performed and multiple batches could be performed during a shift.  When 

microcosting a test, it is important to determine the workflow, control, and repeat requirements 

as they may impact the labor and supply costs.  According to Wilkinson, et al. (2011), the cost 

per reportable result (CPRR) “distributes the total direct costs of a run over the patient 

‘reportable’ results for that run.  Testing efficiency is defined as the total reportable patient 

results/total test results.  Thus, the more repeats and controls are performed, the lower is the 

efficiency, and the higher is the CPRR.  As the testing efficiency increases, the CPRR decreases” 
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(p. 143).  When a test is performed using an automated analyzer, the largest expenditure of labor 

is in the analyzer set up.  Once set up with reagents and samples and started, the technologist can 

“walk away” as the analyzer completes the testing without further intervention.  This allows the 

technologist time to perform other tasks.  Typically, the only cost for adding an additional test to 

an already operating automated analyzer is the reagent cost; however, there may be a minimal 

labor expense for inserting a bar coded sample onto an automated analyzer.  All other costs, such 

as controls or equipment are fixed costs.  If the test is performed manually, then there may be 

additional technologist time during each test step, that time would be included in the test cost.  In 

calculating labor costs, the staff time includes only “hands on” time, it does not include test 

incubation times for either an automated or manual assay.  Because prior literature review did 

not provide clear detail regarding determination of syphilis test costs, the microcosting template 

provided by Wilkinson, et al., (2011) was used to calculate the total direct cost, cost per 

reportable result, testing efficiency, and fully loaded cost of the initial syphilis screening tests, 

MacroVue RPR and CaptiaTM Syphilis IgG tests, and the confirmatory Serodia TP-PA test as 

performed at the dissertation study western region public health laboratory.  The following 

assumptions were used to complete the microcosting tables: 

• Reagent and consumable costs for MacroVue RPR, CaptiaTM Syphilis IgG, and Serodia 

TP-PA were based on 2015 vendor negotiated prices with the western regional laboratory 

where the dissertation study was performed.  The EVOLIS automated immunoassay 

analyzer used to perform the CaptiaTM Syphilis IgG tests was leased from the vendor 

under a cost per reportable contract.  An additional vendor negotiated charge of $0.11 per 

test was included in the price of each CaptiaTM Syphilis reagent kit when purchased and 

is reflected in the price used for the microcosting calculations.  Under this contract, the 
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vendor maintained ownership of the equipment and there was no additional charge for 

repair or preventive maintenance on the instrument during the contract time period. 

• Medical technologist salary was based on the US Department of Labor Occupational 

Outlook Handbook (retrieved from https://www.bls.gov/ooh/healthcare/medical-and-

clinical-laboratory-technologists-and-technicians.htm#tab-5).  Medical technologist 

median annual wage as of May 2015 was $60,520 which calculates to hourly pay of 

$29.16 

• Fringe benefits were calculated based on the range (16% to 28%) provided by  

Wilkensen, et al (2011).  The range average is 22%, which calculates to $6.42 per hour 

($29.16*0.22). 

• Indirect costs were calculated based on the estimate provided by Wilkinsen, et al. (2011) 

as 2.5 x direct cost. 

• Direct analytical labor time in minutes was based on time studies performed at the 

western regional laboratory where the dissertation testing was performed.  Time studies 

were based on the standard workflow in use at the laboratory.  Standard syphilis 

workflow included performing additional quality assessment checks by a second 

technologist at multiple steps in the analytical process and following the FDA approved 

manufacturer’s instructions as written.  Direct labor time did not include test incubation 

times which do not typically require “hands on” staff time. 

• CaptiaTM Syphilis IgG EIA: automated test method using EVOLIS immunoassay 

analyzer.  A run consisted of up to four 96-well reagent plates with five controls (four 

internal and one external) included in each plate. One run was performed per shift.  Once 

the run was initiated, additional samples were not added. 
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• MacroVue RPR: manual test method.  A run consisted of one 10 spot diagnostic test card 

with 3 external controls on a separate control card.  Manufacturer instructions state 

controls must be performed once per shift.  Following successful control performance, 

batches of 10 samples per diagnostic test card were performed continuously using the 

same reagent throughout the shift.   

• Fujirebio Serodia TP-PA: manual test method.  A run consisted of one 96 well plate with 

two external controls per plate.  Each sample and control required four wells for test 

performance, therefore a maximum of 22 unknown patient samples and two external 

controls were performed per plate.  One run was performed per shift. 

Tables 10 and 11 provide a basis for calculating the cost of initial syphilis screening tests using  

either the MacroVue RPR or CaptiaTM Syphilis IgG with various test volumes.  The MacroVue 

RPR used a 10-spot diagnostic card and the most efficient use of the card was to maximize the 

number of samples tested on the card, thus running all 10 samples at the same time in a batch.   

The CaptiaTM Syphilis IgG test used a 96-well plate and required use of five controls on each 

reaction plate; therefore, the maximum number of patients that could be performed on a single 

plate was 91 samples.  Up to four 96-well plates with a maximum of 364 samples could be 

performed in one automated analyzer run.   Performing less than the maximum number of 

samples would have an impact on test cost and efficiency.   

Table 12 provides a basis for calculating the cost of confirmatory TP-PA testing.  The TP-PA 

test method used a 96 well test plate for each batch run.  Each sample required four wells to 

perform each analysis and the manufacturer required two external controls per day of use or 

batch run.  The maximum number of samples and controls that could be performed per plate was 

24.  The test method could be performed with less than the maximum number of samples, which  
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Table 10 

Microcosting:  MacroVue RPR (Manual Method) 

 
10.A. Microcosting: Manual run of one patient reportable result (RPR) 

A run consists of one 10 spot RPR diagnostic test card with 3 external controls on separate card.  Per 

manufacturer instructions, controls performed once per shift.   

Direct Labor: Determine the total “hands on” time in minutes required to perform a manual “run” of one patient. 

Assume labor cost of $35.58/hour ($29.16 + $6.42 fringe) 

Category Minutes  Expense 

Test set up (specimens and reagents) 4  

Result analysis 2 

Result review and verification 2 

Result documentation 1 

Total direct labor ($35.58/60 minutes = $0.59/minute) 9  $  5.31 

Direct Supplies: List of consumables needed to perform the test.  Note: 4 tests (1 sample and 3 controls) needed 

to produce 1 patient reportable result 

Category Unit cost Units Expense 

Reagent kit includes reagent, dispenstir and diagnostic cards 

($235/500 tests) 

$0.47 4 $  1.88 

Controls: external card ($51/30 controls) $1.70 3 $  5.10 

Total direct supplies   $  6.98 

Total direct costs (direct labor + direct supplies)   $12.29 

Cost per reportable result (total direct cost/reportable results)  $12.29/1 $12.29 

Testing efficiency (reportable results/tests)  1/4 25.0% 
       

10.B. Microcosting: Manual batch run of 100 patient reportable results (RPR)  

Direct Labor: Determine the total “hands on” time in minutes to perform batch runs of 100 patients.  Batches of 

10 samples per diagnostic card can be performed continuously using the same reagent throughout the shift.  Note: 

additional 30 seconds (0.5 minutes) for each additional sample added to each manual step time determined in 

Table 10A. 

Category Minutes  Expense 

Test set up: 0.5x99 specimens = 49.5+4 minutes  53.5  

Result analysis: 0.5x 99 specimen= 49.5+2 minutes 51.5 

Result review and verification: 0.5x99 specimen=49.5+2 minutes 51.5 

Result documentation: 0.5x99 specimen=49.5+1 minute 50.5 

Total direct labor ($0.59/minute)        207  $122.13 

Direct Supplies: Note: 103 tests (100 samples and 3 controls) needed to produce 100 patient reportable results. 

Fixed costs (controls) are spread over more than 1 sample 

Category Unit cost Units Expense 

Reagent kit ($235/500 tests) $0.47 103 $  48.41 

Controls ($51/30 controls) $1.70 3 $    5.10 

Total direct supplies   $  53.51 

Total direct costs (direct labor + direct supplies)   $175.64 

Cost per reportable result (total direct cost/reportable results)  $175.64/100  $    1.76 

Testing efficiency (reportable results/tests)  100/103 97.1% 
 

10.C. Fully Loaded Cost: MacroVue RPR for 100 sample batch run 

Category Unit cost  Expense 

Direct cost per reportable result for 100 sample batch run $1.76  

Indirect cost (estimated at 2.5 x direct costs) $4.40 

Fully loaded cost per reportable result (direct + indirect costs)                                            $    6.16 
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Table 11 

   Microcosting: CaptiaTM  Syphilis IgG (EVOLIS Analyzer) 

11.A. Microcosting: Automated run of one reportable result (Syphilis IgG) 

A run consists of up to four 96-well reagent plates with 5 controls (4 internal and 1 external) included in each 

plate.  One run performed per shift 

Direct Labor: Determine the total “hands on” time in minutes required to perform an automated “run” of one 

patient. Assume labor cost of $35.58/hour ($29.16 + $6.42 fringe)  

Category Minutes  Expense 

Prepare specimens 2  

Prepare reagents 10 

Prepare instrument 10 

Computer and worksheet setup 5 

Documentation of results/QC/maintenance 10 

Clean up 10 

Total direct labor ($0.59/minute) 47  $  27.73 

Direct Supplies: List of consumables needed to perform the test.  Note: 6 tests (1 sample and 5 controls) needed 

to produce 1 patient reportable result 

Category Unit cost Units Expense 

Reagent kit ($1315/960 tests) includes $0.11 reagent rental 

charge/test for analyzer use 

$1.37 6 $    8.22 

300 ul pipette tip ($92/960) 1 tip/sample $0.10 6 $    0.58 

1100 ul pipette tip ($141.75/960) 5 reagent tips/plate $0.15 5 $    0.74 

Internal controls (included in reagent kit) $0.00 4 $    0.00 

External control ($84/12 controls) $7.00 1 $    7.00 

Total direct supplies   $  16.53 

Total direct costs (direct labor + direct supplies)   $  44.26 

Cost per reportable result (total direct cost/reportable results)  $44.26/1 $  44.26 

Testing efficiency (reportable results/tests)  1/6 16.7% 

 

11.B. Microcosting: Automated run of 91 reportable results (Syphilis IgG)  

Direct Labor: Determine the total “hands on” time in minutes required to perform an automated “run” of 91 

patients (one full test plate). Note:15 seconds (0.25 minutes) added to sample preparation step from Table 11A 

for additional samples inserted on test plate. 

Category  Minutes  Expense 

Prepare specimens: 0.25 x 90 = 22.5 + 2 minutes         24.5  

Prepare reagents      10 

Prepare instrument      10 

Computer and worksheet setup        5 

Documentation of results/QC/maintenance      10 

Clean up      10 

Total direct labor ($0.59/minute)         69.5        $  41.00 

Direct Supplies: Note: 96 wells (91 samples and 5 controls) needed to produce 91 patient reportable results per 

plate.  Fixed costs (controls and reagent tips) are spread over more than 1 sample                             

Category Unit cost Units Expense 

Reagent kit ($1322/960 tests) $1.37 96 $131.50 

300 ul pipette tip ($92/960) 1 tip/sample $0.10 96 $    9.20 

1100 ul pipette tip ($141.75/960) 5 reagent tips/plate $0.15 5 $    0.74 

Internal controls (included in reagent kit) $0.00 4 $    0.00 

External control ($84/12 controls) $7.00 1 $    7.00 

Total direct supplies   $148.44 

Total direct costs (direct labor + direct supplies)   $189.44 
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Table 11. Continued 
 

Cost per reportable result (total direct cost/reportable results)  $189.44/91  $    2.08 

Testing efficiency (reportable results/tests)  91/96 94.8% 

 

11.C. Fully Loaded Cost: CaptiaTM Syphilis IgG EIA for 91 sample batch run 

Category Unit cost  Expense 

Direct cost per reportable result for 91 sample batch run $2.08  

Indirect cost (estimated at 2.5 x direct costs) $5.20 

Fully loaded cost per reportable result (direct + indirect costs)   $   7.28 

 

Table 12 

 

Microcosting:  Fujirebio Serodia TP-PA (Manual Method) 

 
12.A. Microcosting: Manual run of one patient reportable result (TP-PA) 

A run consists of one 96 well plate with 2 external controls per plate.  Each sample and control require 4 wells for 

test performance, therefore a maximum of 22 unknown patient samples and 2  external controls can be performed 

per plate. Per manufacturer instructions, external controls performed once per day or batch run. 

Direct Labor: Determine the total “hands on” time in minutes required to perform a manual “run” of one patient. 

Assume labor cost of $35.58/hour ($29.16 + $6.42 fringe) 

Category Minutes  Expense 

Test set up (specimens and reagents) – includes dilutions 4.5  

Result analysis 2 

Result review and verification 2 

Result documentation 1 

Total direct labor ($0.59/minute) 9.5  $  5.60 

Direct Supplies: List of consumables needed to perform the test.  Note: 3 tests (1 sample and 2 controls) needed 

to produce 1 patient reportable result 

Category Unit cost Units Expense 

Reagent kit includes reagents, external controls  

($239.94/100 tests) 

   $2.40 3 $  7.20 

Test plate ($142.00/100 plates)    $1.42 1 $  1.42 

Pipette tips for individual pipettor ($100.00/960 tips) 2 tips per 

sample or control 

     $0.10 6 $  0.60 

Pipette tip for multichannel pipettor ($113.00/960 tips) 1 per tip per 

sample or control 

     $0.12 3 $  0.36 

 

Total direct supplies   $  9.58 

Total direct costs (direct labor + direct supplies)   $15.18 

Cost per reportable result (total direct cost/reportable results)  $15.18/1 $15.18 

Testing efficiency (reportable results/tests)  1/3 33.3% 

 
12.B. Microcosting: Manual batch run of 22 patient reportable results (TP-PA)  

Direct Labor: Determine the total “hands on” time in minutes to perform batch run of 22 patients.  Note: 

additional 30 seconds (0.5 minutes) for each additional sample added to each manual step time determined in 

Table 12A. 

Category  Minutes  Expense 

Test set up: 0.5x21 specimens = 10.5+4.5 minutes        15.0  

Result analysis: 0.5x21 specimen= 10.5+2 minutes       12.5 

Result review and verification: 0.5x21 specimen=10.5+2 minutes       12.5 

Result documentation: 0.5x21 specimen=10.5+1 minute       11.5 

Total direct labor ($0.59/minute)         51.5  $ 30.38 
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Table 12. Continued 
 

Direct Supplies: Note: 24 tests (22 samples and 2 controls) needed to produce 22 patient reportable results. Fixed 

costs (plate and tip) are spread over more than 1 sample 

Category Unit cost Units Expense 

Reagent kit includes reagents, external controls  

($239.94/100 tests) 

   $2.40           24 $57.60 

Test plate ($142.00/100 plates)    $1.42 1 $  1.42 

Pipette tips for individual pipettor ($100.00/960 tips) 2 tips per 

sample or control 

     $0.10            48 $  4.80 

Pipette tip for multichannel pipettor ($113.00/960 tips) 1 tip per 

sample or control 

     $0.12 24 $  2.88 

 

Total direct supplies   $ 66.70 

Total direct costs (direct labor + direct supplies)   $ 97.08 

Cost per reportable result (total direct cost/reportable results)    $97.08/22  $   4.41 

Testing efficiency (reportable results/tests)  22/24 91.7% 

 

12.C. Fully Loaded Cost: Serodia TP-PA for 22 sample batch run 

Category Unit cost  Expense 

Direct cost per reportable result for 22 sample batch run $4.41  

Indirect cost (estimated at 2.5 x direct costs) $11.02  

Fully loaded cost per reportable result (direct + indirect costs)   $  15.43 

 

would impact test cost and efficiency.  A batch run could be performed daily or only on specific 

days which would maximize the number of samples in the batch. 

Table 13 provides a summary of the costs associated with various initial syphilis screening  

workflows based on test volume.  The initial direct and fully loaded cost of one reportable test is 

listed for each test method, then different runs or batch volumes were calculated based on the 

values in Tables 10-12 (calculations not shown).  A run of one patient sample had the highest 

costs and lowest efficiency for both test methods.  Additional calculations were performed for a 

run of 10 patient samples, which maximizes the RPR diagnostic card but only allows for partial 

use of the Syphilis IgG reaction plate.  With the increase in test volume, the direct cost decreased 

rapidly from the one sample test scenario for both test methods ($12.29 vs $2.71 for RPR and 

$44.26 vs $5.90 for Syphilis IgG).  Additionally, the efficiency increased for both methods when 

the sample volume increased (25% vs 76.9% for RPR and 16.7% vs 66.7% for Syphilis IgG).  

These calculations could reflect the costs and efficiency associated with a low volume laboratory  
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Table 13 

Comparison of MacroVue RPR and CaptiaTM Syphilis IgG Costs, Efficiency, Time 

 

One reportable result MacroVue RPR 

1 reportable result 

1 partial diagnostic card 

CaptiaTM Syphilis IgG 

1 reportable result 

1 partial reaction plate 

Direct cost  $12.29 $  44.26 

Fully loaded cost (direct+indirect) $43.01 $154.91 

Efficiency  25.0% 16.7% 

Labor time  9 minutes 47 minutes 

Batch or run reportable results MacroVue RPR 

10 reportable results 

1 full diagnostic card 

CaptiaTM Syphilis IgG 

10 reportable results 

1 partial reaction plate 

Direct cost $2.71 $  5.90 

Fully loaded cost (direct+indirect) $9.48 $20.65 

Efficiency  76.9% 66.7% 

Labor time 27 minutes 49 minutes 

Batch or run reportable results MacroVue RPR 

100 reportable results 

10 full diagnostic cards 

CaptiaTM Syphilis IgG 

91 reportable results 

1 full reaction plate 

Direct cost $1.76  $2.08 

Fully loaded cost (direct+indirect) $6.16 $7.28 

Efficiency  97.1% 94.8% 

Labor time 207 minutes 69 minutes 

Batch or run reportable results MacroVue RPR 

182 reportable results 

18 full + 1 partial diagnostic 

cards 

CaptiaTM Syphilis IgG 

182 reportable results 

2 full reaction plates 

Direct cost $1.71  $1.85 

Fully loaded cost (direct+indirect) $5.98 $6.47 

Efficiency  98.4% 97.3% 

Labor time 371 minutes 92 minutes 

 

running only 10 samples per day or batch.  Additional calculations were performed to determine 

the effect of further increases in test volume such as might be seen in high volume laboratories.  

With an increase in test volume, the direct costs decreased for both test methods with the lowest 

direct costs for RPR at $1.71 and Syphilis IgG at $1.85 when 182 samples were performed in a 

run.  The efficiency also increased with RPR at 98.4% and Syphilis IgG at 97.3%.  The total 

direct and fully loaded cost differences between the RPR and Syphilis IgG also shrank as the test 
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volume increased.  At the 182 sample level, there was only a 49 cent difference between the fully 

loaded cost of RPR ($5.98) and Syphilis IgG ($6.47).  This emphasizes the requirement that test 

volume must be considered when comparing the cost of syphilis testing methods.   

However, cost and efficiency are not the only factors to look at in the calculations in Table 

13.  While the costs decreased for both test methods, the labor time increased for the RPR test 

method with 371 minutes of staff time required to perform 182 samples versus 92 minutes for the 

Syphilis IgG.  This time difference highlights the advantage of the automated analyzer in 

reducing staff time as the technologist performing batches of manual RPR testing will spend 371 

minutes (6 hours 11 minutes) hands on time at the bench, while the technologist performing the 

automated testing will spend 92 minutes (1 hour and 32 minutes) hands on time and can utilize 

the other four plus hours to perform other laboratory related tasks. There would be further labor 

savings if the automated analyzer could simultaneously perform other STD tests such as HIV on 

the same sample that was being tested for syphilis. 

The cost effectiveness analysis performed by Owusu-Edusei, Koski and Ballard (2011) 

identified that in a low prevalence setting, when the treponemal test cost was below $5.80, the 

reverse algorithm was more cost effective than the traditional algorithm.  In high prevalence 

settings, when the treponemal cost was below $1.80, the reverse algorithm was more cost saving 

than the traditional algorithm.  Based on the calculations provided in Table 13, there was a 

difference in the direct versus fully loaded costs for each test method.  If only the direct cost 

method was used to determine cost effectiveness, then the reverse algorithm using the Syphilis 

IgG test method at $1.85 for 182 reportable results met the cost effectiveness criteria for low 

prevalence areas ($5.80) and was very close for the high prevalence areas ($1.80).  If the fully 

loaded cost at $6.47 was used, the Syphilis IgG test method would not meet the cost 
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effectiveness level for either low or high prevalence settings.  This demonstrates the importance 

of using clearly defined costs for all syphilis test methods when cost effectiveness analyses are 

performed.  The fully loaded cost included an indirect calculation of 2.5 times the direct cost 

which significantly increases the cost of performing any laboratory test. 

Usefulness measure summary.  As indicated in the previous paragraphs, various authors 

have described multiple statistical measures for determining the usefulness of diagnostic 

laboratory tests.  Additionally, many authors use the terms accuracy and usefulness 

interchangeably.  For the purposes of this dissertation, accuracy was included as a component of 

usefulness, as no single test can provide a definitive answer of diagnostic test usefulness.  The 

following statistical measures were used in the study to define test usefulness: sensitivity, 

specificity, predictive values, likelihood ratios, accuracy, and/or ROC analysis.  Because test 

feasibility is also a usefulness measure, test cost was included in the discussion.  For public 

health purposes, a highly sensitive test that can determine syphilis infection in an early disease 

stage has implications not only for treatment of the infected patient but also for preventing 

disease spread within the community.  A highly accurate test is necessary to reduce the financial 

and emotional consequences of a false test result.  Strong likelihood ratios provide the healthcare 

provider with information for determining the clinical diagnosis for a specific patient.  For 

patients seeking care at STD public health centers, syphilis tests that can provide the best 

combination of these usefulness measures would be most desirable (Aamir & Hamilton, 2014; 

Galen & Gambino, 1975; Hulley et al., 2013; Vihinen, 2012).  

Public Health and Syphilis 

Syphilis has serious public health consequences and is considered a sentinel public health 

event by the CDC.  Syphilis infection is a reportable disease in all 50 states.  The CDC as well as 



 

  81 

local and state health authorities use the data to monitor syphilis infection rates.   In 1999, the 

CDC launched the National Plan to Eliminate Syphilis.  The CDC determined this was a unique 

opportunity to eliminate the disease because syphilis rates were at an all-time low, treatment and 

testing were effective and easily accessible, and high incidences of disease were limited to 

specific geographic areas.  However, the CDC recognized that due to the worldwide spread of 

syphilis, it would not be feasible to set a goal of eradicating syphilis infections in the US; 

therefore, the goal was to eliminate or reduce the incidence of syphilis in specific geographic 

areas to zero.  Because syphilis typically affects isolated groups involved in high-risk activities 

such as drug use, trading sex for money or drugs, unprotected anal intercourse, and multiple sex 

partners, the National Plan targeted a defined geographic area and utilized deliberate efforts to 

reduce syphilis infection (CDC, 1999). 

The National Plan proposed the following five goals: 

• Enhanced surveillance for detection, monitoring and data analysis of cases and contacts. 

• Strengthened community involvement and partnerships in both the public and private 

sectors and development of locally relevant syphilis elimination plans. 

• Rapid outbreak response to quickly interrupt syphilis transmission. 

• Expanded clinical and laboratory services including multi-level activities to provide 

access for persons infected or exposed to syphilis. 

• Enhanced health promotion to develop multi-level preventive sexual and health care 

behavior activities for at risk groups. 

CDCs rationale for implementation of the 1999 National Plan to Eliminate Syphilis was based on 

the public health importance of syphilis infection as well as the biological and epidemiological 

feasibility for elimination.  High rates of syphilis infection within a community act as the “canary 
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in the coal mine”, indicating a breakdown in public health services.  By enhancing public health 

efforts to eliminate syphilis, control of other infectious diseases, such as HIV, within the affected 

community and improvement of reproductive health services will also be achieved.  Syphilis 

elimination has an impact on fetal and maternal health through reduced stillbirths and congenital 

syphilis cases.  Based on 1999 dollars, the direct and indirect cost of syphilis infection in the US 

was $996 million each year; thus, eliminating syphilis would allow that funding to be used for 

other healthcare purposes.  Multiple biological characteristics of syphilis infection made 

elimination feasible.  These characteristics included inexpensive and effective antibiotic 

treatment with penicillin, easily accessible diagnostic testing, lack of nonhuman reservoirs, and a 

long incubation period, which provided sufficient time for case finding and epidemiological 

interventions to prevent disease transmission (CDC, 1999). 

In 1999, the time looked right for launching an all-out public health campaign to eliminate 

syphilis.  CDC reported that syphilis occurs in seven to ten year cycles and the 1999 plan hoped 

to catch the end of a 10-year cycle to knock out syphilis infection.  The 1990 syphilis epidemic 

had the highest rates of primary and secondary (P&S) syphilis infection (20.3/100,000 

population) in 40 years.  By 1998, the P&S syphilis rate had dramatically decreased to 

2.6/100,000 population.   Congenital syphilis rates also showed a significant decline from a high 

of 107.3/100,000 live births in 1991 to 20.6/100,000 live births in 1998.  CDC theorized that the 

dramatic decreases in syphilis infection were due to multiple factors including the STD public 

health prevention efforts to stop the 1990 syphilis epidemic along with additional public health 

activities to prevent HIV transmission and substance abuse.  In 1998, the geographic 

concentration of syphilis was highest in the Southern states with almost 75% of the rest of the 

nation’s counties reporting zero syphilis cases (CDC,1999). 
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Significant federal dollars were allocated to fund the syphilis elimination effort.  CDC 

provided $107 million dollars in funding to High Morbidity Areas (HMAs) to implement the 

syphilis elimination efforts.  Seven years later, the CDC reviewed the results of their efforts in 

the 2006 Syphilis Elimination Effort (SEE) report.  The report focused on the gains that had been 

made since 1999 in reducing syphilis incidence in selected groups.  There were reductions in 

syphilis infections in women and newborn infants with congenital syphilis rates dropping by 

92% from 107.3/100,000 live births in 1991 to 8.8/100,000 live births in 2004.  Syphilis 

infections in women also declined dramatically from 2.0/100,000 to 0.8/100,000 population 

during the 1991-2004 time period.  Racial disparities were also reduced during that time period 

with a decrease in African American syphilis rates from 14.3/100,000 to 8.9/100,000 population.  

However, despite the best public health efforts, syphilis had not been eliminated and was again 

increasing, with 60% of new infections among the MSM population in 2006 (CDC, 2006).     

Current review of P&S syphilis infection numbers shows a continued increase in US rates.  

The 2016 P&S syphilis rate (8.7/100,000 population) was the highest recorded since 1994.  This 

was a 17.8% increase in P&S syphilis compared to rates reported in 2015 (7.5/100,000 

population).  Men accounted for almost 90% of all P&S syphilis cases in 2016.  Cases increased 

among MSM with a doubling of the rate of P&S syphilis, the most infectious stage, between 

2000 and 2016.  In 2016, MSM accounted for 80.6% of all P&S syphilis.  This increase is of 

public health concern because exposure to genital sores caused by syphilis can increase the risk 

of acquiring HIV infection.  The CDC reports 47% HIV coinfection among MSM diagnosed 

with P&S syphilis in 2016 (CDC, 2017).    

The connection between syphilis and HIV rates can be traced to the beginning of the HIV 

epidemic within the MSM community in the early 1980s.  The public health prevention efforts 
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focusing on safer sex and community wide behavior changes to prevent HIV transmission during 

the 1990s resulted in a significant decrease in syphilis infection.  The CDC’s 1999 National Plan 

to Eliminate Syphilis was initiated because the syphilis rate had fallen to a historic low by 2000, 

but the rates began rising again within the MSM community shortly afterward.  According to 

Smith (2014), there are three initial areas to explore when trying to identify the reason for an 

increase in disease infection rates: 

a. Is there a change in the organism?  The treatment for syphilis infection at any stage has 

not changed since penicillin was first used in 1943, and the organism continues to remain 

susceptible (CDC, 2015; Frith, 2012; Ho & Lukehart, 2011).    

b. Did the incubation period or infectiousness of the organism change?  Syphilis disease 

progression has been well documented, and there have been no changes in the incubation 

period or virulence of the organism (CDC, 2015). 

c. Was there a public health or psychosocial change?  There have been documented changes 

in high-risk behaviors, especially within the MSM community.  The CDC 2006 SEE 

report and multiple authors identified the following high-risk behaviors that may 

contribute to this continued increase in syphilis infection especially among MSM: 

• Increase in unprotected penetrative sex, including oral-genital intercourse.  Zetola and 

Klausner (2007) reported that among the MSM community, oral sex is considered to 

be “safer” sex because it is rarely associated with HIV infection; however, other 

STDs including syphilis can be transmitted orally.   

• Serosorting.  Choosing to have unprotected sex with partners with the same HIV 

negative or positive serostatus.  This practice potentially reduces the risk of 

contracting HIV, but other STDs can be transmitted (Rowniak, 2009).  
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• HIV treatment optimism.  The success of highly active antiretroviral therapy 

(HAART) for HIV treatment resulted in a decrease of the infected person’s total HIV 

burden, maintenance of a functional immune system, and prevention of opportunistic 

infections that often lead to death (Moore & Chaisson, 1999).  New HIV viral load 

test methods provide healthcare practitioners with quantitative tools for making 

decisions about starting or modifying HIV treatments.  According to Halkitis, Wilton, 

and Drescher (2005), these HIV treatment and testing advances may have a 

“widespread effect on the sexual behavior of MSM by decreasing the perceived 

severity and consequences of HIV transmission” (p.18).  Rowniak (2009) provided a 

review of multiple research studies that documented an association between HIV 

treatment optimism and increased high risk behaviors of unprotected sex and drug 

use.  Treatment optimism can also be applied to syphilis infection which is curable 

with antibiotic use; therefore, the infection risk is minimalized and may lead to an “if 

you get it, it can be treated” attitude among the MSM population (CDC, 2006). 

•  Safer sex fatigue.  Rowniak (2009) describes safer sex fatigue as “the inability of 

individuals to maintain safe sex practices” (p. 32).   Ostrow, et al., (2008) performed a 

prospective study of attitudinal and relationship predictors of sexual risk among HIV 

positive and negative MSM.  The study showed that a higher proportion of MSM 

reporting unprotected sexual partners was associated with decreased HIV concern, 

possibly due to HAART, and increased safer sex fatigue.   The increase in safer sex 

fatigue could be due to repeated exposure to outdated and simplistic HIV prevention 

messages, failure of public health prevention programs to develop new approaches to 

prevention that recognize psychosocial changes within the community, or that older 
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MSM no longer have the constant reminder of friends dying of acquired 

immunodeficiency disease syndrome (AIDS) as occurred at the beginning of the 

AIDS epidemic, and younger MSM have not experienced the fear of dying from 

AIDS because of advances in HIV treatment (Halkitis, Wilton & Drescher, 2005; 

Ostrow, et al., 2008). 

• Substance abuse.  Halkitis, Wilton and Drescher (2005) discuss studies that have 

shown an increased rate of substance abuse among MSM.  Methamphetamine, a 

“club” drug, can be used to lower sexual inhibitions and enhance sexual experiences.  

Its use has been associated with risky sexual practices such as unprotected anal 

intercourse.   

• Internet.  The Internet has provided new opportunities for MSM to meet sex partners 

anonymously 24 hours a day, 7 days per week.  Multiple websites are available that 

allow men to identify a preference for unprotected sex and often provide for 

disclosure of HIV status to allow for serosorting.   Multiple authors have 

demonstrated an increasing association between early syphilis infection and Internet 

use.  MSM who meet sex partners online report more sex partners, more likely use of 

methamphetamines, more likely to have unprotected sex, and more likely to have had 

an STD in the prior year (CDC, 2003; Halkitis, Wilton & Drescher, 2005; Klausner, 

2000). 

Public health programs at the local and state level include both clinical and laboratory 

services necessary to perform syphilis detection, treatment and prevention.  Because of the 

interaction between syphilis and HIV infection, the CDC recommends that STD and HIV 

programs at local health departments should continue to merge to allow for synergistic 
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opportunities for disease detection and prevention (CDC, 2006).  Loss of funding for STD 

programs at the state and local level due to the recent US economic downturn has had a 

significant negative impact on the ability of public health agencies to provide clinical and 

laboratory services.  A study by Willard, Shah, Leep and Ku (2012) found that by 2010, over 

50% of local health departments (LHDs) had cuts to their core funding.  Between 2008-2009, 

over 45% of LHDs had lost staff to layoffs or attrition, thus challenging the ability of remaining 

staff to support programmatic activities.  Between 2001 to 2006, the federal government cut 

funding for infectious disease control programs and HIV programs by 1.9% and 21%, 

respectively.  The loss of funding required public health programs to streamline services by 

finding alternative providers or forming partnerships, which most likely involved the private 

sector.  The Affordable Care Act (ACA) may allow more patients to access STD treatment 

through the private sector; however, this will require increased collaborations between the public 

and private sector to ensure that private sector providers understand their public health 

responsibilities.  The responsibilities related to STD prevention and control include appropriate 

laboratory testing, correct disease staging, appropriate treatment, public health disease reporting, 

and participation in effective partner services.  Laboratory services include an urgent need to 

improve diagnostic testing capabilities with new tools for rapid and accurate detection.  The 

2006 CDC SEE report included a set of recommended laboratory service activities for syphilis 

elimination including establishing a regional laboratory network for performance of syphilis 

PCR testing and policy guidance on the use and interpretation of the reverse sequence algorithm 

(CDC, 2006).  

Public health interventions have traditionally been provided through public health STD 

clinics.  Celum, et al. (1997) performed a cross-sectional study of 2,490 patients attending five 
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urban STD clinics to characterize the clinic clientele and determine why they sought care in a 

public health setting.  The results of the study showed that 51% of the patients were under 25 

years of age; 64% were non-white; 43% earned less than $10,000 per year; and 59% were 

uninsured.  The STD morbidity among the patients was high with 66% diagnosed with one or 

more STD.  The main reasons for attending the STD clinic were for convenience (walk in 

appointments and location), cost, confidentiality, and expert care. 

With the implementation of the ACA in 2010 and the 2007 economic recession,  many 

changes have occurred in the healthcare environment.  In order to answer questions about current 

access to public STD clinics, the diseases detected and services provided, Pathela, et al. (2015) 

performed a retrospective analysis of 608,536 clinic visits to 40 geographically diverse clinics 

associated with the CDC Sexually transmitted Surveillance Network (SSuN) from 2010 through 

2011.  The SSuN geographically diverse areas are located along the four US boundaries: East 

(New York and Virginia), West (San Francisco and Washington), North (Minnesota) and South 

(Colorado).  The SSuN participants followed common protocols for data collection and included 

enhanced data elements such as anatomic sites of infection, risk behaviors and treatment 

(Rietmeijor, et al., 2009).  Pathela, et al. (2015) found that 61.9% of STD clinic patients were 

male, 47.1% were 20 to 29 years old and 56.2% were non-Hispanic black.  There were 212,765 

STD diagnoses made during clinic visits.  While the ACA may provide insurance for many US 

citizens, underserved populations such as undocumented immigrants and underinsured 

individuals still need access to STD care.  STD clinic staff provide a two-phase disease control 

approach, which includes detection and treatment of syphilis infection and effective partner 

services such as notification and contact treatment.  Private healthcare providers may not 

understand their public health role in this type of community based disease prevention.  STD 
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clinics will need to evaluate their partnerships to ensure they can provide proactive training and 

support to these new ACA healthcare paradigm participants.  Elimination of syphilis infection in 

the US continues to be an achievable goal because the disease can be detected with laboratory 

diagnostic tests and is treatable.  The current high levels of syphilis are localized in specific 

populations that can be targeted with public health interventions.  However, federal funding is 

needed to accomplish the goals at the state and local level if the elimination services remain in 

the public realm. 

Summary 

Syphilis is a complicated disease to diagnose because of its ability to mimic other diseases 

and the overlapping stages of disease progression.  Current laboratory diagnostic testing 

capabilities rely on detection of an immune response to T. pallidum infection.  While there are 

multiple different testing methods available, there is variability in the sensitivity and specificity 

of each assay.  This variability is particularly important when reverse algorithm screening is 

utilized.  If a highly sensitive treponemal test is used for initial screening, then CDC 

recommends that an equal or higher sensitivity test should be used for the second treponemal test 

in the event of discordant results with the nontreponemal test.  If a lower sensitivity test is used 

for discordant testing, then there is a potential for assumption that the initial test was a false 

positive, which could have deleterious effects on the patient’s health as well as allowing the 

spread of disease within the community.  The CDC does not recommend the use of the FTA-

ABS test as a second treponemal test due to its low sensitivity and recommends use of the TP-

PA test.  The decision to implement a new test methodology, such as an automated syphilis test, 

is based on a number of considerations including cost, equipment, training, assay sensitivity and 
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specificity.  In addition, the laboratorian must know the prevalence of syphilis within the 

population because it will impact the predictive value of the test (Zanto, 2010).    

The quantitative S/CO or index value generated by automated treponemal assays may be of 

benefit in resolving discordant results with reverse algorithm testing.  The S/CO value is 

proportional to the amount of T. pallidum antibody present in the infected person’s serum.  In 

instances where there are discordant results between the initial treponemal screening and the 

nontreponemal test, a high S/CO value could be predictive of a positive second treponemal test.  

If a standard cut off value for a “true positive” treponemal test can be identified for the 

automated test, then the second tests would not have to be performed which would result in a 

cost savings for the laboratory.  Additionally, nonreactive samples with S/CO values within a 

specific range could be flagged by the laboratory with a comment so that the healthcare provider 

would be alerted to perform additional follow up testing (Wang, et al., 2011).  The CDC 

suggested in the 2015 Syphilis treatment guidelines that the usefulness of these semi-quantitative 

values should be investigated further (CDC, 2015). 

Public health STD clinics provide a unique environment for detecting syphilis infection.  The 

clinics are predominately accessed by individuals who are underserved in the traditional 

healthcare system.  STD clinic populations typically include racial/ethnic minorities, young 

persons, MSM and WSW.  These populations often have high STD rates.  STD clinics are 

particularly important for men, who are less likely than women to seek preventive care.  Patients 

prefer to access STD clinics rather than primary care due to confidentiality, expertise and 

convenience.  These clinics serve a public health function of identifying index patients and 

preventing further spread of disease through contact investigation.  Useful laboratory testing is 
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an important diagnostic tool for determining individual syphilis infection and preventing 

community-wide disease spread. 

There are gaps in the current body of knowledge regarding the usefulness of the CaptiaTM 

Syphilis IgG EIA assay for syphilis detection.  The CaptiaTM Syphilis IgG method was one of the 

first EIA methods approved by the FDA in 2001.  While there are research articles from that time 

period regarding the sensitivity and specificity of the test, there is little or no research regarding 

the usefulness of the CaptiaTM Syphilis IgG test within the reverse algorithm constellation of 

tests.  Additionally, review of current literature did not reveal studies that explored the predictive 

value of the CaptiaTM Syphilis IgG S/CO value for determining syphilis infection.  According to 

the College of American Pathologists (CAP) 2016 Syphilis serology G-B proficiency test survey 

summary, there were 104 US participating laboratories that reported Syphilis IgG EIA testing 

with 48% (50/104) of the laboratories using the CaptiaTM Syphilis IgG assay (CAP, 2016).  

Additional research on test usefulness would be helpful as laboratories make decisions on 

maintaining or updating test methodology.  Most of the research that has been conducted on the 

usefulness of the reverse and traditional algorithm has been performed either on stored serum 

samples or in the clinical setting.  There is minimal research comparing the reverse and 

traditional algorithms in a public health setting with patients who may be at risk for syphilis 

infection.  Studies of the cost effectiveness of the reverse and traditional algorithms often do not 

include definitions of the methods used to determine the cost of laboratory testing.  Differences 

between the direct and fully loaded cost of syphilis test methods can have an impact on 

determining the cost effectiveness of either algorithm in detecting syphilis infection.  
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Chapter 3: Methodology 

 

 

 

 

This chapter will present the methodology for determining the usefulness of the CaptiaTM 

Syphilis IgG EIA test method and reverse algorithm for detection of syphilis infection in a public 

health setting.  The theoretical framework for the dissertation study will be presented along with 

research design details including subjects, variables, human studies protocol, data collection, 

data analysis, validity, and reliability.   

Theoretical Framework 

This study utilized the Donabedian Quality Framework to evaluate the usefulness of the 

CaptiaTM Syphilis IgG EIA test and the syphilis reverse algorithm for detection of syphilis 

infection.  The Donabedian model is composed of three domains: structure, process, and 

outcomes.  Each domain is considered equally important and linked hierarchically.  Structure is 

the foundation and primarily influences process; however, both structure and process influence 

the outcomes.  Since 1980, the model has been successfully used as a framework for quality 

assessment and systems monitoring of healthcare systems (Donabedian, 1980; Polit & Beck, 

2012; Shi & Singh, 2012). 

The Donabedian model is very similar to the Quality Management System (QMS) Model for 

Laboratory Services, an approved guideline developed by the Clinical and Laboratory Standards 

Institute (CLSI).  The QMS model describes the sequential path of workflow within a clinical 

laboratory showing the steps from receipt of a laboratory test order to a reportable test result 

(CLSI, 2004).  The path of laboratory workflow is further defined in federal regulation 42 Code 
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of Federal Regulations (CFR) 493 Centers for Medicare and Medicaid Services (CMS) Clinical 

Laboratory Improvement Amendments (CLIA) Programs: Laboratory Requirements Relating to 

Quality Systems and Certain Personnel Qualifications, Final Rule published on January 24, 

2003.  All US laboratories that perform diagnostic testing on humans must follow the CFR 493 

CLIA regulations, and perform quality assessment through all phases of laboratory testing within 

the path of workflow (CMS, 2017).  These regulations also utilize the QMS pathway with 

slightly different terminology.  The QMS pathway describes the path of workflow as 

preexamination, examination, and postexamination; whereas, CLIA regulation describes the path 

of workflow as preanalytic, analytic, and postanalytic.  While the terms are slightly different, the 

definitions are the same.  For this dissertation, the CLIA terms will be used.  In reviewing the 

Donabedian model and the QMS/CLIA model, a similarity between the three domains and the 

laboratory workflow path can be identified (Figure 8).   

Structure is defined as resource outputs in the Donabedian model.  QMS/CLIA describe the 

preanalytic component as all the activities from the time a test is ordered until it is collected and 

transported to the laboratory for processing (CLSI, 2004; CMS, 2017).  These activities include 

the use of a variety of qualified, trained staff to collect, process and transport the sample; 

delivery systems such as courier or commercial shippers; facilities for sample collection 

procedures; and equipment to collect the sample.  These preanalytic activities (staff 

qualifications, staff levels, delivery, facilities, and equipment) are included in the Donabedian 

model for the structure domain.  

Process is defined as actual delivery of healthcare in the Donabedian model.  QMS/CLIA 

describe the analytic component as follows: selecting the appropriate test method including a  
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Figure 8. Comparison of Donabedian Quality Framework Model and Clinical Laboratory Path of 

Workflow.   

Adapted from Delivering Health Care in America by L. Shi & D.A. Singh, 2012, p. 506, Copyright 2012 

by Jones & Bartlett Learning, LLC and Application of Quality Management System Model for Laboratory 

Services: Approved Guideline – Third Edition by CLSI, 2004, pg 7-12 Copyright 2004 by The National 

Committee for Clinical Laboratory Standards. 

 

cost per test evaluation, verifying test performance, creating standard operating procedures 

(SOPs), performing the test using trained and competent staff, and correlating final test results 

(CLSI, 2004; CMS, 2017).  These analytic activities (cost, procedures, and diagnosis) are 

included in the Donabedian model for the process domain.    

Outcome is defined as the final results in the Donabedian model.  QMS/CLIA describe the 

postanalytic component as the activities of test result reporting, which may be the healthcare 
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provider and/or a public health agency (CLSI, 2004; CMS, 2017).  The healthcare provider will 

utilize the results to treat the patient while the public health agency will utilize the results to track 

incidence and prevalence of disease within the community.  Other postanalytic activities include 

consultation to healthcare providers regarding the test interpretation or any follow up testing that 

may be recommended.  Abnormal or critical results are communicated to the healthcare provider 

so that appropriate treatment can be started as soon as possible.  These activities could have an 

impact on the health status of the patient and affect their recovery.  Postanalytic activities may 

also impact public health investigations if further testing is required to characterize a disease 

outbreak or emerging pathogen.  Quality assessment (QA) is a CLIA requirement for all clinical 

laboratories and includes specific standards that must be included in a laboratory quality 

assessment program.  Adherence to these standards ensures continual laboratory quality 

improvement (CMS, 2017).  These postanalytic activities (disease incidence and prevalence, 

health status, disease recovery, and improvement) are included in the Donabedian model for the 

outcome domain. 

The Donabedian model domains are hierarchical with structure influencing process and both 

structure and process domains affecting outcomes.  This study utilized the process (analytic) and 

outcome (postanalytic) domains of the Donabedian framework to evaluate the usefulness of the 

CaptiaTM Syphilis IgG EIA test and the syphilis reverse algorithm interpretation to detect syphilis 

infection in a public health setting.  For this dissertation, there was an assumption that the 

structure domain was performed properly with trained and competent staff following established 

SOPs for sample collection and handling.  The western region laboratory where the dissertation 

testing was performed provided SOPs and training to all staff involved with the preanalytic 
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process.  The laboratory maintained documentation for samples that were rejected due to 

improper handling or processing. 

The target construct for the study was syphilis infection, and the proposition for the research 

question was that more useful syphilis testing will improve the detection of syphilis infection. 

The following laboratory analytic and postanalytic domain activities were utilized for the study: 

• Analytic (process) domain activities: syphilis test results and S/CO value  

(predictive value). 

• Postanalytic (outcome) domain activities: syphilis reverse and traditional algorithm 

serologic laboratory interpretation; syphilis diagnosis (predictive value). 

Research Question and Hypotheses 

The specific research question and hypotheses addressed by this study are: 

RQ1: What is the usefulness of the CaptiaTM Syphilis IgG EIA test method and the reverse 

algorithm for detection of syphilis infection in a public health population? 

• H1o: Among patients seeking STD services at a large western region    

 metropolitan public health clinic, there will be no difference between the CaptiaTM 

 Syphilis IgG EIA and Fujirebio Serodia TP-PA test results. 

• H2o: Among patients seeking STD services at a large western region metropolitan 

 public health clinic, there will be no difference in diagnostic interpretation of the  

CaptiaTM Syphilis IgG EIA S/CO value and the Becton Dickinson MacroVue RPR 

 titer test result. 

• H3o: Among patients seeking STD services at a large western region metropolitan 

 public health clinic, there will be no difference between the syphilis traditional 

 and reverse algorithm interpretations. 
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Research Design 

The study was a retrospective, nonexperimental descriptive correlational design.  It addressed 

whether useful diagnostic information about syphilis infection can be obtained utilizing the 

CaptiaTM Syphilis IgG EIA test and the syphilis reverse algorithm.  According to Polit and Beck 

(2012) the aim of correlational studies is to describe relationships rather than to determine 

causality.  The design was nonexperimental because there was no manipulation of an 

independent variable.  It would be unethical to manipulate a syphilis test result, as it would have 

a deleterious effect on determining if the patient was infected with syphilis.  All data used for the 

study was collected during two calendar years January 1, 2012 to December 31, 2013 as 

purposive convenience sampling; therefore, the study design was retrospective.  The study data 

was collected as part of standard public health practice within the STD clinic at a large western 

region metropolitan (greater than two million population) public health agency.  According to 

CDC STD surveillance criteria, the western region includes the following states: Alaska, 

Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 

Washington, and Wyoming (CDC, 2015).  During 2012-2013, the western region public health 

agency enhanced their standard syphilis surveillance protocols to include the performance of 

three different syphilis tests (CaptiaTM Syphilis IgG, MacroVue RPR, and Serodia TP-PA) on 

patients who exhibited high-risk behavior, who were contacts to syphilis cases, who had 

symptoms of syphilis infection, who had an initial reactive or equivocal treponemal test result, or 

who had a nonreactive Syphilis IgG S/CO value greater than or equal to 0.450.  

The public health laboratory associated with the public health agency began performing 

initial syphilis testing using the syphilis reverse algorithm in 2009; prior to this time, the 

traditional algorithm was used.   The syphilis reverse algorithm starts with an initial treponemal 
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test (EIA) and reflexes to nontreponemal tests (RPR and titer) if the results are reactive or 

equivocal.  If the nontreponemal tests are nonreactive, then a second but different treponemal test 

(TP-PA) is performed as the tiebreaker.  The CDC recommended performance of the TP-PA test 

only if the reverse algorithm reflex RPR test was nonreactive.  However, there was concern 

among the western region public health agency STD clinic staff that the reverse algorithm was 

not as sensitive as the syphilis traditional algorithm; and the staff was confused by the reverse 

algorithm interpretation when the results were discordant.  Therefore, during the study period, 

the public health laboratory coordinated with the public health STD clinic to modify the reverse 

algorithm recommended by CDC so that an initial reactive or equivocal treponemal test was 

reflexed to RPR, RPR titer, and TP-PA tests, which were all run simultaneously.  This 

modification was similar to the modified reverse algorithm described in the study conducted by 

Berry and Loeffelholz (2016).  The ability to order a three-test panel consisting of Syphilis IgG, 

RPR, and TP-PA based on their clinical assessment of the patient provided STD clinic staff with 

the option to clinically correlate the test results using either the traditional or reverse syphilis 

algorithms.  Additionally, in 2010, the public health laboratory and STD clinic staff had detected 

numerous instances of nonreactive Syphilis IgG EIA tests in patients who presented with 

symptoms of primary syphilis.  A pilot study was performed by the laboratory and it was 

determined that nonreactive samples with an S/CO value greater than or equal to 0.450 were 

more likely to be falsely negative when correlated with clinical symptoms (P.Armour, personal 

communication, January, 10, 2011).  Based on this pilot study and discussion with the STD 

clinic staff, the public health laboratory director approved performance of additional reflex 

testing to RPR and TP-PA for those nonreactive Syphilis IgG samples with a S/CO value greater 

than or equal to 0.450.  This additional reflex testing was in use during the study time period.   
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All syphilis test results were reported for each patient and were used by the public health agency 

STD clinic staff to determine the presence or absence of syphilis infection based on clinical 

correlation of test results.  Obuchowski (1998) states that one strategy to improve the power of 

diagnostic test accuracy studies is to use a paired design with all tests performed on the same 

sample.  Additionally, the power of a retrospective study comparing diagnostic tests can be 

improved by including patients with “subtle” as well as normal manifestations of the disease.  In 

the case of syphilis diagnosis, infected patients were clinically staged within the disease 

progression based on laboratory test results, symptoms and risk factors.  This study included 

patients with no syphilis disease, those in the early (primary) stages of syphilis disease as well as 

those in later (latent) stages, which enhanced the study design.  

Design Validity 

Polit and Beck (2012) describe four types of research design validity: statistical conclusion, 

internal, construct, and external.  Each type will be discussed in relation to the study design.   

Statistical conclusion validity.  Statistical conclusion validity of the design is the ability of 

the study to detect relationships that “exist in reality and can be reliably detected” (Polit and 

Beck, 2012, p. 241). Threats to statistical conclusion validity can be reduced by ensuring the 

study has adequate statistical power and maximizing precision.  Statistical power will be 

discussed in the population and sample section that follows.  Hulley et al. (2013) discuss the 

following five strategies for increasing precision: 

• Standardize the measurement methods in an operations manual.  The public health 

laboratory performing the testing on the study samples was registered with the Centers 

for Medicare and Medicaid Services (CMS) CLIA program and was required by federal 

regulation to maintain SOPs.  Additionally, CLIA regulations state that all testing must 
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be performed following the test manufacturer instructions (CMS, 2017).  The FDA is the 

regulatory authority for all clinical diagnostic tests sold in the US and approves all test 

manufacturer instructions to ensure that the test provides accurate results when performed 

as instructed.   

For the chart review clinical diagnosis and staging measurement, the STD clinic staff 

determined all syphilis disease staging based on standard CDC guidelines,  which were 

documented in the STD clinic SOP.  For the reverse and standard algorithm 

interpretation, the western region laboratory staff and/or the student researcher 

determined the interpretation based on the CDC algorithms (Figures 4 and 5). 

• Training and certifying the observer.  CLIA regulations require that the laboratory 

director must provide written certification that all testing staff are trained and competent 

prior to performing any diagnostic test (CMS, 2017).  The laboratory director certified all 

public health laboratory staff performing the testing for this study as trained and 

competent to perform the tests and enter test results into the Laboratory Information 

Management System (LIMS). 

For the chart review clinical diagnosis and syphilis staging, the public health agency 

required that all STD clinic staff performing clinical assessments must be trained and 

competent to determine syphilis disease stages.  The staff was further trained to enter data 

correctly into the patient’s electronic medical record.  The public health laboratory staff 

and student researcher performing the information abstraction from the electronic 

medical record received training from the clinic and information technology (IT) staff 

prior to performing the abstraction. 
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• Refining the instrument.  The FDA approved all three diagnostic tests (CaptiaTM Syphilis 

IgG, MacroVue RPR, and Serodia TP-PA) used in this study for testing human serum to 

provide serologic evidence of syphilis infection.  The staff at the public health laboratory 

performing the tests in this dissertation study followed the FDA approved manufacturer’s 

instructions with no modifications.  An additional external control was added to the 

CaptiaTM Syphilis IgG test; however, the additional control was not considered to be a 

modification by CLIA.  FDA approved manufacturer’s directions for test performance of 

the three syphilis tests used in this dissertation study are detailed below. 

o CaptiaTM Syphilis IgG is an EIA test for the qualitative detection of T. pallidum 

IgG antibodies in serum specimens.  It is intended to be used in conjunction with 

nontreponemal testing to provide serological evidence of T. pallidum infection.  

According to the manufacturer’s package insert (Trinity Biotech, 2003), the assay 

principle is as follows:  

Microtitration wells with T. pallidum antigens are exposed to test specimens 

which may contain specific IgG antibodies.  After an incubation period, 

unbound components in the test sample are washed away.  Specifically-bound 

IgG reacts with a conjugated horseradish peroxidase (HRP) monoclonal 

antibody (mAb) during the second incubation period.  Following a second 

wash cycle, specifically-bound enzyme conjugate is detected by reaction with 

tetramethylbenzidine (TMB).  The enzymatic reaction is stopped using 1N 

sulfuric acid.  The assay is measured spectrophotometrically to indicate the 

presence or absence of IgG treponemal antibodies (p. 1).   

 

Immunoassay methods may exhibit a possible interference phenomenon known as 

the hook effect.  The effect occurs when there is excess antibody blocking all the 

binding sites on the antigen.  This may result in a falsely low test result which 

could be reported as a false negative.  The hook effect typically occurs in single 

step immunoassays where antigen, antibody, and marker are all incubated at the 
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same time.  According to Dodig (2009), Miller (2004), and Selby (1999) the hook 

effect does not typically occur in two-step competitive assays, such as the 

CaptiaTM Syphilis IgG test method, that include a wash step prior to the addition 

of the second antibody, which is HRP-mAb conjugate for the Captia method.  An 

additional mechanism for eliminating the hook effect is to dilute the sample at a 

previously established dilution prior to analysis.  According to the manufacturer’s 

package insert, all serum samples were diluted 1:21 automatically by the EVOLIS 

instrument prior to analysis.  This sample dilution step added to the assay design 

also reduces the possibility of a hook effect. 

The assay can be performed manually or on a qualified automated analyzer 

using a 96 well format.  The western regional laboratory utilized the BioRad 

EVOLIS automated analyzer for all CaptiaTM Syphilis IgG testing performed on 

the study samples.  Each assay kit contains microwell strips, conjugate, substrate, 

diluent, and controls (high titre reactive [HTR], low titre reactive [LTR] and 

nonreactive [N]) to perform either 96 or 960 tests depending on package 

configuration.  The kit materials may not be interchanged with kits with different 

lot numbers because the kits are optimized and balanced for a specific kit lot 

number.  All test specimens were diluted 1:21 with diluent prior to analysis.  The 

kit controls were provided at working strength and were not diluted.  All three 

controls (HTR, LTR and N) were included on each 96 well plate and placed in 

specific locations on the test plate so that the analyzer calculated plate run 

validity.  The LTR control was tested in duplicate and was used to calculate the 

cutoff value for distinguishing nonreactive, equivocal and reactive test results.  
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Because the LTR was used as a single point calibrator on each 96 well plate, it 

was no longer considered a control according to CLIA guidelines; therefore, an 

external well-characterized low-titre reference control was included in each run to 

act as a replacement low titer control.  The external low-titre reference control 

(Virotrol, Syphilis total) used by the public health laboratory was purchased from 

Bio-Rad.  It was treated the same as the sample and was, therefore, diluted prior 

to analysis.  At the western region laboratory where the dissertation testing was 

performed, three levels of control (N, external reference low-titre, and HTR) were 

performed each day of use on each plate.  Additionally, according to the 

manufacturer’s instructions, the LTR was included in duplicate on the 96 well 

plate as a calibrator.  Each 96 well plate analysis was validated as follows: 

▪ The absorbance of N must be less than or equal to 0.25 

▪ The absorbance value of HTR must be greater than or equal to 0.8 

▪ The mean absorbance of LTR must be greater than or equal to 2.5 x the 

absorbance of N. 

All three parameters must be met for an assay plate to be valid.  If any parameter 

was not met, the entire assay plate was invalid and was repeated.  Additionally, 

the external low-titre reference control must provide reactive results or the entire 

assay plate was invalid and was repeated.  No patient test results were reported for 

invalid test runs.  Calculation of patient results were performed as follows: 

▪ Calculate the mean absorbance value of the duplicate LTR.  According to 

manufacturer’s package insert (Trinity Biotech, 2003), “this is the cut-off 

value for the test method and was derived from clinical trials as the value 
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giving optimum discrimination between specimens which are reactive or 

nonreactive for antibodies to T. pallidum as characterized by a range of 

standard serological techniques” (p. 3). 

▪ Calculate the Antibody Index (AI) or Signal to Cutoff (S/CO) ratio for 

each sample by dividing the absorbance of the test specimen by the mean 

absorbance of the kit LTR. 

o For example: Test serum absorbance = 0.75 and mean LTR 

absorbance = 0.30.  The S/CO value = 0.75/0.30 = 2.50 

▪ Following calculation of the S/CO value for each test sample, the final 

result was interpreted as follows: 

o S/CO value less than or equal to 0.9 is considered nonreactive 

o S/CO value between 0.9 and 1.1 is considered equivocal 

o S/CO value greater than or equal to 1.1 is considered reactive 

▪ In the example above, an S/CO value of 2.50 would be 

reported as reactive. 

▪ Initially equivocal or reactive results were repeated in duplicate.  The 

BioRad EVOLIS included a computerized program that automatically 

ordered repeat Syphilis IgG testing and interpreted the final test result 

based on all three Syphilis IgG test results as shown in the algorithm in 

Figure 9.  An invalid test result was reported if the duplicate repeat test 

results were not reproducible.  Invalid test results may be due to 

instrument, reagent, and/or operator error.  An invalid test result cannot be 

interpreted as either reactive or nonreactive and requires additional testing
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Figure 9. Western Region Public Health Laboratory CaptiaTM Syphilis IgG Repeat Algorithm.  

nr = nonreactive; EQV = equivocal; R+ = reactive. P. A. Armour, CaptiaTM Syphilis repeat algorithm, personal communication,  

11-18-2008. 
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or recollection to determine syphilis infection.  The western region 

laboratory protocol for invalid test results required reflex to RPR, RPR 

titer, and TP-PA testing.  Invalid test results were excluded from the study 

as they cannot be used for clinical diagnosis.  Additional discussion of 

invalid test results is in the measurement reliability and validity section.  

According to the manufacturer’s package insert, only the qualitative 

(nonreactive, equivocal, reactive, or invalid) results were reported.  The 

S/CO value was only for internal laboratory use for analysis calculation 

and results interpretation.  The value was not reported to the healthcare 

provider. 

o Becton Dickinson MacroVue RPR 18mm card test is a manual nontreponemal 

macroscopic flocculation test for the detection of syphilis infection.  The assay 

principle according to the manufacturer’s package insert (Becton Dickinson, 2010) is:  

The RPR card antigen suspension is a carbon particle cardiolipin antigen which 

detects “reagin”, an antibody-like substance present in serum or plasma from 

syphilitic persons, and occasionally in serum or plasma of persons with other 

acute or chronic conditions.  The reagin binds to the test antigen, which consists 

of cardiolipin-lecithin-coated cholesterol particles, causing macroscopic 

flocculation (p. 1).   
 

The test kit included antigen, test cards, dispensing bottle, and silicone coated 

dispensing needle.  The accuracy of the dispensing needle was verified prior to use by 

checking that the needle delivered 30+/- 1 drops of 0.5 ml of test antigen.  The needle 

was discarded if accuracy was not verified.  External QC material was purchased 

separately.  According to CLIA regulations, each day of use, at least a negative and 

positive control must be performed.  At the western region laboratory where the 

dissertation testing was performed, three levels of RPR qualitative control 
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(nonreactive, minimally reactive, and reactive) were performed each day of use and 

covered the full range of qualitative reactions that could be expected for an individual 

patient sample.  All three control results must meet expected values in order for 

testing to proceed.  Additional equipment required for testing included a mechanical 

rotator which circumscribed a circle approximately two centimeters in diameter in the 

horizontal plane and included a humidifying cover.  The recommended speed for the 

rotator was 100+/- 2 rpm and the speed was verified prior to analysis.  An example of 

the RPR QC documentation form is shown in Figure 10.  The form included day of 

use documentation required for instrument checks, temperature checks, RPR 

qualitative, and RPR titer quantitative controls.  All QC checks were reviewed by a 

second technologist and passed all expected parameters before patient testing was 

performed.  Final RPR qualitative results were reported as either nonreactive (no 

flocculation or clumping) or reactive (any degree of flocculation or clumping).  The 

manufacturer’s package insert recommended that all reactive RPR tests should be 

repeated using an alternate procedure.  The CDC traditional algorithm recommended 

that all reactive RPR tests should be reflexed to a quantitative RPR titer and a 

treponemal test.  The treponemal test was for confirmation of syphilis infection and 

the RPR titer was used to establish a baseline for treatment monitoring.  The RPR 

titer was performed in the same manner as the qualitative test, using the same 

reagents; however, a two-fold dilution of the sample was performed and the final 

result was the highest dilution giving a reactive result.   

A prozone effect may occur in some patients infected with syphilis.  In a prozone 

reaction, the undiluted sample exhibits a complete or partial inhibition of reactivity  
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Figure 10. Western Region Public Health Laboratory RPR QC Documentation Form. 

             P. A. Armour, RPR Day of Use/QCworksheet, personal communication, 7-15-2011 
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(nonreactive result); however, if the sample was diluted (RPR titer) there was 

maximum reactivity shown in the sample, thus high levels of reagin antibody may 

produce a nonreactive qualitative RPR test result.  This is similar to the hook effect  

described above for the immunoassay test method.  All samples that exhibited a 

“rough” visual appearance with the qualitative RPR test method were diluted using 

the RPR titer method.  Additionally, if the healthcare provider suspected syphilis and 

the qualitative RPR was nonreactive, an RPR titer should be ordered to rule out the 

prozone effect (Larsen, et al, 1998).  As recommended by the CDC traditional and 

reverse algorithms, all reactive qualitative RPR tests had a quantitative RPR titer 

performed. 

o The Fujirebio Serodia TP-PA is a “qualitative gelatin particle agglutination assay 

intended to be used for the detection of T. pallidum antibodies in human serum or 

plasma as an aid to the diagnosis of syphilis” (Fujirebio Diagnostics, Inc., 2006, p.1).  

The test is designed for a manual microtitration 96 well plate method that is read 

visually.  The test kit included reactive and nonreactive control serum, sample 

diluent, sensitized particles, unsensitized particles, and reconstituting solution.  The 

96 well microplate was purchased separately.  In accordance with CLIA regulations, 

positive and negative controls were performed each day of use.  Due to the two-hour 

incubation time required for the test, the controls were run at the same time as the 

patient samples.  Both control values must meet expected values in order to report the 

final results.  Samples and controls were serially diluted in microplate wells.  Gelatin 

particles sensitized to T. pallidum (Nichols Strain) antigen and unsensitized gelatin 

particles were added to the respective wells; the plate was mixed and incubated for 
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two hours at room temperature.  After the two-hour incubation, the microtiter plate 

was read macroscopically using a magnified, lighted viewbox.  Samples containing T. 

pallidum antibodies (IgG and/or IgM) will react with the antigen-sensitized gelatin 

particles and form a smooth mat in the tray well indicating a positive reaction.  

Nonagglutinated particles will form a compact button indicating a negative reaction.  

According to manufacturer package insert, final results were read macroscopically 

and interpreted as follows: 

o Reactive: specimen showing negative with unsensitized particles but 

demonstrating a positive reaction with any dilution at 1:80 or over with 

sensitized particles. 

o Nonreactive: specimen showing negative with sensitized particles at a 1:80 

final dilution regardless of a reaction with the unsensitized particles. 

o Inconclusive: specimen showing negative with unsensitized particles but with 

a plus/minus reaction (button with a hole in the center) with sensitized 

particles at 1:80 dilution. 

According to the manufacturer’s package insert, an inconclusive result should be repeated 

using the same sample.  If the repeat test was reactive or nonreactive, the repeat results 

were reported.  If the repeat test was again inconclusive, it was reported as inconclusive 

with a recommendation for further follow up by testing with another treponemal method, 

such as FTA-ABS or recollection of another sample for analysis in two weeks.  An 

inconclusive test result cannot be interpreted as either reactive or nonreactive and is not 

clinically diagnostic; therefore, inconclusive test results were excluded from the study 

and are discussed further in the measurement and reliability section.  Figure 11 shows the 
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Figure 11. Western Region Public Health Laboratory TP-PA Day of Use Documentation Form. 

P. A. Armour, TP-PA worksheet, personal communication, 7-8-2011. 
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TP-PA day of use documentation form utilized by the western region laboratory that 

performed the dissertation study testing.  All QC and test results must be valid and were 

confirmed by a second technologist prior to reporting test results. 

For the chart review clinical diagnosis and syphilis staging, the STD clinic staff 

followed the agency SOP which was reviewed annually and revised, as needed, based on 

CDC guidelines for syphilis diagnosis and treatment.  The public health laboratory staff 

used a standardized data collection form with clear criteria for handling ambiguously 

recorded data.  Inter-rater reliability for chart review is discussed in the measurement 

reliability and validity section. 

• Automate the instrument. The EVOLIS automated analyzer used for performing the 

Syphilis IgG EIA testing was maintained by the manufacturer, BioRad; and preventive 

maintenance (PM) was performed every six months by BioRad technicians to ensure high 

quality performance.  Additional daily, weekly, and monthly PM was performed by 

trained laboratory staff.  The analyzer also performed automated checks during the entire 

daily testing process which ensured all operations were completed within the 

manufacturer’s specifications.  Any assay plates that did not meet the automated checks 

during the analysis period for the incubator, pipettor, reagent and sample racks, plate 

transport, reader, and washer were reported as failed runs and sample results were not 

calculated.  The analyzer detected clotted and short sample tubes and did not calculate 

results for those samples.  If the test plate did not meet the validation criteria for the N, 

LTR and HTR controls, the entire plate was considered a failed run and individual patient 

results were not calculated.  For failed runs, the instrument did not report the absorbance 

values for the samples and therefore, manual calculation of test results could not be 
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performed.  The manual TP-PA and RPR tests required minimal automation.  The 

automated equipment such as rotators and mixers used for the TP-PA and RPR tests were 

all maintained according to manufacturer’s specifications.  The RPR dispense needle 

volume and the rotator speed were verified each day of use.  External controls were 

performed with each analysis and had to meet expected values or the patient results were 

not reported. 

• Repeating the measurement.  According to the manufacturer’s instructions, the CaptiaTM 

Syphilis IgG EIA test was repeated in duplicate if the initial test result was reactive or 

equivocal.  This ensured measurement reproducibility for the automated instrumentation. 

The initially reactive RPR test result was reflexed to undiluted and two-fold serial 

dilution RPR titer testing until an endpoint was reached.  This repeated testing provides 

measurement reproducibility for the manual RPR test method.  An inconclusive TP-PA 

was repeated in duplicate, and the results were reported based on the repeat test 

interpretation. 

Internal validity.  Internal validity of the design refers to any extraneous factors that may 

vary the study results.  Threats to internal validity included selection bias, temporal ambiguity, 

testing, and instrumentation.  Selection bias for the study was controlled because the study 

population was homogeneous and included all persons seeking care at a public health clinic for 

STD screening due to either symptoms, high risk behavior, contact to an infected person, or other 

healthcare reason.  The STD clinic staff followed standard protocols for ordering laboratory tests 

and determining syphilis infection and disease stage.  The STD clinic staff followed the 

laboratory SOP for sample collection and handling.  Samples were transported by a trained 

laboratory courier following the laboratory SOP.  The laboratory staff performing the testing 
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were blinded to the results of the other syphilis tests as well as the initial clinical diagnosis or 

reason for screening, which reduced outcome bias.  The laboratory staff performing the chart 

review abstraction used a standardized format to obtain the syphilis diagnosis and staging 

information.   

Temporal ambiguity and testing validity was controlled because all three syphilis tests in the 

study were performed simultaneously on each patient based on initial clinical assessment, reason 

for the clinic visit or reflex testing following laboratory protocol; therefore, each patient acted as 

their own matching control.   

Instrumentation was controlled by the use of the same automated analyzer throughout the 

entire study period.  The analyzer was not modified or upgraded during the study period. There 

were no updates or revisions by the manufacturer to the syphilis diagnostic tests (CaptiaTM 

Syphilis IgG, Becton Dickinson MacroVue RPR, or Serodia Fujirebio TP-PA) used during the 

entire study period.  Additional discussion on instrument validity is provided in the measurement 

reliability and validity section. 

For the chart review clinical diagnosis and staging, the STD clinic staff followed the 2012 

national CDC syphilis case definition for determining syphilis disease stages, and no changes 

were made to the protocol during the study time period (Table 14).  The laboratory staff 

performing the data abstraction from the electronic chart only entered the syphilis staging 

categories as shown in the chart; there were no independent judgments made by the laboratory 

staff regarding the syphilis stage entered in the electronic chart. 

Construct validity.  Construct validity of design examines the relationship between the 

study theory and observations.  According to Cronbach and Meehl (1955), this relationship is a 

network that involves how the study proposition relates to the construct and how the construct  
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Table 14 

CDC Syphilis Case Definition by Stage (2012) 

 

Syphilis 

Stage 

Clinical description Case classification 

Primary A stage of infection caused 

by T. pallidum 

characterized by one or 

more chancres (ulcers) 

• Clinically compatible case with one or 

more ulcers (chancres) consistent with 

primary syphilis and at least one reactive 

serologic test for syphilis or 

• Clinically compatible case with one or 

more ulcers (chancres) consistent with 

primary syphilis and T. pallidum 

demonstrated by darkfield, DFA or 

equivalent method 

Secondary A stage of infection caused 

by T. pallidum and 

characterized by localized 

or diffuse mucocutaneous 

lesions, often with 

generalized 

lymphadenopathy.  The 

primary chancre may still 

be present. 

• Currently has symptoms clinically 

consistent with secondary syphilis and T. 

pallidum demonstrated by darkfield, DFA 

or equivalent method or 

• Currently has symptoms clinically 

consistent with secondary syphilis with 

reactive nontreponemal titer greater than 

or equal to 1:4 

Latent A stage of infection caused 

by T. pallidum in which 

organisms persist in the 

body of the infected person 

without causing signs or 

symptoms 

• Asymptomatic with no history of syphilis 

with a reactive nontreponemal and 

treponemal test or  

• Past history of syphilis therapy and 

current nontreponemal test titer 

demonstrating fourfold or greater increase 

from the last nontreponemal test titer 

Latent, 

early 

A subcategory of latent 

syphilis when initial 

infection has occurred 

within the previous twelve 

months. 

Latent syphilis classification with one or more of 

the following criteria: 

• Documented seroconversion or fourfold 

increase in nontreponemal titer during the 

previous twelve months. 

• History of symptoms consistent with 

primary or secondary syphilis within 

previous twelve months 

• History of sexual exposure to a partner 

with primary, secondary or early latent 

syphilis 

• Reactive nontreponemal and treponemal 

tests from a person whose only possible 

exposure occurred within the preceding 

twelve months 
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Table 14.  Continued 

Syphilis 

stage 

Clinical description Case classification 

Latent, late A subcategory of latent 

syphilis when infection has 

occurred more than one 

year previously 

Latent syphilis classification with no evidence of 

having acquired disease within preceding 12 

months (see Latent, early) and whose age (>35 

years) and titer (<1:32) do not meet the criteria 

specified for latent syphilis of unknown duration. 

Latent, 

unknown 

duration 

A subcategory of latent 

syphilis when the date of 

initial infection cannot be 

established as having 

occurred within the 

previous year and the 

patient’s age and titer meet 

the case classification 

Latent syphilis classification that does not meet 

the criteria for early latent syphilis and patient: 

• is age 13-35 years and 

• has a nontreponemal titer greater than or 

equal to 1:32 

Tertiary 

(late benign 

and cardio- 

vascular) 

A stage of infection caused 

by T. pallidum, which 

usually becomes clinically 

manifest only after a period 

of 15-30 years of untreated 

infection.  

Characteristic abnormalities or lesions of the 

cardiovascular system, skin, bone, or other 

structures with:  

• reactive treponemal test,  

• absence of other known causes of these 

abnormalities, and  

• without CSF abnormalities and clinical 

symptoms or signs consistent with 

neurosyphilis 

Adapted from STD Surveillance Case Definitions, by CDC (2012), retrieved from 

http://www.cdc.gov/std/stats12/2012-casedefinitions.pdf, pages 141-142. 

 

relates to the observable components of the study.  The construct for this dissertation study was 

syphilis infection, and the proposition was that more useful syphilis testing (observable 

components) will improve syphilis detection.  The current CDC case definition (Table 14) for 

diagnosing and staging syphilis infection required the use of both syphilis diagnostic laboratory 

testing and clinical correlation with a thorough patient clinical assessment.  There are multiple 

FDA and non-FDA approved laboratory test methods to detect syphilis infection.  This study 

used the results of three FDA approved tests, the CaptiaTM Syphilis IgG, Becton Dickinson 

MacroVue RPR, and Fujirebio Serodia TP-PA, whose intended use was to detect syphilis 

http://www.cdc.gov/std/stats12/2012-casedefinitions.pdf
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infection, in conjunction with the 2012 CDC syphilis case definition to determine if syphilis 

infection (construct), either current or past, was present in the patient receiving care in a public 

health setting.   

All syphilis detection and treatment procedures are performed within the US healthcare 

delivery system.  In this system, syphilis tests are usually ordered by a licensed healthcare 

professional who will also diagnose and treat the infected patient.  In recent years, there have 

been governmental changes as to who has the authority to order laboratory testing.  On the 

federal level, the FDA determines whether a test kit can be utilized in the US for human testing; 

the CMS through the CLIA regulations oversees clinical laboratories to ensure they are 

providing accurate and reliable patient test results; and the Federal Trade Commission (FTC) 

investigates deceptive laboratory marketing practices.  Each state determines who has the 

authority to order laboratory tests.  State oversight of laboratory test ordering has changed in 

recent years with 37 states and the District of Columbia allowing the general public (consumers) 

to directly order some or all of their laboratory tests, without the involvement of a licensed 

healthcare provider.  While the consumer has the ability to order laboratory tests, federal and 

state regulations still require that diagnosis and treatment, either invasive or with prescription 

medication, for an illness or condition must be provided by a licensed healthcare practitioner.   

CLIA regulation does not differentiate between laboratories that perform patient direct access 

testing (DAT) or those that perform provider ordered testing; therefore, all laboratories must 

obtain and maintain a CLIA certificate that satisfies the federal regulations for all tests reported 

(American Association of Clinical Chemists[AACC], 2015; CMS, 2017; Ilahi, 2016).  Whether 

the syphilis test was ordered by the patient or healthcare practitioner, diagnosis and treatment or 

follow up for an infection would still be provided by a healthcare practitioner; therefore, both the 
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laboratory and healthcare provider components are within the healthcare delivery system.  The 

study proposition that more useful syphilis testing will improve syphilis detection would, 

therefore, require use of a theory that measures the healthcare delivery system.  

According to Shi and Singh (2012), there are three interdependent components of healthcare 

delivery: cost, access, and quality.  Cost and access are usually correlated, that is if access is 

increased, then cost also rises.  However, quality can influence cost and access, with high-quality 

care often associated with cost effective care.  Quality is a difficult concept to define and 

measure.  The Institute of Medicine (IOM) defines health care quality as “the degree to which 

health services for individuals and populations increase the likelihood of desired health outcomes 

and are consistent with current professional knowledge” (National Academies of Sciences, 

Engineering and Medicine [NASEM],2013, p. 1).  According to a 2015 NASEM study, accurate 

and timely clinical diagnosis is a requirement for the delivery of high-quality healthcare.  The 

study identified that diagnostic errors, defined as “the failure to establish or communicate an 

accurate and timely assessment of the patient’s health problem” (p. 3) had an impact on the 

delivery of quality health care with five percent of US adults having one diagnostic error per year 

(National Quality Forum [NQF], 2017).  Diagnostic errors could be a factor in about 10% of 

deaths per year and up to 17% of adverse hospital events.  In order to characterize and potentially 

reduce these diagnostic errors, a draft framework was proposed by NQF to measure diagnostic 

quality and safety within the US healthcare delivery system.  The framework included all six 

dimensions of quality identified by the IOM: safety, effectiveness, patient-centeredness, 

timeliness, efficiency, and equitability.  The conceptual framework chosen by NQF was 

Donabedian’s Quality Framework, which has been used since 1980 in multiple assessment 

studies of healthcare quality.  A limitation of Donabedian’s Quality Framework is that it does not 
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account for individual social behaviors and economic factors that are outside the healthcare 

delivery system.  The focus of the framework is specifically on the linkage between those areas 

under the control of healthcare providers and the effect on patient outcomes.  Focusing on areas 

that can be controlled by healthcare providers allows researchers to develop quality measures 

that can be monitored and revised to improve healthcare quality (NQF, 2017; Shi and Singh, 

2012).   

This dissertation study used Donabedian’s Quality Framework, which is composed of 

structure, process and outcome domains, as the theoretical basis for evaluating the construct of 

syphilis infection and proposition that more useful syphilis testing will improve syphilis 

detection.  The Donabedian model domains are hierarchical with structure influencing process 

and both domains affecting outcomes.  For this dissertation, the Donabedian model was 

compared to the QMS model which is specific to laboratory workflow (figure 8).  The two 

observable QMS model components utilized for the research hypotheses were the analytic 

(syphilis test results and S/CO values) and the postanalytic (traditional and reverse algorithm 

interpretations and syphilis diagnosis).  An example of laboratory testing workflow within the 

Donabedian model would be as follows: 

• Structure (preanalytic): a sample was improperly collected, handled and transported to 

the laboratory. 

• Process (analytic): the laboratory utilized a test with poor sensitivity and/or specificity to 

perform analysis of the unsatisfactory sample resulting in either false negative or false 

positive test results. 

• Outcome (postanalytic): the healthcare provider utilized the inaccurate and/or low 

sensitivity test results to determine the patient’s diagnosis and treatment.  
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This outcome would have an impact on the quality of healthcare received by the patient and 

could lead to either under or over treatment, as well as have a potential financial and/or social 

impact on the patient and public health in the case of an infectious disease.   

Polit and Beck (2012) state that construct validity also requires characterization of persons 

and settings utilized in the study to ensure that they appropriately represent the construct.  The 

setting for this study was a large metropolitan western region public health agency which 

focused on detection and treatment of STDs within the community.  The CLIA certified public 

health laboratory performing the testing was owned by the public health agency and specialized 

in STD testing.  The public health agency provided diagnosis and treatment of STDs following 

CDC guidelines.  Both settings, clinic and laboratory, were within the US healthcare delivery 

system.  The study population included patients who sought care at the public health clinic due to 

contact with an STD, exhibited symptoms of an STD, or sought follow up care for an STD 

previously identified by an outside facility or public health agency outreach.  The settings and 

population provided a homogeneous group of patients with a range of syphilis infection stages 

which enhanced the construct validity of the study. 

Polit and Beck (2012) list the following five threats to construct validity of design: 

• Reactivity to the study situation: refers to changes in study participants behavior if they 

are aware of their study role.  For this dissertation study, all syphilis laboratory testing 

was performed by technologists who were blinded to the other syphilis test results as well 

as the reason for performing the tests.  Additionally, the CaptiaTM Syphilis IgG test was 

performed by an automated analyzer which provided an objective test result based on an 

optical reading performed by a computer.  The RPR and TP-PA tests had subjective 

readings, but the public health laboratory required 100% agreement by two trained 
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technologists of the visual results before a final result was reported.  Laboratory testing 

was ordered by the clinic staff using CDC recommended public health guidelines and 

study data was retrospectively gathered so staff were not aware of who was included in a 

study. 

• Researcher expectancies: refers to the researcher’s influence on participant responses to 

elicit a desired outcome.  The study testing was performed in a real-world public health 

clinic setting following CLIA regulatory guidelines, established SOPs and QA processes.  

All study samples were based on a retrospective analysis which eliminated any influence 

by the researcher on the test results.  The patients who had all three tests performed were 

chosen based on clinical practices at the public health agency STD clinic or samples were 

reflexed following laboratory protocols. 

• Novelty effects: refers to use of a new treatment.  The staff at the western region 

laboratory had been performing the RPR, RPR titer, and TP-PA testing since 2007 and 

CaptiaTM Syphilis IgG since 2009.  The reverse algorithm was initiated in 2009 over two 

years before the retrospective data was gathered.  The testing was not new to laboratory 

staff and the laboratory director determined that all technical staff were competent to 

perform all tests.  The STD public health clinic had been in operation for almost 50 years 

and had established policies for STD detection.  The clinic staff followed the 2012 CDC 

syphilis diagnosis guidelines and were trained in use of the reverse syphilis algorithm 

when it was initiated at the public health laboratory in 2009.   

• Compensatory effects: refers to compensation in intervention studies.  This dissertation 

study did not include an intervention.   
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• Treatment diffusion or contamination: refers to blurring of alternate treatment conditions.  

There were no alternative treatment conditions related to this study.  If the STD clinic 

ordered all three syphilis tests on a clinic patient it was based on their clinical assessment 

following standard public health practice and all three tests were performed as ordered.  

Typically, these patients were from high risk groups, such as MSM, drug use, contact 

with a person infected with an STD, exhibited syphilis symptoms or infection with 

another STD such as HIV, trichomonas, herpes, gonorrhea, or chlamydia.  In the 

laboratory, all three syphilis tests were performed if the initial syphilis EIA was either 

reactive or equivocal.  This was based on the western region public health laboratory 

director approved modification of the CDC reverse algorithm which added simultaneous 

TP-PA, RPR and RPR titer testing based on the reactive or equivocal EIA test.  The CDC 

reverse algorithm recommended performing the TP-PA only if the reflex RPR was 

nonreactive.  An additional modification allowed the laboratory to reflex nonreactive 

Syphilis IgG samples with a S/CO value greater than or equal to 0.450 to RPR and TP-

PA testing. 

External validity.  External validity was enhanced because the study data was collected in a 

“real-world” public health clinic setting as part of standard public health practice for detecting 

syphilis infection (Polit & Beck, 2012).  During the study period, the STD public health clinic 

staff followed standard syphilis surveillance and detection practices that were recommended by 

the CDC and are followed by multiple other US public health STD clinics.  The public health 

laboratory followed the manufacturer’s instructions for performance of all syphilis tests and 

operation of the BioRad EVOLIS analyzer.  The settings of this study would, therefore, be 

representative of other public health settings where the findings might be applied.   
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Measurement Reliability and Validity 

Measurement, whether subjective or objective, requires assignment of a value, often 

numerical, that represents the attribute amount being measured.  Because attributes are not 

constant, there may be a measurable variability either by time (day to day) or by individual 

(person to person).  In the healthcare field, assigning numbers to measurements allows  

healthcare providers to differentiate normal from abnormal values to assist in diagnosing 

ailments or conditions.  Biophysical attributes such as temperature, weight, or blood pressure 

follow well established clinical guidelines so that two people performing the same measurement 

on the same patient should obtain the same result.  For laboratory testing, the FDA establishes 

standards for tests that measure body system functions such as organ systems or infectious 

processes so that the test results are reproducible in different laboratory settings.   Because 

biophysical attributes and laboratory testing allow for precise measurements, they can be 

accurately communicated and understood across multiple healthcare disciplines.  Measurement 

reliability refers to how precisely the device measures the target attribute and does not require 

comparison to external criteria (internal consistency).   Measurement validity refers to how 

accurately the device measures the target attribute and requires comparison to external criteria 

that reflect the target attribute (external consistency).   

Any measurement can have an element of error and this error may be caused by influences 

that can or cannot be successfully controlled.  The three main influences that can be sources of 

measurement error include: 

• the attribute being measured: syphilis infection is detected by measuring antibody levels 

which can fluctuate depending on the illness stage and immune status of the infected 

person; 
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• the observer: the technologist performing the syphilis test was not trained appropriately, 

ignored the failed QC results and reported the potentially incorrect patient results; 

• the measuring device: the laboratory staff did not perform required preventive 

maintenance on the immunoassay analyzer used to perform the syphilis test, which 

resulted in random instrument pipetting errors and potentially incorrect test results.  

These influences can occur individually or all at once resulting in validity and/or reliability 

measurement errors.  Some errors are random and are not attributable to a specific cause.  

Random errors typically affect the reliability of a measuring device.  Systematic errors are 

usually due to a specific cause and typically fall in the same direction reflecting bias.  These 

errors typically affect the validity of a measuring device. (Karras, 1997; Polit and Beck, 2012; 

University of Ottawa, 2017).  

Example of interdependency of measurement validity and reliability.  The 

interdependency of validity and reliability in assessing laboratory device measurements can be 

seen in the following hypothetical example.  A hypothetical laboratory is assessing the validity 

and reliability of four different creatinine assays, one of which will be added to their current 

analytical instrument test menu.  The laboratory utilized a reference creatinine standard (1.2 

mg/dL) for external criteria comparison and performed repeat analysis of the standard to 

determine internal consistency, thus the laboratory was able to efficiently perform both validity 

and reliability assessments of the assays.  Because it is difficult to obtain a 1.2 mg/dL value 

every time an analysis is performed due to instrument and/or assay variability, the laboratory 

established an expected range of 1.0-1.4 mg/dL for the reference standard.  Using the reference 

standard, the laboratory performed 10 creatinine analyses for each assay method on the same 

instrument.  The laboratory will consider an assay to be valid if the test results are within the 
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range established for the external reference standard.  The assay will be considered reliable if it 

provides repeatable results.  Basic statistical measures calculated in Table 15 provide 

information regarding the validity and reliability of each assay.  The mean value reflects the 

average of the 10 reference standard analyses performed for each assay.   

Table 15 

Statistical Measures for Four Creatinine Assays Performed on the Same Instrument 

 

 
 

 

The mean in Table 15 for Assay 1 and Assay 3 is 1.2 mg/dL which is comparable to the 

reference standard reflecting a valid measure.  Assay 2 (mean 0.5 mg/dL) and Assay 4 (0.9 

mg/dL) are both below the reference standard value and would be considered invalid measures.  

The standard deviation (SD) reflects the dispersion or variability of the test values around the 

mean.  Assay 1 and Assay 2 both have an SD of 0.1 which reflects minimal test value variability, 

and each assay appears to provide reliable repeat measures.  Assay 3 (SD 0.2) and Assay 4 (SD 

0.4) show more variability and less reliable repeat measures.  The assay range is calculated by 
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adding and subtracting the assay SD from the assay mean.  The range for Assay 1 (1.1-1.3) and 

Assay 3 (1.0-1.4) are within the expected range reflecting accurate or valid results, while the 

other assays are outside the range.  Assay 2 has a range 50% less than the expected range (0.4-

0.6) and the range for Assay 4 is very large (0.5-1.3), both reflecting a lack of validity.  The 

coefficient of variation (CV) describes the variation within a test and is calculated as CV = 

(SD/mean)100.  The CV can be used to compare the precision of two methods, with the method 

providing the lowest CV considered to be the most precise or reliable.  Assay 1 has the lowest 

CV (6%) and would be considered to be the most reliable of the four assays.  A graphical display 

of the 10 reference standard analyses performed for each assay depicting the reliability and 

validity of each is shown in Figure 12.   

 

 

Figure 12. Graph of Validity and Reliability of Four Creatinine Assays Performed on the Same 

Instrument.   

Adapted from “Statistical Methodology II: Reliability and Validity Assessment in Study Design, Part A,” 

by D.J.Karras, 1997, Academic Emergency Medicine, 4, p.65. Copyright 1997 by John Wiley and Sons. 

Adapted with permission. 
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 Assay 1 shows both reliability and validity which is reflected in the tight cluster of data 

points around the 1.2 standard value.  The mean, SD, range, and CV statistical measures shown 

in Table 15 also reflect both reliability and validity.  Assay 2 provided reliable, repeatable 

invalid results with an assayed value 50% less than the reference value, as seen in the cluster of 

values ranging from 0.4 to 0.6.  Assay 3 provided valid results within the expected reference 

standard range; however, there is a wide dispersal of values and the high CV (17%) and SD (0.2) 

seen in Table 15 indicate it is less reliable than Assay 1.  Assay 4 lacks both validity and 

reliability with a wide dispersal of data points both above and below the standard value.  Table 

15 shows that Assay 4 has the largest variability of test values (SD 0.4), largest range (0.5-1.3) 

and highest CV (44%) of the four assays (Karras, 1997; Polit & Beck, 2012; Zady, 1999). 

According to Polit and Beck (2012), the reliability of a laboratory test can be evaluated using 

a test-retest method, in which the same test is administered on two or more occasions to the same 

subject.  This method evaluates the stability of the test, which assesses how consistently or 

precisely the test measures the target attribute.  As described in the hypothetical example above, 

both reliability and validity can be measured in a laboratory test using repeated measures of a 

sample of known value.  For laboratory tests that report a quantitative or numerical value such as 

the hypothetical example above, standards of known value can be prepared and utilized for both 

reliability and validity studies.  Immunoassay tests, such as the CaptiaTM Syphilis IgG, RPR, and 

TP-PA, report non-numerical or qualitative test results; and numerical values or concentrations 

are not included in the test report.  Results are reported as reactive, nonreactive, equivocal, 

inconclusive, or invalid, depending on the test method.  Known samples, either from an outside 

vendor or tested in house by a different method, that show the presence or absence of the test 

attribute can be used for both reliability and validity studies.  The automated CaptiaTM Syphilis 
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IgG test method also provides a nonreportable numerical absorbance or optical density (OD) 

reading for each sample, which may be used as a measurement of test precision.  The RPR titer is 

reported as an undiluted (1:1) or two-fold dilution number (1:2, 1:4, 1:8, 1:16, etc.) and is 

performed with the same reagent used for the qualitative RPR.  The RPR titer also provides a 

numerical measurement of test precision.  

Method verification.  According to CLIA (2017) regulations, each US clinical laboratory 

that introduces an unmodified, FDA-cleared or approved test must establish and verify the test 

performance specifications prior to reporting any patient test results.  The initial method 

verification must provide evidence that the accuracy, precision, reportable range, and reference 

intervals (normal range) of the test system meet acceptable parameters established by the 

laboratory director.  The laboratory director may use the manufacturer’s performance 

specifications as a guideline.  For qualitative methods, the laboratory can test known positive and 

negative samples to verify that the method will identify the presence or absence of an analyte.  

Accuracy can be established by testing reference materials, comparing results of tests performed 

using an established reference method or comparing split sample results with results obtained 

from another comparable method.  Precision can be established by assessing day-to-day, run-to-

run, and within-run variation of the same samples as well as operator variance (CLIA, 2017; 

Pandori, 2017).  Once the initial verification is completed and accepted by the laboratory 

director, the laboratory can utilize daily control procedures to monitor the accuracy (validity) and 

precision (reliability) of test performance over time.  The daily control procedures should detect 

immediate errors due to test system failure, adverse environmental conditions, or operator 

performance.  The frequency of control procedures must not be less than the frequency specified 

in the manufacturer’s package insert.  CLIA (2017) regulation CFR 493.1256(e)(1) also requires 



 

129 
 

that the laboratory must demonstrate and document that each lot number and shipment of 

reagents performs within the initial method verification specifications established for the test 

procedure.  This requirement can be satisfied either by concurrent testing of reagent lot numbers 

(parallel testing) or acceptable QC results for the newly opened lot.    

The western region public health laboratory successfully completed the initial method 

verification for the Becton Dickinson MacroVue RPR and Fujirebio Serodia TP-PA in May 

2007.  Initial method verification for the CaptiaTM Syphilis IgG test was successfully completed 

in November 2008.  Following successful method verification, the laboratory director 

implemented performance of day of use QC as stated in the manufacturer’s instructions for all 

syphilis tests with the addition of an external low titre reactive control for the Syphilis IgG test.  

As stated in the CLIA regulations, each reagent shipment was tested for acceptable qualitative 

(reactive/nonreactive) QC results when placed in use to identify any lot to lot variation in the test 

kits.  Additionally, each box within the shipment was tested for acceptable qualitative QC results 

when it was opened.  Documentation for syphilis reagent QC testing lot to lot and box to box is 

shown in Tables 16-18. 

Measurement reliability.  Reliability of the CaptiaTM Syphilis IgG test method was 

determined using the external low reactive titre control (BioRad Virotrol, Syphilis total), which 

was tested with each daily Syphilis IgG run.  Table 16 shows that from January 2012 to 

December 2013, eight different reagent lot numbers in 13 shipments for a total of 57 boxes of 

CaptiaTM Syphilis IgG reagent were used with 100% (57/57) of the external low reactive titre 

control testing as expected with reactive results.  Only the external control was used for 

reliability determination because the kit controls could only be used with the same kit; therefore, 

parallel testing was not performed.  The kit controls were received at working strength and were 
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Table 16 

 

CaptiaTM Syphilis IgG Quality Control Results January 2012 to December 2013 

 

 

Table 17 

Serodia TP-PA Quality Control Results  December 2011 to January 2014  
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Table 18 

 

MacroVue RPR Quality Control Results  December 2011 to January 2014 

 

 
 

pre-diluted.  They had to be placed in a specific location on the 96 well plate in order for the 

instrument to calculate a cutoff value and perform test plate validation.  The pre-diluted kit 

controls from a prior lot number could not be used with a different kit.  If the previous lot 

controls were placed in a patient sample location for parallel testing, they would have been 

diluted again with potentially incorrect test results.  However, Table 16 shows that the 

nonreactive and high reactive kit controls exhibited 100% expected results of nonreactive (57/57) 

and high reactive (57/57) for all reagent lot number boxes tested. 

Reliability of the Serodia TP-PA test method was determined using the kit controls from the 

old lot tested with the first box of kit controls from the new lot (parallel testing).  There was no 

external control utilized with the TP-PA kit, and only qualitative results were reported.  Kit 

controls also were performed each day of use.  Table 17 shows that from December 2011 to 

January 2014, nine different lot numbers of Serodia TP-PA kits were used with 100% (18/18) of 

the kit controls in each new lot number testing as expected (nonreactive and reactive) across the 

different lot numbers. 
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Reliability of the MacroVue RPR qualitative test method was determined using an external 

three member QC card test (Becton Dickinson RPR Control card) when each test kit box was 

opened.  The RPR kit did not come with kit controls.  The QC card test was also performed each 

day of use.  Table 18 shows that from December 2011 to January 2014, seven different lot 

numbers of MacroVue RPR kits were used for a total of 51 boxes.  Each box was tested with 

three external controls with 100% (153/153) of the external controls testing as expected 

(nonreactive, reactive and reactive) across the seven different lot numbers, 

Lot to lot variability.  The syphilis tests used in this dissertation consistently detected the 

presence or absence of syphilis antibody (100% for all methods) and provided expected 

qualitative results as listed in the QC studies shown in Tables 16-18.  There have been reports of 

variations in different lots of immunoassay reagents that are not detected by routine qualitative 

QC testing of reactive and nonreactive samples.  These variations could involve manufacturing 

changes such as in the raw test materials, in the concentration of antigen or antibody bound to the 

solid phase, or in the release panel used by the manufacturer to determine the minimum level of 

reactivity in the new lot.  Other variations could be due to reagent deterioration during 

transportation or storage.  Variations between lots may result in shifts or trends of patient test 

results that are not readily apparent in presence/absence qualitative QC testing.  Suggestions for 

reducing the amount of lot-to-lot variability include method standardization and automation of 

the procedure.  All three syphilis test methods used by the western region laboratory were FDA 

approved and standardized by the manufacturer.  The CaptiaTM Syphilis IgG test method was 

performed on an automated analyzer.  Other suggested practices include use of only QC 

materials for a historically stable test method or use of QC materials and previously analyzed 

patient samples for a method that historically shows shifts in patient values with lot number 
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changes.  Each laboratory director must determine the best method for their laboratory 

environment and test menu to ensure that the method performs as initially verified (Alegeciras-

Schimnich et al., 2013; Alegeciras-Schimnich, 2014; Dufour, 2004; Ezzelle et al, 2008; Holzel, 

1991; Karras, 1997; Kim et al, 2012; Kitchen & Newham, 2010; Martindale et al, 2006).  In 

September 2013, CLSI published a guideline EP26-A User Evaluation of Between Reagent Lot 

Variation to provide a tool for laboratories to screen new reagent lots for performance 

differences.  According to the guideline, whatever reagent lot assessment is used by the 

laboratory, it should be able to be readily performed when needed (lot changes can happen at any 

time); use a simple protocol with simple arithmetic (multiple assessment criteria may be needed); 

and utilize clear, previously established acceptance criterion (Addison, 2017).   

The Bio-Rad Virotrol Syphilis total external control utilized with each daily run of the 

CaptiaTM Syphilis IgG testing performed at the western region public health laboratory was an 

unassayed precision control for the qualitative determination of IgG and IgM antibodies to T. 

pallidum and reagin.  The control was treated exactly like a patient sample.  Bio-Rad did not 

provide concentration values or expected ranges for this control; however, it was optimized to 

provide a low to moderate reactive qualitative test result.  Each laboratory must establish its own 

target ranges for each control lot number if used as a quantitative test (Bio-Rad, 2010).  The Bio-

Rad Virotrol product provided a consistent, optimized control material that could be utilized to 

detect lot-to-lot Syphilis IgG reagent variation.  As seen in Table 16, the product consistently 

provided qualitative reactive results which were calculated by the EVOLIS analyzer from the 

S/CO value with each plate analysis.  The EVOLIS instrument provided OD or absorbance 

numerical readings for each Virotrol control sample that can be used for statistical analysis.  

Various authors have utilized the patient S/CO value to track lot-to-lot variation; however, there 
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is little available information on the use of control OD values for the same function (Dufour, 

2003; Kitchen & Needham, 2010).  For this dissertation, the external Virotrol control OD values 

were utilized rather than S/CO values to provide a stable value that could be tracked over 

multiple reagent lot numbers.  The S/CO value was calculated from the single point calibrator cut 

off value which changed with each test plate and lot number, thus adding another level of 

variability to the statistical analysis.  This additional variability would make it difficult to 

identify a meaningful variance in kit lots (Dufour, 2003).  Because the Virotrol product was 

optimized by the vendor as a precision control, the OD value reflected stable product activity 

following completion of all analytical steps up to calculating the qualitative test result 

interpretation using the S/CO value.  

According to CLSI, the laboratory should choose a lot-to-lot assessment that can be easily 

performed and uses simple math with multiple statistical measures (Addison, 2017).  At present, 

there is no universally agreed upon assessment measurement or acceptance/rejection criteria for 

any of the immunoassay lot-to-lot variation quantitative statistical measures that could be 

performed; therefore, a combination of measures were used for this dissertation (Algeciras-

Schimnich et al, 2013; Dufour, 2004; Kim et al, 2012; Martindale et al, 2006).  The BioRad 

Virotrol control OD mean and SD were easily calculated for each reagent lot number utilizing 

Microsoft Excel.  While a range can be calculated from the mean and SD, it may not be helpful 

for comparing lot numbers due to the lot variation that is expected with immunological assays.  

The recommended statistic to use when comparing a measured value to a measured value is the 

percent mean difference (Kim et al, 2012; Kitchen & Newham, 2010).  The percent mean 

difference was calculated by Microsoft Excel using the formula:  

% mean difference = (value 1-value 2)/([value 1 + value 2]/2)*100 
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Multiple authors (Addison, 2017; Algeciras-Schimnich et al, 2013; Kim et al, 2012) have 

suggested acceptance criteria for the percent mean difference between reagent lots should be less 

than 10% and that criteria was utilized in this dissertation.  

A second statistic, the F-test can be used to compare the variance of one test method (or lot 

number) with the variance of a comparative method (or lot number).  The variance is the square 

of the SD.  The F-test is used for random error or imprecision analysis and calculated as shown 

below where the larger SD2 is the less precise method and the smaller SD2 is the more precise 

method.   

Calculated F-value = (Larger SD)2/(Smaller SD)2 

The F-test is interpreted by comparing the calculated F-value with a critical F-value that is 

obtained from a statistical table using n-1 degrees of freedom for the numerator and denominator 

measures.  The calculated F-value was determined using Microsoft Excel, and a statistical table 

was obtained from an online statistical calculator found at www.danielsoper.com/statcalc to 

obtain the critical F-value at 95% confidence level.  The null hypothesis being tested at the 95% 

confidence level was that there was no difference between the variances of the two lot numbers.  

If the calculated F-value was greater than the critical F-value, the difference in variances was 

considered to be statistically significant and the null hypothesis was rejected.  The F-test 

interpretation does not imply that the statistically significant value was incorrect, only that the 

variance of the two lot numbers was different.  For this lot-to-lot variance assessment, it was 

expected that the calculated F-value would be less than the critical F-value (Klick, 1997; Soper, 

2017; Texas Department of State Health Services Laboratory, 2014). 

The third statistical test in the lot-to-lot variation assessment was the CV which expresses 

variation as a percentage of the mean.  Due to the known variability of immunoassay methods, 

http://www.danielsoper.com/statcalc
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the recommended measure for comparing overall precision is the CV (Reed, Lynn & Meade, 

2002).  The CV was calculated as CV = (SD/mean)100.  The SDs of assays that produce 

continuous type values, such as the OD, increase or decrease in proportion to concentration.  In 

the CV calculation, dividing by the mean removes the SD as a variability factor and the 

calculation is, therefore, considered to be a statistical equalizer.  There is no universally agreed 

upon acceptance or rejection criteria for a CV value with various authors suggesting a CV of 5% 

as good and CV of 10% or higher as poor.  However, the mean value must be taken into 

consideration when evaluating CVs.  At very low concentrations, such as a bilirubin standard 

with a mean of 0.5 mg/dL and SD of 0.1 mg/dL, the CV may be 20% while at a high 

concentration, such as a bilirubin standard of 20 mg/dL and SD of 1.0 mg/dL, the CV may be 5% 

(Zady, 1999).  There was only one published study, Kitchen and Newham (2010), that performed 

a lot to lot performance assessment of syphilis EIA tests using a 10-member panel (nine reactive 

and one reactive) created by the authors from previously tested patient samples with varying 

stages of syphilis infection.  This study utilized mean, SD and CV calculations to compare the 

S/CO values of the 10-member panel across more than 30 lot numbers of two different syphilis 

EIA tests and the following results were reported: 

• Abbott ICE syphilis: nine reactive samples had a mean S/CO range of 0.95-11.7; SD 

range 0.17 -1.78 and CV range 9.4-23.2 with an average CV of 19%.  The one 

nonreactive sample had a mean S/CO of 0.41, SD of 0.13 and CV of 32.1%.  

• bioMerieux syphilis TP recombinant: nine reactive samples had a mean S/CO range of 

0.7-6.98; SD range 0.17-1.68 and CV range 18.8-40 with an average CV of 24%.  The 

one nonreactive sample had a mean S/CO of 0.38; SD of 0.12 and CV of 30.9%. 
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As seen in the syphilis test comparisons above, the nonreactive sample had a CV greater than 

30% with either assay.  For the reactive samples, the lowest CV value was 9.4% with the average 

CV of the two EIA test methods at 19% and 24%.  Based on this published study and the use of a 

low reactive control sample, an expected CV of less than 20% was used for this dissertation. 

During the study period from January 2012 to December 2013, the western region laboratory 

used the laboratory director approved lot-to-lot QC protocol requiring acceptable performance of 

qualitative control results (reactive or nonreactive) with each new lot number and during day to 

day use along with the manufacturer’s test plate validation requirements for the Syphilis IgG test.  

As shown in Table 16, all CaptiaTM Syphilis IgG qualitative QC results were acceptable for all 

eight lot numbers of reagent; and all runs were valid.  For this dissertation, a retrospective 

analysis was performed of the eight CaptiaTM Syphilis IgG lot numbers received during the study 

period, using the OD values for the Bio-Rad Virotrol external control to identify if there was any 

lot number variance.  The external control was required to be performed with each run; two lot 

numbers of control were used during the study period.  Based on review of published studies, the 

expected values for this assessment were defined as % mean difference of less than 10%; 

calculated F value less than critical F value; and CV less than 20%. The expectation was that at 

least two of the three assessment criteria would meet the expected values thus showing consistent 

test results and no variation between the old and new lot.  Review of Table 19 data shows that 

seven of eight lot numbers were within expected values for all three assessment criteria including 

acceptable results with the control lot change in August 2012 with the old control lot number 

tested against the new control lot number using the same reagent lot number IgG D.  CaptiaTM 

Syphilis IgG lot number IgG H met the expected % CV value at 11%; however, it did not meet 

the expected values for the other two assessment statistics with % mean difference of 22% and 
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Table 19  

 

CaptiaTM Syphilis IgG Lot-to-Lot External Control OD Variation Assessment 

 

  

 
 

Note: ct = control; S/CO = signal to cutoff 
a mean difference = (lot 1-lot 2);  
b % mean difference = (lot 1-lot 2)/([lot 1 + lot 2]/2)*100; 
c Calculated F-value = (Larger SD)2/(Smaller SD)2;  
d www.danielsoper.com/statcalc; 
e CV = (SD/mean)10

http://www.danielsoper.com/statcalc
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calculated F value of 4.32 which is higher than critical F value of 1.62.  According to the 

qualitative QC values seen in Table 16, lot number IgG H was acceptable for use based on valid 

run performance and acceptable qualitative QC results.  The mean external control S/CO values 

for all eight reagent lot numbers were above the manufacturer’s cutoff value of 1.1 for a reactive 

test result.  While lot number IgG H had a low OD value, the mean S/CO value of 1.663 

provided acceptable reactive test results. 

Syphilis IgG lot number H was utilized for patient testing from May 23, 2013 through July 

22, 2013.  While the external control S/CO value was within acceptable limits for this lot 

number, further review of the samples analyzed during that time period was performed to 

determine if the lower OD value may have resulted in higher numbers of false negative Syphilis 

IgG test results. There were 429 samples analyzed during that time period with 358 (84%) of the 

samples from patients diagnosed with no syphilis infection and a nonreactive Syphilis IgG test 

result; 44 (10%) from patients diagnosed with syphilis infection and a reactive Syphilis IgG 

test result; and 27 (6%) from patients diagnosed with syphilis infection and nonreactive Syphilis 

IgG test result.  Further analysis of these 27 nonreactive samples revealed that the mean S/CO  

value was 0.684, which was well below the manufacturer’s cutoff value of 0.9 for an equivocal 

test result.  There were 67% (18/27) concordant (RPR nonreactive) samples within this group of 

nonreactive Syphilis IgG test results.  Further review of the syphilis stages within these 27 

samples revealed that eight patients were diagnosed with primary syphilis, one with secondary 

syphilis, 13 with latent syphilis, and five with a history of syphilis.  All 18 of the concordant 

RPR nonreactive samples were diagnosed with either latent syphilis infection or a history of 

syphilis infection.  The nine patients diagnosed with either primary or secondary syphilis had a 

reactive RPR and TP-PA test result.  Based on this data, there were 2% (9/429) of the samples
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during this time period that were syphilis IgG nonreactive with RPR and TP-PA reactive test 

results and a diagnosis of syphilis infection. 

For comparison purposes, the same data analysis was performed on Syphilis IgG lot number 

IgG F which had the next lowest external control OD value (1.144) of the eight reagent lot 

numbers used for analysis.  Lot number IgG F was utilized from December 7, 2012 through 

March 21, 2013 and used the same external control lot number 2.  There were 542 samples 

analyzed during that time period with 412 (76%) of the samples from patients diagnosed with no 

syphilis infection and a nonreactive Syphilis IgG test result, 101 (19%) from patients diagnosed 

with syphilis infection and a reactive Syphilis IgG test result, and 29 (5%) from patients 

diagnosed with syphilis infection and nonreactive Syphilis IgG test result.  Further analysis of 

these 29 nonreactive samples revealed that the mean S/CO value was 0.621 which was well 

below the FDA approved cutoff value of 0.9 for an equivocal test result.  There were 52% 

(15/29) concordant (RPR nonreactive) samples within this group of nonreactive Syphilis IgG test 

results.  Further review of the syphilis stages within these 29 samples revealed that one patient 

was diagnosed with primary syphilis; one with secondary syphilis; 22 with latent syphilis and 

five with a history of syphilis.  The 15 concordant RPR nonreactive samples were diagnosed 

with either latent syphilis infection or a history of syphilis infection.  The remaining 14 patients 

were diagnosed with syphilis with a reactive RPR and TP-PA test result.  Based on this data, 

there were 3% (14/542) of the samples during this time period that were syphilis IgG nonreactive 

with RPR and TP-PA reactive test results and a diagnosis of syphilis infection.   

The comparison of the two different Syphilis IgG lot numbers indicates both lot numbers had 

similar S/CO values for nonreactive patient samples which were well below the 0.9 manufacturer 

equivocal cutoff value. The Syphilis IgG lot IgG H returned to the manufacturer had a slightly 
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higher frequency (6%) of samples that had a nonreactive Syphilis IgG with a diagnosis of 

syphilis versus lot IgG F with a frequency of 5%.  Based on this data, there did not appear to be a 

higher than expected frequency of false negative Syphilis IgG samples with lot number IgG H.   

Additional retrospective review of the EVOLIS analyzer was performed to identify if there were 

any instrument reliability issues during the time period that lot number IgG H was in use.  

EVOLIS instrument reliability.  According to an FDA Inspection Technical Guide (1980), 

all manufactured products have a measure of reliability called the “failure rate” which is the 

number of malfunctions after a number of uses for non-continuously operating products.  The 

failure rate occurs in three predictable stages over the life of the product or equipment.  First, 

there is a period of initial failure when the equipment is installed.  Failures are high during this 

phase and are usually due to weak components or manufacturing flaws.  This period typically 

lasts one year; and failures rapidly decrease as repairs are successfully completed, and the 

equipment settles in to routine use.  The second phase occurs during the useful life of the 

equipment with random failures occurring at low rates for reliable, stable equipment.  This phase 

typically lasts one to six years, but can be extended to 10 years or more with appropriate 

preventive maintenance.  The last phase is the wear out stage when the failure rate begins rapidly 

climbing again.  This can be due to general physical deterioration or unreplaceable parts 

resulting in functioning of the equipment at an unacceptable level.  Once in the wear out stage, 

the equipment is typically decommissioned and replaced with a newer model (FDA, 1980; Japan 

International Cooperation Agency [JICA], 2017).  While the equipment is in operation, an 

analysis is typically performed when a failure occurs to identify the cause.  This analysis 

includes identifying the symptom, locating the fault, checking the operating environment, 

reviewing equipment history, and analyzing operator training and experience.  CLIA (2017) 
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requires that a record of laboratory equipment failures be maintained; however, there is no 

specified equipment failure rate.  There is little published information on acceptable equipment 

failure rates; however, JICA (2017) reviewed statistics on medical equipment failure rates and 

identified that a 5-6% failure rate was associated with random instrument errors. 

The EVOLIS analyzer was installed at the western region laboratory in 2008 and was within 

useful equipment life (one to six years) during the study period of 2012-2013.  During this time 

period, the failure rate would be expected to be low, with random errors occurring at a rate of 5-

6%.  In addition to the routine preventive maintenance performed by laboratory staff, the vendor, 

Bio-Rad, also performed scheduled six-month service which would contribute to extending the 

life of the instrument to 10 years.  The EVOLIS service record during the study period is shown 

in Table 20.  According to Table 20, there were 18 instances of instrument failure noted during 

the study time period.  Patient sample test results from failed instrument runs were not reported.  

Once the cause of the instrument failure was identified and corrected, the samples were placed 

on the analyzer for repeat testing and, provided all QC requirements were met, the repeat results 

were reported. 

The EVOLIS instrument was used daily (Monday through Friday).  Annual test days were 

calculated at 52 weeks x 5 days = 260 days/year excluding 12 government holidays/year for 248 

total annual testing days or 496 (248 x 2) testing days for the study two-year time period.  

Therefore, the instrument failure rate for the two-year study time period would be 3.6% (18/496 

x 100), which is well below the 5-6% random error rate identified by JICA (2017) indicating that 

the instrument was performing reliably on repeated testing days.   

Three instances were noted in the instrument service record in Table 20 that involved invalid 

test results within valid assay runs.  As described in Figure 9, an invalid test result occurred  
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Table 20 

EVOLIS Analyzer Service Record January 2012 to December 2013 

Date EVOLIS analyzer issue Corrective action 

1/3/12 Plate transport error-failed run Cleaned and realigned - corrected and re-run 

4/16/12 Semiannual Preventive Maintenance by 

BioRad 

Completed and QC passed 

4/17/12 Failed HIV and Syphilis run Contaminated wash bottle - cleaned and replaced-

corrected and re-run 

4/30/12 Invalid HIV and Syphilis results Dirty manifold and crimped tubing - cleaned and 

replaced - corrected and re-run 

5/4/12 Erratic washer dispense-failed run Cleaned and realigned - corrected and re-run 

6/1/12 Invalid HIV and Syphilis results Contaminated wash bottle- cleaned and replaced - 

corrected and re-run 

6/18/12 Open door error-failed run Cleaned door - corrected and re-run 

7/12/12 Transport error-failed run Dirty rails-broken clasp - cleaned and replaced - 

corrected and re-run 

7/17/12 Transport error-failed run Realigned-corrected and re-run 

8/29/12 Open door error-failed run Replaced door assembly-corrected and re-run 

8/30/12 Reagent rack not registering-failed run Cleaned rack rail - corrected and re-run 

11/1/12 Semiannual Preventive Maintenance by 

BioRad 

Completed and QC passed 

11/20/12 Tip eject failure-failed run Replaced transfer arm and sensor-corrected and re-run 

3/1/13 Transport error-failed run Replaced carrier-corrected and re-run 

3/18/13 Invalid Syph results Contacted manufacturer who will investigate-possible 

instrument issue 

3/22/13 Plate transport error-failed run Replaced broken spring-corrected and re-run 

3/26/13 Ambient temp failure-failed run Replaced broken and defective plates-corrected and re-

run 

3/28/13 Pump leak error-failed run Replaced pump-corrected and re-run 

4/16/13 Plate transport error-failed run Realignment-corrected and re-run 

5/3/13 Semiannual Preventive Maintenance by 

BioRad 

Completed and QC passed 

5/31/13 Plate transport and carrier error-failed 

run 

Tightened drawer-corrected and re-run 

6/5/13 Multiple Syphilis and HIV invalid Probe adjustment and recalibration-corrected and re-run  

7/8/13 Washer dispense pump error-failed run Tightened pump - corrected and re-run 

7/12/13 Failed run and short samples Realignment-corrected and re-run 

7/15/13 Increase equivocal Syphilis results noted   Contaminated reagent and washer fluid - clean and 

replace-corrected and re-run 

7/16/13 Increase invalid and equivocal syphilis 

results noted in June and July with lot 

#IgG H 

Contacted vendor, investigated and Lot #IgG H returned 

to vendor, and replaced with lot #IgG G 

12/11/13 Semiannual Preventive Maintenance by 

BioRad 

Completed and QC passed 

12/13/13 Miscommunication with LIMS-run 

passed manual data entry 

Replace coax cable - run passed - manual data entry in 

LIMS 

12/20/13 Power failure-failed run Replaced APC unit-corrected and re-run 
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Table 20. Continued 

EVOLIS 

failed run 

comments 

During March 2013 there were a number of EVOLIS mechanical issues resulting in failed runs. 

Also during March, six invalid syphilis results were seen within 1 week time period using Syphilis 

lot #IgG G with all plate runs testing as valid.  Vendor contacted and they investigated.  Invalids 

possibly due to instrument errors which were corrected and invalid samples decreased. Per 

laboratory policy, invalid samples were confirmed with RPR and TPPA, additional 

recommendation sent to submitter to recollect sample if RPR and TPPA nonreactive.  The entire 

valid plate runs containing the invalid results were also repeated to ensure reproducible results.  

All results confirmed as initially reported.      

 

During June and July 2013, additional invalid and increased equivocal syphilis results seen with 

Syphilis lot #IgG H.  Invalid samples reported from valid plate runs based on FDA approved 

manufacturer's instructions. Request investigation by vendor.  The entire valid plates containing 

the invalid results were repeated to ensure reproducible results.  All results confirmed as initially 

reported. 

 

In July 2013, vendor requested return of lot #IgG H due to potential for low OD readings with 

some of the microtiter reagent strips which could cause invalid or equivocal test results within a 

valid plate run.   Reagent lot #IgG H returned to vendor and replaced with lot #IgG G.  No further 

problems with invalid or equivocal Syphilis results with lot #IgG G    

 

when duplicate repeat syphilis test results performed automatically for an initial reactive or 

equivocal were not repeatable.  If an initial reactive syphilis test result had nonreactive,  

nonreactive or nonreactive, equivocal repeat test results, then the final result was reported as 

invalid.  For an initial equivocal test result, an invalid test result was reported if the duplicate 

repeat results were nonreactive and reactive.  With all runs that had invalid test results during the 

study period, the QC was within expected limits and each assay plate run was valid.  Therefore,  

according to the manufacturer’s instructions, a patient result was reported as invalid if the repeat 

results correspond to the algorithm shown in Figure 9.  Invalid results could be due to 

instrument, reagent, and/or operator error and cannot be interpreted as either reactive or 

nonreactive.  Invalid test results should occur infrequently.  At the western region laboratory, the 

laboratory director approved reflex testing of invalid Syphilis IgG EIA test results to RPR, RPR 

titer, and TP-PA in order to prevent delay in patient diagnosis.  In that scenario, the patient 

sample was tested following the traditional algorithm because an invalid Syphilis IgG test result 
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has no clinically diagnostic value for the healthcare provider.  Additionally, because of concerns 

about instrument reproducibility, all samples on the 96 well plate with invalid results were 

repeated to ensure all test results were reproducible, even though the plate met all QC and valid 

run requirements.  Only the results of the repeat analysis were reported and included in the 

dissertation dataset.  

In March 2012, laboratory staff noted invalid results with lot number IgG B, prompting 

additional instrument operational review by laboratory staff resulting in the identification of 

crimped tubing.  The instrument issue was corrected, and all samples on the invalid plate were 

repeated with reproducible results.  Only the repeat results were reported for all patients; 

however, the invalid sample still had to be reported as invalid due to the Western Region 

Laboratory CaptiaTM  interpretation algorithm (Figure 9).  In March 2013, laboratory 

technologists noted six invalid results in a one week time period with lot number IgG G, which 

resulted in identification and correction of multiple instrument errors.  Starting in June 2013, 

laboratory technologists identified invalid test results with lot number IgG H, which led to 

equipment adjustments; however, the invalid test results continued and were accompanied by an 

increase in equivocal results leading to further investigation by the vendor. 

The vendor identified potential deterioration of lot number IgG H and requested return of all 

reagent kit lot number boxes.  It was suspected that the deterioration may have occurred during 

reagent shipping as there were no reports of excessive invalid test results from other laboratories 

using the same lot number.  The returned boxes were replaced with lot number IgG G with a 

corresponding decrease in invalid and equivocal test results.  All runs with lot number IgG H met 

qualitative QC and valid assay plate run requirements, which, according to the vendor, 

demonstrated that all patient test results performed with lot number IgG H were valid and 
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reportable.  Additionally, the follow-up study performed for this dissertation identified that lot 

number IgG H performed similar to prior lot number IgG F when used for syphilis testing within 

the public health clinic study population.  It was the astute daily review of patient results by 

laboratory staff along with knowledge of historical performance of the assay that alerted staff to 

the potential for performance issues with this specific lot number, even though patient result 

reporting was not compromised.  According to Algeciras-Schimnich, et al (2013), it is often the 

healthcare provider that raises concern about immunoassay test results when correlating test 

results to the patient’s clinical condition.   

Based on the information presented in Table 20 regarding the vendor’s investigation of the 

invalid test results and subsequent request for return of remaining lot number IgG H, it appears 

that the lot-to-lot variation assessment measures shown in Table 19 would have identified a 

potential performance issue with lot number IgG H due to the failure of two of three measures 

(% mean difference 22% and F value 4.50) to meet acceptance criteria.  The assessment 

measures are easily calculated and may provide a useful tool for detecting lot-to-lot variations in 

immunoassay reagents.  Using only the qualitative QC values, the potential performance issue 

would not have been discovered unless laboratory staff had noticed the OD decrease in the 

external control with lot number IgG H.  The healthcare providers did not notify the laboratory 

of any inconsistency with laboratory results and clinical assessment during the time period that 

lot number IgG H was in use.  According to the manufacturer, because the QC was valid and 

each assay plate run passed validation requirements, all lot number IgG H results were 

acceptable for reporting and were included in the study data.   

RPR titer reliability.  The RPR titer was performed using an undiluted sample and serial 

two-fold dilutions of the initial RPR qualitative reactive sample.  The titer dilutions were 
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repeated for the RPR test procedure until the titer dilution reached a nonreactive endpoint.  The 

final test result was reported as the highest dilution value showing a reactive test result.  The 

RPR titer is a numerical value which doubles in value as it increases and was reported as 1:1 

(undiluted), 1:2, 1:4, 1:8, 1:16, 1:32, etc.  According to CLIA (2017) regulations CFR 

493.1256(d)(3)(iii), the RPR titer test procedure must include a control material with graded or 

titrated reactivity.  The RPR titer uses the same antigen as the qualitative RPR test; therefore, it 

provides a numerical result for determining the reliability of the RPR test.   

The western region laboratory utilized an external commercial control product, Blackhawk 

BioSystems Virotrol RPR Panel, to meet the CLIA regulations regarding inclusion of a control 

with titrated reactivity.  The Virotrol RPR panel is an unassayed QC panel for the qualitative 

determination of nontreponemal (reagin) antibodies (Blackhawk BioSystems, Inc., 2003).  The 

panel consisted of three members with the following expected reactivity profile with the 

MacroVue RPR reagent: panel member 01 nonreactive, panel member 02 minimally reactive, 

and panel member 03 moderate to high reactive.  Only panel member 03 which provided the 

highest reactivity was used for RPR titer QC at the western region laboratory.  According to the 

Virotrol package insert, each laboratory must establish its own target range for quantitative RPR 

testing by performing replicate measurements over multiple days with multiple operators.  

Results from replicate measurements were used to calculate a mean and standard deviation to 

establish a target range.  The western region laboratory determined that the Virotrol RPR control 

was extremely stable with a long outdate of 18-24 months; therefore, it purchased large batches 

of the same lot number sufficient to last for 6-12 months.  When a new lot number of control was 

received, parallel testing with the old control lot number was performed by multiple laboratory 

staff for 30 days.  A mean and SD were calculated and a target range of mean +/- 2SD was 
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determined for each control lot number.  The RPR titer was reported in two-fold dilutions; 

therefore, to calculate a mean and SD, the titer value was converted to a whole number with a 

titer value of 1:1 changed to a numerical value of 1; 1:2 changed to 2; 1:4 changed to 4; and 1:8 

changed to 8, etc.  After each parallel test value was converted to a whole number designation, 

the mean and SD were calculated for the new lot number using Microsoft Excel.  Once the new 

lot number target range was established, the whole numbers were converted back to a two-fold 

ratio so that the range could be used for routine QC testing.  For example, Table 21 shows that 

Virotol lot number 1 had a mean of 7.4 and SD of 1.9 which calculates to a +/- 2 SD target range 

of 3.6-11.2.  This represents an RPR titer equivalent of 1:4 -1:8.  Within the target range, 3.6 

represents the reactive two-fold titer of 1:4 and 11.2 represents the last two-fold reactive titer of 

1:8.  In routine testing, the reactive two-fold titer after 1:8 would be 1:16.  As 16 is higher than 

the upper end of the target range (11.2), a 1:16 titer would give a nonreactive test result;  

therefore, the highest reactive titer result would be 1:8.  Based on historical data, the laboratory 

determined that an acceptable control range for each new lot number was a titer result of 1:4 to 

1:8.  Three lot numbers of Virotrol control were utilized during the two-year study period with 

seven different MacroVue RPR reagent lot numbers included in the study (Table 17).  The range  

for all three lots (Table 21) was within the laboratory expected historical 1:4 to 1:8 titer range 

with 100% reliability (90/90). 

Equivalence.  According to Polit and Beck (2012), equivalence is another reliability aspect 

that could be assessed.  Equivalence refers to how well two or more independent observers agree 

on an instrument score or rating with a high level of agreement associated with minimal 

measurement error.  The manual RPR, RPR titer, and TP-PA tests require visual reading of the 

final test result which could be a source of measurement error.  One way to reduce this error is to 
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Table 21  

 

Virotrol RPR Panel Control Lot-to-Lot Variation Assessment 

 

 

provide training and clearly defined nonoverlapping measurement categories.  The three manual 

syphilis tests used in this study (RPR, RPR titer, and TP-PA) could only be performed if 

laboratory staff were trained appropriately and each person passed annual competency to ensure 

continued acceptable test performance.  Additionally, the final test result for all three measures 

was clearly defined in the manufacturer’s package insert with nonoverlapping categories.   

To further enhance test result reproducibility, in 2011, the public health laboratory instituted 

dual observation of each step of the manual syphilis test process.  For each RPR, RPR titer, and 

TP-PA test performed, a second technologist reviewed each step of the manual test process to 

ensure that it was completed properly before proceeding to the next step.  The second 

technologist visually confirmed the manual RPR, RPR titer, and TP-PA final test results before 

reporting.  There must be a consensus (exact agreement) by both technologists before the final 

test result was reported.  If the technologists did not agree on the final results, the test was 

repeated until there was agreement.  All steps were documented on the RPR (Figure 13), RPR 

titer (Figure 14) or TP-PA (Figure 11) Day of Use Worksheet.  

Polit and Beck (2012) state that another assessment of equivalence is interrater reliability, 

which is the level of agreement between two independent observations for the same event.  

During the two-year study period, the laboratory maintained a continuous spreadsheet as a 
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Figure 13. Western Region Public Health Laboratory Qualitative RPR Day of Use Worksheet.  

P. A. Armour, Qualitative RPR Day of Use worksheet, personal communication, 7-15-2011 
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Figure 14. Western Region Public Health Laboratory Quantitative RPR Day of Use Worksheet.   

P. A. Armour, Quantitative RPR Day of Use worksheet, personal communication, 7-15-2011
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component of an expanded QA project with the public health clinic.  Multiple laboratory staff 

entered data onto the spreadsheet that was queried from the LIMS (analysis date, unique medical 

record number, unique laboratory accession number, gender, date of birth, and laboratory test 

results including Syphilis IgG S/CO value) for those samples tested with the three different 

syphilis tests.  Additionally, the laboratory staff and the student researcher were trained to access 

the public health clinic electronic patient chart and add the patient diagnosis and reason for clinic 

visit to the spreadsheet after testing was completed.  The laboratory spreadsheet was completed 

by multiple laboratory staff and/or the student researcher in real time during the study period.  

The patient’s chart was completed by multiple clinic staff in real time during the study period 

with data entered directly into the computer by clinic staff.  The laboratory test results were 

entered manually into the patient’s chart by clinic staff; however, the clinic used a two-person 

verification to ensure the data was entered correctly into the electronic medical record. 

Because syphilis diagnosis was the gold standard for statistical analysis of the study 

hypotheses and the syphilis test results are hypotheses variables, the reliability of the data on the 

laboratory spreadsheet was assessed by the student researcher prior to deidentification of the 

retrospective study data.  The student researcher determined that there were 4,077 patients who 

had all three syphilis tests performed that met the inclusion criteria during the retrospective study 

time period.  The researcher received training from the public health clinic and IT staff for 

accessing data from the patient electronic chart.  The clinic used standardized coding for 

electronic charting and the same coding was used in the standardized laboratory spreadsheet.  

Based on the medical record number in the laboratory spreadsheet, the student researcher 

accessed each patient’s electronic chart (4,077 charts) and verified that the study variable data in 

the chart matched the study variable data in the spreadsheet.  During the data assessment, if the 
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medical record number on the spreadsheet did not match the number in the electronic chart or if 

the test results for a medical record did not match the spreadsheet results, the student researcher 

used the LIMS to correctly identify the patient who had all three syphilis tests performed and 

verified the laboratory test results.  All instances of nonmatching samples (191) shown in Table 

22 were corrected on the laboratory spreadsheet by the student researcher and a nonmatching 

record log was maintained during the chart review. 

Table 22 

Nonmatching Study Variables Identified During Electronic Chart Review 

 

Variable category on lab spreadsheet Number nonmatching samples on spreadsheet 

Date of Birth     2 

Gender     3 

Medical record number   32 

Syphilis stage 104 

Syphilis lab test result   50 

Total nonmatching samples 191 

 

The highest instance of disagreement (104) was incorrect or missing syphilis stage followed 

by incorrect syphilis lab results (50) entered on the laboratory spreadsheet.  Interrater reliability 

of the two independent observations (laboratory spreadsheet and electronic chart) for agreement 

or disagreement of patient variable documentation can be determined by calculating the 

proportion of agreement using the number of agreements divided by the sum of the number of 

agreements plus disagreements.  Based on the data in Table 22, the proportion of agreement for 

the chart review was 0.95 (3886/4077), with 1.0 being perfect agreement.  Another measure of 

interrater reliability is Cohen’s kappa () which eliminates chance agreement.  Statistical 

Package for the Social Science (SPSS) statistical software version 24 was utilized to calculate 

=1.0 (p <0.001), which is either a very good or excellent strength of agreement depending on  
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the reference text thus, enhancing the reliability of the spreadsheet data (Kaji, Schriger and 

Green, 2014; Polit and Beck, 2012; Xie, 2017).  

Measurement validity.  Polit and Beck (2012) describe measurement validity as how well 

the instrument measures the target construct.  For this study, measurement face validity was 

enhanced by FDA approval of all three syphilis tests as well as the CDC recommendations for 

the syphilis algorithm serologic test interpretations for determining syphilis infection.  Content 

validity refers to how well the measurement covers all aspects of the construct domain (Karras, 

1997; Messick, 1997).  Syphilis infection is a progressive disease that occurs in stages.  Multiple 

prior studies shown in Table 4 demonstrate that all three syphilis tests (RPR, TP-PA, and EIA) 

will detect syphilis infection in different stages, although nontreponemal tests are not as sensitive 

as treponemal tests for detection of syphilis infection at later stages.  The CaptiaTM Syphilis IgG 

package insert (Trinity Biotech, 2003) shows a sensitivity of 98.2% for the Syphilis IgG EIA 

tested against a known panel of serum from patients with untreated syphilis infection in all stages 

of illness.  The nontreponemal VDRL tested against the same panel had a sensitivity of 80.2% 

with the lowest level of reaction with serum from patients diagnosed with late latent syphilis.  

The Serodia TP-PA package insert shows a sensitivity of 90% within a normal population and 

100% within a population of suspected positive syphilis patients (Fujirebio Inc., 2006).  Criterion 

related validity refers to how well the measurement scores against an external reference sample 

known to contain the construct analyte (Karras, 1997).  The criterion validity of all three syphilis 

tests used in the study as shown in Tables 16-18 depicts acceptable (100%) qualitative QC 

results (syphilis reactive and nonreactive) with a known syphilis control across multiple lot 

numbers for all three tests during the study time period.   
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According to Messick (1995), “both convergent and discriminant evidence are basic to 

construct validation” (p. 746).  Convergence refers to evidence that other test methods will 

provide similar test results for the construct.  For this study, all three syphilis test methods were 

performed independently and had different manufacturers; yet each measurement approach 

converged on the construct, which was detection of syphilis infection.  Tables 16-18 show that 

all three test methods used at the western region laboratory could to detect syphilis antibody in 

different known control samples.  This enhanced convergent validity of the syphilis 

measurements.  Discriminability refers to how distinctly the measurement identifies the construct 

when mixed with similar constructs.  Syphilis is an STD that can occur concurrently with other 

STDs.  Current syphilis test methods rely on detection of antibodies developed in response to the 

infection.  These antibodies could be specific for the syphilis infection or a nonspecific 

inflammatory response.  The manufacturer’s package insert for each test method was reviewed to 

determine the level of cross-reactivity that occurs with each method, which can affect the level of 

discriminability. 

CaptiaTM Syphilis IgG package insert (Trinity Biotech, 2003) lists results of testing a panel of 

1,690 specimens containing samples from patients with no known history or serological evidence 

of syphilis infection.  The panel included 1,002 patients with no known disease or condition and 

688 patients with known non-syphilis disease, but whose sera was reactive for other disease 

states and/or had characteristics known to cause false reactive test results with other syphilis 

serologic methods.  The 688 known disease patients included those infected with HIV, Hepatitis 

B and C, Human T-lymphotropic virus (HTLV), genital herpes, lyme disease, and leptospirosis.  

Also included were samples from patients with characteristics known to cause false reactive 

syphilis test results.  These samples included patients with rheumatoid factor antibody, myeloma, 
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hypergammaglobulinemia, autoimmune disease, systemic lupus erythematosus (SLE), celiac 

disease, colitis, gout, sera from intravenous drug uses, and known false positive nontreponemal 

tests.  All 1,002 normal nondisease sera were nonreactive with the Syphilis IgG test method.  

Eight samples from the 688 known disease sera were false reactive for a specificity of 99% 

(1682/1690*100) using the vendor’s cross-reactivity panel, thus showing excellent 

discriminability for syphilis infection. 

The Fujirebio, Inc. (2006) Serodia TP-PA package insert lists a cross-reactivity panel of 174 

sera that had tested positive for different diseases or conditions including SLE, arthritis, HIV, 

lyme disease, Helicobacter pylori, Toxoplasma, and drug addiction.  There were 24 false reactive 

TP-PA tests within the panel for a specificity of 86% (150/174*100).  The HIV reactive sera 

accounted for 19 of the 24 false reactive results.  While a specificity of 86% with this panel 

provides good discriminability for syphilis, the TP-PA test may exhibit a limitation when testing 

a population with a high HIV infection rate.   

The MacroVue RPR package insert (Becton Dickinson and Company, 2010) did not provide 

results of a non-syphilis disease panel; however, it did list the following disease conditions as 

potentially causing biological false positive RPR test results: infectious mononucleosis, leprosy, 

malaria, SLE, connective tissue disorders, rheumatoid arthritis, pregnancy, drug addiction, and 

autoimmune disease.  Prior studies shown in Table 4 provide a specificity range of 93-99% for 

the RPR test when tested in the general population.   

Reliability and validity summary.  The reliability of the three syphilis tests was enhanced 

by the data shown in Tables 16-18 with repeated measures providing consistent reactive and 

nonreactive qualitative results across multiple reagent lot numbers using known QC material.  A 

new lot-to-lot variation assessment tool developed to utilize Syphilis IgG EIA quantitative test 
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results, identified a potential performance issue with one reagent lot number IgG H which was 

also identified by the vendor during the study and all boxes of the lot number were returned.  

According to the manufacturer, all qualitative QC and valid assay plate run patient measurements 

were acceptable; therefore, the samples tested with lot number IgG H were included in the study 

data.  The error rate for the EVOLIS automated immunoassay analyzer (3.6%) was determined to 

be lower than the expected random error rate (5-6%) for diagnostic equipment; therefore, the 

analyzer provided consistent day to day results.  The reliability of the laboratory data spreadsheet 

was enhanced by an extensive review of each patient’s chart to determine the strength of 

agreement (very good to excellent) for the study data variables. 

The validity of the three syphilis tests was supported by FDA clearance of each method for 

detection of syphilis infection in serum samples.  The external consistency of all three syphilis 

tests was shown in Tables 16-18 with all three tests providing expected qualitative test results for 

an external reference material known to contain syphilis antibodies.  A review of manufacturer’s 

package inserts identified that all three tests were capable of detecting syphilis infection at 

multiple disease stages and discriminate syphilis infection from other diseases or conditions.  

The CDC recognizes the cross-reactivity (specificity) limitation of syphilis serological testing as 

well as the sensitivity limitation for various syphilis stages and, therefore, recommends the use of 

more than one syphilis test to determine syphilis infection as seen in the traditional and reverse 

algorithms in Figures 4 and 5.   

Population and Sample Size 

For STD surveillance purposes, the CDC utilizes four US census regions, West, Midwest, 

South and Northeast, for reporting STD infections.  The West region includes the states of 

Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, 
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Utah, Washington, and Wyoming.  According to the CDC 2013 Syphilis statistics, the rate of 

P&S syphilis cases in the West region continued to increase during the study time period.  The 

West region P&S rate was 4.9 cases per 100,000 population in 2011 and 5.8 cases per 100,000 

population in 2012 which was an 18.4% increase in one year.  

The study setting was an STD public health clinic located in a large western region 

metropolitan area comprising over two million residents.  The STD public health clinic was 

operated by the public health agency within the western region metropolitan area and provided 

the following services: 

• diagnosis and treatment of active or suspected cases of chlamydia, gonorrhea, syphilis, 

HIV, trichomoniasis, yeast infections, and bacterial vaginosis; 

• high risk behavior counseling; 

• HIV nursing case management; 

• partner notification for STD infection; and 

• sexual assault follow-up. 

The STD clinic received federal funding through the CDC STD prevention cooperative grant, 

which sought to reduce syphilis infection especially among high-risk populations, such as MSM.  

The clinic staff followed federal guidelines for syphilis detection and treatment.  In addition to 

patients who had signs and symptoms of syphilis infection, the STD clinic also targeted pregnant 

women, MSM, persons with HIV, and contacts of known syphilis cases for conducting syphilis 

testing.  Because syphilis infection can occur concurrently with other STDs, clinic patients were 

often screened for multiple STDs (HIV, syphilis, gonorrhea, and chlamydia) during the same 

clinic visit.  All syphilis testing ordered by the STD clinic staff was performed at the public 

health agency public health laboratory.  The public health laboratory also performed syphilis 
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testing for various other public health agency departments, such as the family planning clinic and 

the HIV/AIDS clinic.  The HIV/AIDS clinic provided outreach testing to high risk populations in 

jails, juvenile detention centers, and Lesbian, Gay, Bisexual and Transgender (LGBT) 

community centers.  The test results from these outreach locations were provided by the clinic to 

the patient.  The patient made the decision to either visit the STD clinic for treatment or follow 

up with their personal physician; therefore, not all patients tested at the public health laboratory 

were seen in the STD clinic. 

The target population included all patients who sought medical evaluation at the STD clinic 

from January 1, 2012 through December 31, 2013.  Purposive sampling was used to select 

sample members to include in the study.  The STD clinic staff determined those patients who 

required syphilis testing based on clinic criteria.  The selection criteria for inclusion in the study 

are males and females 18 years and older who were seen in the public health STD clinic, met the 

STD clinic criteria for syphilis testing and had all three syphilis tests (Syphilis IgG, RPR, and 

TP-PA) performed with clinically diagnostic test results on each sample collected.  Exclusion 

criteria included males and females under 18 years of age, those who did not visit the STD clinic, 

those that did not have three syphilis tests performed, samples that tested invalid by the Syphilis 

IgG test, and samples that tested inconclusive by the TP-PA test method.  

Males and females under 18 years of age are minors and were excluded because they 

represent a vulnerable population.  A chart review was required to obtain a clinical diagnosis 

which was the gold standard for the statistical evaluation of the study variables.  Patients who did 

not visit the STD clinic did not have a medical record; therefore, a diagnosis could not be 

obtained, which excluded them from the study.  Invalid and inconclusive test results cannot be 

interpreted as either reactive or nonreactive; therefore, the samples did not meet the criteria for 
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providing clinically diagnostic test results.  The laboratory and the STD clinic performed syphilis 

screening testing using a modification of the CDC reverse algorithm, which started with an 

initial Syphilis IgG test and reflexed to concurrent performance of RPR, RPR titer, and TP-PA if 

the initial screening test was reactive or equivocal.  The laboratory also performed reflex testing 

to RPR and TP-PA for those samples that had a nonreactive Syphilis IgG test with a S/CO value 

equal to or greater than 0.450.  The public health agency staff also had the ability to order a panel 

of Syphilis IgG, RPR, and TP-PA tests if the patient was in a high risk group or staff determined 

all three tests should be ordered based on clinical assessment.  Other public health departments, 

such as the HIV/AIDS clinic, could also order all three syphilis tests.  The public health 

laboratory also received samples with requests for one or two syphilis tests to be performed as in 

the case of syphilis monitoring testing, which required performance of RPR and RPR titer.  Only 

samples that had all three syphilis tests performed on the same sample and had a chart 

established based on a clinic visit were included in the study as clinical correlation of the test 

results was necessary to determine a syphilis diagnosis based on CDC recommendations. 

During the two-year study period (2012-2013), the western region public health laboratory 

performed 34,340 Syphilis IgG tests.  As a component of an ongoing QA project with the public 

health clinic, the laboratory maintained a spreadsheet that included demographic information and 

test results for patients who were tested with all three syphilis test methods.  For the study time 

period, there were 5,061 patients on the laboratory spreadsheet.  These 5,061 patients included 

those that tested initially reactive or equivocal with the Syphilis IgG test and were reflexed to 

RPR, RPR titer, and TP-PA testing as well as patients who were tested with all three syphilis test 

(Syphilis IgG, RPR, and TP-PA) as ordered by public health agency staff.  Additionally, 

nonreactive Syphilis IgG samples with S/CO values greater than or equal to 0.450 were reflexed 
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by the laboratory to RPR and TP-PA testing.  Therefore, the list of 5,061 patients included those 

that were nonreactive for all three syphilis tests as well as those that were reactive for one or 

more of the tests.  Based on the study exclusion criteria, 216 patients were under the age of 18 

years and were removed from the study.  There were 751 patients who were not seen in the 

public health clinic.  The patients not seen represented those patients tested through the 

HIV/AIDS clinic outreach centers; jails or juvenile detention centers who did not go to the public 

health clinic for reactive test treatment; those whose test results were nonreactive and, thus, did 

not require treatment; or those that had reactive test results with a history of syphilis infection, 

which did not require clinical follow up.  These patients did not have a clinic chart and were 

excluded from the study as diagnoses were not available.  There were six samples that were 

resulted as TP-PA inconclusive, and 11 samples resulted as Syphilis IgG invalid.  An 

inconclusive or invalid test result could be due to instrument, reagent, or operator error.  These 

samples were excluded from the study as they could not be interpreted as either reactive or 

nonreactive, thus they did not provide clinically diagnostic test results.  Additional discussion 

regarding the invalid and inconclusive results is in the variables section.  The final number of 

patients included in the study was 4,077 with 3,218 patients with a diagnosis of no syphilis and 

859 with a diagnosis of syphilis in various stages (Table 23).  The public health clinic ordered 

testing based on the reverse algorithm which started with a treponemal EIA for initial screening.  

The total number of samples initially tested for Syphilis IgG during the two-year study period 

was 34,340; therefore, the syphilis prevalence rate for this public health agency population 

would be 3% (859/34340*100). 
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Table 23 

 

Study Exclusion Category, Number and Rationale 

 

Exclusion category Excluded number Exclusion rationale 

Males and females under 

age 18 years 

216 Minor children; Vulnerable population 

Patients not seen in public 

health clinic 

751 Represents samples collected at outreach 

sites; No medical chart and therefore 

cannot obtain clinical diagnosis 

Inconclusive TP-PA test 

results 

6 Results cannot be interpreted as either 

reactive or nonreactive, and therefore 

cannot be used to clinically interpret 

syphilis algorithms 

Invalid CaptiaTM Syphilis 

IgG test results 

11 Results cannot be interpreted as either 

reactive or nonreactive, and therefore 

cannot be used to clinically interpret 

syphilis algorithms 

Total excluded 984  

 

Statistical Power Analysis 

There are two types of error that affect a researcher’s ability to conclude that a hypothesis is 

probably true or probably false.  A Type I error rejects a true null hypothesis and a Type II error 

accepts a false null hypothesis.  Type I error can be controlled by selecting a level of significance 

or alpha () which represents the probability of finding statistical significance when there is 

none (false positive).  Two commonly used  levels are 0.01 and 0.05 which represent the 

amount of acceptable risk of rejecting the true null hypothesis.  At  of 0.01, the researcher 

accepts the risk that 1 sample out of 100 will reject the true null hypothesis.  At  of 0.05, the 

researcher accepts the risk of rejecting the true null hypothesis for 5 samples out of 100.  An  of 

0.05 is commonly used in research, as lowering the level to 0.01 also increases the risk of Type 

II error.  A mechanism to reduce the risk of Type II error is to increase the sample size (Lipsey & 

Hurley, 2009; Polit & Beck, 2012; Sullivan & Feinn, 2012).  Type II error or  represents the 

probability of not finding statistical significance when there is an effect (false negative).  The 
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statistical power of a study or 1- represents the probability that a statistically significant 

difference will be found when a difference actually exists.  If the statistical power is high, then 

the likelihood of deciding there is an effect when one is present is also high.  Cohen (1992) 

proposed that setting  at 0.20 would provide a statistical power of 0.80 (1-0.20) which would be 

high enough to reduce the risk of Type II error.  Since Cohen’s recommendation was published, 

researchers have conventionally set  at 0.05 and  at 0.20 thus providing a 4:1 ratio (0.20 to 

0.05) for both Type I and Type II errors. 

Multiple authors (Cohen, 1990; Ferguson, 2009; Lipsey & Hurley, 2009; Polit & Beck, 2012; 

Sullivan & Feinn, 2012) discuss the relationship between sample size and power.  If the sample 

size is large enough, almost any level of power and significance (p value) can be detected, even 

if the difference in outcomes between groups is not necessarily important or meaningful.  A 

statistically significant p value indicates that the study results are unlikely to have been caused 

by chance; however, it does not indicate the size of the effect or association between the 

variables.  An effect size estimate is a statistical tool that is not affected by sample size and 

provides the researcher with an idea of the impact of a statistically significant result.  According 

to Sullivan and Feinn (2012), the type of comparison performed within the study influences 

which indices are used to estimate the effect size.  The indices can be divided into two main 

categories: effect sizes between groups (Cohen’s d, odds ratio[OR], relative risk[RR]) or 

measures of association between variables (Pearson’s r correlation, r2 coefficient of 

determination).  The OR is recommended for binary outcome variables and classifies effect sizes 

as small (1.5), medium (2) and large (3).  A small effect size is less than medium but not so small 

as to be considered meaningless.  Ferguson (2009) does not recommend translation of OR or RR  
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values into r or d when the data are binomial and further states that there is no agreement on how 

large an effect size must be in order to be considered practically significant. 

Prior to starting a research project, it is important to determine the sample size necessary to 

provide statistically significant results that are meaningful.  A statistical power analysis will 

determine the sample size that ensures the study has acceptable power to support the null 

hypothesis.  According to Polit and Beck (2012), it is difficult to estimate sample sizes when the 

study will be testing differences in proportions between groups, such as the dichotomous 

variables which were analyzed in this research study.  Various authors (Bujang & Adnan, 2016; 

Hajian-Tilaki, 2014; Malhotra & Indrayan, 2010; Obuchowski, 1998) suggest that the statistical 

indices of sensitivity and specificity should be used for determining sample size for diagnostic 

medical tests at a desired power.  There are four values that are necessary for sample size 

determination using sensitivity or specificity: a) pre-determined sensitivity and/or specificity 

which can be obtained from previously published studies or clinical judgement, b) the 

significance criterion (), c) the desired power level (1-), and d) the precision of estimates of 

sensitivity and/or specificity which is the maximum difference between the estimated sensitivity 

and/or specificity and the true value.  Additionally, the disease prevalence within the population 

should also be considered to ensure sufficient numbers of patients with the disease are included 

in the study.  In general, a larger sample size will be needed to obtain a higher sensitivity in a 

lower prevalence population.  Low syphilis prevalence of one percent or less is typically seen in 

the general population with high syphilis prevalence of greater than 10 percent often seen in 

MSM populations (Snowden, et al., 2010).  According to the CaptiaTM Syphilis IgG package 

insert (Trinity Biotech, 2003) a general clinical laboratory testing referred and routine specimens 

may have a 4.5% reactivity rate. 
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The syphilis tests performed in this study are used for screening the public health population 

for syphilis infection which requires tests of high sensitivity to detect as many true-positives as 

possible.  However, the RPR and TP-PA tests are also used as confirmatory diagnostic tests and 

require sufficiently high specificity to detect true-negatives.  The study variables include three 

different syphilis tests and interpretations of two different algorithms, which requires use of a 

sufficiently high degree of both sensitivity and specificity values that will include all variables.  

According to the syphilis test ranges listed in Table 4, various published studies provided a 

syphilis EIA sensitivity range of 57%-100% and specificity range of 80%-100%; an RPR 

sensitivity range of 37%-100% (depending on disease stage) and specificity range of 93%-98%; 

and a TP-PA sensitivity range of 69%-100% and specificity range of 95%-100%.  There was 

only one published study by Tong, et al (2013) that determined the sensitivity of the traditional 

algorithm at 75.8% and the reverse algorithm at 99.8% based on presence or absence of disease.  

The manufacturer’s package inserts list a sensitivity of 98.2% and specificity of 99% for the 

CaptiaTM Syphilis IgG EIA assay along with a nontreponemal (VDRL) sensitivity of 80.2% 

(Trinity Biotech, 2003) and a sensitivity of 90% with specificity of 86% for the TP-PA (Fujirebio 

Diagnostics, Inc., 2006).  Bujang and Adnan (2016) recommend use of a predetermined 

sensitivity and specificity of at least 70% within the null hypothesis and at least 80% within the 

alternate hypothesis in order to indicate that the test is a fairly good diagnostic tool.  Based on 

this recommendation, the values in Table 4 and the test manufacturer’s package insert, an 

estimated sensitivity and specificity of 80%, was used in the study power analysis.  This 

sensitivity and specificity represents the lower end of practical importance as seen in the ranges 

listed in Table 4 and was a rough estimate of the minimum acceptable value for the study with 

the expectation that the tests will actually perform at 90% sensitivity and specificity.  This 
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represents a precision of 0.10 which is the maximum difference between estimated sensitivity 

and specificity and the true value.   

A statistical power analysis based on a binomial distribution was performed using Power 

Analysis and Sample Size (PASS) 15 software (PASS 15, 2017).  According to the PASS 15 

(2017) manual, a binomial variable should exhibit the following properties a) the variable is 

binary (can take on one of two possible values), b) the variable is observed a known number of 

times, c) the probability that the outcome of interest occurs is constant for each trial, and d) the 

trials are independent (the outcome of one trial does not influence the outcome of the other trial).  

Because the retrospective study sample size (4,077) and population disease prevalence (3%) was 

known, a two-sided test for one-sample sensitivity and specificity was designed in PASS 15 to 

solve for power with the following values: alpha = 0.05, sample size = 4,077, disease prevalence 

= 0.03,  sensitivity and specificity = 0.80, and precision = 0.10.  The PASS 15 software 

calculated that a total sample size of 4,077 (which includes at least 122 subjects with the disease) 

achieves 84% power to detect a change in sensitivity from 0.8 to 0.9 using a two-sided binomial 

test and 100% power to detect a change in specificity from 0.8 to 0.9 using a two-sided binomial 

test.  The target significance level was 0.05.  The software also calculated that the total sample 

size of 4,077 achieves 100% power to detect a change in sensitivity and specificity from 0.8 to 

0.99 using a two-sided binomial test with target significance level at 0.05.  These calculations 

indicate that the sample size was sufficiently large within a population with 3% prevalence to 

detect small (0.1) or medium (0.2) differences in sensitivity and specificity with greater than 

80% power.  The software calculated a 20% dropout rate to determine the number of subjects 

that are expected to be lost at random during the course of the study and for whom no response 

data will be collected.  Based on the sample size, the expected number of dropouts was 1,020; 
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therefore, a dropout inflated enrollment sample size of 5,097 would be recommended for the 

study.  The actual dropout-inflated enrollment sample size was 5,061 and the number of dropouts 

(excluded samples) was 984. 

Cohen (1990), Ferguson (2012), and Sullivan and Feinn (2012) recommended use of OR to 

determine effect size for medical outcomes research.  Using PASS 15 software, a test for two 

correlated proportions (McNemar test) was designed.  Because the sample size was known, the 

test was designed to solve for OR as follows: sample size = 4,077, alpha = 0.05, power at various 

levels of 0.8, 0.9, 0.95 and 0.99, and proportion discordant = 0.1.  The PASS 15 software 

calculated that a sample size of 4,077 achieved 99% power to detect an odds ratio of 1.5 using a 

two-sided McNemar test with a significance level of 0.05.  An odds ratio of 1.5 would be 

considered a small effect, which according to Sullivan and Feinn (2012) is not so small as to be 

considered meaningless.  

Variables 

The public health laboratory staff gathered the study variables from January 1, 2012 through 

December 31, 2013 as a component of the enhanced syphilis surveillance performed by the 

public health agency.  Laboratory staff entered the data on an Excel spreadsheet; which was 

stored in a secured, protected location on the public health agency firewall protected intranet.  

The study variables included both descriptive and observed variables.  Descriptive variables 

included gender (operationalized as male, female and transgender), age (operationalized as 

years), reason for clinic visit (operationalized as STD screen with symptoms, STD screen 

without symptoms, or notification which included contact with an STD or receipt of a letter 

notifying the patient that a partner had an STD), infection diagnosis (operationalized as no STD, 

syphilis past or current, HIV, chlamydia and/or gonorrhea, or other), and syphilis stage 



 

168 
  

(operationalized as primary, secondary, latent, tertiary, not staged, and history).  The contact 

STD category included contact with HIV, trichomonas, herpes, gonorrhea, chlamydia, syphilis, 

or nongonococcal urethritis (NGU).  The other infection category included diagnosis of herpes, 

warts, molluscum contagiosum, condyloma, human papillomavirus (HPV), yeast, NGU, bacterial 

vaginosis, trichomoniasis, lupus, gout, or autoimmune disease.  The age was calculated from the 

date of birth and the sample collection date using a formula created in Microsoft Excel by 

laboratory staff.  Once the age was calculated, date of birth was removed from the data set and 

was not included in the study variables.   Observed variables included the CaptiaTM Syphilis IgG 

test result and S/CO value, Becton Dickinson MacroVue RPR test result and titer value, 

Fujirebio Serodia TP-PA test result, syphilis traditional and reverse algorithm serologic 

interpretation, contingency table classification, and clinical diagnosis of syphilis based on chart 

review (Table 24).    

The CaptiaTM Syphilis IgG test result was calculated by the BioRad EVOLIS automated 

analyzer based on the S/CO value and reported as reactive, equivocal, nonreactive, or invalid.  

According to the manufacturer’s package insert, initially reactive or equivocal results should be 

retested in duplicate.  Specimens which gave repeat equivocal results should be considered 

reactive until confirmatory testing was completed.  Additionally, the package insert stated that 

equivocal test results were scored as reactive during performance validation studies (Trinity 

Biotech, 2003).   Standard practice at the public health laboratory was to confirm both equivocal 

and reactive results with follow-up RPR, RPR titer, and TP-PA testing; thus, an equivocal result 

was treated as a reactive.  As shown in Table 25, there were 54 equivocal (EQ) results in the 

study with 61% (33/54) having a diagnosis of no syphilis. 
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Table 24 

Study Variables, Definition, Type, and Operationalized Outcome 

 

Variable Variable definition Variable 

type 

Operationalized outcome  

Gender Patient gender Categorical male, female, transgender 

Age Patient age at time of 

sample collection 

Continuous years 

Reason for visit Patient reason for visit 

to STD clinic  

Categorical STD screen with symptoms, 

STD screen without 

symptoms, notification 

Infection diagnosis STD infection reported 

by clinic staff in chart 

Categorical Syphilis past or current, HIV, 

gonorrhea and/or chlamydia, 

no STD or other  

Syphilis IgG result FDA approved 

clinically diagnostic 

test result 

Dichotomous nonreactive, reactive 

Note: equivocal calculated 

separately as reactive and 

nonreactive 

Syphilis IgG S/CO 

value 

Numerical value 

determined by 

EVOLIS analyzer 

Continuous decimal number from 0-5.50 

TP-PA result FDA approved 

clinically diagnostic 

test result 

Dichotomous nonreactive, reactive 

RPR result FDA approved 

clinically diagnostic 

test result 

Dichotomous nonreactive, reactive 

RPR titer result FDA approved 

reported test result 

Continuous 0 for nonreactive, 1 for 1:1, 2 

for 1:2, 4 for 1:4, 8 for 1:8, 

16 for 1:16, 32 for 1:32, 64 

for 1:64, 128 for 1:128, 256 

for 1:256, 512 for 1:512, 

1024 for 1:1024 

Algorithm serologic 

interpretation 

Lab interpretation 

based on traditional or 

reverse sequence 

algorithm and clinical 

correlation for 

discordants 

Dichotomous syphilis infection unlikely, 

syphilis infection likely 

Algorithm 

contingency table  

Comparison of 

traditional and reverse 

algorithm 

interpretation and 

clinical diagnosis 

 

Categorical true positive, true negative, 

false positive, false negative 
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Table 24. Continued 

 

   

Variable Variable definition Variable 

Type 

Operationalized outcome 

Laboratory test 

contingency table  

Comparison of 

Syphilis IgG and TP-

PA test result and 

clinical diagnosis 

Categorical true positive, true negative, 

false positive, false negative 

Clinical diagnosis of 

syphilis 

Diagnosis determined 

by clinic staff obtained 

from patient chart  

Dichotomous 

Gold standard 

syphilis infection no, syphilis 

infection (past or current) yes 

 

Syphilis stages Stage determined by 

clinic staff and 

obtained from patient 

chart 

Categorical primary, secondary, latent 

(includes early, late and 

unknown duration), tertiary, 

not staged, history 

 

 

Table 25 

 

Equivocal Syphilis IgG Test Result Frequency and Diagnosis/Stage Frequency 

 
Result Result frequency Diagnosis/stage frequency 

IgGEQ/RPR-/TP-PA- 30 27 No syphilis; 1 Late latent; 1 not staged;  

1 history syphilis 

IgGEQ/RPR-/TP-PA+ 12 2 No syphilis; 1 Primary; 7 Late latent; 2 history syphilis 

IgGEQ/RPR+/TP-PA+  7 1 Primary; 2 Early; 4 Late latent 

IgGEQ/RPR+/TP-PA-  5 4 No syphilis; 1 Secondary 

Total 54  

 

According to a 2007 FDA guidance document for reporting results from studies evaluating 

diagnostic tests, equivocal results should not be discarded or ignored when performing statistical 

evaluation as it may introduce bias into the calculations.  To address the potential bias issue, the 

FDA suggests reporting two different sets of performance measures: one set based on including 

the equivocal results with the test reactive results and one set based on including the equivocal 

results with the test nonreactive results (FDA, 2007).  For the purposes of this study, the 

equivocal results were included and separate statistical calculations were performed based on this 

FDA recommendation.   
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The invalid test results were removed from the study as they cannot be interpreted as either 

reactive or nonreactive.  Therefore, they provide uninterpretable diagnostic information which 

cannot be used within the reverse algorithm interpretation.  At the western region laboratory, the 

laboratory director approved reflex testing to both RPR, RPR titer, and TP-PA for all invalid 

results so that patient diagnosis was not delayed.  Additional recommendations were to recollect 

the sample if the RPR and TP-PA results were not consistent with the patient’s clinical picture.  

There were 11 Syphilis IgG test results that were reported as invalid out of 4,077 study samples 

representing 0.3% (11/4077) of the tested samples.  According to Begg (1978), uninterpretable 

diagnostic test results will not bias statistical analysis provided that the test is repeatable and the 

cause of the uninterpretable result is random.  The Syphilis IgG test could be repeated with a new 

sample.  To determine if the invalid results were random, they were treated as missing data.  

Tabachnick and Fidell (2013) state that if less than 5% of the missing data points represent a 

random subsample of the whole sample and are concentrated in a few variables which are highly 

correlated with other complete variables, then the cases can be deleted without compromising 

statistical analysis.  The 11 invalid Syphilis IgG test results represented 0.3% of the study cases 

(Table 26).  A review of the 11 invalid results revealed that the test analysis dates had a random 

pattern with only one invalid test result per analysis date.  Additionally, the invalid results were 

highly correlated to the other syphilis test variables.  There were three instances in March 2013 

during a time period when there was a known instrument issue.  There was also one instance in 

June 2013 and two instances in July 2013 when there were known instrument and reagent issues 

(Tables 19 and 20).  Known instrument and reagent issues also provide a rationale for removal of 

the invalid results.  Additional clinical data shown in Table 26 reveal that three of the 11 patients 

were diagnosed with syphilis infection either past or present while the remaining eight patients 
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Table 26 

Invalid Syphilis IgG Test Result Analysis Dates and Clinical Data 

 

Study case number Analysis 

date 

Clinical data 

40 04-26-2012 Nonreactive RPR and TP-PA; No syphilis; Yeast 

infection; No redraw 

3578 08-23-2012 Nonreactive RPR and TP-PA; No syphilis; No redraw 

4875 03-07-2013 Reactive RPR with titer 1:64 and reactive TP-PA; 

Latent syphilis infection unknown stage; contact with 

HIV and syphilis infections 

4876 03-18-2013 Reactive RPR with titer 1:4 and reactive TP-PA; Late 

latent syphilis infection 

4863 03-21-2013 Nonreactive RPR and TP-PA; Late latent syphilis 

infection; Gonorrhea and chlamydia infections; No 

redraw 

4864 05-23-2013 Nonreactive RPR and TP-PA; No syphilis; Yeast 

infection; Redraw Syphilis IgG nonreactive 

4867 06-24-2013 Nonreactive RPR and TP-PA; No syphilis; Chlamydia 

and nongonococcal urethritis infections; No redraw 

4877 07-21-2013 Nonreactive RPR; Reactive TP-PA; History of syphilis 

infection 2012; Chlamydia infection; No redraw 

4868 07-24-2013 Nonreactive RPR and TP-PA; No syphilis; Gonorrhea 

infection; No redraw 

4873 10-22-2013 Reactive RPR with titer 1:1; Nonreactive TP-PA; No 

syphilis; Redraw Syphilis IgG nonreactive 

4874 11-15-2013 Reactive RPR with titer 1:2; Nonreactive TP-PA; No 

syphilis; Redraw Syphilis IgG nonreactive 

 

were diagnosed with no STD infection or with another STD infection (gonorrhea, chlamydia, or 

yeast).  Because the invalid results represent a small random subsample (0.3%) of the large data 

set utilized in this study and are correlated to other complete variables, the test results are not 

critical to the analysis and can be deleted from the study.  Therefore, the CaptiaTM Syphilis IgG 

test result was operationalized as a dichotomous variable (reactive or nonreactive). 

The CaptiaTM Syphilis IgG S/CO was operationalized as a decimal number automatically 

calculated by the BioRad EVOLIS automated analyzer.  The S/CO value was derived by 

expressing the absorbance of the test specimen as a ratio of the mean absorbance of the test kit’s 
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Low Titre Reactive Control.  A numerical ratio value between 0.9 and 1.1 was considered an 

equivocal test result.  A ratio value greater than or equal to 1.1 was considered a reactive result.  

A ratio value less than or equal to 0.9 was considered a nonreactive result.  The S/CO values for 

this study ranged from 0 to 5.5.  According to the FDA approved manufacturer’s instructions, the 

S/CO value was not reported and was used only for internal calculations to determine the 

Syphilis IgG test result.  The S/CO value is a continuous variable because the value reflects the 

amount of treponemal antibody present in the patient’s serum and can take on any value within 

the range of the instrument scale (Tabachnick & Fidell, 2013).  

The Becton Dickinson MacroVue RPR was operationalized as reactive or nonreactive based 

on manual visual interpretation of the test result.  The qualitative RPR result is a dichotomous 

variable.  Following CDC recommendations, all reactive qualitative RPR tests were reflexed to a 

quantitative RPR titer.  The RPR titer was performed by making serial two-fold dilutions of the 

initial reactive sample (undiluted) and repeating the RPR test until the titer dilution reached a 

nonreactive endpoint.  The final test result was reported as the highest dilution value showing a 

reactive result.  According to Tabachnick and Fidell (2013), the RPR titer result can be treated as 

a continuous variable because there are numerous result categories; and each category (titer 

result) is a numerical value that falls along a quantitative continuum.  The RPR titer value was 

operationalized as a numerical value which doubled in value as it increased and was reported as 

1:1(undiluted), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256, 1:512, 1:1024, with 1:1024 

representing the highest dilution in the data set. 

The Fujirebio Serodia TP-PA was reported as nonreactive, reactive, inconclusive, or invalid.  

There were zero invalid TP-PA test results in the study data and six inconclusive TP-PA results 

out of 4,077 study samples representing 0.1% (6/4077) of the study data.  Inconclusive results 
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cannot be interpreted as either reactive or nonreactive.  Therefore they provide uninterpretable 

diagnostic information which cannot be used within either the reverse or traditional algorithm 

interpretations.  Inconclusive results require collection of a new sample for repeat analysis.  A 

review of the six inconclusive results (Table 27) revealed that the test analysis dates had a 

random pattern with only one inconclusive test result per analysis date.  

Table 27 

 

Inconclusive TP-PA Test Result Analysis Dates and Clinical Data 

 

Study case 

number 

Analysis date Clinical data 

1021 11-06-2012 Nonreactive Syphilis IgG and RPR; History of syphilis 

infection 2012; No redraw 

4838 05-09-2013 Nonreactive Syphilis IgG and RPR; No syphilis; 

Redraw TP-PA nonreactive 

4834 06-10-2013 Nonreactive Syphilis IgG; Reactive RPR with titer 1:1; 

Early latent syphilis infection; Contact with syphilis 

infection; No redraw 

4841 07-09-2013 Nonreactive Syphilis IgG and RPR; No syphilis 

infection; Gonorrhea infection; Redraw TP-PA 

inconclusive 

4849 10-02-2013 Reactive Syphilis IgG; Nonreactive RPR; History of 

syphilis infection unknown date; No redraw 

4852 10-26-2013 Nonreactive Syphilis IgG and RPR; Primary syphilis 

infection; Contact early syphilis: Redraw Syphilis IgG 

equivocal, RPR reactive, TP-PA reactive 

 

Additional clinical data revealed that four of the six patients were diagnosed with syphilis 

past (2) or present (2).  Of interest is study case number 4852, who had a diagnosis of primary 

syphilis based on clinical assessment and symptoms with initial nonreactive Syphilis IgG and 

RPR with inconclusive TP-PA testing.  Repeat testing two weeks after the initial test revealed 

equivocal Syphilis IgG, reactive RPR, and reactive TP-PA tests.  This case shows the difficulty 

of diagnosing syphilis due to varying antibody levels, especially in the early stages of infection.  

Due to the randomness of the missing data and correlation with other syphilis variables, these six 
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inconclusive results are not critical to the analysis making up a small subsample (0.1%) of the 

large data set.  Therefore, the results were deleted from the study, and the TP-PA test result was 

operationalized as a dichotomous variable (nonreactive or reactive). 

The CDC and APHL provide suggested laboratory serologic interpretation language for both 

the traditional (Figure 4) and reverse sequence (Figure 5) syphilis algorithms (CDC, 2011; 

Morshed & Singh, 2015).  Both algorithms require reflex testing for initially reactive RPR or 

Syphilis IgG tests.  Reflex testing using other test methods of varying sensitivity and specificity 

may result in discordant or nonmatching results.   

For the traditional algorithm, a nonreactive initial RPR test was interpreted as syphilis 

infection unlikely with no further testing performed unless the healthcare provider requests it.  If 

the RPR was reactive, then a TP-PA test was performed.  If the TP-PA test was reactive, the 

traditional algorithm was interpreted as syphilis infection likely.  If the TP-PA test was 

nonreactive, then the results were discordant (nonmatching) and required clinical correlation to 

determine if the discordance was due to a biological false positive (often seen with RPR tests) or 

indication of syphilis infection (either past or present).  The traditional algorithm laboratory 

serologic interpretation was operationalized as a dichotomous variable (syphilis infection likely 

or unlikely); however, for the discordant results, clinical correlation was necessary to complete 

the dichotomous algorithm interpretation (Figure 4).  For this study, syphilis diagnosis was 

captured for each sample which allowed the student researcher to clinically correlate the 

discordant results to determine if the traditional algorithm interpretation was a true or false 

positive.  Discordant RPR positive results with a diagnosis of syphilis were categorized as likely 

true positive and discordant RPR positive results with no diagnosis of syphilis were categorized 

as likely false positive.  Because all samples in this study were tested with all three syphilis tests, 
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instances arose in which the RPR test was nonreactive and the TP-PA test was reactive.  In those 

instances, only the nonreactive RPR test result was used in algorithm interpretation.  The TP-PA 

results were ignored, since, if the traditional algorithm was followed, the TP-PA test would not 

have been performed if the initial RPR was nonreactive.  The Syphilis IgG test results were also 

ignored because the test would not be performed within the traditional algorithm (Table 28). 

Table 28 

 

Traditional Algorithm Interpretation Contingency Table Measurement Outcomes 

 

Traditional algorithm 

interpretation                                   

Disease (syphilis infection)  

Yes No 

Syphilis infection likely True positive (TP) 

RPR+/TP-PA+ 

aRPR+/TP-PA- 

False positive (FP) 

RPR+/TP-PA+ 

aRPR+/TP-PA- 

Syphilis infection unlikely False negative (FN) 

RPR-/TP-PA- 
bRPR-/TP-PA+ 

True negative (TN) 

RPR-/TP-PA- 
bRPR-/TP-PA+ 

aDiscordant results: according to the traditional algorithm interpretation, a reactive RPR with 

nonreactive TP-PA could be indicative of either biological false positive or early syphilis infection and 

required clinical correlation to determine contingency table category.   
bAccording to traditional algorithm, TP-PA test would not be performed if RPR is nonreactive; 

therefore, only RPR result used to determine contingency table category. 

 

The reverse sequence algorithm laboratory serologic interpretations included syphilis 

infection likely, syphilis infection unlikely, or syphilis infection inconclusive (discordant 

results).  The reverse algorithm interpretation was operationalized as a dichotomous variable 

(likely or unlikely) with the inconclusive (discordant) results resolved as either likely or unlikely 

using clinical correlation.  As with the traditional algorithm, discordant results occur when a 

sample that tested initially Syphilis IgG reactive or equivocal is nonreactive when the RPR test 

was performed.  Syphilis IgG equivocal results were counted separately as reactive and 

nonreactive, with two different sets of statistical calculations performed.  According to the 

reverse sequence algorithm, a second treponemal test, TP-PA, was performed as the tie-breaker.  
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If the TP-PA test was nonreactive, the algorithm interpretation was inconclusive as this could 

indicate a false positive Syphilis IgG or detection of an early syphilis infection.  Clinical 

correlation was required to determine the reverse algorithm interpretation (Figure 5).  For those 

inconclusive algorithm interpretations, the student researcher clinically correlated the discordant 

results with the syphilis diagnosis to determine if the reverse algorithm interpretation was a true 

or false positive.  Reactive Syphilis IgG, nonreactive RPR, and nonreactive TP-PA results with a 

diagnosis of syphilis were categorized as likely true positive while reactive Syphilis IgG, 

nonreactive RPR, and nonreactive TP-PA results with no diagnosis of syphilis were categorized 

as likely false positive (Table 29).   

Table 29 

Reverse Algorithm Interpretation Contingency Table Measurement Outcomes 

 

 Disease (syphilis infection)  

Reverse algorithm interpretation Yes No 

Syphilis infection likely True positive (TP) 

IgG+/RPR+/TP-PA+ 

IgG+/RPR+/TP-PA- 

IgG+/RPR-/TP-PA+ 
aIgG+/RPR-/TP-PA- 

False positive (FP) 

IgG+/RPR+/TP-PA+ 

IgG+/RPR+/TP-PA- 

IgG+/RPR-/TP-PA+ 
aIgG+/RPR-/TP-PA- 

Syphilis infection unlikely False negative (FN) 

IgG-/RPR-/TP-PA- 
bIgG-/RPR-/TP-PA+ 

bIgG-/RPR+/TP-PA+ 

bIgG-/RPR+/TP-PA- 

True negative (TN) 

IgG-/RPR-/TP-PA- 
bIgG-/RPR-/TP-PA+ 

bIgG-/RPR+/TP-PA+ 

bIgG-/RPR+/TP-PA- 
aDiscordant results: according to the reverse algorithm interpretation, a reactive Syphilis IgG with 

nonreactive TP-PA and RPR could be indicative of either false positive or early syphilis infection and 

required clinical correlation to determine contingency table category.   
bAccording to the reverse algorithm, RPR and TP-PA tests would not be performed if Syphilis IgG is 

nonreactive; therefore, only Syphilis IgG result used to determine contingency table category. 

Note: Equivocal Syphilis IgG results are counted as two different sets of measures: one set with 

equivocal counted as reactive and one set with equivocal counted as nonreactive 

 

A sample that initially tested Syphilis IgG nonreactive was interpreted as syphilis infection 

unlikely and no additional testing was performed unless ordered by the healthcare provider or 
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reflexed following laboratory protocol.  Each of the study samples were tested with all three 

syphilis tests which could result in reactive RPR and/or TP-PA tests with a nonreactive Syphilis 

IgG test.  In those instances, only the nonreactive Syphilis IgG test result was used for reverse 

algorithm interpretation with the RPR and TP-PA results ignored, because, according to the 

reverse algorithm, the RPR and TP-PA tests would not have been performed if the initial 

Syphilis IgG was nonreactive. 

Syphilis clinical diagnosis was operationalized as syphilis infection yes or no which is a 

dichotomous variable.  The diagnosis was based on review, by the trained student researcher, of 

the electronic charts of all 4,077 STD clinic patients included in the study.  The electronic chart 

contained a diagnosis that the patient was either currently infected with syphilis or had a history 

of syphilis infection.  Both past and current syphilis infection were categorized as syphilis  

infection yes.  A patient with no current syphilis infection or with no history in the chart was 

categorized as syphilis infection no.  The diagnosis of syphilis infection was used as the “gold 

standard” or recognized reference method for the statistical calculations performed in the study.  

According to the FDA (2007), a reference standard is “considered to be the best available 

method for establishing the presence or absence of the target condition” (p. 6).   The reference 

standard can be a single test or a combination of methods including clinical follow-up using 

nationally recognized guidelines.  The clinical diagnosis in the electronic chart was based on the 

2012 CDC syphilis case definition (Table 14).  

The dichotomous variables operationalized for the laboratory tests (Syphilis IgG and TP-PA) 

and algorithm interpretations were compared to each patient’s diagnosis of syphilis infection yes 

or no to obtain four possible outcomes (categories): true positive, true negative, false positive, or 

false negative.  The frequencies of the outcomes were placed in a 2x2 contingency table for 
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calculation of the multiple statistical measures shown in Table 6.  Table 28 shows the criteria for 

each category of the traditional algorithm outcome measurements with the discordant results 

categorized as either true or false positive based on the diagnosis of syphilis infection.  Table 29 

shows the criteria for each category of the reverse algorithm outcome measurements with the 

discordant results categorized as either true or false positive based on the diagnosis of syphilis 

infection.  Table 30 shows the criteria for each category of the Syphilis IgG and TP-PA test 

based on the diagnosis of syphilis infection with the invalid Syphilis IgG and inconclusive TP-

PA results excluded from the study.  Based on the criteria shown in Tables 28-30, the student 

researcher categorized all 4,077 samples in the data set into one of the four categories in the 2x2 

contingency table.   

For those patients diagnosed with syphilis, the electronic medical record contained the 

syphilis stage determined by trained STD clinic staff based on the 2012 CDC syphilis case 

definitions listed in Table 14.  The stage information was collected by the student researcher 

during chart review.  The chart contained the following stage categories: primary, secondary, 

early latent, late latent, latent of unknown duration, tertiary and syphilis not staged.  The early 

latent, late latent, and latent of unknown duration stages were compressed into one latent 

category.  If the patient had a history of syphilis infection, the information was included in the 

chart.  Because the syphilis infection study variable included syphilis infection either current or 

past as the outcome of syphilis infection yes, a history of syphilis infection was operationalized 

as a syphilis stage.  If the patient had both a history of syphilis infection and a current infection, 

only the current infection was used for determining the syphilis infection stage.  During chart 

review, it was noted that there were some charts that listed a syphilis diagnosis; however, the 

stage was not included in the chart.  This could be due to a data entry error by clinic staff or the 
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Table 30 

Syphilis IgG and TP-PA Contingency Table Measurement Outcomes 

 

Syphilis 

infection 

(past or 

current)? 

Syphilis 

IgG 

reactive  

Syphilis 

IgG 

nonreactive 

Syphilis 

IgG 

invalid 

(not 

clinically 

diagnostic) 

TP-PA 

reactive 

TP-PA 

nonreactive 

TP-PA 

inconclusive 

(not 

clinically 

diagnostic) 

Yes True 

positive 

(TP) 

False 

negative 

(FN) 

Excluded True 

positive 

(TP) 

False 

negative 

(FN) 

Excluded 

No False 

positive 

(FP) 

True 

negative 

(TN) 

Excluded False 

positive 

(FP) 

True 

negative 

(TN) 

Excluded 

 

patient was presumptively diagnosed with syphilis based on symptoms and/or outside laboratory 

test results.  The stage section in the chart was left incomplete with the expectation that the 

patient would return for staging once the syphilis test results were completed.  Presumptive 

syphilis cases often received prophylactic antibiotic treatment and the patient may have decided 

to either not return for the test results or to go to their primary healthcare provider for follow up 

care.  The samples with a diagnosis of syphilis with no staging were included in the study and 

operationalized as syphilis not staged.  Based on the information listed in this paragraph, the  

syphilis stages were operationalized as primary, secondary, latent, tertiary, not staged and 

history.   

Data Collection Procedures 

Data was collected from various sources by public health laboratory staff during the study 

time period of January 1, 2012 to December 31, 2013.  The Syphilis IgG, RPR, RPR titer, and 

TP-PA test results were gathered using an electronic query from the public health laboratory 

LIMS.  The LIMS data provided the patient unique accession number, unique medical record 
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number, gender, date of birth, date of collection, and all three syphilis test results.  This data was 

entered by laboratory staff onto an Excel spreadsheet, which was saved in a secured and 

protected location on the public health agency firewall protected intranet.  The BioRad EVOLIS 

analyzer was used to perform the Syphilis IgG tests and the S/CO value of each sample was 

printed on a daily instrument log, which also contained each tested person’s unique accession 

number.  The unique accession number obtained from the LIMS query was used to identify the 

S/CO value listed on the instrument printout.  The patient S/CO value was added to the Excel 

spreadsheet by laboratory staff.  The unique medical record number for each patient was used by 

public health laboratory staff and the student researcher to query the public health agency 

electronic medical record, which contained patient demographic and infection diagnosis 

information.  Patient information collected from the chart included the following study variables: 

reason for the clinic visit, STD infection diagnosis, and syphilis stage if syphilis infection 

present.  The variables were recorded and added to the Excel spreadsheet for each patient by 

either the laboratory staff or the student researcher.  The traditional and reverse sequence 

algorithm serologic interpretations were performed by the student researcher based on the 

cascade of test results in each algorithm (Figures 4 and 5).  The algorithm serologic 

interpretations of syphilis likely or unlikely were added to the Excel spreadsheet by the student 

researcher along with the contingency table outcome results determined by the student researcher 

as shown in Tables 28-30.  The student researcher reviewed all 4,077 charts prior to 

deidentification of study data to verify that the variable results listed on the spreadsheet matched 

the variables in the chart.   
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Human Subjects 

All syphilis testing performed for this retrospective study was utilized for patient clinical care 

at a public health STD clinic.  The test results were all reported to the patient at the time of 

treatment.  The only testing performed on the samples collected during the study time period 

were the tests ordered by the public health clinic staff or reflexed as approved by the public 

health laboratory director.  All testing was performed to protect the health of the population 

within the public health agency’s jurisdiction.  The data was not collected for the proposed 

research project and was collected as part of an ongoing public health agency QA project during 

the study time period.  The study data included in the Excel spreadsheet was deidentified by an 

independent third party within the public health agency with removal of all Protected Health 

Information (PHI) such as name, date of birth, date of collection, medical record number, and 

laboratory accession number prior to the start of data analysis.  The data set did not include any 

of the 18 Health Insurance Portability and Accountability Act (HIPAA) identifiers.  No minor 

children under the age of 18 years were included in the study data.  Only aggregate deidentified 

non-PHI information was accessible by the student researcher for the data analysis.  The student 

researcher did not have the ability to link the test results back to a specific individual.   

The Council of State and Territorial Epidemiologists (CSTE) published a report in 2004 that 

provided guidance on the distinction between public health practice and public health research.  

According to the report, public health practice is about protecting the public’s health by 

performing epidemiological investigations, surveillance, programmatic evaluation and clinical 

care of the population.  Identifiable health data is collected and analyzed by the public health 

authority while conducting these activities.  The data is used to protect the health of the 

population within the health authority’s jurisdiction (CSTE, 2004).  The western region public 
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health agency did not require Institutional Review Board (IRB) approval to utilize the 

deidentified data set collected as a component of its public health practice.  Letters of approval to 

utilize the deidentified data set for this dissertation study were obtained from the public health 

agency directors prior to data analysis.  

An IRB proposal for the study was submitted to Virginia Commonwealth University (VCU) 

prior to the start of data analysis.  The blood samples were collected for clinical testing 

performed as a component of clinical care activities within the public health agency STD clinic.  

Because the research involved retrospective data that was collected solely for medical treatment 

or diagnosis; existed prior to the research was proposed; and was not collected for the proposed 

research project, an Exempt Category 4 review was requested from the VCU IRB.  The VCU 

IRB returned a decision that the research study was not subject to the Health and Human 

Services (HHS) Regulations for the Protection of Human Subjects and did not require IRB 

review or approval.  According to the VCU IRB determination (T. Nadder, personal 

communication, June 7, 2016), Section 45 CFR 46.102(d) defines research and Section 45 CFR 

46.102(f) defines a human subject.  The VCU IRB determined that the research study did not 

meet both human subject and research definitions; therefore, it was not subject to the federal 

regulations.   

Data Analysis 

All deidentified syphilis variable outcome data in the Microsoft Excel spreadsheet was 

exported to Number Cruncher Statistical Software (NCSS) version 11 (NCSS, 2016).  Frequency 

statistics along with mean and range were calculated using NCSS 11 for age to provide 

demographic background of the study population.  Frequency counts for the reason for clinic 

visit, infection diagnosis, and syphilis stage variables were also calculated using NCSS 11 to 
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provide additional background information of the study population.  Statistical analysis of the 

observed data was performed using NCSS 11 as listed in Table 24 and detailed in the following 

paragraphs.  A summary of the hypotheses, theoretical domains, variables and analyses used in 

the study is provided in Table 31.   

The study research question was: What is the usefulness of the CaptiaTM Syphilis IgG EIA 

test method and the reverse algorithm for detection of syphilis infection in a public health 

population?  As was discussed in the literature review section, laboratory test usefulness is 

composed of multiple diagnostic test measures as calculated in Table 6.  Statistical measures for 

determining syphilis test usefulness included sensitivity, specificity, predictive values, likelihood 

ratios, accuracy and/or ROC curves.  The three study hypotheses were: 

• H1o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference between the CaptiaTM Syphilis IgG 

EIA and Fujirebio Serodia TP-PA test results. 

• H2o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference in diagnostic interpretation of the 

CaptiaTM Syphilis IgG EIA S/CO value and Becton Dickinson MacroVue RPR 

titer result. 

• H3o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference between the syphilis traditional 

and reverse algorithm interpretations. 

Statistical analysis using NCSS 11 for the first null hypothesis “Among patients seeking STD 

services at a large western region metropolitan public health clinic, there will be no difference 
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Table 31 

Study Hypothesis, Theoretical Domains, Variables, and Analyses 

 

Null hypothesis Theoretical 

domain 

Variable Analyses 

Among patients seeking 

STD services at a large 

western region 

metropolitan public health 

clinic, there will be no 

difference between the 

CaptiaTM Syphilis IgG 

EIA and Fujirebio Serodia 

TP-PA test results 

Analytical 

(Process) 

 

 

Syphilis IgG 

and TP-PA 

result 

(dichotomous) 

and contingency  

table value 

(categorical)  

Clinical 

diagnosis 

(dichotomous) 

Gold standard  

Sensitivity, specificity, 

predictive value, accuracy and 

likelihood ratio were calculated 

to determine usefulness of each 

treponemal test to predict 

syphilis infection using clinical 

diagnosis as the gold standard. 

McNemar test was performed to 

determine differences between 

the two tests and test the 

hypothesis. 

 

Among patients seeking 

STD services at a large 

western region metropolitan 

public health clinic, there 

will be no difference in 

diagnostic interpretation of 

the CaptiaTM Syphilis IgG 

EIA S/CO value and 

Becton Dickinson 

MacroVue RPR titer result 

 

Analytical 

(Process) 

 

 

Syphilis IgG 

S/CO value 

and RPR titer 

(continuous) 

Clinical 

diagnosis 

(dichotomous) 

Gold standard  

ROC AUC values were 

calculated to determine 

accuracy of the Syphilis IgG 

test and RPR titer for predicting 

syphilis infection and test the 

hypothesis. 

Optimum cutoff values were  

determined for Syphilis IgG. 

Among patients seeking 

STD services at a large 

western region metropolitan 

public health clinic, there 

will be no difference 

between the syphilis 

traditional and reverse 

algorithm interpretations 

Post 

analytical 

(Outcome) 

 

 

Traditional and 

reverse 

algorithm 

serologic 

interpretation 

(dichotomous)

and 

contingency  

table value 

(categorical) 

Clinical 

diagnosis 

(dichotomous) 

Gold standard 

 

Sensitivity, specificity, 

predictive value, accuracy, and 

likelihood ratio were calculated 

to determine usefulness of each 

algorithm for predicting syphilis 

infection using clinical 

diagnosis as the gold standard. 

McNemar test was performed to 

determine differences between 

algorithms and test the 

hypothesis. 
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between the CaptiaTM Syphilis IgG EIA test and the Fujirebio Serodia TP-PA test” included 

calculation of sensitivity, specificity, predictive value, accuracy, and likelihood ratio using 

syphilis infection yes or no as the gold standard.  The Syphilis IgG and TP-PA are both 

treponemal tests and, therefore, will detect treponemal antibodies, IgG for the Syphilis IgG and 

both IgG and IgM for the TP-PA test.  The CDC (2011) recommends use of the TP-PA test as a 

confirmatory test for discordant results within the reverse algorithm and as the confirmatory 

treponemal test within the traditional algorithm.  CDC also recommends that the confirmatory 

test should have a sensitivity that is equal to or greater than the screening treponemal test.  

Determining the sensitivity of the Syphilis IgG and TP-PA test will add to the existing body of 

knowledge regarding both tests.  The Syphilis IgG and TP-PA tests were performed on the same 

sample and were likely to be substantially correlated.  According to Gray and Kinnear (2012), 

the statistical test to determine differences between two related test methods with nominal data is 

the McNemar test which was utilized to test the first null hypothesis.   

Statistical analysis using NCSS 11 for the second null hypothesis “Among patients seeking 

STD services at a large western region metropolitan public health clinic, there will be no 

difference in diagnostic interpretation of the CaptiaTM Syphilis IgG EIA S/CO value and Becton 

Dickinson MacroVue RPR titer result” included use of the empirical ROC method of Delong, 

Delong and Clarke-Pearson (1988) to compare the two AUC values of the S/CO and titer 

continuous variables.  Each sample had a known condition value (syphilis infection yes or no) 

and numerical value for each test.  The total range of cutoff values from 0 to 5.5 was included to 

determine if the FDA approved Syphilis IgG cutoff values of 0.9 and 1.0 for equivocal results 

and 1.1 for reactive results represents the optimum cutoff.  The total range of 0, 1, 2, 4, 8, 16, 32, 

64, 128, 256, 512, and 1024 was used to determine the RPR titer cutoff values.  The two ROC 
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curves were compared to determine differences and confidence intervals for the AUC to test the 

second null hypothesis.  The Syphilis IgG was the initial test in the reverse algorithm and the 

RPR was the initial test in the traditional algorithm; therefore, an understanding of the diagnostic 

accuracy of these first initial tests will expand the body of knowledge about the usefulness of 

both algorithms in a public health setting. 

Statistical analysis using NCSS 11 for the third null hypothesis “Among patients seeking 

STD services at a large western region metropolitan public health clinic, there will be no 

difference between the syphilis traditional and reverse algorithm interpretations” included 

calculation of sensitivity, specificity, predictive value, accuracy, likelihood ratio, and 

performance of McNemar test for each serologic algorithm interpretation (syphilis likely or 

unlikely) using the clinical diagnosis of syphilis infection yes or no as the gold standard to test 

the third null hypothesis.  There is little published information detailing the usefulness measures 

listed for either algorithm and few published studies with statistical analysis of a direct 

comparison of the algorithms.  Most studies have only compared lab test to lab test and not to the 

clinical diagnosis.  This statistical analysis will expand the body of knowledge regarding 

usefulness of either algorithm in a public health setting, using diagnosis as the gold standard. 

Summary 

This retrospective, nonexperimental descriptive correlational study assessed the usefulness of 

the CaptiaTM Syphilis IgG EIA test and the syphilis reverse algorithm serologic interpretation for 

detection of syphilis infection among patients seeking care at a large western region metropolitan 

public health STD clinic.  The theoretical framework for the study was based on the Donabedian 

Quality Framework with a target construct of syphilis infection and a proposition that useful 

syphilis testing will improve syphilis infection detection.  The process or analytic domain 
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activities determined the usefulness of the syphilis test results.  The outcome or post-analytic 

domain activities determined the usefulness of the syphilis reverse and traditional serologic 

interpretations. The three null hypotheses were: 

• H1o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference between the CaptiaTM Syphilis IgG 

EIA and Fujirebio Serodia TP-PA test results. 

• H2o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference in diagnostic interpretation of the 

CaptiaTM Syphilis IgG EIA S/CO value and Becton Dickinson MacroVue RPR 

titer result. 

• H3o: Among patients seeking STD services at a large western region metropolitan  

public health clinic, there will be no difference between the syphilis traditional 

and reverse algorithm interpretations. 

Design validity was enhanced by use of standardized measurement methods, providing staff 

training, and use of automation.  Selection bias was controlled by use of a homogeneous public 

health population with each sample in the study tested by all three syphilis test methods.  Each 

sample acted as its own matching control thus controlling temporal ambiguity.  External design 

validity was enhanced by using samples collected in a real-world public health setting.  

Measurement reliability was enhanced through use of repeated measures that provided 

consistent reactive and nonreactive qualitative results across multiple reagent lot numbers using 

known QC material.  The automated EVOLIS analyzer had a lower than expected random error 

rate and thus provided consistent day to day test results.  The data spreadsheet was extensively 

reviewed prior to deidentification to ensure all data values were reliably entered. 
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Measurement validity was supported by FDA approval of all three syphilis tests for detection 

of syphilis infection.  All three tests provided expected qualitative test results for external 

reference material known to contain syphilis antibodies. According to the manufacturer’s 

package inserts all three syphilis tests were capable of discriminating syphilis infection from 

other diseases or conditions. 

The study setting was a public health STD clinic located in a large western metropolitan area 

with a population of over two million residents.  The clinic was operated by a public health 

agency and participated in federally approved syphilis detection and surveillance programs.  The 

STD clinic provided services to persons who had signs and symptoms of syphilis infection as 

well as those who were contacts to infected individuals.  Based on CDC surveillance 

recommendations, the clinic also targeted pregnant women, MSM, and persons with HIV 

infection for testing and treatment.  All syphilis tests ordered by the STD clinic staff were 

performed at the public health laboratory, which was also owned by the public health agency. All 

clinic staff were trained to perform syphilis infection clinical assessment following standard 

CDC STD guidelines.  

The target population included all patients who sought clinical services at the STD clinic 

from January 1, 2012 through December 31, 2013.  Purposive sampling was used to select 

sample members to include in the study.  The selection criteria for inclusion in the study was 

males and females 18 years and older who were seen in the public health STD clinic, met the 

STD clinic criteria for syphilis testing, and had all three syphilis tests (Syphilis IgG, RPR, and 

TP-PA) performed with clinically diagnostic results on each sample collected.  Exclusion criteria 

included males and females under 18 years of age, those who did not visit the STD clinic, those 

that did not have three syphilis tests performed, samples that tested invalid by the Syphilis IgG 
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test, and samples that tested inconclusive by the TP-PA test method.  Statistical power analysis 

indicated that the sample study size of 4,077 achieved 84% power to detect a change in 

sensitivity from 0.8 to 0.9 and 100% power to detect a change in specificity from 0.8 to 0.9. 

The public health laboratory was owned by the public health agency and coordinated testing 

methods with the clinic staff.  All laboratory reflex testing was approved by the laboratory 

director.  Trained public health laboratory staff performed all testing and gathered the study 

variables during the study time period as a component of the enhanced syphilis surveillance 

performed by the public health agency.  Laboratory staff entered the data on an Excel 

spreadsheet; which was stored in a secured, protected location on the public health agency 

firewall protected intranet.  Descriptive variables included gender, age, reason for clinic visit, 

infection diagnosis, and syphilis stage.  Observed variables included the CaptiaTM Syphilis IgG 

test result and S/CO value, Becton Dickinson MacroVue RPR test result and titer value, 

Fujirebio Serodia TP-PA test result, syphilis traditional and reverse algorithm serologic 

interpretation, algorithm and contingency table values, and clinical diagnosis of syphilis based on 

chart review.  All observed variables were dichotomous, except for the S/CO and RPR titer value 

which was continuous and contingency table values which was categorical.  The data set was 

deidentified of all PHI prior to data analysis and consent to use the data set was obtained from 

the public health agency directors.  According to VCU, IRB approval was not required as the 

study did not meet both human subject and research definitions and, therefore, was not subject to 

the federal regulations.   

The approach for determining laboratory test usefulness is not clearly defined; however, 

numerous statistical tests can be combined to provide a comprehensive determination.  For the 

dissertation study, usefulness was measured by sensitivity, specificity, accuracy, predictive 
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values, and likelihood ratios for dichotomous variables using a 2x2 contingency table.  

McNemar’s test was performed to determine differences in proportions when comparing two test 

methods and test the hypotheses.  For continuous quantitative values, such as the Syphilis IgG 

S/CO and the RPR titer, a ROC curve analysis was performed to determine the ability of each 

measurement to correctly classify syphilis infection.  This analysis was also used to determine an 

optimum cutoff value.  The AUC was calculated to provide a determination of the ability of each 

test to discriminate between true- and false-positive test results.  When two diagnostic tests are 

performed on the same sample, the AUC can be used to determine which test is better when the 

two test results are interpreted independently against the same gold standard and therefore test 

the study hypothesis.  
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Chapter Four: Results 

 

 

 

 

This chapter will provide details of the statistical analysis of all study variables and 

hypotheses testing results.  The result data will be presented in tabular form with a brief 

explanation of the results for both the descriptive and observed variables.  Statistical analysis and 

hypothesis testing for each null hypothesis is presented separately with a brief summary 

concluding the chapter. 

Descriptive Variables 

Frequency statistics that describe the study population were calculated using NCSS 11 

software for gender, age, reason for clinic visit, infection diagnosis, and syphilis stage.  Males 

comprised 68.56% (2795/4077) of the study population with 31.30% (1276/4077) females and 

0.15% (6/4007) transgender patients (Table 32).  The larger proportion of males in the study was 

expected as the CDC recommends targeted testing within male populations due to their high 

syphilis rates.  According to CDC surveillance data (2017), men accounted for almost 90% of all 

P&S syphilis cases reported in 2016.   

Table 32 

 

Gender Frequency Count and Percentage (N=4,077) 

 

Gender Frequency Count Percentage 

Female 1276 31.30 

Male 2795 68.55 

Transgender       6   0.15 
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The 4,077 study samples were grouped by age as shown in Table 33.  The 18-20 and the 21-

30 age groups combined totaled 50.1% (2043/4077) of the study sample.  The 21-30 age group 

alone comprised 44.3% (1807/4077) of the study sample.  The mean age of the study population 

is 33 years with a standard deviation of 11.7.  According to CDC surveillance data (2017), in 

2016, men aged 24-29 years had the highest rate of reported P&S syphilis cases (48.5/100,000 

population) compared with any other age group for either gender. Based on CDC surveillance 

data and targeted testing recommendations, the under 30 age group would be expected to be the 

most prevalent within this study data. 

Table 33. 

 

Age Group Frequency Count and Percentage (N=4,077) 

 

Study age group (years) Frequency Count Percentage 

18-20    236   5.8 

21-30  1807 44.3 

31-40    942 23.1 

41-50    672 16.5 

51-60   305    7.5 

61-70     94    2.3 

71-80     13    0.3 

81-90       8    0.2 

Total               4077  100.0 

Mean                   33       

SD                        11.7          

 

Frequency statistics were calculated for the reason for the clinic visit using NCSS 11 

software with each sample placed into one of three categories (Table 34).  Those patients who 

visited the STD clinic and had symptoms of any STD were categorized as STD screen with 

symptoms.  They comprised 22.4% (912/4077) of the study population.  The largest number of 

patients, 42.6% (1736/4077) visited the STD clinic for an STD screen and did not exhibit 

symptoms.  Standard practice at the STD clinic was to perform HIV, syphilis, gonorrhea, and  
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Table 34 

 

Reason for Clinic Visit Frequency Count and Percentage (N=4,077) 

 

Reason for clinic visit Frequency count Percentage 

STD screen with symptoms    912 22.4 

STD screen without symptoms 1736 42.6 

Notification 1429 35.0 

 

chlamydia testing on patients who presented to the clinic for STD screening with or without 

symptoms.  A person can be infected with more than one STD at the same time and syphilis 

diagnosis is especially problematic because, after the secondary phase, the symptoms disappear.  

The next highest reason for clinic visit representing 35.0% (1429/4077) of the study were 

patients who had received notification in the form of a letter or call that they had been exposed to 

an STD, had received notification from an infected partner, were referred by a private physician 

for testing, or had a positive syphilis screening test with no confirmation from an outside facility, 

e.g. plasma center or blood bank.  Depending on the person’s risk and the clinical assessment, 

STD clinic staff could order a panel of all three syphilis tests, Syphilis IgG, RPR, and TP-PA, on 

any of these patients. 

Each patient seen in the STD clinic received a clinical diagnosis of STD infection or no 

STD infection.  The infection diagnosis was operationalized as no STD, syphilis, HIV, 

chlamydia and/or gonorrhea, or other.  The other infection category included diagnosis of herpes, 

warts, molluscum contagiosum, condyloma, HPV, yeast, NGU, bacterial vaginosis, 

trichomoniasis, lupus, gout, or autoimmune disease.  As shown in Table 35, no STD infection 

was diagnosed in 61.7% (2517/4077) of the patients included in the study.  Many of the patients 

visiting the STD clinic were there for STD screening to ensure that they were not infected with 

an STD; however, they may have exhibited a high risk behavior or had contact with a person  
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Table 35 

 

Infection Diagnosis Frequency Count and Percentage (N=4,077) 

 

Infection diagnosis Frequency count Percentage 

Syphilis 859 21.1 

Gonorrhea and/or chlamydia 360   8.8 

HIV   20   0.5 

Other infection  321   7.9 

No STD infection                 2517 61.7 

 

infected with an STD, which prompted the STD clinic staff to order all three syphilis tests 

(Syphilis IgG, RPR, and TP-PA).  Patients with no STD infection could also be within groups 

targeted by the CDC for additional screening, specifically males under 30 years of age.  The no 

STD infection group also included patients with contact to HIV, trichomonas, herpes, gonorrhea, 

chlamydia, syphilis, or NGU infections.  Within the no STD infection category, there were 712 

patients who were identified as having contact with an STD.  Of those 712 patients, 72% 

(511/712) visited the clinic due to contact with a person infected with syphilis.  Syphilis infection 

either past or current was diagnosed in 21.1% (859/4077) of the study patients. 

The syphilis stage was charted for each patient diagnosed with a syphilis infection.  All 

syphilis stages except tertiary were represented in the study (Table 36).  Due to antibiotic use in 

the US and aggressive public health outreach, tertiary cases are seldom seen in patients visiting a 

public health STD clinic and would most likely be seen in a hospital setting due to the serious 

disease complications which can occur in this late syphilis stage.  Latent syphilis cases, which 

included early, late, and unknown latent stages comprised 60.2% (517/859) of the syphilis study 

cases.  Of the latent syphilis cases, 86.8% (449/517) were staged as late latent syphilis, which is 

an asymptomatic stage.  Patients with a history of syphilis infection were included with syphilis 

stage frequency counts and represent 19.7% (169/859) of the syphilis infection cases in the  
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Table 36 

 

Syphilis Stage Frequency Count and Percentage (N = 859) 

 

Syphilis stage Frequency count Percentage 

Primary   49   5.7 

Secondary 109 12.7 

Latent (includes early, late and unknown) 517 60.2 

Tertiary    0 0 

Not staged  15   1.7 

History of syphilis infection 169 19.7 

 

study.  The study variable “syphilis infection present” includes patients with a prior history of 

syphilis infection.  There was no chance of overlap in frequency counts among those with a 

history of infection with the other stages.  If a study patient had a history of syphilis infection 

and a current diagnosis of syphilis infection, the history of infection was not used as the sample 

represented a current infection and the current infection stage was assigned to the sample.    

Observed variables 

Statistical analysis of the observed variables was calculated using NCSS 11 statistical 

software, and results are presented in the explanation of each null hypothesis and usefulness 

measures.  The 2 x 2 contingency table calculations are detailed in Table 6. 

First null hypothesis.  Among patients seeking STD services at a large western region 

metropolitan public health clinic, there will be no difference between the CaptiaTM Syphilis IgG 

EIA and Fujirebio Serodia TP-PA test results. 

Before performing statistical analysis of the first null hypothesis, it was necessary to 

determine if there was a bias for including the equivocal Syphilis IgG test results as reactive.  As 

recommended in the FDA (2007) guidance document, two sets of usefulness performance 

measures were calculated: one with equivocal results counted as reactive (Table 37) and one with 

equivocal results counted as nonreactive (Table 38) using syphilis infection (yes or no) as the  
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Table 37 

 

CaptiaTM Syphilis IgG Contingency Table (Equivocal Counted as Reactive) (N = 4,077) 

 

Note: TP = true positive; FP = false positive; FN = false negative; TN = true negative; +LR = positive 

likelihood ratio; -LR = negative likelihood ratio; PPV = positive predictive value; NPV = negative 

predictive value 

 

Table 38 

 

CaptiaTM Syphilis IgG Contingency Table (Equivocal Counted as Nonreactive) (N = 4,077) 

 

Note: TP = true positive; FP = false positive; FN = false negative; TN = true negative; +LR = positive 

likelihood ratio; -LR = negative likelihood ratio; PPV = positive predictive value; NPV = negative 

predictive value 

 

gold standard.  The results listed in Tables 37 and 38 show slight differences in all performance 

measures except the positive likelihood ratio which was higher (285.54) when the equivocal 

results were included as nonreactive.  To determine if there was a significant difference in 

performance measures between including Syphilis IgG equivocal results as either reactive or 

nonreactive, a McNemar test was performed using NCSS 11 software.  The McNemar test was 

not statistically significant, p = 1.025 ( = 0.05), indicating that there was no difference between 

  Syphilis infection 

Yes 

Syphilis infection  

No 

Total Measures 

Reactive  

Syphilis IgG test 

TP 

707 

FP 

42 

749 94% PPV 

Nonreactive  

Syphilis IgG test 

FN 

152 

TN 

3176 

3328 95% NPV 

Total 859 3218 4077  

Measures 82% sensitivity 99% specificity  95% accuracy 

 63.06 +LR 0.18 -LR  21% prevalence 

  Syphilis infection 

Yes 

Syphilis infection  

No 

Total Measures 

Reactive  

Syphilis IgG test 

TP 

686 

FP 

9 

695 99% PPV 

Nonreactive  

Syphilis IgG test 

FN 

173 

TN 

3209 

3382 95% NPV 

Total 859 3218 4077  

Measures 80% sensitivity 100% specificity  96% accuracy 

 285.54 +LR 0.20 -LR  21% prevalence 
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including the equivocal results as either reactive or nonreactive; therefore, the null hypothesis 

was not rejected (Table 39).  Based on the McNemar test that there was no bias present, the 

manufacturer’s package insert recommendation that repeat equivocal results should be 

considered reactive, and standard practice at the western regional laboratory, the Syphilis IgG 

equivocal results were considered to be reactive and the results shown in Table 37 were used for 

all study analyses. 

Table 39 

 

McNemar Two-sided Hypothesis Test of the Difference Between CaptiaTM Syphilis IgG 

Equivocal Counted as Reactive or Nonreactive (N = 4,077) 

 

H0: P1-P2= 0 vs Ha: P1-P2 0 

Statistical 

Test 

Proportion 

Difference 

P1-P2 

95% Confidence 

interval (CI) 

Confidence 

Interval 

Width 

Test 

Statistic 

Value 

Probability 

level 
 = 0.05 

McNemar -0.0029 -0.0067 to -0.0006 0.0.0073 2.667 1.025 

Note: Proportion (risk) difference ( = P1 – P2) is a direct method of comparison between two event 

probabilities. 

 

Using the data presented in Table 40, the sensitivity, specificity, predictive value, likelihood 

ratio, and accuracy measures were calculated for the Fujirebio Serodia TP-PA using the 

diagnosis of syphilis infection yes or no as the gold standard.  Syphilis infection yes included 

both past and present syphilis infection.  These measures provide supporting statistical data for 

determining the usefulness of the CaptiaTM Syphilis IgG test for detection of syphilis infection 

and were calculated using NCSS 11 statistical software.  Calculation formula details for each 

measure are shown in Table 6. 

The column contingency table calculations shown in Table 41 are based on the true condition 

(syphilis infection).  These calculations include sensitivity and specificity which are reported 

with 95% confidence intervals (CI) for each treponemal test.   Sensitivity and specificity 

calculations are not influenced by the population disease prevalence.  The CaptiaTM Syphilis IgG  
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Table 40 

Fujirebio Serodia TP-PA Contingency Table (N = 4,077) 

 

Note: TP = true positive; FP = false positive; FN = false negative; TN = true negative; +LR = positive 

likelihood ratio; -LR = negative likelihood ratio; PPV = positive predictive value; NPV = negative 

predictive value 

 

Table 41 

 

CaptiaTM Syphilis IgG and Serodia TP-PA Sensitivity, Specificity, 95% CI   

 

Test Sensitivity 95% CI Specificity 95% CI 

CaptiaTM Syphilis IgGa 0.82 0.80-0.85 0.99 0.98-0.99 

Serodia TP-PA 0.92 0.90-0.94 1.00 0.99-1.00 
Note: CI = Confidence interval; Proportion Confidence Interval Method: Exact Binomial 
aEquivocal results included as reactive 

 

test exhibited a lower sensitivity (82%) and specificity (99%) than the Serodia TP-PA test which 

had a sensitivity of 92% and specificity of 100%.  An ideal test would have 100% sensitivity and 

specificity.    

The row contingency table calculations are based on the predicted condition of syphilis 

infection, and the results are influenced by the disease prevalence within the population.  These 

calculations include PPV and NPV which are reported with 95% CI for each treponemal test in 

Table 42.  The CaptiaTM Syphilis IgG test exhibited lower PPV (94%) and NPV (95%) than the 

Serodia TP-PA test which had a PPV of 99% and NPV of 98%.  The PPV and NPV calculations 

with 95% CI in Table 42 were based on the estimated prevalence of 21% calculated within the 

study population of 4,077 patients.  The PPV and NPV were adjusted based on the 3%  

  Syphilis infection 

Yes 

Syphilis infection  

No 

Total Measures 

Reactive  

TP-PA test 

TP 

794 

FP 

9 

803 99% PPV 

Nonreactive  

TP-PA test 

FN 

65 

TN 

3209 

3274 98% NPV 

Total 859 3218 4077  

Measures 92% sensitivity 100% specificity  98% accuracy 

 330.50 +LR .08 -LR  21% prevalence 
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Table 42 

 

CaptiaTM Syphilis IgG and Serodia TP-PA PPV, NPV, 95% CI, Adjusted PPV and NPV 

 

Test PPV  95% CI NPV 95% CI Adj PPV 
3% 

prevalence 

Adj NPV 
3% 

prevalence 

CaptiaTM 

Syphilis IgGa 

0.94 0.92-0.96 0.95 0.95-0.96 0.66 0.99 

Serodia TP-PA 0.99 0.98-0.99 0.98 0.97-0.98 0.91 1.00 
Note: PPV = positive predictive value; NPV = negative predictive value; CI = Confidence interval; Adj 

PPV = known prevalence (3%) adjusted positive predictive value; Adj NPV = known prevalence (3%) 

adjusted negative predictive value; Proportion Confidence Interval Method: Exact Binomial 
aEquivocal results included as reactive 

prevalence calculated for the STD clinic population (859 syphilis infections/34340 patients with 

syphilis IgG tests*100).  The adjusted value calculations do not provide 95% CI.  The Syphilis 

IgG adjusted PPV is much lower (66%) than the unadjusted PPV and the adjusted NPV is higher 

(99%) than the unadjusted NPV.  The TP-PA adjusted PPV dropped slightly (91% vs 99%) and 

the adjusted NPV increased to 100%.  An ideal test would have 100% PPV and NPV. 

Other calculations are based on values present in the whole table and include likelihood 

ratios, accuracy, and prevalence which are reported with 95% CI for each treponemal test in 

Table 43.  Likelihood ratios and accuracy are not influenced by the disease prevalence in the 

population.  The 21% prevalence reported in the table was based on the study population of 

4,077 patients, and does not reflect the general STD clinic population.  The CaptiaTM Syphilis 

IgG test exhibited a lower positive LR (63.06) than the Serodia TP-PA (330.50).  According to 

Table 5, a positive LR greater than 10 provides strong evidence for ruling in a disease diagnosis.  

The CaptiaTM Syphilis IgG exhibited a higher negative LR (0.18) than the TP-PA (0.08).  

According to Table 5, a negative LR less than 0.1 provides strong evidence for ruling out a 

disease diagnosis.  A negative LR between 0.1 and 0.2 provides moderate evidence for ruling out 

a diagnosis.  The accuracy of the Syphilis IgG test (95%) is less than the TP-PA accuracy (98%).   
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Table 43 

 

CaptiaTM Syphilis IgG and Serodia TP-PA Likelihood Ratios, 95% CI, Accuracy, and Study 

Prevalence 
 

Test Positive 

LR  

95% CI Negative 

LR                

95% CI Accuracy 

                   

Prevalence 

(Study) 

CaptiaTM 

Syphilis IgGa 

63.06 46.62-85.30 0.18 0.16-0.21 0.95 0.21 

Serodia TP-PA  330.50 172.07-634.79 0.08 0.06-0.10 0.98 0.21 
Note: LR = likelihood ratio; CI = Confidence interval; Ratio Confidence Interval Method: Katz 

Logarithm 
aEquivocal results included as reactive 

 

An ideal test would exhibit 100% accuracy. 

Hypothesis testing of the first null hypothesis was performed using the McNemar test to 

determine if there was a difference between the CaptiaTM Syphilis IgG and Serodia TP-PA 

treponemal tests for detecting syphilis infection.  The frequency table used to input data into 

NCSS 11 is shown in Table 44.  The McNemar test was statistically significant, p < 0.0002 ( = 

0.05), indicating that there was a difference between the two treponemal test results and therefore 

the null hypothesis was rejected (Table 45). 

Table 44 

McNemar Test CaptiaTM Syphilis IgG and Serodia TP-PA Frequency Table (N = 4,077) 

 

Note: Marginal Proportions P1 and P2 represent marginal homogeneity or probability that the row and 

column frequencies are equal. 
 aEquivocal results included as reactive 

 

 

  TPPA 

Reactive 

TPPA  

Nonreactive 

Total Marginal 

Proportion 

P1=(A+B)/N 

Syphilis IgG Reactivea 674 

A 

75 

B 

749 P1=0.1837 

(749/4077) 

Syphilis IgG Nonreactive 129 

C 

3199 

D 

3328  

Total 803 3274 4077  

Marginal 

Proportion P2=(A+C)/N 

 P2=0.1970 

(803/4077) 
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Table 45 

 

McNemar Two-sided Hypothesis Test of the Difference Between CaptiaTM Syphilis IgG and 

Serodia TP-PA (N = 4,077) 

 

H0: P1-P2 = 0 vs Ha: P1-P2   0     

Statistical 

Test 

Proportion 

Difference 

P1-P2  

95% Confidence 

interval (CI) 

Confidence 

Interval 

Width 

Test 

Statistic 

Value 

Probability 

level 
 = 0.05 

McNemar -0.0132 -0.0202 to -0.0064 0.0138 14.294 0.0002 

Note: Proportion (risk) difference ( = P1 – P2) is a direct method of comparison between two event 

probabilities. 

 

Second null hypothesis: Among patients seeking STD services at a large western region 

metropolitan public health clinic, there will be no difference in diagnostic interpretation of the 

CaptiaTM Syphilis IgG EIA S/CO value and Becton Dickinson MacroVue RPR titer result. 

NCSS 11 software was used to first determine the AUC for the Syphilis IgG and RPR titer 

separately to ensure that each test could distinguish the presence or absence of syphilis infection.  

The presence of syphilis infection included both past and present infection.  The NCSS 11 

software utilized the DeLong et al. (1988) empirical (nonparametric) method for AUC 

computation.  The AUC was determined using the S/CO and RPR titer values for all 4,077 

samples in the study compared to the clinical determination of presence or absence of syphilis 

infection.  According to Zwieg and Campbell (1993), the AUC provides a single number which 

expresses a test’s diagnostic accuracy.  The possible AUC values range from 0.5 for a test with 

no diagnostic ability to distinguish disease from nondisease to 1.0 for a test with perfect 

diagnostic ability.  As shown in Table 43, the AUC value for the CaptiaTM Syphilis IgG S/CO 

was 0.9500 and the MacroVue RPR titer was 0.8155.  A z test was performed to determine the 

probability that the observed sample AUC for either the Syphilis IgG or RPR titer can be found 

when the true (population) AUC is 0.5 which represents a test with no syphilis diagnostic ability.  
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As shown in Table 46, both Syphilis IgG and RPR titer values were statistically significant, p < 

0.0000 ( = 0.05); therefore, the null hypothesis that the AUC = 0.5 was rejected, indicating both 

tests have the ability to distinguish the presence or absence of syphilis infection. 

Table 46 

 

Hypothesis Test for AUC Comparison of Ability of  Syphilis IgG S/CO Value and RPR Titer 

Value to Detect Syphilis Infection (N = 4,077) 

 

H0: AUC = 0.5 vs Ha: AUC  0.5 (0.5 represents a test with no diagnostic ability) 

Known condition value: syphilis infection no or yes (yes includes current and past infection) 

Test criterion AUC 95% CI Standard  

Error 

Z-Value 

to test AUC >0.5 

p value 
 = 0.05 

Syphilis IgG 

S/CO value 

0.9500 0.9382-0.9596 0.0054 83.316 0.0000 

RPR titer value 0.8155 0.7986-0.8311 0.0083 38.098 0.0000 
Note: S/CO = Signal to cutoff; RPR = Rapid plasma reagin; AUC = Area under curve; CI = Confidence 

interval 

 

Hypothesis testing of the second null hypothesis was performed using NCSS 11 software to 

compare the Syphilis IgG and RPR titer AUCs using a two-sided z test.  The procedure 

compared the ROC curves for paired sample cases with each subject having a known condition 

(syphilis present or absent) and continuous values from two diagnostic tests (Syphilis IgG and 

RPR titer) performed on each sample.  As shown in Table 47, the difference between the 

interpretation of the Syphilis IgG S/CO and RPR titer AUCs calculated in Table 46 was 

compared using a z test and the p value was statistically significant (p < 0.0000,  = 0.05).  

Therefore the second null hypothesis that there was no difference between the Syphilis IgG S/CO 

value and RPR titer value was rejected. 

According to Zweig and Campbell (1993), a ROC curve provides a graphical representation 

of a test’s ability to classify a condition (syphilis infection present or absent) “over all decision 

thresholds” (pg.564).  They recommend that accuracy assessment using a ROC curve should not 

be performed at a designated single point as it may provide erroneous information when 
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Table 47 

Hypothesis Test Comparing Two AUCs (Empirical Estimation) for Syphilis IgG S/CO Value and 

RPR Titer Value (N = 4,077) 

 

H0: AUC1 = AUC2 vs Ha: AUC1  AUC2 

Paired Criterion Variables: Syphilis IgG S/CO value = AUC1; RPR titer value = AUC2 

Syphilis 

IgG S/CO 

AUC1 

RPR 

Titer 

AUC2 

Difference 

AUC1-

AUC2 

95% CI Difference 

Standard 

Error 

Z value p value 
 = 0.05 

0.9500 0.8155 0.1345 0.1168-0.1523 0.0091 14.849 0.0000 
Note: S/CO = signal to cutoff; AUC = area under curve; CI = confidence interval 

comparing two different tests.  The use of an optimized cut off value is necessary when reporting 

a test result that will be used for patient treatment.  The ROC curve is not influenced by disease 

prevalence and plots the true positive rate (sensitivity) against the false positive rate (1-

specificity) for all possible decision points.  In viewing the ROC curve, the more diagnostically 

accurate a test is, the more quickly the curve nears the upper left corner which represents perfect 

sensitivity (100%).  The diagonal line on the ROC plot is a reference line that represents a test 

with no discriminatory ability (random classification).  For visual comparison purposes, the ROC 

curves for the Syphilis IgG S/CO and RPR titer were plotted together in Figure 15.  The Syphilis 

IgG S/CO ROC curve lies above and to the left of the RPR titer ROC curve, indicating that the 

Syphilis IgG S/CO test value has greater observed diagnostic accuracy. 

In order to obtain FDA in vitro diagnostic device (IVD) approval, manufacturers must 

include a description of how positive, negative, equivocal (if applicable), and invalid test results 

are determined.  They must indicate the cut off values for all assay outputs in the package insert 

(FDA, 1994; FDA, 2011).  The clinical laboratory must follow the assay cut off values listed in 

the FDA approved manufacturer’s package insert.  Any deviation from the manufacturer’s  
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Figure 15. Graphical Comparison of Syphilis IgG S/CO and RPR Titer ROC Curves 

 

package insert cut off values requires that the clinical laboratory must then perform a complete 

extensive method validation for the off-label use.   

According to the FDA approved manufacturer’s package insert (Trinity Biotech, 2003), the 

cut off values for the CaptiaTM Syphilis IgG were “derived from clinical trials as the value giving 

optimum discrimination between specimens which are reactive or nonreactive for antibodies to 

T. pallidum as characterized by a range of standard serological techniques” (p. 3).  The CaptiaTM 

Syphilis IgG test results based on the S/CO cut off values are as follows: 
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 Nonreactive: S/CO value less than or equal to 0.9 

 Equivocal: S/CO value between 0.9 and 1.1 

 Reactive: S/CO value greater than or equal to 1.1 

The ROC curve analysis provides data for determining if the manufacturer’s cut off values 

represent the optimal decision threshold.  Perkins and Schisterman (2006) recommend the use of 

the Youden Index, which is the point on the ROC curve that is farthest from the diagonal line 

(line of equality) with a higher Youden Index indicating an optimal cut off value.  The Youden 

Index is equivalent to the difference between true positive rate (TPR) and true negative rate 

(TNR), thus maximizing the correct classification rate. An alternate optimal decision threshold 

measure is the distance from the top left corner of the ROC curve to the point on the ROC curve, 

also called the “point closest to”.  With this measure, a lower value would indicate an optimal cut 

off value.  With two different measurements, it would be possible to get two different optimal cut 

off values.  According to Hajian-Tilaki (2013) and Perkins and Schisterman (2006), the Youden 

Index is the preferred method for determining an optimal cutoff.  While it is important to choose 

a point that classifies the most number of patients correctly and thus classifies the least number 

incorrectly, the cost and social consequences of misclassification as well as the disease 

prevalence in the tested population must also be considered (Ridge and Vizard, 1993).  The 

various indices shown in Table 48 can assist with determining if the cut off values provided in 

the FDA approved manufacturer’s package insert are the optimal values for classifying a sample 

from a patient with syphilis infection.   

The cutoff value >0.7 had the lowest distance to corner value (0.1385) of the range of cutoff 

values listed.  However, the Youden Index is the recommended index for determining an optimal 

cutoff and the cutoff value >0.8 had the highest Youden Index (0.8265) of all values listed.  This 



 

207 
  

Table 48 

 

Syphilis IgG S/CO Cutoff Values, TPR, TNR, PPV, Accuracy, Youden Index and Distance to 

Corner 

 

Note: TPR = true positive rate; TNR = true negative rate; PPV = positive predictive value 

 

 

Cutoff 

Value 

TPR 

(Sens) 

TNR 

(Spec) 

PPV Accuracy TPR+TNR Youden 

Index 

Distance 

to 

Corner 

>0.0 1.0000 0.0000 0.2107 0.2107 1.0000 0.0000 1.0000 

>0.1 1.0000 0.0031 0.2112 0.2131 1.0031 0.0031 0.9969 

>0.2 0.9919 0.1594 0.2395 0.3348 1.1513 0.1513 0.8406 

>0.3 0.9790 0.3409 0.2839 0.4753 1.3199 0.3199 0.6594 

>0.4 0.9639 0.4226 0.3083 0.5367 1.3865 0.3865 0.5785 

>0.5 0.9464 0.6280 0.4045 0.6951 1.5745 0.5745 0.3758 

>0.6 0.9104 0.8294 0.5875 0.8465 1.7398 0.7398 0.1927 

>0.7 0.8882 0.9183 0.7437 0.9119 1.8065 0.8065 0.1385 

>0.8 0.8638 0.9627 0.8608 0.9419 1.8265 0.8265 0.1412 

>0.9 0.8231 0.9869 0.9439 0.9524 1.8100 0.8100 0.1774 

>1.0 0.8149 0.9922 0.9650 0.9549 1.8071 0.8071 0.1853 

>1.1 0.7986 0.9969 0.9856 0.9551 1.7955 0.7955 0.2014 

>1.2 0.7579 0.9981 0.9909 0.9475 1.7560 0.7560 0.2421 

>1.3 0.7090 0.9988 0.9935 0.9377 1.7077 0.7077 0.2910 

>1.4 0.6729 0.9988 0.9931 0.9301 1.6716 0.6716 0.3271 

>1.5 0.6321 0.9988 0.9927 0.9215 1.6309 0.6309 0.3679 

>1.6 0.6007 0.9988 0.9923 0.9149 1.5995 0.5995 0.3993 

>1.7 0.5611 0.9991 0.9938 0.9068 1.5602 0.5602 0.4389 

>1.8 0.5320 0.9991 0.9935 0.9007 1.5311 0.5311 0.4680 

>1.9 0.4889 0.9994 0.9953 0.8918 1.4883 0.4883 0.5111 

>2.0 0.4459 0.9994 0.9948 0.8828 1.4452 0.4452 0.5541 

>2.1 0.4109 0.9994 0.9944 0.8754 1.4103 0.4103 0.5891 

>2.2 0.3830 0.9994 0.9940 0.8695 1.3824 0.3824 0.6170 

>2.3 0.3609 0.9994 0.9936 0.8649 1.3603 0.3603 0.6391 

>2.4 0.3353 0.9994 0.9931 0.8595 1.3347 0.3347 0.6647 

>2.5 0.3050 1.0000 1.0000 0.8536 1.3050 0.3050 0.6950 

>3.0 0.2002 1.0000 1.0000 0.8315 1.2002 0.2002 0.7998 

>3.5 0.1106 1.0000 1.0000 0.8126 1.1106 0.1106 0.8894 

>4.0 0.0536 1.0000 1.0000 0.8006 1.0536 0.0536 0.9464 

>4.5 0.0175 1.0000 1.0000 0.7930 1.0175 0.0175 0.9825 

>5.0 0.0058 1.0000 1.0000 0.7905 1.0058 0.0058 0.9942 

>5.4 0.0012 1.0000 1.0000 0.7896 1.0012 0.0012 0.9988 

>5.5 0.0000 1.0000  0.7893 1.0000 1.0000 1.0000 
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cutoff value was lower than the 0.9 S/CO value recommended by the manufacturer’s package 

insert for an equivocal result; and would require an extensive off-label method validation if put 

into clinical use.  The Youden Index for cutoff value >0.9 was 0.8100 which was the next highest 

value and was the manufacturer’s cut off value for an equivocal test result.  The manufacturer’s 

cutoff value for a reactive test result was >1.1; and it provided the highest accuracy (proportion 

properly classified) value at 0.9551 with a Youden Index of 0.7955.  Cutoff values equal to and 

above 2.5 showed 100% specificity (true negative rate) and PPV for syphilis infection. 

The RPR titer cutoff values shown in Table 49 ranged from 0 (nonreactive) to 1024 (highest 

reactive titer in study samples).  The >1 cutoff value represented a 1:1 titer dilution which was 

equivalent to the reactive qualitative RPR test result (undiluted).  This cutoff value had the 

highest Youden Index (0.6266), the lowest Distance to Corner (0.3600) and the highest accuracy 

(0.9134) of all values listed.  Cutoff values equal to and above 64 showed 100% specificity (true 

negative rate) and PPV for syphilis infection. 

Table 49 

 

RPR Titer Cutoff Values, TPR, TNR, PPV, Accuracy, Youden Index and Distance to Corner 

 

Note: TPR = true positive rate; TNR = true negative rate; PPV = positive predictive value 

Cutoff 

Value 

TPR 

(Sens) 

TNR 

(Spec) 

PPV Accuracy TPR+TNR Youden 

Index 

Distance 

to 

Corner 

>0 1.0000 0.0000 0.2107 0.2107 1.0000 0.0000 1.0000 

>1 0.6403 0.9863 0.9259 0.9134 1.6266 0.6266 0.3600 

>2 0.5495 0.9907 0.9402 0.8977 1.5402 0.5402 0.4506 

>4 0.4633 0.9935 0.9499 0.8818 1.4568 0.4568 0.5367 

>8 0.4016 0.9972 0.9746 0.8717 1.3988 0.3988 0.5984 

>16 0.3341 0.9988 0.9863 0.8587 1.3329 0.3329 0.6659 

>32 0.2701 0.9997 0.9957 0.8460 1.2698 0.2698 0.7299 

>64 0.1851 1.0000 1.0000 0.8283 1.1851 0.1851 0.8149 

>128 0.0978 1.0000 1.0000 0.8099 1.0978 0.0978 0.9022 

>256 0.0373 1.0000 1.0000 0.7972 1.0373 0.0373 0.9627 

>512 0.0105 1.0000 1.0000 0.7915 1.0105 0.0105 0.9895 

>1024 0.0058 1.0000 1.0000 0.7905 1.0058 0.0058 0.9942 
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Third null hypothesis.  Among patients seeking STD services at a large western region 

metropolitan public health clinic, there will be no difference between the syphilis traditional and 

reverse algorithm interpretations. 

NCSS11 software was used to calculate the sensitivity, specificity, predictive value, 

likelihood ratio, and accuracy measures for each syphilis algorithm using the diagnosis of 

syphilis infection yes or no as the gold standard.  A diagnosis of syphilis infection included both 

past and present infection.  Contingency Tables 50 and 51 provide supporting statistical data for 

determining the usefulness of the reverse algorithm for detecting a syphilis infection. 

The column contingency table calculations are based on the true condition (syphilis 

infection).  These calculations include sensitivity and specificity which are reported with 95% 

confidence intervals (CI) for each algorithm in Table 52.  Sensitivity and specificity calculations 

are not influenced by population disease prevalence.  The traditional algorithm exhibited a lower 

sensitivity (64%) than the reverse algorithm which had a sensitivity of 82%.  The specificity for 

both algorithms was 99%.  An ideal test would have 100% sensitivity and specificity.    

Table 50  

 

Traditional Algorithm Contingency Table (N = 4,077) 

 

Note: TP = true positive; FP = false positive; FN = false negative; TN = true negative; +LR = positive 

likelihood ratio; -LR = negative likelihood ratio; PPV = positive predictive value; NPV = negative 

predictive value 

 

  Syphilis 

infection 

Yes 

Syphilis 

infection  

No 

Total Measures 

Likely syphilis  

Traditional algorithm 

TP 

550 

FP 

44 

594 93% PPV 

Unlikely syphilis  

Traditional algorithm 

FN 

309 

TN 

3174 

3483 91% NPV 

Total 859 3218 4077  

Measures 64% sensitivity 99% specificity  91% accuracy 

 46.83 +LR 0.36 -LR  21% prevalence 
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Table 51 

 

Reverse Algorithm Contingency Table (N = 4,077) 

 

Note: TP = true positive; FP = false positive; FN = false negative; TN = true negative; +LR = positive 

likelihood ratio; -LR = negative likelihood ratio; PPV = positive predictive value; NPV = negative 

predictive value 
 

 

Table 52 

 

Traditional and Reverse Algorithm Sensitivity, Specificity, 95% CI  

 

Algorithm  Sensitivity 95% CI Specificity 95% CI 

Traditional 0.64 0.61-0.67 0.99 0.98-0.99 

Reverse 0.82 0.80-0.85 0.99 0.98-0.99 
Note: CI = Confidence interval; Proportion Confidence Interval Method: Exact Binomial 

The row contingency table calculations are based on the predicted condition of syphilis 

infection and the results are influenced by the disease prevalence within the population.  Table 

53 lists the row calculations of PPV and NPV along with 95% CI for each algorithm.  

 

Table 53 

 

Traditional and Reverse Algorithm PPV, NPV, 95% CI, Adjusted PPV and NPV 

Algorithm PPV  95% CI NPV 95% CI Adj PPV 
3% 

prevalence 

Adj NPV 
3% 

prevalence 

Traditional 0.93 0.90-0.95 0.91 0.90-0.92 0.59 0.99 

Reverse 0.94 0.92-0.96 0.95 0.95-0.96 0.66 0.99 
Note: PPV = positive predictive value; NPV = negative predictive value; CI = Confidence interval; Adj 

PPV = known prevalence (3%) adjusted positive predictive value; Adj NPV = known prevalence (3%) 

adjusted negative predictive value; Proportion Confidence Interval Method: Exact Binomial 

 

  Syphilis 

infection 

Yes 

Syphilis 

infection  

No 

Total Measures 

Likely syphilis  

Reverse algorithm 

TP 

707 

FP 

42 

749 94% PPV 

Unlikely syphilis  

Reverse algorithm 

FN 

152 

TN 

3176 

3328 95% NPV 

Total 859 3218 4077  

Measures 82% sensitivity 99% specificity  95% accuracy 

 63.06 +LR 0.18 -LR  21% prevalence 



 

211 
  

The traditional algorithm exhibited slightly lower PPV (93%) and NPV (91%) than the 

reverse algorithm which had a PPV of 94% and NPV of 95%.  The PPV and NPV calculations 

with 95% CI were based on the estimated prevalence of 21% calculated from the study 

population.  The PPV and NPV were adjusted based on the 3% prevalence calculated for the 

STD clinic population.  The adjusted value calculations do not provide 95% CI range.  The 

traditional algorithm adjusted PPV is much lower (59%) than the unadjusted PPV (93%) and the 

adjusted NPV is higher (99%) than the unadjusted NPV (91%).  The reverse algorithm adjusted 

PPV was also much lower (66%) than the unadjusted PPV (94%); however, it is still higher than 

the traditional algorithm adjusted PPV (59%).  The reverse algorithm adjusted NPV increased to 

99% and is the same as the traditional algorithm.  An ideal test would have 100% PPV and NPV. 

Other calculations were based on values present in the whole table and included likelihood 

ratios, accuracy, and prevalence which are reported with 95% CI for each algorithm in Table 54.  

Likelihood ratios and accuracy are not influenced by the disease prevalence in the population and 

therefore the values are not adjusted for the STD clinic prevalence.  The 21% prevalence 

reported in the Table 54 was based on the study population of 4,077 patients.  The traditional 

algorithm exhibited a lower positive LR (46.83) than the reverse algorithm (63.06); however, 

they are both greater than 10 which provides strong evidence for ruling in a disease diagnosis 

(Table 5).  The traditional algorithm exhibited a higher negative LR (0.36) than the reverse 

algorithm (0.18).  According to Table 5, a negative LR between 0.1 and 0.2 provides moderate 

evidence for ruling out a diagnosis and a negative LR between 0.2 and 0.5 provides weak 

evidence for ruling out a diagnosis.  The accuracy of the traditional algorithm (91%) was less 

than the reverse algorithm accuracy (95%).  An ideal test would exhibit 100% accuracy. 
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Table 54 

 

Traditional and Reverse Algorithm Likelihood Ratios, 95% CI, Accuracy, and Study Prevalence 

 

Test Positive 

Likelihood 

Ratio 

95% CI Negative 

Likelihood 

Ratio 

95% CI Accuracy Prevalence 

(Study) 

Traditional 

algorithm 

46.83 34.77-63.07 0.36 0.33-0.40 0.91 0.21 

 

Reverse 

algorithm 

 

63.06 

 

46.62-85.30 

 

0.18 

 

0.16-0.21 

 

0.95 

 

0.21 

Note: CI = Confidence interval; Ratio Confidence Interval Method: Katz Logarithm 

Hypothesis testing of the third null hypothesis was performed using the McNemar test to 

determine if there was a difference between the traditional and reverse algorithms for 

interpreting a diagnosis of syphilis.  Frequency Table 55 was used to input data into NCSS 11. 

The McNemar test was statistically significant, p < 0.0000 ( = 0.05), indicating that there was a 

difference between the two algorithms; therefore, the null hypothesis was rejected (Table 56). 

Table 55 

 

McNemar Test Traditional and Reverse Algorithm Frequency Table (N = 4,077) 

 

Note: Marginal Proportions P1 and P2 represent marginal homogeneity or probability that the row and 

column frequencies are equal. 

      aEquivocal results included as reactive 

 

 

 

 

  Likely 

syphilis 

Traditional 

algorithm 

Unlikely syphilis  

Traditional 

algorithm 

Total Marginal 

Proportion 

P1 = (A+B)/N 

Likely syphilis 

Reverse algorithma 

499 

A 

217 

B 

716 P1=0.1756 

(716/4077) 

Unlikely syphilis 

Reverse algorithm 

52 

C 

3309 

D 

3361  

Total 551 3526 4077  

Marginal 

Proportion P2 = (A+C)/N 

P2=0.1351 

(551/4077) 
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Table 56 

 

McNemar Two-sided Hypothesis Test of the Difference Between Traditional and Reverse 

Algorithms (N = 4,077) 

 

H0: P1-P2 = 0 vs Ha:  P1-P2  0 

Statistical 

Test 

Proportion 

Difference 

P1-P2 

95% Confidence 

interval (CI) 

Confidence 

Interval 

Width 

Test 

Statistic 

Value 

Probability 

level 

 = 0.05 

McNemar 0.0405 0.0327 to 0.0484 0.0156 101.208 0.0000 

Note: Proportion (risk) difference ( = P1 – P2) is a direct method of comparison between two event 

probabilities. 

 

Summary 

 

Descriptive study variables revealed that males represented the highest proportion (68.56%) 

of the study population of 4,077 patients and the population mean age was 33 years old.  The 

majority of patients (42.6%) were asymptomatic when they visited the STD clinic; and most 

patients (61.7%) were not diagnosed with an STD.  Of the patients diagnosed with an STD the 

majority (21.1%) were diagnosed with syphilis.  The 859 patients diagnosed with syphilis were 

also staged by the STD clinic staff with the majority of patients (60.2%) staged as latent (early, 

late or unknown) syphilis. 

Statistical analysis of the observed variables was performed with NCSS 11 software.  All 

three null hypotheses were rejected with statistically significant p values, thus providing 

statistical support that there was a difference between the CaptiaTM Syphilis IgG and Fujirebio 

Serodia TP-PA  test result interpretations; between the CaptiaTM Syphilis IgG S/CO and 

MacroVue RPR titer test results; and between the reverse and traditional syphilis interpretation 

algorithms (Table 57).   

As shown in Table 58, analysis of the 2x2 contingency table for the CaptiaTM Syphilis IgG 

and Serodia TP-PA test results revealed that the TP-PA had a higher sensitivity (92%) and 

specificity (100%) than the Syphilis IgG (82% and 99%, respectively).  The TP-PA test also had 
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Table 57 

Summary Null Hypotheses Statistical Tests 

 

Null 

Hypothesis 

Number 

There will be no 

difference  

Statistical 

test 

Probability 

 = 0.05 

Statistically 

significant? 

Null 

hypothesis? 

H1o between CaptiaTM 

Syphilis IgG and 

Fujirebio Serodia TP-

PA test results 

McNemar 

Two sided 

0.0002 Yes Rejected 

H2o in diagnostic 

interpretation of 

CaptiaTM Syphilis 

IgG S/CO value and 

Becton Dickinson 

MacroVue RPR titer 

result 

z test 

Two sided 

0.0000 Yes Rejected 

H3o between Syphilis 

traditional and 

reverse algorithm 

interpretations  

McNemar 

Two sided 

0.0000 Yes Rejected 

 

Table 58 

 

Summary Usefulness Statistics for Syphilis IgG, TP-PA, and Algorithms 

 

Test Sens Spec Adj 

PPVb 

Adj 

NPVb 

+LR -LR Accuracy 

CaptiaTM 

Syphilis IgG 

0.82a 0.99 0.66 0.99 63.06 0.18 0.95 

Serodia  

TP-PA 

0.92 1.00 0.91 1.00 330.50 0.08 0.98 

Traditional 

algorithm 

0.64 0.99 0.59 0.99 46.83 0.36 0.91 

Reverse 

algorithm 

0.82a 0.99 0.66 0.99 63.06 0.18 0.95 

Note: Sens = sensitivity; Spec = specificity; Adj PPV = Adjusted positive predictive value; Adj NPV = 

Adjusted negative predictive value; +LR = positive likelihood ratio; -LR = negative likelihood ratio 
aCaptiaTM Syphilis IgG sensitivity based on equivocal test results counted as reactive 
bAdjusted PPV and NPV based on 3% syphilis prevalence within STD clinic population 

a higher positive LR (330.50) and lower negative LR (0.08) than the Syphilis IgG (63.06 and 

0.18, respectively).  The population based adjusted PPV and NPV for TP-PA was higher than 
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Syphilis IgG (0.91 and 1.00 versus 0.66 and 0.99, respectively).  Finally, based on the 2x2 

contingency table, the TP-PA had higher accuracy (98%) than the Syphilis IgG (95%). 

Analysis of the 2x2 contingency table for the traditional and reverse algorithms (Table 58) 

revealed that the reverse algorithm had a higher sensitivity (82%) than the traditional (64%), 

while both algorithms had the same 99% specificity.  The reverse algorithm also had a higher 

positive LR (63.06) and lower negative LR (0.18) than the traditional (46.83 and 0.36, 

respectively).  The adjusted PPV for the reverse algorithm (0.66) was higher than the traditional 

(0.59), while both algorithms had the same 0.99 adjusted NPV.  Based on the 2x2 contingency 

table, the reverse algorithm had higher accuracy (95%) than the traditional algorithm (91%). 

A statistical comparison of AUC values for the continuous variables, Syphilis IgG S/CO and 

RPR titer revealed that the Syphilis IgG AUC (0.9500) was higher than the RPR titer (0.8155) 

indicating greater diagnostic accuracy.  Statistical analysis of the Syphilis IgG S/CO values to 

determine an optimal cutoff value showed that the cutoff value of >0.8 had the highest Youden 

Index (0.8265); however, that cutoff value was not listed in the manufacturer’s package insert for 

an equivocal test result.  The manufacturer’s cutoff value for an equivocal test result was 

between 0.9 and 1.0 and these values had the next highest Youden Indexes along with high 

diagnostic accuracy (0.9524 and 0.9549, respectively).  The manufacturer’s cutoff value for a 

reactive test result (>1.1) had the highest diagnostic accuracy (0.9551) indicating that this value 

along with the equivocal cutoff values properly classified a higher proportion of syphilis infected 

patients.   These results indicate that the cutoff values listed in the manufacturer’s package insert 

are the optimal values for reporting patient test results.  
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Chapter Five: Discussion 

 

 

 

 

This chapter will discuss the study results, limitations, conclusions, and implications for 

future studies.  The purpose of this study was to determine the usefulness of a specific automated 

test method, the CaptiaTM Syphilis IgG EIA, and the syphilis reverse algorithm interpretation for 

detecting syphilis infection among patients seeking care at public health clinics.  The target 

construct was syphilis infection and the proposition for the research question was that more 

useful syphilis testing will improve syphilis detection.  The process (syphilis test results and 

S/CO value) and outcome (traditional and reverse algorithm interpretations) domains of the 

Donabedian Quality Framework provided the study theoretical framework.  The specific research 

question was: What is the usefulness of the CaptiaTM Syphilis IgG EIA test method and the 

reverse algorithm for detection of syphilis infection in a public health population?  There were 

three null hypotheses associated with the research question which were all rejected by statistical 

analysis of the study data.  

Syphilis can be a difficult disease to diagnose due to its progression to an asymptomatic stage 

when left untreated.  Additionally, current syphilis diagnostic tests are serologically based and 

require an adequate immune response from the patient, which may not be sufficient in HIV 

infected or immunocompromised patients.  The Becton Dickinson MacroVue RPR test is a 

nontreponemal serological test used for initial syphilis screening within the traditional algorithm.  

Because the test can cross react with many different non syphilis conditions giving a false 

positive test result, the CDC recommendation for screening with the RPR test is to verify an 
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initial reactive test result with a treponemal test.  If the follow up treponemal test is discordant 

(nonreactive), then clinical correlation and/or additional testing at a later date is recommended.  

The CaptiaTM Syphilis IgG EIA test is a treponemal serological test used for initial syphilis 

screening within the reverse algorithm.  Because a treponemal test cannot distinguish between 

past and current syphilis infection due to the lifelong presence of treponemal IgG antibodies, the 

CDC recommendation for screening with a treponemal test is to follow up a reactive test result 

with a nontreponemal test.  If the nontreponemal test is discordant (nonreactive), then CDC 

recommends performance of a second more sensitive treponemal test to act as a tie breaker.  If 

the second treponemal test is discordant (nonreactive), then clinical correlation and/or testing at a 

later date is recommended. 

Results 

Public health population. This study was the first to determine that the CaptiaTM Syphilis 

IgG test result, the S/CO value, and reverse algorithm interpretation are useful diagnostic 

predictors of syphilis infection among public health clinic patients.   Syphilis has serious public 

health consequences and is considered a sentinel public health event by CDC.  Public health 

programs at the local and state level usually include both the clinical and laboratory services 

necessary to perform syphilis detection, treatment, and prevention.  Public health responsibilities 

related to STD prevention include appropriate laboratory testing, correct disease staging, 

appropriate treatment, public health disease reporting, and participation in effective partner 

services (CDC, 2006).  Public health clinics provide a two phase disease approach which 

includes detection and treatment of multiple STD infections combined with effective partner 

notification and contact treatment.   
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The study setting for this dissertation was a public health STD clinic located in a large 

western metropolitan area with a population of over two million residents.  The clinic was 

operated by a public health agency and participated in federally approved syphilis detection and 

surveillance programs.  The STD clinic provided services to persons who had signs and 

symptoms of syphilis infection as well as those who were contacts to infected individuals.  All 

syphilis tests ordered by the STD clinic staff were performed at the public health laboratory, 

which was also owned by the public health agency.  All clinic staff were trained to perform 

syphilis infection clinical assessment following standard CDC STD guidelines.   The STD clinic 

received federal funding through the CDC STD prevention cooperative grant, which seeks to 

reduce syphilis infection especially among high-risk populations, such as MSM.  The clinic staff 

followed federal guidelines for syphilis detection and treatment.  In addition to patients who had 

signs and symptoms of syphilis infection, the STD clinic also targeted pregnant women, MSM, 

persons with HIV, and contacts of known syphilis cases for conducting syphilis testing.  Because 

syphilis infection can occur concurrently with other STDs, clinic patients were often screened for 

multiple STDs (HIV, syphilis, gonorrhea, and chlamydia) during the same clinic visit.  All 

syphilis testing ordered by the STD clinic staff was performed at the public health agency public 

health laboratory.  All syphilis reflex testing performed by the laboratory staff was approved by 

the laboratory director. 

The dissertation study demographic variables closely matched those identified by Pathela, et 

al (2015) who performed a retrospective study of 40 geographically diverse US public health 

STD clinics.  They determined that 61.9% of STD clinic patients were male; 47.1% were 

between 20-29 years old; and 35% were diagnosed with an STD during their clinic visit.  The 

dissertation study demographic variables were very similar with males representing 68.6% of the 
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study population; 44.3% of the study population were between 21-30 years old; and 38.3% were 

diagnosed with an STD; thus, reflecting a “typical” public health STD population and enhancing 

the generalizability of the study results to other public health clinics.   

The higher rates of STD infections in public health clinics provide an excellent environment 

for performing STD diagnostic test evaluation.  Linnet et al. (2012) suggest that diagnostic test 

evaluation should be carried out in a population suspected of having the target disease, 

preferably with study participants chosen based on predefined symptoms and/or signs of the 

disease.  All participants should be independently tested with both the gold standard reference 

and the index test with laboratory personnel blinded to the results of either test.  Because 

laboratory test results can vary due to disease progression, it is important to correctly classify 

each participant as diseased or nondiseased and include the disease stage if possible.  The 

dissertation study patients included 859 (21.1%) who were diagnosed with syphilis infection and 

all cases were staged according to the 2012 CDC syphilis case definitions.  All syphilis stages, 

except tertiary, were represented within the study population.   

The public health laboratories associated with STD clinics are uniquely positioned to provide 

assistance with STD screening algorithms; information on test reliability and validity; 

suggestions for additional testing that could be used to resolve discordant results; and to act as a 

conduit to subject matter expertise at the CDC.  The western region public health laboratory 

where the study was performed focused its clinical testing on STDs that were of particular 

interest to the public health clinic.  This STD focus contrasts with the broad testing menu 

established at hospital or reference clinical laboratories.  The focus of public health laboratory 

testing is disease detection, surveillance, and response.  Public health laboratory professionals  
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have the expertise to determine which STD tests will provide useful test results when ordered in 

a public health setting (APHL, 2017).    

Recently the perception of laboratory services as a “commodity” has been discussed by 

various authors.  This study provides justification that laboratory services are not just a 

commodity which is defined by Plebani and Lippi (2010) as “a mass produced unspecialized 

products that should therefore be evaluated on the simple basis of cost, taking quality for 

granted” (p. 940).  The laboratory is often thought of as a “black box” with samples entering and 

results coming out.  There is limited understanding or recognition among healthcare 

professionals outside the laboratory of the complexities of ensuring that each test method was 

selected appropriately, each sample was collected and handled properly, each result was 

accurately reported and interpreted before being properly communicated to the ordering entity.  

Plebani (1999) discusses the role of laboratory medicine as a medical discipline rather than a 

technical discipline and states that “the ultimate value of a laboratory test depends not only on its 

chemical or clinical performance characteristics, but on its impact on patient management, the 

only true assessment of the quality of testing being quality of patient outcomes” (p. 36).  The 

American Society for Clinical Laboratory Science (ASCLS) published a position paper in 2005 

on the value of clinical laboratory services in health care.  The paper emphasized the impact of 

laboratory services on improving the quality of patient care.  Laboratory professionals have the 

skills and knowledge to provide guidance on maintaining quality within not only the analytical, 

but the preanalytical and postanalytical phases of the QMS path of laboratory workflow.   

In order to keep up with increasing workload and a shrinking workforce, clinical laboratories 

and some public health laboratories have become extensively automated.   While automation can 

maximize productivity, and reduce cost per test in high volume settings, quality must not be 
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taken for granted.  Focusing only on reduction in testing cost ignores the value that laboratory 

professionals can contribute toward improving patient care by using their knowledge of test 

performance and laboratory workflow.  As seen in the cost analyses performed in Tables 10-12, 

labor is a significant portion of any test cost calculation.  Automation may free up additional 

time for laboratory professionals to participate on multidisciplinary teams to ensure that 

laboratory tests are ordered, performed, and interpreted appropriately.  Laboratory professional 

guidance will ultimately impact the quality of laboratory testing and, therefore, patient outcomes 

(Beasley, 2016; Plebani, 1999; Plebani, 2002; Plebani, Laposata, & Lundberg, 2011).    

Public health laboratories are an example of the importance of communication with the 

clinical entities ordering laboratory tests.  The western region public health laboratory where the  

dissertation study was performed communicated on a regular basis with public health clinic staff. 

This communication was especially necessary when discordant syphilis test results were 

identified by clinic staff.  Discussions with clinic and laboratory staff resulted in implementation 

of the modified testing algorithms and reflex testing in use during the study.  Continued dialogue 

ensured that clinic staff recognized the quality of the laboratory testing performed and the 

concern of laboratory staff for providing accurate test results for each patient; thus, the 

laboratory staff acted as liaisons with the clinic staff.   Plebani (2002) recognized that clinical 

liaisons may provide a new role for laboratorians.  These liaisons can: a) ensure laboratory test 

quality whether in the central laboratory or at the patient’s bedside; b) improve pre- and post- 

analytical quality; c) evaluate interpretation and utilization of laboratory data for improved 

patient management; and d) participate in multidisciplinary teams for joint research projects 

along with providing clinical consulation in the patient management process.    
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Expanding the role of laboratory professionals will allow for a mechanism to assess not only 

laboratory efficiency, but also effectiveness and clinical outcomes.   Plebani (2002) suggests that 

surrogate markers for measuring effectiveness could include: a) inclusion of interpretation aids 

on test reports, b) reporting decision limits along with the type of action to be taken at various 

limits and the source of each limit, and c) allowable levels of imprecision and reproducibility of 

laboratory results.   This dissertation study provided suggestions for including syphilis test 

sensitivity, specificity, and likelihood ratios on laboratory test reports to allow healthcare 

providers to utilize Bayes nomogram for result interpretation.  Additionally, the Syphilis IgG 

S/CO values or a “trigger” value at a specified limit could be reported for nonreactive test results 

to alert healthcare providers that additional follow-up testing in a few weeks may be warranted.  

Implementation of these suggestions will require that laboratory professionals proactively ensure 

that they have a “seat at the table” in multidisciplinary discussions focused on improving patient 

care.  

Usefulness measures.  As discussed in Chapter Two Literature Review, multiple authors 

have suggested a variety of statistical measure combinations to evaluate the usefulness of a 

laboratory diagnostic test.  Based on the published research discussed in Chapter Two, the 

following statistical measures were used in this study to define test usefulness: sensitivity, 

specificity, predictive values, likelihood ratios, accuracy, and/or ROC analysis.  Because test 

feasibility is also a usefulness measure, test cost was included in the discussion (Aamir & 

Hamilton, 2014; Galen & Gambino, 1975; Hulley et al., 2013; Vihinen, 2012). 

Galen and Gambino (1975) discuss the attributes for determining the preferable statistical 

measure of a diagnostic test (Table 9).  They recommend a test with high sensitivity for detecting 

a treatable, serious disease that should not be missed and for which false positive results do not 
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lead to serious financial or emotional consequences.  A test with high accuracy is recommended 

for detecting a treatable, serious disease with serious consequences for both false negative and 

false positive test results.  For public health purposes, a highly sensitive test that can determine 

syphilis infection in an early stage of disease has treatment implications not only for the infected 

patient but also for stopping the spread of infection within the community; however, there can be 

psychological and financial consequences of misdiagnosis due to either false positive or false 

negative test results.  Therefore, use of a highly sensitive and highly accurate test for initial 

syphilis screening would be desirable for those patients seeking care at STD public health 

clinics.   Additionally, because the likelihood ratio statistic is not affected by disease prevalence 

within the tested population, a test that provides a high positive LR and a low negative LR would 

also be preferable for a screening test.    

Determining the financial or emotional consequences of false positive or false negative test 

results is difficult.  Chesson, Collins, and Koski (2008) developed a series of formulas that could 

be used to estimate direct medical costs and indirect costs (lost productivity) averted by sexually 

transmitted infection (STI) programs within the US.  The authors focused on the benefits of 

treating people with STIs, including P&S syphilis.  “These benefits included the sequelae costs 

averted by treatment of people with STIs, the prevention of congenital syphilis in infants born to 

mothers treated for P&S syphilis, the interruption of STI transmission in the population, the 

reduction of STI-attributable HIV infections (HIV infections that would not have occurred 

without the facilitative effects of STIs on HIV transmission and acquisition)” (p. 2).  The authors 

based all medical costs on 2006 dollars, with the average direct medical cost per case of P&S 

syphilis averted calculated at $572 and $112 for indirect (lost productivity) costs.  Included in the 

averted cost per case was the possibility of neurosyphilis and cardiovascular syphilis in untreated 
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cases, and also the possibility of antibiotic treatment prior to symptom onset.  For congenital 

syphilis, the authors assumed that 50% of pregnant women with untreated P&S would deliver a 

child with congenital syphilis.  They did not include a cost for premature births and stillbirths 

associated with congenital syphilis and they state that the averted cost is most likely understated.  

The average direct medical cost per case of congenital syphilis averted was calculated as $6,738.  

The indirect cost for congenital syphilis was calculated at $3,369 for the first year.  The authors 

assumed that there would be lifelong impacts of the infection and that the indirect cost would be 

incurred every year for 25 years for a total indirect cost of $60,421.  These formulas were 

developed for STI program managers to use to determine the economic impact of their program 

activities on detection and prevention of disease.  The formulas also provide an estimate of the 

impact of a false negative syphilis test result.  A missed syphilis case could result in a total direct 

and indirect cost of $684; however, that total cost would increase 100-fold to $70,528 if the false 

negative was reported on a pregnant woman who gave birth to a child with congenital syphilis.  

In those cases, a false negative has serious consequences, thus reinforcing the need for use of 

highly accurate syphilis tests especially among pregnant females. 

The Syphilis IgG sensitivity (82%) was lower than the manufacturer’s package insert 

sensitivity value of 98.2% (165/168).  The manufacturer’s package insert sensitivity was 

calculated based on analysis of 168 samples taken from patients at various stages of syphilis 

infection.  Diagnosis was based on clinical history combined with serological data from VDRL 

and FTA-ABS tests.  The package insert also lists a sensitivity of 98.4% and specificity of 99.3% 

for CaptiaTM Syphilis IgG testing performed on a panel of 1,321 serum specimens that had tested 

reactive or nonreactive by two different syphilis serological tests (Trinity Biotech, 2003).  There 

are few published studies that compare the CaptiaTM Syphilis IgG EIA test method to either 
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syphilis diagnosis or to another treponemal test.  Castro et al (2013) compared the CaptiaTM 

Syphilis IgG and the Serodia TP-PA using samples known to be TP-PA reactive or nonreactive.  

In that study, the Syphilis IgG EIA method showed 100% sensitivity (109/109) and 97% 

specificity (176/181) when compared to TP-PA.   There are numerous published studies listed in 

Table 4 that show a wide variation in different Syphilis EIA test method sensitivities depending 

on the stage of infection, disease prevalence in the population tested, and the standard used for 

comparison in the published study (Loeffelholz & Binnicker. 2012, Manavi, et al, 2006, Peeling 

& Ye, 2003, Sena, et al, 2010, Smith et al, 2013, Wicher, et al, 1999).  The Syphilis EIA 

sensitivity for primary syphilis as listed in Table 4 ranged from 57% to 100%, secondary syphilis 

ranged from 97% to 100% and latent syphilis ranged from 75% to 100%.  The implication for the 

study data is that early and late stages of syphilis infection can produce widely variable results. 

In this study, 60% of the samples tested were diagnosed with latent syphilis which is an 

asymptomatic stage and difficult to diagnose.  The large proportion of latent samples may be a 

contributing factor to the lower sensitivity results observed with the CaptiaTM Syphilis IgG. 

This study was the first to determine the sensitivity of the CaptiaTM Syphilis IgG EIA in a 

public health population using the presence or absence of syphilis infection as the gold standard.  

Prior studies had used another treponemal or nontreponemal test as the gold standard rather than 

diagnosis.  While the TP-PA showed a higher sensitivity (92%) than the Syphilis IgG (82%) in 

this study, the CDC (2011) does not recommend the use of TP-PA as an initial screening test 

within the reverse screening algorithm.  The TP-PA test is not a clinically practical screening test 

choice as it cannot be automated and, as shown in Tables 12 and 13, has a cost (direct = $4.41; 

fully loaded = $15.43) which is almost triple that of either the RPR (direct = $1.76; fully loaded 

= $6.16) or Syphilis IgG (direct =$1.85; fully loaded = $6.47) screening tests.  The CDC (2011) 
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and various authors (Castro et al, 2013; Zhang et al, 2012) recommend that a more sensitive 

treponemal test, such as the TP-PA, should be used as the confirmatory test for discordant 

syphilis results within the reverse algorithm.  This study confirmed that the western regional 

laboratory where the study was performed followed CDC reverse algorithm recommendations by 

using a more sensitive confirmatory test (TP-PA) for discordant test results. 

The CaptiaTM Syphilis IgG test does not detect IgM antibodies, and the lower than expected 

sensitivity results in the study population could be due to the presence of syphilis IgM antibodies 

in the samples tested.  The Serodia TP-PA method detects both syphilis IgG and IgM antibodies.  

Sensitivity was calculated as the number of true positive samples divided by the number of true 

positive and false negative samples.  As shown in Table 59, there were 152 false negative 

Syphilis IgG results reported (S/CO values 0.0 to 0.8) and 124 of the samples were confirmed 

reactive by TP-PA testing indicating the presence of either IgG and/or IgM syphilis antibodies at 

a level undetectable by the CaptiaTM Syphilis IgG test method.  

A review of the clinical data for the 124 samples revealed that 100% (124/124) of the 

samples had a diagnosis of syphilis infection past or current.  Of the 124 TP-PA reactive 

samples, 56% (69/124) were diagnosed as late latent; 18% (22/124) were diagnosed with other 

syphilis stages; 15% (19/124) had a history of syphilis infection; and 11% (14/124) had a 

positive syphilis test from an outside laboratory.  Possible explanations for the false negative 

Syphilis IgG test results include: a) diagnosis of late latent syphilis can be difficult due to the 

lack of symptoms; b) patients with a history of syphilis infection may have IgG levels below the 

detectable range of the CaptiaTM test method; or c) use of a positive syphilis test from an outside 

laboratory may have influenced the clinic staff in their staging decision. 
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Table 59 

Syphilis IgG S/CO Frequency Counts, FN, FP, Discordants, and TP-PA Confirmation 

 

aDiscordant + Syphilis IgG = Reactive Syphilis IgG and nonreactive RPR; bDiscordant + RPR = Reactive RPR and nonreactive 

Syphilis IgG; cS/CO counts between 4.1 and 5.5 were combined in one line to conserve space. 

S/CO Syphilis 

IgG Result 

# 

samples 

# FN 

Syphilis 

IgG 

#FP 

Syphilis 

IgG 

Discordant 

+Syphilis 

IgGa 

Discordant 

+RPRb 

TP-PA 

confirmed 

  <0.1 Nonreactive 520 7   17 0 

0.2 Nonreactive 595 11   14 6 

0.3 Nonreactive 276 13   11 10 

0.4 Nonreactive 676 15   8 13 

0.5 Nonreactive 679 31   13 27 

0.6 Nonreactive 305 19   10 17 

0.7 Nonreactive 164 21   8 20 

0.8 Nonreactive 113 35   9 31 

0.9 Equivocal 24  17 21  5 

1.0 Equivocal 30  16 21  7 

1.1 Reactive 39  4 29  22 

1.2 Reactive 44  2 29  21 

1.3 Reactive 31  0 18  14 

1.4 Reactive 35  0 20  17 

1.5 Reactive 27  0 8  8 

1.6 Reactive 35  1 16  14 

1.7 Reactive 25  0 8  6 

1.8 Reactive 38  1 17  15 

1.9 Reactive 37  0 15  13 

2.0 Reactive 30  0 5  4 

2.1 Reactive 24  0 8  7 

2.2 Reactive 19  0 2  2 

2.3 Reactive 22  0 5  5 

2.4 Reactive 28  2 9  8 

2.5 Reactive 19  0 3  3 

2.6 Reactive 16  0 3  3 

2.7 Reactive 22  0 0  0 

2.8 Reactive 21  0 2  2 

2.9 Reactive 12  0 0  0 

3.0 Reactive 11  0 0  0 

3.1 Reactive 20  0 0  0 

3.2 Reactive 24  0 1  1 

3.3 Reactive 13  0 1  0 

3.4 Reactive 8  0 1  1 

3.5 Reactive 19  0 2  2 

3.6 Reactive 5  0 0  0 

3.7 Reactive 11  0 0  0 

3.8 Reactive 5  0 1  1 

3.9 Reactive 9  0 0  0 

4.0 Reactive 7  0 1  1 

  >4.1c Reactive 39  0 0  0 

Totals  4077 152 43 246 90 306 
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The 124 false negative Syphilis IgG samples that were confirmed reactive by TP-PA testing 

contributed to the lower sensitivity observed with the CaptiaTM Syphilis IgG test.  This brings up 

the question of determining the optimum cutoff value for an EIA test value.  What would be the 

impact of decreasing the Syphilis IgG cutoff value from the FDA approved value on the Syphilis 

IgG test result interpretation for the 124 false negative samples? 

Based on the study data, it appears that the manufacturer’s cut off values for both reactive 

and equivocal results provided a highly accurate test result interpretation.  As discussed in 

Chapter Four results section, the manufacturer’s package insert S/CO cutoff for an equivocal 

Syphilis IgG test result was between 0.9 and 1.1, and any change in this cutoff value would 

require an extensive off label method verification.   

According to Perkins and Schisterman (2006), the Youden Index is the preferred method for 

determining an optimal cutoff value.  As shown in Table 48, the S/CO cutoff value >0.8 had the 

highest Youden Index value (0.8265).  In order to determine if the S/CO cutoff value >0.8 was 

an optimal cutoff, the number of samples at each cutoff value were counted and entered into 

Table 59.  There were 113 samples at the >0.8 cutoff value, and 35 of the samples were 

classified as nonreactive according to the manufacturer’s cutoff value and had a diagnosis of 

syphilis infection past or current; therefore, they would be considered a false negative.  The 

remaining 78 samples in this cutoff category were all RPR and TP-PA nonreactive and were not 

diagnosed with syphilis; therefore, they would be considered to be a true negative.  The 

diagnostic characteristics of the 35 false negative samples are shown in Table 60.   

While all 35 samples had a diagnosis of syphilis infection, 74% (26/35) had a nonreactive 

RPR test and would not have been detected using the traditional algorithm.  Discordant 

confirmatory testing was also observed in the 35 samples, with 89% (31/35) having a reactive  
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Table 60 

CaptiaTM Syphilis IgG S/CO 0.8 Cutoff False Negative Diagnostic Characteristics 

 

RPR and TP-PA results Frequency Diagnosis frequency 

RPR nonreactive and TP-PA reactive 23 History syphilis infection    6 

Late latent syphilis            17   

 

RPR nonreactive and TP-PA nonreactive 3 History syphilis infection    1 

Secondary syphilis              1 

Late latent syphilis              1 

 

RPR reactive and TP-PA reactive 8 History syphilis infection    1 

Primary syphilis                  2 

Secondary syphilis              2 

Late latent syphilis              3 

 

RPR reactive and TP-PA nonreactive 1 History syphilis infection    1 

 

 

TP-PA test and 11% (4/35) with a nonreactive TP-PA.  The majority (60%) of the 35 samples 

(21/35) were diagnosed with late latent syphilis which is an asymptomatic, noninfectious stage 

and may be difficult to diagnose.  If the equivocal cutoff value was lowered to include those 

samples with a >0.8 cutoff value, then the 35 samples would be reclassified as true positive 

which will increase the Syphilis IgG sensitivity to 86% (707/824).  However, the 78 samples 

previously classified as true negative will now be reclassified as false positive, which will lower 

the Syphilis IgG specificity to 96% (3176/3296).  None of the 78 samples had a syphilis 

diagnosis, and the other syphilis tests were nonreactive.  While lowering the S/CO cutoff value 

would increase the test sensitivity, it also lowers the accuracy for that cutoff to 94%.  There is a 

human and financial impact related to reporting a false positive STD.  The emotional stress to the 

patient and their sexual contacts could be high.  There is also an impact to public health with 

added staff time required for investigation and reporting of false positive test results.  Based on 

the values calculated in Tables 12 and 13, the laboratory cost of confirming one false positive 
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Syphilis IgG test with a nonreactive or discordant RPR would be $80.79: 

 Syphilis IgG test performed in duplicate Fully loaded cost $  6.47 x 2 = $12.94 

 RPR      Fully loaded cost $  5.98 = $  5.98 

 RPR titer (calculations not shown in table) Fully loaded cost $46.44 = $46.44 

 TP-PA      Fully loaded cost $15.43 = $15.43 

 Total additional cost of one false positive test     $80.79 

 

The total laboratory cost of performing 78 false positive follow-up tests was calculated as 

$6,301.62 (78 x $80.79).  This cost did not include the public health staff time for follow up and 

contact investigation nor the impact of an adverse reaction to antibiotics administered to combat 

the false infection.   

Conversely, there is also a cost related to lack of treatment for the 35 false negative test 

results.  In this study, because the 35 patients were diagnosed in the public health clinic based on 

risk standards, they would have been appropriately treated following CDC recommendations.  If 

a high risk patient had an initial negative test result and the healthcare provider was concerned 

about a false negative, then additional testing could be ordered at a later date or the patient could 

be treated based on symptoms.  All three syphilis tests were ordered on the 113 patients within 

the >0.8 cutoff value because the healthcare provider had a concern about a potential for syphilis 

infection or the nonreactive sample was reflexed by the laboratory because the S/CO value was 

greater than 0.450. The 35 patients were diagnosed with syphilis because the clinician had that 

option or the laboratory used an alert range to perform additional testing.  Healthcare providers 

should have the option to determine which syphilis tests should be ordered based on their clinical 

assessment and not be restricted to a specific reflex panel.  Alternatively, laboratories could 

determine which elevated S/CO values on nonreactive samples could be flagged with a comment 

on the test report to alert health care providers that additional clinical follow up should be 

performed.  Wong, et al (2011) suggested that including a flag on the test report may indicate 
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those nonreactive samples that were close to the optimal cut off values but may not have 

antibody levels high enough to provide a reactive result.  A repeat test 2-3 weeks later might 

provide a reactive test result using the manufacturer’s cutoff value. There is precedent for 

reporting S/CO values for immunology tests.  The CDC (2003) recommended reporting S/CO 

values for immunoassay tests for antibodies to hepatitis C.  The CDC guidance document 

provides implementation recommendations for reporting S/CO values to minimize the 

requirement for supplemental testing of reactive anti-hepatitis C tests.  Laboratory professionals 

can provide this type of information to healthcare providers either in written reports or verbal 

consultation thus potentially improving patient outcomes. 

Because syphilis is a disease that can present in multiple stages and be present at different 

prevalence levels within a population, a test manufacturer must determine optimal cutoff values 

that cover a range of disease possibilities.  The frequency and misclassification counts shown in 

Table 59 provide some insight into the basis for the manufacturer’s optimal cut off values.  The 

false negative Syphilis IgG column frequency reflects the number of samples that were 

misclassified as nonreactive; however, the patient was diagnosed with syphilis.  Subtracting this 

number from the total number of samples for the cutoff value provides a frequency of false 

positives if the cutoff value was used for determining a reactive or equivocal sample.  Dividing 

the false positive by the total will provide a false positive percentage if the optimum cutoff value 

is changed.  False positive calculations for cutoff values of interest are: >0.7 FP at 87% 

(143/164); >0.8 FP at 69% (78/113); >0.9 FP at 71% (17/24); >1.0 FP at 50% (15/30); >1.1 FP at 

10% (4/39) and >1.2 FP at 0.4% (2/44).  The false positive percentages generally decrease as the 

S/CO value increases with the largest decrease at the 1.1 reactive cutoff value.   
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A test kit manufacturer must utilize a cutoff value that maximizes the benefit from testing a 

population and that includes the financial and psychological consequences of misdiagnosis 

(Ridge and Vizard, 1993).  While the > 0.8 cutoff value had the highest Youden Index as shown 

in Table 48, it also had a 69% false positive rate which could lead to financial and psychological 

consequences for the patient and for public health.  Additionally, the healthcare provider may 

develop the perception that the laboratory was not providing quality test results due to the high 

number of false positive tests.  Using a cutoff point that reflects high accuracy would decrease 

those consequences.  According to the data in Table 48, the highest accuracy (95%) was obtained 

at the >1.1 S/CO cutoff, which is also the manufacturer’s cutoff value for a reactive test result.  

The equivocal S/CO cutoff values of 0.9 and 1.0 also had 95% accuracy, while the > 0.8 cutoff 

had 94% accuracy.  According to the manufacturer’s package insert, the cutoff values were 

determined based on multiple clinical trials using a range of serological tests to provide an 

optimum cut off value for reactive and equivocal values.  Because the syphilis antibody level 

within an infected patient can vary over time, the equivocal cutoff values represent a “gray zone” 

which provide a healthcare provider with an alert that additional testing should be performed on 

the patient at a later date at which time the antibody levels may rise up to the reactive cutoff 

value.  Based on the study data, it appears that the manufacturer’s cut off values for both reactive 

and equivocal results provided a highly accurate test result interpretation.   

The reverse algorithm which started with the CaptiaTM Syphilis IgG EIA test had a higher 

sensitivity (82%) than the traditional algorithm (64%) which started with the nontreponemal 

MacroVue RPR test (Table 58).  The lower sensitivity for the traditional algorithm was observed 

previously in the study by Tong, et al (2013) with the traditional algorithm showing a sensitivity 

of 75.81% and the reverse algorithm showing a sensitivity of 99.85%.  The Syphilis CIA test 
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used in the Tong, et al study detected both IgG and IgM antibodies which may explain why that 

study observed a higher sensitivity than seen in the dissertation study using an initial treponemal 

method that detected only IgG antibodies.  Additionally, the MacroVue RPR test is a 

nontreponemal test which is not specific for syphilis antibodies and is not usually reactive in 

patients with a history of syphilis infection due to the decline of nontreponemal antibodies over 

time.  The gold standard for the dissertation study was syphilis infection past or present which 

could explain the lower sensitivity seen for the MacroVue RPR.  There were 83 patients with a 

history of syphilis infection in the study that were categorized as false negative in the traditional 

algorithm statistical analysis.  If those 83 patients with a history of syphilis were removed and 

the statistical analysis was repeated, there was only a slight improvement in the traditional 

algorithm sensitivity (71%).  The sensitivity of the reverse algorithm was higher than the 

traditional algorithm regardless of whether syphilis history was included in the syphilis 

diagnosis. 

The accuracy of the reverse algorithm (95%) was greater than the traditional algorithm 

(91%).  These accuracy results were further corroborated by the AUC values computed by ROC 

curve analysis.  The ROC curve analysis was performed on the Syphilis IgG (initial test for the 

reverse algorithm) and the RPR titer (initial test for the traditional algorithm) to determine their 

ability to distinguish the presence or absence of syphilis.  While both the Syphilis IgG and RPR 

titer results were able to detect a syphilis infection, the Syphilis IgG AUC value (0.9500) was 

higher than the RPR titer value (0.8155).  The comparison of the ROC curve for each test’s 

ability to classify a condition (syphilis present or absent) over all possible decision points 

displayed graphically that the Syphilis IgG test demonstrated a greater observed diagnostic 

accuracy than the RPR titer (Figure 15).   
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The positive likelihood ratios for both the traditional (46.83) and reverse algorithms (63.06) 

were above 10 indicating strong evidence for ruling in a diagnosis.  According to Jaeschke et al. 

(1994) and Kent and Hancock (2016), a positive likelihood ratio above 10 provides strong 

evidence for ruling in a diagnosis and a negative likelihood ratio less than 0.1 provides strong 

evidence for ruling out a diagnosis (Table 5).  A likelihood ratio of one provides no information 

about the probability of disease presence. The negative likelihood ratio for the traditional 

algorithm (0.36) provides weak evidence (-LR between 0.2 and 0.5) that a negative test result 

excludes a diagnosis of syphilis, whereas, the reverse algorithm negative likelihood ratio (0.18) 

provides moderate evidence for ruling out a diagnosis (-LR between 0.1 and 0.2).  A false 

negative syphilis test has serious clinical implications for the patient as non-treatment could lead 

to debilitating illness later in life and is especially of concern in pregnancy because of the impact 

on the fetus.  The public health impact of a false negative test is the continued transmission of 

syphilis infection within the population.  The likelihood ratio is not usually reported by the 

clinical laboratory, but could be calculated from data determined during initial method 

verification and reported if requested.  According to multiple authors, the likelihood ratio 

provides the most powerful method for measuring a test’s usefulness.  When combined with 

pretest probability of disease and Bayes’ nomogram, the likelihood ratio provides a valuable 

individual patient diagnostic tool for the healthcare provider (Grimes and Schulz, 2005; Guyatt et 

al. 1986; Hulley et al., 2013; Jaeschke, Guyatt and Sackett, 1994; Kent and Hancock, 2016; 

Plebani, 1999).     

Limitations 

The limitations of the study included use of purposive convenience retrospective data.  The 

disadvantage of nonprobability samples is that they may not be representative of the population; 
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however, the population receiving treatment in any STD public health clinic are more likely to be 

infected with an STD.  In this study, the target construct was syphilis infection.  A diverse group 

of infected individuals was needed to effectively determine the usefulness of the CaptiaTM 

Syphilis IgG test.  According to Polit and Beck, (2013), a purposeful sampling approach may 

provide more representative samples for generalizing to a population. 

Additional limitations include the potential for misclassified syphilis clinical diagnosis and 

staging information in the electronic medical record.  The STD clinic staff were trained to 

recognize signs and symptoms of syphilis infection as well as to follow the CDC case definition 

guidelines (Table 14); however, human error may result in a misdiagnosis or typographical error.  

Syphilis infection is difficult to diagnose due to the lack of symptoms in later noninfectious 

stages.  The majority of study patients (60.2%) were staged as latent syphilis which is 

asymptomatic.  Misclassification may increase selection bias and threaten the validity of the 

syphilis clinical diagnosis and staging variable.  There were six out of 4,077 patients (0.1%) who 

had a diagnosis of no syphilis infection with two reactive syphilis tests and 17 out of 4,077 

patients (0.4%) who had a diagnosis of syphilis infection with no reactive syphilis tests.  This 

indicates a low incidence of misdiagnosis by the STD clinic staff and reduces the potential for 

bias in the study variable.   

There is also a limitation in the 3% population prevalence calculated from the number of 

syphilis diagnoses reported in the study patients and the total number of syphilis tests performed 

by the western region public health laboratory.  A sampling bias may exist due to the exclusion 

of 984 samples that either had no diagnosis or were collected from children.   In addition, there 

was the potential for false negative Syphilis IgG results among the 34,340 Syphilis IgG EIA tests 

performed.   However, this potential bias was reduced by the enhanced surveillance in use at the 
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STD clinic with all three syphilis tests ordered for patients who presented with a risk of syphilis 

infection or who were members of a targeted surveillance group.  Additionally, the public health 

laboratory director approved reflex testing for nonreactive Syphilis IgG samples with an S/CO 

value greater or equal to 0.450.  There were 115 false negative Syphilis IgG test results with an 

S/CO between 0.450 and 0.899 which represents 0.3% (115/34430) of the total Syphilis IgG tests 

performed, indicating the possibility of a false negative Syphilis IgG within the clinic population 

was low.    

Human error may also occur with incorrect data input of the variables in the Excel 

spreadsheet.  The Syphilis IgG S/CO value provided an additional check on the Syphilis IgG test 

result.  To reduce this limitation, the data sheet was reviewed to ensure that the numerical S/CO 

value matched the Syphilis test result with values below 0.9 resulted as nonreactive, values 

between 0.9-1.1 resulted as equivocal and values greater than or equal to 1.1 resulted as reactive.  

Additionally, the student researcher compared the spreadsheet variables to all patient charts prior 

to database deidentification and corrected spreadsheet errors in 191 samples.  The proportion of 

agreement for the chart review was 0.95 (3886/4077), with 1.0 being perfect agreement, thus 

reducing the potential for bias in the study variables. 

The study assumption that the samples were collected and transported properly provides a 

potential limitation in the Donabedian theoretical model structure domain which reflects the 

preanalytical (sample collection, processing and transport) phase of laboratory testing.  All clinic 

and laboratory staff involved in sample collection, processing and transport were trained by 

laboratory staff and followed established SOPs.  Additionally, the laboratory staff utilized 

established sample rejection criteria including rejection (no testing) of grossly hemolyzed 

specimens, unlabeled or mislabeled specimens, insufficient specimen quantity for testing, 
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leaking or broken specimen, and delayed specimen transport.  Samples were centrifuged and 

stored refrigerated off site until delivered to the laboratory by courier using refrigerated transport 

practices.  Refrigerated samples must be received at the laboratory within five days or placed in 

frozen storage.  Samples over five days old and not frozen were rejected for testing due to 

potential loss of syphilis antibody during storage which may result in a false negative serologic 

test.  All laboratory and clinic staff were trained on the sample rejection criteria and clinic staff 

were notified that a rejected sample required recollection of the sample.   A total of 13 out of 

34,430 samples (0.04%) were rejected during the two year study time period.  In 2011, rejected 

samples included one unlabeled tube and 11 that exceeded the allowable five day non-frozen 

storage time.  In 2012, one sample was rejected due to improper storage or transport.  The 

extremely low rejection rate indicates that clinic and laboratory staff followed the established 

procedures for collection, processing and transport of all samples. 

Conclusions and Future Studies 

The purpose of this study was to determine the usefulness of the CaptiaTM Syphilis IgG EIA 

test and the reverse algorithm for detecting syphilis infection in a public health setting.   Useful 

laboratory testing is an important diagnostic tool for determining individual syphilis infection 

and preventing community-wide disease spread.     

This study provided supporting evidence for the higher sensitivity of the reverse algorithm 

versus the traditional algorithm for detection of syphilis infection.  However, the CaptiaTM 

Syphilis IgG EIA test method showed a lower sensitivity than previous studies performed by the 

test manufacturer and lower sensitivity than the TP-PA test method.  This may be due to the 

inability of the test method to detect IgM antibodies present in early syphilis stages or the high 

number of latent syphilis cases in the study population.   The CaptiaTM Syphilis IgG was 
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implemented at the western region laboratory in 2008.   The decision to implement automated 

syphilis testing was based on the high volume of manual RPR tests performed per day.  The 

western region laboratory was performing over 100 manual RPR and HIV tests per day and was 

also experiencing a significant labor shortage in 2007.  In order to continue to support the 

volume of testing submitted from the public health STD clinic, the laboratory had to implement 

automated immunoassay test methodology which would require discontinuing use of the 

traditional algorithm and implementing the syphilis reverse algorithm.  In addition to the labor 

shortage, the laboratory was also limited on space and only had room for one automated 

analyzer.  In 2008, the only automated immunoassay analyzer that could perform both a Syphilis 

and HIV test was the BioRad EVOLIS analyzer and the only syphilis test method FDA approved 

for that analyzer was the CaptiaTM Syphilis IgG EIA.  Other automated analyzers could perform 

a total Syphilis EIA (both IgG and IgM), but could not perform the HIV test.  The STD clinic 

requested that the public health laboratory maintain the ability to test both HIV and syphilis on 

the same sample; therefore, the EVOLIS analyzer was installed and both the CaptiaTM Syphilis 

IgG and BioRad HIV EIA test methods were verified.   The study confirmed that utilizing the 

less sensitive CaptiaTM Syphilis IgG EIA test method for initial screening followed the CDC 

reverse algorithm recommendations of using the more sensitive confirmatory TP-PA test for 

discordant test results.  Additional studies comparing the CaptiaTM Syphilis IgG EIA test method 

to treponemal EIA test methods that detect both syphilis IgG and IgM antibodies could provide 

further insight as to the usefulness of the IgG only EIA test method for detection of syphilis 

infection. 

Both the reverse and traditional algorithms had high positive likelihood ratios above 10; 

however, the negative likelihood ratios for each algorithm only provided moderate (reverse 
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algorithm) and weak (traditional algorithm) evidence for ruling out a diagnosis of syphilis 

infection.  Likelihood ratios are not often reported by clinical laboratories, but could be 

calculated during initial method verification and included as a comment on the final laboratory 

test report. This would allow healthcare providers to utilize Bayes’ nomogram to determine the 

likelihood of syphilis infection in their individual patients.  A method of estimating pretest 

probability for syphilis infection, such as the use of clinical decision rules would be needed to 

utilize Bayes’ nomogram.  Deumaresq, et al. (2013) developed clinical prediction rules for 

diagnosis of neurosyphilis in HIV-infected patients.  However, there are no known clinical 

decision rules for detecting syphilis infection in the general population.  These rules could be 

developed based on the following syphilis risk factors provided by the CDC treatment guidelines 

(2015), with points given for each type of risk factor and a pretest probability percentage 

calculated based on the total patient score: 

• Age 15 – 24 years 

• MSM 

• Pregnant female 

• Contact with a syphilis infected person 

• HIV infection  

• Symptoms of syphilis infection 

• Visual or hearing complaints 

• Stroke like symptoms or meningitis 

• Dementia, muscle weakness, or paralysis 

Based on the clinical decision rule score, the healthcare provider could then determine which 

syphilis tests should be ordered initially.  If the patient had a high pretest probability score, then 
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the physician might consider ordering both a treponemal and nontreponemal test at the same 

time.  Performing two tests on the same sample will increase the sensitivity of the screening 

testing.  Additionally, performing a treponemal test at the same time as the nontreponemal test 

would reduce the possibility of missing a syphilis infection due a false negative test from the 

prozone effect which often occurs with nontreponemal tests.  The FDA recently approved a 

treponemal and nontreponemal antibody multiplex test method performed on the BioRad 

Bioplex 2220 automated test platform (BioRad, 2016) which would provide the healthcare 

practitioner with this option.   The data from this study was analyzed comparing the reverse and 

traditional algorithms separately.  Because samples in this study had all three syphilis tests 

performed, future studies could re-analyze the data to determine the usefulness of performing the 

treponemal and nontreponemal tests at the same time using syphilis diagnosis as the gold 

standard.   

The analysis highlighted the potential for use of the S/CO value to resolve discordant test 

results.  Cutoff values equal to and above 2.5 showed 100% specificity and PPV for syphilis 

infection.  According to Table 59, there were 15 discordant (Syphilis IgG reactive with 

nonreactive RPR) test results within those cutoff values and 93% (14/15) were confirmed by 

TPPA analysis.  If the laboratory director determined that S/CO values equal to and above 2.5 

did not require TPPA confirmation, there would be a laboratory cost savings of $231.45 (15 tests 

x $15.43 fully loaded TPPA cost).  The use of a Syphilis EIA test that measured both IgG and 

IgM antibodies could provide a higher TPPA confirmation rate for discordant results and might 

allow the laboratory director, after completing appropriate studies, to lower the TPPA 

confirmation S/CO cutoff value resulting in greater laboratory cost savings.  With the FDA 

approval of the BioRad treponemal/nontreponemal multiplex method which will perform both 
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tests simultaneously on the same sample, clinical laboratories will see discordant results similar 

to those identified in this study.  As shown in Table 59, discordant results, either reactive 

Syphilis IgG with nonreactive RPR (246 samples) or reactive RPR with nonreactive Syphilis IgG 

(90 samples) were detected in a total of 336 samples for a discordant rate of 8% (336/4077) 

within the study sample population.  The usefulness of the S/CO values for providing a semi-

quantitative estimate of the likelihood of syphilis infection should be further explored, especially 

for discordant results. 

The true cost of laboratory testing provided in this study included both direct and indirect 

costs.  Prior researchers have not utilized the fully loaded cost of laboratory testing to perform 

cost effectiveness analysis.  In this study, the fully loaded cost of Syphilis IgG and RPR testing 

were within $0.49 of each other when the volume was high; however, there was a large 

difference in the labor involved in performing manual RPR (371 minutes) versus automated 

Syphilis IgG (92 minutes) tests when used in a high volume laboratory setting (Table 13).  With 

new testing methods, such as the BioRad Bioplex 2200 total Syphilis and RPR or the Gold 

Standard RPR, becoming available, the labor involved in RPR testing will be reduced.  While 

smaller volume laboratories may not see the reduction in cost per test, they may be able to justify 

adding automated testing if the testing platform can also perform other immunoassay tests 

(Dunseth, Ford, & Krasowski, 2017).  There also is a reduced labor benefit in the ability to 

perform multiple STD tests, such as syphilis and HIV on the same sample at the same time.    

Laboratory automation may be one administrative response to the current shortage of medical 

laboratory professionals.  The Bureau of Labor Statistics projects that there will be over 11,000 

new laboratory technologist/technician job openings annually up into the year 2020; however, 

there are fewer than 5,000 students graduating each year from accredited training programs 
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(Rothenberg, 2016).  The Bureau does not report the average age of workers; however, both the 

American Society for Clinical Pathology (ASCP) and Medical Laboratory Observer (MLO) send 

out a laboratory salary survey which provides a snapshot of the age of respondents.  In the 2017 

MLO survey, 42.3% of the respondents were in the 56-65 age group and 28.3% of respondents 

were in the 46-55 age group (MLO, 2017).  With more baby boomers moving into retirement 

age, there will be fewer new graduates to take their place in the laboratory and labor costs may 

increase due to the shortage.  As laboratory managers make decisions regarding automation, they 

need to determine the true cost of laboratory testing, including labor, as a component of cost 

effectiveness studies. 

The reliability or precision of lot to lot variation within syphilis immunoassay reagents has 

been determined using only qualitative test results.  Automated equipment that report numerical 

data such as the optical density (OD) may provide an additional mechanism to measure lot to lot 

variation among immunoassay reagents.  The lot to lot assessment tool developed in this study 

used three statistical measurements of the OD values of an external control and identified a lot 

number with potential performance issues (Table 19).  This tool may be useful for clinical 

laboratories as immunoassay testing becomes more automated. 

Syphilis disease reports continue to rise at an alarming rate with serious health consequences 

for the men, women and babies infected with T. pallidum.  A coordinated effort by 

epidemiologists, healthcare providers, STD clinic and laboratory staff is necessary to attempt to 

reduce the level of syphilis infection.  A laboratory test only provides a snapshot in time of the 

patient’s immune response to syphilis infection.  The test results must be correlated to the 

patient’s risk factors and medical history and, according to current CDC recommendations, 

require performance of both a treponemal and nontreponemal test.  This study concluded that the  
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CaptiaTM Syphilis IgG test method and the reverse algorithm provided useful tools for detecting 

syphilis infection in a public health population; however, it is important for healthcare 

practitioners to understand the limitations of any laboratory test method within the population 

being tested.  Laboratory professionals can provide valuable insight as to the true cost, reliability, 

validity, and result interpretation of test methods, as well as guidance on sample collection, 

processing, and transport.  In April 2017, the CDC issued a Call to Action: Let’s Work Together 

to Stem the Tide of Rising Syphilis in the U.S. (CDC, 2017) and called for the development of 

new tools for the detection and diagnosis of syphilis. The data from this study can be utilized by 

future researchers and scientists who are developing or improving syphilis detection tools.  
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