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 Studies on repeated exposure to opioids have been carried out for decades yet the 

mechanisms for certain phenomena such as tolerance are still not fully understood. Furthermore, 

different medications, such as frequently prescribed benzodiazepines, or different disease states, 

such as HIV, have their own effects and interactions with chronic opioid exposure that are not fully 

understood. The overall objective of this dissertation was to investigate the complexities of chronic 

opioid exposure and how different disease states and medications may modulate the effects of 

chronic opioids. Our findings demonstrate that the administration of diazepam, at doses that are 

not antinociceptive or have any motor effects, reverse both antinociceptive and locomotor 

tolerance to orally active opioids. These doses of diazepam did not potentiate the acute effects of 

these prescription opioids. We also found that HIV-1 Tat expression significantly attenuated the 

antinociceptive potency of acute morphine in non-tolerant mice while not significantly altering the 

antinociceptive tolerance to morphine. Consistent with this, Tat attenuated withdrawal symptoms 

among morphine-tolerant mice. Pretreatment with maraviroc, a CCR5 antagonist blocked the 

effects of Tat, reinstating morphine potency in non-tolerant mice and restoring withdrawal 
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symptomology in morphine-tolerant mice. Protein array analyses revealed only minor changes to 

cytokine profiles whether morphine was administered acutely or repeatedly; however, 24 h post 

repeated morphine administration, the expression of several cytokines was greatly increased. Tat 

further elevated levels of several cytokines and maraviroc pretreatment attenuated these effects. 

With the understanding that gap junctions may be involved in both HIV-Tat effects on opioid 

antinociception as well as tolerance, we investigated the role of gap junctions in opioid 

antinociceptive tolerance. We observed that carbenoxolone, a gap junction inhibitor, administered 

systemically attenuated the development of opioid antinociceptive tolerance. Furthermore, we 

observed a small percentage of carbenoxolone in brain tissue compared to the amount found in 

blood, suggesting a peripheral site of action. Finally, we show preliminary evidence that in vivo 

administration of carbenoxolone is able to attenuate tolerance to morphine in DRG neurons.  
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CHAPTER 1  

INTRODUCTION 

I.  A History of Opioids 

An ancient culture originating in southern Mesopotamia, modern day Iraq, the Sumerians 

were the first in recorded history to cultivate what they called “hul gil”, or plant of joy around 

3400 B.C. (Brownstein, 1993). The opium poppy (papaver somniferum) is species of plant from 

which the dried latex opium can be extracted. Contained within that latex reside many alkaloid 

compounds called opiates. 

Although many used opium for religious ceremonies, medicinal purposes, as well as for 

abuse, further understanding of opium’s effects occurred in 1805 after Friedrich Sertürner, a 

German pharmacist, isolated the first active alkaloid in opium. He named it “morphium” after 

Morpheus, the Greek god of dreams (Brownstein, 1993). Known today as morphine, it is the most 

abundant opiate found within opium followed by codeine. When consumed orally, morphine was 

found to be unreliable in its desired effects due to poor oral bioavailability. Following the invention 

of the hypodermic needle and syringe, morphine quickly became a useful analgesic for use in 

surgical procedures and postoperative pain. It was quickly discovered, however, that morphine 

still shared opium’s additive properties as well as its undesirable side effects. Chemists took it 

upon themselves to search for safer opioid compounds; opioids that are efficacious but are non-

addicting.  

This led to a new generation of semi-synthetic opioid compounds that were orally bioactive 

with similar properties to morphine, alas including addictive properties. In 1917, oxycodone was 

synthesized from thebaine, another alkaloid found in opium.  The synthesis of hydrocodone from 

codeine was followed shortly in 1920. Both of these compounds can be considered opiates since 

they are structurally similar to naturally occurring opium compounds. Opiates fall under the 
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general class of “opioid” compounds which include a broad spectrum of drug molecules that have 

morphine-like agonist activity, which can be structurally similar or dissimilar from traditional 

opiates and may be either naturally occurring or synthesized (Kreek et al., 2005).  

Both oxycodone and hydrocodone were synthesized in the early part of the 20th century. 

Yet, they would not be approved as pain reliving medications in the United States until more than 

20 years after their discovery. Many in the United States remembered the promises of heroin (an 

acetylated form of morphine) being advertised as a non-addictive morphine substitute.  In 1963, 

California’s attorney general estimated that oxycodone abuse made up one-quarter of all drug 

addiction in the state. Top executives at the company who marketed the drug disputed this claim 

and stated that the  analgesic possessed “relatively little or no addicting liability” (Meier, 2003). 

This pattern continued to repeat with Purdue Pharma L.P. who began marketing oxycodone in the 

mid-1990s as a safer and appropriate compound for the relief of acute and chronic pain. Around 

this time, there was growing concern regarding the undermanagement of pain. Therefore, in his 

1995 Presidential Address to the American Pain Society, Dr. James Campbell presented the idea 

of pain being the “fifth vital sign” (Campbell, 1996). Even though it cannot be measured 

objectively like other vital signs (e.g. blood pressure, heart rate, etc.), the idea rapidly spread and 

was adopted by the Veterans’ Health Administration (Booss et al., 2000). Although the Joint 

Commission on Accreditation of Healthcare Organizations maintains that they never stated that 

pain needed to be treated like a vital sign, they did suggest making it a patient rights issue and 

emphasized the quantitative aspects of pain such as placing it on a 10-point scale (Phillips and 

Chapman, 2000). These guidelines aided the perception that pain was undertreated and provoked 

the overprescription of opioid painkillers.  
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The amount of prescription opioids sold to pharmacies, hospitals, and doctors’ offices 

nearly quadrupled from 1999 to 2010 (Paulozzi et al., 2011). Yet there had not been an overall 

change in the amount of pain that Americans reported (Daubresse et al., 2014). With this fuel, the 

U.S. opioid epidemic exploded with the number of overdose deaths involving opioids (including 

prescription opioids and heroin) being 5 times higher in 2016 than in 1999. As of 2016, an average 

of 115 Americans die every day from an opioid overdose (Rudd et al., 2016). Not all opioid users 

started with opioid prescription analgesics. However, a 2014 study found 75 percent of heroin 

users in treatment started with prescription opioids (Cicero et al., 2014). Furthermore, in 2015 the 

CDC observed people who are addicted to prescription opioids are 40 times more likely to be 

addicted to heroin. However, limited research has been done with these drugs when compared to 

the opioid standard, morphine, and the illicit heroin. It is common to assume that these opioids all 

act through a similar mechanism. However, these compounds have been shown to have different 

pharmacokinetic properties, varying affinities for the μ opioid receptor, and have different off-

target effects (Nielsen et al., 2007). They are different molecules and it is disadvantageous and 

maybe dangerous to assume they all act through the same mechanism. Therefore, it is important 

to properly investigate how commonly prescribed opioids compare in their effects as opposed to 

morphine. 

 

II.  Opioid Receptors & Opioid Pharmacology   

Comprehending the mechanisms of how opioids induce their powerful effects has been a 

goal for many pharmacologists. The idea being that understanding these mechanisms may one day 

lead to a compound that lacks side effects. After the discovery of many opioid compounds, the 

structure–activity relationships from the vast number of opioid derivatives led to the concept of 

the opioid receptors (Portoghese, 1965). Among the early neurotransmitter receptors found were 
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opioid receptors which was quickly followed by the proposal and eventual discovery of 

endogenous opioid peptide ligands. These peptide compounds are organized into one of three 

families: the enkephalins, endorphins, and dynorphins. These peptides arise from much larger 

precursor proteins called proenkephalin, proopiomelanocortin, prodynorphin, respectively. 

Followed by the discovery of different classes of ligands, multiple opioid receptor types were 

immediately suggested. The existence of specific opioid receptors in the central nervous system 

was proposed after studies in the chronic spinal dog model (Martin et al., 1976). The existence of 

μ, δ, and κ opioid receptors was ultimately confirmed and characterized using selective radioactive 

ligands, cross tolerance studies, and the cloning of each receptor subtype (Chang et al., 1979; 

Chang and Cuatrecasas, 1979; Evans et al., 1992; Kieffer et al., 1992; Meng et al., 1993; Porreca 

et al., 1982; Schulz et al., 1980; Thompson et al., 1993) 

Opioids play a role in the modulation of pain, affective behavior, locomotor activity, 

learning and memory, neuroendocrine function, autonomic function, and immune function. 

Primarily used as analgesics, opioids are also used clinically as antitussives and antidiarrheals. 

Noxious effects include nausea, constipation, and respiratory depression, the cause of many opioid 

overdose deaths. Opioids tend to have euphoric, rewarding properties that can cause people to 

abuse them and over time become addicts.  

Commonly used opioid drugs exert nearly all of their clinically relevant actions through 

stimulation of the μ-opioid receptor (MOR). Activation of MORs by an agonist such as morphine 

can cause analgesia, euphoria, sedation, nausea, respiratory depression, miosis, and constipation. 

The multiple effects throughout the body may be explained by MORs being highly concentrated 

in certain peripheral and central areas of the nervous system. In terms of antinociception, opioid 

receptors are expressed in pain-modulating descending pathways, which include the 
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periaqueductal gray (PAG) and the rostroventral medulla (RVM). They are also expressed in 

limbic, midbrain, and cortical structures (Al-Hasani and Bruchas, 2011)  These multiple sites of 

opioid action have been deduced from the effects of local agonist and antagonist infusion.  

The most common understanding of the mechanism of acute opioid administration is the 

inhibitory effects on pain transmission. Opioid receptors, including MORs, are members of the G 

protein-coupled receptor (GPCR) superfamily characterized by the presence of 7 transmembrane 

regions. MORs are primarily considered to be part of Gi/o class of GPCRs, characterized by the 

ability of the receptor to activate Gi alpha subunit, inhibiting adenylate cyclase activity thereby 

lowering cAMP levels. The inhibition of adenylyl cyclase and the further inhibition of ion channels 

are commonly accepted as the mechanism by which opioids block pain transmission. When 

activated, MORs produce hyperpolarization of neurons (primarily through the activation of 

potassium ion channels yielding an efflux of potassium ions) and the inhibition of calcium ion 

channels, decreasing the transmission of neurotransmitters or nociceptive information (Fornasari, 

2012; Williams et al., 2013).   

III. Tolerance(s) 

 Repeated exposure to opioids is now more common than ever before. This observation is 

seen in the clinic with enough opioid analgesics sold in 2010 to medicate every American adult 

with a typical dose every 4 hours for 1 month (Paulozzi et al., 2011). This is also seen in the rising 

abuse of opioids with 2 million Americans having a substance use disorder involving prescription 

opioids and 591,000 using heroin (Center for Behavioral Health, 2016). Chronic exposure to 

opioids exhibit different issues than short term, acute exposure. One common issue that arises after 

repeated opioid exposure is tolerance.  
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 Tolerance is generally defined as a reduction or loss of responsiveness to an agonist after 

continued exposure. Tolerance has been often studied in either the whole animal where the cellular 

and molecular mechanisms are difficult to determine or in isolated tissues which may make 

translational conclusions difficult. Typically, tolerance is measured as a rightward shift in the dose-

response curve that may also be associated with a reduction in the maximum response. Tolerance 

after chronic exposure to opioids is commonly seen both in vivo and in vitro. Interestingly, 

tolerance occurs to some, but not all opioid induced effects. Antinociception, respiratory 

depression, and euphoria are all opioid effects susceptible to the development of tolerance. For 

reasons still not fully understood, little to no tolerance is seen with opioid-induced constipation or 

miosis (excessive pupillary constriction). It has been also shown that tolerance develops to these 

different effects at different rates. Opioid tolerance development is fastest for the analgesic effects, 

followed by respiratory depressant actions, and least for peripheral effects such as the slowing of 

gastrointestinal motility (Dumas and Pollack, 2008; Hayhurst and Durieux, 2016; Hill et al., 2016).  

Therefore, it is important to note that using the term tolerance to describe these generalities may 

be somewhat of a red herring. In other words, using the general term tolerance to describe all of 

these observed effects may be misleading because of the multiplicity of opioid tolerance 

expression. A more accurate term may be the plural form, as opioid tolerances. Many mechanisms 

have been discovered to underlie opioid tolerances. Despite intensive studies, neither the 

mechanisms themselves nor the connections between them are fully understood.  

 Most studies have concentrated on the receptor level, with opioid receptors belonging to 

the GPCR family. Consequently, opioid receptors are generally susceptible to a series of adaption 

processes that occur in response to persistent GPCR activation. These adaption processes include 

desensitization, internalization, and downregulation. Considered to be fairly rapid (seconds to 
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minutes), desensitization is usually defined as the uncoupling of the receptor from its G-protein 

and therefore a decrease in effector response. Mechanisms involved in desensitization may include 

the activation of one or many kinase pathways which can lead to phosphorylation or binding to the 

receptor. Intracellular kinases indicated in the phosphorylation of MORs include G protein 

receptor kinases (GRKs), protein kinase C (PKC), protein kinase A (PKA), c-Jun N-terminal 

kinases (JNKs), and many more (Williams et al., 2013). These kinases each contribute to their own 

downstream signaling pathways. Downregulation refers to a reduced number of functional 

receptors present in cells which occurs as a result of increased degradation and/or reduced 

biosynthesis of receptors (Tsao and Zastrow, 2000; Williams et al., 2013).  

 Tolerance may occur differently depending on what opioid compound the MOR is exposed 

to. Different agonists may initiate different receptor conformations and different downstream 

signaling pathways. High efficacy agonists, such as the peptide [D-Ala2, N-MePhe4, Gly-ol]-

enkephalin (DAMGO) have been observed to produce tolerance through internalization and 

downregulation of MOR through GRKs and β-arrestin (Stafford et al., 2001). However, partial 

agonists such as morphine do not lead to internalization, as tolerance seems to be driven more by 

desensitization, which may be driven primarily by PKC-mediated phosphorylation, although PKA 

has been implicated as well  (Bailey et al., 2009, 2006; Dalton, 2005; Hull et al., 2010). 

 The issue of tolerance continues to be more complex due to differences observed in cell 

and tissue types. For example, morphine fails to induce MOR internalization in spinal cord in vivo 

but it efficiently induces endocytosis in dendrites of nucleus accumbens neurons (Haberstock-

debic et al., 2005, 2003; Trafton and Basbaum, 2004; Williams et al., 2013). It is argued that this 

may be due to different isoforms of select kinases involved in opioid tolerance present in different 

cell types. However, recent evidence shows different subtypes of MORs may also play an 
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important role in opioid-mediated effects and may play a role in tolerance, specifically cross-

tolerance (Pasternak, 2010; 2018).  

 Preclinical and clinical studies have shown that tolerance to opioid-mediated effects are 

susceptible to reversal by a number of agents. In the clinic, anesthesiologists reported having to 

use less opioid medications for patients that were previously administered ketamine (Trujillo and 

Akil, 1991). Recent publications that investigated the issue of polydrug abuse observed reversal 

of opioid antinociceptive and respiratory depressive tolerance after the administration of ethanol 

or diazepam (Gonek et al., 2017; Hill et al., 2016; Hull et al., 2013; Jacob et al., 2017). The list of 

compounds that can reverse or attenuate opioid tolerances could be expanded to include different 

kinase inhibitors, antibiotics, gap junction inhibitors, astrocyte inhibitors, and even the 

administration of stem cells (Bailey et al., 2006; Dalton, 2005; Kang et al., 2017; Li et al., 2017, 

2015; Shen et al., 2014; Smith et al., 1999). The sheer variety of agents that are able to attenuate 

opioid tolerances highlight that opioid tolerance may not be explained by one cellular mechanism. 

The underlying mechanisms of these and other reversal of opioid tolerances are poorly understood. 

However, some key players emerge. Ketamine has many targets but it is primarily known as an 

antagonist at NMDA receptors, which have been indicated as potential mechanism by which 

opioid tolerance is reversed (Trujillo and Akil, 1991). Diazepam-induced reversal of morphine 

antinociceptive tolerance was blocked by the GABAA antagonist bicuculline, suggesting that 

GABAA receptors may play a role. However, ethanol-induced reversal of morphine 

antinociceptive tolerance was not fully blocked by bicuculline as it required the administration of 

both bicuculline and phaclofen, a GABAB antagonist (Hull et al., 2013).  In a study investigating 

ethanol reversal of morphine tolerance to respiratory depressive effects, an interaction involving 
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PKC was proposed (Hill et al., 2016). Interestingly, activation of NMDA receptors are involved 

with the activation of specific isoforms of PKC (Abraham, 2008; Lau and Zukin, 2007). 

 Many of these substances interact with inflammatory processes which have been observed 

to interact with opioid tolerance. Increasing evidence suggests that opioids can also produce 

neuroinflammatory responses in both central and peripheral nervous systems. Chronic morphine 

treatment has been associated with increased astrocytic activity in several parts of the CNS and 

increased the expression of proinflammatory cytokines TNFα, IL1-β and IL-6 (Shen et al., 2011; 

Song and Zhao, 2001). Inhibiting these cytokines either by inhibiting glial cells release of them or 

by directly preventing their interaction with receptors attenuates the development of opioid 

tolerance (Shen et al., 2011). Chemokines, small cytokines secreted by cells that have the ability 

to induce directed chemotaxis in nearby responsive cells, are also modulated by morphine 

exposure within the central nervous system. The blockade of chemokine receptor CX3CR1 

attenuated the development of antinociceptive tolerance and allodynia to chronic morphine 

(Johnston et al., 2004). Activation of C-C Chemokine receptor type 5 (CCR5) can lead to cross-

desensitization of MOR by phosphorylation by intracellular kinases (Szabo et al., 2003, 2002; 

Zhang et al., 2004). 

IV. Scope of Dissertation and Aims 

 The overall objective of this dissertation was to investigate the complexities of chronic 

opioid exposure and how different disease states and medications may modulate the effects of 

chronic opioids. We decided to primarily focus on opioid tolerances because this phenomena plays 

an important role in the clinic (patients) and society (addicts) as a whole. The studies described 

here lead to new understandings of what occurs on a behavioral and cellular level during repeated 

exposure to opioids. 
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 Our first series of experiments characterized the effect of diazepam, a commonly 

prescribed and abused anti-anxiety medication, to reverse the tolerances to prescription opioids 

oxycodone and hydrocodone. In the next series of experiments, we examined the intertwined 

health epidemic of HIV and investigated the role of the CCR5 receptors in proinflammatory HIV-

1 Tat’s effects on morphine tolerance, dependence, and reward. Lastly, we investigated how the 

blockade of gap junctions influence the development of tolerances to morphine on a behavioral 

and cellular level.  
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CHAPTER 2 

REVERSAL OF OXYCODONE AND HYDROCODONE TOLERANCE BY DIAZEPAM 

This chapter has been published in Brain Research (Maciej Gonek, Hamid I. Akbarali, Graeme 

Henderson. William L. Dewey (2017) “Reversal Of Oxycodone And Hydrocodone Tolerance By 

Diazepam”) 

 

Summary 

The Centers for Disease Control has declared opioid abuse to be an epidemic. Overdose 

deaths are largely assumed to be the result of excessive opioid consumption. In many of these 

cases, however, opioid abusers are often polydrug abusers. Benzodiazepines are one of the most 

commonly co-abused substances and pose a significant risk to opioid users. In 2016, the FDA 

required boxed warnings – the FDA’s strongest warning – for prescription opioid analgesics and 

benzodiazepines about the serious risks associated with using these medications at the same time. 

The point of our studies was to evaluate the interactions between these two classes of drugs. We 

investigated whether diazepam adds to the depressant effects of opioids or does it alter the levels 

of tolerance to opioids. In the present study, we have found that the antinociceptive tolerance that 

developed to repeated administration of oxycodone was reversed by an acute dose of diazepam. 

Antinociceptive tolerance to hydrocodone was also reversed by acute injection of diazepam; 

however, a four-fold higher dose of diazepam was required when compared to reversal of 

oxycodone-induced tolerance. These doses of diazepam did not potentiate the acute 

antinociceptive effect of either opioid. The same dose of diazepam that reversed oxycodone 

antinociceptive tolerance also reversed oxycodone locomotor tolerance while having no 

potentiating effects. These studies show that diazepam does not potentiate the acute effect of 

prescription opioids but reverses the tolerance developed after chronic administration of the drugs. 
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1. Introduction  

 Reducing opioid overdose deaths is an important public health and drug policy goal. Much 

of the current opioid epidemic can be attributed to the rise in use of prescription opioid pain 

analgesics such as oxycodone and hydrocodone. These drugs have become widely prescribed, with 

enough opioid analgesics sold in 2010 to medicate every American adult with a typical dose every 

4 hours for 1 month. In the United States, at least half of all opioid overdose deaths involve a 

prescription opioid (Paulozzi et al., 2011). The dangers of accidental opioid overdose are mainly 

due to respiratory depressive effects. Chronic use of opioids results in the development of tolerance 

(a decrease in pharmacologic response following repeated or prolonged drug administration) to 

the analgesic, euphoric, and respiratory depressive effects. This leads to addicts and patients taking 

higher doses in order to obtain the euphoric high or the analgesic effects, respectively. However, 

it has been shown that tolerance to different effects of opioids do not occur at the same rate or to 

the same extent (Hill et al., 2016). It has been suggested that, in man, tolerance to euphoria 

develops to a greater extent than to respiratory depression (White and Irvine, 1999). 

 Opioid overdose deaths are largely assumed to result from excessive opioid administration 

alone. However, opioid abusers are often polydrug users, consuming benzodiazepines, ethanol, 

cocaine and/or gabapentoids along with opioid drugs. Benzodiazepines and ethanol have been 

found to pose a significant risk to chronic opioid users, particularly in those taking methadone 

(National Treatment Agency for Substance Misuse [NTA], 2007). The CDC has reported that 

benzodiazepines were involved in 31% of opioid related drug poisoning deaths in recent years 

(Chen et al., 2014). Benzodiazepines, ethanol, and opioids are all considered central nervous 

system depressants and their effects may be additive or synergistic. Recently, our lab has published 

that low doses of ethanol and diazepam, which have no observable effect of their own, significantly 
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and dose-dependently reduced the antinociceptive tolerance produced by morphine while not 

affecting the acute responses (Hull et al., 2013). Low doses of ethanol reversed morphine tolerance 

at the level of single brain neurons (Llorente et al., 2013) and in a rodent model of respiratory 

depression (Hill et al., 2016). 

 A major limitation of the previously described studies is that they have not investigated 

oxycodone and hydrocodone, two commonly prescribed opioid analgesics. Limited research has 

been done with these drugs when compared to the opioid standard, morphine, and the illicit 

compound heroin. Although all are considered opioids, these compounds may differently interact 

through the μ opioid receptor (MOR). They have been shown to have different pharmacokinetic 

properties, varying affinities for the μ opioid receptor, potentially interact with other opioid 

receptors and have different off-target effects (Nielsen et al., 2007). Therefore, it is important to 

investigate how commonly prescribed opioids compare in their effects to morphine. 

 The goals of this study were to determine if benzodiazepines potentiate the acute 

antinociceptive effects of commonly prescribed opioids as well as to determine if they act to reduce 

tolerance to these opioids. We characterized the development of antinociceptive tolerance to 

oxycodone and hydrocodone in mice and investigated whether diazepam could reverse tolerance 

as it does morphine-induced tolerance. Antinociception, as measured by the rodent warm water 

tail-immersion assay, was chosen for these studies because it has been shown to be a good predictor 

of antinociception and tolerance for a wide range of compounds in humans. Furthermore, our 

group has used this assay to extensively investigate the mechanisms of opioid tolerance (Hull et 

al., 2013, 2010; Smith et al., 2007).  
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2. Experimental Procedure 

2.1. Animals 

Male Swiss Webster mice (Harlan Laboratories, Indianapolis, IN) weighing 25–30 g were housed 

five to a cage in animal care quarters and maintained at 22 +/-  2°C on a 12-hour light-dark cycle. 

Food and water were available ad libitum. The mice were brought to the test room (22 +/-  2°C, 

12-hour light-dark cycle), marked for identification, and allowed 18 hours to recover from 

transport and handling. Protocols and procedures were approved by the Institutional Animal Care 

and Use Committee (IACUC) at Virginia Commonwealth University Medical Center and comply 

with the recommendations of the International Association for the Study of Pain (IASP). 

 

2.2. Drugs and Chemicals 

 Oxycodone HCl and hydrocodone bitartrate were obtained from the National Institutes of 

Health National Institute on Drug Abuse (Bethesda, MD) and were each dissolved in pyrogen-free 

isotonic saline (Hospira, Lake Forest, IL). Diazepam was obtained from Sigma-Aldrich 

Corporation (St Louis, MO, USA) and was dissolved in 45% hydroxypropyl beta-cyclodextrin 

(HPBCD).  

 

2.3. Antinociceptive Testing 

 Antinociception was assessed using the 56°C warm water tail immersion test performed 

according to Coderre and Rollman (1983). Before injecting the mice, a baseline (control) latency 

was determined. Only mice with a control reaction time from 2 to 4 seconds were used. The test 

latency after opioid treatment was assessed at the peak time point of 20 minutes with a 10-second 

maximum cut-off time imposed to prevent tissue damage. Antinociception was quantified 
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according to the method of Harris and Pierson (1964) as the percentage of maximum possible 

effect (%MPE), which was calculated as: %MPE = [(test latency – control latency) / (10 – control 

latency)]* 100. Percent MPE was calculated for each mouse. 

 

2.4. Tolerance Studies 

 A 7 hour antinociceptive tolerance model for oxycodone and hydrocodone was developed. 

Mice were injected subcutaneously (s.c.) once every hour for 7 hours (total of 7 injections) with 

an acute ED80 dose of the opioid (1.25 mg/kg for oxycodone and 6 mg/kg for hydrocodone, as 

previously determined). An hour after the final dose, mice were administered diazepam or vehicle 

by intraperitoneal injection and 30 minutes later were challenged with subcutaneous doses of 

oxycodone or hydrocodone to construct dose-response curves for calculation of ED50 values.. The 

warm water tail immersion test was performed 20 minutes after the injection of the challenge dose 

of opioid. 

 For maximum tolerance to oral administration of oxycodone, the route of administration 

used by humans, a 4-day antinociceptive tolerance model was developed. Mice were orally 

gavaged with 256 mg/kg oxycodone twice a day (9 AM & 5 PM) on day 1, 2, and 3. On the fourth 

day, mice were gavaged only in the morning. A full 24 hours after their last pretreatment dose, 

baseline latencies were recorded and immediately afterwards diazepam or vehicle was 

administered by intraperitoneal injection. 30 minutes later, mice were challenged with oral doses 

of oxycodone to construct dose-response curves for calculation of ED50 values. The warm water 

tail immersion test began 20 minutes after the administration of the challenge dose. 
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2.5. Locomotor Activity 

 Spontaneous motor activity was assessed using activity chambers (Med Associates, St. 

Albans, VT). Each individual activity chamber has closeable doors and a ventilation system. The 

interior of the chamber consists of a 27 × 27 cm Plexiglas enclosure that is wired with photo-beam 

cells connected to a computer console that counts the activity of the animal contained within the 

enclosure. For locomotor tolerance, a 4-day antinociceptive tolerance model was developed where 

mice were orally gavaged with 64 mg/kg oxycodone twice a day (9 AM & 5 PM) on day 1, 2, 3, 

and 4. On the fifth day, mice were habituated to the chamber for 30 minutes before any drug 

administration. Afterwards, mice were administered an intraperitoneal injection of vehicle or 0.5 

mg/kg diazepam and placed in home cage. 30 minutes later, mice were administered 64 mg/kg 

oxycodone by oral gavage. 10 minutes later, mice were placed in separate activity chambers. 

Ambulatory counts for spontaneous activity were obtained over a 40-minute time period. 

 

2.6. Statistical Analysis 

 Opioid dose-response curves were generated for calculation of ED50 values using least-

squares linear regression analysis followed by calculation of 95% confidence limits (95% CL) by 

the method of Bliss (Bliss, 1967). Significance was determined by non-overlapping 95% 

confidence limits. Locomotor data was represented as mean ± standard error of the mean. 

Locomotor data was analyzed using two-way analysis of variance (ANOVA) with factors for time, 

treatment, and their interactions with locomotor activity followed by Tukey’s post hoc analyses to 

determine statistical significance (Prism 6). Analyses were considered significant when p < 0.05. 
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3. Results 

3.1. Effects of Acute Diazepam in Drug-Naïve Mice 

Diazepam was administered at doses of 0.5, 1, and 2 mg/kg i.p. and mice were monitored 

over a 3-hour period for behavioral changes and assessed in the warm-water tail immersion test at 

30-minute intervals over 2 hours. No antinociceptive effects or behavioral changes, including 

locomotor activity, were observed at any of these doses. 

 

3.2. Tolerance Development to Oxycodone 

Baseline latencies were taken prior to the beginning of the hourly subcutaneous injections. 

Mice were randomly assigned to either a chronic saline or chronic opioid schedule whereby seven 

hourly injections of isotonic saline or an ED80 dose of oxycodone were given s.c.  After seven 

injections, mice were injected with a challenge dose of oxycodone (0.25, 0.5, 1, 2 or 4 mg/kg) at 

the 8-hour time point (Figure 1). Dose-response curves for oxycodone after chronic injections of 

saline generated similar ED50 values to those in acute dose response experiments (1.19 mg/kg 

(1.00-1.41, 95% CL)). The ED50 was significantly shifted to the right 1.6-fold, indicating 

tolerance was observed, in the animals chronically injected with oxycodone prior to receiving the 

challenge injections (1.84 mg/kg (1.58 - 2.14, 95% CL)). The sample size of each group was 20 

animals [Acute Oxycodone, n =20; Chronic Oxycodone, n = 20]. 

 

3.3. Reversal of Oxycodone Antinociceptive Tolerance with Diazepam in Tail Immersion 

Assay 

 Baseline latencies were obtained in the tail immersion test in the morning before any 

injections. Following the development of tolerance (single day tolerance model), diazepam (0.5 

mg/kg i.p.) was administered. Thirty minutes later, the mice were challenged with doses of 
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oxycodone s.c. for construction of dose-response curves for calculation of the ED50 values (Figure 

1; Table 1). Diazepam fully reversed the oxycodone-induced tolerance. The sample size of each 

group was between 10–20 animals [Acute Oxycodone, n =20; Chronic Oxycodone, n= 20; Chronic 

Oxycodone + 0.5 mg/kg DZ, n= 12].  The same dose of diazepam did not potentiate the 

antinociception produced by acute doses of oxycodone in naive mice (Figure 2) [Acute 

Oxycodone, n =20; Acute Oxycodone + 0.5 mg/kg DZ, n= 11]. 

 

 

 

 

 

 

 
* Significantly different than Acute Oxycodone + Vehicle group based on non-overlapping 95%. 

 

3.4. Tolerance Development to Hydrocodone 

 Baseline latencies were taken prior to the beginning of hourly subcutaneous injections. Mice were 

assigned randomly to either a chronic saline or chronic opioid schedule whereby seven hourly 

injections of isotonic saline or an ED80 dose of hydrocodone were given s.c.  After seven injections, 

all mice were injected with final challenge doses of hydrocodone (1, 2, 4, 8, 16 or 32 mg/kg) at 

the 8-hour time point (Figure 3). Dose response curves of hydrocodone after chronic injections of 

saline generated similar ED50 values to those in acute dose response experiments (5.51 mg/kg 

(4.97-6.12, 95% CL)). The ED50 was significantly shifted 2.4-fold to the right in the animals 

chronically injected with hydrocodone prior to receiving the challenge injections (13.18 mg/kg 

Table 1: Diazepam Reversal of Oxycodone Tolerance 

Treatment Oxycodone ED50 

(mg/kg (95% C.L.)) 

Acute Oxycodone + Vehicle 1.19 (1.00-1.41) 

 

Acute Oxycodone + Diazepam (0.5 mg/kg) 

 

1.25 (1.04-1.50) 

Chronic Oxycodone + Vehicle 

 

1.84 (1.58-2.14)* 

 

Chronic Oxycodone + Diazepam (0.5 mg/kg) 

 

1.12 (0.88-1.43) 
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(11.00-15.80, 95% CL)). The sample size of each group was between 6–12 animals [Acute 

Hydrocodone, n =6; Chronic Hydrocodone, n= 12] 

3.5. Reversal of Hydrocodone Antinociceptive Tolerance with Diazepam in Tail Immersion 

Assay 

Baseline latencies were obtained in the tail immersion test in the morning before any 

injections. Following the development of tolerance (single day tolerance model), diazepam was 

administered i.p. Thirty minutes later, the mice were challenged with doses of hydrocodone s.c. 

for construction of dose-response curves for calculation of the ED50 values (Table 2). In contrast 

with oxycodone, 0.5 mg/kg diazepam did not fully reverse antinociceptive tolerance to 

hydrocodone (Figure 3). 2 mg/kg diazepam fully reversed hydrocodone tolerance and actually 

significantly potentiated the antinociceptive effect of hydrocodone after chronic administration 

(Figure 4). However, 2 mg/kg diazepam did not potentiate the antinociception produced by an 

acutely administered dose of hydrocodone (Figure 5). The sample size of each group was between 

6–12 animals [Figure 3: Acute Hydrocodone, n =6; Chronic Hydrocodone, n= 12; Chronic 

Hydrocodone + 0.5 mg/kg DZ n = 8; Figure 4: Acute Hydrocodone, n =12; Chronic Hydrocodone, 

n= 12; Chronic Hydrocodone + 2 mg/kg DZ n = 6; Figure 5: Acute Hydrocodone, n =12; Acute 

Hydrocodone + 2 mg/kg DZ n = 6]. 
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           * Significantly different than Acute Oxycodone + Vehicle group based on non-overlapping 95%. 

 

3.6. Reversal of Oral Oxycodone Antinociceptive Tolerance with Diazepam in Tail 

Immersion Assay 

Following the development of maximum tolerance (4-day oral tolerance model), diazepam 

was administered i.p. Thirty minutes later, the mice were challenged with doses of oxycodone p.o. 

for construction of dose-response curves for calculation of the ED50 values. The ED50 of the acute 

oral oxycodone was 8.33 (5.77-12.03, 95% CL).  There was marked tolerance to oral oxycodone 

following the 4-day oral tolerance model. The observation that 0.5 mg/kg diazepam was able to 

fully reverse the antinociceptive tolerance to oral oxycodone (Figure 6) was supported by the 

overlapping ED50: 13.24 mg/kg (4.00 - 43.93, 95% CL). Administering 0.5 mg/kg diazepam to 

animals given acute oral oxycodone generated the ED50 value of 7.27 mg/kg (5.01 - 10.54, 95% 

CL), indicating that it did not potentiate the antinociception produced by acute doses of oxycodone 

(Figure 7). The sample size of each group was between 6-7 animals [Figure 6: Acute Oral 

Oxycodone, n =6; Chronic Oral Oxycodone, n= 7; Chronic Oral Oxycodone + 0.5 mg/kg DZ n = 

6; Figure 7: Acute Oral Oxycodone, n =6; Acute Oral Oxycodone + 2 mg/kg DZ n = 6]. 

 

Table 2: Diazepam Reversal of Hydrocodone Tolerance 

Treatment Hydrocodone ED50 

(mg/kg (95% C.L.)) 

Acute Hydrocodone + Vehicle 5.51 (4.97-6.12) 

 

Acute Hydrocodone + Diazepam (2 mg/kg) 

 

4.48 (3.22-6.25) 

Chronic Hydrocodone + Vehicle 

 

13.18 (11.00-15.80)* 

 

Chronic Hydrocodone + Diazepam (0.5 mg/kg) 

 

9.92 (7.74-12.70)* 

 

Chronic Hydrocodone + Diazepam (2 mg/kg) 

 

3.77 (2.83-5.04) 
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3.7. The Lack of the Development of Antinociceptive Tolerance to Oral Hydrocodone in Tail 

Immersion Assay 

We attempted a model to produce tolerance to oral hydrocodone in the tail immersion 

assay. A dose response curve of acute oral hydrocodone was established and reliably repeated. 

However, we did not succeed in developing tolerance to oral gavages of hydrocodone (data not 

shown). Methods to establish such a model included a 4-day antinociceptive tolerance model using 

a twice a day dosing schedule of 32, 64, 128, or 256 mg/kg. 

 

3.8. Development of Locomotor Tolerance to Oral Oxycodone and Subsequent Reversal with 

Diazepam 

Tolerance was examined by assessing changes of locomotor activity after acute and 

repeated oxycodone gavages. A main effect was noted for treatment group [F (3,15) = 5.49, p < 

0.001] , time [F (7,105) = 10.89, p < 0.0001], and treatment × time interaction [F (21,105) = 4.29, 

p < 0.001]. Post hoc tests demonstrated acutely administered 64 mg/kg oral oxycodone produced 

significant increased ambulatory counts starting from 20 minutes (with the exception at the 25-

minute time point) until the 40-minute endpoint (Figure 8). Using a modified 4-day oral tolerance 

model, tolerance to oxycodone’s stimulatory effects was observed. After the administration of 0.5 

mg/kg diazepam to mice that were repeatedly treated with oral oxycodone, 64 mg/kg oral 

oxycodone produced significant increased ambulatory counts starting from the 35-minute time 

point until the 40-minute endpoint.  In determining the effects of acute diazepam by itself or on 

acute oxycodone’s stimulatory effects, a two-way ANOVA revealed a main effect for treatment 

group [F (3,16) = 9.37, p < 0.001] , time [F (7,112) = 34.62, p < 0.0001], and treatment × time 

interaction [F (21,112) = 10.42 , p < 0.001]. Post hoc tests revealed that 0.5 mg/kg diazepam did 
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not potentiate acute oxycodone’s stimulatory effects in the locomotor assay. This dose of diazepam 

did not show any stimulatory effects on its own (Figure 9). The sample size of each group was five 

animals with the exception of the chronic oxycodone group with four animals. 
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Fig. 1. Tolerance to oxycodone, developed using a single-day injection paradigm, was 

significantly reversed by 0.5 mg/kg diazepam (n = 10–20). Latency to tail withdrawal (% MPE ± 

SEM) among mice that were drug naïve, repeatedly treated with oxycodone, or repeatedly treated 

with oxycodone and diazepam pretreatment 30 min before testing. Various doses of the oxycodone 

were used for construction of dose-response curves for calculation of ED50 values. 
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Fig. 2. 0.5 mg/kg Diazepam did not potentiate the antinociception produced by oxycodone in the 

tail immersion test. (n = 10–20). Latency to tail withdrawal (% MPE ± SEM) among mice that 

were drug naïve or pretreated with diazepam 30 min before testing. Various doses of the 

oxycodone were used for construction of dose response curves for calculation of ED50 values. 
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Fig. 3. 0.5 mg/kg Diazepam did not fully reverse the antinociception produced by hydrocodone in 

the tail immersion test (n = 6–12). Latency to tail withdrawal (% MPE ± SEM) among mice that 

were drug naïve, repeatedly treated with hydrocodone, or repeatedly treated with hydrocodone and 

pretreated with diazepam 30 min before testing. Various doses of the hydrocodone were used for 

construction of dose-response curves for calculation of ED50 values. 
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Fig. 4. 2 mg/kg Diazepam fully reversed the antinociception produced by hydrocodone in the tail 

immersion test (n = 6–12). Latency to tail withdrawal (% MPE ± SEM) among mice that were 

drug naïve, repeatedly treated with hydrocodone or repeatedly treated with hydrocodone and 

pretreated with diazepam 30 min before testing. Various doses of the hydrocodone were used for 

construction of dose-response curves for calculation of ED50 values. 
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Fig. 5. 2 mg/kg Diazepam did not potentiate the antinociception produced by hydrocodone in the 

tail immersion test (n = 6–12). Latency to tail withdrawal (% MPE ± SEM) among mice that were 

drug naïve or pretreated with diazepam 30 min before testing. Various doses of the hydrocodone 

were used for construction of dose-response curves for calculation of ED50 values. 

 

 

 

 

 

 



28 
 

 

 

 

Fig. 6. 0.5 mg/kg Diazepam fully reversed the antinociception produced by multiple-day paradigm 

of oral oxycodone in the tail immersion test. (n = 6–7). Latency to tail withdrawal (% MPE ± SEM) 

among mice that were drug naïve, repeatedly gavaged with oxycodone over 4 days, or repeatedly 

gavaged with oxycodone over 4 days and pretreated with diazepam 30 min before testing. Various 

doses of the oxycodone were used for construction of dose-response curves for calculation of ED50 

values. 
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Fig. 7. 0.5 mg/kg Diazepam did not potentiate the antinociception produced by oxycodone (p.o.) 

in the tail immersion test (n = 6). Latency to tail withdrawal (%MPE ± SEM) among mice that 

were drug naïve or pretreated with diazepam 30 min before testing. Various doses of the 

oxycodone were used for construction of dose response curves for calculation of ED50 values. 
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Fig. 8. Locomotor stimulation in response to vehicle or oxycodone (64 mg/kg p.o.) was assessed 

(n = 5). * Indicates a significant effect of acute oxycodone increasing ambulatory counts as 

compared to mice naïve to the opioid (treated with vehicle). Indicates a significant effect of chronic 

oxycodone + 0.5 mg/kg diazepam increasing ambulatory counts as compared to mice naïve to the 

opioid (p < 0.05) 
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Fig. 9. Locomotor stimulation in response to vehicle, diazepam (0.5 mg/kg i.p.) or oxycodone (64 

mg/kg p.o.) was assessed (n = 5). * Indicates a significant effect of both acute oxycodone and acute 

oxycodone + 0.5 mg/kg diazepam increasing ambulatory counts as compared to mice naïve to the 

opioid (p < 0.05). 0.5 mg/kg diazepam does not potentiate acute oxycodone’s stimulatory effects. 

0.5 mg/kg diazepam does not produce a difference in stimulatory counts when compared to naïve 

controls. 
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4. Discussion 

 Oxycodone and hydrocodone remain among the most commonly prescribed drugs for relief 

of acute and chronic pain. However, tolerance limits the long-term utility of these opioid agonists, 

leading to escalating doses of opioids to achieve the same analgesic effect while increasing the 

risks for abuse liability and death from respiratory depression. Additionally, people who become 

tolerant and then addicted to opioids usually are consuming other substances as well. Therefore, it 

is imperative to investigate the effects of these other substances on opioid tolerance. In this study, 

we investigated the effects of diazepam, a widely coabused substance, on oxycodone and 

hydrocodone antinociceptive tolerance and oxycodone locomotor stimulating tolerance in mice. 

 We found that diazepam reversed the antinociceptive tolerance that developed after 

repeated injections of subcutaneous oxycodone. The observation that an acute dose of diazepam, 

that was inactive alone, reversed tolerance to the antinociceptive effects of oxycodone is in 

agreement with our previous studies in which we demonstrated that diazepam reversed tolerance 

to the antinociceptive effects of morphine (Hull et al., 2013). We also demonstrated that the same 

dose of diazepam that reversed oxycodone tolerance did not significantly enhance the 

antinociceptive effect of acute oxycodone.   

 Patients are often administered oxycodone in tablets or solutions intended for oral use. 

Therefore, in a separate series of experiments, we investigated the ability of diazepam to reverse 

maximum tolerance of oral oxycodone. In these studies, to achieve maximum tolerance, we 

administered 256 mg/kg oxycodone orally twice a day for four days. Testing on the fifth day, this 

protocol produced significant tolerance illustrated by the lack of effective doses as high as 64 

mg/kg. The observation that 0.5 mg/kg diazepam was able to reverse this maximum tolerance 

further supports the phenomenon of oxycodone tolerance reversal by benzodiazepines.  
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 Furthermore, we found that diazepam reversed the antinociceptive tolerance that developed 

after repeated subcutaneous injections of hydrocodone. However, the reversal of tolerance to 

hydrocodone required a larger dose of diazepam than needed to reverse oxycodone or morphine 

tolerance. It is clear that diazepam did not potentiate the acute antinociceptive effect of 

hydrocodone. Further investigation is needed into why diazepam reversed oxycodone and 

morphine antinociceptive tolerance at lower doses than it reversed hydrocodone tolerance. It is 

possible that this difference occurred because hydrocodone produced a greater amount of tolerance 

than oxycodone. However, this is unlikely because the greatest tolerance was achieved using a 

multiple day oral oxycodone model and this tolerance was reversed by 0.5 mg/kg diazepam. 

Hydrocodone is also commonly administered to patients in tablets or solutions intended for oral 

use. We were not able to achieve tolerance when hydrocodone was given orally. This can be due 

to the fact that hydrocodone has been found to be less potent in certain measures of opioid effects 

(Zacny and Gutierrez, 2009). However, it is uncertain as to why we observed a greater amount of 

tolerance to repeated subcutaneous injections of hydrocodone compared to oxycodone yet no 

significant tolerance to hydrocodone given repeatedly orally. Further studies are needed to 

examine whether there is an important pharmacokinetic difference between oral dosing of 

oxycodone and hydrocodone. 

 The interaction between benzodiazepines and opioids on antinociception has been reported 

in the literature but with disagreement. Doses of diazepam, up to 5 mg/kg, were inactive in our 

warm water tail-withdrawal assays. Several studies reported antinociception with diazepam 

(Jiménez-Velázquez et al., 2010, 2008; Sierralta and Miranda, 1992). This difference may lie in 

the different noxious stimuli used (chemical versus thermal) and route of administration 

(intracerebroventricular injection versus intraperitoneal). In our studies, there was no potentiation 
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of oxycodone or hydrocodone induced antinociception with pretreatment doses of diazepam up to 

0.5 mg/kg and 2 mg/kg, respectively. Whereas in other studies, intrathecal administration of 

benzodiazepines were found to enhance opioid antinociception (Bergman et al., 1988; Rattan et 

al., 1991). In agreement with our studies, others found neither an antinociceptive effect of 

benzodiazepines nor a potentiation effect of benzodiazepines on opioid induced antinociception 

(Mantegazza et al., 1982; Rodgers and Randall, 1987; Rosland et al., 1990). To our knowledge, 

benzodiazepines’ interaction with oxycodone or hydrocodone has not been previously 

investigated. 

 In light of these results on antinociceptive tolerance, we tested the hypothesis that diazepam 

will have a similar effect in another paradigm of tolerance. We observed that oxycodone increased 

stimulatory activity in the locomotor activity assay. Marked tolerance was observed after repeated 

exposure to oxycodone over four days. Diazepam significantly reversed this marked tolerance. To 

rule out potentiation, we tested whether diazepam simply had an additive effect when combined 

with oxycodone. Diazepam did not potentiate acute oxycodone’s stimulatory effects nor did it have 

any stimulatory effects on its own. At this dose of diazepam, we did not detect either depressing 

or stimulatory effects. Diazepam is classified as a CNS depressant and has been shown to decrease 

locomotor activity (Spyraki and Papadopoulou, 1980). In certain cases (such as prolonged social 

isolation), low doses of diazepam have been shown either to be inactive or have a stimulatory 

effect, resulting in a bimodal dose response curve (Pinna et al., 2006). The similar reversal of 

tolerance seen in both antinociception and in locomotor activity suggest that diazepam acts on a 

mechanism of tolerance that is shared by both opioid-induced effects. 

 The precise mechanisms and neuronal circuitry involved remain to be elucidated. This 

tolerance-reversal effect could be responsible, in part, for the high incidence of polydrug use 
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among opioid abusers. It has been suggested that opioid abusers occasionally combine the use of 

benzodiazepines with opioids to achieve a greater high (Jones et al., 2012). Whether this is simply 

an additive or synergistic effect is not clear and in a previous publication, we have suggested that 

compounds that act on GABA receptors increase the rewarding effects of opioid abuse by reducing 

tolerance (Hull et al., 2013). It has been theorized that both benzodiazepines and opioids produce 

a hyperpolarization of GABA interneurons which causes a reduction in the release of GABA which 

results in the disinhibition of dopaminergic neurons and an increase in extracellular dopamine in 

areas such as the striatum (Tan et al., 2011). The phenomenon of opioid-induced locomotion is 

due to mu opioid receptor-mediated increases in striatal dopamine release (Johnson and Glick, 

1993; Kalivas and Duffy, 1987; Piepponen et al., 1999). GABAergic interneurons also play an 

important role in opioid antinociception (Lau et al., 2014). This suggests a potential site of action 

that should be further examined. 

 Our observations suggest this phenomenon is not due to the additive or synergistic effects 

of these CNS depressants but instead results from a reversal of tolerance. The result may be the 

same but the mechanism should be considered as new understandings of the tolerance mechanism 

will lead to new drug therapies such as tolerance-resistant analgesics. Similar reversal of opioid 

tolerance has been observed in models of respiratory depression and at the single cell level (Hill 

et al., 2016; Llorente et al., 2013). The reversant (reversing agent) in their studies was ethanol, 

which along with benzodiazepines, interacts with GABAA receptors. 

 The neurochemical mechanism of this reversal is likely due to diazepam’s action on 

GABAA receptors. Our laboratory demonstrated that the diazepam reversal of morphine tolerance 

was fully inhibited by bicuculline, a GABAA antagonist, but not by phaclofen, a GABAB 

antagonist. This was in contrast to ethanol as neither inhibitor fully reversed ethanol’s reversal or 
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morphine tolerance until they were administered in combination (Hull et al., 2013). Future studies 

should include determining whether the reversal of oxycodone and hydrocodone tolerance is due 

to diazepam’s effects on GABAA receptors, if any subtypes are significant for the effect, and the 

necessary intracellular pathways for this phenomenon. 

 

5. Conclusion 

Collectively, our findings demonstrate that the administration of diazepam, at doses that are not 

antinociceptive or have any motor effects, reverses both antinociceptive and locomotor tolerance 

to orally active opioids. These doses of diazepam did not potentiate the acute effects of these 

prescription opioids. The findings reported here suggest that individuals who are taking oral 

opioids for chronic pain relief and an anxiety agent such as diazepam need be cognizant of the risk 

of reversal of tolerance to opioids that could lead to unintentional overdose deaths. 
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CHAPTER 3 

CCR5 MEDIATES HIV-1 TAT-INDUCED NEUROINFLAMMATION AND 

INFLUENCES MORPHINE TOLERANCE, DEPENDENCE, AND REWARD 

This chapter has been published in Brain, Behavior, and Immunity (Maciej Gonek, Virginia D. 

McLane, David L. Stevens, Kumiko Lippold, Hamid I. Akbarali, Pamela E. Knapp, William L. 

Dewey, Kurt F. Hauser, Jason J. Paris (2017) “CCR5 Mediates Hiv-1 Tat-Induced 

Neuroinflammation And Influences Morphine Tolerance, Dependence, And Reward”) 

 

Summary 

The HIV-1 regulatory protein, trans-activator of transcription (Tat), interacts with opioids to 

potentiate neuroinflammation and neurodegeneration within the CNS. These effects may involve 

the C-C chemokine receptor type 5 (CCR5); however, the behavioral contribution of CCR5 on 

Tat/opioid interactions is not known. Using a transgenic murine model that expresses HIV-1 Tat 

protein in a GFAP-regulated, doxycycline-inducible manner, we assessed morphine tolerance, 

dependence, and reward. To assess the influence of CCR5 on these effects, mice were pretreated 

with oral vehicle or the CCR5 antagonist, maraviroc, prior to morphine administration. We found 

that HIV-1 Tat expression significantly attenuated the antinociceptive potency of acute morphine 

(2 – 64 mg/kg, i.p.) in non-tolerant mice. Consistent with this, Tat attenuated withdrawal symptoms 

among morphine-tolerant mice. Pretreatment with maraviroc blocked the effects of Tat, reinstating 

morphine potency in non-tolerant mice and restoring withdrawal symptomology in morphine-

tolerant mice. Twenty-four hours following morphine administration, HIV-1 Tat significantly 

potentiated (~3.5-fold) morphine-conditioned place preference and maraviroc further potentiated 

these effects (~5.7-fold). Maraviroc exerted no measurable behavioral effects on its own. Protein 
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array analyses revealed only minor changes to cytokine profiles when morphine was administered 

acutely or repeatedly; however, 24 h post morphine administration, the expression of several 

cytokines was greatly increased, including endogenous CCR5 chemokine ligands (CCL3, CCL4, 

and CCL5), as well as CCL2. Tat further elevated levels of several cytokines and maraviroc 

pretreatment attenuated these effects. These data demonstrate that CCR5 mediates key aspects of 

HIV-1 Tat-induced alterations in the antinociceptive potency and rewarding properties of opioids. 

 

1.  Introduction 

 There is a dynamic relationship between opioid use, human immunodeficiency 

virus-1 (HIV-1) acquisition, and disease progression. Worldwide, injection drug use (IDU) 

accounts for ~30% of new HIV-1 infections outside of sub-Saharan Africa (WHO, 2016). Within 

the United States, over 3,500 new infections involved IDU in 2015 (CDC 2016), a year in which 

overall drug overdose deaths rose another 11%, the majority (63%) of which involved opioids 

(Rudd et al., 2016). The convergence of the HIV and opioid epidemics is particularly concerning 

given evidence that opioid usage increases the progression of HIV-1 to acquired immune 

deficiency syndrome (AIDS) and promotes neurocognitive impairment in humans and non-human 

primates (Bell et al., 2006, 2002; Bokhari et al., 2011; Chuang et al., 2005; Donahoe et al., 1993; 

Kumar et al., 2006; R et al., 2004; Rivera et al., 2013). Moreover, HIV-infected individuals are at 

risk for the development of neuropathic pain (Malvar et al., 2015) for which prescription opioids 

remain a common treatment (Kremer et al., 2016; Zilliox, 2017). Pharmacological treatment for 

opioid abuse includes substitution therapies (e.g. methadone, buprenorphine, 

buprenorphine/naloxone; Moatti et al., 1998; Roux et al., 2008; Sambamoorthi et al., 2000; Woody 

et al., 2014), which may exert neurotoxic interactions with HIV-1 proteins (Fitting et al., 2014b). 
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As such, the mechanisms and physiological consequences of HIV/opioid interactions need to be 

understood in order to improve outcomes for HIV seropositive patients that are pharmacologically 

managed for pain and/or addiction.  

The biological mechanisms that underlie HIV-1 and opioid interactions in the central 

nervous system (CNS) likely involve the HIV-1 regulatory protein, trans-activator of transcription 

(Tat). Tat is critical for efficient HIV replication; however, Tat is soluble and can be secreted from 

infected cells to exert direct and indirect neurotoxicity in vitro (reviewed in King et al., 2006; Nath 

et al., 2002). Tat promotes neuroinflammation via NF-κB signaling (El-Hage et al., 2008b; Herbein 

et al., 2010), upregulation of proinflammatory cytokines [particularly the endogenous β-

chemokine ligands for the C-C “motif” chemokine receptor type 5 (CCR5): C-C chemokine ligand 

3 (CCL3, also known as “macrophage inflammatory protein-1α” or MIP-1α), CCL4 (also known 

as “macrophage inflammatory protein-1β” or MIP-1β), and CCL5 (also known as “regulated on 

activation normal T-cell expressed and secreted” or RANTES); El-Hage et al., 2005; Hahn et al., 

2010]. And subsequent recruitment of neuroimmune cells promoting neuroinflammation In vitro, 

morphine exacerbates Tat effects to activate microglia (Bokhari et al., 2009; Gupta et al., 2010; 

Sorrell and Hauser, 2014), increase cytokine production (Bokhari et al., 2009; El-Hage et al., 2005; 

Fitting et al., 2014b.; Turchan-Cholewo et al., 2009), drive oxidative stress (Dalvi et al., 2016; 

Fitting et al., 2014a,b; Malik et al., 2011; Turchan-Cholewo et al., 2009), increase intracellular 

calcium (El-Hage et al., 2005; Fitting et al., 2014a,b),  and promote neurotoxicity (Fitting et al., 

2014a,b.; Gurwell et al., 2001; Malik et al., 2011). Morphine and Tat interactions may depend on 

μ opioid receptors (MORs) given that neurotoxic synergy is observed in co-cultures when mixed 

glia express MORs, but not when they are derived from MOR−/− mice (Zou et al., 2011). These 

data support the notion that glial MORs are critical for the indirect neurotoxic effects of Tat. 
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The proinflammatory effects of HIV-1 Tat at CCR5 may directly influence opioid 

sensitivity. In studies of opioid-mediated antinociception in rats, activation of CCR5 or CXCR4 

can rapidly (within 30 min) desensitize μ- or δ-opioid-receptors (Chen et al., 2007). Blocking 

actions at CCR5 in proinflammatory states may attenuate heterologous desensitization of MORs 

and increase therapeutic efficacy. In support, intrathecal administration of the CCR5 antagonist, 

maraviroc, attenuated chronic constriction injury induced microgliosis, astrogliosis, upregulation 

of CCR5 protein, and mRNA expression of CCR5-ligands (CCL3, CCL4, and CCL5) in the spinal 

cord and dorsal root ganglion concurrent with reduced neuropathic pain (Kwiatkowski et al., 

2016). Moreover, CCR5 and MORs may form functionally active heteromers. A bivalent ligand 

derived from a MOR agonist (oxymorphone) and a CCR5 antagonist (TAK-220) had ~2000× 

greater antinociceptive potency than morphine in mice experiencing LPS-mediated inflammation 

(Akgün et al., 2015). Another bivalent ligand comprised of an opioid receptor antagonist 

(naltrexone) and maraviroc reduced the infectivity of human astrocytes when cultured with R5-

tropic HIV (Arnatt et al., 2016; El-Hage et al., 2013; Yuan et al., 2013). These data suggest a 

dynamic relationship between MOR and CCR5 activation that may contribute to HIV pathology; 

however, the functional effects are poorly understood. As such, we investigated morphine 

tolerance, dependence, and reward in a transgenic murine model that conditionally-expresses the 

proinflammatory HIV-1 regulatory protein, Tat1-86. Using a transgenic mouse approach, 

conditional Tat expression has been demonstrated to reduce the antinociceptive potency of 

morphine (Fitting et al., 2016, 2012), while potentiating psychostimulant reward in acute drug 

withdrawal (24 h post drug administration; (Paris et al., 2014a,b). We hypothesized that HIV-1 Tat 

expression would attenuate morphine antinociceptive potency and that the CCR5 antagonist, 
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maraviroc, would reverse these effects. Further, we hypothesized that 24 h post morphine, Tat- 

and cytokine-mediated effects would be potentiated.  

 

2. Materials and Methods 

The use of mice in these studies was pre-approved by the Institutional Animal Care and 

Use Committee at Virginia Commonwealth University and the experiments were conducted in 

accordance with ethical guidelines defined by the National Institutes of 

Health (NIH Publication No. 85-23). 

 

2.1. Subjects and housing 

 Adult male mice expressed (or did not express) an HIV-1IIIB tat1-86 transgene (N = 245) as 

previously described (Bruce-Keller et al., 2008; Fitting et al., 2013; Hauser et al., 2009) and were 

generated in the vivarium at Virginia Commonwealth University (MCV campus). Briefly, HIV-1 

Tat1-86 is conditionally expressed in a CNS-targeted manner via a GFAP-driven, Tet-on promoter 

(activated by consumption of doxycycline-containing chow) in Tat(+) mice. Tat(-) control 

littermates express the Tet-on transcription factor without the tat1-86 transgene. While Tat can 

induce astrogliosis in transgenic mice (El-Hage et al., 2008b; Hahn et al., 2015; Paris et al., 2015), 

this has not been observed to impair Tat production (Fitting et al., 2012; Paris et al., 2014b). 

Additional control experiments were carried out in adult, male, C57BL/6J mice (N = 30). All mice 

(~70 days of age) were housed 4 - 5 / cage and were maintained in a temperature- and humidity 

controlled room on a 12:12 h light / dark cycle (lights off at 18:00 h) with ad libitum access to food 

and water. 
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2.2. Chemicals 

 To induce HIV-1 Tat1-86 expression, Tat(+) transgenic mice [and Tat(-) controls] 

were placed on doxycycline chow (Dox Diet #2018, 6 g/kg; Harlan Laboratories, Madison, WI, 

USA) for 28 days, unless otherwise specified. Some mice received subcutaneous implants of 

placebo or morphine pellets (75 mg; National Institute on Drug Abuse, Rockville, MD, USA), the 

latter of which induces tolerance and dependence in the present strain of mice (Fitting et al., 2016). 

To precipitate morphine withdrawal, mice were administered (-)naloxone (1 mg/kg, s.c.; Sigma-

Aldrich, St. Louis, MO; (Fitting et al., 2016). To investigate morphine reward, mice were 

administered morphine sulfate (#M8777; Sigma-Aldrich) at a concentration of 10 mg/kg, i.p. (0.1 

ml per 10 g body weight) which has been demonstrated to produce morphine-conditioned place 

preference (CPP; Zhu et al., 2015). To investigate the contribution of CCR5 to these effects, some 

mice were administered the CCR5-selective antagonist, maraviroc (62 mg/kg, p.o.; #376348-65-

1; BOC Sciences, Shirley, NY, USA) which was dissolved in 100% DMSO, then diluted to 5% 

DMSO in vegetable oil. Using inter-species allometric scaling (by a factor of 12.3; (Freireich et 

al., 1966; Reagan-Shaw et al., 2008) others have determined maraviroc (62 mg/kg, p.o.) dosing 

for mice from clinical formulations (Neff et al., 2010). 

 

2.3. Surgical manipulation 

 Mice received subcutaneous implants of placebo or morphine (75 mg) pellets 

under isoflurane (2.5 %) anesthesia as previously reported (Fitting et al., 2016; Ross et al., 2008). 

Following surgery, mice were monitored to ensure weight gain, muscle tone, proper neurological 

response, and general health (Crawley and Paylor, 1997). No mice failed to recover. 

 



43 
 

 

2.4. Behavioral assays 

Prior to all behavioral testing, mice were acclimated to the testing room for 24 h. For 

assessments of morphine tolerance and morphine dependence, mice received subcutaneous 

implants of placebo or morphine pellets. Five days later, mice were assessed for morphine 

tolerance in a warm-water tail-withdrawal assay. Following tail withdrawal testing, mice 

underwent naloxone-precipitated withdrawal and were assessed for morphine dependence. For 

assessments of morphine reward, Tat-transgenic mice were assessed in a CPP paradigm with 

psychomotor sensitization assessed on conditioning days. Some mice were additionally assessed 

on a rotarod to rule out potential locomotor confounds. 

 

2.4.1. Warm-water tail-withdrawal test 

 A warm-water tail-withdrawal test was conducted with a water-bath maintained at 

56 ± 0.1°C as previously described (Coderre and Rollman, 1983; Fitting et al., 2016). Briefly, mice 

were gently wrapped in a cloth and the distal one-third of the tail was immersed in a water bath. 

The mice rapidly removed their tail from the bath at the first sign of discomfort and the tail-

withdrawal latency was recorded. Tail-withdrawal latency was then assessed using a cumulative 

dosing procedure. Mice were injected with a starting dose of morphine and were tested for 

antinociception 20 min later. Mice that did not reach a 10 sec cut-off threshold received an 

additional cumulative dose of morphine and were retested. This process was repeated until the 

animals reached the cut-off value of 10 sec. Baseline latency ranged from 2 to 4 sec. The 10 sec 

maximum cutoff latency was used to prevent tissue damage. Antinociception was quantified as the 
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percentage of maximal possible effect (%MPE): %MPE = [(Test latency − Baseline latency) / (10 

– Baseline latency)] × 100 (Harris and Pierson, 1964). 

 

2.4.2. Antagonist-precipitated withdrawal 

 Mice were administered an injection of the opioid receptor antagonist, naloxone (1 

mg/kg, s.c.), in order to precipitate withdrawal. The primary symptom assessed was jumping from 

an elevated platform (32 cm high, 17 cm diameter). The proportion of mice that jumped from their 

individual platforms was recorded over a 10 min trial. The proportion of jumping mice is 

considered an index of withdrawal (Fitting et al., 2016). This test was followed by an evaluation 

of additional signs of withdrawal. Mice were placed in a rectangular, clear, plastic observation box 

(16 × 16 × 30 cm) and observed for 5 min. The concomitant number of jumps, forepaw tremors, 

and wet-dog shakes was recorded. The frequency of jumps, tremors, and shakes are considered 

additional indices of withdrawal (Fitting et al., 2016). 

 

2.4.3. Conditioned Place Preference 

 Behavior in the CPP test was recorded and digitally-encoded by an ANY-maze behavioral 

tracking system (Stoelting Co., Wood Dale, IL, USA). Morphine-CPP and locomotor sensitization 

were assessed simultaneously (Zhu et al., 2015). CPP was conducted as modified from previous 

methods (Paris et al., 2014). The apparatus (#64101; Stoelting Co.) consisted of two black 

conditioning chambers (18 × 20 × 35 cm), each visually-distinguished by the presence of white 

circles or horizontal stripes on the chamber walls, as well as ~30 lux difference in ambient lighting. 

Conditioning chambers were connected by a start box/transition chamber (10 × 20 cm). A biased 

conditioning design was utilized (Semenova et al., 1995). On day 1, mice were allowed to freely 
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explore the apparatus for 10 min in order to establish an initial chamber-preference (there was no 

significant side preference observed across experimental groups). On days 2 – 5 mice underwent 

one cycle of morphine conditioning per day (receiving an i.p. saline injection paired with 

confinement to the preferred chamber for 30 min, followed 4 h later by an i.p. morphine, 10 mg/kg, 

injection paired with confinement to the less preferred chamber for 30 min). Twenty-four hours 

after the last morphine-conditioning cycle, mice were allowed to freely explore the apparatus in 

order to assess their final chamber preference. The amount of time that mice spent in the chambers 

or the start/transition box, as well as the distance traveled, and the frequency of rearing was 

recorded on each day. CPP was quantified as a difference score: CPP d-score = (time spent in the 

morphine-paired chamber) – (time spent in the saline-paired chamber) (Paris et al., 2014a). 

2.4.4. Rotarod 

Locomotor coordination was assessed on an accelerated rotarod as previously described 

(Paris et al., 2013). Briefly, mice were trained to balance on an immobile rotarod (3 cm in diameter 

and suspended 44.5 cm high; Columbus Instruments, Columbus, OH, USA) for 30 sec. Mice were 

then trained to navigate the task across two 30 sec fixed speed trials (10 rpm) and two 180 sec 

fixed speed trials (10 rpm). Lastly, mice were tested on two accelerated speed trials (180 sec max. 

latency at 0 - 20 rpm). The mean latency to fall from the rotarod and the maximum RPM achieved 

across the two accelerated trials were utilized as indices for locomotor performance. Decreased 

latencies to fall and lower maximal RPM on the accelerated test indicate an impaired motor 

phenotype. 

2.5. Cytokine assay 

 The head of the caudate nucleus has been identified as a central reservoir for maximal HIV 

viral load in humans (reviewed in Nath, 2015) and we have found the striatum to host a cell 
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population that may be selectively vulnerable to HIV-1 Tat (Schier et al., 2017). As such, cytokine 

analyses were conducted on caudate/putamen (dorsal striatum) in the present mouse model. Mice 

underwent cervical dislocation and bilateral dorsal striata were immediately dissected, flash-frozen 

in liquid nitrogen, and stored at - 80°C until assay. At the time of assay, tissues were homogenized 

in IP lysis buffer (#87787; Pierce Biotechnology, Rockford, IL, USA) with a protease/phosphatase 

inhibitor cocktail (#04693159001; Roche, Mannheim, Germany). Protein concentrations were 

determined via bicinchoninic acid (BCA) assay per kit manufacturer instructions (#23224; Pierce 

Biotechnology). 

 Cytokines were assessed using a Bio-Plex Pro™ Mouse Cytokine 23-plex assay kit 

(#M60009RDPD; Bio-Rad Laboratories, Inc., Hercules, CA, USA) and analyzed on a Bio-Plex 

200 system. Samples were diluted to a concentration of 500 μg/mL. Unknown samples and 

standards were incubated with fluorescent, antibody-tagged microspheres and detected via 

streptavidin-phycoerythrin-labeled detection antibodies. Cytokine concentrations were calculated 

from respective standard curves via Bio-Plex Manager 4.0 software. All samples were analyzed in 

duplicate. Limits of detection ranged from 2 to 20 pg/mL. Mean intra- and inter-assay coefficients 

of variance were 7.2 % and 5.3 %, respectively. 

2.6. Statistical analyses 

 Median effective doses (ED50; reported with 95 % confidence intervals) were determined 

via non-linear regression (sigmoidal curvilinear modeling with variable slope) using a least-

squares fit for each treatment group (bottom and top values constrained to 0 and 100, respectively). 

Dependent measures for additional behavioral analyses were assessed via ANOVA (to assess 

dependence) or repeated measures ANOVA (to assess psychostimulation or CPP over multiple 

trials) with drug condition (placebo or morphine), inhibitor condition (vehicle or maraviroc), and 
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genotype [Tat(-) or Tat(+)] as factors. Cytokine arrays were assessed via separate three-way 

ANOVAs. Mice treated acutely with doxycycline (48 h) were analyzed with morphine condition 

(acute saline or acute morphine), inhibitor condition (vehicle or maraviroc), and genotype [Tat(-) 

or Tat(+)] as factors. Mice treated chronically with doxycycline for 28 days were analyzed with 

morphine condition (morphine-naïve, repeated morphine, or 24 h post morphine), inhibitor 

condition (vehicle or maraviroc), and genotype [Tat(-) or Tat(+)] as factors. Fisher’s Protected 

Least Significant Difference post-hoc tests determined group differences following main effects. 

Interactions were delineated via simple main effects and main effect contrasts with alpha 

controlled for multiple comparisons. Analyses were considered significant when p < 0.05. 

 

3. Results 

3.1. HIV-1 Tat decreased morphine potency in non-tolerant mice; tolerance or pharmacological 

antagonism of CCR5 attenuated Tat effects 

 As negative control measures before proceeding to tests involving Tat-transgenic mice, 

morphine dosing, non-specific interactions with maraviroc, and warm-water tail withdrawal test 

conditions were confirmed in C57BL/6J mice. In a 52°C water bath, morphine administered at 5 

mg/kg (Fig. 1A) or 10 mg/kg (Fig. 1B) produced antinociception that was present for at least 2 h 

and peaked at 60 min, commensurate with observations in other animal models (Altun et al., 2015; 

Williams et al., 2008). In a 56°C water bath, cumulative morphine-dosing produced 

antinociception commensurate with what we have previously observed in C57BL/6J mice (Fitting 

et al., 2016; Fig. 1C). Maraviroc did not significantly influence the acute time-course (Fig. 1A-B) 

or the antinociceptive effects of morphine in C57BL/6J mice [vehicle/morphine ED50 = 2.0 (95% 

CI: 0.9 – 4.3), maraviroc/morphine ED50 = 3.0 (95% CI: 2.2 – 4.1)] (Fig. 1C). 
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 Tat(-) and Tat(+) mice were placed on doxycycline for 28 days to induce Tat expression 

(or not). On day 28, mice were implanted with a subcutaneous placebo pellet or morphine pellet 

to induce morphine tolerance. From days 28 – 32, mice were administered vehicle or maraviroc 

(p.o., QD). On day 33, mice received their last dose of vehicle or maraviroc and were tested 30 

min later. 

Tat induction, morphine tolerance, and maraviroc pretreatment significantly influenced the 

antinociceptive response to acute morphine (Fig. 2A-B). Among nontolerant, placebo-pelleted 

mice, Tat exposure produced a modest but significant shift to the right in the antinociceptive 

potency of acutely-administered morphine [F(1,48) = 7.97, p < 0.05] [Fig. 2A; Tat(-)ED50 = 4.5 

(95% CI: 3.6 - 5.5), Tat(+)ED50  = 6.8 (95% CI: 5.6 - 8.0)]. This effect was obviated by maraviroc 

pretreatment [Fig. 2B; Tat(-)ED50 = 6.0 (95% CI: 4.9 - 7.1), Tat(+)ED50 = 5.8 (95% CI: 4.9 - 6.7)]. 

Morphine tolerance significantly shifted the ED50 for morphine-induced antinociception to the 

right in all treatment groups [Fig. 2A-B; ED50 range = 17.8 - 53.8]. Notably, baseline tail-

withdrawal latencies were ~0.4 sec greater among morphine-pelleted (2.7 ± 0.1 sec) vs. placebo 

pelleted mice (2.3 ± 0.1 sec) [F(1,44) = 10.91, p < 0.05]. Neither Tat induction nor maraviroc 

pretreatment influenced baseline tail-withdrawal latencies. 

 

3.2. Among tolerant mice, Tat-exposure decreased primary withdrawal behavior; 

pharmacological antagonism of CCR5 attenuated Tat effects 

 Following testing for antinociception, mice were administered the opioid receptor 

antagonist, naloxone, and precipitated withdrawal behaviors were assessed. Tat induction, 

morphine tolerance, and maraviroc pretreatment significantly interacted to influence the primary 

measure of withdrawal, the proportion of mice that jumped from an elevated platform [F(1,44) = 
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6.77, p < 0.05] (Fig. 3A). Unlike other withdrawal-related behaviors assessed, elevated platform 

jumping was only observed among previously morphine-tolerant mice (a significant difference 

from their placebo-pelleted counterparts [F(1,44) = 122.27, p < 0.05]; Fig. 3A). Among morphine-

tolerant mice, withdrawal precipitated jumping was significantly attenuated by Tat exposure 

[Tat(+) mice significantly differed from Tat(-) controls (p = 0.03)] or maraviroc pretreatment 

[maraviroc treated, Tat(-) mice significantly differed from Tat(-) controls (p = 0.005)] (Fig. 3A). 

However, combined Tat exposure and maraviroc pretreatment restored withdrawal precipitated 

jumping [maraviroc-treated Tat(+) mice significantly differed from maraviroc treated Tat(-) mice 

(p = 0.004) or vehicle-treated Tat(+) mice (p = 0.03)] (Fig. 3A). 

 When observed for additional, simultaneous withdrawal-precipitated behaviors, the 

frequency of spontaneous jumping was significantly greater [F(1,44) = 10.83, p < 0.05] (Fig. 3B) 

and paw tremors were significantly reduced [F(1,44) = 10.79, p < 0.05] (Fig. 3C) among morphine-

tolerant mice compared to placebo-pelleted controls, irrespective of Tat or maraviroc exposure. 

There was a main effect for wet-dog shakes to be significantly greater among Tat(+) mice 

compared to Tat(-) mice, irrespective of morphine or maraviroc exposure [F(1,44) = 3.97, p = 

0.05] (Fig. 3D). 
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3.3. HIV-1 Tat exposure and CCR5 antagonism attenuated the psychomotor response to 

morphine 

Both Tat exposure and maraviroc pretreatment interacted with repeated morphine 

injections to influence locomotor behavior (Fig. 4AB). Among vehicle-pretreated mice, morphine 

administration significantly increased the distance traveled in the CPP apparatus [F(7,147) = 16.66, 

p < 0.05] compared to saline administration, irrespective of Tat exposure (p < 0.0001 per day; Fig. 

4A). However, among maraviroc-pretreated mice, Tat-exposure and morphine administration 

significantly interacted [F(7,147) = 2.46, p < 0.05] such that Tat(-) mice receiving morphine 

demonstrated significantly greater distances traveled on days 1 (p = 0.03) and 4 (p = 0.003), 

compared to Tat(+) mice receiving morphine (Fig. 4B). Tat(-) mice also displayed enhanced 

locomotion to a significantly greater degree following morphine administration than following 

saline administration (p < 0.0001 per day); whereas, locomotion among Tat(+) mice did not differ 

between morphine or saline administration (Fig. 4B). Notably, Tat exposure can impair locomotion 

on its own; however, these effects are not usually observed in the present model until Tat has been 

induced for over one month (Hahn et al., 2012). To rule out nonspecific effects of Tat on 

locomotion, some Tat(-) and Tat(+) mice from the present experiment were assessed on an 

accelerated rotarod after testing. No significant differences in locomotor capacity were observed 

following fixed speed trials (10 rpm) lasting 30 s [Tat(-): 9 ± 2, Tat(+): 12 ± 2] or 180 s [Tat(-): 56 

± 16, Tat(+): 81 ± 20], or following accelerated speed trials (0 – 20 rpm) lasting 180 s [Tat(-): 132 

± 10, Tat(+): 128 ± 14]. 
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3.4. CCR5 antagonism potentiated Tat-related morphine reward 

 To assess the contribution of HIV-1 Tat on the rewarding properties of morphine, mice 

were assessed for morphine-CPP. Tat(-) and Tat(+) mice were exposed to two morphine 

conditioning cycles (saline followed by morphine) and assessed for chamber preference 24 h after 

the last morphine administration (Fig. 5A). Following two conditioning cycles, morphine 

significantly increased the time that mice spent in the previously non-preferred chamber [F(1,24) 

= 26.84, p < 0.05] (Fig. 5A’). However, significant differences between Tat(-)and Tat(+) mice 

were not observed (Fig. 5A’). 

 Another group of mice underwent four morphine-conditioning cycles and were assessed 

for final chamber preference 24 h later (Fig. 5B). Under these conditions, Tat genotype 

significantly interacted with the final preference trial [F(1,22) = 5.43, p < 0.05] (Fig. 5B’). Tat(-) 

and Tat(+) mice spent a commensurate amount of time in the least preferred chamber prior to 

conditioning; but, Tat(+) mice spent a significantly greater amount of time in the morphine-paired 

chamber following four cycles of morphine conditioning compared to Tat(-) controls (p = 0.04; 

Fig. 5B’). 

 To assess the influence of CCR5 on Tat-potentiated CPP, Tat(-) and Tat(+) mice were 

pretreated with vehicle or maraviroc 30 min prior to the start of conditioning over four cycles (Fig. 

5C). As previously observed, mice significantly preferred the morphine paired chamber 24 h 

following conditioning, irrespective of treatment [F(1,42) = 100.80, p < 0.05] (Fig. 5C’). There 

was significant interaction between Tat-genotype and maraviroc condition [F(1,42) = 4.13, p < 

0.05], such that Tat(+) mice spent a significantly greater amount of time in the morphine-paired 

chamber when pretreated with maraviroc than did any other group (p = 0.0006 – 0.02; Fig. 5C’). 
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3.5. Prior morphine exposure and HIV-1 Tat increase striatal cytokine content and CCR5 

antagonism attenuates Tat effects 

 Cytokine protein expression was assessed in the dorsal striatum (caudate/putamen) of Tat 

(-) and Tat(+) mice. In order to parse the acute- vs. chronic influences of Tat, maraviroc, and 

morphine on the immune effectors examined, tissues from two separate groups of mice were 

assessed. The first group was acutely exposed to Tat (48 h of doxycycline to induce Tat), maraviroc 

(a single administration of vehicle or maraviroc, 62 mg/kg, p.o., 30 min prior to i.p. injection), and 

morphine (a single administration of saline or morphine, 10 mg/kg, i.p.). The second group was 

chronically exposed to Tat (28 d of doxycycline to induce Tat), repeated maraviroc (vehicle or 

maraviroc, 62 mg/kg, p.o., QD for 4 d, 30 min prior to i.p. injection), and repeated morphine (saline 

or morphine, 10 mg/kg, i.p., QD for 4 d). Tissues were collected either 

1 h after the last treatment, or 24 h after the last treatment (the latter timeframe being commensurate 

with that which produced Tat-potentiated morphine-CPP). 

 

3.5.1. Chemotactic Cytokines 

 Among mice that were acutely-exposed to Tat and drug manipulations (Fig. 6, left-hand 

panels, 48 h doxycycline exposure), acute Tat induction and acute maraviroc pretreatment 

significantly interacted to increase striatal CCL3, compared to vehicle treated, Tat(-) controls 

[F(1,31) = 4.69, p < 0.05] (Fig. 6B, left panel, white bars). There was an additional interaction for 

acute morphine to significantly increase CCL5, but only among Tat(+) mice [F(1,31) = 4.59, p < 

0.05] (Fig. 6G, left panel, cyan bars). Main effects were observed for acute Tat exposure to 

significantly increase CCL4 [F(1,31) = 15.56, p< 0.05] (Fig. 6C, left panel, white and cyan bars) 

and CCL11 [F(1,31) = 5.56, p < 0.05] (Fig. 6H, left panel, white and cyan bars), irrespective of 
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maraviroc or morphine administration. Lastly, there was a main effect for morphine to significantly 

elevate CXCL1 [F(1,31) = 10.55, p < 0.05], irrespective of Tat or maraviroc exposure (Fig. 6D, 

left panel, cyan bars). Acute treatments did not otherwise influence the chemokines examined. 

 Among mice exposed to chronic Tat and repeated morphine, no significant differences 

were observed until morphine was withheld for 24 h (Fig. 6, right-hand panels, 28 d doxycycline 

exposure). Three-way interactions were revealed 24 h post morphine treatment for CCL2 [F(2,45) 

= 3.64, p < 0.05] (Fig. 6A, right panel, gray bars), CCL3 [F(2,45) = 6.14, p < 0.05] (Fig. 6B, right 

panel, gray bars), CCL4 [F(2,45) = 4.55, p < 0.05] (Fig. 6C, right panel, gray bars), CXCL1 

[F(2,45) = 4.21, p < 0.05] (Fig. 6D, right panel, gray bars), G-CSF [F(2,45) = 5.42, p < 0.05] (Fig. 

6E, right panel, gray bars), and GMCSF [F(2,45) = 6.11, p < 0.05] (Fig. 6F, right panel, gray bars). 

In each case, chronic Tat significantly potentiated the increase of chemokines and maraviroc 

pretreatment significantly ameliorated this potentiation (see outlined chemokines in Fig. 6). 

Additionally, a main effect was observed for CCL5 to be increased 24 h post morphine 

administration, irrespective of Tat or maraviroc exposure [F(2,45) = 115.48, p < 0.05] (Fig. 6G, 

right panel, gray bars). Intriguingly, repeated morphine significantly reduced CCL11 [F(2,45) = 

3.25, p < 0.05], an effect that was prevented by maraviroc pretreatment (Fig. 6H, right panel, 

magenta bars). Once morphine was withheld for 24 h, CCL11 declined in all groups (Fig. 6H, right 

panel, gray bars). 

  

3.5.2. Pro-inflammatory cytokines 

 Acute HIV-1 Tat and maraviroc/morphine exposure (Fig. 7, left-hand panels, 48 h 

doxycycline exposure) influenced pro-inflammatory cytokine levels. A significant interaction was 

observed for acute morphine to modestly elevate IL-1α, but only in maraviroc-pretreated mice 
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[F(1,31) = 6.11, p < 0.05] (Fig. 7G, left panel, cyan bars). Acute Tat also significantly increased 

IL-3 (which was attenuated by maraviroc) [F(1,31) = 3.82, p = 0.05] (Fig. 7A, left panel, white 

bars) and IL-9 (which was attenuated by morphine and reinstated by maraviroc) [F(1,31) = 3.96, 

p = 0.05] (Fig. 7C, left panel, white and cyan bars). Lastly, there was a main effect for acute Tat 

exposure to cause a modest, significant increase in IL-1α [F(1,31) = 7.03, p < 0.05] (Fig. 7G, left 

panel, white and cyan bars) and a main effect for acute maraviroc to increase IL-6 [F(1,31) = 4.07, 

p < 0.05] (Fig. 7B, left panel, white bars). No additional effects of acute treatments were observed 

on pro-inflammatory cytokines.  

In mice exposed to chronic Tat and repeated maraviroc/morphine treatment, significant 

elevations were observed in all pro-inflammatory cytokines examined (Fig. 7, right-hand panels, 

28 d doxycycline exposure). Three-way interactions were revealed 24h post morphine treatment 

for IL-3 [F(2,45) = 6.73, p < 0.05] (Fig. 7A, right panel, gray bars), IL-6 [F(2,45) = 3.14, p = 0.05] 

(Fig. 7B, right panel, gray bars), IL-9 [F(2,45) = 5.18, p < 0.05] (Fig. 7C, right panel, gray bars), 

IL-12p40 [F(2,45) = 4.02, p < 0.05] (Fig. 7D, right panel, gray bars), IL-12p70 [F(2,45) = 5.43, p 

< 0.05] (Fig. 7E, right panel, gray bars), and IL-17A [F(2,45) = 5.65, p < 0.05] (Fig. 7F, right 

panel, gray bars). In each case, chronic Tat significantly potentiated the increase of 

proinflammatory cytokines and maraviroc pretreatment significantly ameliorated this potentiation 

(see outlined cytokines in Fig. 7). A 3-way interaction was also revealed for IFN-γ to be 

significantly increased among mice that were exposed to chronic Tat and repeated 

maraviroc/morphine [F(2,45) = 3.23, p < 0.05] (Fig, 7J, right panel, magenta bars). These effects 

were significantly exacerbated 24 h post morphine; however, this potentiation was not significantly 

attenuated by maraviroc-pretreatment (Fig, 7J, right panel, gray bars). Interestingly, repeated 

morphine also significantly increased IL-9 content in maraviroc-pretreated mice [F(2,45) = 5.63, 
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p < 0.05] (Fig. 7C, right panel, magenta bars). Irrespective of Tat and maraviroc exposure, main 

effects were observed for cytokines to be increased 24 h post morphine for IL-1α [F(2,45) = 80.55, 

p < 0.05] (Fig. 7G, right panel, gray bars), IL-1β [F(2,45) = 288.09, p < 0.05] (Fig. 7H, right panel, 

gray bars), IL-2 [F(2,45) = 475.92, p <0.05] (Fig. 7I, right panel, gray bars), and TNF-α [F(2,45) 

= 42.36, p < 0.05] (Fig. 7K, right panel, gray bars). 

3.5.3. Anti-inflammatory cytokines 

Among the anti-inflammatory cytokines assessed, only IL-10 demonstrated a significant 

response to acute manipulations (Fig. 8, left-hand panels, 48 h doxycycline exposure), [F(1,31) = 

5.56, p < 0.05]. Acute Tat exposure significantly increased IL-10, and this effect was attenuated 

by maraviroc unless co-administered with acute morphine (Fig. 8A, left panel, white and cyan 

bars). 

When assessed for chronic Tat exposure and repeated maraviroc/morphine administration 

(Fig. 8, right-hand panels, 28 d doxycycline exposure), IL-10 was the only anti-inflammatory 

cytokine that demonstrated Tat-mediated potentiation 24 h post morphine that was reversible by 

pretreatment with maraviroc [F(2,45) = 6.46, p < 0.05] (Fig. 8A, right panel, gray bars). Other 

anti-inflammatory cytokines demonstrated significant main effects for enhanced protein 

expression 24 h post morphine, but not in a Tat- or maraviroc-sensitive manner: IL-4 [F(1,45) = 

499.77, p < 0.05] (Fig. 8B, right panel, gray bars), IL-5 [F(2,45) = 3.45, p < 0.05] ] (Fig. 8C, right 

panel, gray bars), and IL-13 [F(2,45) = 313.62, p < 0.05] ] (Fig. 8D, right panel, gray bars). 

Additionally, a main effect for 28 d Tat exposure to significantly increase IL-4 was observed 

[F(1,45) = 9.13, p < 0.05], independent of maraviroc or morphine administration (Fig. 8B, right 

panel, yellow/magenta/gray bars). 

 



56 
 

 

Figure 1:  Maraviroc did not significantly influence the antinociceptive response to morphine 

in C57BL/6J mice. Latency to tail withdrawal (% MPE ± SEM) among C57BL/6J mice (n = 5 / 

group) that were administered vehicle (p.o.; black circles) or maraviroc (62 mg/kg, p.o.; blue 

circles) prior to (A) morphine (5 mg/kg, s.c.), (B) morphine (10 mg/kg, s.c.), or (C) a cumulative 

morphine dosing regimen (2 – 16 mg/kg, s.c.).  

 

 

 

 

 

 



57 
 

 

Figure 2: HIV-1 Tat significantly shifted the ED50 for morphine to the right in nontolerant 

mice and maraviroc pretreatment obviated this effect. Latency to tail withdrawal (% MPE ± 

SEM) among Tat(-) or Tat(+) mice (n = 6 - 7 / group) that were morphine-naïve (placebo-pelleted; 

circles) or morphine-tolerant (morphine-pelleted; triangles). Mice [Tat(-) in black, Tat(+) in red] 

were administered (A) daily vehicle (p.o.) or (B) daily maraviroc (62 mg/kg, p.o.) following 

pelleting and were assessed for tail withdrawal reflex in response to a cumulative morphine 

regimen (2 - 64 mg/kg, s.c.). * indicates a significant shift in ED50, p < 0.05. 
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Figure 3: HIV-1 Tat significantly attenuated withdrawal-precipitated jumping and 

maraviroc pretreatment reversed this effect; Tat and morphine tolerance influenced 

additional withdrawal symptomology. Measures of naloxone-precipitated withdrawal among 

Tat(-) or Tat(+) mice [n = 6 - 7 / group; Tat(-) in open bars, Tat(+) in hatched bars] that were 

morphine-naïve (placebo-pelleted; left bars in each panel) or morphine-tolerant (morphine-

pelleted; right bars in each panel), administered daily vehicle (p.o.; white bars) or maraviroc (62 

mg/kg, p.o.; black bars), and assessed for warm water tail withdrawal. (A) The proportion of mice 

jumping from an elevated platform over 10 min, as well as the concomitant frequency of (B) 

spontaneous jumping, (C) paw tremor, and (D) wet dog shakes over 5 min in an observation box, 

were recorded. * main effect of Tat-exposure [greater wet-dog shakes among Tat(+) mice vs. Tat(-
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) mice]. † main effect of prior morphine tolerance (greater frequency of spontaneous jumps and 

fewer simultaneous paw tremors among morphine-tolerant vs. non-tolerant mice). ‡ interaction for 

indicated groups to differ from morphine-tolerant Tat(-) mice or morphine-tolerant, maraviroc 

treated Tat(+) mice, p < 0.05. 

 

 

 

 

 

Figure 4:  HIV-1 Tat and maraviroc significantly attenuate morphine-mediated 

psychomotor behavior. Locomotor behavior in response to saline (i.p. for 4 days; open circles) 

morphine (10 mg/kg, i.p. for 4 days; closed circles) was assessed during conditioning cycles among 

Tat(-) or Tat(+) mice that were pretreated with (A) vehicle (p.o.) or (B) maraviroc (62 mg/kg, p.o.; 

n = 11 - 12 / group). † main effect of morphine (greater locomotion following morphine vs. saline 

treatment). ‡ interaction for indicated Tat(-) groups differ from their respective Tat(+) 

counterparts, p < 0.05. 
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Figure 5: HIV-1 Tat potentiates morphine-conditioned place preference 24 h post morphine 

and maraviroc pretreatment exacerbates this effect. Tat(-) or Tat(+) mice (n = 11 - 14 / group) 

were assessed for their chamber preference (open circles) in a biased conditioned place preference 

(CPP) test consisting of either (A) two cycles of saline (i.p.)/morphine (10 mg/kg, i.p.) 

conditioning (closed squares), (B) four cycles of saline/morphine conditioning (closed squares), 

or (C) four cycles of vehicle (p.o.) or maraviroc pretreatment (gray triangles) followed by 

saline/morphine conditioning (closed squares). Initial preferences for the morphine-paired 

chamber (left of dashed line) are depicted followed by final CPP (right of dashed line) after (A’) 

two conditioning cycles, (B’) four conditioning cycles, or (C’) vehicle/maraviroc pretreatment 

prior to four conditioning cycles. Tat(-) mice are depicted in open bars, Tat(+) mice are depicted 

in hatched bars, vehicle (p.o.)-pretreated mice are depicted with white bars, and maraviroc (62 

mg/kg, p.o.)-pretreated mice are depicted with black bars. † main effect for the final chamber 

preference to differ from the initial preference. * interaction for Tat(-) mice to differ from Tat(+) 

mice. ‡ interaction for maraviroc-pretreated Tat(+) mice to differ from all other groups, p < 0.05. 
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Figure 6: Chemokine expression in caudate/putamen is largely upregulated 24 h following 

repeated morphine exposure; HIV-1 Tat potentiated this effect on some analytes (outlined) 

which was ameliorated by maraviroc pretreatment. Chemotactic cytokine protein expression 

(pg/mL ± SEM) in dorsal striatum (caudate/putamen) of vehicle- (p.o.) or maraviroc- (62 mg/kg, 

p.o.) exposed mice [n = 4 – 5 / group; Tat(-) in open bars, Tat(+) in stippled bars] that had Tat 

expressed for 48 h or 28 days (via doxycycline). Mice were administered saline (i.p.; white bars) 

or morphine (10 mg/kg, i.p., QD) acutely (cyan bars), repeatedly (4 consecutive days; repeated 

saline in yellow bars and repeated morphine in magenta bars), or were 24 h post repeated morphine 

treatment (gray bars). Cytokines within the dashed box demonstrated Tat-potentiation that was 

ameliorated by maraviroc. @ main effect of Tat [Tat(+) mice have greater expression than Tat(-) 

mice, irrespective of morphine or maraviroc condition]. † main effect of morphine (indicated 

morphine group has greater expression than the respective saline group, irrespective of Tat or 

maraviroc condition). || maraviroc-morphine interaction (indicated maraviroc-treated group differs 

from vehicle-treated control within the same morphine condition). * 3-way interaction for 

indicated groups to differ from vehicle-treated, saline administered, Tat(-) controls. ‡ 3-way 

interaction for indicated group to differ from all other groups. § 3-way interaction for indicated 

groups to differ from respective vehicle treated, Tat(-) control within the 24 h post morphine group. 

^ 3-way interaction for indicated maraviroc-treated Tat(+) group be reduced compared to 

respective vehicle treated Tat(+) group, p < 0.05. 
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Figure 7: Proinflammatory cytokine expression in caudate/putamen is partly upregulated 24 

h following repeated morphine exposure; HIV-1 Tat potentiated this effect on some analytes 

(outlined) which could be ameliorated by maraviroc pretreatment. Proinflammatory cytokine 

protein expression (pg/mL ± SEM) in dorsal striatum (caudate/putamen) of vehicle- (p.o.) or 

maraviroc- (62 mg/kg, p.o.) exposed mice [n = 4 – 5 / group; Tat(-) in open bars, Tat(+) in stippled 

bars] that had Tat expressed for 48 h or 28 days (via doxycycline). Mice were administered saline 

(i.p.; white bars) or morphine (10 mg/kg, i.p., QD) acutely (cyan bars), repeatedly (4 consecutive 

days; repeated saline in yellow bars and repeated morphine in magenta bars), or were 24 h post 

repeated morphine treatment (gray bars). Cytokines within the dashed box demonstrated Tat-

potentiation that was ameliorated by maraviroc. @ main effect of Tat [Tat(+) mice have greater 

expression than Tat(-) mice, irrespective of morphine or maraviroc condition]. † main effect of 

morphine (indicated morphine group has greater expression than the respective saline group, 

irrespective of Tat or maraviroc condition). ζ main effect of maraviroc (maraviroc-treated groups 

have significantly greater expression that vehicle-treated groups, irrespective of Tat or morphine 

condition). ## Tat-morphine interaction wherein Tat(-) and Tat(+) mice in the indicated morphine 

group are greater than those in other morphine groups and differ from each other (irrespective of 

maraviroc condition). || maraviroc-morphine interaction wherein maraviroc-pretreatment differs 

from vehicle-pretreatment within the indicated morphine groups (irrespective of Tat condition). * 

3-way interaction for indicated groups to differ from respective vehicle-treated, saline 

administered, Tat(-) controls. ‡ 3-way interaction for indicated group to differ from all other 

groups. § 3-way interaction for indicated groups to differ from respective vehicle treated, Tat(-) 

control within the 24 h post morphine group. ^ 3-way interaction for indicated group to differ from 

respective vehicle-treated, acute-saline-administered, Tat(+) mice. + 3-way interaction for 
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indicated group to be greater than their maraviroc treated, Tat(-) counterparts within the 24 h post 

morphine group, p < 0.05. 
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Figure 8: Anti-inflammatory cytokine expression in caudate/putamen is upregulated 24 h 

following repeated morphine exposure; HIV-1 Tat potentiated this effect on IL-10 and 

maraviroc pretreatment ameliorated this effect. Anti-inflammatory cytokine protein expression 

(pg/mL ± SEM) in dorsal striatum (caudate/putamen) of vehicle- (p.o.) or maraviroc- (62 mg/kg, 

p.o.) exposed mice [n = 4 – 5 / group; Tat(-) in open bars, Tat(+) in stippled bars] that had Tat 

expressed for 48 h or 28 days (via doxycycline). Mice were administered saline (i.p.; white bars) 

or morphine (10 mg/kg, i.p., QD) acutely (cyan bars), repeatedly (4 consecutive days; repeated 

saline in yellow bars and repeated morphine in magenta bars), or were 24 h post repeated morphine 

treatment (gray bars). The dashed box indicates IL-10 as the only anti-inflammatory cytokine 

assessed that demonstrated Tat-potentiation with maraviroc amelioration. @ main effect of Tat 

[Tat(+) mice have greater expression than Tat(-) mice, irrespective of morphine or maraviroc 

condition]. † main effect of morphine (indicated morphine group has greater expression than the 

respective saline group, irrespective of Tat or maraviroc condition). * 3-way interaction for 

indicated groups to differ from vehicle-treated, saline-administered, Tat(-) controls. ‡ 3-way 

interaction for indicated group to differ from all other groups. § 3- way interaction for indicated 

groups to differ from respective vehicle-treated, Tat(-) control within the 24 h post morphine 

group. ^ 3-way interaction for indicated group be reduced compared to respective vehicle-treated 

Tat(+) group, p < 0.05. 
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Figure 9: Proposed mechanism(s) of morphine/maraviroc interaction with or without HIV-

1 Tat-induced neuroinflammation. (A) In the absence of Tat-mediated neuroinflammation [as 

modeled using (Tat-), control mice], morphine is behaviorally efficacious, partly via actions at mu 

opioid receptor (MOR) oligomers or MOR-CCR5 heteromers. MOR signaling may cross-

desensitize CCR5 oligomers in this state (not depicted). (B) When no prior neuroinflammatory 

stimulus is present, the addition of maraviroc exerts little influence on the behavioral efficacy of 

morphine [as modeled using (Tat-), maraviroc-treated mice]. (C) When Tat-induced 

neuroinflammation is present [as modeled using Tat(+) mice], there are enhanced levels of β-

chemokines that bind CCR5 and may cross-desensitize MORs. When morphine is administered in 

this state, its behavioral efficacy is attenuated. (D) The addition of maraviroc when 

neuroinflammation is present may block the ability of CCR5 to cross-desensitize MORs, thereby 

restoring morphine efficacy [as modeled using maraviroc-treated, Tat(+) mice]. 
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4. Discussion 

 The overall hypotheses that HIV-1 Tat expression attenuates morphine potency, CCR5 

antagonism reverses these effects, and withholding morphine for 24 h exacerbates Tat’s effects on 

cytokines were upheld. The present data revealed even greater nuance in the behavioral response 

to morphine regimens than was anticipated. Consistent with prior reports (Fitting et al., 2012, 

2016), HIV-1 Tat expression significantly attenuated the antinociceptive potency of acute 

morphine injection (2 – 64 mg/kg, i.p.) and significantly attenuated aspects of withdrawal among 

mice made tolerant via subcutaneous implant of a morphine pellet (75 mg). The present work 

further extends these findings to demonstrate that pretreatment with the CCR5 antagonist, 

maraviroc, blocks the effects of Tat on morphine tolerance and dependence behaviors (reinstating 

morphine potency in non-tolerant mice and restoring aspects of withdrawal symptomology in 

morphine tolerant mice). We further assessed the potential interactions of HIV-1 Tat and 

maraviroc on morphine reward via a CPP assay. Tat reduced the locomotor response associated 

with repeated, once-daily, morphine injections (10 mg/kg. i.p.) over 4 days of conditioning, but 

significantly potentiated (~3.5-fold) morphine-CPP after morphine was withheld for 24h. These 

results are congruent with prior findings of Tat-potentiated psychostimulant and ethanol reward 

(McLaughlin et al., 2014; Mediouni et al., 2015; Paris et al., 2014a,b) and a slower rate of 

extinction in HIV-1 transgenic rats contextually conditioned to morphine (Homji et al., 2012). 

Surprisingly, maraviroc further potentiated Tat’s effects on morphine mediated locomotion and 

CPP (~5.7-fold), but exerted no influence on these behaviors when administered alone. Protein 

arrays revealed that withholding morphine for 24 h (commensurate with the timeframe of CPP 

assessment) markedly increased the levels of multiple categories of cytokines (proinflammatory, 

anti-inflammatory, and regulatory), suggesting a widespread dysregulation of immune function. 
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Importantly, maraviroc could block or attenuate the immunological consequences of terminating 

morphine administration across a number of cytokines. Tat-dependent elevations in the 

endogenous CCR5 ligands (CCL3 and CCL4) and CCL2 (whose activation is proposed to be 

downstream of CCR5-dependent Tat/opioid interactions; El-Hage et al., 2008), as well as other 

cytokines increased by Tat, were markedly attenuated by maraviroc. 

 The marked increase in a large number of cytokines that was observed 24 h after 

withholding repeated morphine (10 mg/kg/d) was unanticipated and may be contributed to by 

several sources. Although immune function is generally suppressed by sustained opioid exposure 

(Bayer et al., 1994; Rahim et al., 2003), it can transiently rebound followed by sustained 

immunosuppression after opioid withdrawal (Eisenstein et al., 2006; Rahim et al., 2004). 

Contextual cues alone (such as those used in CPP) alter immune responding once opiate 

conditioning is established (Hutson et al., 2017; Saurer et al., 2011), effects that involve the ventral 

striatum (Szczytkowski et al., 2011). Alternatively, chronic doxycycline treatment can produce 

alterations in the gut microbiome (Angelakis et al., 2014) which may influence immune responding 

and subsequent behavior. Interestingly, in this study we found that chronic doxycycline treatment 

upregulated some but not all chemokines and cytokines in dorsal striatum of both Tat(−) and Tat(+) 

mice (CCL5, IL-1α, IL-1β, IL-2, IL-6, and IL-13 were upregulated in chronic, compared to acute, 

doxycycline exposure). There is increasing evidence that microbial dysbiosis can influence many 

centrally mediated effects, including anxiety and mood (Cryan and Dinan, 2012; Foster et al., 

2013). We have previously reported that HIV-1 Tat can induce bacterial translocation and enhance 

pro-inflammatory cytokines via TLR4 activation in the mouse colon (Guedia et al., 2016). Chronic 

morphine has also been reported to induce microbial dysbiosis and increase pro-inflammatory 

cytokines within the gut (Kang et al., 2017; Meng et al., 2013). In particular, morphine pellets have 
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been observed to induce sepsis (Eisenstein et al., 2006; Feng et al., 2005; Hilburger et al., 1997) 

which may be due, in part, to intestinal stasis. Given that HIV-1 Tat has been shown to increase 

the permeability of the blood-brain barrier (Leibrand et al., 2017), the presence of Tat may 

compound the central accumulation of systemic factors including cytokines. The present findings 

support previous literature demonstrating MOR and CCR5 interactions on HIV-1 Tat-mediated 

cellular outcomes and begin to reveal the related behavioral sequelae. 

 The comorbidity between opioid abuse and HIV is well established. The cellular/molecular 

interactions between opioids and HIV co-receptors are less well understood, but may exert 

important effects on chemokine function. Opioids modulate CCR5 expression and signaling in 

vitro. Morphine or methadone upregulates CCR5 mRNA and protein expression in murine BV-2 

derived microglia (Bokhari et al., 2009). human astrocytes (Mahajan et al., 2005b), human 

lymphoid cell lines (Miyagi et al., 2000; Suzuki et al., 2002), or human monocyte-derived 

macrophages (Guo et al., 2002; Li et al., 2003) or microglia (Guo et al., 2002). These effects are 

functional and confer susceptibility to simian immunodeficiency virus (SIV; (Miyagi et al., 2000; 

Suzuki et al., 2002a,b)) or R5-tropic HIV (Guo et al., 2002; Li et al., 2003). Importantly, CCR5 

upregulation and viremia has been shown to be attenuated with opioid receptor antagonists, such 

as naltrexone (Guo et al., 2002), naloxone (Mahajan et al., 2005b), or the quaternary opioid 

antagonist, methylnaltrexone (Ho et al., 2003). These effects are, at least partly, dependent on 

actions at MORs given that the highly selective MOR agonist, DAMGO, upregulates CCR5 and 

enhances R5-HIV viremia in vitro, an effect that is blocked by the MOR-selective antagonist, 

CTAP (Steele et al., 2003). In addition to altered CCR5 expression, MOR and CCR5 undergo 

heterologous cross-desensitization (Szabo et al., 2003, 2002; Zhang et al., 2004), which may occur 

through convergent signaling or via direct molecular interactions involving the formation of MOR-
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CCR5 heteromers. Evidence for direct MOR-CCR5 dimeric/oligomeric interactions are partly 

based on findings that a bivalent ligand comprised naltrexone and maraviroc can reduce the 

infectivity of cultured human astrocytes (El-Hage et al., 2013; Yuan et al., 2013) and attenuate R5 

HIV-mediated increases in CCL5, TNF-α, and IL-6 in human astrocytes (El-Hage et al., 2013). 

Divergent effects of the bivalent ligand were observed in cultured human microglia, which were 

much more dynamic in their response to morphine. Unlike astrocytes, microglia demonstrated a 

strong upregulation of CCR5 in response to the bivalent ligand in culture that may have accounted 

for the differential response between cell types (El-Hage et al., 2013). In other studies, treating a 

human lymphoid cell line with morphine and CCL4 (respective agonists for MOR and CCR5) 

increased morphine mediated upregulation of CCR5 protein expression (Suzuki et al., 2002c). 

Together, our data agree with prior findings (Szabo et al., 2003, 2002; Zhang et al., 2004) 

supporting the notion that opioids interact with CCR5 at multiple levels, from the regulation of 

CCR5 expression and signaling to potential actions at MOR-CCR5 heteromers and functional 

effects on viremia and neuroinflammation. These present findings begin to extend these data to 

behavioral dysfunction in a whole-animal model. 

 Actions at CCR5 may represent a critical point of convergence between the viral protein, 

Tat, and MORs. Apart from its role in HIV entry, CCR5 signaling is essential in macrophage and 

microglial chemoattraction, the homing of CD8+ T cells, and the pathogenesis of CNS 

inflammatory diseases (Martin-Blondel et al., 2016). Foremost, Tat/opioid interactions for 

neurotoxicity appear to be dependent on glial MORs. While Tat demonstrates neurotoxicity in co-

cultured neurons from either wildtype mice or MOR knockout mice, these effects are potentiated 

by pretreatment with morphine only when neurons are co-cultured with wildtype glia (MOR-

knockout glia do not potentiate toxicity; Zou et al., 2011). Second, Tat/opioid toxicity largely 
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involves downstream neuroinflammation. In murine progenitors, Tat and opioids have interactive 

effects on astroglial chemokine secretion (Hahn et al., 2010), CCL5 is often the predominant 

central chemokine upregulated in response to Tat, an effect that can be potentiated by chronic 

morphine (Dutta and Roy, 2015) and inactivating CCR5 with an antibody blocks the 

chemoattractive effects promoted by Tat (Hahn et al., 2010). Third, CCL5 activation appears to 

work in concert with downstream chemokine activation, particularly CCL2. In support, morphine 

stimulates production of CCL5 and CCL2 in cultured peripheral blood mononuclear cells (Wetzel 

et al., 2000) and Tat increases CCL2 and CCL5 production in murine primary astrocyte cultures; 

effects that are potentiated by co-application of morphine and reversed by MOR antagonists (such 

as β-FNA; El-Hage et al., 2005). Striatal infusion of Tat1-86 to mice significantly increases the 

proportion of CCL5 immunoreactive astroglia and co-administration of morphine and Tat 

significantly increases astrogliosis, microgliosis, the proportion of CCL2 immunofluorescent 

astrocytes/macrophages/microglia, and reactive nitrosative species co-localized to these cells (El-

Hage et al., 2008a). These effects on murine striatum are obviated by CCL5 knockout (El-Hage et 

al., 2008a) or knockout of the CCL2 receptor (El-Hage et al., 2006). Findings in primary human 

astrocytes are supportive with morphine downregulating CCL2 and CCL4 mRNA and 

upregulating their receptors in a naloxone-dependent manner (Mahajan et al., 2005b). Thus, Tat 

and opioids acting at MORs appear to activate CCR5 and CCR2 signaling, increasing 

neuroinflammation and striatal neurotoxicity. These effects may contribute to the attenuated 

therapeutic efficacy and increased rewarding properties of morphine that we have observed herein. 

 We propose that MOR-CCR5 cross-desensitization may contribute to the behavioral 

pathology observed (Fig. 9). When HIV-1 Tat-mediated neuroinflammation was not present [as 

modeled using Tat(-) control mice], cytokine concentrations were at basal levels and morphine 
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exerted efficacious effects for tolerance, dependence, psychostimulation, and reward, presumably 

via actions partly mediated by MORs (Fig. 9A). The addition of maraviroc to Tat(-) mice did not 

influence morphine efficacy on these behavioral measures (Fig. 9B) consistent with in vitro reports 

wherein MOR-CCR5 bivalent ligands exert little influence when neuroinflammation is not present 

(Akgün et al., 2015; Portoghese et al., 2017). However, when a neuroinflammatory insult was first 

present [as modeled using Tat(+) mice], morphine efficacy was diminished on most measures; 

perhaps, due to endogenous MORs having already been cross-desensitized by activated CCR5 

receptors (Fig. 9C). When maraviroc was introduced in the Tat inflamed state, morphine efficacy 

was restored on most measures and even potentiated on the measure of reward. We speculate that 

the addition of maraviroc in this state may relieve cross-desensitization, restoring morphine 

signaling through its endogenous receptors (Fig. 9D). In support, a bivalent ligand (MOR 

agonist/CCR5 antagonist) exerted a 3100-fold increase in potency when administered to LPS-

inflamed mice, relative to noninflamed controls (Akgün et al., 2015; Portoghese et al., 2017). 

There was one behavioral exception to Tat’s capacity to attenuate morphine efficacy and that was 

on the measure of reward prior to maraviroc. These divergent findings may involve the role of 

additional brain regions and opioid signaling beyond that involving CCR5 heterodimers 

(Shippenberg et al., 2009). 

 It must be noted that the timing of morphine and Tat-dependent interactions at CCR5 is 

likely to be critical in determining the nature of the outcome (see Fig. 9 in (Berman et al., 2006; 

Song et al., 2011)). The relative increases in cytokines seen with acute morphine and/or Tat 

exposure (for example, as in CCL3, CCL4, CCL5, CXCL1, IL-1α, IL- 9, and IL-10) were often 

smaller effects that may either be less biologically significant or may display peak activity earlier 

than the time examined. These effects were largely absent after sustained exposure suggesting that 
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the CNS adapts to sustained opiate or HIV-1 Tat insults via mechanisms involving drug tolerance 

(Eisenstein et al., 2006) or innate immune tolerance (Biswas SK, 2009; Cavaillon and Adib-

Conquy, 2006), respectively. Future investigations should additionally assess the presence of 

endotoxemia which may contribute to these effects (Eisenstein et al., 2006), but may be masked 

by downregulation of the innate response. 

 The present work raises several clinical considerations. Seropositive patients within the 

first 100 d of HIV infection demonstrate positive correlations between circulating CCL2, CCL11, 

GM-CSF, IL-1α, IL-6, and lateral ventricular volume as well as IL-5, IL-10, and mean diffusivity 

within the caudate (Ragin et al., 2015). Herein, maraviroc exerted little influence over behavioral 

measures on its own, but attenuated the capacity for HIV-1 Tat to dampen morphine potency. 

Given that up to 40% of HIV-afflicted individuals experience distal polyneuropathies, headache, 

and additional chronic pain states (Keswani et al., 2002; Mirsattari et al., 1999) necessitating 

opioid medications for relief among a sizeable percentage (~23% of a 1400+ patient sample 

infected with HIV; Merlin et al., 2016), maraviroc may have potential benefits to improve opioid-

based therapies. However, with chronic opioid use, the beneficial effects of maraviroc are less 

clear given that maraviroc was also associated with an increase in withdrawal symptomology and 

increased morphine reward. In addition, the neurotoxic actions of additional HIV proteins in the 

patient population, such as the HIV coat protein (gp120), may exert a divergent profile compared 

to that observed when HIV-1 Tat is expressed alone (Campbell et al., 2015; Maung et al., 2012; 

Mocchetti et al., 2013). The toxic effects of R5-tropic gp120 can be attenuated by morphine-

mediated CCL5 upregulation, perhaps influenced by out-competition for CCR5 (Avdoshina et al., 

2010). As such, future investigations may wish to target MOR-CCR5 bivalent strategies within 

the context of opioid dependency across a range of neuroAIDS models. 



76 
 

5. Conclusions 

Several investigations using murine and human cell cultures have demonstrated neurotoxic 

interactions between the HIV-1 Tat, MORs, and CCR5. The present findings extend these data by 

investigating functional consequences of such interactions on morphine-mediated antinociception, 

tolerance, and reward in a murine model. Maraviroc blocked Tat’s actions to attenuate the 

antinociceptive potency of acute morphine in nontolerant mice. Intriguingly, maraviroc also 

potentiated the Tat-induced increase of morphine-CPP, even while it reduced the levels of many 

inflammatory chemokines and cytokines in the striatum including β-chemokines. Thus, while 

maraviroc is widely appreciated for its role in blocking HIV entry, it may be considered for 

additional therapeutic roles related to pain control in HIV-infected patients; albeit, caution may be 

warranted for individuals that are opioid-dependent or at risk for such abuse. 
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CHAPTER 4 

GAP JUNCTION INHIBITOR CARBENOXOLONE ATTENUATES THE 

DEVELOPMENT OF OPIOID ANTINOCICEPTIVE TOLERANCE 

1. Introduction 

 In the clinic, the use of opioids is common for the management of acute and chronic pain. 

However, the development of tolerance to the analgesic effects of opioids, such as morphine, leads 

to the increase of drug needed to maintain analgesia. Increasing the dose of drug can lead to a 

greater chance of unwanted side effects. Tolerance to different effects of opioids occur at different 

rates, leading to increased risk of side effects and overdose (Hill et al., 2016; White and Irvine, 

1999). Understanding the molecular and cellular mechanisms responsible for this phenomenon 

will lead to fewer deaths and potential new analgesics that do not lead to tolerance. A recent target 

of interest in understanding the development of tolerance is the gap junction.  

Gap junctions are the channel-forming structures between the membranes of two adjoining 

cells. Gap junctions allow direct electrical communication between cells, hence they are also 

referred to as electrical synapses. Gap junction channels are formed by two hemichannels or 

connexons, one contributed by each cell at the synapse (Mccracken and Roberts, 2006; Söhl et al., 

2005). Single hemichannels can exist on the cell membrane providing a pathway for exchange of 

intracellular components (including ions and ATP) with the extracellular solution. Such a role has 

been proposed for a specific type of gap junction called connexin 43 (Cx43). Its opening results in 

the release of glutamate and ATP from astrocytes, which has a major impact on glial-glial and 

glial-neuronal interactions. For example, gap junctions found only on neurons as well as only on 

glial cells have been found to affect the firing rate of neurons (Blenkinsop and Lang, 2006; 

Pannasch et al., 2011).  
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It has been suggested that gap junctions participate in particular mechanisms of the pain 

pathway. Researchers found that local administration of gap junction inhibitors into the dorsal horn 

blocked the inflammation-induced central pain sensitization without changing the baseline pain 

responses (Chiang et al., 2010). Recently, researchers have shown that blocking gap junctions 

intrathecally attenuated the development of morphine antinociceptive tolerance (Shen et al., 2014). 

Gap junctions may play a role in other chronic morphine related effects as well. It has been 

observed that the intracerebroventricular administration of the gap junction blocker, 

carbenoxolone significantly decreased naloxone-precipitated morphine withdrawal signs (Moradi 

et al., 2013). Systemic carbenoxolone blocked morphine-related colonic inflammation and 

constipation when administered intraperitoneally (Bhave et al., 2017).  Carbenoxolone is used as 

a medication for the treatment of peptic ulcers and inflammation. Interestingly, a study concluded 

that negligible amounts of carbenoxolone cross the blood brain barrier; however, the researchers 

only examined the cerebrospinal fluid and such data may not be representative for the actual brain 

concentration (Leshchenko et al., 2006). Since carbenoxolone does not readily crossing the blood 

brain barrier, this suggest a peripheral site of action. 

The objective of this study, therefore, was to test the hypothesis that carbenoxolone 

administered systemically would attenuate the development of morphine antinociceptive 

tolerance. We report here that the systemic administration of carbenoxolone during the exposure 

to morphine attenuates the development of antinociceptive tolerance to morphine. Further 

investigation of the pharmacokinetics reveal that less than 3% of carbenoxolone found in the blood 

was found in whole brain homogenates at several time points. Lastly, we observed whether in-

vivo exposure of carbenoxolone would attenuate tolerance at the neuronal level in a cellular model 
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of isolated dorsal root ganglia neurons from adult mice and whole cell patch clamp 

electrophysiology 

  

2. Materials and Methods 

2.1. Animals 

Male Swiss Webster mice (Harlan Laboratories, Indianapolis, IN) weighing 25–30 g were housed 

five to a cage in animal care quarters and maintained at 22 +/-  2°C on a 12-hour light-dark cycle. 

Food and water were available ad libitum. The mice were brought to the test room (22 +/- 2°C, 

12-hour light-dark cycle), marked for identification, and allowed 18 hours to recover from 

transport and handling. Protocols and procedures were approved by the Institutional Animal Care 

and Use Committee (IACUC) at Virginia Commonwealth University Medical Center and comply 

with the recommendations of the International Association for the Study of Pain (IASP). 

 

5.2. Drugs and Chemicals 

 Morphine sulfate, 75-mg morphine pellets, and placebo pellets were obtained from the 

National Institutes of Health National Institute on Drug Abuse (Bethesda, MD). Morphine sulfate 

was dissolved in pyrogen-free isotonic saline (Hospira, Lake Forest, IL). Carbenoxolone was 

obtained from Sigma-Aldrich Corporation (St Louis, MO, USA) and was dissolved in distilled 

water.   

 

 



80 
 

5.3. Antinociceptive Testing 

 Antinociception was assessed using the 52°C warm water tail withdrawal test performed 

according to Coderre and Rollman (1983). Before injecting the mice, a baseline (control) latency 

was determined. Only mice with a control reaction time from 2 to 4 seconds were used. Mice were 

gently wrapped in a cloth and the distal one-third of the tail was immersed in a water bath. The 

mice rapidly removed their tail from the bath at the first sign of discomfort and the tail-withdrawal 

latency was recorded. Tail-withdrawal latency was then assessed using a cumulative dosing 

procedure. Mice were injected with a starting dose of morphine and were tested for antinociception 

20 min later. Mice that did not reach a 10 sec cut-off threshold received an additional cumulative 

dose of morphine and were retested. This process was repeated until the animals reached the cut-

off value of the 10-second maximum cut-off time imposed to prevent tissue damage. 

Antinociception was quantified according to the method of Harris and Pierson (1964) as the 

percentage of maximum possible effect (%MPE), which was calculated as: %MPE = [(test latency 

– control latency) / (10 – control latency)]* 100. Percent MPE was calculated for each mouse.  

 Antinociception was also assessed using the 56°C hot plate assay. The hot plate test was 

performed as described by Smith et. al. (2006). The mice were first placed on a Syscom Model 

35D hot plate set at 56 °C to obtain baseline latencies before drug administration. The mice were 

observed for licking their hind-limb or jumping in response to the heat. The mice were tested again 

at the appropriate time after being administered test drugs. A 30 second cut-off was employed in 

order to prevent tissue damage. Antinociception was quantified according to the method of Harris 

and Pierson (1964). 
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5.4. Tolerance Studies 

 Prior to all behavioral testing, mice were acclimated to the testing room for 24 h. For 

assessments of morphine tolerance, mice received subcutaneous implants of placebo or morphine 

pellets. Isoflurane (2.5%) was used to anesthetize the mice after which the hair on the back of the 

neck was shaved. Povidone iodine (10%) and ethanol (70%) was used to clean the bare skin. A 1-

cm transverse incision was made into the subcutaneous space toward the dorsal flan with sterile 

surgical instruments, and a placebo/ morphine pellet was placed distal to the incision. The incision 

was closed with sterile autoclips. Mice were allowed to recover in their home cages after the 

surgery and assessed every 48 h for signs of infection and weight loss.  Five days later, mice were 

assessed for morphine tolerance in a warm-water tail-withdrawal assay. To test carbenoxolone’s 

ability to attenuate opioid tolerance, carbenoxolone was administrated intraperitoneally once per 

day on days 3 & 4. This injection procedure was based off of a previous publication where 

prolonged exposure to morphine would induce inflammation starting at days 3 and 4 of morphine 

pellet implantation. Carbenoxolone administration on these days would prevent morphine induced 

inflammation (Bhave et al., 2017b).  

 

5.5. Analysis of Carbenoxolone levels in Brain and Blood 

Seven-point calibration curves of Carbenoxolone at concentrations of 10 -1000 ng/mL for blood 

and 10 – 1000 ng/kg for brain tissue homogenate and negative controls with or without internal 

standard (ISTD) were prepared in drug-free mouse blood and brain tissue with each analytical run. 

Carbenoxolone was extracted from blood and brain tissue homogenate using a modified Poklis et 

al method (Poklis et al., 2011). In brief, the ISTD, 100ng of 11-Nor-9-carboxy-Δ9-
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tetrahydrocannabinol-d3 (THC-COOH-d3), was added to aliquots of 100 µL of blood or 400 µL 

of homogenized brain tissue calibrators, controls and samples. These samples were mixed and 

allowed to equilibrate. 1 mL of ice-cold acetonitrile was added drop by drop to each sample while 

vortex mixing. The samples were then centrifuged at 3500 rpm for 10 min. After centrifuging the 

samples were placed in –40°C freezer for at least 2 h. The top layer containing the acetonitrile was 

removed via a disposable glass pipette and placed in a clean test tube. Samples were dried using a 

Savant AES1000. The samples were reconstituted with 100 μL of acetonitrile and placed in auto 

sampler vials for analysis. 

The Ultra performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS) 

analysis of AEA, 2-AG, PEA OEA and arachidonic acid was performed on a Sciex 6500 QTRAP 

system with an IonDrive Turbo V source for TurbolonSpray® (Sciex, Ontario, Canada) attached 

to a Shimadzu UPLC system (Kyoto, Japan) controlled by Analyst software (Sciex, Ontario, 

Canada). Chromatographic separation of Carbenoxolone and the ISTD, THC-COOH-d3, was 

performed using a Zorbaz eclipse XDB-C18 column, 4.6 x 75 mm, 3.5 micron (Agilent 

Technologies, USA).  The mobile phase contained water/methanol (10:90, v/v) with 0.1 mM 

ammonium formate and was delivered at a flow rate of 1 mL/min. The source temperature was set 

at 650°C, and curtain gas had a flow rate of 30 mL/min. The ionspray voltage was 5000 V, with 

the ion source gases 1 and 2 having flow rates of 60 mL/min. The acquisition mode used was 

multiple reaction monitoring (MRM). The following transition ions were monitored in negative 

mode: 569> 469 & 569> 425 for Carbenoxolone and 346> 302 & 346> 289 for THC-COOH-d3.  

The total run time for the analytical method was 3.5 minutes. 
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5.6. Isolation and Culture of Neurons from Adult Mouse Dorsal Root Ganglia 

 Mice were sacrificed by cervical dislocation. L5-S1 DRGs were immediately harvested 

under a dissecting microscope and placed in a dish containing cold (4 °C) Hanks’ Balanced Salt 

Solution (HBSS, ThermoFisher Scientific, Waltham, MA). Ganglia were incubated (37 °C) for 18 

min in HBSS with 15 U/ mL papain, washed, and incubated for 60 minutes in HBSS with 1.5 

mg/mL Clostridium histolyticum collagenase. After incubation, ganglia were transferred to 

DMEM in a sterile 15mL conical, dissociated by triturating and centrifuged for 5 min at 1000 rpm. 

The supernatant was discarded and the pellet was re-suspended in neurobasal A media containing 

1% fetal bovine serum, 1x B-27 supplement, 10 ng/mL GDNF, 2mM L-glutamine and 100 U/ml 

penicillin/streptomycin/amphotericin B (complete neuron media). Isolated cells were plated on 

laminin and poly-D-lysine-coated glass cover slips and maintained at 37°C in a humidified 5% 

CO2/air incubator. 

 

5.7. Electrophysiology 

Coverslips were transported to a microscope stage plate and continuously superfused with external 

physiologic saline solution (PSS) containing (in mM) 135 NaCl, 5.4 KCl, 0.33 NaH2PO4, 5 

HEPES, 1 MgCl2, 2 CaCl2, and 5 glucose. A GΩ seal was achieved via pulled (Model P-97 

Flaming/Brown Micropipette Puller, Sutter Instruments, CA) and fire-polished (2–4 MΩ) 

borosilicate glass capillaries (World Precision Instruments, Sarasota, FL) filled with internal PSS 

containing (in mM) 100 L-aspartic acid (K salt), 30 KCl, 4.5 Na2ATP, 1 MgCl2, 10 HEPES, and 

0.1 EGTA. DRG nociceptors being of the small, C and Aδ fiber types (Jin et al., 2013), only low 

capacitance ( < 30 pF) neurons were selected for analysis. Standard patch clamp techniques were 
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performed using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA) and associated 

Clampex and Clampfit 10.2 soſtware. Current clamp step protocols consisting of a 0 nA resting 

current and 0.01 nA steps from − 0.03 nA were employed to assess passive and active cell 

properties. Taking the derivative of the voltage with respect to time (dV/dt), threshold potentials 

were defined as the voltage at which dV/dt significantly deviated from zero in the course of an 

action potential uprise. For morphine tolerance studies, external PSS was supplement with 3 µ M 

morphine and threshold potentials recorded at 1 min intervals for 10 min. The maximal effect of 

morphine was recorded for each cell. 

5.8. Statistical Analysis 

 Morphine dose-response curves were generated for calculation of ED50 values using least-

squares linear regression analysis followed by calculation of 95% confidence limits (95% CL) by 

the method of Bliss (Bliss, 1967). All data are represented as mean ± standard error of the mean. 

Analyses were considered significant when p < 0.05. The Vt results were calculated by Student’s 

paired t-test using GraphPad Prism 6.0 (GraphPad Software, Inc., La Jolla, CA). For group 

comparisons, results were calculated by two-way ANOVA with Bonferroni post-hoc analyses and 

an alpha level set to 0.05. The results are expressed as mean value ± SEM. 

3. Results 

3.1. Attenuation of Antinociceptive Tolerance Development to Morphine by Carbenoxolone 

in Warm-Water Tail Withdrawal Assay 

On the fifth day after either placebo or morphine pellet implantation, baseline latencies 

were taken prior to cumulative dosing regimen with morphine. In a 52°C water bath, cumulative 

morphine-dosing produced antinociception in the placebo pelleted mice commensurate with what 
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we have previously observed (Hull et al., 2013; Fig.1A). Using the 5-day tolerance model, 

morphine pellet implantation produced a significant rightward shift [morphine pellet/vehicle ED50 

= 16.2 (95% CI: 13.3 –19.8) (Fig.1A). 12.5 mg/kg carbenoxolone did not significantly shift the 

morphine dose response curve following morphine pellet implantation [morphine pellet/12.5 

mg/kg CBX ED50 = 12.9 (95% CI: 9.3 –17.9) (Fig.1B). The administration of a higher dose of 

carbenoxolone (25 mg/kg) significantly shifted the morphine dose response curve leftward, though 

still significantly different from acute morphine [morphine pellet/25 mg/kg CBX ED50 = 7.5 (95% 

CI: 5.8 – 9.6) (Fig.1C). 25 mg/kg carbenoxolone administered on days 3 and 4 of placebo pelleted 

mice did not significantly influence the acute morphine antinociception [placebo pellet/vehicle 

ED50 = 3.5 (95% CI: 3.0 – 4.2), placebo pellet/25 mg/kg CBX ED50 = 4.6 (95% CI: 4.1 – 5.2)] 

(Fig.1C). At 37.5 mg/kg carbenoxolone, the morphine dose response curve was not significantly 

different from the placebo pelleted + carbenoxolone treatment group while significantly different 

from the morphine pellet/vehicle group [morphine pellet/37.5 mg/kg CBX ED50 = 5.91 (95% CI: 

4.8 – 7.3) (Fig.1D). Carbenoxolone administered on days 3 and 4 of placebo pelleted mice did not 

significantly influence the acute morphine antinociception [placebo pellet/vehicle ED50 = 3.5 (95% 

CI: 3.0 – 4.2), placebo pellet/37.5 mg/kg CBX ED50 = 4.8 (95% CI: 3.7 – 6.0)] (Fig.1D).  

Carbenoxolone administered 30 minutes before the acute dosing regimen of morphine did 

not acutely reverse chronic morphine nor did it affect acute morphine antinociception [placebo 

pellet/vehicle ED50 = 3.2 (95% CI: 2.2 – 4.7), placebo pellet/25 mg/kg CBX ED50 = 5.0 (95% CI: 

4.0 – 6.5), [morphine pellet/vehicle ED50 = 10.3 (95% CI: 7.8 –13.6), morphine pellet/25 mg/kg 

CBX ED50 =8.3 (95% CI: 6.2 – 11.3)]  (Fig. 2.).  
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3.2. Attenuation of Antinociceptive Tolerance Development to Morphine by Carbenoxolone 

in Hot Plate Assay 

To investigate the effect of carbenoxolone on supraspinal-mediated antinociception, we 

performed the hot plate rear hind paw lick assay. On the fifth day after either placebo or morphine 

pellet implantation, baseline latencies were taken prior cumulative dosing regimen of morphine. 

On a 56°C hot plate, cumulative morphine-dosing produced antinociception in the placebo pelleted 

mice [Placebo pellet/vehicle ED50 = 7.3 (95% CI: 5.8 – 9.2)].  Carbenoxolone administration on 

days 3 and 4 of placebo pellet implantation did not significantly shift the antinociceptive properties 

of morphine [Placebo pellet/25 mg/kg CBX ED50 = 7.5 (95% CI: 6.4 – 9.0)]. Exposure to chronic 

morphine through pellet implantation produced significant tolerance as indicated by a significant 

rightward shift [Morphine pellet/Vehicle ED50 =85.4 (95% CI 54.6 – 133.3)]. Carbenoxolone 

administration attenuated morphine antinociceptive tolerance in the hot-plate assay [Placebo 

pellet/25 mg/kg CBX ED50 = 35.1 95% CI: 25.8 – 47.6)] (Fig.3).  

3.3. Carbenoxolone Does Not Readily Cross the Blood Brain Barrier 

 Although carbenoxolone was not observed in the cerebrospinal fluid in a previously 

published study, the possibility remained that carbenoxolone sequesters within brain tissue. 

Therefore, following an intraperitoneal injection of 25 mg/kg carbenoxolone, blood samples and 

whole brains were taken from mice. Figure 4 shows that the UPLC-MS/MS-determined 

carbenoxolone concentration in the blood samples at several time points. At the same time points, 

less than 3% of carbenoxolone levels found in the blood were observed in the brain at all time 

points tested (Fig. 4).  
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3.4. Morphine Tolerance Attenuated by In Vivo Carbenoloxone Treatment in Sensory 

Neurons from Dosrsal Root Ganglia.  

 To test whether the effects of carbenoxolone administration on morphine tolerance could 

be recapitulated in single cells, dorsal root ganglion (DRG) nociceptors were isolated from spinal 

levels supplying the lower alimentary canal (L5-S1). Candidate neurons were selected for their 

round spherical shape and small size. Active and passive properties of low capacitance (<30 pF) 

cells were measured from the DRG neurons of each group by whole-cell patch clamp techniques. 

Neurons from placebo pelleted mice and neurons from morphine pelleted mice treated with 

carbenoxolone responded to morphine challenge (3 µM) by a positive shift in the threshold 

potential indicating morphine-induced reduction in excitability. The threshold potential was 

determined from the derivative of the action potential (dV/dt) in the absence and presence of acute 

morphine challenge.  The thresholds of neurons from morphine pelleted mice treated with vehicle 

did not respond to the morphine challenge, indicating the development of tolerance. (Fig. 5.). A 

number of cell properties did not significantly vary between treatment groups or between baseline 

and morphine exposure, including membrane capacitance, series resistance, input resistance, 

rheobases, and resting membrane potential (Table 3; Appendix). PP + SAL and MP + SAL groups 

have been previously published by our laboratory (Kang & Mischel et al., 2017).  
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Fig. 1. Carbenoxolone attenuates development of morphine tolerance as measured in warm 

water tail withdrawal assay (A) 5 day morphine pellet implantation significantly shifted the ED50 

for morphine to the right indicating tolerance (n = 15 / group). (B) 12.5 mg/kg Carbenoxolone 

administered 1x per day on days 3 & 4 (n = 5) did not significantly shift the morphine pellet ED50. 

(C) 25 mg/kg administered 1x per day on days 3 & 4, carbenoxolone significantly shifted the 

morphine pellet curve leftward. (D) At the highest dose tested (37.5 mg/kg), carbenoxolone further 

significantly shifted the morphine pellet curve leftward (n = 5). Carbenoxolone administered to 

placebo pellet mice did not shift the acute morphine ED50. 
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Fig. 2. Carbenoxolone does not acutely reverse morphine tolerance as measured in warm 

water tail withdrawal assay 5 day morphine pellet implantation significantly shifted the ED50 

for morphine to the right indicating tolerance (n = 5 / group). Pretreatment of 25 mg/kg 

Carbenoxolone administered 30 min before challenge doses of morphine did not significantly 

shift the morphine pellet ED50. Pretreatment of carbenoxolone administered to placebo pellet 

mice did not shift the acute morphine ED50. 
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Fig. 3. Carbenoxolone attenuates development of morphine tolerance as measured in hot 

plate assay 5 day morphine pellet implantation significantly shifted the ED50 for morphine to the 

right indicating tolerance (n = 15 / group).  25 mg/kg carbenoxolone administered 1x per day on 

days 3 & 4 significantly shifted the morphine pellet curve leftward. Carbenoxolone administered 

to placebo pellet mice did not shift the acute morphine ED50. 
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Fig. 4. Brain and Blood concentrations of Carbenoxolone (mean +/- SEM) were observed at 

different time points following a 25 mg/kg intraperitoneal injection in drug naïve mice. Less than 

3% of carbenoxolone levels found in the blood were observed in the brain at all time points 

tested 
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Fig. 5. CBX on DRG neurons isolated from MP mice Collective data from threshold potential 

(Vt) measurements before (open circle) and after (filled circle) morphine perfusion. Increases in 

Vt induced by 3μM morphine perfusion are prevented by chronic morphine exposure, but 

preserved alongside CBX treatment. #PP + SAL and MP + SAL groups have been previously 

published by our laboratory (Kang & Mischel et al., 2017). ns not significant, ***p<0.001 
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4. Discussion 

 Gap junctions are recognized as important contributors to intercellular communication. 

Through gap junctions flow second messengers, ions, and metabolites, generating waves of 

elevated calcium, sodium, and metabolic activity. Gap junctions exist on neurons but also have an 

important role in glial cell networks. Gap junctions consist of connexins, with the name of 

respective molecular weight. A number of studies indicate gap junctions having potential 

involvement in inflammatory cascades as well involvement in mechanisms in pain. For example, 

connexin 43 expression is increased in several neuropathic pain models including spinal cord 

injury, chronic constriction injury, and neuroinflammation (Haupt et al., 2007; Lee et al., 2005; 

O’Carroll et al., 2008). Administering gap junction inhibitors has been shown to attenuate 

neuropathic pain sensitization caused by chronic constriction injury (Jeon and Youn, 2015; Spataro 

et al., 2004). Gap junctions have also been shown to be involved in chronic morphine-induced 

effects including colon inflammation, dependence, and antinociceptive tolerance (Bhave et al., 

2017b; Moradi et al., 2013; Shen et al., 2014). Astrocytic connexins in the spinal cord have been 

reported to be integral for the development of morphine antinociceptive tolerance. Carbenoxolone 

is a medication used to treat peptic ulcers in man and is also a known gap junction inhibitor. Studies 

in the past investigating gap junction function in neuropathic pain mechanisms or chronic 

morphine’s effects concentrated on administering carbenoxolone intrathecally through 

intracerebroventricular injection (i.e. past the blood brain barrier).  

In the present study, we observed carbenoxolone administered systemically attenuated the 

development of opioid antinociceptive tolerance. Through intraperitoneal injections during the 

exposure to chronic morphine, carbenoxolone was able to rescue morphine antinociceptive 

tolerance seen in the warm water tail withdrawal assay (primarily a spinal reflex) and in the hot 
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plate assay (primarily mediated by supraspinal mechanisms). Carbenoxolone did not affect acute 

morphine antinociception. Examining whether carbenoxolone administered right before the 

morphine challenge would affect tolerance, we observed that carbenoxolone was not able to 

acutely reverse morphine antinociceptive tolerance in the warm water tail withdrawal assay.  

 Carbenoxolone has been shown to mitigate central and peripheral effects caused by chronic 

exposure to morphine. However, the molecule of carbenoxolone is polar and relatively large which 

raises the question as to its ability to cross the blood brain barrier. One study examined 

carbenoxolone levels in cerebral spinal fluid (CSF) of rats after intraperitoneal injection. The 

researchers observed “negligible levels” (<1 µM) of carbenoxolone in CSF (Leshchenko et al., 

2006). However, a major caveat of that study was that the drug potentially concentrated itself 

within brain tissue with little in the CSF. We developed a technique using UPLC-MS/MS in order 

to analyze carbenoxolone in whole brain tissue from mice. Less than 3% of the carbenoxolone 

levels found in blood was observed in the brain at any time point investigated. Whether the small 

amount of carbenoxolone observed in the brain tissue is biologically significant is unknown. 

However, the whole brain tissue was dissected and homogenized for this study. This dissection 

and homogenization would include some amount of blood vessels which may explain the small 

amount of carbenoxolone detected.  

 The evidence supporting carbenoxolone’s inability to cross the blood brain barrier suggests 

a peripheral site of action. The dorsal root ganglia contain the cell bodies of primary afferent 

neurons that act as a “relay station” transmitting sensory information from the periphery into the 

CNS. DRGs sit in the periphery just outside the blood brain barrier alongside the spinal cord. It 

has been well established that MORs are expressed in DRG neurons and it has been suggested that 

peripheral mechanisms are important for the development of opioid antinociceptive tolerance. 
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Deletion of MOR specifically on afferent nociceptors eliminated antinociceptive tolerance in mice 

while antinociception was unaffected (Corder et al., 2017). This suggests that the analgesic effects 

of morphine are mediated centrally while peripheral effects are playing a role in tolerance 

development. In the DRGs, satellite glial cells (SGCs) completely wrap around the sensory 

neurons. This arrangement allows SGCs to regulate ion concentration in the extracellular space, 

recycle neurotransmitters, and facilitate non-synaptic communication between neurons and glia 

(Gu et al., 2010; Suadicani et al., 2010). The signaling that occurs between neurons and SGCs 

involve gap junctions and this communication can be interrupted by the use of a gap junction 

inhibitor such as carbenoxolone (Suadicani et al., 2010). We have since published that tolerance 

to opioids can be evaluated in DRGs (Jacob et al., 2018; Kang et al., 2017). With this model, we 

observed that tolerance developed to morphine on a neuronal level with the same 5-day morphine 

pellet in-vivo treatment as done with the tail withdrawal and hotplate assays. Furthermore, 25 

mg/kg carbenoxolone administered on days 3 and 4 of chronic morphine exposure restored the 

neurons’ ability to respond to a morphine challenge, indicating that tolerance did not develop. This 

suggests a possible peripheral mechanism by which carbenoxolone is able to exert its attenuation 

of antinociceptive tolerance effects.  

 Although these results are intriguing, additional issues need further investigation. The most 

important issue with interpreting the effects of gap junction blockers such as carbenoxolone is that 

in addition to gap junctions, they affect various ion channels, receptors and enzymes. Therefore, it 

would be important to compare the behavioral effects of different gap junction blockers with 

results obtained in knockout mice for specific types of gap junctions. In addition, carbenoxolone 

which has been shown to block gap junctions but also shown to block NMDA receptors and block 

calcium channels at higher concentrations (Chepkova et al., 2008; Vessey et al., 2004). These 
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targets have been implicated in opioid antinociceptive tolerance  (Allen et al., 2000; Dogrul et al., 

2005; Tiseo and Inturrisi, 1992; Trujillo and Akil, 1991). A study examining carbenoxolone 

metabolism noted that carbenoxolone hydrolysis in mammalian tissues does not appear to occur 

and most of carbenoxolone metabolism occurs due to the microflora of the stomach and small 

intestine (Iveson et al., 1971). This suggests that active metabolites should not be a concern from 

an intraperitoneal injection however further studies should examine carbenoxolone’s metabolites, 

their possible effects, and ability to cross the blood brain barrier. 

 The notion that gap junctions may be involved in opioid tolerance has been suggested from 

previous studies.  Initial work demonstrating that microglia and astrocyte activation occurs as a 

result of chronic morphine treatment has been followed by demonstration of chronic opioid 

induced upregulation of connexins in astrocytes alongside the development of tolerance. 

Administering a gap junction blocker intrathecally attenuated the development of antinociceptive 

tolerance (Shen et al., 2014). Our study shows that gap junctions playing an important role in the 

development of opioid antinociceptive tolerance while also suggesting a potential peripheral 

target. Further work is needed to determine whether gap junctions on neurons or glia cells are 

integral for the development of opioid tolerance and if a certain type of connexin plays a leading 

role in this effect. 
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CHAPTER 5 

GENERAL DISCUSSION  

 Historically, the relief of moderate to severe pain was primarily managed by treatment 

utilizing opioid analgesic medications. However, hesitation exists to prescribe these medications 

due to the side effects that are associated with repeated use of these compounds. Repeated exposure 

to opioids can lead to tolerance to its desired effects, leading to a cycle of increasing doses 

accompanied by increased occurrence of side effects such as respiratory depression, constipation, 

dependence, in addition to addiction. This creates problems not only in clinical populations but 

also abusers as well. Clinically, opioids are often used in tandem with other medications and in 

different disease states. Outside the clinic, opioid abusers tend to be polydrug abusers, consuming 

a number of different substances often at the same time. In both cases, a variety of serious health 

complications can occur, many not fully understood. The objective of this dissertation was to 

investigate some of the complexities of chronic opioid exposure and how different disease states 

and medications may modulate the effects of chronic opioids. The studies described here lead to 

new understandings of what occurs on a behavioral and cellular level during repeated exposure to 

opioids. 

 In our first series of experiments, we investigated the increasing occurrence of 

benzodiazepine use alongside the prescription opioid epidemic. Benzodiazepines are among the 

most frequently prescribed medications in the world (Coach Jr., 1990). They are commonly 

prescribed for the treatment of anxiety disorders. Research suggests that the abuse liability of 

benzodiazepines is especially notable in recreational users of other drugs (Jones et al., 2012). 

Additionally, patients maintained on opioid agonists such as methadone and buprenorphine, as 

well as active heroin users, tend to abuse benzodiazepines (Barnas et al., 1992; Brands et al., 2008; 
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Darke et al., 1995, 1992; Kleber and Gold, 1978). One study investigating heroin users in Australia 

showed that 2 out of 3 heroin users reported nonmedical benzodiazepines use within the past year, 

and 91% reported a lifetime prevalence (Ross and Darke, 2000). Furthermore, opioid-dependent 

populations show a preference for particular benzodiazepines. One of the most commonly 

coabused benzodiazepine in these populations is diazepam (Bramness and Kornør, 2007; Du Pont, 

1988; Iguchi et al., 1993). Whether the co-abuse of opioids and benzodiazepines stem from 

underlying psychiatric disorders (i.e. anxiety), aiding with dependence, or increasing the rewarding 

and reinforcing effects remains to be determined. However, studies have shown individuals may 

be using benzodiazepines to amplify the positive effects of opioids. For example, one study 

reported that 72% of methadone-maintained patients who were regular benzodiazepine users 

indicated that diazepam enhanced the effects of their daily methadone dose (Stitzer et al., 1981).   

 In 2016, the Food and Drug Administration issued a black-box warning about co-

prescribing benzodiazepines and opioids. Among the data reviewed by the FDA, the agency 

concluded that from 2004 to 2011, the rate of emergency department visits involving non-medical 

use of both drug classes increased significantly, with overdose deaths involving both drug classes 

nearly tripling during that period. Studies have observed an increased effect of respiratory 

depression when benzodiazepines are administered intravenously (Carraro et al., 2009; Zacharias 

et al., 1996). It has yet to be determined how benzodiazepines may affect opioid tolerances, if it is 

simply additiveness or something more. Our observations suggest this phenomenon may not be 

simply due to the additive or synergistic of these CNS depressants but instead results from a 

reversal of opioid tolerance. Diazepam, at doses tested, did not induce any antinociceptive effects 

on their own nor did they potentiate acute doses of the commonly prescribed opioids oxycodone 

or hydrocodone. However, in an opioid tolerant state, diazepam rescued the antinociceptive effect 
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of both oxycodone and hydrocodone, enabling the opioids to produce antinociception at doses 

similar to those observed in a mouse acutely treated with morphine. This reversal of tolerance 

effect extends to locomotor tolerance as well. Commonly described as a depressant, diazepam was 

able to rescue the increased locomotor effects commonly seen by opioids administered to drug-

naive mice. 

 Although not tested in this series of experiments, a previous publication from our 

laboratory showed similar reversal of tolerance for morphine, a partial μ-agonist like oxycodone 

and hydrocodone. That work showed that the reversal of tolerance effect of diazepam was blocked 

by the GABAA antagonist bicuculline, suggesting that diazepam is enacting these effects through 

GABAA. Benzodiazepines act as positive allosteric modulators of the GABAA receptors. 

Benzodiazepines act to enhance the effects of GABA by increasing chloride flux and rate of 

channel opening. In terms of circuitry, it has been theorized that both benzodiazepines and opioids 

produce a hyperpolarization of GABA interneurons which causes a reduction in the release of 

GABA which results in the disinhibition of dopaminergic neurons and an increase in extracellular 

dopamine in areas such as the striatum (Tan et al., 2011). Opioid-induced locomotion is due to mu 

opioid receptor-mediated increases in striatal dopamine release (Johnson and Glick, 1993; Kalivas 

and Duffy, 1987; Piepponen et al., 1999). GABAergic interneurons also play an important role in 

opioid antinociception (Lau et al., 2014). This suggests the GABAA receptor as a potential site of 

action that should be further characterized.  

People who suffer from addiction often have one or more accompanying medical issues 

including infectious diseases. Concurrent with the opioid abuse epidemic, almost 40,000 people 

were diagnosed with HIV infection in the United States in 2015 (CDC, 2016). Opioid abuse and 

the spread of HIV are intertwined public health epidemics. Worldwide, injection drug use (IDU) 
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accounts for ~30% of new HIV-1 infections while within the United States, over 3,500 new 

infections involved IDU in 2015 (WHO, 2016; CDC, 2016). Among non-addicts, HIV-related pain 

may necessitate opioid analgesics. These populations face special risks because a number of 

studies have uncovered evidence that opioid usage increases the progression of HIV-1 to AIDS 

and promotes neurocognitive impairment in humans and in non-human primates (Bell et al., 2006, 

2002; Bokhari et al., 2011; Chuang et al., 2005; Donahoe et al., 1993; Kumar et al., 2006; R et al., 

2004; Rivera et al., 2013).  Furthermore, studies have shown that the HIV-1 regulatory protein Tat 

can be secreted from infected cells to exert direct and indirect neurotoxicity by promoting 

neuroinflammation (reviewed in King et al., 2006; Nath et al., 2002). Even with the recent 

innovative antiretrovirals that have made HIV treatable but not yet curable, Tat may sequester in 

regions of the brain to nearly undetectable levels and still cause neuroinflammation (Hellmuth et 

al., 2015).  As previously mentioned, in vitro studies have shown that morphine exacerbates Tat 

effects to activate microglia, increase cytokine production, drive oxidative stress, increase 

intracellular calcium, and promote neurotoxicity. Morphine and Tat interactions may depend on μ 

opioid receptors (MORs) given that neurotoxic synergy is observed in co-cultures when mixed 

glia express MORs, but not when they are derived from MOR−/− mice (Zou et al., 2011). These 

data support the notion that glial MORs are critical for the indirect neurotoxic effects of Tat.  

 The proinflammatory effects of HIV-1 Tat at CCR5 have been reported to directly 

influence opioid sensitivity. In studies of opioid-mediated antinociception in rats, activation of 

CCR5 can rapidly desensitize μ-opioid-receptors (Chen et al., 2007). A bivalent ligand comprised 

of an opioid receptor antagonist (naltrexone) and CCR5 antagoinist maraviroc reduced the 

infectivity of human astrocytes when cultured with R5-tropic HIV (Arnatt et al., 2016; El-Hage et 

al., 2013; Yuan et al., 2013). These data suggest a dynamic relationship between MOR and CCR5 
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activation that may contribute to HIV pathology; however, the functional effects are poorly 

understood. As such, we investigated morphine tolerance, dependence, and reward in a transgenic 

murine model that conditionally expresses the proinflammatory HIV-1 regulatory protein, Tat. We 

demonstrated that pretreatment with the CCR5 antagonist, maraviroc, blocks the effects of Tat on 

morphine tolerance and dependence behaviors (reinstating morphine potency in non-tolerant mice 

and restoring aspects of withdrawal symptomology in morphine tolerant mice). Intriguingly, 

maraviroc also potentiated the Tat-induced increase of morphine-CPP, even while it reduced the 

levels of many inflammatory chemokines and cytokines in the striatum including β-chemokines. 

Interestingly, Tat was able to attenuate the antinociceptive properties of acute morphine in opioid-

naïve mice. Maraviroc administered to Tat + mice rescued the antinociceptive properties of 

morphine. We proposed a possible model of cross-desensitization that may contribute to the 

behaviors observed. When a neuroinflammatory insult, in the form of Tat, is present, morphine 

potency is diminished on most measures, perhaps due to endogenous MORs becoming cross-

sensitized by activated CCR5 receptors. When maraviroc is introduced to block the CCR5 

receptors, we speculate that it may relieve the cross-sensitization of MORs, restoring morphine 

signaling. While cross-desensitization of MOR and CCR5 is fairly well documented in vitro and 

is seemingly due to phosphorylation of the receptors, the intracellular kinases responsible have yet 

to be determined. However in a 2005 study, researchers observed PKC playing an integral role in 

the cross-desensitization occurring among different chemokine receptors (including CCR5). It has 

been often reported that PKC play an important role in MOR desensitization in vitro and in both 

respiratory depressive and antinociceptive tolerance after repeated exposure to morphine and other 

opioids (Bailey et al., 2009, 2006; Hill et al., 2018; Hull et al., 2010; Jacob et al., 2018; Lin et al., 

2012; Llorente et al., 2013; Smith et al., 1999). This suggests that activating CCR5 due to the Tat 
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inflammatory insult may be activating PKC downstream. This may preemptively desensitize 

MORs, behaviorally seeming like tolerance even though subjects are naïve to opioids. Future 

studies should examine whether Tat’s attenuation of certain effects of morphine is due to 

intracellular processes involving PKC. 

 As mentioned previously, glial MORs appear to be critical for the indirect neurotoxic 

effects of Tat. Studies have shown that in astrocytes, significant changes in gene expression, 

apoptosis, glutamate metabolism, and blood brain barrier have been reported, suggesting that these 

cells play a key role in NeuroAIDS (Berman et al., 2016; Eugenin et al., 2011; Wang et al., 2004). 

A major component of astrocytes and other glial cells are gap junctions, which are channels that 

connect the cytoplasmic compartment a cell to other cells or into the extracellular space and allow 

electrical and secondary messenger based communication to occur. However, HIV infection of 

astrocytes results in opening of hemichannel and increases the amount of hemichannel present 

particularly connexin 43 (Berman et al., 2016). HIV-Tat protein has been implicated as directly 

promoting the increase in connexin upregulation, however a recent publication shows the mere 

exposure of HIV-Tat in the colon of rats causes an inflammatory cascade through connexin 43 

upregulation going up the spinal cord into the brain with no detectable HIV-Tat in the CNS 

(Berman et al., 2016; Esposito et al., 2017). Blocking gap junctions using carbenoxolone 

significantly reduced HIV infection of human-derived pericytes (Cho et al., 2017). Another recent 

study shows that gap junctions are integral for HIV-induced toxicity (Malik et al., 2017). 

Upregulated gap junction expression and function, particularly connexin 43, has been associated 

with chronic exposure to morphine including morphine tolerance (Bhave et al., 2017a; Moradi et 

al., 2013; Shen et al., 2014). Therefore, we tested the hypothesis that carbenoxolone, a gap junction 

inhibitor, administered systemically would attenuate the development of morphine antinociceptive 
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tolerance. We observed that carbenoxolone was able to attenuate the development of morphine 

antinociceptive tolerance in a dose-dependent manner. Carbenoxolone given acutely before 

challenge doses of morphine did not affect morphine antinociception nor did it acutely reverse 

antinociceptive tolerance. In an attempt to identify a possible site of action where carbenoxolone 

may produce its effects, we demonstrated that carbenoxolone is not observed in brain tissue after 

intraperitoneal injection, suggesting an effect in the periphery. Subsequently, we observed that 

carbenoxolone administration in vivo during chronic exposure to morphine attenuated the 

development of tolerance in neurons isolated from dorsal root ganglion. Peripheral mechanisms 

for antinociceptive have been suggested in the past (Corder et al., 2017; Kang et al., 2017; Puig 

and Gutstein, 2017). Future studies should examine the location (neuronal or glial) and what type 

of gap junctions (i.e. connexin 43) are necessary for this effect to occur. This can be performed 

using specific connexin knockouts inducible on neurons or glial cells.  

 Collectively, the studies in this dissertation have increased our knowledge of the 

interactions between chronic opioids and different medications and disease states. The compounds 

diazepam, maraviroc and carbenoxolone highlight the complexities of how chronic opioid effects 

such as tolerance manifest and can be modulated. At the same time, these compounds teasingly 

point to mechanisms that may be shared by chronic opioid exposure. For instance, GABAergic 

interneurons play a pivotal in pain circuity as well as in opioid’s analgesic effects from CNS areas 

such as the PAG and dorsal horn spinal cord (Lau et al., 2014). Timely activating GABAA receptors 

in DRGs after peripheral nerve injury has been shown to attenuate the development of neuropathic 

pain (Naik and Pathirathna, 2008). As previously shown, activating GABAA receptors reversed the 

development to opioid antinociceptive tolerance (Hull et al., 2013). Specifically where in the body 

this occurs should be examined in future studies. Chronic opioids are known to activate glial cells 
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including astrocytes, microglia, and satellite glia (Shen et al., 2014; Song and Zhao, 2001). Glia 

play an important role in the regulation of GABA reuptake (Allison et al., 2011). An integral 

component of glia activation and resulting communication with neurons are through gap junctions. 

We and others have shown that gap junctions appear to play a role in the development of opioid 

tolerance and other opioid mediated effects (Moradi et al., 2013; Shen et al., 2014). Glial cells are 

also important mediators of inflammation. Inflammatory insults including TNF-α, IL-1β, and IL-

6  have been associated with chronic morphine exposure and with opioid tolerance (Shen et al., 

2012). Inflammatory cytokines activating CCR5 can cross-desensitize MOR through a 

phosphorylation mechanism that, although experimental evidence is lacking, may involve PKC, a 

kinase that has been implicated in opioid tolerance. The interactions between these components 

warrant future experiments in order to elucidate the specific pathways by which opioids enact their 

acute and chronic effects. 

 With the overprescription of opioid analgesics as well as the availability of potent heroin, 

the opioid epidemic has grown to unprecedented heights in the past decade. Consequently, more 

people are chronically exposed to opioids. Studies on repeated exposure to opioids have been done 

for decades yet the mechanisms for certain phenomena such as tolerance are still not fully 

understood. Furthermore, different medications, such frequently prescribed benzodiazepines, or 

different disease states, such as HIV, have their own effects and interactions with chronic opioid 

exposure that are not fully examined. The present findings add to the body of literature by 

investigating the consequences of these interactions on opioid-mediated effects especially 

antinociceptive tolerance while highlighting potential components that play a role in opioid 

tolerances.  
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Appendix A 

 

Table 3. Changes in various parameters were analyzed at baseline (0 minutes) and 10 minutes 

following the application of an external solution containing 3μM morphine. Threshold potential 

(VThresh) was significantly reduced in response to morphine in all treatment groups except in 

the neurons isolated from the morphine pelleted mice. Membrane capacitance (CMem), resting 

membrane potential (VRest), peak action potential height (AP VPeak), rheobase, and input 

resistance (RInput) were all unaffected by 3 μM morphine. #PP + SAL and MP + SAL groups 

have been previously published by our laboratory (Kang & Mischel et al., 2017). ***p<0.001 

 

 

 

 

 

PP + Saline
#  + 3 uM 

Morphine
#

MP + Saline
#  + 3 uM 

Morphine
#

MP + CBX  + 3 uM 

Morphine

CMem (pF) 18.5 ± 1.6 15.8 ± 1.9 21.0 ± 1.7

Rseries (MΩ) 8.6 ± 0.8 9.1 ± 0.8 10.8 ± 2.1

VRest (mV) −58.2 ± 1.6 −57.0 ± 2.1 −58.8 ± 2.8 −59.8 ± 2.8 −55.0 ± 1.4 −53.4 ± 1.3

AP VThresh 

(mV)
−13.2 ± 2.1 −3.4 ± 4.3*** −20.7 ± 2.3 −21.6 ± 3.2 −16.6 ± 2.2 −11.8± 2.1***

AP VPeak 

(mV)
51.6 ± 6.0 53.4 ± 5.6 43.3 ± 6.4 58.0 ± 3.4 56.1 ± 3.4 59.5 ± 6.3

Rheobase 

(nA)
0.15 ± 0.06 0.21 ± 0.07 0.05 ± 0.02 0.03 ± 0.01 0.23 ± 0.02 0.3 ± 0.05

RInput (MΩ) 479.4 ± 158.3 257.5 ± 62.8 422.8 ± 132.2 671.7 ± 41.67 413.9 ± 56.4 382.5 ± 63.4

Table 3: Active and Passive Cell Properties of DRG Neurons in Response to 3μM Morphine
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