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Abstract 

LIQUID INTERACTION WITH NON-WETTABLE SURFACES STRUCTURED WITH 

MACROSCOPIC RIDGES 

By Mehran Abolghasemibizaki, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2018 

 

Major Director: Reza Mohammadi, Assistant Professor, Department of Mechanical and Nuclear 

Engineering 

 

Self-cleaning, anti-corrosion, anti-icing, dropwise-condensation, and drag-reduction are some 

applications in which superhydrophobic surfaces are implemented. To date, all the studies 

associated with superhydrophobic surfaces have been dedicated to understanding the liquid 

interaction with surfaces that are macroscopically smooth. The current study investigates the solid-

liquid interaction of such surfaces which are fully decorated with macroscopic ridges (ribbed 

surfaces). In particular, the drop motion and impact on our newly designed non-wettable ribbed 

surface have been investigated in this work. Our experimental investigations have shown that 

liquid drops move faster on the ribbed surfaces due to lower friction induced by such a surface 

pattern. Moreover, an impacting droplet shows shorter contact time on ribbed surfaces. This 

concludes that ribbed surface pattern can be an efficient alternative design for the related 

applications. 

Besides the experimental studies, the theoretical analyses done in this work have led to, firstly a 

scaling model to predict descent velocity of a rolling viscous drops on an inclined non-wettable 

surface more accurately. Secondly, for curved superhydrophobic surfaces a scaling model which 
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correlates the contact time of the impacting drop to its impact velocity has been developed. At the 

end, the knowledge obtained from this work has led to a special surface design which exhibits a 

contact time shorter than the inertial-capillary time scale, an unprecedented phenomenon. 
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Chapter 1 Introduction 

1.1 Background 

The interaction between a liquid drop and a solid surface is ubiquitous in our lives. While water is 

essential to life, its presence is not always beneficial. For instance, turbine blades will corrode 

when exposed to water and problems such as these have promoted the study and design of 

hydrophobic surfaces, which repel water. Mother Nature herself is not immune from water’s effect, 

as she has often employed hydrophobic/superhydrophobic surfaces ranging from lotus leaves to 

gecko skin [1-4]. Having closely inspected a lotus leaf, researchers have found that the micro- and 

nanoscopic architecture of its surface holds air pockets underneath a drop sitting on it and 

consequently the drop holds its spherical shape and does not wet the leaf. Moreover, not only does 

Nature tailor a hydrophobic surface on a microscopic scale, she also does so on the macroscopic 

scale to optimize its performance [3, 4]. Inspired from this, the main objective of this work is to 

design and fabricate a non-wettable surface which repels the liquid drops as quickly as possible. 

Having fabricated a non-wettable surface structured with macroscopic ridges, I studied the liquid 

interaction with such a ribbed surface. 

Generally, the wettability of a surface is assessed by its contact angle (θ) with a liquid droplet, 

determined through the balance of adhesive and cohesive forces acting on the three-phase contact 

line [5]. The cohesive forces of the liquid endeavor to minimize its surface area per volume, which 

causes the droplet to ball up and avoid further contact with the surface. On the other hand, the 

adhesive forces, depending on the chemistry of the substrate and its interaction with the liquid, 

tend to maximize the solid-liquid contact area [6, 7]. When the adhesive forces dominate the 

cohesive ones, the liquid drop wets the surface (θ < 90°), whereas if the cohesive forces overcome 
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the adhesive ones the surface gets wet partially. In most cases, water is used as the reference liquid; 

therefore, when the contact angle of a water droplet on a surface is acute, the surface is referred to 

as hydrophilic, whereas for contact angles θ ≥ 90° it is called hydrophobic. Superhydrophobicity, 

characterized by θ > 150° and a contact angle hysteresis < 10° [7, 8], will be obtained when a 

hydrophobic surface acquires high-aspect-ratio surface protrusions in micro-scale [9]. Depositing 

a liquid drop on such a surface, if the liquid enters the surface asperities, the wetting is in the sticky 

Wenzel state with high contact angle hysteresis. In contrast, when the liquid suspends on the tips 

of the surface asperities and the air is preserved among the surface roughness, the slippery Cassie-

Baxter state is achieved with low hysteresis [8]. 

Contact angle hysteresis is the difference between the values of dynamic contact angles, advancing 

and receding. Advancing contact angle is measured when the volume of the liquid drop sitting on 

the solid substrate increases, for example by injecting more liquid to the drop. The receding contact 

angle is associated with the value measured for a liquid drop shrinking in volume. Hence, if the 

wetting state of a liquid drop on a superhydrophobic surface is Wenzel, pinning happens and 

hysteresis will be high, while for the Cassie-Baxter state there is no pinning and the hysteresis will 

be sufficiently low (< 10°). 

The fabrication methods of superhydrophobic surfaces have been the focus of many studies due to 

the numerous applications of these surfaces such as drag-reduction [10], self-cleaning [2, 11, 12], 

anti-corrosion [13, 14], anti-icing [15, 16], and dropwise condensation [17-19]. The preparation 

methods can be categorized into bottom-up, top-down, and combination of both microfabrication 

approaches [20]. Both methods lead to surfaces with submicron roughness and low surface energy, 

the two main characteristics of a non-wettable surface. These methods, however, not only involve 
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many burdensome steps, but also require expensive pieces of equipment and lack scalability. An 

alternative method is depositing a layer of coating which inherently possesses the micro-

/nanoscopic roughness, such as carbon soot. 

The ribbed surface pattern utilized in this work was obtained by using an extruder-type 3D printer. 

A layer of our soot coating was deposited on the samples and then a chemical treatment [21] was 

done to achieve a functionalized soot coating with higher robustness and low surface energy. The 

interaction of liquid drops with such a non-wettable ribbed surface has been investigated from two 

distinguished points. First, the motion of drops on such a slippery surface and second, the dynamics 

of impact on them. These two broadly include the dynamic and practical solid-liquid interactions.  

1.1.1 Droplet Motion on an Inclined Surface 

A liquid drop with surface tension (γ), density (ρ), and radius (Ro) deposited on an inclined solid 

surface tilted at the angle of (α) moves down if its weight (
4𝜋

3
𝑅𝑜

3𝜌𝑔𝑠𝑖𝑛𝛼, where g is the 

gravitational acceleration) exceeds the capillary force (𝜋𝑙𝛾(𝑐𝑜𝑠𝜃𝑟 − 𝑐𝑜𝑠𝜃𝑎), where l is the radius 

of solid-liquid contact area and 𝜃𝑟 and 𝜃𝑎 are receding and advancing contact angle, respectively) 

[22]. It has been shown that if the liquid partially wets the surface, the larger the drop, the faster it 

moves [22-26] because the motion is mainly slipping generated by the weight of the drop. In the 

case of non-wettable surfaces, the scenario is indeed different and the viscosity (μ) of the liquid 

must be taken into consideration. For liquids of low viscosity, such as water, the drop runs down 

with an acceleration similar to a free fall in the early stage of the motion [23]. A viscous drop, 

however, rolls down at a constant descent velocity determined by the balance between viscous 

dissipation and the reduction rate of its gravitational potential energy, which results in the smaller 

the drop, the faster it rolls [22, 26]. Therefore one approach to examine to what extent decorating 
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a non-wettable surface with macroscopic ridges alters its interaction with liquids is comparing this 

descent velocity with that of a macroscopically-smooth counterpart, which will be discussed in 

detail in Chapter 3. 

1.1.2 Droplet Impact on Solid Substrates 

As Rioboo et al. [27] mentioned in their work, six different scenarios are likely to happen after the 

collision in droplet impact phenomena regarding to the liquid’s properties and the wettability of 

the solid object; namely deposition, prompt splash, corona splash, receding breakup, partial 

rebound and rebound. Deposition, the most probable scenario, happens when the droplet spreads 

and stays attached to the solid substrate without any breakup during the impact process. This 

happens when the liquid partially wets the solid substrate and the surface has no surface asperities 

to interrupt the deposition process [27]. When the wettable surface becomes rough, the scenario 

changes to prompt splash. In prompt splash, many small droplets generate directly at the contact 

line at the beginning of the spreading phase when the radial velocity is high [27]. For example, 

when a liquid drop with low surface tension (ethanol 𝛾 = 22 mN/m) impacts on a micropatterned 

substrate made of polydimethylsiloxane (PDMS), a high enough impact velocity changes the 

deposition scenario to the prompt splash type [28]. Corona splash occurs when a drop hits a 

wettable surface with no roughness at high impact velocity [27] - for instance, an ethanol drop 

hitting smooth glass [29]. In this scenario the impacting drop appears as a corona after the collision, 

and smaller droplets generate around the rim of the corona, removed from the solid surface.  

The last three scenarios belong to either superhydrophilic or superhydrophobic surfaces. When the 

liquid perfectly wets the surface (superhydrophilic), the receding contact angle can even get to 

zero. Receding breakup is a pure wetting phenomenon in which the receding contact angle 
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decreases while the liquid retracts from its maximum spreading radius, and some drops are left 

behind if the receding contact angle reaches the limiting value of zero [27, 30]. Partial rebound 

and rebound are observed when the solid substrate is superhydrophobic [27]. Superhydrophobic 

surfaces are achieved by both high degree of surface roughness and low surface energy, which 

enable them to trap air in their pores and exhibit contact angle θ > 150° when they are in contact 

with water droplets. If the impact velocity is high enough to penetrate into the surface protrusions, 

partial rebound occurs, otherwise the droplet rebounds [23]. The scenario that we are studying is 

rebound, due to the superhydrophobicity of the carbon soot coating which we are utilizing in this 

research (θ ~ 165°). 

1.1.3 Droplet Impact on Superhydrophobic Surfaces 

When a water droplet lands on a superhydrophobic surface, its deformation is primarily controlled 

by its kinetic and surface energies [31], hence, the dynamic characteristics of the impact is defined 

by Weber number, 𝑊𝑒 = 𝜌𝑉2𝑅𝑜 𝛾⁄ , in which V is the impact velocity of the droplet. If kinetic 

energy is much smaller than surface energy, 𝑊𝑒 ≪ 1, the water droplet behaves as a tennis ball 

hitting the ground [23, 32, 33]. In this regime the lower the impact velocity, the longer the contact 

time, which means that if the impact velocity is too small (V ~ 0), the droplet sticks to the surface 

[23, 31]. Above this critical point, (𝑊𝑒 = 1) however, the contact time is independent of the 

impact velocity. The water droplet behaves as spring of mass 𝜌𝑅𝑜
3 and stiffness γ with response 

time as 

𝜏𝑜 =  √𝜌𝑅𝑜
3 𝛾⁄                (1.1) 
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though its oscillation is far from being linear [23, 31-33]. For symmetric bouncing of a droplet in 

both low-deformation regimes (𝑊𝑒 < 1) and high-deformation regimes (𝑊𝑒 > 1), the contact 

time (𝑡𝑐) is theoretically limited by the Rayleigh constant, 𝑡𝑐 𝜏𝑜⁄ ≥ 𝜋 √2⁄ ≈ 2.2 [34], including 

Leindenfrost drops [35]. Although inertial-capillary time scale (τo) does not depend on the impact 

velocity, the deformation of the droplet and other details of the intermediate stages mainly depend 

on it.  

Having struck a superhydrophobic surface, a water droplet deforms to a pancake of radius Rmax 

and thickness δ. Due to the high restitution coefficient (of the order of 0.9) and small enough 

capillary number (𝜇𝑉 𝛾⁄ < 0.03) the effect of viscosity can be neglected [23, 32], Euler’s equation 

thus can be used for scaling analysis [33, 36]. 

𝜌
𝐷𝑉

𝐷𝑡
=  −∇𝑃 + 𝜌𝑔              (1.2) 

Okumura et al. [33] claimed that since the collision occurs during an impacting time 𝑅𝑜 𝑉⁄ , the 

inertial term in Equation (1.2) is of the order of 𝜌𝑉2 𝑅𝑜⁄ . The Laplace pressure scales as 𝛾 𝛿⁄ , 

which changes over the thickness of the pancake δ, hence, the pressure gradient scales as 𝛾 𝛿2⁄  . 

Moreover, the thickness of the pancake scales as 𝑅𝑜
3 𝑅𝑚𝑎𝑥

2⁄  through the conservation of mass. Since 

the deformation is large enough to neglect the gravity term, Equation (1.2) can be dimensionally 

written as 

𝜌𝑉2

𝑅𝑜
=

𝛾𝑅𝑚𝑎𝑥
4

𝑅𝑜
6                            (1.3) 

Therefore the maximum radius of the pancake scales as  

𝑅𝑚𝑎𝑥 ~ 𝑅𝑜𝑊𝑒1/4               (1.4) 
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Equation (1.4) can be deduced from another approach [36] as well. For a sessile drop, a puddle 

(pancake) forms when the size of the droplet is larger than the capillary length [22, 37], 𝜅−1 =

√𝛾 𝜌𝑔⁄ . Since balance between gravity and surface forces defines the shape of the puddle, its 

thickness scales with 𝜅−1 [38]. As the impact velocity (V) decreases to zero during the impacting 

time 𝑅𝑜 𝑉⁄ , the acceleration experienced by the drop is 𝑉2 𝑅𝑜⁄ , not g. Casting this reinforced 

gravity field to define a new capillary length causes the thickness of the puddle to scale 

with √𝛾𝑅𝑜 𝜌𝑉2⁄ . Employing the conservation of mass, Equation (1.4) can be deduced at the end 

[36]. This approach will be explained in more detail in Chapter 4.  

Recently, two techniques have shown that the Rayleigh limit [34, 35] can be pushed lower through 

altering the dynamics of impact during spreading and recoiling stages [39-41]. The first technique 

provides a single macrotexture, whose amplitude is comparable to the thickness of the pancake, 

on a flat superhydrophobic surface [39, 40]. Second, designing a cylindrical superhydrophobic 

substrate whose radius is in the order of the radius of the impacting droplet [41]. 

On a flat superhydrophobic surface, the droplet spreads symmetrically to a pancake of uniform 

thickness (δ). The center of the pancake is inert during the retraction stage while its edge retracts 

at a constant velocity of [23, 42, 43] 

𝑉𝑟 = √2𝛾 𝜌𝛿⁄                 (1.5) 

If a water droplet impacts on a macrotexture, as shown in Figure 1.1, the symmetrical spreading 

will be interrupted. Since the liquid film is thinner along the macrotexture, the retraction velocity 

is faster with less mass to accelerate [39], see Figure 1.1b-c.  
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Figure 1.1. Schematic diagram of the impact process on a single macrotexture. (a) A water droplet of radius Ro 

impacts on a macrotexture of height a < δ < Ro at velocity V. The diagram portrays (b) side and (c) top view of the 

recoiling pancake of thickness δ at non-uniform retraction velocity (Vr vs Vp). Adapted from Refs. [39, 40].  

Bird et al. [39] claimed that according to the Equation (1.5), the retraction velocity for the thin 

film on the peak of the macrotexture is approximately 𝑉𝑝 ≈ √2𝛾 𝜌(𝛿 − 𝑎)⁄ , where a is the 

texture’s amplitude, therefore, the outer edges of the liquid film on the texture recoils toward the 

center at higher speed. Using this rationality and assuming that the retraction velocity of the newly-

formed inward rim is equal to the rest of the retracting film, they came up with an expression to 

predict the contact time reduction. Not only did the expression depend on the thickness of the 

flattened droplet, which is controlled by the impact velocity, but also it underestimated the contact 

time reduction by factor of 2 for their specifically designed experiment. It explains that the contact 

time reduction for a superhydrophobic macrotexture depends on the impact velocity, an important 

point that has been neglected. Bird et al. [39] presented Figure 1.2 to show how the water drop 

spreads and retracts on the macrotextured surface (black circles) versus on the smooth control 

surface (red squares). The most important point of this plot is that the spreading time (Ts) on the 

both surfaces are equal, something that will be revisited in Chapter 4. 

(a) (b) (c) 



 

 

9 

 

 

Figure 1.2. The variation of the position of the contact line, as shown as r in the inset, during the impact period. 

Courtesy of Bird et al. [39], used by permission. 

Since it became clear that the contact time reduction from implementing a single macrotexture 

depends on the impact velocity, Gauthier et al. [40] investigated how this reduction varies with 

respect to this crucial parameter. They claimed that the contact time takes distinct values of ~ 𝜏 √2⁄  

and ~ 𝜏 √4⁄  at relatively intermediate and high impact velocity ranges, respectively, where τ is the 

contact time on a macroscopically-smooth surface [40], which they presented in Figure 1.3. They 

interpreted that these values are the consequence of the formation of 2 and 4 main liquid subunits 

at the corresponding velocity ranges during the spreading stage. However, it can be seen that the 

actual values are a little higher than what they predicted. Figure 1.3 also has two important points 

that will be revisited in Chapter 4. First, the contact time decreases in a step-like manner as the 

impact velocity increases. Second, changing the size of the macrotexture (b) has no effect on the 

reduction value and manner.  
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Figure 1.3. Variation of the contact time of water droplet impacting on a macrotexture for (a) different radius of the 

droplet (b) different radius of the macrotexture when the impact velocity increases. Contact time on the texture is 

normalized by τ, contact time on the control smooth surface. Courtesy of Gauthier et al. [40], used by permission. 

Moreover, such an outstanding reduction (~ 𝜏 √4⁄ ) happens when the drop hits the macrotexture 

exactly in the center and it shifts back to τ as the impact center recedes into the distance Rmax. 

Therefore, an investigation to clarify how the contact time varies if a non-wetting surface is fully 

decorated with macrotextures, which will be discussed in Chapter 4, is needed. 

The other technique for reducing the contact time is fabricating a cylindrical superhydrophobic 

surface whose curvature is comparable to the droplet size [41]. Unlike flat or spherical surfaces, a 

cylindrical surface breaks the symmetry of the bouncing drop during the spreading stage, which 

assists the stationary center of the flattened drop to take off sooner in recoiling stage. Recently, 

Liu et al. [41] studied the impact of water droplet on curved superhydrophobic surfaces and 

reported that the drop spreads preferentially in azimuthal (curved) direction rather than in axial 

(straight) direction, which results in elliptical spreading. Since the tangential component of the 

momentum is disturbed less in the azimuthal direction compared to the axial one, more momentum 

is transferred to this direction [41]. This asymmetric spreading can be seen in Figure 1.4a. Since 

they have observed that the liquid drops leave the surface as soon as the retraction in the axial 

direction completes, they split the contact time in this direction into its components, spreading and 
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retraction times, as shown in Figure 1.4b. The important point of their study that will be revisited 

in Chapter 5 is that, for all the cases they studied, the spreading time in the axial direction of a 

curved surface is equal to that of a flat one (expressed by D/Do ~ infinity). Using this incident, we 

found a scaling model for the contact time reduction on curved surfaces with respect to the impact 

velocity, which will be discussed in detail in Chapter 5. 

 

Figure 1.4. (a) Variation of contact line in axial and azimuthal directions during the droplet impact on a curved 

surface. (b) Splitting the contact time in the axial direction, the plot shows the variation of the spreading time (t1, 

left) and the retraction time (t2, right) for drop with Do = 2.9 mm impacting on flat (Infinity) and curved surfaces 

with various diameters (D) at different impact velocities. Courtesy of Liu et al. [41] 

1.2 Structure of This Dissertation  

This dissertation explains how we have managed to fabricate a non-wettable surface enveloped in 

cylindrical ridges (ribbed surfaces) and then study its interaction with liquid drops. Chapter 2 

discusses our engineering approach to prepare an inherently robust superhydrophobic soot coating 

with a good adhesion to the substrate. We used a specially-designed conical chimney to manipulate 

the combustion process of rapeseed oil and produce a modified soot coating.  

In Chapter 3, the wettability study of our coating is completed and then the rolling of a viscous 

drop on our ribbed surfaces is discussed [44]. Since the non-wetting property of a surface should 
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rise as its roughness increases, the drop should move faster on a ribbed surface. Such a surface was 

obtained via soot deposition on a solid specimen printed by an extruder-type 3D printer. It was 

found that the ribbed surface aids the liquid drops to roll down ~27% faster (along the ridges) 

compared to the surface with no ridges. This faster velocity advocates the implementation of ribbed 

surfaces for drag-reduction and self-cleaning applications. In addition, a modified scaling model 

which predicts the descent velocity of viscous rolling drops more accurately than the original one 

was found and presented in this chapter [44]. 

Although the amount of time during which the collision happens is mostly in the order of 10 ms 

for millimetric droplets, decreasing this contact time is beneficial in many applications. As 

mentioned earlier, it has been shown that decorating a superhydrophobic surface with a single 

macrotexture reduces the contact time if the droplet hits the texture exactly in the center. To 

address this restriction, in Chapter 4 we systematically study the dynamic of water droplet impact 

on a surface fully decorated with cylindrical ridges at different impact velocities and ridge sizes 

for varied drop volumes. Our data show that when the kinetic energy of the drop is sufficient to 

completely wet the ridges, intermediate regime, the contact time reduces ~13% as the consequence 

of ~20% faster retraction, regardless of the location of the contact point [45]. In high impact 

regime, the contact become shorter since the flattened drop splashes from the periphery. The 

simplified, time-efficient and inexpensive method of fabrication presented in this chapter can be 

employed in fabricating many versatile non-wettable surfaces with complex geometries. 

From the work of Chapter 4, it can be concluded that a ribbed-curved surface with an additional 

macrotexture on top of its peak may logically lead to a very short contact time. This investigation 

is presented in Chapter 5. The bouncing of water droplets of three different volumes on curved and 
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ribbed-curved samples with two different diameters was investigated for varied impact velocities 

[46]. Our theoretical investigation led to a scaling model for the contact time reduction with respect 

to the impact velocity on curved surfaces. It was found that adding a macroscopic wire to the peak 

of a cylinder structured with macro-scale ridges (wired ribbed-curved surfaces) yields the contact 

time even shorter than the inertial-capillary time scale, an unprecedented phenomenon [46]. 

Finally, Chapter 6 concludes our studies and proposes some investigations for future. 
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Chapter 2 Facile and Inexpensive Synthesis of Durable Superhydrophobic Carbon Soot 

Coatings 

2.1 Introduction 

This chapter summarizes the parts of our studies, on the preparation of surfaces [47-49], relevant 

to this dissertation. Using a candle flame or burning rapeseed oil has become popular among the 

scientific community for making superhydrophobic surfaces, because it does not need 

cumbersome processes like lithography and chemical etching in microfabrication [50-56]. 

However, since the soot layer is fragile due to the weak attraction forces between the nanoparticles 

[57, 58], producing a stable superhydrophobic coating requires a chemical stabilizer such as epoxy 

resin [59], paraffin wax [58], PDMS [11], silica gel [57] or silicon [60]. Utilizing the stabilizer not 

only reduces the simplicity of the fabrication process, it imposes some limitations for their 

applicability, e.g. low adhesion to gold coated surfaces [61] and high sensitivity to temperature 

and humidity variations [62]. 

In the Advanced Functional Materials Laboratory at the Department of Mechanical and Nuclear 

Engineering at VCU, we discovered an enhanced, simplified and time-efficient method for 

preparing an inherently robust superhydrophobic carbon soot coating that does not require any 

additional stabilizer [47]. Utilizing a specially-designed conical aluminum chimney during the 

combustion decreases the level of oxygen and alters the ratio of chemical bonds in the soot, which 

results in denser and fused carbon chains. The modified soot coating shows improved mechanical 

durability and thermal stability that retains its integrity up to ~300 °C. In addition, due to the high 

deposition rate (~1.5 μm/s), the coating can be applied even on materials with low thermal stability 

(e.g. wood or polyethylene) [47]. 
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2.2 Modified Soot Coating 

2.2.1 Sample Preparation 

A paper based wick was immersed in ~50 mL of rapeseed oil previously added to a glass 

evaporating dish. A cone-shaped aluminum chimney (dimensions listed below) was mounted over 

the wick after ignition. Subsequently, a few glass slides (7525 mm), aluminum, and copper 

substrates, as well as polyethylene pads and wood rods were exposed over the fume to be coated 

by a layer of carbon soot. As shown in Figure 2.1, the dimensions of the chimney were: height h 

= 13 cm, diameter d = 6-1.5 cm (bottom and top, respectively) and a narrow 1.52.5 cm opening 

as air-inlet at the bottom side. Moreover, soot-coated surfaces without using a chimney 

(conventional soot) were prepared for sake of the comparison [47]. 

 

Figure 2.1. Schematic diagram of the conical chimney used to manipulate the combustion process to achieve a 

modified soot coating. The dimensions are in cm. Courtesy of Esmeryan et al. [63], used with permission. 

Investigating the coating’s thickness with regard to the deposition time shows a linear correlation 

at the rate of ~1.5 µm/s [47]. Moreover, the deposition distance is irrelevant to the film thickness, 

but affects its stability and uniformity. It was found that within 3-7 cm above the tip of the chimney 

is the best position to achieve a stable, uniform, and homogeneous coatings. For instance, due to 

the high temperature of the region just above the chimney’s tip (0-2 cm) the incomplete 
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combustion of carbon nanoparticles is unstable at this position. Moreover, the low temperature 

(below 100 °C) at the position further than 7 cm from the tip causes instability for the soot 

deposition too [47]. All samples, including glass, aluminum, copper, polyethylene and wood were 

exposed to the fume at 3-7 cm above the chimney for 25 seconds. 

Later, we improved our combustion system with a precise air flow control and found more details 

about the formation mechanism of graphite-like (soot) and diamond-like carbon (DLC) 

nanostructure in low temperature laminar diffusion flames [49]. The DLC forms in a narrow 

stoichiometric range of the flame temperature within ~210-260 °C and beyond this range the soot 

coating can be produced.  

2.2.2 Wettability and Characterization of Soot Coating (Modified and Conventional) 

To examine the wettability of the modified and conventional soot coating deposited on the 

different materials mentioned above, advancing (ACA) and receding (RCA) contact angles were 

investigated using a Drop Shape Analyzer (DSA25E, KRUSS Germany). The contact angles of a 

de-ionized (DI) water droplet of 3 µL initially, cycling to 6 µL, were measured with an accuracy 

of ±0.1° using the tangent method provided by the goniometer’s resident software (DSA4). Each 

measurement was repeated and averaged at five different areas of each sample. Type II de-ionized 

(DI) water (resistivity > 20 MΩ.cm), with a surface tension of ~73 mN/m (measured using our 

DSA25E) was obtained from a Milli-Q water purification system (Millipore, USA) and used for 

the experiments. The thermal sustainability of the modified coatings was examined by heating 

carbon soot coated glass slides on a hot plate up to 400 °C with a step of 50 °C for 30 min. After 

cooling to room temperature, the ACA and RCA of the samples were measured. The experimental 

results are summarized in Figure 2.2. 
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Figure 2.2. Advancing and receding contact angles of the modified soot coating at different temperatures. 

It turns out that the ACA and RCA of modified and conventional soot coating are equal regardless 

of the substrates’ materials at room temperature: ACA ~154.5±0.9° and RCA ~153.8±1.1°. At 

higher temperatures, however, the conventional soot peels off when its temperature rises to 50 °C. 

Up to 275 °C, the modified soot coated glass substrate shows high ACA and RCA in the range of 

155.1-156.6° and 154.3-155.8°, respectively, thereby confirming temperature sustainability of the 

superhydrophobic coating [47]. The coating’s superhydrophobic properties remains intact up to 

300 °C, but its stability is damaged since some parts of the soot peeled off after rinsing under tap 

water. Apparently, above this temperature the structure of the layer changes drastically. Such a 

structural alteration might be attributed to the mobility of carbon atoms at high temperatures [64]. 

The excessive thermal energy breaks the carbon bonds and the nanostructure transformed into the 

“onion-type”, similar to what occurs after electron irradiation [64]. The complete transformation 

of the structure which leads to being washed away easily with a water jet occurs at 400 °C. 

The Scanning Electron Microscopy (SEM) images in Figure 2.3 illustrates the surface morphology 

and structure of conventional and modified carbon soot coatings on glass slides [47]. Both images 

depict the irregular precipitation of the carbon soot on the substrates, forming elongated islands 
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separated by micro- and nanoscale pores, regardless of the coating approach. The only difference 

that can be seen is that the particles are much closer to each other in the modified soot. This could 

be the reason of their stability upon contact with water. 

     

Figure 2.3. SEM image at low and high magnifications of (a) conventional and (b) modified carbon soot coating 

[47]. 

Results from Energy Dispersive Spectroscopy (EDS) reveal smaller atomic percentage of oxygen 

(by a factor of 8) for modified soot, which is attributed to the decrease in the level of oxidizer 

during the combustion process in the chimney [47]. These results are in accord with those from X-

ray photoelectron spectroscopy (XPS), which shows 2.7% and 1.4% of oxygen for conventional 

and modified soot, respectively. The reduction of oxygen caused by utilizing the chimney leads to 

reduced amount of C-OH groups, which are hydrophilic active sites and cause mechanical 

instability in contact with water [47, 65]. High-resolution XPS to C1s analysis also shows that the 

sp2/sp3 ratio decreases by implementing the chimney, 1.17 and 0.91 for the conventional and 

modified soot, respectively. This reduction is one of the reasons for the fused structure and 

mechanical durability of the modified carbon soot. More explanation is provided in Ref. [47].  

(a) (b) 
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2.3 Chemically Functionalized Soot Coating 

Although chimney-enhanced process of soot coating provides relatively robust and stable 

superhydrophobic coating with high contact angle and low hysteresis, it is not suitable for our 

purpose in this research. When a water droplet impacts on a modified soot coating at medium 

velocity (V ~1 m/s), it peels off some part of the coating and leads to inconsistent results, especially 

regarding contact time. After spending a relatively large amount of time, we found that we have 

to implement a more stable superhydrophobic coating whose integrity does not alter after being 

exposed to striking water droplets. Recently, our research group found that secondary treatment 

with ethanol and aqueous fluorocarbon solution of the coating improves its mechanical strength 

without altering its hydrophobicity [66]. Such a functionalized coating keeps its 

superhydrophobicity upon compressed air scavenging, spinning and water jetting with impact 

velocity of ~25 m/s. We amended the functionalizing process explained in Ref. [66] to be 

applicable to our samples, and it is described in Chapters 3-6. 

As explained in Ref. [66], the ethanol reacts with the remaining oxygen sites in the soot and results 

in denser and better adhesion to the substrate. The treatment also makes the peak of the carbon 

nano-features more rounded and decreases overall nanoscale cavities, which results in transition 

from Cassie-Baxter to Wenzel state. Consequently, the fluorocarbon treatment forms a fluorine-

based layer and changes the wetting back to the Cassie-Baxter state.  

Later, we studied the anti-biofouling property of three types of our coating namely as diamond-

like carbon, fluorocarbon-functionalized diamond-like carbon, and carbon soot. The coatings were 

deposited on three groups of 5 MHz quartz crystal microbalance (QCM) and then immersed in 

aqueous suspensions of four biofoulants including red Polysiphonia, green Scenedesmus algae, 
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cells of diatom Navicula, and filamentous cyanobacteria Oscillatoria. The analysis of the 

resonance frequency of the QCMs revealed that our superhydrophobic soot coating is able to 

completely prevent the biofouling [48]. 

2.4 Conclusions 

This chapter explained how utilizing a chimney in the combustion process of rapeseed oil results 

in a superhydrophobic carbon soot coating that can be applied on any type of solid substrates, even 

with low thermal stability, with no need to any stabilizer. The chimney reduces the oxygen level 

during the combustion and amends the chemical bonds in the soot, which leads to a denser and 

fused precipitation of carbon particles. Moreover, it was shown that the modified coating retains 

its superhydrophobicity up to ~300 °C. The mechanical stability of the modified soot coating can 

be amplified by chemical treatment in such way that it withstand water jet with a reckless impact 

velocity of ~25 m/s. How this chemical functionalization alters the wettability and surface energy 

of the coating is investigated in Chapter 3. 

  



 

 

21 

 

Chapter 3 Rolling Viscous Drops on Non-wettable Ribbed Surfaces 

3.1 Introduction 

This chapter is almost a duplication of my article published in Physics of Fluids in 2018 [44]. 

Liquid-solid interaction has been studied for decades because of its involvement in many 

applications such as lubrication [67, 68], surface cooling [69, 70], surface cleaning[13, 14] , and 

liquid transportation [71, 72]. Sometimes it is desired to prevent this interaction in certain 

applications; hence, the fabrication and implementation of so-called non-wettable surfaces has 

been widely investigated by scientists over the past several years. As mentioned earlier, wettability 

of a solid surface associated with a particular liquid is assessed through the contact angle (θ) of the 

liquid drop deposited on the solid substrate [7]. The higher the contact angle, the more non-

wettable the surface is. By definition, the surface is called superhydrophobic or superoleophobic 

if it makes a contact angle of greater than 150° with water or oil, respectively. It has been illustrated 

that such non-wettable surfaces demonstrate some exceptional properties such as anti-biofouling 

[48], anti-corrosion [13], drag-reduction [10], and self-cleaning [14, 73]. Most of these 

applications involve the movement of droplets on the surface that may not be straight. 

Motion of a liquid drop on an inclined solid substrate generated by its own weight is a combination 

of rolling and sliding depending on the viscosity of the drop as well as the wettability of the 

substrate [23-25]. In fact, for high viscous liquids, the motion would be pure rolling with no slip-

length [24] and if the liquid partially wets the surface, the larger drops run faster [25]. For the case 

of large viscosity and non-wettable surfaces, Mahadevan and Pomeau claimed that the drop rolls 

down at an equilibrium descent velocity (V) [26]. They studied the motion of a liquid drop with 

viscosity (μ), surface tension (γ), density (ρ), and radius (R) on a tilted plane at an angle of α< 1 

radian (i.e., < 57°) and proposed a scaling model to predict V by balance between viscous 
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dissipation and the rate of decrease of the gravitational potential energy. Afterwards, Richard and 

Quere experimentally examined this scaling model and showed for drops with radii smaller than 

the capillary length 𝜅−1 = √
𝛾

𝜌𝑔
 (g is the gravitational acceleration), the smaller the drop, the faster 

it rolls (something in contrast with the case of partially-wettable surface). However, the provided 

equations were not able to accurately explain their presented results [22]. They also showed that 

the descent velocity is independent of the radius of the drop for 𝑅 > 𝜅−1. In addition, Aussillous 

and Quere obtained a liquid marble by rolling a liquid drop (mixture of water and glycerol with μ 

> 200 mPa.s) in a hydrophobic powder and then studied its motion on an inclined solid surface 

[74]. Since the contact angle of the viscous liquid marble was close to 180°, they expressed the 

same explanation for the motion as Mahadevan and Pomeau did [26]. However, they showed that 

their equations were valid only for α < 10°.  

The current chapter presents a modified scaling model to predict the descent velocity of a rolling 

viscous drop much more accurately up to α ~ 45°. It is worth noting that the water motion, which 

is a mixture of rolling and sliding, should not be confused with the objective of the current study, 

i.e., rolling of glycerol (with a viscosity 1000-fold greater than that of water). Moreover, we show 

that a numerical coefficient is crucial in the related equations and must be considered because it 

reflects the non-wettability (i.e. contact angle) of the surface, something that is missing in the 

aforementioned studies. To do this systematically, we carefully examined the motion of glycerol 

drops with different radii rolling on a macroscopically smooth non-wettable surface, made of 

functionalized soot, at 6 different tilting angles. We also show that the drop rolls ~27% faster if 

the tilting non-wettable surface is not macroscopically smooth, but contains cylindrical ridges of 

hundreds of micrometers in diameter (ribbed surface). This phenomenon might be due to the 
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preserved air layers underneath the drop, which means this surface pattern/morphology 

(combination of nano/micro and macro roughness) may be useful in drag-reduction applications 

and self-cleaning surfaces.  

3.2 Experimental Method 

3.2.1 Sample Preparation 

Soot has been used in many studies as a superhydrophobic coating layer, yet the deposition and 

stabilizing processes have been varied [47, 57-60]. In this study, we used the chimney-modified 

method of deposition [47] and functionalized the soot afterwards. In fact, exposing our solid 

substrates to the black fumes generated from our oil-based combustion unit [49], at an air flow rate 

of 0.0031 m3/min, provided a uniform layer of untreated soot coating. To Improve the wettability 

and strength of the as-synthesized soot, we functionalized it using a method that was composed of 

dipping in ethanol (99%, Sigma-Aldrich, USA) for 5s (ethanol treatment), followed by 

perfluorocarbon treatment consisting of immersion in a solution of 12.5 wt.% perfluorocarbon 

(Granger’s Performance Proofer, Granger’s Ltd., UK) and 87.5 wt.% de-ionized (DI) water for 10 

min. 

It has been shown that for the relatively-thick soot layers, synthesized using the method that we 

previously developed and used here, the material of the solid substrate (glass, polymer or metal) 

has no effect on the wettability and characterization of the coating [47]. As such, the solid 

substrates used for wetting characterization of the coating were 25 × 25 mm glass slides (Fisher 

Scientific, USA). For the rolling-drop experiments, two rectangular prisms of 50 × 50 × 10 mm 

were printed in polyethylene terephthalate glycol-modified (PETG) using an extruder-type 3D 

printer (Ultimaker 2, Netherlands) with a nozzle of 0.4 mm in diameter and the speed of 12 mm/s. 
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One of the specimens was used with its original surface finish after printing, fully covered with 

cylindrical ridges of 2b= 300 m in diameter (ribbed surface) with the resolution of about 5 

microns. The other one was polished with 600 and 1200 grit sand papers (Allied High Tech 

Products Inc., USA) to obtain a surface with no macroscopic-sized textures, which we call smooth 

surface. Prior to the soot deposition, both surfaces were cleaned with a detergent and then sonicated 

in water-ethanol solution for 30 minutes.  

Four different liquids, water, diiodomethane, glycerol, and olive oil were used for studying the 

wettability and surface energy of our non-wettable coating. For the rolling droplet experiments 

only glycerol, whose viscosity is sufficiently high, was used. 

3.2.2 Surface Free Energy Examination 

Soot has previously been used as a template to fabricate superamphiphobic coatings [57]. The 

synthesis of such surfaces, however, includes chemical vapor deposition followed by calcination 

at 600 °C, which constrains its applicability. The fabrication process of the functionalized soot 

presented here can be applied on any type of solid substrate even with low thermal stability such 

as plastic and wood. Recently, our research group has shown that ethanol treatment reduces the 

porosity and thickness of the soot layer so that its robustness improves significantly [66, 75]. Here 

we examined how ethanol and perfluorocarbon treatments change the surface free energy and 

water/oil repellency of the soot. 

Theoretically, contact angle (θ) of a sessile liquid drop on a solid surface correlates the surface 

free energy of the solid (𝛾𝑠), the energy of the solid-liquid interface (𝛾𝑠𝑙), and the surface tension 

of the liquid (𝛾𝑙) through the Young’s equation (Equation 3.1a) [5]. The θ and 𝛾𝑙 can 
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experimentally be measured, which we did using a Drop Shape Analyzer (DSA-25E, KRUSS, 

Germany); thus, having an additional equation for 𝛾𝑠𝑙 makes it mathematically possible to 

determine the 𝛾𝑠. It is known that 𝛾𝑠 and 𝛾𝑙 are the summation of their own dispersive and polar 

components, denoted with superscript d and p in Equations (3.1b-c), respectively [76-78]. The 

permanent dipoles, induced dipoles and hydrogen bond forces are responsible for the polar 

component, whereas the non-polar van der Waals forces are the origin of the dispersive component 

[78].  

(𝑎) 𝛾𝑠 − 𝛾𝑠𝑙 = 𝛾𝑙𝑐𝑜𝑠𝜃            (𝑏) 𝛾𝑠 = 𝛾𝑠
𝑑 + 𝛾𝑠

𝑝           (𝑐) 𝛾𝑙 = 𝛾𝑙
𝑑 + 𝛾𝑙

𝑝
                             (3.1) 

The solid-liquid interaction, i.e. 𝛾𝑠𝑙, is directly related to the extent of polarity and non-polarity 

of the solid and the liquid. Using the geometric mean, Owens and Wendt proposed an equation 

for 𝛾𝑠𝑙 [76]. Alternatively, Wu claimed that for low-energy surfaces, the harmonic mean should 

be used to obtain 𝛾𝑠𝑙, as expressed in Equation (3.2) [77].  

𝛾𝑠𝑙 = 𝛾𝑠 + 𝛾𝑙 − 4
𝛾𝑠

𝑑𝛾𝑙
𝑑

𝛾𝑠
𝑑+𝛾𝑙

𝑑 − 4
𝛾𝑠

𝑝
𝛾𝑙

𝑝

𝛾𝑠
𝑝

+𝛾𝑙
𝑝                                                   (3.2) 

Substituting Equation (3.2) into Equation (3.1a) yields Equation (3.3) 

𝛾𝑙(1+𝑐𝑜𝑠𝜃)

4
=  

𝛾𝑠
𝑑𝛾𝑙

𝑑

𝛾𝑠
𝑑+𝛾𝑙

𝑑 +
𝛾𝑠

𝑝
𝛾𝑙

𝑝

𝛾𝑠
𝑝

+𝛾𝑙
𝑝                                                         (3.3) 

According to Equation (3.3), the dispersive and polar components of the solid surface can be 

calculated with measuring the contact angle of two liquids whose 𝛾𝑙
𝑑and 𝛾𝑙

𝑝
 are known. Here, a 

non-polar liquid (diiodomethane, Fisher Scientific, USA) and a relatively polar one (water), whose 

surface tension components are presented in Table 3.1 [78], were used to calculate the surface 
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energy of the untreated soot (as-synthesized), the ethanol-treated soot, the perfluorocarbon-treated 

soot and the functionalized (ethanol-treated followed by perfluorocarbon treatment) soot coatings.  

Table 3.1. Surface tension components of the liquids used to evaluate surface energy of the four solid surfaces 

studied. We have measured the total surface tension values (second column) in our experiments, while their 

contributing components (third and fourth columns) have been estimated by consulting Ref. [78]. 

Liquid 𝜸𝒍(mN/m) 𝜸𝒍
𝒅(mN/m) 𝜸𝒍

𝒑
(mN/m) 

Water (H2O) 72.8 21.8 51.0 

Diiodomethane (CH2I2) 48.5 48.5 0.0 

3.2.3 Rolling Drop Setup 

Glycerol (99%, Acros Organics, USA) of density ρ = 1261 kg/m3, surface tension γ = 64.6±0.1 

mN/m and viscosity μ = 1076±5 mPa.s at 23 °C was used as the viscous liquid. The surface tension 

and viscosity were measured by means of our DSA-25E and a Rheometer (MCR301, Anton Paar, 

USA), respectively. Using a precisely-controlled automated syringe and calibrated tips, glycerol 

drops of volume 6-116 μL were formed with < 5% error. The drops were gently placed on the non-

wettable smooth and ribbed surfaces tilted at 6 different angles (α ~ 5°-45°) and allowed to roll 

down under the influence of their own weights. The tilting angles were made by a stepper motor 

controlled by an Arduino microcontroller and were confirmed by a digital level (DWL-80e, Digi-

Pas, USA). 

Using a high-speed camera (Phantom Miro ex2, Ametek, USA), the motion of the glycerol drops 

was filmed at 1200 frames per second (fps) at first. After analyzing the videos via Tracker, open-

source computer software, it was found that 1200 fps was unnecessarily high; therefore, the frame 

rates were adjusted accordingly from 120-600 fps. Each test was repeated three times and the 

measured velocities fluctuated < 5%. All the experiments were conducted at ~23 °C and ~38% 

relative humidity. Figure 3.1a shows the schematic diagram of the experimental setup as well as 
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the roughness of the functionalized soot coating and Figure 3.1b shows the actual setup used during 

the experiments. 

 

 

Figure 3.1. (a) The schematic diagram of the experimental setup. The inset is a SEM image of a functionalized soot 

coating that illustrates its nano-/micro-sized roughness. (b) The actual setup used for the tests. 

(a) 

(b) 
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3.3 Results and Discussion 

3.3.1 Wettability and Surface Free Energy of the Soot-based Coatings 

Table 3.2 states the measured contact angles of water (ρ = 1000 kg/m3, γ = 72.8±0.2 mN/m), 

diiodomethane (ρ = 3322 kg/m3, γ = 48.5±0.3 mN/m), glycerol (ρ = 1261 kg/m3, γ = 64.6±0.1 

mN/m), and olive oil (ρ = 930 kg/m3, γ = 33.1±0.1 mN/m) on the four solid substrates investigated. 

It should be noted that drops with a volume of ~5 μL were used for water, glycerol, and olive oil. 

For diiodomethane, however, ~1 μL drops were used due to its high density and low surface 

tension. The contact angles were measured on the macroscopically-smooth samples (without ribs). 

Table 3.2. Contact angle values of water, diiodomethane, glycerol and olive oil on untreated soot, ethanol-treated 

soot, perfluorocarbon-treated soot and functionalized soot. 

Solid Surface Water Diiodomethane Glycerol Olive oil 

Soot (untreated) 155.1±1.5° ~0.0° 147.1±2.4° ~0.0° 

Ethanol-treated soot 147.7±2.4° ~0.0° 127.8±0.9° ~0.0° 

Perfluorocarbon-treated soot 168.1±1.4° 103.9±4.5° 167.6±1.8° 153.8±1.1° 

Functionalized soot 166.8±0.9° 105.0±4.4° 169.1±1.3° 157.5±0.9° 

 

 

Figure 3.2. The snapshots from left to right depict how a 1 μL droplet of diiodomethane (CH2I2) spreads on 

untreated soot. The spreading occurs in less than 1 second. Olive oil also spreads similar on both untreated and 

ethanol-treated soot coatings. 
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Since diiodomethane and olive oil (non-polar liquids [78, 79]) spread instantly on both the soot 

and ethanol-treated soot coatings (Table 3.2 and Figure 3.2), it is concluded that the ethanol 

treatment does not change the non-polarity of the soot. However, since the ethanol treatment makes 

the soot denser and reduces its porosity [66, 75], the contact angles of water and glycerol (polar 

liquids [80]) on the ethanol-treated soot are smaller than those on the untreated soot. Moreover, 

Figure 3.3a shows how a 5 μL water drop suspended from a needle (of 0.2 mm inside diameter) 

cannot be detached by the untreated soot, while the ethanol-treated soot detaches the drop from 

the needle easily (Figure 3.3b). This also illustrates that this treatment alters the wetting state of 

the soot from Cassie-Baxter to Wenzel regime. 

 

Figure 3.3. The top row (a) from left to right shows that the un-treated soot cannot detach a 5 μL water drop from 

the needle of 0.2 mm inside diameter due to its Cassie-Baxter state of wetting. The bottom row (b) illustrates how 

the same size drop sticks to the ethanol-treated soot as soon as it touches the surface (Wenzel state).   

According to the data of Table 3.2, the interaction with perfluorocarbon solution drastically 

changes the wettability of the coating so that it repels both polar and non-polar liquids, which 

means that the surface energy of the coating must have become very low. The surface energies of 

the solid surfaces were calculated using Equation (3.3) and casting the mean value of the contact 

angles of water and diiodomethane presented in Table 3.2 and their surface tension components 

listed in Table 3.1. In fact, Table 3.3 shows that the calculated surface energy reduces drastically 

(a) 

(b) 
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from 37.9 mJ/mm2 for the soot and 38.6 mJ/mm2 for the ethanol-treated soot to 5.2 mJ/mm2 for 

perfluorocarbon-treated soot and 5.0 mJ/mm2 for functionalized soot, respectively, due to the  

generation of a fluorine-based layer on top of the coatings [66, 75]. Such a low surface energy 

results in the oil repellency of the functionalized soot coating with the contact angle hysteresis of 

~0.9° for glycerol and makes the surface a great candidate for the rolling drop test (no liquid 

pinning). 

Table 3.3. The results of surface energy calculations for the different types of soot-based coatings. The values were 

obtained using Equation (3.3) and the data presented in Table 3.1 and Table 3.2. 

Solid Surface 𝜸𝒔 (mJ/mm2) 

Soot (untreated) 37.9 

Ethanol-treated soot 38.6 

Perfluorocarbon-treated soot 5.2 

Functionalized soot 5.0 

3.3.2 Rolling Viscous Drop 

The motion of glycerol (ρ = 1261 kg/m3, γ = 64.6±0.1 mN/m, and μ = 1076±5 mPa.s) drops on the 

polished PETG sample (smooth surface) coated with functionalized soot and inclined at 6 different 

angles (α = 5°-45°) was investigated here in order to find the modified scaling model for predicting 

their descent velocities. Considering the case of a small liquid drop (𝑅 < 𝜅−1) sitting on a 

horizontal non-wettable solid surface, the capillary forces endeavor to keep the spherical shape of 

the drop whereas gravity tends to increase the solid-liquid contact area. Mahadevan and Pomeau 

[26] stated that the radius of the contact disk (l) is related to the radius of the drop (R) and the 

displacement of the center of mass of the drop (δ) due to its weight as  
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𝑙 ≈ √𝑅𝛿               (3.4) 

As the drop is almost spherical except in the vicinity of the substrate, they explained geometrically 

that the increase in the surface area of the drop due to flattening because of contact with the 

substrate is in the order of ∆𝑠 ≈ 𝑙4 𝑅2⁄  [26]. Therefore, balancing the increase in the surface energy 

𝛾∆𝑠 ≈ 𝛾 𝑙4 𝑅2⁄  and the decrease in the potential energy of the drop 𝜌𝑅3𝑔𝛿 yields the expression 

for δ as 

𝛿 ≈ 𝜌𝑔𝑅3 𝛾⁄                (3.5) 

Finally, substituting Equation (3.5) into Equation (3.4) results in 

𝑙 ≈ 𝑅2 𝜅−1⁄                (3.6) 

where 𝜅−1 is capillary length, as mentioned earlier (𝜅−1 = √
𝛾

𝜌𝑔
). For the case of 𝑅 > 𝜅−1, gravity 

dominates the surface tension and flattens the drop to a pancake shape. Since the thickness of the 

pancake (𝑤) scales with the capillary length (𝜅−1), conservation of mass (𝑙2𝑤~𝑅3) concludes that 

the radius of the contact scales as 

𝑙 ≈ 𝑅3/2 𝜅−1/2⁄               (3.7) 

One approach to estimate the numerical coefficients of Equations (3.6) and (3.7), which have to 

be the same, is to use the conservation of mass for flattened heavy drops. It is well established that 

the thickness of the flattened drop due to its own weight is: 𝑤 = √2(1 − 𝑐𝑜𝑠𝜃)𝜅−1 [22, 37, 81]. 

For non-wettable surfaces, where θ > 150°, the height can be considered 𝑤 ≈ 2𝜅−1. Casting this 

value in the conservation of mass, which is 𝜌𝜋𝑙2𝑤 = 𝜌
4𝜋

3
𝑅3, results in  
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𝑙 ≈ √
2

3

𝑅3

𝜅−1
= 0.81 𝑅3/2 𝜅−1/2⁄             (3.8) 

Moreover, it has been reported that numerically solving the Laplace equation yields a numerical 

coefficient in the order of 0.8 [74]. We measured the contact radius of the glycerol drop on the 

smooth (non-wettable) surface, which was horizontally oriented, as a function of its initial radius. 

The best numerical coefficient for Equations (3.6) and (3.7) to fit our data was found to be 0.79 

using a least-squares fit of the data shown in Figure 3.4, thus the contact radius can be calculated 

from Equation (3.9) for our experiments.  

{
𝑙 = 0.79𝑅2𝜅     𝑓𝑜𝑟 𝑅 < 𝜅−1

𝑙 = 0.79𝑅
3

2𝜅
1

2     𝑓𝑜𝑟 𝑅 > 𝜅−1
            (3.9) 

 

Figure 3.4. The radius (l) of the solid-liquid contact area for glycerol drops of different initial radii (R) sitting on the 

horizontal macroscopically-smooth, non-wettable surface. Both values were normalized with the capillary 

length 𝜅−1 = √𝛾 𝜌𝑔⁄ = 2.27 mm.  

For the case of small drops (𝑅 < 𝜅−1) rolling down an inclined non-wettable surface with Stokes 

flow (𝑅𝑒 =  𝜌𝑉𝑅 𝜇⁄ < 1), low velocity (𝐶𝑎 =  𝜇𝑉 𝛾⁄ < 1), and little change in the spherical shape 

of the drops, Mahadevan and Pomeau [26] claimed that the rate of decrease in the gravitational 
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potential energy (LHS in Equation 3.10) balances with the viscous dissipation (RHS in Equation 

3.10). This happens in the portion of the volume of the rolling drop influenced by the contact 

region, ~𝑙3, as 

𝜌𝑅3𝑔𝑉𝑠𝑖𝑛𝛼 ≈  𝜇(
𝑉

𝑅
)2𝑙3           (3.10) 

Solving Equation (3.10) for V and substituting Equation (3.6) in it, Richard and Quere came up 

with an equation to predict the descent velocity of a rolling droplet [22]. Using their equation, 

which is related to sinα and 𝜅−1, and plotting the normalized values of the measured velocities of 

the rolling drops with different radii for the varied tilting angles of our study (Figure 3.5), we 

noticed that the data did not correlate on a single plot, similar to what Richard and Quere found in 

their study, but did not address. This means that a key factor has been missing in the related 

equations and the scaling model needs to be modified. 

 

Figure 3.5. The variation of the measured velocity normalized by 𝑉𝑜 =
2(1−𝑐𝑜𝑠𝜃)𝛾𝑠𝑖𝑛𝛼

3𝜇
 as a function of drop radius 

normalized by 𝜅−1. The equation for Vo is taken from Richard and Quere’s work [22]. It can be seen that the 

diagrams are sporadic for different tilting angles (α) and do not collapse in a single plot of 
𝑉

𝑉𝑜
≈

𝜅−1

𝑅
, similar to what 
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Richard and Quere reported in their study. However, the results follow the trend of the smaller the drop, the faster it 

rolls. 

As explained earlier, Equation (3.5) for δ is obtained with the balance between the increase in the 

surface energy by 𝛾 𝑙4 𝑅2⁄ ≈ 𝛾𝛿2 and the decrease in the potential energy of the drop by 𝜌𝑅3𝑔𝛿 

generated by its own weight. For a rolling drop on an inclined surface, the displacement of the 

center of mass caused by the normal component of gravity should be considered (see Figure 3.6), 

hence the reduction in the potential energy is 𝜌𝑅3𝑔𝛿𝑐𝑜𝑠𝛼. Consequently, 𝛿 ≈ 𝜌𝑔𝑅3𝑐𝑜𝑠𝛼 𝛾⁄  and  

𝑙 ≈ 𝑅2 𝜅∗−1⁄  where 𝜅∗−1 = √𝛾 𝜌𝑔𝑐𝑜𝑠𝛼⁄          (3.11) 

 

Figure 3.6. For the case of the rolling drop on a tilted surface at the angle of α, the δ is a consequence of the normal 

component of gravity to the surface. 

The modified scaling model to predict the descent velocity of a rolling viscous drop on a non-

wettable solid substrate tilted at an angle of α is obtained by combining Equations (3.10) and (3.11) 

as 

𝑉 ≈
𝜌𝑅5𝑔𝑠𝑖𝑛𝛼

𝜇𝑙3 =
𝛾

𝜇

𝜅∗−1

𝑅
 𝑡𝑎𝑛𝛼           (3.12) 

According to Equation (3.12), when the radius of the drop reaches the critical value of 𝜅∗−1
, the 

velocity reaches the value of 𝑉𝑜 =
𝛾

𝜇
 𝑡𝑎𝑛𝛼. Figure 3.7 shows that all the normalized velocities of 

the rolling drops (𝑉 𝑉𝑜⁄ ) with respect to their normalized sizes (𝑅𝜅∗) collapse into a single plot 
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with the numerical coefficient of 2.23 for the 6 different tilting angles tested in this work. The 

reason that our Equation (3.12) fits better with the experimental data is its dependence to 𝑡𝑎𝑛𝛼 

and 𝜅∗−1
, whereas to 𝑠𝑖𝑛𝛼 and 𝜅−1 as expressed in Refs. [22, 26, 74]. Moreover, since 𝑉 ∝

1

𝑙3, it 

can be speculated that the numerical coefficient for Equation (3.11) must have been 1 √2.23
3

⁄ =

0.77, a value indeed close to what we found for Equation (3.9). Moreover, since the thickness (w) 

of a flattened heavy drop is independent of its size [22, 37, 81] and the velocity gradient scales as 

𝑉 𝑤⁄  in its entire volume ∝ 𝑅3 (instead of 𝑉 𝑅⁄  and ∝ 𝑙3 for small drops in Equation 3.10), the 

velocity is independent of the radius of the drop for 𝑅 > 𝜅∗−1
, similar to what has been reported 

in Refs. [22, 74]. 

 

Figure 3.7. The normalized velocity of the rolling drops as a function of their normalized radii for the 6 different 

tilting angles α= 5°-45° tested in this study. The solid black line represents 
𝑉

𝑉𝑜
= 2.23 

𝜅∗−1

𝑅
 where 𝑉𝑜 =

𝛾

𝜇
 𝑡𝑎𝑛𝛼. 

We also measured the contact radius of the glycerol drops deposited on the non-wettable ribbed 

surface, fully decorated with cylindrical ridges of 2b= 300 μm diameter. It turns out that Equation 

(3.9) is also valid for this surface. Figure 3.8 illustrates how drops of different radii sit on (a) ribbed 

and (b) smooth samples. 
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Figure 3.8. Glycerol drops of different radii deposited on (a) ribbed and (b) smooth surfaces. The capillary length for 

glycerol is ~2.27 mm. 

The reflection of light underneath the drops on the ribbed surface illustrates that this surface pattern 

keeps macroscopic air pockets beneath the drop. When the drop rolls on such a surface, it 

encounters either the air pocket or the solid substrate. The relation between the probability of air 

(𝑃𝑎) and the solid (𝑃𝑠) surface being in contact with the rolling drop can be geometrically found 

from equations below. 

(𝑎)
𝑃𝑠

𝑃𝑎
=

𝜋

2
𝑏2

2𝑏2−
𝜋

2
𝑏2

= 3.7            (𝑏) 𝑃𝑠 + 𝑃𝑎 = 1                     (3.13) 

Hence 𝑃𝑠= 0.79 and 𝑃𝑎= 0.21. This means that the area of contact between solid and liquid reduces 

to ~79% on such a surface pattern compared to the smooth one. As explained earlier, since viscous 

dissipation occurs in the part of the volume (~𝑙3) of the rolling drop influenced by the contact 

(a) 

(b) 
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region, the velocity is proportional to 
1

𝑙3. Considering the fact that this partial volume of the rolling 

drop on the ribbed surface is ~79% of that on the smooth one, the relation between the descent 

velocity of an equivalent-sized drop on ribbed (𝑉𝑏) and smooth (𝑉𝑠) surfaces will be 
𝑉𝑏

𝑉𝑠
≈

1

0.79
≈

1.27. We measured the descent velocity of rolling glycerol drops on the ribbed surface under the 

same conditions as for the smooth surface. Figure 3.9 shows that the normalized velocities of the 

rolling drops (along the axis of the cylindrical ridges) concur well with the modified scaling model, 

yet with a numerical coefficient of 2.83, which is indeed 27% higher than that of the smooth 

surface. This means that the droplet rolls down faster on the ribbed surface due to the air pockets 

shown in Figure 3.8. It should also be mentioned that the drops almost instantly rolled at the 

associated descent velocity on the smooth surface, whilst their motions were slightly accelerated 

on the ribbed surface before reaching Vb especially for higher α. For instance, the 50 mm length of 

our samples was not long enough for the drops to reach an equilibrium descent velocity when they 

were rolling along the ridges at a 31°-tilted angle, thus the data have not been presented here. 

 

Figure 3.9. The plot depicts the normalized velocity of the rolling drops versus their normalized radii on the ribbed 

surface for varied tilting angles (α). The solid black line represents 
𝑉𝑏

𝑉𝑜
= 2.83 

𝜅∗−1

𝑅
 where 𝑉𝑜 =

𝛾

𝜇
 𝑡𝑎𝑛𝛼. 
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In addition, we measured the descent velocity of the drops rolling perpendicular to the ridges and 

found a numerical coefficient of 2.53 for such rolling as shown in Figure 3.10. This value is still 

13% higher than that of the smooth surface, but not comparable to 27% that was obtained for the 

case of rolling droplets along the ridges. This may be attributed to the fact that when the drop rolls 

perpendicular to the ridges, the ridges play a barrier role and hinder the motion [82].  

 

Figure 3.10. The plot shows the normalized velocity of glycerol drops rolling down, perpendicular to ridges, on the 

ribbed surface. The velocities are normalized by 𝑉𝑜 =
𝛾

𝜇
 𝑡𝑎𝑛𝛼 and the solid line represents the best fit for the data 

as 
𝑉𝑏2

𝑉𝑜
= 2.53 

𝜅∗−1

𝑅
. 

Interestingly, we found that the skin patterns of a human being’s palm, the sole of the foot, and the 

finger print look similar to the ribbed pattern as shown in Figure 3.11. This similarity, along with 

the faster motion of liquid drops on the ribbed surface, shows that this surface pattern may be 

useful in designing enhanced self-cleaning surfaces.  
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Figure 3.11. The image of (a) ribbed surface coated with functionalized soot and (b) skin pattern of the finger tip, 

taken using a Axio Lab optical microscope (Zeiss, Germany).  

3.4 Conclusions 

In this chapter, first the wettability of chimney-modified soot coating was investigated by 

measuring the contact angles of polar (water and glycerol) and non-polar (diiodomethane and olive 

oil) liquids before and after its interaction with ethanol and perfluorocarbon solutions. It was 

shown that the ethanol treatment increases the surface energy of the soot, yet does not alter its non-

polar nature. Moreover, the perfluorocarbon treatment generates a fluorine-based layer on top of 

the soot and reduces its surface energy down to ~5.0 mJ/mm2. This functionalized soot coating 

with such a low surface energy demonstrated oil repellency with a contact angles of ~157.5° for 

olive oil and ~169.1° for glycerol.  

Second, the motion of glycerol drops with different sizes rolling down on the non-wettable smooth 

and ribbed surfaces at 6 different angles of tilt was studied and a modified scaling model was given 

to predict the descent velocity more accurately, Equation (3.12). The experimental results 

exhibited a good agreement with this modified scaling model, even for a tilting angle as high as 

~45°. Moreover, it was shown that the drops roll ~27% faster (along the ridges) on the ribbed 

(a) (b) 
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surface compared to the smooth one due to the preserved air pockets underneath the drops. This 

indicates that a ribbed surface pattern may be valuable in designing enhanced self-cleaning 

surfaces.  
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Chapter 4 Droplet Impact on Superhydrophobic Ribbed Surfaces 

4.1 Introduction  

This chapter is nearly a duplication of my paper published in Journal of Colloid and Interface 

Science [45], in which the impact of water droplets on the ribbed surfaces was studied 

systematically. When an inviscid drop like water strikes a superhydrophobic surface, on one hand, 

the Weber number (𝑊𝑒 = 𝜌𝑉2𝑅𝑜 𝛾⁄ , in which ρ, V, Ro and γ are density, impact velocity, radius 

and surface tension of the drop, respectively) defines the maximum spreading diameter of the 

pancake created at the end of the spreading stage [36], which means the faster the impact velocity, 

the larger the spreading diameter. On the other hand, the amount of time that the drop and the solid 

surface are in contact (contact time) scales with the inertial-capillary time scale [31-33], 𝜏𝑜 =

√𝜌𝑅𝑜
3/𝛾, which means the contact time is independent of the impact velocity. Since the exchange 

of mass, momentum and energy between the solid surface and the drop occurs during the contact 

time [83], minimizing this time is beneficial in certain applications. As such, this study focuses on 

the dynamic behavior of a water drop impinging on a superhydrophobic surface with a specific 

surface pattern/morphology which indicates shorter contact time under certain conditions. 

Conventionally, it was known that symmetric bouncing of a droplet on a non-wetting surface leads 

to the minimum contact time [23, 31-33]. In addition, if the drop does not penetrate into the surface 

asperities in this type of bouncing [84], the contact time (𝑡𝑐) is restricted by the Rayleigh limit, 

𝑡𝑐 𝜏𝑜⁄ ≥ 𝜋 √2⁄ ≈ 2.2 [23, 31, 33, 34]. Recently, however, Bird et al. showed that altering mass 

distribution in the spreading stage can lower the contact time below this theoretical limit [39]. The 

asymmetry is introduced by a single ridge whose amplitude is comparable to, but less than, the 

thickness of the flattened drop (~150 µm). They claimed that since the liquid film is thinner on top 
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of the ridge, it retracts faster and generates non-uniform velocity field which leads to a shorter 

contact. The drawback of this technique for reducing the contact time is that the drop must hit the 

macrotexture exactly in the center in order for this reduction to happen and this time shifts back to 

the contact time on the macroscopically smooth surface as the point of impact recedes into the 

distance of the spreading radius, which again depends on the impact velocity as mentioned earlier 

[39, 40]. To overcome this issue, we aim in the present study to fabricate superhydrophobic 

surfaces fully decorated with cylindrical ridges of hundreds of micron radii and investigate the 

behavior of impacting water drops on them. Therefore, here we examine how the contact time on 

such surfaces varies with the impact velocity, diameter of the ridges and size of the droplet. Our 

results show that in the intermediate impact velocity range, the ribbed surface exhibits 13% shorter 

contact time compared to the macroscopically smooth surface due to faster retraction. Moreover, 

the contact becomes shorter at high impact velocity because the flattened droplet splashes from 

the periphery. 

4.2 Experimental Methods 

4.2.1 Sample Preparation 

The solid substrates, on which we deposited the superhydrophobic soot layer, were cubes 

fabricated using an extruder-type 3D printer (Ultimaker 2, Netherlands). In this technique, 

polyethylene terephthalate glycol-modified (PETG) filament (Maker Geeks 54548) is fed into a 

heated liquefier where it melts. The melted PETG is pushed out from a nozzle of 0.4 mm in 

diameter and generates a cylindrical layer when it is deposited on a previously solidified layer. 

The thickness of both layers is controlled by slicing software (Cura) that controls the extrusion 
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volume. The surface pattern that we used in this study (fully decorated with cylindrical ridges) is 

the ribbed surface finish of the 3D printed samples, as illustrated in Figure 4.1. 

 

 

Figure 4.1. Experimental configuration and materials. (a) A water droplet of radius Ro impacts on a ribbed surface 

with macrotexture of diameter 2b = 0.1-0.3 mm at velocity V. (b) Low and (c) high magnification SEM images of a 

cube printed at 2b= 0.1 mm and coated with functionalized soot. (d) The actual setup used for conducting the 

experiments. 

Prior to coating of the soot, PETG cubes (151510 mm) printed with thickness layers (surface 

finish) of 0.1, 0.2 and 0.3 mm (with resolution of ~5 microns) were cleaned with a typical 

detergent and then inspected using an optical microscope (Axio Lab, Zeiss, Germany) confirming 

that there were no excrescences on their surfaces. The cubes were exposed for ~5s over a black 

(a) (b) (c) 

(d) 
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fume rising from an inverted funnel used to control the input oxygen to the laminar diffusion flame 

of rapeseed oil [49]. The funnel was connected to an electric air pump and the supplying air flow 

was set at 0.0031 m3/min using a flow meter to obtain a uniform layer of stable soot. Such a short 

exposure time provided a thin layer of soot (thickness ~7 μm [47]) which did not alter the primary 

surface configuration. After the soot deposition, the samples were gently immersed in ethanol 

(99%, Sigma-Aldrich, USA) for 5s and then dried under a 250W heat lamp (Feit Electric, USA) 

for 5s, to evaporate the excessive ethanol with little increase in the temperature of the sample. 

Afterwards, the samples were submerged for 10 min in perfluorocarbon solution (Grangers 

Performance Proofer, UK) previously diluted with de-ionized (DI) water by a factor of 7. Next, 

each sample was dried under the heat lamp for 20s, which increased its temperature up to ~38 °C 

and evaporated the chemical residues.  

To prepare a macroscopically smooth sample, which we call smooth PETG from now on, a PETG 

cube was polished with 600 and 1200 grit sand papers (Allied High Tech Products Inc., USA) and 

then sonicated in DI-water for 30 minutes, to ensure that no debris from polishing remains on the 

surface. For the sake of comparison, the polished sample was coated with soot and chemically 

treated, following exactly the same procedure detailed above. Advancing and receding contact 

angles of DI-water on this sample (with no macrotexture) were found to be 166.2±2.6° and 

164.1±1.2° (Figure 4.2), indicating the combination of a very high contact angle and low 

hysteresis, the required characteristics for fast water bouncing. These measurements were done 

using a Drop Shape Analyzer (DSA25E, Krüss, Germany). 
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Figure 4.2. The top row from left to right shows that the volume of the water droplet advances from 3 μL to 6 μL 

while its advancing contact angle is 166.2±2.6°. The bottom row from right to left illustrates that receding contact 

angle of the surface is 164.1±1.2°, slightly lower that the advancing contact angle. 

4.2.2 Experimental Setup 

Our experiments consisted of releasing water drops of varied volumes from different heights onto 

the smooth and ribbed superhydrophobic samples. Impacts were filmed from above and from the 

side using a high-speed camera (Phantom Miro ex2, Ametek, USA), typically at 10000 frames per 

second (fps). The videos were analyzed via Tracker and the snap shots taken from them were 

analyzed with ImageJ software, developed at National Institute of Health. Water drops of density 

ρ = 1000 kg/m3 and surface tension γ = 73±0.2 mN/m were dosed from a precisely-controlled 

automated syringe. Using calibrated needles, we formed drops of volume 6-31 μL with < 5% error. 

The impact velocity varied between 0.4-2.2 m/s in 0.2 m/s increments by adjusting the release 

height from 8 to 247 mm. At each height, the impact velocity was also confirmed by measuring 

the rate of the change in the vertical position of the drop in last five frames prior to the impact. 

Each impact was repeated at least on three randomly-chosen spots of the sample at each velocity. 

For each averaged data, the error bars presented in the results show two standard deviations of the 

measured values. 
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4.3 Results and Discussion 

Since our goal is to study the dynamic of impact in terms of contact time and spreading area of the 

flattened droplet, an expression that can precisely predict the maximum spreading radius (Rmax) is 

required. For a viscous droplet, assuming that kinetic energy of the droplet ~𝜌𝑅𝑜
3𝑉2 mostly 

dissipates through the viscosity (μ) during the impact as ~𝜇
𝑉

𝛿
𝑅𝑚𝑎𝑥

3  , where δ is the thickness of 

the flattened droplet ~ 𝑅𝑜
3 𝑅𝑚𝑎𝑥

2⁄ , yields that the Reynolds number (𝑅𝑒 = 𝜌𝑉𝑅𝑜 𝜇⁄ ) governs the 

spreading radius as 𝑅𝑚𝑎𝑥  ~ 𝑅𝑜𝑅𝑒1/5 [85, 86]. On the other hand, for an inviscid droplet such as 

water, one approach to determining Rmax can be assuming that the kinetic energy of the droplet 

transforms to the surface energy of the pancake ~𝛾𝑅𝑚𝑎𝑥
2 . Such a scaling equation predicts that 

Weber number determines the spreading radius as 𝑅𝑚𝑎𝑥  ~ 𝑅𝑜𝑊𝑒1/2. However, Clanet et al. 

showed that this approach is not accurate because some part of the initial kinetic energy is 

consumed to raise the internal kinetic energy of the droplet [36]. They proposed another scaling 

equation to predict Rmax by balancing the hydrostatic and Laplace pressure. Since the droplet’s 

initial velocity V decelerated to zero during the impact time 𝑅𝑜/𝑉, the acceleration acting on the 

droplet is 𝑉2/𝑅𝑜, not the gravity [33, 36]. Therefore, the balance between the inertial hydrostatic 

pressure and the Laplace pressure, which defines the radius and thickness (𝛿) of the pancake, can 

be described as 

𝜌
𝑉2

𝑅𝑜
𝛿 =

𝛾

𝛿/2
                (4.1) 

Combining Equation (4.1) with conservation of mass, 𝜌𝜋𝑅𝑚𝑎𝑥
2 𝛿 = 𝜌

4𝜋

3
𝑅𝑜

3, concludes  

𝑅𝑚𝑎𝑥 = 𝑅𝑜(
8

9
𝑊𝑒)0.25                         (4.2) 



 

 

47 

 

Despite the numerical factor of √8 9⁄4
= 0.97 in Equation (4.2), Clanet et al. found that their 

experimental data fit better with a factor of 1.07 [36]. This minor adjustment is attributed to the 

assumptions of the uniform deceleration and the cylindrical shape of the pancake [87]. They also 

defined an Impact number as 𝑃 ≡  𝑊𝑒 𝑅𝑒4/5⁄  to determine whether We or Re controls Rmax [36]. 

For Impact number below unity, the impact is inviscid and 𝑅𝑚𝑎𝑥 ~ 𝑅𝑜𝑊𝑒1/4, whereas for 𝑃 > 1 

the impact is viscous and 𝑅𝑚𝑎𝑥  ~ 𝑅𝑜𝑅𝑒1/5.  

We measured the maximum spreading radii of droplets of 6, 9, 16 and 31 μL, whose initial radii 

were 1.1, 1.3, 1.6 and 2.0 mm respectively, impacting on the smooth PETG with the impact 

velocities mentioned earlier. The Reynolds number for our experiments changes between ~440-

3600 and the Impact number is 𝑃 < 0.13 (for highest V and Ro), indicating the viscous dissipation 

is negligible for the impacts in this study. Figure 4.3 shows that the best scaling factor for the 

smooth PETG is 1.02, for the range of Weber number we used, i.e. ~2-90. Therefore, Equations 

(4.3) and (4.4) can be used to find the radius and the thickness of the pancake for this sample.  

𝑅𝑚𝑎𝑥 = 1.02 𝑅𝑜𝑊𝑒0.25             (4.3) 

𝛿 = 1.28 𝑅𝑜𝑊𝑒−0.5              (4.4) 
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Figure 4.3. The ratio of the maximum spreading radius to initial radius of the droplet at different We. The ratio was 

measured experimentally for droplets of 6, 9, 16 and 31 μL impacting on the smooth PETG. Values of the initial 

radius of 6, 9, 16 and 31 μL droplets are 1.1, 1.3, 1.6 and 2.0 mm respectively. The maximum error bar is 0.05. The 

dashed line represents 1.02We0.25. This graph indicates that our measurements are sufficiently accurate and valid. 

We start with analyzing the impact of 9 μL droplet on the ribbed (with 2b = 0.2 mm, see Figure 

4.1) and the smooth samples at different impact velocities. The impact on the ribbed surface is 

categorized into three distinguished regimes; low, intermediate and high impact velocity. For low 

impact velocity (V < 1 m/s), the droplet spreads and recoils circularly on both ribbed and smooth 

substrates. We hypothesized that the ribbed surface alters the mass distribution in the spreading 

stage and results in a lower contact time. In the low impact regime, however, no difference is 

observed and the ribbed surface interacts with the droplet as the smooth surface does, hence the 

contact times are the same for both surfaces. Figure 4.4a indicates the variation of the spreading 

radius (r) on the smooth PETG as well as the spreading length along (x) and perpendicular (y) to 

the cylindrical ridges on the ribbed surface during an impact at V = 0.8 m/s and We ≈ 11. It can 

be seen that x, y and r follow the same trend as reported in literature for a bouncing drop on a 

superhydrophobic substrate at We > 1 [23], which is spreading symmetrically to a pancake of 
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radius 𝑅𝑚𝑎𝑥 and thickness 𝛿 through a decelerated motion and then retracting at a constant velocity 

𝑉𝑟 [23, 42], expressed in Equation (4.5). 

𝑉𝑟 = √2𝛾 𝜌𝛿⁄                                                                                                                              (4.5) 

  

Figure 4.4. Water droplet of 9 μL impacting on ribbed (2b= 0.2 mm) and smooth surfaces at V = 0.8 m/s. The 

droplet symmetrically spreads to a circle on both samples. (a) The temporal variation of spreading radius (r), 

spreading length along (x) and perpendicular (y) to the cylindrical ridges during the impact. The data were acquired 

from side view videos. (b) Top view of the droplet at the end of the spreading stage on both samples; the circular 

pancake shape. 

At higher impact velocity (V >1 m/s), the expected asymmetry spreading starts to happen on the 

ribbed substrate. As shown in Figure 4.5a, for a 9 µL droplet impacting at V= 1.2 m/s and We ≈ 

26, the droplet spreads longer along the ridges (x) and adapts a quasi-elliptical shape, followed by 

non-circular retraction. The greater stretching in the x direction generates a shallower region in the 

middle. It was observed that the outer rim retracts faster along the ridges due to it being thinner 

and results in a retraction at non-uniform velocity. This is the reason that tail-like detachment is 

not seen for this substrate, and consequently the contact time decreases. The contact time is defined 

as the time the south pole of the droplet touches the substrate till the last point of contact leaves 

(a) (b) 
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the surface. It was determined from side view videos and found to be 11.4±0.17 ms for the ribbed 

surface versus 13.5±0.20 ms for the smooth one. 

 

 

 

Figure 4.5. Impacting of a 9 μL water droplet at V = 1.2 m/s on (a) ribbed sample of 2b = 0.2 mm and (b) smooth 

PETG. Unlike on the smooth surface, the droplet spreads to a quasi-elliptical shape and retracts in a non-circular 

manner on the ribbed substrate, which results in reduced contact time. The contact time for the ribbed surface is 

(a) 

(b) 

(c) 
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11.4±0.17 ms, compared to 13.5±0.20 for the smooth sample. (c) The graph illustrates the variation of x, y and r, as 

defined earlier, during the impact. The data is extracted from top view videos for both surfaces. Extracting data 

continues until the outer rim seems stationary from the top view. 

In addition to the aforementioned qualitative assessment for reducing the contact time, a 

quantitative comparison can be drawn. Although the droplet flattens to a quasi-elliptical shape at 

the end of the spreading stage on the ribbed sample, its projected area is equal to that on the smooth 

sample. For instance, the areas shown in Figure 4.5a and b at 3.3 ms are 29.9 and 29.8 mm2, 

respectively. It should be noted that the actual area on the ribbed surface is larger by a factor of 

𝜋/2 since the ratio of the ribbed length to the projected length is 𝜋𝑏/2𝑏, according to Figure 4.1a. 

The volume of the droplet can be considered as the product of the actual area and the average 

thickness of the liquid film, thus the relation between the film thicknesses on the surfaces can be 

described as 

𝛿𝑏

𝛿𝑠
≈

2

𝜋
                            (4.6) 

Where 𝛿𝑏 and 𝛿𝑠 denote the average thickness of the liquid film on ribbed and on smooth surfaces, 

respectively. Since the retraction velocity (Equation 4.5) is proportional to √1 𝛿⁄ , the ratio of the 

average retraction velocity on the ribbed surface (𝑉𝑟𝑏) to that on the smooth (𝑉𝑟𝑠) is deduced as 

𝑉𝑟𝑏

𝑉𝑟𝑠
≈ √

𝜋

2
                          (4.7)  

The retraction time (𝑡𝑟) is the time needed for the outer rim to recoil from its position at the end 

of the spreading stage (Rmax), so 𝑡𝑟 = 𝑅𝑚𝑎𝑥 𝑉𝑟⁄ . Since Figure 4.5c shows that the maximum value 

of r is between the maximum value of x and y, the average distance from the center can be assumed 

equal for both samples. Thus, the relation between the retraction time of the ribbed and smooth 

substrates can be concluded as 
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𝑡𝑟𝑏

𝑡𝑟𝑠
≈ √

2

𝜋
                   (8) 

The measured retraction time for the impact mentioned above is trb = 7.9±0.21 ms for the ribbed 

surface while it is trs = 10.2±0.15 ms for the smooth PETG, which results in the ratio of 0.77 indeed 

comparable to √2 𝜋⁄ = 0.80. This reduction is found to be persistent in a wide range of impact 

velocities between 1.0 and 1.6 m/s; intermediate impact regime. Such a step-like behavior has been 

reported for impact on a superhydrophobic surface decorated with a single macrotexture [40]. 

Considering both the low and intermediate impact regimes that have been defined so far, it can be 

deduced that in the former, the cylindrical ridges get partially wet as the impacting droplet does 

not see any difference between the ribbed and smooth substrates. The criterion for the droplet to 

wet the ribbed surface completely and distinguish the difference between the substrates is likely 

the sufficient amount of the dynamic pressure of the impacting droplet ~𝜌𝑉2 to dominate its 

Laplace pressure ~ 𝛾 𝑅𝑜⁄ . If one order of magnitude higher dynamic pressure satisfies this 

domination, the criterion for beginning the intermediate impact regime will be We > 10. Later in 

this paper, it can be seen that the range of We for this regime is ~ 15-50. The criterion for the 

transition from the intermediate to the high impact regime (We ~ 55) is defined as when the 

flattened droplet gets thin enough (critical thickness) to start splashing from its edges on the ribbed 

surface.  

As the impact velocity increases from 1.0 to 1.6 m/s, the thinner middle region propagates wider 

in the y direction which results in a barrel-shape spreading at V= 1.6 m/s. It seems that at this point, 

the onset of the high impact regime, the thickness of the middle region reaches its critical value as 

the flattened droplet splashes in the x direction along the propagation line. The length of the 
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propagation line, which represents the portion of the liquid film with the critical thickness, 

increases from ~2Ro at V= 1.6 m/s to ~2Rmax at V= 2.0 m/s where the flattened droplet splashes 

from its periphery on the ribbed surface. For the smooth PETG, however, the thickness of the 

pancake is still below its critical value as it does not splash from the outer edge. The increase in 

the extent of the middle thin region and the splashing lead to further reduction in the retraction 

time in this range of the impact velocity. 

Figure 4.6a illustrates the spreading and retraction stages of the 9 μL water droplet impacting on 

the ribbed surface at V = 1.8 m/s and We ≈ 58. The barrel-shape spreading can be seen at 3.4 ms, 

when the flattened droplet splashes along the propagation line (shown with red rectangles). 

Moreover, the liquid film retracts in a square-like manner due to its non-uniform thickness.  

 

 

(a) 

(b) 
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Figure 4.6. Impacting of a 9 μL water droplet at V = 1.8 m/s on (a) ribbed sample of 2b = 0.2 mm and (b) smooth 

PETG. On the ribbed substrate, the droplet spreads to a barrel-shape at 3.4 ms and retracts in a square-like manner. 

This faster anisotropic recoiling as well as splashing are the reasons for further contact time reduction. The contact 

time for the ribbed surface is 10.5±0.45 ms, compared to 13.2±0.40 for the smooth PETG. (c) Extracting the data 

from the top view videos, this graph depicts the variation of x, y and r during the impact. Since the splashing 

happens in x direction, the length of the outer edge before splashing is considered. 

Since the droplet splashes at this impact velocity, drawing the aforementioned quantitative 

comparison may be debatable. Following the same rationality, however, it can be concluded that 

the retraction velocity should be even faster, as a larger portion of the flattened droplet has the 

critical thickness. This significantly faster retraction can be seen in Figure 4.6c, as the slopes of 

the plots for x and y are clearly sharper than the slope of r through the retraction stage. For example, 

at this impact velocity, the retraction time on the ribbed surface is found to be 6.9±0.52 ms while 

it is 10.1±0.30 for smooth PETG, concluding 𝑡𝑟𝑏 𝑡𝑟𝑓⁄ < √2 𝜋⁄ . 

Finally at V = 2.2 m/s and We ≈ 86, the thickness of the flattened water droplet on the smooth 

PETG reaches its critical value since it splashes from its periphery, as in Figure 4.7b. Moreover, 

the barrel-shape of the liquid film on the ribbed substrate changes to a new figure as shown in 

Figure 4.7c. This shape looks similar to the butterfly spreading reported for a superhydrophobic 

surface with a single macrotexture [39, 40]. The retraction time is found to be as short as 4.7±0.29 

(c) 



 

 

55 

 

on the ribbed surface, while it is 9.6±0.89 for the smooth PETG. The variation of the spreading 

and retraction time of the 9 μL water droplet on the smooth PETG and the ribbed surface with 2b 

= 0.2 mm is summarized in Figure 4.7a. Although the spreading dynamic of the droplet on the 

ribbed sample diverges from that on the smooth PETG for 𝑉 ≥ 1.0 m/s, it can be seen that the 

spreading time is the same for both of them through the whole range of the velocity investigated 

in this study. This similarity has been reported for the same droplet size impacting on a 

superhydrophobic surface with one single macrotexture [39]. 

  

Figure 4.7. (a) The plot depicts the variation of the retraction and spreading time of a 9 μL water droplet impacting 

on smooth PETG and ribbed sample of 2b = 0.2 mm for impact velocity changing from 0.4 to 2.2 m/s. Filled and 

empty circles show the retraction (trs) and spreading (tss) time on the smooth PETG, respectively, while the filled and 

empty triangles indicate the retraction (trb) and spreading (tsb) time on the ribbed sample. The black solid line is the 

average of trs (10.0 ms) for V = 1.0-2.2 m/s. The red dashed line is the average of trb (8.0 ms) for V = 1.0 -1.6 m/s, 

the range in which 𝑡𝑟𝑏 𝑡𝑟𝑠⁄ ≈ √2 𝜋⁄ . (b) The pancake with the critical thickness on smooth PETG at V = 2.2 m/s, 

where it splashes from the outer rim. (c) The droplet adapts a butterfly shape at V = 2.2 m/s on the ribbed substrate. 

We also studied the effect of the ridge size on decreasing the contact time for the whole range of 

the impact velocity. To do this, we repeated all our experiments, explained above, on ribbed 

surfaces with 2b = 0.1 and 0.3 mm (see Figure 4.1a for the geometry). The results (Figure 4.8a) 

indicate that the droplet behaves similarly on the ribbed surfaces of 2b = 0.1, 0.2 and 0.3 mm. 

(a) 

(b) 

(c) 
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Since Equation (4.8) is independent of the ridge’s size, collapsing the data is reasonable. As a 

matter of fact, the extent to which contact time decreases on a superhydrophobic surface decorated 

with one single macrotexture is also found to be constant for the texture’s amplitude changing 

from 100 to 500 μm [40]. Figure 4.8a shows that the average contact time of the 9 μL water droplet 

at V = 1.0 -1.6 m/s decreases from 13.2 ms for smooth PETG to 11.5 ms for the ribbed surfaces. 

The contact time for the ribbed surfaces reduces further as the impact velocity increases, while it 

remains unchanged for the smooth PETG. We also investigated the impact of 6, 16 and 31 μL 

droplets, whose Ro = 1.1, 1.6 and 2.0 mm respectively, on both ribbed and smooth PETG. The 

contact time presented in Figure 4.8b is normalized by the average contact time of the droplets on 

the smooth PETG. It is observed that the contact time decreases 13% in the intermediate impact 

regime We ~ 15-50.  

 

Figure 4.8. (a) Variation of the contact time of a 9 μL water droplet for impact velocity V = 0.4-2.2 m/s on smooth 

PETG as well as ribbed samples of 2b = 0.1, 0.2 and 0.3 mm. The solid black line indicates that the average contact 

time of the droplet on smooth PETG is independent of V as reported in literature [31, 40]. The red dashed line shows 

the average contact time of 11.5 ms on the ribbed samples for V = 1.0-1.6 m/s, intermediate impact regime, which is 

13% shorter than that on the smooth PETG. The reduction in contact time is attributed to the 20% shorter retraction 

time on the ribbed samples. (b) For the ribbed sample of 2b = 0.2 mm, the plot shows the contact time of water 

droplets of four volumes normalized by their contact time on smooth PETG. The black dashed line illustrates a 13% 

reduction for We ~ 15-50, the intermediate impact regime, before the droplets start to splash on the ribbed surface. 

(a) (b) 
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Figure 4.8b also indicates that the onset of further reduction in contact time is We ~ 55, the value 

at which splashing happens in x direction along the propagation line. Regarding Equation (4.4), 

the thickness of the flattened droplet is governed by We. The critical We at which the droplet starts 

splashing from its periphery on smooth PETG is ~90. Interestingly, the ratio of the critical We on 

the ribbed surface to that on the smooth PETG is ~ 55/90 = 0.61, a value comparable to 2/π = 0.64. 

This may be interpreted as the term of the surface energy in the critical We being increased by a 

factor of π/2 for the ribbed substrate. 

In general, the fabricated ribbed superhydrophobic surfaces in this study showed shorter contact 

time compared to their smooth counterpart regardless of the point of the impact on the surface. In 

contrast, reducing the contact time by incorporating a single macrotexture or multiple intersecting 

ridges requires impact happening exactly on the texture or the intersection [39, 40, 87]. To 

complete our study, we compared the droplet impact on one of the ribbed surfaces (2b = 0.2 mm) 

and on a single macrotexture. Nickel (Ni) wire of 0.1 mm in diameter was used as the texture [40] 

and was secured on a smooth sample using pieces of duct tape. Both Ni wire and the surface 

became superhydrophobic following the same procedure explained earlier. In addition, ribbed 

surfaces (2b= 0.2 mm) with Ni wire added along and perpendicular to the ridges were tested 

afterwards. Figure 4.9a shows the normalized contact time of the surfaces by the inertial-capillary 

time scale for 9 μL droplet at V = 0.4-2.2 m/s. In the intermediate impact regime, the ribbed surface 

shows the contact time of 𝑡𝑐 ≈ 2.05𝜏𝑜, even shorter than the Rayleigh limit for any collision 

regardless of the point of impact. For the sake of comparison, it is worth noting that the contact 

time for smooth PETG was 𝑡𝑐 ≈ 2.35𝜏𝑜. In the case of impact on the wire exactly in the center, 

ribbed surface with wire along the ridges exhibits shorter contact time for low impact velocity, 

while the ribbed surface with wire perpendicular to the ridges shows the shortest contact for higher 
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V. While the significantly shorter contact time caused by incorporating the wire is strictly related 

to the point of impact, the associated results for the ribbed surface are independent of it. 

  

Figure 4.9. (a) Contact time of 9 μL water droplet normalized by 𝜏𝑜 = √𝜌𝑅𝑜
3/𝛾 is plotted for superhydrophobic 

ribbed (2b = 0.2 mm) with no wire, wired smooth (Ni wire diameter, d = 0.1 mm), ribbed with wire along and 

perpendicular to the ridges at varied impact regimes. The schematic cross section of ribbed with wire along (b) and 

perpendicular (c) to the ridges are shown. 

 

4.4 Conclusions 

This chapter provided a comprehensive investigation of water droplet impacting on 

superhydrophobic surfaces fully decorated with cylindrical ridges (ribbed) at different impact 

velocities. The dynamic of impact on these surfaces is classified into three regimes regarding the 

impact velocity; low, intermediate and high. The data declare that the impact on such a surface 

pattern is quite similar to that on a macroscopically smooth one in the low impact regime, whereas 

it changes for the intermediate and high velocity regimes. The asymmetric spreading of the droplet 

in the intermediate regime shows that its kinetic energy is sufficient to wet the surface completely 

and create a thinner flattened droplet on the ribbed surface. Therefore, the retraction time decreases 

(b) (a) (c) 



 

 

59 

 

by a factor of ~√2/𝜋, consequently leading to ~13% reduction in the contact time in this regime. 

Such a step like behavior was reported for the impact on a surface decorated with a single 

cylindrical ridge [40]. In the high impact regime, the retraction and the contact time reduce further 

since the thin liquid film reaches the critical value and splashes from its periphery. It is also shown 

that the size of the ridges has a negligible effect on the contact time, same as the behavior reported 

for one single ridge [40]. 

It should be noted that the current study has successfully addressed the problem with using only 

one single macrotexture, to obtain the shortest contact time, by making it independent of the 

contact point when ribbed surfaces are used. For a single macrotexture, it is known that the droplet 

must hit the texture exactly in the center to get the best results, which is not the case most of the 

times. The simplified and cost-effective method of fabricating the ribbed superhydrophobic 

surfaces presented in this chapter introduced us to a surface with contact time shorter than the 

Rayleigh limit, 𝑡𝑐 ≈ 2.05𝜏𝑜, regardless of the point of the impact. Adding a Ni wire as a 

macrotexture to the ribbed surface reduces the contact time even further, still if the impact occurs 

on the wire. For the low impact regime, the ribbed surface with wire along the ridge shows the 

shortest contact time, whereas for the intermediate and high impact regimes the ribbed surface 

with wire perpendicular to the ridges indicates the shortest contact. 
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Chapter 5 Droplet Impact on Cylindrical Surfaces to Achieve the Shortest Possible Contact 

Time 

5.1 Introduction 

This chapter is also adopted from my paper [46] published very recently in JCIS. Droplet impact 

on a solid substrate has been the focus of numerous studies [23, 31, 33, 39-41, 45, 69, 87-90] due 

its application in processes such as spray coating [91], inkjet printing [92], self-cleaning [12], and 

anti-icing [93]. Perhaps, one of the first pioneering studies on this subject has been done by 

Worthington [88] who investigated the patterns left by drops of various liquids impinging smoked 

glass plates. Thanks to recent advances in high-speed photography, researchers have been able to 

investigate the challenging physics of the impact more precisely by experiments. It has been shown 

that when the solid substrate is non-wettable (superhydrophobic) and flat, the impact consists of 

radial spreading of the droplet followed by its retraction and bounce off. The summation of 

spreading and retraction times, which is called contact time (𝑡𝑐), is a key factor of the impact 

dynamics that researchers have endeavored to minimize, intending to enhance the water repellency 

of superhydrophobic surfaces.  

Richard et al. have shown that the contact time for a droplet of density (ρ), surface tension (γ), and 

radius (Ro) scales with inertial-capillary time scale, 𝜏𝑜 = √𝜌𝑅𝑜
3/𝛾, and is independent of the 

impact velocity (V) [31]. In addition, it has been accepted that symmetric bouncing is associated 

with the shortest contact time [23, 31, 33, 39], although this correlation is limited by Rayleigh 

constant, 𝑡𝑐 𝜏𝑜⁄ ≥ 𝜋 √2⁄ ≈ 2.2 [34]. In contrast, Bird et al. have recently shown that utilizing a 

single macrotexture (ridge) leads to an even shorter contact time below this theoretical limit [39]. 

They theorized that this reduction is the consequence of altering mass distribution in the spreading 

stage. Following them, Gauthier et al. claimed that the contact time on a single ridge takes discrete 
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values of ~𝜏 √2⁄  and ~𝜏 √4⁄  at intermediate and high impact velocity ranges, respectively, where 

𝜏 is the contact time on an equivalent surface with no ridge [40]. Their discussion implies that if 

the impact happens on an intersection that splits the droplet into n fragments, the contact time 

would be 𝑡𝑐 ~𝜏 √𝑛⁄ . On the other hand, Paterson et al. showed that the contact time of a bouncing 

Lindenfrost drop on such an intersection barely changes as n increases [87]. The common issue in 

all the aforementioned studies associated with contact time reduction is that the impact must 

happen exactly on the ridge or intersection. As explained in Chapter 4, we resolved this issue by 

fabricating a surface fully structured by cylindrical ridges (ribbed surface) [45]. Although the 

contact time reduction (~ 13-35%) caused by utilizing the ribbed surface was not as high as that 

of a single macrotexture, the implemented surface pattern led to a contact time shorter than the 

Rayleigh limit, 𝑡𝑐 < 2.05𝜏𝑜, regardless of the location of the impact. 

Inspired by the work of Bird et al. [39], Liu et al. studied the impact dynamics on curved 

superhydrophobic surfaces using both experiments and numerical modeling [41]. They started 

with investigating the impact on Echevaria leaves, which induce asymmetric bouncing due to their 

cylindrical geometry. Their experimental and numerical results qualitatively agreed that the 

asymmetry is the consequence of more momentum being transformed in the azimuthal (curved) 

direction. Specifically, they investigated the contact time where the radius of the surface (R) is 

comparable to that of the droplet (Ro). Subsequently, they demonstrated that the contact time 

decreases for cylindrical surfaces as R/Ro decreases, yet remains unchanged for spherical ones. 

Although their study involved different impact velocities (0.6-1.1 m/s), they did not consider how 

the impact velocity affects the contact time, which is the objective of the current chapter. Later in 

this chapter, we will compare our observations with Liu et al’s [41] to validate our results and 

discussion. 



 

 

62 

 

Here, we study the impact of water droplets on curved surfaces for various impact velocities and 

ratios of the radii (R/Ro). Our results show the extent to which the contact time changes with respect 

to the impact velocity (for different R/Ro), for which we present a correlation with 95% confidence 

intervals. Since decorating a flat substrate with the ribbed pattern and/or a single ridge had reduced 

the contact time [39, 40, 45, 87], we examined the contact time for ribbed-curved surfaces and 

those with a ridge on their peaks. It should be noted that the focus of this study is the impact that 

occurs on the acme of curved surfaces, hence adding a ridge (elongated in the axial direction) on 

these peaks does not impose any new limitations regarding the location of impact in the axial 

direction.  However, the restriction in azimuthal direction does still hold.   

5.2 Experimental Methods 

5.2.1 Sample Preparation 

The substrates, used in this study, were borosilicate glass tubes of 9.0 and 12.7 mm in diameter 

(McMaster Carr, USA) and semi-cylinders printed in the same diameters using an extruder-type 

3D printer (Ultimaker 2, Netherlands). Such a printer with a nozzle of 0.4 mm in diameter provided 

us curved samples enveloped in cylindrical ridges (ribbed-curved) elongated in azimuthal 

direction. The ridges’ diameters were 300 μm, controlled by Cura software with a resolution of 

about 5 microns. To obtain the curved samples with an additional macrotexture, a copper wire with 

a diameter of 0.2 mm (McMaster Carr, USA) was secured on their peaks using pieces of duct tape. 

To comprehend the dynamics of impact on the curved surfaces, we had to compare it with droplet 

impact on a macroscopically-smooth flat surface. Such a substrate was obtained by polishing a 

3D-printed specimen (151510 mm) with 600 and 1200 grit sand papers (Allied High Tech 

Products Inc., USA). All the solid substrates were washed with a typical lab detergent and then 
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sonicated in water for 30 min before the soot deposition. The superhydrophobic coating utilized in 

this work is a layer of functionalized chimney-modified soot, which has been explained in detail 

in the previous chapters. The functionalized soot coating demonstrated advancing and receding 

contact angles of 165.8±2.6° and 164.4±1.5° for water, respectively. A Drop Shape Analyzer 

(DSA25E, Krüss, Germany) was used for these measurements. 

5.2.2 Experimental Setup 

Using a precisely-controlled automated syringe and calibrated needles, we dosed water droplets (ρ 

= 1000 kg/m3 and γ = 73±0.2 mN/m) of volume 6, 9, and 16 μL (with < 5% error), whose radii 

were 1.13, 1.29, and 1.56 mm respectively. Releasing the droplets from 8 to 247 mm above the 

substrates, we were able to acquire impact velocities from 0.4 to 2.2 m/s. The impacts were 

recorded by a high-speed camera (Phantom Miro ex2, Ametek, USA) at 10000 frames per second 

(fps) from front and side views for curved samples and from side and top views for the flat one. 

An open-source piece of software called Tracker was used to analyze the videos. The impact for a 

specific release height was repeated at least three times on each sample and the impact velocity 

was confirmed by measuring it via Tracker in the last five frames before the impact. The contact 

time was defined as the time from which the droplet touched the sample until its last point of 

contact became detached. In the case of the wired substrates, for which the droplet split, the contact 

time of each fragment was considered and then averaged. Figure 5.1 shows the schematic diagram 

of the experiment (front view) as well as the side view of a ribbed-curved specimen and a wired-

curved sample before coating.  
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Figure 5.1. (a) Experimental configuration. (b) Side view of a ribbed-curved sample with radius of 4.5 mm and 

ridges of 300 μm in diameter. (c) Image of a curved specimen (R = 4.5 mm) with an additional macroscopic copper 

wire (with a diameter of 0.2 mm) on its peak prior to coating. 

5.3 Results and Discussion 

Although droplet impact studies date back to 19th century [88], the complicated dynamics of this 

subject still present some dilemmas. For example, the maximum spreading of the impacting droplet 

has been believed to scale with Reynolds number (𝑅𝑒 = 𝜌𝑉𝑅𝑜 𝜇⁄ , with μ being viscosity) 

as 𝑟𝑚𝑎𝑥  ~ 𝑅𝑜𝑅𝑒1/5 [85, 86]. This discussion implies that the surface tension of the droplet has no 

effect on 𝑟𝑚𝑎𝑥. In 1996, however, Pasandidehfard et al. claimed that Weber number (𝑊𝑒 =

𝜌𝑉2𝑅𝑜 𝛾⁄ ) is crucial for maximum spreading and capillary effects can be neglected only if 𝑊𝑒 ≫

√𝑅𝑒 [94]. Later in 2004, Clanet et al. defined a criterion for the impact to assess whether it is 

dominated mainly by μ or γ [36]. They claimed that, if Impact number (𝑃 ≡  𝑊𝑒 𝑅𝑒
4

5⁄ ) is higher 

than unity, the impact should be considered viscous and 𝑟𝑚𝑎𝑥 ~ 𝑅𝑜𝑅𝑒1/5. Otherwise, it should be 

considered to be inviscid and its maximum spreading radius is governed as 𝑟𝑚𝑎𝑥 ~ 𝑅𝑜𝑊𝑒1/4. This 

discussion for a flat surface has been confirmed by most of the relevant studies [23, 41, 45, 87] 

mentioned in the Introduction of this Chapter. The Impact number for our experiments here is 𝑃 <

0.13 (for highest V and Ro), meaning that the impacts are inviscid.  

(a) (b) (c) 
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Investigating the impact of a 9 μL (Ro = 1.29 mm) droplet on the flat and curved (R = 4.5 mm) 

samples for various impact velocities (V), we found that the spreading and retraction phases are 

noticeably different (see Figure 5.2a-b). On the flat surface, the droplet spreads to a circle and then 

recoils symmetrically until its center engulfed by the retracting rim. On the curved substrate, 

however, it spreads longer in the azimuthal direction, which causes an asymmetric bouncing [41]. 

Monitoring the spreading radius (r) on flat as well as spreading length in axial (x) and azimuthal 

(z) directions yields Figure 5.2c. It can be seen that r recoils at a constant velocity scaling 

as 𝑉𝑟 ~ √𝛾 𝜌𝛿⁄ , where 𝛿 is the average thickness of the flattened droplet at the beginning of the 

retraction stage, confirming the findings presented in the literature [23, 39, 42]. This means that 

the time needed for the expanded droplet to retract scales as 𝑡𝑟 ~ 𝑟𝑚𝑎𝑥 √𝛾 𝜌𝛿⁄⁄ . Consolidating this 

correlation with conservation of volume (𝛿 ~ 𝑅𝑜
3 𝑟𝑚𝑎𝑥

2⁄ ) yields that the retraction time scales 

with 𝜏𝑜 = √𝜌𝑅𝑜
3/𝛾. Moreover, as mentioned earlier, it has been illustrated that contact time 

(summation of spreading and retraction time) for a flat superhydrophobic surface is independent 

of V and scales with 𝜏𝑜. Interestingly, in the studies associated with reducing the contact time [39-

41, 45, 87], only the retraction time has been reduced. In fact, for our curved substrate, analogous 

to what Liu et al. reported [41], spreading time (3.5 ms in Figure 5.2) in the axial direction is the 

same as that on the flat surface because it is controlled primarily by inertia. Moreover, the droplet 

leaves the surface as soon as the retraction in the axial direction completes. This means, firstly, the 

faster the retraction in the x direction, the shorter the contact time. Secondly, the way in which 

contact time changes with respect to V is the same as how the retraction time does. In order to 

quantify this relationship, the distance from which the droplet starts to retract and the retraction 

velocity need to be found for various values of V. 
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Figure 5.2. Impact of a 9 μL water droplet at V = 1.0 m/s on (a) flat and (b) curved (R = 4.5 mm) substrates. 

Spreading time in the axial direction (x) is equal to that found on a flat surface. Contact times were found to be 

13.57±0.06 ms (obtained from side-view videos) for the flat surface and 10.10±0.23 ms (obtained from front-view 

videos) for the curved one. (c) Temporal variation of x, r, and z, as defined in this chapter, during the impact. 

Extracting data points for x continued until the outer rim was visible from the side view. Comparing the data of this 

diagram with the similar content reported by Liu et al. [41], the accuracy and validity of our measurements are 

confirmed. (d) Scanning electron microscopy (SEM) image of the functionalized soot utilized as superhydrophobic 

coating. 

(a) 

(b) 

(c) (d) 
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Besides showing a higher 𝑧𝑚𝑎𝑥 , Figure 5.2c illustrates two more concepts. First, the maximum 

spreading radius (𝑟𝑚𝑎𝑥) is slightly bigger than 𝑥𝑚𝑎𝑥. Second, the x diagram reduces at a 

significantly sharper slope than the r diagram does. To quantify the effect of V on these 

observations, we define dimensionless radius and lengths as 𝑟∗ = 𝑟𝑚𝑎𝑥 𝑅𝑜⁄ , 𝑥∗ = 𝑥𝑚𝑎𝑥 𝑅𝑜⁄ , and 

𝑧∗ = 𝑧𝑚𝑎𝑥 𝑅𝑜⁄ . Figure 5.3 shows their deviation for different Weber numbers. It can be seen that 

power lines fit the measured data quite well with numerical coefficients of 1.02, 1.00, and 0.97 for 

r*, x*, and z*, respectively. These values were obtained from a least-squares fit and are, indeed, 

close to 1.07 reported by Clanet et al. [36] and 1.1 by Patterson et al. [87]. Despite the close powers 

found for Weber number for the correlations associated with r*and x* (0.25 and 0.24, respectively), 

the power found for z* is noticeably higher (0.35). This can be explained with what is shown in 

Figure 5.2c. While the droplet spreads in r and x equally until 3.5 ms, it continues to spread in z 

until 5.3 ms. Liu et al. mentioned the same behavior in their study [41] and justified it qualitatively 

with their numerical calculations, which depicted more momentum being transferred in the 

azimuthal direction than the axial one. 

 

Figure 5.3. The maximum spreading radius and lengths normalized by Ro = 1.29 mm (9 μL) for different Weber 

numbers (various V). The dashed, solid, and dotted lines respectively depict 𝑥∗ = 1.00𝑊𝑒0.24, 𝑟∗ = 1.02𝑊𝑒0.25, 

and 𝑧∗ = 0.97𝑊𝑒0.35. The error bars were too small to be shown (< 0.04). 
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The faster retraction velocity in the axial direction, recognized from the sharper slope of x in Figure 

5.2c, can be observed in Figure 5.2ab as well. While x considerably recoils between 3.5 and 8.0 

ms, r does moderately and z barely changes. Since the impact happens over a shorter period of 

time on the curved surface compared to the flat one due to this faster retraction in the x direction, 

we measured the retraction velocity (Vr) in the x and r directions from similar diagrams plotted at 

various impact velocities. We define a characteristic velocity as 𝜐 = √𝛾 𝜌𝑅𝑜⁄  to normalize Vr with. 

Since Vr, r*and x* all depend on the impact velocity, plotting the variation of dimensionless 

retraction velocities 𝑉𝑟
∗ =

𝑉𝑟

𝜐
 with respect to r*and x* helps us comprehend the contact time 

reduction better (Figure 5.4). 

 

Figure 5.4. The plot displays how the normalized retraction velocities (𝑉𝑟
∗ =  𝑉𝑟 𝜈⁄ ) for curved and flat surfaces 

correlate with x* and r*, respectively. The solid black line illustrates that 𝑉𝑟
∗  ∝  𝑟∗, whereas the dashed red line 

follows 𝑉𝑟
∗  ∝  𝑥∗

3

2. 

Figure 5.4 indicates that 𝑉𝑟
∗ changes linearly with r* for the flat surface, and is proportional to 

(𝑥∗)
3

2 for the curved substrate. Assuming that the contact time changes with V in proportion to the 

change in retraction time, as explained earlier, this linear correlation for flat substrate concurs with 

the fact that the contact time is independent of the impact velocity [31]. Following the same 
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rational, a relationship can be developed between the contact time and the Weber number on 

curved surfaces. Equation (5.1) summarizes what was shown in Figure 5.3 and Figure 5.4 for such 

a geometry. 

(𝑎) 𝑥𝑚𝑎𝑥 = 1.00𝑅𝑜𝑊𝑒0.24          (𝑏) 
𝑉𝑟

𝜈
 ∝ (

𝑥𝑚𝑎𝑥

𝑅𝑜
)1.5                                                                 (5.1) 

A scaling correlation will be deduced from Equation (5.1) as 

𝑡𝑐

𝜏𝑜
 ~ 𝑊𝑒−0.12                (5.2) 

Since 𝑅 𝑅𝑜⁄  is a critical factor that must be considered for contact time on curved surfaces [41], 

we have checked this scaling model for five different ratios obtained from 6, 9, and 16 μL droplets 

impacting the samples with diameters of 9.0 and 12.7 mm. Figure 5.5a demonstrates that this 

scaling model fits well with the numerical coefficient C = 2.612±0.255, presented in Equation 

(5.3), with a 95% confidence. 

𝑡𝑐 = 𝐶𝜏𝑜𝑊𝑒−0.12                                                            (5.3) 

  
(a) (b) 
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Figure 5.5. (a) The plot shows the trend of the reduction of contact time on curved surfaces as the Weber number 

increases. The contact time has been normalized by the inertial-capillary time scale 𝜏𝑜 = √𝜌𝑅𝑜
3/𝛾 . The solid black 

line represents 
𝑡𝑐

𝜏𝑜
= 2.612𝑊𝑒−0.12. The dashed green lines show the top and bottom boundaries of the numerical 

coefficient in Equation (5.3) for data acquired from the droplet impacts with different R/Ro ratios with a 95% 

confidence. (b) This plot shows that the normalized contact time versus Weber number for ribbed-curved samples 

follows the same trend yet with a slightly smaller numerical coefficient: C = 2.528±0.269 (the solid black and 

dashed green lines). The insets show that the edges of liquid film spreading on a ribbed-curved sample do not 

contact the solid substrate for high impact velocities, whilst they keep connected on the curved surface. The insets 

are associated with the impact of a 9 μL droplet on a curved/ribbed-curved surface of R = 4.5 mm at V = 1.6 m/s 

(R/Ro = 3.49). 

We have shown in Chapter 4 that contact time of an impacting droplet on a ribbed-flat surface 

becomes shorter for relatively high impact velocity due to a thinner flattened droplet and longer 

spreading along the ridges. Thus, a ribbed-curved surface with ridges elongated in the azimuthal 

direction (see Figure 5.1b) may cause more spreading in this direction and boost the asymmetry of 

the bouncing, consequently leading to a shorter contact time. Figure 5.5b shows that the 

normalized contact time of ribbed-curved substrates decreases as the Weber number increases 

following the predicted scaling model, given by Equation (5.3), with a slightly smaller numerical 

coefficient of 2.528±0.269 with a 95% confidence. The reason that the reduction is almost 

negligible for this case, unlike for the flat surface [45], may be attributed to the detachment of the 

edges of the liquid film in the spreading stage for relatively higher impact velocity, where a shorter 

contact is expected (see the insets in Figure 5.5a-b). Moreover, as we expected, changing the 

diameter of the ridges (100-300 μm) has negligible effect on the contact time, similar to Figure 

4.8, because the size of the ridges (hundreds of microns) is one order of magnitude smaller than 

the size of the drops (millimeters). The data associated with these tests are presented in Figure 5.6. 
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Figure 5.6. For the case of R/Ro = 3.49, the plot depicts the variation of the normalized contact time vs changing the 

Weber number for ribbed-curved samples with various ridge’s diameters (2b = 100-300 μm). The plot illustrates that 

changing the size of the ridges barely changes the contact time. The solid black line represents 
𝑡𝑐

𝜏𝑜
= 2.528𝑊𝑒−0.12. 

The other technique which can be used to manipulate the dynamics of impact, in order to achieve 

a shorter contact time, is to utilize a single macrotexture. As such, contact times for 9 μL droplets 

on both ribbed and smooth curved samples (R = 4.5 mm) with an additional macrotexture (copper 

wire of 0.2 mm in diameter) on their peaks were investigated for various impact velocities. The 

results of this investigation, along with the results for curved and ribbed-curved substrates, are 

shown in Figure 5.7.  It can be seen that contact time of the droplets on the ribbed-curved substrate 

(containing no wire) is slightly smaller than that of the smooth curved one; however, incorporating 

the wire to them makes the contact time significantly smaller due to the faster retraction on the 

wire [39]. Moreover, the contact times for all four samples follow a similar reduction trend up to 

V = 1.4 m/s. On the other hand, for V = 1.6-2.0 m/s the contact time on the wired ribbed-curved 

surface shows an unprecedented contact time of 𝑡𝑐 = 0.84 ± 0.02𝜏𝑜, whilst the shortest contact 

times reported so far have been 𝑡𝑐 ≈ 1.4𝜏𝑜 for a single macrotexture [39] and 𝑡𝑐 ≈ 1.2𝜏𝑜 for an 

intersection of six spokes [87]. A similar step-like shortening the contact time for varied impact 

velocities has also been observed for a wired flat surface [40] and a wired ribbed surface (for 



 

 

72 

 

relatively high impact velocities) [45], which means that the wire appears to be the dominant 

feature that has changed the dynamics of impact in this case. This dominance may be attributed to 

the fact that the thickness of the liquid film, on which the retraction velocity depends, becomes 

comparable to the ridge size. 

 

Figure 5.7. This plot demonstrates that the contact time of a bouncing 9 μL droplet on curved, ribbed-curved, wired 

curved, and wired ribbed-curved substrates decreases as the impact velocity increases. The wired ribbed-curved 

substrate exhibits a contact time of  𝑡𝑐 = 0.84 ± 0.02𝜏𝑜 for V = 1.6-2.0 m/s, which may be the shortest contact 

physically possible. 

Figure 5.8 shows how the effect of wire, curvature, and ribbed pattern yields such a short contact 

time, which may be the shortest contact physically possible. Comparing the spreading time in the 

x direction (𝑡𝑠𝑥), along with 𝑥𝑚𝑎𝑥 and Vr of the impact (wired ribbed-curved), with those of smooth 

curved surfaces at V = 1.8 m/s clarifies the reduction. The values of spreading time, 𝑡𝑠𝑥, for curved 

and wired ribbed-curved surfaces are 3.23±0.06 and 2.21±0.11 ms, respectively. This means that 

the dynamic of impact has changed in such a way that spreading time in the axial direction becomes 

31% shorter for the wired ribbed-curved surface, while it has barely changed for the other cases as 

mentioned earlier. In contrast, 𝑥𝑚𝑎𝑥 is found to be 3.46±0.02 and 3.42±0.16 mm for curved and 

wired ribbed-curved surfaces, respectively. This similarity may be the consequence of the 
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continuation of the common reduction trend shown by these two samples for lower V as presented 

in Figure 5.7. The retraction velocity (Vr) for the case of wired ribbed-curved is 150.3±3.4 cm/s, 

which is significantly higher than that of the curved surface (𝑉𝑟 = 59.1±0.9 cm/s). These three 

parameters, as well as the detachment of the edges caused by the ribbed pattern, yield a contact 

time of 4.55±0.10 ms for the impact whose inertial-capillary time scale is 𝜏𝑜 = 5.44 ms. 

 

Figure 5.8. Impact of the 9 μL water droplet at V = 1.8 m/s on the wired ribbed-curved (R = 4.5 mm) substrates. 

While the inertial-capillary time scale of the impact is 𝜏𝑜 = 5.44 ms, the last point of the droplet leaves the surfaces 

at 4.5 ms (may not be clear here). This means that 𝑡𝑐 ≈ 0.84𝜏𝑜, which is an unprecedented contact time. 

5.4 Conclusions 

A systematic investigation of droplet impact on non-wettable flat and curved solid substrates done 

in this study resulted in the development of relationships for contact time reduction for a curved 

surface. For a flat surface, it was shown that since the normalized retraction velocity (𝑉𝑟
∗) of the 

flattened droplet is linearly proportional to the normalized maximum spreading radius (𝑟∗), the 

contact time is independent of impact velocity [31, 33, 40]. For the curved substrate, however, as 

the retraction velocity in the axial direction is proportional to 𝑥∗
3

2, the contact time changes with 

Weber number as 
𝑡𝑐

𝜏𝑜
~𝑊𝑒−0.12. A numerical coefficient of 2.612±0.255 (with a 95% confidence) 

was found for this scaling model for droplets of three different volumes (6, 9, and 16 μL) impacting 
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on surfaces with diameters of 9.0 and 12.7 mm, which provides various R/Ro ratios (2.88-5.62). 

Such a scaling model was also confirmed for ribbed-curved surfaces with a slightly smaller 

numerical coefficient for the same R/Ro ratios. These factors confirm that our presented argument, 

which says the contact time changes with respect to V as the retraction time does, is consistent 

with the experimental results. Moreover, adding a wire as an additional macrotexture to the peaks 

of curved and ribbed-curved samples reduced the contact time further due to the faster retraction 

on the wire [39]. Finally, the contact time for the wired ribbed-curved surface, which contains both 

micro- and macro-scale roughness, decreased to as short as 𝑡𝑐 = 0.84 ± 0.02𝜏𝑜 for a high impact 

velocity while the shortest one that has been reported in the literature is 𝑡𝑐 ≈ 1.2𝜏𝑜 [87]. As 

discussed earlier, the effect of curvature, ribbed pattern, and the additional macrotexture in the 

axial direction (our specific design) collaborated to yield such an unprecedented short contact time. 

We hope that considering our findings for the contact time reduction trend on curved surfaces will 

assist future numerical investigations to yield solutions quantitatively comparable to experimental 

results. 
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Chapter 6 Overall Conclusions and Future Work 

6.1 Conclusions 

Inspired from the skin patterns of a human being’s finger print and a gecko’s toe, the idea of 

studying the liquid interaction with a non-wettable surface fully structured with macroscopic 

ridges has been formed. Utilizing an extruder-type 3D printer, a solid specimen with ribbed surface 

pattern was obtained, on which we deposited our non-wettable soot-based coating. The liquid 

interaction with the ribbed surface has been investigated from two perspectives: 1- How does a 

liquid drop move on such a solid substrate? 2- What happens when a water drop impacts on them? 

Investigating the motion of viscous drops on the ribbed non-wettable surface tilted at different 

angles, it was found that such a surface pattern assists the liquid drops to roll down ~27% faster 

(along the ridges) compared to the surface with no ridges. Such a faster rolling can be attributed 

to the preserved air layers underneath the drops which causes lower friction. A scaling model 

which predicts the descent velocity of the rolling drops more accurately was developed in this part 

of the dissertation. In addition, the wettability study on the functionalization process of our 

chimney-modified soot coating has released that the surface energy of the coating increases after 

ethanol treatment, yet significantly decreases after perfluorocarbon treatment, which results in the 

oil-repellency of the coating. 

Studying the water droplet impacting on the ribbed surfaces showed that when the kinetic energy 

of the drop is sufficient to completely wet the ridges, intermediate regime, the contact time 

becomes shorter as the consequence of ~√𝜋 2⁄  faster retraction velocity. This shortening, which 

is below the theoretical Rayleigh limit, is regardless of the location of the impact point. The contact 

becomes even shorter at higher impact velocity due to drop splashing from its periphery. The 
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innovative and simplified method of fabrication presented in this part of dissertation was employed 

to fabricate a superhydrophobic sample with a specific design to achieve the shortest possible 

contact time. 

Examining the impacts of water droplets with three different diameters on cylindrically-curved 

superhydrophobic surfaces of two diameters for varied impact velocities has led to a scaling model 

for the contact time reduction with respect to the impact velocity for such curved surfaces. Since 

the normalized retraction velocity (𝑉𝑟
∗ defined in Chapter 5) in the axial direction is proportional 

to  𝑥∗
3

2 (normalized spreading length in the axial direction), it can be concluded that 
𝑡𝑐

𝜏𝑜
~𝑊𝑒−0.12. 

Such a scaling model was confirmed for impacts of five varied R/Ro ratios on smooth-/ribbed-

curved surfaces. The specific design, which was speculated to exhibit the shortest possible contact 

time, was a ribbed-curved surface with an additional macroscopic wire on top of its peak. It was 

shown that the contact time of this design has become even shorter than the inertial-capillary time 

scale (≈ 0.84𝜏0). It should be emphasized that the shortest contact time that has been reported so 

far in the literature was ≈ 1.2𝜏0 [87]. 

6.2 Future Work 

The liquid-interaction with ribbed surfaces has been studied by experiments in this dissertation 

and the results illustrate that this surface exhibit more efficient non-wettability. The numerical 

simulation of this interaction can clarify the complexity of this problem further and more 

innovative ideas to improve its performance can be generated, hence, this will be the study to be 

done in the future. 
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As explained earlier, the maximum spreading diameter of impacting a viscous drop is controlled 

by the Reynolds number as opposed to the Weber number for inviscid drops like water. This means 

that the scenario of the impact of a viscous droplet is completely different than what has been 

studied in this dissertation. Thus, it will be scientifically very interesting to investigate the viscous 

impact on the surfaces discussed in this work. 

 Since the ribbed surface has shown not only a shorter contact time but also faster droplet rolling 

on itself, it can be speculated that this surface pattern exhibits an excellent performance in anti-

icing applications. However, the droplet splashing that occurs on this surface may cause some 

issues in subzero environment. Such tiny droplets may not leave the surface after separating from 

the original drop due to their low inertia. Therefore, it is worth experimentally investigating the 

anti-icing performance of the ribbed surface at environment with subzero temperature. 
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