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Abstract

A BEHAVIOR-DRIVEN RECOMMENDATION SYSTEM FOR STACK

OVERFLOW POSTS

By Chase Greco

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Dr. Kostadin Damevski,

Assistant Professor, Department of Computer Science

Developers are often tasked with maintaining complex systems. Regardless of

prior experience, there will inevitably be times in which they must interact with parts

of the system with which they are unfamiliar. In such cases, recommendation systems

may serve as a valuable tool to assist the developer in implementing a solution.

Many recommendation systems in software engineering utilize the Stack Overflow

knowledge-base as the basis of forming their recommendations. Traditionally, these

systems have relied on the developer to explicitly invoke them, typically in the form of

specifying a query. However, there may be cases in which the developer is in need of a

recommendation but unaware that their need exists. A new class of recommendation

systems deemed Behavior-Driven Recommendation Systems for Software Engineering

seeks to address this issue by relying on developer behavior to determine when a rec-

ommendation is needed, and once such a determination is made, formulate a search

query based on the software engineering task context.

This thesis presents one such system, StackInTheFlow, a plug-in integrating

into the IntelliJ family of Java IDEs. StackInTheFlow allows the user to inter-

vi



act with it as a traditional recommendation system, manually specifying queries and

browsing returned Stack Overflow posts. However, it also provides facilities for detect-

ing when the developer is in need of a recommendation, defined when the developer has

encountered an error messages or a difficulty detection model based on indicators of

developer progress is fired. Once such a determination has been made, a query formu-

lation model constructed based on a periodic data dump of Stack Overflow posts will

automatically form a query from the software engineering task context extracted from

source code currently open within the IDE. StackInTheFlow also provides mecha-

nisms to personalize, over time, the results displayed to a specific set of Stack Overflow

tags based on the results previously selected by the user.

The effectiveness of these mechanisms are examined and results based the collection

of anonymous user logs and a small scale study are presented. Based on the results of

these evaluations, it was found that some of the queries issued by the tool are effective,

however there are limitations regarding the extraction of the appropriate context of the

software engineering task yet to overcome.
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CHAPTER 1

INTRODUCTION

Developers are tasked with developing and maintaining ever growing and complex sys-

tems. Regardless of their prior experience, there will inevitably be times in which

a developer must interact with parts of the system with which they are unfamiliar,

when fixing a bug or adding a new feature. This is especially true for novice develop-

ers. In such cases, the developer must utilize additional resources to gain information

about the system which they do not already possess [1]. The additional resources fre-

quently come in the form of asking fellow teammates for assistance [2], participating in

pair-programming sessions [3], or consulting the increasingly vast amount of resources

available online [4].

In many cases, fellow teammates are not available to consult. To get around this,

software developers frequently search for web resources in order to learn from others,

and sometimes even to remind themselves of details related to development knowledge

for which they are already familiar [5]. They turn to resources such as blogs, forum

posts, mailing lists [6], Q&A sites, or bug-trackers [7].

Online resources have become an invaluable tool for the developer to both un-

derstand the problem they are attempting to solve and to implement a solution. Of-

ten, when developers are confronted with prototyping a new feature, particularly when

functionality is more valued than stability, they utilize an “opportunistic” approach to

software development. In such an approach, searching for small snippets of code to

employ in a copy-and-paste strategy, modifying and incorporating snippets into their

own code to achieve the desired functionality [8]. Similar behavior occurs when devel-

opers encounter error messages for which they are not familiar or do not comprehend,

a scenario that is common among novice developers, who have difficulty interpreting
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error messages [9]. As a result, many web resources have been created and developed to

assist developers when encountering issues. Many of these resources come in the form

of Question and Answer (Q&A) Forums, where a developer poses a question regarding

some technical issue and other members of the community attempt to provide guidance

or propose a solution. The Stack Overflow Q&A Forum represents one of the most

prominent of these resources, its large archive of software-related posts has continued

to grow in popularity with software developers, with over 40 million monthly visitors,

including an estimated 16.8 million professional developers and university students [10].

The amount of resources and information available to developers online has been

growing steadily over the last several years. These resources represent vast amounts

of collective knowledge on topics surrounding the development and maintenance of

software. Indeed, most modern software development tasks require such large amounts

of information to be available and at hand so that they can be completed. The need then

exists to enable developers to quickly sift through the large quantities of information

available to identify the “nuggets” of information that are pertinent to solving the task

at hand. One such approach to addressing this need is through a recommendation

system.

Recommendation systems can aid developers in managing the large information

requirements of modern software development [11]. They often utilize available on-

line resources as a knowledge-base which is then queried to generate recommendations

based on developer activity. Often, such recommendation tools are deployed within the

Integrated Development Environment (IDE) itself, allowing the developer to interact

with the recommendation system without the need to change context. Several recom-

mendation tools targeting the Stack Overflow knowledge-base have been proposed with

the aim of improving developer productivity by integrating relevant information from

Stack Overflow into the IDE. Prompter [12] and Seahawk [13] are able to automatically

recommend Stack Overflow posts based on source code context present in the IDE.
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T2API [14] and NLP2Code [15] recommend code snippets extracted or adapted from

Stack Overflow based on natural language text describing the programming task.

Opportunities still exist for such tools to better integrate with the IDE and to the

developer’s behavior, further personalizing and targeting recommendations to oppor-

tune moments in time. This thesis introduces StackInTheFlow - a tool that intends

to automate the manual task of finding relevant Stack Overflow posts. StackInThe-

Flow is personalized to each developer and integrates closely with their IDE behavior,

allowing developers to remain in a high-productivity flow [16]. StackInTheFlow has

the following set of characteristics:

1. Automatically constructs interpretable queries based on the current source code

context

2. Uses clicks on retrieved results to personalize, over time, the retrieved Stack

Overflow posts to specific Stack Overflow tags

3. Automatically recommends Stack Overflow posts on compiler and runtime errors

in the IDE

4. Detects when a developer is facing difficulty and not making progress and recom-

mends Stack Overflow posts

5. Queries the Stack Overflow API (and not the periodic dump) to retrieve the most

recent Stack Overflow posts

StackInTheFlow integrates as a plugin with the IntelliJ family of Java IDEs, in-

cluding the popular Android Studio environment. Though the tool targets a Java IDE,

the mechanisms it uses are language agnostic and can be generalized to other languages

with minimal effort. This thesis includes a description of each of StackInTheFlow’s

features, a set of preliminary results on the effectiveness of each recommendation mech-

anism using field data gathered from use of the tool by developers, and developer
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impressions of the tool gathered from surveys collected after attempting to solve an

Android development problem.

1.1 Thesis Contributions

The major contributions of this thesis are:

• The introduction of new terminology identifying a sub-class of Recommendation

Systems for Software Engineering, Behavior-Driven Recommendation Systems for

Software Engineering

• The introduction of a new novel metric Edit Ratio for the purposes of identifying

when the developer has encountered a difficulty

• The introduction and implementation of a novel difficulty detection mechanism,

utilizing a three-state finite state machine

• The introduction and implementation of a novel process for extracting candi-

date query terms from source code and formulating queries from them, based on

knowledge extracted from a larger knowledge-base

• The introduction of a novel metric Click Frequency-Inverse Document Frequency

for personalizing the results displayed by a recommendation system to the user

• The implementation of a tool, StackInTheFlow, incorporating all of these

elements
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CHAPTER 2

BACKGROUND

A recommendation system [17], in its most basic form, identifies potential items of

interest to a particular user and provides the user those items in the form of suggestions

or recommendations. In practice, these systems are often employed in e-commerce

domains to answer questions such as “What movie should I watch?” [18], “What books

should I buy?” [19], or “What restaurant should I try?” [20]. Within the domain of

software engineering, typical questions with which a recommendation may be employed

to assist with may be “What software components are suitable for reuse?” [21], “How

does one implement a particular interface?” [22], “How does one use a particular third-

party API or library?” [23], “What documentation is relevant to this bug report?” [24],

or “What code artifacts within my code base are relevant to the task I am currently

working on?” [25].

This chapter introduces the concept of recommendation systems within a software

engineering context. It begins with a general definition of recommendation systems

for software engineering and an overview of the types of tasks they can be expected

to complete and challenges faced in their development. It then examines techniques

for designing these recommendation systems. Following this, a survey of contemporary

recommendation tools designed to be utilized within a software engineering context is

provided. The survey begins with a sampling of general-purpose software engineering

recommendation tools, it then narrows its focus to software engineering tools which

utilize Stack Overflow specifically.

The chapter concludes by introducing the concept of Behavior-Driven Recommen-

dation Systems for Software Engineering, which will serve as the foundation of the

recommendation system this thesis proposes. A general definition is provided as well
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as an overview of the challenges faced when developing this specific class of recommen-

dation systems.

2.1 Recommendation Systems for Software Engineering

More formally, a Recommendation System for Software Engineering (RSSE) can

be defined as [11]:

... a software application that provides information items estimated to be

valuable for a software engineering task in a given context.

That is, a system which focuses on providing information as opposed to the services pro-

vided by other software engineering tools such as build and test automation software. A

RSSE also utilizes estimation, which distinguishes it from traditional code-search tools

relying on methods such as regular expressions or call-graph visualization to extract

facts. It provides items of value, containing novel or unexpected information, while also

reinforcing topics for which the developer is already familiar. Finally, they are distinct

from traditional search tools in that they emphasize providing information relevant to

a specific task within a particular context.

There are a wide variety of information items and information retrieval tasks a

RSSE can provide or fulfill such as:

Reusable Software Components - Recommenders can assist developers in identi-

fying software components such as classes or methods that are suitable for reuse

in other parts of an application, or that are relevant to the current task at hand.

Software Component Use Examples - There may be instances when a developer

knows what software components are relevant to the task at hand but not how

to properly utilize them. In such cases a recommender may provide examples of

the component’s use.

Code Base Navigation - A recommender may also assist the developer in navigat-
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ing their own code base, for example identifying elements within the code base

relevant to the task at hand.

Issue Reports - A recommender can extract relevant prior issue reports surround-

ing a particular task, such as a bug fix or a feature request.

Documentation - A recommendation system may be devised to provide documen-

tation beyond usage examples relevant to a particular task, for example docu-

mentation surrounding a particular bug report, such as information regarding the

change history leading up to the existence of the bug.

Expert Identification - Finally, another possible use of a RSSE is the identification

of domain-area experts to recommend for a task or to offer assistance.

Despite much of the above information items being readily available within the

Web or internal company systems, it can be deceivingly difficult to identify the infor-

mation necessary to develop a solution to a particular software engineering issue, or to

even determine that such information exists. Though many challenges faced in devel-

oping recommendation systems are shared regardless of the environment in which they

are deployed, there are also several challenges specific to developing recommendation

systems within the software engineering domain [26, 11]. Some issues of note include:

Data Scale - While not constrained to the software engineering domain, the sheer

amount of information available from which recommendations may be drawn is

constantly increasing, leading to challenges in sifting through quantity of data

available to identify those small “nuggets” of information relevant to the task at

hand.

Data Variety - The information which may be relevant to a particular software

engineering task may be highly heterogeneous. Many traditional recommendation

systems rely on the concept of item and rank [27]. However, no direct analog exists
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within the software engineering domain. Once more, the information available

may range from highly structured (code) to highly unstructured (blog posts).

Data Evolution - In other domains, such as movie or book reviews, information

may have an indefinite period of relevancy. However, information within the

software engineering domain evolves rapidly. Software developers have a need to

understand changes within their code base and the technologies and frameworks

they leverage, often multiple times a day [28]. Though not all software is so

volatile, certain long-term support frameworks or libraries may remain stable

for years, the fluid nature of software development is such that recommendation

systems must continuously that verify the information that they present is still

valid and relevant.

Data Context - Information within a software engineering task is highly context

sensitive. It often holds no meaning without a grounding in the underlying pro-

cess. For example, a server becoming unavailable could be the result of a software

or hardware failure or due to scheduled maintenance. Without access to the un-

derlying process which generated the information, it becomes very difficult to

assign it meaning.

A successful recommendation system deployed within a software engineering domain

must be able to account for these issues and ensure that they do not have an detrimental

effect on the quality of recommendations generated to the point that the system is no

longer useful.

2.2 Recommendation System Approaches

Once a sufficient amount of data has been collected and processed, and enough

information has been collected regarding the task context, the recommendation system

may utilize a recommendation algorithm to generate recommendations. These recom-

8



mendation algorithms come in a variety of forms [27, 11], a popular selection of which

is presented below:

Collaborative Filtering - One of the most widely utilized recommendation algo-

rithms within general domains, Collaborative Filtering [29, 30, 31] is based on the

concept of “word of mouth” recommendations. The basic premise is to rely on individ-

uals with similar interests as yours and with which you have a close relation (friends

and family) to make recommendations. In its simplest form your friends and family

are replaced by users with similar preferences as yours, i.e. Nearest Neighbors. Collab-

orative filtering utilizes two types of information to form its recommendations, a set of

users and a set of items, with the relationship between the two typically expressed in

the form of ratings. The basic algorithm is to then first compute users most similar to

yourself based on your past ratings history, and from them extrapolate items you are

most likely to also rate highly, but haven’t yet encountered. Though one of the most

widely utilized techniques for general recommendation, collaborative filtering is rarely

utilized within a software engineering domain due to lack of direct analog of items and

ratings as has been previously discussed. Instead, other recommendation algorithms

have become more prominent.

Content-Based Filtering - Another popular approach, Content-Based Filtering [32,

33] utilizes the concept of categories or topics a user might be interested in, with the

assumption that such topics do not drift too far day to day, and that the user will be

interested in such topics again in the future. For example, a developer interested in the

topic of Java JUnit Testing will most likely not change their interest in the topic from

one day to the next, and will also be interested in the topic in the future. It utilizes two

types of information to form its recommendations, a set of users and a set of topics.

Recommendations are formed by first extracting topics from a set of items. Items are

then recommended based on how similar they are to items that you have previously

rated highly. Similarity between items is measured on the topics they share in common.
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Topics can be exacted from item descriptions based on the presence of keywords, or in

the case that items have already been pre-annotated, categories.

Knowledge-Based Recommendation - A different approach to constructing a rec-

ommendation system, Knowledge-Based Recommendation [34, 35, 36] does not rely on

the concept of item ratings or textual descriptions, but instead on a deeper level of

knowledge about the items available. Such knowledge allows for a finer-grained level

of detail about an item and thus enables alternative recommendation schemes. The

basic approach utilizes two types of information. The first type of information is either

a set of rules, often called constraints, or a set of similarity metrics. The second type

of information is a set of items. In such a system the similarity metric assesses how

well a potential recommended item satisfies a user’s need. In the case of rule-based ap-

proaches, a pre-existing knowledge-base is utilized to generate rules to determine what

items are best to recommend for a particular set of user needs. Knowledge-based meth-

ods typically out-perform collaborative filtering or content-based filtering approaches

initially, however if they are not equipped with a mechanism to enable learning of new

information to incorporate into the model, they may be surpassed by other methods as

the knowledge-base that they rely on becomes “stale”.

Each of the above approaches has its own benefits and drawbacks [11]. Collabo-

rative filtering and content-based filtering tend to be easier to set up than knowledge-

based approaches as they don’t required an extensive knowledge-base detailing as-

pects of items. They also tend to be more adaptive to new pieces of knowledge, as

new ratings can be incorporated directly into the model for future recommendations,

whereas knowledge-based approaches must be adapted manually unless additional learn-

ing methods are utilized. However, collaborative filtering and content-based filtering

are subject to the cold start problem which expresses the need to provide an initial

set of ratings with which to generate the model, an issue from which knowledge-based

methods do not suffer. Knowledge-based methods also have the additional benefit of

10



being able to provide substantial explanations utilizing their knowledge-base as to why

a particular recommendation was made. Finally, collaborative filtering methods, since

they incorporate information from other users outside the user being recommended

items, have the potential to produce new and surprising results of items that while

useful to the user, have never been related to a past query triggered by their activity.

A comparison between each of the approaches can be viewed in Table 1.

Table 1.: Comparison of Recommendation Algorithms

Collaborative Filtering (CF), Content-Based Filtering (CBF), Knowledge-Based

Recommendation (KBR)

Quality CF CBF KBR

easy setup yes yes no

adaptable yes yes no

cold start yes yes no

deep explanation no no yes

outside user info yes no no

Finally, once recommendations have been made, considerations must be taken as

to how to display recommendations to the user. In its most basic form, a recommen-

dation system displays a ranked list of items of potential interest to the user, however

other directions may be taken such as providing the user with an explanation as to

why a particular item was recommended. In addition, the environment in which these

recommendations are displayed is also a point of consideration. Many RSSEs seek to

integrate directly into tools which developers are already familiar, namely the Inte-

grated Development Environment (IDE) or the Internet Browser, both environments

in which the developer spends a great deal of time [37]. Additional emphasis may also

be placed on not only making recommendations to the user, but also explaining why a

recommendation was made. Formulating such explanations is a non-trivial task, as in
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the absence the typical recommendation concept of a rating within the software engi-

neering domain, the method of explanation formulations must be re-examined for every

new type of recommendation system developed.

2.3 Recommendation Tools in Software Engineering

Numerous recommendation tools have been proposed with the aim of assisting

developers, many utilizing the approaches previously discussed. One particular class

of recommendation systems is Source Code Based Recommendation Systems (SCBRS).

The defining feature of a SCBRS is that it derives its recommendations from the source

code of a software system. Due to the pervasive nature of programming within the

domain of software development, such types of recommendation systems represent an

important category of RSSEs. Other recommendation systems focus on instead con-

structing a representation of the entire context of the software development task. These

Context Representation Based Recommendation Systems (CRBRS) attempt to utilize

a selection of features, beyond just the source code, to inform their recommendations.

A selection of recommendation systems from both of these approaches are presented

below:

RASCAL - A SCBRS, RASCAL [21] seeks to recommend the next method a devel-

oper might utilize. It does this by analyzing classes similar to the one the developer is

currently working on. RASCAL utilizes a collaborative filtering approach to generate

its recommendations. However, unlike the traditional collaborative filtering scheme,

users in this case are classes and items are methods. The similarity between the cur-

rent active class and other classes is computed based on the frequency of the methods

they call.

RASCAL consists of four components, by which it formulates its recommendations.

The Active User defines the current class that the developer is working on. The Usage

History Collector automatically mines the frequency of method calls within a class
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for all classes within a given set of APIs, and the order in which they are called.

The Code Repository stores the information mined by the history collector. Finally,

the Recommender Agent recommends the next method a developer should consider

utilizing in the implementation of the active class and current method at the position

of the cursor. The agent works by computing the similarity between the current active

class and other classes within the code repository. Similarity is calculated between two

classes by comparing the frequency of the methods they call. Commonly occurring

methods such as toString() are penalized in the similarity calculation. The most

similar class is selected and its methods examined to form recommendations. Methods

are suggested in the order in which they occurred in the most similar class, after the

call to the current method.

Hipikat - Another SCBRS, Hipikat [38] takes a much broader view, beyond meth-

ods, in the types of information it recommends. It seeks to assist new developers on

a project find information relevant to the development task at hand. This information

can come in the form of code examples, API documentation, or other forms of electronic

communication such as emails, bug reports, or forum posts. In order to utilize Hipikat,

the developer views an artifact in question within the IDE (such as a bug report) and

selects the “Query Hipikat” option from the tools menu. Hipikat then retrieves rele-

vant artifacts and displays them in a separate window. For each recommended artifact,

Hipikat also displays its name, type (website, news article, CVS revision, bug report),

explanation as to why it was recommended, and a relevance estimate to the current ar-

tifact. From this view the developer can proceed to investigate recommended artifacts

further, or use them as the basis for additional Hipikat searches.

Hipikat consists of two components. The first is an Eclipse plug-in which sends

search queries, consisting of artifacts of interest or keywords, and displays retrieved

relevant artifacts. The second is a back-end consisting of a relationship graph between

available software artifacts, and a system to determine what artifacts are relevant to a
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particular query. Unlike RASCAL, recommendations are based on the links between

different artifacts in addition to their similarities. Links are established based on novel

heuristics such as bug report IDs being matched to change logs, or the closing time-

stamp of bug reports being matched to the revisions of source code files.

Mylyn - Unlike the previous two described systems, which relied primarily on source

code as the basis of recommendation formulation, Mylyn [25] seeks to build a more

complete representation of the context surrounding a software development task with

which to make recommendations, as such it is a CRBRS. It does this by constructing a

model encapsulating the context surrounding the software engineering task. Utilizing

this model the “degree of interest” the developer may have for each class within the

project is calculated, with classes with high interest being prominently displayed, while

classes with low interest fading to the background.

Mylyn consists of two components, the first is an Eclipse plug-in which displays

the current active task and emphasizes or hides various project artifacts based on their

computed relevance to the current task. The second is a Task Context model, which

is responsible for maintaining a relevancy score, termed “degree of interest” (DOI) for

every class in the project. Mylyn is based on the intuition that for a given task not

all classes within a large project will be relevant, thus classes deemed to have a low

DOI by the model should not be displayed to the user for consideration. The model

works by tracking developer interactions with files during the completion of a task, files

for which the developer interacts with frequently during the task are judged to have

high DOI and thus are displayed more prominently. Consequently, files for which the

developer did not interact are filtered away. A separate model is maintained for each

software development task for which the developer is assigned.
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2.4 Stack Overflow Recommendation Systems

In addition the recommendation systems discussed in Section 2.3 which focused on

either utilizing external information from open-source projects or the internal source

code of the project itself to make recommendations, several recommendation systems

have also be proposed to leverage the multitude of knowledge available within Stack

Overflow. Several of the tools rely on a data dump of articles periodically released by

Stack Overflow to train their recommendation models. A selection of recommendation

systems utilizing this approach are presented below:

Example Overflow - A code snippet recommendation system, Example Overflow

[39] seeks to recommend relevant code snippets extracted from Stack Overflow within a

particular domain. Example Overflow currently targets the JQuery domain of software

engineering tasks, however the approach is extendable to other domains as well. It

works by first constructing a database of code snippets extracted from Stack Overflow

within the target domain. This database can then be queried with natural language

similar to a Google search. When a query is executed, the top 5 relevant code snippets

are displayed side by side to enable easy comparisons by the developer.

Example Overflow consists of two components, the first is a website which enables

users to enter queries and browse results. The second is a database of code snippets.

This database is constructed utilizing the Stack Overflow API, articles are extracted

tagged with “JQuery”, articles not containing code snippets are filtered out. These

articles and corresponded code snippets are stored within a database. This database

is then indexed with Apache Lucene [40], which utilizes a term frequency-inverse doc-

ument frequency (tf-idf) based approach to index documents. Each code snippet is

treated as its own document for the purposes of document indexing and searching.

Once indexed, this database can then be queried utilizing natural text and relevant

code snippets retrieved.

SeaHawk - In contrast to the previously mentioned recommendation systems, in-
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stead of recommending code snippets directly, SeaHawk [13] seeks to enable the devel-

oper to browse Stack Overflow as a whole within the IDE. It does this by allowing users

to search for and browse entire articles extracted from the Stack Overflow Data Dump

through a user interface provided within the IDE itself.

SeaHawk consists of two components, the first is an Eclipse plug-in providing the

user interface to enable searching and browsing articles. This user interface is primarily

composed of three elements. The Document Navigator View allows the user to specify

search queries and browse related documents presented in the form of a tree. Users

can also tag articles as relevant to the currently open source code file to be retrieved

for later use within the view. The Suggested Documents View, presents a selection

of documents similar to the navigator view that are deemed relevant to the currently

open source code file. Finally, the Document Contents View allows the user to browse

a selected article in its entirety in the form of a web page displayed within an in-IDE

web browser widget. The second component of SeaHawk is a database containing all of

the articles within the Stack Overflow Data Dump. This database is then indexed with

Apache Solr, which utilizes a tf-idf approach to retrieve relevant documents, to enable

searching for articles with natural language. Seahawk also provides a mechanism to

automatically extract queries from source code to be utilized in a search. The main

drawback of this approach is that the database must be periodically updated with

new articles, otherwise the information it contains may become “stale” and no longer

relevant to current software engineering tasks.

NLP2Code - An unconventional take on the traditional recommendation system

model, NLP2Code [15] seeks to provide developers with relevant code snippets given

a query such as “Split string by...?”. It does this by utilizing an inventory of software

development task descriptions mined from the Stack Overflow Data Dump. When

the user begins entering a query, a selection of completed queries is suggested to the

user from the task inventory. Once a given query is made, a Google search of Stack
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Overflow articles tagged with “Java” is performed. Code snippets are extracted from

the top answers of the first three retrieved articles and are suggested to the user. Unlike

other recommendation systems, no additional views are utilized to enable the user to

enter queries or display results, instead all interaction is done in the the source code

editor of the IDE itself, with users directly entering queries within the source code.

NLP2Code consists of two components, the first is an Eclipse plug-in which enables

users to enter the queries within the source code editor, as well as utilizing those

queries to perform custom Google searches to extract and then display relevant code

snippets. The second is an inventory of task descriptions mined from the Stack Overflow

Data Dump utilizing the TaskNav algorithm [41]. This allows NLP2Code to suggest

logical completions to queries such as “Split string by...?”, for example “Split string by

character?”. In addition, the utilization of a task inventory allows accounting for the

same task being expressed in multiple different forms, such as active or passive voice.

It also allows distinguishing between tasks such as convert String to int versus convert

int to String, something traditional “bag of words” approaches cannot handle. Once a

task to be queried has been identified, relevant Stack Overflow articles can be retrieved

via Google and code snippets extracted and recommended to the user.

2.5 Behavior-Driven Recommendation Systems for Software Engineering

The recommendation systems discussed up until this point have all relied on the

user to prompt the system for input, whether that be entering a query into the system

directly, or by prompting the system to search on their behalf. Such systems are useful,

but not without limitations, for example there may be instances where the developer

is in need of a suggestion but is unaware that their need exists. Such situations are

similar to the interactions between two programmers participating in pair programming,

working together to develop software. Each developer has their own role, the driver who

is responsible for writing code, and the observer, who observes the work of the driver
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[42]. It is the objective of the observer to understand the context in which the software is

being developed and, when confident, interrupt the driver with suggestions. In addition,

if the driver is unconfident, she may consult with the observer for suggestions. It is this

type of interaction, that of an observer interrupting the developer with suggestions and

being available for consultation when needed, that a Behavior-Driven Recommendation

System for Software Engineering (BDRSSE) attempts to encapsulate.

More formally a BDRSSE can be defined as: A recommendation system for software

engineering that utilizes developer behavior to inform when recommendations should be

made without any direct input from the developer. That is, a recommendation system

which passively observes developer activity and, when confident that the developer

would benefit from a recommendation, interrupts the developer to provide one, much

like the observer role within pair programming. Such a system has the potential to

provide great benefit, as the timely discovery of a critical piece of information can have

a dramatic impact on developer productivity [43]. However, great care must be taken

when designing such systems, as interrupting the programmer at an inopportune time

can have just as dramatic impediment on productivity [44]. Though this can be reduced

by presenting recommendations in an unobtrusive way.

There are two sub-problems then that must be considered by BDRSSE specifi-

cally. The first is determining when the developer is in need of a recommendation.

Once possible method of addressing this issue, particularly within the context of a rec-

ommendation system leveraging Stack Overflow is determining when the developer has

encountered some form of difficulty, with the intuition being that in such situations a

recommendation has greatest potential for a positive impact. The second problem is

once the opportune moment to make a recommendation has been detected, forming the

query to search for relevant information items without the developer directly specifying

it. A selection of approaches to both problems are presented in the following sections.
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2.5.1 Difficulty Detection

The first problem to be addressed by a BDRSSE is that of identifying when the

developer is in need of a recommendation. Such a situation is not well defined however,

one method of circumventing this issue is to re-frame the problem to that of detecting

developer difficulty. More formally, identifying instances when the developer has entered

a situation or mental state which impedes development. Several systems have been

proposed to address this issue, however many rely on bio-markers which are obtrusive

to measure such as skin conductivity [45], or pupil dilation and heart rate [46]. While

such systems do show promise, they are not practical to deploy beyond an academic

setting. An alternative approach is to instead infer the developer has encountered

difficulty based on logs collected of their interactions with some component(s) of the

system. Such approaches also illustrate some promise. Fogarty et al. [47] have shown

that it’s possible to develop a system that utilizes developer interactions within the

programming environment to determine if they are in an interruptible state.

There are several approaches to utilizing development logs to detect developer

difficulty. The simplest and most intuitive of these approaches is to log indicators

of developer progress, such as the writing of new lines of code, or the creation of

new classes, and listen for periods of time where such indicators do not occur. While

intuitive, this approach has several drawbacks, namely if the developer has simply

gotten up to get a cup of coffee, the system will incorrectly identify the developer as

encountering difficulty and begin making recommendations.

An extension of the previous approach is to take into account the frequency of

“progress” events within a given time interval and utilize thresholds below which the

developer will be classified as encountering difficulty. However, in addition to the

drawbacks of the base approach, Nair and Mynat [48] found that in a similar task

of identifying developer task switches, such frequencies are highly dependent on the

individual developer, further complicating developing an accurate model.
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A third approach, proposed by Carter and Dewan [49], utilizes the ratio between

events deemed to be making progress such as editing events to those deemed to be

indicators of difficulty such as navigating or the development environment losing focus.

If the ratio of progress events to non-progress events within a fixed window of the last n

events to occur falls below a certain threshold, the developer is classified as encountering

difficulty. Such an approach does not suffer from issues surrounding periods where there

developer is not directly interacting with the system, an also allows for personalization

to the individual by fine-tuning ratio thresholds based on past developer activity [50].

2.5.2 Automatic Query Formulation

The second issue which must be addressed by a BDRSSE is that of query formu-

lation. Once it has been determined that the developer would benefit from a recom-

mendation a query must be formulated to search a collection of potential knowledge

items to recommend. Once more, this query must be formulated without any direct

specification from the user. While there are several methods that may accomplish this,

one popular approach is to extract query terms from the source code of the currently

open file within the IDE. When considering potential query terms, often the saliency or

information-content of a term is utilized within a weighting scheme to extract candidate

query terms, with the intuition being the most information rich terms would form the

most beneficial query. When assessing the saliency of terms within a document such

as a source code file, there are three general types of features that are often employed:

Lexical, Syntactic, and Semantic.

Lexical - The simplest types of features, lexical features consider themselves with

the term itself. In traditional natural language processing, these could be the frequency

of the term in a given phrase, or its lemmatized form. For the process of query formu-

lation within a BDRSSE, one simple approach utilizing lexical information would be

given a source code file, compute the frequency of every term in the file, then select
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the n most frequent terms to form the query. Such a procedure is often deemed a “bag

of words” approach and is often combined with a list of stop-words which are auto-

matically removed from consideration, in general English these could be terms such as

“it” or “the” which though they may occur frequently do not provide any meaning-

ful information. The development of stop-words lists for source code is an interesting

topic for future research. The main issue with utilizing such features within a software

engineering domain is that the most frequently occurring terms may not be the most

discriminative in selecting terms that appropriately describe the current context. For

example, terms like print, import, or catch may occur very frequently within source code

and wouldn’t be considered stop-words in general English, however have too generalized

a meaning in software to adequately describe a context.

Syntactic - Syntactic features consider themselves with how terms fit together. In

traditional natural language processing, this could be the part of speech of a term.

Within software engineering, this could be identifying phrases such as class or method

declarations, import statements, or loop structures. When considering extracting syn-

tactic features for the purpose of query formulation within a BDRSSE, it is generally

considered too expensive to construct the entire abstract syntax tree of a source code

file so instead an “island parsing” approach is utilized to extract only the structures of

interest from the file. Syntactic features have been successfully utilized to create query

formulation methods within RSSEs [51] and are often used to augment lexical features

in practice.

Semantic - The most complex types of features, semantic features consider them-

selves with the meaning behind a word and typically require some form of external

knowledge-base from which that meaning is derived. In traditional natural language

processing, these features are often related to the definition of the particular sense of

the word that is in use. Within the domain of software engineering, such features are

typically not utilized when constructing query formulation methods, though some work
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has been done examining the entropy [52] of terms within a knowledge-base such as

Stack Overflow as a possible method of term selection [13].

2.5.3 Prompter

To the author’s knowledge, the only BDRSSE targeting Stack Overflow which has

been proposed is Prompter [12]. Prompter seeks to fulfill the role of a prompter in

a theater, “ready to provide suggestions whenever the actor needs them, and ready to

autonomously give suggestions if it feels something is going wrong”.

Prompter consists of three components. The Eclipse plug-in provides the user

interface by which the developer interacts with the tool within the IDE. The Query

Generation Service is responsible for extracting queries from the context of the software

development task. The Search Service is responsible for passing generated queries off

to a multitude of search engines and retrieving their results. A description of each

component is provided below:

The Eclipse plug-in provides the user interface of the tool as well as task context

tracking capabilities. The user interface consists of a notification center which displays

the last ten notifications made by the tool. Each notification contains a confidence

score of how certain Prompter is that the linked Stack Overflow article is relevant

to the current task. The developer can fine-tune a confidence threshold under which

notifications will not be made utilizing the notification center as well. When a notifica-

tion is selected, a document view is opened allowing the developer to browse the entire

contents of the article as well as rate its relevancy. The second function of the Eclipse

plug-in is to track the context of the current software development task. It does this by

listening to the developer’s edit actions, when the developer stops writing, the plug-in

identifies the current program element (method or class) and extracts the task context

which consists of (i) the fully qualified package name identifying the element, (ii) the

source code of the modified element, (iii) the types used of any external API, and (iv)
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the names of any methods called from an external API. This information is then sent

to the query generation service.

The Query Generation Service provides a means of extracting a query given a

software engineering task context. It does this by utilizing the terms extracted by the

Eclipse plug-in and computing their entropy within the Stack Overflow Data Dump.

Terms with lower entropy are deemed to have higher information content. The service

ranks potential terms based on a term quality index (TQI) defined by:

TQIt = vt · (1− Et) (2.1)

Where vt is the frequency of a given term t and Et is its calculated entropy. Ponzanelli

et al. find that this metric works quite well, but has one drawback, which occurs when

misspellings are scored as candidate query terms. Misspellings are rated as having low

entropy due to their infrequent occurrence within the Stack Overflow Data Dump. To

circumvent this issue, the Levenshtein distance [53] is calculated between terms within

a context to identify and discard potential misspellings. Once a query is formed is it

sent to the Search Service.

The Search Service sends a generated query to several search engines (e.g. Google,

Bing, Blekko) to retrieve Stack Overflow articles. The articles are then ranked across

several metrics, textual similarity to the query, similarity between the article and source

code, similarity between API types and methods, the question and accepted answer

scores, the reputation of the posting user, and the similarity between the article’s tags

and source code import statements. From the scores across each dimension the articles

are ranked an and confidence is computed. Articles with a high confidence are then

recommended to the user.

The recommendation system proposed by this thesis, StackInTheFlow, is a

BDRSSE like Prompter, however it differs in several key areas:

1. Firstly, the user interface of StackInTheFlow mimics that of a more conven-
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tional search engine. Importantly, the search bar is always present, even for

automatically generated queries, meaning the user is able to modify and adapt

these queries as they see fit.

2. In addition, a more sophisticated difficulty detection model is utilized to determine

when the developer is in need of a recommendation, rather than waiting until the

developer has stopped editing.

3. Unlike Prompter, which relies on external search engines to perform queries for

Stack Overflow articles, StackInTheFlow utilizes the Stack Overflow API to

query the Stack Overflow website directly.

4. Finally, StackInTheFlow attempts to personalize the ranking of the recom-

mended articles based on the user’s past interactions with the tool.

A full description of StackInTheFlow, including a detailed explanation of these

various mechanisms can be found in Chapter 3.
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CHAPTER 3

A BEHAVIOR-DRIVEN RECOMMENDATION SYSTEM

This chapter introduces StackInTheFlow - a Behavior-Driven Recommendation Sys-

tem for Software Engineering (BDRSSE), a recommendation system which utilizes the

developer’s behavior to inform when the recommendation should be made. Its objective

is to automate the manual task of finding relevant Stack Overflow posts. StackInThe-

Flow is personalized to each developer and integrates closely with their IDE behavior,

allowing developers to remain in a high-productivity flow [16]. StackInTheFlow

integrates as a plug-in within the IntelliJ family of Java IDEs, including the popular

Android Studio environment. Though the tool targets a Java IDE, the mechanisms

it uses are language agnostic and can be generalized to other languages with mini-

mal effort. For languages which utilize Java-style import statements such as Scala,

the tool can be utilized without modification. This chapter begins with an overview

of StackInTheFlow, and how it addresses the issues faced by BDRSSEs. It then

gives description of the user interface and use-cases of StackInTheFlow. Finally, a

description of the tool architecture, and overview of the models and techniques utilized

within the recommendation system are presented.

3.1 Overview of StackInTheFlow

StackInTheFlow is a BDRSSE that seeks to recommend relevant Stack Over-

flow articles to the task at hand without any direct input from the user, particularly

when the user has encountered some form of difficulty. It does this by utilizing events

extracted from development logs of the user activity, specifically the presence of com-

pile or runtime error messages, and the editing progress of the user within the IDE.

Utilizing these data points, a model is developed utilizing a similar method to that of
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Carter and Dewan [49], that of heuristically setting event ratio thresholds to determine

when a user has encountered difficulty and thus form a recommendation. Recommen-

dations are generated based on a separate model generated from the Stack Overflow

Data Dump. In addition to this automated approach, StackInTheFlow also allows

the user to interact with it as a traditional RSSE, manually entering queries and brows-

ing search results. Finally, a hybrid approach may be used in which the user explicitly

invokes the automated article retrieval process. This allows StackInTheFlow to be

more flexible in the roles it can fulfill and for a greater variety of tool use-cases. For a

full description of use-cases see Section 3.3. StackInTheFlow also has the capability

of personalizing the ranking of results to the context of individual users via a process

described in Section 3.4.4.

There are also several challenges faced when developing a BDRSSE, both those

faced by all RSSEs and those faced by a BDRSSE in particular. An overview of the

challenges faced by each class of recommendation system may be found in Chapter 2.

The following subsections describe how StackInTheFlow attempts to address each

of these issues.

3.1.1 Addressing the Challenges of RSSEs

As identified in Chapter 2, there are several challenges faced with developing

RSSEs. Theses are the challenges of Data Scale, Data Variety, Data Evolution and

Data Context. Without addressing these challenges, a RSSE cannot be successful. An

overview of how StackInTheFlow addresses each of these issues is presented below:

Data Scale - Data scale refers to the vast amounts of information available, from

which a RSSE can draw to form its recommendations. A traditional recommenda-

tion system must concern itself with indexing and organizing this information in

such a way that it can be easily retrieved as the result of a query. To circumvent

this issue StackInTheFlow utilizes the Stack Overflow API which provides
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mechanisms to retrieve relevant Stack Overflow articles based on a query. In this

way, the burden of constructing and storing an index of documents no longer rests

with the tool, but on the Stack Overflow API itself.

Data Variety - Data variety refers to the heterogeneous nature of the information

which may be relevant to a software engineering task. A RSSE which utilizes

multiple sources of information must be able to extract information from each

source and present it in a meaningful way, which is logical from the perspective

of the user. StackInTheFlow chooses to focus on one form of information,

the Stack Overflow article, to eliminate some of the concerns which arise from

recommending multiple forms of information.

Data Evolution - Data evolution refers to the short shelf life of information within

the software engineering domain. A successful RSSE must be able to constantly

update the information it recommends to ensure it stays fresh. Many recommen-

dation systems [13, 39] rely on drawing recommendations from a static knowledge-

base, for example the Stack Overflow data dump. In contrast to this approach,

StackInTheFlow utilizes the Stack Overflow API to fetch articles from the live

Stack Overflow website, ensuring that users are always recommended the most

up-to-date articles. Such an approach eliminates the need to constantly update a

knowledge-base to ensure recommendations remain fresh.

Data Context - Data context refers to the highly context-sensitive nature of infor-

mation within the software engineering domain. Information often holds no mean-

ing without an underlying knowledge of the context from which it was generated.

To accommodate this StackInTheFlow utilizes a content-based filtering ap-

proach to keep track of the tags associated with presented Stack Overflow articles

which are relevant to the current context. A full description of this mechanism

can be found in Section 3.4.4.
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3.1.2 Addressing the Challenges of BDRSSEs

In addition to the general issues a RSSE must address, Chapter 2 also identified two

problems faced by BDRSSEs specifically, that of identifying when a recommendation

should be made and, once such a determination has been made, how a query should

be formulated to retrieve knowledge items to recommend. A brief description of how

StackInTheFlow addresses both of these issues is given below.

Recommendation Determination - The first problem that must be addressed by

a BDRSSE is identifying when a recommendation should be made to the user. One

method of addressing this problem is to re-frame it as detecting when the user has

encountered some form of difficulty as it is an easier situation to define. StackInThe-

Flow utilizes this approach, seeking to make recommendations when it has determined

the developer has encountered some form of difficulty. It does this via a two-pronged

approach. The first approach listens for error messages as an indicator of developer diffi-

culty and makes a recommendation when such a message occurs. The second approach

utilizes a method similar to that of Carter and Dewan [49], setting ratio thresholds

between events deemed to be indicators of progress and indicators of difficulty. When

the ratio between difficulty events and progress events crosses a certain threshold, a

recommendation is triggered. A full description of this mechanism can be found in

Section 3.4.1.

Query Formulation - Once it has been determined that a recommendation should

be made, the next problem that must be addressed is that of formulating a query

to retrieve relevant items to recommend. StackInTheFlow attempts to solve this

issue by utilizing a combination of syntactic and semantic features (see Chapter 2 for

a description of query formulation feature types). Firstly, potential query terms are

extracted from the bodies of posts contained within the Stack Overflow Data Dump,

these terms are scored on a variety of query quality metrics such as term frequency-

inverse document frequency to form a static dictionary of terms. When a query is to
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be formed, terms are extracted from the import statements and selected line of the

currently open document in the editor. Theses terms are scored based on the metrics

contained within the previously generated dictionary. The highest scoring terms are

then selected to form the query. A full description of this process can be found in

Section 3.4.2.

With each of the above problems addressed, StackInTheFlow can be deployed

as a BDRSSE. The remainder of this chapter is structured as follows. Firstly, a de-

scription of the user interface of StackInTheFlow is given. Second, an overview of

the different use-cases in which the developer can interact with StackInTheFlow

is provided. Finally, the architecture of StackInTheFlow is detailed, including the

mechanisms for difficulty detection and query formulation described above.

3.2 User Interface

Figure 1 shows the user interface of StackInTheFlow. It provides a tool window

which can be positioned by the user within the IDE. This tool window provides a query

box, much like a standard search engine, in which users can enter queries in natural

language, such as “Spark Explode Row” for searching for information about the explode

operation within the Apache Spark Framework.

The main area of the tool window displays the results of a query in the form

of question posts retrieved directly from Stack Overflow through their API. For each

retrieved question post the title is rendered along with a snippet of the text from the

question body. Any tags associated with the question are included at the bottom of its

entry as well. The question title serves as a link to the question post on Stack Overflow

itself. Selecting the title will open the full post in the user’s preferred Internet browser

application. The question body is rendered such that code snippets are formatted in

mono-spaced font, and that formatting included by the user such as bold and italics are

properly displayed. Links included in the question body are also correctly formatted
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Figure 1: StackInTheFlow User Interface.
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and will direct the user to the webpage to which they link in the user’s preferred browser

when selected as well. Users may “expand” the snippet of text from the question body

displayed by selecting the more link. Doing so will display the body of question text in

its entirety along with a less link by which the user can revert the amount of displayed

text to its previous state when selected. In addition, any tags which have been assigned

to the post are displayed at the bottom of its entry in the result list. These tags may

be selected by the user to serve as filter criterion to further refine their search.

Directly below the query box, a list of active tags may optionally be displayed, these

tags can be enabled by selecting them from question descriptions as previously described

or through the advanced query syntax detailed in Section 3.2.1. Once enabled, only

questions tagged with all of the enabled tags will be displayed, however questions may

include tags beyond those that are enabled. In this way, the user can limit their search

results to posts tagged with topics that are of interest such as java or apache-spark.

To disable a tag, the user may simply select it from the list of active tags, at which

point it will be removed and the search results updated to reflect the new filter criteria.

StackInTheFlow also comes with the standard result ranking options one would

expect, which are available via a drop-down menu to the right of the query box. Users

can re-rank results based on the number of votes the post received from the Stack

Overflow community, the newest post to be made, the timestamp of the last activity

(initial post or reply) made for a post, or the relevancy of the post to the query. Each of

these rankings are determined by an unspecified algorithm within the Stack Overflow

API, however results ranked utilizing the relevancy option are further re-ranked by

StackInTheFlow utilizing a procedure detailed in Section 3.4.4.

Users may also view their past queries via the history tab, denoted as a clock.

Users may select a past query to execute it again. In addition to the query string itself,

the associated tags utilized to filter a past query are stored and displayed as well.

Finally, users may access various options within the settings tab, denoted as a gear.
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Importantly, users may enable or disable under what conditions StackInTheFlow

will produce an automated recommendation. Specifically, users may control whether

StackInTheFlow will issue automated queries upon compile or runtime errors, or

when the tool has detected the user has encountered difficulty. Details of each type of

query scenario can be found in Section 3.3.

3.2.1 Advanced Query Syntax

In addition to basic natural language query strings such as “Spark Explode Row”,

StackInTheFlow also supports a more advance query syntax by which users can

formulate queries. This query syntax is provided by the Stack Overflow API. Of note,

users can specify specific tags to be include in their search by enclosing them in square

brackets (e.g. “[java]”) an operation that is equivalent to adding the tag to the list

of active tags. Users can also search specific elements of a question by specifying the

element followed by a colon and the string to search for (e.g. “title:"Spark"”). A full

listing of the supported query operations can be found within the Stack Overflow Search

Syntax Specification1

Finally, due to the inclusion of tags being a common user operation, StackInThe-

Flow provides a shortcut via the Tab key, by which users can quickly add tags. When

entering a query, users can press the Tab key to automatically add the previously typed

word to the list of active tags.

3.3 Tool Use-Cases

As previously described, the first issue a BDRSSE must address is that of deter-

mining that the user is in need of a recommendation. This can happen in two ways:

1. The developer may manually invoke the tool. In this case the tool is acting as a

conventional RSSE. 2. The tool may utilize the developers behavior to determine that

1Stack Overflow Search Syntax Specification https://stackoverflow.com/help/searching
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a recommendation should be made. In this cases the tool is fulfilling the role of a

BDRSSE. StackInTheFlow seeks to account for both avenues by providing func-

tionality to enable use cases from either path. These use-cases can be described by

the type of query that initiates them: manual, automatic, error, and difficulty. Man-

ual queries allow the developer to utilize StackInTheFlow as a conventional RSSE,

manually specifying the query string. Automatic queries are designed to be a hybrid

approach where the developer explicitly invokes the automated query generation pro-

cedures of the tool. Error and difficulty queries represent the behavior-driven aspect

StackInTheFlow, invoking the automatic generation of queries whenever the user

has encountered a perceived error or difficulty. To illustrate each use-case, consider a

scenario where a developer has just begun using the Apache Spark parallel programming

framework.

3.3.1 Manual Query

The developer may utilize StackInTheFlow as a conventional RSSE by manu-

ally writing and issuing queries to the Stack Overflow API, such as a query regarding

the Spark explode operation (as in Figure 1). From there she may browse the results

of her search directly within the IDE through the user interface, allowing for all of

the operations previously described in Section 3.2. Importantly, this use-case mirrors

the functionality of the Stack Overflow website itself, providing a method for users to

interact with StackInTheFlow which which they are most likely already familiar.

In addition, this method can be utilized to modify the queries generated by the use-

cases described in the following sections, allowing the user to further personalize and

fine-tune the results generated by more automated methods.
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3.3.2 Automatic Query

Occasionally, the developer may not be able to form a query suitable to retrieve

the information required to solve a development problem and may require assistance in

query composition. For example, the developer may wish to know how to set the config-

uration options for the SparkSession object. In such a case she may simply highlight the

section of code relevant to declaring or using this object, right-click and select the Auto

Query option. Utilizing the procedure detailed in Section 3.4.2, StackInTheFlow

will automatically generate a query from the code snippet and present the results in

the same fashion as above. This use-case represents a hybrid approach, incorporating

the automatic query generation aspects of a BDRSE with the explicitly invoked nature

of a conventional RSSE.

3.3.3 Error Query

Inevitably, during the course of their daily work a developer will encounter error

messages. These messages can often be cryptic and unfamiliar to the developer, re-

quiring the consultation of sources such as Stack Overflow in order to decipher their

meaning. To address this issue, whenever an error message is encountered, either during

compile or run time, StackInTheFlow will generate a query and recommend results

using the approach described in Section 3.4. This use-case represents a simple approach

to user difficulty detection, the intuition being that error messages serve as an indicator

of developer difficulty. A more advanced method of user difficulty detection is utilized

in the following use-case.

3.3.4 Difficulty Query

Finally, it may be the case that the developer is stuck in an unproductive loop. She

may be deleting large portions of code without making significant progress, or scrolling

through files without making any edits. StackInTheFlow contains mechanisms to
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detect such behaviors, outlined in Section 3.4, and to automatically generate queries

and present recommendations without any direct input from the developer, which may

provide the information they need to overcome their development block. This use-case

represents the fully behavior-driven aspect of StackInTheFlow, qualifying it to be

deemed a BDRSSE.

3.4 Tool Architecture

Unlike other RSSEs, StackInTheFlow does not store a repository of knowledge

items (articles) to recommend. It instead utilizes the Stack Overflow API to dynami-

cally query the live Stack Overflow website. This was done to ensure that the user would

always have access to the most up-to-date articles. As a consequence of this approach,

much of the burden typically associated with developing a RSSE (storing and indexing

knowledge items, determining what items are relevant to a particular query, etc. ) is

instead offloaded to the Stack Overflow API itself, this means that StackInTheFlow

is a much lighter weight application than many of its counterparts and its architecture

reflects such. The major drawback of this approach however is that in order to utilize

the tool, the developer must have access to a reliable Internet connection, a barrier that

was deemed to be acceptable, given it is often seen as a prerequisite within a software

development environment.

The different components of the StackInTheFlow architecture and their re-

lationship to the different use-case queries is shown in Figure 2. Depending on the

use-case, the procedure by which StackInTheFlow generates a query is slightly dif-

ferent. Subsequent sections will describe the internals of each component and how each

use-case procedure is performed in detail.
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Figure 2: Overview of StackInTheFlow
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3.4.1 Difficulty Detection

The first component of StackInTheFlow is that of the Difficulty Detection

module. This module is designed to address the first issue faced by a BDRSSE, that

of determining when the developer is in need of a recommendation, and therefore is

also responsible for enabling the difficulty query use-case. To do so it must be able

to detect when the user has encountered some form of “difficulty”, at which point

it triggers the subsequent modules in the chain to produce a recommendation. One

such perhaps obvious case is when compiler or runtime error messages are encountered.

Such a situation may be seen as a clear indicator that the developer has encountered

some form of difficulty. StackInTheFlow employs this viewpoint, as such whenever

an error message is encountered, be it compile or runtime it is immediately sent to

the Query Generation module for further processing. However, the determination of

programmer difficulty is not always such a trivial task.

In the case of an error message, the indication of the user encountering an obstacle

is quite clear, however, the user may encounter difficulty without as prominent an indi-

cator. They may be constantly editing the same section of code, or unable to continue

development due to lack of project understanding. StackInTheFlow provides mech-

anisms to detect such cases and to provide Stack Overflow posts to aid the developer,

by leveraging its automatic query generation capability. It does this by taking an ap-

proach similar to that of Carter and Dewan [49], by analyzing the ratios between the
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insertion and deletion of text within the editor. Such an approach, Carter and Dewan

argue, prevents the tool from falling into the trap of determining the programmer has

encountered difficulty when they have simply “gotten up to get a cup of coffee”. This

approach utilizes the finite state machine detailed in Figure 3.

Figure 3: Difficulty Detection State Machine.
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The machine begins in the Collect state. While in this state, editor events are col-

lected. Editor events are broken into four categories: Insert, Delete, Scroll, and Click.

Insert and Delete events are fired when the user inserts or deletes a character respec-

tively. Scroll events are fired when the user scrolls the view within the editor. Click

events are fired when the user clicks the mouse. A queue of the past 25 events is main-

tained. In order to control for event bursts, consecutive events of the same type within

one second are ignored and not added to the queue except for the initial event. In this

way, event categories which trigger multiple consecutive events, such as scrolling, do

not overpower and erase event categories which produce sparser event sequences such
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as mouse clicks. A window size of 25 was selected heuristically, however future work

may examine the effect of varying window sizes. Whenever an event is added to the

queue the metrics of the delete ratio and edit ratio are re-calculated, defined as:

Let H be the set of the last 25 editor events included within the history queue.

Let I be the subset of H such that for every event e, e ∈ H, e is an Insert Event.

Let D be the subset of H such that for every event e, e ∈ H, e is a Delete Event.

Let |X| denote the cardinality of set X.

The Delete Ratio is defined as:
|D|
|I ∪D|

(3.1)

That is, the ratio between the number of deletion events, to the sum of deletion and

insertion events within the past 25 editor events within the history queue.

The Edit Ratio is defined as:
|I ∪D|
|H|

(3.2)

That is, the ratio between the number of edit events (insertion and deletion), to that

of all events, including scroll and click events within the past 25 editor events within

the history queue.

Utilizing these metrics two thresholds are set. If at any time the delete ratio exceeds

60%, the state machine determines that the programmer has encountered difficulty, and

a query is generated, returning a set of Stack Overflow results to the developer, while the

machine transitions to the Query state. The intuition behind this particular threshold

being that if the developer is spending the majority of their time deleting text within the

IDE instead of inserting it, they have encountered some form of difficulty and are need of

a suggestion. In addition to the insert/delete ratio proposed by Carter and Dewan [49],
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a second novel threshold introduced by this work is utilized, based on the edit ratio.

If this ratio falls below 60%, the machine will also determine the programmer has

encountered difficulty, suggest results, and transition to the query state. The rationale

behind this second threshold is that if the user is spending the majority of their time

moving the cursor without editing text, they have likely encountered a difficulty.

As with the window size of 25 before, the threshold of 60% was chosen heuristically.

Future research may examine the effects of different threshold values and the possibility

of personalizing the value of the threshold to the individual developer, an approach

utilized by [50].

While in theQuery state, the event queue is cleared and all subsequent editor events

are ignored until 30 seconds has elapsed, at which point the machine transitions back to

the Collect state. The clearing of the queue ensures that each difficulty determination

is made from a clean slate, preventing events utilized in triggering past queries from

influencing future difficulty detection decisions. Importantly, while in this state, no new

recommendations are automatically generated. This was done to allow the developer

time to process any automatically made recommendations and avoid them becoming

overwhelmed.

Finally, if the user has been inactive for at least 15 minutes, i.e. no editor events

are being generated, the machine transitions to a Pause state, where it remains until

an editor event occurs. Currently, this state is utilized solely for logging purposes,

however, future work may examine incorporating transitioning to and from this state

into the difficulty determination decision itself.

This state machine forms the basis of the behavior-driven aspect of StackInThe-

Flow. Utilizing it, StackInTheFlow is able to passively listen to developer activity

within the IDE and make a determination that they have encountered difficulty with-

out their direct input. Importantly, due to the pause state having no bearing on the

difficulty determination decision process, and its reliance of ratio-based metrics on a

39



time-independent window, the state machine is immune to many of the issues faced

by other time-based approaches. Mainly that if the developer becomes preoccupied

with another task, the system does not incorrectly determine that they are not making

progress and thus encountering difficulty. Such an approach ensures that the system

will only make such a determination if the developer is actively exhibiting behaviors

that have been deemed indicators of difficulty.

Once the Difficulty Detection module has determined that the developer has en-

countered difficulty, either through the presence of an error message or via the state

machine, the Query Generation module is triggered.

The Difficulty Detection module addresses the first issue faced by BDRSSE, that

of determining if the developer is in need of a recommendation. The second module of

StackInTheFlow, the Query Generation module, detailed in the following section,

addresses the second challenge, that of forming a recommendation without direct input

from the developer, once it has been determined that they are in need of a recommen-

dation.

3.4.2 Query Generation

The second component of StackInTheFlow is that of the Query Generation

module. This module is designed to address the second issue faced by a BDRSSE,

that of formulating suitable queries to retrieve recommendations, it is responsible for

enabling the functionality of several use-cases summarized below:

Difficulty Query - In the case where the Difficulty Detection module has deter-

mined that the developer has encountered some form of difficulty, the Query Gen-

eration Module must be able to formulate a query based on the context extracted

from within the IDE.

Error Query - In the case where the developer encounters a compile or run time

error message, the Query Generation module must be able to formulate a query
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based on the extracted error message. While it is common for parts of compiler er-

ror messages and runtime stack traces to be included in Stack Overflow questions,

error messages are not standardized for searching related documentation, there-

fore StackInTheFlow must employ a mechanism for extracting query terms

from these messages.

Automatic Query - In the case where the developer explicitly invokes the query

formulation process, the Query Generation module must be able to formulate a

query based on the context extracted from within the IDE in a manner similar to

that of the Difficulty Query use-case. However, unlike the previous use-case, the

module may also extract additional context from the developer, such as in the

case that they have highlighted a snippet of code to formulate the query.

Regardless of the use-case, when the automatic query generation functionality is

invoked, the Query Generation module should generate and issue a user interpretable

query based on the context of the current development task. That the query is inter-

pretable is an important quality, as it allows the developer to further refine the search

query in the case that the initial generated query was not sufficient. The underlying

model by which the Query Generation module does this is the same for each use-case

and is described in the following section.

3.4.2.1 Query Generation Model

The Query Generation Model seeks to identify query terms which are the most

salient, that is terms which contain the most information, with the intuition that such

terms form the most suitable query terms with the highest probability of returning

relevant documents. However, determining the saliency of a term is a non-trival task.

To do this, the model constructs a dictionary of terms pre-mined from the user posts

contained within the periodic Stack Overflow Data Dump. This dictionary contains

a set of query pre-retrieval metrics [54], which enable the selection of the terms that
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are most likely to retrieve a reasonable selection of documents from Stack Overflow.

Since the dictionary is computed offline, query generation is lightweight and fast. An

overview of the Query Generation Model is given in Figure 4.

Figure 4: StackInTheFlow Query Generation Model
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The first element of the Query Generation Model is the Stack Overflow Data

Dump2. This periodic data dump includes anonymized Posts, Users, Votes, Comments,

PostHistory and PostLinks from a variety of sites within the Stack Exchange network.

For the purposes of the model, only Posts from the Stack Overflow site are considered.

Posts are provided in the form of an XML file containing several attributes, such as

the post title, body, tags, or number of likes. The data dump utilized to form the most

recent version of StackInTheFlow contained a total of 33, 566, 855 Stack Overflow

posts.

The second element of the Query Generation Model is a Dictionary containing

potential query terms and their associated query pre-retrieval metrics. This dictionary

was constructed via a custom-written XML parser implemented in Java. For each

post within the data dump, the post body is extracted and converted into a bag-

of-words to form a set of candidate terms. This is done by splitting the body of

the post on all word boundary characters (spaces, periods, commas, etc)̇ and then

2Stack Overflow Data Dump https://archive.org/details/stackexchange
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converting the terms to lowercase. For a full specification of characters treated as

word boundaries, see the Java Regular Expression Documentation3. Terms which do

not begin with an alphabetic character or are less than two characters in length are

discarded from consideration. From this filtered set of candidate terms the following

metrics are calculated and updated as additional posts are processed:

Collection Term Frequency - The number of times a term appears within the

bodies of all posts within the data dump.

Term Document Frequency - The number of posts in which a term appears.

Term Count - The total number of unique terms within the data dump.

Document Count - The total number of posts contained within the data dump.

Once all posts have been processed, for every term t an Inverse Document Fre-

quency (idf ) and Inverse Collection Term Frequency (ictf ) are calculated via the fol-

lowing equations:

idf(t) = log
(

N

Nt

)
(3.3)

ictf(t) = log
(
|D|

tf(t, D)

)
(3.4)

where N is the document count, Nt is the term document frequency, |D| is the term

count, and tf(t, D) is the collection term frequency.

Once all of the previous metrics have been calculated a dictionary is constructed

such that for every candidate query term extracted from the data dump, the collection

term frequency, document frequency, inverse collection term frequency, and inverse

document frequency are recorded. This dictionary also records the overall term count

3Java Regex Docs https://docs.oracle.com/javase/tutorial/essential/regex/
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and document count. This dictionary is then converted to an XML format and shipped

with the tool itself. The current dictionary shipped with StackInTheFlow contains

a total of 21, 893, 191 candidate terms and is a total of 36.6MB in size, a small fraction

of the approximately 40GB data dump.

The third element of the Query Generation Model is the Query Generation Al-

gorithm, which takes as input a desired query length, set of candidate query terms,

and the dictionary constructed within the previous element. When a query is to be

generated from a source, such as an error message or source code, that source text is

cleaned and converted into a bag-of-words in a process detailed in Section 3.4.2.2. Once

extracted, this bag-of-words is treated as a set of candidate query terms and is fed into

the algorithm as input. Each candidate term is scored on a variety of pre-retrieval

metrics [54] detailed below:

Specificity - The specificity of a query is a measure of the distribution of the terms

within the corpus. For queries composed of generic terms which occur frequently

within the corpus, for example “the” and “there”, the quality is deemed lower than

that of queries containing specific terms such as “apache” or “spark”. To assess

the specificity of the candidate terms the Inverse Document Frequency and the

Inverse Collection Term Frequency for each term within the dictionary is utilized.

Similarity - The similarity of a query is a measure of the similarity between its

terms and the corpus, with the intuition that queries judged similar to the corpus

are easier to answer and thus of higher quality. For each candidate term, the

Collection Query Similarity (SCQ) metric [55] is utilized to ascertain a similarity

score. The Collection Query Similarity of a term is calculated via the following

equation:

SCQ(t) = (1 + log(tf(t, D))) · idf(t) (3.5)

This metric measures the vector-space based query similarity to the collection.
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It does this by considering the collection as one large document, composed of a

concatenation of all the documents.

Coherence - The coherence of a query is a measure of the inter-similarity of doc-

uments containing the query terms. In order to be practical, heavy analysis must

be performed during indexing time. For each term in the index vocabulary, a

coherence score, CS(t) is calculated. This score represents the average pairwise

similarity between all pairs of documents in Dt, the set of documents which con-

tain t:

CS(t) =
∑

(di,dj)∈Dt
sim(di, dj)

|Dt|(|Dt| − 1) (3.6)

where sim(di, dj) is the cosine similarity between the vector-space representa-

tions of the two documents. Several metrics have been proposed to examine this

dimension, however most are computationally expensive to compute as they re-

quire a pointwise similarity matrix for all documents contained within the corpus.

StackInTheFlow instead employs a less expensive metric proposed by Zhao

et al. [55], V AR(t), which measures the variance of the query term weights over

the documents which contain them. To compute the weight of each query term a

tf-idf based approach is utilized given by the following formula [56]:

w(t, d) = log(1 + tf(t, d)) · idf(t)
|d|

(3.7)

The argument behind V AR(t) follows that if the variance is low, it will be more

difficult to differentiate between relevant and irrelevant documents, thus the over-

all query quality is low.

For each candidate source code term contained within the dictionary, we calculate

the above metrics treating each term individually as a query, and then linearly sum the

score for each dimension to achieve an overall query term score (QS(t)). Thus, QS(t)

45



is given by the following equation:

QS(t) = idf(t) + ictf(t) + SCQ(t) + V AR(t) (3.8)

In the current implementation of StackInTheFlow, all query pre-retrieval metrics

are weighted equally, however, future research may examine tailoring the weights of

each metric to suit the individual user. Once all candidate terms have been scored,

the top n scoring terms are then selected to form the candidate query. By default,

StackInTheFlow utilizes a value of 4 for n.

3.4.2.2 Query Generation Model Implementation

Though the underlying model by which the Query Generation module formulates

a query is the same, the method by which candidate query terms are extracted from the

IDE context varies between each use-case. The following section describe this process

for each use-case.

Difficulty Query - When invoked via the difficulty query use-case, the Query Gener-

ation Model is utilized to formulate a query based on the context extracted from within

the IDE. This is done by focusing on two pieces of information extracted from the cur-

rently open source code file within the editor. The first being any import statements

present at the top of the source code file, the second being the line of code on which the

cursor currently resides. To extract candidate query terms from Java-style import state-

ments, each package level of the statement is treated as a separate term. In addition, all

terms are converted to lower case to ensure compatibility with the term dictionary. For

example, the import statement import org.apache.spark.sql.SparkSession would

produce the following set of query terms: org, apache, spark, sql, sparksession. To

extract candidate query terms from a line of source code a similar process is uti-

lized. A line of source code is split across word boundary characters and the re-

sultant terms are converted to lower case. For example, the following line of code
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System.out.println("Hello World") would produce the following set of query terms:

system, out, println, hello, world. These two sets of candidate terms are then combined

and sent to the Query Generation Model to form a candidate query.

Error Query - When invoked via the error query use-case, the Query Generation

Model is utilized to formulate a query based on information extracted from the stack-

trace of the error. For example consider the following stacktrace:

Exception in thread "main" java.util. NoSuchElementException

at java.util. Scanner . throwFor ( Scanner .java :862)

at java.util. Scanner .next( Scanner .java :1371)

at Main.main(Main.java :23)

This stracktrace is cased by a runtime error due to the user attempting to read in

a blank line with a Scanner. To formulate a query from this stacktrace two separate

approaches are utilized, one which relies on the Query Generation Model and one

which bypasses it. The first approach bypasses the model an instead utilizes the first

line of the stacktrace directly as a query, in this example “Exception in thread "main"

java.util.NoSuchElementException”. This is done due to the prevalence of the first line

of an error message in many Stack Overflow posts. If the first approach fails to retrieve

any results, a second approach similar to the difficulty query formulation process is

utilized. The stacktrace is converted into a bag-of-words by splitting the entirety of its

text on word boundary characters and converting the resultant terms to lower case. In

addition, regular expressions are utilized to extract the exception classes and language

version specifically. These terms are then fed into the Query Generation Model to form

a candidate query.

Automatic Query - When invoked via the automatic query use-case, the Query

Generation Model is utilized to formulate a query based on the context extracted from

within the IDE at the behest of the user. This means that in addition to the information

available previously, additional cues in the form of selected regions of text can be

provided by the user to assist in the query generation process. When invoked, if the
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user has not selected any region of text, a process identical to that used in the difficulty

query case is employed. Candidate query terms are extracted from import statements

and the line of code on which the cursor resided in the editor as before. However, if the

user has chosen to select a region of text prior to invoking query generation, this process

is discarded in favor on one utilizing the selected text. Instead of extracting candidate

query terms from import statements or the current line of code as before, the entirety of

the selected text is instead utilized to form candidate query terms. Mirroring the other

use-case approaches, this selected text is converted into a bag-of-words by splitting it on

word boundary characters and converting each term to lowercase. This set of candidate

terms is then fed into the Query Generation Model to form a candidate query.

Regardless of the use-case, when a candidate query is utilized which has been

generated by the Query Generation Model, if the query fails to retrieve any results a

back-off technique is employed by removing the lowest scoring term from the query and

re-initiating a document search. This process is repeated until a query of one term is

reached, at which point results are guaranteed based on the reliance of terms within the

dictionary extracted from the Stack Overflow Data Dump. For example, given an initial

query of “spark apache java” generated by the Query Generation Model, a document

search would be initiated. If no results were found a query of “spark apache” would

be utilized. If still no results were found a query of “spark” would be utilized. At this

point results would be guaranteed due to the presence of the term spark within the

model’s dictionary, as there must be a least one post which contains the term.

All results deemed relevant to a particular query are retrieved via the Stack Over-

flow API, described in the following section.

3.4.3 Stack Overflow API

The third component of StackInTheFlow is the Stack Overflow API. This com-

petent is responsible for querying Stack Overflow with queries generated by the Query
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Generation module, or those made directly by the user. Thus, this component enables

the manual query use-case. The Stack Overflow API is part of the larger Stack Ex-

change API4 which is a RESTful API that enables the querying of sites within the

Stack Exchange Network for various pieces information such as user data, or infor-

mation pertaining to the questions, answers, and comments within the site. It also

provides functionality for posting new topics to the sites within the network. Impor-

tantly, the API provides a search/advanced endpoint which enables the retrieval of

relevant posts given a search query. StackInTheFlow utilizes this endpoint to query

Stack Overflow to retrieve documents relevant to a particular query. When querying

for relevant documents, the endpoint provides four possible schemes by which results

can be ranked summarized below:

Relevance - ranks retrieved documents based solely on their computed relevancy

to the query. Relevancy is determined by an unspecified black-box algorithm

provided by the API.

Creation - ranks retrieved documents based on their creation date, newer docu-

ments will appear higher in the ranking than older documents.

Votes - ranks retrieved documents by the number of votes they have received on

the Stack Overflow website, documents with more votes will appear higher in the

ranking than those with fewer votes.

Activity - ranks retrieved documents by their last activity date. Activities include

events such as a user posting a comment or answer to an initial question. Doc-

uments which have a newer last activity date will appear higher in the ranking

than documents which have become inactive.

All four ranking schemes are exposed to the user, which may select which scheme they

4Stack Exchange API https://api.stackexchange.com
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would prefer StackInTheFlow to utilize from the user interface. When a query

is sent to the API, either directly by the user or via the Query Generation module,

based on the selected scheme a ranked listing of relevant Stack Overflow articles will

be retrieved. In the case that there are no articles relevant the query, an empty listing

will instead be returned. In the case that there are relevant articles, the retrieved

ranked listing with then be rendered in the user interface for the developer to view. If

the user has selected the relevance ranking scheme, the order in which the results are

presented will be re-ranked in a procedure described in Section 3.4.4, otherwise they

will be presented in the order given by the Stack Overflow API.

3.4.4 Result Personalization

The fourth component of StackInTheFlow is that of the Result Personalization

module. If the user has selected the relevance ranking scheme, StackInTheFlow per-

sonalizes the results of all queries by re-ranking the results based on past user activity.

It does this by utilizing a novel metric, Click Frequency-Inverse Document Frequency

(cf-idf ), which aims to predict the affinity of a developer towards a retrieved Stack

Overflow post by analyzing the tags associated with previously clicked results by that

developer.Click Frequency-Inverse Document Frequency is composed of two constituent

metrics. The first, Click Frequency (cf ), is computed for a given tag t on a given re-

sult selection history H. Using raw frequency ft,H , defined as the number of times a

Stack Overflow post tagged with t was clicked on by the user, as recorded in H, the

corresponding Click Frequency is given by the following equation.

cf(t, H) =


1 + log(ft,H) ft,H > 0

0 ft,H = 0
(3.9)

The second metric is the Inverse Document Frequency (idf ) of a tag, is computed

from the Stack Overflow Data Dump by the following equation:
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idf(t) = log
(

N

Nt

)
(3.10)

where t is a given tag and Nt is the number of articles associated with that given tag

within the data dump. This metric has the effect of discounting tags that are prevalent

in the corpus across multiple documents. From these two metrics Click Frequency-

Inverse Document Frequency (cf-idf ) is calculated via the following equation:

cfidf(t, H) = cf(t, H) · idf(t) (3.11)

Such a metric falls into the Content-Based Filtering approach to recommendation sys-

tem ranking schemes. In this context, the set of all available tags represent the topics

available to recommend. Clicks on articles associated with a particular tag represent

a higher rating of that topic by the user. In this way, content-based filtering can be

applied to score a result tagged with topics the user has rated more highly with a

more favorable score than one which does not share previously highly rated tags. The

procedure by which this is done is described below.

Given an initial set of of ranked results retrieved from Stack Overflow, for each

result a raw score (S) is computed by taking the sum of the cf-idf of each tag associated

with the result and dividing by the total number of tags associated with the result. This

score is computed via the following procedure:

1. Let T be the set of all available tags in a collection of documents D.

2. Define a User Vector, ~U as a vector containing the cf-idf of every tag t ∈ T

given H.

3. Define a Result Vector, ~r as a binary vector for a given result r where ∀t ∈

T , ~rt = {1 if r is tagged with t : 0 if r is not tagged with t}.

4. Let g be the set of a tags associated with a result r.
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5. The raw score (S) of a given result r is given by the following equation:

S(r) =
~U · ~r>

|g|
(3.12)

To determine the final position of a result the following procedure is utilized:

1. Let I be the initial ranking of results.

2. Let W be a weighted ranking of results in descending order based solely on the

raw score for each result.

3. The adjusted score P of a given result r is then calculated via the following

equation:

P (r, I, W ) = ri + rw

2 (3.13)

where ri is the initial ranking of result r ∈ I and rw is the weighted ranking of

result r ∈ W .

4. The final position each result is determined by re-ordering the set of results by

descending adjusted score.

Utilizing this approach, both the ranking determined via content-based filtering and the

original ranking provided by the Stack Overflow API are taken into consideration when

determining the final ranking of a result. An example of this approach is demonstrated

in Section 3.4.4.1.

3.4.4.1 Personalization Ranking Example

In this example there are 5 tags within our corpus A-E (|T | = 5). A sample result

section history H is also provided. The idf of each tag is also given as an estimation

from the corpus. These base metrics are shown in Table 2. A calculation of ~U is also

given.

~U = (6.53, 4.93, 7.59, 5.07, 7.85)
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Table 2.: Basic Personalization Metrics

Tag (t) H cf(t, h) idf(t) cfidf(t, H)

A 2 1.30 5.02 6.53

B 1 1.00 4.93 4.93

C 3 1.48 5.14 7.59

D 1 1.00 5.07 5.07

E 4 1.60 4.90 7.85

Five results have also been returned from the Stack Overflow API R1-R5 (|I| = 5)

each with a subset of tags associated with them. The computation of ~r and S(r) for

each result is shown in Table 3. From the the calculation of S(r) one can obtain W

Table 3.: Calculation of Personalization Raw Score

Result (r) g ~r S(r)

R1 A,E (1, 0, 0, 0, 1) 7.19

R2 C,D (0, 0, 1, 1, 0) 6.33

R3 B,E (0, 1, 0, 0, 1) 6.39

R4 B,D (0, 1, 0, 1, 0) 5.00

R5 A (1, 0, 0, 0, 0) 6.53

a weighted ranking of the results. Once a weighted ranking has been determined, an

adjusted score can be computed. Finally, from the calculation of the adjusted score a

final ranking (F ) is obtained, given by Table 4. This leads to a final result ranking of

R1, R2, R3, R5, R4 based on the user’s preferences.

As illustrated by this example, the final ranking does not differ drastically from

the original, re-ordering only two terms. If the weighted ranking had been utilized

alone to determine the final ordering, the re-ranking of results would have been more
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Table 4.: Calculation of Personalization Adjusted Score & Final Ranking

Result (r) I W P (r, I, W ) F

R1 1 1 1.00 1

R2 2 4 3.00 2

R3 3 3 3.00 3

R4 4 5 4.50 5

R5 5 2 3.50 4

drastic. The inclusion of the original ranking in the the computation of the final ranking

ensures that the ranking does not significantly differ from the original unless the user

has exhibited a very strong preference for the topics associated with a result which had

been initially lower ranked. Once more, any additional re-ranking performed is most

likely to be in the form of small distance jumps of results within the ranking, with large

adjustments to the original order being rare.
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CHAPTER 4

RESULTS AND DISCUSSION

To evaluate the effectiveness of StackInTheFlow, two different approaches were

utilized.

4.1 Evaluation Approach I: Collection of Anonymous Logs

In the first approach, anonymous logs of user interactions with the tool have been

collected. In the period between August and November of 2017, StackInTheFlow,

with all the features described in this thesis, has been publicly available for download

from the JetBrains tool repository. Following advertising of the tool on various channels,

it has been downloaded 148 times, with logs reflecting tool use captured from 77 unique

users. Logs from StackInTheFlow developers have been marked and removed.

The goal of this evaluation is to estimate the effectiveness of each query type. To

perform this evaluation, reliance is made on the tool feature usage and click-through

rates found in the logs. The assumption is that clicking on a query’s result to open

it in the browser or expand its content for reading within StackInTheFlow is an

indication of its effectiveness.

4.2 Evaluation Approach II: Observing Developers with StackInTheFlow

In the second approach, a small study consisting of 5 undergraduate computer

science students who had all successfully completed an Android development course,

recruited from friends and colleagues, was performed in which participants were tasked

with completing an Android development task with access to StackInTheFlow, dur-

ing which recordings of their interactions with the tool were made for observation.

The goal of this evaluation is to further estimate the effectiveness of each query
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type and to asses the overall usefulness of StackInTheFlow. This was done through

the combination of annotating the recordings made of the participants interactions with

the tool and asking the participants to complete a post-study questionnaire designed

to asses the overall usefulness of StackInTheFlow. While determining a scheme of

recording annotations, emphasis was placed on annotating indicators that the results

returned by the tool were useful to completing the assigned task.

To begin the study, participants were first asked to complete a pre-study ques-

tionnaire consisting of the following questions designed to asses their programming

experience:

1. How many years of programming experience do you have?

2. How many years of Java programming experience do you have?

3. How many years of Android programming experience do you have?

4. How strong are your Java development skills?

5. How strong are your Android development skills?

Participants were also asked to rate on a 5-point Likert scale from 1 (never) to 5

(very often) how often they utilized Stack Overflow when encountering the following

development situations:

1. Getting “stuck” in development

2. Encountering a compiletime error

3. Encountering a runtime exception

4. As a reference for an API and its use

Finally, participants were asked the following two questions regarding their information

searching behaviors:
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1. Are there any other situations (besides those listed above) in which you utilize

Stack Overflow?

2. What other sources of information on the Web do you utilize when solving devel-

opment issues besides Stack Overflow?

Table 5.: Participant Reported Years of Programming Experience

P1 P2 P3 P4 P5 average

Android 1 1 1 0.5 3.5 1.4

Java 2 7.5 3 4 4 4.1

Overall 2 8.5 3 5 4.5 4.6

Table 5 shows the reported years of programming experience for each of the five

participants. Participants reported an average of 4.6 years of programming experience,

with an average of 4.1 years of Java experience and 1.4 years of Android experience. 3

of 5 participants reported 1 year of Android experience, with one reporting 0.5 years

and one reporting 3.5 years. Participants also on average rated their Java development

skills as 4 out of 5 and their Android development skills as 2.8 out of 5.

In regards the the second set of questions, participants reported on average a score

of 4 out of 5 to getting "stuck", 4.4 out of 5 to compiletime errors, 4.4 out of 5 to

runtime exceptions, and 2.6 out of 5 to an API reference.

Finally, most participants did not offer additional situations in which they uti-

lized Stack Overflow and cited Google as the most often utilized additional source of

information.

Once the pre-study questionnaire was completed, participants were asked to progress

as far as possible in an Android development task taken from the commit history of the

open-source app NextCloud Notes1. NextCloud Notes is a simple note taking app in

1NextCloud Notes https://github.com/stefan-niedermann/nextcloud-notes
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which users may create and edit textual notes and then export them to various online

services such as Google Drive. Participants of the study were tasked with adding a

splashscreen during the loading process of the app via the following prompt:

Currently, there is no splash screen. Not only are we missing out on a

chance for branding, but there is a slight lag when the user opens the app

due to server connection latency.

Help improve the user experience by creating a splash screen that displays

when the user starts the app. It should help hide the latency between the app

and the server.

To complete this task, participants were alloted 1 hour. Before beginning, participants

were given a brief demo of StackInTheFlow so that they were informed of its various

features. However, participants were not required to utilize StackInTheFlow to

complete the task and were free to use any available online resources (Google, YouTube,

Blogs, etc.) with the exception of the online source code of NextCloud Notes (which

contained a solution to the task). Throughout the duration of the task, a recording of

their computer screens was made. These recordings were then collected to be annotated.

Annotations were broken into three categories: session, query, and interact. A full

breakdown of each of the annotations available in each category are given by Table 6.

The session category refers to the period of time between the participant beginning

a search for information, denoted by the start tag, and when they have either given

up, denoted by the end_fail tag, or when the have successfully utilized knowledge

from their search in their development task denoted by the remaining tags. If the user

utilized an external resource, such as Google, to extract this information it is denoted

by the end_external tag, otherwise the ending tag appropriate to the type of query

which generated this information is utilized.

The query category refers to when a query is issued, either through the tool, in

which case the type of query is denoted, or through some external resource, in which
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Table 6.: Recording Annotations

session query interact

start

end_fail

end_external external external

end_manual manual manual

end_auto auto auto

end_error error error

end_diff diff diff

case the external tag is utilized.

Finally, the interact category refers to when the user interacts with the result of a

query, such as clicking on a result. In such a case, the type of query which generated

the result is denoted.

Recordings were annotated independently by both the author and his advisor.

After all recordings had been annotated, the sets of annotations for each recording

were compared and any divergent annotations discussed. This happened within three

of five recordings. The divergent annotations were able to be easily resolved after a

second examination of the point in the recordings in which they occurred.

At the conclusion of the study, participates were asked to complete a post-study

questionnaire. In the first part of the questionnaire, designed to detect problems with

the experimental design, participants were asked to express their level of agreement on

a Likert scale from 1 (absolutely no) to 5 (absolutely yes) to the following claims:

1. The activity to perform was clear overall.

2. The individual tasks to perform were clear.

3. There was enough time alloted to perform each task.
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4. The tasks were easy to complete.

In the second part of the questionnaire, designed to collect qualitative information

regarding the usefulness of StackInTheFlow, participants asked to answer the fol-

lowing questions:

1. How often did you use StackInTheFlow? Possible answers used a 5-point Likert

scale from 1 (never), 2 (in 25% of searches), 3 (in 50% of searches), 4 (in 75%

of searches), 5 (always).

2. StackInTheFlow had the capability to automatically generate queries when it de-

termined you were stuck, or via a right-click action. In such cases if they occurred,

how helpful were the queries generated? Possible answers used a 5-point Likert

scale from 1 (very unhelpful) to 5 (very helpful).

3. If applicable, in the case that StackInTheFlow determined you were stuck and thus

automatically generated a query, how appropriate was the timing of this sugges-

tion? Possible answers used a 5-point Likert scale from 1 (very inappropriate) to

5 (very appropriate).

4. How would you improve StackInTheFlow?

4.3 Research Questions

The objective of both approaches is to asses the effectiveness of each query type

in assisting the developer to complete their tasks. For a complete description of each

query type, see Chapter 3. Thus the research questions they attempt to address are as

follows:

RQ1: How effective are manual queries in assisting the developer?

RQ2: How effective are auto queries in assisting the developer?

RQ3: How effective are error queries in assisting the developer?
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RQ4: How effective are difficulty queries in assisting the developer?

4.4 Results

The results of each evaluation method are presented below.

4.4.1 Evaluation Method I Results

Figure 5: Logged Query Types
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Figure 5 illustrates the percentage of each query type present in the log. Out of the

794 queries logged, 53% came from manual user input, 19% from difficulty detection,

15% from auto queries, and 13% resulted from error message queries. The manual query

is utilized as the baseline query type against which the other types are compared.

Figure 6: User Interaction per Query Type
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The logs contain 214 instances of user-result interactions, defined as the user view-

ing the result of a query in the browser, or expanding or contracting a result. Out
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Figure 7: Ratio of Clicks to Total Number of Queries per Query Type
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of these, users opened the browser 115/214 (54%) times, and either expanded or con-

tracted articles within the tool 99/214 (46%) times. Figure 6 illustrates the proportion

of user-result interactions per query type. In correlating the StackInTheFlow user-

result interactions with a query type, it was observed that 166/214 (78%) are on manual

queries, 7/214 (3%) are on automatically generated queries, 24/114 (11%) are on diffi-

culty queries, while error queries account for 17/214 (8%) of user interactions.

Finally, it was explored how often users interact with retrieved Stack Overflow posts

based on query generation type. Figure 7 illustrates the ratio between the number

of times a user clicked on a result and the total number of queries issued for that

query type. Out of 426 manual queries, 99 (17%) had at least one click. From 117

automatically generated queries, 7 (6%) had at least one click. Out of 149 difficulty

queries, 23 (15%) had at least one click. Out of 102 error queries, 11 (11%) had at least

one click.

In summary, these results indicate that automatic queries rarely received user

interaction. Both error (11%) and difficulty (15%) queries resulted in at least a single

click with a frequency on par with manual queries (17%), which indicates that they
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were reasonably effective.

4.4.2 Evaluation Method II Results

Of the five participants, three (P1, P3, P5) were able to successfully complete the

task of adding a Splash Screen to NextCloud Notes at startup. The time taken by each

participant to work on the task is given by Table 7.

Table 7.: Time in Minutes Utilized per Study Participant

P1 P2 P3 P4 P5

53:35 60:00 43:56 60:00 38:59

It can be observed that of the participants that successfully completed the task,

all required more than half the alloted time to do so. Thus, the task was non-trivial

and required sufficient effort on behalf the participants to complete. This is important

as it allows the task to simulate a more “real-world” development scenario in which the

developer is unfamiliar with the task at hand and must rely on external resources to

complete it.

The remaining results of this evaluation method are divided into those extracted

from the annotations of the recordings of the screen of each participant while completing

the Android development task and those collected from the post-study questionnaire.

4.4.2.1 Recording Annotation Results

The frequency counts of each query tag for each participant as well as their av-

erage across all participants is given by Table 8. It can be observed that participants

issued mostly external queries to outside resources such as Google while completing the

task, followed by manual queries through StackInTheFlow. Difficulty queries were

issued with varying frequency by the tool. Interestingly, more difficulty queries were

issued for the participants who were unable to successfully complete the task. Only
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Table 8.: Query Annotation Frequency per Study Participant

query P1 P2 P3 P4 P5 average

external 6 14 5 10 12 9.4

manual 8 10 3 4 1 5.2

auto 0 0 1 2 0 0.6

error 0 0 0 0 0 0

diff 1 4 1 5 1 2.4

sum 15 28 10 21 14 22

two participants (P3, P4) utilized the auto query feature leading to a relativity low

average frequency. Unfortunately due to a limitation in the implementation of Stack-

InTheFlow, error queries were not able to be triggered by the tool for error messages

generated by the Android Emulator and thus though a small number of errors did oc-

cur during the participants development of a solution to the task, no error queries were

issued.

Also of interest is the total number of queries issued by each participant. In total

participants issued an average of 22 queries. However, participants that were unable to

complete the task issued on average 11.5 more queries in total than participants who

were able to successfully complete the task.

In addition to the frequency of each query type, the frequency of participant in-

teractions with the results, such as clicking on a result to view more information or

expanding the result in the tool, of each query type may also be observed. Table 9

gives the frequency of each interact tag per participant as well as an average across all

participants.

As to be expected, queries issued at higher frequencies produced a higher quantity

of interactions. It can also be seen that participants interacted with almost all external

and manual queries they issued. However, they did not interact with any auto queries
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Table 9.: Interact Annotation Frequency per Study Participant

interact P1 P2 P3 P4 P5 average

external 7 14 3 18 11 10.6

manual 6 6 3 3 0 3.6

auto 0 0 0 0 0 0

error 0 0 0 0 0 0

diff 0 0 0 0 1 0.2

sum 13 20 9 21 12 15

and only one user (P5) interacted with a difficulty query.

Finally, the frequency of success of each session may be observed, given by Table

10. Interestingly, a large majority of sessions ended in failure, with on average 76% of

sessions ending in failure.

Table 10.: Session Annotation Frequency per Study Participant

session P1 P2 P3 P4 P5 average

start 15 28 10 21 14 17.6

end_fail 10 24 6 19 11 14

end_external 4 1 2 1 3 2.2

end_manual 1 3 2 1 0 1.4

end_auto 0 0 0 0 0 0

end_error 0 0 0 0 0 0

end_diff 0 0 0 0 0 0

Surprisingly, when the average success rate of manual versus external queries is

examined, given by Table 11, it can be observed that manual queries from the tool

achieved an average success rate on par with that of external queries, despited being
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constrained to a search corpus of only Stack Overflow. The very low manual success

rate of participant 5 is due to them issuing only one manual query, which failed to

return any useful information. If this outlier is omitted, the average success rate of

manual queries increases to 33.5%, slightly above that of external queries.

Table 11.: External vs Manual Query Success Rate

query P1 P2 P3 P4 P5 average

external 66.7% 7.1% 40% 10% 25 % 29.8%

manual 12.5% 30% 66.7% 25% 0% 26.8%

This success does not extend to the other query types however, which either had a

success rate of 0%, or one which is undefined. It is however difficult to draw a conclusion

from this result though, due to the small number of queries issued of these types.

In summary, the results of this evaluation method indicate that manual queries

are reasonably effective at assisting the developer, however results are inconclusive for

auto and difficulty queries due to a small sample size, and unavailable for error queries

due to a limitation in the implementation of StackInTheFlow.

4.4.2.2 Post-Study Questionnaire Results

The responses to the Post-Study questionnaire provided interesting insights into

the participants’ impressions of the task and of StackInTheFlow. In regards to the

prompt inquiring if the task to perform was clear overall. The three participants (P1,

P3, P5) who were able to successfully complete the task responded 5 (absolutely yes),

while the two who were unable to complete the task (P2, P4) responded 4 (mostly yes).

A similar response is given to the prompt inquiring if the individual tasks necessary to

complete overall objective were clear, with the three participants able to successfully

complete it again responding 5, and the two unable to complete it responding with 4

and 3 (neither yes nor no). Interestingly, all participants except participant 5 responded
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with a 5 when asked if there was enough time to complete the task, even those that were

unable to successfully complete it. Surprisingly participant 5, who completed the task

in the least amount of time responded with a 4. Finally, when asked if the assigned task

was easy to complete the two participants who did not complete the task responded

with a 3. The participants who successfully completed the task were split with two

responding 4 and one responding 5.

In regards to the prompts assessing the overall usefulness of StackInTheFlow

when asked to self-rate how often they utilized the tool to perform queries two par-

ticipants (P1, P4) responded with 50% of the time, and the remaining participants

responded with 25% of the time. Interestingly, this does not quite align with their

actual usage of the tool, with P4 overestimating their use of StackInTheFlow and

P2 underestimating their use.

Figure 8: Study Participant Rating of the Usefulness of Difficulty and Auto Queries
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Figure 8 shows participants’ reported ratings in response to the prompt inquiring as

to the usefulness of difficulty and auto queries. In contrast to the annotations, which

deemed that no such queries were successful, the majority of study participants rated

the results returned by these query types as somewhat helpful. When asked to rate the
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appropriateness of the timing of difficulty queries however, the results are more mixed.

Figure 9: Study Participant Rating of the Timing of Difficulty Queries
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Figure 9 reports the rating of each participant. Most participants gave a rating of

3 (neutral) to the timings. However, participant 2 gave a rating of 2 (somewhat in-

appropriate) and participant 5 gave a rating of 5 (very appropriate). Participant 2

experienced four difficulty queries whereas participant 5 experienced only 1. The lower

rating of participant 2 may be due to unawareness that a difficulty had taken place,

as they reported in response to the final question that they desired the triggering of a

difficulty query to be more prominently displayed in the UI. Participant 5 on the other

hand, appears to think that the timing of the one difficulty query they experienced was

very appropriate.

When asked how they would improve the tool, participants offer up improvements

to the user interface such as (i) adding more methods of invoking the tool, such as in

the tooltip help dialog or in the context menu or (ii) more prominently displaying when

a difficulty query is performed. The participants also expressed a desire to improve

the quality of queries and results such as (iii) improving the quality of auto query

keywords and (iv) filtering out unrelated results such as those pertaining to Android
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within alternative IDEs like Eclipse.

In summary, the results of this post-study questionnaire indicate that participants

felt that the task they were assigned was achievable within the time alloted. Further-

more, that the queries automatically generated by StackInTheFlow were somewhat

helpful, even if their timing was not always appropriate. There are also areas in which

the tool can be improved such as a better user interface which allows more methods of

tool interaction and more clearly displays when the tool has initiated a query on the

user’s behalf. The quality of automatically generated queries and the results retrieved

by the tool could also be improved.

4.5 Discussion

To analyze the results of both methods of evaluation, they are first examined in

relation to each of the four research questions. Afterwards, a discussion of meaningful

observations from the recordings collected in the second evaluation method are given.

4.5.1 RQ1: How Effective are Manual Queries in Assisting the Developer?

As manual queries were used as a baseline in Evaluation Method I, it is hard to

ascertain their effectiveness from its results alone other than to state that manual queries

exhibit the highest click ratio compared to the other methods of queries offered by

StackInTheFlow. However, examining the results of Evaluation Method II, manual

queries achieve a success rate on par or exceeding that of queries issued to external

resources such as Google. Given the objective of StackInTheFlow is to provide a

resource for developers to gain access to information while remaining in the flow of the

IDE environment, the high success rate of manual queries indicates that this objective

has been at least partially met. Thus, it can be concluded that manual queries are

reasonably effective at assisting the developer.
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4.5.2 RQ2: How Effective are Auto Queries in Assisting the Developer?

Based on the results of Evaluation Method I, auto queries had the lowest click ratio

of the four query methods. In Evaluation Method II, only two of the five participants

utilized an auto query, of which none were successful. One possible explanation for the

low performance of auto queries is due to their sole dependence on source code as a

method of extracting context. The quality of the terms available within the source code

will have a profound effect of the quality of queries produced. In the case of Evaluation

Method II, often generic terms such as “ICallback” appeared in auto generated queries.

Such terms relate to a wide variety of frameworks and languages beyond Android and

Java. As a consequence, the quality of results suffered. It was also observed that

study participants would often use an auto generated query as the basis of their own,

modifying it into a manual query, sometimes utilizing it in an external search engine

such as Google. Thus, though the initial query was not very fruitful, it served as the

basis of a more useful one.

4.5.3 RQ3: How Effective are Error Queries in Assisting the Developer?

Due to the limitations of Evaluation Method II, only results from Evaluation

Method I may be utilized to asses the effectiveness of error queries. However given

this, it can be observed that they achieved a comparable 11% click ratio to that of

manual queries (17%). These results indicate that they are reasonably effective in

assisting the developer.

4.5.4 RQ4: How Effective are Difficulty Queries in Assisting the Developer?

The set of results pertinent to difficulty queries represents the largest subset of

collected results. In Evaluation Method I, they achieved a surprisingly high click ratio

of 15%, second only to manual queries. The results returned by difficulty queries were

rated as mostly helpful by the participants of Evaluation Method II, even if their timings
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could be improved. Despite this, no difficulty query was annotated as being successful.

One possible explanation for this may be the relatively low amount of difficulty queries

issued during the duration of the study. Another possible issue is that the participants

simply did not notice when a difficulty query had been issued, as noted in their responses

to the study post-questionnaire. Difficulty queries are further complicated in that they

need to be issued by the difficulty detection model. This mechanism however, appears

to be working as intended, as more difficulty queries were issued (and thus difficulty

detected), for participants who were not able to successfully complete the task. The

reason for their poor performance in the study may then lie in that difficulty queries

are also susceptible to the same issues regarding query generation and quality of results

as auto queries. If the code contains generic terms, as it did in the study, the results

returned may be of sub-optimal quality. In spite of this, it appears that on a larger

scale and across more domains than those covered in the study, difficulty queries are

producing clicks at a rate on par with manual queries and thus can be considered

moderately effective with the caveats previously discussed.

4.5.5 Additional Observations

During the process of annotating the recordings of participants’ screens in Eval-

uation Method II, several interesting observations were made as to the effectiveness

and limitations of StackInTheFlow. A selection of these observations are presented

below.

Observation I: Stack Overflow is not appropriate for exploratory searches - It was

observed that when each study participant began the task, they often started by search-

ing some form of the query “Android Splash Screen”, however, doing so did not return

any relevant Stack Overflow articles. Participants then repeated this query in Google

and visited blogs and tutorial sites describing a method of adding splash screens to

Android applications. When Stack Overflow articles were used by the participant it
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was in regards to more specific queries such as “Start new Android Activity”.

This observation illustrates a limitation of the Stack Overflow corpus. It is more

suited to answering specific issues than describing the overarching technique for imple-

menting a specific feature. Due to StackInTheFlow’s sole reliance on Stack Overflow

to retrieve results it also shares in this limitation. This means that for a novice devel-

oper first beginning a development task, they may be better served by a blog or tutorial

site until they develop specific questions more suited to be answered by Stack Overflow.

Observation II: Google searches performed better than Stack Overflow API searches

on the same content - It was also observed that on numerous occasions study partici-

pants would issue a manual query to StackInTheFlow but be unsatisfied with the

returned results, they would then proceed to copy and paste the query, unmodified,

into Google to retrieve higher quality results. Many times these results were also Stack

Overflow articles.

This observation illustrates that the information retrieval algorithm utilized by

the Stack Overflow API may be inferior to that utilized by Google. In cases in which

sources of information other than Stack Overflow were returned the limitation is in the

corpus itself as noted in Observation I, however the cases in which top results were also

Stack Overflow articles appear to support this claim. An additional limitation of the

search functionality provided by the Stack Overflow API is that it can not account for

misspellings, meaning that if a user misspells a query term, it is likely that no results

will be returned.

Observation III: There is a cold start problem to personalization - Finally, it was

observed that the quality results returned by StackInTheFlow were of lower quality

during the first half of the alloted time period than in the second. In the first half, if the

issued query was generic, returned results may not have even related to Android, with

ASP.NET results often returned. However, as the session continued, Android results

were more consistently displayed in the top results.
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This observation points to an issue in the result personalization approach utilized

by StackInTheFlow. Until it has sufficient examples to ascertain which tags are

relevant to the task at hand and which are not, barring manual selection of tags by

the user, the returned results may be very generic based on the quality of the query.

This was clearly observed in the case of Participant 3, who was forced to re-run a query

as a result of Android Studio crashing. In the first instance of the query being run,

non-Android results occupied the top rankings. However, in the second instance of the

exact same query being executed Android results now occupied the top ranked results.

Unlike the previous two limitations, which could not be resolved without re-working

core elements of StackInTheFlow. This issue may be overcome by introducing

additional methods of inferring context from source code, an interesting direction for

future research.

4.6 Threats to Validity

Within both evaluation methods there may be threats to validity, a selection of

which is presented in the following section.

4.6.1 Threats to Construct Validity

In Evaluation Methodology I there are threats to construct validity in that reliance

is made on manual queries as a basis for evaluating the effectiveness of the other query

types. Ideally, all queries should be compared against an external baseline such as

Google. In addition, the usage of clicks on results as a measure of success is far from

ideal, as even if a result was investigated further (clicked on) it still may not prove

useful. Both of these issues are addressed by Evaluation Methodology II, as the actual

outcome of each query may be observed.

In Evaluation Methodology II, threats to construct validity come in the form of

asking users to rate the performance of the tool on a 5 point Likert scale, and how
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it was determined that a session was successful. Considering the former, such scales

are a standard method of collecting participant feedback. Considering the latter, two

separate annotators were utilized to limit individual biases and subjectiveness.

4.6.2 Threats to Internal Validity

In Evaluation Methodology I a threat to internal validity comes from a lack of

knowledge regarding the experience and problem domains of the users of the tool.

However, such lack of knowledge is necessary for the manner in which data was procured.

In addition, with a sufficiently large sample size, biases toward a particular level of

experience or problem domain may be mitigated.

In Evaluation Methodology II a threat to internal validity comes from the varying

levels of experience of the study participants. To mitigate this, pre-study questionnaires

asking the participants to asses this experience were collected so that it may be taken

into account when considering the results.

4.6.3 Threats to Conclusion Validity

In Evaluation Methodology I, the raw frequency of each query type is reported in

addition to their percentage makeup when calculating click ratios.

In Evaluation Methodology II, the raw frequency of each annotation is reported

along with participant responses. The objective was to gain qualitative insight into

the usefulness of StackInTheFlow, rather than to observe statistically significant

results.

4.6.4 Threats to External Validity

Evaluation Methodology I represents a moderate sampling of developers. Though

without prior knowledge as to their background and problem domain it cannot be

excluded that they are biased in some way.

Evaluation Methodology II is a relativity small sampling of students with similar
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experience levels. In addition the utilization of only one development task may greatly

affect the results. Additional replication studies with a larger population of participants

of varying experience levels and backgrounds in addition to multiple problem tasks

would be desirable.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

This thesis presents StackInTheFlow, a recommendation system for software engi-

neering which integrates within the IntelliJ family of IDEs with the objective of au-

tomating the process of recommending Stack Overflow articles relevant to the software

engineering task at hand. It also introduces and formalizes the concept of a Behavior-

Driven Recommendation System for Software Engineering (BDRSSE), a recommenda-

tion system for software engineering that utilizes developer behavior to inform when

recommendations should be made without any direct input from the developer. In

other words, one which passively observes developer activity and makes recommenda-

tions when it is sufficiently confident such recommendations would be useful.

Two distinct issues to be addressed by a successful BDRSSE are also identified.

That of determining when a recommendation should be made and, once such a deter-

mination has taken place, generating a query to retrieve relevant information without

any direct input from the developer.

StackInTheFlow is one such recommendation system that achieves this. It

does this by utilizing events extracted from the development logs of user activity to

determine when the developer is in need of a recommendation. Specifically, it utilizes

a ratio method between events deemed indicators of progress, such as the creation of

new lines of code, to events deemed indicators of developer difficulty such as deleting

lines of code and navigating through source code without making any edits. If the

ratio of progress events to difficulty events drops below a certain threshold, a query is

issued. Once it has been determined that a recommendation should be made, candidate

terms are extracted from the currently open source code file within the IDE and scored

against a term dictionary constructed from a data dump of Stack Overflow articles.
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This dictionary contains various term quality metrics. From this, an overall score for

each term is computed and the highest ranking terms are selected to form the query. In

the case of a run or compile time error message, a similar process is utilized to form a

query from the error stacktrace. StackInTheFlow also allows the user to manually

specify a query as in the case of a typical search engine or to manually invoke the

automatic query generation process.

StackInTheFlow also personalizes the results displayed to the user based on

their past activity. It does this by utilizing a content-based filtering approach based

around a novel metric Click Frequency-Inverse Document Frequency. It uses this metric

to identify Stack Overflow article tags that are of interest to the user and to display

results containing those tags higher in the ranking of results.

Two separate evaluation methodologies are utilized to asses the usefulness of Stack-

InTheFlow. In the first, anonymous logs are collected from the users of Stack-

InTheFlow to gauge which types of queries generated the most user interactions

(clicks). The second method is a small study in which undergraduate students were

given an Android development task with access to the tool. While completing the task,

the student’s screens are recorded. Later these recordings are annotated and combined

with the results of a post-study questionnaire to asses the tool’s usefulness.

Results indicate that manual queries performed with the tool were reasonably

effective, however results were mixed for other query methods. Several limitations of the

tool are identified based on the recordings extracted in the second evaluation method.

Namely, that the information contained within the corpus of Stack Overflow is limited

compared to that available to external search engines such as Google and that the search

algorithm provided by the Stack Overflow API and utilized by StackInTheFlow

appears to produce lower quality results when compared to the algorithm utilized by

Google. In addition, a cold start problem is identified in regards to the relevancy of

results initially returned by the tool. Enhancing the result personalization facilities of
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StackInTheFlow may be a way to mitigate this issue.

Future research may focus on fine-tuning the method in which the various term

quality metrics utilized in query formulation are combined based on each individual

developer, as currently they are just linearly summed without weighting. In addition the

adjustment of the difficulty detection thresholds may also be examined and fine-tuned

on an individual basis. With methods of automatically adjusting these thresholds being

a potentially fruitful area of future research. Enhancements to the manner in which

candidate query terms are extracted from source code may also be examined. Currently

a simple bag-of-words model is utilized, however better results may be achievable with

more sophisticated methods such as “island” parsers. Perhaps the most interesting

and potentially rewarding area of future research is in enhancing methods of inferring

developer context from source code as a method of handling the cold start problem to

result personalization. Finally, several quality of life enhancements to the tool may be

considered such as porting it to additional platforms and languages as well as enabling

the search feature to handle misspellings.
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