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COPD is characterized by tissue inflammation and impaired remodeling that 

suggests fibroblast maintenance of structural homeostasis is dysregulated. Thus, we 

performed in vitro wound healing experiments on normal and diseased human lung 

fibroblasts and developed an ABM of fibroblasts closing a scratched monolayer using 

NetLogo to evaluate differences due to COPD or cigarette smoke condensate exposure. 

This ABM consists of a rule-set governing the healing response, accounting for cell 



xi 

migration, proliferation, death, activation and senescence rates; along with the effects of 

heterogeneous activation, phenotypic changes, serum deprivation and exposure to cigarette 

smoke condensate or bFGF. Simulations were performed to calibrate parameter-sets for 

each cell type using in vitro data of scratch-induced migration, viability, senescence-

associated beta-galactosidase and alpha-smooth muscle actin expression. Parameter 

sensitivities around each calibrated parameter-set were analyzed. This model represents the 

prototype of a tool designed to explore fibroblast functions in the pathogenesis of COPD 

and evaluate potential therapies.   
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Background 
 

Chronic Obstructive Pulmonary Disease (COPD) & Oxidative Stress 

With no cure available and treatments that are only able to manage symptoms – 

COPD is currently the third leading cause of death among adults in the United States 1. The 

Global Initiative for Chronic Obstructive Lung Disease (GOLD), which provides yearly 

updates of recommended methods for the treatment and prevention of COPD, defines it as 

“a common, preventable, and treatable disease characterized by persistent respiratory 

symptoms and airflow limitation that is due to airway and/or alveolar abnormalities, 

usually caused by significant exposure to noxious particles or gases,” such as cigarette 

smoke or other pollutants 2,3. This reduction in airflow is due to imbalanced tissue 

remodeling that progressively produces both: (A) decreased elastic recoil, small airway 

collapse, and loss of alveolar integrity within the parenchyma, along with (B) increased 

airway resistance due to narrowed lumen diameters from inflammation, fibrosis and 

smooth muscle proliferation within the bronchioles (Figure 1.1) 3–11.  

While rare, sometimes heritable, forms of COPD also exist – such as alpha1-

antitrypsin deficiency disorder which causes tissue degradation through a lack of this 

crucial antiprotease 12 – the most common risk factor for COPD is smoking tobacco 

followed by exposure to other environmental pollutants and ageing. However, only 25%  

of smokers will develop the accelerated decline of respiratory function that is associated 
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with clinically significant COPD 13, indicating some genetic risk factors may play a role as 

well 2–5,14–16. For this reason, COPD has been classified as a hereditary autoinflammatory 

disease, as these are characterized by genetic mutations which produce an overactive or 

hyperresponsive innate immune system that typically present with periodic episodes or 

flares mediated by interleukin (IL)-1 16. 

 

 
Figure 1.1 – Mechanisms of airflow limitation in COPD. Reproduced with permission 

from 10, copyright Massachusetts Medical Society. 

 

Due to this likelihood that genetic differences exist between smokers who do or do 

not develop COPD, specific cell lines have been isolated from human lungs with COPD 

(e.g. COPD-Diseased Human Lung Fibroblasts; DHLF) for comparison to genotypically-

normal cell lines from healthy human lungs (e.g. Normal Human Lung Fibroblast; NHLF) 

for in vitro research involving COPD 9,17–19. In particular, pulmonary fibroblasts isolated 

from people with COPD express increased levels of redox signaling (e.g. isoprostanes, 
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elevated NADH/NAD ratio), inflammatory signaling (e.g. PGE2, COX-2, TNFα, TGFβ, 

NLRP3-mediated IL-1β, IL-6), myofibroblast markers (e.g. αSMA), senescence markers 

(e.g. p16, p21, β-Gal, IL-1α, minimal telomeres), and fail to maintain extracellular matrix 

(ECM) homeostasis 3,6,9,16,18–23. Additionally, lung fibroblasts have been shown to 

differentially inhibit global protein translation, proliferation, migration, and contraction of 

collagen gels within hours 9,21,24,25 – as well as increase senescence over several passages 

18,20,26–28 – in response to prostaglandin-E2 (PGE2) in vitro, a common inflammatory 

pathway that has been shown to be dysregulated in COPD fibroblasts and directly 

correlates with the disease’s severity 9,18,20,24,26. 

The proposed inflammatory mechanisms behind COPD’s pathogenesis are a 

modified response to respiratory irritants characterized by increased oxidative stress from 

activated immune cells, cigarette smoke, and other environmental factors that creates an 

amplified inflammatory response, an imbalance of proteases and antiproteases, and an 

increase in cellular proliferation, apoptosis and senescence. This is supported by a loss of 

alveolar epithelial cells and increased proliferation – evidenced by shortened telomeres 

among progenitor and non-senescent cells relative to uninflamed somatic cells – among 

samples from patients with COPD. Additionally, increased levels of markers for oxidative 

stress (e.g. H2O2, 8-isoprostane), inflammatory cells (e.g. Neutrophils, Macrophages, NK-

cells), inflammatory mediators, proteases (e.g. MMPs, elastases, cathepsins), and markers 

of senescence have been found in samples from patients with COPD 2–6,14,19,29,30 – in fact,  

this secretory profile is collectively termed the COPD-associated secretory 

phenotype (CASP). While it partially overlaps with some other lung diseases like 
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idiopathic pulmonary fibrosis 31, CASP most notably has the same upregulated secretory 

profile as the cellular senescence-associated secretory phenotype (SASP) 19. Both secretory 

profiles are known to result from oxidative stressors like cigarette smoke and 

inflammation, indicating that cell senescence has an active role in COPD pathogenesis 

6,18,37–40,19,20,29,32–36. It is theorized that COPD pathogenesis occurs via chronic oxidative 

stress by inducing both apoptosis and senescence – and that senescent cells express a 

SASP that is self-promoting, induces senescence in surrounding cells, and progressively 

increases the amount of proteases in the extracellular space. Ongoing stimulation by 

oxidative stressors can amplify this pathway until the levels of senescent cells becomes 

self-sustaining, surpasses the ability of the immune system meant to remove them, and 

reduces the tissue’s proliferative capacity to replace lost cells. The resulting imbalances in 

cellular apoptosis:proliferation and protease:antiprotease levels are thought to be 

independently responsible for driving the degradation of parenchymal tissue at the cellular 

and molecular levels, and may explain the observed persistence of inflammation in COPD 

patients who quit smoking 6,14,19,29,32.  

Likewise, cigarette smoke and oxidative stress have been found to induce 

myofibroblast differentiation among lung fibroblasts – both directly and through miR210 

containing extracellular vesicles from bronchial epithelial cells 23 – and epithelial-

mesenchymal transition 41,42, which has been found to be increased in COPD as well 42. 

The resulting loss of proliferative epithelial cells paired with an excess of fibroblasts, 

myofibroblasts and senescent cells is thought to drive the differential fibrotic and 

degradative changes seen in chronic bronchitis and emphysema, respectively. 
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Altogether, this review indicates that oxidative stress, PGE2 and NLRP3-mediated 

signaling play a major role in the pathogenesis of COPD by promoting inflammation, 

mesenchymal differentiation and cellular senescence that subsequently promotes 

differential ECM hypertrophy and degradation by tissue type; it’s hoped that mechanisms 

which target and suppress these pathways will provide new and effective treatments. 

Potentially, multi-scale computational modeling of these pathways – from the molecular 

level up to the entire respiratory system – can be used to determine which combination of 

these pathways is sufficient to produce the observed clinical symptoms, or if additional 

factors (e.g. substrate stiffness, substrate composition, traction forces, cyclical stretch, 

metabolic regulation) need to be taken into account within a more complex model. 

 

Pulmonary Wound Healing 

Wound healing among embryonic and fetal tissues exhibits full functional 

regeneration of injured tissues without scarring, while wound healing of adult tissues often 

leads to the formation of scar tissue or fibrosis that can result in a repaired tissue with less 

functionality than before the injury 43–46. In non-pathological tissues, adult wound healing 

progresses through three overlapping phases: (1) homeostasis and inflammation, (2) 

proliferation, construction and remodeling, then (3) resolution 36,44–46. This process occurs 

in the lung just as it does throughout the body in general (Figure 1.2). 
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Figure 1.2 – Phases of acute wound healing in the lungs. A damaged section of tissue 

experiences an inflammatory response, recovery of lost cell types and ECM components, 

and resolution of the healing process as the tissue returns to homeostasis. Reproduced with 

permission from 47, copyright the authors. 

  

The initial phase of pulmonary haemostasis and inflammation occurs immediately 

following injury – physical trauma activates platelets to induce clotting and stop blood loss 

– while trauma, infections, toxins and oxidative stress can all stimulate the release of 

inflammatory growth factors and cytokines (e.g. TGFβ, IL-6, PGE2) from platelets, 

leukocytes (e.g. neutrophils and macrophages), and damaged resident cells (e.g. 

fibroblasts, epithelial cells, endothelial cells) which recruit other cells to the wound site to 

amplify this inflammatory signaling and initiate tissue repair. These recruited cells include 

additional activated leukocytes to remove dead cells, debris, and invading pathogens from 
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the wound; fibroblasts to replace and remodel the damaged ECM; endothelial cells for 

angiogenesis within the healing tissue; and other tissue-specific cells necessary for tissue 

function – such as bronchial and alveolar epithelial cells in the lungs, keratinocytes in the 

skin, or hepatocytes in the liver 36,44–51.  

The next phase of pulmonary healing is characterized by the growth of granulation 

tissue – named for its granular appearance – through proliferation of these recruited cells to 

replace those lost to the injury, construction of new ECM through deposition and 

contraction of structural proteins (i.e. collagens and fibronectin), and active angiogenesis to 

provide the new tissue with sufficient circulation. Remodeling of the granulation tissue is 

effected through continued contraction and cross-linking of newly synthesized ECM by 

myofibroblasts, secreted matrix metalloproteases (MMPs), and tissue inhibitors of 

metalloproteases (TIMPs); the regulation of these effectors determines the resultant 

amount of scarring and fibrosis 11,43–46,48–50.  

Resolution of wound healing in the lung is reached when the tissue structure is 

restored and excess myofibroblasts and epithelial cells are removed by apoptosis. This 

occurs primarily as the newly synthesized ECM is able to take external stress off 

myofibroblasts, although increased NO2-signaling or activation of the Fas-apoptotic 

pathway by IL-6 sensitized by TNFα can also induce myofibroblast apoptosis. If chronic 

inflammation is present, tissue remodeling may persist and cause some cells to become 

senescent – from excessive stress, proliferation, or paracrine signaling from other 

senescent cells – and thereby target themselves for removal by leukocytes, cease synthesis 

of ECM proteins and TGFβ, and gradually upregulate their secretion of MMPs and pro-
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senescence factors (e.g. IL-1α, PGE2, NF-κB, C/EBPβ). Dead or senescent cells cleared 

from tissues by the immune system are subsequently replaced through proliferation of 

surrounding cells if needed to resolve the chronic healing response. However, prolonged 

remodeling by myofibroblasts and senescent cells can cause permanent tissue dysfunction 

and preclude a full resolution of wound healing – if either myofibroblasts resist undergoing 

apoptosis and senescence, or if the number of senescent cells surpasses the immune 

system’s ability to clear them, then tissue remodeling may become progressively and 

irreversibly hypertrophic (i.e. stiffer, fibrotic ECM) or degradative (i.e. softer, more 

gelatinous ECM), respectively 11,18,39,40,43–46,48–50,52,19,29,32–37. 

 

Fibroblast Heterogeneity & Activation 

As the primary mediators of ECM synthesis and remodeling, the main contributors 

to tissue repair are resident fibroblasts and myofibroblasts: mechanically-sensitive cells of 

mesenchymal origin with a dedifferentiated phenotype. These cells represent a 

heterogeneous population, where subpopulations from different locations within the lungs 

(i.e. stroma versus parenchymal regions) exist with differing signaling properties 45,48. 

They regulate ECM properties through controlled secretion of structural proteins (e.g. 

collagen-I, fibronectin, elastin, laminin), proteases, antiproteases, and inflammatory signals 

(e.g. TGF-β, IL-6, TNF-α, PGE2, IL-1α) in response to inflammatory stimuli such as 

physical trauma, toxins, oxidative stress, or autocrine and paracrine inflammatory signaling 

from other fibroblasts, activated leukocytes, epithelial cells and endothelial cells. This 

regulation of ECM production and quality of remodeling is achieved via a controlled 
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progression of inactivated resident fibroblasts  into activated “proto-myofibroblasts” that 

may differentiate into myofibroblasts  and eventually either apoptose or become senescent  

to be targeted for clearance by the immune system 36,38,53–57,43–46,48–51. However, within 

COPD these cells express increased levels of inflammatory signals, myofibroblast and 

senescence markers, reactive oxidative species (ROS; e.g. OH-, HO2, O2
-, H2O2, ONOO-, 

etc.), and fail to maintain their native ECM 3,6,24,9,14,18–23. 

 

Figure 1.3 – Fibroblast functions, activation into myofibroblasts and other sources. 

Reproduced with permission from 48, copyright the authors. 

 

Inactivated resident lung fibroblasts are found in uninjured tissue and all phases of 

wound healing within the intact, cross-linked ECM that stress-shields them and inhibits 

their formation of stress fibers or focal adhesions with the ECM. However, once stimulated 
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by a change in the mechanical properties of the local ECM that indicates repairs are needed 

– for example, provisional ECM (e.g. fibrin clot) stiffness ranges from 10-1000 Pa 49,50,52 – 

these cells migrate to the wounded area. These inactive fibroblasts are naturally resistant to 

Fas-mediated apoptosis, and will readily proliferate if isolated in vitro; they exhibit 

nominal synthesis of ECM proteins (e.g. collagen-I, fibronectin); and form few or no stress 

fibers, cell-cell, or cell-ECM interactions – those interactions that do form are often weakly 

connected to nascent adhesions (a.k.a. focal complexes) – allowing them to quickly 

migrate in response to an injury-induced chemokine or stiffness gradient 11,43,57,45,48–51,53–55.  

In the combined presence of transforming growth factor-β (TGFβ) and NADPH 

oxidase-4 (NOX4)  39,53–55, the ED-A slice variant of fibronectin, and a sufficient increase 

in mechanical stresses – either of substrate stiffness (≥ ~3 kPa 50), shear stresses from the 

edematous increase in extracellular fluid, extracellular stresses from the ECM or adjacent 

cells, or intracellular stresses from contraction of the actin cytoskeleton – focal complexes 

can form into focal adhesions (FAs; 2-6 μm long 49) capable of supporting stress fibers and 

higher traction forces (3-4 nN/μm2 49). These mechanobiological signals spur fibroblasts to 

progressively activate into a proto-myofibroblast  morphology followed by full 

myofibroblast differentiation 45,48,58,59,49–51,53–57. These proto-myofibroblasts are found in all 

phases of wound healing from inflammation through remodeling, and will readily 

proliferate if cultured in vitro similar to fibroblasts. One activated through force-controlled 

release of TGFβ from reservoir proteins bound to the ECM (≥ 5-9 kPa 50), the actin 

cytoskeleton is rapidly reorganized to form lamellipodia, numerous focal adhesions, N-

cadherin-type cell-cell interactions, and actin stress fibers devoid of alpha-smooth muscle 
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actin (αSMA). Additionally, these proto-myofibroblasts exhibit IL-6 mediated positive 

reinforcement of upregulated proliferation, ECM synthesis and contractility, pro-survival 

genes, and αSMA expression that’s not yet incorporated into stress fibers 9,43,49–51,53,56,59.  

 

 
Figure 1.4 – Myofibroblast differentiation mediated by oxidative stress and potential 

inhibitors to recover the fibroblast phenotype. Reproduced with permission from 60, 

copyright the authors. 

 

With progressive activation of TGFβ and NOX4 signaling along with sufficient 

increase in mechanical stimulation – either via substrate stiffness ( ≥ ~20 kPa; thus, most in 

vitro cultures of fibroblasts exhibit proto-myofibroblast phenotypes due to tissue culture 

plastic’s stiffness in the GPa range 49), shear, extracellular adhesions, or internal 

contractility – proto-myofibroblasts may fully differentiate into myofibroblasts as their 

focal adhesions coalesce into super-mature focal adhesions (SMFAs; 8-30 μm long, 4-5 

fold longer than FAs 49,50) capable of supporting αSMA-containing stress fibers, 3-4 fold 
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increased traction stresses (~12 nN/μm2 49), and OB-cadherin (type-11) junctions. While 

generally not found in the inflammatory phase of healing, myofibroblasts are primarily 

found within the proliferating and remodeling granulation tissue, can originate from 

multiple cell types besides resident fibroblasts (e.g. circulating fibrocytes, endothelial cells, 

epithelial cells, and smooth muscle cells), and don’t proliferate if isolated in vitro, unlike 

inactive fibroblasts and proto-myofibroblasts. The main hallmark of myofibroblasts, their 

expression of αSMA-containing stress fibers, is mediated through production via multiple 

signaling pathways – including: SMAD2/3, Notch1-Jagged1 (required in vitro), Wnt, 

hedgehog, or oxidative stress mediated by NOX4 – and organization into stress fibers 

without disrupting the core actin fibril 49,50,61. While myofibroblasts maintain upregulation 

of collagen-I and fibronectin, they cease secretion of cytokines. This causes them to 

continue synthesizing and contracting new ECM as long as the upregulated TGFβ remains 

to provide myofibroblasts resistance to Fas-mediated apoptosis; without protection from 

TGFβ, myofibroblasts may apoptose in response to IL-6-and-TNFα or NO2 signaling, 

although their strongest stimulus for apoptosis is a loss of external stress indicative of 

sufficiently remodeled, structurally sound ECM signaling the end of healing 9,11,50,51,53–

57,36,38,43–46,48,49. 

  

Cellular Senescence: Replicative & Stress-Induced 

As part of the tissue’s chronic wound healing response, cellular senescence is 

essentially a cellular quarantining mechanism to suspend proliferation and prevent the 

spread of any damage to new cells – either until it is able to recover from the stimulus that 
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induced it, or until it’s progressively amplified secretory profile attracts a leukocyte to 

clear it. Senescence can be induced by shortened telomeres from age or upregulated 

proliferation (“replicative senescence”); growth factors (e.g. IL-1β, PGE2), oncogenes, or 

stress-induced damage to intracellular components by toxins or oxidative stressors 

(“premature senescence” or “stress-induced senescence”); and terminal differentiation 

within inappropriate microenvironments (“developmental senescence”). While 

developmental senescence earned its name from the controlled senescence and clearance of 

excess cell types during development, it is also implicated as a mechanism of senescence 

for cells in wound resolution in response to TGFβ. In chronically inflamed wounds, 

replicative senescence may be triggered if continual turnover of proliferative cells causes 

them to prematurely reach their replicative limit. Likewise, premature stress-induced 

senescence may be induced by persistent exposure to oxidative stressors or pro-senescence 

growth factors 18,19,62–64,32–37,39,40. 

 One of the primary mechanisms of chronic lung injury and premature senescence is 

from sources such as cigarette and kitchen smoke, or activated leukocytes (i.e. respiratory 

burst activity). Excessive reactive oxygen species (ROS; OH-, HO2, O2
-, H2O2, ONOO-, 

etc.) are known to deactivate antiproteases, damage cells through oxidation of their DNA, 

proteins and lipids, and activate inflammatory transcription regulators NF-κB and ERK1/2  

3,6,60,65–67,14,18,19,32,33,36,38,39. If levels of ROS surpass the ability of local antioxidants to 

buffer them, then this oxidative stress may either kill cells outright (i.e. cellular necrosis) – 

in which case they undergo uncontrolled autolysis, spill their contents into the extracellular 

space, and increase the amount of stressors exposed to neighboring cells – or trigger a 
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DNA damage response (DDR) that induces growth arrest to begin the cellular repair 

process. If a DDR can’t be repaired promptly however, the cell becomes senescent. 

 

 
 

Figure 1.5 – Induction of cellular senescence and the SASP. Reproduced with permission 

from 63, copyright American Society for Clinical Pharmacology and Therapeutics. 

  

If a cell becomes senescent at any stage, it will increase its resistance to apoptosis, 

slow its migration rate, spread out, flatten, and grow up to twice in size 19,33,35,64 – 

suggesting an increase in applied traction forces 68,69 –  and reorganize its chromatin into 

heterochromatin, termed senescence-associated heterochromatic foci (SAHF), thus making 

these changed irreversible 33–35,40,62,64. Also, once growth arrest is initiated, senescent cells 

begin developing the SASP by expressing IL-1α on their surface to bind adjacent surface-

bound receptors. This signaling occurs in autocrine and paracrine fashions to activate the 

NF-κB and C/EBPβ transcription factors that mediate full expression of the SASP; this 

includes IL-1α, proteases (i.e. MMPs), other cytokines (e.g. IL-6, IL-8) and growth factors 

that targets the senescent cells for clearance by the innate immune system (e.g. neutrophils, 
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macrophages, NK-cells). Through this process senescent cells will upregulate their 

expression of β-Galactosidase (β-Gal), which serves as a useful, although not definitive, 

marker for senescent cells 15,18,38–40,62–64,19,20,32–37.  

 

Fibroblast Migration: Individual & Collective 

Cellular migration is often represented as a biased random walk such as the Vischek or 

Ornstein-Uhlenbeck models 70–72. Individual cells stochastically migrate up gradients of 

binding efficiency with the substrate – influenced by gradients of adhesion, topography, 

stiffness, chemokines and electrochemistry – which guide the intracellular polarization of 

actin polymerization and depolymerization 72–74. In order to do so within two-dimensional 

environments, they search for new adhesions through the formation of transient, spatially-

stochastic protrusions of filipodia and lamellipodia driven by actin polymerization against 

the opposing membrane tension through Cdc42-GTP and Rac1-GTP signaling, 

respectively; however, in three dimensions, cells will often form pseudopods or blebs for 

more efficient migration in that milieu 75–77. Cells may bind to their substrate through 

transmembrane integrin receptors, or with other cells through cadherins, which form 

adhesive complexes with the actin cytoskeleton driven by ROCK/MLC mediated RhoA-

GTP signaling. Myosin-II throughout the actin network, but concentrated near the rear of 

the nucleus, then generates tension upon these adhesions in the lamellipodium and ventral 

membrane which creates traction and causes the cell body to move forward; in a direction 

determined by the balance of adhered protrusions, weighted by their adhesion strength and 

stabilized by microtubules. These actomyosin forces also pull the membrane in from the 
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back and sides of the cell simultaneously through connections with the cortical actin 

network – which induces actin depolymerization and adhesion complex disassembly at the 

rear of the cell while generating hydrodynamic flow of the cytosol up to the front of the 

cell – to recycle the actin monomers, bundles of myosin-II and associated adhesion 

complex proteins needed for continued migration 78–82.  

 

 
Figure 1.6 – Contact inhibition of locomotion among fibroblasts. Reproduced with 

permission from 83, copyright the authors. 

 

The ratio of these cytoskeletal and force-generating protein within each cell determine 

the rate of migration, directional persistence, and shape of each cell; those which migrate 

faster and with more directional persistence take on a large wide canoe shape with smooth 

edges (e.g. keratocytes), while slower wandering cells take on a narrow ‘D’ shape with 

unstable edges (e.g. amoebae). Interestingly, cells which take on a canoe shape and migrate 

faster with more directional persistence have a higher actin network density – indicating 
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we may be able to increase cell migration by upregulating cytoskeletal actin or increasing 

actin polymerization with an increase in temperature 84–86.  

As a group, fibroblasts fall on the slower, less coordinated side of the spectrum of 

migration types described. They’re commonly represented as spindle-shaped, however this 

shape is unstable as they lack persistent polarization and exhibit actin fibres oriented at 

unexpected angles with respect to the direction of motion 87–90. In barrier removal assays 

they show little directional persistence, with an average 2 cell diameters between 

independent movements 91. They’re nematic cells which exhibit limited cadherin mediated 

cell-cell adhesion with contact-inhibited migration and proliferation; upon division, 

daughter fibroblasts disperse 83,87–90,92–95.  However, this contact inhibition is not complete 

– at confluence in vitro, cryptic lamellipodia extend below neighboring fibroblasts to 

migrate through monolayers at approximately a third the rate during pre-confluence 91,96,97 

and will keep proliferating albeit at a lower rate 93,94. Yet, if fibroblasts are not yet 

confluent and come into contact, they will form transient cell-cell connections which 

inhibit further migration and redirect their polarization and resultant migration away from 

each other (Figure 1.2), such that the mean velocity of a single cell is inversely 

proportional to the amount of cell-cell contacts 83,87–90,92,98,99. This contact inhibition is 

reversible (i.e. confluent monolayers can recover prior migration and proliferation rates 

when passaged) and mediated by p27(Kip1) induction which also suppresses cellular 

senescence by deactivating mTOR; which also explains how cells maintain reversible 

quiescence within tissues or confluent monolayers 100,101. 
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As a result of this contact inhibition, jamming of fibroblast monolayers as cell densities 

increase have been modeled as liquid crystals 102, and barrier removal experiments have 

been performed in vitro to evaluate the release of contact inhibition on their migration 

70,71,103. Barrier removal experiments are preferred over scratch assays for the study of 

collective migration since the former method limits damage to cells, is more reproducible, 

and allows various monolayer geometries to be formed that allow for the evaluation of 

changes due to the orientation of individuals or level of orientation-order among the 

population. However, the cell damage produced by scratch assays is preferable to mimic 

wound healing despite the decreased reproducibility of these experiments. Thus, to model 

wound healing within the lung in vitro, we opted for a scratch closure assay.  

 

Agent Based Models  

To model our scratch closure assays in silico, we opted for an ABM to study how 

the dynamics of fibroblast activation and senescence affect their collective migration to 

evaluate changes due to treatments or exposures with computational efficiency. While 

comprehensive models taking a systems-biology approach to model fibroblast wound 

healing have also been formulated 104–106, these are computationally intensive. Many other 

types of stochastic active particle models are also well-suited for studying wound healing 

and collective cell migration, however these are all physics-based models that study how 

the dynamics of cell-substrate and cell-cell connections between particles generate 

phenomena such as actin polarity emergence 107, monolayer jamming 70,95,102, flocking 

70,108, digitation features among epithelial sheets 71,109, angiogenesis 110, or collagen 
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deposition and contraction 111. Fortunately, efforts to model inflammatory responses 

utilizing multiple cell states (e.g. damaged and healthy) and cell types (e.g. epithelial and 

immune) have exemplified the value of ABM techniques 112–116. An ABM produced by 

Brown et al 113 even produced a model smoke particulate exposure on fibroblast 

maintenance of the ECM and macrophage-mediated inflammation that managed to 

approximate fibrotic features observed within mouse models of smoke exposure. However, 

this model was limited in its ability to account for the direct effects of smoke exposure on 

their myofibroblast activation or senescence.  

In contrast with ordinary and partial differential equations that model pooled 

population dynamics in a top-down manner, ABMs represent a bottom-up approach that 

excel at modeling emergent collective behaviors due to interactions between individuals 

and their environment. Agents are mobile individuals interacting with an immobile lattice 

of patches according to a set of rules. Agents often represent cells while patches represent 

the substrate or sheet of epithelial cells. Models may incorporate multiple types of agent or 

patch with their own subset of rules, multiple layers in two dimensions, or three 

dimensions. To facilitate these models, several modeling platforms have been developed 

114,115,117,118. While slower than other platforms, NetLogo 119 is open-source, easy to use 

and has several built-in tools such as BehaviorSpace to assist with model analysis 114,115,118. 

Some ABMs also include continuum mechanic modules to create a hybrid model 120. 
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Here, we model the collective migration dynamics of fibroblasts closing a 

scratched monolayer influenced by the differential stimulation of myofibroblast activation 

and senescence produced from a distribution of sensitivities to a constant environmental 

stimulus. This model is designed to evaluate differences between fibroblast populations to 

which the model is calibrated with in vitro data by representing their response as a set of 

parameters governing basal rates of migration, proliferation, senescence and myofibroblast 

differentiation. 

  

Project Objectives 

1. In Vitro: Quantify the in vitro scratch wound closure along with the percentage of 

cell death, cell senescence and myofibroblasts among human lung fibroblasts. 

2. In Silico: Using NetLogo, develop an ABM of fibroblast wound healing to evaluate 

differences among parameter-sets calibrated to in vitro data from Objective 1. 
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In Vitro Methods 

 

Cell Culture & Treatment Medias 

 Normal Human Lung Fibroblasts (NHLF; CC-2512), and Diseased Human Lung 

Fibroblasts (DHLF; 195277) derived from COPD patients, were obtained from Lonza for 

all in vitro studies. NHLF and DHLF were only used for passages 5-9 and 2-3, 

respectively. Cells were expanded and cultured in Fibroblast Growth Media-2 (FGM; CC-

3132, Lonza) that was refreshed every 2-3 days. When 80-90% confluent, cells were 

dissociated with 0.025% Trypsin/EDTA and passaged with a 1:7 split.  

 Cigarette Smoke Condensate (CSC) was obtained from Murty Pharmaceuticals 

(Lexington, KY) and diluted to a 0.125% (50 mg/ml) solution with Fibroblast Basal 

Medium (FBM; CC-3131, Lonza). According to the manufacturer, the CSC stock was 

prepared from smoking University of Kentucky’s 3R4F Standard Research Cigarettes on 

an FTC Smoke Machine; total particulate matter on the filter was calculated from its 

weight gain, then DMSO was used to extract the condensate via soaking and sonication to 

produce an approximate 40 mg/ml solution. This stock was subsequently diluted in FBM 

and sterile-filtered (0.22 um pore size) to make the CSC treatments. DMSO diluted in 

FBM was used as a vehicle control.  
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Metabolic Assays 

 To assess the toxicity of CSC dilutions, evaluate the effect contribution of the 

dimethylsulfoxide (DMSO) vehicle and compare the metabolic effects of the treatment 

medias, cells were seeded into flat-bottomed 96-well plates (Corning) at a density of 62500 

cells/cm2 with 200 μl FGM. After 14 hours of growth, the seeding media was aspirated and 

replaced with 100 μl of the treatment medias. Following 0, 0.5, 2, 12, or 24 hours of 

treatment, media was replaced with 100 µl FBM plus 10 µl of either MTT (#11465007001, 

Sigma) or CCK-8 (Dojindo) reagent.  

For MTT assays, cells were incubated with the MTT reagent for 4 hours, then 100 

µl of the MTT Solubilization Solution was added and further incubated overnight to 

solubilize the MTT formazan reduction product. The optical density (OD) of formazan was 

then measured at 570 nm using a BioTek Epoch Spectrophotometer; background 

absorbance was also measured at 650 nm, and the difference between these optical 

densities (i.e. OD570 – OD650) was calculated to represent the amount of MTT formazan 

resulting from reductive metabolic processes. 

For CCK-8 assays, cells were incubated with the WST-8 reagent for 4 hours, then 

the media was aspirated and replaced with 100 µl DMSO to solubilize the WST-8 

formazan reduction product over 10-15 minutes at room temperature. The optical density 

of WST-8 formazan was then measured at 450 nm; background absorbance was also 

measured at 600 nm, and the difference between these (i.e. OD450 – OD600) was calculated 

to represent the concentration of WST-8 formazan resulting from reductive metabolic 

processes.   
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Scratch Wound Healing Assays 

 Wound healing was evaluated by proxy through the in vitro assessment of 

collective fibroblast migration within scratched monolayers. Cells were seeded with 2 ml 

of FGM at a density of 42100 cells/cm2 (~400,000 cells/well) into clear tissue culture 

treated 6-well plates (Corning), after horizontal marks were drawn through the center of 

each well along the underside of the plate. After incubation for 14 hours, each cell 

monolayer was scratched vertically with a 20 μm pipette tip, rinsed with 30 mM HEPES 

Buffered Saline, and then covered with 2 ml of the treatment media. Each monolayer was 

imaged immediately after the scratch and at each time-point (i.e. a series of {0, 4, 8, 12, 

24} or {0, 12, 16, 20, 24} hours) in two locations, one above the horizontal mark and the 

other below, on an Olympus IX71 Microscope under phase contrast with QCapture Pro 6.0 

software. The same locations were imaged across successive time-points through the use of 

a reference point (i.e. a trivial portion of the horizontal mark visible through the bottom of 

the plate); however if this default reference was not usable (e.g. the scratch retracted near 

the mark in the center of the well, but not elsewhere), then filenames were notated and 

alternate features (e.g. whorl patterns distant from the scratch, scratches in the plastic, etc.) 

were utilized as substitute references. The denuded area was measured in triplicate using 

the freehand selections tool within ImageJ 121,122, and subsequently expressed as the 

percentage of scratch closure (%𝐻𝑒𝑎𝑙𝑖𝑛𝑔 =  (𝐴𝑟𝑒𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 –  𝐴𝑟𝑒𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡) / 𝐴𝑟𝑒𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙)). 

Measurements from technical repeats (i.e. triplicate measurements of duplicate images of 

triplicate wells) within each experimental group were averaged together to form a single 

biological repeat for statistical comparisons.  
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Cytometric Stain Assays 

 For all staining experiments, cells were seeded with 2 ml of FGM at a density of 

42100 cells/cm2 (~80,000 cells/well) into clear tissue culture treated 24-well plates 

(Corning), then fixed and/or stained after 6, 14, 26, or 38 hours of incubation after seeding. 

To evaluate population changes within the context of our scratch assay model, each cell 

monolayer was scratched with a 20 μl pipette tip, rinsed with 30 mM HEPES Buffered 

Saline, and then covered with 400 μl of the treatment media after 14 hours of growth. To 

capture population changes caused by the scratch and wash step, separate experiments 

were collected at 14 hours either with or without scratched monolayers. After staining, all 

plates were viewed and imaged on an Olympus IX71 Microscope equipped with QCapture 

Pro 6.0 software. Each well was imaged in three locations – with two centered on the 

scratch, if present, and one distant from it – and each location was imaged using two 

channels in order to determine the relative size of the targeted subpopulation of cells (i.e. 

dead, senescent or myofibroblast) among the whole population in each image. The total 

cell populations determined from each type of staining assay were pooled for each 

experimental group to determine total population changes with time. 
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Viability Stain 

Cell death was evaluated using a fluorescent viability staining kit (L3224, 

Invitrogen). Briefly, media was aspirated, 200 µl of the staining solution containing 2 µM 

calcein AM (live; FITC, ~450-500 nm) and 4 µM EthD-1 (dead; TRITC, ~500-550 nm) 

was applied and incubated at room temperature for 30 minutes. Cells were then imaged 

using a QImaging EXi Blue fluorescence microscopy camera with FITC and TRITC 

channels. The total cell population was calculated as the sum of all live and dead cells, thus 

the percentage of dead cells was calculated as = 100 ∗ (𝑁𝑑𝑒𝑎𝑑  / (𝑁𝑙𝑖𝑣𝑒  +  𝑁𝑑𝑒𝑎𝑑)).  

 

Senescence Associated Beta-Galactosidase (SA-β-Gal) Stain 

To determine the proportion of senescent cells within the fibroblast monolayers, 

cells were first stained with the SA-β-Gal staining kit (#9860, Cell Signaling 

Technologies) according to the manufacturer’s protocol, then rinsed twice with PBS and 

counterstained and cured overnight at room temperature using ProLong® Gold Antifade 

Mountant with DAPI (P36931, ThermoFisher). Cells were then imaged using a QImaging 

MicroPublisher 3.3 RTV camera with channels for brightfield illumination and DAPI 

(~330-380 nm). The number of blue-stained cells under brightfield illumination were 

considered positive for senescence (if selected by ImageJ thresholds) and the number of 

DAPI-stained particles (i.e. nuclei) was used to represent the total cell population, thus the 

percentage of dead cells was calculated as = 100 ∗ (𝑁𝑆𝐴.𝛽.𝐺𝑎𝑙/𝑁𝐷𝐴𝑃𝐼 ). 
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Alpha-Smooth Muscle Actin (αSMA) Immunocytochemistry Stain  

To determine the proportion of myofibroblasts within the fibroblast monolayers, 

cells were first washed twice with PBS, fixed with 200 µl of 4% paraformaldehyde for 

20min at room temp, then washed twice again with PBS. Cells were permeabilized with 

0.1% v/v Triton-X100/PBS for 10 minutes, washed four times with 0.1% Tween-20/PBS 

(PBST) for 5min each, then blocked with 200 µl of 5% Bovine Serum Albumin/PBST 

(BSA/PBST) for 1 hour at room temperature. Blocked cells were incubated with 200 µl of 

a 1:400 dilution of anti-αSMA monoclonal mouse antibodies (#A2547, Sigma) within 

BSA/PBST overnight at 4°C. Primary antibody-tagged cells were washed thrice with PBS 

for 5min each then incubated with 200 µl of a 1:2000 dilution of anti-mouse IgG (H+L) 

polyclonal goat antibodies conjugated with Alexa Flour 488 fluorophores (#A-11001, 

ThermoFisher) for 2 hours in the dark at room temperature. Secondary antibody-stained 

cells were rinsed thrice with PBS for 5 minutes each, counterstained and cured overnight 

with ProLong® Gold Antifade Mountant with DAPI (P36931, ThermoFisher), then imaged 

using a QImaging EXi Blue fluorescence microscopy camera with FITC and DAPI 

channels. All DAPI-stained particles that colocalized within stained regions of αSMA 

fibers determined with the ImageJ plugin JACoP 123 were considered positively-tagged 

myofibroblasts, while the total number of DAPI-stained particles was used to represent the 

total cell population, thus the percentage of myofibroblasts was calculated as 

 = 100 ∗ (𝑁𝑐𝑜𝑙𝑜𝑐𝑎𝑙(𝐷𝐴𝑃𝐼+𝑎𝑆𝑀𝐴) / 𝑁𝐷𝐴𝑃𝐼). 
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Statistical Analyses 

 Scratch assays were analyzed using two-way ANOVAs with repeated measures and 

Holm-Sidak post-hoc tests for multiple comparisons to evaluate differences among paired 

time-points between cell lines (i.e. NHLF vs DHLF) and treatment medias (i.e. FBM, 

FGM and  50 µg/ml CSC) across groups within time-points or within groups across time. 

Scratch assay analyses were performed for an overall view (i.e. 0, 12 and 24 hours).  

MTT and CCK-8 assays were analyzed using two-way ANOVAs with Holm-Sidak 

post-hoc tests for multiple comparisons to evaluate differences between treatment medias 

(i.e. FBM, FGM, and titrations of CSC or DMSO) and unpaired time-points.  

Staining assays (i.e. SA-β-Gal, Viability, and ɑSMA) were also analyzed using 

two-way ANOVAs with Holm-Sidak post-hoc tests for multiple comparisons to evaluate 

differences between treatment medias (i.e. FBM, FGM and 0.125% CSC) and unpaired 

time-points.  

All data were collected and pre-processed within Excel; all statistics were 

performed within GraphPad Prism 6 software. Differences with p-values < 0.05 were 

considered significant. Unless otherwise noted, all experiments were performed with a 

minimum of N = 3 biological repeats in triplicate. 
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In Silico Methods 

 

 Fundamentally, this agent based model is designed to simulate fibroblasts within 

the context of an in vitro scratch wound healing assay in order to characterize their time-

dependent response in terms of the population’s proportions of inactive, active, 

myofibroblast and senescent states along with their mean rates of migration, proliferation 

and death. The model operates on NetLogo version 5.3.1. The in vitro environment is 

represented by a two dimensional lattice network of square patch units, fibroblasts are 

represented by mobile agents, and the model rules are applied each tick to represent their 

activity in 20 minute steps. Agents interact with other nearby agents and the Moore’s 

neighborhood of patches below them, consisting of the central patch beneath the agent’s 

center and the eight surrounding patches, through a series of rules and procedures designed 

to model the scratch closure behavior of fibroblasts in vitro. Simulations to find calibrated 

parameter-sets for the in vitro datasets and analyze parameter sensitivities were performed 

using the BehaviorSpace tool with 10 simulation runs per parameter-set evaluated.  

 

Model Setup 

The model world consists of 101x101 patch units representing the 2.8123 mm2 area 

evaluated in the in vitro scratch assays. Each patch (XY) has a unit length equivalent to 

16.6040 μm. This lattice has a periodic boundary, so a fibroblast agent moving beyond one 
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edge is reintroduced at the opposite edge. While they are displayed with various shapes, 

each of the N fibroblast agents is modeled as a circle and assigned attributes associated 

with one of the following states that a fibroblast may exhibit in vitro: 1) Inactivated 

Fibroblasts (IFibs) represent immobile, inactive fibroblasts that have not yet been activated 

by the tissue culture plastic beneath them; 2) Activated Fibroblasts (AFibs) represent 

mobile, αSMA-negative fibroblasts (i.e. proto-myofibroblasts); 3) Myofibroblasts (MFibs) 

represent mobile, αSMA-expressing fibroblasts; 4) Senescent Fibroblasts (SFibs) represent 

non-proliferating, apoptosis-resistant fibroblasts that have lost their contact inhibition; and 

dead cells (DFibs) interact with nothing. Each of these agent states (F) has a defined size 

(S(F)), migration rate (M(F)), resistance to apoptosis (R(F)), and proliferation rate (D(F,N)). 

Each agent also has their own rate of senescence due to replication based on the Hayflick 

limit (TSENESCE(F,N)), sensitivity to stimulatory signaling (Z(N)), level of stimulation (stim(N)), 

and set of stimulation-dependent transition probabilities governing changes between agent 

states. All fibroblasts are capable of dying or becoming senescent due to stimulation; 

however IFibs can also activate into AFibs, and AFibs can also deactivate back into IFibs 

or become MFibs through further activation signaling. The model parameters for mean 

migration rate (M0) and mean division interval (TDIVIDE) are attributed to active fibroblasts 

and used as baselines for the other states. More details on these attributes and other 

variables – including values, calculations and citations – are available in Appendix B. 
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Initial Conditions & Agent Preconditioning 

Fibroblast agents are generated at random locations within the model world with 

the same percentages of senescent cells, myofibroblasts, and dead cells as were measured 

in vitro among NHLF in FGM incubated for 6 hours post-seeding, when cells first attached 

to and flattened out on the plate (data not shown). All remaining agents are generated as 

AFibs to model the in vitro activation response of fibroblasts attached to tissue culture 

plastic (TCP). As shown in the top row of Figure 3.1, the agents are capable of 

deactivating into IFibs within the model, however the stimulation threshold which controls 

this state transition is set at such a low level that AFibs do not deactivate beyond the first 

few steps to mimic fibroblasts becoming fully attached to and stimulated by the non-

physiologic stiffness of the tissue culture plastic to which they’re attached after 6-8 hours 

in culture. These initial agents are generated with a population (Pop_t00) equal to the 

seeding density used in vitro (Pop_t00 = 400,000 cells/well = 416.67 cells/mm2). The 

precondition procedure runs the model a number of steps equivalent to the in vitro time 

interval between the seeding and the scratching of wells during a scratch assay 

(Time_seed-scratch = 8 hours) using the parameter-set calibrated to in vitro data for NHLF 

treated with FGM (Table 4.1). This step is necessary to initialize their spatial distribution, 

stimulation levels stim(N), division counters D(F,N), and replicative senescence counters 

TSENESCE(F,N). At the end of the precondition step, parameter values are switched to the 

parameter-set associated with the scratch closure response, and the associated agent 

variables governing stimulation sensitivity (Z(N)) and division interval (D(F,N)) are averaged 
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together to represent an agent’s memory of past exposures and prevent artifact shifts in the 

agent states. 

 

Scratch Implementation & Closure Measurement 

To model the scratch, all agents within the defined Scratch Region are removed to 

simulate a monolayer of fibroblasts being scratched in vitro. Dead agents are also removed 

regardless of their location to simulate the in vitro post-scratch wash step, adjusted such 

that 8.05% of the resulting agent population consists of DFibs to mimic the percentage of 

dead cells found in vitro 0 hours after the scratch. The Scratch Region extends vertically 

down the model world, centered on the y-axis, and its ratio of patches within the model 

world is equivalent to the in vitro ratio of scratched to non-scratched areas within a square-

cropped image centered on the scratch. This is shown in the bottom row of Figure 3.1. 

Every patch possesses two variables accounting for the relative coverage of 

neighboring patches by agents, termed “Void Scores,” that are used to measure the current 

cell coverage of the Scratch Region (Healed Region) and model the in vitro contact 

inhibition of migrating and proliferating fibroblasts (i.e. Rules #1 & #2 detailed below; 

also illustrated in Figure 3.2). Each time step, each patch (XY) calculates the Primary Void 

Score (V1(XY)) as the averaged count of patches within its Moore neighborhood, e.g. the 

bold-edged patches in Figure 3.2), not including itself, that are devoid of any live fibroblast 

agents. Then the model calculates a Secondary Void Score (V2(XY)) as the average V1(XY) of 

the same neighboring patches. Any patch within the Scratch Region with a V1(XY) or V2(XY) 

less than 0.5 is considered to contain a fibroblast and is included as part of the Healed 
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Region (e.g. the green-filled patches in Figure 3.2).The percentage of the scratch region 

which is also part of the healed region (%Healed) is used as an output parameter for 

comparison to percentage healed data from in vitro scratch assays.  

 

 
Figure 3.1 – Representative simulation of fibroblast agents closing a scratch. Time-points 

are shown during the pre-scratch and post-scratch intervals when agents are initially seeded 

(top left), one step after seeding (top middle), immediately prior to being scratched after 8 

hours of growth (top right), and after being scratched for 0, 12 or 24 simulated hours 

(bottom row). Unscratched patches are colored black, Scratched patches are grey, Healed 

patches are lime green, and Unhealed Edge patches are light grey. IFibs are displayed as 

yellow triangles, AFibs as teal squares, MFibs as green clovers, and SFibs as dark green 

circles. All agents are modeled to scale as circles but not displayed as such. 

 

T = seed T = seed + 1 T = pre-scratch 

T = scratch + 0 T = scratch + 12 T = scratch + 24 



33 

 The length of the border between the Healed Region and the rest of the Scratch 

Region, relative to its length when the scratch was created (Relative Unhealed Edge 

Length), is used to quantify the amount of disorder in the fibroblasts’ invasion of the 

scratch region. The relative unhealed edge length is also used as an output parameter for 

comparison to relative scratch edge length data from in vitro scratch assays; however this 

was not used to calibrate parameter-sets of the model.  

 

 
Figure 3.2 – Patch diagram displaying how Void Scores are calculated and used. This 

method measures the Healed Region and guides the navigation of circular fibroblast agents 

as described in Rule #1. The bold-outlined patches represent the Moore’s neighborhood for 

the fibroblast agent in the center; the whole number within each patch is the patch’s V1(XY) 

score while the value in parenthesis is its V2(XY) score.  
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Model Rules  

 The dynamics of fibroblast migration, proliferation, senescence, myofibroblast 

activation and death within the model presented are controlled by the following rules. 

These are implemented each time step to generate scratch closure as seen in Figure 3.1. 

 

Rule #1a: A non-senescent fibroblast having any neighboring patches with a V2(XY) above 

0.5 will migrate M(F) distance towards the neighboring patch with the greatest V2(XY) with a 

standard deviation of 15°.  

 

This mechanism of agent navigation is intended to mimic the migratory contact 

inhibition exhibited by non-senescent fibroblasts in vitro, whereby those which come into 

contact tend to migrate away from each other 87–90. In contrast, senescent fibroblasts have 

been reported to lose this contact inhibition 63,124. Directional migration is reported to be 

dependent upon phosphorylation of calveolin-1 to inhibit Rho signaling and increase 

activity of Rac1 and Cdc42 to reorient the actomyosin machinery polarization 125. 

Additionally, caveolin-1 is required for α5β1-integrin endocytosis crucial for migration 126. 

Since senescent cells exhibit upregulated caveolin-1 along with high activation of Rac1 

and Cdc42 127–129, that’s reversible along with the senescent phenotype when Caveolin-1 

status is decreased 129, we model senescent cell migration with a random walk. 

 

Rule #1b: A senescent fibroblast migrates M(S) distance in a random direction, regardless 

of its patch neighbors’ Void Scores.  
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Rule #2a: A non-senescent fibroblast may divide after growing for D(F,N) hours, if and only 

if a patch in the Moore neighborhood of the patch beneath it has a V2(XY) score above 0.5.  

D(F,N) is randomly generated for each agent when it is introduced to the model world and 

each time it divides from a normal distribution with a mean of TDIVIDE, adjusted for each 

agent state F (see Figure 3.3), with a standard deviation of one third this value. 

 

Rule#2b: Senescent cells do not divide. This is the definition of senescence 35,40,64,130,131. 

 

Both daughter cells inherit the parent cell’s stim(N) level to model the even splitting 

of cellular contents between daughter cells that conserves the parent cell’s proportions of 

receptors to ligands. Daughter cells also maintain the parent cell’s activity state and 

TSENESCE counter value (see Rule #3) to model the conservation of their parent cell’s 

expression profile and division history (i.e. telomere length), respectively. One daughter 

cell remains on the patch below the parent cell, while the other moves into the patch with 

the greatest V2(XY) in its neighborhood. This method of cell division is intended to model 

the contact inhibition of proliferation among cells in vitro – whereby a population’s rate of 

division decreases in proportion to increasing population density 93,94,100,132 and “new” cells 

are preferentially added within the plane of the monolayer, rather than atop or beneath the 

“parent” cells 103. All agents have their D(F,N) value reassigned at the time of the scratch 

and averaged with its pre-scratch value to model a cell’s memory of previous exposures 

within a two-hit exposure system. 
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Rule #3: A non-senescent fibroblast becomes senescent after TSENESCE time steps, where 

TSENESCE is stochastically assigned to agents during model initialization from a normal 

distribution with a mean of 40 * D(F) and a standard deviation of 40 * TDIVIDE / 3. This 

counter models the replication induced senescence reported to occur in all cells after 50±10 

population doublings, known as the Hayflick limit 63,124; however we limited agents to 40 

divisions to account for presumably shorter telomeres among our cells, derived from an 

adult population, versus the embryological cells used by Hayflick. 

 

 
Figure 3.3 – Flow diagram of fibroblast agent states, characteristics and associated rules. 

Each fibroblast phenotype (F) has characteristic values describing each state’s size (S(F)), 

migration rate (M(F)), mean division interval (D(F)), and death resistance (R(F)). The 

corresponding rate or probability regarding proliferation (Rule #2; black), replicative 

senescence (Rule #3; purple), cell death (Rule #5; blue) and stimulation-induced state 

transitions (Rules #6-9; green-red gradient) are described in the text; color-legend 

regarding Rules #5-9 correlate with Figure 3.4.  
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Rule #4: Each time step, every agent increases their internal level of stimulation, stim(N), 

by the product of their sensitivity to stimulation (Z(N)) and the magnitude of environmental 

stimuli (μSTIM). Agents are assigned a sensitivity to stimulation Z(N) from a normal 

distribution with a mean of 1 and standard deviation of σSTIM, and this Z(N) value is 

preserved among daughter cells when a fibroblast divides. All agents have their Z(N) value 

reassigned at the time of the scratch and averaged with its pre-scratch value to model a 

cell’s memory of previous exposures within a two-hit exposure system. The stim(N) level 

for each fibroblast represents the sum of activity among all intracellular signaling pathways 

that can induce activation, senescence, or apoptosis (e.g. NOX4, SMADs, p21, p16, p53, 

etc.). The μSTIM parameter represents the magnitude of the sum of all stimuli within the in 

vitro environment that can induce fibroblast activation and senescence (e.g. substrate 

stiffness, CSC, ROS, FGFβ, TGFβ, PGE2); whereas the σSTIM parameter represents the 

variation in sensitivity to these stimuli among individual cells in a population to model a 

heterogeneous response to stimuli among the cell population and prevent all of the agents 

from transitioning simultaneously.  
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Figure 3.4 – Plot of the probabilities governing agent transitions between states. Each 

agent’s transition probabilities (colored lines) depend upon their stim(N) and the 

population’s transition thresholds (horizontal black bars); representing the mean values 

associated with a 50% probability for each state transition (L(F); black bars). Fibroblasts 

continually increase their stim(N) (Rule#4), which directly and linearly increase their 

probability for each state transition (Rules #5-9). Both L(M) and L(S) (bars with arrows) 

serve as parameters that directly control the transition probabilities and subpopulations of 

myofibroblasts and senescent cells, respectively. Color-codes for each transition 

probability are consistent with Figure 3.3. 

 

Rule #5: Each time step, all living agents have a P D(F,N) probability of death due to stimuli, 

such that: 

𝑃𝐷(𝐹,𝑁) =
𝑠𝑡𝑖𝑚(𝑁)

2𝐿𝐷𝑅(𝐹)
 

 

where R(F) represents the resistance to apoptosis for each fibroblast state or phenotype, F. 

The damage level at which a fibroblast is 50% likely to die (LD) is arbitrarily set to 1 stim 

in order to give the stimulation parameters a reference value. The line associated with this 

probability is plotted in Figure 3.4 in yellow.   
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Rule #6: Each time step, all inactive agents have a PA(N) probability of activation, such 

that: 

𝑃𝐴(𝑁) =
𝑠𝑡𝑖𝑚(𝑁)

2𝐿𝐴
 

 

Rule #7: Each time step, all active agents have a P-A(N) probability of deactivation, such 

that: 

𝑃−𝐴(𝑁) =
2𝐿𝐴 − 𝑠𝑡𝑖𝑚(𝑁)

2𝐿−𝐴
= 1 −

𝑠𝑡𝑖𝑚(𝑁)

2𝐿𝐴
 

 

The stimulation limits for governing an agent’s transition to an activated or 

inactivated state, LA or L-A, respectively, are set equal to each other in order to allow an 

AFib the chance to transition back into an IFib if their stim(N) level is low enough. These 

shared stimulation limits for activation represent the average stim(N) level at which 

fibroblasts are 50% likely to be inactivated or activated. This functionality is designed to 

model fibroblasts’ tendency to remain inactivated in the absence of stimuli along with their 

ability to deactivate once activated if their internal level of stimulation is resolved.  

 

Rule #8: Each time step, all active agents have a PM(N) probability of becoming 

myofibroblasts, such that: 

𝑃𝑀(𝑁) =
𝑠𝑡𝑖𝑚(𝑁) − 𝐿𝐴

2(𝐿𝑀 − 𝐿𝐴)
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where the model parameter LM is the stim limit representing the average stim(N) level at 

which an activated fibroblast is 50% likely to become an αSMA-expressing myofibroblast.  

 

Rule #9: Each time step, all active agents have a PS(N) probability of becoming senescent 

due to stimuli, such that: 

𝑃𝑆(𝑁) =
𝑠𝑡𝑖𝑚(𝑁) − 𝐿𝐴

2(𝐿𝑆 − 𝐿𝐴)
 

 

where the model parameter LS is the stim limit representing the average stim(N) level at 

which an activated fibroblast or myofibroblast is 50% likely to become senescent. 

 

The effect of these LF given in Rules #5-9 is such that a histogram of the fibroblast 

population’s stim(N) levels superimposed upon Figure 4 produces a skewed bell curve of 

stim levels traveling to the right of this graph with respect to time, causing progressively 

more agents to become AFibs, then MFibs, SFibs or dead agents.  
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Results 

 

Metabolic Response 

To increase the physiological relevance of our model and facilitate the 

incorporation of an epithelial layer within future iterations, we wished to use a dosage of 

CSC which would allow us to view an effect in both lung fibroblast and epithelial cells 

without killing too many cells. Previous studies have tested the effects of CSC in both 

fibroblasts and epithelial cells with dosages ranging from below 1 µg/ml 133,134 to over 1 

mg/ml 135; however to our knowledge it had not been tested on NHLF or DHLF in vitro. 

To evaluate the effect of CSC on NHLF metabolism and screen for dosage to use with the 

rest of our experiments, we performed MTT assays and chose 50 µg/ml (0.125% v/v) CSC 

for all future experiments since this dosage produced the largest increase in cell 

metabolism without inducing cell death (data not shown). On a log scale, this dosage sits at 

the midpoint of dosages evaluated across both cell types in the literature and corresponds 

with values tested among both fibroblasts 15 and epithelial cells 136–138. However, this was 

the lowest dosage used on lung fibroblasts in the literature 15,33,66,135,139. This dosage was 

diluted within serum-free FBM and termed cigarette smoke media (CSM). To evaluate the 

effect of each of our treatment medias on NHLF metabolism and ensure that the effect of 

CSM was not due to its DMSO content, we performed a CCK8 assay (Figure 4.1). Overall, 

metabolic changes were modest; yet a statistically significant difference was found 
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between FGM and CSM at 24 hours. Given the absence of statistical differences between 

CSM and either of its vehicle controls, we concluded CSM was not mimicking DMSO 

exposure. 
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Figure 4.1 – Metabolic responses of normal human lung fibroblasts exposed to either 

FGM, FBM, CSM or 0.125% DMSO over 24 hours. Data is shown as the mean ± SD of 

sextuplicate wells. Significant statistical differences are noted with * where p<0.05. 

Within-group comparisons with baseline (time = 0) are indicated above the error bar and 

between-group comparisons within each time-point are indicated with a horizontal line. 
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Scratch Wound Closure 

 To evaluate the wound healing response of lung fibroblasts in vitro, NHLF and 

DHLF were grown to a confluent monolayer then scratched to mimic a tissue injury and 

observed as the cells invaded and re-covered the denuded region over 24 hours (Figure 

4.2). In general, fibroblasts made statistically significant progress after 12 hours in all 

conditions except for DHLF treated with CSM. NHLF under all conditions also made 

statistically significant progress between 12 and 24 hours post-scratch, however DHLF’s 

progress was less significant. NHLF treated with FGM often achieved 90% closure after 

24 hours; however, at all time-points this rate of healing was significantly impaired when 

fibroblasts were deprived of serum, exposed to CSM, and/or derived from COPD patients. 

A significant difference was also found between FBM and CSM exposures after 24 hours 

among NHLF, but not DHLF, indicating that DHLF could be resistant to 50 µg/ml CSC 

(Figure 4.3). 
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Figure 4.2 – Phase contrast images of NHLF and DHLF closing a scratched monolayer 

over 24 hours while exposed to either FGM, FBM or CSM in vitro. Scale bar = 200 µm. 
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Figure 4.3 – In vitro scratch closure data of NHLF or DHLF monolayers exposed to FGM, 

FBM or CSM over 24 hours. Data is expressed as the percentage of the initial scratched 

area re-covered by cells (%Healed); shown as the mean ± SEM of N ≥ 4 biological repeats. 

Significant statistical differences are noted with * where p<0.005, *** where p<0.005 and 

**** where p<0.0001. Between-group comparisons within each time-point are indicated 

with a horizontal line. 

 

The calibrated parameter-sets were found to fit within two standard deviations of 

the in vitro mean scratch closure at every time-point measured, even though the model was 

not being evaluated with the 4 hour time-point (Figure 4.4). The parameter-sets also fit 

within one standard deviation of the mean at most time-points for most groups (data not 

shown); such was the case for NHLF treated with FBM or CSM at all time-points – as well 

as NHLF treated with FGM, or DHLF treated with FBM, at all time-points after 8 hours. 
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Figure 4.4 – Simulated transients and in vitro scratch closure data of NHLF and DHLF. 

Shown are NHLF (circles, left column; N = 3-11) or DHLF (stars, right column; N = 1-4) 

responses to FGM (green), FBM (blue) or CSM (red) while closing a scratched monolayer 

over 24 hours; expressed as the percentage of the initial scratched area re-covered by cells 

(%Healed). In vitro data (markers with error bars) is shown as mean ± 2SD of N biological 

repeats. Simulated transients were calculated by taking the mean and standard deviation of 

10 simulations using the same initial conditions and parameter-set calibrated for each cell 

type and media exposure (Table 4.1); means are plotted with a solid curve and standard 

deviations are depicted by a shaded region around the mean curves. 
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Total Population 

 

 To evaluate NHLF proliferation during a scratch assay with each treatment in vitro 

and generate a dataset representing cell population to fit against the model, the total cell 

population measured in each in vitro cell stain assay was pooled together after first being 

normalized. The average cell count data was first normalized by (1677 µm)2 to account for 

differences in cell count between the different areas measured by the two cameras and the 

model area, then this was normalized to the baseline cell density at the start of either the 

pre-scratch or post-scratch interval to account for differences between the in vitro seeding 

densities for the scratch assays and stain assays.  

Overall, changes in the cell density data were modest over the 24 hours post-

scratch, with only NHLF treated with FGM showing a significant difference from baseline 

after 24 hours, at which point it was also significantly different from the other treatments 

(Figure 4.5). There was a large amount of error within this dataset that may have masked 

other differences being revealed, and this may have also undercut its use as a dataset to fit 

the model against. The calibrated parameter-set for NHLF treated with FGM was able to fit 

the in vitro data within one standard deviation of the mean in both the pre-scratch and post-

scratch intervals until 24 hours post-scratch, which still fell within two standard deviations. 

The other calibrated parameter-sets fit within one standard deviation of their in vitro means 

(Figure 4.6). 
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Figure 4.5 – In vitro cell density among NHLF exposed to FGM, FBM or CSM while 

closing a scratched monolayer over 24 hours. Data is expressed as the number of cells per 

(1677 µm)2; shown as the mean ± SD of three independent assays normalized to baseline. 

Significant statistical differences are noted with * where p<0.05 and **** where p<0.001. 

Within-group comparisons with baseline (time = 0) are indicated above the error bar and 

between-group comparisons within each time-point are indicated with a horizontal line. 

 

 

Cell Death & Viable Subpopulation 

 To determine the percentage of cell death among NHLF during a scratch assay with 

each treatment in vitro and generate datasets to fit the model against, cell monolayers were 

scratched and subsequently stained with fluorescent dyes to mark live and dead cells 

(Figure 4.7). Surprisingly, the ratio of dead cells significantly decreased from baseline after 

only 12 hours post-scratch in all conditions, at which point the percentage of cell death was 

below 5% of the population and showed no differences between treatments (Figure 4.8). 
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Figure 4.6 – Simulated transients and in vitro cell density data among NHLF. Shown are 

responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch interval 

(top left plot) or while closing a scratched monolayer over 24 hours (top right and bottom 

plots); expressed as the number of cells per (1677 µm)2. In vitro data (markers with error 

bars) is normalized to baseline and shown as the mean ± 2SD of 3 independent 

experiments. Simulated transients were calculated by taking the mean and standard 

deviation of 10 simulations using the same initial conditions and parameter-set calibrated 

for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and 

standard deviations are depicted by a shaded region around the mean curves. 

 

  Due to the negligibly low percentage of cell death, inability of the model to fit this 

viability data along with the proliferation data (not shown), and lack of a direct method to 

reduce the percentage of dead cells, this data was excluded as a calibration-set for the 

model. 
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Figure 4.7 – Fluorescent stain of live (green) and dead (red) NHLF exposed to FGM, FBM 

or CSM while closing a scratched monolayer over 24 hours in vitro. Scale bar = 200 µm. 

 

Senescent Subpopulation 

 To determine the percentage of cell senescence among NHLF during a scratch 

assay with each treatment in vitro and generate datasets to fit the model against, cell 

monolayers were scratched and subsequently stained with chromogenic SA-β-Gal and 

fluorescent DAPI to mark senescent cells among all the cell nuclei (Figure 4.9). As 

expected, the ratio of senescent cells increased over the first 12 hours post-scratch; 

however we were surprised to find the percentage returned to baseline levels over the 

following 12 hours. After 12 hours, the percentage of senescence was significantly 

increased over 2.5 among NHLF treated with FGM and nearly 2-fold with FBM treatment, 
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but showed no change with respect to baseline when treated with CSM. However, 

treatment with CSM did show more error in the data, potentially indicating a masked effect 

that may be uncovered with repeated experiments. This was reflected in the statistically 

significant differences found between FGM and both other treatments at 12 hours post-

scratch when no difference was found between FBM and CSM treatments (Figure 4.10).  
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Figure 4.8 – In vitro percentage of dead cells among NHLF exposed to either FGM, FBM 

or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the 

percentage of dead cells among all living and dead cells; shown as the mean ± SD of 

quadruplicate wells. Significant statistical differences with all other groups are noted above 

the error bar with *** where p<0.0005. 
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Figure 4.9 – Superimposed channels of chromogenic SA-β-Gal (cyan) and fluorescent 

DAPI (magenta) stained NHLF exposed to FGM, FBM or CSM while closing a scratched 

monolayer over 24 hours in vitro. Scale bar = 200 µm. 

 

 Due to the lack of evidence in the literature supporting reversible senescence and 

the inability of the model to decrease the level of senescence outside of cell death (shown 

above to be negligible), the 24 hour time-point was excluded from the dataset used to 

calibrate the model. The calibrated parameter-set for NHLF treated with FGM was able to 

fit the in vitro data within one standard deviation of the mean except for the 8 hour time-

point in the pre-scratch interval, which still fell within two standard deviations. The 

calibrated parameter-sets for NHLF fit within one standard deviation of the in vitro means 

for CSM treatment, but only fit within two standard deviations for FBM treatment, in part 

due to the relatively large error within the in vitro data for CSM treatment (Figure 4.11). 

0 HR 12 HR 24 HR 

 FGM 

FBM 

CSM 

N
H

L
F

 



53 

**

0
1
2

2
4

0

2 0

4 0

6 0

S A -B -G a l +  D A P I S ta in  R e s u lts :

S e n e s c e n t  F ra c t io n

T im e  (h o u rs )

%
 B

lu
e

 C
e

ll
s

F G M F B M C S C

****

**

****

 
Figure 4.10 – In vitro percentage of senescent cells among NHLF exposed to either FGM, 

FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the 

percentage of SA-β-Gal stained cytoplasms among DAPI stained nuclei; shown as the 

mean ± SD of quadruplicate wells. Significant statistical differences are noted with ** 

where p<0.01 and **** where p<0.001. Within-group comparisons with baseline (time = 

0) are indicated above the error bar and between-group comparisons within each time-point 

are indicated with a horizontal line. 

 

Myofibroblast Subpopulation 

To determine the percentage of myofibroblasts among NHLF during a scratch 

assay with each treatment in vitro and generate datasets to fit the model against, cell 

monolayers were scratched and subsequently stained with fluorescent anti-αSMA 

immunocytochemistry and DAPI to mark myofibroblast cytoskeletons among all cell 

nuclei (Figure 4.12). The percentage of myofibroblasts remained consistent with baseline 

at 10-20% when treated with FGM or FBM over 24 hours, however CSM treatment was 
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found to induce a statistically-significant, approximately 3-fold increase of myofibroblasts 

that returned to baseline by 24 hours (Figure 4.13). 

 

Figure 4.11 – Simulated transients and in vitro senescence data among NHLF. Shown are 

responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch interval 

(top left plot) or while closing a scratched monolayer over 24 hours (top right and bottom 

plots). In vitro data (markers with error bars) is shown as the mean ± 2SD of quadruplicate 

wells. Simulated transients were calculated by taking the mean and standard deviation of 

10 simulations using the same initial conditions and parameter-set calibrated for each cell 

type and media exposure (Table 4.1); means are plotted with a solid curve and standard 

deviations are depicted by a shaded region around the mean curves. 

 

 The calibrated parameter-set for NHLF treated with FGM was able to fit the in 

vitro data within two standard deviation of the mean percentage of myofibroblasts in both 

the pre-scratch and post-scratch intervals at all time-points, even falling within one 
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standard deviation after 12 and 24 hours post-scratch. The other calibrated parameter-sets 

fit within two standard deviations of their in vitro means, except for the 12 hour post-

scratch time-point for FBM parameter-set (Figure 4.14).  

 

 

Figure 4.12 – Superimposed fluorescent channels of αSMA (red) and DAPI (blue) stained 

NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours 

in vitro. Scale bar = 200 µm. 

 

 Among the parameter-sets screened, parameter-sets which fit the 12 hour time-

point of the FBM in vitro data were not also able to fit the 24 hour time-point because the 

transients that fit either time-point took opposing trajectories that excluded the other. All of 

the transients initialize with approximately 15% myofibroblasts due the preconditioning 

step and the overall trend of the in vitro data for FBM treatment had a downward 
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trajectory, so the calibrated parameter-set for FBM was chosen from parameter-sets which 

fit the 24 hour time-point with a downward trajectory as opposed to the 12 hour time-point 

with an upward trajectory (Figure 4.14). 

 

0
1
2

2
4

0

2 0

4 0

6 0

8 0

1 0 0

 S M A  +  D A P I S ta in  R e s u lts :

M y o f ib ro b la s t  F ra c t io n

T im e  (h o u rs )

%
 C

o
lo

c
a

li
z

a
ti

o
n

s

F G M F B M C S C

****

****

****

 
Figure 4.13 – In vitro percentage of myofibroblasts among NHLF exposed to either FGM, 

FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the 

percentage of DAPI-stained nuclei co-localized with αSMA-stained cytoskeletons among 

all DAPI-stained nuclei and shown as the mean ± SD of quadruplicate wells. Significant 

statistical differences are noted with **** where p<0.001. Within-group comparisons with 

baseline (time = 0) are indicated above the error bar and between-group comparisons 

within each time-point are indicated with a horizontal line. 

 

Superimposed Subpopulations 

Taken all together, our evaluation of NHLF subpopulations show a spike in either 

myofibroblasts and/or senescent cells that returns to baseline or below by 24 hours, and that 
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the overarching difference between treatment groups are represented by the magnitude and 

relative composition of this spike. Cell death primarily occurred peri-scratch, ostensibly due 

to the scratch itself, and was otherwise negligible. Cell proliferation was also found to be 

negligible over 24 hours, with the exception of FGM treatment at the end of the 24 hour 

period evaluated.  

 

Figure 4.14 – Simulated transients and in vitro myofibroblast data among NHLF. Shown 

are responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch 

interval (top left plot) while closing a scratched monolayer over 24 hours (top right and 

bottom plots). In vitro data (markers with error bars) is shown as the mean ± 2SD of 

quadruplicate wells. Simulated transients were calculated by taking the mean and standard 

deviation of 10 simulations using the same initial conditions and parameter-set calibrated 

for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and 

standard deviations are depicted by a shaded region around the mean curves. 
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Figure 4.15 – Superimposed percentages of myofibroblasts, senescent cells and dead cells 

among NHLF exposed to FGM, FBM or CSM during scratch closure. Data is expressed as 

the mean ± SD of quadruplicate wells.  

 

At baseline, approximately 40% of cells were either myofibroblasts or senescent. 

While FGM and CSM treatments returned to this level by 24 hours, treatment with FBM 

decreased to approximately 30% myofibroblasts or senescent cells. During the spike in 

subpopulations found 12 hours post-scratch, FBM treatment subtly increased the 

percentage of senescence and myofibroblasts to approximately 50% of cells with a 

significant increase in the percentage of senescent cells (Figure 4.10) paired with an 

insignificant decrease in the myofibroblast percentage. However, treatment with either 
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FGM or CSM increased the baseline percentage of myofibroblasts and senescent cells 

approximately 2-fold during this 12 hour spike. We also found that while FGM treatment 

achieves this through an increase in the senescent subpopulation with negligible change in 

myofibroblasts, CSM treatment achieves this through an increase of myofibroblasts with 

minor changes in the senescent subpopulation (Figure 4.15). 

 

Calibrated Parameter-Sets 

The fibroblast wound healing model was evaluated through the analysis of 3000 

distinct parameter-sets which produced a pattern of parameter-sets that fit the in vitro data 

for total population, percentage of myofibroblasts and percentage of senescent cells, but 

not scratch closure. Analysis of a further 100 parameter-sets with varied migration and 

proliferation rates found 50 parameter-sets that fit within two standard deviation of all the 

in vitro data for NHLF treated with FGM in both pre-scratch and post-scratch intervals, 

however only one of these fit most of the in vitro data within one standard deviation when 

evaluated with 10 simulations per parameter-set (data not shown). Therefore, this 

parameter-set was chosen to represent NHLF treated with FGM and used to calibrate the 

pre-scratch interval of the model by preconditioning the agents’ variables since all of the in 

vitro scratch assays the model is fit against were incubated in FGM during the seed-scratch 

interval. These are the parameters that govern the preconditioning of agent subpopulations, 

stimulation levels and division rates during the pre-scratch interval. Another 256 

parameter-sets were subsequently evaluated to find fits for the remaining experimental 

groups (Table 4.1). All of the calibrated parameter-sets were found to share the same 
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values for the magnitude of environmental stimulation (AM = 2*10-4 stim/hour) and 

distribution of the fibroblast population’s sensitivity to stimuli (AS = 0.3). The parameter-

sets that fit the in vitro data for NHLF treated with CSM also shared the same stimulation 

thresholds for myofibroblast and senescent transitions (LM = 0.5 and LS = 0.3) as DHLF in 

either condition. 

 

Table 4.1 – Calibrated Parameter-Sets of the Fibroblast Responses. 

Parameter 
NHLF DHLF 

FGM FBM CSM FBM CSM 

M 65 24 16 12 12 

P 27 24 30 42 42 

Ls 0.1 0.17 0.3 0.3 0.3 

Lm 0.06 0.58 0.5 0.5 0.5 

Am 2.00E-04 

As 0.3 

Table 4.1 caption – Calibrated parameter-sets which fit the in vitro responses of NHLF and 

DHLF exposed to FGM, FBM, or CSM while closing a scratched monolayer over 24 

hours. Simulated outputs were calculated by taking the mean and standard deviation of 10 

simulations with the same initial conditions for each parameter-set. Simulated means 

within two standard deviations of the in vitro mean were considered a fit for that output. 

 

Overall, it was found that the experimental groups with slower scratch closure rates 

had lower values of M, and higher values of P, LM and LS. In particular, lower ratios of 

parameters M:P reliably produced slower closure rates. As expected from the model 

design, lower values of LM were associated with more myofibroblasts, lower values of LS 
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were associated with more senescent cells, and lower ratios of LM:LS were associated with 

a sharper spike in the percentage of myofibroblasts (Figures 4.11 & 4.14). 

 

Parameter Sensitivity Analysis 

 To evaluate the sensitivity of parameter modulations around each calibrated 

parameter-set on the model outputs, we independently modulated each parameter by +/-

10% and calculated the percentage difference in each model output. As seen in Table 4.2, 

up to 2 or 3-fold change in model outputs per unit change in model parameters could be 

achieved for scratch closure, the percentage of senescent cells, and the percentage of 

myofibroblasts. Sensitivity analysis results for other outputs are shown in Appendix C. 

Notably, model responses were largely insensitive to modulations in the stimulation 

parameters AM or AS within any of the calibrated-sets, with adjustments in the model 

responses largely following the overall trend of adjustments due to modulations in the 

other parameters. 

As expected due to the low probability of death due to stimulation within the 

model, modulating the parameters had minimal effect on the percentage of dead cells, with 

a maximum increase of 7% cell death when the proliferation interval was increased with 

the calibrated-set for NHLF treated with FGM. The large majority of parameter 

modulations increased cell death, and this effect decreased among sets with slower scratch 

closure rates. Increasing the division interval or decreasing the migration rate generated the 

largest increase in cell death among all of the calibrated-sets, and this was almost always 

associated with a concomitant decrease in the total population.  
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Also as expected due to the relatively short time interval evaluated with respect to 

the division intervals (parameter P) for these parameter-sets, modulating the parameters 

produced ≤ 12.5% difference from the calibrated-sets’ total populations among all of the 

calibrated-sets’ parameter modulations. However it was somewhat surprising to find that 

most parameter modulations had a negative effect on the cell population, with the largest 

increase of 5.1% more cells after 24 hours among the DHLF parameter-set attributed to 

increasing the senescence threshold (Appendix C), which decreases the rate of senescence 

within the model. 

 As expected from the model design and calibrated parameter-sets, increasing the 

parameters for migration rate increased the scratch closure rate more than any other 

parameter alone. As expected due to the robust healing response of NHLF treated with 

FGM, differences in scratch closure due to parameter modulations within this calibrated-

set skewed negative; and those differences among calibrated-sets associated with lower 

rates of scratch closure skewed increasingly positive. Many of the parameter modulations 

were also found to produce differences in scratch closure 12 hours post-scratch that were 

partially lost by 24 hours. 

In general, the percentage of senescent cells and myofibroblasts were found to 

increase more, or decrease less, with lower values of LS and LM, respectively; although 

lower values of LS were also consistently correlated with a decrease in myofibroblasts. 

Further illustrating the interdependence of these subpopulations within the model, 

modulations in the calibrated-sets’ parameters that decreased the percentage of senescent 

cells generally also increased the percentage of myofibroblasts and vice versa. Strikingly, 
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modulations of any parameter in either direction within the calibrated parameter-set for 

NHLF treated with FBM increased the senescent population by 20-30% at both 12 and 24 

hours post-scratch while the myofibroblasts lost 0-10% and 15-25% of their population 

after 12 and 24 hours, respectively. This also illustrates clearly how a spike in the 

percentage of myofibroblasts can be created by adjusting the parameters such that more 

myofibroblasts are formed at earlier time-points which subsequently become senescent by 

the end of 24 hours (e.g. necessary to fit the calibrated-set for NHLF treated with FGM; 

Figure 4.14), and how this effect can be used to adjust the time dynamics of the scratch 

closure rates in a nonlinear manner. 

 Among the calibrated parameter-sets, NHLF treated with FGM was the least 

sensitive to modulations in the parameters and showed a generally negative skew in the 

scratch closure output accompanied with a proportionate boost in the percentage of 

senescent cells and a flatter spike in the percentage of myofibroblasts 12 hours post-

scratch. The calibrated-set for NHLF with FBM also produced modest modulations in the 

scratch closure rate, but these showed a consistent time-dynamic; parameter modulations 

around this set typically increased scratch closure by 12 hours post-scratch, but this boost 

was lost or reversed by 24 hours. As stated earlier, this mild boom-bust response in the 

scratch closure rate due to parameter modulations was also accompanied with a large static 

boost in the percentage of senescent cells along with a decrease in the percentage of 

myofibroblasts that intensified with time. Taking into consideration the inability of the 

calibrated-set for NHLF with FBM to fit both the 12 and 24 hour time-points of the in vitro 

data for the percentage of myofibroblasts (Figure 4.14), the negative skew in the model’s 
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myofibroblasts output indicates that up to ±10% modulation in any parameter would not be 

able to fit this 12 hour time-point, all due to the same downward trend in myofibroblasts. 

 The calibrated-sets for either NHLF treated with CSM or DHLF were much more 

sensitive to changes in the parameters, with the most drastic boost on the scratch closure 

output being produced by increases in the migration parameter. Interestingly, the 

calibrated-set for DHLF was found to be insensitive to the proliferation and transition limit 

parameters while the calibrated-set for NHLF treated with CSC was found to be relatively 

sensitive to these terms, despite these sets sharing the same values of LM and LS. This 

illustrates how the values of some parameters (e.g. M, P) can influence the sensitivity of 

the model outputs to the other parameters (e.g. LM, LS). Additionally, it was found that the 

ratio of these parameters were as important as their raw values to find parameter-sets 

whose outputs matched a given dataset; where the ratio of M:P had more of an effect on 

the scratch closure rate while the ratio of LM:LS had more of an effect on the subpopulation 

levels and nonlinearity of scratch closure. 

 

Simulated Treatments for Smoke Exposure & COPD Fibroblasts  

 Since the results of our sensitivity analysis indicated an increase in the migration 

rate would result in a faster rate of scratch closure among either cell line treated with CSM, 

we performed simulations of these calibrated-sets with up to 3-fold higher migration rates 

to represent potential treatments for these fibroblasts that could recover the scratch closure 

response of NHLF in FBM (Figure 4.16). Although modulating other parameters were 
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found to increase the scratch closure rate within the sensitivity analysis, intensifying these 

modulations failed to increase the closure rate further (data not shown). 

 

 
Figure 4.16 – Simulated treatments for NHLF and DHLF exposed to smoke. Transients of 

parameter modulations around the calibrated-set (red) for NHLF (top) or DHLF (bottom) 

treated with CSM that increase scratch closure (%Healed; brown-blue gradient). Transients 

are juxtaposed with in vitro scratch closure data of NHLF (N = 3-6) or DHLF (N = 1-4) 

exposed to CSM, shown as the mean ± 2SD of N biological repeats. Simulated transients 

were calculated by taking the mean and standard deviation of 10 simulations using the 

same parameter-set and initial conditions.  
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Table 4.2 – Heat-map of each calibrated-set’s sensitivity to parameter changes. 
Group Parameter 

Modulation 

%Healed %Senescent Cells %Myofibroblasts 
 12 HR 24 HR 12 HR 24 HR 12 HR 24 HR 

NHLF M + 0.4 0.8 2.4 1.0 -0.9 2.2 
FGM  - -6.6 -5.4 2.5 1.3 -1.6 -0.2 

 P + -1.8 -1.0 0.6 0.4 -1.0 1.3 

  - -3.3 -5.5 1.7 -0.2 0.5 5.3 

 LM + -3.1 -1.5 2.1 1.2 -4.3 -2.6 

  - -2.4 -3.3 1.3 1.2 2.8 3.4 

 LS + -2.6 0.5 -3.6 -3.7 3.4 16.1 

  - -2.9 -5.1 5.1 4.2 -2.6 -9.8 

 AM + 0.7 -3.1 4.9 3.1 -0.5 -4.6 

  - -7.3 -3.6 -0.1 -2.6 -3.5 9.9 

 AS + -0.3 -0.8 2.2 0.8 -0.4 2.9 

  - -3.1 -4.3 2.8 0.4 -2.4 2.2 

NHLF M + 8.8 0.9 21.7 22.9 -2.7 -19.9 
FBM  - -1.5 -9.1 23.5 25.0 -0.6 -20.2 

 P + 4.9 -1.5 24.7 26.0 -5.1 -21.7 

  - 7.6 2.4 24.9 25.2 -7.6 -24.9 

 LM + 2.1 -0.7 19.9 23.6 -8.4 -24.8 

  - 9.4 -2.8 25.6 25.9 -0.2 -16.9 

 LS + 6.8 -1.8 19.4 18.4 -0.9 -15.8 

  - 2.3 -5.1 28.6 30.9 -5.4 -26.6 

 AM + 3.6 -2.8 26.9 28.8 -5.8 -21.9 

  - 5.4 -0.1 21.6 19.3 -8.4 -18.8 

 AS + 1.1 -4.7 21.7 21.8 0.0 -18.5 

  - 6.7 -1.2 23.2 23.6 -8.8 -25.3 

NHLF M + 16.8 9.6 4.6 1.2 -5.9 -4.4 
CSM  - -3.7 -3.7 1.0 -0.5 -4.8 -2.4 

 P + 4.6 -0.1 4.8 1.8 -5.2 -4.6 

  - 9.4 8.4 -0.1 -1.5 -3.3 -1.1 

 LM + -1.6 -0.4 4.2 1.5 -9.8 -9.4 

  - 7.4 5.2 1.7 0.7 -3.3 -1.2 

 LS + 7.6 5.8 -4.9 -7.7 -3.7 -0.1 

  - 5.3 2.5 8.2 6.5 -5.1 -10.8 

 AM + 8.0 6.7 1.9 3.0 -1.6 -3.1 

  - 9.8 6.0 -1.1 -2.4 -6.1 -6.4 

 AS + 4.0 -0.5 0.8 0.1 -6.8 -4.5 

  - 9.0 0.3 -0.9 -1.5 0.0 1.8 

DHLF M + 19.5 11.9 -2.0 1.7 3.3 -1.3 
  - -2.7 -3.3 -2.2 1.1 -2.4 -1.8 

 P + 3.3 0.4 -0.8 -0.4 -2.7 -0.5 

  - 1.9 -0.3 -2.0 -0.4 2.0 4.9 

 LM + 3.7 1.5 -4.2 0.1 -2.6 -3.4 

  - -1.8 -5.6 1.2 2.8 2.7 6.0 

 LS + -1.0 2.6 -5.2 -5.0 2.0 8.5 

  - 4.7 1.9 -0.1 4.7 1.7 -1.6 

 AM + 2.0 5.1 -3.9 0.5 4.8 3.3 

  - 10.2 8.7 -6.0 -5.4 -1.2 3.7 

 AS + 3.5 -0.2 0.3 3.3 -1.7 -2.8 

  - 7.6 7.2 -3.0 0.7 2.0 1.6 
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Table 4.2 caption (previous page): sensitivity of model outputs to parameter modulations 

with respect to each calibrated parameter-set are expressed as the percentage difference 

from the calibrated parameter-set’s mean output when each parameter is independently 

modulated by ± 10%. Model outputs are shown for the percentage of scratch closure 

(%Healed) and the percentage of senescent cells or myofibroblasts after 12 or 24 hours. 

Parameter-set mean outputs were calculated from 10 simulations with the same 

conditions. A blue-red gradient was applied across all outputs and parameter 

modulations within each experimental group. 
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Discussion 

 

Differences among Normal Fibroblast Exposures 

 We selected a dosage of 50 µg/ml CSC within our CSM treatment media because 

dosages of 250 and 1000 µg/ml were found to cause 50-80% decrease in metabolism by 

MTT assay (N = 1-2; not shown), which we interpreted as cell death and aimed to avoid 

within our experiments in order to evaluate CSC’s effect on fibroblast functions, rather 

than its effect on apoptosis; and we confirmed a significant difference between NHLF 

treated with FGM versus CSM by CCK8 assay (Figure 4.1). However, considering that 

both of these assays depend on NADH/NAD metabolism and CSC is also known to induce 

oxidative stress associated with elevated NADH/NAD ratios, we had to confirm we were 

avoiding cell death using a non-metabolic assay.  

Our avoidance of large drops in metabolism is likely why we found ≤ 10% dead 

cells at any of the time-points we evaluated in our cell stain experiments; however it was 

surprising to find that the percentage of cell death decreased over time at a rate which we 

were unable to match with the model while also fitting the population data for NHLF 

treated with FGM (not shown), indicating that the percentage of dead cells in vitro were 

being decreased directly. Upon re-evaluating the literature to confirm this result, we found 

reports that fibroblasts participate in efferocytosis to clear dead cells and debris during 

wound closure as one of their many roles in tissue maintenance 140,141. Since our in vitro 
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data contained negligibly low levels of cell death, we simply left this out of our model; 

however, future iterations of the model that aim to evaluate fibroblast responses involving 

more cell death than this iteration should include a rule for this functionality to ensure this 

model output is relevant to in vitro measurements to which it’s fit.  

 While intriguing, any conclusions drawn from interpretations of this in vitro 

population data are unfortunately limited by the lack of biological repeats. Also, the 

senescence and myofibroblasts assays each suffered from limitations in their measurement 

that likewise limits the confidence in conclusions drawn from them. The SA-β-Gal assay 

used to evaluate the percentage of senescent cells can induce a false positive among 

quiescent cells, particularly fibroblasts in confluent monolayers such as those used within 

the scratch assays. Thus, the seeding density of all the cell stain experiments were lowered 

in order to minimize the probability of false positives within the senescence assay and 

perform these experiments with the same conditions to preserve the cells’ level of contact 

inhibition within the stain experiments; and this adjustment in the seeding density may 

have compromised our assessment of the subpopulations within the scratch closure 

experiments. Also analyzing the DAPI stain for senescence-associated heterochromatic 

foci could have served as a control against quiescent cells 130, however the large degree of 

background fluorescence within this stain limited our ability to do this analysis. The 

immunocytochemistry assay of αSMA expression also suffered from pervasive background 

fluorescence that limited the image contrast available for image processing, such that the 

percentage of myofibroblasts may have been systematically over-reported. These 

limitations are highlighted by our observation of less cell senescence following a spike in 
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senescence 12-hours post-scratch among NHLF treated with FGM; while anecdotal reports 

of reversible senescence exist 142, these have not yet passed peer review. As mentioned 

earlier, the model was not required to match a decrease in cell senescence at the 24 hour 

time-points for this reason. Despite any concerns regarding the accuracy of the in vitro 

subpopulation data, calibrated parameter-sets were able to match both the percentage of 

myofibroblasts and senescent cells along with scratch closure rates with few exceptions 

(Figure 4.14).  

Our scratch wound closure assays revealed that NHLF exposed to each media type 

produced a significantly different scratch closure rate from the others 24 hours post-

scratch, and each of these closure responses was characterized by a unique dynamic in the 

cell subpopulations that was supported by the calibrated parameter-sets for these groups.  

The relatively short time evaluated by the model with respect to these cell types mean 

division intervals (parameter P) limits our ability to find significant differences in this 

parameter between experimental groups. Additionally, we found that regardless of cell 

type of media exposure, all experimental groups were associated with calibrated-sets 

containing the same values for the parameters governing the magnitude of environmental 

stimulation (parameter AM) and heterogeneity of individual responses to a given type or 

level of stimulation among the population of fibroblast (parameter AS).  

With respect to the calibrated parameter-set for NHLF treated with FBM, treatment 

with FGM was associated with a 2.4-fold increase in migration rate paired with a 9.7-fold 

higher rate of myofibroblast activation compensated by a 1.7-fold higher rate of 

senescence. Despite the spike in senescence associated with negligible myofibroblast 
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increase that we found in vitro and matched in silico, this calibrated-set still indicates a 

drastic enhancement of migration and myofibroblast activation due to the inclusion of 

serum, bFGF and insulin to their media – which makes sense considering these ingredients 

are included in FGM to enhance fibroblast migration, proliferation and activation via the 

Wnt/β-catenin pathway 143 or Akt1, myocardin and serum response factor 144 . Notably, 

bFGF has also been found to deactivate myofibroblasts when stimulated by TGFβ, both 

mediated by Akt1 144, which supports our in vitro finding of mildly elevated 

myofibroblasts that returned to baseline over 24 hours. 

With respect to the calibrated parameter-set for NHLF treated with FBM, treatment 

with CSM was associated with a 33% drop in migration rate paired with a 16% higher rate 

of myofibroblast activation compensated by a 44% lower rate of senescence. This indicates 

an inhibition of NHLF migration rate independent to the loss in migration rate expected 

from the concomitant increase in myofibroblasts with less senescent cells; however, this 

calibrated-set was nearly 2 standard deviations from the mean of the in vitro data for the 

percentage of myofibroblast, so the independent decrease in migration rate found in this 

calibrated-set may be compensating for this lack of myofibroblast activation in order to fit 

the scratch data. This is supported by reports showing that fibroblast activation is 

stimulated by oxidative stress, such as is found within cigarette smoke 60. 
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Differences between Normal & COPD Fibroblasts: 

Many aspects of this project were influenced by the limited availability of DHLF, 

as they only maintained log-growth for one or two passages; so one of the main goals of 

the project was to use the model and in vitro scratch closure data for this cell line to 

evaluate how DHLF functions may differ from NHLF and inform future investigations into 

this cell line. For this reason, dosages of CSC were not tested among DHLF to ensure the 

chosen dose produced an effect within both cell lines – which may have prevented us from 

evaluating how DHLF responses to CSC differ from NHLF – however, our in vitro scratch 

results show that DHLF is resistant to CSC relative to NHLF. In support of this finding, 

the calibrated-set for DHLF was found to fit the DHLF in vitro data when exposed to 

either FBM or CSM. 

The limited availability of in vitro datasets of DHLF population responses to fit the 

model against – or of DHLF exposed to FGM – also produced two problems. First, this 

required the model’s preconditioning parameters for both cell lines to be calibrated using 

in vitro data of NHLF and created an unlikely assumption within the model that DHLF 

responses to FGM were the same as NHLF during the pre-scratch interval. Second, there 

were many more parameter-sets that could have been classified as a calibrated-set among 

DHLF since there were less datasets available to filter out sets that were not biologically 

relevant to this cell line. Therefore, in order to use this forced assumption as a tool in our 

comparison of these groups and help guide our selection of the calibrated-sets for DHLF, 

we fit the model to both of these groups while maintaining the LM and LS parameters 

between these sets and the calibrated-set for NHLF treated with CSM. This allowed us to 
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use the calibrated-set for NHLF treated with CSM as a reference parameter-set that 

assumed no difference between these cell lines’ subpopulation responses and limited the 

variation between these sets to the migration and proliferation parameters.  

Since the scratch closure response showed some sensitivity to all of the parameters 

while the population levels were relatively insensitive to the migration and proliferation 

parameters (Table 4.2) – and since the different subpopulations exhibit different migration 

and proliferation rates (Figure 3.4) – variations in these parameters between the calibrated-

sets for DHLF and NHLF exposed to CSM suggest how the subpopulation levels may 

change between these groups. Both the migration rate and proliferation rate were found to 

be lower among DHLF calibrated-sets relative to NHLF treated with CSM, which may 

indicate either (A) these cells migrate and proliferate less due to a fundamental (e.g. 

genetic, epigenetic) difference between these cell lines, (B) there are more myofibroblasts, 

(C) there are more senescent cells, or (D) some combination of these. It is impossible to 

speculate upon the likelihood of genetic differences among DHLF using this analysis of 

the model, as these kinds differences may produce a relative increase in myofibroblasts or 

cell senescence; however, we can infer from the relatively equal decrease in migration and 

proliferation parameters – down to 72-75% of the values for the set calibrated to NHLF 

treated with CSM – that this difference is likely due to an increase in the percentage of 

myofibroblasts rather than senescent cells. Since senescent cells lose the ability to 

proliferate or migrate in a directed manner, we would expect more of a decrease in both of 

these terms, particularly the proliferation rate; however future simulations repeating this 

analysis while holding the migration and proliferation parameters constant, or letting them 
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all vary together, could be used to test this hypothesis in silico prior to in vitro 

investigations.  

Taking these findings into consideration with the years of smoke exposure typically 

needed to produce COPD symptoms, a more holistic interpretation of DHLF’s significant 

decrease from NHLF closure rates, insensitivity to CSM in vitro and in silico, and relative 

decrease in migration and proliferation rates in silico suggest that DHLF represents a 

subpopulation of NHLF that had survived a selection process for resistance to cigarette 

smoke and upregulated the percentage of myofibroblasts. This interpretation is supported 

by our in vitro finding that NHLF exposure to CSM induced a spike in the percentage of 

myofibroblasts after 12 hours.  

Since in vivo wound healing and homeostasis is an orchestrated process requiring a 

balance of multiple native cell types, our interpretation that COPD pathogenesis is at least 

in part due to an upregulation of fibroblasts relative to other cell types due to selective 

pressures of oxidative stress caused by chronic smoke exposure is supported by the 

distribution of tissue degradation and fibrosis within COPD. Elevated proportions of 

epithelial and endothelial cells to native fibroblasts within parenchymal regions relative to 

the bronchioles among normal lungs, paired with a chronically elevated rate of 

mesenchymal transitions, would be expected to result in the pattern of tissue loss and 

fibrosis seen in each respective region among COPD lungs. Luckily, the autoflourescence 

of NADH may be used as a biomarker of oxidative stress and metabolic health in future 

studies of this mechanism 145. 
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Simulated Treatments for Smoke Exposure & COPD Fibroblasts 

 Our sensitivity analysis and following simulations of increasing modulations of 

individual parameters around the calibrated-sets for DHLF and NHLF treated with CSM 

found that an increase in the migration parameter alone would continue to increase the 

scratch closure rate the more it was elevated (Figure 4.16), but increasing modulations in 

the other parameters alone had practically no effect (data not shown). It is unlikely that a 

potential in vitro treatment would affect migration rate without also affecting other 

pathways due to the degree of crosstalk among cellular signaling pathways; however, since 

the model is sensitive to modulations in ratios of parameters more than individual 

parameters, further simulations of parameter modulations of multiple parameters around 

these calibrated-sets are likely to reveal more potential treatments for these groups. 

Regardless, increasing fibroblast migration rates should be achievable in vitro through 

several means (Table 5.1). Increased migration should be achievable by drugs which 

increase actin expression, actin treadmilling, microtubule stabilization, Rho/Rac signaling 

or inhibition of contractility. Additionally, increased migration via decreased contractility 

could be achieved with less myofibroblasts, which in itself would be achievable by 

treatments which limit their activation, induce their deactivation, or induce senescence – 

once such mechanism to accomplish this would be to supplement with bFGF to induce 

deactivation and promote senescence as was seen in our in vitro experiments among NHLF 

treated with FGM. Counteracting the cigarette smoke induced oxidative stress to prevent 

the associated increase in myofibroblasts may also represent a valid strategy – this could 

be achieved directly through supplementation with an antioxidant such as vitamin C, and 
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potentially protected against if cell-native antioxidants are primed prior to smoke exposure. 

Likewise, caloric restriction or drugs which mimic this (e.g. glycolysis inhibitors, 

glutaminolysis inhibitors, etc.) could be used to buffer NADH/NAD levels to minimize the 

effect of oxidative signaling on downstream targets; and these downstream targets (i.e. 

SIRT-1 and HIF-1α) can be inhibited directly to prevent upregulation of mesenchymal 

marker genes (e.g. αSMA) or senescence. Finally, a recent review indicates various 

interleukin inhibitors as another promising method to treat COPD by targeting the NLRP3 

inflammasome theorized to drive the autoinflammatory processes observed in COPD 16. 

 

Additional Functionality & Future Directions for the Model: 

 The aspects of the model explored here are not comprehensive. Our results may be 

expanded upon with the model through a thorough evaluation of the parameter space that 

fits each cell type and media exposure to judge if another parameter-set may represent a 

better fit for the in vitro data than those presented, or to evaluate if modulations of more 

than one parameter may produce synergy to improve scratch closure. However, high 

performance computing resources are recommended for more intensive analyses or models 

due to the number of simulations required, paired with NetLogo’s computational 

inefficiency compared to other ABM platforms 114,115. Additionally, while this model was 

weakly validated when it was found to fit the 4 hour time-point of the scratch closure data, 

in vitro data sets of the DHLF subpopulations or of scratch closure to 48 hours post-scratch 

could validate if our model and calibrated parameter-sets have predictive value.  
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 The availability of in vitro data sets from other fibroblast lines, media exposures or 

other types of collective migration experiments would allow this model to be applied 

towards additional questions. While we present here a model of fibroblast scratch closure, 

the scratch and non-scratch regions could easily be switched to model a barrier removal 

assay to evaluate differences in contact inhibition among the cell types and exposures with 

less influence from cytokines released from damaged cells or the population of cells across 

the scratch. Migration following cytokine gradients were not modeled, so different values 

in the migration parameter required to fit data for these in vitro experiment types may 

reveal the presence of such gradients and if DHLF and/or CSM responses are less sensitive 

to these gradients. Additionally, data from migration assays for other cell lines (e.g. IPF-

fibroblasts, mesenchymal stem cells, cancer-associated fibroblasts) or exposures (e.g. E-

cigarettes, H2O2, TGFβ) would allow the model to evaluate differences in those cell types 

or exposure responses. Assays of these fibroblasts exposed to conditioned media from 

normal or COPD-derived epithelial cells or macrophages would create parameter-sets 

representing fibroblast responses to paracrine signaling from these cell types. Similarly, 

assays of these fibroblasts on polyacrylamide gels of lung-relevant stiffnesses coated with 

ECM from normal and COPD lungs could be used to generate parameter-sets representing 

fibroblast responses to these substrate properties and vice versa. These parameter-sets 

would allow differences in paracrine and cell-substrate signaling mechanisms within the 

lung during smoking or COPD to be evaluated and would inform future model iterations 

that include these cell types and mechanical features. For example, ECM composition and 

stiffness could be modeled as patch variables that the fibroblast agents can interact with 
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and differentially modulate based on their breed – this data could be fit against in vitro data 

of fibril formation during the in vitro assays of fibroblasts on ECM-coated polyacrylamide 

gels, or simulated from other models of fibril formation 146 or fibrosis 113 – while another 

layer of patches and breed of agents could be included to model interactions with a layer of 

epithelial cells and patrolling macrophages 112, respectively. However, these would take 

exponentially more time to simulate with the number of patches or agents, so a modular 

approach, high performance computing resources and/or more computationally efficient 

modeling platforms are recommended 115,118. 
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Table 5.1 – Potential Treatment Strategies for COPD and Smoke Exposure. 

Treatment 

Strategy 
Method Therapy/Drug Citation 

Increase 

Migration 

Stabilize microtubules  

& cell polarity 
Paclitaxel 

147 

↑ Actin content Glucocorticoids 84,148 

↑ Actin dynamics Heat, CalyculinA 84 

↑ Adhesion dynamics  

(via ROCK) 
Fasudil, Y27632 

149 

↓ Senescent induction 
Fasudil, Y27632, 

Rapamycin, Rapalogs  

29,100,149 

↓ Senescent population 

(senolytics) 

Dasatinib, Quercetin, 

Fisetin, Navitoclax, 

Venetoclax,  

150 

↓ Contractility & 

 myofibroblasts 

Roflumilast, Piclamilast, 

Aclidinium, SMIFH2, 

NOX4 inhibitors 

42,60,147,151–

154 

Inhibit 

Myofibroblasts 

↓ Activation anti-Akt 144 

↑ Deactivation bFGF 144 

Inhibit 

Inflammation 

anti IL-1beta Canakinumab 16 

anti IL-1Ralpha Anakinra 16 

IL-1 trap (mock receptor) Rilonacept 16 

Counter  

CSC & ROS 

↑ antioxidants Vitamin C 29,60,155,156 

caloric restriction 2DG (anti-glycolysis) 29,157,158 

↑  SIRT1 / ↓ HIF-1α 

SRT2172, SRT1720 29,159,160 

Reservatrol 29,159,160 

Metformin 29,160 

Table 5.1 caption – Potential strategies, methods and specific therapeutics that may achieve 

increased scratch closure among DHLF or NHLF exposed to cigarette smoke. Our model 

suggests scratch closure will be most improved with increased migration rates, which can 

be also accomplished by decreasing levels of senescence and myofibroblasts. Lower levels 

of these cells may also be achieved through inhibition NLRP3-mediated inflammation or 

countering the effects of oxidative stress from cigarette smoke. 
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Conclusions 

 

We designed a model that captured the dynamics of fibroblast scratch closure due 

to changes in myofibroblast activation and cell senescence and calibrated parameter-sets to 

in vitro data for human lung fibroblasts exposed to cigarette smoke. Our in vitro results 

and calibrated parameter-sets recapitulated findings of increased myofibroblast activation 

and senescence among lung fibroblasts exposed to smoke or when derived from COPD.   

Calibrated-sets for this model could be fit to in vitro data of other fibroblast lines or 

exposures to evaluate their effects on scratch closure to investigate other diseases, 

paracrine signaling with other cell types, potential toxins like E-cigarette vapor, or 

therapeutics.  Future iterations addressing COPD should work towards evaluating the 

dynamics of myofibroblast activation on regulation of the ECM during wound healing 

through traction forces and protease/antiprotease secretion mediated by oxidative stress.
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APPENDIX A 

 

;; NETLOGO MODEL FOR IN VITRO FIBROBLAST WOUND HEALING 

;; VERSION 1.2 - updated 03/23/2018 

;; BY JAMES ALEX RATTI 

 

;===============================================================| 

;; VARIABLE & CONSTANT DEFINITIONS  

 

globals [ 

  Iheight ; in vitro image height 

  maxC    ; modeled world's max coordinate (sets resolution) 

  ds      ; patch length (=image size/101) 

            ; { Patch Area = (101)^2 patches, due to origin + axes } 

            ; { correlates to cropped image size of 1677x1677 um   } 

  dt      ; step interval (arbitrary) 

            ; { model functions in step intervals = dt * tick      } 

            ; { such that there will be '1/dt' steps per tick.     } 

            ; { tick units = hours (arbitrary)                     } 

            ; { b/c model timer only counts ticks in whole numbers } 

 

  time_SS ; in vitro seed-scratch time for scratch assays 

            ; { mean+/-sd of in vitro seed-scratch times = 14+/-   } 

  I_AR    ; in vitro image area (frm 2244.6x1677.0 for square dim.) 

  Rs_AR   ; in vitro mean scratch area @ t=0, from all assays 

  Rc_AR   ; in vitro cell-covered area 

  %s_AR   ; in vitro ratio of scratched area to cropped image area 

  Vs_AR   ; virtual scratch size [patches] 

  Scratch_width    ; num. full rows per side (excluding center) 

  Scratch_center   ; num. patches in filled rows 

  Scratch_edges    ; num. patches in unfilled rows (ragged edge) 

  Scratch ; virtual initial scratched region (patch-set) 

  Healed  ; virtual healed region (patch-set) 

  UnHealed; vitrual unhealed region (patch-set) 

  UnHealed_edge    ; virtual unhealed region's border (patch-set) 

  Edge_length_t0   ; unhealed region's est. border length @t=0 [um] 

  Cell_AR ; individual cell area (assumed circular) 
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  N_diam  ; in vitro diameter for NHLF 

            ; selected* to fit cells w/ and w/o aSMA, within 1SD 

            ; { *lit. avg      = 35.8+/-7.0 um (with aSMA)         } 

            ; {                = 25.7+/-5.8 um (without aSMA)      } 

 

  Pop_Sm  ; initial agent population, der. from seeding density 

            ; { derived from in vitro seeding density for MTTs     } 

            ; { Pop_S = Pop_S*(IPop_S + APop_S + SPop_S)           } 

  Pop_Ss  ; initial agent population, der. from seeding density 

            ; { derived from in vitro seeding density for scratches} 

            ; { Pop_S = Pop_S*(IPop_S + APop_S + SPop_S)           } 

  Pop_Ss6 ; agent population at t=seed+6 

  IPop_S  ; initial population ratio of inactive fibs @t=seed+6 

  APop_S  ; initial population ratio of activated fibs @t=seed+6 

  MPop_S  ; initial population ratio of myo-fibs @t=seed+6 

  SPop_S  ; initial population ratio of senescent fibs @t=seed+6 

  DPop_S  ; initial population ratio of dead fibs @ t=seed+6 

  Pop_A   ; initial agent population, der. from cell areas 

            ; { derived from approx. confluency and cell diameter  } 

            ; { Pop_A = Pop_A*(IPop_A + APop_A + SPop_A)           } 

  IPop_A  ; initial population ratio of inactive fibs @confluency 

  APop_A  ; initial population ratio of activated fibs @confluency 

  MPop_A  ; initial population ratio of myo-fibs @confluency 

  SPop_A  ; initial population ratio of senescent fibs @confluency 

  Pop_t00 ; initial seeded cell population, from Pop_S or Pop_A 

  Pop_t00I; initial population of inactive fibs 

  Pop_t00A; initial population of active fibs 

  Pop_t00M; initial population of myo-fibs 

  Pop_t00S; initial population of senescent fibs 

  Pop_t0  ; initial cell population on non-scratch areas, estimated 

 

  stim_max; 'stimulation' maximum (for scaling reference) 

  stim_Ta ; 'stimulation' threshold w 50% fibroblast activation per hr 

  stim_T-a; 'stimulation' threshold w 50% fib deactivation per hr 

  stim_Tm ; 'stimulation' treshold w 50% AFib->MFib transition per hr 

  stim_Ts ; 'stimulation' threshold w 50% fibroblast senescence per hr 

  Alpha_Z ; size coefficient for inactivate fibs 

  Alpha_M ; migration coefficient for inactivate fibs 

  Alpha_P ; prolif. coefficient for inactivate fibs 

  Alpha_D ; death coefficient for inactivate fibs 

  Beta_Z  ; size coefficient for activated (proto-myo-)fibs 

  Beta_M  ; migration coefficient for activated (proto-myo-) fibs 
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  Beta_P  ; prolif. coefficient for activated (proto-myo-)fibs 

  Beta_D  ; death coefficient for activated (proto-myo-)fibs 

  Gamma_Z ; size coefficient for myo-fibs 

  Gamma_M ; migration coefficient for myo-fibs 

  Gamma_P ; prolif. coefficient for myo-fibs 

  Gamma_D ; death coefficient for myo-fibs 

  Omega_Z ; size coefficient for senescent fibs 

  Omega_M ; migration coefficient for senescent fibs 

  Omega_P ; prolif. coefficient for senescent fibs 

  Omega_D ; death coefficient for senescent fibs 

 

  Fsize   ; baseline fib diameter [patches] 

  IFsize  ; IFib diameter [patches] 

  AFsize  ; AFib diameter [patches] 

  MFsize  ; MFib diameter [patches] 

  SFsize  ; SFib diameter [patches] 

  IFsplit ; dist. req. for IFibs to divide (fnx. of diameter) 

  AFsplit ; dist. req. for AFibs to divide (fnx. of diameter) 

  MFsplit ; dist. req. for MFibs to divide (fnx. of diameter) 

  SFsplit ; dist. req. for SFibs to divide (fnx. of diameter) 

  IFmove  ; dist. req. for IFibs to move (fnx. of diameter) 

  AFmove  ; dist. req. for AFibs to move (fnx. of diameter) 

  MFmove  ; dist. req. for MFibs to move (fnx. of diameter) 

  SFmove  ; dist. req. for SFibs to move (fnx. of diameter) 

 

  Fstep   ; baseline fib step size (ref = IFibs)              = Migration_rate*dt/ds 

  IFspeed ; IFib step size [patch/tick]                       = Fspeed*Alpha_Z 

  AFspeed ; AFib step size [patch/tick]                       = Fspeed*Beta_M 

  MFspeed ; MFib step size [patch/tick]                       = Fspeed*Gamma_M 

  SFspeed ; SFib step size [patch/tick]                       = Fspeed*Omega_M 

  t_life  ; agent lifespan mean                               = Death_rate 

  sd_life ; agent lifespan std dev                            = t_life/3 

  t_div   ; agent doubling time mean                          = Prolif_rate 

  sd_div  ; agent doubling time std dev                       = t_div/3 

            ; {mean+-sd = 33.2 +- 10.4 hrs (for NHLF in FGM) } 

            ; {lit. source: [Mio et al. 1992]                } 

  m_stim  ; agent stimulation rate mean                       = Stim_mean 

  ] 

 

patches-own [ 

  V1_score  ; ratio of neighbors without an agent (excluding Apops) present (max=1) 

  V2_score  ; average of neighbors' V1_scores (max=1) 

  ] 
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turtles-own [ 

  Fspeed    ; step size for fibroblast 

  fission   ; countdown to fibroblast division (divide @ fission<=0) 

  life      ; countdown to fibroblast rep-senescence (sen @ life<=0) 

  Zsense    ; factor for sensitivity to stimuli 

  stim      ; counter for fibroblast stimulation (min=0, max=1) 

  P_die     ; probability of fibroblast death 

  P_senesce ; probability for fibroblasts to senesce due to stimuli 

  ] 

 

breed [ IFibs IFib ] ; INACTIVE FIBROBLASTS  (mobile; solid/hollow triangles) 

IFibs-own [ 

  P_activate         ; probability for inactivated fibroblasts to activate 

  ] 

 

breed [ AFibs AFib ] ; ACTIVE PROTO-MYO-FIBROBLASTS (mobile; solid/hollow 

squares) 

AFibs-own [ 

  P_deactivate       ; probability for activated fibroblasts to deactivate 

  P_transmyo         ; probability for activated fibroblasts to become myofibroblasts 

  ] 

 

breed [ MFibs MFib ] ; MYO-FIBROBLASTS    (mobile; spade/club card symbols) 

 

breed [ SFibs SFib ] ; SENESCENT FIBROBLASTS (mobile; g/b/r, solid/hollow circles) 

 

breed [ Apops Apop ] ; DEAD CELLS / APOPTOTIC BODIES (immobile markers; white 

stars) 
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;================================================================| 

;; MODEL INITIATION 

to setup 

  clear-all 

 

  ; SETS CONSTANTS FOR TIME/SPACE RESOLUTION 

  set maxC 50                   ; sets world's max coordinate    = 50      patches 

  resize-world (-1 * maxC) maxC (-1 * maxC) maxC ; world size    = 101*101 patches 

  set Iheight 1677              ; in vitro image height          = 1677    um 

  set ds Iheight / world-height ; patch length                   = 16.604  um/patch 

  set dt 20 / 60                ; step interval                  =[ 20     min/step] 

  set N_diam 30                 ; NHLF diameter                  = 30      um 

 

  ; SETS CONSTANTS FOR SCRATCH DIMENSIONS 

  set I_AR Iheight ^ 2          ; in vitro image area            = 2812329 um^2 

  set Rs_AR 1296089.3932        ; in vitro scratch area          = 1296089 um^2 

  set %s_AR Rs_AR / I_AR        ; scratch area as ratio          = 0.4609 

  set Vs_AR round (%s_AR * world-height ^ 2); virt. scratch area = 4701    patches 

  set Rc_AR (I_AR - Rs_AR)      ; in vitro cell-covered area     = 1516240 um^2 

  set time_SS time_seed-scratch / dt ; in vitro seed-scratch time= 42      steps 

 

  ; SETS CONSTANTS FOR STIM. FUNCTION & CELL-STATE TRANSITIONS 

  set stim_max 1                ; stim maximum per hr 

  set stim_Ta 0.0001            ; stim threshold(a)  = lvl w 50% activation/hr 

  set stim_T-a stim_Ta          ; stim threshold(-a) = lvl w 50% deactivation/hr 

  set stim_Tm 0.06              ; myofib stim threshold 

  set stim_Ts 0.1               ; senescence stim threshold 

  set Alpha_Z 0.75              ; Inactive fib size coeff. 

  set Alpha_M 0                 ; Inactive fib speed coeff. 

  set Alpha_P 1                 ; Inactive fib proliferation period coeff. 

  set Alpha_D 1                 ; Inactive fib death period coeff. 

  set Beta_Z 1                  ; Activated fib size coeff. 

  set Beta_M 1                  ; Activated fib speed coeff. 

  set Beta_P 1                  ; Activated fib proliferation period coeff. 

  set Beta_D 1                  ; Activated fib death period coeff. 

  set Gamma_Z 1.4               ; Myo- fib size coeff. 

  set Gamma_M .625              ; Myo- fib speed coeff. 

  set Gamma_P 1.4               ; Myo- fib proliferation period coeff. 

  set Gamma_D 1.4               ; Myo- fib death period coeff. 

  set Omega_Z 2                 ; Senescent fib size coeff. 

  set Omega_M .75               ; Senescent fib speed coeff. 

  set Omega_P 1000              ; Senescent fib proliferation period coeff. 

  set Omega_D 1000              ; Senescent fib death period coeff. 
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  ; SETS CONSTANTS FOR CELL LINES AND MEDIA TREATMENTS 

  set-default-shape Apops "star" 

  set-default-shape IFibs "default"   ; IFib shape 

  set-default-shape AFibs "square"    ; AFib shape 

  set-default-shape MFibs "suit spade"; MFib shape 

  set-default-shape SFibs "circle"    ; SFib shape 

  set Fsize (N_diam / ds)             ; baseline diameter      = 1.8068  patches 

  set IFsize (Fsize * Alpha_Z)        ; IFib diameter          = 1.8068  patches 

  set AFsize (Fsize * Beta_Z)         ; AFib diameter          =         patches 

  set MFsize (Fsize * Gamma_Z)        ; MFib diameter          =         patches 

  set SFsize (Fsize * Omega_Z)        ; SFib diameter          =         patches 

  set Cell_AR (pi * (N_diam / 2)^ 2)  ; NHLF cell area         = 706.86  um^2 

  set IPop_A 0.00              ; Inactive fib ratio @ confl.   = 0 

  set APop_A 0.74              ; Active fib ratio @ confl.     = 0.74 

  set MPop_A 0.15              ; Active fib ratio @ confl.     = 0.15 

  set SPop_A 0.11              ; Senescent fib ratio @ confl.  = 0.11 

  set IPop_S 0                 ; Inactive fib ratio @ t=seed+6   = 

  set MPop_S 0.0435            ; Myo-fib ratio @ t=seed+6        = 

  set SPop_S 0.1191            ; Senescent fib ratio @ t=seed+6  = 

  set DPop_S 0.0148            ; Dead fib ratio @ t=seed+6 

  set APop_S (1 - Ipop_S - MPop_S - SPop_S - DPop_S);Active fib ratio @t=seed+6 

 

 

  ; SETS PARAMS FOR MIGRATION, DIVISION, DEATH & STIM COUNTERS  

  set Fstep (65 * dt / ds)   ; baseline fib speed  = {NHLF*FGM} FOR PRE-COND. 

  set IFspeed Fstep * Alpha_M          ; IFib speed 

  set AFspeed Fstep * Beta_M           ; AFib speed 

  set MFspeed Fstep * Gamma_M          ; MFib speed 

  set SFspeed Fstep * Omega_M          ; SFib speed 

 

  set t_div 27 / dt          ; division rate mean 

  set sd_div t_div / 3                 ; division rate st.dev.   = {P}   hrs 

 

  set t_life 40 * t_div                ; base lifespan mean      = 40*{P} hrs 

  set sd_life 40 * sd_div              ; base lifespan st.dev.   = 40*{P} hrs 

 

  set m_stim 0.0002 * dt     ; 'stimulation' rate mean = {NHLF*FGM} FOR PRE-COND. 

 

  ; INITIATES ("SEEDS") FIBROBLASTS 

  set Pop_A round (I_AR / Cell_AR)     ; agent pop. @100%confl.  = 3979  agents 

  set Pop_Ss round (4E5 * I_AR / 9.6E8); IV-det agent pop.($cr)  = 1172  agents 

  set Pop_Sm round (2E4 * I_AR / 3.2E7); IV-det agent pop.(MTT)  = 1758  agents 
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  if Seed_Density = "Max Confluency" [ ; seeds fibs @100%confl. ignoring overlaps 

    set Pop_t00 Pop_A 

    set Pop_t00I round(Pop_t00 * IPop_A) 

    set Pop_t00A round(Pop_t00 * APop_A) 

    set Pop_t00M round(Pop_t00 * MPop_A) 

    set Pop_t00S round(Pop_t00 * SPop_A) 

    ] 

  if Seed_Density = "In Vitro" [       ; seeds fibs @ in vitro seeding density: 

    if Experiment_Type = "Culture Cond." [    ; sets seeding density for 96wells 

      ifelse Seed_IFibs_Only? = true [set Pop_t00 Pop_Ss][ 

        set Pop_t00 Pop_Ss 

      ] 

    ] 

    if Experiment_Type = "Scratch Healing" [  ; sets seeding density for 6wells 

      ifelse Seed_IFibs_Only? = true  [set Pop_t00 Pop_Ss][ 

        set Pop_t00 Pop_Ss 

      ] 

    ] 

    if Experiment_Type = "Barrier Removal" [  ; sets seeding density for 6wells 

      ifelse Seed_IFibs_Only? = true  [set Pop_t00 Pop_Ss][ 

        set Pop_t00 Pop_Ss 

      ] 

    ] 

    set Pop_t00I round(Pop_t00 * IPop_S) 

    set Pop_t00A round(Pop_t00 * APop_S) 

    set Pop_t00M round(Pop_t00 * MPop_S) 

    set Pop_t00S round(Pop_t00 * SPop_S) 

    ] 

  ifelse Seed_IFibs_Only? = true [     ; seeds all agents in inactive state 

    ask n-of Pop_t00 patches  [ sprout-IFibs 1 [ train_IFib ] ] 

    ask turtles [ set fission ((random-float 1) * t_div) ] 

    ask turtles [ set Zsense random-normal 1 0.3 ] 

    ][                                 ; seeds agent states by proportions 

    ask n-of Pop_t00I patches [ sprout-IFibs 1 [ train_IFib ] ] 

    ask n-of Pop_t00A patches [ sprout-AFibs 1 [ train_AFib ] ] 

    ask n-of Pop_t00M patches [ sprout-MFibs 1 [ train_MFib ] ] 

    ask n-of Pop_t00S patches [ sprout-SFibs 1 [ train_SFib ] ] 

    ask n-of round(Pop_t00 * DPop_S) patches [ Fib_apoptose ] 

    ask turtles [ set fission ((random-float 1) * t_div) ] 

    ask turtles [ set Zsense random-normal 1 0.3 ]     ; {NHLF*FGM} for Pre-conditioning 

    ] 

 

  



102 

; INITIATES AGENTS AND VARIABLES (PRECONDITIONING) 

  ifelse Precondition? = true [ Precondition_Fibs 

       ; re-initializing parameters to simulate post-scratch interval 

    set Fstep (Migrate_rate * dt / ds)   ; baseline fib speed      = {M} patches/step 

    set IFspeed Fstep * Alpha_M          ; IFib speed 

    set AFspeed Fstep * Beta_M           ; AFib speed 

    set MFspeed Fstep * Gamma_M          ; MFib speed 

    set SFspeed Fstep * Omega_M          ; SFib speed 

    ask IFibs [set Fspeed IFspeed] ; re-sets IFib speed for post-scratch conditions 

    ask AFibs [set Fspeed AFspeed] ; re-sets AFib speed for post-scratch conditions 

    ask MFibs [set Fspeed MFspeed] ; re-sets MFib speed for post-scratch conditions 

    ask SFibs [set Fspeed SFspeed] ; re-sets SFib speed for post-scratch conditions 

    set t_div Prolife_rate / dt          ; division rate mean      = {P}   hrs 

    set sd_div t_div / 3                 ; division rate st.dev.   = {P}   hrs 

       ; averages pre+post-interval fission rates (ie cells fully adjust w next cell cycle) 

    ask turtles [ set fission ((fission + ((random-float 1) * t_div)) / 2) ]  

    set m_stim Stim_rate * dt            ; 'stimulation' rate mean    = {}    stim/step 

       ; averages pre+post-interval Zsense dist. to sim degrees of signalling overlap 

    ask turtles [ set Zsense ((Zsense + (random-normal 1 Stim_sense)) / 2) ]  

    set stim_Tm T_myo                ; stim threshold(m)  = lvl w 50% fib myo-trans. per hr 

    set stim_Ts T_sen                ; stim threshold(s)  = lvl w 50% fib senescence per hr 

   ] [ ] 

 

  ; INITIATES WORLD AND SCRATCH AREA (CENTERED AROUND Y-AXIS) 

  if Experiment_Type = "Culture Cond." [  ; NO CHANGE W/ CULTURE CONDITIONS 

     set Scratch_width 0 

     set Scratch_center 0 

     set Scratch_edges 0 

     set Scratch patch-set nobody 

     set Pop_t0 count turtles 

     ] 

  if Experiment_Type = "Scratch Healing" [ Scratch_Cells ] ; CREATE SCRATCH 

  if Experiment_Type = "Barrier Removal" [ Remove_Barrier ]; REMOVE BOUNDARY 

     

  calc_Vscores     ; initiates void scores for plot initialization and model operation 

  Measure_Healed   ; initiates/labels Healed and Unhealed Edge regions for reporters 

  set Edge_length_t0 Edge_length ; sets initial Unhealed Edge Length for reporters 

 

  reset-ticks      ; sets tick counter to 0 and sets/updates all plots 

  setup-plots      ; initiates plots (req. with "tick-advance" notation) 

end 
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;================================================================| 

;; MODEL OPERATION 

 

to go 

 

  react            ; Fibroblast stim (ticker) + hetero response (stoch. Xforms) 

  age              ; Fibroblast replicative senesence (counter) 

  divide           ; Fibroblast proliferation (counter) 

  migrate          ; Fibroblast migration (see below for mode descriptions) 

 

  calc_Vscores     ; updates void scores for plot updates and model operation 

  Measure_Healed   ; updates/labels Healed and UnHealed Edge regions for reporters 

 

  tick-advance dt  ; moves model forward by 1 step = "dt" ticks 

  update-plots     ; updates plots with each step (req. with "tick-advance" notation) 

 

  if ticks >= t_end [         ; time limit for the model (slider, default = 24 hrs) 

    stop 

    repeat 2 [beep wait 1.6]] ; emits 2 beeps spaced 1.6s apart 

end 

 

;================================================================| 

;; SHORTCUT TO PRECONDITION AGENT VARIABLES 

 

to Precondition_Fibs 

 

  repeat time_SS [ ; Runs the "go" procedure from below for time_ss iterations 

        react            ; Fibroblast stim (ticker) + hetero respone (stoch. Xforms) 

        age              ; Fibroblast replicative senesence (counter) 

        divide           ; Fibroblast proliferation (counter) 

        migrate          ; Fibroblast migration (see below for mode descriptions) 

        calc_Vscores     ; Calculates void scores 

        ] 

end 
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;================================================================| 

;; SHORTCUT TO SCRATCH CELL MONOLAYER 

 

to Scratch_Cells 

  set Scratch_width floor((Vs_AR - world-height) / (2 * world-height)) 

       ; scratch width, excluding center and edges [rows/side]   = 45     rows/side 

    set Scratch_center (world-height + ((2 * world-height) * Scratch_width)) 

       ; number of patches in filled rows, including center      = 4545   patches 

    set Scratch_edges  Vs_AR - Scratch_center 

       ; number of patches in the scratch's "ragged" edge        = 156    patches 

    set Scratch ( patch-set 

      patches with [ pxcor <= Scratch_width and pxcor >= (-1 * Scratch_width) ] 

      n-of Scratch_edges patches with [ 

        pxcor = (Scratch_width + 1) or pxcor = (-1 * Scratch_width - 1) 

        ] ) 

    ask Scratch [set pcolor grey]           ; tags scratch patches 

    ask turtles-on patches with [           ; clears cells from the scratch area & edges 

    (pxcor <= (Scratch_width + 2) and pxcor >= (-1 * Scratch_width - 2)) 

    and (not member? self Apops) ][ die ] 

    ifelse Seed_IFibs_Only? [               ; clears 'excess' dead cells 

      ask Apops [die] ][ 

      let dead_pctIV14s round(.0805 * count turtles) 

      ifelse count Apops = dead_pctIV14s [][ 

        if count Apops > dead_pctIV14s [ 

          ask n-of (count Apops - dead_pctIV14s ) Apops [die] ] 

        if count Apops < dead_pctIV14s [ 

          ask n-of (dead_pctIV14s - count Apops) turtles with [ 

            not member? self Apops] [ 

            ask patch-here [Fib_apoptose] die ]] 

      ] 

      ] 

    set Pop_t0 count turtles               ; counts remaining cells for calculations 

end 
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;================================================================| 

;; SHORTCUT TO REMOVE BARRIER (NOT A TRUE BARRIER REMOVAL) 

 

to Remove_Barrier 

    set Scratch_width floor((Vs_AR - world-height) / (2 * world-height)) 

       ; scratch width, excluding center and edges [rows/side]   = 45     rows/side 

    set Scratch_center (world-height + ((2 * world-height) * Scratch_width)) 

       ; number of patches in filled rows, including center      = 4545   patches 

    set Scratch_edges  Vs_AR - Scratch_center 

       ; number of patches in the scratch's "ragged" edge        = 156    patches 

    let Not_Scratch ( patch-set 

      patches with [ pxcor <= Scratch_width and pxcor >= (-1 * Scratch_width) ] 

      n-of Scratch_edges patches with [ 

        pxcor = (Scratch_width + 1) or pxcor = (-1 * Scratch_width - 1) 

        ] ) 

    set Scratch (patch-set patches with [not member? self Not_Scratch]) 

    ask Scratch [ set pcolor grey ]        ; tags non-boundary patches 

    ask turtles-on patches with [          ; clears cells from the scratch area & edges 

    (member? self Scratch) and (not member? self Apops) ] [ die ] 

    ifelse Seed_IFibs_Only? [              ; clears 'excess' dead cells 

      ask Apops [die] ][ 

      let dead_pctIV14s round(.0805 * count turtles) 

      ifelse count Apops = dead_pctIV14s [][ 

        if count Apops > dead_pctIV14s [ 

          ask n-of (count Apops - dead_pctIV14s ) Apops [die] ] 

        if count Apops < dead_pctIV14s [ 

          ask n-of (dead_pctIV14s - count Apops) turtles with [ 

            not member? self Apops] [ 

            ask patch-here [Fib_apoptose] die ]] 

      ] 

      ] 

    set Pop_t0 count turtles               ; counts remaining cells for calculations 

end 
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;================================================================| 

;; SHORTCUTS TO SET DEFAULT VARIABLES FOR EACH FIBROBLAST STATE 

to train_IFib           ; INACTIVATED FIBROBLASTS 

    set color 42                          ; ~60% shaded yellow 

    set size IFsize 

    set Fspeed IFspeed 

    set heading random 360 

    set life random-normal t_life sd_life 

    set fission random-normal t_div sd_div 

end 

to train_AFib           ; ACTIVATED FIBROBLASTS 

    if Media = "FBM" [set color sky] 

    if Media = "FGM" [set color turquoise] 

    if Media = "CSC" [set color brown] 

    set size AFsize 

    set Fspeed AFspeed 

    set heading random 360 

    set life random-normal t_life sd_life 

    set fission random-normal t_div sd_div 

    set fission (fission + (t_div * (Beta_P - 1))) 

end 

to train_MFib           ; MYO- FIBROBLASTS 

    if Media = "FBM" [set color 82.5]  ; ~50% shaded cyan 

    if Media = "FGM" [set color 54]    ; ~20% shaded green 

    if Media = "CSC" [set color orange] 

    set size MFsize 

    set Fspeed MFspeed 

    set heading random 360 

    set life random-normal t_life sd_life 

    set fission random-normal t_div sd_div 

    set fission (fission + (t_div * (Gamma_P - 1))) 

end 

to train_SFib           ; SENESCENT FIBROBLASTS 

    if Media = "FBM" [set color 102.5]  ; ~50% shaded blue 

    if Media = "FGM" [set color 72.5]   ; ~50% shaded turquoise 

    if Media = "CSC" [set color red] 

    set size SFsize 

    set Fspeed SFspeed 

    set heading random 360 

    set life random-normal t_life sd_life 

    set fission random-normal t_div sd_div 

    set fission (fission + (t_div * (Omega_P - 1))) 

end 
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;================================================================| 

;; SHORTCUTS TO TRANSITION BETWEEN FIBROBLAST STATES 

 

to IFib_activate        ; FIBROBLAST ACTIVATION 

  set breed AFibs 

  if Media = "FBM" [set color sky] 

  if Media = "FGM" [set color turquoise] 

  if Media = "CSC" [set color brown] 

  set size AFsize 

  set Fspeed AFspeed 

  set fission (fission + (t_div * (Beta_P - 1))) 

end 

 

to AFib_deactivate      ; FIBROBLAST DEACTIVATION 

  set breed IFibs 

  set color 42                          ; ~60% shaded yellow 

  set size IFsize 

  set Fspeed IFspeed 

  set fission (fission - (t_div * (Beta_P - 1))) 

end 

 

to AFib_transmyo        ; FIBROBLAST ACTIVATION 

  set breed MFibs 

  if Media = "FBM" [set color 82.5]     ; ~50% shaded cyan 

  if Media = "FGM" [set color 54]       ; ~20% shaded green 

  if Media = "CSC" [set color orange] 

  set size MFsize 

  set Fspeed MFspeed 

  set fission (fission + (t_div * (Gamma_P - 1))) 

end 

 

to Fib_senesce         ; FIBROBLAST SENESCENCE 

  set breed SFibs 

  if Media = "FBM" [set color 102.5]      ; ~50% shaded blue 

  if Media = "FGM" [set color 72.5]      ; ~50% shaded turquoise 

  if Media = "CSC" [set color red] 

  set size SFsize 

  set Fspeed SFspeed 

  set fission (fission + (t_div * (Omega_P - Beta_P))) 

end  
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;================================================================| 

;; SHORTCUT FOR STIMULATION & FIBROBLAST STATE CHANGES 

 

to react 

  ask turtles [                               ; Stimulation counter increases each step 

    set stim (stim + (Zsense * m_stim)) 

    ] 

  ask turtles [                               ; Prob of fibroblast death 

    set P_die (stim / (20 * stim_max)) 

    if breed = IFibs [ set P_die (P_die / Alpha_D) ] ; applies IFib apoptosis resist 

    if breed = AFibs [ set P_die (P_die / Beta_D)  ] ; applies AFib apoptosis resist 

    if breed = MFibs [ set P_die (P_die / Gamma_D) ] ; applies MFib apoptosis resist 

    if breed = SFibs [ set P_die (P_die / Omega_D) ] ; applies SFib apoptosis resist 

    if random-float 1 <= P_die [ 

      ask patch-here [Fib_apoptose]                  ; apoptotic body replaces fib 

      die                                            ; and fib dies/disappears 

      ]] 

  ask IFibs [                                 ; Prob of fibroblast activation 

    set P_activate (stim / (2 * stim_Ta)) 

    if random-float 1 <= P_activate [ 

      IFib_activate 

      ]] 

  ask AFibs [                                 ; Prob of fibroblast deactivation 

    set P_deactivate (((2 * stim_T-a) - stim) / (2 * (stim_T-a))) 

    if random-float 1 <= P_deactivate [ 

      AFib_deactivate 

      ]] 

  ask AFibs [                                 ; Prob of myofibroblast transition 

    set P_transmyo ((stim - stim_Ta) / (2 * (stim_Tm - stim_Ta))) 

    if random-float 1 <= P_transmyo [ 

      AFib_transmyo 

      ]] 

  ask turtles with [ 

    (breed = AFibs) or (breed = MFibs) ][     ; Prob of fibroblast senescence 

    set P_senesce ((stim - stim_Ta) / (2 * (stim_Ts - stim_Ta))) 

    if random-float 1 <= P_senesce [ 

      Fib_senesce 

      ]] 

end 
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;================================================================| 

;; SHORTCUT FOR PROLIFERATION COUNTER 

to divide 

  ask turtles [ set fission fission - 1 ]     ; division counter decreases by 1/tick 

  ask turtles [ 

    if (fission <= 0) 

    and (any? neighbors with [ ( V2_score > 0.05 )  ; rep. avg V2score @ ~100%confl. 

        and (not any? other IFibs in-radius (IFsplit)) 

        and (not any? other AFibs in-radius (AFsplit)) 

        and (not any? other MFibs in-radius (MFsplit)) 

        and (not any? SFibs in-radius (SFsplit)) ])                   [ 

      let parent_breed breed 

      let parent_stim stim 

      let parent_Zsense Zsense 

      let birthplace max-one-of neighbors [ V2_score ] 

      if parent_breed = IFibs [ 

        hatch-IFibs 1 [                       ; spawns new IFib on old IFib 

          move-to birthplace                  ; moves new IFib to adjacent void patch 

          train_IFib                          ; applies default IFib values 

          set stim parent_stim                  ; stim is conserved between daughter cells 

          set Zsense parent_Zsense                      ]] ; stim sensitivity is conserved 

      if parent_breed = AFibs [               ; AFibs divide into AFibs 

        hatch-AFibs 1 [ 

          move-to birthplace 

          train_AFib 

          set stim parent_stim 

          set Zsense parent_Zsense            ]] ; stim sensitivity is conserved 

      if parent_breed = MFibs [               ; MFibs divide into MFibs 

        hatch-MFibs 1 [ 

          move-to birthplace 

          train_MFib 

          set stim parent_stim 

          set Zsense parent_Zsense            ]] ; stim sensitivity is conserved 

      if parent_breed = SFibs [               ; SFibs dont divide 

        set stim parent_stim                    ; stim remains unchanged 

        set Zsense parent_Zsense             ] ; stim sensitivity is conserved 

      set fission random-normal t_div sd_div  ; resets counter of old agent 

      if breed = IFibs [set fission (fission + (t_div * (Alpha_P - 1)))] 

      if breed = AFibs [set fission (fission + (t_div * (Beta_P - 1)))] 

      if breed = MFibs [set fission (fission + (t_div * (Gamma_P - 1)))] 

      if breed = SFibs [set fission (fission + (t_div * (Omega_P - 1)))] ] ] 

end 
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;================================================================| 

;; SHORTCUT TO SPROUT 'APOPTOTIC BODIES' FROM DEAD FIBROBLASTS 

 

to Fib_apoptose          ; DEAD CELLS 

  sprout-Apops 1 [ 

    set color white 

  ] 

end 

 

;================================================================| 

;; SHORTCUT FOR REPLICATIVE SENESCENCE COUNTER 

 

to age 

  ask turtles [ set life life - 1 ]    ; Life counter decreases by 1 each tick. 

  ask turtles with [ not member? self Apops ] [ 

    if life <= 0 [                     ; When life counter of living agent runs out, 

      Fib_senesce                      ; fibroblast agent becomes senescent 

      ] 

  ] 

end 
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;================================================================| 

;; META-SHORTCUTS FOR FIB MIGRATION 

 

to migrate                                           ; Selects Migration method 

  ask turtles [ 

    ifelse breed = SFibs [ move_rand ] [ 

      if Nav_Method = "Random Walk"                [ ; Completely Random Walk 

        move_rand ] 

      if Nav_Method = "Void Triggered Random Walk" [ ; Void-triggered Random Walk 

        move_void_trig ] 

      if Nav_Method = "Void Directed"              [ ; To Random Voids 

        move_void_any ] 

      if Nav_Method = "Void1 Score - Directed"     [ ; To Max V1-score (+sensitive) 

        move_V1score ] 

      if Nav_Method = "Void2 Score - Directed"     [ ; To Max V2-score (+sensitive, range) 

        move_V2score ] 

    ] 

  ] 

end 

 

;------------------------------------------------------------------------------------| 

;; SHORTCUT FOR FIB MOVEMENT-MODE: RANDOM WALK, ALWAYS 

MOVING 

 

to move_rand 

    set heading random-float 360 

    forward Fspeed 

end 

 

;------------------------------------------------------------------------------------| 

;; SHORTCUT FOR FIB MOVEMENT-MODE: RANDOM WALK, TRIGGERED BY 

VOID 

 

to move_void_trig 

    set heading random-float 360 

    ifelse (any? neighbors with [(not any? other IFibs in-radius (IFmove)) 

        and (not any? other AFibs in-radius (AFmove)) 

        and (not any? other MFibs in-radius (MFmove)) 

        and (not any? SFibs in-radius (SFmove)) ])[ 

        forward Fspeed 

        ] 

        [ ] ; moves randomly if void space is adjacent, else doesn't move 

end   
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;------------------------------------------------------------------------------------| 

;; SHORTCUT FOR FIB MOVEMENT-MODE: DIRECTED TO RANDOM VOID, 

TRIGGERED BY VOID 

 

to move_void_any 

    ifelse (any? neighbors with [(not any? other IFibs in-radius (IFmove)) 

        and (not any? other AFibs in-radius (AFmove)) 

        and (not any? other MFibs in-radius (MFmove)) 

        and (not any? SFibs in-radius (SFmove)) ])[ 

      face one-of neighbors with [(not any? other IFibs in-radius (IFmove)) 

        and (not any? other AFibs in-radius (AFmove)) 

        and (not any? other MFibs in-radius (MFmove)) 

        and (not any? SFibs in-radius (SFmove)) ] 

      set heading heading + random-normal 0 (45 / 3)   ; biased to selected patch 

      forward Fspeed 

      ] [ ]   ; moves toward a void space if they are adjacent, else doesn't move 

end 

 

 

;------------------------------------------------------------------------------------| 

;; SHORTCUT FOR FIB MOVEMENT-MODE: DIRECTED TO MAX VOID1-SCORE, 

TRIGGERED BY V1SCORE 

 

to move_V1score 

    ifelse (any? neighbors with [ V1_score > 0.05 ])[ 

      face max-one-of neighbors [ V1_score ] 

      set heading heading + random-normal 0 (45 / 3)   ; biased to selected patch 

      forward Fspeed 

    ] [ ]   ; moves toward a void space if they are adjacent, else doesn't move 

end 

 

;------------------------------------------------------------------------------------| 

;; SHORTCUT FOR FIB MOVEMENT-MODE: DIRECTED TO MAX VOID2-SCORE, 

TRIGGERED BY V2SCORE 

 

to move_V2score 

    ifelse (any? neighbors with [ V2_score > 0.05 ])[ 

      face max-one-of neighbors [ V2_score ] 

      set heading heading + random-normal 0 (45 / 3)   ; biased to selected patch 

      forward Fspeed 

    ] [ ]   ; moves toward a void space if they are adjacent, else doesn't move 

end 
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;================================================================| 

;; SHORTCUT TO CALCULATE VOID SCORES 

 

to calc_Vscores 

  ;ask patches [   ; sets V0score = normalized #neighbors(n=8) devoid of cell centers 

  ;  set V0_score (count neighbors with [ (not any? IFibs) and 

  ;      (not any? AFibs) and (not any? MFibs) and (not any? SFibs)]) / 8 

  ;  ] ; NOT SURE IF THIS METHOD WORKS OR CHANGES ANYTHING 

  ask patches [    ; sets V1score = normalized #neighbors(n=8) devoid of cells 

    set V1_score (count neighbors with [ (not any? IFibs in-radius IFsize) and 

        (not any? AFibs in-radius AFsize) and (not any? MFibs in-radius MFsize) and 

        (not any? SFibs in-radius SFsize)]) / 8 

    ] 

  ask patches [    ; sets V2score = mean V1score of neighborhood 

    set V2_score mean [ V1_score ] of neighbors 

    ] 

end 

 

;================================================================| 

;; SHORTCUTS TO CALCULATE AND REPORT %HEALED AND POP. 

PROPORTIONS AND PROBABILITIES 

 

to Measure_Healed 

  if Measurement = "Edge_v1" [ 

    set Healed ( patch-set patches with [ 

        member? self Scratch and ( V1_score < 0.5 ) ] ) 

    ] 

  if Measurement = "Edge_v2" [ 

    set Healed ( patch-set patches with [ 

        member? self Scratch and ( V2_score < 0.5 ) ] ) 

    ] 

  if Measurement = "Edge_v1+2" [ 

    set Healed ( patch-set patches with [ 

        member? self Scratch and ( V1_score < 0.5 or V2_score < 0.5 ) ] ) 

    ] 

  set UnHealed ( patch-set patches with [ 

      (member? self Scratch) and (not member? self Healed) 

      ] ) 

  set UnHealed_edge ( patch-set patches with [ 

      (member? self UnHealed) and (any? neighbors4 with [ 

          not member? self UnHealed]) 

      ]) 
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if Show_Healed_Area? = true and Label_Leading_Edge? = true [ 

    ask Scratch [ set pcolor grey ] 

    ask Healed [ set pcolor lime ] 

    ask UnHealed_edge [ set pcolor 6 ] ; tinted grey 

    ] 

  if Show_Healed_Area? = true and Label_Leading_Edge? = false [ 

    ask Scratch [ set pcolor grey ] 

    ask Healed [ set pcolor lime ] 

    ] 

  if Show_Healed_Area? = false and Label_Leading_Edge? = true [ 

    ask Scratch [ set pcolor grey ] 

    ask UnHealed_edge [ set pcolor 6 ] ; tinted grey 

    ] 

end 

to-report %Cover 

  report 100 * ( Cell_AR / Rs_AR ) * Fibs_$ 

end 

to-report %Healed 

  ifelse Measurement = "Cell_Areas" [ report %Cover ][ 

    report 100 * (count patches with [member? self Healed]) / Vs_AR 

  ] 

end 

to-report Edge_length 

  report ds * (sum [ 

      count neighbors4 with [not member? self UnHealed]] of UnHealed_edge) 

end 

to-report Rel_Edge_length 

  report Edge_length / Edge_length_t0 

end 

to-report Divs_T                                    ; number of divisions - overall 

  report count turtles - Pop_t0 

end 

 

to-report IFibs_T report count IFibs end            ; inactive fib pop - overall 

to-report AFibs_T report count AFibs end            ; active fib pop - overall 

to-report MFibs_T report count MFibs end            ; myo- fib pop - overall 

to-report SFibs_T report count SFibs end            ; senescent fib pop - overall 

to-report Dead_T report count Apops end             ; dead pop overall 

to-report Fibs_T                                    ; total fib pop - overall 

  report (IFibs_T + AFibs_T + MFibs_T + SFibs_T) 

end 
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to-report IFibs_$ report count IFibs-on Scratch end ; inactive fib pop - on scratch 

to-report AFibs_$ report count AFibs-on Scratch end ; active fib pop - on scratch 

to-report MFibs_$ report count MFibs-on Scratch end ; myo- fib pop - on scratch 

to-report SFibs_$ report count SFibs-on Scratch end ; senescent fib pop - on scratch 

to-report Dead_$ report count Apops-on Scratch end  ; dead pop - on scratch 

to-report Fibs_$                                    ; total fib pop - on scratch 

  report (IFibs_$ + AFibs_$ + MFibs_$ + SFibs_$) 

end 

to-report IvTFibs_$vT    ; relative ratio of IFibs in the scratch vs overall 

  let IvT_$vT 0 

  ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (IFibs_T = 0) [ ] [ 

    set IvT_$vT (IFibs_$ / Fibs_$) / (IFibs_T / Fibs_T) 

  ] 

  report IvT_$vT 

end 

to-report AvTFibs_$vT    ; relative ratio of AFibs in the scratch vs overall 

  let AvT_$vT 0 

  ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (AFibs_T = 0) [ ] [ 

    set AvT_$vT (AFibs_$ / Fibs_$) / (AFibs_T / Fibs_T) 

  ] 

  report AvT_$vT 

end 

to-report MvTFibs_$vT    ; relative ratio of MFibs in the scratch vs overall 

  let MvT_$vT 0 

  ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (MFibs_T = 0) [ ] [ 

    set MvT_$vT (MFibs_$ / Fibs_$) / (MFibs_T / Fibs_T) 

  ] 

  report MvT_$vT 

end 

to-report SvTFibs_$vT    ; relative ratio of SFibs in the scratch vs overall 

  let SvT_$vT 0 

  ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (SFibs_T = 0) [ ] [ 

    set SvT_$vT (SFibs_$ / Fibs_$) / (SFibs_T / Fibs_T) 

  ] 

  report SvT_$vT 

end 

to-report Dead_$vT       ; relative ratio of Death in the scratch vs overall 

  let DvT_$vT 0 

  ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (Dead_T = 0) [ ] [ 

  set DvT_$vT (Dead_$ / (count turtles-on Scratch)) / (Dead_T / count turtles) 

  ] 

  report DvT_$vT 

end 
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to-report MeanP_activate   ; mean probability for inactive fibroblast activation 

  let mean_stim 0 

  ifelse any? IFibs [ 

    set mean_stim (Mean [stim] of turtles with [ member? self IFibs ]) 

    ] [ 

    set mean_stim (2 * stim_Ta)           ; if no IFibs, P_act = 1 

    ] 

  let P_act mean_stim / (2 * stim_Ta) 

  if P_act < 0 [ set P_act 0 ] 

  if P_act > 1 [ set P_act 1 ] 

  report P_act 

end 

to-report MeanP_deactivate ; mean probability for activated fibroblast inactivation 

  let mean_stim 0 

  ifelse any? AFibs [ 

    set mean_stim (Mean [stim] of turtles with [ member? self AFibs ]) 

  ] [ ] 

  let P_deact (((2 * stim_T-a) - mean_stim) / (2 * stim_T-a)) 

  if P_deact < 0 [ set P_deact 0 ] 

  if P_deact > 1 [ set P_deact 1 ] 

  report P_deact 

end 

to-report MeanP_transmyo    ; mean probability for senescence of active fibroblasts 

  let mean_stim 0 

  ifelse any? AFibs [ 

    set mean_stim (Mean [stim] of turtles with [ member? self AFibs ]) 

  ] [ ] 

  let P_myo ((mean_stim - stim_Ta) / (2 * (stim_Tm - stim_Ta))) 

  if P_myo < 0 [ set P_myo 0 ] 

  if P_myo > 1 [ set P_myo 1 ] 

  report P_myo 

end 

to-report MeanP_senesce    ; mean probability for senescence of active and myo-fibs 

  let mean_stim 0 

  ifelse (any? AFibs) or (any? MFibs) [ 

    set mean_stim (Mean [stim] of turtles with [(breed = AFibs) or (breed = MFibs)]) 

    ] [ ] 

  let P_sen ((mean_stim - stim_Ta) / (2 * (stim_Ts - stim_Ta))) 

  if P_sen < 0 [ set P_sen 0 ] 

  if P_sen > 1 [ set P_sen 1 ] 

  report P_sen 

end 
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to-report MeanP_die        ; mean probability of fibroblast death due to stimulation 

  let mean_stim (Mean [stim] of turtles with [not member? self Apops]) 

  report mean_stim / (2 * stim_max) 

end 

to-report Mean_Pact-Pdeact ; calcs mean ratio of activation / inativation rates 

  let M_AvDa 1 

  ifelse MeanP_deactivate = 0 [ ] [ set M_AvDa ( MeanP_activate / MeanP_deactivate ) ] 

  report M_AvDa 

end 

to-report Mean_Pmyo-Pact   ; calcs mean ratio of myofibroblast / activation rates 

  let M_MvA 1 

  ifelse MeanP_activate = 0 [ ] [ set M_MvA ( MeanP_transmyo / MeanP_activate ) ] 

  report M_MvA 

end 

to-report Mean_Psen-Pmyo   ; calcs mean ratio of senescence / myofibroblast rates 

  let M_SvM 1 

  ifelse MeanP_transmyo = 0 [ ][ set M_SvM ( MeanP_senesce / MeanP_transmyo ) ] 

  report M_SvM 

end 

to-report Mean_Psen-Pdie   ; calcs mean ratio of senescence / death rates 

  let M_SvD 1 

  ifelse MeanP_die = 0 [ ][ set M_SvD ( MeanP_senesce / MeanP_die ) ] 

  report M_SvD 

end 

to-report Mean_Pdie-Pmyo   ; calcs mean ratio of death / myofibroblast rates 

  let M_MvD 1 

  ifelse MeanP_transmyo = 0 [ ][ set M_MvD ( MeanP_die / MeanP_transmyo ) ] 

  report M_MvD 

end 

to-report Mean_Pact-Pdie   ; calcs mean ratio of activation / death rates 

  let M_AvD 1 

  ifelse MeanP_die = 0 [ ][ set M_AvD ( MeanP_activate / MeanP_die ) ] 

  report M_AvD 

end 
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; Calculates Mean Void2 Scores by Patch Region's |x-coord| 

to-report V2mean_0-8 

  report mean [V2_score] of patches with [ (pxcor >= -8) and (pxcor <= 8) ] 

end 

to-report V2mean_9-16 

report mean [V2_score] of patches with [ 

  ((pxcor >= -16) and (pxcor <= -9)) 

  or ((pxcor >= 9) and (pxcor <= 16)) 

  ] 

end 

to-report V2mean_17-24 

report mean [V2_score] of patches with [ 

  ((pxcor >= -24) and (pxcor <= -17)) 

  or ((pxcor >= 17) and (pxcor <= 24)) 

  ] 

end 

to-report V2mean_25-33 

report mean [V2_score] of patches with [ 

  ((pxcor >= -33) and (pxcor <= -25)) 

  or ((pxcor >= 25) and (pxcor <= 33)) 

  ] 

end 

to-report V2mean_34-42 

report mean [V2_score] of patches with [ 

  ((pxcor >= -42) and (pxcor <= -34)) 

  or ((pxcor >= 34) and (pxcor <= 42)) 

  ] 

end 

to-report V2mean_43-50 

report mean [V2_score] of patches with [ 

  ((pxcor >= -50) and (pxcor <= -43)) 

  or ((pxcor >= 43) and (pxcor <= 50)) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO %HEALED RANGES FOR 

MODEL COMPARISONS 

to plot_IV_%Healed 

let x-vals (list 0 4 8 12 16 20 24)                    ; Scratch Assay timepoints 

let y-means (list 0.00 0.00 0.00 0.00 0.00 0.00 0.00) 

let y-sds (list 0.00 0.00 0.00 0.00 0.00 0.00 0.00) 

if Experiment_Type = "Scratch Healing" [ 

   if Cell_Line = "NHLF" [ 

      if Media = "FGM" [ 

      set y-means (list 0.00 17.40 45.29 56.79 63.88 76.65 86.64) 

      set y-sds (list 0.00 5.20 3.37 7.02 6.48 10.23 5.93) 

      ] 

      if Media = "FBM" [ 

      set y-means (list 0.00 9.58 23.01 34.88 45.46 56.34 64.16) 

      set y-sds (list 0.00 3.48 6.84 7.99 6.41 10.46 10.62) 

      ] 

      if Media = "CSC" [ 

      set y-means (list 0.00 6.00 14.28 23.49 34.93 45.38 52.17) 

      set y-sds (list 0.00 0.86 9.32 9.70 10.59 9.96 10.16) 

      ] 

   ] 

      if Cell_Line = "DHLF" [ 

      if Media = "FGM" [ 

      ] 

      if Media = "FBM" [ 

      set y-means (list 0.00 12.01 19.96 21.13 24.51 28.26 39.30) 

      set y-sds (list 0.00 8.96 14.90 10.68 15.94 18.87 20.47) 

      ] 

      if Media = "CSC" [ 

      set y-means (list 0.00 5.30 15.52 13.53 15.56 21.16 28.83) 

      set y-sds (list 0.00 3.75 10.97 8.40 5.42 7.22 12.23) 

      ] 

   ] 

   let index 0 

   while [ index < length x-vals ] [ 

      plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) 

      plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) 

      set index (index + 1) 

   ] 

] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO MTT RANGES FOR MODEL 

COMPARISONS 

to plot_IV_MTT 

let x-vals (list 0 2 12 24)                             ; MTT/CCK8 timepoints 

let y-means (list 0.00 0.00 0.00 0.00 0.00 ) 

let y-sds (list 0.00 0.00 0.00 0.00 0.00 ) 

if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.182  0.944  1.095) 

    set y-sds map [( ? * Pop_t0 )] (list 0.181  0.107  0.057  0.080) 

    ] 

  if Media = "FBM" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.119  0.977  0.968) 

    set y-sds map [( ? * Pop_t0 )] (list 0.181  0.132  0.127  0.120) 

    ] 

  if Media = "CSC" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.047  1.018  0.765) 

    set y-sds map [( ? * Pop_t0 )] (list 0.181  0.137  0.098  0.125) 

    ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

  plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)) - Pop_t0) 

  plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)) - Pop_t0) 

  set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO Totlnorm RANGES FOR 

MODEL COMPARISONS 

to plot_IV_Totlnorm 

let x-vals (list 0.00 0.00 0.00) 

let y-means (list 0.00 0.00 0.00 ) 

let y-sds (list 0.00 0.00 0.00 ) 

if Experiment_Type = "Culture Cond." [ 

  set x-vals (list 0 8)                  ; Staining timepoints (pre-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.313) 

    set y-sds map [( ? * Pop_t0 )] (list 0.278  0.316) 

    ] 

  ] 

] 

if Experiment_Type = "Scratch Healing" [ 

  set x-vals (list 0 12 24)                 ; Staining timepoints (post-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.163  1.534) 

    set y-sds map [( ? * Pop_t0 )] (list 0.487  0.376  0.335) 

    ] 

  if Media = "FBM" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  1.043  1.130) 

    set y-sds map [( ? * Pop_t0 )] (list 0.487  0.497  0.524) 

    ] 

  if Media = "CSC" [ 

    set y-means map [( (? + 1) * Pop_t0 )] (list 1.000  0.948  1.114) 

    set y-sds map [( ? * Pop_t0 )] (list 0.487  0.300  0.273) 

    ] 

  ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

  plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)) - Pop_t0) 

  plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)) - Pop_t0) 

  set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO Totl RANGES FOR MODEL 

COMPARISONS 

to plot_IV_Totl 

let x-vals (list 0.00 0.00 0.00) 

let y-means (list 0.00 0.00 0.00 ) 

let y-sds (list 0.00 0.00 0.00 ) 

if Experiment_Type = "Culture Cond." [ 

  set x-vals (list 0 8)                    ; Staining timepoints (pre-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 409.4  537.8) 

    set y-sds (list 113.9  129.4) 

    ] 

  ] 

] 

if Experiment_Type = "Scratch Healing" [ 

  set x-vals (list 0 12 24)                 ; Staining timepoints (post-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 415.9  483.8  638.0) 

    set y-sds  (list 202.7  156.2  139.3) 

    ] 

  if Media = "FBM" [ 

    set y-means (list 415.9  433.9  470.2) 

    set y-sds  (list 202.7  206.7  217.8) 

    ] 

  if Media = "CSC" [ 

    set y-means (list 415.9  394.4  463.3) 

    set y-sds  (list 202.7  124.6  113.7) 

    ] 

  ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

      plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) 

      plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) 

      set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO % Dead RANGES FOR 

MODEL COMPARISONS 

to plot_IV_dead 

let x-vals (list 0.00 0.00 0.00) 

let y-means (list 0.00 0.00 0.00 ) 

let y-sds (list 0.00 0.00 0.00 ) 

if Experiment_Type = "Culture Cond." [ 

  set x-vals (list 0 8)                    ; Staining timepoints (pre-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 1.48  3.04) 

    set y-sds  (list 0.56  0.54) 

    ] 

  ] 

] 

if Experiment_Type = "Scratch Healing" [ 

  set x-vals (list 0 12 24)                 ; Staining timepoints (post-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 8.05  2.72  1.63) 

    set y-sds  (list 1.85  0.50  0.63) 

    ] 

  if Media = "FBM" [ 

    set y-means (list 8.05  4.04  1.82) 

    set y-sds  (list 1.85  0.57  0.21) 

    ] 

  if Media = "CSC" [ 

    set y-means (list 8.05  3.69  2.11) 

    set y-sds  (list 1.85  1.99  0.71) 

    ] 

  ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

      plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) 

      plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) 

      set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO % SA-B-Gal RANGES FOR 

MODEL COMPARISONS 

to plot_IV_bgal 

let x-vals (list 0.00 0.00) 

let y-means (list 0.00 0.00) 

let y-sds (list 0.00 0.00) 

if Experiment_Type = "Culture Cond." [ 

  set x-vals (list 0 8)                    ; Staining timepoints (pre-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 11.91  17.42) 

    set y-sds  (list 3.37  1.55) 

    ] 

  ] 

] 

if Experiment_Type = "Scratch Healing" [ 

  set x-vals (list 0 12 24)                 ; Staining timepoints (post-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 16.72  48.29  20.43) 

    set y-sds  (list 5.51  7.72  1.72) 

    ] 

  if Media = "FBM" [ 

    set y-means (list 16.72  31.71  13.64) 

    set y-sds  (list 5.51  2.22  3.17) 

    ] 

  if Media = "CSC" [ 

    set y-means (list 16.72  23.12  21.65) 

    set y-sds  (list 5.51  11.84  2.51) 

    ] 

  ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

      plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) 

      plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) 

      set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT FOR CODE USED TO SETUP IN VITRO % aSMA RANGES FOR 

MODEL COMPARISONS 

to plot_IV_asma 

let x-vals (list 0.00 0.00) 

let y-means (list 0.00 0.00) 

let y-sds (list 0.00 0.00) 

if Experiment_Type = "Culture Cond." [ 

  set x-vals (list 0 8)                    ; Staining timepoints (pre-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 4.35  13.49) 

    set y-sds  (list 1.45  0.39) 

    ] 

  ] 

] 

if Experiment_Type = "Scratch Healing" [ 

  set x-vals (list 0 12 24)                 ; Staining timepoints (post-scratch) 

  if Cell_Line = "NHLF" [ 

  if Media = "FGM" [ 

    set y-means (list 20.97  27.83  23.21) 

    set y-sds  (list 3.40  3.74  4.20) 

    ] 

  if Media = "FBM" [ 

    set y-means (list 20.97  17.38  10.90) 

    set y-sds  (list 3.40  0.37  1.38) 

    ] 

  if Media = "CSC" [ 

    set y-means (list 20.97  58.91  14.48) 

    set y-sds  (list 3.40  22.87  4.41) 

    ] 

  ] 

  ] 

let index 0 

while [ index < length x-vals ] [ 

      plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) 

      plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) 

      set index (index + 1) 

  ] 

end 
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;================================================================| 

;; SHORTCUT TO MAKE & EXPORT A MOVIE OF THE VIEW OR INTERFACE 

to make_movie 

  movie-cancel                                    ; cancels movie if still filming 

  setup 

  let movie_name "Model_0.3.7_" 

  if movie_type = "World View" [                  ; films movie of world view 

    set movie_name (word movie_name "View_" Cell_Line"_" Media"_" Movie_Title 

".mov") 

    movie-start movie_name 

    movie-set-frame-rate (1 / dt)                 ; sets the frame rate 1 tick/sec 

    movie-grab-view                               ; shows the initial state 

    repeat (1 + (t_end / dt)) [ 

      go 

      movie-grab-view                             ; shows state with each step 

      ] 

    ] 

  if movie_type = "Interface" [                   ; films movie of model interface 

    set movie_name (word movie_name "UI_" Cell_Line"_" Media"_" Movie_Title ".mov") 

    movie-start movie_name 

    movie-set-frame-rate (1 / dt) 

    movie-grab-interface 

    repeat (1 + (t_end / dt)) [ 

      go 

      movie-grab-interface 

      ] 

    ] 

  print (word movie_name " has completed at " 

    date-and-time " with " t_end " hours simulated over " movie-status)          ; prints movie 

info upon completion 

  repeat 3 [beep wait 1]                          ; emits 3 beeps spaced 1s apart 

  movie-close 

end 
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APPENDIX B 

 

Variable Value Unit Description 

tick 1 hour Model counter  

world-height 101 patches Model world height 

Iheight 1677 µm In vitro image height* 

dt 1/3 tick/step Time resolution (= 20min/step) 

ds 16.6040 um/patch Spatial resolution 

Rs_AR 1296089.39 µm2 In vitro scratch area* 

N_diam 30.0 µm NHLF diameter mean 61 

Time_seed-scratch 6 hours Seed-Scratch time interval* 

Pop_Ss 1172 agents Seeded population* 

MPop_S 0.0435 ratio Seeded MFibs* 

SPop_S 0.1191 ratio Seeded SFibs* 

DPop_S 0.0148 ratio Seeded DFibs* 

IPop_S 0 ratio Seeded IFibs 49 

APop_S remaining ratio Seeded AFibs 49* 

Alpha_Z 0.75 ratio IFib size coefficient 

Alpha_M 0 ratio IFib speed coefficient 

Alpha_P 1 ratio IFib division period coefficient 

Alpha_D 1 ratio IFib death resistance coefficient 

Beta_Z 1 ratio (ref.) AFib size coefficient  

Beta_M 1 ratio (ref.) AFib speed coefficient 

Beta_P 1 ratio (ref.) AFib division period coefficient 

Beta_D 1 ratio (ref.) AFib death resistance coefficient 

Gamma_Z 1.4 ratio MFib size coefficient 61 

Gamma_M 0.625 ratio MFib speed coefficient 61 

Gamma_P 1.4 ratio MFib division period coefficient 61 

Gamma_D 1.4 ratio MFib death resistance coefficient  

Omega_Z 2 ratio SFib size coefficient 40 

Omega_M 0.75 ratio SFib speed coefficient 124 

Omega_P 1000 ratio SFib division period coefficient 40 

Omega_D 1000 ratio SFib death resistance coefficient 40 

Model constants controlling temporal-spatial resolution and initial conditions for scratch 

closure simulations. * indicates values determined from in vitro experiments with NHLF. 
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Parameter Value Unit Description 

Migrate_rate $ µm/hour AFib migration rate  

Prolife_rate $ hour/split AFib proliferation rate 

T_myo $ stim Myofibroblast stimulation threshold 

T_sen $ stim Senescence stimulation threshold 

Stim_rate $ stim/hour Environmental stimuli magnitude 

Stim_sense $ ratio Stimuli sensitivity distribution 

Model parameters controlling agent characteristics and responses to stimulation during 

scratch closure simulations. $ indicates parameters calibrated to in vitro experiments. 

 

 

UI Setting Value Description 

Cell_Line 
NHLF Counter-plot NHLF in vitro data ranges 

DHLF Counter-plot DHLF in vitro data ranges 

Media 

FGM Green-gradient agents 

FBM Blue-gradient agents 

CSC Red-gradient agents 

Experiment_Type 

Culture Cond. No voided region; no gradients. 

Scratch Healing 

Whole region seeded with N agents; 

central region denuded of ~N/2 agents at 

time T to instigate invasive behaviors 

Barrier Removal 
Central region is filled with ~N/2 agents; 

allowed to invade at time T 

Seed_Density 
In Vitro Seed same number of agents as in vitro 

Max Confluency Seed max number of agents sans overlap 

Seed_IFibs_Only? On/Off Toggles “all inactive” or “in vitro ratios” 

Precondition? On/Off Toggles precondition interval 

Show_Healed_Area? On/Off Toggles green-labeled Healed region 

Label_Leading_Edge? On/Off Toggles grey-labeled Unhealed Edge 

User interface settings that control the model display and additional functionalities. 
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APPENDIX C 

 

Group Parameter 

Modulation 

Total Population %Dead 

 12 HR 24 HR 12 HR 24 HR 

NHLF M + -5.9 -4.3 3.4 2.3 

FGM  - -10.9 -10.0 4.9 4.6 

 P + -6.3 -5.8 5.4 7.0 

  - -7.2 -5.4 3.9 3.0 

 LM + -10.5 -9.1 2.4 1.8 

  - -6.7 -6.1 4.3 3.7 

 LS + -7.4 -5.2 2.3 -0.2 

  - -10.5 -10.0 3.1 3.2 

 AM + -9.5 -8.7 3.1 3.8 

  - -4.2 -2.5 2.5 2.6 

 AS + -12.5 -11.1 1.8 0.4 

  - -4.8 -3.9 2.9 3.9 

NHLF M + -1.5 -4.0 0.2 1.6 

FBM  - 1.2 -2.7 1.9 5.5 

 P + -2.2 -4.7 1.8 3.0 

  - -2.1 -5.0 -0.4 2.5 

 LM + -5.4 -7.6 1.4 3.7 

  - -1.4 -5.0 1.2 4.7 

 LS + -1.0 -3.3 0.9 3.4 

  - -4.3 -7.8 0.4 3.5 

 AM + -4.0 -7.6 2.0 5.4 

  - -1.4 -3.4 0.8 2.0 

 AS + 0.9 -1.5 3.0 5.5 

  - -2.9 -5.4 1.1 3.6 

(Table continued on next page)  
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Group Parameter 

Modulation 

Total Population %Dead 

 12 HR 24 HR 12 HR 24 HR 

NHLF M + -3.9 -3.1 1.2 2.1 

CSM  - 0.8 0.4 2.4 2.5 

 P + -3.8 -4.1 1.7 3.0 

  - -4.4 -3.8 0.3 -1.2 

 LM + -1.5 -1.5 1.2 0.4 

  - -0.6 -0.8 0.0 2.4 

 LS + -0.6 0.3 1.8 3.1 

  - -0.9 -1.6 2.1 3.1 

 AM + -5.3 -5.2 1.8 0.6 

  - -5.1 -4.9 1.3 1.4 

 AS + 1.2 0.8 1.8 5.8 

  - -4.0 -4.6 0.7 3.1 

DHLF M + -1.7 -2.0 -0.6 0.8 

  - 0.5 0.7 2.0 3.8 

 P + -5.6 -5.9 1.3 3.3 

  - 0.2 0.4 -0.5 -1.3 

 LM + -4.7 -5.0 0.9 3.2 

  - -4.6 -5.1 0.7 2.2 

 LS + 4.7 5.1 -0.6 0.3 

  - -1.3 -1.7 -0.9 0.7 

 AM + -1.1 -1.3 2.3 6.4 

  - -6.1 -5.1 0.6 0.2 

 AS + 0.1 0.2 -0.8 0.1 

  - 0.8 0.8 1.2 1.6 

Heat-map of each calibrated parameter-set’s sensitivity to parameter changes; expressed as 

the percentage difference from the calibrated parameter-set’s mean output when each 

parameter is independently modulated by ± 10%. Model outputs are shown for the total 

population and percentage of dead cells after 12 or 24 hours. Parameter-set mean outputs 

were calculated from 10 simulations with the same conditions. A blue-red gradient was 

applied across all outputs and parameter modulations within each group.  
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