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GEODESIC STRUCTURE IN SCHWARZSCHILD GEOMETRY WITH

EXTENSIONS IN HIGHER DIMENSIONAL SPACETIMES

By Ian Marshall Newsome
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Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Robert H. Gowdy,

Associate Professor, Associate Chair, Department of Physics

From Birkhoff’s theorem, the geometry in four spacetime dimensions out-

side a spherically symmetric and static, gravitating source must be given by the

Schwarzschild metric. This metric therefore satisfies the Einstein vacuum equations,

Rµν = 0. If the mass which gives rise to the Schwarzschild spacetime geometry is

concentrated within a radius of r = 2M , a black hole will form.

Non-accelerating particles (freely falling) traveling through this geometry will do

so along parametrized curves called geodesics, which are curved space generalizations

of straight paths. These geodesics can be found by solving the geodesic equation.

In this thesis, the geodesic structure in the Schwarzschild geometry is investi-

gated with an attempt to generalize the solution to higher dimensions.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since the advent of Albert Einstein’s field equations published from 1914-1915

[1], which relate the geometry of the spacetime manifold to the matter content within

it, a major effort has been undertaken to discover solutions which satisfy the Einstein

field equations (EFE).

These solutions usually manifest themselves as line elements (metrics) which

describe a particular type of geometry based on certain physical assumptions such as

spherical symmetry, axisymmetric rotational symmetry, stationarity, etc.

The first instance of a closed solution to the EFE came shortly after their pub-

lication in 1916 and was due to the work of Karl Schwarzschild [2]. Schwarzschild

derived a metric which described the exterior geometry of a spherically symmetric,

stationary, static source, thus necessarily satisfying the vacuum form of the EFE (no

sources in the manifold). In the same year, Hans Reissner generalized Schwarzschild’s

solution to include electrically charged sources, later independently verified by Gun-

nar Nordstrom, giving rise to the Reissner-Nordstrom metric [3] [4].

The next goal was to extend the solution of the stationary, static case to that

of a stationary but rotating source. Due to the mathematical complexities in ac-

complishing such a task, it was not until 1963 that an adequate solution was found

by Roy Kerr [5]. Shortly after this the charged, rotating solution was derived by

Ezra Newman and named the Kerr-Newman metric [6]. The Kerr-Newman metric

is the most general of the asymptotically flat, stationary black hole solutions to the
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Einstein-Maxwell equations, hence it is of great importance in understanding the

evolution of the geometry outside the source it describes.

Although these four metric solutions describe the geometry outside any source,

more interestingly they describe exteriors to black hole solutions within the 4D man-

ifold of general relativity (GR). It is assumed the reader has at the very least a

conceptual understanding of black holes, therefore their description will be more rig-

orous in the chapters to follow. The nature of the event horizon will be explored in

future chapters in connection with the overall geometry given by the metric.

Due to the dimensional claims made by modern theories of supergravity (string

theory in particular), it is logical to ask about the nature of black holes in higher di-

mensions. The generalization of the Schwarzschild solution to higher dimensional

spacetimes was due to Frank Tangherlini in 1963 [7]. The metric discovered by

Tangherlini is a fairly straightforward extension, but contains some interesting ge-

ometric properties when one considers the dimension of the space as a parameter.

Given the framework of a particular geometric background, one might pose the

question: how do things move in this spacetime? Geodesics are parametrized curves

which generalize the notion of straight paths in flat space to curved spaces. Particles

which are in free-fall, i.e. no generated acceleration on the part of the particle, will

travel along geodesics governed by the geometry of the spacetime. One can determine

these particular class of curves for a given geometry by solving the geodesic equation,

to be covered in §3.6.

What follows is an exploration into the nature of geodesics in the Schwarzschild

geometry culminating in a generalization to higher dimensions. Beginning in chapter

2, a brief review of special relativity is conducted in order to establish a firm founda-

tion regarding line elements and the causal nature of the 4D world view. In chapters 3

and 4, the necessary physical principles and mathematical constructs used in GR re-
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quired to understand curved spaces and higher dimensional geometry are introduced,

beginning with topics in differential geometry as applied to GR. These include mani-

folds, tangent/cotangent spaces and their elements, tensors (metric tensor), covariant

differentiation, parallel transport, and curvature as applied to geodesics. Chapter

5 is concerned with the 4D Schwarzschild geometry, with the radial geodesic equa-

tion being solved for bound orbits. Chapter 6 investigates the generalization of the

Schwarzschild geometry to higher dimensions with an attempt to solve the radial

geodesic equation.

1.2 Motivation

It would appear the manifold of spacetime has only four dimensions, so it might

seem strange to invest so much effort in higher dimensional black hole generalizations.

Besides the intrinsic interest of higher dimensional gravity, there are valid reasons for

pursuing higher dimensional analogs of these objects.

Tangherlini’s original motivation was based on the logic that because the laws

of physics allow an extension to higher dimensions, there must exist some principle

which explains the observation of only four dimensions.

String theory has emerged as a theory which combines classical GR with particle

physics within the framework of higher dimensions, namely spacetime in bosonic

string theory is 26-dimensional, M-theory is 11-dimensional, and superstring theory

is 10-dimensional [8]. Due to this framework, exploring higher dimensional analogs

of 4D objects could provide a useful laboratory for advancement of theoretical work,

case in point: the first successful statistical counting on black hole entropy in string

theory was performed for a 5D black hole [9].

Also, the AdS/CFT correspondence defines a relationship between the properties

of a D-dimensional black hole and a (D − 1)-dimensional quantum field theory [10].

3



CHAPTER 2

SPECIAL RELATIVITY REVIEW

2.1 Why a Need for Special Relativity?

The theory of Special Relativity (SR), authored by Einstein and published in

1905 [11], is actually the successful attempt of one man to consolidate ideas already

in circulation within the scientific community into a consistent theory based on a

minimum number of assumptions (to be discussed in § 2.2).

Using the work of Galileo, Newton, Maxwell, Lorentz, Poincare and others, Ein-

stein formulated a theory which was invariant upon coordinate transformations re-

lating inertial frames within the framework of classical electromagnetism, something

Newtonian mechanics failed to accomplish. Maxwell’s electromagnetism in a sense

was a fully relativistic theory in that it predicts the speed of light in vacuum, i.e.

c = 2.99792458× 108m
s

. Therefore, any theory claiming to make predictions between

frames of reference better be consistent with electromagnetism.

2.2 Postulates of Special Relativity

As motivation, the null result from the 1881 Michelson-Morley experiment lead

Einstein to develop two basic postulates of SR, on which the entire theory is based:

1. Principle of Relativity: The laws of (non-gravitational) physics assume

equivalent forms in all inertial frames.

2. Constancy of the Speed of Light: The speed of light in vacuo assumes the

same value in all inertial frames, regardless of the velocity of the observer or

4



source.

The first postulate is by no means new and in fact is contained within Newtonian

dynamics. As a consequence, one observer cannot distinguish whether they are at

rest or in uniform motion. Absolute motion does not exist, and instead motion is

defined relative to another frame of reference.

The second postulate is actually contained within the first; if the speed of light

were not c in all frames, then there would exist a unique, preferred frame from which

to observe others. Therefore the speed of light is the same in every inertial frame,

and furthermore implies space is isotropic.

2.3 Lorentz Transformations

The Galilean transformation, which Newton incorporated into his mechanics, is

not a valid coordinate transformation for frames with relative velocities v comparable

to the speed light. The correct transformation relating space and time coordinates

in two inertial frames [t, x, y, z] and [t
′
, x
′
, y
′
, z
′
] which leaves the Maxwell equations

invariant, the Lorentz transformation, goes as [12]

x
′α = Λα

βx
β + aα (2.1)

where aα and Λα
β are a constant vector and matrix respectively, restricted by the

conditions

Λα
γΛβ

δ ηαβ = ηγδ (2.2)

where ηαβ is the Minkowski metric.

As an example, a particular boost in the x1 = x direction between two frames in

standard configuration reads as
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ct
′

x
′

y
′

z
′


=



γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 0





ct

x

y

z


(2.3)

with β = v
c
, where v is the relative velocity between frames, and γ = 1√

1−β2
the

Lorentz factor. A generalized boost in any dimension can be expressed as

Λ00 = γ (2.4a)

Λ0i = Λi0 = −γβi (2.4b)

Λij = (γ − 1)
βiβj
β2

+ δij (2.4c)

with Latin indices representing spatial components.

A significant feature of this linear transformation is time and space coordinates

are now coupled, leaving time intervals and 3D lengths non-invariant upon this trans-

formation. Hence time and space lose their sense of absoluteness in the Newtonian

sense.

2.4 The Minkowski Line Element and 4D World View

In 3D Euclidean space, the distance squared between any two points, (x1, y1, z1)

and (x2, y2, z2), in a particular coordinate representation is given by the Pythagorean

theorem

s2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 . (2.5)

This can also be represented for differential displacements in the coordinates as

6



ds2 = dx2 + dy2 + dz2 . (2.6)

The transformation between coordinate systems involving rotations and translations

leaves Eq. (2.6) invariant. The 4D counterpart used in SR that leaves ds2 invariant

under Lorentz transformations goes as

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.7)

where the space this line element occupies is referred to as Minkowski space, after its

creator Hermann Minkowski in 1908. Throughout the literature, a common label for

spacetime coordinates xµ (µ = 0, 1, 2, 3) is

x0 = ct, x1 = x, x2 = y, x3 = z . (2.8)

Thus the line element of Eq. (2.7) can be recast as

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 . (2.9)

As a precursor to Chapter 3, it will briefly be mentioned that the line element

in GR can be expressed as

ds2 = gµνdx
µdxν (2.10)

where Einstein convention has been adopted regarding implied summation for an

index which appears as a superscript and subscript over all its values. The matrix

coefficients gµν together form what is called the metric tensor, or more specifically

gµν is a (0, 2) tensor, or rank 2 covariant tensor. In GR, the metric coefficients are

functions determined by the curvature of spacetime, but for flat space in SR they

7



(a) 3 Spatial Dimensions (b) 2 Spatial Dimensions, 1 Temporal Di-
mension

Fig. 2.1. (a) Spherical wavefronts emanating from a pulse of light at the origin for

different values of time, 0 < t1 < t2 < t3. (b) Minkowski diagram for the

history of a massive particle constrained by the light cone defined by a pulse

of light.

reduce to constant values gµν = ηµν = diag(−1, 1, 1, 1).

Points in Minkowski space are labeled events and the general evolution of these

points through spacetime trace out curves, which are called worldlines. These world-

lines can be parameterized in order to develop a sense of where on the curve we are,

i.e. xµ = xµ(λ) where here λ is the curve parameter. Massive particles have worldlines

parameterized by what is called proper time τ , or the time measured in the inertial

frame which a moving clock is considered to be at rest.

Consider for example a light source which emits a spherical wavefront at the

origin (x0 = 0, x1 = 0, x2 = 0, x3 = 0). In x1x2x3 space, successive views of the

propagating wavefront at different moments in time appear as concentric spherical

shells, see Fig. (2.1a). If we replace one of the spatial dimensions with the temporal

one, we have a version of Minkowski space with two spatial dimensions evolving along

the time axis, seen in Fig. (2.1b). This appears as a cone whose sides are defined by

the speed of light, or light cone. Since nothing with mass can travel faster than the

speed of light c, this creates a boundary for worldlines evolving in time.

8



More generally, a massive particle will lie at all times within the corresponding

spherical wavefront of the light pulse and inside the cone of light. This fact is one case

of three regarding the sign of the line element. A vector xµ in Minkowski spacetime is

timelike if ds2 < 0, lightlike if ds2 = 0, and spacelike if ds2 > 0 based on the signature

of the metric ηµν = diag(−1, 1, 1, 1). Fig. (2.2) encapsulates the distinction between

the sign of the line element.

Fig. 2.2. The worldline of a particle traveling through two dimensional Minkowski

space. As can be seen, the speed of light constrains the history of the particle

to within the light cone. Events outside of the future/past regions are not

causally linked to events within the light cone.

In region A, this is the causally allowed set of events which can be connected to

the starting point (ct = 0, x = 0), assuming subluminal speeds. If one extends back

in time, region B is just the allowed set of events which could influence the present

point at the origin. Regions C and D are spacelike separated from events in A or B

due to the constraint that no massive particle can exceed the speed of light. Hence,

regions C and D are not causally linked to A or B.

If one wished to actually find information regarding the path a particle traversed

9



in Minkowski space simply integrate over the line element, keeping in mind the fact

ds2 need not be positive definite. For spacelike paths the path length reads as

∆s =

∫ √
ηµν

dxµ

dλ

dxν

dλ
dλ (2.11)

for curve parameter λ. Null paths have a line element equal to zero and for timelike

paths the proper time reads as

∆τ =

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ (2.12)

where the minus sign is needed for a positive proper time. [13]
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CHAPTER 3

DIFFERENTIAL GEOMETRY REVIEW

The mathematical path Einstein traversed from SR to GR required a replacement

of Minkowski spacetime with a general curved spacetime, where the curvature was

created by energy and momentum. Before exploring the ways in which this works,

some differential geometry must be addressed concerning the mathematics of curved

spaces. Firstly, manifolds will be defined, then tangent and cotangent spaces with

their elements being vectors and dual vectors respectively. The nature of tensors

including the metric tensor will then be explored, leading to covariant differentiation,

curvature, and finally geodesics. What follows in §3.1, §3.2, §3.3 is a summarization

from [14].

3.1 Manifolds

When discussing manifolds in this thesis, what is really meant are differentiable

manifolds, i.e. manifolds with derivatives defined at points within the set. In order to

be as technically sound as possible, let an n-dimensional manifold M be a set which

satisfies the following properties:

• There exists a topology T defined on M , such that (M,T ) is a topological space

with the Hausdorf property.

• The topology T contains a family of open sets S = (Uα ∈ T : α ∈ I) which

covers M , such that

11



M = ∪
α∈I

Uα . (3.1)

• Corresponding to each open set Uα, there is a mapping φα, such that φα is a

homeomorphism from Uα onto an open subset Vα of IRn.

• If Uα, Uβ ∈ S where Uα ∩ Uβ 6= ∅, then the composite mapping φαβ = φαφ
−1
β

given by

φαβ : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ) (3.2)

is infinitely differentiable (smooth).

By requiring the manifold be a topological space, two points have a sense of

“nearness”. Also, since the manifold M has a family of open sets S which cover it,

a local neighborhood can be defined around all points within the manifold, ensuring

continuity.

The third property above guarantees the manifold is locally homeomorphic to

IRn. Given a point p ∈ Uα ⊆ M , there exists a mapping (homeomorphism) φα

from Uα onto an open subset Vα ∈ IRn, as seen in Fig. (3.1). For each p ∈ Uα,

(x1(p), x2(p), ..., xn(p)) represent the coordinates of p which correspond to φα. The

collection (Uα, φα) is a chart, or local coordinate system, while ((Uα, φα) : α ∈ I)

is called at atlas. The last thing which should be mentioned for the third property

is multiple charts can be assigned to a point p ∈ M , since p is a geometrical entity

independent of its coordinate representation.

The last property imposes conditions on the transformations between charts eval-

uated at the same manifold point, see Fig. (3.2). In other words, the map φαβ yields

a change of coordinates from one system to another such that the transformation be

12



Fig. 3.1. A homeomorphism from the manifold M to IRn.

smooth, i.e. C∞.

Fig. 3.2. A C∞ change of coordinates x̄i = φαβ(xi).

3.2 Vectors and Tangent Spaces

In order to discuss the class of geometric objects labeled vectors, the concept of

a curve on a manifold M must be introduced. A curve is defined as a C∞ map
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γ : (−ε, ε)→M (3.3)

with (−ε, ε) ∈ IR. Thus a specific point in M is assigned a real number w by way of γ.

This can be seen from Fig. (3.3), where the curve γ has the coordinate representation

xk = φk(γ(t)) (k = 1, 2, 3, ..., n) (3.4)

for the k-th coordinate of the point φ(γ(t)) ∈ IRn.

If a function f is defined such that f : M → IR, the function can assign a real

number f(p) to each p ∈M , and using Fig. (3.3), the coordinate representation of f

can be expressed as fφ−1 : IRn → IR, or

y = fφ−1(x1, x2, ..., xn) ≡ fφ−1(x) (3.5)

where y is just a real-valued function of n variables.

For a specific w = w0 mapped from IR, the tangent vector can be defined at

γ(w0) using the directional derivative of f(γ(w = w0)) as

d

dw
f(γ(w))|w=w0 =

∂f

∂xk
· dx

k

dt
|w=w0 (3.6)

where local coordinates have been used.

Pushing further, the differential operator v can be defined as

v = vk
∂

∂xk
where vk ≡ dxk

dt
|w=w0 . (3.7)

Therefore Eq. (3.6) can be written as

d

dw
f(γ(w))|w=w0 = vk

∂f

∂xk
= v[f ] . (3.8)
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Fig. 3.3. A curve γ defined on the manifold M .

More intuitively, v[f ] represents the rate of change of the function along the curve γ

at the point γ(w0).

The set of all tangent vectors at p ∈ M comprises the tangent space of M at p,

called Tp(M). Tp(M) can be visualized as all C∞ curves that pass through p with

tangent vectors at p, seen in Fig. (3.4).

Fig. 3.4. The tangent space Tp(M) at a point p ∈M for a general manifold M .
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Tp(M) has the structure of a vector space with dimension equal to that of the

manifold. Vector addition and scalar multiplication are defined appropriately in re-

gards to vector spaces.

A set of quantities (e1, e2, ..., en) can be defined such that they form a basis

for Tp(M), called a coordinate or holonomic basis (a local condition for a basis to

be holonomic is if all mutual Lie derivatives vanish, i.e. [eα, eβ] = Leαeβ = 0).

The remainder of this chapter operates under the assumption of a holonomic basis.

Furthermore, vectors as elements of the tangent space can be expressed as

v = vkek (3.9)

where vk are the components of the vector relative to this basis. Based on Eq. (3.7),

these basis vectors are simply partial derivatives with respect to the k -th coordinate.

As a final note, if we have a point p ∈ M and two coordinate charts (U, φ)

and (V, φ̄) such that p ∈ U ∩ V , then the components of a vector in one coordinate

representation transform to the other coordinate representation as

v̄j =
∂x̄j

∂xk
vk . (3.10)

In a non-coordinate free way, vectors (specifically contravariant vectors) can be de-

fined as objects whose components transform according to Eq. (3.10).

3.3 Dual Vectors and Cotangent Spaces

Consider a function f , defined on a vector space V of dimension n, such that

f : V → IR is a linear function on V . Thus an element v ∈ V can be assigned a real

number by way of f . Using Eq. (3.9) and linearity, this amounts to f acting on the

basis set of v
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f(v) = f(vkek) = vkf(ek) . (3.11)

The collection of all linear functions f acting on elements of V can be denoted

V ∗, and it turns out this is a perfectly well suited vector space usually named the

dual space or cotangent space. Elements f ∈ V ∗ are named dual vectors, covectors,

or 1-forms.

A basis set (ω1, ω2, ..., ωn) can be defined for elements of the dual space in such

a way that they act on the original basis vectors in V by way of

ωωωn(ek) = δnk . (3.12)

A general function f ∈ V ∗ can now be expressed as a linear combination of basis

1-forms as

f = fnωωω
n (3.13)

and its action on a general vector v ∈ V reads as

f(v) = fnωωω
n(vkek) = fnv

kωωωn(ek) = fnv
kδnk = fnv

n . (3.14)

This action defines the inner product 〈·, ·〉 : V ∗×V → IR. It is now a simple task

to associate to the tangent space Tp(M), with p ∈M , a dual space T ∗p (M), containing

elements ω ∈ T ∗p (M).

Assuming the function f is C∞, its differential turns out to be a 1-form. Consider

a manifold M which has an associated coordinate chart (U, φ) containing the point

p ∈ M , such that xk = φ(p). The differential of an element of the dual space to this

point reads as
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df =
∂f

∂xk
dxk . (3.15)

Since df can be written as a linear combination of the set elements {dxk}, it is easily

shown that this set forms a basis for T ∗p (M).

Lastly, let two coordinate charts, (U, φ) and (V, φ̄), be defined on M such that

p ∈ U ∩ V . Then the components of a 1-form in one coordinate representation

transform to the other coordinate representation as

ω̄k =
∂xn

∂x̄k
ωn . (3.16)

In this way, 1-forms (covariant vectors) are defined such that they transform according

to Eq. (3.16).

3.4 Tensors and the Metric Tensor

What follows is a summarization from [15]. In defining tensors and their prop-

erties, it is important to keep in mind the fundamental geometric objects which are

being described. The previous sections introduced the concept of a geometrical point

in a manifold and spaces extending from this point. This point is defined by a coordi-

nate scheme and a particular basis having coefficients which can change depending on

the coordinate system used. The manifold point however exists independent of the co-

ordinate scheme used, thereby making any coordinate system in principle equivalent

when describing the point.

Consider two sets of coordinates (x1, x2, ..., xn) and (x
′1, x

′2, ..., x
′n) describing a

point in the manifold of dimension n such that a relation can be constructed between

them by
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x
′i = f i(x1, x2, ..., xn), i = 1, 2, ..., n (3.17)

where the f i functions are assumed to be single-valued and C∞. Differentiating the

above coordinate transformation with respect to each coordinate xj yields a n × n

transformation matrix

∂x
′i

∂xj
=



∂x
′1

∂x1
∂x
′1

∂x2
. . . ∂x

′1

∂xn

∂x
′2

∂x1
∂x
′2

∂x2
. . . ∂x

′2

∂xn

...
...

. . .
...

∂x
′n

∂x1
∂x
′n

∂x2
. . . ∂x

′n

∂xn


. (3.18)

The determinant of this matrix is named the Jacobian of the coordinate trans-

formation

J
′
=

∣∣∣∣∂x′i∂xj

∣∣∣∣ . (3.19)

The differential of Eq. (3.17) reads as

dx
′i =

∂x
′i

∂xj
dxj (3.20)

and inverting yields

dxi =
∂xi

∂x′j
dx
′j . (3.21)

In a rather fundamental sense, tensors are multi-linear maps which take as inputs

vectors and dual vectors to IR. Tensors are characterized in part by their rank, or

the number of indices required to describe the array which comprises the tensor.

Some common tensors are scalars (rank 0), vectors/dual vectors (rank 1), and usually
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anything of higher rank is deemed just a tensor. Therefore tensors are geometric

objects which exist independent of the coordinate system used to describe them,

while the components used to describe the tensor must be coordinate dependent.

Tensors can be defined by how they transform through two sets of coordinates.

The transformation of a scalar leaves the functions of the coordinates unchanged,

while a set of n quantities Ai which transforms like

A
′i =

∂x
′i

∂xj
Aj i, j = 1, 2, ..., n (3.22)

are called the components of a contravariant vector, or contravariant tensor of rank 1.

The set of n quantities Ai are the components of a covariant vector if they transform

according to

A
′

i =
∂xj

∂x′i
Aj i, j = 1, 2, ..., n . (3.23)

For rank 2 covariant, contravariant, and mixed tensors, the above scheme can be

easily extended and in general a set of quantities Ai1i2...ir in coordinate system xi are

the components of a contravariant tensor of rank r if they transform as

A
′j1j2...jr =

∂x
′j1

∂xi1
∂x
′j2

∂xi2
. . .

∂x
′jr

∂xir
Ai1i2...ir . (3.24)

Similarly the quantities Ai1i2...ir are the components of a covariant tensor of rank r if

they transform according to

A
′

j1j2...jr
=

∂xi1

∂x′j1
∂xi2

∂x′j2
. . .

∂xir

∂x′jr
Ai1i2...ir (3.25)

while the quantities Ai1i2...irj1j2...js
are components of a mixed tensor of rank (r+ s) if they

transform according to
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A
′l1l2...lr
m1m2...ms

=

(
∂x
′l1

∂xi1
∂x
′l2

∂xi2
. . .

∂x
′lr

∂xir

)(
∂xj1

∂x′m1

∂xj2

∂x′m2
. . .

∂xjs

∂x′ms

)
Ai1i2...irj1j2...js

. (3.26)

Tensors also contain important symmetry/anti-symmetry properties depending

on the permutation of their indices. If, for example, a contravariant or covariant

tensor fulfills the condition

Aijk = Ajik or Aijk = Ajik (3.27)

then the tensor is symmetric with respect to the indices i and j. Also, if a contravariant

or covariant tensor fulfills the condition

Aijk = −Ajik or Aijk = −Ajik (3.28)

then the tensor is said to be antisymmetric or skew symmetric with respect to the

indices i and j.

A brief discussion regarding the algebra of tensors, specifically contraction, shall

now follow. Contraction is the process by which a covariant and contravariant index

is summed over to arrive at a new tensor, where the rank has been lowered by two.

For example, consider the transformation of a rank two mixed tensor

A
′i
j =

∂x
′i

∂xp
∂xq

∂x′j
Apq (3.29)

and taking j = i

A
′i
i =

∂x
′i

∂xp
∂xq

∂x′i
Apq = δqpA

p
q = App (3.30)

and thus a rank two tensor has turned into a rank zero tensor, otherwise known as a

scalar, specifically App is the trace of Aij, and invariant upon transformations.
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As was briefly discussed in the SR section, specifically Eq. (2.10), the line element

or metric contains the fundamental geometry describing the space under considera-

tion. For this reason it is sometimes labeled the fundamental tensor. There are a

number of equivalent ways to define the metric, for example projections of the set of

basis vectors of one vector on another, but for the purposes of this work the following

shall be considered its definition. If the general case is considered for a n-dimensional

space, neighboring points are separated by a distance related to

ds2 = gµνdx
µdxν where µ, ν = 1, 2, ..., n (3.31)

with the gµν ’s being a n2 number of functions such that the determinant g = |gµν | 6= 0.

The metric is a rank 2 symmetric, covariant tensor therefore its transformation reads

as

g
′

αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν (3.32)

with the property that

gijg
ik = δkj . (3.33)

It is interesting to note that g = |gµν | does not transform like a rank 0 tensor

due to the fact that under transformations of g a factor of the Jacobian squared rears

up. In general, a quantity Ai1i2...irj1j2...js
is a relative tensor of density W if it transforms

according to

A
′l1l2...lr
m1m2...ms

=

∣∣∣∣ ∂x∂x′
∣∣∣∣W(∂x′l1∂xi1

∂x
′l2

∂xi2
. . .

∂x
′lr

∂xir

)(
∂xj1

∂x′m1

∂xj2

∂x′m2
. . .

∂xjs

∂x′ms

)
Ai1i2...irj1j2...js

(3.34)

where the constant W is the weight of the tensor density.
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The covariant and contravariant form of the metric tensor can be used for raising

and lowering indices of tensors, which results in another tensor, and in general

T ...ir......ks...
girmg

ksn = T ...n......m... . (3.35)

3.5 Covariant Derivative and Connections

The notion of the partial derivative is assumed to be known to the reader as

it pertains to objects, specifically functions, in flat space. However, it turns out a

partial derivative operator acting on a vector or tensor does not return a tensorial

object in curved space, and since it is known tensors are geometric objects which

exist independently of the coordinate systems used to describe them, this presents a

problem for using tensors to represent physical systems. What follows is a discussion

regarding corrections to the derivative notion such that a tensor is returned from the

derivative operation and the implications from that.

The derivative operator, named the covariant derivative, in a particular coordi-

nate direction µ is given by the symbol ∇µ and the act of its operation on a vector

V = V νeν goes as [13]

∇µV = ∇µ(V νeν)

= (∇µV
ν)eν + V ν(∇µeν)

= (∂µV
ν)eν + V ν(Γανµeα)

= (∂µV
ν)eν + V α(Γναµeν)

= [∂µV
ν + ΓναµV

α]eν

. (3.36)

So what has happened in the calculation above? The covariant derivative is assumed

to satisfy the linearity and Leibniz rule properties leading to the second line. In the

third line, we equated the covariant derivative of the basis vectors to a connection
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expanded in the eα basis. In this sense, the connection is a n × n matrix (where n

is the manifold dimensionality) for each coordinate direction µ which encapsulates

how basis vectors change across a space. To finish, the dummy indices α and ν were

interchanged so the basis set could be factored out. It is now obvious all the action

happens on the coefficients of the vector field in a specific basis.

It is not so difficult a task to show the transformation of the connection from

one set of coordinates to another goes as

Γν
′

λ′µ′ =
∂xµ

∂xµ′
∂xλ

∂xλ′
∂xν

′

∂xν
Γνλµ −

∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν

′

∂xµ∂xλ
. (3.37)

This transformation law almost has the tensorial transformation requirement except

for the pesky second derivative term, which implies the connection is tensorial for

linear transformations only. But take heart, the connection was constructed in such a

way as to make Eq. (3.36) tensorial under coordinate transformations, so it matters

not the Γ’s are not a tensor.

A similar situation can be analyzed for the covariant derivative of a dual vector

ωωω = ωνe
ν to yield the result (after imposing the two conditions that the covariant

derivative commutes with index contractions and reduces to the partial derivative on

scalars)

∇µωωω = [∂µω
ν − Γλνµωλ]e

λ . (3.38)

The connection coefficients contain all the information necessary to take the

covariant derivative of a tensor of arbitrary rank, which can be expressed as

24



∇σT
µ1µ2...µk
ν1ν2...νl

= ∂σT
µ1µ2...µk
ν1ν2...νl

+ Γµ1λσT
λµ2...µk
ν1ν2...νl

+ Γµ2λσT
µ1λ...µk
ν1ν2...νl

+ . . .

− Γλν1σT
µ1µ2...µk
λν2...νl

− Γλν2σT
µ1µ2...µk
ν1λ...νl

− . . .

. (3.39)

As it turns out, the difference between two connections is in fact a tensor and if a

connection is specified by Γλνµ another connection can be formed by simply permuting

the covariant indices. Thus for any given connection a special tensor named the

torsion tensor can be associated with it given by

T λνµ = Γλνµ − Γλµν = 2Γλ[νµ] . (3.40)

Therefore a symmetric connection necessarily implies a torsion-free one.

A unique connection can be determined on a manifold with a metric gµν assuming

it is torsion-free and has metric compatibility, i.e. ∇ρgµν = 0. Thus the connection

can be shown to be

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (3.41)

Eq. (3.41) is the connection used in general relativity theory and is sometimes referred

to as the Christoffel connection, Levi-Civita connection, or Riemannian connection.

3.6 Parallel Transport, Geodesic Equation, and Killing Vectors

In flat space, the notion of vectors being elements of a tangent space at a point

in the manifold was masked because when computing vector sums, projections, etc.,

one could arbitrarily move these vectors around to performs operations. In curved

space, however, this idea is not so simple.

Parallel transport is the concept of moving a vector along a curve while keeping

25



the vector constant. This implicitly utilizes a connection for the space being traversed

as will be shown soon. As it turns out, the result of parallel transporting a vector

depends on the path taken from one point to another. In other words, there is no

path-independent way to uniquely move a vector from one tangent space to another.

Given a curve xµ(λ), a tensor A of any rank along this curve to be considered

constant must satisfy dA
dλ

= dxµ

dλ
∂A
∂xµ

and from this the definition of the covariant

derivative taken along a path goes as [13]

D

dλ
=
dxµ

dλ
∇µ . (3.42)

Thus, in general the equation of parallel transport for a tensor A along xµ(λ) must

be

(
D

dλ
A

)µ1µ2...µk
ν1ν2...νl

=
dxσ

dλ
∇σA

µ1µ2...µk
ν1ν2...νl

= 0 (3.43)

and for a vector V µ the parallel transport equation goes as

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0 . (3.44)

Hence it can be seen the dependency of the parallel transport process on the connec-

tion defined on the manifold is made manifest. As a last note on parallel transport, if

the connection is metric compatible, the metric is always parallel transported, there-

fore implying the preservation of vector norms, orthogonality, etc., as the space is

traversed.

A geodesic can be thought of roughly as the curved surface version of a “straight

line” in flat space. Slightly more rigorously a geodesic can be defined as a path which

parallel transports its own tangent vector. Immediately using this definition for a

general path xµ(λ), its tangent vector reads as d
dλ
xµ(λ), and utilizing Eq. (3.44) the
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geodesic equation is arrived at eerily easily

d2xµ

dλ2
+ Γµσρ

dxσ

dλ

dxρ

dλ
= 0 . (3.45)

As a quick test, if Minkowski space or Euclidean space is considered, the connection

coefficients would all equate to zero, yielding d2xµ

dλ2
= 0, the equation for a straight

line, which is exactly the path one would expect a free particle to travel. There is

indeed another way to arrive at the geodesic equation which involves varying the line

element in Lorentzian spacetime to generate the extrema of the functional under the

integral sign. This however is more complicated than is needed and can be found in

any literature search.

In regards to quantities undergoing coordinate transformations, an interesting

subset of cases is when the quantity remains invariant under the transformation,

specifically the metric tensor. The metric is form invariant under a transformation

x→ x
′

when the transformed metric g
′
µν(x

′
) is the same function of its argument x

′µ

as the original metric gµν was of its argument xµ [12], i.e.

g
′

µν(x) = gµν(x) . (3.46)

At any point the transformation of the metric reads as

g
′

µν(x
′
) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) (3.47)

with inverse found by switching primes. When Eq. (3.46) is valid, a replacement of

g
′
ρσ(x

′
) with gρσ(x

′
) leads to the requirement for form invariance

gµν(x) =
∂x
′ρ

∂xµ
∂x
′σ

∂xν
gρσ(x

′
) . (3.48)

Coordinate transformations which satisfy the above relationship are called isometries.
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Consider the following transformation

xi → x
′i = xi + εξi(x) (3.49)

where here ε is a small parameter and ξi(x) is a smooth vector field. This trans-

formation is known as an infinitesimal mapping which connects different points in

spacetime using the same coordinate system.

If one allows a general tensor field T (x) to be defined on the manifold in question,

then one can construct the Lie derivative as [15]

LξT (x) = lim
ε→0

T (x)− T ′(x)

ε
. (3.50)

The Lie derivative evaluates the change in a tensor field in the direction of a sepa-

rate vector field. This change is an invariant quantity, thus does not have a result

dependent upon a coordinate representation.

An important case for what follows is the Lie derivative for the covariant rank 2

metric tensor gij which can be shown to be

Lξgij = ξmgij;m + gilξ
l
;j + gkjξ

k
;l . (3.51)

Since the geometry of spacetime is characterized by the metric, this motivates

the question as to whether the metric is invariant under the infinitesimal coordinate

transformation. There exists an isometric mapping of spacetime of the form in Eq.

(3.49) if the Lie derivative of the metric is zero [16]

Lξgij = 0 . (3.52)

From Eq. (3.52), this equates to
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ξmgij;m + gilξ
l
;j + gkjξ

k
;l = 0 . (3.53)

Since in general relativity metric compatibility is assumed, this leads to Eq. (3.54)

being represented as

Lξgij = gilξ
l
;j + gkjξ

k
;l

= ξi;j + ξj;l

= 2ξ(i;j)

= 0 .

(3.54)

This result is known as the Killing equation, and the vectors ξi(x) which satisfy this

differential equation are Killing vectors, which characterize the symmetry properties

in an invariant way. An often convenient way of identifying Killing vectors is to

consider a metric which is cast in a coordinate system such that the components

of the metric are independent of a certain coordinate. The basis vector for that

particular cyclic coordinate is therefore a Killing vector.

As an important and useful application, which utilizes the geodesic equation and

Killing’s equation, consider a geodesic curve xµ(λ) with tangent vector uµ = d
dλ
xµ. If

there exists a Killing vector field Kν then the quantity Kµu
µ = constant.

Before the close of this section, it is beneficial to discuss a couple relationships

between the Killing equation and gravitational fields. One says a gravitational field

is stationary if it admits a time-like Killing vector field ξi(x), i.e. ξ2 = gijξ
iξj < 0.

As an extension, if one is dealing with a stationary field and if the killing vector(s)

are orthogonal to a family of hypersurfaces then the field is said to be static. In the

section on 4D black holes, the Schwarzschild geometry has both these properties.
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3.7 Curvature

What follows is a summarization from [12] [13] [17]. In order to flesh out the

idea of curvature and derive an expression representing it, consider the commutator

of two covariant derivatives. This idea is in a way connected with the notion of

parallel transport discussed earlier in that the covariant derivative of a tensor in a

particular direction measures the change relative to what it would have been if parallel

transported (since the covariant derivative along a path of parallel transport returns

zero). The commutator of two covariant derivatives, seen as

[∇µ,∇ν ] = ∇µ∇ν −∇ν∇µ (3.55)

encapsulates the difference in parallel transporting a tensor one way as compared to

the reverse, see Fig. (3.5).

Fig. 3.5. Difference in successive covariant differentiations of a tensor along two sepa-

rate paths.

Specifically, consider the components of a vector V, namely V ρ, and observe the

act of operating on it with successive covariant derivatives
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[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ . (3.56)

One only really needs to calculate ∇µ∇νV
ρ because the other term in Eq. (3.57) is

the same except the indices µ and ν are flipped. Thus proceeding in this fashion

∇µ∇νV
ρ = ∂µ(∇νV

ρ)− Γλνµ(∇λV
ρ) + Γραµ(∇νV

α)

= ∂µ(∂νV
ρ + ΓρανV

α)− Γλνµ(∂λV
ρ + ΓραλV

α) + Γραµ(∂νV
α + ΓαβνV

β)

= ∂µ∂νV
ρ + (∂µΓραν)V

α + Γραν(∂µV
α)− Γλνµ∂λV

ρ − ΓλνµΓραλV
α

+ Γραµ∂νV
α + ΓραµΓαβνV

β .

(3.57)

Therefore the other term must be

∇ν∇µV
ρ = ∂ν∂µV

ρ + (∂νΓ
ρ
αµ)V α + Γραµ(∂νV

α)− Γλµν∂λV
ρ

− ΓλµνΓ
ρ
αλV

α + Γραν∂µV
α + ΓρανΓ

α
βµV

β

(3.58)

and the commutator becomes

[
∇µ,∇ν

]
V ρ = (∂µΓραν − ∂νΓραµ)V α + (ΓραµΓαβν − ΓρανΓ

α
βµ)V β

+ (Γλµν − Γλνµ)(∂λV
ρ + ΓραλV

α) .

(3.59)

Relabeling α to β on the first term the commutator can now be shown to be

[
∇µ,∇ν

]
V ρ = (∂µΓρβν − ∂νΓ

ρ
βµ + ΓραµΓαβν − ΓρανΓ

α
βµ)V β + (Γλµν − Γλνµ)(∂λV

ρ + ΓραλV
α)

= (∂µΓρβν − ∂νΓ
ρ
βµ + ΓραµΓαβν − ΓρανΓ

α
βµ)V β + 2Γλ[µν]∇λV

ρ .

(3.60)
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If the following definitions are made

Rρ
βµν = ∂µΓρβν−∂νΓ

ρ
βµ + ΓραµΓαβν − ΓρανΓ

α
βµ (3.61a)

T λµν = 2Γλ[µν] (3.61b)

where Rρ
βµν is the Riemann curvature tensor and T λµν is the torsion tensor, then the

commutator of successive covariant derivatives can be expressed as

[∇µ,∇ν ]V
ρ = Rρ

βµνV
β + T λµν∇λV

ρ . (3.62)

The Riemann tensor measures the part of the commutator of successive covariant

derivatives which is proportional to the vector field, and the torsion tensor the part

which is proportional to the covariant derivative of the vector field.

The action of the commutator of covariant derivatives on tensors of arbitrary

rank can be easily extended as

Xµ1...µk
ν1...νl

=− T λρσ∇λX
µ1...µk
ν1...νl

+Rµ1
λρσX

λµ2...µk
ν1...νl

+Rµ2
λρσX

µ1λ...µk
ν1...νl

+ . . .

−Rλ
ν1ρσ

Xµ1...µk
λν2...νl

−Rλ
ν2ρσ

Xµ1...µk
ν1λ...νl

− . . .

. (3.63)

In GR, the Christoffel connection is what is considered which yields symmetric

connections, therefore the torsion is automatically made zero. Based on the construc-

tion of the Riemann curvature tensor, it can be understood as a system of second

order partial differential equations with respect to the metric. Thus if, in a particular

coordinate system, the metric has constant components, then the Riemann curvature

tensor will vanish. In other words, if a coordinate system is found such that ∂σgµν = 0,

then Γρµν = 0 and ∂σΓρµν = 0, therefore Rρ
σµν = 0. This is a tensor equation and as
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such its result is independent of coordinate representation.

One might naively assume the Riemann tensor has n4 components for an n-

dimensional manifold, but in fact the Riemann tensor is antisymmetric in its last two

indices

Rρ
σµν = −Rρ

σνµ (3.64)

which reduces the number of independent components to n(n−1)
2

values in the last two

indices leaving a total of n
3(n−1)

2
independent components. This is still general however

and has not made any use of a metric on the manifold. If the Christoffel connection

is considered, the number of independent components reduces even further. To see

this, lower the contravariant index on the Riemann tensor

Rρσµν = gρλR
λ
σµν (3.65)

and assume Riemann normal coordinates such that the first derivatives of the metric

vanish at some point p on the manifold. The only surviving terms in the Riemann

tensor go as

Rρσµν = gρλ(∂µΓλνσ − ∂νΓλµσ)

=
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) .

(3.66)

Certain symmetries which can be seen from Eq. (3.61) are:

Rρσµν = −Rσρµν (3.67)

Rρσµν = Rµνρσ (3.68)

Rρσµν +Rρµνσ +Rρνσµ = 0 (3.69)
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and taking these into account it can be shown the Riemann tensor has n2(n2−1)
12

in-

dependent components and for 4D spacetime this works out to be 20 independent

components. The above analysis was done in a special coordinate system but due to

the tensorial nature of Rρσµν it holds true in any frame.

Another identity comes in the form of the covariant derivative of the Riemann

tensor in Riemann normal coordinates

∇λRρσµν = ∂λRρσµν

=
1

2
∂λ(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ)

(3.70)

and if the sum of cyclic permutations in the first three indices is considered it can be

shown

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 . (3.71)

The last two identities are known as the Bianchi identities.

Finding the trace of the Riemann tensor equates to contracting the first and

third indices yielding

Rµν = Rλ
µλν (3.72)

and this result is known as the Ricci tensor. Note for the Christoffel connection, this

is the only independent contraction, which is also symmetric due to the symmetry of

multiple partial derivatives within the Riemann tensor. What is known as the Ricci

scalar can be computed with help from the metric as

R = Rµ
µ = gµνRµν . (3.73)

If Eq. (3.72) in contracted twice
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0 = gνσgµλ(∇λRρσµν +∇ρRσλµν +∇σRλρµν)

= ∇µRρµ −∇ρR +∇σRλρµν

(3.74)

and the dummy index ν is interchanged for µ one can arrive at

∇µRρµ =
1

2
∇ρR

=
1

2
∇µgµρR .

(3.75)

If Eq. (3.76) is rearranged one can find

∇µGµν = 0 (3.76)

where Gµν is known as the Einstein tensor and can be expressed as

Gµν = Rµν −
1

2
gµνR . (3.77)

This equation is quite significant and will play an important role in the Einstein

field equations which describe the interaction between the energy-momentum content

within the 4D spacetime manifold and the curvature of spacetime itself.

The final topic which shall be covered in this section is that of geodesic deviation.

In flat space, initially parallel lines will remain so if extended infinitely far, as given

by Euclid in his Elements as the parallel postulate. In curved space this is not the

case. Instead consider a family of geodesics γs(t), where s can assume any real value

and Affine parameter t. These curves define a smooth 2D surface in a manifold of

arbitrary dimension with coordinates s and t such that the geodesics do not intersect.

Consider two vector fields: the tangent vectors to geodesics

T µ =
∂xµ

∂t
(3.78)
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and deviation vectors which point from one geodesic to a neighboring one, as seen in

Fig. (3.6).

Fig. 3.6. Representation of geodesic deviation in s and t basis for the family of

geodesics γs(t).

Sµ =
∂xµ

∂s
. (3.79)

Based on this construct, the rate of change of these geodesics goes as

V µ = (∇TS)µ = T ρ∇ρS
µ (3.80)

where here T µ are the coefficients of the vector for which the covariant derivative is be-

ing taken in the direction of. The acceleration of the separation between neighboring

geodesics goes as

aµ = (∇TV )µ = T ρ∇ρV
µ

= T ρ∇ρ(T
ρ∇ρS

µ)

(3.81)

and utilizing the fact that the S and T bases commute coupled with torsion vanishing
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given as

Sρ∇ρT
µ = T ρ∇ρS

µ (3.82)

The acceleration becomes

aµ = T ρ∇ρ(S
σ∇σT

µ)

= (T ρ∇ρS
σ)∇σT

µ + T ρSσ(∇ρ∇σT
µ)

= (Sρ∇ρT
σ)∇σT

µ + T ρSσ(∇σ∇ρT
µ +Rµ

νρσT
ν)

= (Sρ∇ρT
σ)∇σT

µ + Sσ∇σ(T ρ∇ρT
µ)− (Sσ∇σT

ρ)∇ρT
µ +Rµ

νρσT
νT ρSσ

= Rµ
νρσT

νT ρSσ .

(3.83)

This last result encapsulates the notion that the relative acceleration between two

geodesics is proportional to the curvature, known as the geodesics deviation equation.

Physically, this phenomenon is interpreted as gravitational tidal forces.
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CHAPTER 4

GRAVITATION

What follows is a summarization from [13] [17]. The presence of energy and momen-

tum in the 4D spacetime manifold causes the spacetime to curve, which manifests

itself as gravity, that can influence the paths of other particles. In order to take

Poisson’s equation for gravity

∇2Φ = 4πGρ (4.1)

with Φ the gravitational potential, ρ the mass density, and generalize it, which is

essentially the method Einstein used to arrive at his field equations, certain principles

must be addressed.

The first is the Weak Equivalence Principle (WEP). The WEP states that inertial

mass and gravitational mass of any object are one in the same.

F = mia ←→ Fg = −mg∇Φ . (4.2)

At first glance, this might seem strange given mg has a character specific to the

gravitational force, while mi encapsulates an object’s resistance to change in mo-

tion. However, Galileo showed the acceleration of different objects is the same, and

independent of the mass, for objects in a gravitational field, which leads to

mi = mg . (4.3)

Thus an immediate consequence of this is the universality of the behavior of free-
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falling particles, i.e. the acceleration experienced is mass independent

a = −∇Φ . (4.4)

Another way to characterize the WEP is to state, in a small enough region of

spacetime where gravitational tidal effects are negligible, the laws of freely-falling

particles are equivalent between a gravitational field and a uniformly accelerated

reference frame.

A generalization of the WEP comes in the form of the Einstein Equivalence

Principle (EEP) which states that in a small enough region of spacetime, where

curvature is negligible, the laws of physics reduce to those of SR, which has a special

family of reference frames that are inertial (unaccelerated). This statement is alluding

to the notion that gravity is simply curved spacetime and furthermore the concept

of the acceleration due to gravity is something which cannot be reliably defined. In

the context of GR, it is advantageous to define an unaccelerated particle as freely-

falling. This directly implies gravity is not force in the traditional sense given that

a freely-falling particle moving in a gravitational field is unaccelerated. To go even

further, this also implies inertial frames can only be defined locally since if the frame

were to be extended indefinitely at some point particles would look as if they were

accelerating with respect to the local frame.

The fact that sufficiently small regions of spacetime can be represented by the

laws of SR and local inertial frames can be constructed corresponds to the establish-

ment of Riemann normal coordinates at any one point on a manifold. The failure

to be able to compare the dynamics of particles in sufficiently separated inertial

frames corresponds to the path-dependence of parallel transport on a curved mani-

fold. Therefore, it should be clear that spacetime structure can be represented as a
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curved manifold and gravity is just the manifestation of this curvature.

With the EEP in mind, the laws of physics in sufficiently small regions of space-

time reduce to those of SR. In other words, using Riemann normal coordinates at

some point P, the equations describing particle motion are the same as would be in

flat space. Geodesics for these particles can be seen as

d2xµ

dλ2
+ Γµσρ

dxσ

dλ

dxρ

dλ
= 0 → d2xµ

dλ2
= 0 (4.5)

due to the fact the connection vanishes at the point P in Riemann normal coordinates.

In order to fully arrive at the Einstein field equations, one must observe the weak

field limit of Newtonian gravity; slow speeds compared to light, the gravitational field

is just a perturbation of flat space, and the field is static. If the particle is moving

slow compared to the speed of light the following condition can be imposed

dxi

dτ
<<

dt

dτ
. (4.6)

Therefore, the only non-negligible term in the sum for the geodesic equation is

d2xµ

dλ2
+ Γµ00

(
dt

dτ

)2

= 0 (4.7)

where here the Christoffel symbol Γµ00, using Eq. (3.41), can be expressed as

Γµ00 =
1

2
gµλ(∂0g0λ + ∂0gλ0 − ∂λg00)

= −1

2
gµλ∂λg00

(4.8)

due to the condition of the field being static. Since a weak field is being assumed, the

metric can be decomposed into the Minkowski metric plus a small perturbation term

gµν = ηµν + hµν (4.9)
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where |hµν | << 1. It can also be easily shown

gµν = ηµν − hµν (4.10)

so therefore Eq. (4.8) becomes

Γµ00 = −1

2
ηµλ∂λh00 . (4.11)

The geodesic equation thus becomes

d2xµ

dτ 2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

. (4.12)

If the spacelike components are examined, we have for the geodesic equation

d2xi

dτ 2
=

1

2
∂ih00

(
dt

dτ

)2

(4.13)

and switching the differentiating coordinate from proper time to coordinate time

d2xi

dt2
=

1

2
∂ih00 . (4.14)

If the above expression is compared to Eq. (4.4), they can be equated if the identifi-

cation

h00 = −2Φ (4.15)

is made, which correctly yields the weak field Newtonian metric

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)[dx2 + dy2 + dz2] . (4.16)

Thus the curvature of spacetime is all that is needed to describe gravity in the New-

tonian limit.
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Now returning to the generalization of Eq. (4.1) to arrive at the Einstein field

equations, it can be seen we need a relationship between tensors, given their coor-

dinate independent nature. It can be easily argued the generalization of the mass

density ρ is just the stress-energy tensor Tµν . Something which should be expected

is an expression, using the weak field metric Eq. (4.16), that reduces to

∇2h00 = −8πGT00 . (4.17)

The gravitational potential Φ should be replaced by the metric since the metric

is the field quantity in question. In terms of the differential operator acting on

the potential, it is known the Riemann curvature tensor is constructed from second

derivatives of the metric, and in order to match indices, it can be contracted to be

the Ricci tensor. Coupling this to the stress-energy tensor as

Rµν = κTµν (4.18)

where here κ is a constant, this can be taken to be a first guess at a suitable set of

field equations. The only issue is that of conservation of energy, i.e.

∇µTµν = 0 (4.19)

where Rµν does not satisfy this divergence, as can be recalled from Eq. (3.76). How-

ever, there is a known tensor which is conserved, namely the Einstein tensor, Eq.

(3.77)

Gµν = Rµν −
1

2
gµνR (4.20)

which allows the proposition to be made
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Gµν = κTµν (4.21)

for the field equation for the metric. The only task left is to determine the unknown

constant κ, and this will be done by comparing to the weak field, slow moving, static

limit. Since the rest energy, ρ = T00, is the dominant term in this tensor in this limit,

all that is needed is to consider the µ, ν = 0 component of Eq. (4.21). Recalling Eq.

(4.9) and Eq. (4.10), Eq. (4.20) can be shown to be

R00 =
1

2
κT00 . (4.22)

To understand this in terms of the metric tensor recall R00 = Rλ
0λ0, where here only

the spatial indices need be considered since R0
000 = 0. Therefore in general we have

Ri
0j0 = ∂jΓ

i
00 − ∂0Γij0 + ΓijλΓ

λ
00 − Γi0λΓ

λ
j0 . (4.23)

Here the second time derivative can be neglected since a static field is assumed, and

the third and fourth terms can also be neglected since they are of order two in the

metric perturbation. Thus what is left is

R00 = Ri
0i0

= ∂iΓ
i
00

= ∂i

(
1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

)
= −1

2
ηij∂i∂jh00

= −1

2
∇2h00

(4.24)

which can be equated to
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∇2h00 = −κT00 . (4.25)

This happens to be exactly Eq. (4.17) if the identification is made κ = 8πG and the

full Einstein field equations are arrived at

Rµν −
1

2
gµνR = 8πGTµν . (4.26)

These are a set of second order partial differential equations for the metric tensor.
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CHAPTER 5

4-DIMENSIONAL SCHWARZSCHILD BLACK HOLES

Having flushed out the necessary philosophical and mathematical details regarding

the framework used in the general theory of relativity, it is time now to delve into

the interesting objects known as black holes. Black holes are objects which have a

gravitational field strength so large that not even light can climb out once past a

certain distance, the event horizon.

Within the framework of classical general relativity of four spacetime dimensions,

there essentially is one general solution for an asymptotically flat, stationary black

hole called the Kerr-Newman metric. This metric describes the geometry of a rotating,

electrically charged source. There are other subsets of this general metric, namely

the Schwarzschild metric, the Reissner-Nordstrom metric, and the Kerr metric which

take into account various symmetries of the geometry, of which the Schwarzschild

case will be investigated in this chapter. Beyond this however, motivated by string

theory and the plethora of extra dimensions which come with it, higher dimensional

Schwarzschild black holes and their properties will be investigated in later chapters.

5.1 The Schwarzschild Metric

What follows is a summarization from [12] [13]. The Schwarzschild metric de-

scribes the geometry outside any spherically symmetric vacuum spacetime (black

holes will come soon enough). In terms of Eq. (4.26), the Einstein equation becomes

Rµν = 0. The symmetries of the S2 sphere which carry over for the Schwarzschild

metric have with it three Killing vectors, (T 1, T 2, T 3) that satisfy the following com-
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mutation relations

[T 1, T 2] = T 3 (5.1a)

[T 2, T 3] = T 1 (5.1b)

[T 3, T 1] = T 2 (5.1c)

which incidentally are the relations of SO(3), the group of rotations in 3D. Frobenius’s

theorem [13] can be used to argue that if some vector fields do not commute but rather

have a closed commutator, then the integral curves of the vector fields can be sewn

together as submanifolds of the larger manifold they are defined in. Based off Eq.

(5.1), 2-spheres are formed, and almost every point in the manifold will exist on one

of these, aside from the origin of a particular coordinate system; a foliation of the

manifold.

To determine an appropriate coordinate scheme to impose on this n-dimensional

spacetime foliation, introduce ui and vk, where ui are a set of m coordinate functions

on the S2 submanifolds (i runs from 1 to n) and vk are a set of n-m coordinate

functions which identifies which submanifold is occupied (k runs from 1 to n-m). This

scheme coordinatizes the entire space. Thus it can be shown the metric describing

the entire manifold takes the form

ds2 = gµνdx
µdxν

= gIK(v)dvIdvK + f(v)γikdu
iduk

(5.2)

where here γik is the metric of the submanifold. This assures the tangent vectors ∂
∂vI

remain orthogonal to the submanifolds.

Since 2-spheres describe the symmetric case in hand, the coordinates which can
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describe the submanifold are simply the angular terms in the spherical coordinate

scheme, namely (θ, φ), while the metric on the surface of these spheres looks to be

dΩ2 = dθ2 + sin2θdφ2 . (5.3)

Obviously two more coordinates are needed to fully describe the 4D spacetime, and

coupled with the form of Eq. (5.2) the metric can be made to appear as (after

appropriate coordinate transformations)

ds2 = a(t, r)dt2 + b(t, r)dr2 + r2dΩ2 . (5.4)

Comparing the above expression to the known Minkowski metric, ds2 = −dt2 +dr2 +

r2dΩ2, the function a(t, r) can be made to be negative. Finally, using the functional

freedom for the coefficients of the forms in Eq. (5.4), the general metric can be defined

as

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 . (5.5)

This is as far as one can go in terms of a spherically symmetric, general met-

ric. The next step is to turn the crank by placing this metric into the Einstein

equations and solving for the coefficients, see [17] [18] [19]. The final result is the

full Schwarzschild metric which describes the geometry outside a static, spherically

symmetric source

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (5.6)

in geometrized units. Here M serves as a parameter which can be interpreted as the

mass at large distances away. As M → 0, the Minkowski line element is recovered and

as r →∞ again the Minkowski result is obtained; this property is asymptotic flatness,
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a property which will be important for more complicated geometries describing black

holes. It turns out that the above metric is unique as a spherically symmetric vacuum

solution, and this fact is known from Birkhoff’s theorem. Lastly before moving on

to the behavior of Schwarzschild geodesics, it can be observed there are two singular

points in Eq. (5.6), r = 0 and r = 2M . Since the coefficients of the metric are

coordinate-dependent quantities, it makes sense to construct a scalar which may be

able to shed some light on the nature of the singularities. One such scalar is the

Kretschmann scalar which reads as [20]

RµναβRµναβ =
48M2

r6
. (5.7)

Here the coordinate value r = 2M clearly does not present any issue, but the value

r = 0 does indeed represent a manifold singularity of infinite curvature.

5.2 Kruskal - Szekeres Coordinates and Penrose Diagrams

By observing the light cone structure near the r = 2M distance, its nature is

somewhat unmasked. This is done by considering radial null curves with constant θ

and φ assumed

ds2 = 0 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 (5.8)

and rearranging yields

dt

dr
= ±

(
1− 2M

r

)−1

. (5.9)

This represents the slope of the light cones in the (t, r) slice of spacetime. As one

approaches the r = 2M radius, the light cone boundary squeezes up to an infinite

slope. As it turns out this property is an illusion caused by the particular coordinate
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system used, and what follows is a change in the coordinates used to unravel the

nature of this boundary.

A qualitative picture of the Schwarzschild manifold, M4, is expressed in Fig.

(5.1) for the submanifold M2 in terms of (r, φ) coordinates [21].

Fig. 5.1. A mapping of the 2D submanifold M2 of the Schwarzschild spacetime. Ob-

serve how the light cones tip over once the threshold of the well has been

traversed.

If the metric in Eq. (5.6) is again considered, but with again constant θ and φ

slices, progress can be made by factoring it like so [22]

ds2 = −
(

1− 2M

r

)(
dt2 − 1

(1− 2M
r

)2
dr2

)
= −

(
1− 2M

r

)(
dt− dr

1− 2M
r

)(
dt+

dr

1− 2M
r

) (5.10)

and if one makes the following coordinate definition
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du = dt− dr

1− 2M
r

dv = dt+
dr

1− 2M
r

(5.11)

the first equation can be subtracted from the second and integrated to yield

1

2
(v − u) = r + 2M ln

(
r

2M
− 1

)
. (5.12)

Notice the radius r = 2M still returns a singular location, but for r > 2M the

coordinates u and v extend over a finite region. To remedy this issue exponentiate

Eq. (5.12) like so

e
v−u
4M = e

r
2M

(
r

2M
− 1

)
= e

r
2M

r

2M

(
1− 2M

r

)
.

(5.13)

Putting this result back into Eq. (5.10) yields the metric

ds2 = −2M

r
e−

r
2M e

v−u
4M dudv

= −32M3

r
e−

r
2M

(
e−

u
4M

du

4M

)(
e−

v
4M

dv

4M

)
= −32M3

r
e−

r
2M dUdV

(5.14)

where

U = −e−
u

4M

V = e
v

4M .

(5.15)

If the angular coordinates are added back for a full metric, one has

ds2 = −32M3

r
e−

r
2M dUdV + r2dθ2 + r2sin2θdφ2 . (5.16)
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Observation of the metric in Eq. (5.16) reveals that the distance r = 2M is now

perfectly behaved, therefore showing a coordinate singularity all along instead of a

geometrical one. This system of coordinates (U, V, θ, φ) is known as Kruskal-Szekeres

coordinates. The radial coordinate r can be related to the new coordinates U and V

by

UV = −e−
v−u
4M = e

r
2M

(
1− r

2M

)
(5.17)

and yet another set of coordinates, orthogonal in nature, can be defined as

U = T −X

V = T +X .

(5.18)

The Kruskal-Szekeres coordinates (U, V, θ, φ) can be maximally extended over the

entire Schwarzschild geometry, see Fig. (5.2). The U and V axes divide the geometry

into four regions. The angular coordinates have been suppressed, therefore each point

in the spacetime diagram corresponds to a 2-sphere of radius r. The shaded wedge is

the original Schwarzschild region, bordered by two horizons, one past and one future.

One great property of this coordinate representation is that the light cone structure is

preserved from flat space, i.e. light cones are oriented with boundaries at 45 degrees.

Therefore it becomes obvious the horizons at U, V = 0 are light-like and once crossed

there is no escape since one is bound by their local light cone. Thus r = 2M describes

the event horizon of a black hole.

A time reversed copy region exits in the bottom quadrant of the figure from which

everything must eventually escape; a white hole. The left quadrant represents another

Schwarzschild region, but cannot communicate with the region on the right since faster

than light speed would have to be achieved. Also, there are lines of constant radius
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Fig. 5.2. The maximally extended Kruskal-Szekeres coordinates. The red line denotes

the wordline for the respective light cone and once beyond the boundary

r = 2M it is not possible for a massive particle to avoid the singularity, since

it is bound by its light cone to remain inside the event horizon.

r (hyperbolas) and constant time t (straight lines). Observers at a particular shell

distance must accelerate in order to avoid falling into the black hole. It is interesting

to note that once inside the black hole, the radial and time coordinates switch, where

r is now space-like and t is now time-like, making it impossible not to continue on to

smaller and smaller radial values ultimately colliding with the singularity at r = 0.

Lastly, there is one more transformation which is useful which brings coordinate

values at infinity to finite coordinate values. The details will be suppressed here,

but suffice it to say upon an inverse tangent function transformation one can create

a pictorial representation, called the Penrose diagram, for the maximally extended

Schwarzschild solution [13], see Fig. (5.3).

The boundaries brought from infinity in the Penrose diagram are not part of the
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Fig. 5.3. Penrose diagram for the maximally extended Schwarzschild solution.

original spacetime, and together are referred to as conformal infinity. The conformal

infinity can be divided into regions as follows

• i+ = future time-like infinity

• i− = past time-like infinity

• i0 = spatial infinity

• I+ = future null infinity

• I− = past null infinity

Here, i+ and i− are separate from r = 0 since outside the event horizon there are an

infinite number of time-like paths which do not hit the singularity.
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5.3 Geodesic Equations

In order to determine the geodesic structure in the geometry of Eq. (5.6), one

could grind through the brute force method of taking derivatives of the metric to

find the connections, and combinations of derivatives and products of connections

to arrive at the curvature tensor components, and so on and so forth. However, an

alternative way is to look at the variation of the line element

ds2

dλ2
= gµν

dxµ

dλ

dxν

dλ
(5.19)

and explicitly this reads as

L =

∫
ds

=

∫ [
−
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2sin2θdφ2

] 1
2

.

(5.20)

Parametrizing ds by λ yields

L =

∫
dλ

[
−
(

1− 2M

r

)
ṫ2 +

1

1− 2M
r

ṙ2 + r2θ̇2 + r2sin2θφ̇2

] 1
2

(5.21)

where here the dot denotes a derivative with respect to an arbitrary curve parameter.

Now advancing with the variation set to equal zero, one can reach

δL =
1

2

∫
ds

[
− δ
((

1− 2M

r

)
ṫ2
)

+ δ

(
1

1− 2M
r

ṙ2

)
+ δ(r2θ̇1

2
) + δ(r2sin2θφ̇2)

]
= 0

(5.22)

where the arbitrary curve parameter λ has been replaced with the line element dif-

ferential. Evaluating the variation of each term in Eq. (5.22), recasting the variation
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of derivatives of coordinates as derivatives of the variation of the coordinates, and

collecting terms yields

δL =
1

2

∫
ds

[
2

((
1− 2M

r

)
ẗ+

2M

r2
ṫṙ

)
δ(t)

+

(
− 2r̈

1− 2M
r

+
2M

r2
ṫ2 +

2M

r2
(
1− 2M

r

)2 ṙ
2 + 2rθ̇2 + 2rsin2θφ̇2

)
δ(r)

+ 2
(
r2sinθcosθφ̇2 − 2rṙθ̇ − r2θ̈

)
δ(θ)

− 2
(
2rṙsin2θφ̇+ 2r2sinθcosθθ̇φ̇+ r2sin2θφ̈

)
δ(φ)

]
= 0 .

(5.23)

Since the variations δ(t), δ(r), δ(θ), and δ(φ) are arbitrary and can vary independently,

the only way the integral can equate to zero is for the coefficients to equate to zero,

yielding the geodesic equations

0 = ẗ+
2M

r2
(
1− 2M

r

) ṫṙ (5.24a)

0 = r̈ +
M

r2

(
1− 2M

r

)
ṫ2 − M

r2
(
1− 2M

r

) ṙ2 − r
(

1− 2M

r

)(
θ̇2 + sin2θφ̇2

)
(5.24b)

0 = θ̈ +
2

r
ṙθ̇ − sinθcosθφ̇2 (5.24c)

0 = φ̈+
2

r
ṙφ̇+ 2cotθθ̇φ̇ . (5.24d)

Due to the spherical symmetry of the geometry, solutions will simply lie in an

equatorial plane slicing through a great circle of the sphere. This allows initial condi-
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tions to be chosen such that θ = π
2

and θ̇(0) = 0 and the geodesic equations become

0 = ẗ+
2M

r2
(
1− 2M

r

) ṫṙ (5.25a)

0 = r̈ +
M

r2

(
1− 2M

r

)
ṫ2 − M

r2
(
1− 2M

r

) ṙ2 − r
(

1− 2M

r

)
φ̇2 (5.25b)

0 = θ̈ (5.25c)

0 = φ̈+
2

r
ṙφ̇ . (5.25d)

5.4 Symmetry Considerations for the Geodesic Equations and Further

Analysis

For the Schwarzschild case, it is indeed possible to solve the geodesic equations

outright, but in more complicated geometries, which do not contain such a high degree

of symmetry, this process is greatly complicated. Therefore, hearkening back to §3.6,

the general technique of utilizing Killing vectors to draw out the symmetries of the

geometry shall be employed. Observing Eq.(5.6), it is obvious the line element is

cyclic in the t and φ coordinates, thus translations t+ dt and φ+ dφ leave the metric

invariant. The Killing vectors must then be T = ∂t and Φ = ∂φ with coordinate

representations

Tµ = gµνT
ν =

(
−
(

1− 2M

r

)
, 0, 0, 0

)
Φµ = gµνΦ

ν = (0, 0, 0, r2) .

(5.26)
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Thus, along the geodesic there are two constants of the motion

L = Φµu
µ = r2φ̇ (5.27a)

E = −Tµuµ =

(
1− 2M

r

)
ṫ (5.27b)

where the constants L and E can be interpreted as the angular momentum and energy,

respectively.

In addition, there is another constant of the motion always true for geodesics,

which stems from metric compatibility, see §3.5, that looks like

ε = −gµν
dxµ

dλ

dxν

dλ
(5.28)

where ε = +1 for timelike geodesics, ε = 0 for null geodesics, and ε = −1 for spacelike

geodesics. This allows the radial equation, ṙ2, to be expressed in terms of the energy

and angular momentum, yielding three first order differential equations from the

original four second order differential equations

φ̇ =
L

r2
(5.29a)

ṫ =
E

1− 2M
r

(5.29b)

ṙ2 = E2 −
(

1− 2M

r

)(
L2

r2
+ ε

)
. (5.29c)

Eq. (5.29c) can be recast with energy in mind to look like

1

2
ṙ2 +

(
1

2
ε− Mε

r
+
L2

2r2
− ML2

r3

)
=

1

2
E2 (5.30)

where here an effective potential can be defined as [13]
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Veff =
1

2
ε− Mε

r
+
L2

2r2
− ML2

r3
. (5.31)

The above two equations are akin to a classical particle of energy 1
2
E2 moving in a 1D

potential Veff . A plot of the effective potential as a function of the radial coordinate

for timelike geodesics can be seen in Fig. (5.4).

Fig. 5.4. A plot of the timelike effective potential expressed in Eq. (5.31) for unit mass

as angular momentum values of L = 0M , L =
√

12M , L = 4M , L = 5M .

The dots mark the stable circular orbit positions.

Much about the nature of possible orbits can be understood just from the qual-

itative nature of the effective potential. The particle will travel in the potential until

it hits a turning point, in which case the ṙ contribution vanishes at this location and

the effective potential equals the total energy. Depending on the type of orbit, there

could be two turning points (ellipse), only one turning point (unbound), or one in

which the turning point is constant (circular orbit). Circular orbits occur when the

effective potential is a minimum or maximum, and mathematically this is when
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Fig. 5.5. A plot of the lightlike effective potential expressed in Eq. (5.31) for angular

momentum values of L = 2, L = 4M , L = 5M .

d

dr
Veff = 0 (5.32)

which yields

εMr2 − L2r + 3ML2 = 0 . (5.33)

Circular orbits are stable if they are a minimum of the potential and unstable if they

are a maximum. Considering light, in which ε = 0, one can see the only circular orbit

possible is at

r = 3M (5.34)

and this can be seen in Fig. (5.5) as an unstable equilibrium point before the potential

dips to zero at r = 2M . For massive particles, in which ε = 1, the circular orbits are

at
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r1,2 =
L2 ±

√
L4 − 12M2L2

2M
(5.35)

and coincide when the discriminant equates to zero as

L =
√

12M (5.36)

which gives for the radius

r =
L2

2M
=

(
√

12M)2

2M
= 6M . (5.37)

Thus, r = 6M is the smallest possible radius for a circular orbit an object with mass

can have. Therefore, just from an analysis of the effective potential function, it has

been found that within the Schwarzshild geometry there are stable circular orbits at

r > 6M , and unstable circular orbits at 3M < r < 6M .

5.5 Solving the Radial Geodesic Equation r(φ)

Since the topic of interest is the geodesic structure in the Schwarzschild geometry,

which has been simplified to motion in a equatorial plane, the problem boils down to

solving for r(φ). This can be done simply as

dr

dλ
=
dr

dφ

dφ

dλ
=

√
E2 −

(
1− 2M

r

)(
L2

r2
+ ε

)
(5.38)

and using Eq. (5.29a) the result is shown to be

dr

dφ
=

√
E2 − ε
L2

r4 +
2Mε

L2
r3 − r2 + 2Mr =

√
f(r) . (5.39)

The above differential equation has a solution in the form of an elliptic integral.

To proceed, represent the quartic function f(r) in its most general form
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f(r) = a0r
4 + a1r

3 + a2r
2 + a3r + a4 (5.40)

and let r1 (a turning point as it turns out) be a zero of the function f(r1). Then the

solution to Eq. (5.39) can be expressed as [23]

r(φ) = r1 +
f
′
(r1)

4P(φ; g2, g3) + 1
6
f ′′(r1)

(5.41)

where P(φ; g2, g3) is the Weierstrass P-function.

The invariants g2 and g3, based on the analysis in Appendix A1, therefore must

be

g2 = a0a4 − 4a1a3 + 3a2
2 (5.42a)

g3 = a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4 (5.42b)

where Eq. (5.39) implies a4 = 0. Eq. (5.41) is not yet a valid solution because

it contains too many constants: the invariants g2, g3 and f
′
(r), f

′′
(r) both depend

on E and L, but in addition the zero r1 appears. Now use r1 and a second zero r2

as constants of integration instead of E and L. In order to write the turning point

constants in terms of the energy and angular momentum let us write f(r) in the form

f(r) = a0r(r − r1)(r − r2)(r − r3)

= a0r
4 − a0(r1 + r2 + r3)r3 + a0(r1r2 + r1r3 + r2r3)r2 − a0r1r2r3r

(5.43)

and comparing this form to the form in Eq. (5.39) and Eq. (5.40) to find expressions
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for the coefficients, we have

a0 =
E2 − ε
L2

(5.44a)

4a1 = −a0(r1 + r2 + r3) =
2Mε

L2
(5.44b)

6a2 = a0(r1r2 + r1r3 + r2r3) = −1 (5.44c)

4a3 = −a0r1r2r3 = 2M . (5.44d)

Using Eq. (5.44b) and Eq. (5.44c), an expression for a0 is known, and one can arrive

at

2Mε

L2
=

r1 + r2 + r3

r1r2 + r1r3 + r2r3

(5.45)

and with help from Eq. (5.44a) one can find

E2 − ε = − 2Mε

r1 + r2 + r3

. (5.46)

The zero r3 can be made to look like, with the help of Eq. (5.44c) and Eq. (5.44d)

r3 =
2Mr1r2

r1r2 − 2M(r1 + r2)
. (5.47)

Now everything can be expressed in terms of the two zeros (turning points) r1, r2.

The invariants g2, g3, given by Eq. (5.42a) and Eq. (5.42b), now look to be

g2 =
1

12
−
(

2M

4

)(
r1 + r2 + r3

r1r2 + r1r3 + r2r3

)
(5.48a)

g3 = − 1

48

(
r1 + r2 + r3

r1r2 + r1r3 + r2r3

)
+

(2M)2

16

1

r1r2 + r1r3 + r2r3

+
1

216
. (5.48b)

The derivative terms in the solution of Eq. (5.41) can now be found, starting
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with Eq. (5.43)

f(r) = −r(r − r1)(r − r2)(r − r3)

r1r2 + r1r3 + r2r3

(5.49)

with first derivative

f
′
(r) =

r1r2(r3 − 2r) + r1r(−2r3 + 3r) + r(−2r2r3 + 3r2r + 3r3r − 4r2)

r2r3 + r1(r2 + r3)
(5.50)

evaluated at r = r1 yielding

f
′
(r = r1) = −r1(r1 − r2)(r1 − r3)

r2r3 + r1(r2 + r3)
. (5.51)

The second derivative term can be found as

f
′′
(r) = −2(r2(r3 − 3r) + r1(r2 + r3 − 3r)− 3r(r3 − 2r))

r2r3 + r1(r2 + r3)
(5.52)

evaluated at r = r1 yielding

f
′′
(r = r1) =

−6r2
1 − 2r2r3 + 4r1(r2 + r3)

r2r3 + r1(r2 + r3)
. (5.53)

With these substitutions, the results from Eq. (5.41) give all possible geodesics in

the form r = r(φ; r1, r2).

Since r = r(φ; r1, r2) is an elliptic function of φ, it must be doubly periodic with

half periods ω1 and ω2 and these half periods depend upon the three roots of Eq.

(5.43). It is not necessary to solve this equation because the solutions ej (where

j = 1, 2, 3) can be obtained from the roots 0, r1, r2, r3 of the quartic f(r) = 0 above.

To see this, transform f(r) to Weierstrass’s normal form by a change of variables

r = 1
x

so that from Eq. (5.40) one arrives at

63



f(r) = a0

(
1

x4

)
+ 4a1

(
1

x3

)
+ 6a2

(
1

x2

)
+ 4a3

(
1

x

)
=

1

x4
(a0 + 4a1x+ 6a2x

2 + 4a3x
3) .

(5.54)

Introducing the term

1

r
= x =

1

a3

(
e− a2

2

)
(5.55)

one arrives at

f(r) =
a2

3(
e− a2

2

)4 (4e3 − g2e− g3) (5.56)

with g2, g3 given by Eq. (5.48). Therefore the roots of f(r) can be expressed as

ej =
a3

rj
+
a2

2
=

rs
4rj
− 1

12
(5.57)

where here is introduced the Schwarzschild radius rs. Eq. (5.56) with real coefficients

has either three real roots or one real root and two complex conjugated roots. For a

polynomial of degree three

f(x) = ax3 + bx2 + cx+ d (5.58)

the discriminant goes as

∆3 = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd (5.59)

so for the case at hand one has

∆3 = 42(g3
2 − 27g2

3) . (5.60)

Three real roots corresponds to the discriminant being positive and one real, two com-

64



plex conjugated roots corresponds to the discriminant being negative. The physically

interesting case is when there are three real roots.

5.6 Bound Orbits

This sections proceeds with the analysis of bound orbits with relativistic correc-

tions. For bound orbits, one has two turning points r2 > r1 > 0 and e1 > 0 > e2 > e3

given by [24]

e1 =
rs
4r3

− 1

12
=

1

6
− rs

4

(
1

r1

− 1

r2

)
(5.61a)

e2 =
rs
4r1

− 1

12
(5.61b)

e3 =
rs
4r2

− 1

12
. (5.61c)

The real half period ω of the P-function is given by [24]

ω =

∫ ∞
e1

1√
4t3 − g2t− g3

dt =
K(k2)√
e1 − e3

(5.62)

where K(k2) is the complete elliptic integral of the first kind with parameter

k2 =
e2 − e3

e1 − e3

= rs
r2 − r1

r1r2 − rs(2r1 + r2)
=
rs
r1

2ε

1 + ε

(
1− rs

3− ε
1 + ε

)−1

. (5.63)

The parameter ε is the eccentricity of the orbit defined by

r1

r2

=
1− ε
1 + ε

. (5.64)

The goal of this section is to map out the geodesics found bound particles, and

therefore what follows is the calculation of the post-Einsteinian correction to the

orbital precession. The parameter k2 in Eq. (5.63), if assumed small, can be expanded

in the numerator of Eq. (5.62) as [24]
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K(k2) =
π

2

[
1 +

(
1

2

)2

k2 +

(
1 · 3
2 · 4

)2

k4 + · · ·
]

. (5.65)

The denominator in Eq. (5.62) can be expressed as

1√
e1 − e3

= 2

[
1 +

rs
2

(2r1 + r2)

r1r2

+
3

8
r2
s

(
2r1 + r2

r1r2

)2

+O(r3
s)

]
(5.66)

and therefore Eq. (5.62) can be explicitly expressed as

ω =
π

2

[
1 +

(
1

2

)2

k2 +

(
1 · 3
2 · 4

)2

k4 + · · ·
]

· 2
[
1 +

rs
2

(2r1 + r2)

r1r2

+
3

8
r2
s

(
2r1 + r2

r1r2

)2

+O(r3
s)

] (5.67)

and reduced to

ω = π

[
1 +

3

2

rs
r1

(
1

1 + ε

)
+

3

18

(
rs
r1

)2
18 + ε2

(1 + ε)2
+O(r3

s)

]
. (5.68)

The perihelion precession is given by ∆φ = 2(ω − π). In Eq. (5.68), to order of rs is

Einstein’s result and to order r2
s is the post-Einsteinian correction.

Relativistic corrections to Eq. (5.41) can be found by expressing the P-function

in terms of theta functions [25] [26], see Appendix C.

ϑ1(z, q) = 2q
1
4 (sin(z)− q2sin(3z) + q6sin(5z)− · · · ) (5.69a)

ϑ2(z, q) = 2q
1
4 (cos(z) + q2cos(3z) + q6cos(5z) + · · · ) (5.69b)

ϑ3(z, q) = 1 + 2q(cos(2z) + q3cos(4z) + q8cos(6z) + · · · ) (5.69c)

ϑ4(z, q) = 1− 2q(cos(2z)− q3cos(4z) + q8cos(6z)− · · · ) (5.69d)

where here q is called the Nome [24]
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q =
k2

16
+ 8

(
k2

16

)2

+ · · · . (5.70)

Since k2 was assumed to be small, the above series gives the natural expansion in

powers of the Schwarzschild radius rs. The P-function in terms of theta functions is

[24]

P(φ) = e2 +
π2

4ω2

(
ϑ
′
1(0)ϑ3(ϕ)

ϑ3(0)ϑ1(ϕ)

)2

=
rs
4r1

− 1

12
+

π2

2ω2

1

sin2ϕ
(1 + 4q(cos2ϕ− 1) +O(q2))

(5.71)

where

ϕ =
π

2ω
φ (5.72)

The first and second derivative functions can be found to be

f
′
(r = r1) = 2r1

(
ε

1 + ε
− rs
r1

3ε+ ε2

(1 + ε)2

)
(5.73a)

f
′′
(r = r1) = −2

1− 5ε

1 + ε
+ 6

rs
r1

1− 4ε− ε2

(1 + ε)2
(5.73b)

which yields for the P-function

P(ϕ)− f
′′
(r1)

24
=

1 + ε− 2εsin2ϕ

4(1 + ε)sin2ϕ

·
[
1 +

rs
r1

1

1 + εcos(2ϕ)

(
− 3− ε

2
(1− cosϕ) + 2ε

(
3 + ε

1 + ε

)
sin2ϕ

)]
+O

(
rs
r1

)2

.

(5.74)

Substituting this result into the original solution Eq. (5.41) yields the desired orbit
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to O(rS)

r(φ)

r1

=
1 + ε

1 + εcos(2ϕ)
+
rs
r1

ε
2sin2ϕ

1 + εcos(2ϕ)

·
(

1

1 + εcos(2ϕ)

[
3 +

ε

2
(1− cosϕ)− 2ε

(
3 + ε

1 + ε

)
sin2ϕ

]
− 3 + ε

1 + ε

)
.

(5.75)

If the roots r1 and r2 coincide then Eq. (5.51) equates to zero and one obtains circular

orbits. If the roots r1, r2, and r3 coincide then r3 = 3rs from Eq. (5.47), which is the

innermost circular orbit possible, see Fig. (5.6).

5.7 Unbound Orbits and Null Orbits

Just for completeness, the following brief unbound and null orbit analyses are

included. For the case of unbound orbits, the only physical point is the point of

closest approach r1, where the zero r2 is negative from ε ≥ 0 yielding

1 + ε

1− ε
r1 = r2 < 0 < r3 < r1 . (5.76)

From Eq. (5.39), one can calculate the orbital asymptote at infinity as

φ∞ =

∫ ∞
r1

dr√
f(r)

. (5.77)

The above equation is an elliptic integral and transforming to Legendre’s normal form

one arrives at a incomplete elliptic integral of the first kind

φ∞ =
µ
√
a0

∫ Φ2

0

dΦ√
1− k2sin2Φ

(5.78)
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(a) r1 = 30M , r2 = 70M (b) r1 = 5M , r2 = 2.5M

(c) r1 = 10M , r2 = 9.5M

Fig. 5.6. Geodesic bound orbit structure for particles around Schwarzschild event hori-

zon radius seen in red, based on Eq. (5.87). (a) Stable geodesic path for test

particle which starts at r1 = 30M , where precession is seen. (b) Unstable

geodesic path for test particle which starts at r1 = 5M , where path col-

lides with horizon. (c) Stable geodesic path for test particle which starts at

r1 = 10M , where orbit approaches a circular one.
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with transformations

sin2Φ =
r3 − r2

r1 − r2

r − r1

r − r3

(5.79a)

sin2Φ2 =
r3 − r2

r1 − r2

(5.79b)

and parameters

k2 =
r3

r1

r1 − r2

r3 − r2

(5.80a)

µ =
2√

r1(r3 − r2)
. (5.80b)

It can therefore be shown the asymptotic behavior of φ becomes

φ∞ = 2Φ2 +
rs
r1

(
3

ε+ 1
Φ2 −

ε

2(ε+ 1)
sin(2Φ2)

)
. (5.81)

For the case of null orbits, ε = 0 in Eq. (5.39) and the resulting quartic function

becomes more manageable. The resulting asymptotic behavior becomes

φ∞ =
π

2
+ δ +

(
3

4
+

3

16
π

)
δ2 (5.82)

with the parameter δ given by

δ =
rsE

L
. (5.83)
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CHAPTER 6

D-DIMENSIONAL SCHWARZSCHILD BLACK HOLES

Given the recent (the last few decades) attempts to unify general relativity with

quantum field theory, higher dimensional spacetimes have become a more common

article in theoretical physics. Due to this, the nature of black holes in these higher

dimensional theories can be important for the understanding of non-perturbative

effects in quantum gravtiy.

In a general sense, higher dimensional black hole systems are used as testing

grounds for higher dimensional theories such as string theory and Kaluza-Klein theory.

Tangherlini’s motivation for generalizing the Schwarzschild and Reissner-Nordstrom

black holes to higher dimensions was to attempt to come to a deeper understanding

as to why the observed spacetime is 3+1 dimensions.

6.1 The Schwarzschild-Tangherlini Metric

As a generalization of the 4D case, the higher dimensional case is constructed with

two key concepts in mind: the first being asymptotically flat spaces are considered

which implies a topology of SD−2 at infinity, and secondly coordinates are chosen

such that the metric takes the form gµν = ηµν + O( 1
rD−3 ). This will allow the mass

and angular momentum to be defined by comparison to a weakly gravitating and

non-relativistic case, similar to how the coupling constant for the Einstein equation

was found.

The weakly gravitating metric can be expressed as
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gµν = ηµν + hµν (6.1)

with |hµν | << 1. Considering the harmonic gauge condition

(
hµν − 1

2
ηµνhαα

)
, ν

= 0 . (6.2)

Einstein’s equation can be made to look like

∇2hµν = −16πG

(
Tµν −

1

D − 2
ηµνT

)
. (6.3)

Utilizing the Green’s function for the generalized dimensional Laplacian, one can

solve for hµν and expand the solution in the asymptotic region far from the source to

identify the following terms to leading order [27]

h00 =
16πG

(D − 2)ΩD−2

M

rD−3
(6.4a)

hij =
16πG

(D − 2)(D − 3)ΩD−2

M

rD−3
δij (6.4b)

h0i = − 8πG

ΩD−2

xk

rD−1
Jki . (6.4c)

These equations can be used to define the mass and angular momentum in the source’s

center of mass frame.

In the most general sense, the generalization of the Schwarzschild geometry to

higher dimensions reads as

ds2 = −f 2dt2 + g2dr2 + r2dΩ2
D−2 (6.5)

with r the radial coordinate, dΩD−2 the line element of the unit (D − 2)-sphere, and

f and g functions of r only. Rµν = 0 implies
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f = g−1 =

(
1− µ

rD−3

) 1
2

. (6.6)

To avoid naked singularities, prohibited by the cosmic censorship conjecture, one

assumes µ > 0 and can use Eq. (6.4a) to find

µ =
16πG

(D − 2)ΩD−2

M (6.7)

which yields the generalized dimensional version of the Schwarzschild 4D geometry

discovered by Tangherlini in 1963 [7]. The metric for this geometry is very reminiscent

of its earlier counterpart and goes as

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 (6.8)

where here dΩ2
D−2 is [7] [28]

dΩ2
D−2 = dθ2

1 +
D−2∑
j=2

( j−1∏
k=1

sin2θk

)
dθ2

j (6.9)

as compared to Eq. (5.3) for the 4D case, and f(r) is given by [29]

f(r) = 1− µ

rD−3

= 1− 16πGDM

(D − 2)AD−2rD−3
.

(6.10)

The gravitational coupling constant has been reinstated due to its dependence on the

dimensionality D and AD−2 is the surface area of the unit SD−2 sphere given as [29]

AD−2 =
2π

(D−1)
2

Γ(D−1
2

)
. (6.11)

The relationship between the surface area of the SD−2 sphere as a function of the

dimension can be seen in Fig. (6.1).
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Fig. 6.1. A relationship between the surface area of the unit SD−2-sphere and the

dimensionality of the spacetime.

The horizon structure of the S-T black hole can be found, as before, by looking

at where the radial coordinate becomes singular

g−1
rr = 1− 16πGDM

(D − 2)AD−2rD−3
= 0 (6.12)

where the horizon radius goes as [29]

rS−T =

(
16πGDM

(D − 2)AD−2

) 1
D−3

. (6.13)

It is interesting to see how the horizon radius r depends upon the dimensionality

D. This can be seen by plotting this relationship seen in Fig. (6.2). Strangely

enough, it appears the horizon radius initially tends to shrink as the dimensionality

is increased beyond D = 4, with a minimum radius of approximately r = 3
4
M at

dimension D = 7.25695, and then increases indefinitely, reaching r = 2M again

around dimension seventy, with no convergence as D →∞.
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Fig. 6.2. A relationship between the radius of the event horizon for the generalized

Schwarzschild black hole and the dimensionality of the spacetime. Here on

can see the correlation between Fig. (6.1) and the behavior of the horizon

radius.

6.2 Generalized Kruskal-Szekeres Coordinates

Observing the light cone structure near the horizon radius rS−T will allow this

coordinate singularity to be transformed away. Consider null curves with all angles

fixed

ds2 = 0 = −f(r)dt2 +
1

f(r)
dr2 (6.14)

which yields the light cone slope in the generalized (t, r) spacetime

dt

dr
= ±

(
1− µ

rD−3

)−1

. (6.15)

As rS−T is approached, the light cone squeezes up to infinite slope, but the actual

radius at which this occurs depends on the dimension considered.

Consider again the metric in Eq. (6.8), for constant angular slices, and factor

like so
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ds2 = −f(r)

(
dt2 − 1

f(r)2dr2

)
= −f(r)

(
dt− dr

f(r)

)(
dt+

dr

f(r)

)
.

(6.16)

Making the following coordinate definitions

du = dt− dr

f(r)

dv = dt+
dr

f(r)

(6.17)

and subtracting the first equation from the second and integrating yields

1

2
(v − u) =

∫
dr

f(r)
. (6.18)

Now depending on the dimension one is considering, the solution to the integral in Eq.

(6.18) will vary. Table (6.1) encapsulates some of the dimensions with corresponding

solutions to the integral.

As one can probably see, the difficulty in finding a suitable coordinate system to

transform away the coordinate singularity at the event horizon becomes increasingly

difficult with higher dimensions, see [30].

6.3 Generalized Geodesic Equations

In order to determine the geodesic structure in the geometry of Eq. (6.8), the

same method will be employed here that was used for the 4D case. Again, the

variation in the line element goes as

L =

∫
ds

=

∫ [
− f(r)dt2 +

1

f(r)
dr2 + r2dθ2

1 + r2

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
dθ2

j

] 1
2

.

(6.19)
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Dimension Solution

D = 4 r + µ ln(r − µ)

D = 5 r − µ 1
2 tanh−1(µ−

1
2 r)

D = 6
r − 1

6
µ

1
3

(
2
√

3 tan−1
(

1√
3

+ 2√
3
µ−

1
3 r
)
− 2 ln

(
− r + µ

1
3

)
+ ln

(
r2 + µ

1
3 r + µ

2
3

))
D = 7 r − 1

4
µ

1
4

(
2 tan−1(µ−

1
4 r)− ln(−r + µ

1
4 ) + ln(r + µ

1
4 )

)

D = 8

r + 1
20
µ

1
5

(
− 2
√

10 + 2
√

5 tan−1
(

4r+(1−
√

5)µ
1
5√

10+2
√

5µ
1
5

)
− 2
√

10− 2
√

5 tan−1
(4r+(1+

√
5)µ

1
5√

10−2
√

5µ
1
5

)
+ 4 ln

(
− r + µ

1
5

)
+ (−1 +

√
5) ln

(
r2 − 1

2
(−1 +

√
5)µ

1
5 r + µ

2
5

)
− (1 +

√
5) ln

(
r2 + 1

2
(1 +
√

5)µ
1
5 r + µ

2
5

))

D = 9

r + 1
12
µ

1
6

(
2
√

3 tan−1
(

1√
3
− 2r
√

3µ
1
6

)
− 2
√

3 tan−1
(

1√
3

+ 2r
√

3µ
1
6

)
+ 2 ln

(
− r + µ

1
6

)
− 2 ln

(
r + µ

1
6

)
+ ln

(
r2 − µ 1

6 r + µ
1
3

)
− ln

(
r2 + µ

1
6 r + µ

1
3

)
...

...

Table 1. Table of solutions to Eq. (6.18) RHS integral with corresponding dimension.

Parametrizing ds by λ yields

L =

∫
dλ

[
− f(r)ṫ2 +

1

f(r)
ṙ2 + r2θ̇1

2
+ r2

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̇j

2
] 1

2

. (6.20)

Now advancing with the variation, one can reach
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δL =
1

2

∫
ds

[
− δ
((

1− µ

rD−3

)
ṫ2
)

+ δ

(
1

(1− µ
rD−3 )

ṙ2

)
+ δ
(
r2θ̇1

2)
+ δ

(
r2

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̇j

2
)] 1

2

(6.21)

where the arbitrary curve parameter λ has been replaced with the line element dif-

ferential. Evaluating the variation of each term in Eq. (6.21), recasting the variation

of derivatives of coordinates as derivatives of the variation of the coordinates, and

collecting terms yields

δL =
1

2

∫
ds

[
2

((
1− µ

rD−3

)
ẗ+

(D − 3)µ

rD−2
ṫṙ

)
δ(t)

+

(
− 2r̈

(1− µ
rD−3 )

+
(D − 3)µ

rD−2
ṫ2 +

3(D − 3)µ

rD−2(1− µ
rD−3 )2

ṙ2

+ 2rθ̇2
1 + 2r

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̇j

2
)
δ(r)

− 2

(
2rṙθ̇1 + r2θ̈1

)
δ(θ1)− 4rṙ

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̇jδ(θj)

− 2r2

D−2∑
j=2

( j−1∏
k=1

2sinθkcosθkθ̇k

)
θ̇jδ(θj)− 2r2

D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̈jδ(θj)

]
= 0 . (6.22)

Since the variations are arbitrary and can vary independently, the only way the inte-

gral can equate to zero is for the coefficients to equate to zero, yielding the geodesic
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equations

0 = ẗ+
µ(D − 3)

rD−2(1− µ
rD−3 )

ṫṙ (6.23a)

0 = r̈ +
µ(D − 3)

2rD−2

(
1− µ

rD−3

)
ṫ2 − 1

2

µ(D − 3)

rD−2(1− µ
rD−3 )

ṙ2 (6.23b)

− r
(

1− µ

rD−3

)(
θ̇2

1 +
D−2∑
j=2

( j−1∏
k=1

sin2θk

)
θ̇2
j

)

0 = θ̈1 +
2

r
ṙθ̇1 −

D−2∑
j=2

( j−1∏
k=1

sinθkcosθk

)
θ̇2
j (6.23c)

...

0 = θ̈j +
2

r
θ̇j +

D−2∑
j=2

( j−1∏
k=1

2cotθkθ̇k

)
θ̇j . (6.23d)

One can check that these generalized geodesic equations indeed reduce to the 4D case

when D = 4.

Due to the spherical symmetry of the geometry, solutions will simply lie in an

equatorial plane slicing through a great circle of the unit SD−2 sphere. This allows

initial conditions to be chosen such that θ1 = θ2 = θ3 = · · · = θD−3 = π
2

and the
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geodesic equations become

0 = ẗ+
µ(D − 3)

rD−2(1− µ
rD−3 )

ṫṙ (6.24a)

0 = r̈ +
µ(D − 3)

2rD−2

(
1− µ

rD−3

)
ṫ2 − 1

2

µ(D − 3)

rD−2(1− µ
rD−3 )

ṙ2 − r
(

1− µ

rD−3

)
θ̇2
D−2

(6.24b)

0 = θ̈1 (6.24c)

...

0 = θ̈D−2 +
2

r
θ̇D−2 . (6.24d)

6.4 Symmetry Considerations for the Generalized Geodesic Equations

and Further Analysis

In order to follow the same logic as the 4D case, the Killing vectors will be sought

after. Observing Eq.(6.8) and Eq. (6.9), the line element is cyclic in the t and θD−2

coordinates, thus translations t+dt and θD−2 +dθD−2 leave the metric invariant. The

Killing vectors must then be T = ∂t and Φ = ∂θD−2
with coordinate representations

Tµ = gµνT
ν =

(
−
(

1− µ

rD−3

)
, 0, 0, 0, . . . , 0

)
Φµ = gµνΦ

ν =

(
0, 0, 0, 0, . . . , r2

j−1∏
k=1

sin2θk

) (6.25)

and since an equatorial slice is assumed then the Killing vector Φµ becomes

Φµ = (0, 0, 0, 0, . . . , r2) . (6.26)
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Along the geodesic there must be two constants of the motion

L = Φµu
µ = r2θ̇D−2 (6.27a)

E = −Tµuµ =

(
1− µ

rD−3

)
ṫ (6.27b)

where the constants L and E can still be interpreted as the angular momentum and

energy, respectively. Utilizing Eq. (5.28) again, three first order equations can be

arrived at

θ̇D−2 =
L

r2
(6.28a)

ṫ =
E

1− µ
rD−3

(6.28b)

ṙ2 = E2 −
(

1− µ

rD−3

)(
L2

r2
+ ε

)
. (6.28c)

Eq. (6.28c) can be recast with energy in mind to look like

1

2
ṙ2 +

(
1

2
ε− µε

2rD−3
+
L2

2r2
− µL2

2rD−1

)
=

1

2
E2 (6.29)

where here an effective potential can be defined as

Veff =
1

2
ε− µε

2rD−3
+
L2

2r2
− µL2

2rD−1

=
1

2
ε− 8πGDMε

(D − 2)ΩD−2rD−3
+
L2

2r2
− 8πGDML2

(D − 2)ΩD−2rD−1
.

(6.30)

A plot of the effective potential as a function of the radial coordinate for timelike

geodesics can be seen in Fig. (6.3) while the effective potential for lightlike geodesics

can be seen in Fig. (6.4).

Here it can be observed that the position of where the effective potential orig-
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Fig. 6.3. A plot of the timelike effective potential expressed in Eq. (6.30) for di-

mensions D = 4, 5, 6, 7, 1000 with unit mass and angular momentum value

L = 4M . The black dot represents the stable circular orbit for the D = 4

case, and is the only bound orbit possible; all higher dimensions have termi-

nating orbits.

inates initially decreases as the dimension increases, and in fact this continues to a

minimum horizon radius only to increase again, in accordance with Fig. (6.2).

To observe the turning points as a function of dimension, simply differentiate

Veff and set the result equal to zero, which yields

µε(D − 3)r5−D + µL2(D − 1)r3−D − 2L2 = 0 . (6.31)

One can check that for the 4D timelike case, Eq. (5.35) is indeed arrived at after

solving the second order polynomial. For the 5D case, one can arrive at the turning

points

r1,2 = ±4L

√
GM

3πL2 − 8εGM
(6.32)
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Fig. 6.4. A plot of the lightlike effective potential expressed in Eq. (6.30) for di-

mensions D = 4, 5, 6, 7, 1000 with angular momentum value L = 4M . The

unstable circular orbits for photons can be seen to decrease with dimension

initially then increase in accordance with the Fig. (6.1).

where it is obvious there is only one physical turning point, therefore no bound orbits,

only terminating orbits. The 6D case and beyond yields general results for the turning

points which are quite cumbersome, therefore their calculation is left to the reader,

but suffice it to say a common theme amidst them all is only one physical turning

point. Thus, one can surmise that beyond four dimensions, there exist no periodic

bound orbits, and only terminating bound, escape, or terminating escape orbits.

6.5 Solving the Generalized Radial Geodesic Equation r(φ)

The next step is to attempt a generalization of the radial differential equation

and see what types of solutions exist for r(θD−2). One can expand Eq. (6.21c) as

dr

dλ
=

dr

dθD−2

dθD−2

dλ
=

√
E2 −

(
1− µ

rD−3

)(
L2

r2
+ ε

)
(6.33)
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and with the help of Eq. (6.21a) it is easily shown

dr

dθD−2

=

√
E2 − ε
L2

r4 − r2 + µr5−D +
µε

L2
r7−D . (6.34)

There does not exist a general solution to this differential equation, rather one must

specify a dimension and seek the particular type of function which the solution can

be expressed in the form of. With a substitution of u = µ
1

D−3

r
, Eq. (6.34) can be

made to look like [25]

(
du

dθD−2

)2

= uD−1 + λuD−3 − u2 + λ(E2 − ε) = PD−1(u) (6.35)

where the parameter λ = µ
2

D−3

L2 , and for what follows the θD−2 angle will just be taken

to be φ.

For the case of D = 5 the substitution u = 1
x

+ l, with l a zero of P4, turns Eq.

(6.35) into

(
dx

dφ

)2

= b3x
3 + b2x

2 + b1x
1 + b0x

0 (6.36)

with coefficients

b3 = 4l3 + 2l(λ− 1) (6.37a)

b2 = 6l2 + λ− 1 (6.37b)

b1 = 4l (6.37c)

b0 = 1 . (6.37d)

Another substitution of x = 1
b3

(4y − b2
3

) puts Eq. (6.36) in the form of Eq. (A.6),

which can be solved in terms of the Weierstrass elliptic functions.
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For the case of D = 6, Eq. (6.35) looks like

(
du

dφ

)2

= u5 + λu3 − u2 + λ(E2 − ε) = P5(u) (6.38)

where the physical angle is now given by

φ− φ0 =

∫ u

u0

du
′√

P5(u′)
=

∫ u

u0

dz1 (6.39)

and the solution to the radial geodesic equation is given by [25]

r(φ) =
µ

1
3

u(φ)
= −µ

1
3

σ2(φ~Θ,6)

σ1(φ~Θ,6)
(6.40)

where

~φΘ,6 =

φ− φ′0
φ1

 . (6.41)

Here, φ1 is chosen such that (2ω)−1~φΘ,6 is an element of the theta divisor Θ ~K∞
and

φ
′
0 = φ0 +

∫∞
u0
dz1 depends only on initial values u0 and φ0, see Appendix B and C.

For the D = 7 case, one has a polynomial P6 of degree six on the RHS of Eq.

(6.35). After another substitution of u = 1
x

+ l, where l is a zero of P6, one obtains

the differential equation

(
x
dx

dφ

)2

= b5x
5 + · · ·+ b0x

0 (6.42)

for appropriate constants b5, b4, . . . , b0. The solution to this differential equation is

[25]

r(φ) =
µ

1
4

u(φ)
= −µ

1
4

σ2(φ~Θ,7)

σ1(φ~Θ,7)
(6.43)
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where

~φΘ,7 =

 φ1

φ− φ′0

 . (6.44)

Again, φ1 is chosen such that (2ω)−1~φΘ,7 is an element of the theta divisor Θ ~K∞
and

φ
′
0 = φ0 +

∫∞
u0
dz2, see Appendix B and C.

The explicit analysis ends here, but one could push forward to higher dimensions,

particularly dimensions nine and eleven, in a similar fashion as described above.

Dimensions eight, ten, and twelve and beyond do not have analytical solutions to

date.
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CHAPTER 7

CONCLUSION

A significant method for exploring the spacetime geometry given by a specific metric

is to determine the geodesics particles would travel in the geometry. In this thesis,

the properties regarding the Schwarzschild geometry, as an exterior solution to the

Einstein vacuum equation, have been explored in addition to the geodesics which arise

from solving the geodesic equation for the Schwarzschild metric. The general structure

of the orbits was then discussed, with an approximate solution to the radial equation

being found. A higher dimensional generalization was then arrived at, discovered by

Tangherlini in 1963, and solutions to the geodesic equation in higher dimensions were

explored.

In four dimensions, the spacetime geometry allows for periodic bound, termi-

nating bound, escape, and terminating escape orbits. A substantial amount of this

information could be extrapolated from the qualitative analysis of the effective po-

tential behavior. The solution to the radial geodesic equation was found using the

Weierstrass P-function, which is a periodic function of elliptic type defined on a

Riemannian manifold.

In higher dimensions, the generalized Schwarzschild solution only allows for ter-

minating bound, escape, or terminating escape orbits. This can be seen from only

one physical turning point arising from the radial differential equation polynomial

and also from a qualitative analysis of the generalized effective potential. Also, it was

observed the horizon radius shrinks as the dimension increases and reaches a mini-

mum around dimension seven, increasing indefinitely with larger dimensions. This is
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simply an artifact of the geometry itself. Dimensions four, five, and seven are solvable

in terms of elliptic functions. Dimensions seven, nine, and eleven are solvable in terms

of hyperelliptic functions. Dimensions eight, ten, and twelve and beyond do not have

any analytical solutions known.
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Appendix A

THE WEIERSTRASS P-FUNCTION

The Weierstrass P-function is defined as [31]

P(z) =
1

z2
+

∑
n,m∈Z

n2+m2 6=0

(
1

(z + znm)2
− 1

z2
nm

)
(A.1)

with

znm = 2mω1 + 2nω2 (A.2)

where ω1 and ω2 are the two half periods characterizing the period parallelogram,

see Fig. (A.1). By construction this function is doubly periodic with fundamental

periods 2ω1 and 2ω2.

P(z + 2ω1) = P(z) , P(z + 2ω2) = P(z) . (A.3)

Knowing the values of the elliptic function within the fundamental period parallelo-

gram completely determines the elliptic function, as a consequence of Eq. (A.3).

If one acquires the Laurent series for the Weierstrass function about z = 0, the
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Fig. A.1. The fundamental period parallelogram shaded in blue defined by the complex

numbers 0, 2ω1, 2ω2, and 2ω1 + 2ω2.

expressions for the invariants g2 and g3 can then be determined as

g2 = 60
∑
n,m∈Z

n2+m2 6=0

1

z4
nm

(A.4a)

g3 = 140
∑
n,m∈Z

n2+m2 6=0

1

z6
nm

. (A.4b)

In order to gain insight into the differential equation for which the Weierstrass

P-function is a solution of, one can differentiate Eq. (A.1) to arrive at

P
′
(z) = −2

∑
n,m

1

(z +mω1 + nω2)3
. (A.5)

Using the Laurent series of P
′
(z), (P(z))3, and (P

′
(z))2 in the regime of z = 0
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it can be shown the Weierstrass elliptic function obeys the differential equation

(P
′
(z))2 = 4(P(z))3 − g2P(z)− g3 = 0 (A.6)

and the integral formula for the Weierstrass elliptic function is

z =

∫ ∞
P(z)

1√
4t3 − g2t− g3

dt . (A.7)

If one defines the value of the Weierstrass function at the half-periods ω1, ω2,

and ω3 = ω1 + ω2 as

e1 = P(ω1) , e2 = P(ω3) , e3 = P(ω2) (A.8)

then one can show P is stationary at the half-periods

P
′
(ω1) = P

′
(ω2) = P

′
(ω3) = 0 (A.9)

and arrive at [24]

4e3
i − g2ei − g3 = 0 . (A.10)

This equation implies that ei are the three roots of the polynomial appearing in the

right hand side of the Weierstrass equation, namely

4t3 − g2t− g3 = 4(t− e1)(t− e2)(t− e3) (A.11)
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which directly implies

e1 + e2 + e3 = 0 (A.12a)

e1e2 + e2e3 + e3e1 = −g2

4
(A.12b)

e1e2e3 =
g3

4
. (A.12c)
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Appendix B

DIFFERENTIALS DEFINED ON RIEMANNIAN SURFACES

What follows is a summarization from [25]. A Riemann surface is a complex manifold

with a good notion of complex-analytic functions defined on it. Let X be a compact

Riemann surface of the algebraic function x 7→
√
Pn(x) for a polynomial Pn of degree

n, with representation

X := {z = (x, y) ∈ C2 | y2 = Pn(x)} (B.1)

or the analytic continuation of
√
Pn. The latter can be seen as a two chart covering of

the Riemann sphere constructed with the zeros (branch points) of Pn, ei, i = 1, . . . , n.

Now if one takes two copies of the Riemann sphere, for each possible value of
√
Pn

and cut them between every two of the branch points ei, such that the cuts do not

touch, i.e. branch cuts. A visualization of a sixth order polynomial can be seen in

Fig. (B.1). The two copies are attached along the branch cuts in such a way that
√
Pn

with its analytic continuations is uniquely defined on the whole surface. Therefore

x 7→
√
Pn(x) is a single-valued function.

Every Riemann surface can be equipped with a homology basis {ai, bi|i = 1, . . . , g} ∈

H1(X,Z) of closed paths, where g is the genus of the surface. The genus can be char-

acterized as the dimension of the space of holomorphic differentials on the Riemannian

surface, or the number of holes in the topology, see Fig. (B.1). If Pn has only simple

zeros, the genus of surface X of
√
Pn is g = [n−1

2
].

In order to construct functions on the Riemann surface, a canonical basis of

the space of holomorphic differentials {dzi|i = 1, . . . , g} and associated meromorphic
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Fig. B.1. Riemann surface of genus 2 for sixth degree polynomial, with real branch

points e1, . . . , e6. The upper figure has two copies of the complex plane with

closed paths giving a homology basis {ai, bi|i = 1, . . . , g}. The lower figure

has topology equivalent to homology basis.

differentials {dri|i = 1, . . . , g} must be defined like

dzi =
xi−1dx√
Pn(x)

(B.2)

dri =

2g+1−i∑
k=i

(k + 1− i)bk+1+i
xkdx

4
√
Pn(x)

(B.3)

with bi the coefficients of the polynomial Pn(x) =
∑n

j=1 bjx
j. There also can be
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introduced period matrices (2ω, 2ω
′
) and (2η, 2η

′
) related to the homology basis

2ωij =

∮
aj

dzi (B.4a)

2ω
′

ij =

∮
bj

dzi (B.4b)

2ηij = −
∮
aj

dri (B.4c)

2η
′

ij = −
∮
bj

dri . (B.4d)

The differentials in Eq. (B.2) and Eq. (B.3) are defined such that the components of

their period matrices satisfy the Legendre relation

ω ω
′

η η
′


 0 −1g

1g 0


ω ω

′

η η
′


T

= −1

2
πi

 0 −1g

1g 0

 (B.5)

where 1g is the g × g unit matrix.

A normalized holomorphic differential can be defined as

d~v = (2ω)−1d~z (B.6)

d~z =



dz1

dz2

...

dzg


. (B.7)

The period matrix of these differentials is given by (1g, τ), where τ is defined as

τ = ω−1ω
′
. (B.8)
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In this thesis, the holomorphic differentials introduced are used to formulate

geodesic equations of the type

(
yi
dy

dx

)2

= Pn(y) , y(x0) = y0 . (B.9)
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Appendix C

THE THETA FUNCTION

What follows is a summarization from [25]. The theta functions are a class of func-

tions, ϑ : Cg → C,

ϑ(~z; τ) =
∑
~m∈Zg

eiπ ~m
t(τ ~m+2~z) (C.1)

which define holomorphic functions in Cg. The theta function is periodic with respect

to the columns of 1g and quasiperiodic with respect to the columns of τ , i.e.

ϑ(~z + 1g~n; τ) = ϑ(~z; τ) (C.2a)

ϑ(~z + τ~n; τ) = e−iπ~n
′
(τ~n+2~z)ϑ(~z; τ) . (C.2b)

The theta function will also need the characteristics ~g,~h ∈ 1
2
Zg defined by

ϑ[~g,~h](~z; τ) =
∑
~m∈Zg

eiπ(~m+~g)
′
(τ(~m+~g)+2~z+2~h)

= eiπ~g
′
(τ~g+2~z+2~h)ϑ(~z + τ~g + ~h; τ) .

(C.3)

It will be important that for every ~g,~h the set, called the theta divisor,

Θτ~g+~h = {~z ∈ Cg | ϑ[~g,~h](~z; τ) = 0} (C.4)

be a (g − 1) - dimensional subset of Jac(X), where for a Riemannian surface X the

Jacobian is Jac(X) = Cg/Γ, with Γ = {ωv+ω
′
v
′ | v, v′ ∈ Zg} is the lattice of periods

of differential d~z.

97



A useful function, related to the theta function, useful for solving the integral

arising in the radial differential equation can be found by considering the theta func-

tion

ϑe(x; τ) = ϑ

(∫ x

x0

d~v − ~e; τ
)

(C.5)

with fixed ~e ∈ Cg. It can be shown the Riemann theta function is either identically

zero or has g zeros x1, . . . , xg for which

g∑
i=1

∫ x

x0

d~v = ~e+ ~Kx0 (C.6)

is valid with ~Kx0 ∈ Cg. ~Kx0 is the vector of Riemannian constants with respect to

the base point x0 given by

Kx0,j =
1 + τjj

2
−
∑
l 6=j

∮
al

(∫ x

x0

dvj

)
dvl(x) (C.7)

where τjj is the jth diagonal element of Eq. (B.8). As x0 →∞, ~K can be expressed

as

~K∞ =

g∑
i=1

∫ e2i

∞
d~v (C.8)

where e2i is the starting point of one of the branch cuts not containing ∞ for each i,

therefore ~K∞ can be expressed as a linear combination of half periods.

The solution of the type of problem expressed in Eq. (B.9) can be formulated in

terms of derivatives of the Kleinian sigma function σ : Cg → C

σ(~z) = Ce−
1
2
~z
′
ηω−1~zϑ((2ω)−1~z + ~Kx0 ; τ) (C.9)

where C is a constant. The sigma function can be used to expressed a form of a
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general Weierstrass function as

Pij(~z) = − ∂

∂zi

∂

∂zj
logσ(~z) =

σi(~z)σj(~z)− σ(~z)σij(~z)

σ2(~z)
. (C.10)

The solution to the general problem of the physical angle can be found in terms

of the generalized Weierstrass functions. If X is a Riemannian surface of
√
P , with P

the polynomial expressed as

P (x) =

2g+1∑
i=0

λix
i (C.11)

then the components of the solution vector ~x = (x1, . . . , xg)
T are given by g solutions

of

λ2g+1

4
xg −

g∑
i=1

Pgi(~φ)xi−1 = 0 . (C.12)
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