INVESTIGATING SMOKE EXPOSURE AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) WITH A CALIBRATED AGENT BASED MODEL (ABM) OF IN VITRO FIBROBLAST WOUND HEALING.

James A. Ratti
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Computational Engineering Commons, Disease Modeling Commons, and the Systems Biology Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/5441

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
INVESTIGATING SMOKE EXPOSURE AND CHRONIC OBSTRUCTIVE
PULMONARY DISEASE (COPD) WITH A CALIBRATED AGENT BASED MODEL
(ABM) OF IN VITRO FIBROBLAST WOUND HEALING.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science of Biomedical Engineering at Virginia Commonwealth University.

by

JAMES ALEXANDER RATTI
B.S. Biomedical Engineering, VCU, 2013

Director: REBECCA L. HEISE
ASSOCIATE PROFESSOR, BIOMEDICAL ENGINEERING

Virginia Commonwealth University
Richmond, Virginia
May 2018
Acknowledgements

I would first like to thank Dr. Rebecca Heise and Dr. Angela Reynolds for all of their insight, guidance, and encouragement throughout this project. I will forever be grateful to you for accepting me onto your team and teaching me these in vitro techniques and computational methods to study disease from an engineering perspective. This experience has inspired me to further explore the roles of mechanobiology within diseases and medicines for them in my future endeavors. I would also like to thank Dr. Christopher Lemmon for the advice regarding fibroblast biology and taking the time to serve on my committee; as well as all of the students and alumni of the Heise and Lemmon labs for all of the conversations, assistance and computers for simulations.

I would like to extend a special thanks to my partner Kat Beyer for all of her support, listening to me blather about science, and helping me stay grounded in the chaos.

Lastly, I would like to thank my family and friends for all of the support, invaluable life lessons and patience with my limited availability during these studies.

You all helped make this possible and I can’t thank you enough.

Sincerely,

Alex Ratti
Table of Contents

Page

Acknowledgements ... ii

List of Tables .. vi

List of Figures .. vii

Chapter

1 Background .. 1

Chronic Obstructive Pulmonary Disease (COPD) & Oxidative Stress 1

Pulmonary Wound Healing ... 5

Fibroblast Heterogeneity & Activation .. 8

Cellular Senescence: Replicative & Stress-Induced ... 12

Fibroblast Migration: Individual & Collective ... 15

Agent Based Models ... 18

Project Objectives ... 20

2 In Vitro Methods ... 21

Cell Culture & Treatment Medias .. 21

Metabolic Assays .. 22

Scratch Wound Healing Assays ... 23

Cytometric Stain Assays .. 24

Viability Stain ... 25

Senescence-Associated Beta-Galactosidase (SA-β-Gal) Stain 25
Alpha-Smooth Muscle Actin (αSMA) Immunocytochemistry Stain26

Statistical Analyses...27

3 In Silico Methods ..28

Model Setup ...28

Initial Conditions & Agent Preconditioning ...30

Scratch Implementation & Closure Measurement ...31

Model Rules ...34

Rule #1: Migration ..34

Rules #2-3: Proliferation & Replicative Senescence ...35

Rule #4: Environmental Stimulation with Heterogeneous Response37

Rules #5-9: Stimulation-Induced State Transitions ...38

4 Results ...41

Metabolic Response ...41

Scratch Wound Closure ..43

Total Population ..47

Cell Death & Viable Subpopulation ..48

Senescent Subpopulation ..50

Myofibroblast Subpopulation ...53

Superimposed Subpopulations ...56

Calibrated Parameter-Set..59
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Discussion</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions</td>
</tr>
<tr>
<td>7</td>
<td>Literature Cited</td>
</tr>
<tr>
<td>A</td>
<td>Appendices</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

Parameter Sensitivity Analysis ... 61
Simulated Treatments for Smoke Exposure & COPD Fibroblasts 64
5 Discussion ... 68
Differences among Normal Fibroblast Exposures 68
Differences between Normal & COPD Fibroblasts 72
Potential Treatments for Smoke Exposure & COPD Fibroblasts 75
Additional Functionality & Future Directions for the Model 76
6 Conclusions .. 80
Literature Cited ... 81
Appendices .. 95
 A NetLogo Code of the Model ... 95
 B Table of Model Variables, Values and Sources 127
 C Sensitivity Analysis of Fibroblast Population & Cell Death Outputs 129
VITA .. 131
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Calibrated Parameter-Sets of the Fibroblast Responses.</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Heat-map of each calibrated-set’s sensitivity to parameter changes.</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Potential Treatment Strategies for COPD and Smoke Exposure.</td>
<td>79</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mechanisms of airflow limitation in COPD</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Phases of acute wound healing in the lungs</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Fibroblast functions, activation into myofibroblasts and other sources</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Myofibroblast differentiation mediated by oxidative stress and potential</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>inhibitors to recover the fibroblast phenotype</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Induction of cellular senescence and the SASP.</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Contact inhibition of locomotion among fibroblasts</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Representative simulation of fibroblast agents closing a scratch</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Patch diagram displaying how Void Scores are determined and used</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow diagram of fibroblast agent states, characteristics and associated</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>rules</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Plot of the probabilities governing agent transitions between states</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Metabolic responses of normal human lung fibroblasts exposed to either</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>FGM, FBM, CSM or 0.125% DMSO over 24 hours</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Phase contrast images of NHLF and DHLF closing a scratched monolayer</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>over 24 hours while exposed to either FGM, FBM or CSM in vitro</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>In vitro scratch closure data of NHLF or DHLF monolayers exposed to FGM,</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>FBM or CSM over 24 hours</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Simulated transients and in vitro scratch closure data of NHLF and DHLF</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 4.5: *In vitro* cell density among NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours ...48

Figure 4.6: Simulated transients and *in vitro* cell density data among NHLF......................49

Figure 4.7: Fluorescent stain of live (green) and dead (red) NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours *in vitro*...............................50

Figure 4.8: *In vitro* percentage of dead cells among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours ..51

Figure 4.9: Superimposed channels of chromogenic SA-β-Gal (cyan) and fluorescent DAPI (magenta) stained NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours *in vitro*..52

Figure 4.10: *In vitro* percentage of senescent cells among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours ..53

Figure 4.11: Simulated transients and *in vitro* senescence data among NHLF54

Figure 4.12: Superimposed fluorescent channels of αSMA (red) and DAPI (blue) stained NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours *in vitro* ..55

Figure 4.13: *In vitro* percentage of myofibroblasts among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours ..56

Figure 4.14: Simulated transients and *in vitro* myofibroblast data among NHLF.............57
Figure 4.15: Superimposed percentages of myofibroblasts, senescent cells and dead cells among NHLF exposed to FGM, FBM or CSM during in vitro scratch closure58

Figure 4.16: Simulated treatments for NHLF and DHLF exposed to smoke.65
Abstract

INVESTIGATING SMOKE EXPOSURE AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) WITH A CALIBRATED AGENT BASED MODEL (ABM) OF IN VITRO FIBROBLAST WOUND HEALING.

By James Alexander Ratti, B.S.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering at Virginia Commonwealth University.

Virginia Commonwealth University, 2018

Major Director: Rebecca L. Heise
Associate Professor, Biomedical Engineering

COPD is characterized by tissue inflammation and impaired remodeling that suggests fibroblast maintenance of structural homeostasis is dysregulated. Thus, we performed in vitro wound healing experiments on normal and diseased human lung fibroblasts and developed an ABM of fibroblasts closing a scratched monolayer using NetLogo to evaluate differences due to COPD or cigarette smoke condensate exposure. This ABM consists of a rule-set governing the healing response, accounting for cell
migration, proliferation, death, activation and senescence rates; along with the effects of heterogeneous activation, phenotypic changes, serum deprivation and exposure to cigarette smoke condensate or bFGF. Simulations were performed to calibrate parameter-sets for each cell type using \textit{in vitro} data of scratch-induced migration, viability, senescence-associated beta-galactosidase and alpha-smooth muscle actin expression. Parameter sensitivities around each calibrated parameter-set were analyzed. This model represents the prototype of a tool designed to explore fibroblast functions in the pathogenesis of COPD and evaluate potential therapies.
Background

Chronic Obstructive Pulmonary Disease (COPD) & Oxidative Stress

With no cure available and treatments that are only able to manage symptoms – COPD is currently the third leading cause of death among adults in the United States \(^1\). The Global Initiative for Chronic Obstructive Lung Disease (GOLD), which provides yearly updates of recommended methods for the treatment and prevention of COPD, defines it as “a common, preventable, and treatable disease characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities, usually caused by significant exposure to noxious particles or gases,” such as cigarette smoke or other pollutants \(^2,3\). This reduction in airflow is due to imbalanced tissue remodeling that progressively produces both: (A) decreased elastic recoil, small airway collapse, and loss of alveolar integrity within the parenchyma, along with (B) increased airway resistance due to narrowed lumen diameters from inflammation, fibrosis and smooth muscle proliferation within the bronchioles (Figure 1.1) \(^3-11\).

While rare, sometimes heritable, forms of COPD also exist – such as alpha1-antitrypsin deficiency disorder which causes tissue degradation through a lack of this crucial antiprotease \(^12\) – the most common risk factor for COPD is smoking tobacco followed by exposure to other environmental pollutants and ageing. However, only 25% of smokers will develop the accelerated decline of respiratory function that is associated
with clinically significant COPD, indicating some genetic risk factors may play a role as well. For this reason, COPD has been classified as a hereditary autoinflammatory disease, as these are characterized by genetic mutations which produce an overactive or hyperresponsive innate immune system that typically present with periodic episodes or flares mediated by interleukin (IL)-1. Due to this likelihood that genetic differences exist between smokers who do or do not develop COPD, specific cell lines have been isolated from human lungs with COPD (e.g. COPD-Diseased Human Lung Fibroblasts; DHLF) for comparison to genotypically-normal cell lines from healthy human lungs (e.g. Normal Human Lung Fibroblast; NHLF) for in vitro research involving COPD. In particular, pulmonary fibroblasts isolated from people with COPD express increased levels of redox signaling (e.g. isoprostanes,
elevated NADH/NAD ratio), inflammatory signaling (e.g. PGE2, COX-2, TNFα, TGFβ, NLRP3-mediated IL-1β, IL-6), myofibroblast markers (e.g. αSMA), senescence markers (e.g. p16, p21, β-Gal, IL-1α, minimal telomeres), and fail to maintain extracellular matrix (ECM) homeostasis. Additionally, lung fibroblasts have been shown to differentially inhibit global protein translation, proliferation, migration, and contraction of collagen gels within hours – as well as increase senescence over several passages in response to prostaglandin-E2 (PGE2) in vitro, a common inflammatory pathway that has been shown to be dysregulated in COPD fibroblasts and directly correlates with the disease’s severity.

The proposed inflammatory mechanisms behind COPD’s pathogenesis are a modified response to respiratory irritants characterized by increased oxidative stress from activated immune cells, cigarette smoke, and other environmental factors that creates an amplified inflammatory response, an imbalance of proteases and antiproteases, and an increase in cellular proliferation, apoptosis and senescence. This is supported by a loss of alveolar epithelial cells and increased proliferation – evidenced by shortened telomeres among progenitor and non-senescent cells relative to uninflamed somatic cells – among samples from patients with COPD. Additionally, increased levels of markers for oxidative stress (e.g. H2O2, 8-isoprostane), inflammatory cells (e.g. Neutrophils, Macrophages, NK-cells), inflammatory mediators, proteases (e.g. MMPs, elastases, cathepsins), and markers of senescence have been found in samples from patients with COPD – in fact, this secretory profile is collectively termed the COPD-associated secretory phenotype (CASP). While it partially overlaps with some other lung diseases like...
idiopathic pulmonary fibrosis 31, CASP most notably has the same upregulated secretory profile as the cellular senescence-associated secretory phenotype (SASP) 19. Both secretory profiles are known to result from oxidative stressors like cigarette smoke and inflammation, indicating that cell senescence has an active role in COPD pathogenesis 6,18,37–40,19,20,29,32–36. It is theorized that COPD pathogenesis occurs via chronic oxidative stress by inducing both apoptosis and senescence – and that senescent cells express a SASP that is self-promoting, induces senescence in surrounding cells, and progressively increases the amount of proteases in the extracellular space. Ongoing stimulation by oxidative stressors can amplify this pathway until the levels of senescent cells becomes self-sustaining, surpasses the ability of the immune system meant to remove them, and reduces the tissue’s proliferative capacity to replace lost cells. The resulting imbalances in cellular apoptosis:proliferation and protease:antiprotease levels are thought to be independently responsible for driving the degradation of parenchymal tissue at the cellular and molecular levels, and may explain the observed persistence of inflammation in COPD patients who quit smoking 6,14,19,29,32.

Likewise, cigarette smoke and oxidative stress have been found to induce myofibroblast differentiation among lung fibroblasts – both directly and through miR210 containing extracellular vesicles from bronchial epithelial cells 23 – and epithelial-mesenchymal transition 41,42, which has been found to be increased in COPD as well 42. The resulting loss of proliferative epithelial cells paired with an excess of fibroblasts, myofibroblasts and senescent cells is thought to drive the differential fibrotic and degradative changes seen in chronic bronchitis and emphysema, respectively.
Altogether, this review indicates that oxidative stress, PGE2 and NLRP3-mediated signaling play a major role in the pathogenesis of COPD by promoting inflammation, mesenchymal differentiation and cellular senescence that subsequently promotes differential ECM hypertrophy and degradation by tissue type; it’s hoped that mechanisms which target and suppress these pathways will provide new and effective treatments. Potentially, multi-scale computational modeling of these pathways – from the molecular level up to the entire respiratory system – can be used to determine which combination of these pathways is sufficient to produce the observed clinical symptoms, or if additional factors (e.g. substrate stiffness, substrate composition, traction forces, cyclical stretch, metabolic regulation) need to be taken into account within a more complex model.

Pulmonary Wound Healing

Wound healing among embryonic and fetal tissues exhibits full functional regeneration of injured tissues without scarring, while wound healing of adult tissues often leads to the formation of scar tissue or fibrosis that can result in a repaired tissue with less functionality than before the injury.\(^4^3^-^4^6\). In non-pathological tissues, adult wound healing progresses through three overlapping phases: (1) homeostasis and inflammation, (2) proliferation, construction and remodeling, then (3) resolution.\(^3^6,.^4^4^-^4^6\). This process occurs in the lung just as it does throughout the body in general (Figure 1.2).
Figure 1.2 – Phases of acute wound healing in the lungs. A damaged section of tissue experiences an inflammatory response, recovery of lost cell types and ECM components, and resolution of the healing process as the tissue returns to homeostasis. Reproduced with permission from 47, copyright the authors.

The initial phase of pulmonary haemostasis and inflammation occurs immediately following injury – physical trauma activates platelets to induce clotting and stop blood loss – while trauma, infections, toxins and oxidative stress can all stimulate the release of inflammatory growth factors and cytokines (e.g. TGFβ, IL-6, PGE2) from platelets, leukocytes (e.g. neutrophils and macrophages), and damaged resident cells (e.g. fibroblasts, epithelial cells, endothelial cells) which recruit other cells to the wound site to amplify this inflammatory signaling and initiate tissue repair. These recruited cells include additional activated leukocytes to remove dead cells, debris, and invading pathogens from
the wound; fibroblasts to replace and remodel the damaged ECM; endothelial cells for angiogenesis within the healing tissue; and other tissue-specific cells necessary for tissue function – such as bronchial and alveolar epithelial cells in the lungs, keratinocytes in the skin, or hepatocytes in the liver.36,44–51.

The next phase of pulmonary healing is characterized by the growth of granulation tissue – named for its granular appearance – through proliferation of these recruited cells to replace those lost to the injury, construction of new ECM through deposition and contraction of structural proteins (i.e. collagens and fibronectin), and active angiogenesis to provide the new tissue with sufficient circulation. Remodeling of the granulation tissue is effected through continued contraction and cross-linking of newly synthesized ECM by myofibroblasts, secreted matrix metalloproteases (MMPs), and tissue inhibitors of metalloproteases (TIMPs); the regulation of these effectors determines the resultant amount of scarring and fibrosis.11,43–46,48–50.

Resolution of wound healing in the lung is reached when the tissue structure is restored and excess myofibroblasts and epithelial cells are removed by apoptosis. This occurs primarily as the newly synthesized ECM is able to take external stress off myofibroblasts, although increased NO2-signaling or activation of the Fas-apoptotic pathway by IL-6 sensitized by TNFα can also induce myofibroblast apoptosis. If chronic inflammation is present, tissue remodeling may persist and cause some cells to become senescent – from excessive stress, proliferation, or paracrine signaling from other senescent cells – and thereby target themselves for removal by leukocytes, cease synthesis of ECM proteins and TGFβ, and gradually upregulate their secretion of MMPs and pro-
senescence factors (e.g. IL-1α, PGE2, NF-κB, C/EBPβ). Dead or senescent cells cleared from tissues by the immune system are subsequently replaced through proliferation of surrounding cells if needed to resolve the chronic healing response. However, prolonged remodeling by myofibroblasts and senescent cells can cause permanent tissue dysfunction and preclude a full resolution of wound healing – if either myofibroblasts resist undergoing apoptosis and senescence, or if the number of senescent cells surpasses the immune system’s ability to clear them, then tissue remodeling may become progressively and irreversibly hypertrophic (i.e. stiffer, fibrotic ECM) or degradative (i.e. softer, more gelatinous ECM), respectively.11,18,39,43–46,48–50,52,19,29,32–37.

Fibroblast Heterogeneity & Activation

As the primary mediators of ECM synthesis and remodeling, the main contributors to tissue repair are resident fibroblasts and myofibroblasts: mechanically-sensitive cells of mesenchymal origin with a dedifferentiated phenotype. These cells represent a heterogeneous population, where subpopulations from different locations within the lungs (i.e. stroma versus parenchymal regions) exist with differing signaling properties.45,48 They regulate ECM properties through controlled secretion of structural proteins (e.g. collagen-I, fibronectin, elastin, laminin), proteases, antiproteases, and inflammatory signals (e.g. TGF-β, IL-6, TNF-α, PGE2, IL-1α) in response to inflammatory stimuli such as physical trauma, toxins, oxidative stress, or autocrine and paracrine inflammatory signaling from other fibroblasts, activated leukocytes, epithelial cells and endothelial cells. This regulation of ECM production and quality of remodeling is achieved via a controlled
progression of inactivated resident fibroblasts into activated “proto-myofibroblasts” that may differentiate into myofibroblasts and eventually either apoptose or become senescent to be targeted for clearance by the immune system \(^{36,38,53–57,43–46,48–51}\). However, within COPD these cells express increased levels of inflammatory signals, myofibroblast and senescence markers, reactive oxidative species (ROS; e.g. \(\text{OH}^–\), \(\text{HO}_2^–\), \(\text{O}_2^–\), \(\text{H}_2\text{O}_2\), \(\text{ONOO}^–\), etc.), and fail to maintain their native ECM \(^3,6,24,9,14,18–23\).

Figure 1.3 – Fibroblast functions, activation into myofibroblasts and other sources. Reproduced with permission from \(^{48}\), copyright the authors.

Inactivated resident lung fibroblasts are found in uninjured tissue and all phases of wound healing within the intact, cross-linked ECM that stress-shields them and inhibits their formation of stress fibers or focal adhesions with the ECM. However, once stimulated
by a change in the mechanical properties of the local ECM that indicates repairs are needed – for example, provisional ECM (e.g. fibrin clot) stiffness ranges from 10-1000 Pa ⁴⁹,₅₀,₅² – these cells migrate to the wounded area. These inactive fibroblasts are naturally resistant to Fas-mediated apoptosis, and will readily proliferate if isolated *in vitro*; they exhibit nominal synthesis of ECM proteins (e.g. collagen-I, fibronectin); and form few or no stress fibers, cell-cell, or cell-ECM interactions – those interactions that do form are often weakly connected to nascent adhesions (a.k.a. focal complexes) – allowing them to quickly migrate in response to an injury-induced chemokine or stiffness gradient ¹¹,₄₃,₅₇,₄₅,₄₈–₅₁,₅₃–₅₅.

In the combined presence of transforming growth factor-β (TGFβ) and NADPH oxidase-4 (NOX4) ³⁹,₅₃–₅₅, the ED-A slice variant of fibronectin, and a sufficient increase in mechanical stresses – either of substrate stiffness (≥ ~3 kPa ⁵⁰), shear stresses from the edematous increase in extracellular fluid, extracellular stresses from the ECM or adjacent cells, or intracellular stresses from contraction of the actin cytoskeleton – focal complexes can form into focal adhesions (FAs; 2-6 μm long ⁴⁹) capable of supporting stress fibers and higher traction forces (3-4 nN/μm² ⁴⁹). These mechanobiological signals spur fibroblasts to progressively activate into a proto-myofibroblast morphology followed by full myofibroblast differentiation ⁴⁵,₄₈,₅₈,₅₉,₄₉–₅₁,₅₃–₅₇. These proto-myofibroblasts are found in all phases of wound healing from inflammation through remodeling, and will readily proliferate if cultured *in vitro* similar to fibroblasts. One activated through force-controlled release of TGFβ from reservoir proteins bound to the ECM (≥ 5-9 kPa ⁵₀), the actin cytoskeleton is rapidly reorganized to form lamellipodia, numerous focal adhesions, N-cadherin-type cell-cell interactions, and actin stress fibers devoid of alpha-smooth muscle
actin (αSMA). Additionally, these proto-myofibroblasts exhibit IL-6 mediated positive reinforcement of upregulated proliferation, ECM synthesis and contractility, pro-survival genes, and αSMA expression that’s not yet incorporated into stress fibers.

Figure 1.4 – Myofibroblast differentiation mediated by oxidative stress and potential inhibitors to recover the fibroblast phenotype. Reproduced with permission from 60, copyright the authors.

With progressive activation of TGFβ and NOX4 signaling along with sufficient increase in mechanical stimulation – either via substrate stiffness (≥~20 kPa; thus, most in vitro cultures of fibroblasts exhibit proto-myofibroblast phenotypes due to tissue culture plastic’s stiffness in the GPa range), shear, extracellular adhesions, or internal contractility – proto-myofibroblasts may fully differentiate into myofibroblasts as their focal adhesions coalesce into super-mature focal adhesions (SMFAs; 8-30 μm long, 4-5 fold longer than FAs) capable of supporting αSMA-containing stress fibers, 3-4 fold
increased traction stresses (~12 nN/μm² ⁴⁹), and OB-cadherin (type-11) junctions. While generally not found in the inflammatory phase of healing, myofibroblasts are primarily found within the proliferating and remodeling granulation tissue, can originate from multiple cell types besides resident fibroblasts (e.g. circulating fibrocytes, endothelial cells, epithelial cells, and smooth muscle cells), and don’t proliferate if isolated in vitro, unlike inactive fibroblasts and proto-myofibroblasts. The main hallmark of myofibroblasts, their expression of αSMA-containing stress fibers, is mediated through production via multiple signaling pathways – including: SMAD2/3, Notch1-Jagged1 (required in vitro), Wnt, hedgehog, or oxidative stress mediated by NOX4 – and organization into stress fibers without disrupting the core actin fibril ⁴⁹,⁵⁰,⁶¹. While myofibroblasts maintain upregulation of collagen-I and fibronectin, they cease secretion of cytokines. This causes them to continue synthesizing and contracting new ECM as long as the upregulated TGFβ remains to provide myofibroblasts resistance to Fas-mediated apoptosis; without protection from TGFβ, myofibroblasts may apoptose in response to IL-6-and-TNFα or NO₂ signaling, although their strongest stimulus for apoptosis is a loss of external stress indicative of sufficiently remodeled, structurally sound ECM signaling the end of healing ⁹,¹¹,⁵⁰,⁵¹,⁵³–⁵⁷,³⁶,⁴³–⁴⁶,⁴⁸,⁴⁹.

Cellular Senescence: Replicative & Stress-Induced

As part of the tissue’s chronic wound healing response, cellular senescence is essentially a cellular quarantining mechanism to suspend proliferation and prevent the spread of any damage to new cells – either until it is able to recover from the stimulus that
induced it, or until it’s progressively amplified secretory profile attracts a leukocyte to clear it. Senescence can be induced by shortened telomeres from age or upregulated proliferation (“replicative senescence”); growth factors (e.g. IL-1β, PGE2), oncogenes, or stress-induced damage to intracellular components by toxins or oxidative stressors (“premature senescence” or “stress-induced senescence”); and terminal differentiation within inappropriate microenvironments (“developmental senescence”). While developmental senescence earned its name from the controlled senescence and clearance of excess cell types during development, it is also implicated as a mechanism of senescence for cells in wound resolution in response to TGFβ. In chronically inflamed wounds, replicative senescence may be triggered if continual turnover of proliferative cells causes them to prematurely reach their replicative limit. Likewise, premature stress-induced senescence may be induced by persistent exposure to oxidative stressors or pro-senescence growth factors 18,19,62–64,32–37,39,40.

One of the primary mechanisms of chronic lung injury and premature senescence is from sources such as cigarette and kitchen smoke, or activated leukocytes (i.e. respiratory burst activity). Excessive reactive oxygen species (ROS; OH-, HO2, O2-, H2O2, ONOO-, etc.) are known to deactivate antiproteases, damage cells through oxidation of their DNA, proteins and lipids, and activate inflammatory transcription regulators NF-κB and ERK1/2 3,6,60,65–67,14,18,19,32,33,36,38,39. If levels of ROS surpass the ability of local antioxidants to buffer them, then this oxidative stress may either kill cells outright (i.e. cellular necrosis) – in which case they undergo uncontrolled autolysis, spill their contents into the extracellular space, and increase the amount of stressors exposed to neighboring cells – or trigger a
DNA damage response (DDR) that induces growth arrest to begin the cellular repair process. If a DDR can’t be repaired promptly however, the cell becomes senescent.

Figure 1.5 – Induction of cellular senescence and the SASP. Reproduced with permission from 63, copyright American Society for Clinical Pharmacology and Therapeutics.

If a cell becomes senescent at any stage, it will increase its resistance to apoptosis, slow its migration rate, spread out, flatten, and grow up to twice in size 19,33,35,64 – suggesting an increase in applied traction forces 68,69 – and reorganize its chromatin into heterochromatin, termed senescence-associated heterochromatic foci (SAHF), thus making these changed irreversible 33–35,40,62,64. Also, once growth arrest is initiated, senescent cells begin developing the SASP by expressing IL-1α on their surface to bind adjacent surface-bound receptors. This signaling occurs in autocrine and paracrine fashions to activate the NF-κB and C/EBPβ transcription factors that mediate full expression of the SASP; this includes IL-1α, proteases (i.e. MMPs), other cytokines (e.g. IL-6, IL-8) and growth factors that targets the senescent cells for clearance by the innate immune system (e.g. neutrophils,
macrophages, NK-cells). Through this process senescent cells will upregulate their expression of β-Galactosidase (β-Gal), which serves as a useful, although not definitive, marker for senescent cells.

Fibroblast Migration: Individual & Collective

Cellular migration is often represented as a biased random walk such as the Vischek or Ornstein-Uhlenbeck models. Individual cells stochastically migrate up gradients of binding efficiency with the substrate – influenced by gradients of adhesion, topography, stiffness, chemokines and electrochemistry – which guide the intracellular polarization of actin polymerization and depolymerization. In order to do so within two-dimensional environments, they search for new adhesions through the formation of transient, spatially-stochastic protrusions of filopodia and lamellipodia driven by actin polymerization against the opposing membrane tension through Cdc42-GTP and Rac1-GTP signaling, respectively; however, in three dimensions, cells will often form pseudopods or blebs for more efficient migration in that milieu. Cells may bind to their substrate through transmembrane integrin receptors, or with other cells through cadherins, which form adhesive complexes with the actin cytoskeleton driven by ROCK/MLC mediated RhoA-GTP signaling. Myosin-II throughout the actin network, but concentrated near the rear of the nucleus, then generates tension upon these adhesions in the lamellipodium and ventral membrane which creates traction and causes the cell body to move forward; in a direction determined by the balance of adhered protrusions, weighted by their adhesion strength and stabilized by microtubules. These actomyosin forces also pull the membrane in from the
back and sides of the cell simultaneously through connections with the cortical actin network – which induces actin depolymerization and adhesion complex disassembly at the rear of the cell while generating hydrodynamic flow of the cytosol up to the front of the cell – to recycle the actin monomers, bundles of myosin-II and associated adhesion complex proteins needed for continued migration 78–82.

Figure 1.6 – Contact inhibition of locomotion among fibroblasts. Reproduced with permission from 83, copyright the authors.

The ratio of these cytoskeletal and force-generating protein within each cell determine the rate of migration, directional persistence, and shape of each cell; those which migrate faster and with more directional persistence take on a large wide canoe shape with smooth edges (e.g. keratocytes), while slower wandering cells take on a narrow ‘D’ shape with unstable edges (e.g. amoebae). Interestingly, cells which take on a canoe shape and migrate faster with more directional persistence have a higher actin network density – indicating
we may be able to increase cell migration by upregulating cytoskeletal actin or increasing actin polymerization with an increase in temperature \(^{84-86}\).

As a group, fibroblasts fall on the slower, less coordinated side of the spectrum of migration types described. They’re commonly represented as spindle-shaped, however this shape is unstable as they lack persistent polarization and exhibit actin fibres oriented at unexpected angles with respect to the direction of motion \(^{87-90}\). In barrier removal assays they show little directional persistence, with an average 2 cell diameters between independent movements \(^{91}\). They’re nematic cells which exhibit limited cadherin mediated cell-cell adhesion with contact-inhibited migration and proliferation; upon division, daughter fibroblasts disperse \(^{83,87-90,92-95}\). However, this contact inhibition is not complete – at confluence in vitro, cryptic lamellipodia extend below neighboring fibroblasts to migrate through monolayers at approximately a third the rate during pre-confluence \(^{91,96,97}\) and will keep proliferating albeit at a lower rate \(^{93,94}\). Yet, if fibroblasts are not yet confluent and come into contact, they will form transient cell-cell connections which inhibit further migration and redirect their polarization and resultant migration away from each other (Figure 1.2), such that the mean velocity of a single cell is inversely proportional to the amount of cell-cell contacts \(^{83,87-90,92,98,99}\). This contact inhibition is reversible (i.e. confluent monolayers can recover prior migration and proliferation rates when passaged) and mediated by p27(Kip1) induction which also suppresses cellular senescence by deactivating mTOR; which also explains how cells maintain reversible quiescence within tissues or confluent monolayers \(^{100,101}\).
As a result of this contact inhibition, jamming of fibroblast monolayers as cell densities increase have been modeled as liquid crystals, and barrier removal experiments have been performed in vitro to evaluate the release of contact inhibition on their migration. Barrier removal experiments are preferred over scratch assays for the study of collective migration since the former method limits damage to cells, is more reproducible, and allows various monolayer geometries to be formed that allow for the evaluation of changes due to the orientation of individuals or level of orientation-order among the population. However, the cell damage produced by scratch assays is preferable to mimic wound healing despite the decreased reproducibility of these experiments. Thus, to model wound healing within the lung in vitro, we opted for a scratch closure assay.

Agent Based Models

To model our scratch closure assays in silico, we opted for an ABM to study how the dynamics of fibroblast activation and senescence affect their collective migration to evaluate changes due to treatments or exposures with computational efficiency. While comprehensive models taking a systems-biology approach to model fibroblast wound healing have also been formulated, these are computationally intensive. Many other types of stochastic active particle models are also well-suited for studying wound healing and collective cell migration, however these are all physics-based models that study how the dynamics of cell-substrate and cell-cell connections between particles generate phenomena such as actin polarity emergence, monolayer jamming, flocking, digitation features among epithelial sheets, angiogenesis, or collagen.
deposition and contraction. Fortunately, efforts to model inflammatory responses utilizing multiple cell states (e.g. damaged and healthy) and cell types (e.g. epithelial and immune) have exemplified the value of ABM techniques. An ABM produced by Brown et al even produced a model smoke particulate exposure on fibroblast maintenance of the ECM and macrophage-mediated inflammation that managed to approximate fibrotic features observed within mouse models of smoke exposure. However, this model was limited in its ability to account for the direct effects of smoke exposure on their myofibroblast activation or senescence.

In contrast with ordinary and partial differential equations that model pooled population dynamics in a top-down manner, ABMs represent a bottom-up approach that excel at modeling emergent collective behaviors due to interactions between individuals and their environment. Agents are mobile individuals interacting with an immobile lattice of patches according to a set of rules. Agents often represent cells while patches represent the substrate or sheet of epithelial cells. Models may incorporate multiple types of agent or patch with their own subset of rules, multiple layers in two dimensions, or three dimensions. To facilitate these models, several modeling platforms have been developed. While slower than other platforms, NetLogo is open-source, easy to use and has several built-in tools such as BehaviorSpace to assist with model analysis. Some ABMs also include continuum mechanic modules to create a hybrid model.
Here, we model the collective migration dynamics of fibroblasts closing a
scratched monolayer influenced by the differential stimulation of myofibroblast activation
and senescence produced from a distribution of sensitivities to a constant environmental
stimulus. This model is designed to evaluate differences between fibroblast populations to
which the model is calibrated with *in vitro* data by representing their response as a set of
parameters governing basal rates of migration, proliferation, senescence and myofibroblast
differentiation.

Project Objectives

1. *In Vitro*: Quantify the *in vitro* scratch wound closure along with the percentage of
cell death, cell senescence and myofibroblasts among human lung fibroblasts.

2. *In Silico*: Using NetLogo, develop an ABM of fibroblast wound healing to evaluate
differences among parameter-sets calibrated to *in vitro* data from Objective 1.
In Vitro Methods

Cell Culture & Treatment Medias

Normal Human Lung Fibroblasts (NHLF; CC-2512), and Diseased Human Lung Fibroblasts (DHLF; 195277) derived from COPD patients, were obtained from Lonza for all *in vitro* studies. NHLF and DHLF were only used for passages 5-9 and 2-3, respectively. Cells were expanded and cultured in Fibroblast Growth Media-2 (FGM; CC-3132, Lonza) that was refreshed every 2-3 days. When 80-90% confluent, cells were dissociated with 0.025% Trypsin/EDTA and passaged with a 1:7 split.

Cigarette Smoke Condensate (CSC) was obtained from Murty Pharmaceuticals (Lexington, KY) and diluted to a 0.125% (50 mg/ml) solution with Fibroblast Basal Medium (FBM; CC-3131, Lonza). According to the manufacturer, the CSC stock was prepared from smoking University of Kentucky’s 3R4F Standard Research Cigarettes on an FTC Smoke Machine; total particulate matter on the filter was calculated from its weight gain, then DMSO was used to extract the condensate via soaking and sonication to produce an approximate 40 mg/ml solution. This stock was subsequently diluted in FBM and sterile-filtered (0.22 um pore size) to make the CSC treatments. DMSO diluted in FBM was used as a vehicle control.
Metabolic Assays

To assess the toxicity of CSC dilutions, evaluate the effect contribution of the dimethylsulfoxide (DMSO) vehicle and compare the metabolic effects of the treatment medias, cells were seeded into flat-bottomed 96-well plates (Corning) at a density of 62500 cells/cm² with 200 μl FGM. After 14 hours of growth, the seeding media was aspirated and replaced with 100 μl of the treatment medias. Following 0, 0.5, 2, 12, or 24 hours of treatment, media was replaced with 100 μl FBM plus 10 μl of either MTT (#11465007001, Sigma) or CCK-8 (Dojindo) reagent.

For MTT assays, cells were incubated with the MTT reagent for 4 hours, then 100 μl of the MTT Solubilization Solution was added and further incubated overnight to solubilize the MTT formazan reduction product. The optical density (OD) of formazan was then measured at 570 nm using a BioTek Epoch Spectrophotometer; background absorbance was also measured at 650 nm, and the difference between these optical densities (i.e. OD₅₇₀ – OD₆₅₀) was calculated to represent the amount of MTT formazan resulting from reductive metabolic processes.

For CCK-8 assays, cells were incubated with the WST-8 reagent for 4 hours, then the media was aspirated and replaced with 100 μl DMSO to solubilize the WST-8 formazan reduction product over 10-15 minutes at room temperature. The optical density of WST-8 formazan was then measured at 450 nm; background absorbance was also measured at 600 nm, and the difference between these (i.e. OD₄₅₀ – OD₆₀₀) was calculated to represent the concentration of WST-8 formazan resulting from reductive metabolic processes.
Scratch Wound Healing Assays

Wound healing was evaluated by proxy through the *in vitro* assessment of collective fibroblast migration within scratched monolayers. Cells were seeded with 2 ml of FGM at a density of 42100 cells/cm² (~400,000 cells/well) into clear tissue culture treated 6-well plates (Corning), after horizontal marks were drawn through the center of each well along the underside of the plate. After incubation for 14 hours, each cell monolayer was scratched vertically with a 20 μm pipette tip, rinsed with 30 mM HEPES Buffered Saline, and then covered with 2 ml of the treatment media. Each monolayer was imaged immediately after the scratch and at each time-point (i.e. a series of {0, 4, 8, 12, 24} or {0, 12, 16, 20, 24} hours) in two locations, one above the horizontal mark and the other below, on an Olympus IX71 Microscope under phase contrast with QCapture Pro 6.0 software. The same locations were imaged across successive time-points through the use of a reference point (i.e. a trivial portion of the horizontal mark visible through the bottom of the plate); however if this default reference was not usable (e.g. the scratch retracted near the mark in the center of the well, but not elsewhere), then filenames were notated and alternate features (e.g. whorl patterns distant from the scratch, scratches in the plastic, etc.) were utilized as substitute references. The denuded area was measured in triplicate using the freehand selections tool within ImageJ, and subsequently expressed as the percentage of scratch closure ($%\text{Healing} = (\text{Area}_{\text{initial}} - \text{Area}_{\text{current}}) / \text{Area}_{\text{initial}}$). Measurements from technical repeats (i.e. triplicate measurements of duplicate images of triplicate wells) within each experimental group were averaged together to form a single biological repeat for statistical comparisons.
Cytometric Stain Assays

For all staining experiments, cells were seeded with 2 ml of FGM at a density of 42100 cells/cm² (~80,000 cells/well) into clear tissue culture treated 24-well plates (Corning), then fixed and/or stained after 6, 14, 26, or 38 hours of incubation after seeding. To evaluate population changes within the context of our scratch assay model, each cell monolayer was scratched with a 20 μl pipette tip, rinsed with 30 mM HEPES Buffered Saline, and then covered with 400 μl of the treatment media after 14 hours of growth. To capture population changes caused by the scratch and wash step, separate experiments were collected at 14 hours either with or without scratched monolayers. After staining, all plates were viewed and imaged on an Olympus IX71 Microscope equipped with QCapture Pro 6.0 software. Each well was imaged in three locations – with two centered on the scratch, if present, and one distant from it – and each location was imaged using two channels in order to determine the relative size of the targeted subpopulation of cells (i.e. dead, senescent or myofibroblast) among the whole population in each image. The total cell populations determined from each type of staining assay were pooled for each experimental group to determine total population changes with time.
Viability Stain

Cell death was evaluated using a fluorescent viability staining kit (L3224, Invitrogen). Briefly, media was aspirated, 200 µl of the staining solution containing 2 µM calcein AM (live; FITC, ~450-500 nm) and 4 µM EthD-1 (dead; TRITC, ~500-550 nm) was applied and incubated at room temperature for 30 minutes. Cells were then imaged using a QImaging EXi Blue fluorescence microscopy camera with FITC and TRITC channels. The total cell population was calculated as the sum of all live and dead cells, thus the percentage of dead cells was calculated as $\frac{N_{\text{dead}}}{N_{\text{live}} + N_{\text{dead}}} \times 100$.

Senescence Associated Beta-Galactosidase (SA-β-Gal) Stain

To determine the proportion of senescent cells within the fibroblast monolayers, cells were first stained with the SA-β-Gal staining kit (#9860, Cell Signaling Technologies) according to the manufacturer’s protocol, then rinsed twice with PBS and counterstained and cured overnight at room temperature using ProLong® Gold Antifade Mountant with DAPI (P36931, ThermoFisher). Cells were then imaged using a QImaging MicroPublisher 3.3 RTV camera with channels for brightfield illumination and DAPI (~330-380 nm). The number of blue-stained cells under brightfield illumination were considered positive for senescence (if selected by ImageJ thresholds) and the number of DAPI-stained particles (i.e. nuclei) was used to represent the total cell population, thus the percentage of dead cells was calculated as $\frac{N_{\text{SA,β-Gal}}}{N_{\text{DAPI}}} \times 100$.
Alpha-Smooth Muscle Actin (αSMA) Immunocytochemistry Stain

To determine the proportion of myofibroblasts within the fibroblast monolayers, cells were first washed twice with PBS, fixed with 200 µl of 4% paraformaldehyde for 20min at room temp, then washed twice again with PBS. Cells were permeabilized with 0.1% v/v Triton-X100/PBS for 10 minutes, washed four times with 0.1% Tween-20/PBS (PBST) for 5min each, then blocked with 200 µl of 5% Bovine Serum Albumin/PBST (BSA/PBST) for 1 hour at room temperature. Blocked cells were incubated with 200 µl of a 1:400 dilution of anti-αSMA monoclonal mouse antibodies (#A2547, Sigma) within BSA/PBST overnight at 4°C. Primary antibody-tagged cells were washed thrice with PBS for 5min each then incubated with 200 µl of a 1:2000 dilution of anti-mouse IgG (H+L) polyclonal goat antibodies conjugated with Alexa Fluor 488 fluorophores (#A-11001, ThermoFisher) for 2 hours in the dark at room temperature. Secondary antibody-stained cells were rinsed thrice with PBS for 5 minutes each, counterstained and cured overnight with ProLong® Gold Antifade Mountant with DAPI (P36931, ThermoFisher), then imaged using a QImaging EXi Blue fluorescence microscopy camera with FITC and DAPI channels. All DAPI-stained particles that colocalized within stained regions of αSMA fibers determined with the ImageJ plugin JACoP123 were considered positively-tagged myofibroblasts, while the total number of DAPI-stained particles was used to represent the total cell population, thus the percentage of myofibroblasts was calculated as

$$= 100 \times \frac{N_{\text{colocal}(\text{DAPI}+\alpha \text{SMA})}}{N_{\text{DAPI}}}.$$
Statistical Analyses

Scratch assays were analyzed using two-way ANOVAs with repeated measures and Holm-Sidak post-hoc tests for multiple comparisons to evaluate differences among paired time-points between cell lines (i.e. NHLF vs DHLF) and treatment medias (i.e. FBM, FGM and 50 µg/ml CSC) across groups within time-points or within groups across time. Scratch assay analyses were performed for an overall view (i.e. 0, 12 and 24 hours).

MTT and CCK-8 assays were analyzed using two-way ANOVAs with Holm-Sidak post-hoc tests for multiple comparisons to evaluate differences between treatment medias (i.e. FBM, FGM, and titrations of CSC or DMSO) and unpaired time-points.

Staining assays (i.e. SA-β-Gal, Viability, and αSMA) were also analyzed using two-way ANOVAs with Holm-Sidak post-hoc tests for multiple comparisons to evaluate differences between treatment medias (i.e. FBM, FGM and 0.125% CSC) and unpaired time-points.

All data were collected and pre-processed within Excel; all statistics were performed within GraphPad Prism 6 software. Differences with p-values < 0.05 were considered significant. Unless otherwise noted, all experiments were performed with a minimum of N = 3 biological repeats in triplicate.
In Silico Methods

Fundamentally, this agent based model is designed to simulate fibroblasts within the context of an *in vitro* scratch wound healing assay in order to characterize their time-dependent response in terms of the population’s proportions of inactive, active, myofibroblast and senescent states along with their mean rates of migration, proliferation and death. The model operates on NetLogo version 5.3.1. The *in vitro* environment is represented by a two dimensional lattice network of square patch units, fibroblasts are represented by mobile agents, and the model rules are applied each tick to represent their activity in 20 minute steps. Agents interact with other nearby agents and the Moore’s neighborhood of patches below them, consisting of the central patch beneath the agent’s center and the eight surrounding patches, through a series of rules and procedures designed to model the scratch closure behavior of fibroblasts *in vitro*. Simulations to find calibrated parameter-sets for the *in vitro* datasets and analyze parameter sensitivities were performed using the BehaviorSpace tool with 10 simulation runs per parameter-set evaluated.

Model Setup

The model world consists of 101x101 patch units representing the 2.8123 mm² area evaluated in the *in vitro* scratch assays. Each patch (XY) has a unit length equivalent to 16.6040 μm. This lattice has a periodic boundary, so a fibroblast agent moving beyond one
edge is reintroduced at the opposite edge. While they are displayed with various shapes, each of the N fibroblast agents is modeled as a circle and assigned attributes associated with one of the following states that a fibroblast may exhibit in vitro: 1) Inactivated Fibroblasts ($IFibs$) represent immobile, inactive fibroblasts that have not yet been activated by the tissue culture plastic beneath them; 2) Activated Fibroblasts ($AFibs$) represent mobile, αSMA-negative fibroblasts (i.e. proto-myofibroblasts); 3) Myofibroblasts ($MFibs$) represent mobile, αSMA-expressing fibroblasts; 4) Senescent Fibroblasts ($SFibs$) represent non-proliferating, apoptosis-resistant fibroblasts that have lost their contact inhibition; and dead cells ($DFibs$) interact with nothing. Each of these agent states (F) has a defined size ($S(F)$), migration rate ($M(F)$), resistance to apoptosis ($R(F)$), and proliferation rate ($D_{(F,N)}$). Each agent also has their own rate of senescence due to replication based on the Hayflick limit ($T_{SENESCENCE(F,N)}$), sensitivity to stimulatory signaling ($Z(N)$), level of stimulation ($stim(N)$), and set of stimulation-dependent transition probabilities governing changes between agent states. All fibroblasts are capable of dying or becoming senescent due to stimulation; however $IFibs$ can also activate into $AFibs$, and $AFibs$ can also deactivate back into $IFibs$ or become $MFibs$ through further activation signaling. The model parameters for mean migration rate (M_0) and mean division interval (T_{DIVIDE}) are attributed to active fibroblasts and used as baselines for the other states. More details on these attributes and other variables – including values, calculations and citations – are available in Appendix B.
Initial Conditions & Agent Preconditioning

Fibroblast agents are generated at random locations within the model world with the same percentages of senescent cells, myofibroblasts, and dead cells as were measured \textit{in vitro} among NHLF in FGM incubated for 6 hours post-seeding, when cells first attached to and flattened out on the plate (data not shown). All remaining agents are generated as \textit{AFibs} to model the \textit{in vitro} activation response of fibroblasts attached to tissue culture plastic (TCP). As shown in the top row of Figure 3.1, the agents are capable of deactivating into \textit{IFibs} within the model, however the stimulation threshold which controls this state transition is set at such a low level that \textit{AFibs} do not deactivate beyond the first few steps to mimic fibroblasts becoming fully attached to and stimulated by the non-physiologic stiffness of the tissue culture plastic to which they’re attached after 6-8 hours in culture. These initial agents are generated with a population (\textit{Pop$_{t00}$}) equal to the seeding density used \textit{in vitro} (\textit{Pop$_{t00}$} = 400,000 cells/well = 416.67 cells/mm2). The precondition procedure runs the model a number of steps equivalent to the \textit{in vitro} time interval between the seeding and the scratching of wells during a scratch assay (\textit{Time$_{seed-scratch}$} = 8 hours) using the parameter-set calibrated to \textit{in vitro} data for NHLF treated with FGM (Table 4.1). This step is necessary to initialize their spatial distribution, stimulation levels \textit{stim$_{(N)}$}, division counters \textit{D$_{(F,N)}$}, and replicative senescence counters \textit{T$_{SENESCE(F,N)}$}. At the end of the precondition step, parameter values are switched to the parameter-set associated with the scratch closure response, and the associated agent variables governing stimulation sensitivity (\textit{Z$_{(N)}$}) and division interval (\textit{D$_{(F,N)}$}) are averaged.
together to represent an agent’s memory of past exposures and prevent artifact shifts in the agent states.

Scratch Implementation & Closure Measurement

To model the scratch, all agents within the defined *Scratch Region* are removed to simulate a monolayer of fibroblasts being scratched *in vitro*. Dead agents are also removed regardless of their location to simulate the *in vitro* post-scratch wash step, adjusted such that 8.05% of the resulting agent population consists of *DFibs* to mimic the percentage of dead cells found *in vitro* 0 hours after the scratch. The *Scratch Region* extends vertically down the model world, centered on the y-axis, and its ratio of patches within the model world is equivalent to the *in vitro* ratio of scratched to non-scratched areas within a square-cropped image centered on the scratch. This is shown in the bottom row of Figure 3.1.

Every patch possesses two variables accounting for the relative coverage of neighboring patches by agents, termed “*Void Scores*,” that are used to measure the current cell coverage of the *Scratch Region* (*Healed Region*) and model the *in vitro* contact inhibition of migrating and proliferating fibroblasts (i.e. Rules #1 & #2 detailed below; also illustrated in Figure 3.2). Each time step, each patch (*XY*) calculates the *Primary Void Score* (*VI*_{XY}) as the averaged count of patches within its Moore neighborhood, e.g. the bold-edged patches in Figure 3.2), not including itself, that are devoid of any live fibroblast agents. Then the model calculates a *Secondary Void Score* (*V2*_{XY}) as the average *VI*_{XY} of the same neighboring patches. Any patch within the *Scratch Region* with a *VI*_{XY} or *V2*_{XY} less than 0.5 is considered to contain a fibroblast and is included as part of the *Healed*
Region (e.g. the green-filled patches in Figure 3.2). The percentage of the scratch region which is also part of the healed region (%Healed) is used as an output parameter for comparison to percentage healed data from in vitro scratch assays.

Figure 3.1 – Representative simulation of fibroblast agents closing a scratch. Time-points are shown during the pre-scratch and post-scratch intervals when agents are initially seeded (top left), one step after seeding (top middle), immediately prior to being scratched after 8 hours of growth (top right), and after being scratched for 0, 12 or 24 simulated hours (bottom row). Unscratched patches are colored black, Scratched patches are grey, Healed patches are lime green, and Unhealed Edge patches are light grey. IFibs are displayed as yellow triangles, AFibs as teal squares, MFibs as green clovers, and SFibs as dark green circles. All agents are modeled to scale as circles but not displayed as such.
The length of the border between the *Healed Region* and the rest of the *Scratch Region*, relative to its length when the scratch was created (*Relative Unhealed Edge Length*), is used to quantify the amount of disorder in the fibroblasts’ invasion of the scratch region. The relative unhealed edge length is also used as an output parameter for comparison to relative scratch edge length data from *in vitro* scratch assays; however this was not used to calibrate parameter-sets of the model.

Figure 3.2 – Patch diagram displaying how *Void Scores* are calculated and used. This method measures the *Healed Region* and guides the navigation of circular fibroblast agents as described in Rule #1. The bold-outlined patches represent the Moore’s neighborhood for the fibroblast agent in the center; the whole number within each patch is the patch’s $V1_{(XY)}$ score while the value in parenthesis is its $V2_{(XY)}$ score.
Model Rules

The dynamics of fibroblast migration, proliferation, senescence, myofibroblast activation and death within the model presented are controlled by the following rules. These are implemented each time step to generate scratch closure as seen in Figure 3.1.

Rule #1a: A non-senescent fibroblast having any neighboring patches with a $V_{2(\text{XY})}$ above 0.5 will migrate $M_{(F)}$ distance towards the neighboring patch with the greatest $V_{2(\text{XY})}$ with a standard deviation of 15°.

This mechanism of agent navigation is intended to mimic the migratory contact inhibition exhibited by non-senescent fibroblasts in vitro, whereby those which come into contact tend to migrate away from each other \cite{87-90}. In contrast, senescent fibroblasts have been reported to lose this contact inhibition \cite{63,124}. Directional migration is reported to be dependent upon phosphorylation of calveolin-1 to inhibit Rho signaling and increase activity of Rac1 and Cdc42 to reorient the actomyosin machinery polarization \cite{125}. Additionally, caveolin-1 is required for α5β1-integrin endocytosis crucial for migration \cite{126}. Since senescent cells exhibit upregulated caveolin-1 along with high activation of Rac1 and Cdc42 \cite{127-129}, that’s reversible along with the senescent phenotype when Caveolin-1 status is decreased \cite{129}, we model senescent cell migration with a random walk.

Rule #1b: A senescent fibroblast migrates $M_{(S)}$ distance in a random direction, regardless of its patch neighbors’ Void Scores.
Rule #2a: A non-senescent fibroblast may divide after growing for $D_{(F,N)}$ hours, if and only if a patch in the Moore neighborhood of the patch beneath it has a $V_{2(XY)}$ score above 0.5. $D_{(F,N)}$ is randomly generated for each agent when it is introduced to the model world and each time it divides from a normal distribution with a mean of T_{DIVIDE}, adjusted for each agent state F (see Figure 3.3), with a standard deviation of one third this value.

Rule#2b: Senescent cells do not divide. This is the definition of senescence 35,40,64,130,131. Both daughter cells inherit the parent cell’s $stim_{(N)}$ level to model the even splitting of cellular contents between daughter cells that conserves the parent cell’s proportions of receptors to ligands. Daughter cells also maintain the parent cell’s activity state and $T_{SENESCE}$ counter value (see Rule #3) to model the conservation of their parent cell’s expression profile and division history (i.e. telomere length), respectively. One daughter cell remains on the patch below the parent cell, while the other moves into the patch with the greatest $V_{2(XY)}$ in its neighborhood. This method of cell division is intended to model the contact inhibition of proliferation among cells in vitro – whereby a population’s rate of division decreases in proportion to increasing population density 93,94,100,132 and “new” cells are preferentially added within the plane of the monolayer, rather than atop or beneath the “parent” cells 103. All agents have their $D_{(F,N)}$ value reassigned at the time of the scratch and averaged with its pre-scratch value to model a cell’s memory of previous exposures within a two-hit exposure system.
Rule #3: A non-senescent fibroblast becomes senescent after T_{SENESCE} time steps, where T_{SENESCE} is stochastically assigned to agents during model initialization from a normal distribution with a mean of $40 \times D(F)$ and a standard deviation of $40 \times T_{\text{DIVIDE}} / 3$. This counter models the replication induced senescence reported to occur in all cells after 50 ± 10 population doublings, known as the Hayflick limit 63,124; however we limited agents to 40 divisions to account for presumably shorter telomeres among our cells, derived from an adult population, versus the embryological cells used by Hayflick.

Figure 3.3 – Flow diagram of fibroblast agent states, characteristics and associated rules. Each fibroblast phenotype (F) has characteristic values describing each state’s size ($S(F)$), migration rate ($M(F)$), mean division interval ($D(F)$), and death resistance ($R(F)$). The corresponding rate or probability regarding proliferation (Rule #2; black), replicative senescence (Rule #3; purple), cell death (Rule #5; blue) and stimulation-induced state transitions (Rules #6-9; green-red gradient) are described in the text; color-legend regarding Rules #5-9 correlate with Figure 3.4.
Rule #4: Each time step, every agent increases their internal level of stimulation, $stim_{(N)}$, by the product of their sensitivity to stimulation ($Z_{(N)}$) and the magnitude of environmental stimuli (μ_{STIM}). Agents are assigned a sensitivity to stimulation $Z_{(N)}$ from a normal distribution with a mean of 1 and standard deviation of σ_{STIM}, and this $Z_{(N)}$ value is preserved among daughter cells when a fibroblast divides. All agents have their $Z_{(N)}$ value reassigned at the time of the scratch and averaged with its pre-scratch value to model a cell’s memory of previous exposures within a two-hit exposure system. The $stim_{(N)}$ level for each fibroblast represents the sum of activity among all intracellular signaling pathways that can induce activation, senescence, or apoptosis (e.g. NOX4, SMADs, p21, p16, p53, etc.). The μ_{STIM} parameter represents the magnitude of the sum of all stimuli within the *in vitro* environment that can induce fibroblast activation and senescence (e.g. substrate stiffness, CSC, ROS, FGFβ, TGFβ, PGE2); whereas the σ_{STIM} parameter represents the variation in sensitivity to these stimuli among individual cells in a population to model a heterogeneous response to stimuli among the cell population and prevent all of the agents from transitioning simultaneously.
Figure 3.4 – Plot of the probabilities governing agent transitions between states. Each agent’s transition probabilities (colored lines) depend upon their \(\text{stim}_{(N)} \) and the population’s transition thresholds (horizontal black bars); representing the mean values associated with a 50% probability for each state transition (\(L_{(F)} \); black bars). Fibroblasts continually increase their \(\text{stim}_{(N)} \) (Rule#4), which directly and linearly increase their probability for each state transition (Rules #5-9). Both \(L_{(M)} \) and \(L_{(S)} \) (bars with arrows) serve as parameters that directly control the transition probabilities and subpopulations of myofibroblasts and senescent cells, respectively. Color-codes for each transition probability are consistent with Figure 3.3.

Rule #5: Each time step, all living agents have a \(P_{D(F,N)} \) probability of death due to stimuli, such that:

\[
P_{D(F,N)} = \frac{\text{stim}_{(N)}}{2L_{D}R_{(F)}}
\]

where \(R_{(F)} \) represents the resistance to apoptosis for each fibroblast state or phenotype, \(F \).

The damage level at which a fibroblast is 50% likely to die (\(L_{D} \)) is arbitrarily set to 1 \(\text{stim} \) in order to give the stimulation parameters a reference value. The line associated with this probability is plotted in Figure 3.4 in yellow.
Rule #6: Each time step, all inactive agents have a $P_{A(N)}$ probability of activation, such that:

$$P_{A(N)} = \frac{\text{stim}_{(N)}}{2L_A}$$

Rule #7: Each time step, all active agents have a $P_{-A(N)}$ probability of deactivation, such that:

$$P_{-A(N)} = \frac{2L_A - \text{stim}_{(N)}}{2L_{-A}} = 1 - \frac{\text{stim}_{(N)}}{2L_A}$$

The stimulation limits for governing an agent’s transition to an activated or inactivated state, L_A or L_{-A}, respectively, are set equal to each other in order to allow an AFib the chance to transition back into an IFib if their $\text{stim}_{(N)}$ level is low enough. These shared stimulation limits for activation represent the average $\text{stim}_{(N)}$ level at which fibroblasts are 50% likely to be inactivated or activated. This functionality is designed to model fibroblasts’ tendency to remain inactivated in the absence of stimuli along with their ability to deactivate once activated if their internal level of stimulation is resolved.

Rule #8: Each time step, all active agents have a $P_{M(N)}$ probability of becoming myofibroblasts, such that:

$$P_{M(N)} = \frac{\text{stim}_{(N)} - L_A}{2(L_M - L_A)}$$
where the model parameter L_M is the *stim* limit representing the average $stim(N)$ level at which an activated fibroblast is 50% likely to become an αSMA-expressing myofibroblast.

Rule #9: Each time step, all active agents have a $P_{S(N)}$ probability of becoming senescent due to stimuli, such that:

$$P_{S(N)} = \frac{stim(N) - L_A}{2(L_S - L_A)}$$

where the model parameter L_S is the *stim* limit representing the average $stim(N)$ level at which an activated fibroblast or myofibroblast is 50% likely to become senescent.

The effect of these L_F given in Rules #5-9 is such that a histogram of the fibroblast population’s $stim(N)$ levels superimposed upon Figure 4 produces a skewed bell curve of *stim* levels traveling to the right of this graph with respect to time, causing progressively more agents to become $AFibs$, then $MFibs$, $SFibs$ or dead agents.
Results

Metabolic Response

To increase the physiological relevance of our model and facilitate the incorporation of an epithelial layer within future iterations, we wished to use a dosage of CSC which would allow us to view an effect in both lung fibroblast and epithelial cells without killing too many cells. Previous studies have tested the effects of CSC in both fibroblasts and epithelial cells with dosages ranging from below 1 µg/ml\(^{133,134}\) to over 1 mg/ml\(^{135}\); however to our knowledge it had not been tested on NHLF or DHLF in vitro.

To evaluate the effect of CSC on NHLF metabolism and screen for dosage to use with the rest of our experiments, we performed MTT assays and chose 50 µg/ml (0.125% v/v) CSC for all future experiments since this dosage produced the largest increase in cell metabolism without inducing cell death (data not shown). On a log scale, this dosage sits at the midpoint of dosages evaluated across both cell types in the literature and corresponds with values tested among both fibroblasts\(^ {15}\) and epithelial cells\(^ {136–138}\). However, this was the lowest dosage used on lung fibroblasts in the literature\(^ {15,33,66,135,139}\). This dosage was diluted within serum-free FBM and termed cigarette smoke media (CSM). To evaluate the effect of each of our treatment medias on NHLF metabolism and ensure that the effect of CSM was not due to its DMSO content, we performed a CCK8 assay (Figure 4.1). Overall, metabolic changes were modest; yet a statistically significant difference was found
between FGM and CSM at 24 hours. Given the absence of statistical differences between CSM and either of its vehicle controls, we concluded CSM was not mimicking DMSO exposure.

CCK8 Results: Metabolic Response

![Graph showing metabolic response over time for FGM, FBM, CSM, and DMSO](image)

Figure 4.1 – Metabolic responses of normal human lung fibroblasts exposed to either FGM, FBM, CSM or 0.125% DMSO over 24 hours. Data is shown as the mean ± SD of sextuplicate wells. Significant statistical differences are noted with * where p<0.05. Within-group comparisons with baseline (time = 0) are indicated above the error bar and between-group comparisons within each time-point are indicated with a horizontal line.
Scratch Wound Closure

To evaluate the wound healing response of lung fibroblasts in vitro, NHLF and DHLF were grown to a confluent monolayer then scratched to mimic a tissue injury and observed as the cells invaded and re-covered the denuded region over 24 hours (Figure 4.2). In general, fibroblasts made statistically significant progress after 12 hours in all conditions except for DHLF treated with CSM. NHLF under all conditions also made statistically significant progress between 12 and 24 hours post-scratch, however DHLF’s progress was less significant. NHLF treated with FGM often achieved 90% closure after 24 hours; however, at all time-points this rate of healing was significantly impaired when fibroblasts were deprived of serum, exposed to CSM, and/or derived from COPD patients. A significant difference was also found between FBM and CSM exposures after 24 hours among NHLF, but not DHLF, indicating that DHLF could be resistant to 50 µg/ml CSC (Figure 4.3).
Figure 4.2 – Phase contrast images of NHLF and DHLF closing a scratched monolayer over 24 hours while exposed to either FGM, FBM or CSM in vitro. Scale bar = 200 µm.
Figure 4.3 – *In vitro* scratch closure data of NHLF or DHLF monolayers exposed to FGM, FBM or CSM over 24 hours. Data is expressed as the percentage of the initial scratched area re-covered by cells (%Healed); shown as the mean ± SEM of N ≥ 4 biological repeats. Significant statistical differences are noted with * where p<0.005, *** where p<0.005 and **** where p<0.0001. Between-group comparisons within each time-point are indicated with a horizontal line.

The calibrated parameter-sets were found to fit within two standard deviations of the *in vitro* mean scratch closure at every time-point measured, even though the model was not being evaluated with the 4 hour time-point (Figure 4.4). The parameter-sets also fit within one standard deviation of the mean at most time-points for most groups (data not shown); such was the case for NHLF treated with FBM or CSM at all time-points – as well as NHLF treated with FGM, or DHLF treated with FBM, at all time-points after 8 hours.
Figure 4.4 – Simulated transients and *in vitro* scratch closure data of NHLF and DHLF. Shown are NHLF (circles, left column; N = 3-11) or DHLF (stars, right column; N = 1-4) responses to FGM (green), FBM (blue) or CSM (red) while closing a scratched monolayer over 24 hours; expressed as the percentage of the initial scratched area re-covered by cells (%Healed). *In vitro* data (markers with error bars) is shown as mean ± 2SD of N biological repeats. Simulated transients were calculated by taking the mean and standard deviation of 10 simulations using the same initial conditions and parameter-set calibrated for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and standard deviations are depicted by a shaded region around the mean curves.
Total Population

To evaluate NHLF proliferation during a scratch assay with each treatment *in vitro* and generate a dataset representing cell population to fit against the model, the total cell population measured in each *in vitro* cell stain assay was pooled together after first being normalized. The average cell count data was first normalized by \((1677 \, \mu m)^2\) to account for differences in cell count between the different areas measured by the two cameras and the model area, then this was normalized to the baseline cell density at the start of either the pre-scratch or post-scratch interval to account for differences between the *in vitro* seeding densities for the scratch assays and stain assays.

Overall, changes in the cell density data were modest over the 24 hours post-scratch, with only NHLF treated with FGM showing a significant difference from baseline after 24 hours, at which point it was also significantly different from the other treatments (Figure 4.5). There was a large amount of error within this dataset that may have masked other differences being revealed, and this may have also undercut its use as a dataset to fit the model against. The calibrated parameter-set for NHLF treated with FGM was able to fit the *in vitro* data within one standard deviation of the mean in both the pre-scratch and post-scratch intervals until 24 hours post-scratch, which still fell within two standard deviations. The other calibrated parameter-sets fit within one standard deviation of their *in vitro* means (Figure 4.6).
Figure 4.5 – *In vitro* cell density among NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the number of cells per (1677 μm)^2; shown as the mean ± SD of three independent assays normalized to baseline. Significant statistical differences are noted with * where p<0.05 and ** where p<0.001. Within-group comparisons with baseline (time = 0) are indicated above the error bar and between-group comparisons within each time-point are indicated with a horizontal line.

Cell Death & Viable Subpopulation

To determine the percentage of cell death among NHLF during a scratch assay with each treatment *in vitro* and generate datasets to fit the model against, cell monolayers were scratched and subsequently stained with fluorescent dyes to mark live and dead cells (Figure 4.7). Surprisingly, the ratio of dead cells significantly decreased from baseline after only 12 hours post-scratch in all conditions, at which point the percentage of cell death was below 5% of the population and showed no differences between treatments (Figure 4.8).
Figure 4.6 – Simulated transients and *in vitro* cell density data among NHLF. Shown are responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch interval (top left plot) or while closing a scratched monolayer over 24 hours (top right and bottom plots); expressed as the number of cells per \((1677 \ \mu\text{m})^2\). *In vitro* data (markers with error bars) is normalized to baseline and shown as the mean ± 2SD of 3 independent experiments. Simulated transients were calculated by taking the mean and standard deviation of 10 simulations using the same initial conditions and parameter-set calibrated for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and standard deviations are depicted by a shaded region around the mean curves.

Due to the negligibly low percentage of cell death, inability of the model to fit this viability data along with the proliferation data (not shown), and lack of a direct method to reduce the percentage of dead cells, this data was excluded as a calibration-set for the model.
Figure 4.7 – Fluorescent stain of live (green) and dead (red) NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours in vitro. Scale bar = 200 µm.

Senescent Subpopulation

To determine the percentage of cell senescence among NHLF during a scratch assay with each treatment in vitro and generate datasets to fit the model against, cell monolayers were scratched and subsequently stained with chromogenic SA-β-Gal and fluorescent DAPI to mark senescent cells among all the cell nuclei (Figure 4.9). As expected, the ratio of senescent cells increased over the first 12 hours post-scratch; however we were surprised to find the percentage returned to baseline levels over the following 12 hours. After 12 hours, the percentage of senescence was significantly increased over 2.5 among NHLF treated with FGM and nearly 2-fold with FBM treatment,
but showed no change with respect to baseline when treated with CSM. However, treatment with CSM did show more error in the data, potentially indicating a masked effect that may be uncovered with repeated experiments. This was reflected in the statistically significant differences found between FGM and both other treatments at 12 hours post-scratch when no difference was found between FBM and CSM treatments (Figure 4.10).

Figure 4.8 – *In vitro* percentage of dead cells among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the percentage of dead cells among all living and dead cells; shown as the mean ± SD of quadruplicate wells. Significant statistical differences with all other groups are noted above the error bar with *** where p<0.0005.
Figure 4.9 – Superimposed channels of chromogenic SA-β-Gal (cyan) and fluorescent DAPI (magenta) stained NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours *in vitro*. Scale bar = 200 µm.

Due to the lack of evidence in the literature supporting reversible senescence and the inability of the model to decrease the level of senescence outside of cell death (shown above to be negligible), the 24 hour time-point was excluded from the dataset used to calibrate the model. The calibrated parameter-set for NHLF treated with FGM was able to fit the *in vitro* data within one standard deviation of the mean except for the 8 hour time-point in the pre-scratch interval, which still fell within two standard deviations. The calibrated parameter-sets for NHLF fit within one standard deviation of the *in vitro* means for CSM treatment, but only fit within two standard deviations for FBM treatment, in part due to the relatively large error within the *in vitro* data for CSM treatment (Figure 4.11).
Figure 4.10 – In vitro percentage of senescent cells among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the percentage of SA-β-Gal stained cytoplasms among DAPI stained nuclei; shown as the mean ± SD of quadruplicate wells. Significant statistical differences are noted with ** where p<0.01 and **** where p<0.001. Within-group comparisons with baseline (time = 0) are indicated above the error bar and between-group comparisons within each time-point are indicated with a horizontal line.

Myofibroblast Subpopulation

To determine the percentage of myofibroblasts among NHLF during a scratch assay with each treatment in vitro and generate datasets to fit the model against, cell monolayers were scratched and subsequently stained with fluorescent anti-αSMA immunocytochemistry and DAPI to mark myofibroblast cytoskeletons among all cell nuclei (Figure 4.12). The percentage of myofibroblasts remained consistent with baseline at 10-20% when treated with FGM or FBM over 24 hours, however CSM treatment was
found to induce a statistically-significant, approximately 3-fold increase of myofibroblasts that returned to baseline by 24 hours (Figure 4.13).

![Graphs showing senescence data](image)

Figure 4.11 – Simulated transients and *in vitro* senescence data among NHLF. Shown are responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch interval (top left plot) or while closing a scratched monolayer over 24 hours (top right and bottom plots). *In vitro* data (markers with error bars) is shown as the mean ± 2SD of quadruplicate wells. Simulated transients were calculated by taking the mean and standard deviation of 10 simulations using the same initial conditions and parameter-set calibrated for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and standard deviations are depicted by a shaded region around the mean curves.

The calibrated parameter-set for NHLF treated with FGM was able to fit the *in vitro* data within two standard deviation of the mean percentage of myofibroblasts in both the pre-scratch and post-scratch intervals at all time-points, even falling within one
standard deviation after 12 and 24 hours post-scratch. The other calibrated parameter-sets fit within two standard deviations of their *in vitro* means, except for the 12 hour post-scratch time-point for FBM parameter-set (Figure 4.14).

![Image](image)

Figure 4.12 – Superimposed fluorescent channels of αSMA (red) and DAPI (blue) stained NHLF exposed to FGM, FBM or CSM while closing a scratched monolayer over 24 hours *in vitro*. Scale bar = 200 μm.

Among the parameter-sets screened, parameter-sets which fit the 12 hour time-point of the FBM *in vitro* data were not also able to fit the 24 hour time-point because the transients that fit either time-point took opposing trajectories that excluded the other. All of the transients initialize with approximately 15% myofibroblasts due the preconditioning step and the overall trend of the *in vitro* data for FBM treatment had a downward
trajectory, so the calibrated parameter-set for FBM was chosen from parameter-sets which fit the 24 hour time-point with a downward trajectory as opposed to the 12 hour time-point with an upward trajectory (Figure 4.14).

Figure 4.13 – *In vitro* percentage of myofibroblasts among NHLF exposed to either FGM, FBM or CSM while closing a scratched monolayer over 24 hours. Data is expressed as the percentage of DAPI-stained nuclei co-localized with αSMA-stained cytoskeletons among all DAPI-stained nuclei and shown as the mean ± SD of quadruplicate wells. Significant statistical differences are noted with **** where p<0.001. Within-group comparisons with baseline (time = 0) are indicated above the error bar and between-group comparisons within each time-point are indicated with a horizontal line.

Superimposed Subpopulations

Taken all together, our evaluation of NHLF subpopulations show a spike in either myofibroblasts and/or senescent cells that returns to baseline or below by 24 hours, and that
the overarching difference between treatment groups are represented by the magnitude and relative composition of this spike. Cell death primarily occurred peri-scratch, ostensibly due to the scratch itself, and was otherwise negligible. Cell proliferation was also found to be negligible over 24 hours, with the exception of FGM treatment at the end of the 24 hour period evaluated.

Figure 4.14 – Simulated transients and \textit{in vitro} myofibroblast data among NHLF. Shown are responses to FGM (green), FBM (blue) or CSM (red) during the 8 hour pre-scratch interval (top left plot) while closing a scratched monolayer over 24 hours (top right and bottom plots). \textit{In vitro} data (markers with error bars) is shown as the mean ± 2SD of quadruplicate wells. Simulated transients were calculated by taking the mean and standard deviation of 10 simulations using the same initial conditions and parameter-set calibrated for each cell type and media exposure (Table 4.1); means are plotted with a solid curve and standard deviations are depicted by a shaded region around the mean curves.
At baseline, approximately 40% of cells were either myofibroblasts or senescent.

While FGM and CSM treatments returned to this level by 24 hours, treatment with FBM decreased to approximately 30% myofibroblasts or senescent cells. During the spike in subpopulations found 12 hours post-scratch, FBM treatment subtly increased the percentage of senescence and myofibroblasts to approximately 50% of cells with a significant increase in the percentage of senescent cells (Figure 4.10) paired with an insignificant decrease in the myofibroblast percentage. However, treatment with either
FGM or CSM increased the baseline percentage of myofibroblasts and senescent cells approximately 2-fold during this 12 hour spike. We also found that while FGM treatment achieves this through an increase in the senescent subpopulation with negligible change in myofibroblasts, CSM treatment achieves this through an increase of myofibroblasts with minor changes in the senescent subpopulation (Figure 4.15).

Calibrated Parameter-Sets

The fibroblast wound healing model was evaluated through the analysis of 3000 distinct parameter-sets which produced a pattern of parameter-sets that fit the *in vitro* data for total population, percentage of myofibroblasts and percentage of senescent cells, but not scratch closure. Analysis of a further 100 parameter-sets with varied migration and proliferation rates found 50 parameter-sets that fit within two standard deviation of all the *in vitro* data for NHLF treated with FGM in both pre-scratch and post-scratch intervals, however only one of these fit most of the *in vitro* data within one standard deviation when evaluated with 10 simulations per parameter-set (data not shown). Therefore, this parameter-set was chosen to represent NHLF treated with FGM and used to calibrate the pre-scratch interval of the model by preconditioning the agents’ variables since all of the *in vitro* scratch assays the model is fit against were incubated in FGM during the seed-scratch interval. These are the parameters that govern the preconditioning of agent subpopulations, stimulation levels and division rates during the pre-scratch interval. Another 256 parameter-sets were subsequently evaluated to find fits for the remaining experimental groups (Table 4.1). All of the calibrated parameter-sets were found to share the same
values for the magnitude of environmental stimulation ($A_M = 2\times10^{-4}$ stim/hour) and
distribution of the fibroblast population’s sensitivity to stimuli ($A_S = 0.3$). The parameter-
sets that fit the in vitro data for NHLF treated with CSM also shared the same stimulation
thresholds for myofibroblast and senescent transitions ($L_M = 0.5$ and $L_S = 0.3$) as DHLF in
either condition.

Table 4.1 – Calibrated Parameter-Sets of the Fibroblast Responses.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NHLF</th>
<th>DHLF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FGM</td>
<td>FBM</td>
</tr>
<tr>
<td>M</td>
<td>65</td>
<td>24</td>
</tr>
<tr>
<td>P</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>L_S</td>
<td>0.1</td>
<td>0.17</td>
</tr>
<tr>
<td>L_M</td>
<td>0.06</td>
<td>0.58</td>
</tr>
<tr>
<td>A_M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 caption – Calibrated parameter-sets which fit the in vitro responses of NHLF and
dHLF exposed to FGM, FBM, or CSM while closing a scratched monolayer over 24 hours. Simulated outputs were calculated by taking the mean and standard deviation of 10 simulations with the same initial conditions for each parameter-set. Simulated means within two standard deviations of the in vitro mean were considered a fit for that output.

Overall, it was found that the experimental groups with slower scratch closure rates
had lower values of M, and higher values of P, L_M and L_S. In particular, lower ratios of
parameters $M:P$ reliably produced slower closure rates. As expected from the model
design, lower values of L_M were associated with more myofibroblasts, lower values of L_S
were associated with more senescent cells, and lower ratios of $L_M:L_S$ were associated with a sharper spike in the percentage of myofibroblasts (Figures 4.11 & 4.14).

Parameter Sensitivity Analysis

To evaluate the sensitivity of parameter modulations around each calibrated parameter-set on the model outputs, we independently modulated each parameter by +/-10% and calculated the percentage difference in each model output. As seen in Table 4.2, up to 2 or 3-fold change in model outputs per unit change in model parameters could be achieved for scratch closure, the percentage of senescent cells, and the percentage of myofibroblasts. Sensitivity analysis results for other outputs are shown in Appendix C. Notably, model responses were largely insensitive to modulations in the stimulation parameters A_M or A_S within any of the calibrated-sets, with adjustments in the model responses largely following the overall trend of adjustments due to modulations in the other parameters.

As expected due to the low probability of death due to stimulation within the model, modulating the parameters had minimal effect on the percentage of dead cells, with a maximum increase of 7% cell death when the proliferation interval was increased with the calibrated-set for NHLF treated with FGM. The large majority of parameter modulations increased cell death, and this effect decreased among sets with slower scratch closure rates. Increasing the division interval or decreasing the migration rate generated the largest increase in cell death among all of the calibrated-sets, and this was almost always associated with a concomitant decrease in the total population.
Also as expected due to the relatively short time interval evaluated with respect to the division intervals (parameter P) for these parameter-sets, modulating the parameters produced $\leq 12.5\%$ difference from the calibrated-sets’ total populations among all of the calibrated-sets’ parameter modulations. However it was somewhat surprising to find that most parameter modulations had a negative effect on the cell population, with the largest increase of 5.1% more cells after 24 hours among the DHLF parameter-set attributed to increasing the senescence threshold (Appendix C), which decreases the rate of senescence within the model.

As expected from the model design and calibrated parameter-sets, increasing the parameters for migration rate increased the scratch closure rate more than any other parameter alone. As expected due to the robust healing response of NHLF treated with FGM, differences in scratch closure due to parameter modulations within this calibrated-set skewed negative; and those differences among calibrated-sets associated with lower rates of scratch closure skewed increasingly positive. Many of the parameter modulations were also found to produce differences in scratch closure 12 hours post-scratch that were partially lost by 24 hours.

In general, the percentage of senescent cells and myofibroblasts were found to increase more, or decrease less, with lower values of L_S and L_M, respectively; although lower values of L_S were also consistently correlated with a decrease in myofibroblasts. Further illustrating the interdependence of these subpopulations within the model, modulations in the calibrated-sets’ parameters that decreased the percentage of senescent cells generally also increased the percentage of myofibroblasts and vice versa. Strikingly,
modulations of any parameter in either direction within the calibrated parameter-set for NHLF treated with FBM increased the senescent population by 20-30% at both 12 and 24 hours post-scratch while the myofibroblasts lost 0-10% and 15-25% of their population after 12 and 24 hours, respectively. This also illustrates clearly how a spike in the percentage of myofibroblasts can be created by adjusting the parameters such that more myofibroblasts are formed at earlier time-points which subsequently become senescent by the end of 24 hours (e.g. necessary to fit the calibrated-set for NHLF treated with FGM; Figure 4.14), and how this effect can be used to adjust the time dynamics of the scratch closure rates in a nonlinear manner.

Among the calibrated parameter-sets, NHLF treated with FGM was the least sensitive to modulations in the parameters and showed a generally negative skew in the scratch closure output accompanied with a proportionate boost in the percentage of senescent cells and a flatter spike in the percentage of myofibroblasts 12 hours post-scratch. The calibrated-set for NHLF with FBM also produced modest modulations in the scratch closure rate, but these showed a consistent time-dynamic; parameter modulations around this set typically increased scratch closure by 12 hours post-scratch, but this boost was lost or reversed by 24 hours. As stated earlier, this mild boom-bust response in the scratch closure rate due to parameter modulations was also accompanied with a large static boost in the percentage of senescent cells along with a decrease in the percentage of myofibroblasts that intensified with time. Taking into consideration the inability of the calibrated-set for NHLF with FBM to fit both the 12 and 24 hour time-points of the in vitro data for the percentage of myofibroblasts (Figure 4.14), the negative skew in the model’s
myofibroblasts output indicates that up to ±10% modulation in any parameter would not be able to fit this 12 hour time-point, all due to the same downward trend in myofibroblasts.

The calibrated-sets for either NHLF treated with CSM or DHLF were much more sensitive to changes in the parameters, with the most drastic boost on the scratch closure output being produced by increases in the migration parameter. Interestingly, the calibrated-set for DHLF was found to be insensitive to the proliferation and transition limit parameters while the calibrated-set for NHLF treated with CSC was found to be relatively sensitive to these terms, despite these sets sharing the same values of \(L_M \) and \(L_S \). This illustrates how the values of some parameters (e.g. \(M, P \)) can influence the sensitivity of the model outputs to the other parameters (e.g. \(L_M, L_S \)). Additionally, it was found that the ratio of these parameters were as important as their raw values to find parameter-sets whose outputs matched a given dataset; where the ratio of \(M:P \) had more of an effect on the scratch closure rate while the ratio of \(L_M:L_S \) had more of an effect on the subpopulation levels and nonlinearity of scratch closure.

Simulated Treatments for Smoke Exposure & COPD Fibroblasts

Since the results of our sensitivity analysis indicated an increase in the migration rate would result in a faster rate of scratch closure among either cell line treated with CSM, we performed simulations of these calibrated-sets with up to 3-fold higher migration rates to represent potential treatments for these fibroblasts that could recover the scratch closure response of NHLF in FBM (Figure 4.16). Although modulating other parameters were
found to increase the scratch closure rate within the sensitivity analysis, intensifying these modulations failed to increase the closure rate further (data not shown).

Figure 4.16 – Simulated treatments for NHLF and DHLF exposed to smoke. Transients of parameter modulations around the calibrated-set (red) for NHLF (top) or DHLF (bottom) treated with CSM that increase scratch closure (%Healed; brown-blue gradient). Transients are juxtaposed with *in vitro* scratch closure data of NHLF (N = 3-6) or DHLF (N = 1-4) exposed to CSM, shown as the mean ± 2SD of N biological repeats. Simulated transients were calculated by taking the mean and standard deviation of 10 simulations using the same parameter-set and initial conditions.
Table 4.2 – Heat-map of each calibrated-set’s sensitivity to parameter changes.

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter Modulation</th>
<th>% Healed 12 HR</th>
<th>% Healed 24 HR</th>
<th>% Senescent Cells 12 HR</th>
<th>% Senescent Cells 24 HR</th>
<th>% Myofibroblasts 12 HR</th>
<th>% Myofibroblasts 24 HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHLF</td>
<td>M +</td>
<td>0.4</td>
<td>0.8</td>
<td>2.4</td>
<td>1.0</td>
<td>-0.9</td>
<td>2.2</td>
</tr>
<tr>
<td>FGM</td>
<td>-</td>
<td>-6.6</td>
<td>-5.4</td>
<td>2.5</td>
<td>1.3</td>
<td>-1.6</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>P +</td>
<td>-1.8</td>
<td>-1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>-1.0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-3.3</td>
<td>-5.5</td>
<td>1.7</td>
<td>-0.2</td>
<td>0.5</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>LM +</td>
<td>-3.1</td>
<td>-1.5</td>
<td>2.1</td>
<td>1.2</td>
<td>-4.3</td>
<td>-2.6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-2.4</td>
<td>-3.3</td>
<td>1.3</td>
<td>1.2</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>LS +</td>
<td>-2.6</td>
<td>0.5</td>
<td>-3.6</td>
<td>-3.7</td>
<td>3.4</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-2.9</td>
<td>-5.1</td>
<td>5.1</td>
<td>4.2</td>
<td>-2.6</td>
<td>-9.8</td>
</tr>
<tr>
<td></td>
<td>AM +</td>
<td>0.7</td>
<td>-3.1</td>
<td>4.9</td>
<td>3.1</td>
<td>-0.5</td>
<td>-4.6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-7.3</td>
<td>-3.6</td>
<td>-0.1</td>
<td>-2.6</td>
<td>-3.5</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>AS +</td>
<td>-0.3</td>
<td>-0.8</td>
<td>2.2</td>
<td>0.8</td>
<td>-0.4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-3.1</td>
<td>-4.3</td>
<td>2.8</td>
<td>0.4</td>
<td>-2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>NHLF</td>
<td>M +</td>
<td>8.8</td>
<td>0.9</td>
<td>21.7</td>
<td>22.9</td>
<td>-2.7</td>
<td>-19.9</td>
</tr>
<tr>
<td>FBM</td>
<td>-</td>
<td>-1.5</td>
<td>-9.1</td>
<td>23.5</td>
<td>25.0</td>
<td>-0.6</td>
<td>-20.2</td>
</tr>
<tr>
<td></td>
<td>P +</td>
<td>4.9</td>
<td>-1.5</td>
<td>24.7</td>
<td>26.0</td>
<td>-5.1</td>
<td>-21.7</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7.6</td>
<td>2.4</td>
<td>24.9</td>
<td>25.2</td>
<td>-7.6</td>
<td>-24.9</td>
</tr>
<tr>
<td></td>
<td>LM +</td>
<td>2.1</td>
<td>-0.7</td>
<td>19.9</td>
<td>23.6</td>
<td>-8.4</td>
<td>-24.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.4</td>
<td>-2.8</td>
<td>25.6</td>
<td>25.9</td>
<td>-0.2</td>
<td>-16.9</td>
</tr>
<tr>
<td></td>
<td>LS +</td>
<td>6.8</td>
<td>-1.8</td>
<td>19.4</td>
<td>18.4</td>
<td>-0.9</td>
<td>-15.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2.3</td>
<td>-5.1</td>
<td>28.6</td>
<td>30.9</td>
<td>-5.4</td>
<td>-26.6</td>
</tr>
<tr>
<td></td>
<td>AM +</td>
<td>3.6</td>
<td>-2.8</td>
<td>26.9</td>
<td>28.8</td>
<td>-5.8</td>
<td>-21.9</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.4</td>
<td>-0.1</td>
<td>21.6</td>
<td>19.3</td>
<td>-8.4</td>
<td>-18.8</td>
</tr>
<tr>
<td></td>
<td>AS +</td>
<td>1.1</td>
<td>-4.7</td>
<td>21.7</td>
<td>21.8</td>
<td>0.0</td>
<td>-18.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>6.7</td>
<td>-1.2</td>
<td>23.2</td>
<td>23.6</td>
<td>-8.8</td>
<td>-25.3</td>
</tr>
<tr>
<td>NHLF</td>
<td>M +</td>
<td>16.8</td>
<td>9.6</td>
<td>4.6</td>
<td>1.2</td>
<td>-5.9</td>
<td>-4.4</td>
</tr>
<tr>
<td>CSM</td>
<td>-</td>
<td>-3.7</td>
<td>-3.7</td>
<td>1.0</td>
<td>-0.5</td>
<td>-4.8</td>
<td>-2.4</td>
</tr>
<tr>
<td></td>
<td>P +</td>
<td>4.6</td>
<td>-0.1</td>
<td>4.8</td>
<td>1.8</td>
<td>-5.2</td>
<td>-4.6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.4</td>
<td>8.4</td>
<td>-0.1</td>
<td>-1.5</td>
<td>-3.3</td>
<td>-1.1</td>
</tr>
<tr>
<td></td>
<td>LM +</td>
<td>-1.6</td>
<td>-0.4</td>
<td>4.2</td>
<td>1.5</td>
<td>-9.8</td>
<td>-9.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7.4</td>
<td>5.2</td>
<td>1.7</td>
<td>0.7</td>
<td>-3.3</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td>LS +</td>
<td>7.6</td>
<td>5.8</td>
<td>-4.9</td>
<td>-7.7</td>
<td>-3.7</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.3</td>
<td>2.5</td>
<td>8.2</td>
<td>6.5</td>
<td>-5.1</td>
<td>-10.8</td>
</tr>
<tr>
<td></td>
<td>AM +</td>
<td>8.0</td>
<td>6.7</td>
<td>1.9</td>
<td>3.0</td>
<td>-1.6</td>
<td>-3.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.8</td>
<td>6.0</td>
<td>-1.1</td>
<td>-2.4</td>
<td>-6.1</td>
<td>-6.4</td>
</tr>
<tr>
<td></td>
<td>AS +</td>
<td>4.0</td>
<td>-0.5</td>
<td>0.8</td>
<td>0.1</td>
<td>-6.8</td>
<td>-4.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.0</td>
<td>0.3</td>
<td>-0.9</td>
<td>-1.5</td>
<td>0.0</td>
<td>1.8</td>
</tr>
<tr>
<td>DHLF</td>
<td>M +</td>
<td>19.5</td>
<td>11.9</td>
<td>-2.0</td>
<td>1.7</td>
<td>3.3</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-2.7</td>
<td>-3.3</td>
<td>-2.2</td>
<td>1.1</td>
<td>-2.4</td>
<td>-1.8</td>
</tr>
<tr>
<td></td>
<td>P +</td>
<td>3.3</td>
<td>0.4</td>
<td>-0.8</td>
<td>-0.4</td>
<td>-2.7</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1.9</td>
<td>-0.3</td>
<td>-2.0</td>
<td>-0.4</td>
<td>2.0</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>LM +</td>
<td>3.7</td>
<td>1.5</td>
<td>-4.2</td>
<td>0.1</td>
<td>-2.6</td>
<td>-3.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-1.8</td>
<td>-5.6</td>
<td>1.2</td>
<td>2.8</td>
<td>2.7</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>LS +</td>
<td>-1.0</td>
<td>2.6</td>
<td>-5.2</td>
<td>-5.0</td>
<td>2.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4.7</td>
<td>1.9</td>
<td>-0.1</td>
<td>4.7</td>
<td>1.7</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>AM +</td>
<td>2.0</td>
<td>5.1</td>
<td>-3.9</td>
<td>0.5</td>
<td>4.8</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>10.2</td>
<td>8.7</td>
<td>-6.0</td>
<td>-5.4</td>
<td>-1.2</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>AS +</td>
<td>3.5</td>
<td>-0.2</td>
<td>0.3</td>
<td>3.3</td>
<td>-1.7</td>
<td>-2.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7.6</td>
<td>7.2</td>
<td>-3.0</td>
<td>0.7</td>
<td>2.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Table 4.2 caption (previous page): sensitivity of model outputs to parameter modulations with respect to each calibrated parameter-set are expressed as the percentage difference from the calibrated parameter-set’s mean output when each parameter is independently modulated by ± 10%. Model outputs are shown for the percentage of scratch closure (%Healed) and the percentage of senescent cells or myofibroblasts after 12 or 24 hours. Parameter-set mean outputs were calculated from 10 simulations with the same conditions. A blue-red gradient was applied across all outputs and parameter modulations within each experimental group.
Discussion

Differences among Normal Fibroblast Exposures

We selected a dosage of 50 µg/ml CSC within our CSM treatment media because dosages of 250 and 1000 µg/ml were found to cause 50-80% decrease in metabolism by MTT assay (N = 1-2; not shown), which we interpreted as cell death and aimed to avoid within our experiments in order to evaluate CSC’s effect on fibroblast functions, rather than its effect on apoptosis; and we confirmed a significant difference between NHLF treated with FGM versus CSM by CCK8 assay (Figure 4.1). However, considering that both of these assays depend on NADH/NAD metabolism and CSC is also known to induce oxidative stress associated with elevated NADH/NAD ratios, we had to confirm we were avoiding cell death using a non-metabolic assay.

Our avoidance of large drops in metabolism is likely why we found ≤ 10% dead cells at any of the time-points we evaluated in our cell stain experiments; however it was surprising to find that the percentage of cell death decreased over time at a rate which we were unable to match with the model while also fitting the population data for NHLF treated with FGM (not shown), indicating that the percentage of dead cells in vitro were being decreased directly. Upon re-evaluating the literature to confirm this result, we found reports that fibroblasts participate in efferocytosis to clear dead cells and debris during wound closure as one of their many roles in tissue maintenance. Since our in vitro
data contained negligibly low levels of cell death, we simply left this out of our model; however, future iterations of the model that aim to evaluate fibroblast responses involving more cell death than this iteration should include a rule for this functionality to ensure this model output is relevant to *in vitro* measurements to which it’s fit.

While intriguing, any conclusions drawn from interpretations of this *in vitro* population data are unfortunately limited by the lack of biological repeats. Also, the senescence and myofibroblasts assays each suffered from limitations in their measurement that likewise limits the confidence in conclusions drawn from them. The SA-β-Gal assay used to evaluate the percentage of senescent cells can induce a false positive among quiescent cells, particularly fibroblasts in confluent monolayers such as those used within the scratch assays. Thus, the seeding density of all the cell stain experiments were lowered in order to minimize the probability of false positives within the senescence assay and perform these experiments with the same conditions to preserve the cells’ level of contact inhibition within the stain experiments; and this adjustment in the seeding density may have compromised our assessment of the subpopulations within the scratch closure experiments. Also analyzing the DAPI stain for senescence-associated heterochromatic foci could have served as a control against quiescent cells \(^{130}\), however the large degree of background fluorescence within this stain limited our ability to do this analysis. The immunocytochemistry assay of αSMA expression also suffered from pervasive background fluorescence that limited the image contrast available for image processing, such that the percentage of myofibroblasts may have been systematically over-reported. These limitations are highlighted by our observation of less cell senescence following a spike in
senescence 12-hours post-scratch among NHLF treated with FGM; while anecdotal reports of reversible senescence exist142, these have not yet passed peer review. As mentioned earlier, the model was not required to match a decrease in cell senescence at the 24 hour time-points for this reason. Despite any concerns regarding the accuracy of the \textit{in vitro} subpopulation data, calibrated parameter-sets were able to match both the percentage of myofibroblasts and senescent cells along with scratch closure rates with few exceptions (Figure 4.14).

Our scratch wound closure assays revealed that NHLF exposed to each media type produced a significantly different scratch closure rate from the others 24 hours post-scratch, and each of these closure responses was characterized by a unique dynamic in the cell subpopulations that was supported by the calibrated parameter-sets for these groups. The relatively short time evaluated by the model with respect to these cell types mean division intervals (parameter P) limits our ability to find significant differences in this parameter between experimental groups. Additionally, we found that regardless of cell type of media exposure, all experimental groups were associated with calibrated-sets containing the same values for the parameters governing the magnitude of environmental stimulation (parameter A_M) and heterogeneity of individual responses to a given type or level of stimulation among the population of fibroblast (parameter A_S).

With respect to the calibrated parameter-set for NHLF treated with FBM, treatment with FGM was associated with a 2.4-fold increase in migration rate paired with a 9.7-fold higher rate of myofibroblast activation compensated by a 1.7-fold higher rate of senescence. Despite the spike in senescence associated with negligible myofibroblast
increase that we found in vitro and matched in silico, this calibrated-set still indicates a drastic enhancement of migration and myofibroblast activation due to the inclusion of serum, bFGF and insulin to their media – which makes sense considering these ingredients are included in FGM to enhance fibroblast migration, proliferation and activation via the Wnt/β-catenin pathway or Akt1, myocardin and serum response factor. Notably, bFGF has also been found to deactivate myofibroblasts when stimulated by TGFβ, both mediated by Akt1, which supports our in vitro finding of mildly elevated myofibroblasts that returned to baseline over 24 hours.

With respect to the calibrated parameter-set for NHLF treated with FBM, treatment with CSM was associated with a 33% drop in migration rate paired with a 16% higher rate of myofibroblast activation compensated by a 44% lower rate of senescence. This indicates an inhibition of NHLF migration rate independent to the loss in migration rate expected from the concomitant increase in myofibroblasts with less senescent cells; however, this calibrated-set was nearly 2 standard deviations from the mean of the in vitro data for the percentage of myofibroblast, so the independent decrease in migration rate found in this calibrated-set may be compensating for this lack of myofibroblast activation in order to fit the scratch data. This is supported by reports showing that fibroblast activation is stimulated by oxidative stress, such as is found within cigarette smoke.
Differences between Normal & COPD Fibroblasts:

Many aspects of this project were influenced by the limited availability of DHLF, as they only maintained log-growth for one or two passages; so one of the main goals of the project was to use the model and in vitro scratch closure data for this cell line to evaluate how DHLF functions may differ from NHLF and inform future investigations into this cell line. For this reason, dosages of CSC were not tested among DHLF to ensure the chosen dose produced an effect within both cell lines – which may have prevented us from evaluating how DHLF responses to CSC differ from NHLF – however, our in vitro scratch results show that DHLF is resistant to CSC relative to NHLF. In support of this finding, the calibrated-set for DHLF was found to fit the DHLF in vitro data when exposed to either FBM or CSM.

The limited availability of in vitro datasets of DHLF population responses to fit the model against – or of DHLF exposed to FGM – also produced two problems. First, this required the model’s preconditioning parameters for both cell lines to be calibrated using in vitro data of NHLF and created an unlikely assumption within the model that DHLF responses to FGM were the same as NHLF during the pre-scratch interval. Second, there were many more parameter-sets that could have been classified as a calibrated-set among DHLF since there were less datasets available to filter out sets that were not biologically relevant to this cell line. Therefore, in order to use this forced assumption as a tool in our comparison of these groups and help guide our selection of the calibrated-sets for DHLF, we fit the model to both of these groups while maintaining the L_M and L_S parameters between these sets and the calibrated-set for NHLF treated with CSM. This allowed us to
use the calibrated-set for NHLF treated with CSM as a reference parameter-set that assumed no difference between these cell lines’ subpopulation responses and limited the variation between these sets to the migration and proliferation parameters.

Since the scratch closure response showed some sensitivity to all of the parameters while the population levels were relatively insensitive to the migration and proliferation parameters (Table 4.2) – and since the different subpopulations exhibit different migration and proliferation rates (Figure 3.4) – variations in these parameters between the calibrated-sets for DHLF and NHLF exposed to CSM suggest how the subpopulation levels may change between these groups. Both the migration rate and proliferation rate were found to be lower among DHLF calibrated-sets relative to NHLF treated with CSM, which may indicate either (A) these cells migrate and proliferate less due to a fundamental (e.g. genetic, epigenetic) difference between these cell lines, (B) there are more myofibroblasts, (C) there are more senescent cells, or (D) some combination of these. It is impossible to speculate upon the likelihood of genetic differences among DHLF using this analysis of the model, as these kinds differences may produce a relative increase in myofibroblasts or cell senescence; however, we can infer from the relatively equal decrease in migration and proliferation parameters – down to 72-75% of the values for the set calibrated to NHLF treated with CSM – that this difference is likely due to an increase in the percentage of myofibroblasts rather than senescent cells. Since senescent cells lose the ability to proliferate or migrate in a directed manner, we would expect more of a decrease in both of these terms, particularly the proliferation rate; however future simulations repeating this analysis while holding the migration and proliferation parameters constant, or letting them
all vary together, could be used to test this hypothesis in silico prior to in vitro investigations.

Taking these findings into consideration with the years of smoke exposure typically needed to produce COPD symptoms, a more holistic interpretation of DHLF’s significant decrease from NHLF closure rates, insensitivity to CSM in vitro and in silico, and relative decrease in migration and proliferation rates in silico suggest that DHLF represents a subpopulation of NHLF that had survived a selection process for resistance to cigarette smoke and upregulated the percentage of myofibroblasts. This interpretation is supported by our in vitro finding that NHLF exposure to CSM induced a spike in the percentage of myofibroblasts after 12 hours.

Since in vivo wound healing and homeostasis is an orchestrated process requiring a balance of multiple native cell types, our interpretation that COPD pathogenesis is at least in part due to an upregulation of fibroblasts relative to other cell types due to selective pressures of oxidative stress caused by chronic smoke exposure is supported by the distribution of tissue degradation and fibrosis within COPD. Elevated proportions of epithelial and endothelial cells to native fibroblasts within parenchymal regions relative to the bronchioles among normal lungs, paired with a chronically elevated rate of mesenchymal transitions, would be expected to result in the pattern of tissue loss and fibrosis seen in each respective region among COPD lungs. Luckily, the autoflourescence of NADH may be used as a biomarker of oxidative stress and metabolic health in future studies of this mechanism. 145.
Simulated Treatments for Smoke Exposure & COPD Fibroblasts

Our sensitivity analysis and following simulations of increasing modulations of individual parameters around the calibrated-sets for DHLF and NHLF treated with CSM found that an increase in the migration parameter alone would continue to increase the scratch closure rate the more it was elevated (Figure 4.16), but increasing modulations in the other parameters alone had practically no effect (data not shown). It is unlikely that a potential in vitro treatment would affect migration rate without also affecting other pathways due to the degree of crosstalk among cellular signaling pathways; however, since the model is sensitive to modulations in ratios of parameters more than individual parameters, further simulations of parameter modulations of multiple parameters around these calibrated-sets are likely to reveal more potential treatments for these groups.

Regardless, increasing fibroblast migration rates should be achievable in vitro through several means (Table 5.1). Increased migration should be achievable by drugs which increase actin expression, actin treadmilling, microtubule stabilization, Rho/Rac signaling or inhibition of contractility. Additionally, increased migration via decreased contractility could be achieved with less myofibroblasts, which in itself would be achievable by treatments which limit their activation, induce their deactivation, or induce senescence – once such mechanism to accomplish this would be to supplement with bFGF to induce deactivation and promote senescence as was seen in our in vitro experiments among NHLF treated with FGM. Counteracting the cigarette smoke induced oxidative stress to prevent the associated increase in myofibroblasts may also represent a valid strategy – this could be achieved directly through supplementation with an antioxidant such as vitamin C, and
potentially protected against if cell-native antioxidants are primed prior to smoke exposure. Likewise, caloric restriction or drugs which mimic this (e.g. glycolysis inhibitors, glutaminolysis inhibitors, etc.) could be used to buffer NADH/NAD levels to minimize the effect of oxidative signaling on downstream targets; and these downstream targets (i.e. SIRT-1 and HIF-1α) can be inhibited directly to prevent upregulation of mesenchymal marker genes (e.g. αSMA) or senescence. Finally, a recent review indicates various interleukin inhibitors as another promising method to treat COPD by targeting the NLRP3 inflammasome theorized to drive the autoinflammatory processes observed in COPD.16

Additional Functionality & Future Directions for the Model:

The aspects of the model explored here are not comprehensive. Our results may be expanded upon with the model through a thorough evaluation of the parameter space that fits each cell type and media exposure to judge if another parameter-set may represent a better fit for the *in vitro* data than those presented, or to evaluate if modulations of more than one parameter may produce synergy to improve scratch closure. However, high performance computing resources are recommended for more intensive analyses or models due to the number of simulations required, paired with NetLogo’s computational inefficiency compared to other ABM platforms.14,15 Additionally, while this model was weakly validated when it was found to fit the 4 hour time-point of the scratch closure data, *in vitro* data sets of the DHLF subpopulations or of scratch closure to 48 hours post-scratch could validate if our model and calibrated parameter-sets have predictive value.
The availability of *in vitro* data sets from other fibroblast lines, media exposures or other types of collective migration experiments would allow this model to be applied towards additional questions. While we present here a model of fibroblast scratch closure, the scratch and non-scratch regions could easily be switched to model a barrier removal assay to evaluate differences in contact inhibition among the cell types and exposures with less influence from cytokines released from damaged cells or the population of cells across the scratch. Migration following cytokine gradients were not modeled, so different values in the migration parameter required to fit data for these *in vitro* experiment types may reveal the presence of such gradients and if DHLF and/or CSM responses are less sensitive to these gradients. Additionally, data from migration assays for other cell lines (e.g. IPF-fibroblasts, mesenchymal stem cells, cancer-associated fibroblasts) or exposures (e.g. E-cigarettes, H2O2, TGFβ) would allow the model to evaluate differences in those cell types or exposure responses. Assays of these fibroblasts exposed to conditioned media from normal or COPD-derived epithelial cells or macrophages would create parameter-sets representing fibroblast responses to paracrine signaling from these cell types. Similarly, assays of these fibroblasts on polyacrylamide gels of lung-relevant stiffnesses coated with ECM from normal and COPD lungs could be used to generate parameter-sets representing fibroblast responses to these substrate properties and vice versa. These parameter-sets would allow differences in paracrine and cell-substrate signaling mechanisms within the lung during smoking or COPD to be evaluated and would inform future model iterations that include these cell types and mechanical features. For example, ECM composition and stiffness could be modeled as patch variables that the fibroblast agents can interact with
and differentially modulate based on their breed – this data could be fit against in vitro data of fibril formation during the in vitro assays of fibroblasts on ECM-coated polyacrylamide gels, or simulated from other models of fibril formation \(^{146}\) or fibrosis \(^{113}\) – while another layer of patches and breed of agents could be included to model interactions with a layer of epithelial cells and patrolling macrophages \(^{112}\), respectively. However, these would take exponentially more time to simulate with the number of patches or agents, so a modular approach, high performance computing resources and/or more computationally efficient modeling platforms are recommended \(^{115,118}\).
Table 5.1 – Potential Treatment Strategies for COPD and Smoke Exposure.

<table>
<thead>
<tr>
<th>Treatment Strategy</th>
<th>Method</th>
<th>Therapy/Drug</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Migration</td>
<td>Stabilize microtubules & cell polarity</td>
<td>Paclitaxel</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>↑ Actin content</td>
<td>Glucocorticoids</td>
<td>84,148</td>
</tr>
<tr>
<td></td>
<td>↑ Actin dynamics</td>
<td>Heat, CalyculinA</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>↑ Adhesion dynamics (via ROCK)</td>
<td>Fasudil, Y27632</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>↓ Senescent induction</td>
<td>Fasudil, Y27632, Rapamycin, Rapalogs</td>
<td>29,100,149</td>
</tr>
<tr>
<td></td>
<td>↓ Senescent population (senolytics)</td>
<td>Dasatinib, Quercetin, Fisetin, Navitoclax, Venetoclax,</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>↓ Contractility & myofibroblasts</td>
<td>Roflumilast, Piclamilast, Aclidinium, SMIFH2, NOX4 inhibitors</td>
<td>42,60,147,151–154</td>
</tr>
<tr>
<td>Inhibit Myofibroblasts</td>
<td>↓ Activation</td>
<td>anti-Akt</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>↑ Deactivation</td>
<td>bFGF</td>
<td>144</td>
</tr>
<tr>
<td>Inhibit Inflammation</td>
<td>anti IL-1beta</td>
<td>Canakinumab</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>anti IL-1Ralpha</td>
<td>Anakinra</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>IL-1 trap (mock receptor)</td>
<td>Rilonacept</td>
<td>16</td>
</tr>
<tr>
<td>Counter CSC & ROS</td>
<td>↑ antioxidants</td>
<td>Vitamin C</td>
<td>29,60,155,156</td>
</tr>
<tr>
<td></td>
<td>caloric restriction</td>
<td>2DG (anti-glycolysis)</td>
<td>29,157,158</td>
</tr>
<tr>
<td></td>
<td>↑ SIRT1 / ↓ HIF-1α</td>
<td>SRT2172, SRT1720</td>
<td>29,159,160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resveratrol</td>
<td>29,159,160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metformin</td>
<td>29,160</td>
</tr>
</tbody>
</table>

Table 5.1 caption – Potential strategies, methods and specific therapeutics that may achieve increased scratch closure among DHLF or NHLF exposed to cigarette smoke. Our model suggests scratch closure will be most improved with increased migration rates, which can be also accomplished by decreasing levels of senescence and myofibroblasts. Lower levels of these cells may also be achieved through inhibition NLRP3-mediated inflammation or countering the effects of oxidative stress from cigarette smoke.
Conclusions

We designed a model that captured the dynamics of fibroblast scratch closure due to changes in myofibroblast activation and cell senescence and calibrated parameter-sets to in vitro data for human lung fibroblasts exposed to cigarette smoke. Our in vitro results and calibrated parameter-sets recapitulated findings of increased myofibroblast activation and senescence among lung fibroblasts exposed to smoke or when derived from COPD. Calibrated-sets for this model could be fit to in vitro data of other fibroblast lines or exposures to evaluate their effects on scratch closure to investigate other diseases, paracrine signaling with other cell types, potential toxins like E-cigarette vapor, or therapeutics. Future iterations addressing COPD should work towards evaluating the dynamics of myofibroblast activation on regulation of the ECM during wound healing through traction forces and protease/antiprotease secretion mediated by oxidative stress.
Literature Cited
Literature Cited

37. Burton, D. G. a & Krizhanovsky, V. Physiological and pathological consequences

51. Frankel, S. K. *et al.* TNF-alpha sensitizes normal and fibrotic human lung

144. Abdalla, M., Goc, A., Segar, L. & Somanath, P. R. Akt1 Mediates α-Smooth Muscle

145. Alfveby, J. Native NADH As A Biomarker For Oxidative Stress In Living Cells. (University of Minnesota, 2014).

APPENDIX A

;; NETLOGO MODEL FOR IN VITRO FIBROBLAST WOUND HEALING
;; VERSION 1.2 - updated 03/23/2018
;; BY JAMES ALEX RATTI

;==
; VARIABLE & CONSTANT DEFINITIONS

globals [Iheight ; in vitro image height
 maxC ; modeled world's max coordinate (sets resolution)
 ds ; patch length (=image size/101)
 ; { Patch Area = (101)^2 patches, due to origin + axes }
 ; { correlates to cropped image size of 1677x1677 um }
 dt ; step interval (arbitrary)
 ; { model functions in step intervals = dt * tick }
 ; { such that there will be '1/dt' steps per tick. }
 ; { tick units = hours (arbitrary) }
 ; { b/c model timer only counts ticks in whole numbers }
 time_SS ; in vitro seed-scratch time for scratch assays
 ; { mean+/sd of in vitro seed-scratch times = 14+/ }
 I_A ; in vitro image area (frm 2244.6x1677.0 for square dim.)
 Rs_AR ; in vitro mean scratch area @ t=0, from all assays
 Rc_AR ; in vitro cell-covered area
 %s_AR ; in vitro ratio of scratched area to cropped image area
 Vs_AR ; virtual scratch size [patches]
 Scratch_width ; num. full rows per side (excluding center)
 Scratch_center ; num. patches in filled rows
 Scratch_edges ; num. patches in unfilled rows (ragged edge)
 Scratch ; virtual initial scratched region (patch-set)
 Healed ; virtual healed region (patch-set)
 UnHealed ; virtual unhealed region (patch-set)
 UnHealed_edge ; virtual unhealed region's border (patch-set)
 Edge_length_t0 ; unhealed region's est. border length @t=0 [um]
 Cell_AR ; individual cell area (assumed circular)
N_diam ; in vitro diameter for NHLF
; selected* to fit cells w/ and w/o aSMA, within 1SD
; [*lit. avg = 35.8+/−7.0 um (with aSMA)]
; [= 25.7+/−5.8 um (without aSMA)]

Pop_Sm ; initial agent population, der. from seeding density
; [derived from in vitro seeding density for MTTs]
; [Pop_S = Pop_S*(IPop_S + APop_S + SPop_S)]

Pop_Ss ; initial agent population, der. from seeding density
; [derived from in vitro seeding density for scratches]
; [Pop_S = Pop_S*(IPop_S + APop_S + SPop_S)]

Pop_Ss6 ; agent population at t=seed+6

IPop_S ; initial population ratio of inactive fibs @t=seed+6

APop_S ; initial population ratio of activated fibs @t=seed+6

MPop_S ; initial population ratio of myo-fibs @t=seed+6

SPop_S ; initial population ratio of senescent fibs @t=seed+6

DPop_S ; initial population ratio of dead fibs @ t=seed+6

Pop_A ; initial agent population, der. from cell areas
; [derived from approx. confluency and cell diameter]
; [Pop_A = Pop_A*(IPop_A + APop_A + SPop_A)]

IPop_A ; initial population ratio of inactive fibs @confluency

APop_A ; initial population ratio of activated fibs @confluency

MPop_A ; initial population ratio of myo-fibs @confluency

SPop_A ; initial population ratio of senescent fibs @confluency

Pop_t00 ; initial seeded cell population, from Pop_S or Pop_A

Pop_t00I ; initial population of inactive fibs

Pop_t00A ; initial population of active fibs

Pop_t00M ; initial population of myo-fibs

Pop_t00S ; initial population of senescent fibs

Pop_t0 ; initial cell population on non-scratch areas, estimated

stim_max ; 'stimulation' maximum (for scaling reference)

stim_Ta ; 'stimulation' threshold w 50% fibroblast activation per hr

stim_Ta-a ; 'stimulation' threshold w 50% fib deactivation per hr

stim_Tm ; 'stimulation' treshold w 50% AFib->MFib transition per hr

stim_Ts ; 'stimulation' threshold w 50% fibroblast senescence per hr

Alpha_Z ; size coefficient for inactive fibs

Alpha_M ; migration coefficient for inactive fibs

Alpha_P ; prolif. coefficient for inactive fibs

Alpha_D ; death coefficient for inactive fibs

Beta_Z ; size coefficient for activated (proto-my-o-)fibs

Beta_M ; migration coefficient for activated (proto-my-o-) fibs
Beta_P ; prolif. coefficient for activated (proto-myo-)fibs
Beta_D ; death coefficient for activated (proto-myo-)fibs
Gamma_Z ; size coefficient for myo-fibs
Gamma_M ; migration coefficient for myo-fibs
Gamma_P ; prolif. coefficient for myo-fibs
Gamma_D ; death coefficient for myo-fibs
Omega_Z ; size coefficient for senescent fibs
Omega_M ; migration coefficient for senescent fibs
Omega_P ; prolif. coefficient for senescent fibs
Omega_D ; death coefficient for senescent fibs
Fsize ; baseline fib diameter [patches]
IFsize ; IFib diameter [patches]
AFsize ; AFib diameter [patches]
MFsize ; MFib diameter [patches]
SFsize ; SFib diameter [patches]
IFsplit ; dist. req. for IFibs to divide (fnx. of diameter)
AFsplit ; dist. req. for AFibs to divide (fnx. of diameter)
MFsplit ; dist. req. for MFibs to divide (fnx. of diameter)
SFsplit ; dist. req. for SFibs to divide (fnx. of diameter)
IFmove ; dist. req. for IFibs to move (fnx. of diameter)
AFmove ; dist. req. for AFibs to move (fnx. of diameter)
MFmove ; dist. req. for MFibs to move (fnx. of diameter)
SFmove ; dist. req. for SFibs to move (fnx. of diameter)
Fstep ; baseline fib step size (ref = IFibs) = Migration_rate*dt/ds
IFspeed ; IFib step size [patch/tick] = Fspeed*Alpha_Z
AFspeed ; AFib step size [patch/tick] = Fspeed*Beta_M
MFspeed ; MFib step size [patch/tick] = Fspeed*Gamma_M
SFspeed ; SFib step size [patch/tick] = Fspeed*Omega_M
t_life ; agent lifespan mean = Death_rate
t_div ; agent doubling time mean = Prolif_rate
sd_life ; agent lifespan std dev = t_life/3
sd_div ; agent doubling time std dev = t_div/3
 ; {mean+sd = 33.2 +- 10.4 hrs (for NHLF in FGM) }
 ; {lit. source: [Mio et al. 1992] }
m_stim ; agent stimulation rate mean = Stim_mean
]

patches-own [
 V1_score ; ratio of neighbors without an agent (excluding Apops) present (max=1)
 V2_score ; average of neighbors' V1_scores (max=1)
]
turtles-own [
 Fspeed ; step size for fibroblast
 fission ; countdown to fibroblast division (divide @ fission<=0)
 life ; countdown to fibroblast rep-senescence (sen @ life<=0)
 Zsense ; factor for sensitivity to stimuli
 stim ; counter for fibroblast stimulation (min=0, max=1)
 P_die ; probability of fibroblast death
 P_senesce ; probability for fibroblasts to senesce due to stimuli
]

breed [IFibs IFib] ; INACTIVE FIBROBLASTS (mobile; solid/hollow triangles)
IFibs-own [
 P_activate ; probability for inactivated fibroblasts to activate
]

breed [AFibs AFib] ; ACTIVE PROTO-MYO-FIBROBLASTS (mobile; solid/hollow squares)
AFibs-own [
 P_deactivate ; probability for activated fibroblasts to deactivate
 P_transmyo ; probability for activated fibroblasts to become myofibroblasts
]

breed [MFibs MFib] ; MYO-FIBROBLASTS (mobile; spade/club card symbols)

breed [SFibs SFib] ; SENESCENT FIBROBLASTS (mobile; g/b/r, solid/hollow circles)

breed [Apops Apop] ; DEAD CELLS / APOPTOTIC BODIES (immobile markers; white stars)
; MODEL INITIATION
 to setup
 clear-all

; SETS CONSTANTS FOR TIME/SPACE RESOLUTION
set maxC 50 ; sets world's max coordinate = 50 patches
resize-world (-1 * maxC) maxC (-1 * maxC) maxC ; world size = 101*101 patches
set Iheight 1677 ; in vitro image height = 1677 um
set ds Iheight / world-height ; patch length = 16.604 um/patch
set dt 20 / 60 ; step interval = [20 min/step]
set N_diam 30 ; NHLF diameter = 30 um

; SETS CONSTANTS FOR SCRATCH DIMENSIONS
set I_AR Iheight ^ 2 ; in vitro image area = 2812329 um^2
set Rs_AR 1296089.3932 ; in vitro scratch area = 1296089 um^2
set %s_AR Rs_AR / I_AR ; scratch area as ratio = 0.4609
set Vs_AR round (%s_AR * world-height ^ 2); virt. scratch area = 4701 patches
set Rc_AR (I_AR - Rs_AR) ; in vitro cell-covered area = 1516240 um^2
set time_SS time_seed-scratch / dt ; in vitro seed-scratch time= 42 steps

; SETS CONSTANTS FOR STIM. FUNCTION & CELL-STATE TRANSITIONS
set stim_max 1 ; stim maximum per hr
set stim_Ta 0.0001 ; stim threshold(a) = lvl w 50% activation/hr
set stim_T-a stim_Ta ; stim threshold(-a) = lvl w 50% deactivation/hr
set stim_Tm 0.06 ; myofib stim threshold
set stim_Ts 0.1 ; senescence stim threshold
set Alpha_Z 0.75 ; Inactive fib size coeff.
set Alpha_M 0 ; Inactive fib speed coeff.
set Alpha_P 1 ; Inactive fib proliferation period coeff.
set Alpha_D 1 ; Inactive fib death period coeff.
set Beta_Z 1 ; Activated fib size coeff.
set Beta_M 1 ; Activated fib speed coeff.
set Beta_P 1 ; Activated fib proliferation period coeff.
set Beta_D 1 ; Activated fib death period coeff.
set Gamma_Z 1.4 ; Myo- fib size coeff.
set Gamma_M 0.625 ; Myo- fib speed coeff.
set Gamma_P 1.4 ; Myo- fib proliferation period coeff.
set Gamma_D 1.4 ; Myo- fib death period coeff.
set Omega_Z 2 ; Senescent fib size coeff.
set Omega_M 0.75 ; Senescent fib speed coeff.
set Omega_P 1000 ; Senescent fib proliferation period coeff.
set Omega_D 1000 ; Senescent fib death period coeff.
; SETS CONSTANTS FOR CELL LINES AND MEDIA TREATMENTS
set-default-shape Apops "star"
set-default-shape IFibs "default" ; IFib shape
set-default-shape AFibs "square" ; AFib shape
set-default-shape MFibs "suit spade" ; MFib shape
set-default-shape SFibs "circle" ; SFib shape
set Fsize (N_diam / ds) ; baseline diameter = 1.8068 patches
set IFsize (Fsize * Alpha_Z) ; IFib diameter = 1.8068 patches
set AFsize (Fsize * Beta_Z) ; AFib diameter = patches
set MFsize (Fsize * Gamma_Z) ; MFib diameter = patches
set SFsize (Fsize * Omega_Z) ; SFib diameter = patches
set Cell_AR (pi * (N_diam / 2)^ 2) ; NHLF cell area = 706.86 um^2
set IPop_A 0.00 ; Inactive fib ratio @ confl. = 0
set APop_A 0.74 ; Active fib ratio @ confl. = 0.74
set MPop_A 0.15 ; Active fib ratio @ confl. = 0.15
set SPop_A 0.11 ; Senescent fib ratio @ confl. = 0.11
set IPop_S 0 ; Inactive fib ratio @ t=seed+6 =
set MPop_S 0.0435 ; Myo-fib ratio @ t=seed+6 =
set SPop_S 0.1191 ; Senescent fib ratio @ t=seed+6 =
set DPop_S 0.0148 ; Dead fib ratio @ t=seed+6 =
set APop_S (1 - IPop_S - MPop_S - SPop_S - DPop_S); Active fib ratio @t=seed+6

; SETS PARAMS FOR MIGRATION, DIVISION, DEATH & STIM COUNTERS
set Fstep (65 * dt / ds) ; baseline fib speed = {NHLF*FGM} FOR PRE-COND.
set IFspeed Fstep * Alpha_M ; IFib speed
set AFspeed Fstep * Beta_M ; AFib speed
set MFspeed Fstep * Gamma_M ; MFib speed
set SFspeed Fstep * Omega_M ; SFib speed
set t_div 27 / dt ; division rate mean
set sd_div t_div / 3 ; division rate st.dev. = {P} hrs
set t_life 40 * t_div ; base lifespan mean = 40*{P} hrs
set sd_life 40 * sd_div ; base lifespan st.dev. = 40*{P} hrs
set m_stim 0.0002 * dt ; 'stimulation' rate mean = {NHLF*FGM} FOR PRE-COND.

; INITIATES ("SEEDS") FIBROBLASTS
set Pop_A round (I_AR / Cell_AR) ; agent pop. @100% confl. = 3979 agents
set Pop_Ss round (4E5 * I_AR / 9.6E8); IV-det agent pop.(Scr) = 1172 agents
set Pop_Sm round (2E4 * I_AR / 3.2E7); IV-det agent pop.(MTT) = 1758 agents
if Seed_Density = "Max Confluency" [; seeds fibs @100% confl. ignoring overlaps
set Pop_t00 Pop_A
set Pop_t00I round(Pop_t00 * IPop_A)
set Pop_t00A round(Pop_t00 * APop_A)
set Pop_t00M round(Pop_t00 * MPop_A)
set Pop_t00S round(Pop_t00 * SPop_A)
]
if Seed_Density = "In Vitro" [; seeds fibs @ in vitro seeding density:
if Experiment_Type = "Culture Cond." [; sets seeding density for 96wells
ifelse Seed_IFibs_Only? = true [set Pop_t00 Pop_Ss][
set Pop_t00 Pop_Ss
]
]
if Experiment_Type = "Scratch Healing" [; sets seeding density for 6wells
ifelse Seed_IFibs_Only? = true [set Pop_t00 Pop_Ss][
set Pop_t00 Pop_Ss
]
]
if Experiment_Type = "Barrier Removal" [; sets seeding density for 6wells
ifelse Seed_IFibs_Only? = true [set Pop_t00 Pop_Ss][
set Pop_t00 Pop_Ss
]
]
set Pop_t00I round(Pop_t00 * IPop_S)
set Pop_t00A round(Pop_t00 * APop_S)
set Pop_t00M round(Pop_t00 * MPop_S)
set Pop_t00S round(Pop_t00 * SPop_S)
]
ifelse Seed_IFibs_Only? = true [; seeds all agents in inactive state
ask n-of Pop_t00 patches [sprout-IFibs 1 [train_IFib]]
ask turtles [set fission ((random-float 1) * t_div)]
ask turtles [set Zsense random-normal 1 0.3]
] ; seeds agent states by proportions
ask n-of Pop_t00I patches [sprout-IFibs 1 [train_IFib]]
ask n-of Pop_t00A patches [sprout-AFibs 1 [train_AFib]]
ask n-of Pop_t00M patches [sprout-MFibs 1 [train_MFib]]
ask n-of Pop_t00S patches [sprout-SFibs 1 [train_SFib]]
ask n-of round(Pop_t00 * DPop_S) patches [Fib_apoptose]
ask turtles [set fission ((random-float 1) * t_div)]
ask turtles [set Zsense random-normal 1 0.3] ; {NHLF*FGM} for Pre-conditioning]
; INITIATES AGENTS AND VARIABLES (PRECONDITIONING)
ifelse Precondition? = true [Precondition_Fibs
 ; re-initializing parameters to simulate post-scratch interval
 set Fstep (Migrate_rate * dt / ds) ; baseline fib speed = {M} patches/step
 set IFspeed Fstep * Alpha_M ; IFib speed
 set AFspeed Fstep * Beta_M ; AFib speed
 set MFspeed Fstep * Gamma_M ; MFib speed
 set SFspeed Fstep * Omega_M ; SFib speed
 ask IFibs [set Fspeed IFspeed] ; re-initializing parameters to simulate post-scratch conditions
 ask AFibs [set Fspeed AFspeed] ; re-initializing parameters to simulate post-scratch conditions
 ask MFibs [set Fspeed MFspeed] ; re-initializing parameters to simulate post-scratch conditions
 ask SFibs [set Fspeed SFspeed] ; re-initializing parameters to simulate post-scratch conditions
 set t_div Prolife_rate / dt ; division rate mean = {P} hrs
 set sd_div t_div / 3 ; division rate st.dev. = {P} hrs
 ; averages pre+post-interval fission rates (ie cells fully adjust w next cell cycle)
 ask turtles [set fission ((fission + (random float 1) * t_div)) / 2]
 set m_stim Stim_rate * dt ; 'stimulation' rate mean = {} stim/step
 ; averages pre+post-interval Zsense dist. to sim degrees of signalling overlap
 ask turtles [set Zsense ((Zsense + (random normal 1 Stim_sense)) / 2)]
 set stim_Tm T_myo ; stim threshold(m) = lvl w 50% fib myo-trans. per hr
 set stim_Ts T_sen ; stim threshold(s) = lvl w 50% fib senescence per hr
] []

; INITIATES WORLD AND SCRATCH AREA (CENTERED AROUND Y-AXIS)
if Experiment_Type = "Culture Cond." [; NO CHANGE W/ CULTURE CONDITIONS
 set Scratch_width 0
 set Scratch_center 0
 set Scratch_edges 0
 set Scratch_patch-set nobody
 set Pop_t0 count turtles
] if Experiment_Type = "Scratch Healing" [Scratch_Cells] ; CREATE SCRATCH
if Experiment_Type = "Barrier Removal" [Remove_Barrier]; REMOVE BOUNDARY

calc_Vscores ; initiates void scores for plot initialization and model operation
Measure_Healed ; initiates/labels Healed and Unhealed Edge regions for reporters
set Edge_length_t0 Edge_length ; sets initial Unhealed Edge Length for reporters

reset-ticks ; sets tick counter to 0 and sets/updates all plots
setup-plots ; initiates plots (req. with "tick-advance" notation)
end
to go

 react ; Fibroblast stim (ticker) + hetero response (stoch. Xforms)
 age ; Fibroblast replicative senescence (counter)
 divide ; Fibroblast proliferation (counter)
 migrate ; Fibroblast migration (see below for mode descriptions)

 calc_Vscores ; updates void scores for plot updates and model operation
 Measure_Healed ; updates/labels Healed and UnHealed Edge regions for reporters

 tick-advance dt ; moves model forward by 1 step = "dt" ticks
 update-plots ; updates plots with each step (req. with "tick-advance" notation)

 if ticks >= t_end [; time limit for the model (slider, default = 24 hrs)
 stop
 repeat 2 [beep wait 1.6]] ; emits 2 beeps spaced 1.6s apart
 end

;--; SHORTCUT TO PRECONDITION AGENT VARIABLES

to Precondition_Fibs

 repeat time_SS [; Runs the "go" procedure from below for time_ss iterations
 react ; Fibroblast stim (ticker) + hetero response (stoch. Xforms)
 age ; Fibroblast replicative senescence (counter)
 divide ; Fibroblast proliferation (counter)
 migrate ; Fibroblast migration (see below for mode descriptions)
 calc_Vscores ; Calculates void scores
]
end
to Scratch_Cells
set Scratch_width floor((Vs_AR - world-height) / (2 * world-height))
 ; scratch width, excluding center and edges [rows/side] = 45 rows/side
set Scratch_center (world-height + ((2 * world-height) * Scratch_width))
 ; number of patches in filled rows, including center = 4545 patches
set Scratch_edges Vs_AR - Scratch_center
 ; number of patches in the scratch's "ragged" edge = 156 patches
set Scratch patches with [pxcor <= Scratch_width and pxcor >= (-1 * Scratch_width)]
 n-of Scratch_edges patches with [pxcor = (Scratch_width + 1) or pxcor = (-1 * Scratch_width - 1)]
 ask Scratch [set pcolor grey] ; tags scratch patches
 ask turtles-on patches with [(pxcor <= (Scratch_width + 2) and pxcor >= (-1 * Scratch_width - 2)) and (not member? self Apops)][die]
 ifelse Seed_IFibs_Only? [; clears 'excess' dead cells
 ask Apops [die]][
 let dead_pctIV14s round(.0805 * count turtles)
 ifelse count Apops = dead_pctIV14s][
 if count Apops > dead_pctIV14s [ask n-of (count Apops - dead_pctIV14s) Apops [die]]
 if count Apops < dead_pctIV14s [ask n-of (dead_pctIV14s - count Apops) turtles with [not member? self Apops] [ask patch-here [Fib_apoptose] die]]
]
]
 set Pop_t0 count turtles ; counts remaining cells for calculations
end
to Remove_Barrier
 set Scratch_width floor((Vs_AR - world-height) / (2 * world-height))
 ; scratch width, excluding center and edges [rows/side] = 45 rows/side
 set Scratch_center (world-height + ((2 * world-height) * Scratch_width))
 ; number of patches in filled rows, including center = 4545 patches
 set Scratch_edges Vs_AR - Scratch_center
 ; number of patches in the scratch's "ragged" edge = 156 patches
 let Not_Scratch (patch-set patches with [pxcor <= Scratch_width and pxcor >= (-1 * Scratch_width)]
 n-of Scratch_edges patches with [pxcor = (Scratch_width + 1) or pxcor = (-1 * Scratch_width - 1)]
)
 set Scratch (patch-set patches with [not member? self Not_Scratch])
 ask Scratch [set pcolor grey] ; tags non-boundary patches
 ask turtles-on patches with [member? self Scratch and (not member? self Apops)] [die]
 ifelse Seed_IFibs_Only? [; clears 'excess' dead cells
 ask Apops [die]][
 let dead_pctIV14s round(.0805 * count turtles)
 ifelse count Apops = dead_pctIV14s][[
 if count Apops > dead_pctIV14s [
 ask n-of (count Apops - dead_pctIV14s) Apops [die]]
 if count Apops < dead_pctIV14s [
 ask n-of (dead_pctIV14s - count Apops) turtles with [not member? self Apops] [
 ask patch-here [Fib_apoptose die]]
]
]
]
 set Pop_t0 count turtles ; counts remaining cells for calculations
end
; SHORTCUTS TO SET DEFAULT VARIABLES FOR EACH FIBROBLAST STATE

; to train_IFib ; INACTIVATED FIBROBLASTS
set color 42 ; ~60% shaded yellow
set size IFsize
set Fspeed IFspeed
set heading random 360
set life random-normal t_life sd_life
set fission random-normal t_div sd_div
end

to train_AFib ; ACTIVATED FIBROBLASTS
if Media = "FBM" [set color sky]
if Media = "FGM" [set color turquoise]
if Media = "CSC" [set color brown]
set size AFsize
set Fspeed AFspeed
set heading random 360
set life random-normal t_life sd_life
set fission random-normal t_div sd_div
set fission (fission + (t_div * (Beta_P - 1)))
end

to train_MFib ; MYO- FIBROBLASTS
if Media = "FBM" [set color 82.5] ; ~50% shaded cyan
if Media = "FGM" [set color 54] ; ~20% shaded green
if Media = "CSC" [set color orange]
set size MFsize
set Fspeed MFspeed
set heading random 360
set life random-normal t_life sd_life
set fission random-normal t_div sd_div
set fission (fission + (t_div * (Gamma_P - 1)))
end

to train_SFib ; SENESCENT FIBROBLASTS
if Media = "FBM" [set color 102.5] ; ~50% shaded blue
if Media = "FGM" [set color 72.5] ; ~50% shaded turquoise
if Media = "CSC" [set color red]
set size SFsize
set Fspeed SFspeed
set heading random 360
set life random-normal t_life sd_life
set fission random-normal t_div sd_div
set fission (fission + (t_div * (Omega_P - 1)))
end
; SHORTCUTS TO TRANSITION BETWEEN FIBROBLAST STATES

to IFib_activate ; FIBROBLAST ACTIVATION
 set breed AFibs
 if Media = "FBM" [set color sky]
 if Media = "FGM" [set color turquoise]
 if Media = "CSC" [set color brown]
 set size AFsize
 set Fspeed AFspeed
 set fission (fission + (t_div * (Beta_P - 1)))
end

to AFib_deactivate ; FIBROBLAST DEACTIVATION
 set breed IFibs
 set color 42 ; ~60% shaded yellow
 set size IFsize
 set Fspeed IFspeed
 set fission (fission - (t_div * (Beta_P - 1)))
end

to AFib_transmyo ; FIBROBLAST ACTIVATION
 set breed MFibs
 if Media = "FBM" [set color 82.5] ; ~50% shaded cyan
 if Media = "FGM" [set color 54] ; ~20% shaded green
 if Media = "CSC" [set color orange]
 set size MFsize
 set Fspeed MFspeed
 set fission (fission + (t_div * (Gamma_P - 1)))
end

to Fib_senesce ; FIBROBLAST SENESCENCE
 set breed SFibs
 if Media = "FBM" [set color 102.5] ; ~50% shaded blue
 if Media = "FGM" [set color 72.5] ; ~50% shaded turquoise
 if Media = "CSC" [set color red]
 set size SFsize
 set Fspeed SFspeed
 set fission (fission + (t_div * (Omega_P - Beta_P)))
end
\[\text{SHORTCUT FOR STIMULATION & FIBROBLAST STATE CHANGES}\]

to react
ask turtles ; Stimulation counter increases each step
set stim (stim + (Zsense * m_stim))
]
ask turtles ; Prob of fibroblast death
set P_die (stim / (20 * stim_max))
if breed = IFibs [set P_die (P_die / Alpha_D)] ; applies IFib apoptosis resist
if breed = AFibs [set P_die (P_die / Beta_D)] ; applies AFib apoptosis resist
if breed = MFibs [set P_die (P_die / Gamma_D)] ; applies MFib apoptosis resist
if breed = SFibs [set P_die (P_die / Omega_D)] ; applies SFib apoptosis resist
if random-float 1 <= P_die
 ask patch-here [Fib_apoptose] ; apoptotic body replaces fib
die ; and fib dies/disappears
]
ask IFibs ; Prob of fibroblast activation
set P_activate (stim / (2 * stim_Ta))
if random-float 1 <= P_activate
 IFib_activate
]
ask AFibs ; Prob of fibroblast deactivation
set P_deactivate (((2 * stim_T-a) - stim) / (2 * (stim_T-a)))
if random-float 1 <= P_deactivate
 AFib_deactivate
]
ask AFibs ; Prob of myofibroblast transition
set P_transmyo ((stim - stim_Ta) / (2 * (stim_Tm - stim_Ta)))
if random-float 1 <= P_transmyo
 AFib_transmyo
]
ask turtles with [(breed = AFibs) or (breed = MFibs)] ; Prob of fibroblast senescence
set P_senesce ((stim - stim_Ta) / (2 * (stim Ts - stim_Ta)))
if random-float 1 <= P_senesce
 Fib_senesce
]
end
to divide
ask turtles [set fission fission - 1] ; division counter decreases by 1/tick
ask turtles [if (fission <= 0)
and (any? neighbors with [(V2_score > 0.05) ; rep. avg V2score @ ~100% confl.
and (not any? other IFibs in-radius (IFsplit))
and (not any? other AFibs in-radius (AFsplit))
and (not any? other MFibs in-radius (MFsplit))
and (not any? SFibs in-radius (SFsplit))])
let parent_breed breed
let parent_stim stim
let parent_Zsense Zsense
let birthplace max-one-of neighbors [V2_score]
if parent_breed = IFibs [hatch-IFibs 1 [; spawns new IFib on old IFib
move-to birthplace ; moves new IFib to adjacent void patch
train_IFib ; applies default IFib values
set stim parent_stim ; stim is conserved between daughter cells
set Zsense parent_Zsense]] ; stim sensitivity is conserved
if parent_breed = AFibs [; AFibs divide into AFibs
hatch-AFibs 1 [move-to birthplace
train_AFib
set stim parent_stim
set Zsense parent_Zsense]] ; stim sensitivity is conserved
if parent_breed = MFibs [; MFibs divide into MFibs
hatch-MFibs 1 [move-to birthplace
train_MFib
set stim parent_stim
set Zsense parent_Zsense]] ; stim sensitivity is conserved
if parent_breed = SFibs [; SFibs dont divide
set stim parent_stim ; stim remains unchanged
set Zsense parent_Zsense] ; stim sensitivity is conserved
set fission random-normal t_div sd_div ; resets counter of old agent
if breed = IFibs [set fission (fission + (t_div * (Alpha_P - 1)))]
if breed = AFibs [set fission (fission + (t_div * (Beta_P - 1)))]
if breed = MFibs [set fission (fission + (t_div * (Gamma_P - 1)))]
if breed = SFibs [set fission (fission + (t_div * (Omega_P - 1)))]
end
;&quot;&quot; SHORTCUT TO SPROUT 'APOPTOTIC BODIES' FROM DEAD FIBROBLASTS &quot;&quot;

to Fib_apoptose ; DEAD CELLS
 sprout-Apops 1 [
 set color white
]
end

;&quot;&quot; SHORTCUT FOR REPLICATIVE SENESCENCE COUNTER &quot;&quot;

to age
 ask turtles [set life life - 1] ; Life counter decreases by 1 each tick.
 ask turtles with [not member? self Apops] [
 if life <= 0 [; When life counter of living agent runs out,
 Fib_senesce ; fibroblast agent becomes senescent
]
]
end
to migrate ; Selects Migration method
ask turtles [ifelse breed = SFibs [move_rand] [if Nav_Method = "Random Walk" [; Completely Random Walk
 move_rand] if Nav_Method = "Void Triggered Random Walk" [; Void-triggered Random Walk
 move_void_trig] if Nav_Method = "Void Directed" [; To Random Voids
 move_void_any] if Nav_Method = "Void1 Score - Directed" [; To Max V1-score (+sensitive)
 move_V1score] if Nav_Method = "Void2 Score - Directed" [; To Max V2-score (+sensitive, range)
 move_V2score]]]
end

;;
:: SHORTCUT FOR FIB MOVEMENT-MODE: RANDOM WALK, ALWAYS MOVING

to move_rand
 set heading random-float 360
 forward Fspeed
end

;;
:: SHORTCUT FOR FIB MOVEMENT-MODE: RANDOM WALK, TRIGGERED BY VOID

to move_void_trig
 set heading random-float 360
 ifelse (any? neighbors with [(not any? other IFibs in-radius (IFmove))
 and (not any? other AFibs in-radius (AFmove))
 and (not any? other MFibs in-radius (MFmove))
 and (not any? SFibs in-radius (SFmove))] [forward Fspeed]
 [] ; moves randomly if void space is adjacent, else doesn't move
end
to move_void_any
 ifelse (any? neighbors with [(not any? other IFibs in-radius (IFmove))
 and (not any? other AFibs in-radius (AFmove))
 and (not any? other MFibs in-radius (MFmove))
 and (not any? SFibs in-radius (SFmove))])
 face one-of neighbors with [(not any? other IFibs in-radius (IFmove))
 and (not any? other AFibs in-radius (AFmove))
 and (not any? other MFibs in-radius (MFmove))
 and (not any? SFibs in-radius (SFmove))]
 set heading heading + random-normal 0 (45 / 3) ; biased to selected patch
 forward Fspeed
] [] ; moves toward a void space if they are adjacent, else doesn't move
end

; ; SHORTCUT FOR FIB MOVEMENT-MODE: DIRECTED TO MAX VOID1-SCORE, TRIGGERED BY V1SCORE

to move_V1score
 ifelse (any? neighbors with [V1_score > 0.05])
 face max-one-of neighbors [V1_score]
 set heading heading + random-normal 0 (45 / 3) ; biased to selected patch
 forward Fspeed
] [] ; moves toward a void space if they are adjacent, else doesn't move
end

; ; SHORTCUT FOR FIB MOVEMENT-MODE: DIRECTED TO MAX VOID2-SCORE, TRIGGERED BY V2SCORE

to move_V2score
 ifelse (any? neighbors with [V2_score > 0.05])
 face max-one-of neighbors [V2_score]
 set heading heading + random-normal 0 (45 / 3) ; biased to selected patch
 forward Fspeed
] [] ; moves toward a void space if they are adjacent, else doesn't move
end
; SHORTCUT TO CALCULATE VOID SCORES

to calc_Vscores
; ask patches [; sets V0score = normalized #neighbors(n=8) devoid of cell centers
set V0_score (count neighbors with [(not any? IFibs) and
 (not any? AFibs) and (not any? MFibs) and (not any? SFibs)]) / 8
]; NOT SURE IF THIS METHOD WORKS OR CHANGES ANYTHING
ask patches [; sets V1score = normalized #neighbors(n=8) devoid of cells
set V1_score (count neighbors with [(not any? IFibs in-radius IFsize) and
 (not any? AFibs in-radius AFsize) and (not any? MFibs in-radius MFsize) and
 (not any? SFibs in-radius SFsize)]) / 8
] ; NOT SURE IF THIS METHOD WORKS OR CHANGES ANYTHING
ask patches [; sets V2score = mean V1score of neighborhood
set V2_score mean [V1_score] of neighbors
]
end

; SHORTCUTS TO CALCULATE AND REPORT %HEALED AND POP. PROPORTIONS AND PROBABILITIES

to Measure_Healed
if Measurement = "Edge_v1" [; sets Healed
 set Healed (patch-set patches with [member? self Scratch and (V1_score < 0.5)])
]
if Measurement = "Edge_v2" [; sets Healed
 set Healed (patch-set patches with [member? self Scratch and (V2_score < 0.5)])
]
if Measurement = "Edge_v1+2" [; sets Healed
 set Healed (patch-set patches with [member? self Scratch and (V1_score < 0.5 or V2_score < 0.5)])
]
set UnHealed (patch-set patches with [member? self Scratch])
set UnHealed_edge (patch-set patches with [member? self UnHealed])
}
if Show_Healed_Area? = true and Label_Leading_Edge? = true [
 ask Scratch [set pcolor grey]
 ask Healed [set pcolor lime]
 ask UnHealed_edge [set pcolor 6]; tinted grey
]
if Show_Healed_Area? = true and Label_Leading_Edge? = false [
 ask Scratch [set pcolor grey]
 ask Healed [set pcolor lime]
]
if Show_Healed_Area? = false and Label_Leading_Edge? = true [
 ask Scratch [set pcolor grey]
 ask UnHealed_edge [set pcolor 6]; tinted grey
]
end

to-report %Cover
 report 100 * (Cell_AR / Rs_AR) * Fibs$_$
end

to-report %Healed
 ifelse Measurement = "Cell_Areas" [report %Cover][
 report 100 * (count patches with [member? self Healed]) / Vs_AR
]
end

to-report Edge_length
 report ds * (sum [
 count neighbors4 with [not member? self UnHealed] of UnHealed_edge
])
end

to-report Rel_Edge_length
 report Edge_length / Edge_length_t0
end

to-report Divs_T ; number of divisions - overall
 report count turtles - Pop_t0
end

to-report IFibs_T report count IFibs end ; inactive fib pop - overall
to-report AFibs_T report count AFibs end ; active fib pop - overall
to-report MFibs_T report count MFibs end ; myo- fib pop - overall
to-report SFibs_T report count SFibs end ; senescent fib pop - overall
to-report Dead_T report count Apops end ; dead pop overall
to-report Fibs_T ; total fib pop - overall
 report (IFibs_T + AFibs_T + MFibs_T + SFibs_T)
end
to-report IFibs_$ report count IFibs-on Scratch end ; inactive fib pop - on scratch

to-report AFibs_$ report count AFibs-on Scratch end ; active fib pop - on scratch

to-report MFibs_$ report count MFibs-on Scratch end ; myo- fib pop - on scratch

to-report SFibs_$ report count SFibs-on Scratch end ; senescent fib pop - on scratch

to-report Dead_$ report count Apops-on Scratch end ; dead pop - on scratch

to-report Fibs_ ; total fib pop - on scratch
- report (IFibs_$ + AFibs_$ + MFibs_$ + SFibs_$)
end

to-report IvTFibs_$vT ; relative ratio of IFibs in the scratch vs overall
- let IvT_$vT 0
- ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (IFibs_T = 0) [] [set IvT_$vT (IFibs_$ / Fibs_$) / (IFibs_T / Fibs_T)]
- report IvT_$vT
end

to-report AvTFibs_$vT ; relative ratio of AFibs in the scratch vs overall
- let AvT_$vT 0
- ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (AFibs_T = 0) [] [set AvT_$vT (AFibs_$ / Fibs_$) / (AFibs_T / Fibs_T)]
- report AvT_$vT
end

to-report MvTFibs_$vT ; relative ratio of MFibs in the scratch vs overall
- let MvT_$vT 0
- ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (MFibs_T = 0) [] [set MvT_$vT (MFibs_$ / Fibs_$) / (MFibs_T / Fibs_T)]
- report MvT_$vT
end

to-report SvTFibs_$vT ; relative ratio of SFibs in the scratch vs overall
- let SvT_$vT 0
- ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (SFibs_T = 0) [] [set SvT_$vT (SFibs_$ / Fibs_$) / (SFibs_T / Fibs_T)]
- report SvT_$vT
end

to-report Dead_$vT ; relative ratio of Death in the scratch vs overall
- let DvT_$vT 0
- ifelse (Fibs_$ = 0) or (Fibs_T = 0) or (Dead_T = 0) [] [set DvT_$vT (Dead_$ / (count turtles-on Scratch)) / (Dead_T / count turtles)]
- report DvT_$vT
end
to-report MeanP_activate ; mean probability for inactive fibroblast activation
 let mean_stim 0
 ifelse any? IFibs [
 set mean_stim (Mean [stim] of turtles with [member? self IFibs])
] [
 set mean_stim (2 * stim_Ta) ; if no IFibs, P_act = 1
]
 let P_act mean_stim / (2 * stim_Ta)
 if P_act < 0 [set P_act 0]
 if P_act > 1 [set P_act 1]
 report P_act
end

to-report MeanP_deactivate ; mean probability for activated fibroblast inactivation
 let mean_stim 0
 ifelse any? AFibs [
 set mean_stim (Mean [stim] of turtles with [member? self AFibs])
] []
 let P_deact (((2 * stim_Ta) - mean_stim) / (2 * stim_Ta))
 if P_deact < 0 [set P_deact 0]
 if P_deact > 1 [set P_deact 1]
 report P_deact
end

to-report MeanP_transmyo ; mean probability for senescence of active fibroblasts
 let mean_stim 0
 ifelse any? AFibs [
 set mean_stim (Mean [stim] of turtles with [member? self AFibs])
] []
 let P_myo ((mean_stim - stim_Ta) / (2 * (stim_Tm - stim_Ta)))
 if P_myo < 0 [set P_myo 0]
 if P_myo > 1 [set P_myo 1]
 report P_myo
end

to-report MeanP_senesce ; mean probability for senescence of active and myo-fibs
 let mean_stim 0
 ifelse (any? AFibs) or (any? MFibs) [
 set mean_stim (Mean [stim] of turtles with [(breed = AFibs) or (breed = MFibs)])
] []
 let P_sen ((mean_stim - stim_Ta) / (2 * (stim_Ts - stim_Ta)))
 if P_sen < 0 [set P_sen 0]
 if P_sen > 1 [set P_sen 1]
 report P_sen
end
to-report MeanP_die ; mean probability of fibroblast death due to stimulation
 let mean_stim (Mean [stim] of turtles with [not member? self Apops])
 report mean_stim / (2 * stim_max)
end

to-report Mean_Pact-Pdie ; calcs mean ratio of activation / inactivation rates
 let M_AvDa 1
 ifelse MeanP_deactivate = 0 [] [set M_AvDa (MeanP_activate / MeanP_deactivate)]
 report M_AvDa
end

to-report M_AvDa 1
 ifelse MeanP_deactivate = 0 [] [set M_AvDa (MeanP_activate / MeanP_deactivate)]
 report M_AvDa
end

to-report Mean_Pmyo ; calcs mean ratio of myofibroblast / activation rates
 let M_MvA 1
 ifelse MeanP_activate = 0 [] [set M_MvA (MeanP_transmyo / MeanP_activate)]
 report M_MvA
end

to-report Mean_Pmyo ; calcs mean ratio of myofibroblast / activation rates
 let M_MvA 1
 ifelse MeanP_activate = 0 [] [set M_MvA (MeanP_transmyo / MeanP_activate)]
 report M_MvA
end

to-report Mean_Pmyo ; calcs mean ratio of myofibroblast / activation rates
 let M_MvA 1
 ifelse MeanP_activate = 0 [] [set M_MvA (MeanP_transmyo / MeanP_activate)]
 report M_MvA
end

to-report Mean_Pmyo ; calcs mean ratio of myofibroblast / death rates
 let M_MvD 1
 ifelse MeanP_transmyo = 0 [] [set M_MvD (MeanP_die / MeanP_transmyo)]
 report M_MvD
end

to-report Mean_Pmyo ; calcs mean ratio of myofibroblast / death rates
 let M_MvD 1
 ifelse MeanP_transmyo = 0 [] [set M_MvD (MeanP_die / MeanP_transmyo)]
 report M_MvD
end

to-report Mean_Pact-Pdie ; calcs mean ratio of activation / death rates
 let M_AvD 1
 ifelse MeanP_die = 0 [] [set M_AvD (MeanP_activate / MeanP_die)]
 report M_AvD
end

to-report Mean_Pact-Pdie ; calcs mean ratio of activation / death rates
 let M_AvD 1
 ifelse MeanP_die = 0 [] [set M_AvD (MeanP_activate / MeanP_die)]
 report M_AvD
end
; Calculates Mean Void2 Scores by Patch Region’s |x-coord|
to-report V2mean_0-8
 report mean [V2_score] of patches with [(pxcor >= -8) and (pxcor <= 8)]
end
to-report V2mean_9-16
report mean [V2_score] of patches with [
 ((pxcor >= -16) and (pxcor <= -9))
 or ((pxcor >= 9) and (pxcor <= 16))
]
end
to-report V2mean_17-24
report mean [V2_score] of patches with [
 ((pxcor >= -24) and (pxcor <= -17))
 or ((pxcor >= 17) and (pxcor <= 24))
]
end
to-report V2mean_25-33
report mean [V2_score] of patches with [
 ((pxcor >= -33) and (pxcor <= -25))
 or ((pxcor >= 25) and (pxcor <= 33))
]
end
to-report V2mean_34-42
report mean [V2_score] of patches with [
 ((pxcor >= -42) and (pxcor <= -34))
 or ((pxcor >= 34) and (pxcor <= 42))
]
end
to-report V2mean_43-50
report mean [V2_score] of patches with [
 ((pxcor >= -50) and (pxcor <= -43))
 or ((pxcor >= 43) and (pxcor <= 50))
]
end
; SHORTCUT FOR CODE USED TO SETUP IN VITRO %HEALED RANGES FOR
MODEL COMPARISONS
to plot_IV_%Healed
let x-vals (list 0 4 8 12 16 20 24) ; Scratch Assay timepoints
let y-means (list 0.00 0.00 0.00 0.00 0.00 0.00 0.00)
let y-sds (list 0.00 0.00 0.00 0.00 0.00 0.00 0.00)
if Experiment_Type = "Scratch Healing" [
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 0.00 17.40 45.29 56.79 63.88 76.65 86.64)
 set y-sds (list 0.00 5.20 3.37 7.02 6.48 10.23 5.93)
]
 if Media = "FBM" [
 set y-means (list 0.00 9.58 23.01 34.88 45.46 56.34 64.16)
 set y-sds (list 0.00 3.48 6.84 7.99 6.41 10.46 10.62)
]
 if Media = "CSC" [
 set y-means (list 0.00 6.00 14.28 23.49 34.93 45.38 52.17)
 set y-sds (list 0.00 0.86 9.32 9.70 10.59 9.96 10.16)
]
]
 if Cell_Line = "DHLF" [
 if Media = "FGM" [
]
 if Media = "FBM" [
 set y-means (list 0.00 12.01 19.96 21.13 24.51 28.26 39.30)
 set y-sds (list 0.00 8.96 14.90 10.68 15.94 18.87 20.47)
]
 if Media = "CSC" [
 set y-means (list 0.00 5.30 15.52 13.53 15.56 21.16 28.83)
 set y-sds (list 0.00 3.75 10.97 8.40 5.42 7.22 12.23)
]
]
 let index 0
 while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)))
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)))
 set index (index + 1)
]
] end
to plot_IV_MTT
let x-vals (list 0 2 12 24) ; MTT/CCK8 timepoints
let y-means (list 0.00 0.00 0.00 0.00 0.00)
let y-sds (list 0.00 0.00 0.00 0.00 0.00)
if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 1.182 0.944 1.095)
 set y-sds map [(? * Pop_t0)] (list 0.181 0.107 0.057 0.080)
]
 if Media = "FBM" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 1.119 0.977 0.968)
 set y-sds map [(? * Pop_t0)] (list 0.181 0.132 0.127 0.120)
]
 if Media = "CSC" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 1.047 1.018 0.765)
 set y-sds map [(? * Pop_t0)] (list 0.181 0.137 0.098 0.125)
]
]
let index 0
while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)) - Pop_t0)
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)) - Pop_t0)
 set index (index + 1)
]
end
; SHORTCUT FOR CODE USED TO SETUP IN VITRO Totlnorm RANGES FOR
MODEL COMPARISONS
to plot_IV_Totlnorm
let x-vals (list 0.00 0.00 0.00)
let y-means (list 0.00 0.00 0.00)
let y-sds (list 0.00 0.00 0.00)
if Experiment_Type = "Culture Cond." [
 set x-vals (list 0 8); Staining timepoints (pre-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 1.313)
 set y-sds map [(? * Pop_t0)] (list 0.278 0.316)
]
]
 if Cell_Line = "NHLF" [
 if Media = "FBM" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 1.043 1.130)
 set y-sds map [(? * Pop_t0)] (list 0.487 0.497 0.524)
]
 if Media = "CSC" [
 set y-means map [((? + 1) * Pop_t0)] (list 1.000 0.948 1.114)
 set y-sds map [(? * Pop_t0)] (list 0.487 0.300 0.273)
]
]
let index 0
while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)) - Pop_t0)
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)) - Pop_t0)
 set index (index + 1)
]
end
; SHORTCUT FOR CODE USED TO SETUP IN VITRO Totl RANGES FOR MODEL COMPARISONS

to plot_IV_Totl
let x-vals (list 0.00 0.00 0.00)
let y-means (list 0.00 0.00 0.00)
let y-sds (list 0.00 0.00 0.00)
if Experiment_Type = "Culture Cond." [set x-vals (list 0 8) ; Staining timepoints (pre-scratch) if Cell_Line = "NHLF" [if Media = "FGM" [set y-means (list 409.4 537.8) set y-sds (list 113.9 129.4)]]]
if Experiment_Type = "Scratch Healing" [set x-vals (list 0 12 24) ; Staining timepoints (post-scratch) if Cell_Line = "NHLF" [if Media = "FGM" [set y-means (list 415.9 483.8 638.0) set y-sds (list 202.7 156.2 139.3)]] if Media = "FBM" [set y-means (list 415.9 433.9 470.2) set y-sds (list 202.7 206.7 217.8)]] if Media = "CSC" [set y-means (list 415.9 394.4 463.3) set y-sds (list 202.7 124.6 113.7)]]]
let index 0
while [index < length x-vals] [plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds))) plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds))) set index (index + 1)] end
; SHORTCUT FOR CODE USED TO SETUP IN VITRO % Dead RANGES FOR MODEL COMPARISONS
to plot_IV_dead
let x-vals (list 0.00 0.00 0.00)
let y-means (list 0.00 0.00 0.00)
let y-sds (list 0.00 0.00 0.00)
if Experiment_Type = "Culture Cond." [
 set x-vals (list 0 8) ; Staining timepoints (pre-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 1.48 3.04)
 set y-sds (list 0.56 0.54)
]
]
]
if Experiment_Type = "Scratch Healing" [
 set x-vals (list 0 12 24) ; Staining timepoints (post-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 8.05 2.72 1.63)
 set y-sds (list 1.85 0.50 0.63)
]
 if Media = "FBM" [
 set y-means (list 8.05 4.04 1.82)
 set y-sds (list 1.85 0.57 0.21)
]
 if Media = "CSC" [
 set y-means (list 8.05 3.69 2.11)
 set y-sds (list 1.85 1.99 0.71)
]
]
]
let index 0
while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)))
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)))
 set index (index + 1)
]
end
; SHORTCUT FOR CODE USED TO SETUP IN VITRO % SA-B-Gal RANGES FOR MODEL COMPARISONS
to plot_IV_bgal
let x-vals (list 0.00 0.00)
let y-means (list 0.00 0.00)
let y-sds (list 0.00 0.00)
if Experiment_Type = "Culture Cond." [
 set x-vals (list 0 8) ; Staining timepoints (pre-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 11.91 17.42)
 set y-sds (list 3.37 1.55)
]]
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 16.72 48.29 20.43)
 set y-sds (list 5.51 7.72 1.72)
]]
 if Media = "FBM" [
 set y-means (list 16.72 31.71 13.64)
 set y-sds (list 5.51 2.22 3.17)
]
 if Media = "CSC" [
 set y-means (list 16.72 23.12 21.65)
 set y-sds (list 5.51 11.84 2.51)
]
]
let index 0
while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)))
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)))
 set index (index + 1)
]
end
 SHORTCUT FOR CODE USED TO SETUP IN VITRO % aSMA RANGES FOR MODEL COMPARISONS

to plot_IV_asma
let x-vals (list 0.00 0.00)
let y-means (list 0.00 0.00)
let y-sds (list 0.00 0.00)
if Experiment_Type = "Culture Cond." [
 set x-vals (list 0 8) ; Staining timepoints (pre-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 4.35 13.49)
 set y-sds (list 1.45 0.39)
]
]
]
if Experiment_Type = "Scratch Healing" [
 set x-vals (list 0 12 24) ; Staining timepoints (post-scratch)
 if Cell_Line = "NHLF" [
 if Media = "FGM" [
 set y-means (list 20.97 27.83 23.21)
 set y-sds (list 3.40 3.74 4.20)
]
 if Media = "FBM" [
 set y-means (list 20.97 17.38 10.90)
 set y-sds (list 3.40 0.37 1.38)
]
 if Media = "CSC" [
 set y-means (list 20.97 58.91 14.48)
 set y-sds (list 3.40 22.87 4.41)
]
]
]
let index 0
while [index < length x-vals] [
 plotxy (item index x-vals) ((item index y-means) + (2 * (item index y-sds)))
 plotxy (item index x-vals) ((item index y-means) - (2 * (item index y-sds)))
 set index (index + 1)
]
end
; SHORTCUT TO MAKE & EXPORT A MOVIE OF THE VIEW OR INTERFACE

to make_movie
 movie-cancel ; cancels movie if still filming
 setup
 let movie_name "Model_0.3.7_"
 if movie_type = "World View" [; films movie of world view
 set movie_name (word movie_name "View_" Cell_Line"_" Media"_" Movie_Title ".mov")
 movie-start movie_name
 movie-set-frame-rate (1 / dt) ; sets the frame rate 1 tick/sec
 movie-grab-view ; shows the initial state
 repeat (1 + (t_end / dt)) [; shows state with each step
 go
 movie-grab-view
]
]
 if movie_type = "Interface" [; films movie of model interface
 set movie_name (word movie_name "UI_" Cell_Line"_" Media"_" Movie_Title ".mov")
 movie-start movie_name
 movie-set-frame-rate (1 / dt)
 movie-grab-interface
 repeat (1 + (t_end / dt)) [; shows state with each step
 go
 movie-grab-interface
]
]
 print (word movie_name " has completed at "
 date-and-time " with " t_end " hours simulated over " movie-status) ; prints movie
info upon completion
 repeat 3 [beep wait 1] ; emits 3 beeps spaced 1s apart
 movie-close
end
APPENDIX B

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tick</td>
<td>1</td>
<td>hour</td>
<td>Model counter</td>
</tr>
<tr>
<td>world-height</td>
<td>101</td>
<td>patches</td>
<td>Model world height</td>
</tr>
<tr>
<td>hheight</td>
<td>1677</td>
<td>µm</td>
<td>In vitro image height*</td>
</tr>
<tr>
<td>dt</td>
<td>1/3</td>
<td>tick/step</td>
<td>Time resolution (= 20min/step)</td>
</tr>
<tr>
<td>ds</td>
<td>16.6040</td>
<td>um/patch</td>
<td>Spatial resolution</td>
</tr>
<tr>
<td>Rs_AR</td>
<td>1296089.39</td>
<td>µm²</td>
<td>In vitro scratch area*</td>
</tr>
<tr>
<td>N_diam</td>
<td>30.0</td>
<td>µm</td>
<td>NHLF diameter mean</td>
</tr>
<tr>
<td>Time_seed-scratch</td>
<td>6</td>
<td>hours</td>
<td>Seed-Scratch time interval*</td>
</tr>
<tr>
<td>Pop_Ss</td>
<td>1172</td>
<td>agents</td>
<td>Seeded population*</td>
</tr>
<tr>
<td>MPop_S</td>
<td>0.0435</td>
<td>ratio</td>
<td>Seeded MFibs*</td>
</tr>
<tr>
<td>SPop_S</td>
<td>0.1191</td>
<td>ratio</td>
<td>Seeded SFibs*</td>
</tr>
<tr>
<td>DPop_S</td>
<td>0.0148</td>
<td>ratio</td>
<td>Seeded DFibs*</td>
</tr>
<tr>
<td>IPop_S</td>
<td>0</td>
<td>ratio</td>
<td>Seeded IFibs 49</td>
</tr>
<tr>
<td>APop_S</td>
<td></td>
<td>remaining</td>
<td>ratio Seeded AFibs 49*</td>
</tr>
<tr>
<td>Alpha_Z</td>
<td>0.75</td>
<td>ratio</td>
<td>IFib size coefficient</td>
</tr>
<tr>
<td>Alpha_P</td>
<td>1</td>
<td>ratio</td>
<td>IFib division period coefficient</td>
</tr>
<tr>
<td>Alpha_D</td>
<td>1</td>
<td>ratio</td>
<td>IFib death resistance coefficient</td>
</tr>
<tr>
<td>Beta_Z</td>
<td>1</td>
<td>ratio (ref.)</td>
<td>AFib size coefficient</td>
</tr>
<tr>
<td>Beta_M</td>
<td>1</td>
<td>ratio (ref.)</td>
<td>AFib speed coefficient</td>
</tr>
<tr>
<td>Beta_P</td>
<td>1</td>
<td>ratio (ref.)</td>
<td>AFib division period coefficient</td>
</tr>
<tr>
<td>Beta_D</td>
<td>1</td>
<td>ratio (ref.)</td>
<td>AFib death resistance coefficient</td>
</tr>
<tr>
<td>Gamma_Z</td>
<td>1.4</td>
<td>ratio</td>
<td>MFib size coefficient 61</td>
</tr>
<tr>
<td>Gamma_M</td>
<td>0.625</td>
<td>ratio</td>
<td>MFib speed coefficient 61</td>
</tr>
<tr>
<td>Gamma_P</td>
<td>1.4</td>
<td>ratio</td>
<td>MFib division period coefficient 61</td>
</tr>
<tr>
<td>Gamma_D</td>
<td>1.4</td>
<td>ratio</td>
<td>MFib death resistance coefficient</td>
</tr>
<tr>
<td>Omega_Z</td>
<td>2</td>
<td>ratio</td>
<td>SFib size coefficient 40</td>
</tr>
<tr>
<td>Omega_M</td>
<td>0.75</td>
<td>ratio</td>
<td>SFib speed coefficient 124</td>
</tr>
<tr>
<td>Omega_P</td>
<td>1000</td>
<td>ratio</td>
<td>SFib division period coefficient 40</td>
</tr>
<tr>
<td>Omega_D</td>
<td>1000</td>
<td>ratio</td>
<td>SFib death resistance coefficient 40</td>
</tr>
</tbody>
</table>

Model constants controlling temporal-spatial resolution and initial conditions for scratch closure simulations. * indicates values determined from in vitro experiments with NHLF.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migrate_rate</td>
<td>$</td>
<td>µm/hour</td>
<td>AFib migration rate</td>
</tr>
<tr>
<td>Prolife_rate</td>
<td>$</td>
<td>hour/split</td>
<td>AFib proliferation rate</td>
</tr>
<tr>
<td>T_myo</td>
<td>$</td>
<td>stim</td>
<td>Myofibroblast stimulation threshold</td>
</tr>
<tr>
<td>T_sen</td>
<td>$</td>
<td>stim</td>
<td>Senescence stimulation threshold</td>
</tr>
<tr>
<td>Stim_rate</td>
<td>$</td>
<td>stim/hour</td>
<td>Environmental stimuli magnitude</td>
</tr>
<tr>
<td>Stim_sense</td>
<td>$</td>
<td>ratio</td>
<td>Stimuli sensitivity distribution</td>
</tr>
</tbody>
</table>

Model parameters controlling agent characteristics and responses to stimulation during scratch closure simulations. $ indicates parameters calibrated to *in vitro* experiments.

<table>
<thead>
<tr>
<th>UI Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell_Line</td>
<td>NHLF</td>
<td>Counter-plot NHLF in vitro data ranges</td>
</tr>
<tr>
<td></td>
<td>DHLF</td>
<td>Counter-plot DHLF in vitro data ranges</td>
</tr>
<tr>
<td>Media</td>
<td>FGM</td>
<td>Green-gradient agents</td>
</tr>
<tr>
<td></td>
<td>FBM</td>
<td>Blue-gradient agents</td>
</tr>
<tr>
<td></td>
<td>CSC</td>
<td>Red-gradient agents</td>
</tr>
<tr>
<td>Experiment_Type</td>
<td>Culture Cond.</td>
<td>No voided region; no gradients.</td>
</tr>
<tr>
<td></td>
<td>Scratch Healing</td>
<td>Whole region seeded with N agents; central region denuded of ~N/2 agents at time T to instigate invasive behaviors</td>
</tr>
<tr>
<td></td>
<td>Barrier Removal</td>
<td>Central region is filled with ~N/2 agents; allowed to invade at time T</td>
</tr>
<tr>
<td>Seed_Density</td>
<td>In Vitro</td>
<td>Seed same number of agents as in vitro</td>
</tr>
<tr>
<td></td>
<td>Max Confluency</td>
<td>Seed max number of agents sans overlap</td>
</tr>
<tr>
<td>Seed_IFibs_Only?</td>
<td>On/Off</td>
<td>Toggles “all inactive” or “in vitro ratios”</td>
</tr>
<tr>
<td>Precondition?</td>
<td>On/Off</td>
<td>Toggles precondition interval</td>
</tr>
<tr>
<td>Show_Healed_Area?</td>
<td>On/Off</td>
<td>Toggles green-labeled Healed region</td>
</tr>
<tr>
<td>Label_Leading_Edge?</td>
<td>On/Off</td>
<td>Toggles grey-labeled Unhealed Edge</td>
</tr>
</tbody>
</table>

User interface settings that control the model display and additional functionalities.
APPENDIX C

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter Modulation</th>
<th>Total Population</th>
<th>% Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12 HR 24 HR</td>
<td>12 HR 24 HR</td>
</tr>
<tr>
<td>NHLF M</td>
<td>+</td>
<td>-5.9 -4.3</td>
<td>3.4 2.3</td>
</tr>
<tr>
<td>FGM</td>
<td>-</td>
<td>-10.9 -10.0</td>
<td>4.9 4.6</td>
</tr>
<tr>
<td>P</td>
<td>+</td>
<td>-6.3 -5.8</td>
<td>5.4 7.0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-7.2 -5.4</td>
<td>3.9 3.0</td>
</tr>
<tr>
<td>LM</td>
<td>+</td>
<td>-10.5 -9.1</td>
<td>2.4 1.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-6.7 -6.1</td>
<td>4.3 3.7</td>
</tr>
<tr>
<td>LS</td>
<td>+</td>
<td>-7.4 -5.2</td>
<td>2.3 -0.2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-10.5 -10.0</td>
<td>3.1 3.2</td>
</tr>
<tr>
<td>AM</td>
<td>+</td>
<td>-9.5 -8.7</td>
<td>3.1 3.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.2 -2.5</td>
<td>2.5 2.6</td>
</tr>
<tr>
<td>AS</td>
<td>+</td>
<td>-12.5 -11.1</td>
<td>1.8 0.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.8 -3.9</td>
<td>2.9 3.9</td>
</tr>
<tr>
<td>NHLF M</td>
<td>+</td>
<td>-1.5 -4.0</td>
<td>0.2 1.6</td>
</tr>
<tr>
<td>FBM</td>
<td>-</td>
<td>1.2 -2.7</td>
<td>1.9 5.5</td>
</tr>
<tr>
<td>P</td>
<td>+</td>
<td>-2.2 -4.7</td>
<td>1.8 3.0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-2.1 -5.0</td>
<td>0.4 2.5</td>
</tr>
<tr>
<td>LM</td>
<td>+</td>
<td>-5.4 -7.6</td>
<td>1.4 3.7</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-1.4 -5.0</td>
<td>1.2 4.7</td>
</tr>
<tr>
<td>LS</td>
<td>+</td>
<td>-1.0 -3.3</td>
<td>0.9 3.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.3 -7.8</td>
<td>0.4 3.5</td>
</tr>
<tr>
<td>AM</td>
<td>+</td>
<td>-4.0 -7.6</td>
<td>2.0 5.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-1.4 -3.4</td>
<td>0.8 2.0</td>
</tr>
<tr>
<td>AS</td>
<td>+</td>
<td>0.9 -1.5</td>
<td>3.0 5.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-2.9 -5.4</td>
<td>1.1 3.6</td>
</tr>
</tbody>
</table>

(Table continued on next page)
<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter Modulation</th>
<th>Total Population</th>
<th>% Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12 HR 24 HR</td>
<td>12 HR 24 HR</td>
</tr>
<tr>
<td>NHLF</td>
<td>M</td>
<td>-3.9 -3.1</td>
<td>1.2 2.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.8 0.4</td>
<td>2.4 2.5</td>
</tr>
<tr>
<td>CSM</td>
<td>P</td>
<td>-3.8 -4.1</td>
<td>1.7 3.0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.4 -3.8</td>
<td>0.3 -1.2</td>
</tr>
<tr>
<td></td>
<td>LM</td>
<td>-1.5 -1.5</td>
<td>1.2 0.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-0.6 -0.8</td>
<td>0.0 2.4</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>-0.6 0.3</td>
<td>1.8 3.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-0.9 -1.6</td>
<td>2.1 3.1</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>-5.3 -5.2</td>
<td>1.8 0.6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-5.1 -4.9</td>
<td>1.3 1.4</td>
</tr>
<tr>
<td></td>
<td>AS</td>
<td>1.2 0.8</td>
<td>1.8 5.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.0 -4.6</td>
<td>0.7 3.1</td>
</tr>
<tr>
<td>DHLF</td>
<td>M</td>
<td>-1.7 -2.0</td>
<td>-0.6 0.8</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.5 0.7</td>
<td>2.0 3.8</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-5.6 -5.9</td>
<td>1.3 3.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.2 0.4</td>
<td>-0.5 -1.3</td>
</tr>
<tr>
<td></td>
<td>LM</td>
<td>-4.7 -5.0</td>
<td>0.9 3.2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-4.6 -5.1</td>
<td>0.7 2.2</td>
</tr>
<tr>
<td></td>
<td>LS</td>
<td>4.7 5.1</td>
<td>-0.6 0.3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-1.3 -1.7</td>
<td>-0.9 0.7</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>-1.1 -1.3</td>
<td>2.3 6.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-6.1 -5.1</td>
<td>0.6 0.2</td>
</tr>
<tr>
<td></td>
<td>AS</td>
<td>0.1 0.2</td>
<td>-0.8 0.1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.8 0.8</td>
<td>1.2 1.6</td>
</tr>
</tbody>
</table>

Heat-map of each calibrated parameter-set’s sensitivity to parameter changes; expressed as the percentage difference from the calibrated parameter-set’s mean output when each parameter is independently modulated by ± 10%. Model outputs are shown for the total population and percentage of dead cells after 12 or 24 hours. Parameter-set mean outputs were calculated from 10 simulations with the same conditions. A blue-red gradient was applied across all outputs and parameter modulations within each group.
VITA

I, James Alexander Ratti, am a U.S. citizen native to Virginia Beach, Virginia; born December 08, 1990. I earned a Bachelor of Science in Biomedical Engineering with a Concentration in Biomechanics and Biomaterials, along with a Minor in Applied Mathematics from Virginia Commonwealth University in May 2013. I have submitted abstracts and poster presentations of this work, or iterations, to annual conferences for BMES (2015), VAS (May 2016) and BAMM (May 2016); along with oral presentations to annual conferences for SIAM-SEAS (March 2018) and BAMM (May 2018).

While working on this project, I began working with Sosipatros Boikos, MD and Steven Grossman, MD, PhD to investigate cancer resistance to hypoxia and cytotoxins within sarcomas in search of novel treatment strategies. I’ve also begun working as a communications liaison for the Pityriasis Rubra Pilaris Alliance non-profit patient advocacy organization to raise awareness and funds for research into treatments for this disease. It is my sincere hope that people with these and other rare conditions will one day have the efficacious treatments they desperately need.