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Overexpression of the enzyme iNOS induces apoptotic cellular death by increasing indices of 

pro-inflammation and oxidative stress. Aerobic physical activity has been known to have anti-

inflammatory benefits and reduce oxidative stress. Purpose: Therefore, this study aimed to 

examine the impact of aerobic fitness on LPS-induced iNOS mRNA expression and the 

relationship of this expression with indices of oxidative stress, pro-inflammation and apoptosis in 

isolated leukocytes. Methods: Whole blood samples from aerobically fit and unfit males were 

stimulated with and without LPS. Thereafter, iNOS mRNA expression and MDA, TNF-α and 

p53 concentrations were analyzed. Results: iNOS mRNA expression levels following LPS 

stimulation were not increased in both groups, and correlational analyses were not consistent 

with mechanistic predictions. Discussion: Numerous factors including timing of sample 

quantification, the high level of health of the subject population, and alternative intracellular 



 
 

mechanisms impacting biomarkers analyzed, may have influenced leukocyte iNOS mRNA 

expression levels.  
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Chapter 1: Introduction  

Inducible nitric oxide synthase (iNOS) is an enzyme expressed in immunocompetent 

leukocytes that support innate immune function (Aktan, 2004; Niess et al., 2000; Niess et al., 

2002; Soskic et al., 2011), and mediates the balance of reactive oxygen and nitrogen species 

(RONS) relative to antioxidant scavenging capacity that is associated with oxidative stress 

(Aktan, 2004; Assar et al., 2013; Bouzid et al., 2015; Curtin et al., 2002). Under normal resting 

conditions, iNOS expression is low-to-undetectable in leukocytes, and primarily aids in the 

production of nitric oxide (NO), a molecule typically involved in non-specific host defense and 

innate antioxidant function (Brune et al., 1998; Curtin et al., 2002; Kregel & Zhang, 2007; 

Lincoln et al., 1997). However, following cellular stimulation with the gram-negative bacterium 

lipopolysaccharide (LPS), activation of nuclear factor-κB (NF-κB) transcription factor enhances 

iNOS expression in concert with the synthesis of pro-inflammatory cytokines (Kim et. al, 2004; 

Niess et al., 2000; Soskic et al., 2011). As a result, unregulated iNOS expression exacerbates the 

production of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), the 

accumulation of RONS, and subsequently, contributes to mitochondrial DNA damage and the 

induction of “programmed cell death” known as apoptosis (Assar et al., 2013; Craige et al., 

2015; Curtin et al., 2002; Kannan & Jain, 2000; Kujoth et al., 2005; Ott et al., 2007; Phaneuf & 

Leeuwenburgh, 2001). Therefore, additional research focusing on the potential role of iNOS as a 

mediator of the apoptotic pathway in response to inflammatory challenge is warranted.  

 Aerobic exercise has been shown to regulate immune function (Blair et al., 2001; 

Gleeson et al., 2011; Kruger & Mooren, 2014; Mooren & Kruger, 2015). For example, chronic 

aerobic exercise training reduces systemic concentrations of pro-inflammatory cytokines and 

indices of oxidative stress at rest and in response to an acute bout of aerobic exercise (Bouzid et 
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al., 2015; Gliemann et al, 2013; Samjoo et al., 2013; Vinetti et al., 2015). Similarly, while 

leukocyte expression of iNOS mRNA is increased following a single bout of acute aerobic 

exercise, chronic exercise attenuates this response (Niess et al., 2000; Niess et al., 2002), 

potentially contributing to the decreased production of TNF-α and RONS in leukocytes 

following inflammatory challenge with LPS in individuals with enhanced aerobic fitness 

(VO2max) (Miyazaki et al., 2001). Although these findings suggest that enhanced aerobic fitness 

may differentially affect iNOS mRNA expression, no studies have investigated this relationship 

with TNF-α and RONS production, and apoptotic markers following ex vivo stimulation with 

LPS. Therefore, the primary aims of this study are to examine the LPS-induced expression of 

iNOS mRNA in isolated leukocytes in aerobically fit (high VO2max) and unfit (low VO2max) 

individuals. It is hypothesized that LPS-induced iNOS mRNA expression will be decreased in 

individuals with a higher VO2max, and associated with the attenuated production of TNF-α and 

the oxidative stress marker lipid peroxidation marker (MDA) ex vivo at rest. Furthermore, to 

understand the potential role of iNOS in the maintenance of cellular homeostasis, this study will 

examine the relationship between LPS-induced iNOS mRNA expression and indices of 

apoptosis. It is hypothesized that lower iNOS mRNA expression in aerobically fit individuals 

will be associated with reduced concentration of the pro-apoptotic marker p53 following LPS-

stimulation of leukocytes. 
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Specific Aims: 

1.) Examine the LPS-induced expression of iNOS mRNA in isolated leukocytes in 

aerobically fit (high VO2max) and unfit (low VO2max) individuals. 

Hypothesis:  LPS-induced iNOS mRNA expression will be decreased in 

aerobically fit (high VO2max) compared to unfit (low VO2max) individuals.  

2.) Examine the relationship between LPS-induced iNOS mRNA expression with indices of 

pro-inflammation (TNF-α) and RONS (MDA). 

Hypothesis: Lower iNOS mRNA expression will be associated with the 

attenuated production of TNF-α and MDA ex vivo at rest. 

3.) Examine the relationship between LPS-induced iNOS mRNA expression and the pro-

apoptotic marker p53. 

Hypothesis: Lower iNOS mRNA expression will be associated with reduced 

concentration of the pro-apoptotic marker p53 following LPS-stimulation of 

leukocytes.  
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Chapter 2: Literature Review 

2.1. Innate Immune Function  

2.1.1. The Innate Immune Response  

The innate immune system is a primary line of defense against infectious disease 

(Hoffmann et al., 1999; Janeway & Medzhitov, 2002). Circulating leukocytes, primarily 

monocytes and neutrophils, protect the host against systemic infection and foreign pathogens by 

initiating the innate immune response through the recognition of danger-associated molecular 

patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by pattern recognition 

receptors (PRRs) (Aderem & Ulevitch, 2000; Hoffmann et al., 1999; Janeway & Medzhitov, 

2002; Mogensen, 2009; Takeda et al., 2003; Takeda & Akira, 2005). This activation of PRRs on 

the cell surface of monocytes and neutrophils triggers the induction of intracellular signaling 

pathways responsible for increased gene expression and production of cytokines and chemokines 

that aggregate at the source of infection or pathogenic threat (Akira & Takeda, 2004). Thus, 

regulation of the leukocyte-mediated innate immune response is necessary for mediating cellular 

and systemic homeostasis. 

 

2.1.2. Inflammatory Signaling of Leukocytes Induced Oxidative Stress 

  Toll-like receptor 4 (TLR4), a well-documented PRR expressed extracellularly on 

monocytes and neutrophils, is the primary mediator of the innate immune response following 

LPS stimulation (Akira & Takeda, 2004; Li & Verma, 2002). More specifically, the binding of 

LPS to TLR4 initiates the intracellular signaling pathways through activation of interleukin-1 

receptor-associated kinase 4 (IRAK4) (Aderem & Ulevitch, 2000; Janeway & Medzhitov, 2002). 

Consequently, activated IRAK4 recruits and phosphorylates TNF-receptor-associated factor 6 
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(TRAF6), which is necessary for the activation of the inhibitor of kappa-B kinase (IKK) complex 

(Janeway & Medzhitov, 2002; Li & Verma, 2002). This signaling mechanism induces IKK to 

phosphorylate the inhibitor of kappa-B (IκB) from the NF-κB – IκB complex, (Li & Verma, 

2002). Under resting conditions, IκB binds to NF-κB in the cytosol and inhibits the 

transcriptional activity of NF-κB within the nucleus (Li & Verma, 2002; Mogenson, 2009; 

Takeda & Akira, 2005). However, phosphorylation of IκB by IKK, releases NF-κB from IκB, 

resulting in the degradation of IκB and the nuclear translocation of NF-κB from the cytoplasm. 

Once translocated into the nucleus, NF-κB binds to DNA sites and up-regulates the transcription 

of pro-inflammatory cytokine genes, such as TNF-α (Akira & Takeda, 2004; Li & Verma, 2002; 

Mogensen, 2009; Takeda & Akira, 2005). Therefore, upon ligation to LPS, the TLR4-mediated 

inflammatory response results in the aggregation of inflammatory cytokines and proteins to the 

source of insult (Aderem & Ulevitch, 2000; Hoffmann et al., 1999; Janeway & Medzhitov, 2002; 

Takeda et al., 2003). However, persistent activation of the innate immune system through TLR4 

results in the disruption of cellular homeostasis that contributes to chronic low-grade 

inflammation and disease pathology (Takeda & Akira, 2005).   

 Disruption of cellular homeostasis mediated through the LPS-TLR4-NF-κB signaling 

cascade also elicits a pro-oxidant effect and acts on mitochondrial respiration to produce 

intracellular RONS (Aktan, 2004). Furthermore, in a feed-forward cyclic mechanism, constant 

stimulation of TNF-α results in the persistent activation of the inflammatory pathway through the 

NF-κB mechanism. Interestingly, increased expression of iNOS has been shown to serve as a 

central mediator of LPS stimulated pro-inflammation and the production of intracellular RONS 

(Aktan, 2004; Aoi et al., 2010; Kormaz et al., 2009; Soskic et al., 2011). More specifically, 

elevated expression of iNOS is mediated by NF-κB and occurs in concert with the LPS-mediated 
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production of pro-inflammatory cytokines and chemokines (Morris & Billiar, 1994; Sosckic et 

al., 2011). Given that iNOS has been shown to augment LPS-mediated production of TNF-α and 

RONS oxidative stress (Aktan, 2004; Niess et al., 2002; Soskic et al., 2011), it is noteworthy to 

suggest that additional examination in the regulation of iNOS following pro-inflammatory 

signaling may be necessary to further understand it’s role in regulating cellular homeostasis in 

leukocytes.    

 

2.2. Inducible Nitric Oxide Synthase 

2.2.1. iNOS  

Inducible nitric oxide synthase is expressed in a variety of cell types, such as astrocytes, 

microglial cells, neuronal cells, and leukocytes, and plays a central role in regulating innate 

immune function (Aktan, 2004; Niess et al., 2000; Niess et al., 2002; Reiling, et al. 1994; Soskic 

et al., 2011; Wolfe et al., 1994). Although iNOS expression is low in resting leukocytes, iNOS is 

a soluble enzyme that is elevated following stimulation by LPS and other pro-inflammatory 

stimulants, including TNF-α (Kim et. al, 2004; Morris & Billiar, 1994; Niess et al., 2000; Soskic 

et al., 2011). Therefore, most studies have reported the necessity for LPS stimulation to analyze 

iNOS expression in human cell types (Aktan, 2004; Niess et al., 2002; Niess et al., 1999 Soskic 

et al., 2011; Xie & Calycay, 1992). iNOS consists of two domains, one being the C-terminus that 

contains binding sites for NADPH and calmodulin (CaM) and an N-terminus that acts as an 

oxygenase domain and contains binding sites for heme and L-arginine (Morris & Billiar, 1994). 

When L-arginine binds, the iNOS enzyme can transform these arginases into NO at a level 100-

1000 fold more than other NO synthases (Kormaz et al., 2009; Morris & Billiar, 1994). 

Furthermore, iNOS is calcium-independent and therefore does not require second messenger 
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reactions to occur in order to become stimulated and produce NO (Aktan, 2004). These findings 

suggest that iNOS assists in immune host defense by rapidly producing NO radicals within the 

leukocyte as a protective response against foreign pathogens (Bogdan, 2001). However, due to 

its stimulation through inflammatory mechanisms, iNOS activity can persist for hours after 

stimulation and continue to produce high levels of RONS (Morris & Billiar, 1994). Therefore, 

additional understanding regarding the role of iNOS-mediated NO, and the subsequent 

production of NO, is necessary to elucidate the mechanisms associated with cellular homeostasis. 

 

2.2.2. iNOS Disrupts Cellular Homeostasis 

Oxidative stress is defined as an imbalance in the system between oxidant production and 

antioxidant defense that favor the former and can potentially lead to damaging effects within the 

cell (Davies et al., 1982; Sies, 1985; Sies 1997). Although naturally produced, RONS can be 

produced in elevated proportions during pathophysiological conditions, systemic inflammation, 

and through various stimuli including iNOS expression (Curtin et al., 2002; Sies, 1985; Sies, 

1987). In addition, the continuous stimulation of iNOS results in the overproduction of NO and 

other indices of RONS, specifically ONOO-. As a result, excess ONOO- formation has been 

shown to contribute to cellular damage that can be measured through the free-radical oxidation 

reaction of polyunsaturated fatty acids that causes direct damage to lipids, also known as lipid 

peroxidation (Aktan, 2004; Ayala et al., 2014; Darley-Usmar et al., 1995; Inoue et al., 2003; 

Gutteridge, 1995; Yoshida et al., 2013). This process involves three keys steps including 

initiation, propagation, and termination (Ayala et al., 2014; Yin et al., 2011). First, the initiation 

of free radicals triggers a propagation of chain reactions, which ensue until termination products, 

such as malonaldehyde (MDA) and 4-hydroxynonenal are produced. These termination products 
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can then be measured as indices of elevated RONS production (Ayala et al., 2014; Yoshida et al., 

2013), which in turn, initiate cellular death by apoptosis and contribute to the pathology of pro-

inflammatory disease (Aktan, 2004; Luoma et al., 1998; Korkmaz et al., 2009). 

 Apoptosis is known as “programmed” cell death and is an important physiological 

mechanism that plays a key role in determining cellular development and homeostasis (Curtin et 

al., 2002; Kannan & Jain, 2000; Mukhopadhyay et al., 2014). Although leukocyte apoptosis is an 

important process that helps resolve the acute phase inflammatory process (Lawrence et al., 

2001; Wesche et al., 2005), over-activation of the apoptotic pathway can lead to DNA 

fragmentation and mitochondrial damage (Curtin et al., 2002; Kannan & Jain, 2000; Phaneuf & 

Leeuwenburgh, 2001). Interestingly, iNOS has been shown to regulate the apoptotic pathway 

through the production of NO. More specifically, physiologically relevant concentrations of NO 

that are typically observed under resting conditions has anti-apoptotic effects within the cell by 

inhibiting several mechanisms associated with the apoptotic signaling pathway (Curtin et al., 

2002). However, iNOS-induced overproduction of NO and subsequent ONOO- formation can 

activate apoptotic-signaling pathways (Curtin et al., 2002; Kannan & Jain, 2000; Nishiwaka et 

al., 1998).  

The role of iNOS as a pro-apoptotic mediator was first recognized in the 1990’s by 

various research groups who witnessed chromatic condensation and internucleosomal DNA 

fragmentation within the cell upon the overproduction of NO (Brune et al., 1998; Brune et al., 

1999; MeBmer & Brune, 1996; Sandau et al., 1997). In addition, the activation of iNOS in 

macrophages led to NO toxicity (RONS) and the accumulation and stabilization of tumor 

suppressor p53, an initiator of apoptosis (Brune et al., 1999; MeBmer & Brune, 1996; Ott et al., 

2007). Upon stabilization, p53 activity triggers the subsequent expression of Bcl-2 and Bax that 
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targets the mitochondria to release cytochrome c, which contributes to the downstream activation 

of pro-apoptotic caspases and cell death (Ott et al., 2007). Additionally, lipid peroxidation 

induced by iNOS-mediated NO production can also act on the mitochondrial membrane to 

release cytochrome c in concert with p53 activation (Korkmaz et al., 2009; Ott et al., 2007). 

These results suggest that iNOS and p53 may work synergistically to increase RONS production, 

induce apoptosis within the cell, and potentially, exacerbate the pro-inflammatory response 

(Korkmaz et al., 2009; Ott et al., 2007). Furthermore, cellular stimulation with LPS and the pro-

inflammatory cytokine TNF-α induces apoptosis by activating pro-apoptotic proteins and 

causing a downstream cascade that eventually leads to cell death (Wesche et al., 2005). 

Therefore, while these findings suggest that pro-inflammatory stimulation of leukocytes, and the 

concomitant induction of the apoptotic pathway, would be mediated through the elevated 

expression levels of iNOS, no studies have investigated this hypothesis. Similarly, further 

research is warranted to understand if interventions such as chronic aerobic exercise may be 

utilized as a method of regulating these mechanisms and cellular health.  

 

2.3. Aerobic Exercise 

2.3.1. Aerobic Exercise Enhances Immune Function  

 It has been established that chronic engagement in physical activity and exercise can 

lower the risk of age-related diseases and support a healthy immune system (Blair et al., 2001). 

After an acute bout of exercise a local inflammatory response occurs that involves the production 

of cytokines that are released at sites of inflammation and the influx of lymphocytes and 

monocytes (Gleeson, 2007; Pederson & Hoffman-Goetz, 2000). However, chronic exercise has 

been shown to have significant anti-inflammatory effects to mediate this acute phase response 
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(Gleeson et al., 2011). Chronic aerobic exercise inhibits monocyte infiltration into adipose tissue, 

reduces circulating monocytes with a pro-inflammatory phenotype, and stimulates the increase of 

anti-inflammatory cytokines (Gleeson et al., 2011). Given that iNOS may be a key mediator in 

these immune responses, it is important to investigate how exercise may modulate iNOS 

expression within the leukocytes and determine how this may change the response mechanisms 

in response to the engagement of physical activity designed to increase levels of aerobic fitness.  

 

2.3.2. iNOS and Acute Exercise  

 iNOS expression has been shown to be altered with both acute and chronic aerobic 

exercise. It has previously been demonstrated that a single bout of intense, endurance exercise 

induces expression of iNOS in leukocytes at a transcriptional level (Niess et al., 2000). More 

specifically, running at 110% of an individual’s anaerobic threshold for approximately 17.7 

minutes increases leukocyte iNOS protein expression, whereas runners who participated in a half 

marathon exhibited an increased expression of iNOS mRNA in leukocytes immediately 

following and 3 hours into recovery from exercise (Niess et al., 2000). These results demonstrate 

that the elevated iNOS mRNA and protein expression within leukocytes is dependent upon both 

the duration and intensity of strenuous exercise (Niess et al., 2000). Furthermore, this could be 

due to the acute phase stimulation of pro-inflammatory cytokines such as TNF-α and the 

increased number of circulating leukocytes observed following a bout of strenuous exercise 

(Huang et al., 2011b; Gleeson, 2007). Although the regulatory pathways leading to exercise-

induced expression of iNOS in human leukocytes are not well documented, it is still plausible 

that several activators, such as TNF-α, modulate iNOS expression through the NF-κB signaling 

pathway (Aktan, 2004; Kormaz et al., 2009). Furthermore, flow cytometric results demonstrate 
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an increased baseline expression of iNOS in leukocytes, with the greatest expression observed 

within monocytes (Niess et al., 2000), suggesting that iNOS expression in monocytes is 

necessary to regulate the innate immune system during stressful physiological conditions.  

Acute aerobic exercise has a direct effect on apoptosis and it’s ability to regulate the apoptotic 

pathway during conditions such as oxidative stress and inflammation (Kruger & Mooren, 2014; 

Ott et al., 2007). Currently, there is evidence that shows that strenuous exercise stimulates 

apoptosis to occur in both skeletal muscle and lymphocytes (Kruger & Mooren, 2009; Mooren & 

Kruger, 2014; Phanuef & Leeuwenburgh, 2001) Additionally, RONS and TNF-α are both 

elevated after an acute bout of exercise, and have the potential to induce apoptosis through the 

signaling mechanisms previously described (Kormaz et al., 2009; Gleeson, 2007). Thus, the 

elevated levels of TNF-α observed following acute aerobic exercise might propagate the 

apoptotic response through iNOS stimulation and the subsequent production of RONS (Kormaz 

et al., 2009).  

 Previous evidence also suggests that a single bout of exhaustive exercise results in 

augmented levels of macromolecule damage mechanisms, including lipid peroxidation (Radak et 

al., 2001; Radak et al., 2008). Previous research has indicated an increase in oxidative stress 

related markers (Hunag et al., 2010a). More specifically, multiple studies have reported a 

significant increase in MDA levels following maximal or near maximal exercise protocols 

(≥70%VO2max) (Bailey et al., 2004; Bryant et al., 2003; Fatouros et al., 2001; Goldfarb et al., 

2007; Kanter et al., 1993). While these studies suggest that exercise-induced oxidative damage 

does occur at certain exercise intensities and modes, it may be plausible that the elevated 

production of NO and ONOO-, lipid peroxidation, and ultimately, cell death, results from 

overexpression of iNOS. 
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2.3.3. iNOS and Chronic Exercise  

 iNOS expression is also modulated with chronic endurance exercise training. For 

example, Niess et al. (2002) demonstrated that iNOS mRNA expression levels were lower in 

moderately trained endurance runners compared to their untrained counterparts, potentially due 

to the attenuated release of pro-inflammatory cytokines observed in the trained subjects (Niess et 

al., 2000). Similarly, regular exercise attenuated iNOS mRNA expression and the production of 

RONS products in colon cancer patients (Aoi et al., 2010). Although the mechanisms associated 

with this response were not directly investigated, the reduced production of RONS may have 

been the result of more physiologically relevant NO concentrations that help positively regulate 

cellular homeostasis. Interestingly, chronic exercise also helps attenuate the elevated expression 

of iNOS mRNA typically observed in response to acute exercise in both rodents and human 

models (Erekat et al., 2013; Harris et al., 2008; Vassilakopoulos et al., 2003). These findings 

suggest that chronic aerobic exercise training may be beneficial to cellular homeostasis by 

regulating iNOS expression.   

 Training status has an inverse effect on exercise-induced apoptosis in lymphocytes. For 

example, Mooren et al. (2004) demonstrates that cell death only occurred in those that were 

considered less trained compared to those who were well trained. Similarly, Peters et al. (2006) 

observed prolonged exercise (running at 75% VO2max for 2.5 hours), which typically induces 

cellular apoptosis in sedentary individuals, had no effect in well-trained athletes. In both human 

and mice models, similar data suggests that there was no change in apoptotic markers after an 

acute bout of exercise with regular exercise training (Kruger & Mooren, 2014). This could be 

indicative of positive adaptations or regulation of the immune system that reduces the activation 

of the apoptotic pathway that is induced by iNOS. However, there is limited literature describing 
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the effect of chronic exercise on iNOS-induced apoptosis. Therefore, research is warranted to 

understand how chronic exercise may play a key role in suppressing iNOS expression as a 

mechanistic link to attenuate cellular apoptosis, and thus, regulate the innate immune response 

within the leukocytes. 

 It has been demonstrated that if a trained individual performs the same exhaustive 

exercise as their sedentary counterpart, the system adapts to attenuate the elevated response of 

radical production that may occur (Huang et al., 2013; Miyazaki et al., 2001; Radak et al., 2008; 

Radak et al., 2013). Therefore, exercise-induced adaptations in trained individuals are able to 

modulate RONS handling and have oxidative damage repair systems that untrained individuals 

may not experience (Radak et al., 2013). In a study conducted by Miyazaki et al. (2001) 

individuals endured chronic endurance training that proved to attenuate indices of oxidative 

stress and suggested that this reduction improved RONS handling. Additionally, it would be 

expected that regular exercise training would attenuate RONS productions and shift the redox 

balance in favor of reducing conditions that cause cellular damage (Radak et al., 2008; Urso & 

Clarkson, 2003). Therefore, it may be beneficial to investigate if the decreased iNOS expression 

seen in trained or aerobically fit individuals is associated with the attenuated RONS production 

found in previous studies. 

Although it has been demonstrated that endurance training can attenuate iNOS expression 

in multiple cell types, no research has examined the impact of aerobic fitness on iNOS mRNA 

expression following pro-inflammatory challenge within leukocytes. Furthermore, the effect of 

chronic aerobic exercise and the iNOS-induced apoptotic pathway has yet to be examined. 

Therefore, research regarding this signaling mechanism is warranted to understand the possible 
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role of exercise in regulating this mechanism to enhance the innate immune function of cells in 

humans. 

 

2.4. Conclusion 

 iNOS is an inflammatory enzyme that may have a key role in regulating immune 

function. Stimulated by LPS and pro-inflammatory cytokine release, overexpression of iNOS 

causes on overproduction of NO through the LPS-TLR4-NF-κB signaling cascade. The constant 

overproduction of NO leads to indices of RONS, such as the formation of ONOO-, and can cause 

lipid peroxidation and DNA damage within the cell. Until this signaling mechanism is dampened 

or resolved, damage to the cells macromolecules will proceed and result in cellular death by 

apoptosis. However, chronic aerobic exercise participation has been shown to support a healthy 

immune system and counter regulate the pro-inflammatory signaling pathway. Therefore, given 

that regular participation in aerobic exercise has been shown to reduce iNOS mRNA expression 

within leukocytes, an examination of the relationship of iNOS mRNA expression with the LPS-

induced immune response and activation of the pro-apoptotic pathway is warranted. Results from 

such studies will provide beneficial insight regarding the role of iNOS in mediating cellular 

homeostasis.  
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Chapter 3: Methodology  

3.1. Subject Participation 

Thirty healthy male subjects (15 aerobically fit, 15 aerobically unfit) between the ages of 

18-35 years were recruited to participate in this study. Subjects were excluded if identified as 

tobacco users, consumers of ten or more standard alcoholic drinks per week, or having any pre-

existing cardiovascular, pulmonary, or metabolic diseases known to alter immune function. Prior 

to study, each subject completed an informed consent form and medical history questionnaire. In 

addition, each subject completed a seven-day physical activity recall. Subjects who participated 

in < 150 minutes of moderate-to-vigorous physical activity, including aerobic, anaerobic, or 

resistance type exercise, and a VO2max < 50 mL · kg-1 · min-1 (detailed below) were classified as 

aerobically unfit. To the contrary, subjects who participated in ≥ 150 minutes of moderate-to-

vigorous aerobic (i.e., running, cycling, and rowing) and a VO2max ≥ 55 mL · kg-1 · min-1 were 

classified as aerobically fit (Slusher et al., 2018). Furthermore, subjects were instructed to 

partake in an overnight fast for approximately eight hours and to refrain from alcohol 

consumption, caffeine intake, and intense physical activity for at least 24 hours prior to their 

participation in the study. Of note, our laboratory’s previous research indicates the cellular 

responsiveness to LPS stimulation returns to baseline levels within 1 hour following participation 

in acute physical activity (Slusher et al., 2017), suggesting that the 24 hour period withdrawing 

from physical activity is sufficient to prevent any residual impact on the results from the present 

study. This study was approved by the University’s Institutional Review Board.  
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3.2. Exercise Testing Session 

Subjects were asked to arrive at the laboratory at 6:00 a.m. on the morning of testing 

sessions. Prior to exercise, subject’s resting heart rate, blood pressure, and anthropometric 

measures height, weight, waist, and hip circumference were measured. Additionally, each 

individual was familiarized with instrumentation and procedures. Thereafter, a maximal oxygen 

consumption (VO2max) test was administered on a treadmill to reach maximal exertion. 

VO2max was determined using ParvoMedics Metabolic Measurement System (ParvoMedics, 

Sandy, UT, USA). Heart rate was assessed and recorded by heart rate monitors (Polar T31, Polar 

Electro, Kempele, Finland) prior to, during exercise, and in recovery. Rate of perceived exertion, 

using Borg 20-point Scale was recorded every exercise stage. During stage 1, the treadmill’s 

speed was adjusted to elicit a heart rate that is 85% of subject’s age-predicted maximal heart rate. 

During stage 2, the subject continued at the same speed for two minutes at a 1% incline to reach 

a steady state. Thereafter, the incline was increased by a 2% grade every two-minutes until 

volitional exhaustion was reached or test termination. Criteria for attaining a VO2max included the 

obtainment of three of more of the following criteria as detailed by the American College of 

Sports Medicine guidelines (ACSM, 2013):  RER ≥ 1.15, heart rate within 10bpm of subject’s 

age predicted maximum heart rate, RPE ≥ 19, and blood lactate ≥ 8mmol.  

 

3.3. LPS-stimulation of Whole Blood 

Two whole blood samples (6 mL) were collected at rest by venous puncture from the 

antecubital vein using a 21G butterfly needle into a tube containing K2 

ethylenediaminetetraacetic acid (K2EDTA) (BD Vacutainer, Franklin Lakes, NJ). Upon 
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collection, one whole blood tube was stimulated with 10 ng/mL of LPS (Abbasi et al., 2013) 

Liang et al,, 2013; Slusher et al., 2018) and the other whole blood tube remained unstimulated 

and served as a time-course control. Each whole blood sample was incubated at 37°C with 5% 

CO2 for three hours with manual inversion every fifteen minutes. Immediately after incubation 

with inversions, whole blood samples were centrifuged at 3000 rpm for twenty minutes at room 

temperature to obtain the plasma supernatant, which was subsequently centrifuged at 10,000×g 

for ten minutes at 4°C to obtain platelet-free plasma. Following the centrifuge, aliquots of 

plasma were transferred to freshly labeled tubes and stored at -80°C for later analysis of TNF-α 

(R&D Systems, Minneapolis, MN, USA), MDA (Northwest Life Science Specialties, 

Vancouver, WA, USA) and p53 (ThermoFisher Scientific, Frederick MD) in duplicate by 

enzyme-linked immunosorbent assay methods according to manufacturer’s instructions. 

3.4. RNA Isolation and cDNA Synthesis 

Whole blood (2.5 mL) containing the leukocyte cell layer was isolated from both the 

LPS-stimulated and unstimulated samples and transferred into PAXGene Blood RNA tubes 

(PreAnalytix, Switzerland) and inverted manually 8-10 times. Samples were stored at room 

temperature for two hours, transferred to -20°C for overnight storage, and transferred again to -

80°C for long-term storage according to manufacturer’s instructions. Total RNA isolation, using 

PAXGene Blood RNA kit according to the manufacturer protocol, provided for quantitative real-

time polymerase chain reaction (qPCR) analysis (PreAnalytix, Switzerland). The concentration 

of extracted RNA was then measured spectrophotometrically by Nanodrop 1000 (Thermo 

Scientific, Waltham, MA). Only samples with A260/280 ratios above 1.7 were used for cDNA 

synthesis. 1000ng of total NRA was used as a template for cDNA synthesis using (Quanta 

BioSciences, Beverly, MA) cDNA synthesis kit according the manufacturer’s protocol.   
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3.5. Quantitative real-time PCR 

 A 20ng sample of RNA was reversed transcribed (5 minutes at 22°C, 30 minutes at  

42°C, 5 minutes at 85°C, followed by a 4°C hold) to examine relative expression of iNOS using 

qPCR. Reverse transcription (RT) and polymerase chain reaction (PCR) master mix consisted of 

7.5uL of SYBR green, 2uL of nuclease-free water, 0.75uL each of sense and antisense primers, 

and 4uL of cDNA sample totaling 15uL per reaction mix. For the amplification of desired iNOS 

cDNA, the following gene specific primers were used: iNOS-sense 5’-

CAGCGGGATGACTTTCCAA-3’, iNOS antisense 5’-AGGCAAGATTTGGACCTGCA-3’, β-

actin sense 5’-AGCGGGAAATCGTGCGTG-3’ and β-actin antisense 5’-

CAGGGTACATGGTGGTGCC-3.’ The PCR reactions were performed in triples to ensure 

accuracy. Additionally, qPCR was carried out by an automated DNA thermal cycler located at 

the laboratory and melting curve analysis was generated after 45 rounds of thermal cycling. 

iNOS relative expression was analyzed using 2–∆∆Ct method. To ensure further accuracy of 

measurement, 25% of samples were run additional times. No differences were observed within 

these results.  

 

3.6. Statistical Analysis 

 Statistical data was analyzed using SPSS software. Independent samples t-test were 

utilized to assess anthropometric and cardiorespiratory fitness in aerobically fit verses unfit 

individuals. Additionally, a 2 group (aerobically fit and unfit) by 2 condition (unstimulated time-

course control and LPS stimulated) repeated measures analysis of variance (RMANOVA) was 

utilized to examine the interaction between aerobic capacity and iNOS expression, MDA 
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concentration, and p53 expression. Independent samples t-tests were conducted to assess 

differences between groups within LPS-stimulated markers. Paired samples t-tests were utilized 

to assess differences across culture conditions within each group. Pearson’s correlation was used 

to determine relationship between iNOS expression and percent changes of MDA, TNF-α, and 

p53 as well as associations presented between relative VO2max and our markers.  
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Chapter 4: Results 

4.1. Subject Characteristics  

Subject descriptive statistics are presented in Table 1. Although no differences in 

anthropometric measures were observed between aerobically fit and unfit subjects, aerobically fit 

individuals presented with lower resting HR values (t [22.877] = -3.816, p = 0.001) and greater 

absolute and relative VO2max values compared to aerobically unfit subjects (t [28] = 7.431, p ≤ 

0.001; t [28] = 11.437, p ≤ 0.001, respectively). These observed differences suggest that 

subsequent findings are the result of improved cardiovascular health and cardiorespiratory fitness 

in aerobically fit compared to unfit subjects.  

 

4.2. iNOS mRNA expression and MDA, TNF-α, and p53 concentrations following ex vivo 

stimulation with LPS 

 Repeated measures ANOVA (RMANOVA) revealed that LPS stimulation did not 

increase iNOS mRNA expression in aerobically fit or unfit counterparts relative to the 

unstimulated time-course control (Condition Effect: F [1,26] = 75.952, p = 0.146; Figure 2A). In 

addition, no differences in the constitutive (unstimulated control) release of MDA, TNF-α, or 

p53 were observed among aerobically fit and unfit subjects as determined from the unstimulated 

culture control conditions. However, RMANOVA revealed that LPS stimulation significantly 

lowered MDA concentrations to a greater extent in aerobically unfit compared to fit subjects 

(Group * Condition Effect: F [1, 28] = 15.137, p = 0.001; Figure 2B), whereas LPS stimulation 

increased TNF-α and lowered p53 to a similar extent in both groups (Condition Effect: F [1, 28] = 

12.087, p = 0.002; F [1, 28] = 5.868, p = 0.022, respectively; Figures 2C and D).  
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4.3. Associations among relative VO2max, LPS stimulated iNOS mRNA expression, and MDA, 

TNF-α, and p53 concentrations  

Consistent with the aforementioned results, relative expression of iNOS mRNA 

following LPS-stimulation was not significantly correlated to relative VO2max (r = -0.121, p = 

0.263; Figure 3A). In addition, while the percent change in the production of MDA from the 

unstimulated control to the LPS stimulated culture condition was positively associated with 

relative VO2max (r = 0.558, p = 0.001; Figure 3B), no significant associations were observed 

between TNF-α and p53 with relative VO2max (r = -0.104, p = 0.628; r = -0.069, p = 0.717, 

respectively; Figures 3C and D). Finally, change in relative iNOS mRNA expression was not 

associated with the percent change in the production of MDA, TNF-α, and p53 from the 

unstimulated control to the LPS stimulated culture condition (r = -0.059, p = 0.757; r = -0.368, p 

= 0.076; r = -0.132, p = 0.487, respectively; Figure 4A-C).  
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Chapter 5: Discussion  

This study sought to investigate the potential role of increased aerobic fitness levels on 

the LPS-induced expression of iNOS mRNA and its association with indices of oxidative stress, 

pro-inflammation, and apoptosis. Results from this report demonstrated that iNOS mRNA 

expression was not differentially expressed following LPS stimulation of whole blood in 

aerobically fit and unfit individuals. Additionally, while LPS stimulation decreased MDA 

concentrations to a greater extent in aerobically unfit compared to fit subjects, both groups 

responded with increased and decreased concentrations of TNF-α and p53, respectively. Finally, 

these responses were not associated with relative iNOS mRNA expression, suggesting that a 

change in iNOS mRNA expression in response to LPS stimulation does not significantly 

influence MDA, TNF-α, or p53 concentrations within this subject population.  

Transcriptional regulation of iNOS is mediated through the NF-κB pro-inflammatory 

signaling pathway (Akira & Takeda, 2004; Li & Verma, 2002; Mogensen, 2009; Takeda & 

Akira, 2005), and elevated expression levels of iNOS mRNA have been observed in rodent 

models of diseased populations where NF-κB is typically over activated (Akita et al., 2007; 

Fujimoto et al., 2005; Miyoshi et al., 2006; Soskic et al., 2011). In humans, iNOS mRNA 

expression has also been shown to be elevated in middle-aged populations with pro-

inflammatory conditions, such as rheumatoid arthritis, compared to healthy controls (age 51-61) 

(St. Clair et al., 1996). Similarly, in vitro stimulation of isolated monocytes with LPS (1µg/mL) 

for five days has been shown to elicit a two-fold increase in iNOS mRNA expression in 

individuals with rheumatoid arthritis, whereas no iNOS activity was observed in healthy controls 

(St. Clair et al., 1996). Furthermore, Schena et al. (1999) revealed that although iNOS mRNA 

expression was undetectable in monocytes of young, normotensive individuals, significant 
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increases were observed in response to stimulation with epinephrine, dopamine, and endothelin 

1. Interestingly, regular physical activity and exercise training have been shown to elicit an anti-

inflammatory response through several mechanisms, including the inhibition of pro-

inflammatory cytokine activity that is known to counteract an LPS-induced inflammatory 

response (Bruunsgaard, 2005). Therefore, we investigated the impact of LPS stimulation on 

iNOS mRNA expression and whether or not enhanced aerobic fitness also downregulates this 

response. Our results demonstrated that LPS-stimulation was insufficient to significantly 

increase iNOS mRNA expression in healthy, aerobically unfit and fit individuals. A potential 

explanation for these results may be that the protective effects of physical activity, which were 

hypothesized to be mediated by an attenuated expression of iNOS mRNA, become more 

apparent with disease and increased aged, and therefore, were not observable due to the positive 

health and relatively young age of the subjects in the present study. Likewise, it has also been 

demonstrated that the iNOS promoter contains a regulatory component that binds NF-κB 

repressing factor, a constitutively expressed silencer of iNOS, and suppresses basal expression at 

the transcriptional level (Korhonen et al., 2005). Therefore, it may be that the low to 

undetectable expression levels of iNOS mRNA within unstimulated cells indicates a mechanism 

that is responsible for the instability of iNOS mRNA in young, healthy individuals under resting 

conditions (De Vera et al., 1996; Korhonen et al., 2005). 

The impact of regular participation in aerobic exercise on iNOS mRNA expression 

remains unclear. For example, various studies utilizing rodent models have demonstrated that 

chronic wheel-running exercise increases basal iNOS mRNA expression in macrophages, 

endothelial cells, and cardiac myocytes compared to wheel-restricted counterparts (Lu et al., 

1994; Yang et al., 2002; Akita et al., 2007). However, such investigations in human tissue and 
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innate immune cells have produced inconsistent results. More specifically, Niess et al. (1999) 

have shown that iNOS mRNA expression within unstimulated leukocytes were low or 

undetectable in trained subjects compared to their untrained counterparts, suggesting that aerobic 

exercise training attenuates constitutive iNOS expression under resting, physiological conditions. 

To the contrary, Su et al. (2011) demonstrated that exercise training in young, healthy 

populations significantly increased basal iNOS mRNA expression in neutrophils, but not in 

lymphocytes or monocytes. Likewise, elevations in iNOS were still observed up to four weeks 

after a detraining period and negatively associated with indices of neutrophil apoptosis (Su et al., 

2011), suggesting that the impact of aerobic exercise training on basal iNOS mRNA expression 

in humans may be cell specific. 

The lack of iNOS mRNA expression changes observed in the present study may have 

also been the result of the culture conditions utilized, including LPS concentration and the 

duration of ex vivo stimulation period. More specifically, the present study incubated whole 

blood samples with 10 ng/mL of LPS for 3 hours. However, several other groups demonstrated 

that iNOS protein expression significantly increased following stimulation with LPS 

concentrations ranging from 5-15,000 ng/mL and incubation periods of 3-8 hours, with peak 

protein concentration being observed after 6 hours (Ambrozova et al., 2010; Ambrozova et al., 

2011; Palazzolo-Balance et al., 2007; Pekarova et al., 2009). Therefore, it is possible that the 

shorter incubation period during LPS stimulation may not have been long enough to elicit a 

robust response and affected the significance of our results. Furthermore, it has been previously 

documented that high LPS concentrations increases intracellular calcium, thereby inhibiting 

iNOS expression (Korhonen et al., 2001; Korhonen et al., 2005). Therefore, it is also possible 

that the supra-physiological concentrations of LPS utilized in the present study (nearly 1000 
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times greater than those previously reported by Selkirk et al. [2008] in a similar population of 

young aerobically fit and unfit males) initiated a calcium-dependent signaling mechanism which 

defended the overexpression of iNOS mRNA within innate immune cells of relatively healthy 

males. 

The present study also observed an expected increase in TNF-α concentrations following 

LPS-stimulation in both aerobically fit and unfit subjects (Aderem & Ulevitch, 2000; Hoffmann 

et al., 1999; Janeway & Medzhitov, 2002; Takeda et al., 2003), and this response tended to be 

negatively associated with iNOS mRNA expression (r = -0.368, p = 0.076). TNF-α 

concentrations released from monocytes following stimulation with LPS peak within 4 hours, 

much more rapidly than iNOS (Takashiba et al., 1999), and increased TNF-α concentrations 

have previously been shown to activate the second messenger protein, cyclic adenosine 

monophosphate (cAMP), which serves as a negative feedback mechanism to inhibit NF-κB 

activation and prevent the overactivation of the pro-inflammatory signaling pathways. 

Furthermore, cAMP has been shown to inhibit iNOS mRNA stability within specific cell subsets 

and potentially attenuate iNOS mRNA expression upon increased TNF-α concentrations 

(Korhonen et al., 2005). Therefore, the increased concentrations of TNF-α released form 

stimulated immune cells may have initiated a secondary signaling mechanism that prevented the 

increased expression of iNOS mRNA in the present study (Galea & Feinstein, 1999; Satriano & 

Schlondorff, 1994).  

This investigation also investigated the impact of LPS stimulation on the MDA and p53 

concentrations. Surprisingly, although MDA concentrations were not significantly different 

between subject groups in the unstimulated samples, MDA concentrations significantly 

decreased to a greater extent in the aerobically unfit compared to fit group following LPS 
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stimulation. These results were similar with Djordjevic et al. (2012), who also observed a 

significant decrease in the pro-oxidant marker thiobarbituric acid reactive substance in young, 

healthy, non-athletes following a maximal exercise test. Although it is plausible that individuals 

with decreased aerobic fitness levels exhibited a more robust antioxidant response to combat 

increased levels of oxidative stress, the lack of investigation into this posit is a limitation of the 

present study, and future studies would benefit from the assessment of resting antioxidant levels 

to accurately determine if participation in chronic aerobic exercise influenced regulatory 

mechanisms associated with oxidative stress and any combative influence antioxidants may have 

in concert with iNOS expression. Furthermore, our results did show a significant decrease in p53 

concentration upon LPS stimulation, independent of iNOS mRNA expression. This is 

inconsistent with previous literature that displayed an increase in p53 accumulation upon 

inflammatory stimulation (Meßmer & Brune, 1996; Meßmer and Brune, 1997). However, a 

recent study in rodents determined that p53 also decreased in response to LPS-stimulation (3,000 

unit/g body weight) of endothelial cells (Barabutis et al., 2015). Investigators suggested a 

reciprocal negative relationship between p53 and the NF-κB-mediated production of the 

inflammatory cytokine interleukin 6, which downregulate p53 transcriptional activity as a 

consequential anti-inflammatory response necessary to counter regulate the LPS induced pro-

inflammatory affects (Barabutis et al., 2015). Although this was determined in a different cell 

population, it is plausible that a similar mechanism is occurring within the leukocytes of healthy 

males as an adaptive response to inflammatory insult.  

 In conclusion, this investigation determined that healthy individuals with increased 

aerobic fitness levels did not significantly exhibit differences in iNOS mRNA expression 

following LPS stimulation, and consequently, maintenance of iNOS mRNA expression did not 
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directly impact indices of oxidative stress, pro-inflammation, or the apoptotic marker p53. 

Nonetheless, it is apparent that iNOS mRNA stability is impacted by a variety of intracellular 

mechanisms and findings from the present study provoke the need for subsequent investigations 

to understand the appropriate stimulation necessary to elucidate a potential change in iNOS 

mRNA expression within a young, healthy subject population. Such studies would help to 

explain the beneficial regulatory innate immune response within leukocytes, and in particular, 

monocytes.   
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Table 1. Subject Characteristics  
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Figure 1. LPS-induced iNOS Activation Signaling Mechanism  
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Figure 2.	  

	  

Figure 2. iNOS mRNA expression and concentrations of the lipid peroxidation marker MDA, the 
pro-inflammatory cytokines TNF-α, and pro-apoptotic marker p53 following ex vivo stimulation 
with LPS (Panels A-D).* indicates a significant difference in the LPS-stimulated response 
relative to the unstimulated control in all subjects grouped; the # indicates a significant 
difference in LPS-stimulated MDA production relative to the unstimulated control within each 
group (p ≤ 0.05).   
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Figure 3.  

 

Figure 3. The association of relative VO2max with relative iNOS mRNA expression, and 
concentrations of the lipid peroxidation marker MDA, the pro-inflammatory cytokines TNF-α, 
and pro-apoptotic marker p53 following ex vivo stimulation with LPS (Panels A-D).  
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Figure 4.  

 

Figure 4. The association of relative iNOS mRNA expression with concentrations of the lipid 
peroxidation marker MDA, the pro-inflammatory cytokines TNF-α, and pro-apoptotic marker 
p53 following ex vivo stimulation with LPS (Panels A-C).a.) The association between relative 
iNOS mRNA expression and plasma MDA percent change from the unstimulated control to the 
LPS stimulated culture condition. b.) The tended negative association between relative iNOS 
mRNA expression and plasma TNF-α percent change from unstimulated control to the LPS 
stimulated culture condition. c.) The association between relative iNOS mRNA expression and 
plasma p53 percent change from unstimulated control to LPS stimulated culture condition.   
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