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Abstract 

METABOLIC ENGINEERING OF SERRATIA MARCESCENS 

By Qiang Yan 

Virginia Commonwealth University, 2018 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2018 

Major Director: Stephen S Fong, Ph.D. 

Associate Professor, Chemical and Life Science Engineering 

 

Chitin is the world‟s second most abundant polymer and contains in shrimp/crab 

shells as food waste. The potential value of the chitin biomass (e.g. food waste) is 

recently considered being ignored by landfill. Chitin can be a potential cheap carbon 

source for converting into value-added chemicals by microorganisms. Currently, one 

of the hurdles hindering utilizing chitin-based biomass feedstocks is the recalcitrant 

nature of chitin to hydrolyze. Wide ranges of chitinase enzymes are found natively in 

microorganisms that can potentially be used to effectively hydrolyze chitin to 

fermentable sugars. Serratia marcescens is a chitinolytic bacterium that harbors 

endogenous chitinase systems. Although S. marcescens chitinases are being 

characterized, studies regarding S. marcescens utilizing chitin as a substrate to 

produce chemical remain uncharacterized. 

 

With goals of characterzing S. marcescens chitinolytic capabilities and applying S. 

marcescens to chemical production from chitin, my dissertation main content includes 
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five chapters: 1) Chapter 1 highlights background information of chitin source, S. 

marcescens and potential metabolic engineering targets using chitin as a substrate; 2) 

Chapter 2 demonstrates that ChiR is a key regulator in regulating 9 chitinase-related 

genes in S. marcescens Db11 and manipulation of chiR can be a useful and efficient 

genetic target to enhance chitin utilization; 3) Chapter 3 reports the production of 

N-acetylneuraminic acid (Neu5Ac) from chitin by a bottom-up approach of 

engineering the nonconventional chitinolytic bacterium, Serratia marcescens, 

including native constitutive promoter characterization and transcriptional and 

translational pathway balancing; 4) Chapter 4 describes improvement of S. 

marcescens chitinolytic capability by an adaptive evolution approach; 5) Chapter 5 

elucidates S. marcescens intracellular metabolite profile using a constraint-based 

genome-scale metabolic model (iSR929) based on genomic annotation of S. 

marcescens Db11. Overall, the dissertation work is the first report of demonstrating 

the concept of chitin-based CBP using S. marcescens and the computational model 

and genetic molecular tools developed in this dissertation are valuable but not limited 

to design-build-test of S. marcescens for contributing to the field of biological science 

and metabolic engineering applications. 
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Chapter 1 Introduction and Background 

1.1 Introduction 

Chemicals produced through bioprocesses range from bulk commodity chemicals 

such as organic acids and biofuels to high-value specialty chemicals such as 

isoprenoid drugs. For specialty chemicals with high monetary value per unit, the 

emphasis has been discovery and production feasibility. For other chemicals where 

economic pressures constrain industrial scale processes, one area of focus has been on 

utilizing cheap, abundant starting materials (Hasunuma et al. 2013; Mosier et al. 

2005).  

 

Bio-based degradation of lignocellulosic biomass (cellulose, hemicelluloses and 

lignin) was a logical focus of initial research efforts as cellulose is the most abundant 

available carbon substrate and potential mechanisms for breaking down 

lignocellulosic material should be identifiable from cellulolytic organisms. As the 

world‟s second most abundant carbon substrate, chitin has many similarities 

compared to cellulose: highly abundant in nature (10
10

-10
11

 tons year
-1

), 

homopolymer of a simple sugar (N-acetylglucosamine), requiring specialized 

enzymes for degradation (chitinase). Due to their similarity, implementation of 

chitin-based biomass as carbon source for biochemical production can enhance the 

nature of the biorefinery industry including broadening the range of practicable 

biomass conversion and lowering the environmental impact of our chemical-based 
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industry. 

 

Aiming at developing chemical production bioprocess using chitin as a carbon source, 

this chapter mainly focuses on three aspects of background information: 1) chitin 

structure and its natural sources, 2) chitinases for degrading chitin into fermentable 

sugar, 3) potential chemical targets based on the chitin monomer structure similarities. 

1.2 Chitin-based biomass resources 

As the world‟s second most abundant polymer, chitin/chitosan occurring as a main 

component in seafood wastes (i.e., shrimp, crab, lobster shells) (Yan and Fong 2015). 

Annually, such organic marine waste pose a potential issue to the world and society: 

disposal has an associated high capital cost (e.g., $150/ton in Australia while dried 

shrimp cost $100–120/ton and estimated 1.5 million tons in Southeast Asia alone) 

(Dahiya et al. 2006). The potential value of the shell waste for the chemical industry 

is being ignored. 

1.3 Chitin structure 

Chitin, poly(β-(1→4)-N-acetyl-D-glucosamine(GlcNAc)), consists of 

N-acetylglucosamine by β-(1→4) glycosidic bond, shown in Figure 1. In nature, there 

are two different crystalline forms, α and β. α-chitin is by far the most abundant and 

the linear chains of GlcNAc unit are arranged in an antiparallel manner. On the other 

hand, β-chitin consists of parallel chains (Rinaudo 2006). 
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1.4 Chitinase resources, structures, and categories 

1.4.1 Chitinase resources 

Chitinases are enzymes that can degrade/break down the long chain chitin into 

chitooligosaccharides or the monomer (e.g. N-acetylglucosamine). Chitinases are 

encoded in a wide range of organisms including viruses, bacteria, fungi, insects, 

Figure 1 Structural of chitin, chitosan, and degradation products with specific 

enzymes and reaction. 
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higher plants, and animals for different purposes such as nutrition, morphogenesis, 

and defense against chitin-containing pathogens (Aam et al. 2010; Adrangi and 

Faramarzi 2013; Harti et al. 2012). 

1.4.2 Chitinase structures 

Chitinolytic bacteria generally produce multiple chitinases derived from different 

genes. Many chitinolytic bacteria produce only family 18 chitinases, whereas other 

bacteria such as the Streptomyces species produce family 19 chitinases in addition to 

family 18 chitinases (Dahiya et al. 2006). 

1.4.2.1 Catalytic domain 

Chitinases catalytic domains have a (β/α)8 TIM-barrel fold with crucial catalytic 

residues being located on β-strand number 4 (Vaaje-Kolstad et al. 2013). 

High-resolution 3D structures of bacterial chitinases from B. circulans (ChiA1) have 

been revealed by X-ray crystallography (Toratani et al. 2006). The catalytic domain of 

ChiA1 consists of a deep substrate-binding cleft on the top of its (β/α)8-barrel 

structure. A mechanism has been suggested by a hydrophobic stacking interaction 

between the aromatic residues in this cleft and bound oligosaccharide (Watanabe et al. 

2002; Watanabe et al. 2001). 

1.4.2.2 Chitin-binding domain 

Chitinases are usually multi-modular. For example, ChiA1 from B. circulans WL-12 

contains a C-terminal chitin-binding domain and two fibronectin III-like domains 

(FnIII-D-1 and FnIII-D-2) (Watanabe et al. 1990); S. marcescens contains an 

N-terminal chitin-binding domain with a fibronectin III domain (ChiA), or a 
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C-terminal chitin-binding domain (ChiB), or a C-terminal FnIII domain coupled with 

a downstream chitin-binding domain (ChiC) (Vaaje-Kolstad et al. 2013). The 

properties and roles of the chitin-binding domain have been addressed in several 

studies but remain partly unresolved. The typical mechanisms of a chitin-binding 

domain function to facilitate correct positioning of the catalytic domain, to contribute 

to processive action, and to facilitate local decrystallization of the substrate. Several 

studies have confirmed that the presence of these domains increases substrate affinity 

as well as the efficiency of chitin hydrolysis, especially for more crystalline chitin. 

1.4.2.3 Fibronectin III (FnIII) domains 

The FnIII domain is one of the most commonly found motifs in animal proteins, and it 

has been proposed that bacterial FnIII domains were acquired from animals by 

horizontal gene transfer. This domain shares barely detectable sequence identity with 

FnIII modules between ChiA from S. marcescens and ChiA1 from B. circulans (Jee et 

al. 2002; Watanabe et al. 1994). For example, the FnIII domain from S. 

marcescens ChiA consists of aromatic residues that contribute to substrate binding and 

substrate hydrolysis (Uchihashi et al. 2001). In contrast to the N-terminal domain of 

ChiA from S. marcescens, the structurally characterized FnIII domain of ChiA1 from B. 

circulans does not have exposed aromatic residues on its surface (Jee et al. 2002). 

Therefore, this domain does not appear to be directly involved in chitin binding. 

However, it is proposed that FnIII domains are important for enzyme activity, probably 
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by affecting the overall enzyme structure and the spatial localization of the catalytic 

domain and the chitin-binding domain. 

1.5 A model chitinolytic organism: Serratia marcescens 

Many organisms have been isolated and reported with capability of producing/secreting 

chitinase. Serratia marcescens is a Gram-negative, chitinolytic bacterium in the 

Enterobacteriaceae order. S. marcescens is known as an efficient chitin degrader 

(Monreal and Reese 1969; Vaaje-Kolstad et al. 2013). The wild-type Db11 strain of S. 

marcescens has 10 chitinase-related genes, of which 5 different chitinases have been 

identified, purified and characterized. One of these chitinases is an endo-acting 

non-processive chitinase (chiC) (Horn et al. 2006; Suzuki et al. 1999; Synstad et al. 

2008); two are processive exochitinases (chiA and chiB) that move along chitin in 

opposite directions (e.g. reducing and non-reducing ends) (Brurberg et al. 1995; 

Brurberg et al. 1994; Hult et al. 2005; Igarashi et al. 2014); one is a novel surface-active 

CBM33-type lytic polysaccharide monooxygenase (cbp21) that introduces chain 

breaks by oxidative cleavage (Suzuki et al. 1998; Vaaje-Kolstad et al. 2005; 

Vaaje-Kolstad et al. 2010; Watanabe et al. 1997); and one chitobiase (chb) (Kless et al. 

1989; Tews et al. 1996) that converts the oligomeric products from the other enzymes 

to monomeric N-acetylglucosamine.  

1.6 Chitin-based consolidated bioprocessing 
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Chitin-based consolidated bioprocessing (CBP) aims at one-step conversion of the 

naturally renewable biomass (i.e. shrimp/crab shells) into value-added chemical 

without protein purification processes. The CBP approach is mainly motivated by 

three benefits (Figure 2). First, it is a sustainable green approach that can 

significantly reduce greenhouse gas emissions (e.g. bioprocesses vs chemical 

processes). Second, many renewable feedstocks (shrimp/crab shells) are readily 

available, inexpensive resources that can lower material costs. Third, CBP is able to 

eliminate labor and capital cost of biomass processing by employing a single process 

step. Indeed, CBP is widely recognized as the ideal configuration for sustainable, 

low-cost hydrolysis and fermentation of cellulosic biomass. In principle, a CBP 

strategy can be applied to produce a broad range of chemicals from natural biomass. It 

requires degrading recalcitrant biomass substrates into solubilized sugars and 

metabolic intervention to direct metabolic flux toward desired products at high yield 

and titer (Yan and Fong 2015; Yan and Fong 2017a). With recent advances of 

Figure 2 Scheme of consolidated bioprocessing (CBP) from biorenewable feedstock 

biomass. 



19 
 

synthetic biology and systems biology, development of a non-model organism as a 

platform workhorse can be rationally designed and efficiently deployed (Yan and 

Fong 2016; Yan and Fong 2017a). 

1.7 Potential metabolic engineering targets 

Just as cellulose is viewed as a renewable starting carbon source for a variety of 

biochemical carbon sources, a variety of potential biochemical products can be made 

based on the monomers of chitin degradation, shown in Figure 3.  

1.7.1 Glycan biosynthesis 

In addition to being a structural component of homogeneous polysaccharides like 

chitin, GlcNAc is also a constituent of heterogeneous polysaccharides, such as murein 

and hyaluronic acid (also called hyaluronan or hyaluronate, HA). Murein is the basic 

component of the bacterial cell wall and consists of crosslinked peptide chains with 

repeating GlcNAc and muramic acid residues (Ashry and Aly 2007; Chen et al. 2010). 

 

HA is a linear heteropolysaccharide that is composed of repeating D-glucuronic acid 

and GlcNAc residues. HA is a major component of extracellular matrix and is 

extensively distributed in connective, epithelial and neutral tissues (Chien and Lee 

2007). HA performs numerous roles in cell motility, inflammation and cancer 

metastasis (Danishefsky et al. 1969). 

 

Heparin, which is produced by basophils and mast cells, consists of a 

variably-sulfated repeating disaccharide unit and acts as an anticoagulant. The major 
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repeating disaccharide unit of keratin sulfate, also called keratosulfate, is composed of 

galactose and sulfated GlcNAc. Keratin sulfate is distributed in the cornea, cartilage 

and bone and usually acts as a cushion in joints to absorb mechanical shock (Tsai et al. 

2001). 

 

Sialyl-lewis is a tetrasaccharide carbohydrate that is usually attached to O-glycans on 

the surface of cells. It is known to play a vital role in cell-to-cell recognition processes. 

It is also the means by which an egg attracts sperm-first to stick to it, then bond with it 

and eventually form a fetus. There are two types of sialyl-lewis, X and A. Sialyl-lewis 

X is [NeuAca2-3Galβ1-4(Fuca1-3)GlcNAc]. Defective synthesis of the sialyl-lewis X 

antigen results in immunodeficiency (leukocyte adhesion deficiency type 2 (Polley et 

al. 1991).  

1.7.2 Acetamido sugars 

GlcNAc is the precursor of modified acetamido sugars, such as 

N-acetylgalactosamine, sialic acid, N-acetylmuramic acid, 

N-acetylmannosaminuronate and several 6-deoxy-2-acetamido sugars, including 

bacillosamine and pseudaminic acid, which are core components of bacterial N-linked 

and O-linked glycans, respectively (Piacente et al. 2013). 

 

N-acetylneuraminic acid (Neu5Ac) is the most common sialic acid and exists as > 40 

structural derivatives in mammalian and avian species. Sialic acids are found at the 

end of sugar chains connected to the surfaces of cells and proteins, serving as 
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receptors for influenza viruses mediated endocytosis. The guanidyl derivative of 

Neu5Ac, Zanamivir, has been chemically synthesized as novel pharmaceutical agents 

to produce neuraminidase inhibitors are used to treat influenza infections.  

 

Because the Neu5Ac content in natural products is too low for the isolation of 

Neu5Ac with sufficient recovery and purity, novel processes had to be developed for 

the industrial production of this compound (Vimr and Lichtenteiger 2002). Enzymatic 

synthesis of Neu5Ac from N-acetylmannosamine (ManNAc) and pyruvate using 

Neu5Ac aldolase as a catalyst has been reported (Kang et al. 2012). 

1.7.3 Antibiotics biosynthesis 

Aminoglycoside antibiotics have been widely used clinically since the first use of 

streptomycin as an effective antibiotic in the treatment of tuberculosis. These 

antibiotics consist of a central aminocyclitol ring, such as streptamine, streptidine, or 

2-deoxystreptamine (2-DOS) (Song et al. 2013).  

 

Neomycin is a 4,5-disubstituted aminoglucoside antibiotic. It is typically used as a 

topical preparation, such as Neosporin. Because neomycin is not absorbed from the 

gastrointestinal tract and has been used as a preventive measure for hepatic 

encephalopathy. By killing bacteria in the intestinal tract, it keeps ammonia levels low 

and prevents hepatic encephalopathy, especially prior to GI surgery. The first 

glycosylation step of neomycin involved in the formation of pseudodisaccharides is 

the addition of N-acetylglucosamine to 2-DOS. NeoM from the neomycin gene cluster 
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was first characterized as the UDP-N-acetylglucosamineglycosyltransferase. 

 

Butirosin is a relatively new aminoglycosidic antibiotic complex active in vitro and in 

vivo against various pathogenic gram-positive and gram-negative bacteria. Butirosin 

includes two isomers, butirosin A and butirosin B, which differ only in the 

configuration at one carbon atom in the pentose moiety.  

 

 

Figure 3 Potential metabolic targets from N-acetylglucosamine as a carbon source. 
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Chapter 2 Study of ChiR function in Serratia marcescens and its application for 

improving 2,3-butanediol from crystal chitin 

Importance of this part of work: 

Since S. marcescens chitinases are highly active, they can be potentially used in the 

chemical production industry. In S. marcescens, ChiR is the only chitinase regulatory 

protein among 10-chitinase related proteins. Although one study partially reported 

that ChiR is essential for chitinase production, it is still unclear how ChiR regulates 

the other 9-chitinase genes transcription. Before my dissertation study there was no 

studies reporting about S. marcescens producing 2,3-butanediol from chitin. 

The conclusions and fundamental results derived from this part of work: 

First, a chiR overexpression (chiROE) strain and a chiR deletion (ΔchiR) strain were 

generated and characterized in terms of cellular growth, chitinase activity, and total 

secreted protein. Compared to the wild-type Db11 strain, the S. marcescens chiROE 

strain showed an increase in chitinase activity (2.14- to 6.31-fold increase). Increased 

transcriptional expression of chitinase-related genes was measured using real-time 

PCR, showing 2.12- to 10.93-fold increases. The S. marcescens ΔchiR strain showed 

decreases in chitinase activity (4.5- to 25-fold decrease), confirming ChiR‟s role as a 

positive regulator of chitinase expression. Finally, chiR overexpression was 

investigated as a means of increasing biochemical production (2,3-butanediol) from 

crystal chitin. The chiROE strain produced 1.13 ± 0.08 g/L 2,3-butanediol from 2% 

crystal chitin, a 2.83-fold improvement from the wild-type strain, indicating ChiR is 
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an important and useful genetic engineering target for enhancing chitin utilization in S. 

marcescens. 

2.1 Introduction 

S. marcescens is recognized as an efficient and promising native producer of 

2,3-butanediol (2,3-BD) (Ji et al. 2011). Recently, a high industry-level titer of 

meso-2,3-BD (152.0 g/L) was produced from S. marcescens by a fed-batch 

fermentation using sucrose as a substrate (Zhang et al. 2010a; Zhang et al. 2010b). In 

S. marcescens, the 2,3-BD synthetic pathway mainly involves three key enzymes, 

α-acetolactate synthase (ALS), α-acetolactate decarboxylase (ALDC), and 

2,3-butanediol dehydrogenase (BDH) (Zhang et al. 2016). Two molecules of pyruvate 

condense to yield one molecule of α-acetolactate and release one molecule of CO2 by 

ALS (BudA, SMDB11_2829), then α-acetolactate is decarboxylated into (3R)-acetoin 

by ALDC (BudB, SMDB11_2830). Under aerobic conditions, α-acetolactate readily 

undergoes non-enzymatic oxidative decarboxylation and forms diacetyl. Finally, 

(3R)-acetoin and diacetyl are reduced into 2,3-BD by BDH (SMDB11_1336). 

 

ChiR (SMDB11_2876) has previously been identified as a regulator of several 

chitinase genes and is a member of LysR-type transcriptional regulators (LTTRs) 

(Suzuki et al. 2001). LTTRs are thought to contact the α-subunit of RNA polymerase 

by binding to the characteristic sequence T-N11-A conserved upstream of the regulated 

promoter, which is usually an imperfect palindromic sequence (Burn et al. 1989; 

Gibson and Silhavy 1999; Maddocks and Oyston 2008). In an initial study of ChiR, S. 
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marcescens mutant strains (N1-N5) were generated by Tn5 insertion mutagenesis and 

did not form any clearing zone on YEM agar containing colloidal chitin, while other 

extracellular enzymes besides chitinases (e.g. proteases, lipases, nucleases) appeared 

to be produced normally, indicating the loss of the ability to form clearing zones on 

colloidal chitin is due to defects for chitinase production (Watanabe et al. 1997). 

Further genetic analysis of the Tn5 insertion mutants identified disruption of the ChiR 

open reading frame (ORF). Furthermore, the authors generated a Tn5 transposon 

mutant leading to an inactive chiR gene, and the mutant did not observe any chitinase 

activity. In vitro protein binding studies were conducted using gel mobility shift 

assays for 4 chitinase genes (chiA, chiB, chiC and cbp21) resulting in the 

determination that ChiR specifically binds to the intergenic region between chiR and 

cbp21 (Suzuki et al. 2001). Despite these results, several questions remain unclear 

related to ChiR function and chitin degradation in S. marcescens: 1) the function and 

relationship of ChiR to four potential chitinase-related genes (SMDB11_1083, 

SMDB11_1994, SMDB11_4602 and SMDB11_1190) is still unknown; 2) the 

transcriptional effects of ChiR on chitinase-related gene expression have not been 

studied; 3) the effect of modifying ChiR expression on cellular function and chitin 

utilization have not been studied. 

 

In this study, we developed an efficient genetic engineering strategy for genetic 

manipulation of S. marcescens with a goal of improving chitinolytic activity based on 

ChiR function. Our approach was to construct a S. marcescens chiR deletion strain 
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and a S. marcescens chiR overexpression strain to first explicitly study ChiR function 

in terms of growth phenotypes, chitinase activity, and chitinase gene expression. To 

evaluate ChiR function on chitin utilization and biochemical production, direct 

bioconversion of untreated chitin to 2,3-BD is demonstrated with highest production 

titers achieved in a chiR overexpression strain of S. marcescens. 

2.2 Materials and methods 

2.2.1 Strains and culture conditions 

The Serratia marcescens Db11 was purchased from the Caenorhabditis Genetics 

Center (Twin City, USA http://www.cbs.umn.edu/CGC) (Flyg et al. 1980). All strains 

used in this study can be found with detailed information in Table 1. The S. 

marcescens chiROE strain harbors plasmid pQY38 containing pUC19 backbone with 

an insertion of chiR gene under PampR promoter and a synthetic ribosome binding site 

(RBS). The S. marcescens ΔchiR strain was constructed by replacement of chiR gene 

with the nptII gene in its chromosomal DNA. E. coli NEB10β (New England Biolabs, 

Ipswich, USA) was used as the host to propagate pUC19 and pUN plasmid, construct 

pQY45 plasmid and store plasmids. All E. coli strains were grown in LB or SOC 

medium at 37°C and 250 rpm supplemented with 200 mg/L ampicillin or 40 mg/L 

kanamycin. In order to monitor growth phenotype changes, all the S. marcescens 

strains were grown in M9 medium with 0.1% yeast extract and 2% various carbon 

sources (glucose, N-acetylglucosamine, and colloidal chitin) at 30°C and 250 rpm. 

Chitinase assay experiments were analyzed by growing S. marcescens strains in LB or 

LB with crystal chitin or colloidal chitin. 

http://www.cbs.umn.edu/CGC
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Table 1 Strains and plasmids used in this study. 

Strain or plasmid Relevant genotype or description Source or 

reference(s) 

Strains   

E. coli NEB10β Δ(ara-leu) 7697 araD139  (StrR) New England Biolab 

S. marcescens Db11 Wild-type Caenorhabditis 

Genetics Center 

S. marcescens chiROE S. marcescens Db11 harbors plasmid pQY38 This study 

S. marcescens ΔchiR  chiR::nptII This study 

plasmids   

pUC19 ampr,  New England Biolab 

pQY38 pUC19 vector cloned with chiR gene under the promoter of ampR, 

ampr 

This study 

pUN nptII gene under promoter of ampR, kanr This study 

pQY45 pUC19 vector cloned with nptII gene under the promoter of ampR 

flanking around 1 kb homologous arms at upstream and 

downstream, ampr and kanr 

This study 

 

2.2.2 Plasmids 

Primers and DNA fragments sequence can be found in Table S1 of Supplementary 

Materials. For construction chiR overexpression vector, pUC19 backbone was 

amplified by PCR using primers pUC19bb-f and pUC19bb-r. The chiR gene insertion 

sequence was designed, synthesized and purchased as a double-stranded DNA 

fragment from IDT (Coralville, USA). A synthetic RBS 

(5′-TCGGAATTAAAATAAATATTAAGGAAAATATAAAC-3′) was designed at an 

arbitrary translation initiation rate (TIR) number of 60,000 using RBS calculator 

(https://www.denovodna.com/software). The pQY38 plasmid was assembled from 

two above-mentioned DNA fragments using isothermal assembly (Gibson et al. 2009). 

For construction of chiR deletion plasmid (pQY45), pUC19 was used as backbone; 

the kanamycin resistance marker (nptII) of the pUN plasmid was amplified by PCR 

https://www.denovodna.com/software
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using primers kanoverlap-f and kanoverlap-r; about 1 kb fragments upstream and 

downstream of chiR gene of S. marcescens genome was amplified by PCR using the 

two appropriate sets of primers (primer ha1-f/ha1-r and primer ha2-f/ha2-r). The four 

DNA fragments were assembled using isothermal assembly reaction, and then pQY45 

was generated. Briefly, the isothermal assembly reaction was conducted in total 

volume 20 μL with 0.05 pmol pUC19 backbones, 0.05 pmol insertion gblock, and 10 

μL Gibson assembly master mix. The reaction was incubated at 50°C for 1 h. After 

the reaction, 4 μL of the mixture was transformed into E. coli NEB10β by 

electroporation, and the recombinant strains were screened by LB medium agar plate 

containing 200 μg/ml ampicillin.  

2.2.3 Transformation of S. marcescens and allelic exchange 

The method for chromosomal deletion in S. marcescens relies on a successful delivery 

of double-stranded DNA in S. marcescens and endogenous recombinases can facilitate 

homologous recombination, similar to a previous study (Deng and Fong, 2010). To 

delete chiR gene of S. marcescens, the nptII gene with about 1 kb flanking regions 

was amplified by PCR from pQY45 plasmid and introduced into S. marcescens by 

electroporation. Up to 5 μL of the double-stranded DNA fragment (about 1 μg) 

amplified after PCR was added to 50 μL of S. marcescens competent cell and mixed 

immediately by tapping the electroporation cuvette (Biorad, USA). The cuvette was 

electroporated at 25 kV/cm using gene pulser (Biorad, Hercules, USA). After 

electroporation, 1 mL SOC medium was added and the cell recovered by incubating at 

30°C for 1 h. The 100 μL of recovered S. marcescens suspension was plated onto LB 
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plates supplemented with 320 μg/mL kanamycin and incubated at 30°C for two days. 

Kanamycin-resistant candidates were selected. Each candidate genomic DNA was 

isolated using a QIAamp
®
 DNA mini kit (QIAGEN, USA) according to the manual 

instruction. Colony PCR was performed with primers kan-f and kan-r. The 

chromosomal disruption was validated by Sanger sequencing (Eurofins Genomics, 

Louisville, USA). 

 

For chiR gene overexpression, pQY38 vector was transformed into S. marcescens by 

electroporation. The electroporation procedure was the same as mentioned above and 

ampicillin (> 800 μg/mL) resistant colonies were selected. Plasmids of positive 

transformants were extracted, and the chiR gene insertion was validated by 

sequencing using UNS7-f and UNS5-f primer (Eurofin genomics, Louisville, USA).  

2.2.4 Preparation of colloidal chitin 

Crystal chitin from shrimp shells was obtained from Sigma-Aldrich (C7170, USA). 

Colloidal chitin was prepared using the modified method of Roberts and 

Selitrennikoff as follows (Roberts and Selitrennikoff 1988). Initially, 5 g of chitin 

from shrimp shells (Sigma, C7170) was added slowly to 90 mL of 37% HCl (w/v). 

The mixture was vigorously stirred for 2 h. Then, 500 mL of 95% ethanol was added 

to this suspension and centrifuged at 6000 rpm for 20 min at 4ºC. The pellet was 

washed with distilled water until chitin achieved a neutral pH and was stored frozen 

until use. 
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2.2.5 Cell density measurement 

The culture density of S. marcescens strains was generally determined by measuring 

optical density at 600 nm on a Biomate3 UV/VIS spectrophotometer (Thermo, USA). 

The growth of S. marcescens on crystal chitin or colloidal chitin was determined by 

measuring cytoplasmic protein content by centrifuging 1 mL culture at 10,000×g for 5 

min. Pellets were re-suspended in fresh media and centrifuged at 10,000×g for 5 min 

again. Sediments were dissolved and lysis in 200 μL 1×Bugbuster protein extraction 

reagent (EMD Millipore, USA). After 20 min incubation, the lysate was centrifuged at 

10,000×g for 5 min, and the proteins in the supernatant were measured by the 

Bradford protein assay (Bradford 1976). Using a calibration curve to correlate the 

overall protein content with dry cell weight (DCW), the measurements were 

converted to dry weight; the correlation factor was DCW (g/L) = 1.20 ± 0.03 × 

Protein (g/L)    

2.2.6 Chitinase activity assay 

Chitinase activity assays were measured according to the manual instruction of a 

chitinase assay kit (Sigma-Aldrich, CS0980) (Tronsmo and Harman 1993). 

Endochitinase activity was detected using 0.2 mg/mL 4-Nitrophenyl 

β-D-N,N′,N′′-triacetylchitotriose as a substrate; β-N-acetylglucosaminidase activity 

was determined using 0.5 mg/mL 4-Nitrophenyl N-acetyl-β-D-glucosaminide as a 

substrate; chitobiosidase activity was measured using 1 mg/ml 4-Nitrophenyl 

N,N′-diacetyl-β-D-chitobioside as a substrate. Specifically, 1 mL cell culture was 

centrifuged at 10,000 × g for 5 min. Each reaction contained 10 μL supernatant 
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samples and 90 μL substrate in chitinase assay buffer (Sigma-Aldrich, USA). The 

reaction was incubated in a 96-well plate at 37°C for 30 min and was stopped by 

adding 200 μL 0.4 M Na2CO3 solution. The adsorption at 405 nm was conducted 

immediately to measure the release of 4-Nitrophenol. Chitinase activity was defined 

as one unit of activity will release 1.0 μmole of 4-Nitrophenol from the appropriate 

substrate per minute at pH 4.8 at 37°C. 

2.2.7 RNA preparation and real-time PCR 

In order to study transcriptional level changes in the culture of the three S. marcescens 

strains after overexpression of chiR gene and after chiR gene deletion, gene 

expression was measured using real-time PCR. All the S. marcescens strains were 

grown in M9 medium supplemented with 0.1% yeast extract and 2% chitin. All cells 

were harvested at the mid-log growth phase (OD600 0.4 around 2.5 h). Primer 

sequences for real-time PCR experiments are available in Table S2 of the 

Supplementary Material. The expression levels of 10 different chitinase-related genes 

were measured along with the level of expression of one housekeeping gene (luxS, 

SMDB11_0167) that was used as a control, and all transcript levels were normalized 

to the level of this housekeeping gene. 

2.2.8 Prediction of chitinase-related gene promoter and its potential binding sites 

Prediction of each chitinase-related gene promoter region was conducted based on 

each upstream intergenic region using online software BPROM 

(http://www.softberry.com/berry.phtml). The promoter region was predicted based 

upon bacterial sigma 70 RNAP recognition sites (Solovyev and Salamov 2011). Each 

http://www.softberry.com/berry.phtml
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potential binding site region was manually found based on a part of palindromic 

T-N11-A motif in each gene upstream intergenic region. 

2.2.9 2,3-BD fermentation 

S. marcescens pre-culture was performed in LB medium at 30°C and 250 rpm for 

overnight. Then, 10% (v/v) seed culture was inoculated at 150 mL fermentation 

medium with a 250 mL Erlenmeyer flask at 30°C with different initial pH value and 

shaking speed. The fermentation medium contains M9 minimum medium with 0.1% 

yeast extract and 20 g/L different carbon sources (glucose, N-acetyglucosamine or 

crystal chitin). Glucose and N-acetylglucosamine were used to investigate 2,3-BD 

production in S. marcescens as two carbon sources. In order to evaluate S. marcescens 

production of 2,3-BD from chitin, the fermentation was conducted under M9 medium 

with 1% yeast extract, 5 g/L N-acetylglucosamine and 20 g/L crystal chitin at pH 7.5, 

100 rpm and 30°C. 

2.2.10 Detection of 2,3-BD, sugar and byproducts 

Sugar, 2,3-BD and other byproducts were detected using an HPLC system (Dionex 

Ultimate3000) equipped with Bio-Rad HPX-87H ion exclusion column. The mobile 

phase was 5 mM H2SO4 at the rate of 0.6 mL/min and RI, and UV detectors 

(wavelength at 199 nm) were used.  

2.3 Results 

2.3.1 Construction S. marcescens chiR deletion strain and chiR overexpression 

strain 

In order to generate a S. marcescens chromosomal chiR deletion strain, a 
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PCR-targeted DNA fragment was introduced in S. marcescens competent cells to 

replace the chromosomal chiR gene with a kanamycin resistance gene. Native 

recombinases in S. marcescens were used to facilitate recombination. To address the 

problem of degradation of extracellular DNA by nucleases in S. marcescens (Benedik 

and Strych 1998; Friedholff et al. 1994; Miller et al. 1994), long nucleotide regions (> 

1 kb) homologous to the target chiR gene were used. About 1000-bp fragments with 

homology upstream and downstream of the chiR gene were amplified from the S. 

marcescens Db11 genome. The kanamycin resistance gene under PampR promoter was 

amplified from pUN plasmid by high-fidelity PCR and used for replacement of the 

native gene and selection of transformants. The DNA fragments were assembled with 

the pUC19 backbone, generating pQY45 plasmid (Figure S1A), which was 

transformed into E. coli NEB10β. To disrupt chiR, the insertion fragment was 

amplified by PCR and transformed into S. marcescens. After transformation, cells 

were incubated on plates containing 320 μg/mL kanamycin for two days. There were 

no colonies found on the wild-type plates, however, 7 colonies were found on the 

chiR knockout plates with a transformation efficiency of ~5 transformants/μg DNA. 

Subsequently, 2 transformants were selected and grown on kanamycin LB liquid 

medium with both remaining resistant for 21 generations of serial passage, indicating 

a stable gene insertion/disruption occurred. These chiR deletion strains were 

confirmed by both PCR and DNA sequencing. PCR using genomic DNA of S. 

marcescens chiR deletion strain yielded a single 0.8-kb band, which corresponds to 

the expected size of a DNA fragment containing the nptII gene. In contrast, PCR 
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using genomic DNA of S. marcescens Db11 did not show a clear band using the same 

pair of primer (Figure S1B). These results indicated that chiR gene was successfully 

inactivated and kanamycin-resistance gene was swapped with the chiR region. DNA 

sequencing data (primer kan-f and kan-r) also confirmed that chiR gene of S. 

marcescens Db11 was successfully deleted. 

 

To create a S. marcescens chiR overexpression strain, a shuttle vector, pQY38, was 

constructed by inserting a constitutive ampicillin promoter (PampR) and chiR gene into 

the pUC19 plasmid backbone (Figure S1C). After transformation with pQY38 

(harbors ampicillin resistance), 105 colonies were found on an ampicillin plate 

yielding an efficiency of ~1×10
5
 transformants/μg plasmid DNA. We grew one 

transformant on ampicillin for 100 generations by serial passage and it remained 

resistant to ampicillin, indicating a stable replication during cell propagation. Overall, 

we successfully generated a S. marcescens chiR overexpression strain (designated as S. 

marcescens chiROE) and a S. marcescens chiR deletion strain (designated as S. 

marcescens ΔchiR).  

2.3.2 Growth phenotypes 

In order to characterize growth phenotypic changes among the three S. marcescens 

strains (wild-type Db11, ΔchiR, and chiROE), cell growth was monitored using the 

minimum medium (M9) supplemented with various carbon sources such as 

N-acetylglucosamine, glucose, and colloidal chitin. N-acetylglucosamine and glucose 

were chosen as a carbon source because S. marcescens exhibits catabolite repression 
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on different carbon sources (Monreal and Reese 1969; Watanabe et al. 1997). For cell 

culture with N-acetylglucosamine and glucose, the S. marcescens chiROE exhibited a 

decreased cell yield, while the S. marcescens ΔchiR had an increased cell yield 

compared to S. marcescens Db11 (Figure 4A). For cell growth on colloidal chitin 

(Figure 4B), the S. marcescens ΔchiR strain exhibited severely inhibited growth and a 

maximum cell lysate protein of 0.21 g/L, while both the S. marcescens Db11 and the S. 

marcescens chiROE were able to grow on colloidal chitin with maximum overall cell 

lysate protein concentrations of 1.42 g/L and 1.25 g/L, respectively. Colloidal chitin 

creates an opaque suspension so protein concentration is used as a proxy for cell 

biomass since optical density cannot be used. 

2.3.3 Chitinase activity and overall secreted protein changes 

In order to determine chitinolytic capability changes among the three S. marcescens 

strains, we measured secreted chitinase activity corresponding to the three different 

Figure 4 Time profile of cell growth of three S. marcescens strains. (A) Optical 

density OD600 of S. marcescens Db11 (circle), S. marcescens chiROE (triangle), 

and S. marcescens ΔchiR (square) on glucose (glc, filled) and N-acetylglucosamine 

(GlcNAc, unfilled) in a flask culture at 30°C for 48 h; (B) Overall protein 

concentration of cell lysate of S. marcecens Db11 (filled circle), S. marcescens 

chiROE (open circle), and S. marcescens ΔchiR (inverted triangle) using colloidal 

chitin as sole carbon in a flask culture at 30°C for 180 h. 
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chitinase mechanisms: endochitinase activity, chitobiosidase activity, and 

β-N-acetylglucosaminidase activity. Since S. marcescens chitinases are induced by the 

presence of crystal chitin or colloidal chitin, the three S. marcescens strains secreted 

chitinase activity was tested under three different culture conditions, plain LB 

medium and LB medium supplemented with either colloidal chitin or crystal chitin. 

For endochitinase activity, the S. marcescens chiROE strain showed increased activity 

compared to the wild-type Db11 strain (1.93-, 1.84-, and 2.23-fold increases when 

grown on crystal chitin, colloidal chitin or plain LB, respectively). The S. marcescens 

ΔchiR strain showed a significant reduction in endochitinase activity (22.7-, 14.3-, and 

10.0-fold reduction on crystal chitin, colloidal chitin, and LB, respectively) compared 

to the wild-type Db11 (Figure 5A). For chitobiosidase activity, the S. marcescens 

chiROE showed increased activity compared to the S. marcescens Db11 with 1.40-, 

1.39-, and 2.14-fold increases on crystal chitin, colloidal chitin or plain LB, 

respectively, while the ΔchiR strain exhibited decreased activity by 25.0-, 25.0- and 

10.0-fold from the wild-type Db11 for growth on crystal chitin, colloidal chitin, and 

LB, respectively (Figure 5B). For β-N-acetylglucosaminidase activity, the chiROE 

strain showed increased activity (2.46-, 3.88-, and 6.31-fold increases on crystal chitin, 

colloidal chitin, or LB, respectively) compared to the wild-type Db11. The S. 

marcescens ΔchiR strain showed decreased β-N-acetylglucosaminidase activity (4.54-, 

2.63-, and 3.45-fold decreases on crystal chitin, colloidal chitin, or LB, respectively) 

compared to the wild-type Db11 (Figure 5C). In addition, we observed an increase in 

the overall amount of secreted protein in the S. marcescens chiROE strain and a 
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decrease in overall secreted protein in the S. marcescens ΔchiR strain as compared to 

S. marcescens Db11 (Figure 5D). The total secreted protein concentration for the S. 

marcescens chiROE strain was 1.46-, 2.03- and 2.41-fold higher than the Db11 strain 

for growth on crystal chitin, colloidal chitin, or LB, respectively. Decreases of 5.88-, 

3.13-, and 2.38-fold were observed in overall secreted protein under crystal chitin, 

colloidal chitin or LB, respectively for the ΔchiR strain when compared to the 

wild-type Db11. Overall, the S. marcescens chiROE strain showed increased chitinase 

activity while the S. marcescens ΔchiR strain showed decreased chitinase activity 

compared to S. marcescens Db11.  

2.3.4 Regulation of chitinase gene expression by ChiR 

In order to understand the role of ChiR in the regulation of chitinase genes in S. 

marcescens, 10 chitinase-related genes (including chiR) were examined by real-time 

PCR using the wild-type Db11 strain, the ΔchiR strain, and the chiROE strain (Table 

2, Table S5, and Table S6).  
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In the chiROE strain, chiR mRNA levels increased 593.59-fold as compared to the 

wild-type strain, as expected. Concurrently, the 9 chitinase-related genes showed 

significantly increased expression ranging from 2.12- to 10.93-fold increases (Table 

2). This result showed that ChiR is an activator by upregulating all chitinase-related 

genes in S. marcescens. Five genes (SMDB11_0468: endochitinase, SMDB11_2875: 

exochitinase, SMDB11_2877: chitin binding protein, SMDB11_1994: chitinase, and 

Figure 5 Specific chitinase activity and secreted protein of three S. marcescens 

strains: the ΔchiR strain, the wild-type Db11, and the chiROE strain. (A) specific 

endochitinase activity (U/g cell). (B) specific chitobiosidase activity (U/g cell). (C) 

Specific β-N-acetylglucosaminidase activity (U/g cell). (D) Specific protein 

secretion (mg protein/g cell) with chitin (black filled bar), colloidal chitin (unfilled 

bar), and plain LB (gray filled bar). 
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SMDB11_4243: exochitinase) showed greater than 5-fold increases in expression 

compared to the wild-type Db11. For the ΔchiR strain, chiR mRNA levels were not 

detected, as expected, and expression levels of the 9 chitinase-related genes were 

significantly decreased by 1.14- to 4.35-fold compared to the S. marcescens Db11 

(Table 2). The one gene in the chiR operon (cbp21, SMDB11_2877) exhibited a 

4.35-fold decrease in expression compared to the wild-type strain. Overall, these 

results demonstrated ChiR is a positive regulator of all chitinase-related genes in S. 

marcescens and were consistent with observed changes in chitinase activity conducted 

by assays. 

Table 2 Chitinase-related gene expression in S. marcescens Db11, chiROE and ΔchiR 

by real-time PCR. 

Gene 

no. 

 

Locus 

 

Gene product 

 

Estimated 

binding site 

Fold-change 

Db11 chiROE ΔchiR 

1 SMDB11_4243 Exo-chitinase (chiA) 7 binding 

sites 

1.00±0.10 10.93±0.70 0.54±0.08 

2 SMDB11_2875 Exo-chitinase (chiB) 3 binding 

sites 

1.00±0.15 5.28±0.13 0.87±0.10 

3 SMDB11_0468 Endo-acting 

non-processive chitinase 

(chiC) 

None 1.00±0.05 9.32±0.96 0.56±0.16 

4 SMDB11_2876 LysR-family 

transcriptional regulator 

(chiR) 

1 binding site 1.00±0.12 593.59±41.01 0.00±0.00 

5 SMDB11_2877 Chitin binding protein 

(cbp21) 

6 binding 

sites 

1.00±0.13 9.23±0.78 0.23±0.03 

6 SMDB11_0477 Chitobiase (chb) 1 binding site 1.00±0.09 3.78±0.19 0.76±0.11 

7 SMDB11_1083 Putative chitin-binding 

protein 

None 1.00±0.08 2.12±0.11 0.88±0.25 

8 SMDB11_1994 Chitinase 2 binding 

sites 

1.00±0.09 6.74±0.25 0.82±0.11 

9 SMDB11_4602 Putative chitobiase 1 binding site 1.00±0.09 3.09±0.24 0.83±0.17 

10 SMDB11_1190 N-beta 1 binding site 1.00±0.05 2.36±0.21 0.82±0.12 
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acetylhexosaminidase 

(NagZ) 

 

2.3.5 Direct 2,3-butanediol production from crystal chitin 

An initial baseline of 2,3-butanediol production in the S. marcescens Db11 was 

conducted for growth on glucose and N-acetylglucosamine. There was no difference 

between cell growth using glucose and N-acetylglucosamine (Figure S2A). The 

starting concentration of 20 g/L glucose or 20 g/L N-acetylglucosamine was depleted 

by around 30 h (Figure S2B). S. marcescens Db11 was able to produce 3.90 ± 0.03 

g/L 2,3-BD from N-acetylglucosamine and 5.16 ± 0.05 g/L 2,3-BD from glucose 

(Figure S2C), indicating that N-acetyglucosamine can be used a carbon source by S. 

marcescens Db11. There was almost no difference at 2,3-BD production among the 

ΔchiR strain (3.82 ± 0.07 g/L), the chiROE strain (3.65 ± 0.05 g/L) and the wild-type 

strain (3.90 ± 0.03 g/L) when grown in either 20 g/L N-acetylglucosamine, implying 

that ChiR does not affect the 2,3-BD synthetic pathway. 

 

To test the utility of overexpressing ChiR for a chitin-based consolidated bioprocess, 

untreated chitin was used as the carbon source for producing 2,3-butanediol using the 

wild-type Db11 strain and the chiROE strain. Cell growth, chitinase activity, total 

secreted protein and 2,3-BD production were monitored during a 3-day fermentation. 

Cell yields for the two strains were comparable at the end of fermentation (the 

chiROE strain cell yield of 1.03 ± 0.05 g/L and the wild-type Db11 cell yield of 1.22 ± 

0.15 g/L) (Figure S3A). However, the chiROE strain showed clear increases in 
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endochitinase, chitobiosidase, and β-N-acetylglucosaminidase activity with 3-, 1.75-, 

and 3.26-fold increases, respectively, compared to the wild-type Db11 (Figure S3B). 

A final 2.93-fold improvement in 2,3-BD titer (1.13 ± 0.08 g/L) was achieved in the S. 

marcescens chiROE compared to 2,3-BD titer (0.4 ± 0.05 g/L) for the S. marcescens 

Db11 (Figure 6), indicating an improvement in utilization chitin as carbon source 

after overexpression chiR. 

 

Figure 6 Production of 2,3-BD using the S. marcescens Db11 (filled circle) and the S. 

marcescens chiROE strain (unfilled circle) under M9 medium supplemented with 1% 

yeast extract and 2% chitin at 30°C and 100 rpm. 

2.4 Discussion 

Due to the abundance of chitin in nature and its availability as an industrial waste 

product, use of chitinases and chitinolytic organisms have the potential to be used for 
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consolidated bioprocessing applications for biochemical production such as biofuels 

or pharmaceuticals (Aam et al. 2010; Dahiya et al. 2006; Yan and Fong 2015). S. 

marcescens has been an interesting organism for studying chitin degradation due to its 

native chitinolytic capabilities. Among the 10 chitinase-related genes known in the S. 

marcescens Db11, one regulatory protein, ChiR, was previously identified as a 

potential positive regulator of chitinase genes (Watanabe et al. 1997; (Suzuki et al. 

2001). In this study, we studied ChiR function by the construction of a chiR 

overexpression (chiROE) strain and a chiR deletion (ΔchiR) strain. We found that 

ChiR significantly improved the expression of chitinolytic enzymes in S. marcescens. 

The overexpression strain, chiROE, had increased chitinase activity ranging from 

2.14- to 6.13-fold higher than the wild-type Db11 and gene expression of 9 

chitinase-related genes also increased 2.12- to 10.93-fold (compared to the wild-type 

Db11). Both activity and transcription data implied ChiR can be a promising target for 

enhancing chitin utilization. The chiROE strain was then grown on untreated crystal 

chitin and produced a maximum titer of 1.13 ± 0.08 g/L of 2,3-butanediol, a 2.93-fold 

improvement over the wild-type strain. To our knowledge, this is the first report of 

direct bioconversion of 2,3-butanediol from untreated chitin in S. marcescens. 

 

Previous studies using mutagenesis and interaction assays have suggested that ChiR is 

a potential positive regulatory protein of chitinases in S. marcescens with proposing a 

regulatory cascade where ChiR positioned as an early phase regulator. In our study, 

the function of ChiR was tested directly by employing genetic tools to delete and 
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overexpress chiR. We reported 9 chitinase-related gene expression level changes in a 

chiR overexpression strain and a chiR deletion strain compared to the wild-type strain 

and corresponding chitinase activity. The S. marcescens chiROE strain was able to 

increase all 10 chitinase-related gene transcription levels. In our study, we found that 

4 genes (chiA, chiB, cbp21, and SMDB11_1994) that possess more than 2 binding 

sites had more than 5-fold increases in transcription level (Table 2 and Table S3) after 

chiR overexpression. It was also found that another 4 genes (chb, SMDB11_1083, 

SMDB11_4602, and SMDB11_1190) showed 2.12- to 3.78-fold increased expression 

and have less than 2 potential ChiR binding sites. One exception to the ChiR binding 

is the chiC gene that had 9.32-fold increased expression but no identifiable ChiR 

binding site. These data seem to indicate that ChiR functions in a more direct manner 

for regulating chitinase-related gene expression rather triggering a regulatory cascade. 

The real-time PCR data also identified a potential novel chitinase SMDB11_1994 that 

is annotated to encode a GH18 protein whose role and function is still uncharacterized. 

A protein blast showed this protein is 87% similarity to ChiD (PDB: 4NZC) from 

Serratia proteamaculans that is a chitinase with both hydrolytic and 

transglycosylation functions (Madhuprakash et al. 2013).  

 

The overall physiological effect of manipulating ChiR was considered. The chiROE 

strain had lower biomass/cell yields when grown on glucose or N-acetylglucosamine 

compared to the wild-type Db11 and the ΔchiR strain. Additionally, the ΔchiR strain 

had biomass/cell yields that were increased by 1.30-fold compared to the wild-type 
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strain for growth on glucose or N-acetylglucosamine. In the chiROE strain, 

endochitinase, chitobiosidase and β-N-acetylglucosaminidase activity per cell were 

roughly 2.23-, 2.14-, and 6.31-fold higher, respectively, compared to the wild-type 

strain. The chiROE strain also had 2.41-fold higher total secreted protein per cell as 

compared to the wild-type strain. This increase in chitinase activity and in secreted 

overall protein concentration implies that an increased metabolic burden of producing 

chitinases production may decrease the availability of metabolic resources to produce 

basic biomass components (Wu et al. 2016); the chiROE strain likely has an increased 

metabolic burden (associated with chitinase production) while the ΔchiR strain likely 

has a reduced metabolic burden. These results would be consistent with the changes in 

biomass/cell yield for the chiROE and ΔchiR strains. 

 

Chitin and colloidal chitin have an induction effect on chitinase production; however, 

their regulatory roles are still unclear. We tested S. marcescens Db11 transcriptomics 

(unpublished data) when grown at LB, LB plus colloidal chitin and LB plus chitin. 

First, we found that chiR gene mRNA level did not change significantly in these three 

conditions. Second, transcript levels for most chitinase-related genes showed no 

significant difference among the three growth conditions. One exception is that cbp21 

mRNA level increased more than 2-fold under LB with chitin/colloidal chitin 

compared to that grown under plain LB medium. Furthermore, in terms of overall 

protein secretion at the three growth conditions, there was almost no overall secreted 

protein changes of the ΔchiR strain, while an ascending trend of secreted overall 
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protein from plain LB, LB plus colloidal chitin, and LB plus chitin were observed in 

both the chiROE strain and the wild-type strain (Figure 5D). One explanation 

regarding the relationship between the observance of chitinase activities changes and 

the measurement of mRNA level changes under three conditions is that chitin or 

colloidal chitin may assist in inducing chitinase secretion instead of inducing chitinase 

overexpression. 

 

Recently, genetic engineering of regulatory proteins for enhancing cellulase or 

chitinase production has been employed with various degrees of success (Aghcheh et 

al. 2014; Häkkinen et al. 2014; Portnoy et al. 2011; Wang et al. 2013). For instance, 

Deng and Fong demonstrated that CelR is a negative regulator of cellulose production 

in Thermobifida fusca and a recombinant CelR deletion strain enabled an 

enhancement of specific cellulase activity by 16.70-fold (Deng and Fong 2010). 

Multiple regulatory targets were investigated and applied to improve cellulase 

production in Trichoderma reesi (Aghcheh et al. 2014; Häkkinen et al. 2014; Portnoy 

et al. 2011; Wang et al. 2013). Overexpression of a single regulator gene, deletion of a 

single regulator gene or a combinational method can result in increasing cellulase 

activity range from 2- to 5-fold, shown in Table S7. A study that investigated tuning 

multiple regulator expression levels in Penicillium oxolicum. After overexpression of 

clrB and deletion of bgl2 and creA, the cellulase activity increased from 10- to 50-fold 

on different substrates (Yao et al. 2015). In our study, we demonstrated that a chiR 

overexpression strain was able to increase chitinase activity 2.14- to 6.31-fold 
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compared to the wild-type S. marcescens Db11 strain as a direct result of increasing 

mRNA levels for 9 chitinase-related genes. 

 

Despite high levels of interest and research effort to developing bioprocesses using 

renewable feedstock, very few examples exist that demonstrate direct utilization of 

untreated feedstock. In the present study, we report direct bioconversion of untreated 

crystal chitin to 2,3-butanediol with a maximum titer of 1.13 ± 0.08 g/L from 3 days 

batch fermentation in a ChiR overexpression strain of S. marcescens. Recently, 

several attempts have been made to utilize various natural biorenewable resources for 

producing 2,3-BD, shown in Table 3. Jiang et al. used diluted sulfide acid to 

hydrolyze Jatropha hulls, resulting in a 37.3 g/L of reducing sugar. After 60 h 

fermentation, 4.11 g/L 2,3-BD was produced with a yield of 0.11 g/g in a 

non-cellulolytic native producer, Klebsiella oxytoca (Jiang et al. 2012). In another 

study, Shin introduced a synthetic 2,3-BD pathway and overexpression of a 

periplasmic cellodextrinase (Ced3) in E. coli. Fermentation was conducted coupled 

with simultaneous saccharification (SSF) and a maximum titer 4.2 g/L 2,3-BD was 

obtained after 24 h fermentation with a yield of 0.84 g/g from cellodextrin (Shin et al. 

2012). Another novel concept was demonstrated by using a cyanobacterium to 

produce 2,3-BD through photosynthetic pathways. In their initial study, a synthetic 

2,3-BD synthetic pathway was introduced in Synechococcus elongatus controlled by 

an IPTG inducible promoter PLlacO1. As a proof of concept, 0.13 g/L 2,3-BD was 

produced from a recombinant S. elongates (Nozzi and Atsumi 2015). A follow-up 
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study focused on combinational optimization of sugar/light supplementation and cell 

density yielding a maximum titer of 3.0 g/L 2,3-BD after 10 days fermentation 

(McEwen et al. 2016). In our initial study, the chiROE strain was able to produce 1.13 

± 0.08 g/L 2,3-BD from 2% untreated crystal chitin, indicating a promising CBP 

scheme. This is the first study reported the feasibility using chitin as a feedstock for 

2,3-BD production in S. marcescens.  

Table 3 Microbial production of 2,3-butanediol production from biomass feedstocks. 

Substrate Microorganisms Titer (g/L) Yield (g/L) Time 

(h) 

References 

Light + glucose Synechococcus elongatus 3.0 n.p. 10 days (McEwen et al. 

2016) 

Light S. elongatus 0.12 n.p. n.p. (Nozzi and Atsumi 

2015) 

Lignocellulosic biomass 

hydrolysate 

Klebsiella oxytoca 4.11 0.11 60 h (Jiang et al. 2012) 

Lignocellulosic biomass 

hydrolysate 

E. coli 4.2 0.84 24 h (Shin et al. 2012) 

Crystal chitin S. marcescens Db11 0.40 0.02 72 h This study 

Crystal chitin S.marcescens chiROE 1.13 0.06 72 h This study 

 

Future studies can be made mainly based on two directions. First, this study 

demonstrates a proof-of-concept in producing 2,3-BD from chitin, however the 

2,3-BD titer remains low, so future work can focus on improvements to increase 

2,3-BD titer. For instance, increasing substrate concentration and feeding strategies 

can be employed to improve 2,3-BD titer. Combinational approaches of strain 

improvements can be made: first, adaptive evolution techniques can be applied to 

obtain a genomically stable mutant that is capable of fast decomposition of chitin; 

second, metabolic engineering strategies can be made to delete competitive metabolic 
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pathways (i.e. acetic acid, ethanol, lactic acid) that drain the metabolic flux away from 

2,3-BD. Second, from an industrial application perspective, an efficient and 

economical pretreatment process from shrimp/crab shells to crystal chitin needs to be 

developed, since purified crystal chitin is not readily available in nature. Chitin can be 

extracted directly from shrimp/crab shells after removal of protein, calcium and low 

molecular weight compounds by treatment with sodium hydroxide and hydrochloric 

acid. The process kinetics of both demineralization and deproteinization have been 

previously considered and Percot et al. demonstrated that an optimization of the 

pretreatment parameters (e.g. concentration, time, temperature) can yield a low 

residual content of calcium (below 0.01%) and a high degree of acetylation (DA) 

(almost 95%) (Percot et al. 2003) that is suitable for downstream usage. In another 

method, Aye and Stevens investigated extraction of chitin from fresh shrimp shells 

through grinding and sieving (Aye and Stevens 2004). These authors demonstrated 

that the chitin after the dry screening method is ready to be used as a feedstock for an 

animal. These pretreatment methods without additional enzymes can contribute to 

developing a chitin biorefinery process from food wastes.  

2.5 Conclusion 

Microbial utilization of chitin, a potential renewable biomass feedstock, is being 

pursued as a means of developing novel consolidated bioprocessing for the 

production of chemicals. Serratia marcescens is a gram-negative bacterium that is 

known for its chitinolytic capability and as a native 2,3-butanediol producer. In S. 

marcescens, ChiR has been suggested to be a positive regulator of chitinase 
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production. In this study, we aim to understand the effect of ChiR in regulating nine 

chitinase-related genes in S. marcescens Db11 and demonstrate manipulation 

of chiR as a useful and efficient genetic target to enhance chitin utilization. First, 

a chiRoverexpression (chiROE) strain and a chiR deletion (ΔchiR) strain were 

generated and characterized in terms of cellular growth, chitinase activity, and total 

secreted protein. Compared to the wild-type Db11 strain, the S. marcescens 

chiROE strain showed an increase in chitinase activity (2.14- to 6.31-fold increase). 

Increased transcriptional expression of chitinase-related genes was measured using 

real-time PCR, showing 2.12- to 10.93-fold increases. The S. marcescens 

ΔchiR strain showed decreases in chitinase activity (4.5- to 25-fold decrease), 

confirming ChiR‟s role as a positive regulator of chitinase expression. 

Finally, chiRoverexpression was investigated as a means of increasing biochemical 

production (2,3-butanediol) from crystal chitin. The chiROE strain produced 

1.13 ± 0.08 g/L 2,3-butanediol from 2% crystal chitin, a 2.83-fold improvement 

from the wild-type strain, indicating ChiR is an important and useful genetic 

engineering target for enhancing chitin utilization in S. marcescens. 
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Chapter 3 Design and modularized optimization of one-step production of 

N-acetylneuraminic acid from chitin in Serratia marcescens  

Importance of this part of work: 

Since I have successfully developed shuttle vectors for overexpression of genes in S. 

marcescens and demonstrated that S. marcescens can directly utilize chitin to produce 

chemicals, this part of work is to demonstrate a proof-of-concept of producing novel 

chemcials from chitin by introducing exogenous pathway genes in S. marcescens. 

Prior to this dissertation work, there is few research reporting about producing 

N-acetylneuraminic acid (chemical target) from chitin. Here, I demonstrate an 

engineered bioprocess to produce N-acetylneuraminic acid (Neu5Ac) directly from 

chitin using the chitinolytic bacterium, Serratia marcescens by selecting and 

characterizing promoters, characterization of heterologous enzyme activity, and 

optimization of pathway fluxes. 

The conclusions and fundamental results derived from this part of work: 

By generating RNA-Seq data for S. marcescens growth in different carbon-limited 

conditions (glucose, N-acetylglucosamine and glycerol), 12 promoters with varying 

strength were identified and characterized to implement for transcriptional control. 

Neu5Ac production was initially engineered into S. marcescens through heterologous 

expression of N-acetyglucosamine 2-epimerase (slr1975) and N-acetylneuraminic 

acid aldolase (nanA). Activity of both genes was characterized in vitro for kinetics and 

in vivo expression using promoters identified in this study. Optimization of Neu5Ac 
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production was accomplished by balancing pathways fluxes through promoter 

swapping and replacing the reversible nanA with the irreversible gene neuB. The 

optimized recombinant strain PT5-slr1975-PrplJ-neuB was able to produce 0.48 g/L 

Neu5Ac from 20 g/L N-acetylglucosamine, and 0.30 g/L Neu5Ac from 5 g/L crystal 

chitin. These results represent the first demonstration of direct conversion of crystal 

chitin to N-acetylneuraminic acid and illustrate the potential utility of S. marcescens 

as a chitinolytic bioprocess organism. 

3.1 Introduction 

Metabolic engineering approaches to chemical production from renewable biomass 

feedstocks (such as cellulosic biomass) have received tremendous research interest 

(Liao et al. 2016; Lynd et al. 2005; Olson et al. 2012). Chitin is the second most 

abundant carbon compound on earth that is a homopolymer of N-acetylglucosamine 

and can be degraded by chitinases as a potential renewable raw material. The special 

property of chitin is that it serves as a source for both carbon and nitrogen (C:N = 8:1), 

which is an ideal resource for production of nitrogen-rich chemical compounds (i.e. 

N-acetylneuraminic acid, C:N =11:1) (Steiger et al. 2011). Development of chitin as a 

potential biomass feedstock can enhance the biorefinery industry by broadening the 

range of practicable biomass options and lowering the environmental impact of food 

industry waste (Yan and Chen 2015; Yan and Fong 2015). In theory, chitin could be 

used in a consolidated bioprocess (CBP) (Lynd et al. 2005) in a similar fashion as 

cellulose, however, this has yet to be demonstrated. Two of the main areas hindering 

development of a chitinolytic CBP is a lack of genetic engineering tools and limited 
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characterization of metabolism in chitinolytic species. 

 

Considering the various aspects of a chitin-based CBP scheme, we sought to develop 

the chitinolytic bacterium Serratia marcescens, as a potential platform organism for 

N-acetylneuraminic acid (Neu5Ac) production. S. marcescens has been studied and 

characterized for its chitinolytic capabilities (Monreal and Reese 1969; Vaaje-Kolstad 

et al. 2013; Watanabe et al. 1997) and can exclusively convert chitin into GlcNAc 

(Kim et al. 1998). The genome of S. marcescens Db11 has been sequenced (Iguchi et 

al. 2014). The main challenge is to engineer a synthetic pathway for Neu5Ac 

production in S. marcescens since the wild-type S. marcescens Db11 does not harbor a 

natural route and existing genetic engineering tools are limited. Currently only a small 

number of well-characterized and tractable S. marcescens promoters are available for 

in vivo application. A T5 promoter (Gerc et al. 2012) and a native budAB operon 

promoter (Sun et al. 2012b) were investigated either to study a multifunctional 

peptide synthetase (T5 promoter) or to facilitate NADH regeneration by 

overexpression of an oxidase (budAB promoter). In the previous work, we have 

developed an in-frame chromosomal gene deletion method for S. marcescens based 

on its native exonucleases and recombinases, and also established a stable shuttle 

vector thus expanding the tools available for manipulation of S. marcescens (Yan et al. 

2017). 

 

N-acetylneuraminic acid (Neu5Ac) is a ubiquitous sialic acids that carries out various 
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biological functions by acting as a receptor for microorganisms, viruses, toxins, and 

hormones, by masking receptors and regulation of the immune system (Chen and 

Varki 2010; Schauer 2000; Varki 1992). It can be used as a nutraceutical for infant 

brain development (Wang 2009), pharmaceutical for preventing influenza virus 

infections (Itzstein et al. 1993), and nanocarrier for cancer targeting and therapy 

(Bondioli et al. 2011). 

 

Previous metabolic engineering studies for production of Neu5Ac have primarily used 

engineered strains of E. coli for the production of Neu5Ac from glucose by 

fermentation. Boddy and Lundgren assembled a six-step pathway for Neu5Ac 

production from fructose-6-phosphate by overexpressing genes of glucosamine 

synthase (glmS), Neu5Ac synthase (neuB), and UDP-GlcNAc 2-epimerase (neuC) 

from Neisseria meningitides (Lundgren and Boddy 2007). The nanA and nanT genes 

were then knocked out to abolish sialic acid catabolism. In this engineered pathway, 

NeuB was responsible for converting N-acetylmannosamine (ManNAc) and 

phosphoenolpyruvate (PEP) to Neu5Ac. As a result, 1.5 g/L Neu5Ac was obtained 

with glucose as the carbon source in a 98 h fermentation process. In another study, 

Kang et al. designed a Neu5Ac synthetic pathway by introducing a GlcNAc 

2-epimerase (Slr1975) and glucosamine-6-phosphate acetyltransferase (GNA1) in E. 

coli DH5α (Kang et al. 2012). By deleting the feedback inhibition of 

glucosamine-6-phosphate synthase (ΔnagAB) to increase the accumulation of GlcNAc 

and pyruvate (ΔackAΔpoxBΔldhA) and blocking the catabolism of Neu5Ac (ΔnanT), 
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7.85 g/L of Neu5Ac was obtained using glucose as the carbon source in a 96-h 

fed-batch fermentation with productivity of 0.08 g/L h. In a follow-up study, Yang et 

al. engineered an aptazyme-based biosensor of Neu5Ac to evolve the key enzyme 

Neu5Ac synthase (NeuB) (Yang et al. 2017). The modified strain was able to improve 

the titer by 34%. Samain et al. overexpressed NeuB and NeuC from Campylobacter 

jejuni in a neuA, nanA, nanK and nanT deletion strain of E. coli producing 39 g/L of 

Neu5Ac with glycerol as the carbon source (Samain 2008). 

 

Here we investigate developing a chitin-based CBP scheme to utilize chitin-based 

feedstock to produce N-acetylneuraminic acid through a single-unit operation 

(chitinase production and secretion, hydrolysis of chitin, and fermentation of available 

sugars to produce Neu5Ac). The main advantage of this CBP process is to reduce the 

substrate cost and simplify the process while still producing a value-added product. A 

rough analysis of the economic difference between a glucose-based process and the 

CBP is shown as follows. Assuming 1 g chitin can produce 1 g N-acetylglucosamine 

(a highest yield reported 0.76 GlcNAc g/g chitin (Husson et al. 2017)), the carbon 

cost to produce 1 kg Neu5Ac from dried shrimp shells ($100-120/ton (Yan and Chen 

2015)) is around $0.071 based on the theoretical yield of 1.40 g Neu5Ac/g GlcNAc; 

while for the glucose process, the carbon cost to produce 1 kg Neu5Ac from the 

glucose ($55.5/kg, Sigma) is about $32.27 based on the theoretical yield of 1.72 g 

Neu5Ac/g glucose.  
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In this study, we applied the recently developed systems for overexpression of genes 

in S. marcescens to generate designed strains that directly converts crystal chitin to 

Neu5Ac. To identify reliable promoters, we started with characterizing S. marcescens 

gene expression levels (RNA-Seq) of the wild-type strain grown on various carbon 

sources (glucose, N-acetylglucosamine, and glycerol) and tested the activity of 12 

potential constitutive promoters by measuring the mRNA (real-time PCR) and protein 

expression levels (fluorescence intensity) of a gfp reporter gene. Subsequently, a 

two-step synthetic pathway (N-acetylglucosamine 2-epimerase and 

N-acetylneuraminic aldolase) for Neu5Ac production was introduced in S. marcescens 

and the functionality of the pathway enzymes was validated by real-time PCR and 

enzymatic activity assays. Improvement of Neu5Ac titer (0.48 g/L Neu5Ac from 20 

g/L N-acetylglucosamine) was achieved by tuning mRNA level (promoter swapping) 

and by utilizing an irreversible enzyme to replace a reversible enzyme (switch 

N-acetylneuraminic aldolase to N-acetylneuraminic acid synthase). Thus, S. 

marcescens has been engineered to directly convert untreated chitin to Neu5Ac. 
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Figure 7 A scheme of N-acetylneuraminic acid from chitin by Serratia marcescens. 

3.2 Materials and methods 

3.2.1 Bacterial strains and plasmids 

S. marcescens Db11 is the wild-type strain and was purchased from Caenorjabditis 

Genetics Center (Twin City, MN https://cbs.umn.edu/cgc) (Flyg et al. 1980). E. coli 

NEB10β (New England Biolabs, Ipswich, MA) was used as a host for 

pUC19-backbone plasmid construction and propagation. E. coli TOP10 (Thermo 

Fisher Scientific, Waltham, MA) was used as a host for pEXP-backbone plasmids 

plasmid construction and propagation. Strain and plasmids used in this study are listed 

in Table 4. 

 

Table 4 Strains and plasmids used in this study. 

Strain name Genotype Resources 

S. marcescens Db11 Wild-type Caenorjabditis 

Genetics Center 

S. marcescens pQY04 Db11 strain harbors pUC19 inserted by PT5-GFP, ampR This study 

S. marcescens pQY05 Db11 strain harbors pUC19 inserted by PampR-GFP, ampR This study 

https://cbs.umn.edu/cgc
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S. marcescens pQY06 Db11 strain harbors pUC19 inserted by PbudAB-GFP, ampR This study 

S. marcescens pQY19 Db11 strain harbors pUC19 inserted by PompA-GFP, ampR This study 

S. marcescens pQY20 Db11 strain harbors pUC19 inserted by PrplJ-GFP, ampR This study 

S. marcescens pQY21 Db11 strain harbors pUC19 inserted by PrpsL-GFP, ampR This study 

S. marcescens pQY24 Db11 strain harbors pUC19 inserted by PgpmA-GFP, ampR This study 

S. marcescens pQY25 Db11 strain harbors pUC19 inserted by PmetF-GFP, ampR This study 

S. marcescens pQY27 Db11 strain harbors pUC19 inserted by PphlA-GFP, ampR This study 

S. marcescens pQY23 Db11 strain harbors pUC19 inserted by PcysP-GFP, ampR This study 

S. marcescens pQY22 Db11 strain harbors pUC19 inserted by PrpsG-GFP, ampR This study 

S. marcescens pQY26 Db11 strain harbors pUC19 inserted by PSMDB11_4509-GFP, ampR This study 

S. marcescens pQY28 Db11 strain harbors pUC19 inserted by PcysP-slr1975-PcysP-nanA, ampR This study 

S. marcescens pQY29 Db11 strain harbors pUC19 inserted by PrplJ-slr1975-PrplJ-nanA, ampR This study 

S. marcescens pQY30 Db11 strain harbors pUC19 inserted by PT5-slr1975-PT5-nanA, ampR This study 

S. marcescens pQY36 Db11 strain harbors pUC19 inserted by PT5-slr1975-PrplJ-nanA, ampR This study 

S. marcescens pQY37 Db11 strain harbors pUC19 inserted by PrplJ-slr1975-PT5-nanA, ampR This study 

S. marcescens pQY43 Db11 strain harbors pUC19 inserted by PT5-AGE-PrplJ-nanA, ampR This study 

S. marcescens pQY42 Db11 strain harbors pUC19 inserted by PT5-slr1975-PrplJ-neuB, ampR This study 

S. marcescens pQY46 Db11 strain harbors pUC19 inserted by PT5-AGE-PrplJ-neuB, ampR This study 

E. coli NEB10β Δ(ara-leu) relA1 endA1 (StrR) NEB 

E. coli pQY16 E. coli NEB10β harbors pUC19 inserted by PT5-GFP, ampR This study 

E. coli pQY17 E. coli NEB10β harbors pUC19 inserted by PampR-GFP, ampR This study 

E. coli pQY18 E. coli NEB10β harbors pUC19 inserted by PbudAB-GFP, ampR This study 

E. coli pQY19 E. coli NEB10β harbors pUC19 inserted by PompA-GFP, ampR This study 

E. coli pQY20 E. coli NEB10β harbors pUC19 inserted by PrplJ-GFP, ampR This study 

E. coli pQY21 E. coli NEB10β harbors pUC19 inserted by PrpsL-GFP, ampR This study 

E. coli pQY24 E. coli NEB10β harbors pUC19 inserted by PgpmA-GFP, ampR This study 

E. coli pQY25 E. coli NEB10β harbors pUC19 inserted by PmetF-GFP, ampR This study 

E. coli pQY27 E. coli NEB10β harbors pUC19 inserted by PphlA-GFP, ampR This study 

E. coli pQY23 E. coli NEB10β harbors pUC19 inserted by PcysP-GFP, ampR This study 

E. coli pQY22 E. coli NEB10β harbors pUC19 inserted by PrpsG-GFP, ampR This study 

E. coli pQY26 E. coli NEB10β harbors pUC19 inserted by PSMDB11_4509-GFP, ampR This study 

E. coli pQY28 E. coli NEB10β harbors pUC19 inserted by PcysP-slr1975-PcysP-nanA, ampR This study 

E. coli pQY29 E. coli NEB10β harbors pUC19 inserted by PrplJ-slr1975-PrplJ-nanA, ampR This study 

E. coli pQY30 E. coli NEB10β harbors pUC19 inserted by PT5-slr1975-PT5-nanA, ampR This study 

E. coli pQY36 E. coli NEB10β harbors pUC19 inserted by PT5-slr1975-PrplJ-nanA, ampR This study 

E. coli pQY37 E. coli NEB10β harbors pUC19 inserted by PrplJ-slr1975-PT5-nanA, ampR This study 

E. coli pQY43 E. coli NEB10β harbors pUC19 inserted by PT5-AGE-PrplJ-nanA, ampR This study 

E. coli pQY42 E. coli NEB10β harbors pUC19 inserted by PT5-slr1975-PrplJ-neuB, ampR This study 

E. coli pQY46 E. coli NEB10β harbors pUC19 inserted by PT5-AGE-PrplJ-neuB, ampR This study 

E. coli TOP10  recA1 araD139 Δ(ara leu) (StrR) endA1 Invitrogen 

E. coli pQY32 E. coli TOP10 harbors pEXP-5NT PT7-slr1975, ampR This study 

E. coli pQY33 E. coli TOP10 harbors pEXP-5NT PT7-nanA, ampR This study 

E. coli pQY35 E. coli TOP10 harbors pEXP-5NT PT7-neuB, ampR This study 

E. coli pQY40 E. coli TOP10 harbors pEXP-5NT PT7-AGE, ampR This study 
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Plasmid Feature Resources 

pUC19 Used for gene expression in S. marcescens, ampR NEB 

pEXP 5NT/TOPO® Used for cell-free protein expression, ampR Invitrogen 

 

All plasmids were constructed by DNA assembly techniques (Gibson et al. 2009). The 

vector backbones were PCR-amplified using Q5
®

 Hot Start DNA polymerase (New 

England Biolabs, Ipswich, MA). The inserts (promoter sequences and coding 

sequences) were chemically synthesized from Integrated Device Technology (San 

Jose, CA) and the sequences and primers can be found in Table S8 and Table S9, 

respectively. The PCR products were purified by a PCR purification kit (Zymo 

Research, Irvine, CA). The vector backbone were mixed with Gibson Assembly
®

 

Master Mix (New England Biolabs, Ipswich, MA) and incubated at 50°C for 1 h. 

Subsequently, the assembly mixture was transformed to E. coli NEB10β or TOP10 

strain. The presence of correctly cloned insertion was validated by colony PCR and 

DNA sequencing (Eurofins Genomics, Louisville, KY). 

3.2.2 Chemicals and reagents 

All chemicals unless otherwise specified were acquired from Sigma-Aldrich (St. 

Louis, MO) or Thermo Scientific (Waltham, MA).  

3.2.3 Media and cultivation 

All the E. coli strains were grown in LB or SOC media containing appropriate 

antibiotics at 37°C on a rotary shaker (250 rpm). Antibiotics were used at the 

following concentrations: ampicillin, 200 μg/mL; streptomycin, 40 μg/mL. 

 

All S. marcescens strains were grown in a M9 medium containing 0.1% yeast extract 
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and various carbon sources at 30°C on a rotary shaker (200 rpm). Carbon sources 

were used at the following concentration: N-acetylglucosamine, 20 g/L; glucose, 20 

g/L; glycerol, 20 g/L; chitin, 20 g/L; colloidal chitin, 20 g/L. Antibiotics were used at 

the following concentrations: ampicillin, 800 μg/mL. The 20 mL pre-cultures of S. 

marcescens strains were grown through overnight in a 125 mL Erlenmeyer flask at 

30°C on a rotary shaker (200 rpm). For fermentative production of Neu5Ac, the S. 

marcescens preculture was inoculated at 5% in 2 L Erlenmeyer flask and cells were 

grown at 30°C on a rotary shaker (200 rpm). 

 

Stock cultures of E. coli and S. marcescens were maintained at -80°C in 26% (v/v) 

glycerol. 

3.2.4 mRNA sequencing 

The total RNA of S. marcescens Db11 was isolated using mid-log phase cell cultures 

by QIAGEN RNA protect reagent (Venlo, Netherlands) in combination with the 

QIAGEN RNeasy Mini kit (Venlo, Netherlands). The mRNA was isolated, enriched, 

and reverse transcribed into cDNA. The resulting cDNA was sequenced by a 

pair-ended reads using Illumina Hiseq 2500 (San Diego, CA). An average insert size 

of 500 bp was created and draft mRNA-Seq data were generated. CLC Genomics 

Workbench version 10 (QIAGEN, Venlo, Netherlands) and FASTQC were applied to 

trim reads for quality sequence data. The S. marcescens Db11 genome (GeneBank: 

HG326223) was used as a reference. Each mRNA sample was tested with two runs. 

The gene expression level was calculated by normalizing each gene‟s reads per 
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kilobase per million mapped sequence reads (RPKM) to overall gene numbers, 

namely: 

Gene expression level =
RPKM value

4831
 

3.2.5 Measurement of cell density 

The measurement of S. marcescens strains culture density was generally quantified at 

OD600 using a Biomate3 UV/VIS spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). The growth of S. marcescens strains on crystal chitin and colloidal 

chitin was measured by testing cytoplasmic protein content (Yan et al. 2017). The 

correlation factor of the overall protein content to the dry cell weight (DCW) was 

DCW (g/L) = 1.20 ± 0.03 × Protein (g/L). 

3.2.6 Quantification of gene transcription using real-time PCR 

The expression levels of sfgfp, slr1975, and nanA in the S. marcescens recombinant 

strains and the wild-type Db11 strain were measured by real-time PCR. A 

housekeeping gene (luxS, SMDB11_0167) was used as a reference gene. Primers used 

for real-time PCR can be found in Table S10. The relative mRNA level of the targeted 

gene was quantified by normalizing to the reference gene. 

3.2.7 Measurement of GFP fluorescence intensity 

The GFP fluorescence intensity of the S. marcescens recombinant strain cultures were 

measured by flow cytometry. The protocol is according to our previous study with 

minor modifications (Yan and Fong 2017b). Briefly, the cell cultures were harvested 

at exponential phase (OD600 ≈ 0.4 at 2.5 h) and stored on ice for at least 1 h to cease 

cell growth. Cell pellets were then re-suspended with PBS buffer to an optical density 
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(OD600 0.1 ~ 0.2) in a 1.5 mL centrifuge tube. The flow cytometry analysis was 

performed using BD Accuri
TM

 C6 flow cytometer (San Jose, CA). The fluorescence 

intensity of each S. marcescens recombinant strains was normalized to the 

fluorescence intensity of the wild-type Db11. 

3.2.8 Quantification of Neu5Ac, GlcNAc and by-products 

The concentration of GlcNAc, Neu5Ac, and all by-products were analyzed by an 

Ultimate 3000 HPLC (Dionex, Sunnyvale, CA), equipped with a Bio-Rad Aminex 

HPX-87H column (Hercules, CA), a UV detector (199 nm) (Dionex, Sunnyvale, CA), 

and a refractive index detector (Shodex, Japan). The condition was run with 5 mM 

H2SO4 at 0.6 mL/min and 55°C. 

3.2.9 Measurement of in vitro Neu5Ac production 

The in vitro Neu5Ac production by the S. marcescens recombinant strains was 

measured by feeding the cell lysates with GlcNAc. In brief, the S. marcescens cell 

cultures were harvested by centrifuging at 14,000×g and 4°C for 5 min. The cell 

pellets were washed twice by PBS buffer and lysed by 1×Bugbuster (EMD Millipore, 

Billerica, MA) for 30 min. The cell lysate was centrifuged at 14,000×g and 4°C for 5 

min and the supernatant was ready for in vitro Neu5Ac production assay. For strains 

overexpressing NeuB, the assay was performed in a total volume of 200 μL including 

12.5 mM GlcNAc, 10 mM PEP, 12.5 mM MnCl2, 100 mM Bicine buffer (pH 8.0), 50 

μL cell lysate and 2.5 mM ATP. For strains overexpressing NanA, the assay was 

performed in a total volume of 200 μL containing 12.5 mM GlcNAc, 10 mM pyruvate, 

12.5 mM MgCl2, 100 mM Tris-HCl buffer (pH 7.5), 50 μL cell lysate and 2.5 mM 



62 
 

ATP. All the reactions were incubated at 37°C and samples were taken every 2 - 4 h. 

3.2.10 Cell-free overexpression and purification of Slr1975, AGE, NanA, and 

NeuB 

The GlcNAc 2-epimerases (Slr1975 and AGE) and Neu5Ac aldolase/synthase (NanA 

and NeuB) were produced using a Cell-Free Protein Expression kit (Thermo Fisher 

Scientific, Waltham, MA) and purified in a His-Spin Protein Miniprep
TM

 kit (Zymo 

Research, Irvine, CA). The enzymes were purified in homogeneity and analyzed by 

protein electrophoresis (Bio-Rad, Hercules, CA). Protein concentration was 

determined by Bradford assay (Bio-Rad, Hercules, CA) 

3.2.11 N-acetylglucosamine 2-epimerase enzyme assay 

The GlcNAc 2-epimerase enzyme assay was carried out by measuring ManNAc 

production. The reaction mixture was carried out in a 200 μL volume reaction 

containing 12.5 mM GlcNAc, 12.5 mM MnCl2, Tris-HCl buffer (pH 7.5), 50 μL 

enzyme and 2.5 mM ATP. The reaction was incubated at 37°C for 2 h. Each reaction 

was run at least three times. One unit of the enzyme activity was defined as mM 

ManNAc produced per hour. 

3.2.12 N-acetylneuraminic acid aldolase/synthase enzyme assay 

The forward/reverse reaction of NanA or NeuB was carried out by measuring 

Neu5Ac/ManNAc production. The enzyme assay reactions were carried out in a 200 

μL volume reaction containing appropriate substrates, 12.5 mM MnCl2, 100 mM 

Bicine buffer (pH 8.0) and 50 μL enzyme. For the forward reaction of NanA/NeuB 

enzyme assay, the substrates are 12.5 mM ManNAc and 10 mM pyruvate/10 mM PEP, 
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respectively; for the reverse reaction of NanA/NeuB enzyme assay, the substrate is 

12.5 mM Neu5Ac. Each reaction was run at least three times. One unit of the enzyme 

activity was defined as mM Neu5Ac/ManNAc produced per hour.  

3.3 Results 

To develop and optimize an engineered strain of S. marcescens for production of 

Neu5Ac from chitin, we conducted RNA-Seq experiments to identify potential native 

constitutive promoters, characterized transcriptional strength of identified promoters, 

measured activity of heterologous proteins for Neu5Ac production, implemented and 

balanced heterologous expression in S. marcescens, and swapped heterologous 

proteins to favor Neu5Ac production. 

3.3.1 Characterization of S. marcescens constitutive promoter  

In order to identify functional native S. marcescens promoters, we targeted native S. 

marcescens promoters based upon a mRNA sequencing (RNA-Seq) of the wild-type S. 

marcescens Db11 strain using different growth conditions (glucose, 

N-acetylglucosamine, glycerol). The total number of reads for each condition were: 

5,986,581 (glucose), 7,820,963 (N-acetylglucosamine) and 19,025,155 (glycerol). The 

average coverage per gene (4831 total genes) was about 1239, 1619, and 3938 for 

glucose, N-acetylglucosamine and glycerol, respectively, indicating a high depth of 

coverage. Since our goal is to drive the exogenous Neu5Ac synthetic pathway gene 

expression, we specifically targeted promoter sequences with various strengths (high, 

medium, and low) based on the range of RPKM values. Based upon mRNA levels in 

all three conditions (looking for constitutive promoters), we selected two genes with 
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high expression (ompA and rplJ; RPKM > 1.0), 4 genes with medium expression 

(rpsG, rpsL, gpmA, and metF; 0.1 < RPKM < 1.0), and 4 genes with low expression 

(cysP, phlA, SMDB11_4509, and budAB; RPKM < 0.1), shown in Figure 8A. In 

addition to the 10 potential promoters, two promoters were used as a high strength 

positive control (PT5) (Gerc et al. 2012) and a medium strength positive control (PampR) 

(Yan et al. 2017) that have been used in previous studies. 

 

The functionality of the 12 promoters was examined by measuring both 

transcriptional and translational levels of GFP gene (Figure 8B and Figure S4). The 

T5 promoter was designated as high strength promoter, whose RFU (2328.32 ± 76.8) 

and GFP mRNA value (515876 ± 23800) were ranked highest. There were 5 

promoters (PrplJ, PrpsL, PgpmA, PmetF, and PampR), designated as medium strength 

promoters, whose RFU ranged from 83 to 402 and GFP mRNA level ranged from 341 

to 43237. There were 3 promoters (PrpsG, PphlA and PcysP), designated as low strength 

promoters, with RFU ranged from 2.65 to 4.13 and GFP mRNA level ranged from 

8.81 to 21.51. Overall, we obtained a library of constitutive promoters with various 

promoter strengths (1 high-strength promoter, 5 medium-strength promoters, and 3 

low-strength promoters). 

3.3.2 Initial construction of Neu5Ac synthetic pathway 

he wild-type S. marcescens Db11 strain does not natively produce Neu5Ac 

(confirmed by HPLC). Since S. marcescens Db11 can natively produce 

N-acetylglucosamine, only two exogenous pathways are required to produce Neu5Ac 
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(Figure 1). Several candidate enzymes have been reported to potentially achieve the 

desired two biochemical reactions: 1) AGE from Anabaena sp. CH1 (Lee et al. 2007) 

or Slr1975 from Synechocystis sp. PCC6803 (Tabata et al. 2002) were two 

well-characterized N-acetylglucosamine 2-epimerases with high reported activity to 

convert N-acetylglucosamine (GlcNAc) to N-acetylmannosamine (ManNAc) and 2) 

Neu5Ac aldolase NanA from E. coli MG1655 (Mahmoudian et al. 1997) or a Neu5Ac 

synthase NeuB from Campylobacter jejuni NCTC11168 (Sundaram et al. 2004) for 

conversion of ManNAc to Neu5Ac. Initially the following three recombinant strains 

were constructed and tested: PT5-slr1975-PT5-nanA, PrplJ-slr1975-PrplJ-nanA, and 

PcysP-slr1975-PcysP-nanA based on promoter strengths (high-high, medium-medium, 

low-low), shown in Figure 9A.   

Real-time PCR was employed to measure the mRNA level of slr1975 and nanA in the 

three recombinant strains, shown in Figure 9B. The wild-type Db11 strain was used 

Figure 8 Characterization of S. marcescens constitutive promoters. (A) RPKM 

values of 10 native genes of S. marcescens Db11; (B) GFP expression level of S. 

marcescens constitutive promoters by flow cytometry and quantification of GFP 

mRNA level of S. marcescens recombinant strains by real-time PCR. 
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as a negative control where slr1975 and nanA mRNA transcripts were not detected. 

Compared to the mRNA level of slr1975 and nanA of the PcysP-slr1975-PcysP-nanA 

strain, the PT5-slr1975-PT5-nanA strain showed 29.45- and 28.57-fold increases, 

respectively, and the PrplJ-slr1975-PrplJ-nanA strain showed 14.79- and 12.29-fold 

increases, respectively.  

 

To test if Slr1975 and NanA were functional and to evaluate their activity, a cell-free 

Neu5Ac production assay was conducted by incubating 2.5 g/L GlcNAc with the cell 

lysates of the recombinant strains. After 2 h incubation, the PT5-slr1975-PT5-nanA 

strain exhibited 154 ± 13.2 mg/L Neu5Ac, the PrplJ-slr1975-PrplJ-nanA strain exhibited 

78.9 ± 8.76 mg/L Neu5Ac, and the PcysP-slr1975-PcysP-nanA strain showed 34.1 ± 2.45 

mg/L Neu5Ac (Figure 9C). The in vitro Neu5Ac production titer results were 

consistent with the measured mRNA levels where an increase transcription level by 

using stronger promoters led to an increase the Neu5Ac production rate.  

 

While using the strong promoter (PT5) to drive expression of both genes led to the 

highest Neu5Ac production in vitro, implementation in vivo showed that this design 

had a strong negative effect on cell growth where the PT5-slr1975-PT5-nanA strain had 

a growth rate of μmax 0.19 ± 0.03 /h. This is significantly slower when compared to the 

PrplJ-slr1975-PrplJ-nanA strain (μmax 0.53 ± 0.01 /h), the PcysP-slr1975-PcysP-nanA strain 

(μmax 0.86 ± 0.02 /h), and the wild-type strain (μmax 0.88 ± 0.01 /h), shown in Figure 

9D. One possible explanation is that the high overexpression of the two exogenous 
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genes in the S. marcescens PT5-slr1975-PT5-nanA strain adds significant metabolic 

burden to the cells, hindering basal metabolic needs that are required to support 

growth.  

3.3.3 Neu5Ac titer improvement by tuning promoter strength 

The combination of cellular growth and product yield affect the overall cellular 

productivity, so an iteration on the strain design was conducted to attempt to balance 

cell growth and Neu5Ac titer by tuning promoter strengths. The 

PT5-slr1975-PrplJ-nanA strain and PrplJ-slr1975-PT5-nanA strain were created by 

adapting a high (PT5) and medium strength (PrplJ) promoter combination while 

retaining the same coding sequences (slr1975 and nanA genes), shown in Figure 9A. 

Compared to the PcysP-slr1975-PcysP-nanA strain, the mRNA levels of slr1975 and 

nanA were 25.76- and 8.64-fold, and 10.06- and 27.31-fold for the 

PT5-slr1975-PrplJ-nanA strain and PrplJ-slr1975-PT5-nanA strain, respectively, shown in 

Figure 9B. The in vitro Neu5Ac production result showed that the 

PT5-slr1975-PrplJ-nanA strain increased 1.7-fold Neu5Ac titer compared to the 

PT5-slr1975-PT5-nanA strain and had the highest in vitro titer of any of the strains 

tested to this point; however, the PrplJ-slr1975-PT5-nanA strain decreased Neu5Ac titer 

compared to the PT5-slr1975-PT5-nanA strain (Figure 9C). The growth rate of the 

PT5-slr1975-PrplJ-nanA strain and PrplJ-slr1975-PT5-nanA strain were 0.49 ± 0.01 /h 

and 0.50 ± 0.02 /h, which was significantly improved from the PT5-slr1975-PT5-nanA 

strain (Figure 9D). The PT5-slr1975-PrplJ-nanA strain showed the highest in vitro titer 

and reasonable growth rates and thus looked to be the most promising strain at this 
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point. 

 

While conducting the in vitro Neu5Ac production assays, several observations were 

made related to Neu5Ac production. First, while Neu5Ac was produced within 2 h, 

the concentration decreased between 2 h and 4 h and reached a plateau after 8 h. Also, 

detectable amounts of GlcNAc and pyruvate were left after 8 h. These observations 

were consistent during testing of all the recombinant strains. One possible reason 

could be an exhaustion of ATP that hinders conversion of GlcNAc to ManNAc. To 

test this possibility, ATP was fed at 2 h after ATP might have been exhausted. This did 

lead to an increase in the final Neu5Ac concentration (605.26 ± 38.67 mg/L), shown 

in Figure 10B. Since ATP can be regenerated in vivo, we believed that the designs 

would have sufficient ATP available once implemented in S. marcescens to maintain 

Neu5Ac production. The observation of leftover GlcNAc and pyruvate implied that 

the in vitro system was hitting a chemical equilibrium between forward and reverse 

reactions since both pathways (slr1975 and nanA genes) were reversible. 
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3.3.4 Neu5Ac improvement by swapping irreversible enzyme 

To further investigate the possible effects of the reversibility of reactions on 

productivity and details of enzyme activity, two different GlcNAc 2-epimerases (AGE 

from Anabaena sp. CH1 and Slr1975 from Synechocystis sp. PCC6803), a Neu5Ac 

aldolase (NanA from E. coli MG1655), and a Neu5Ac synthase (NeuB from 

Figure 9 The Neu5Ac production by tuning promoter strength of the pathway genes. 

(A) The design strategy of tuning promoter strength to improve Neu5Ac production; 

(B) Quantifications of the mRNA levels of slr1975 and nanA of the S. marcescens 

recombinant strains by real-time PCR; (C) In vitro production of Neu5Ac by using 

the S. marcescens recombinant strain cell lysates after 2 h incubation with 2.5 g/L 

GlcNAc; (D) Cell growth rates of the S. marcescens recombinant strains at M9 

medium with 20 g/L GlcNAc and 0.1% yeast extract at 30°C and 200 rpm. 
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Campylobacter jejuni NCTC11168) were synthesized, produced and purified using E. 

coli. 

 

For the last step in production of Neu5Ac, ManNAc is the precursor compound so in 

vitro assays were run to test activity and reversibility by incubating with either 

ManNAc or with Neu5Ac as the starting substrate. Assays with NanA produced 

Neu5Ac from ManNAc with activity of 31.44 ± 0.48 U/mg·protein and produced 

ManNAc from Neu5Ac with activity of 60.08 ± 0.76 U/mg·protein, indicating that 

NanA functions in a reversible manner, shown in Figure 10B and Figure S5. Assays 

with NeuB produced Neu5Ac from ManNAc with activity of 95.12 ± 1.32 

U/mg·protein but no production of ManNAc from Neu5Ac was found, indicating that 

NeuB converts ManNAc to Neu5Ac in an irreversible manner. For the forward 

reaction (ManNAc to Neu5Ac), the enzyme activity of NeuB is around 3.0-fold 

higher than NanA. For the enzyme candidates tested for conversion of GlcNAc to 

ManNAc, no significant difference of activity or reversibility were found between 

AGE and Slr1975 (data not shown). 

 

Based upon this information, four additional recombinant strains 

(PT5-slr1975-PrplJ-nanA, PT5-slr1975-PrplJ-neuB, PT5-AGE-PrplJ-nanA, and 

PT5-AGE-PrplJ-neuB) were designed and built to test the different enzymes in 

combination, shown in Figure 10A. After 60 h in vitro reaction with supplemented 

sufficient ATP, Neu5Ac production reached a plateau. A maximum titer of 1.5 ± 0.09 

g/L Neu5Ac was obtained from the PT5-slr1975-PrplJ-neuB construct, that represents 
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approximately a 2.5-fold increase above the previous best results of the 

PT5-slr1975-PrplJ-nanA construct, shown in Figure 10C. This result indicated that 

Neu5Ac production could be significantly improved after swapping the reversible 

enzyme NanA to the irreversible enzyme NeuB. After swapping the first step enzyme 

from Slr1975 to AGE, there was no significant Neu5Ac production difference, which 

is in consistent with having no appreciable difference in enzymatic activity results. 

3.3.5 In vivo Neu5Ac production 

All of the S. marcescens recombinant strains and the wild-type strain Db11 were 

initially grown on 20 g/L GlcNAc to test for Neu5Ac production to test strain 

functionality without the complicating factor of chitinase activity. After 48 h of 

growth, GlcNAc was almost depleted for the wild-type strain Db11 and all 

recombinant strains except for the PT5-slr1975-PT5-nanA strain (See Figure S6A). The 

cell growth and metabolic end-products of all S. marcescens strains were monitored 

(See Figure S6B and Table S11). Neither intracellular nor extracellular Neu5Ac was 

detected during cell culture of the wild-type Db11 strain as expected for the negative 

control. A maximum titer of 0.48 ± 0.06 g/L Neu5Ac was produced by the 

PT5-slr1975-PrplJ-neuB strain (Figure 11). Compared to the Neu5Ac titer of the initial 

PT5-slr1975-PT5-nanA strain, the Neu5Ac production was significantly improved by 

about 11.7-fold after balancing the pathways using promoter swapping and switching 

the final reaction step to use a faster, irreversible enzyme (neuB). 
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3.3.6 Neu5Ac production directly from chitin 

The final component was to test for production of Neu5Ac for growth directly on 

chitin. The S. marcescens PT5-slr1975-PrplJ-neuB strain and the wild-type strain were 

grown on 5 g/L, 10 g/L and 20 g/L crystal chitin or 5 g/L, 10 g/L and 20 g/L colloidal 

chitin. After 1 week culture, the S. marcescens PT5-slr1975-PrplJ-neuB strain produced 

Figure 10 The Neu5Ac production by utilizing different enzyme candidates. (A) 

The design strategy of different activity enzymes to improve Neu5Ac production; 

(B) Specific enzyme activities of NanA and NeuB by feeding either ManNAc or 

Neu5Ac as a substrate; (C) In vitro production of Neu5Ac by using the S. 

marcescens recombinant strains cell lysates from 2.5 g/L GlcNAc after 48 h 

incubation with supplement of 10 mM ATP at 2 h. 
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0.32 ± 0.02 g/L and 0.30 ± 0.05 g/L from 5 g/L crystal chitin and 5 g/L colloidal chitin, 

respectively, shown in Table 5 and Figure 12. Overall, our results showed that the 

engineered S. marcescens strain was capable of producing Neu5Ac directly from 

chitin and the maximum titer is on the same order of magnitude as reported from 

glucose as a carbon source in E. coli. 

 

 

Figure 11 In vivo Neu5Ac production from the S. marcescens recombinant strains at 

M9 medium with 20 g/L GlcNAc and 0.1% yeast extract at 30°C and 200 rpm. 

 

Table 5 Neu5Ac production from crystal chitin and colloidal chitin using S. 

marcescens PT5-slr1975-PrplJ-neuB and the wild-type Db11 strain after 1-week 
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fermentation in a rotator flask. 

Strain 
Substrate 

 

Neu5Ac 

(g/L) 

Biomass 

(g/L) 

2,3-BD 

(g/L) 

Acetic acid 

(g/L) 

Lactic acid 

(g/L) 

S. marcescens 

PT5-slr1975-PrplJ-neuB 

 crystal chitin (20 

g/L) 
0.37 ± 0.02 0.83 ± 0.05 0.20 ± 0.09 0.13 ± 0.01 0.08 ± 0.00 

colloidal chitin (20 

g/L) 
0.33 ± 0.05 0.87 ± 0.04 0.18 ± 0.10 0.11 ± 0.01 0.06 ± 0.00 

S. marcescens Db11 

crystal chitin (20 

g/L) 
- 1.08 ± 0.01 0.40 ± 0.04 0.26 ± 0.03 0.15 ± 0.01 

colloidal chtin (20 

g/L) 
- 0.99 ± 0.03 0.38 ± 0.02 0.23 ± 0.02 0.10 ± 0.01 

S. marcescens 

PT5-slr1975-PrplJ-neuB 

 crystal chitin (10 

g/L) 
0.30 ± 0.06 0.80 ± 0.04 0.19 ± 0.02 0.12 ± 0.00 0.06 ± 0.00 

colloidal chitin (10 

g/L) 
0.32 ± 0.05 0.82 ± 0.03 0.16 ± 0.02 0.10 ± 0.00 0.06 ± 0.00 

S. marcescens 

PT5-slr1975-PrplJ-neuB 

 crystal chitin (5 

g/L) 
0.32 ± 0.05 0.81 ± 0.03 0.20 ± 0.02 0.11 ± 0.00 0.07 ± 0.00 

colloidal chitin (5 

g/L) 
0.30 ± 0.03  0.82 ± 0.05 0.18 ± 0.02 0.12 ± 0.00 0.06 ± 0.00 
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Figure 12 N-Acetylneuraminic acid production and cell growth under 5 g/L crystal 

chitin M9 medium. 

3.4 Discussion 

When considering the application of bioprocessing for industrial-scale production of 

chemicals, a diversity of issues are involved. A large and growing body of work 

utilizes the main workhorse microorganisms (Escherichia coli, Saccharomyces 

cerevisiae, Bacillus subtilis) for many applications, but it is becoming necessary to 

develop additional platform organisms that can utilize specialized cellular activities or 

functions that are not found in the established workhorse organisms. In this study, we 

have focused on the chitinolytic organism, Serratia marcescens, to demonstrate its 

potential utility as a platform strain for chitin-based CBP applications. Overall, we 
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have engineered S. marcescens to directly convert crystal chitin to N-acetylneuraminic 

acid. Native constitutive promoters for S. marcescens were identified and tested (1 

high-strength promoter, 5 medium-strength promoters, and 3 low-strength promoters) 

that were used for this study and can help future engineering of S. marcescens. Here, 

the promoters were applied for Neu5Ac production in S. marcescens by 

overexpressing two exogenous genes. Tuning the mRNA levels of the pathway genes 

resulted in an 11.56-fold Neu5Ac titer increase that balanced pathways flux and 

growth considerations. Furthermore, pulling the reaction equilibrium toward Neu5Ac 

by use of a fast, irreversible enzyme further increased Neu5Ac titer 1.72-fold. Finally, 

the optimized strain (PT5-slr1975-PrplJ-neuB) was able to produce 0.48 ± 0.06 g/L 

Neu5Ac from 20 g/L GlcNAc and 0.32 ± 0.05 g/L Neu5Ac was produced from 5 g/L 

crystal chitin. 

 

Heterologous expression of genes and tuning gene expression levels in S. marcescens 

is limited due to the lack of a well-characterized promoter library and additional 

genetic tools. Use of RNA-Seq data from various growth conditions (substrates, 

temperature, culture time) can provide useful information to identify native 

constitutive promoters and it has been applied to balancing pathways to improve 

production titers and to activating cryptic pathways to produce novel chemicals (Li et 

al. 2015; Luo et al. 2015; Sun et al. 2012a). It has been found that the wild-type S. 

marcescens has mechanisms for catabolite repression by various carbon sources 

(Monreal and Reese 1969). To account for catabolite repression, we generated 
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RNA-Seq data for growth on glucose, N-acetylglucosamine, and glycerol. Promoters 

associated with 10 genes were targeted based upon the RNA-Seq data due to the 

similarity on the expression level at the three substrates. To build a promoter library, 

two non-native promoters (PT5 and PampR) were also considered and overall, 12 

promoters were characterized (transcriptional and translational levels) resulting in a 

verified promoter collection containing 1 high-strength promoter, 5 medium-strength 

promoters and 3 low-strength promoters. Previous studies have used PbudAB as the 

primary native promoter in S. marcescens. It should be noted that the PrplJ promoter 

had a 210.7-fold increase in transcription over the PbudAB promoter and is thus the 

highest reported native S. marcescens promoter to date.  

 

Promoter engineering as a strategy to improve chemical production by relieving 

metabolic burden (Wu et al. 2016), minimizing unnecessary mRNA (Blazeck et al. 

2012; Jones et al. 2015), and pulling more metabolic flux toward target chemicals 

(Ma et al. 2011; Nowroozi et al. 2014; Pitera et al. 2007; Xu et al. 2011), has been 

implemented in many applications (Alper et al. 2005). In this study, we found that 

balancing the promoter strengths of the pathway genes can improve Neu5Ac 

production (11-fold) for two reasons: 1) It can increase cell growth by minimizing 

unnecessary mRNA production and reducing metabolic burden (cell growth rate 

increased 2.5-fold) and 2) It can help balance pathway fluxes to pathways in series 

when there an inbalance in enzyme activity. In S. marcescens, after GlcNAc is 

transported into the cell, there is an interconversion reaction between GlcNAc-6P and 
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GlcNAc. The GlcNAc is either used in glycolysis as glucosamine 6-phosphate 

(GlcN-6P) for cell growth or flows to the Neu5Ac synthetic pathway by converting 

GlcNAc to ManNAc. Future work to enhance flux to the first-step reaction can 

reinforce the flux toward the intermediate ManNAc formation and favor accumulation 

of Neu5Ac.  

 

Targeting specific enzyme activity to improve microbial biochemical production by 

switching a more efficient enzyme at a key-step reaction has been demonstrated in 

other studies (Bormann et al. 2014; Shen et al. 2011; Yan and Fong 2017a). For the 

case of Neu5Ac synthesis, the bioprocess involving the reversible enzyme, Neu5Ac 

aldolase (NanA), usually requires feeding of high concentration of GlcNAc (~ 200 

g/L) with a large amount of residual GlcNAc (Kang et al. 2012; Lin et al. 2013; Tao et 

al. 2011) to skew the chemical equilibrium. The last step of Neu5Ac formation was 

also reported as a bottleneck step of the bioconversion process due to the lower 

activity of the aldolase (NanA 0.57 ± 0.09 U/mg protein) than the activity of 

epimerase (AGE 37.1 ± 3.6 U/mg protein) (Lin et al. 2013). Yang et al. investigated 

the Neu5Ac production by engineered E. coli from the glucose pathways and found 

that Neu5Ac titer can be improved by 1.33-fold after swapping NeuB to NanA (Yang 

et al. 2017). In this study, we found that NeuB is more efficient and superior than 

NanA at both reaction mechanism (irreversible versus reversible) and activity (95.12 

± 1.32 U/mg·protein versus 31.44 ± 0.48 U/mg·protein) for Neu5Ac synthesis. The 

PT5-slr1975-PrplJ-neuB strain produced 1.58-fold more Neu5Ac in vivo compared to 
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the PT5-slr1975-PrplJ-nanA strain. Future experiments on protein engineering of the 

NeuB could be conducted to investigate NeuB‟s effect on improving Neu5Ac 

production on a molecular basis.  

 

The engineered S. marcescens PT5-slr1975-PrplJ-neuB from this work can produce 

Neu5Ac from GlcNAc, colloidal chitin, and crystal chitin. The Neu5Ac maximum 

titers achieved by our designed strain was 0.48 g/L from GlcNAc. 0.33 g/L from 

colloidal chitin, and 0.37 g/L from crystal chitin. The Neu5Ac titer achieved by our 

designed strain is on the same order of magnitude as the highest reported from E. coli 

using fermentation approaches (1.62 g/L from 30 g/L glucose) (Kang et al. 2012). The 

Neu5Ac titer obtained by our designed strain (0.37 g/L from crystal chitin) is the 

highest reported so far (Steiger et al. 2011). 

3.4 Conclusion 

In this study, we demonstrated the direct conversion of untreated chitin to 

N-acetylneuraminic acid (Neu5Ac) using an engineered chitinolytic bacterium, 

Serratia marcescens. To add to the genetic tools and facilitate engineering of S. 

marcescens, we used RNASeq data to identify and characterize a set of native 

constitutive promoters. Production of Neu5Ac was evaluated by functional 

transcription and protein activities after heterologous expression of 

N-acetylglucosamine 2-epimerase (Slr1975) and Neu5Ac aldolase (NanA). 

Subsequently, Neu5Ac production titers were improved 11.56- fold by promoter 

engineering to minimize unnecessary mRNA production and to pull carbon flux 
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toward ManNAc accumulation.  Further optimization was achieved (1.56-fold 

increase) by adapting an irreversible Neu5Ac synthase (NeuB) to push the reaction 

equilibrium toward Neu5Ac. The optimized recombinant strain PT5-slr1975-PrplJ-neuB 

was able to produce 0.48 g/L Neu5Ac from 20 g/L N-acetylglucosamine and 0.32 g/L 

Neu5Ac from 5 g/L crystal chitin. This is the first study to report de novo production 

of Neu5Ac from chitin in S. marcescens. 
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Chapter 4 Adaptive evolution S. marcescens to increase chitin utilization 

efficiency and genome resequencing platform reveals insightful mechanism 

Importance of this part of work: 

I have demonstrated production of 2,3-butanediol and N-acetylneuraminic acid from 

chitin using S. marcescens. One of the challenges when considering S. marcescens as 

a workhorse for consolidated bioprocessing is that degradation of recalcitrant chitin is 

a long process. Laboratory adaptive evolution has been proved to be a powerful tool 

for improving organisms‟ substrate utilization. The fact that S. marcescens can grow 

on chitin makes it an ideal candidate to conduct adaptive evolution experiments. Since 

chitinolytic organism are not fully characterized and identified, to the best of my 

knowledge, this is the first of study to conduct adaptive evolution research using 

chitin as a substrate. 

The conclusions and fundamental results derived from this part of work: 

I conducted serial passage of Serratia marcescens in colloidal chitin M9 medium for 

four months, propagating 288 generation, yielding an evolved strain S. marcescens 

EPS. Physiological changes including increased chitinase activities, decreased 

secreted proteins, increased cell yield on chitin, and metabolic end-products changes 

from the wild-type strain to the EPS strain were observed. Cellular morphological 

characterization showed the EPS strain exhibits a large cell size (length and height). 

The EPS strain was capable of producing 1.41 g/L 2,3-butanediol from 2% crystal 

chitin, a 3.7-fold increase compared to that of the wild-type strain. In addition, the 

molar ratio of 2,3-butanediol to byproducts is improved from the wild-type strain 
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(2.5:2.5:1) to the EPS strain (4.8:2.7:1). Key mutations occurred in two gene products 

(SMDB11_2700 and SMDB11_1516) that encode a LysR-family regulator and a 

fimbrial adhensin may be accounting for the increased chitinase activities and 

overproduction of 2,3-butanediol.  

4.1 Introduction 

Chitin is the second most common organic compound on earth and can be potentially 

used as an inexpensive and renewable raw material for many applications (Yan and 

Chen 2015; Yan and Fong 2015). One of potentially interesting schemes to utilize 

chitin for biochemical production is using chitinolytic organisms to perform one-step 

conversion, known as consolidated bioprocessing (CBP) (Yan and Fong 2017a). To 

more fully utilize chitin, efforts are being made to identify, characterize, and utilize 

chitinolytic organisms. Collectively, chitinolytic microorganisms are a small fraction 

of overall known species with different species found in many different branches of 

life such as Serratia marcescens (Vaaje-Kolstad et al. 2013), Bacillus circulans (Jee et 

al. 2002), and Acinetibacter parvus (Kim et al. 2017). While generally poorly 

characterized, chitinolytic microbes possess great physiological and biochemical 

diversity making them interesting organisms to study from both a basic and applied 

perspective. Serratia marcescens is a particularly interesting chitinolytic bacterium 

that has been well-studied and more efficient at producing chitinases than most other 

chitinolytic bacteria. 

 

One of the main challenges to utilizing chitin is that chitin degradation/hydrolysis is a 
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slow and difficult process. The roles, activity, and regulatory mechanisms controlling 

expression of different chitinases are all being studied with a goal of being able to 

understand and increase the rate of chitin hydrolysis (Vaaje-Kolstad et al. 2013; Yan et 

al. 2017). Another potential approach to increase the rate of chitin hydrolysis is to 

conduct adaptive evolution experiments with a chitinolytic organism. By serial 

passage of a microorganism growing in one constant substrate medium, a mutated 

daughter cell whose growth outpaces other cells can eventually take over the whole 

population by its own daughter cells. Laboratory adaptive evolution has been applied 

to many cellulolytic microorganisms as a means for inducing systemic changes to 

improve cell growth on cellulosic materials (Deng and Fong 2011a; Lin et al. 2016; 

Patyshakuliyeva et al. 2016). In cases where selection is based upon growth rate that 

is related to increased consumption of the limiting substrate, thus, laboratory 

evolution may be a means for increasing the rate of chitin hydrolysis in a chitinolytic 

organism. 

 

In this study, our goal is to improve S. marcescens chitin utilization efficiency by 

propagating S. marcescens Db11 in a minimum M9 medium containing colloidal 

chitin as a sole carbon source. After 4-month laboratory adaptive evolution 

experiments, an end-point evolved strain was isolated with clear cellular physiological 

changes including increase of chitinase activities and cell growth, decrease of overall 

secreted proteins, and changes of secreted end-point metabolites and cellular 

morphology. Whole genome sequencing of the evolved strains was performed to seek 
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single nucleotide variations (SNVs) and identified key mutations in a regulator gene 

upstream region and a fimbrial adhensin gene. In addition, the evolved strain was 

capable of improving 2,3-butanediol production by 3.7-fold from 2% crystal chitin 

compared to that of the wild-type strain. 

4.2 Materials and Methods 

4.2.1 Adaptive evolution of S. marcescens 

Starting with the wild-type strain of S. marcescens Db11, whose genome has recently 

been sequenced (Iguchi et al. 2014), laboratory evolution experiments were conducted 

for growth in M9 medium with 2% colloidal chitin as a sole carbon source for four 

months. The S. marcescens strains were serial passage into the fresh medium while 

cells remained in exponential growth. The phenotypes (cell growth, chitinase activity 

and overall secreted proteins) were measured every five days and the amount of 

dilution at each passage was adjusted daily to account for changes in growth rate. 

After around four months of cell propagation, the cell growth and chitinase activity 

were stable and the laboratory evolution experiment was stopped. The end-point 

strains were propagated for nearly 287 generations and the middle-point strains were 

propagated for nearly 143 generations. For subsequent testing, isogenic colonies were 

selected by diluting S. marcescens on agar plates containing M9 medium with 2% 

colloidal chitin and picking single colonies for culturing. 

4.2.2 Growing S. marcescens with glucose, N-acetylglucosamine and colloidal 

chitin 

S. marcescens strains preculture were grown in LB medium at 30°C and 220 rpm for 
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overnight. The preculture was harvested and washed three times using purified water. 

Then, 2.5% (v/v) inoculation was added in a 50 mL Erlenmeyer flask containing 35 

mL M9 medium with 10 g/L glucose, 10 g/L N-acetylglucosamine, or 20 g/L colloidal 

chitin. The S. marcescens strains were incubated at 30°C and 100 rpm for 48 h or 7 

days, respectively. The cell growth were monitored either by testing OD600 every 4 

hours when grown in glucose or N-acetylglucosamine M9 medium or by measuring 

overall cell lysates protein concentration every 24 hours when grown in colloidal 

chitin M9 medium.  

4.2.3 Cell density measurement 

The optical density (OD) was measured as absorbance at 600 nm every 4 h for S. 

marcescens growing on glucose and N-acetylglucosamine M9 medium. Due to the 

physiology of colloidal chitin (milk white turbid liquid), the cytoplasmic protein 

content of S. marcescens strains when grown in colloidal chitin medium was tested 

according to the protocol described in our previous publication (Yan et al. 2017). In 

brief, 1 mL cell culture was centrifuged at 10,000×g for 5 min. The cell pellets were 

re-suspended in fresh media and repeated centrifugation at 10,000×g for 5 min. The 

samples were resuspended in 100 μL 1X Bugbuster (EMD Millipore, Billerica, MA) 

and lysed by incubating at room temperature for 30 min. Cell wall debris were 

removed by centrifuging at 10,000×g for 5 min and the supernatant was used to 

measure cytoplasmic protein concentration by the Bradford protein assay (Bio-Rad, 

Hercules, CA). The dry cell weight (DCW) is proportionally related to the overall 

protein content according to a correlation factor equation: DCW (g/L) = 1.20 ± 0.03 × 
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Protein (g/L)). 

4.2.4 Secreted end-products measurement 

1 mL cell culture was harvested and centrifuged at 10,000×g for 5 min. The 

supernatant was filtered using a 0.22 μm filter and subsequently, the samples were 

ready for HPLC measurements. Metabolic end-products were quantified using an 

Ultimate3000 HPLC system (Dionex, Sunnyvale, CA), equipped with a Bio-Rad 

HPX-87H ion exclusion column (Hercules, CA) and a refractive index detector 

(Shodex, Japen). The condition was run with 5 mM H2SO4 at 0.6 mL/min and 55°C.  

4.2.5 Chitinase activity assay 

Three substrates were used to measure the chitinase activities according to different 

enzyme acting mechanisms. For instance, 0.2 mg/mL 4-Nitrophenyl 

β-D-N,N′,N′′-triacetylchitotriose was used to detect endochitinase activity; 0.5 mg/mL 

4-Nitrophenyl N,N′-diacetyl-β-D-chitobioside was used to determined chitobiosidase 

activity; 1 mg/mL 4-Nitrophenyl N-acetyl-β-D-glucosaminide was used to test 

β-N-acetyl-glucosaminidase activity. Briefly, 1 mL cell culture was centrifuged at 

10,000×g for 5 min. Each reaction contained 10 μL supernatant samples and 90 μL 

substrate dissolved in assay buffer (Sigma-Aldrich, St. Louis, MO). The reaction was 

incubated in a 96-well plate at 37°C for 30 min and was terminated by adding 200 μL 

0.4 M sodium carbonate solutions. The absorbance at 405 nm was measured 

immediately using a microplate reader (VERSAmax, San Jose, CA). Chitinase 

activity was defined as one unit of activity will release 1.0 μmole of 4-Nitrophenol 

from appropriate per minute at pH 4.8 at 37°C. 
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4.2.6 Cell morphological characterization 

All S. marcescens strains cell morphology was conducted and characterized using 

Atom Force Microscope (AFM). In brief, S. marcescens strains were streaked from 

freezer stocks on agar plates containing M9 medium with 2% colloidal chitin and 

were incubated at 30°C for 1 week. After 1 week culture, S. marcescens colonies grew 

saturated on the agar plates and formed clear zone around them. A single isogenic 

colony was picked up and diluted in a 1.5 mL centrifuge tube containing 1 mL DI 

H2O. One drop of the cell resuspension solution was placed on the surface of a sample 

plate. When the samples were dried at room temperature, they were readily visualized 

and characterized by an AFM. Detailed procedures of AFM characterization were 

according to a previous publication by a research group at VCU (Wang et al. 2015). 

4.2.7 Whole genome resequencing 

Genomic DNA was isolated using the DNeasy Blood & Tissue kit (Qiagen, USA) 

according to the manufacturer‟s instructions. All the genomic sequencing libraries 

were prepared according to the manufacturer‟s instructions. We sequenced the isolates 

from S. marcescens MPS and EPS using sequencer and then these two isolates were 

also sequenced by Illumina Hiseq3000. In all cases we generated pair-end reads.  

4.2.8 Single nucleotide variations (SNVs) detection from sequence data 

Sequencing reads obtained using the Roche 454 FLX platform were analyzed by 

manufacturer-supplied software and processed by a Technology Center for Genomics 

and Bioinformatics at University of California at Los Angelas. Illumina reads were 

mapped directly to the S. marcescens reference sequence using a somatic mutation 
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calling program. During the alignment of the Illumina data, sequence fragments were 

called to a unique genome position and only fragments with a perfect sequence match 

or a single base mismatch were used. In general, there was an average coverage of 50 

for each gene. The reference genome sequence of S. marcecens Db11 is HG326223. 

4.2.9 2,3-butanediol fermentation 

S. marcescens pre-culture was performed in LB medium at 30°C and 220 rpm for 

overnight. 10% (v/v) seed culture was inoculated for 2,3-butanediol fermentation. S. 

marcescens 2,3-butanediol fermentations were conducted in 250-mL Erlenmeyer flask 

containing 150 mL M9 minimum medium with 1% yeast extract, 5 g/L 

N-acetylglucosamine, and 20 g/L crystal chitin at initial pH 7.5, 30°C and 100 rpm.  

4.3 Results and Discussion 

4.3.1 Adaptive evolution of S. marcescems 

After around four-month serial passage of cells at exponential phage into fresh M9 

colloidal chitin medium, the end-point strain, designated as S. marcescens EPS, was 

propagated for ~287 generations while the middle-point strain, designated as S. 

marcescens MPS was propagated for ~143 generations. By monitoring the overall 

population phenotypes, we observed the changes of cell yields, chitinase activities and 

overall secreted proteins tend to be steady (Figure 13A, 13B and 13C). Compared to 

the parental strain, after 287 generations propagation, the end-point populations 

showed a trend of increased chitinase activities (β-N-acetylglucosaminidase,  from 

4.259×10
-3

 to 0.10 U/mL; endochitinase, from 4.77×10
-4

 to 0.0031 U/mL; 

chitobiosidase from 0.0116 to 0.057 U/mL); a trend of decreased overall secreted 
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protein  (from 71.36 mg/L to 51.63 mg/L); and a trend of increased overall cell yield 

(from 6.06 g/L to 7.26 g/L periplasmic protein). Both increases of chitinase activities 

and cell yields indicate a potential improvement of S. marcescens chitin utilization 

capability. 
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Figure 13 Physilogical changes after serial passage of S. marcescens in 2% colloidal 

chitin M9 medium. (A) Chitinase activities (U/mL): β-N-acetylglucosaminidase 

(black square), chitobiosidae (red circle), endochitinase (blue triangle); (B) Overall 

secreted proteins (mg/L); (C) Overall intracellular protein concentration. 

4.3.2 Growth changes 
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Next, we isolated the evolved middle-point strain (MPS) and end-point strain (EPS) 

by diluting on colloidal chitin agar plates. Ten colonies for 143 and 287 generation 

populations were picked and tested for chitinase activities, cell growth and secreted 

overall protein (data not shown). The chitinase activities were consistent to the mixed 

population trend. Thus, we isolated two isogenic strains: a S. marcescens MPS and a S. 

marcescens EPS. The two strains in combination with the wild-type Db11 strain were 

used to conduct physiological characterization. 

 

Compared to cell growth of wild-type Db11 strain grown in glucose medium, the S. 

marcescens MPS and S. marcescens EPS showed slightly decreased cell yields (Fig. 

14A). Compared to cell growth of wild-type strain grown in N-acetylglucosamine 

medium, the S. marcescens MPS and the S. marcescens EPS growth did not change 

apparently. Compared to the cell yield (2.52 g/L) of wild-type strain grown in 

colloidal chitin medium, the S. marcescens MPS and S. marcescens EPS exhibited an 

increased overall cell yield (3.69 g/L and 3.89 g/L, respectively) (Fig. 14B). The 

increase of overall cell yields from wild-type strain to S. marcescens MPS and EPS 

are consistent to the overall population trend.  
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Figure 14 Time course of cell growth in M9 medium of different carbon souces at 

220 rm and 30°C. (A) 10 g/L glucose and 10 g/L N-acetylglucosamine, (B) 2% 

colloidal chitin. 
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4.3.3 Chitinase activity and metabolic end-products changes  

Compare to the chitinase activities of the wild-type strain, the S. marcescens EPS and 

the S. marcescens MPS chitinase activities were significantly increased compared to 

the wild-type strain (Fig. 15A). For instance, the endochtinase activity of the S. 

marcescens EPS (0.00197 U/mL) and the S. marcescens MPS (0.001518 U/mL) 

increased 2- and 1.5-fold, respectively. The chitobiosidase activity of the S. 

marcescens EPS (0.0634 U/mL) and the S. marcescens MPS (0.0304 U/mL) increased 

3.9- and 1.9-fold, respectively. The β-N-acetylglucosaminidase activity of the S. 

marcescens EPS (0.132 U/mL) and the S. marcescens MPS (0.032 U/mL) increased 

7.73- and 1.88-fold, respectively. Compared to the overall secreted proteins (94.81 

mg/L) of the wild-type strain, the S. marcescens EPS (48.18 mg/L) and the S. 

marcescens MPS (62.0 mg/L) secreted overall protein was decreased 1.96- and 

1.53-folds, respectively (Fig. 15B).  

 

In addition, the main secreted metabolic end-products of the S. marcescens strains 

were measured when grown in M9 N-acetylglucosamine medium. The S. marcescens 

EPS completely consumed the initial 10 g/L N-acetylglucosamine after 24 h; the S. 

marcescens MPS consumed 8.51 g/L N-acetylglucosamine after 24 h; and the 

wild-type strain consumed 6.24 g/L N-acetylglucosamine after 24 h. Therefore, the S. 

marcescens EPS exhibited more actively at uptaking N-acetylglucosamine than the S. 

marcescens MPS and Db11. Compared to the secreted metabolic end-products of the 
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wild-type strain, S. marcescens EPS produced 1.93-fold increased 2,3-butanediol, 

1.84-fold increased lactic acid, and 1.46-fold increased acetic acid (Fig. 15C). The 

overall increased metabolic end-products from the wild-type strain to the MPS and 

EPS strain is the consequence of improvement of N-acetylglucosamine uptake rates 

while no apparent differences of cell biomass formation among the three strains were 

observed. In addition, the molar end-production ratio of S. marcescens EPS 

(2,3-butanediol:acetic acid:lactic acid =5:3.3:1) is slightly higher than that of the 

wild-type strain (2,3-butanediol:acetic acid: lactic acid =4.5:3.8:1). The increased 

molar ratio of 2,3-butanediol:acetic acid:lactic acid from the EPS strain to the 

wild-type strain can be due to balance intracellular acidic conditions caused by 

production of acetic acid and lactic acid since S. marcescens prefers to produce 

2,3-butanediol under an acidic condition (Ji et al. 2011). 
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Figure 15 Characterization of phenotypical changes of the evolved strains and 

parental strain. (A) Chitinase activity, (B) overall secreted protein, (C) end-point 

metabolites. 

4.3.4 Cell morphological changes 
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All S. marcescens strains were imaged by AFM and the detailed procedures can be 

found in the Materials and methods. Under a scope of 50 μm image, compared to S. 

marcescens Db11 cellular length and height, there is a generally increase trend of 

cellular length and height for S. marcescens MPS and EPS strains, shown in Fig. 16A, 

16C, and 16E. Under a scope of 3.0 μm image where single cells were targeted and 

centered, the trend of increase at cellular length and height become clear ranging from 

S. marcescens Db11 to S. marcescen MPS and S. marcescen EPS (shown in Fig. 16B, 

16D, and 16E). On average, S. marcescens EPS strains have a cellular length of 2.19 

± 0.19 μm and height of 331 ± 30 nm; S. marcescens MPS strains have a cellular 

length of 1.33 ± 0.08 μm and height of 197 ± 20 nm; S. marcescens Db11 strains have 

a cellular length of 1.31 ± 0.21 μm and height of 206 ± 34 nm. Overall, the end-point 

evolved strains exhibited larger cellular sizes (length and height) than the wild-type 

strains. There are two possible reasons that are responsible for the increased cellular 

sizes after evolutionary experiments: 1) it might be due to an increased secretion of 

more surrounded polysaccharides since Serratia sp. are known to form biofilms 

during cell growth; 2) it might be due to the increase of metabolic capabilities where 

facilitate nutrients and metabolites mass transformation by increasing outer or inner 

membrane areas. Since the evolution experiment was conducted by serial passage of S. 

marcescens under chitin as the sole carbon conditions, it may not be surprising that 

cells evolved to maximize the cellular membrane to uptake and secrete nutrients and 

metabolites to survive under the harsh conditions. 
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Figure 16 Cellular morphological characterization of S. marcescens strains by AFM. 

(A, C, and E) Image of S. marcescens Db11, MPS and EPS under scope of 50 μm; (B, 

D, and F) single cell image of S. marcescens Db11, MPS, and EPS under scope of 3 

μm. 

4.3.5 2,3-butanediol production from chitin 

In order to evaluate the S. marcescens EPS 2,3-butanediol production capability from 

crystal chitin, the S. marcescens EPS and Db11 were cultured in 2% crystal chitin 

medium for 1-week. Compared to S. marcescens Db11 fermentation, the S. 

marcescens EPS shows higher cell yields (1.34 g/L vs 1.13 g/L) (Figure 17A), 

specific endochitinase activity (8.31 U/g cell vs 5.42 U/g), specific chitobiosidase 

activity (85.4 U/g cell vs 47.3 U/g cell), and specific β-N-acetylglucosaminidase 

(103.48 U/g cell vs 35.23 U/g) (Figure 17B). The growth and chitinase activity 

phenotypic differences are consistent to the above-mentioned physiological 

characterization results. After 72 h incubation, the S. marcescens EPS was able to 

produce 1.41 g/L 2,3-butanediol from 20 g/L crystal chitin, 3.7-fold improvement 
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compared to that of S. marcescens Db11 (0.38 g/L), shown in Figure 17C.  
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Figure 17 Cell growth (A), chitinase activities (B), production of 2,3-BD (C) using 

the S. marcescens Db11 (black color) and the S. marcescens EPS strain (blue color) 

under M9 medium supplemented with 1% yeast extract and 2% chitin at 30°C and 

100 rpm. 

The S. marcescens EPS showed generally better growth on chitin than the wild-type 

strain and is able to produce 1.41 g/L 2,3-butanediol from 20 g/L crystal chitin due to 

more efficiently utilizing chitin as a substrate. Compared to a previous report of 

2,3-butanediol titer (1.13 g/L) from a S. marcescens chiR overexpression strain 

(chiROE) (Yan et al. 2017), S. marcescens EPS is able to produce 2,3-butanediol titer 

25% higher. In addition, the molar ration of 2,3-butanediol:acetic acid:lactic acid of S. 

marcescens EPS (4.8:2.7:1) is higher than the S. marcescens chiROE strain (3:2.8:1) 

because propagating cells under chitin medium is advantageous to provide selected 

pressure for cells to induce better phenotypes, namely growth and metabolic changes. 

4.3.6 Whole genome sequencing of the evolved strains 
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Whole genome sequencing of the S. marcescens MPS and EPS genomes were 

conducted and single nucleotide variations of the evolved strains compared to the 

wild-type strain were listed in Table 6. Three SNVs were identified in S. marcescens 

MPS genome and eight SNVs were identified in S. marcescens EPS genome 

compared to the reference genome. The three SNVs of S. marcescens MPS are 

transport proteins. The SNVs of S. marcescens EPS contain transport proteins, global 

regulatory proteins, and pathway proteins. Two key mutations of the S. marcescens 

EPS were identified to be responsible for the physiological changes: 1) one mutation 

occurred at upstream of SMDB11_2700 gene, encoding a LysR-family regulatory 

protein; 2) one mutation occurred in the coding sequence of SMDB11_1055, 

encoding a fimbrial adhensin.  

 

SMDB11_1055 locates downstream of a chaperone-usher fimbriae operon 

(SMDB11_1052, encoding a putative fimbrial protein; SMDB11_1053, encoding a 

putative fimbrial chaperone; SMDB11_1054, putative fimbrial usher protein; and 

SMDB11_1055, a putative fimbrial adhensin). Through running protein sequence 

analysis against other organisms, SMDB11_1055 sequence is highly conserved 

among Serratia sp. and under the family of Enterobacteriaceae. Although the 

functionality of SMDB11_1055 has yet been characterized, it is generally believed 

that a chaperone-usher fibriae forms an outer membrane pore and secretes adhensin 

protein (i.e. SMDB11_1055) as a tip for reaching out and targeting substrates. The 

mutation of the putative fimbrial adhensin (SMDB11_1055) may affect S. marcescens 
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swarming motility phenotype and potentially increase the possibility of accessing to 

the substrate. In other studies, S. marcescens fimbrial proteins have been 

demonstrated essential for swarming motility toward its substrates. For instance, 

overexpression flagellum dependent genes (i.e. FlhD, encoding the flagellar 

expression master operon, and FliA, encoding an alternative sigma factor during 

flagellar assembly) can facilitate greatly S. marcescens swarming and swimming to 

kill against some fungal hyphae (Hover et al. 2016). 

 

Table 6 Single nucleotide variations (SNVs) of the evolved strains compared to the 

wild-type strain after whole genome sequencing. 

Position Mutation Gene Annotations 

S. marcescens MPS 

1121161 A→C SMDB11_1055 Putative fimbrial adhensin 

3667780 A→T SMDB11_3454 unknown 

1579431 C→T SMDB11_1516 rnfC, electron transport complex protein 

S. marcescens EPS 

1121161 A→C SMDB11_1055 Putative fimbrial adhensin 

1579431 C→T SMDB11_1516 rnfC, electron transport complex protein 

1579454 C→G SMDB11_1516 rnfC, electron transport complex protein 

2713402 A→G SMDB11_2558 fruA, fused fructose-specific PTS enzymes: IIB 

component/IIC component 

2861957 C→A SMDB11_2700 Upstream of SMDB11_2700 

2861957 C→A SMDB11_2700 Upstream of SMDB11_2702 

3667780 A→T SMDB11_3454 Unknown 

4366216 A→G SMDB11_4092 glnA, glutamine synthetase 

 

SMDB11_2700 encodes a LysR-family transcription regulator. Protein sequence 

similarity analysis of SMDB11_2700 showed that it is 67% indentify compared to a 

Yersinia pseudotuberculosis LysR-type transcription regulator RovM (Quade et al. 

2011), , which controls gene transcription by attaching and changing DNA structures. 
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The LysR family regulatory protein functions in variety of categories such as a local 

regulator (i.e. chitinase secretion) and as a global regulator (i.e. quorum sensing) 

(Maddocks and Oyston 2008). In terms of the phenotypic changes and genome 

sequencing results, it is likely that SMDB11_2700 serves as a global regulatory 

protein and the mutation occurred in the upstream region of the global regulatory 

protein (SMDB11_2700) may affect a cascade effect of regulation in S. marcescens. 

In addition, Serratia sp. quorum sensing systems have been reported 

directly/indirectly controlling various phenotypes including sliding/swarming motility, 

production of chitinase, and butanediol fermentation (Van Houdt et al. 2007).  

 

The mutation of SMDB11_2700 may also be responsible for 2,3-butanediol 

overproduction. In general, the overproduction of 2,3-butanediol can be a result of 

neutralize the acidic environment caused by the acidic end-products (e.g. acetic acid, 

lactic acid and succinic acid). In both Serratia marcescens MG1 and Serratia 

plymuthica RVH1, inactivation of the acylated homoserine lactones (AHL) synthase 

encoding gene leads to a reduced production of 2,3-butanediol and to a continued 

production of acidic end-products at the end of the exponential and throughout the 

stationary growth phase, which in turn leads to early growth arrest in the presence of 

fermentable sugars (Johansen et al. 1975; Magee and Kosarie 1987). Thus, 

SMDB11_2700 may play a key role in quorum sensing systems in Serratia 

marcescens Db11 that the mutation at the promoter region of SMDB11_2700 may 

account for increased chitinase activities and overproduction of 2,3-butanediol. 
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4.4 Conclusion 

The newly evolved strain S. marcescens EPS exhibits increased chitinase activities, 

decreased secreted proteins, increased cell yield on chitin, and metabolic end-products 

changes compared to the wild-type strain. The EPS strain was capable of producing 

1.41 g/L 2,3-butanediol from 2% crystal chitin, a 3.7-fold improvement compared to 

that of the wild-type strain. In addition, the molar ratio of 2,3-butanediol to 

byproducts is improved from the wild-type strain (2.5:2.5:1) to the EPS strain 

(4.8:2.7:1). Key mutations occurred in two gene products (SMDB11_2700 and 

SMDB11_1516) that encode a LysR-family regulator and a fimbrial adhensin may be 

accounting for the increased chitinase activities and overproduction of 2,3-butanediol.  
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Chapter 5 Metabolite profile of a chitinolytic bacterium Serratia marcescens 

using a transcriptomics-based genome-scale metabolic model 

Importance of this part of work: 

Since metabolic network of S. marcescens is complex and undertermined, 

genome-based constraint metabolic model is a powerful tool to understand metabolic 

profile of S. marcescens in a systematic manner. After construction of a computational 

model of S. marcescens, it can be readily deployed for predicting genetic targets to 

improve chemical production. Prior to my dissertation, no genome-scale metabolic 

model of S. marcescens is developed and intracellular metabolic profile remains 

uncharacterized. 

The conclusions and fundamental results derived from this part of work: 

We constructed a constraint-based genome-scale metabolic model (iSR929) including 

929 genes, 1185 reactions and 1164 metabolites based on genomic annotation of S. 

marcescens Db11. The model performed reasonably comparing simulated cell growth 

and metabolites secretion with experimental acquisition, and 138 essential genes were 

predicted. The model iSR929 was curated by integrating mRNA-seq data of S. 

marcescens growth at three carbon sources (glucose, N-acetylglucosamine, and 

glycerol). Major metabolic differences of utilizing the three carbon sources rely on the 

utilization of citric acid cycle. Under growth of N-acetylglucosamine, S. marcescens 

exhibits high activity of pentose phosphate pathway and nucleotide synthesis but low 

activity of citric acid cycle. Three target chemicals (2,3-butanediol, 

N-acetylneuraminic acid, and n-butanol) can be implemented for metabolic 
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engineering applications by S. marcescens and their pathway gene activities were 

given.  

5.1 Introduction 

With recent advances in genomics, omics, and bioprospecting, the breadth of novel 

and interesting biochemistry continues to explore. In terms of the large amount of data 

and resources available, one current challenge is to conduct elaborate analysis to 

translate raw data into knowledge that provides functional insight. Genome-scale 

metabolic modeling (GSMM) facilitates metabolic analysis and dovetails well with 

genomic and biochemical information. While GSMM have advantages of being easily 

accessible and providing gene-protein-reaction level specificity, there are still a 

number of limitations (Yan and Fong 2017a). For instance, because metabolic 

networks are underdetermined, there exist alternative flux states with different 

pathway usage that produce indistinguishable cellular phenotypes. This is an 

underlying problem with GSMM that impacts multiple portfolios of these models 

including the initial reconstruction (association of specific reactions with annotated 

genes) and running simulation predictions (presence of alternate optimal solutions). In 

this study, we consider the metabolically under-characterized chitinolytic bacterium, 

Serratia marcescens, and utilize mRNA-seq data to run computational simulation to 

gain a better understanding of its metabolic network. 

 

S. marcescens is unique among enteric bacteria in many aspects. It secretes 

extracellular DNase, gelatinase, lipase, several proteases, a red pigment (prodigiosin), 
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chitinases and a chitin binding protein. It is believed to be one of the most efficient 

chitin-degrading bacteria in the environment (Monreal and Reese 1969; Vaaje-Kolstad 

et al. 2013). S. marcescens Db11 contains ten chitinase-related proteins (Yan et al. 

2017). Numerous studies recently have investigated on various facets of the S. 

marcescens chitinolytic mechanisms (Hamilton et al. 2014; Kim et al. 1998; Mekasha 

et al. 2017; Vaikuntapu et al. 2016). Due to the high efficiency of processing chitin 

materials, several individual S. marcescens chitinase genes have been cloned into 

those model bacterial species (e.g. Escherichia coli) (Brurberg et al. 1995; Suzuki et 

al. 2002; Tuveng et al. 2017). The cloned enzymes were isolated in good 

concentrations but failed to show similar level of chitinolytic activity as is found in S. 

marcescens. This may be due to the complexity of chitin degradation systems that are 

not defined by a few genes but is an interwined network of various enzymes 

(Hamilton et al. 2014; Suzuki et al. 2016; Suzuki et al. 2001; Yan et al. 2017). Hence, 

it is suggested that the best way to fully utilize the chitinolytic capabilities of S. 

marcescens may be developing S. marcescens rather than moving its chitinases into 

other systems by heterologous expression. 

 

The ability to produce chemicals of industrial importance using inexpensive 

chitinolytic biomass has been a recent focus (Dahiya et al. 2006; Yan and Chen 2015; 

Yan and Fong 2015). Microbial conversion of chitin waste into value-added chemicals, 

known as consolidated bioprocessing (CBP), can help solve potentially social 

problems and make economic benifits. For S. marcescens Db11, the sequencing of its 
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genome in 2014 sets up a milestone towards understanding this industrially applicable 

microbe (Iguchi et al. 2014). It also showed success towards utilization of crystal 

chitin material (Yan et al. 2017). The initial developments in the characterization of S. 

marcescens are listed in Table 7. This is a promising development toward making use 

of the chitinolytic capabilities of this microbe to reduce the complex multi-step 

bioprocess to CBP. 

Table 7 Significant milestone for S. marcescens research and characterization. 

Year Development Group Citation 

1980 Genus Constructed FlyG and Xanthopoulos (Flyg et 

al. 1980) 

1991-1999 Physical Characterization Brurberg et al.; Suzuki et 

al. 

(Brurberg 

et al. 

1995; 

Watanabe 

et al. 

1997) 

1998 Shrimp/crab chitin degradation study to produce 

N-acetylglucosamine 

Kim et al. (Kim et 

al. 1998) 

2014 Genome sequenced Hayashi et al. (Iguchi et 

al. 2014) 

2017 Development of genetic modification method Yan and Fong (Yan et 

al. 2017) 

 

With the availability of genomic sequences, it has become possible to use genome 

annotation and biochemical information to reconstruct cellular metabolic networks. 

Whole genome sequence and annotation of S. marcescens Db11 (Iguchi et al. 2014) 

was used to build GSMMs. The reaction database used for drafting the model includes 

but is not limited to sources such as KEGG (Kanehisa and Goto 2000), BiGG 

(Schellenberger et al. 2010), rBioNet (Thorleifsson and Thiele 2011), UniProt 

(Consortium 2008) and MBRole (Chagoyen and Pazos 2011). 
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The process of compiling biochemical reactions leads to the formulation of a draft 

model of S. marcescens, however, at this stage the represented metabolic network 

inevitably is incomplete and has numerous metabolic gaps. Thus, any initial model 

that is generated undergoes a gap-filling step. For our models, gap-filling was initially 

performed using a computational gap-filling algorithm (Brooks et al. 2012; Gowen 

and Fong 2010; Roberts et al. 2010; Vanee et al. 2014; Vanee et al. 2010). After 

gap-filling, simulations can be run by specifying input constraints such as substrate 

uptake rate, metabolites production rate, or oxygen uptake rate.  

 

Once the model provides a framework to understand the cellular process, it can be 

used to find target for focused metabolic engineering to yield products of 

biotechnological value (Roberts et al. 2010). The most widely-used algorithms for 

design and simulation of genome-scale constraint-based metabolic models such as 

OptKnock (Burgard et al. 2003), OptForce (Ranganathan et al. 2010), EMiLio (Yang 

et al. 2011) are based on flux distribution and flow through chemically balanced 

reactions (FBA). FBA uses linear programming to optimize the objective function as 

follows: 

Maximize: Z 

Subject to: Sv = 0, 

ai ≤ vi ≤ bi for all reactions i, 

where, Z is the flux through objective function (biomass production and production 
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optimization), S: stoichiometry of the reactions represented as matrix, v is reaction 

flux vector, ai and bi are the constraints placed on the flux vi of the reaction i (Palsson 

2015). 

 

Even after compiling biochemical information and gap-filling a model, there often are 

discrepancies between the computational model results and in vivo states due to 

difficulty in identifying using only computational approaches. A second step of model 

curation can be done by integrating high-throughput omics data with the framework 

of a computational model to realize “content in context” (Palsson 2015). The 

high-throughput omics data can be obtained by multi-scale high-throughput 

sequencing techniques such as transcriptomics, proteomics and metabolomics. This 

step reconciles computational predictions with experimental data and thereby helps 

enhance the characterization of the metabolic activity. 

 

A variety of applications using incorporating omics data with the framework of 

GSMM have been reported for many prokaryotic microbes to more closely match 

cellular processes (Gowen and Fong 2010; Vanee et al. 2017; Vanee et al. 2014). Once 

the model closely resembles a biological system, it can be optimized for defined 

objective function. This objective function may range from production of biomass to 

production of a chemical target. Following the in silico optimization of yields the 

computational design may eventually be replicated for applications in industry, 

therapeutics or health-related predictions.  
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In this study, we aim at understanding metabolite profile of S. marcescens Db11 and 

its chitinolytic regulation systems. Therefore, a genome-scale metabolic model, 

iSR929, consisting of 1185 reactions, 1164 metabolites and 929 genes was 

constructed. The constructed model was analyzed for 1) accuracy compared to 

experimental results; 2) prediction of essential genes; 3) metabolic differences under 

different carbon growth. We also proposed three potential chemical compounds for 

metabolic engineering implementation. 

5.2 Materials and Methods 

5.2.1 Microbial growth 

The Serratia marcescens Db11 was purchased from the Caenorhabditis Genetics 

Center (Twin City, USA http://www.cbs.umn.edu/CGC) (Flyg et al. 1980). The S. 

marcescens strain was grown in a M9 medium or LB medium containing various 

carbon sources. Carbon sources in the M9 medium were used at the following 

concentration: glucose, 5 g/L; N-acetylglucosamine, 5 g/L; glycerol 5%. S. 

marcescens pre-culture was performed in LB medium at 30°C and 250 rpm for 

overnight. Then, 2.5% seed culture was inoculated at 50 mL M9 minimum medium 

with a 250 mL Erlenmeyer flask at 30°C, initial pH 7.5, and 220 rpm. Stock cultures 

of S. marcescens were maintained at -80°C in a 26% (v/v) glycerol. 

5.2.2 Construction of the model iSR929 

The core of the stoichiometric metabolic model is a list of metabolic reactions 

occurring in S. marcescens, compiled based on evidence from genome annotations 

http://www.cbs.umn.edu/CGC


111 
 

and experimental observations. An initial list of biochemical reactions was assembled 

based on predicted enzymatic functions in the genomic annotations available from 

IMG, UniProt, and KEGG (Consortium 2008; Kanehisa and Goto 2000; Markowitz et 

al. 2008). Specifically, Enzyme Commission (EC) numbers of annotated S. 

marcescens genes were used to select reactions from a set of database reactions.  

5.2.3 Linear programming for flux balance analysis 

In-house python scripts were used to run the FBA simulations using the linear 

programming algorithm as shown in the introduction. 

5.2.4 Objective function of FBA: biomass equation 

The draft model aims at the growth optimization and the best estimates used in 

metabolic modeling scenario are biomass equation, which was designed by slightly 

manipulating the biomass equations from closely related species and available 

published information about S. marcescens growth conditions (Yan et al. 2017). The 

box below shows the biomass equation used for the simulation of all the version of 

the model. 

5.2.5 Biomass Equation: 

 0.05 5mthf + 5.0E-5 accoa + 0.488 ala_L + 0.0010 amp + 0.281 arg_L + 0.229 

asn_L + 0.229 asp_L + 45.7318 atp + 1.29E-4 clpn_SM + 6.0E-6 coa + 0.126 ctp + 

0.087 cys_L + 0.0247 datp + 0.0254 dctp + 0.0254 dgtp + 0.0247 dttp + 1.0E-5 fad + 

0.25 gln_L + 0.25 glu_L + 0.582 gly + 0.154 glycogen + 0.203 gtp + 45.5608 h2o + 

0.09 his_L + 0.276 ile_L + 0.428 leu_L + 0.0084 lps_SM + 0.326 lys_L + 0.146 

met_L + 0.00215 nad + 5.0E-5 nadh + 1.3E-4 nadp + 4.0E-4 nadph + 0.001935 
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pe_SM + 0.0276 peptido_SM + 4.64E-4 pg_SM + 0.176 phe_L + 0.21 pro_L + 

5.2E-5 ps_SM + 0.035 ptrc + 0.205 ser_L + 0.0070 spmd + 3.0E-6 succoa + 0.241 

thr_L + 0.054 trp_L + 0.131 tyr_L + 0.0030 udpg + 0.136 utp + 0.402 val_L --> 

45.5608 adp + 45.56035 h + 45.5628 pi + 0.7302 ppi 

5.2.6 Gap analysis 

The draft model consists of the list of reactions however there are patches in the 

network that obstruct continuous flow of the flux through the pathway. These links 

are filled in by using the reaction databank and suggesting the list of reactions 

required to complete the network. FBA-GAP is used to suggest the connection 

nodes/reactions that are missing. The use and application of this framework have been 

described in past by Roberts et al., Vanee et al., and Gowen and Fong (Gowen and 

Fong 2010; Roberts et al. 2010; Vanee et al. 2014). FBA-GAP takes a draft model and 

biomass reaction and uses distances in the reaction network and mathematical 

optimization to produce a list of metabolites that are necessary for biomass production 

but cannot be produced or consumed by the cell. Reactions producing and consuming 

this list of metabolites are obtained from a reference database. These potentially 

gap-filling reactions were manually checked for relevant evidence such an associated 

protein/enzyme characterized or gene annotations. On detecting the specific evidence, 

these reaction additions to the model were accepted. The process is repeated until a 

positive biomass flux value is obtained.  

5.2.7 Essentiality 

Constraint-based models can be analyzed by FBA to make comprehensive in silico 
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gene essentiality predictions (Oh et al. 2007). For each gene in the model, that gene is 

assumed to be deleted or nonfunctional. Then, using the GPR relationships, the effect 

of the in silico gene knockout on reaction activities is assessed. If the gene is crucial 

to the activity of a reaction in the model, then that reaction is constrained to have zero 

flux to simulate the effect of the gene deletion. Finally, the model with new constraint 

is analyzed by FBA, maximizing the growth objective for batch growth on glucose. If 

the maximum flux on the biomass reaction is zero, then the deleted gene is predicted 

to be essential. If the maximum flux on the biomass reaction is greater than zero, the 

deleted gene is predicted to be nonessential. All constraints are reset to their default 

values, and the process is repeated for the next gene in the model. 

5.2.8 mRNA sequencing 

The total RNA of S. marcescens Db11 was isolated using mid-log phase cell cultures 

by QIAGEN (Venlo, Netherlands) RNA protect reagent in combination with the 

QIAGEN (Venlo, Netherlands) RNeasy Mini kit. The mRNA was isolated, enriched, 

and reverse transcribed into cDNA. The resulting cDNA was sequenced by a 

pair-ended reads using Illumina Hiseq 2500 (San Diego, CA). An average insert size 

of 500 bp was created and draft mRNA-Seq data were generated. CLC Genomics 

Workbench version 10 (QIAGEN, Venlo, Netherlands) and FASTQC were applied to 

trim reads for quality sequence data. The S. marcescens Db11 genome (GeneBank: 

HG326223) was used as a reference. Each mRNA sample was tested with two runs. 

The gene expression level was calculated by normalizing each gene‟s reads per 

kilobase per million mapped sequence reads (RPKM) to overall gene numbers. 
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5.2.9 Measurement of cell density 

The measurement of S. marcescens strains culture density was generally quantified at 

OD600 using a Biomate3 UV/VIS spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). The growth of S. marcescens strains on crystal chitin and colloidal 

chitin was measured by testing cytoplasmic protein content (Yan et al. 2017). The 

concentration factor of the overall protein content to the dry cell weight (DCW) was 

DCW (g/L) = 1.20 ± 0.03 × protein (g/L). 

5.2.10 Quantification of secreted metabolites 

The concentration of N-acetylglucosamine, glucose, glycerol and all by-products 

(acetic acid, succinic acid, 2,3-butanediol, and ethanol) were analyzed by an Ultimate 

3000 HPLC (Dionex, Sunnyvale, CA), equipped with a Bio-Rad Aminex HPX-87H 

column (Hercules, CA), a UV detector (199 nm) (Dionex, Sunnyvale, CA), and a 

refractive index detector (Shodex, Japan). The condition was run with 5 mM H2SO4 

at 0.6 mL/min and 55°C.  

5.2.11 Integration of gene expression data with genome-scale reconstruction 

The integration of mRNA-seq data with the iSR929 model was analyzed using the 

method described by (Shlomi et al. 2008), in which the Boolean mapping from genes 

to reactions in iSR929 was used to translate gene expression data into predicted 

reaction activity states. Based on the relative gene expression levels calculated from 

RNAseq data, gene expression states were determined according to the following 

rules: 
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             -1     g = 0 

gene state =    0   0 < g ≤ γ 

              1  γ < g 

Where g is the normalized expression level as determined by RNAseq (e.g. RPKM) 

and γ is the threshold above which a gene is called „on‟. The resulting gene states 

were then mapped using the gene-protein-reaction (GPR) relationships in iSR929 to 

generate lists of reactions predicted to be high or low, as determined by a flux with an 

absolute value higher than a given reaction threshold epsilon (ε). MILP was then used 

as in to find a network flux state that maximizes agreement with the expression based 

reaction activities, where a reaction was confirmed to be on when its flux was greater 

than or equal to a given reaction threshold ε (Shlomi et al. 2008). This method is 

distinct from traditional FBA because it is able to predict flux state for the network 

independent of a biomass objective function, which may be valuable in cases where 

cells may not have been evolved towards a maximum growth rate and, therefore, are 

not operating optimally. 

5.2.12 Determination of intracellular citric acid and isocitric acid concentration 

Intracellular levels of citric acid and isocitric acid were evaluated using a citrate assay 

kit (Sigma-Aldrich, St. Louis, MO) and an isocitric acid kit (BioVision, Milpitas, CA), 

respectively. In brief, S. marcescens cells growth were ceased at 2.5 h (OD600 about 

0.4) and were collected by centrifuging at 4°C, 15,000 rpm, and 10 min. Citric acid 

and isocitric acid assays were conducted according to the manual‟s instruction. 10 μL 

supernatant samples were added in a total volume of 100μL reaction. Citric acid and 
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isocitric acid concentrations were determined at 570 nm and 450 nm by a VERSAmax 

microplate reader (Molecular Devices, Sunnyvale, CA), respectively. 

5.3 Results and discussion 

5.3.1 Construction of S. marcescens GSMM 

Based upon genomic and available physiological evidence, a genome-scale 

constraint-based metabolic model for S. marcescens, hereafter denoted iSR929, was 

constructed. iSR929 contains 1185 reactions representing the function of 929 genes 

and 1164 metabolites (see Table 8). Among the 1100 gene associated reactions of the 

total 1185 reactions, there are 795 reactions that are associated with only one reaction 

and there are 305 reactions associated with more than one enzyme, meaning either 

isozymes or enzyme complexes. Of the 1164 metabolites, 1099 metabolites are 

intracellular, 43 metabolites are extracellular, and 22 metabolites are boundary. 

Furthermore, we added chitobiose degradation reactions to the model based upon the 

annotation and experimental evidence (EC 3.2.1.52, SMDB11_0477, SMDB11_1190 

SMDB11_1542 and SMDB11_4602). 

 

Table 8 Overview of genome-scale constraint-based model of S. marcescens iSR929. 

 Serratia marcescens 

Genome size 5.11 Mb 

ORFs 4832 

Included genes 929 

Reactions associated with only 1 gene 795 

Reactions associated with more than 1 gene 305 

Reactions with gene associated 1185 

Intracellular metabolites 1099 

Extracellular metabolites 43 

Boundary metabolites 22 
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The breakdown of iSR929 by functional categories is represented in Figure 18. The 

amino acid metabolism forms the largest of these, with 253 reactions. Experimentally, 

S. marcescens appears to have the capacity to synthesize all 20 amino acids (Yan et al. 

2017), and iSR929 reflects this. Other large groups of reactions include subsystems 

related to carbohydrate metabolism (glycolysis, pentose phosphate pathway, pyruvate 

metabolism, and citric acid cycle), cofactor and vitamin metabolism (nicotinate and 

nicotinamide metabolism, folate biosynthesis, and prophyrin and chlorophyll 

metabolism) and nucleotide metabolism (including reactions related to purine and 

pyrimidine synthesis). The model also includes reactions relating to the synthesis of 

lipids, including fatty acid, glyceropospholipid, and glycerolipid metabolism. 

 

 

Figure 16 Reactions by functional category with number of reactions in model iSR929. 

 

To test the predictions of the iSR929 model, we simulated growth of S. marcescens by 

applying FBA, assuming minimal media conditions with one of three possible carbon 

sources (glucose, N-acetylglucosamine, or glycerol). We then compared model 
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predictions to experimentally observed growth rates and fermentation product 

secretion profiles of S. marcescens grown in batch culture. In addition to the carbon 

source, the in silico minimal medium used for simulations contained water (H2O), 

ammonia (NH4), sulfate (SO4), phosphate (pi), calcium (Ca2), ferrous iron (Fe3), 

hydrogen sulfide (H2S), potassium (K), magnesium (Mg2), pantothenate (pnto-r), and 

nicotinate D-ribonucleotide (nmn). In each of the three simulation conditions (glucose, 

N-acetylglucosamine, and glycerol), we applied progressively more experimentally 

determined constraints associated with by-product secretion rates to determine how 

closely the computational results could match the experimental results given the 

possibility of alternate optimal solutions. Figure 19 shows the simulation results for 

each growth condition when exchange rates for the carbon sources, acetic acid, and 

succinic acid were constrained to match experimental observations.  

5.3.2 Computational prediction of gene knockout targets 

We conducted comprehensive in silico single gene deletions with iSR929, using 

glucose as a carbon source and the other minimal media components (as described 

above), and constraining glucose uptake to its experimentally observed value for 

batch growth (10.53 mmol/gDW/h). Gene essentiality results are shown in Figure 18. 

In the case of growth on glucose, we found that 138 (14.9%) of S. marcescens genes 

included in iSR929 were predicted to be essential. We also examined which 

subsystems of iSR929 contained the highest percentage of essential reactions 

(„vulnerable subsystems‟). Among the most vulnerable subsystems are the amino acid 

metabolism, nucleotide metabolism, lipid metabolism, and metabolism of cofactors 
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and vitamins. 
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Figure 17 Comparison of model predictions to experimental values. S. marcescens iSR929 

was used to simulate growth in multiple conditions. Actual and predicted flux rates are 

shown and predicted fermentation product production rates are shown as ranges as 

determined by flux variability analysis. For each simulation, the boundary fluxes for growth 

rate, GlcNAc uptake rate, growth rate and glycerol uptake rate were constrained to match the 

measured fluxes during (A) glucose, (B) N-acetylglucosamine, (C) glycerol conditions, 

respectively.  
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5.3.3 mRNA sequencing of S. marcescens under growth of different carbon 

sources 

mRNA samples of S. marcescens Db11 were prepared from cell growth on six 

conditions: M9 medium with glucose, N-acetylglucosamine, or glycerol, plain LB 

medium, LB medium with crystal chitin or colloidal chitin. The reason for choosing 

these conditions are: 1) there is a general catabolite repression when S. marcecens 

growing in glucose or N-acetyglucosamine; 2) the three carbon sources can help 

identify S. marcescens active metabolic fluxes and metabolic differences. Overall, the 

average coverage per gene (4831 genes) of each sample‟s mRNA-seq implies a 

high-depth-coverage (generally 250). 

5.3.4 Integration of mRNA-seq data into the GSMM 

The integration of mRNA-seq data of S. marcescens at M9 medium with glucose, 

N-acetylglucosamine, and glycerol was deployed in the iSR929 based on the mixed 

integer linear programming algorithm approach (Shlomi et al. 2008). In order to setup 

a cutoff value of gamma, we initially categorized gene expression level into 58 cutoffs 

based on an exponential of 1.2, and a distribution of gene numbers against each gene 

expression level range was then plotted, a representative figure of M9 glucose 

condition was shown in Figure S7. The lower bound is 3.00, which precludes around 

10% of the total number of genomic genes across all the conditions, and the upper 

bound is 850.56, which circled around 5% of the total number of genomic genes 

across all the conditions, shown in Table S12.  
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The model of S. marcescens was then run a simulation by integrating the 

transcriptomics data using a linear programming under the three conditions separately, 

where a reaction flux is 1000 if the corresponding gene‟s RPKM is over 850.56 and a 

reaction flux is 0 if the gene‟s RPKM is less than 3.00. A summary of the active 

metabolic reactions under three carbon sources were categorized in different 

metabolic pathway modules (Table 9). When growing at glucose condition, there are 

150 active reactions. Among these 150 reactions, the majority is in carbohydrate 

metabolism (42), amino acid metabolism (38), lipid metabolism (12), cofactor 

metabolism (12), and nucleic acid metabolism (6). When growing at 

N-acetylglucosamine condition, there are 132 active reactions. Among these 132 

active reactions, the majority is in carbohydrate metabolism (39), amino acid 

metabolism (28), lipid metabolism (6), cofactor metabolism (9), and nucleic acid 

metabolism (10). When growing at glycerol condition, there are 146 active reactions. 

Among these 146 active reactions, the majority is in carbohydrate metabolism (44), 

amino acid metabolism (41), lipid metabolism (6), cofactor metabolism (8), and 

nucleic acid metabolism (7).  

 

Table 9 Numbers of active metabolic reactions in iSR929 by running simulation 

based on the transcriptomic data. 

Carbohydrate metabolism glucose N-acetylglucosamine glycerol 

Butanoate metabolism 4 4 2 

Citrate cycle (TCA cycle) 13 0 10 

Glycolysis / Gluconeogenesis 7 10 9 

Glyoxylate and dicarboxylate metabolism 3 2 1 

Pentose and glucuronate interconversions 0 2 2 

Pentose phosphate pathway 6 14 11 
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Propanoate metabolism 1 0 1 

Pyruvate metabolism 6 5 6 

Amino sugar and nucleotide sugar metabolism 2 2 2 

Amino acid metabolism 
   

Alanine, aspartate and glutamate metabolism 4 3 5 

Arginine and proline metabolism 9 10 23 

beta-Alanine metabolism 0 0 2 

Glutathione metabolism 2 2 0 

Taurine and hypotaurine metabolism 2 2 2 

Valine, leucine and isoleucine biosynthesis 5 2 2 

Glycine, serine and threonine metabolism 16 9 7 

Nucleic acid metabolism 
   

Purine metabolism 6 1 6 

Pyrimidine metabolism 0 9 1 

Lipid metabolism 
   

Fatty acid degradation 2 0 0 

Glycerophospholipid metabolism 8 4 4 

alpha-Linolenic acid metabolism 2 2 2 

Energy metabolism 
   

Oxidative phosphorylation 3 3 4 

Nitrogen metabolism 0 0 1 

Metabolism of cofactors and vitamins 
   

Pantothenate and CoA biosynthesis 3 1 0 

Riboflavin metabolism 2 2 2 

One carbon pool by folate 6 6 6 

Biosynthesis of other secondary metabolites 
   

Monobactam biosynthesis 2 2 2 

Streptomycin biosynthesis 2 2 2 

Xenobiotics metabolism 
   

Benzoate degradation 1 0 0 

Nitrotoluene degradation 2 2 2 

Transportation 31 31 29 

Total 150 132 146 

The main active pathways for the metabolism of glucose as a sole carbon source were 

shown in Figure 20A. The glucose trespasses the cell membrane and flows through 

glycolysis and pentose phosphate pathway to yield pyruvate. Then, the main flux goes 

to citrate cycle, butanonate metabolism (yielding 2,3-butanediol), amino acid 

synthesis, lipoylprotein synthesis, and pyruvate metabolism (yielding ethanol, formate, 

lactate, and acetate). 
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The main active pathway for the metabolism of N-acetylglucosamine as a sole carbon 

source was shown in Figure 20B. For the metabolism of N-acetylglucosamine, the 

carbon source was hypothesized first to be phosphorylated by a membrane type II 

phosphotransferase (SMDB11_0473). The SMDB11_0473 gene expression level 

under N-acetylglucosamine condition (RPKM 967.20) was 12.09- and 5.13-fold than 

those under glucose (RPKM 80.23) and glycerol (RPKM 188.36) conditions, 

respectively. The carbon flows through glycolysis metabolism from fructose-6P to 

regenerate glucose-6P. The glucose-6P flows to the pentose phosphate pathway to 

yield pyruvate. Then, the majority carbon was distributed into purine and pyrimidine 

metabolism, butanonate metabolism (secreted 2,3-butanediol as an end-product), 

pyruvate metabolism (yielding ethanol, formate, lactate, and acetate as end-products), 

amino acid synthesis, and lipoylprotein synthesis. 

 

The main active pathways for the metabolism of glycerol as a sole carbon source were 

shown in Figure 20C. Glycerol metabolism is thought to convert to pyruvate by three 

steps: a membrane facilitator protein (SMDB11_4021), an ATP-dependent glycerol 

kinase (SMDB11_4022), and a glycerol-3-phosphate dehydrogenase (SMDB11_3886) 

(Murarka et al. 2008). The SMDB11_4021 expression level of glycerol condition 

(RPKM 1772.81) is 89.5- and 70.8-fold higher than those of glucose and 

N-acetylglucosamine condition. The SMDB11_4022 expression level of glycerol 

condition (RPKM 4535.25) is 76.6- and 63.6-fold higher than those of glucose 
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(RPKM 59.20) and N-acetylglucosamine (RPKM 71.28) condition. The gene 

expression level of SMDB11_3886 of glycerol condition (RPKM 1683.89) is 59.9- 

and 54.7-fold higher than those of glucose (RPKM 28.10) and N-acetylglucosamine 

(RPKM 30.78) condition. The main active flux goes to glycolysis, pentose phosphate 

pathway, amino acid synthesis, and pyruvate metabolism. 
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Figure 18 Summary of active pathways after running Ruppin algorithm using model 

iSR929 at each growth conditions. (A) M9 glucose; (B) M9 N-acetylglucosamine; (C) 

M9 glycerol. The most active metabolism pathways were marked in red. 
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5.3.5 S. marcescens exhibits lower activity in TCA cycle under 

N-acetylglucosamine as a sole carbon source 

According to the model prediction, the main metabolic differences among the three 

carbon sources imply the utilization of TCA cycles. When glucose is the sole carbon 

source, the citrate cycle is fully active; under glycerol condition, the citrate cycle is 

partially active (R00361_smac, R01082_smac, R02164_smac, R00405_smac, 

R02570_smac, and R00621_smac); while under N-acetylglucosamine condition, the 

TCA cycle is not active. Intracellular citric acid and isocitric acid level can be 

indicators of activities of the TCA cycles and have been examined before. The fact 

that intracellular citric acid and isocitric acid concentration under growth of 

N-acetylglucosamine were lower than those under growth of glucose and glycerol 

supports the model prediction results (Figure 21A and Figure 21B). When 

N-acetylglucosamine is the sole carbon source, S. marcescens tends to utilize 

intermediates (e.g. oxaloacetate, fumarate, and 2-oxoglutarate) as precursors for 

amino acids synthesis. At the meantime, the majority carbon source flows for 

synthesis of nucleotides (e.g. purine and pyrimidine) from the ribose-5P generated 

from the pentose phosphate pathways since N-acetylglucosamine is an ideal carbon 

source for amino-sugar and nucleotides synthesis (e.g. C:N ratio 8:1). 
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5.3.6 Insights of metabolic engineering application of S. marcescens from the 

model iSR929 

Recently, developing the chitinolytic bacterium, S. marcescens as a workhorse to 

directly utilize chitin as carbon source to produce value-added chemicals is an 

interesting topic. The process includes directly degrading of chitin yielding 

fermentable sugar (N-acetylglucosamine), subsequently conversion of 

N-acetylglucosamine producing target chemicals. Based on the aforementioned 

experimental observation and computational simulation results, we target three 

chemical compounds (2,3-butanediol, n-butanol, and N-acetylneuraminic acid) and 

illustrate possible routes for deploying the pathway implementation. 

 

S. marcescens Db11 is a native 2,3-butanediol producer. Direct production of 

Figure 19 Intracellular citric acid (A) and isocitric acid (B) concentrations of S. 

marcescens Db11 grown at glucose, N-acetylglucsamine, and glycerol. 
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2,3-butanediol from crystal chitin by S. marcescens Db11 have been experimentally 

validated and the model iSR929 reflected it across all conditions (Yan et al. 2017). 

The proposed pathways of 2,3-butanediol and the corresponding annotated genes 

were shown in Figure 22A. Unlike other reported S. marcescens 2,3-butanediol 

producers (Bai et al. 2015; Zhang et al. 2016), S. marcescens Db11 harbors only two 

2,3-butanediol dehydrogenases (meso and (2S,3S)) and relatively small amount of 

(2S,3S)-2,3-butanediol dehydrogenase was expressed compared to the 

meso-2,3-butanediol dehydrogenase, indicating meso-2,3-butanediol is the major 

product.  

 

The second target of interest is a biofuel chemical, n-butanol. The iSR929 

incorporates most of the reactions present in the butanoate metabolism. Besides the 

2,3-butanediol synthetic pathway, two active reactions (R01171 and R01975) were 

found under glucose conditions and one active reactions (R01171) was observed 

under glycerol conditions. One consideration of the computational simulation is that 

butanoate is a product of a secondary pathway and S. marcescens may not 

overproduce this pathway associated genes. Thus, it is not necessarily surprising that 

growth simulations with no genetic designs incorporated may not show flux through 

secondary pathways. The proposed n-butanol synthetic pathway and their gene 

expression levels in S. marcescens Db11 were listed in Figure 22B. The annotated 

pathway toward n-butanol is partially completed but missing the last step enzyme (EC 

1.2.1.10 alcohol dehydrogenase). A bifunctional alcohol dehydrogenase (AdhE2) from 
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Clostridium acetobutylicum is reported with highest activity of alcohol production 

(Deng and Fong 2011b) and can be an appropriate enzyme candidate for heterologous 

expression in S. marcescens. Furthermore, from the mRNA level of the n-butanol 

pathway genes, it is also unclear that the pathway is readily active when 

overexpression of adhE2 gene in S. marcescens. For instance, the first step enzyme 

(SMDB11_4664 acetoacetate-CoA transferase) mRNA level is relative low and 

up-regulation of this gene mRNA level may also be needed.  

 

The third chemical target of interest is N-acetylneuraminic acid. The S. marcescens 

Db11 doesn‟t harbor an endogenous pathway for N-acetylneuraminic acid synthesis. 

Compared to the glucose-based N-acetylneuraminic acid synthesis, 

N-acetylglucsaomine/chitin as a carbon sources are advantageous: 1) it requires only 

two steps for N-acetylneuraminic acid synthesis from N-acetylglucosamine compared 

to glucose; 2) no additional nitrogen source is needed (Steiger et al. 2011; Yan and 

Fong 2015). The growth of S. marcescens under N-acetylglucosamine condition 

showed that the first-step enzyme (SMDB11_0473) of N-acetylglucosamine uptake is 

highly active (RPKM 967.20). The SMDB11_0473 (N-acetylglucosamine transferase) 

is a reversible N-acetylglucosamine transferase that can generate intracellular 

N-acetylglucosamine (Kang et al. 2012), shown in Figure 22C. The 

N-acetylglucosamine can be further converted to N-acetylneuraminic acid by 

additional two steps (N-acetylmannosamine 2-epimerase and N-acetylneuraminic acid 

synthase) (Kang et al. 2012). Further overproduction of N-acetylneuraminic acid may 
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require carefully balance the heterogeous pathways since heterologous expression 

may generate metabolic burden. 

 

 

 

 

 

Figure 20 Proposed pathways for potential chemicals of interest production as metabolic 

engineering targets by S. marcescens and their corresponding gene expression values 

obtained from mRNA-Seq data 
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5.4 Conclusion 

In this study, we constructed a S. marcescens genome-scale metabolic model iSR929. 

The model contains 929 genes, 1185 reactions and 1164 metabolites. The iSR929 

model is able to provide reasonable predictions that match with experimental 

acquisition. Integrating transcriptomics data of different carbon sources (e.g. glucose, 

N-acetylglucosamine and glycerol) to the model reveals major metabolic difference is 

the utilization of TCA cycles. Three biochemicals (2,3-butanediol, n-butanol, and 

N-acetylneuraminic acid) were proposed as promising metabolic engineering 

implementation targets and pathway activities were given. Overall, our results show 

metabolite profile of S. marcescens and the model iSR929 can be applied to 

identifying genetic targets for chemical overproduction. 
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Chapter 6 Conclusion 

6.1 Summary 

Serratia marcescens is a chitinolytic bacterium. Its most important characteristics 

were able to produce kinds of enzymes especially chitinases. The chitinases of S. 

marcescens were identified to have broad manners of acting on crystalline chitin. The 

highly efficient chitinases can be used in various industries especially the chemical 

production industry, because chitinases can degrade chitin to sugars which are used by 

other microorganism to produce chemicals. Although there are some other bacteria 

which are able to produce chitinases, S. marcescens is much easier to be cultured and 

cheaper in the industry. Thus, the study of S. marcescens is of great importance. My 

dissertation work aims at characterizing a S. marcescens strain and developing it as a 

platform strain for chemical production from chitin. 

 

Although S. marcescens chitinases have been characterized, the S. marcescens 

chitinolytic regulatory mechanisms remain unclear. ChiR is the only regulator protein 

that is believed to be essential for chitinase production, however, prior to this 

dissertation, its functionality of regulating chitinases is still not known. By generating 

a ChiR deletion strain and a ChiR overexpression strain allows me to characterize S. 

marcescens physiological changes of cell growth, chitinase production and activities. 

My results showed that ChiR is a positive regulator in controlling all chitinase 

transcription in S. marcescens. The chiROE strain produced 1.13 ± 0.08 g/L 

2,3-butanediol from 2% crystal chitin, a 2.83-fold improvement from the wild-type 



134 
 

strain, indicating ChiR is an important and useful genetic engineering target for 

enhancing chitin utilization in S. marcescens. 

 

Since I have demonstrated S. marcescens can grow on chitin and produce 

2,3-butanediol from crystal chitin, I further exploit possibilities of producing novel 

chemicals (e.g. N-acetylneuraminic acid) using S. marcescens. Chitin may be an ideal 

substrate for producing N-acetylneuraminic acid since no additional nitrogen source is 

needed. Prior to this study, production of N-acetylneuraminic acid in S. marcescens 

has not been reported yet. In order to introduce an exogenous pathway for production 

of N-acetylneuraminic acid from N-acetylglucosamine, we systematically 

characterized S. marcescens promoters and heterologously overexpression an 

N-acetylglucosamine 2-epimerase and N-acetylneuraminic acid synthase. After 

transcriptional and translational balancing the pathways, the optimized recombinant 

strain PT5-slr1975-PrplJ-neuB was able to produce 0.48 g/L Neu5Ac from 20 g/L 

N-acetylglucosamine, and 0.30 g/L Neu5Ac from 5 g/L crystal chitin. These results 

represent the first demonstration of direct conversion of untreated chitin biomass to 

N-acetylneuraminic acid and illustrate the potential utility of S. marcescens as a 

chitinolytic bioprocess organism. 

 

The capability of S. marcescens growing on chitin allows me to further improve S. 

marcescens growth phenotype on chitin as a substrate since the first step of chitin 

degradation is usually the rate-limiting step. Therefore, I conducted serial passage of 
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Serratia marcescens grown in colloidal chitin medium for 4 months, propagating 288 

generation. The newly evolved strain S. marcescens EPS exhibits increased chitinase 

activities, decreased secreted proteins, increased cell yield on chitin, and metabolic 

end-products changes compared to the wild-type strain. The EPS strain was capable 

of increasing 2,3-butanediol production from 2% crystal chitin, a 3.7-fold 

improvement compared to that of the wild-type strain. In addition, the molar ratio of 

2,3-butanediol to byproducts is improved from the wild-type strain (2.5:2.5:1) to the 

EPS strain (4.8:2.7:1). Key mutations occurred in two gene products (SMDB11_2700 

and SMDB11_1516) that encode a LysR-family regulator and a fimbrial adhensin 

may be accounting for the increased chitinase activities and overproduction of 

2,3-butanediol. To the best of my knowledge, this is the part of dissertation work is 

the frst adaptive evolution study using chitin as a substrate. 

 

In previous parts of my dissertation, I have mainly focused on experimental 

implementation of S. marcescens. Computational tool is a powerful tool for 

mimicking the complexity of metabolic networks since the intraceullar fluxes are 

always undertermined. Before my dissertation study, there is no GSMM construction 

of S. marcescens and its metabolic profile remains uncharacterized. In this part of 

dissertation, a constraint-based genome-scale metabolic model (iSR929) including 

929 genes, 1185 reactions and 1164 metabolites based on genomic annotation of S. 

marcescens Db11 was constructed. The model performed reasonably comparing 

simulated cell growth and metabolites secretion with experimental acquisition, and 
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138 essential genes were predicted. I have learned from the model prediction guided 

by mRNA-seq data that major metabolic usage differences are the utilization of citric 

acid cycle when GlcNAc is a substrate compared to glycerol or glucose as a substrate. 

On the contrary, S. marcescens exhibits high activity of pentose phosphate pathway 

and nucleotide synthesis but low activity of citric acid cycle when GlcNAc is the 

substrate. In addition, I have demonstrated that three target chemicals (2,3-butanediol, 

N-acetylneuraminic acid, and n-butanol) can be implemented for metabolic 

engineering applications by S. marcescens by giving their pathway gene activities.  

6.2 Future work 

Although a lot of work has been done in S. marcescens which has been described in 

this dissertation, there are still some work in S. marcescens that can be done in the 

future. First of all, the transcriptomics and metabolimics of the evolved S. marcescens 

EPS and MPS strains are needed to be tested and with these data, the systems level 

mechanisms could be discovered and so that the better way to increase chitinase 

production and 2,3-butanediol production could be discovered. Second, transforming 

the optimized constructs PT5-slr1975-PrplJ-neuB into the evolved strain may be helpful 

to increase Neu5Ac titer from chitin. Third, the constructed genome-scale metabolic 

model may be used to predict some genetic targets to simulate Neu5Ac production by 

implementing Neu5Ac production as an objective function. At the meantime, 

experimental implementation can be employed and the design-build-test cycle can be 

conducted to improve Neu5Ac titer. 

6.3 Commercial feasibility 
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During my research, it was found that the chitinase production in S. marcescens is 

very powerful and the chitinase activity keeps highly active. Because S. marcescens is 

a Gram-negative bacterium and can use crystal chitin to grow, the cultivation of S. 

marcescens on the industrial level is relatively lower than those model organisms (e.g. 

Escherichia coli and Sacchamyces cerevisiae). Due to the special properties tested in 

the dissertation, S. marcescens could be used in the industry to produce chitinases in 

large scale. In order to produce a large-scale chitinases, we probably need to obtain 

some data of the cell physology and chitinase acitivity from bioreactors (i.e. 5 liter), 

then transform the information and fermentation parameters into even large scale (i.e. 

100 liter). To the fact that S. marcescen is a native 2,3-butanediol producer, it may be 

particular of interest for the 2,3-butanediol chemical industry. Besides the 

experimental demonstrations of chemicals (e.g. Neu5Ac and 2,3-BD), n-butanol can 

be another target for experimental implementation. My work provided deep insight, 

valuable knowledge and useful tools that should be able to help a potential chitin 

degradation, chitinase production, or even chitin-based CBP industry. 
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Appendix A Tables 

Table S1 Primers used in this study 

a
 underline in red is overlap. 

 

Table S2 Real-time PCR primers used in this study 

gene Forward primers (5’-3’) Reverse primer (5‟-3‟) 

luxS CCCTGAGCTGAACGAGTACC ATCCAGAATGTGCTTGGCGA 

chiA CATTTGGCGCCGTTGAAAGA GGTGAAATTGCGCCCGTAAA 

chiB GAAAGGGCTGTTCGTCACCT AGATGCCAGAACATCACGCC 

chiC AGCAAGGCCAGTTCACCAAT GGATGCCCTGGCCTTTCATA 

chiR GCGACACGCATAGCACAAAG ATCATCGCCATCGGCCAAAT 

cbp21 TTCGAACTGGATCAGCAAACG GCGGTCAGCTTCCAGGTAAA 

chb TCGATAGCGTCAACGACTGG GTCCGGGTTCACCTCGTAAG 

SMDB11_1083 AACATGCGTCAACCAAACCG GCCACCAGACCATTCCAGAC 

SMDB11_1994 AACGTCAAAAGCCCACAGGA CGTTGAATCGTACAGGTTGGC 

SMDB11_4602 CAGGACGGCTATCAGGGCAT CGGCAGAATTTCATTGCGGT 

SMDB11_1190 GCTACGAGCTGGATGCAGAA TCGTGGAAGTTGCGGGTAAA 

Primers DNA sequences (5′-3′) 

pUC19bb-f CCTCGTCTCAACCAAAGCAATCAACCCATCAACCACCTGGGGCGTAAT

CATGGTCATAGC 

pUC19bb-r CGAGTAGTTCAGTAGCGGAAATGTCAGAGCCAGCGTCTTGACTGGCC

GTCGTTTTACAA 

UNS7-f CAAGACGCTGGCTCTGA 

UNS5-f GAGCCAACTCCCTTTACAAC 

ha1-f CAAGACGCTGGCTCTGACATTTCCGCTACTGAACTACTCGGATTATTT

GCTCAGGTTGAC 

ha1-r AATGACACTAAATTCCCAAGG 

ha2-f GGAATAGAGACGAAGGGAC 

ha2-r GAGCCAACTCCCTTTACAACCTCACTCAAGTCCGTTAGAGTTTCTTCCT

GTCACGCTATT 

kanoverlap-f CGATTTTTGTGCGCCACCACCTTGGGAATTTAGTGTCATTTTTCTTATTTT

ATTTTAAAGAGGAATTTGTAACAAGGGGTGTTATGAGCC 

Kanoverlap-r GCCGAATGCTGCGGGGTTTTCATTGAGTTAACCGTTTGATTTTCGCGTC

CCTTCGTCTCTATTCCATTAGAAAAACTCATCGAGCATCAA 

kan-f ATGAGCCATATTCAACGGG 

kan-r TTA GAA AAACTCATCGAGCATC 
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Table S3 Potential binding sites of 10 chitinase-related genes in S. marcescens predicted using a conserved LTTR family motif 

Gene ID Upstream sequence 

SMDB11_4243 accattcgaaaaacctgctttttaaagcaggttttttttcgcccgtagtttatgaggatgagtacctccgcaggaggttcgagcctcgcgaagcgagacaacgttgctttagcaacggcccgcagggcgcgcatcaaagatg

cgcgtaatcctctctcgccgaccaccattcgaaaaacctgctttttaaagcaggttttttttcgcctgcagtttatgaggatgagtacctccttcgctacgaccggcttcgctttatggcgtgcctcaatctgccgtcctcgtgaaat

atatttatcctttacgcttaattaattcacattccttattcccattaggttcttattttcatgtttaaataaattcatgcttgccaaataaaacccgattgatagcgctcttgttttcacgttttttttacctatagtctaaatggacaacgcggg

aactcttattcccgtcgcgtgggaaataccgtgattatttattaacgttaatcttcgtggattattgcggaattttttcgcttcggcaatgcgtagcgacgattaactcttttatgtttatcctctcggaataaaggaatcagttATG 

SMDB11_2875 tagctcatctccttttttatttttaattaaatgccaatcacggccggtgggacatcggatattcagaatctaattaaggatgctattacaaagcaaatgaataaatacagcccctatggtcgaattcattcatgctgagcgctggcac

aactcatcagcgccaatttgtgcagcagtgaataaaaattcattgtcattgtgatttatttcgacttttgttttcactaaaaataaacattaatggcaacgggaaatatttccccatcataaaaacatccactctggagaaatgccAT

G 

SMDB11_0468 atgcggccatggcggccgcccggccgccattatttccttctccctcagcgtcagtttgaatttaattcgttcatggcagcaaaaggtttcagcctgcctgcattaaaaatcctcattataactttacgccccgccaatagctgatat

tgccggcgagcggaaaacccttaccccttatcaatgaggctaccATG 

SMDB11_2876 taagtcactcctgactgaaataatgttgtaagttgagcgtatttcaccgacaaaatgagagagtaataacgcaattggaaataacccttcttgtcggcttgttttatttttatcattctggtcatgcgatagagcggaatgttttaacg

gctattaacgaaaattattatgatgacgatctttgatcgttaggctgaatttatttaactgtcgctgtgtaaaagtagggcgctatgatgaattttatatcaggtcgtgatgaatagtatttaagatagcgctctcatttatgaagtatatt

gcttgttgctatgagtacccttgttcgatttgatcgatttttgtgcgccaccaccttgggaatttagtgtcatttttcttattttattttaaagaggaatttgtATG 

SMDB11_2877 tacaaattcctctttaaaataaaataagaaaaatgacactaaattcccaaggtggtggcgcacaaaaatcgatcaaatcgaacaagggtactcatagcaacaagcaatatacttcataaatgagagcgctatcttaaatactatt

catcacgacctgatataaaattcatcatagcgccctacttttacacagcgacagttaaataaattcagcctaacgatcaaagatcgtcatcataataattttcgttaatagccgttaaaacattccgctctatcgcatgaccagaat

gataaaaataaaacaagccgacaagaagggttatttccaattgcgttattactctctcattttgtcggtgaaatacgctcaacttacaacattatttcagtcaggagtgacttATG 

SMDB11_0477 

 

cacccagtatgacaaccacaccaacatcccgagctggggcggcggttacggcaacatcttccaggacgagaaagacgtcaagttcatggtcatcgcgccattcaccatcttctgatgcgttccccggcctcgccgccgg

ggcagttaagggaattcaacgatgaaaaaaatcatgctgatgttggcggccgctgcggccctgagcgcctgcgcgcaacccaccgcgccgccggaagacgccaagttgaagcaggcttacagcgcctgcatcaacac

tgccgaaggctcgccggagcgtctgcagccctgtaaggcggtgctgaacgtgctgaaacaagagaagcagcaccagcagttcgccgcgcaggaaacggtgcgggtgatggattatcagaactgcattatggcggtgc

acagcggtaacggtcaggcttacgacgccaagtgcggcaagctgtggcaagaaattcgcgataacaataattaagaaggataagaagATG 

SMDB11_1083  atccctcttaagcccaccgttttcgggcgcgctctgcggttgccggtctgcggcagagcgtgccttgcgttttattgccatctcagtgtgagctgctacgattttagctgacgtttttatgccacccgggtcaccggccttgcgc

atattcttcatctcagccagaagaggggcagctATG 

SMDB11_1994  

 

aatccgctcgggcgccaccggcgccctctctgcgcggcggcgaaattatcgacgctgctcacaataccgcctttcttcttccccaacggcttgtgaccggcaggcgcttttgctgttatgactgcgacgcttttggcgtcaat

cggttatacgcatccggggcccactgagcccggctttattgtgcccgcccctggcggtacggtcggccttgccgaccacaaggagactgacATG 

SMDB11_4602  acccgttcgccccctccggccgggagggggcaactgtgatcccgtccgctttttcaccgcaacggttggacatctgttctgtgctgagtctttatctacagcgttggctgtttttattgatttttttcctctgaggaatttccgAT
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G 

SMDB11_1190 cggttggatctgcggcggcagttccgccgctactggcagcagctggatacgcggcgtttaactcctggctggctgcgcctgcaacatcactttttgcaaaacacgccaccctcaccgctgaagctggcgccgctgcacat

ggacatccatccgggcaatttgctcgcgaccggcgaggggctgcggctgatcgactgggagtatgccgccgacggcgatgtggcgttggatatcgccgcgctgtttcgcggcaacggctgggcggcggaggcgcag

cagcgctttttgcagcactacgcgcgccagggctatcacgacgtcgcccggctgcaggcgcaggtgcagcgctggctgccgtgggtggattatctgatgctgctgtggtttgaagtgcgctggcagcagagcggcgac

gccgaatttttgcgctggggcgcggcgctgcgccggcgattctgtttatcatcatccgaattctgaacgaacaataatgaagtgagATG 

 

Green highlight is predicted promoter -35 box, yellow highlight was predicted promoter -10 box; Conserved RBS motif was highlighted in blue; 

each chitinase-related gene start codon (ATG) was marked in bold capital; potential binding sites were either highlighted in grey or marked by 

underline.
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Table S4 Production of 2,3-BD and byproducts after 72 h fermentation from 2% 

chitin using S. marcescens Db11 and chiROE. 

 S. marcescens Db11 S. marcescens chiROE 

Biomass (g/L) 1.08 ± 0.11 0.90 ± 0.13 

2,3-BD (g/L) 0.4 ± 0.04 1.13 ± 0.08 

Acetic acid (g/L) 0.26 ± 0.03 0.71 ± 0.04 

Lactic acid (g/L) 0.15 ± 0.01 0.38 ± 0.03 

Ethanol (g/L) 0.03 ± 0.00 0.08 ± 0.03 

Succinic acid (g/L) 0.17 ± 0.02 0.40 ± 0.03 

 

Table S5 Ct & Data Analysis for Serratia marcescens Gene Expression 

Gene 

 

wild-type chiROE ΔchiR 

luxS Rep1 20.26 20.97 19.64 

 

Rep2 20.39 21.02 19.43 

 

Rep3 20.34 20.97 19.46 

 

Ave 20.33 20.99 19.51 

 

Stdv 0.07 0.03 0.11 

 

CV% 0.32% 0.14% 0.58% 

chiA Rep1 26.72 24 26.89 

 

Rep2 26.87 24.02 26.84 

 

Rep3 26.97 24.16 27.06 

 

Ave 26.85 24.06 26.93 

 

Stdv 0.13 0.09 0.12 

 

CV% 0.47% 0.36% 0.43% 

chiB Rep1 27.77 26.16 28.45 

 

Rep2 27.79 26.13 28.47 

 

Rep3 28.13 26.17 28.73 

 

Ave 27.90 26.15 28.55 

 

Stdv 0.20 0.02 0.16 

 

CV% 0.73% 0.08% 0.55% 

chiC Rep1 26.26 23.73 26.47 

 

Rep2 26.32 23.87 26.45 

 

Rep3 26.29 23.58 25.98 

 

Ave 26.29 23.73 26.30 

 

Stdv 0.03 0.15 0.28 

 

CV% 0.11% 0.61% 1.05% 

chiR Rep1 28.53 20.03 38.19 

 

Rep2 28.37 20.02 38.12 

 

Rep3 28.68 19.86 38.17 

 

Ave 28.53 19.97 38.16 

 

Stdv 0.16 0.10 0.04 

 

CV% 0.54% 0.48% 0.09% 

cbp21 Rep1 26.73 24.43 28.18 
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Rep2 27.07 24.22 28.2 

 

Rep3 26.92 24.42 28.25 

 

Ave 26.91 24.36 28.21 

 

Stdv 0.17 0.12 0.04 

 

CV% 0.63% 0.49% 0.13% 

chb Rep1 25.91 24.81 25.62 

 

Rep2 26.13 24.74 25.47 

 

Rep3 25.97 24.68 25.65 

 

Ave 26.00 24.74 25.58 

 

Stdv 0.11 0.07 0.10 

 

CV% 0.44% 0.26% 0.38% 

SMDB11_1083 Rep1 23.94 23.6 23.39 

 

Rep2 23.88 23.51 23.55 

 

Rep3 24.05 23.47 23.02 

 

Ave 23.96 23.53 23.32 

 

Stdv 0.09 0.07 0.27 

 

CV% 0.36% 0.28% 1.17% 

SMDB11_1994 Rep1 25.55 23.3 24.87 

 

Rep2 25.36 23.38 24.82 

 

Rep3 25.36 23.3 24.98 

 

Ave 25.42 23.33 24.89 

 

Stdv 0.11 0.05 0.08 

 

CV% 0.43% 0.20% 0.33% 

SMDB11_4602 Rep1 22.9 22.15 22.35 

 

Rep2 23.12 21.93 22.38 

 

Rep3 23.02 22.05 22.68 

 

Ave 23.01 22.04 22.47 

 

Stdv 0.11 0.11 0.18 

 

CV% 0.48% 0.50% 0.81% 

SMDB11_1190 Rep1 21.79 21.16 21.12 

 

Rep2 21.77 21.07 21.32 

 

Rep3 21.74 21.32 21.24 

 

Ave 21.77 21.18 21.23 

 

Stdv 0.03 0.13 0.10 

 

CV% 0.12% 0.60% 0.47% 
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Table S6 Data Analysis for S. marcescens chitinase gene of interest (GOI) expression level using LuxS as control 

GOI Sample GOI, Ave Ct GOI, STDV luxS, Ave Ct luxS, STDV Δ Ct, GOI-luxS Δ Δ Ct Δ Δ Ct, STDV Fold Change,AVG  Fold change, STDV 

chiA wild-type 26.85 0.13 20.33 0.07 6.52 0.00 0.14 1.00 0.14 

 

chiROE 24.06 0.09 20.99 0.03 3.07 -3.45 0.09 10.93 0.09 

 

ΔchiR 26.93 0.12 19.51 0.11 7.42 0.90 0.17 0.54 0.08 

chiB wild-type 27.90 0.20 20.33 0.07 7.57 0.00 0.21 1.00 0.21 

 

chiROE 26.15 0.02 20.99 0.03 5.17 -2.40 0.04 5.28 0.04 

 

ΔchiR 28.55 0.16 19.51 0.11 9.04 -0.93 0.20 0.87 0.10 

chiC wild-type 26.29 0.03 20.33 0.07 5.96 0.00 0.07 1.00 0.07 

 

chiROE 23.73 0.15 20.99 0.03 2.74 -3.22 0.15 9.32 0.15 

 

ΔchiR 26.30 0.28 19.51 0.11 6.79 0.83 0.30 0.56 0.16 

chiR wild-type 28.53 0.16 20.33 0.07 8.20 0.00 0.17 1.00 0.17 

 

chiROE 19.97 0.10 20.99 0.03 -1.02 -9.21 0.10 593.59 0.10 

 

ΔchiR 38.16 0.04 19.51 0.11 18.65 10.45 0.12 0.00 0.00 

cbp21 wild-type 26.91 0.17 20.33 0.07 6.58 0.00 0.18 1.00 0.18 

 

chiROE 24.36 0.12 20.99 0.03 3.37 -3.21 0.12 9.23 0.12 

 

ΔchiR 28.21 0.04 19.51 0.11 8.70 2.12 0.12 0.23 0.03 

chb wild-type 26.00 0.11 20.33 0.07 5.67 0.00 0.13 1.00 0.13 

 

chiROE 24.74 0.07 20.99 0.03 3.76 -1.92 0.07 3.78 0.07 

 

ΔchiR 25.58 0.10 19.51 0.11 6.07 0.40 0.15 0.76 0.11 

SMDB11_1083 wild-type 23.96 0.09 20.33 0.07 3.63 0 0.11 1.00 0.11 

 

chiROE 23.53 0.07 20.99 0.03 2.54 -1.09 0.07 2.12 0.07 

 

ΔchiR 23.32 0.27 19.51 0.11 3.81 0.18 0.29 0.88 0.25 

SMDB11_1994 wild-type 25.42 0.11 20.33 0.07 5.09 0.00 0.13 1.00 0.13 

 

chiROE 23.33 0.05 20.99 0.03 2.34 -2.75 0.05 6.74 0.05 

 

ΔchiR 24.89 0.08 19.51 0.11 5.38 0.29 0.14 0.82 0.11 

SMDB11_4602 wild-type 23.01 0.11 20.33 0.07 2.68 0.00 0.13 1.00 0.13 

 

chiROE 22.04 0.11 20.99 0.03 1.06 -1.63 0.11 3.09 0.11 
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ΔchiR 22.47 0.18 19.51 0.11 2.96 0.28 0.21 0.83 0.17 

SMDB11_1190 wild-type 21.77 0.03 20.33 0.07 1.44 0.00 0.07 1.00 0.07 

 

chiROE 21.18 0.13 20.99 0.03 0.20 -1.24 0.13 2.36 0.13 

 

ΔchiR 21.23 0.10 19.51 0.11 1.72 0.28 0.15 0.82 0.12 

 

 

Table S7 Genetic engineering by regulatory protein as a strategy for increasing feedstock biomass utilization. 

Regulatory protein Microorganisms Strategies Significance References 

ClrB, Bgl2, and CreA Penicilliumoxalicum 
Overexpression clrB 

Deletion bgl2 and creA 
Cellulase activity increased from 10- to 50-fold (Yao et al. 2015) 

CelR Thermobifida fusca Deletion celR Cellulase activity increased 16.69-fold (Deng and Fong 2010) 

Xyr1 and Ace1 Trichoderma reesi 
Overexpression xyr1 

Downregulation ace1 
Cellulose activity increased 2- to 4-fold (Wang et al. 2013) 

VEL1 Trichoderma reesi Overexpression VEL1 Cellulase activity increased around 4-fold (Aghcheh et al. 2014) 

Ace3 Trichoderma reesi Overexpression Ace3 Cellulase activity increased 3- to 5-fold (Häkkinen et al. 2014) 

XYR1, ACE2, and ACE1 Trichoderma reesi Overexpression XYR1, ACE1 and ACE2 Cellulase production rate increased around 4.5-fold (Portnoy et al. 2011) 

ChiR S. marcescens Overexpression chiR Chitinase activity increased from 2.14 to 6.31-fold This study 
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Table S8 Gene and promoter sequences used in this study. 

Gene Sequences 

slr1975 

5‟-ATGATTGCCCATCGCCGTCAGGAGTTAGCCCAGCAATATTACCAGGCTTTACACCAGGACGTATTGCCCTTTTGGGAAAAATATTCCCTCGATCGCCAGGGGGGCGGTTACTTTAC

CTGCTTAGACCGTAAAGGCCAGGTTTTTGACACAGATAAATTCATTTGGTTACAAAACCGTCAGGTATGGCAGTTTGCCGTTTTCTACAACCGTTTGGAACCAAAACCCCAATGGTT

AGAAATTGCCCGCCATGGTGCTGATTTTTTAGCTCGCCACGGCCGAGATCAAGACGGTAATTGGTATTTTGCTTTGGATCAGGAAGGCAAACCCCTGCGTCAACCCTATAACGTTTT

TTCCGATTGCTTCGCCGCCATGGCCTTTAGTCAATATGCCTTAGCCAGTGGGGCGCAGGAAGCTAAAGCCATTGCCCTGCAGGCCTACAATAACGTCCTACGCCGTCAGCACAATCC

CAAAGGTCAATACGAGAAGTCCTATCCAGGTACTAGACCCCTCAAATCCCTGGCGGTGCCGATGATTTTAGCCAACCTCACCCTGGAGATGGAATGGTTATTACCGCCTACTACCGT

GGAAGAGGTGTTGGCCCAAACCGTCAGAGAAGTGATGACGGATTTCCTCGACCCAGAAATAGGATTAATGCGGGAAGCGGTGACCCCCACAGGAGAATTTGTTGATAGTTTTGAA

GGGCGGTTGCTCAACCCAGGACACGGCATTGAAGCCATGTGGTTCATGATGGACATTGCCCAACGCTCCGGCGATCGCCAGTTACAGGAGCAAGCCATTGCAGTGGTGTTGAACA

CCCTGGAATATGCCTGGGATGAAGAATTTGGTGGCATATTTTATTTCCTTGATCGCCAGGGCCACCCTCCCCAACAACTGGAATGGGACCAAAAGCTCTGGTGGGTACATTTGGAAA

CCCTGGTTGCCCTAGCCAAGGGCCACCAAGCCACTGGCCAAGAAAAATGTTGGCAATGGTTTGAGCGGGTCCATGATTACGCCTGGAGTCATTTCGCCGATCCTGAGTATGGGGAA

TGGTTTGGCTACCTGAATCGCCGGGGAGAGGTGTTACTCAACCTAAAAGGGGGGAAATGGAAAGGGTGCTTCCACGTGCCCCGAGCTCTGTGGCTCTGTGCGGAAACTCTCCAAC

TTCCGGTTAGTTAA-3‟ 

AGE 

5‟-ATGGGTAAGAACCTCCAAGCCCTGGCGCAATTGTATAAGAATGCTTTGCTGAACGATGTATTGCCGTTCTGGGAAAACCACTCACTTGACTCTGAGGGAGGCTATTTCACCTGTT

TGGATCGCCAAGGCAAGGTCTACGATACGGACAAATTCATCTGGCTGCAAAATCGGCAAGTCTGGACTTTTTCAATGCTCTGCAACCAACTTGAAAAACGTGAAAATTGGTTGAA

AATAGCCCGGAATGGGGCTAAATTCTTGGCGCAACATGGTCGTGATGACGAAGGAAATTGGTATTTTGCCTTGACTCGGGGTGGCGAGCCGTTGGTCCAGCCATATAATATATTCAG

CGATTGTTTCGCGGCCATGGCCTTCAGCCAATACGCTCTGGCCAGTGGGGAGGAATGGGCCAAGGATGTTGCTATGCAAGCCTATAATAACGTTCTGCGTCGGAAAGACAATCCTA

AGGGGAAGTACACGAAAACCTACCCTGGTACGCGCCCGATGAAGGCCCTGGCAGTCCCCATGATCCTTGCAAATCTCACGCTTGAAATGGAGTGGCTTTTGCCGCAAGAGACGCT

GGAAAATGTCCTTGCTGCAACGGTGCAAGAGGTTATGGGGGATTTCCTGGACCAGGAGCAGGGTCTTATGTATGAGAATGTAGCGCCAGACGGATCGCACATAGATTGTTTTGAAG

GACGGCTGATAAATCCGGGACACGGAATCGAAGCCATGTGGTTTATCATGGACATCGCCCGGCGGAAGAATGATTCCAAGACTATAAATCAAGCGGTCGATGTTGTACTCAATATCT

TGAACTTCGCATGGGATAATGAATATGGGGGTCTGTATTACTTCATGGATGCAGCCGGGCATCCTCCGCAACAGTTGGAGTGGGACCAGAAATTGTGGTGGGTCCACCTCGAATCCC

TCGTCGCCCTGGCCATGGGATACCGTCTGACTGGTCGGGACGCCTGTTGGGCCTGGTACCAGAAAATGCATGATTACAGTTGGCAACATTTTGCAGACCCCGAATACGGTGAATGG

TTCGGCTACTTGAATCGCCGGGGTGAGGTCCTGCTTAATTTGAAAGGAGGAAAGTGGAAAGGTTGTTTTCACGTTCCTCGGGCGATGTATTTGTGCTGGCAGCAATTTGAGGCTCT

GAGCTAA-3‟ 

nanA 5‟-ATGGCAACGAATTTACGTGGCGTAATGGCTGCACTCCTGACTCCTTTTGACCAACAACAAGCACTGGATAAAGCGAGTCTGCGTCGCCTGGTTCAGTTCAATATTCAGCAGGGC
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ATCGACGGTTTATACGTGGGTGGTTCGACCGGCGAGGCCTTTGTACAAAGCCTTTCCGAGCGTGAACAGGTACTGGAAATCGTCGCCGAAGAGGCGAAAGGTAAGATTAAACTCA

TCGCCCACGTCGGTTGCGTCAGCACCGCCGAAAGCCAACAACTTGCGGCATCGGCTAAACGTTATGGCTTCGATGCCGTCTCCGCCGTCACGCCGTTCTACTATCCTTTCAGCTTTG

AAGAACACTGCGATCACTATCGGGCAATTATTGATTCGGCGGATGGTTTGCCGATGGTGGTGTACAACATTCCAGCCCTGAGTGGGGTAAAACTGACCCTGGATCAGATCAACACA

CTTGTTACATTGCCTGGCGTAGGTGCGCTGAAACAGACCTCTGGCGATCTCTATCAGATGGAGCAGATCCGTCGTGAACATCCTGATCTTGTGCTCTATAACGGTTACGACGAAATC

TTCGCCTCTGGTCTGCTGGCGGGCGCTGATGGTGGTATCGGCAGTACCTACAACATCATGGGCTGGCGCTATCAGGGGATCGTTAAGGCGCTGAAAGAAGGCGATATCCAGACCGC

GCAGAAACTGCAAACTGAATGCAATAAAGTCATTGATTTACTGATCAAAACGGGCGTATTCCGCGGCCTGAAAACTGTCCTCCATTATATGGATGTCGTTTCTGTGCCGCTGTGCCG

CAAACCGTTTGGACCGGTAGATGAAAAATATCTGCCAGAACTGAAGGCGCTGGCCCAGCAGTTGATGCAAGAGCGCGGGTGA-3‟ 

neuB 

5‟-ATGCAAATAAAAATCGACAAGCTTACCATCTCGCAGAAGAACCCACTTATAATCCCTGAGATCGGAATAAACCATAATGGCAGCCTCGAGATCGCGAAACTTATGGTTGACGCGG

CGAAACGGGCGGGGGCAAAGATTATTAAACACCAAACTCACATAGTCGAAGACGAAATGAGCCAGGAGGCTAAGAACGTGATCCCCGGCAATGCTAATATTAGTATCTATGAGATC

ATGGAACAGTGCGCCCTGAACTATAAGGACGAGCTTGCTCTGAAAGAATACGTTGAAAAGCAAGGACTTGTATATCTGTCAACCCCGTTTTCTCGTGCGGCTGCGAACCGTCTGGA

GGATATGGGGGTTTCGGCATATAAAATCGGTAGCGGCGAGTGCAATAATTACCCCCTTATCAAGCACATAGCCCAGTTTAAAAAACCAATGATCATAAGTACTGGGATGAATTCTATC

GAAAGTATAAAACCAACCGTCAAAATTCTTCGGGACTATGAAATACCATTTGTCTTGCTGCACACTACCAACTTGTATCCGACCCCATCACATCTCGTGCGTTTGCAGGCAATGCTG

GAACTTTACAAGGAGTTTAACTGTCTTTACGGACTCTCTGATCACACGACTAATAATCTTGCTTGTATTGGCGCCATCGCCTTGGGAGCTTCTGTGCTGGAGCGTCATTTCACTGACA

CGATGGACCGTAAAGGCCCCGACATTGTCTGCAGTATGGATGAGTCAACCTTGAAGGACCTTATAAATCAAACCCAGGAGATGGTGCTCCTGCGCGGAGATAACAATAAAAACCCG

CTCAAGGAAGAACAAGTTACTATCGACTTCGCCTTCGCCTCCGTAGTGTCGATCAAGGATATAAAAAAGGGGGAGATTCTGAGTATGGATAACATCTGGGTGAAGCGCCCGTCAAA

AGGTGGTATCAGCGCGAAGGACTTTGAGGCCATCCTTGGGAAACGGGCCAAGAAGGACATAAAAAACAATATACAACTGACATGGGATGACTTTGAGTAA-3‟ 

PT5 
5‟-TGTGGAATTGTGAGCGGATAACAATTACGAGCTTCATGCACAGTGAAATCATGAAAAATTTATTTGCTTTGTGAGCGGATAACAATTATAATATGTGGAATTGTGAGCGCTCA

CAATTCCACAACG-3‟ 

PbudAB 

5‟-TTTTTGCATTATATGCAAAAGCGTTTCTTATGAATACCCGCTTCTCTGTTGGCGACGCGGCGGCTACTCTGATTGCAGGTTGACGACGGGCTTCAGCGTCGCCGCATCCCGGCCGT

ATAGAGAGAAAACGCATAAACCTCGCGGCGTTTAGCACCAAATAGCAGATATTTTTCCCAGGCTGCGTCAGCCGCCTGTGGCGTTGATTGTCGCTCCAACACCAGATTAACCGTTC

AATTTGATATCCGACTCAACCTTAATGATTAGTGAGTCTTTACTTTCACTTATCTTCTTGTTGTTTCTGGATATCGGCCGGCCAGCCGTGCCGGTTTTTTTGTCGCCTCAGGCTGAATC

GTTCCAACTGATGAACGCGCCTGAGGGGCATCTTGGCCCGCCGTCGGCGGGTCTTTTGAACGCGTGGAACCGCAGTTCCGCGCTGGTGGAGGAGTCAGCA-3‟ 

PampR 5‟-TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAAT-3‟ 

PompA 
5‟-GTAAATTTAGGATTTTTCCCATCATTTTCGCACCCCCTAAGCGGAACCTTTGCGTGGGAAGGCACAAAGCTAGTCCGGCTGCGGTTTGGCAAGCAAAAACGCTCGATGAATCGC

CGTTTTTTTAGGCAAAGAATGTTAGCAAATATGTACGATTCCGCGTTTTTTTTTAGAGCCTTATCACATCACACTTGTAACTTTCGCGCCACGTTGTAGACTTTACATCGCCAAGGTTG
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CTCTATAACGTCAGAAAAACTGGCGAGTAACAAACGAGGGCTTAAACCTTGGCGAAGGAATTTAACCAAGGGCTTAAACAGCTTTAAAGCTCA-3‟ 

PrplJ 

5‟-TCGCACTTGCGATTATCGCTTTGACTTGGGGCCGAGATTTGTCTAGAATCTTATGCCCCAAGGTTTTGCTACTGGCTATGCCGTAGGCAAAACAAAGATTTTTCGGTTGGAGCCTG

GCCTATCCAGGCCTCCGTCCAAGACCGCAGGTGTATCGCAAGATACTTAATCCTTCCTGCGTAGACGGTGACAGAGCCTAAGAAAATTTTTCTTTTTTATAAAAGAATGTCTTTGCTG

GATTCTGCTCACCGTGTTAAGCCGCTCGGCGTGGCGTTTTACAAAGCGCCGAGTGAAGTGAGTTCCGGGGGATTTTCCCCGGCTAATCCAGGAGCAAAAAGCTA-3‟ 

PrpsG 5‟-ATGGTTCTCCGTTAAGTAAGGCCAAACGTTTTAACTTTAATGTCAAAATAAACTCGTAGAGTTTTGGACAATCCTGAATTAACAACGGAGTATTTCC-3‟ 

PrpsL 
5‟-ATGAGAGTGATGTTGTATATTTCTTGACACCCATACTGGTCAGCCCTAAAATTCTGCGTCCTCGTACTCTGCCAATAGTGCATACGAGGGGATTTATCACATGTTTACGAAGCTAGT

ACGAAGCAAAAACCAGGAGCTTTTTTA-3‟ 

PgpmA 
5‟-ATTTCCCCCACGCCACGGCGCGCCCGGAGCGATTTCGGCGCGCCGTTTCCCCCTCACAGCGCCAGCCTGAACGATTCAGCTTTTTCCTTTCGCCAGCCCTTACTTTGCGGCAAGA

AATTGGCTATGGTTAGACACTATCGATTGCCGAGCCCCGGCCCGCGGCAATATAATGATTTTCGTTATCATTGAAATGTCAGATTATTAAGGAGTTAAGCT-3‟ 

PmetF 
5‟-TCCTCTGCGGGCGCGGGCTCACCGCGCCCCTTTGCTTTTCCTGCCATACTTATCTTTGCCGCGATCATGAAATTCCCTCGTTGAGCGGGTGAGGATTAATCATCTTATTCCCCTCAT

TTTCCTGTTGACTCTTTAGCCAACATGCGGCATTTTCTATCTAGACGTCTAAACGTATAGACGCTCATCAAGATGAAATAAAAACAGTGATCGATAAAGAGGTGAGCAGGGT-3‟ 

PcysP 
5‟-CGCCGTTGCCGAAGCCGGTGCGCCCGGCTTCGGCCCGTTTTTCCGTCCCGAAAACGCCTCGCATTCCCTGCCTTATAGCGTTTGATGCTTGTAAATCACCAAACGGTATATAAAA

GCGTTACAGCTCCGCACCGAGTTATAAATACACTGGTCGTCAATAAGGCGAAAGCCTGAAGGAATGACTCAGTGATAAGGTGCAGA-3‟ 

PphlA 
5‟-TTTGCGGCGCAGTCAATCAGGGAGCTTCGGCTCCCTTTTCTGCGTTTGGTGGCCGAAAACCGAACGCGGATCACATTCTGTACAAAGATAAGCATTTCTAATACAGAACTCATCC

GACCTGCCGATAGCTAAATCAGCACCTATTCAGGTGCTCAATAAAAAGTCTATCGACAAGGAGTCGGC-3‟ 

PSMDB11_4059 
5‟-TTTGATGCCGGCCGGCGGCACTTTTTTAACCGCTGGCGGCCCCTGTGGGGCAACTGCTATACTATGCGGGCCGCTTCTGCGGCCCGATAGCTTCCCTTCTGGTTGTTATCGCTGCT

TTTTTTACTATGTACTACCCTTCCTCAAGAGCGCCGTCATCCCGTCGGCACGTATGGATAGATT-3‟ 
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 Table S9 Primer sequences used for cloning and sequencing in this study. 

Primers Sequences 

UNS7-F 5‟-CAAGACGCTGGCTCTGA-3‟ 

UNS7-R 5‟-CGAGTAGTTCAGTAGCGGA-3‟ 

UNS5-F 5‟-GAGCCAACTCCCTTTACAAC-3‟ 

UNS5-R 5‟-CTCTAACGGACTTGAGTGAGG-3‟ 

UNS3-F 5‟-GCACTGAAGGTCCTCAATC-3‟ 

UNS3-R 5‟-CGACCTTGATGTTTCCAGTG-3‟ 

 

Table S10 Primer sequences used for real-time PCR in this study. 

Primers Sequences 

luxS-f 5‟-CCCTGAGCTGAACGAGTACC-3‟ 

luxS-r 5‟-ATCCAGAATGTGCTTGGCGA-3‟ 

slr1975-f 5‟-GGCCGAGATCAAGACGGTAA-3‟ 

slr1975-r 5‟-GGGCAATGGCTTTAGCTTCC-3‟ 

nanA-f 5‟-CTGCGATCACTATCGGGCAA-3‟ 

nanA-r 5‟-CACCTACGCCAGGCAATGTA-3‟ 

gfp-f 5‟-GGGTGAAGGTGACGCAACTA-3‟ 

gfp-r 5‟-CGAGCAAAGCACTGAACACC-3‟ 
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Table S11 Fermentation parameters of the S. marcescens recombinant strains on M9 

medium with 0.1% yeast extract and 20 g/L GlcNAc at 30°C and 200 rpm. 

S. marcescens strain 
Biomass 

(g/L) 

Consumed 

GlcNAc 

 (g/L) 

Neu5Ac 

(g/L) 

2,3-BD 

(g/L) 

Acetic acid 

(g/L) 

Lactic acid 

(g/L) 

PT5-slr1975-PrplJ-nanA 1.35 ± 0.12 18.4 ± 0.58 0.30 ± 0.03 0.81 ± 0.06 0.34 ± 0.02 0.53 ± 0.09 

PT5-AGE-PrplJ-neuB 1.34 ± 0.10 19.4 ± 0.32 0.45 ± 0.05 0.75 ± 0.07 0.21 ± 0.03 0.45 ± 0.10 

PT5-AGE-PrplJ-nanA 1.72 ± 0.10 18.4 ± 0.37 0.21 ± 0.04 0.92 ± 0.24 0.31 ± 0.02 0.62 ± 0.10 

PT5-slr1975-PrplJ-neuB 1.5 ± 0.08 16.9 ± 0.48 0.47 ± 0.06 0.77 ± 0.11 0.22 ± 0.01 0.47 ± 0.02 

PrplJ-slr1975-PT5-nanA 1.44 ± 0.11 19.0 ± 0.60 0.1 ± 0.02 1.12 ± 0.56 0.67 ± 0.02 1.03 ± 0.33 

PT5-slr1975-PT5-nanA 0.58 ± 0.09 5.7 ± 0.11 0.04 ± 0.00 0.18 ± 0.01 0.09 ± 0.00 0.06 ± 0.00 

PrplJ-slr1975-PrplJ-nanA 1.85 ± 0.10 19.3 ± 0.78 0.10 ± 0.02 1.15 ± 0.22 0.68 ± 0.02 1.3 ± 0.23 

PcysP-slr1975-PcysP-nanA 2.42 ± 0.11 20.2 ± 0.86 0.04 ± 0.00 1.21 ±0.28 0.73 ± 0.03 1.12 ± 0.34 

wild-type 2.41 ± 0.12 20.0 ± 0.99 0.00 ± 0.00 3.38 ± 0.52 0.84 ± 0.03 0.84 ± 0.03 

 

 

 

 

Table S12 Number of genes excluded/included after the lower/upper bound cutoff. 

Number of genes M9 glucose M9 N-acetylglucosamine M9 glycerol 

Lower bound 3.00 500 459 196 

Upper bound 850.56 251 271 314 
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Appendix B Figures 

 

Fig S1A 
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Fig S1B 

 

 

 

 

 

 

 

 

 

 



167 
 

 

Fig S1C 

Figure S1 (A) Overview of the strategy used for replacement of chiR in S. 

marcescens. (B) PCR verification of the deletion mutants. PCR was conducted using 

wild-type or chiR deletion strain genome as template and kan-f/kan-r as primers. 

Lanes from left to right are 1 kb marker, wild-type (no band) and chiR deletion strain 

(a single ~0.8 kb band). (C) Shuttle vector pQY38 map for overexpression chiR in S. 

marcescens. 
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Figure S2 Production of 2,3-BD in S. marcescens Db11. (A) Cell growth, (B) 2,3-BD 

production and (C) sugar consumption was monitored using S. marcescens Db11 

under M9 medium with 1% yeast extract and 20 g/L glucose (Glc, filled circle) or 

N-acetylglucosamine (GlcNAc, unfilled circle) at 30°C and 100 rpm. 

 

  
Figure S3 Production of 2,3-BD from S. marcescens using untreated chitin. (A) Cell 

growth using the S. marcescens Db11 (filled circle) and the S. marcescens chiROE 

strain (unfilled circle); (B) endochtinase activity (circle), chitobiosidase activity 

(triangle) and β-N-acetylglucosaminidase activity (square) using the S. marcescens 

Db11 (filled) and the S. marcescens chiROE strain (unfilled) under M9 medium 

supplemented with 1% yeast extract and 2% chitin at 30°C and 100 rpm. 
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Figure S4 Raw data of fluorescence intensity of S. marcescens promoters using flow 

cytometry.
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Figure S5 Characterization of (A) NanA and (B) NeuB enzymatic activities.
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Figure S6 Growth of S. marcescens recombinant strains on M9 medium with 0.1% 

yeast extract and 20 g/L GlcNAc at 30°C and 200 rpm. (A) OD600; (B) GlcNAc 

concentration. 
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Figure S7 Representative figures of gene expression level distribution under M9 glucose medium 

growth conditions.
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