
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2018 

Rotating Supporting Hyperplanes and Snug Circumscribing Rotating Supporting Hyperplanes and Snug Circumscribing 

Simplexes Simplexes 

Ghasemali Salmani Jajaei 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5456 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5456?utm_source=scholarscompass.vcu.edu%2Fetd%2F5456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©Ghasemali Salmani Jajaei, May 2018

All Rights Reserved.





i

ROTATING SUPPORTING HYPERPLANES AND SNUG CIRCUMSCRIBING

SIMPLEXES

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Systems Modeling and Analysis)

at Virginia Commonwealth University.

by

GHASEMALI SALMANI JAJAEI

Director: Professor José H. Dulá
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Abstract

ROTATING SUPPORTING HYPERPLANES AND SNUG CIRCUMSCRIBING

SIMPLEXES

By Ghasemali Salmani Jajaei

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Professor José H. Dulá

Department of Supply Chain Management and Analytics

This dissertation has two topics. The first one is about rotating a supporting

hyperplane on the convex hull of a finite point set to arrive at one of its facets.

We present three procedures for these rotations in multiple dimensions. The first

two procedures rotate a supporting hyperplane for the polytope starting at a lower

dimensional face until the support set is a facet. These two procedures keep current

points in the support set and accumulate new points after the rotations. The first

procedure uses only algebraic operations. The second procedure uses LP. In the third

procedure we rotate a hyperplane on a facet of the polytope to a different adjacent

facet. Similarly to the first procedure, this procedure uses only algebraic operations.

Some applications to these procedures include data envelopment analysis (DEA) and

integer programming.
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The second topic is in the field of containment problems for polyhedral sets.

We present three procedures to find a circumscribing simplex that contains a point

set in any dimension. The first two procedures are based on the supporting hyper-

plane rotation ideas from the first topic. The third circumscribing simplex procedure

uses polar cones and other geometrical properties to find facets of a circumscribing

simplex. One application of the second topic discussed in this dissertation is in hy-

perspectral unmixing.
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CHAPTER 1

INTRODUCTION

This dissertation deals with operations and procedures involving finite point sets

in multiple dimensional space. It treats two topics. First topic is about rotating

supporting hyperplanes on a convex hull of a finite point set in multidimensional

space until they land on a facet. The second topic is about the generation of simplexes

that contain convex hulls. The results from the first topic are used to design some

of the procedures in the second topic.

In the first topic of the dissertation, we present three procedures to rotate a

supporting hyperplane for a polytope defined as the convex hull of a finite point

set in <m. These procedures start with a supporting hyperplane somewhere on the

convex hull and end on a facet. The support set of a supporting hyperplane for a

polytope contains a set of extreme points of this polytope that are located in this

supporting hyperplane.

In one procedure, the dimension of the rotated hyperplane for the convex hull of a

point set increases by at least one at each iteration. So, the support set for the rotated

hyperplane will eventually be a facet of the polytope. This procedure uses only

1



linear algebra operations. In the next procedure, we rotate a supporting hyperplane

such that the support set is a facet after a single rotation. This procedure uses

linear programming (LP). Finally, we introduce a procedure to rotate a hyperplane

from one facet to another adjacent facet. This procedure does not rely on LP. This

procedure is equivalent to a dual simplex pivot.

In the second topic of the dissertation, the goal is to find a special simplex that

contains a point set. In order to achieve this we present three procedures to find

a circumscribing simplex with special properties for a given point set. For a full

dimensional polytope in m dimensions, the minimum number of facets that contain

a point set and makes a polytope is m+ 1. This polytope is called a simplex. Facial

decomposition of a simplex, that is, finding its facets given m + 1 extreme points

(and vice-versa), is easy.

In the first topic of the dissertation we study the problem of rotating supporting

hyperplanes over convex hulls of a finite point set. We use this in the second part

in procedures for enclosing convex hulls of finite point sets in m dimensions with

simplexes. We develop procedures that confine a convex hull of a point set in m

dimensions with a convex hull of m+ 1 points. These are snug in the sense that they

intersect the contained hull in some ways.

Consider a given point set A such that its convex hull has full dimension. We

generate a polytope that contains A with smallest number of facets such that the

convex hull of a point set A is tight in the sense that m of its facets coincide with m

facets of the convex hull of the point set A, and all its facets coincide with all facets

of the convex hull of the point set A when this is a simplex.
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1.1 Convex analysis

The backdrop for this dissertation is optimization and computational geometry.

These two fields use many different concepts and definitions. We review some of

them in this section. In this document we consider the point set A = {a1, . . . , an} in

<m.

Definition 1.1. A set in <m is convex if the line segment between any two arbitrary

points in this set lies in the set [1].

More formally, for the two different points ap and aq in the set, then λap + (1−

λ)aq is in this set for any λ ∈ [0, 1] [1].

Fig. 1. shows a convex set P1 and a non-convex set P2 in <2.

Fig. 1.: Convex set P1 and non-convex set P2

Definition 1.2. A set in <m is affine if the entire line through any two points in

this set lies in the set [1].
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So, for the two points ap and aq in the set, then λap + (1−λ)aq is in this set for

any λ ∈ < [1].

Definition 1.3. A subspace is an affine set that contains the origin [2].

Definition 1.4. The points a1, . . . , an in <m are said to be linearly independent if

System

{ n∑
j=1

ajλj = 0

}
has a unique solution λj = 0 for j = 1, . . . , n [2].

Definition 1.5. The points a1, . . . , an in <m are said to be affinely independent if

System

{ n∑
j=1

ajλj = 0,
n∑
j=1

λj = 0

}
has a unique solution λj = 0 for j = 1, . . . , n

[2].

An important result from these two recent definitions is that the points a1, . . . , an

in <m are affinely independent if and only if the vectors a2−a1, . . . , an−a1 are linearly

independent. Moreover, the maximum numbers of linearly and affinely independent

points in <m are m and m+ 1 respectively.

Definition 1.6. The dimension of a point set A in <m is the number of affinely

independent points in A minus one [2], or is the dimension of the smallest affine set

that contains A.

In <m, the dimension of a single point, line, and plane is zero, one, and two

respectively. If the dimension of the convex hull of a point set is m in <m, then this

convex hull has full dimension.

1.2 Polyhedral sets

There are two ways to characterize a polyhedral set: 1) as the intersection of finite

halfspaces, 2) as a constrained linear vector combination of finite point sets. The
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former is referred to as an “external” representation the latter is said to be an

“internal” representation [2]. Any polyhedral set can be expressed internally or

externally. Given a characterization of a polyhedral set as either internal or external,

the other characterization can be found. This is known by many names. In [3], it

is known by Motzkin’s representation theorem. Going from one characterization to

another is referred to here as facial decomposition.

In the following, linear, affine, conical, and convex hulls definitions are internal

representations, and polyhedron, halfspace, and hyperplane definitions are external

representations.

1.2.1 Linear hull

Consider a point set A = {a1, . . . , an} in <m. All points y define the linear hull of

these n points if y is represented as [4]

lin(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y, λj ∈ <; j = 1, . . . , n

}
. (1.1)

When the number of the linearly independent points in A is one, the linear

hull of the point set A is a line. Furthermore, when the number of the linearly

independent points in A is m − 1, the linear hull of the point set A can define a

hyperplane that contains the origin.

If the point set A has m linearly independent points, then the linear hull of the

point set A spans <m, so we have lin(A) = <m. In other words, any point in <m is

in the linear hull of these m linearly independent points.

Overall, if the number of the linearly independent points in A is k, then the
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dimension of lin(A) is k. Note that the linear hull of a non-empty point set always

contains the origin, therefore it is a subspace.

1.2.2 Affine hull

If sum of the multipliers used to combine the point set is 1, then this hull is said to

be affine.

Consider a point set A = {a1, . . . , an} in <m. All points y define the affine hull

of these n points if y is represented as [1]

aff(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y,
n∑
j=1

λj = 1, λj ∈ <; j = 1, . . . , n

}
. (1.2)

The affine hull of the point set A is exactly a single point when the number of

affinely independent points in A is one. Note that in this case, there exists just one

variable λ1 such that λ1 = 1.

When there exists m affinely independent points in <m, the affine hull of the

point set A is a hyperplane. The dimension of a hyperplane is m−1 in <m. In other

words, a subspace of (m−1)-dimensional in <m is called a hyperplane. We will later

explain some hyperplane’s properties in this chapter.

An affine hull of m+ 1 affinely independent points in <m spans <m.

If the number of affinely independent points in A is k, then the dimension of

aff(A) is k − 1.

Note that the affine hull of the non-empty point set always contains all the

points in this point set.
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1.2.3 Conical hull

If all the multipliers used to combine the point set are non-negative, then this hull

is said to be conical.

Consider a point set A = {a1, . . . , an} in <m. All points y define the conical

hull of these n points if y is represented as [3]

pos(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y, λj ≥ 0, λj ∈ <; j = 1, . . . , n

}
. (1.3)

If the point set A has only one non-zero point a1, then the conical hull of A is

a half-line such that starts from the origin and approaches to infinity.

When the point set A has two affinely independent points but not linearly

independent, the conical hull of A can be either a half-line or a line. If these two

points are on the same orthant, then the conical hull of A is a half-line, otherwise it

is a line.

If the point set A has m linearly independent points, then the conical hull of

A is a cone among m vectors such that each vector contains one of the linearly

independent points, and the origin is the vertex of this cone.

If pos(A) = <m, then the point set A has m+ 1 affinely independent points.

Similarity to the linear hull, the conical hull of the non-empty point set always

contains the origin and all the points in this point set. Note that the conical hull of

a point set is always an unbounded region.
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1.2.4 Convex hull

If sum of the multipliers used to combine the point set is one, and all these multipliers

are non-negative, then this hull is said to be convex.

Consider a point set A = {a1, . . . , an} in <m. All points y define the convex hull

of these n points if y is represented as [1]

con(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y,

n∑
j=1

λj = 1, λj ≥ 0, λj ∈ <; j = 1, . . . , n

}
. (1.4)

Unlikely to a conical hull, the convex hull of a point set is a bounded region always.

Furthermore, the convex hull of a point set in <m contains the origin if and only if

the conical hull of them spans <m.

If the point set A has m + 1 affinely independent points, then con(A) is a full

dimension body in <m. Overall, when the number of affinely independent points in

A is k, the dimension of con(A) is k − 1.

1.2.5 Externally characterized polyhedral sets

A non-empty set P ⊂ <m is a polyhedron if there is a system of finitely many

inequalities 〈πj, x〉 ≤ βj for j = 1, . . . , n such that

P =

{
x ∈ <m

∣∣∣∣ 〈πj, x〉 ≤ βj; πj ∈ <m, βj ∈ < : j = 1, . . . , n

}
. (1.5)

A polyhedron can be bounded or unbounded and can have zero to m dimensions.

A bounded polyhedron is called a polytope [5].

Fig. 2. shows two polyhedra, one unbounded polyhedron P1, and one bounded

polyhedron P2 in <2.
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Fig. 2.: Polyhedron: Two polyhedra: one unbounded polyhedron P1, and one

bounded polyhedron P2 in <2.

Note that any polyhedron is convex [6].

1.2.6 Polytope

A bounded polyhedron is called a polytope [7].

The convex hull of a finite point set is a polytope [8].

A Polytope in <2 is called polygon [7]. Polygon is a bounded region of a plane

that is bounded with finite straight lines [5]. A regular polygon is a polygon that all

its angles are same, and all its facets are same too [9].

1.2.7 Hyperplane

A hyperplane is an affine set. A hyperplane H(π, β) external representation is [1]

H(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 = β; π ∈ <m, β ∈ <
}
. (1.6)
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A hyperplane is a point, a line, and a plane in <, <2, and <3 respectively. There

exists a unique hyperplane that contains m affinely independent points in <m. As

with any polyhedral set, there is also an internal representation of a hyperplane.

1.2.8 Halfspace

A halfspace H+(π, β) is the set of all points such that [2]

H+(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 ≥ β; π ∈ <m, β ∈ <
}
. (1.7)

Same way, a halfspace H−(π, β) is the set of all points such that

H−(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 ≤ β; π ∈ <m, β ∈ <
}
. (1.8)

Fig. 3. shows two halfspaces H+(π, β) and H−(π, β).

Fig. 3.: Halfspace: The shadow area in the left figure shows the halfspace H+(π, β),

and in the right figure shows the halfspace H−(π, β).

One important remark is that any halfspace is convex [10].
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1.3 Computational geometry

Computational geometry is the study of polyhedral sets defined either externally or

internally. Computational geometry traces its beginnings to the problems that arise

from facial decomposition of polyhedral sets especially focused in the case of convex

hulls and polytopes. Computational geometry identifies geometrical properties of

polyhedral sets to design algorithms and extract information to solve a problem.

The field of computational geometry was shaped by combining two fields of

algorithms design and analysis in the 1970’s [11], grew quickly in the 1980’s and

1990’s, and is still developing [12].

There are many applications in the field of computational geometry [13]. Some

important applications of computational geometry are LP, computer graphics, nu-

merical analysis, geographic information systems, and robotics ([11], [13], [14])

1.3.1 Separating hyperplane

Let P1 and P2 be two nonempty disjoint convex sets, and 〈π, a0〉 ≤ β for all a0 ∈ P1

and 〈π, a0〉 ≥ β for all a0 ∈ P2. The hyperplane H(π, β) is called a separating

hyperplane for these two sets P1 and P2 [1]. If we have 〈π, a0〉 < β for all a0 ∈ P1

and 〈π, a0〉 > β for all a0 ∈ P2, then the hyperplane H(π, β) is called a strict

separation of the these two sets P1 and P2 [1].

Fig. 4. shows two convex sets P1 and P2, and their separation hyperplane

H(π, β).

We conclude that the value of 〈π, a0〉−β is non-positive on P1 and non-negative

on P2 [1].
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Fig. 4.: Separation hyperplane: Two convex sets P1 and P2, and their separation

hyperplane H(π, β).

For any two nonempty disjoint convex sets P1 and P2, there exists a π 6= 0 and

a β such that 〈π, a0〉 ≤ β for all a0 ∈ P1 and 〈π, a0〉 ≥ β for all a0 ∈ P2 [1].

To construct a separating hyperplane between two convex sets, assume the clos-

est point from convex set P1 to convex set P2 is a1, and the closest point from convex

set P2 to convex set P1 is a2. The hyperplane H(π, β) that is perpendicular to the

line segment a1a2, and divide it to exactly two parts, is a separating hyperplane for

these two sets P1 and P2 [1].

Fig. 5. shows two convex sets P1 and P2, and their separation hyperplane

H(π, β) that is perpendicular to a1a2.
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Fig. 5.: Constructing a separation hyperplane: Two convex sets P1 and P2, and their

separation hyperplane H(π, β) that is perpendicular to a1a2.

1.3.2 Supporting hyperplane

Consider a convex set P in <m, and a0 is a point in its boundary. If we have

〈π, aj〉 ≤ 〈π, a0〉 for all points aj in P , then the hyperplane H(π, β) is called a

supporting hyperplane to P at the point a0 where β = 〈π, a0〉 [1]. In fact, the

hyperplane H(π, β) separates the point a0 and the set P , and the hyperplane H(π, β)

is tangent to P at a0 [1]. Note that the halfspace H−(π, β) contains P .

Fig. 6. shows the supporting hyperplane H(π, β) at a0 ∈ P for the convex set

P .

Consider the point set A = {a1, . . . , an} in <m. The dimension of a supporting

hyperplane H(π, β) for the convex hull of a point set A is the number of affinely

independent points from A that are located in the hyperplane H(π, β) minus one.

More formally, if the the hyperplane H(π, β) contains k affinely independent points
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Fig. 6.: Supporting hyperplane: Supporting hyperplane H(π, β) at a0 ∈ P for convex

set P .

of A, the dimension of the hyperplane H(π, β) for the convex hull of a point set A is

k− 1. Since there are at most m affinely independent points in a hyperplane in <m,

so we always have 1 ≤ k ≤ m. We conclude that the dimension of the hyperplane

H(π, β) for the convex hull of a point set A is always between zero to m− 1 [15].

For any nonempty convex set P , and any boundary point a0, there exists a

supporting hyperplane to P at a0 [1].

1.3.3 Recession cone

Consider a non-empty unbounded convex set P in <m such that the origin is not in

P . A cone C contains all half-lines in P , is called a recession cone [2]. Therefore we

have [16]

C =

{
x ∈ <m

∣∣∣∣ a0 + λx ∈ P ; a0 ∈ P , λ ≥ 0

}
. (1.9)
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In Fig. 7. we show an unbounded convex polyhedron P , and the recession cone

for three arbitrary points a1, a2, a3 of P in <2.

Fig. 7.: Recession cone: An unbounded polyhedron P , and its recession cone for

three arbitrary points a1, a2, a3 of P in <2.

Notice that all recession cones in an unbounded convex polyhedral set are the

same independently of the cone’s vertex.

1.4 Simplexes

A simplex is a polytope with at most m+ 1 affinely independent vertexes in <m. A

full dimension simplex in <m has m+1 facets. A full dimension simplex is a segment,
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triangle, and tetrahedron in <,<2, and <3 respectively. The following figures show

a simplex in <,<2, and <3.

In computational geometry, if we have all vertexes of a polytope, finding its

facets of a polytope can be difficult when the number of vertexes is more than m+ 1

in <m. It becomes intractable when the number of vertexes is large. On the other

hand, by having all facets of a polytope, finding its vertexes is just as difficult. We

refer to this as facial decomposition.. If a polytope is a simplex, finding its facets by

having its vertexes, or finding its vertexes by having its facets is simple and easy.

Fig. 8. shows three simplexes in <, <2, and <3.

Fig. 8.: Simplex: Three simplexes in <, <2, and <3 from the left hand side respec-

tively.

In this dissertation every time we mention a simplex, it refers to a full dimension

simplex, unless otherwise specified.
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1.4.1 Finding m + 1 facets of a simplex, by having its ver-
texes

Consider a simplex with m+ 1 affinely independent vertexes a1, . . . , am+1 in <m. To

find all m + 1 facets of this simplex, we need to solve m + 1 systems of equations.

There are m + 1 vertexes, so any m of these vertexes generate a hyperplane that

contains a facet of the simplex. Therefore, to find the normal of the hyperplane

H(πj, β) where j = 1, . . . ,m+ 1, we construct the following system of equations:

〈ai, πj〉 = β; i = 1, . . . , j − 1, j + 1, . . . ,m+ 1, (1.10)

where β is an arbitrary nonzero scalar. Since thesem vertexes a1, . . . , aj−1, aj+1, . . . , am+1

are affinely independent, and this system of equations has m variables and m equa-

tions, then it has a unique solution that yields the normal of the hyperplane H(πj, β)

where j = 1, . . . ,m+1. Here we assume that no facet of this simplex contains origin.

1.4.2 Finding m + 1 vertexes of a simplex, by having its
facets

Facial decomposition finds the normal and the level of the hyperplanes that contains

the facets of a polyhedron for a given collection of m+ 1 affinely independent points.

The converse is also referred to as facial decomposition.

Consider a full dimension simplex in <m. Assume m + 1 different hyperplanes

H(πj, βj) for j = 1, . . . ,m + 1 contain the facets of a simplex. Any m different

hyperplanes in <m make a pointed cone, so to find their intersection, it is enough

to solve a system of equations. To find the vertexes aj for j = 1, . . . ,m + 1, we
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construct and solve the following system of equations.

〈aj, πi〉 = βi; i = 1, . . . , j − 1, j + 1, . . . ,m+ 1. (1.11)

1.4.3 Volume of a simplex

Consider a simplex with m+1 affinely independent vertexes a1, . . . , am+1 in <m. The

volume of this simplex is the absolute value of V(x) that is calculated as follows [17].

V(x) = (
1

m!
)

det

a1

1 . . . a1
m 1

...
. . .

...
...

am+1
1 . . . am+1

m 1


(m+1)×(m+1)

 . (1.12)

Note that the m+1 vertexes of the simplex should be affinely independent, otherwise

the value of V(x) is zero.

1.4.4 Polar cone

Consider k vectors d1, . . . , dk in <m the positive hull of which define a cone C. So we

have

C =

{
y ∈ <m

∣∣∣∣ k∑
i=1

λid
i = y, λi ≥ 0; i = 1, . . . , k

}
. (1.13)

The polar cone of C is given by C∗ and defined as [2]

C∗ =

{
x ∈ <m

∣∣∣∣ 〈x, y〉 ≤ 0, ∀y ∈ C
}
. (1.14)

Fig. 9. shows two polar cones for a singleton vector d1 and an obtained cone by
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two vectors d1 and d2.

Fig. 9.: Polar Cone: Two cones and their polars in 2D: the first one for a singleton

vector and the second generated by two vectors.

1.5 Degenerate facet and vertex

There needs to be m affinely independent points in <m to define a unique hyperplane.

A facet of a polytope with more than m extreme points, is said to be degenerate.

Moreover, the intersection of m non-parallel hyperplanes in <m defines a unique

point. If an extreme point of a polytope contacts more than m facets, then this is a

degenerate vertex.
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1.6 Assumptions and properties

The procedures in this dissertation make use of the following assumptions. Consider

a point set A = {a1, . . . , an} in <m.

• Assumption 1. There exist m + 1 affinely independent points in A. This

means that con(A) has full dimension. This also means n ≥ m+ 1.

• Assumption 2. All the points of A are extreme for con(A) (the set A is its

own frame). Finding the frame of a point set is a relatively easy operation.

• Assumption 3. There are no duplicate points in A.

• Assumption 4. No face of con(A) with one or more dimensions is parallel to

an axis of <m. See remark below.

• Assumption 5. No two faces of con(A) with one or more dimensions are

parallel. See remark below.

• Assumption 6. The polytope con(A) has no degenerate face.

Remark. Two affine sets are “parallel” if their uniquely defined subspaces are such

that one is a subset of the other. Notice that two parallel affine sets never meet

unless one is a subset of the other. However, this definition allows affine sets with

different dimensions to be compared regarding this property.

1.7 Conclusion

In this chapter, we reviewed definitions and concepts that we will be using in this

dissertation. This document has two main topics and both of them are under the
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field of computational geometry.

We described four polyhedral sets, because polyhedral sets play a central role in

understanding our procedures in this document. Moreover, we explain the properties

of simplexes, because the second topic of the dissertation is about finding a special

circumscribing simplex such that contains a given finite point set.

Finally, we presented five assumptions to make sure that all procedures work

correctly.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review previous works in the two topics that we present in this

document. The first section of this chapter is about the background and literature re-

view of rotating a hyperplane. Next, we present the literature review of containment

problems, and specialty snug circumscribing simplexes.

2.1 Rotating hyperplanes

Perhaps the oldest example of hyperplane rotation of a supporting hyperplane on a

polyhedron comes from LP. The way we think about LP is identifying vertexes of a

polyhedron and then performing operations where we move from one vertex to an

adjacent vertex, until we find the vertex where the optimal solution is located. The

dual version of this algorithm, known as a dual simplex proceeds in an analogous,

but not identical way [18].

The dual simplex instead of generating a sequence of adjacent vertexes, generates

a sequence of adjacent facets of a different polyhedron. The dual simplex algorithm

starts with a full facet of the polyhedron, and we rotate this facet to an adjacent
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facet, and continue rotating supporting hyperplanes from one facet to an adjacent

facet until the optimal solution is reached.

We will discuss in the next chapter how Procedure Facet To Facet (FTF) rotation

can be a procedure itself, and separate from a dual simplex pivot.

López and Dulá [19] introduce a procedure about rotating a hyperplane, and use

it to add and remove an attribute in a special hull of a finite point set used in Data

Envelopment Analysis (DEA). They name it HyperClimb. HyperClimb procedure

uses linear algebra operations to uncover extreme points after a new dimension has

been added.

Consider A = {a1, . . . , an} is a point set in <m. We define a hyperplane

H(π, β) = {y | 〈π, y〉 = β} where π = (π1, . . . , πm) is a non-zero vector in <m,

and β ∈ < [1], and consider the supporting hyperplane H(π, β) for the convex hull

of a point set A, con(A), contains the extreme efficient decision-making unit, DMU,

ak, and the hyperplane H(π̃, β̃) in <m+1, where π̃T = [π γ] and γ ∈ <.

Construct the system of equations

〈π, ak〉+ γakm+1 = β (2.1)

〈π, aj〉+ γajm+1 ≤ β; j = 1, . . . , n. (2.2)

From (2.1) and (2.2), we get

γ ≤ − 〈π, a
j〉 − 〈π, ak〉

ajm+1 − akm+1

; j = 1, . . . , n, (2.3)

when aim+1 − akm+1 > 0. The maximum value of γ yields a rotation of that removes
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the point ak from the support set, and add the point aj to the support set where

γ = − 〈π, a
j〉 − 〈π, ak〉

ajm+1 − akm+1

. (2.4)

If there does not exist a maximum for γ, so the maximum rotation is obtained

from the hyperplane H(π̃, β̃) supports con(A) at a face that is orthogonal to the last

axis. We figure out the level of the new supporting hyperplane from β̃ = 〈π̃, aj〉.

This procedure is applicable for unbounded polyhedra. Furthermore, the new

support set does not contain all points that are in the last support set.

Example 2.1. Consider the given point set A = {a1 = (1, 2)T , a2 = (4, 5)T , a3 =

(5, 1)T , a4 = (2, 1)T} in <2, and the supporting vector H(π, 21)T where π1 =

(−1, 5)T . This supporting vector contains the point a2. Suppose we add a new at-

tribute, and get the new set Ã = {a1 = (1, 2, 5)T , a2 = (4, 5, 1)T , a3 = (5, 1, 2)T , a4 =

(2, 1, 4)T} that is in <3. The new supporting hyperplane is H(π̃, β̃) where π̃ =

(−1, 5, γ)T . Hence, we have

γ ≤ − 〈π, a
1〉 − 〈π, a2〉
a1

3 − a2
3

= 3, (2.5)

γ ≤ − 〈π, a
3〉 − 〈π, a2〉
a3

3 − a2
3

= 21, (2.6)

γ ≤ − 〈π, a
4〉 − 〈π, a2〉
a4

3 − a2
3

= 6. (2.7)

We conclude that the maximum value for γ is 3. So, we get π̃ = (−1, 5, 3)T , and
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we have

〈π̃, a1〉 = 24, (2.8)

〈π̃, a2〉 = 24, (2.9)

〈π̃, a3〉 = 6, (2.10)

〈π̃, a4〉 = 15. (2.11)

Therefore, the new planeH(π̃, 24) is a supporting plane for con(Ã), and contains

two points a1 and a2.

Furthermore, Dulá and Helgason [20] demonstrate how to rotate a supporting

hyperplane in any dimension to identify the extreme rays of the conical hull. Let

vector set A = {a1, . . . , an} in <m makes a pointed cone such that all vectors are

non-zero, and no vector is a scaler multiple of any vector. Consider the vector set

At = {a1, . . . , am}, the average vector al for At is

at =
1

m

m∑
j=1

aj, (2.12)

and Ãt = {−at, a1, . . . , am}. For a i = m+ 1, . . . , n, solve

max 〈π, ai〉 (2.13)

s.t. − 〈π, at〉 ≤ 1,

〈π, aj〉 ≤ 0; j = 1, . . . ,m,

and assume the optimal solution is π∗. Suppose σ is a vector in the vector set At.
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The last step is to find

a = argmax
〈σ, aj〉
〈π∗, aj〉

; j = m+ 1, . . . , n. (2.14)

The obtained vector a, is an extreme ray of the conical hull A. Technically, a

hyperplane that contains this vector, is a rotation of the hyperplane that contains

some vectors of At.

Example 2.2. Consider seven vectors a1 = (3, 1, 2)T , a2 = (1, 2, 1)T , a3 = (−4, 6, 4)T ,

a4 = (−1, 2/3, 2/3)T , a5 = (−1,−1/4, 1/2)T , a6 = (−9/2,−6, 3)T , a7 = (5,−15/2, 5)T ,

a vector set At = {a1, a2, a3}, and σ = (1,−1,−3)T is in the polar of this cone. If

we solve LP

max 〈π, a4〉 (2.15)

s.t. − 〈π, a4〉 ≤ 1,

〈π, aj〉 ≤ 0, j = 1, 2, 3,

then we get π∗ = (7/6,−2/3,−1/3)T . For i = 4, . . . , 7, we have

a = argmax

{
36

7
,

5

4
, 0, −27

11

}
= a4. (2.16)

Another application of rotating hyperplanes is in the field of mixed integer pro-
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gram (MIP). Consider the following MIP.

max cx (2.17)

s.t. Ax ≥ b,

x ∈ {0, 1}m,

where matrix A is n ×m, matrix C is 1 ×m, and matrix b is n × 1. There are 2m

disjunctive polyhedra, and the optimal solution is in one of them. By relaxing the

binary requirement for x, an optimal solution is in an extreme point of the union

of these 2m polyhedra. If all elements of this point are integers, the MIP optimal

solution is this point. Otherwise, this point cannot be the optimal solution of this

MIP. If we cut this point off from the union of polyhedra, without missing any integer

points, then it makes a tighter polyhedra that contains the MIP optimal solution.

Perregaard and Balas [21] present a hyperplane rotation procedure to cut off this

point. They use a linear transformation to rotate a hyperplane to generate a new

facet of the convex hull of the union of polyhedra.

Consider a supporting hyperplane H(π1, β1) for the union of polyhedra P with

S1 in the support set, and a hyperplane H(π̃, β̃) is tight for S1 , and some points of

P are not in a halfspace defined by this hyperplane. If the optimal solution of LP

relaxation is fractional, by solving a separation problem, the hyperplane H(π1, β1)

is rotated to a facet of the convex hull of the integer points in P , and the fractional

point will be cut off. Solving additional separation problem increases 1 the dimension

of the support set for separating hyperplane. Thus, there are needed to solve m− 1

separation problems in m dimensions to cut off the fractional optimal solution of the
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LP relaxation. In the following example we demonstrate this procedure in <3.

Example 2.3. Consider the system of equations {−x1−x2 +x3 ≥ −1, −x1−x2−

x3 ≥ −2, x ∈ {0, 1}3} [15]. There are eight polyhedra the union of which is shown

below [15].

Fig. 10.: Union of polyhedra P .

The extreme points of P are a1 = (0, 0, 0)T , a2 = (0, 0, 1)T , a3 = (0, 1, 0)T , a4 =

(0, 1, 1)T , a5 = (0.5, 1, 0.5)T , a6 = (1, 0.5, 0.5)T , a7 = (1, 0, 0)T , and a8 = (1, 0, 1)T .

If we solve LP

max
x1,x2,x3

5x1 + 3x2 + 2x3 (2.18)

s.t. − x1 − x2 + x3 ≥ −1,

− x1 − x2 − x3 ≥ −2,

0 ≥ −xj ≥ −1, j = 1, 2, 3,

then an optimal solution is at the point a6 = (1, 0.5, 0.5)T . This non-integer point

must be cut off. To do this, consider the supporting plane H(π1, β1), where π1 =
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(4,−3, 1)T and β1 = −3. We have the initial set S1 = {a3} from the support set.

To rotate this plane through a facet of the polyhedron P , two separation problems

should be solved. In the first LP, we take H(π̃, β̃), where π̃ = (−2,−1, 4)T and

β̃ = −1. The separation LP problem is as follows.

γ∗ = max 3x0 + 4x1 − 3x2 + x3 (2.19)

s.t. x0 − x1 − x2 + x3 ≥ 0,

2x0 − x1 − x2 − x3 ≥ 0,

x0 − xj ≥ 0, j = 1, 2, 3,

x0 − 2x1 − x2 + 4x3 = −1,

(−x1 ≥ 0) ∨ (−x0 + x1 ≥ 0).

The optimal value of objective function is γ∗ = 7. The rotated plane H(π2, β2) is

obtained by rotating the plane H(π1, β1), where π2 = π1 + γ∗π̃ = (−10,−10, 29)T ,

and β2 = β1 +γ∗β̃ = −10. The support set for the new plane includes S2 = {a3, a7}.

Next, we need to solve one more separation LP problem to get final plane. We

take H(π̃, β̃), where π̃ = (3, 3,−1)T and β̃ = 3. We formulate the second separation
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LP as follows:

γ∗ = max − 10x0 − 10x1 − 10x2 + 29x3 (2.20)

s.t. x0 − x1 − x2 + x3 ≥ 0,

2x0 − x1 − x2 − x3 ≥ 0,

x0 − xj ≥ 0, j = 1, 2, 3,

− 3x0 + 3x1 + 3x2 − x3 = −1,

(−x1 ≥ 0) ∨ (−x0 + x1 ≥ 0).

The optimal value of objective function is γ∗ = 29. The rotated plane H(π3, β3) is

obtained by rotating the plane H(π2, β2), where π3 = π2 + γ∗π̃ = (77, 77, 0)T , and

β2 = β1 +γ∗β̃ = 77. The support set for the this plane includes S2 = {a3, a4, a7, a8}.

All these planes are shown in the following figures.

Fig. 11.: Rotating the planes: Rotating the plane H(π1, β1) through H(π2, β2), then

H(π2, β2) through H(π3, β3).

The plane H(π3, β3) is a facet-defining inequality for a convex hull of the integer

points of P . If we cut off the points that are not located in a half space defined

by this plane, then we get a polyhedron that all elements of its extreme points are
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integer. The next figure shows this polyhedron.

Fig. 12.: The obtained polyhedron after using cutting plane H(π3, β3).

We should emphasize that Perregaard and Balas use polyhedra defined by the

intersection of halfspaces. In the current work, the polyhedron will be defined by the

convex hull of a point set,

Avis and Fukuda [22] presents a procedure based on pivoting solving some im-

portant enumeration problems in the field of computational geometry in any dimen-

sion. They find the facets or vertexes of the convex hull of a point set under the

assumption non-degeneracy facets.

A polytope can be defined by finite number of hyperplanes or the convex hull of

its vertexes. Bremner, Fukuda, and Marzetta [23] say that the transformation from

one of these two representations to the other is called vertex enumeration problem, or

facet enumeration problem. They also extend two procedures: Raindrop Algorithm

and Dual Raindrop Algorithm that indeed they use hyperplane rotation to solve

vertex and facet enumeration problems. They use the equivalency between primal

and dual problems [23].

Chand and Kapur [24] were the first to explain how to rotate from a facet
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of a polytope to an adjacent facet. They observed that two adjacent facets share

m− 1 extreme points. This rotation involves linear algebra operations. This sort of

hyperplane rotation from one facet to another adjacent one is the principle behind

gift wrapping algorithms for facial decomposition [24]. Seidel makes the observation

that pivoting operations are dually related to gift-wrapping [25] which is equivalent

facet to facet rotation.

Chan [26] presents a procedure in <2 and <3 to rotate a supporting hyperplane

containing a facet of a polytope to its adjacent facet.

Hyperplane rotation has applications in different fields. Natwichai and Li [27]

use hyperplane rotation to construct a procedure for drifting in data streams. Boun-

siaret al. [28] to find the best separating hyperplane according to minimum error

use hyperplane rotation. Hyperplane rotation is also used to construct the attain-

able region (AR). Ming et al. [29] build a procedure to use the plane rotation for

constructing the AR.

In this paper, we present three procedures to rotate a supporting hyperplane for

the convex hull of a point set. One of these procedures is based on LP. In Procedure

Axis Rotation Hyperplane (ARH), we rotate the supporting hyperplane such that the

dimension of its support set is increased one at a time. In the second procedure,

Procedure Full Rotation Hyperplane (FRH), a supporting hyperplane is rotated once

such that the final support set is a facet of the convex hull of a point set. In addition

to these procedures, we derive a procedure to rotate a supporting hyperplane for the

convex hull of a point set from one facet to another adjacent facet. We refer to this

procedure as Procedure Facet To Facet (FTF). We prove the result of Procedure FTF

32



is equivalent to a dual simplex pivot (DSP).

To perform a rotation by applying any of these three procedures, it is not needed

to have the convex hull of a point set, or its frame. However, having the frames would

make the procedures run faster, because of the reduction in number of constraints.

2.2 Snug circumscribing simplexes

The problem of finding a volume that contains, or is contained, in a body is a topic

in computational geometry and is called the “containment problem”. Usually this

volume is required to be convex. Finding the smallest convex volume containing a

body, or the biggest convex volume contained in a body is the objective. Depending

on the shape of the body, finding a convex volume with this property can be hard.

When a containment problem is the optimal solution to a mathematical program,

the container or the contained set is called “extreme”. If an optimal solution to the

mathematical program is too difficult, an approximation may be practical [30]. The

problem of finding a containing volume is known by several names. It is called the

Circumbody problem by Gritzmann and Klee [30].

Graham and Oberman [31] approximate a convex hull of a point set with small

number of the extreme points.

Sartipizadeh and Vincent [32] present an algorithm to approximate the convex

hull of a point set that the dimension of the point set does not affect to their algo-

rithm. This algorithm can be efficient to find (or approximate) the convex hull of a

point set in high dimensions.

Finding or approximating an enclosing polyhedron for a point set has many
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applications [33]. There is some related work to find enclosing bodies such that

ellipsoids, spheres, boxes, or simplexes [33]. Bādoiu and others demonstrate finding

a circumscribing sphere has applications in clustering, and present a procedure to

find it [34]. Panigrahy shows a procedure to find an enclosing polyhedron using only

translations, and not allowing rotations [35]. In this topic of the dissertation we

present procedures for the case where the contained body is the convex hull of a

point set in <m and the containing volume is a special type of polyhedron in that

space; namely a simplex.

Consider for a moment relaxing Assumption 2 in Chapter 1 and allow the point

set A not to be its own frame. If we denote the frame of A with F , the cardinality

of F is at most n, and at least m + 1. Finding the frame F of the finite point set

becomes an interesting problem with applications in computational geometry, LP,

stochastic optimization, DEA, statistics, and etc [36].

There are several procedures to find the frame of a finite point set. For the

point set A, a direct approach to find the frame solves n LPs such that in each, one

point is tested. Suppose we score an arbitrary point b ∈ <m. Suppose further for

our purposes here that con(A) contains the origin in its strict interior. Consider the

following LP [36].

f(b) = min
λ∈<n

n∑
j=1

λj Gauge LP (2.21)

s.t.
n∑
j=1

ajλj = b,

λj ≥ 0; j = 1, . . . , n.
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Theorem 2.1. Gauge LP is feasible and bounded.

Proof. Carathéodory’s theorem says if a point in <m is inside a polytope, then this

point can be defined as the convex combination of the at most m+ 1 extreme points

of this polytope [2]. All λj for j = 1, . . . , n are nonnegative, so zero is a lower bound

for Gauge LP. If b is in con(A), then according to Carathéodory’s theorem, Gauge

LP is feasible. Otherwise, we can scale down the point b such that b falls inside

con(A), because zero is in con(A). Here again we invoke Carathéodory’s theorem to

find a feasible solution for this scaled point b. Next, we scale back b and multiply

the optimal solution of Gauge LP by the scaling constant. �

We refer to this LP as Gauge LP, because its solution allows us to determine

whether the point b is inside, outside, or on the boundary of the convex hull of a

point set. In the first two of these cases, the objective function value serves to assess

the proximity of the point to the boundary. The function f(b) in (2.21) is a gauge

function in the sense of [2]. The optimal dual solution of the Gauge LP yields a

facet’s normal of con(A). The dual of Gauge LP is as follows.

f(b) = max
π∈<m

〈π, b〉 Dual Gauge LP (2.22)

s.t. 〈π, aj〉 ≤ 1; j = 1, . . . , n.

For example, in the following figure, consider the convex hull of the points

{a1, . . . , a8} in <2. All these points are extreme for their convex hull. The opti-

mal solution of the Gauge LP for three points b1, b2, b3 identifies three supporting

hyperplanes H(π1, β1),H(π2, β2), and H(π3, β3) for the convex hull of these eight
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points, respectively. In addition, f(b) is less than, equal to, and greater than one

respectively. These planes are shown in Fig. 13.

Fig. 13.: Gauge LP: The convex hull of a point set, and its relation to the Gauge LP

and its dual.

Nine important observations about Gauge LP are as follows:

Remark 1. The point b is inside of con(A) if and only if f(b) < 1.

Remark 2.The point b is on the boundary of con(A) if and only if f(b) = 1.

Remark 3. The point b is outside of con(A) if and only if f(b) > 1.

Remark 4. Any optimal basic solution to this LP yields a facet’s normal of con(A)
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with level value of 1.

Remark 5. For any point aj ∈ F , when we set b = aj, then we get f(b) = 1.

Remark 6. If aj for j = 1, . . . , n is interior to convex hull, it does not appear in

any basic feasible solution (BFS).

Remark 7. Any BFS will be composed of points on the boundary.

Remark 8. As f(b) gets closer to one, the scored point is in some sense closer to

the boundary of con(A).

Remark 9. An optimal value close to zero means the scored point is close to the

origin.

We will use the Gauge LP in a procedure to find a snug circumscribing simplex

for a point set.

The Gauge LP will play an important role in our work to find snug circum-

scribing simplexes. In this part of the dissertation, we design procedures to generate

simplexes that contain a point set using just m+ 1 affinely independent points.

A simplex is snug in the sense that it intersects the hulls in some way. The

objective is a snug circumscribing simplex that is also in some sense tight around the

point set. Furthermore, finding such a polytope with fewer facet-defining inequalities

is also valuable in some fields such that data reduction, dimension reduction, and

non-negative factorization matrix. The simplest shape among all full-dimensional

polyhedra is a simplex. A simplex is defined by the convex hull of the m+1 vertexes

or by the intersection of the m+ 1 halfspaces. Going from one representation to the

other in either direction (facial decomposition) is easy when it involves simplexes.

In this part of the dissertation, we develop three procedures to find an m-
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dimensional polytope with m+1 extreme points such that its facets coincide with at

least m facets of the convex hull of the point set, and m+ 1 facets if the convex hull

is also a simplex. Indeed, the two will be the same polytope in the latter case. We

refer to this as a snug circumscribing simplex. The first procedure is called “Axis

Rotation Snug” (ARS), and is based on an application of Procedure ARH for rotating

hyperplanes. We identify the facets of the polytope using this rotation procedure

which starts at a vertex and visits faces of ever increasing dimension until a facet is

reached. We apply this process m times to identify m facets of the polytope. The

last facet of the simplex, called a “cap”, is found using specialized procedures that

involve LP. A cap will intersect the hull but not necessarily at a facet. The second

procedure is called Procedure “Full Rotation Snug” (FRS) and is based on the optimal

solutions of an LP. It achieves full facet support in one rotation using LP. Here, a

cap may be necessary here, as well, to identify the last facet of the simplex such

that it is bounded. Finally, the last procedure is called Procedure “Breakout Snug”

(BOS). It identifies m + 1 facets of con(A) such that the m + 1 normals are each in

the polars of the normals of the previous facets and they positively span the space

assuring boundedness.

The snug procedures are initialized with a large simplex that contains the convex

hull of the point set. Then, its facets are translated towards the polytope until they

eventually make contact. Next by rotating facets of the outside simplex, we increase

the contact between two polyhedra to complete facets.

One application of finding a snug circumscribing simplex for a point set is in

non-negative matrix factorization (NMF). When a point set is contained in a snug
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circumscribing simplex, any point of this point set can be written as a product of a

matrix with the extreme points of this simplex with another matrix containing the

multipliers needed to represent the point set.

NMF is a fundamental problems in multivariate analysis is to find a suitable

representation of data, which makes the implicit structure of data explicit and reduces

the dimensionality as well [37]. NMF is developed in the last two decades [38]. NMF

has applications in data analysis, clustering, and neural network ([37] and [38]). NMF

is popular linear dimensionality reduction technique which has the desired properties

that we mentioned [39]. Moreover, NMF usually generates a sparse representation

of a given point set [37].

NMF is formally defined as follows: for a given non negative matrix V , find two

non negative matrix W and H such that V ≈ WH where V is an n×m matrix, W

is an n× r matrix, and H is a r ×m matrix.

It is usually desired for r to be smaller than m or n, hence W and H will have

smaller dimension than the matrix V . In the context of multivariate analysis, where

NMF have been extensively applied, the columns of matrix V are our observations (or

point sets) which are vectors of dimension n. Then the goal is to find a compressed

representation of matrix V using smaller matrixes W and H [40].

2.3 Conclusion

In this chapter we presented some previous works and applications in rotating hy-

perplanes and containment problems.

Rotating hyperplanes have applications in integer programming to find a facet-
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defining inequality. Another application of rotating hyperplanes is in DEA. Fur-

thermore, we explained how a pivot in the dual simplex method can be related to

rotating hyperplanes.

In the second section of this chapter, we presented the concept of the contain-

ment problems. We presented how Gauge LP can be related to the direct procedure

of finding the frame of the convex hull of the finite point set. In addition, we discussed

some remarks on Gauge LP and Dual Gauge LP.
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CHAPTER 3

ROTATING SUPPORTING
HYPERPLANES

We present three procedures to rotate a supporting hyperplane for a polytope defined

as the convex hull of a finite point set in <m. The first two procedures rotate a sup-

porting hyperplane for the polytope at a lower dimensional face until it supports this

polytope at a facet. These two procedures keep current extreme points in the support

set and accumulate new points after the rotations. In other words, the support set

of the rotated hyperplane includes all the extreme points in the support set of the

supporting hyperplane that get rotated, in addition to whatever new extreme points

join this support set. In the first procedure, the dimension of the rotated hyperplane

for the convex hull of a point set increases one at a time. So, the support set for

the rotated hyperplane will eventually be a facet of the polytope. This procedure

does not rely on LP using only linear algebra operations. In the second procedure,

we rotate a supporting hyperplane for a polytope with a lower dimensional support

set and in one iteration the new hyperplane will have a facet as its support set. The

second procedure uses LP. Finally, we develop a procedure to rotate a hyperplane on
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a facet of the polytope to another adjacent facet. Similarity to the first procedure,

this procedure does not rely on LP. This procedure is equivalent to a dual simplex

pivot.

Consider a supporting hyperplane H(πk, βk) for the polytope con(A). Recall

that we assumed all the points in A are the extreme points for con(A). Assume,

without loss of generality (wlog), the support set of the hyperplaneH(πk, βk) includes

Sk = {a1, . . . , ak} where k ≤ m− 1. Hence we have

〈πk, aj〉 = βk; j = 1, . . . , k. (3.1)

The other points ak+1, . . . , an of A are located in a halfspace defined by the

hyperplane H(πk, βk). Under our assumption, this halfspace defines the inequalities

〈πk, aj〉 ≤ βk; j = k + 1, . . . , n. (3.2)

In the remainder of this chapter, the support set of the supporting hyperplane

H(πk, βk) includes Sk = {a1, . . . , ak} from the point set A = {a1, . . . , an} in <m.

3.1 Procedure Axis Rotation Hyperplane (ARH)

In this procedure we rotate a supporting hyperplane H(πk, βk) such that at each

iteration, the dimension of the support set is increased by one. Recall that we assume

there do not exist degenerate facets. We define the new hyperplane as H(πk+1, βk+1).

The procedure is designed around the specification that two vectors πk and πk+1 will

share m−k elements. Assume, wlog, that the common components are πkk+1, . . . , π
k
m,

and at least one of them is not zero. This set up makes the first k components of

42



the new vector free to take on values. Define πk+1 = (γ1, . . . , γk, π
k
k+1, . . . , π

k
m) where

γ1, . . . , γk are scalar parameters.

The rotation of a supporting hyperplane of con(A) such that only k components

of its normal are allowed to change can be interpreted geometrically. Components

that are allowed to change will be referred to as free and the rest as fixed. The rotation

restricts the normal of the supporting hyperplane to reside in a k+1 dimensional cone

defined by the combinations of vectors in the subspace of the free axes (k dimensions)

and the perpendicular vector with the original values for the fixed components and

zeros for the rest. The normal is further restricted to lie in the strict interior of

this cone which now becomes a pointed “circular” k + 1 dimensional cone. This

cone is pointed only because rotation vectors cannot be any of the free axes – or on

the subspace defined by them – since this would require ∞ or −∞ as a value for

a free component. In the case of k = 1, the rotation maintains the normal of the

hyperplane in a two-dimensional (very flat but still pointed) cone. When k = 2, this

is a circular pointed cone above the plane defined by two free axes. Next, we will see

how the rotation vector will be further restricted by the shape of the polytope below

the supporting hyperplane in the following figure.

In order to keep the points that are currently on the hyperplane H(πk, βk) in

the support set of the rotation, we force them to have the same level value. This is

done by constructing the system of k − 1 equations

〈πk+1, aj〉 = 〈πk+1, a1〉; j = 2, . . . , k, (3.3)

where a1 is used, wlog, in lieu of any aj ∈ Sk.
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Fig. 14.: Procedure ARH in <3: Left figure; k = 1, right figure; k = 2.

The points ak+1, . . . , an will be located in a halfspace defined by the hyperplane

H(πk+1, βk+1). This generates the n− k inequalities

〈πk+1, aj〉 ≤ 〈πk+1, a1〉; j = k + 1, . . . , n. (3.4)

The solutions to System (3.3 - 3.4) define a polyhedral region. Any feasible

solution represents a supporting hyperplane for con(A) with a support set containing

Sk. System (3.3 - 3.4) has k−1 equations and n−k inequalities, where 1 ≤ k ≤ m−1;

all in k variables. There are at least two inequalities. When k = 1, System (3.3) is

empty and the whole thing reduces to a system of inequalities with one variable.

In the following two subsections we present Procedure ARH in the cases of k = 1

and k ≥ 2 separately.
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3.1.1 Procedure ARH when k = 1

In the case of k = 1, System (3.3) is empty. We thus need to find an upper or lower

bound for γ1 from the system of inequalities:

〈πk+1, aj〉 ≤ 〈πk+1, a1〉; j = 2, . . . , n. (3.5)

We define the following sub-vectors based on truncation after the first element.

âj = (aj2, . . . , a
j
m); j = 1, . . . , n, (3.6)

π̂k+1 = (πk+1
2 , . . . , πk+1

m ) = (πk2 , . . . , π
k
m) = π̂k. (3.7)

Then, we rewrite System (3.5) using these truncated vectors as follows.

aj1γ1 + 〈π̂k+1, âj〉 ≤ a1
1γ1 + 〈π̂k+1, â1〉; j = 2, . . . , n. (3.8)

After that, we manipulate System (3.8) algebraically. First by using the sub-vectors

to separate the inner products:

aj1γ1 − a1
1γ1 ≤ −〈π̂k+1, âj〉+ 〈π̂k+1, â1〉; j = 2, . . . , n, (3.9)

and distributing after substituting:

(aj1 − a1
1)γ1 ≤ −〈π̂k+1, âj〉+ 〈π̂k+1, â1〉; j = 2, . . . , n. (3.10)

The value of aj1 − a1
1 cannot be zero, according to Assumption 4 from Chapter

1, for j = 2, . . . , n. If for one j we have aj1 − a1
1 = 0 where j = 2, . . . , n, then we

have aj1 = a1
1. Hence, the face of con(A) that contains just these two points a1 and

aj is perpendicular to the first axes, and therefore is parallel to another axes. This
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violates our assumptions.

A solution to System (3.10) generates four possibilities on the values of γ1:

1. There are no bounds.

2. There is only one finite upper bound.

3. There is only one finite lower bound.

4. There are two different and finite bounds: one lower and one upper.

Case 1 can be discarded using geometric arguments. System (3.10) is feasible

since there is always a hyperplane that supports con(A) at exactly any extreme point

and has complete freedom to rotate some nontrivial amount in any direction. Notice

that, no rotation can span 360◦ or more without contradicting the assumption that

the polytope has full dimension.

We will illustrate how Cases 2, 3, and 4 are possible.

If aj1 − a1
1 > 0 for j = 2, . . . , n, then we can rewrite System (3.10) as follows.

γ1 ≤ −
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

; j = 2, . . . , n. (3.11)

System (3.11) yields an upper bound for γ1. This is Case 2. An upper bound for γ1

that satisfies all inequalities in System (3.11) is

γ1 = min

{
− 〈π̂

k+1, âj〉 − 〈π̂k+1, â1〉
aj1 − a1

1

; j = 2, . . . , n

}
. (3.12)

The following example illustrates Case 2 in <3.

Example 3.1. Consider the given point setA = {a1 = (2, 8, 4)T , a2 = (3, 7, 1)T , a3 =

(5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T} in <3.
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Fig. 15. shows con(A) in three views.

Fig. 15.: Three views of con(A).

Let the supporting plane H(π1,−1) where π1 = (−9, 1, 2)T , with the support

set S1 = {a5}.

Fig. 16. shows con(A) and the plane H(π1,−1) in three views.

Fig. 16.: Three views of the supporting plane H(π1,−1) where π1 = (−9, 1, 2)T for
con(A).

We define the new plane H(π2, β2) where π2 = (γ1, 1, 2)T and β2 = 〈π2, a5〉. So

47



we have a system with six inequalities and a single variable:

γ1 ≤ −
〈π̂2, â1〉 − 〈π̂2, â5〉

a1
1 − a5

1

= −16− 8

2− 1
=⇒ γ1 ≤ − 8; (3.13)

γ1 ≤ −
〈π̂2, â2〉 − 〈π̂2, â5〉

a2
1 − a5

1

= −9− 8

3− 1
=⇒ γ1 ≤ −

1

2
; (3.14)

γ1 ≤ −
〈π̂2, â3〉 − 〈π̂2, â5〉

a3
1 − a5

1

= −22− 8

5− 1
=⇒ γ1 ≤ −

7

2
; (3.15)

γ1 ≤ −
〈π̂2, â4〉 − 〈π̂2, â5〉

a4
1 − a5

1

= −21− 8

9− 1
=⇒ γ1 ≤ −

13

8
; (3.16)

γ1 ≤ −
〈π̂2, â6〉 − 〈π̂2, â5〉

a6
1 − a5

1

= −11− 8

7− 1
=⇒ γ1 ≤ −

1

2
; (3.17)

γ1 ≤ −
〈π̂2, â7〉 − 〈π̂2, â5〉

a7
1 − a5

1

= −7− 8

6− 1
=⇒ γ1 ≤

1

5
. (3.18)

Hence −8 is an upper bound for γ1. Therefore, the normal of the rotated

plane is π2 = (−8, 1, 2)T , and we have: 〈π2, a1〉 = 0, 〈π2, a2〉 = −15, 〈π2, a3〉 =

−18, 〈π2, a4〉 = −51, 〈π2, a5〉 = 0, 〈π2, a6〉 = −45, 〈π2, a7〉 = −41. So β2 = 0, and

the points a1, a5 are on the hyperplane H(π2, 0) and the other a2, a3, a4, a6, a7 are

below of this hyperplane. The plane H(π2, 0) is a supporting hyperplane for con(A)

with the points S2 = {a1, a5} in the support set.

Fig. 17. shows con(A) and the plane H(π2, 0) in three views.

In this example, when we rotate the plane H(π1,−1), the reason there is no

lower bound is that the rotation towards more negative values of γ1 is limited by

−∞. At this limit, the normal of the rotating hyperplane becomes for all intents

and purposes the first coordinate (with the strange appearance (−∞, 1, 2)) and is

halted from further rotation by the fact that these operations cannot transcend

infinity. This is a direct consequence of the fact that the initializing point is the

48



Fig. 17.: Three views of the supporting plane H(π2, 0) where π2 = (−8, 1, 2)T for

con(A).

only one in the support set of a hyperplane with normal (1, 0, 0). Recall that the

initializing point, a5
1 has the smallest first coordinates of all seven points in this set.

Rotation towards more negative values of γ1 eventually ends with (−∞, ∗, ∗) which

is precisely this hyperplane and this will be the last supporting hyperplane these

algebraic operations will allow. It is possible to resume rotation by “coming back”

from ∞ by reversing the inequalities in System (3.5).

For the case when k = 1, it is possible to extract a second supporting hyperplane

in a rotation that starts with a supporting hyperplane on an extreme point by a5.

This is the purpose for the following theorem.

Theorem 3.1. The value for γ1 in System (3.11) obtained from

γ1 = max

{
− 〈π̂

k+1, âj〉 − 〈π̂k+1, â1〉
aj1 − a1

1

; j = 2, . . . , n

}
(3.19)
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defines a supporting hyperplane H(−πk+1, βk+1), which contains a1, at where

t = argmax

{
− 〈π̂

k+1, âj〉 − 〈π̂k+1, â1〉
aj1 − a1

1

; j = 2, . . . , n

}
. (3.20)

Proof. We first show 〈−πk+1, at〉 = βk+1. We have;

〈−πk+1, at〉 − 〈−πk+1, a1〉 =
(
〈−π̂k+1, ât〉 − γ1a

t
1

)
−
(
〈−π̂k+1, â1〉 − γ1a

1
1

)
=
(
〈−π̂k+1, ât〉 − 〈−π̂k+1, â1〉

)
− γ1

(
at1 − a1

1

)

=
(
〈−π̂k+1, ât〉 − 〈−π̂k+1, â1〉

)
−

(
−〈π̂

k+1, ât〉 − 〈π̂k+1, â1〉
at1 − a1

1

)(
at1 − a1

1

)

=
(
〈−π̂k+1, ât〉 − 〈−π̂k+1, â1〉

)
−
(
−〈π̂k+1, ât〉+ 〈π̂k+1, â1〉

)
=
(
〈−π̂k+1, ât〉 − 〈−π̂k+1, â1〉

)
−
(
〈−π̂k+1, ât〉 − 〈−π̂k+1, â1〉

)
= 0. (3.21)

We thus have 〈πk+1, at〉 = 〈πk+1, a1〉, and then 〈πk+1, at〉 = βk+1.

We need to show all the points a2, . . . , an are located in a half space defined

by the hyperplane H(−πk+1, βk+1). We will therefore show 〈−πk+1, aj〉 ≤ βk+1 for

j = 2, . . . , n. Recall that we have;

γ1 ≥ −
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

=⇒ −γ1 ≤
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

. (3.22)

Moreover, we have aj − a1 > 0. We thus have;
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〈−πk+1, aj〉 − 〈−πk+1, a1〉 =
(
〈−π̂k+1, âj〉 − 〈−π̂k+1, â1〉

)
+ (−γ1)

(
aj1 − a1

1

)

≤
(
〈−π̂k+1, âj〉 − 〈−π̂k+1, â1〉

)
+

(
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

)(
aj1 − a1

1

)

= 0. (3.23)

Hence we have 〈−πk+1, aj〉 ≤ 〈−πk+1, a1〉. So, 〈−πk+1, aj〉 ≤ βk+1, for j = 2, . . . , n.�

Example 3.2. According to Theorem 3.1, the other bound for γ1 in Example 3.1

is 1
5
. So the hyperplane H(π2,−41) where π2 = (−1,−5,−10)T , with S2 = {a5, a7}

in the support set, supports con(A).

Fig. 18. shows con(A) and the plane H(π2,−41) in three views.

Fig. 18.: Three views of the supporting plane H(π2,−41) where π2 = (−1,−5,−10)T

for con(A).

Case 3 happens when aj1 − a1
1 < 0 for j = 2, . . . , n. We thus rewrite System
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(3.10) as follows.

γ1 ≥ −
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

; j = 2, . . . , n. (3.24)

System (3.24) yields only a lower bound for γ1. The following example illustrates

this case in <3.

Example 3.3. Consider the point setA from Example 3.1,A = {a1 = (2, 8, 4)T , a2 =

(3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T}

in <3, and the supporting plane H(π1, 77) where π1 = (3, 2, 5)T , with the support

set S1 = {a4}.

Fig. 19. shows the supporting plane H(π1, 77) for con(A) in three views.

Fig. 19.: Three views of the supporting plane H(π1, 77) where π1 = (3, 2, 5)T for

con(A).

We first define the new plane H(π2, β2) where π2 = (γ1, 2, 5)T and β2 = 〈π2, a4〉.

Then, we have a system with six inequalities and a single variable. Similar way to

Example 3.1, the minimum feasible ratio is 3
4

for γ1. The normal of the rotated plane
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is π2 = (3, 8, 20)T , and β2 = 227. The plane H(π2, 227) is a supporting hyperplane

for con(A) with S2 = {a3, a4} in the support set.

Fig. 20. shows the rotated supporting plane H(π2, 227) for con(A) in three

views.

Fig. 20.: Three views of the supporting plane H(π2, 227) where π2 = (3, 8, 20)T for

con(A).

In Example 3.3, when we rotate the plane H(π1, 77), there is no upper bound.

The reason is that the rotation towards more positive values of γ1 is limited by ∞

for analogous reasons as in Example 1. Here again hyperplane rotation can be found

by taking the smallest value in the list of inequalities for γ1 and using the negative

for the normal.

Theorem 3.2. The value for γ1 in System (3.24) obtained from

γ1 = min

{
− 〈π̂

k+1, âj〉 − 〈π̂k+1, â1〉
aj1 − a1

1

; j = 2, . . . , n

}
(3.25)

53



defines a supporting hyperplane H(−πk+1, βk+1), which contains a1, at where

t = argmin

{
− 〈π̂

k+1, âj〉 − 〈π̂k+1, â1〉
aj1 − a1

1

; j = 2, . . . , n

}
. (3.26)

Proof. The proof is similar to the proof of Theorem 3.1. �

Example 3.4. Based on Theorem 3.2, the other bound for γ1 in Example 3.3 is

−23
2

. So the hyperplane H(π2, 107) where π2 = (23,−4,−10)T , with S2 = {a4, a6}

in the support set, supports con(A).

Fig. 21. shows con(A) and the plane H(π2, 107) in three views.

Fig. 21.: Three views of the supporting plane H(π2, 107) where π2 = (23,−4,−10)T

for con(A).

Finally, when the values of aj1 − a1
1 are negative for some js, and positive for

others where j = 2, . . . , n, we face with Case 4. Assume, wlog, we have aj1 − a1
1 > 0

for j = 2, . . . , t, and aj1 − a1
1 < 0 for j = t + 1, . . . , n, where 2 ≤ t ≤ n− 1. We thus
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rewrite System (3.10) as follows.

γ1 ≤ −
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

; j = 2, . . . , t; (3.27)

γ1 ≥ −
〈π̂k+1, âj〉 − 〈π̂k+1, â1〉

aj1 − a1
1

; j = t+ 1, . . . , n. (3.28)

System (3.27 - 3.28) yields an upper bound and a lower bound for γ1. The following

example illustrates this case in <3.

Example 3.5. Consider the point setA from Example 3.1,A = {a1 = (2, 8, 4)T , a2 =

(3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T}

in <3, and the supporting plane H(π1, 33) where π1 = (1,−2, 4)T , with the support

set S1 = {a3}.

Fig. 22. shows the supporting plane H(π1, 33) for con(A) in three views.

Fig. 22.: Three views of the supporting plane H(π1, 33) where π1 = (1,−2, 4)T for

con(A).

We define the new plane H(π2, β2) where π2 = (γ1,−2, 4)T and β2 = 〈π2, a3〉.
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We thus have a system with six inequalities and a single variable:

γ1 ≥ −
〈π̂2, â1〉 − 〈π̂2, â3〉

a1
1 − a3

1

= −0− 28

2− 5
=⇒ γ1 ≥ −

28

3
; (3.29)

γ1 ≥ −
〈π̂2, â2〉 − 〈π̂2, â3〉

a2
1 − a3

1

= −−10− 28

3− 5
=⇒ γ1 ≥ −19; (3.30)

γ1 ≤ −
〈π̂2, â4〉 − 〈π̂2, â3〉

a4
1 − a3

1

= −22− 28

9− 5
=⇒ γ1 ≤

3

2
; (3.31)

γ1 ≥ −
〈π̂2, â5〉 − 〈π̂2, â3〉

a5
1 − a3

1

= −8− 28

1− 5
=⇒ γ1 ≥ −5; (3.32)

γ1 ≤ −
〈π̂2, â6〉 − 〈π̂2, â3〉

a6
1 − a3

1

= −18− 28

7− 5
=⇒ γ1 ≤ 5; (3.33)

γ1 ≤ −
〈π̂2, â7〉 − 〈π̂2, â3〉

a7
1 − a3

1

= −2− 28

6− 5
=⇒ γ1 ≤ 26. (3.34)

This generates the following bounds for γ1; −5 ≤ γ1 ≤ 3
2
.

If we set γ1 = −5, then the normal of the rotated plane is π2 = (−5,−2, 4)T , and

β2 = 3. The plane H(π2, 3) is a supporting hyperplane for con(A) with S2 = {a3, a5}

in the support set. Fig. 23. shows the rotated supporting plane H(π2, 3) for con(A)

in three views.

Fig. 23.: Three views of the rotated supporting plane H(π2, 3) where π2 =

(−5,−2, 4)T for con(A).
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The maximum feasible ratio is 3
2
. If we set γ1 = 3

2
, then the normal of the

rotated plane is π2 = (3,−4, 8)T , and β2 = 71. The plane H(π2, 71) is a supporting

hyperplane for con(A) with S2 = {a3, a4} in the support set. Fig. 24. shows the

rotated supporting plane H(π2, 71) for con(A) in three views.

Fig. 24.: Three views of the rotated supporting plane H(π2, 71) where π2 =

(3,−4, 8)T for con(A).

Note that if there are no ties in determining an upper or lower bound then the

rotation will land on an edge of the polytope. When a tie occurs, the dimension of the

support set for the rotation will increase by the number of the points participating

in the tie. By our assumptions, this means the rotation landed on a face with more

than one dimension. Under the assumption of no degenerate facet, a tie does not

occur.
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3.1.2 Matrixes of affinely independent points

We will start this section with some results relating to System (3.3). The system is

a consequence of the concatenation of k extreme points of the convex hull to create

a k ×m matrix where k ≤ m. This is the matrix:

A =


a1

1 . . . a1
k . . . a1

m

...
. . .

...
. . .

...

ak1 . . . akk . . . akm


k×m

. (3.35)

In this section we present results that establish properties about this matrix.

One observation about the matrix (3.35) is that the k rows are affinely independent.

This follows from the fact that they represent extreme points of a face of the convex

hull. Because of this, the translation of the matrix by any one of these assures it has

full rank.

We start with a lemma about convex hulls when they have fewer than m dimen-

sions. Denote by e1, . . . , em the m axes of m-dimensional Euclidean space. Recall

Assumption 4 From Chapter 1: no face with one or more dimensions of con(A) is

parallel to any axis.

Lemma 3.1. Consider a point set B = {a1, . . . , a`} in <m such that all the points

a1, . . . , a` are extreme for con(B), con(B) does not have full dimensional, and con(B)

does not have a face paralleling to any of the axes. For every extreme point in B,

there exists a supporting hyperplane for con(B) that is parallel to an axis ei and

supports B only at that point.

Proof. The cases when ` = 1, 2 are trivial. When ` ≥ 3, the number of the points in
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B can be more than m. Consider, wlog, a point â ∈ B and the last axis em. The point

â is extreme for con(B), so there exists a hyperplane H(π̄, β̄) which supports con(B)

only at â. Suppose π̄m 6= 0. The polytope con(B) does not have full dimension, so

it can be contained in a hyperplane. Let this hyperplane be H(π̂, β̂). Notice that

H(−π̂,−β̂) also contains con(B).

Consider the cone C1 defined by the vectors π̄, π̂, and the second cone C2 between

vectors π̄,−π̂. Any vector strictly inside C1 or C2, not on the border, corresponds to

a hyperplane that supports con(B) at only the point â. The polytope con(B) does

not have a face parallel to any axes, therefore π̂m 6= 0. If π̂m > 0, then −π̂m < 0, and

vise versa. Assume, wlog, π̄m > 0 and π̂m < 0. A vector π̃ ∈ C1 can be obtained by

taking a positive combination of the two vectors π̄, π̂ such that π̃m = 0. This vector

corresponds to the hyperplane H(π̃, β̃) where β̃ = 〈π̃, â〉 and all other points in B are

below it. The hyperplane H(π̃, β̃) is parallel the em axis, and is supporting con(B)

only at the point â. �

Fig. 25. illustrates an example of Lemma 3.1. when B = {a1, . . . , a8} in <3.

The polytope con(B) is two dimensional. The hyperplaneH(π̂, β̂) contains the points

a1, . . . , a8, and as a result contains con(B). Consider the point a1 and the axis e3.

The hyperplane H(π̃, β̃) is parallel to the axis e3, and is supporting con(B)only at

a1. Note that, here we have π̃3 = 0.
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Fig. 25.: An example of Lemma 3.1. when B = {a1, . . . , a8} in <3.

Consider the k×m matrix A in (3.35). Note that 2 ≤ k ≤ m. Here, we present

an important result of this topic of the dissertation.

Theorem 3.3. The rows of any k × ` submatrix where k ≤ ` ≤ m of the matrix

(3.35) are affinely independent.

Proof. Is it enough to show that if any column from (3.35) is removed the remaining

rows will be affinely independent. Suppose, wlog, it is the last column. We thus have

the k × (m− 1) submatrix:

Ā =


a1

1 . . . a1
m−1

...
. . .

...

ak1 . . . akm−1


k×(m−1)

. (3.36)

Indeed, one interpretation of the k × (m − 1) submatrix (3.36) is that it is the

projection of the original k points on to the subspace defined by the first m−1 axes.
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The original k points a1, . . . , ak are affinely independent and they are the extreme

points of a (k − 1)-dimensional simplex in <m.

Let a` ∈ B. According to Lemma 3.1., there exists a supporting hyperplane

H(π̃, β̃) for con(B) that is parallel to the axis em such that includes only point a`.

Since π̃ is parallel to em, We have the vector π̃ = (π̃1, . . . , π̃m−1, 0)T . So,

〈π̃, a`〉 = β̃, (3.37)

〈π̃, aj〉 < β̃; j = 1, . . . , `− 1, `+ 1, . . . , k. (3.38)

Expanding System (3.37 - 3.38) yields the system:

m−1∑
i=1

a`i π̃i = β̃, (3.39)

m−1∑
i=1

aji π̃i < β̃; j = 1, . . . , `− 1, `+ 1, . . . , k. (3.40)

Since π̃m = 0 for each of these supporting hyperplanes the above relations

System (3.39 - 3.40) can be replaced with each of the points in B truncated at the

last component and the hyperplane normals using only the first m− 1 components.

Notice that such “vertical” supporting hyperplanes exist for each point in B,

they are each an extreme point of the convex hull of their projection in the lower

dimensional subspace. The projection is thus also a (k − 1)-dimensional simplex

making the k points affinely independent. Assume ãj = (aj1, . . . , a
j
m−1)T for j =

1, . . . , k. The k points ã1, . . . , ãk are in <m−1. So, the convex hull of these k points

does not have full dimension in <m−1, because k ≤ m−1. These k points are affinely

independent if all these k points are extreme for the convex hull of these k points

61



ã1, . . . , ãk. �

We proved that any k × (m − 1) submatrix of the matrix (3.35) has affinely

independent rows. We can use the same argument sequentially to show that any

k × i submatrix of the matrix (3.35) has affinely independent rows as long as the

number of columns that remain is at least k: k ≤ i.

Fig. 26. shows the projections of a line segment and a triangle onto a subspace

containing two axes e1, e2.

Fig. 26.: The projections of two lower dimensional simplexes: a line segment and a

triangle onto e1, e2 subspace.

There are four important observations about Theorem 3.3 as follows:

Remark 1. Any of the submatrixes obtained from removing (at most) m − k

columns from matrix (3.35) can be translated by one of its rows to generate a full

rank matrix.

Remark 2. This property that any subset has full rank, has all elements of a

matroid.

Remark 3. If a face of the polytope con(A) contains the points a1, . . . , ak and is

parallel to an axis, then there exists a (k − 1)× (k − 1) submatrix of (3.35) without
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full rank.

Remark 4. The k × m matrix (3.35) has full rank even there exists the faces

paralleling to some axes.

3.1.3 Procedure ARH when k ≥ 2

Recall that k is both the number of the free dimensions and the cardinality of the

extreme points of A in the support set Sk. In the case of k ≥ 2, System (3.3) is no

longer empty and the solutions to this system define an affine set with 1 dimension.

The intersection of this affine set, that is a line, with the polyhedron of feasible

solutions to System (3.4) generates the normals of the supporting hyperplanes for

con(A) that contains Sk.

We can rewrite System (3.3) as follows:

〈πk+1, aj〉 − 〈πk+1, a1〉 = 0; j = 2, . . . , k. (3.41)

The columns of the left hand side of System (3.41) is shown in the (k−1)×m matrix:
a2

1 − a1
1 . . . a2

k − a1
k . . . a2

m − a1
m

...
. . .

...
. . .

...

ak1 − a1
1 . . . akk − a1

k . . . akm − a1
m


(k−1)×m

. (3.42)

We here develop System (3.3 - 3.4). We define the following sub-vectors based on

a partition after the kth element, and assuming that the first k columns of (k−1)×m
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matrix (3.42) have full rank.

āj = (aj1, . . . , a
j
k); j = 1, . . . , n, (3.43)

âj = (ajk+1, . . . , a
j
m); j = 1, . . . , n, (3.44)

π̄k+1 = (πk+1
1 , . . . , πk+1

k ) = (γ1, . . . , γk); (3.45)

π̂k+1 = (πk+1
k+1, . . . , π

k+1
m ) = (πkk+1, . . . , π

k
m). (3.46)

Then, we rewrite System (3.3 - 3.4) using these truncated vectors as follows.

〈π̄k+1, āj〉+ 〈π̂k+1, âj〉 = 〈π̄k+1, ā1〉+ 〈π̂k+1, â1〉; j = 2, . . . , k, (3.47)

〈π̄k+1, āj〉+ 〈π̂k+1, âj〉 ≤ 〈π̄k+1, ā1〉+ 〈π̂k+1, â1〉; j = k + 1, . . . , n. (3.48)

After that, we manipulate System (3.47 - 3.48) algebraically. First by using the

sub-vectors to separate the inner products

〈π̄k+1, āj〉 − 〈π̄k+1, ā1〉 = 〈π̂k+1, â1〉 − 〈π̂k+1, âj〉; j = 2, . . . , k, (3.49)

〈π̄k+1, āj〉 − 〈π̄k+1, ā1〉 ≤ 〈π̂k+1, â1〉 − 〈π̂k+1, âj〉; j = k + 1, . . . , n, (3.50)

and redistributing after substituting v̄j = (āj− ā1), v̂j = (âj− â1) where j = 2, . . . , n.

〈π̄k+1, v̄j〉 = 〈π̂k+1,−v̂j〉; j = 2, . . . , k, (3.51)

〈π̄k+1, v̄j〉 ≤ 〈π̂k+1,−v̂j〉; j = k + 1, . . . , n. (3.52)

Let’s deal with System (3.51) first. The left-hand side is a set of k − 1 linear

combinations of the k variables γ1, . . . , γk. The right-hand sides are constants which

we will denote by bj = 〈π̂k+1,−v̂j〉 for j = 2, . . . , k. This defines the following system
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with k − 1 equations and k variables.

k∑
`=1

v̄j`γ` = bj; j = 2 . . . , k. (3.53)

The left-hand side’s coefficients of System (3.53) is the (k − 1)× k matrix
v̄2

1 v̄2
2 . . . v̄2

k

...
...

. . .
...

v̄k1 v̄k2 . . . v̄kk


(k−1)×k

, (3.54)

which is obtained by truncating the full rank (k − 1)×m matrix (3.42). Therefore,

the affine set that they define has a single dimension. Hence it is a line. This result

demonstrates that a rotation is possible provided we can find a non-singular square

(k − 1)× (k − 1) matrix which is guaranteed to exist.

Let us go back to System (3.3 - 3.4). There are five possibilities for the set of

solutions to System (3.3 - 3.4):

1. The set is empty.

2. The set is a point.

3. The set is a complete line.

4. The set is a half-line.

5. The set is a line segment.

The first possibility can be excluded right out since there exists at least one

solution always; namely, the current supporting hyperplane with Sk in the support

set. This means there is at least one non-trivial solution. The second possibility can
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also be excluded, because the number of hyperplanes that contain a k-dimensional

face of a polytope in <m and is a supporting hyperplane for this polytope is infinity.

Recall that k ≤ m−1. The third possibility can be discarded too. If it were possible

then it would be possible to rotate 360◦ which is impossible when the original convex

hull has full dimension. The set of solutions to System (3.3 - 3.4) is either a line

segment with two endpoints or a half line in <k.

Fig. 27. depicts two Cases 4 and 5 when k = 2. In both figures the obtained

region by System (3.4) is shown with dark unbounded area R. The left hand side

figure shows how the obtained half-line v from System (3.3) intersects the boundary

of Region R at γ∗. If we set γ = γ∗, then the vector πk+1 corresponds to the normal

of the hyperplane H(πk+1, βk+1) such that Sk+1 contains Sk and one more point

from the point set A. This is Case 4. The right hand side figure shows how Case 5

happens. In this figure, the obtained line segment l from System (3.3) intersects the

boundary of Region R at two points γ∗1 and γ∗2 . If we set either γ = γ∗1 or γ = γ∗2 ,

then it yields two different vectors πk+1. Either of these two vectors πk+1 yields the

normal of the hyperplane H(πk+1, βk+1) that Sk+1 contains the set Sk and one more

point from the point set A.

The following two Examples 3.6 and 3.7 demonstrate how these two cases in <3

happen.

Example 3.6. Consider the point setA from Example 3.1,A = {a1 = (2, 8, 4)T , a2 =

(3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T}

in <3, and the supporting plane H(π2, 54) where π2 = (1, 1, 5)T , with S2 = {a3, a4}

in the support set.
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Fig. 27.: The left hand side figure demonstrates Case 4, and the right hand side

figure demonstrates Case 5 when k = 2.

Fig. 28. shows the supporting plane H(π2, 54) for con(A) in three views.

First, we define the new plane H(π3, β3) where π2 = (γ1, 1, γ2)T and β3 =

〈π3, a3〉. We next have one equation

〈π3, a4〉 = 〈π3, a3〉 =⇒ 4γ1 − γ2 = −1. (3.55)

There is a system with five inequalities and two variables:

〈π3, a1〉 ≤ 〈π3, a3〉 =⇒ −3γ1 − 5γ2 ≤ −4; (3.56)

〈π3, a2〉 ≤ 〈π3, a3〉 =⇒ −2γ1 − 8γ2 ≤ −3; (3.57)

〈π3, a5〉 ≤ 〈π3, a3〉 =⇒ −4γ1 − 6γ2 ≤ 2; (3.58)

〈π3, a6〉 ≤ 〈π3, a3〉 =⇒ 2γ1 − 4γ2 ≤ 3; (3.59)

〈π3, a7〉 ≤ 〈π3, a3〉 =⇒ γ1 − 7γ2 ≤ 1. (3.60)
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Fig. 28.: Three views of the supporting plane H(π2, 54) where π2 = (1, 1, 5)T for

con(A).

From System (3.55), we have γ1 = 1
4
γ2 − 1

4
. We therefore rewrite the system

of five inequalities as follow based on just one variable γ2: γ2 ≥ 19
23

; γ2 ≥ 7
17

; γ2 ≥

−1
7
; γ2 ≥ −1; γ2 ≥ − 5

27
. This generates 19

23
as an lower bound for γ2. If we set γ2 = 19

23
,

then we get γ1 = − 1
23

. The normal of the rotated plane is π3 = (−1, 23, 19)T ,

and β2 = 258. The plane H(π3, 258) is a supporting hyperplane for con(A) with

S2 = {a1, a3, a4} in the support set.

Fig. 29. shows the supporting plane H(π3, 258) for con(A) in three views.

Example 3.6 demonstrates Case 4. In Case 4, we can extract a second supporting

hyperplane in a rotation that its support set contains two points a3, a4. When we

reduce System (3.3 - 3.4) to one variable, wlog, γ1, if there exists just one bound

for γ1, then the biggest and smallest values of the right hand side of the system of

inequalities with one variable γ1, when the coefficient of the variable γ1 is one, are

used to find the normal of two rotated hyperplanes.

Assume from System (3.3), we obtain all variables γ2, . . . , γk based on the vari-
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Fig. 29.: Three views of the supporting plane H(π3, 258) where π3 = (−1, 23, 19)T

for con(A).

able γ1 and a constant:

γi = eiγ1 + fi; i = 2, . . . , k. (3.61)

If we rewrite System (3.4) based on just one variable γ1, then we have(aj1 − a
1
1) +

k∑
i=2

ei(a
j
i − a

1
i )

 γ1 ≤ −

 k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )

 ; j = k + 1, . . . , n.

(3.62)

If all the coefficients of the variable γ1 in System (3.62) be positive, then we have:

γ1 ≤ γ̄j; j = k + 1, . . . , n. (3.63)

where

γ̄j = −

k∑
i=2

fi(a
j
i − a1

i ) +
m∑

i=k+1

πki (aji − a1
i )

(aj1 − a1
1) +

k∑
i=2

ei(a
j
i − a1

i )

; j = k + 1, . . . , n. (3.64)
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Therefore, if we set:

γ1 = min
{
γ̄j; j = k + 1, . . . , n

}
, (3.65)

then we have a supporting hyperplane H(πk+1, βk+1), which contains a1, . . . , ak, at

where

t = argmin
{
γ̄j; j = k + 1, . . . , n

}
. (3.66)

The following theorem presents a way to find a second supporting hyperplane.

Theorem 3.4. If all the coefficients of the variable γ1 in System (3.62) are positive,

then the value for γ1 in System (3.64) obtained from

γ1 = max
{
γ̄j; j = k + 1, . . . , n.

}
(3.67)

defines a supporting hyperplane H(−πk+1, βk+1), which contains a1, . . . , ak, at where

t = argmax
{
γ̄j; j = k + 1, . . . , n.

}
(3.68)

Proof. We first show 〈−πk+1, at〉 = βk+1. We have;
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〈−πk+1, at〉 − 〈−πk+1, a1〉 = −
m∑
i=1

πk+1
i (ati − a1i )

= −γ1(at1 − a11)−
k∑
i=2

γi(a
t
i − a1i )−

m∑
i=k+1

πki (ati − a1i )

= −γ1(at1 − a11)−
k∑
i=2

(eiγ1 + fi)(a
t
i − a1i )−

m∑
i=k+1

πki (ati − a1i )

= −γ1

(at1 − a11) +
k∑
i=2

ei(a
t
i − a1i )

−
 k∑
i=2

fi(a
t
i − a1i ) +

m∑
i=k+1

πki (ati − a1i )



= −

−
k∑
i=2

fi(a
t
i − a1i ) +

m∑
i=k+1

πki (ati − a1i )

(at1 − a11) +

k∑
i=2

ei(a
t
i − a1i )


(at1 − a11) +

k∑
i=2

ei(a
t
i − a1i )



−

 k∑
i=2

fi(a
t
i − a1i ) +

m∑
i=k+1

πki (ati − a1i )


= 0. (3.69)

We therefore have 〈πk+1, at〉 = 〈πk+1, a1〉, and then 〈πk+1, at〉 = βk+1.

We further need to show all the points ak+1, . . . , an are located in a half space

defined by the hyperplane H(−πk+1, βk+1). We will show 〈−πk+1, aj〉 ≤ βk+1 for

j = k + 1, . . . , n. Recall that we have:

γ1 ≥ −

k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )

(aj1 − a11) +

k∑
i=2

ei(a
j
i − a

1
i )

=⇒ −γ1 ≤

k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )

(aj1 − a11) +

k∑
i=2

ei(a
j
i − a

1
i )

. (3.70)

Furthermore, we have

(aj1 − a1
1) +

k∑
i=2

ei(a
j
i − a1

i )

 > 0. We so have;
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〈−πk+1, aj〉 − 〈−πk+1, a1〉 = −γ1

(aj1 − a
1
1) +

k∑
i=2

ei(a
j
i − a

1
i )

−
 k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )



≤



k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )

(aj1 − a11) +

k∑
i=2

ei(a
j
i − a

1
i )


(aj1 − a

1
1) +

k∑
i=2

ei(a
j
i − a

1
i )



−

 k∑
i=2

fi(a
j
i − a

1
i ) +

m∑
i=k+1

πki (aji − a
1
i )


= 0. (3.71)

Then we conclude, 〈−πk+1, aj〉 ≤ 〈−πk+1, a1〉. So, 〈−πk+1, aj〉 ≤ βk+1, for j =

k + 1, . . . , n. �

In the following example, we find a second rotation for the hyperplane H(π2, 54)

in Example 3.6 by using the results of Theorem 3.4.

Example 3.7. According to Theorem 3.4, the other bound for γ2 in Example 3.6

is −1. So the hyperplane H(π3, 15) where π3 = (1,−2, 2)T , with S3 = {a3, a4, a6} in

the support set, supports con(A).

Fig. 30. shows con(A) and the plane H(π3, 15) in three views.

Another possibility in System (3.62) is that all the coefficients of the variable γ1

are negative, then we have:

γ1 ≥ γ̄j; j = k + 1, . . . , n. (3.72)
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Fig. 30.: Three views of the supporting plane H(π3, 15) where π3 = (1,−2, 2)T for

con(A).

So, if we set:

γ1 = max
{
γ̄j; j = k + 1, . . . , n.

}
(3.73)

defines a supporting hyperplane H(πk+1, βk+1), which contains a1, . . . , ak, at where

t = argmax
{
γ̄j; j = k + 1, . . . , n.

}
(3.74)

The following theorem presents a way to find a second supporting hyperplane

in this scenario.

Theorem 3.5. If all the coefficients of the variable γ1 in System (3.62) are negative,

then the value for γ1 in System (3.64) obtained from

γ1 = min
{
γ̄j; j = k + 1, . . . , n.

}
(3.75)
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defines a supporting hyperplane H(−πk+1, βk+1), which contains a1, . . . , ak, at where

t = argmin
{
γ̄j; j = k + 1, . . . , n.

}
(3.76)

Proof. The proof is similar to the proof of Theorem 3.4. �

Example 3.8 demonstrates this scenario. In this example we find both possible

of the rotated hyperplane by using Theorem 3.5. Example 3.8 is another possibility

in Case 4.

Example 3.8. Consider the point setA from Example 3.1,A = {a1 = (2, 8, 4)T , a2 =

(3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T}

in <3, and the supporting plane H(π2, 11) where π2 = (3, 1,−5)T , with S2 = {a2, a7}

in the support set.

Fig. 31. shows the supporting plane H(π2, 54) for con(A) in three views.

Fig. 31.: Three views of the supporting plane H(π2, 54) where π2 = (3, 1,−5)T for

con(A).

We define the new plane H(π3, β3) where π2 = (γ1, 1, γ2)T and β3 = 〈π3, a2〉.
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There are an equation and five inequalities and two variables. We solve this system

similar to Example 3.7, then we find an upper bound −6
5

for γ2.

If we set γ2 = −6
5
, then we get γ1 = 26

15
. The normal of the rotated plane is

π3 = (26, 15,−18)T , and β3 = 165. The plane H(π3, 165) is a supporting hyperplane

for con(A) with S3 = {a2, a4, a7} in the support set.

Fig. 32. shows the supporting plane H(π3, 165) for con(A) in three views.

Fig. 32.: Three views of the supporting plane H(π3, 165) where π3 = (26, 15,−18)T

for con(A).

If we use Theorem 3.5, then the second rotation hyperplane is obtained by

setting γ2 = 23
8

, then we get γ1 = 3
8
. So, the normal of the rotated plane is π3 =

(−3,−8,−23)T , and β3 = −88. The plane H(π3,−88) is a supporting hyperplane

for con(A) with S3 = {a2, a5, a7} in the support set.

Fig. 33. shows the supporting plane H(π3,−88) for con(A) in three views.

Two Examples 3.6 and 3.8 demonstrate how Case 4 can be happened.

Finally we show how Case 5 is possible. This case happens when some of the

coefficients of the variable γ1 in System (3.62) be positive, and are negative for others.
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Fig. 33.: Three views of the supporting plane H(π3,−88) where π3 = (−3,−8,−23)T

for con(A).

Example 3.8 shows an example of this case.

Example 3.9. Consider the point setA from Example 3.1,A = {a1 = (2, 8, 4)T , a2 =

(3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T}

in <3, and the supporting plane H(π2, 153) where π2 = (17, 16,−10)T , with S2 =

{a2, a4} in the support set.

Fig. 34. shows the supporting plane H(π2, 54) for con(A) in three views.

We define the new plane H(π3, β3) where π2 = (γ1, 16, γ2)T and β3 = 〈π3, a2〉.

There are an equation and five inequalities and two variables. We solve this system

similar to the last example, then we find −96
5
≤ γ2 ≤ −64

25
.
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Fig. 34.: Three views of the supporting plane H(π2, 54) where π2 = (17, 16,−10)T

for con(A).

If we set γ2 = −96
5

, then we get γ1 = 416
15

. The normal of the rotated plane is

π3 = (26, 15,−18)T , and β2 = 165. The plane H(π3, 165) is a supporting hyperplane

for con(A) with S2 = {a2, a4, a7} in the support set. Fig. 35. shows the supporting

plane H(π3, 165) for con(A) in three views.

Fig. 35.: Three views of the supporting plane H(π3, 165) where π3 = (26, 15,−18)T

for con(A).
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If we set γ2 = −64
25

, then we get γ1 = 208
25

. So, the normal of the rotated plane is

π3 = (13, 25,−4)T , and β2 = 210. The plane H(π3, 210) is a supporting hyperplane

for con(A) with S2 = {a1, a2, a4} in the support set. Fig. 36. shows the supporting

plane H(π3, 210) for con(A) in three views.

Fig. 36.: Three views of the supporting plane H(π3, 210) where π3 = (13, 25,−4)T

for con(A).

3.1.4 Procedure ARH pseudocode

Let a given point set A = {a1, . . . , an} and the supporting hyperplane H(πk, βk) in

<m. Assume, wlog, Sk = {a1, . . . , ak} where 1 ≤ k ≤ m−1. Procedure ARH to rotate

the hyperplane H(πk, βk) is as follows.

78



Procedure ARH

Input : The point set A = {a1, . . . , an} ∈ <m, a supporting hyperplane
H(πk, βk) with Sk = {a1, . . . , ak} in the support set where k < m.

Output: The supporting hyperplane H(πk+1, βk+1) with Sk+1 in the support set
that supports con(A) at a facet.

1 while (|Sk| < m) do
2 Define a hyperplane H(πk+1, βk+1) where πk+1 = (γ1, . . . , γk, π

k
k+1, . . . , π

k
m).

Note, wlog, all πkk+1, . . . , π
k
m cannot be zero together;

3 Construct System (3.3), then find all the variables γ2, . . . , γk in terms of γ1;
4 Construct System (3.4) in terms of just one variable γ1;
5 Identify a bound for γ1 from System (3.4);
6 Set the value of the variable γ1 to the obtained bound, then find the values of

all the variables γ2, . . . , γk;

7 Set πk = πk+1;
8 Update Sk by adding the new extreme point that is on the rotated hyperplane;

9 end

10 Calculate βk+1 = 〈πk+1, a1〉;

The set Sk+1 has at least m extreme points of con(A). Therefore the dimension

of the face that contains these m points is m− 1, so this hyperplane contains a facet

of con(A).

Five observations about Procedure ARH are as follows:

Remark 1. There is no equation in System (3.3 - 3.3) if the support set of the

hyperplane H(πk, βk) contains just a single point.

Remark 2. In all cases, the number of equalities and inequalities is always n − 1,

whereas the number of variables depends on the dimension of the point set Sk, and

is equal to k.

Remark 3. Procedures ARH and FRH can be initialized by a supporting hyperplane
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H(π̃, β̃) for con(A) in <m where

π̃ = 1̄, and β̃ = max


m∑
i=1

aji

∣∣∣ aj ∈ A
 . (3.77)

We have π̃ = (1, . . . , 1)T , so the supporting hyperplane H(π̃, β̃) contains a point from

A in which the sum of its elements is greater than the sum of the elements of any

other point in A.

Remark 4. Procedures ARH can be used to find a starting point (in the initial

tableau) in dual simplex.

Remark 5. On the complexity of Procedures ARH, if the support set of the first

supporting hyperplane has a single point from A, then one overall needs to solve

(2n−m)(m−1)
2

minimum and maximum ratio tests, and a system of (m−1)(m−2)
2

equations

to find the final supporting hyperplane.

3.1.5 Example: Using Procedure ARH to rotate a plane in <3

Consider the point set A from Example 3.1, A = {a1 = (2, 8, 4)T , a2 = (3, 7, 1)T , a3 =

(5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T} in <3, and the

supporting plane H(π1, 22) where π1 = (1, 1, 1)T , with the support set S1 = {a4}.

This plane and con(A) are shown in three views in Fig. 37.

We rotate this plane by applying Procedure ARH. To do that, we first define the

plane H(π2, β2) where π2 = (γ1, 1, 1)T , and β2 = 〈π2, a4〉. Here k = 1, so System

(3.3 - 3.4) has no equation. We thus have a system with six inequalities and a single

variable:
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Fig. 37.: Three views of the supporting plane H(π1, 22) where π1 = (1, 1, 1)T for

con(A).

γ1 ≥ −
〈π̂2, â1〉 − 〈π̂2, â4〉

a1
1 − a4

1

= −12− 13

2− 9
=⇒ γ1 ≥ −

1

7
; (3.78)

γ1 ≥ −
〈π̂2, â2〉 − 〈π̂2, â4〉

a2
1 − a4

1

= −8− 13

3− 9
=⇒ γ1 ≥ −

5

6
; (3.79)

γ1 ≥ −
〈π̂2, â3〉 − 〈π̂2, â4〉

a3
1 − a4

1

= −13− 13

5− 9
=⇒ γ1 ≥ 0; (3.80)

γ1 ≥ −
〈π̂2, â5〉 − 〈π̂2, â4〉

a5
1 − a4

1

= −5− 13

1− 9
=⇒ γ1 ≥ −1; (3.81)

γ1 ≥ −
〈π̂2, â6〉 − 〈π̂2, â4〉

a6
1 − a4

1

= −6− 13

7− 9
=⇒ γ1 ≥ −

7

2
; (3.82)

γ1 ≥ −
〈π̂2, â7〉 − 〈π̂2, â4〉

a7
1 − a4

1

= −5− 13

6− 9
=⇒ γ1 ≥ −

8

3
. (3.83)

This generates a bound 0 for γ1: γ1 ≥ 0.

If we set γ1 = 0, then we get the hyperplane H(π2, β2) where π2 = (0, 1, 1)T ,

and β2 = 13. The support set for this hyperplane contains S2 = {a3, a4}. Fig. 38.

shows con(A) and the hyperplane H(π2, 13) in three views.
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Fig. 38.: Three views of the supporting plane H(π2, 13) where π2 = (0, 1, 1)T for

con(A).

One more rotation is needed to get a facet of con(A). To do so, we define the

planeH(π3, β3) where π3 = (γ1, γ2, 1)T , and β3 = 〈π3, a4〉. There exists one equation:

〈π3, a3〉 = 〈π3, a4〉 =⇒ γ2 = −4γ1 + 1. (3.84)

Here k = 2 and n = 7, so there are five inequalities:

〈π3, a1〉 ≤ 〈π3, a4〉 =⇒ −7γ1 + 3γ2 ≤ 4; (3.85)

〈π3, a2〉 ≤ 〈π3, a4〉 =⇒ −6γ1 + 2γ2 ≤ 7; (3.86)

〈π3, a5〉 ≤ 〈π3, a4〉 =⇒ −8γ1 − 3γ2 ≤ 5; (3.87)

〈π3, a6〉 ≤ 〈π3, a4〉 =⇒ −2γ1 − 4γ2 ≤ 3; (3.88)

〈π3, a7〉 ≤ 〈π3, a4〉 =⇒ −3γ1 − 2γ2 ≤ 6. (3.89)

If we use the obtained γ2 from (3.84) in these five inequalities, then we get

five inequalities in terms of just the variable γ1 and a constant as follows: γ1 ≥

− 1
19
, γ1 ≥ − 5

14
, γ1 ≤ 2, γ1 ≤ 1

2
, γ1 ≤ 8

5
. This generates the following bounds for γ1;
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− 1
19
≤ γ1 ≤ 1

2
.

If we set γ1 = − 1
19

, then from (3.84), we get γ2 = 23
19

. It yields the planeH(π3, β3)

where π3 = (−1, 23, 19)T , and β3 = 258. The support set for this hyperplane includes

S3 = {a1, a3, a4}.

The hyperplane H(π3, 258) and con(A) in three views are shown in Fig. 39.

Fig. 39.: Three views of the supporting plane H(π3, 258) where π3 = (−1, 23, 19)T

for con(A).

If we set γ1 = 1
2
, then from (3.84), we get γ2 = −1. It yields the plane H(π3, β3)

where π3 = (1, 2, 2)T , and β3 = 15. The support set for this hyperplane includes

S3 = {a3, a4, a6}.

The hyperplane H(π3, 15) and con(A) in three views are shown in Fig. 40.
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Fig. 40.: Three views of the supporting plane H(π3, 15) where π3 = (1, 2, 2)T for

con(A).

3.2 Procedure Full Rotation Hyperplane (FRH)

In the previous section we introduced Procedure ARH to rotate a supporting hyper-

plane for the convex hull of a finite point set from a k-dimensional face to another

face with one more dimension. Recall that both faces share k extreme points and the

landing face has one additional extreme point. In this section we present a procedure

to rotate a supporting hyperplane containing k extreme points that will land directly

on a facet.

Recall that we assumed, the initial support set for the hyperplane H(πk, βk),

wlog, includes Sk = {a1, . . . , ak}, and Sk+1 of the rotated hyperplane H(πk+1, βk+1)

must contain Sk. We rotate the supporting hyperplane H(πk, βk) such that its inter-

section with con(A) is a facet and it contains at least m extreme points of the set A,

regardless of the dimension of its initial support set. To do this, we define the hyper-

plane H(πk+1, βk+1) where βk+1 = 〈πk+1, a1〉. πk and πk+1 will share one component.

This component must be non-zero; the rest of the component will be variables. This
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component must be non-zero. Assume, wlog, πkm is this common element. Next, we

define πk+1 = (γ1, . . . , γm−1, π
k
m) with m − 1 scalar variables γ1, . . . , γm−1. The k

extreme points in the initial support set Sk will remain in the final rotation. This

defines the following k equations:

〈πk+1, aj〉 = 〈πk+1, a1〉; j = 2, . . . , k. (3.90)

The remaining points ak+1, . . . , an will be located in the halfspace defined by

the hyperplane H(πk+1, βk+1). This defines the following inequalities:

〈πk+1, aj〉 ≤ 〈πk+1, a1〉; j = k + 1, . . . , n. (3.91)

System (3.90 - 3.91) defines a polyhedral feasible region in <m−1 with as many

dimensions as the affine set defined by the solutions to System (3.90). Similar to

System (3.3 - 3.4), it is the intersection of an affine set and a polyhedron defined by

the intersection of halfspaces.

Similar arguments as those in the previous section can be used to show affine set

has full dimension. So, the set of solutions to System (3.90 - 3.91) is not empty and

must contain an infinity of points. The set of feasible solutions to system System

(3.90 - 3.91) is a m− k− 1-dimensional polyhedral set with, possibly, a multitude of

extreme points. The next result establishes that an extreme point of this set defines

a facet of con(A).

Theorem 3.6. An extreme point solution to System (3.90 - 3.91) defines the normal

of a supporting hyperplane for a facet of con(A).

Proof. Recall that the current supporting hyperplane with Sk in the support set is
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a non-trivial solution to System (3.90 - 3.91). So, System (3.90 - 3.91) is non-empty.

We rewrite System (3.90) as follows:

〈πk+1, aj〉 − 〈πk+1, a1〉 = 0; j = 2, . . . , k. (3.92)

This system has k−1 equations. We use similar arguments as those used in Theorem

?? to show that the (k− 1)× (m− 1) matrix of the coefficients of System (3.92) has

full rank.

System (3.90 - 3.91) defines a polyhedral region in <m−1. It is the intersection of

an (m− k)-dimensional affine set defined by System (3.90) with the m-dimensional

polyhedron defined by the feasible points in System (3.91). This itself is a polyhedron

with m− k dimensions. This polyhedron has extreme points which occur where the

affine set intersects the boundary of the polyhedron defined by System (3.91). This

intersection is a point where m−k independent hyperplanes of the polyhedron defined

by System (3.91) meet. There are many ways this can happen since there are n− k

inequalities System (3.91) and they are all independent by our assumptions. Such a

point would be extreme to System (3.90 - 3.91). Its components are the normal of

a supporting hyperplane where the number of extreme points of the convex hull in

the support is at least m and hence a facet. �

We use Theorem 3.6 to formulate the following LP for rotating a supporting
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hyperplane H(πk, βk) on the convex hull of the point set A.

max
γ1,...,γm−1

n∑
j=k+1

〈π̄k+1, āj − ā1〉 FRH LP (3.93)

s.t. 〈πk+1, aj〉 = 〈πk+1, a1〉; j = 2, . . . , k,

〈πk+1, aj〉 ≤ 〈πk+1, a1〉; j = k + 1, . . . , n,

where truncated normal π̄k+1 = (γ1, . . . , γm−1)T , and truncated point āj = (aj1, . . . , a
j
m−1)T

for j = 1, . . . , n. FRH LP has m− 1 variables and n− 1 constraints.

Recall that FRH LP is not empty. If the optimal value γ∗1 , . . . , γ
∗
m−1 of FRH LP is

feasible and bounded, then the hyperplaneH(πk+1, βk+1) where πk+1 = (γ∗1 , . . . , γ
∗
m−1, π

k
m)T

corresponds to a supporting hyperplane for con(A) with the (m−1)-dimensional sup-

port set. In the following theorem, we prove that the optimal value of FRH LP is

bounded, so this procedure addresses the rotated hyperplane to a desired hyperplane.

Theorem 3.7. The optimal value of FRH LP is bounded.

Proof. We rewrite FRH LP as follows:

max
γ1,...,γm−1

m−1∑
i=1

 n∑
j=k+1

(aji − a1
i )

 γi (3.94)

s.t.
m−1∑
i=1

(aji − a1
i )γi = −(ajm − a1

m); j = 2, . . . , k,

m−1∑
i=1

(aji − a1
i )γi ≤ −(ajm − a1

m); j = k + 1, . . . , n.
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The dual of FRH LP is:

min
λ2,...,λn

−
n∑
j=2

(ajm − a1
m)λj (3.95)

s.t.
n∑
j=2

(aji − a1
i )λj =

n∑
j=k+1

(aji − a1
i ); i = 1, . . . ,m− 1,

λj ≥ 0; j = k + 1, . . . , n.

LP formulation (3.95) is feasible if we set λj = 0 for j = 2, . . . , k, and λj = 1

for j = k + 1, . . . , n. Therefore, based on weak duality theorem, FRH LP is feasible

and bounded. �

3.2.1 Procedure FRH pseudocode

Consider a given point setA = {a1, . . . , an} and the supporting hyperplaneH(πk, βk)

in <m. Assume, wlog, Sk = {a1, . . . , ak} where 1 ≤ k ≤ m − 1. Procedure FRH to

rotate the hyperplane H(πk, βk) is as follows.

Procedure FRH

Input : The point set A = {a1, . . . , an} ∈ <m, a supporting hyperplane
H(πk, βk) with Sk in the support set where |Sk| = k < m.

Output: The supporting hyperplane H(πk+1, βk+1) with Sk+1 in the support set
that supports con(A) at a facet.

1 Define the hyperplane H(πk+1, βk+1) where πk+1 = (γ1, . . . , γm−1, π
k
m)T . Note,

wlog, πkm 6= 0;
2 Find optimal basic feasible solution to LP (3.93), and suppose the optimum

solution of the variables are γ∗1 , . . . , γ
∗
m−1;

3 Set πk+1 = (γ∗1 , . . . , γ
∗
m−1, π

k
m)T ;

4 Calculate βk+1 = 〈πk+1, a1〉;
5 Find out Sk+1;

The support set Sk+1 includes at least m extreme points of con(A). Therefore
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the dimension of the face that contains these m points is m− 1, so this hyperplane

contains a facet of con(A).

Three observations about Procedure FRH are as follows:

Remark 1. There are no equations in System (3.90 - 3.91) if the support set of the

hyperplane H(πk, βk) contains just a single point.

Remark 2. In LP (3.93), the different objective functions may define different

facets. Individual inequalities or groups, can be the source for different objective

functions.

Remark 3. On the complexity of Procedures FRH, one needs to solve an LP with

m− 1 variables and n− 1 constraints for finding the final supporting hyperplane.

3.2.2 Example: Using Procedure FRH to rotate a plane in <3

Use the point set A from Example 3.1, A = {a1 = (2, 8, 4)T , a2 = (3, 7, 1)T , a3 =

(5, 4, 9)T , a4 = (9, 5, 8)T , a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T} in <3, and

consider the supporting plane H(π1, 22) where π1 = (1, 1, 1)T , with the support set

S1 = {a4}.

This plane and con(A) are shown in three views in Fig. 41.

We rotate this plane by applying Procedure FRH such that its intersection with

con(A) contains at last three points of the set A. To do so, we define the plane

H(π2, β2) where π2 = (γ1, γ2, 1)T and β2 = 〈π2, a4〉. We need to solve LP:
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Fig. 41.: Three views of the supporting plane H(π1, 22) where π1 = (1, 1, 1)T for

con(A).

max
γ1,γ2

− 30γ1 − 5γ2 (3.96)

s.t. − 7γ1 + 3γ2 ≤ 4,

− 6γ1 + 2γ2 ≤ 7,

− 4γ1 − γ2 ≤ −1,

− 8γ1 − 3γ2 ≤ 5,

− 2γ1 − 4γ2 ≤ 3,

− 3γ1 − 2γ2 ≤ 6.

Notice that the objective function here is constructed by adding the six inequal-

ities. By solving this LP, we get the optimal solution γ∗1 = − 1
19

and γ∗2 = 23
19

. Hence

we get the plane H(π2, 258) where π2 = (−1, 23, 19)T . This plane contains the points

a1, a2, a4. Fig. 42. shows this rotation.
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Fig. 42.: Three views of the supporting plane H(π2, 258) where π2 = (−1, 23, 19)T

for con(A).

3.3 Procedure Facet To Facet (FTF)

We introduce a procedure to rotate a supporting hyperplane for con(A) to get an-

other supporting hyperplane where the support sets of the initial and the rotated

hyperplanes are two adjacent facets of con(A). We refer to this as facet to facet

rotation.

If a hyperplane contains a facet of con(A), then it contains m points of the point

setA. Recall that we assumed there is no degenerate facet. Moreover, two supporting

hyperplanes for con(A) that contain two adjacent facets, have m− 1 points of A in

common. Indeed, the intersection of these two supporting hyperplanes, contains a

face of con(A). The dimension of this face for con(A) is m− 2. Therefore, this face

has m− 1 points of A. So, a hyperplane containing a facet of con(A) can be rotated

in such a way that the new hyperplane will share m − 1 extreme points of A and

land in a different facet.
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The first hyperplane can be calculated knowing the m extreme points of the

support facet. The second hyperplane follows from deciding which extreme point

will be replaced in the support set and identifying its replacement. The replacement

is determined by a minimum ratio calculation. The algebraic derivation has been

relegated to Appendix A.

3.3.1 Procedure FTF pseudocode

Procedure FTF for a given point set A and supporting hyperplane H(π1, β1) in <m

is as follows.

Procedure FTF
Input : The point set A = {a1, . . . , an} ∈ <m, a supporting hyperplane H(π1, β1), and, wlog,

S1 = {a1, . . . , am−1, am} in the support set that supports con(A) at a facet.
Output: The supporting hyperplane H(π2, β2) with S2 = {a1, . . . , am−1, ak} in the support set where ak

is one of the points am+1, . . . , an. This hyperplane supports con(A) at an adjacent facet with
the facet that is contained by the hyperplane H(π1, β1).

1 Define System 〈π, aj〉 = 1; for j = 1, . . . ,m− 1 where π = (γ1, . . . , γm)T ;
2 Find the variables γ2, . . . , γm in terms of the variable γ1 from this system of equations;

3 Define System 〈π, aj〉 ≤ 1; j = m, . . . , n;
4 Rewrite this system of inequalities based on one variable γ1 and a constant for each inequalities;

5 Solve this system of inequalities to find a lower bound γl1 and an upper bound γu1 for γ1;

6 Set γ1 = γl1, find the values of the variables γ2, . . . , γm, and name them γl2, . . . , γ
l
m. Then define the

hyperplane H(πl, 1) where πl = (γl1, γ
l
2, . . . , γ

l
m)T ;

7 Set γ1 = γu1 , find the value of the variables γ2, . . . , γm, and name them γu2 , . . . , γ
u
m. Then define the

hyperplane H(πu, 1) where πu = (γu1 , γ
u
2 , . . . , γ

u
m)T ;

8 The intersection of each hyperplanes H(πl, 1) and H(πu, 1) with con(A) is a facet of con(A) such that

these two facets are adjacent. One of these two hyperplanes H(πl, 1) and H(πu, 1) is exactly the
hyperplane H(π1, 1), and other one is the rotated of the hyperplane H(π1, 1) that we name it H(π2, 1);

Two observations about Procedure FTF are as follows:

Remark 1. In all cases, the number of equations is m−1, the number of inequalities

is n−m+ 1, and the number of variables is m.

Remark 2. On the complexity of Procedures FTF, one needs to do one pivot that

has (n−m+1) minimum and maximum ratio tests, and a system of (m−1) equations
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to find the final supporting hyperplane.

3.3.2 Example: Using Procedure FTF to rotate a plane in <3

Let the point set A = {a1 = (2, 8, 4)T , a2 = (3, 7, 1)T , a3 = (5, 4, 9)T , a4 = (9, 5, 8)T ,

a5 = (1, 2, 3)T , a6 = (7, 1, 5)T , a7 = (6, 3, 2)T} in <m from Example 3.1, and the

supporting plane H(π1, 258) where π1 = (−1, 23, 19)T , with S1 = {a1, a3, a4} in the

support set. This plane and con(A) are shown in three views in Fig. 43.

Fig. 43.: Three views of the supporting plane H(π1, 258) where π1 = (−1, 23, 19)T

for con(A).

We define a family of a hyperplane H(π, 1) where π = (γ1, γ2, γ3)T such that a1

and a3 are always in the its support set. Then, we have

2γ1 + 8γ2 + 4γ3 = 1, (3.97)

5γ1 + 4γ2 + 9γ3 = 1. (3.98)

We can solve this system of two equations to get γ2 and γ3 in terms of γ1 and a
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constant value as follows.

γ2 =
1

28
γ1 +

5

56
; (3.99)

γ3 = −4

7
γ1 +

1

14
. (3.100)

From (A.12), for five points a2, a4, a5, a6, and a7 below the first hyperplane, we

have:

3γ1 + 7(
1

28
γ1 +

5

56
) + (−4

7
γ1 +

1

14
) ≤ 1 =⇒ γ1 ≤

17

150
; (3.101)

9γ1 + 5(
1

28
γ1 +

5

56
) + 8(−4

7
γ1 +

1

14
) ≤ 1 =⇒ γ1 ≤ −

1

258
; (3.102)

γ1 + 2(
1

28
γ1 +

5

56
) + 3(−4

7
γ1 +

1

14
) ≤ 1 =⇒ γ1 ≥ −

17

18
; (3.103)

7γ1 + (
1

28
γ1 +

5

56
) + 5(−4

7
γ1 +

1

14
) ≤ 1 =⇒ γ1 ≤

31

234
; (3.104)

6γ1 + 3(
1

28
γ1 +

5

56
) + 2(−4

7
γ1 +

1

14
) ≤ 1 =⇒ γ1 ≤

33

278
. (3.105)

This generates the following bounds for γ1:

−17

18
≤ γ1 ≤ −

1

258
. (3.106)

So we have this lower bound, a minimum ratio, γl1 = −17
18

. This value γl1 is used

to calculate the other two unknowns using System (3.99 - 3.100) to get γl2 = 1
18

, and

γl3 = 11
18

. The new point is a5 which along with the a1 and a3 define the landing

facet. We can think of the two points common to both supporting hyperplanes as

the “hinge” of this rotation. The level of this hyperplane is 1. This hyperplane is

different from the starting supporting hyperplane H(π1, β1). We have the obtained

hyperplane H(π2, β2) where π2 = (−17, 1, 11)T and β2 = 18, and its support set

94



includes S2 = {a1, a3, a5}. This plane and con(A) are shown in three views in Fig.

44.

Fig. 44.: Three views of the supporting plane H(π2, 18) where π2 = (−17, 1, 11)T for

con(A).

The upper limit of γ1 from (3.106) is γu1 = − 1
258

, with this we get γu2 = 23
258

, and

γu3 = 19
258

. The level of this hyperplane is also one. This is the the original starting

hyperplane H(π1, 258).

Theorem 3.8. Procedure FTF is equivalent to a dual simplex pivot.

Proof. The proof has been relegated to Appendix A. �

3.4 Conclusion

In this chapter we presented three procedures to rotate a supporting hyperplane on

the convex hull of a finite point set.

We presented Procedure ARH that relies on linear algebra operations to rotate

a supporting hyperplane on the convex hull of a point set in <m such that the

dimension of the support set for this initial hyperplane is fewer than m − 1. The
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support set for the rotated supporting hyperplane increases one at a time at each

iteration. Therefore a facet will be reached in m − k iterations if the dimension of

the starting support face is k.

In second procedure Procedure FRH. Consider a supporting hyperplane for the

convex hull of a point set A. This hyperplane contains a face of con(A). The

dimension of this face for con(A) is from 0 to m− 1. Similar to Procedure ARH, this

procedure is applied to rotate a supporting hyperplane on the convex hull of a point

set in <m when the dimension of the support set for this hyperplane is fewer than

m − 1. To do so, we formulate an LP to find the normal and level of the rotated

hyperplane. In just one iteration, the rotated hyperplane contains the convex hull’s

facet of the point set.

The last procedure was Procedure FTF. Unlike Procedures ARH and FRH, this

procedure is applied to rotate a supporting hyperplane when the dimension of the

support set is m that is a facet. This procedure uses just linear algebra operations.

It was interesting to note how Procedure FTF is related to a dual simplex pivot.

Table 1 shows the complexity of three Procedures ARH, FRH, and FTF.

System of equations Min/Max ratio tests Pivot
LP

Variables Constraints

ARH
(m−1)(m−2)

2
(2n−m)(m−1)

2
- - -

FRH - - - m-1 n-1

FTF - - 1 - -

Table 1.: On the complexity of three Procedures ARH, FRH, and FTF.
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CHAPTER 4

SNUG CIRCUMSCRIBING
SIMPLEXES

When the number of the extreme points is more than m+1 in m dimensions, finding

the facets of the convex hull of a point set is sometimes necessary and always hard,

certainly as the number of points and dimensions increases. There are many proce-

dures to find a polytope that contains the point set, although it might not be exactly

the convex hull of the point set. For a full dimensional polytope in m dimensions,

the minimum number of facets that contain a point set is m+ 1. Such a polytope is

a simplex. Finding the facets of a simplex given its m+ 1 extreme points is easy as

is the reverse; i.e. finding the extreme points of a simplex defined by the intersection

of m+ 1 halfspaces.

The goal of this part of the dissertation is to construct a special simplex that

contains a given point set. These simplexes will contact a specified number of facets of

the convex hull being enclosed. This is why they are referred to as “snug”. To achieve

this, we will use what we developed about rotating hyperplanes in the previous

chapter.
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We present three procedures to find a circumscribing simplex with special prop-

erties for a given point set. This simplex is named snug circumscribing simplex,

because at least m facets of this simplex contain m facets of the convex hull of the

given point set.

The first two procedures are Axis Rotation Snug ARS and Full Rotation Snug

FRS, and these are based on the supporting hyperplane rotation ideas from Chapter 3.

These two Procedures ARS and FRS are initialized by generating a simple large simplex

that contains the point set A. We refer to this initializing simplex as PreSnug. We

explain how to find PreSnug in the next section. After generating PreSnug, we rotate

its facets, one at a time, until they intersect with a facet of con(A). We do this for

m facets only. To do this, we use Procedures ARH and FRH from the previous chapter

respectively for two Procedures ARS and FRS. Procedure FTF to rotate from one facet

to another will be used in the event of duplication. One more step will be needed to

complete the simplex by generating its m+1st facet. To do this we apply a procedure

based on the result of Boundedness Theorem.

The third snug simplex procedure is BreakOut Simplex BOS. The first step of

Procedure BOS finds m different facets of con(A). Then, by using Boundedness

Theorem, we find the last facet. These m + 1 facets correspond to our desired

containment simplex.

4.1 Generating initializing simplex: PreSnug

The first two Procedures ARS and FRS, require an initializing circumscribing simplex.

This is the purpose of PreSnug. To find a snug circumscribing simplex for a given
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point set A, first we generate a large but simple simplex to contain A. Then we

translate its facets until they make contact the point set.

Consider the m hyperplanes each with the negative unit direction as its normal

and with a large enough value for its level. We generate another hyperplane with

normal 1̄, with a large enough value for its level such that all the points are in the

halfspace defined by this hyperplane. These m + 1 hyperplanes are translated until

they make contact the point set. These m+1 hyperplanes correspond to m+1 facets

of PreSnug. Any m combinations of these m + 1 hyperplanes intersect at a single

point. These m+ 1 points correspond to the PreSnug simplex.

More formally, the first m hyperplanes of PreSnug areH(πi, βi) for i = 1, . . . ,m,

where

πik =


−1; if i = k

0; otherwise

, βi = − min

{
aji

∣∣∣ aj ∈ A} , (4.1)

and the last hyperplane is H(πm+1, βm+1) where

πm+1 = 1̄, βm+1 = max


m∑
i=1

aji

∣∣∣ aj ∈ A
 . (4.2)

A point set in <2 and its Presnug are shown in Fig. 45.
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Fig. 45.: A point set in <2 and its Presnug.

4.2 Generating a snug circumscribing simplex with

Procedures ARS or FRS

After either of the two Procedures ARH and FRH are initialized with PreSnug. The

m PreSnug’s facets get rotated by applying Procedures ARH and FRH respectively.

As needed, we will apply Procedure FTF to make sure different facets of con(A)

are identified. We demonstrate the details of these two procedures in the next two

sections.

Recall that, we assumed no two facets of con(A) are parallel. After generating

m snug’s facets, we can solve the following system of equations to find their common

extreme point. Assume m different hyperplanes H(πi, βi) for i = 1, . . . ,m contain

the first m snug’s facets. So we have:

〈πi, y〉 = βi; i = 1, . . . ,m. (4.3)

100



To find the last facet of the snug circumscribing simplex, we solve Boundedness

LP. We use the following two theorems to define Boundedness LP.

Theorem 4.1 (Boundedness Theorem). Consider m linearly independent vectors

d1, . . . , dm in <m. If dm+1 = −
m∑
i=1

diµi, where µi > 0 for i = 1, . . . ,m, then the

positive hull of these m+ 1 vectors defines <m.

Proof. Let A = [d1 d2 . . . dm+1], and assume there exists some b in < such that
m+1∑
i=1

diµi = b has no solution where µi ≥ 0 for i = 1, 2, . . . ,m + 1, therefore the

system {Aµ = b, µ ≥ 0} has no solution. According to Farkas’ Lemma, the system

{πA ≥ 0, πb < 0} must have a solution. So we have

〈π, dm+1〉 ≥ 0 =⇒
〈
π,−

m∑
i=1

diµi

〉
≥ 0 (4.4)

=⇒
m∑
i=1

µi〈π, di〉 ≤ 0. (4.5)

On the other hand, since d1, d2, . . . , and dm are linearly independent vectors, at

least for some k ∈ {1, 2, . . . ,m}, 〈π, dk〉 > 0, therefore
m∑
i=1

〈π, di〉 > 0 and we know

µ > 0, so
m∑
i=1

µi〈π, di〉 > 0. This is a contradiction. �

Theorem 4.2 (Full Body Theorem). Consider a point set G = {g1, . . . , g`} in

<m, and a polyhedron P = {y | 〈gj, y〉 ≤ bj; j = 1, . . . , `}. The polyhedron P is

bounded if and only if the positive hull of the point set G spans <m.

101



Proof. First we prove that if the positive hull of the point set G defines <m

(pos(g1, . . . , g`) = <m), then the polyhedron P is bounded. When pos(g1, . . . , g`) =

<m, it is equivalent to the system of equations {∀b ∈ <m :
∑̀
j=1

gjµj = b | µj ≥

0; j = 1, . . . , `}, which is equivalent to {∀b ∈ <m : Aµ = b | µ ≥ 0}, where

A = [g1 . . . g`] and µ = [µ1 . . . µ`]
T . This system has a solution, so based on Farkas’

Lemma, the system {∀y ∈ <m : ATy ≥ 0, bTy < 0} has no solution. Recall that,

the polyhedron P is bounded if and only if there does not exist a solution for the

system {ATy ≤ 0, y 6= 0}. In the system {∀y ∈ <m : ATy ≥ 0, bTy < 0}, y = 0 is

the only solution to ATy ≥ 0. Since, otherwise there exists some b such that bty < 0.

It means System {〈gj, y〉 ≤ bj; j = 1, . . . , `} is bounded.

To prove the reverse direction, consider when obtained polyhedron by system

{〈gj, y〉 ≤ bj; j = 1, . . . , `} is bounded, then the homogeneous system {ATy ≤ 0, y 6=

0} has no solution. According to Farkas’ Lemma, the system {∀b ∈ <m : Aµ = b |

µ ≥ 0} has a solution. Therefore, pos(g1, . . . , g`) = <m. �

To get the last facet of the snug circumscribing simplex, we define a hyper-

plane H(π, β). The points a1, . . . , an should be located in a halfspace defined by the

hyperplane H(π, β). So, wlog, we have the inequalities

〈π, aj〉 ≤ β; j = 1, . . . , n. (4.6)

We need to assure all m + 1 hyperplanes correspond to m + 1 facets of a full

dimension polytope (simplex) in <m. Thus, according to Boundedness Theorem, we
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need to have

π = −
m∑
i=1

πiµi, (4.7)

where µi ≥ ε for i = 1, . . . ,m, and small positive value ε.

The optimal solution of the following LP corresponds to a new hyperplane

H(πm+1, βm+1) that contains the last facet of the final simplex.

max
π∈<m,
µ∈<m,β

n∑
j=1

(
〈π, aj〉 − β

)
Boundedness LP

s.t. 〈π, aj〉 ≤ β; j = 1, . . . , n,

π = −
m∑
i=1

πiµi,

µi ≥ ε; i = 1, . . . ,m.

There are overall 2m + 1 variables π1, . . . , πm, β, µ1, . . . , µm, and 2m + n con-

straints. In the next theorem, we prove that how this LP derives the desired results.

Theorem 4.3 (Boundedness LP Theorem). The optimal solution π and β of

Boundedness LP corresponds to the normal and the level of a supporting hyperplane

for con(A) being the last facet of the final simplex.

Proof. Boundedness LP is feasible if we set π = − 1
m

m∑
i=1

πi, β = max {〈− 1
m

m∑
i=1

πi, aj〉 |

j = 1, . . . , n}, and µi = 1
m

for i = 1, . . . ,m. Notice that the normal of the obtained

hyperplane in this feasible solution is the negative barycenter of the obtained cone

from the normals of the m hyperplanes H(πi, βi) for i = 1, . . . ,m.

Zero is an upper bound for Boundedness LP. To indicate this, it is enough to
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sum all inequalities of the first set of the constraints. �

Boundedness LP has 2m + 1 variables. So, its optimal solution has at least

2m+ 1 binding constraints. Boundedness LP has three sets of the constraints. The

second and third sets of the constraints have 2m constraints together. Therefore

at least one constraint from the first set of the constraints is binding. We conclude

that the obtained hyperplane makes contact with con(A). This hyperplane definitely

contains a face of con(A). This contained face may be a facet of con(A).

There is an important observation in Boundedness LP that we are able to find

the last facet of snug circumscribing simplex without using an LP as follows:

Remark. If we set π = − 1
m

m∑
i=1

πi, β = max {〈− 1
m

m∑
i=1

πi, aj〉 | j = 1, . . . , n}, and

µi = 1
m

for i = 1, . . . ,m, then we have a feasible solution the Boundedness LP that

yields a bounded simplex.

We prefer to use the optimal solution to the Boundedness LP, because of the

hope that the last supporting hyperplane will support the convex hull at a higher

dimensional face.

4.3 Procedure Axis Rotation Snug (ARS)

The first step of this procedure is to generate PreSnug. Assume the m+1 hyperplanes

H(πi, βi), i = 1, . . . ,m+ 1, contain the m+ 1 facets of PreSnug.

The next step is to apply Procedure ARH to rotate m hyperplanes of these m+ 1

hyperplanes until they make contact m facets of con(A). We check for duplicate

facets after each rotation. If there exists a duplicate facet, we perform Procedure

FTF and rotate to an adjacent facet. We do this until the duplication is gone. The
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m rotated hyperplanes that contain m different facets of con(A), correspond to m

facets of a snug circumscribing simplex.

The last step is to construct Boundedness LP to find the last facet of the snug

circumscribing simplex.

4.3.1 Procedure ARS pseudocode

Finding a snug circumscribing simplex by using Procedure ARS for a given point set

is as follows.

Procedure ARS

Input : A point set A = {a1, . . . , an} ∈ <m.
Output: A snug circumscribing simplex for A.

1 Generate PreSnug: Assume PreSnug’s facets are contained by the hyperplanes
H(πi, βi) with Si in the support set for i = 1, . . . ,m+ 1;

2 for i← 1 to m do
3 Use Procedure ARH to rotate H(πi, βi) on a facet of con(A);
4 Update Si;
5 Set j = 1;
6 while (j < i) do
7 if

(
H(πi, βi) ≡ H(πj , βj)

)
then

8 Use Procedure FTF to rotate H(πi, βi) on another facet of con(A);
9 Set j = 0;

10 end
11 Set j = j + 1;

12 end

13 end
14 Solve Boundedness LP for the variables π, β, and µ;
15 The optimal solution of variables πm+1 and βm+1 correspond to the normal and

the level of the last facet respectively;

These m+ 1 obtained hyperplanes H(πi, βi) for i = 1, . . . ,m+ 1 contain m+ 1

facets of a snug circumscribing simplex for the point set A.
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Four observations about Procedure ARS are as follows:

Remark 1. The m facets of the snug circumscribing simplex contain m different

facets of con(A), and the last facet contains a face (may be a facet that is different

from the previous m found facets) of con(A).

Remark 2. Procedure ARS just uses an LP formulation to find the last facet. Other

facets are found by linear algebra operations.

Remark 3. According to Remark at the end of the previous section, Procedure ARS

can find a snug circumscribing simplex using only algebra operations (without using

an LP).

Remark 4. Assume to find a snug circumscribing simplex for a certain point set

by applying Procedures ARS, it does not need to use Procedures FTF. Then on the

complexity of Procedures ARS, one overall needs to solve m(2n−m)(m−1)
2

minimum and

maximum ratio tests, a system of m(m−1)(m−2)
2

equations, and an LP with 2m + 1

variables and 2m+ n constraints to find the final snug circumscribing simplex.

4.3.2 Example: Using Procedure ARS to find a snug circum-
scribing simplex for a finite point set in <3

Recall that we assumed the convex hull of a point set has no degenerate facet. All

examples in Chapter 3, we considered this assumption. Here in this example, we

demonstrate how to use ARH in the case of having degenerate facet.

Consider the point set A = {a1 = (1, 4, 2)T , a2 = (3, 1, 5)T , a3 = (2, 2, 3)T , a4 =

(2, 5, 6)T , a5 = (4, 3, 1)T , a6 = (3, 5, 4)T , a7 = (9, 3, 2)T} in <3.

The initializing PreSnug simplex is characterized by the following four hyper-
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Fig. 46.: Three views of a point set and its convex hull in <3 with 7 extreme points.

planes:

H(π1, β1) : − e1 = − 1; (4.8)

H(π2, β2) : − e2 = − 1; (4.9)

H(π3, β3) : − e3 = − 1; (4.10)

H(π4, β4) : e1 + e2 + e3 = 14; (4.11)

with four support sets S1 = {a1}, S2 = {a2}, S3 = {a5}, and S4 = {a7}. The

following figure shows three views of PreSnug that contains con(A).

Fig. 47.: Three views of the same PreSnug for the convex hull of eight points in <3.

Procedure ARS begins by rotating one of PreSnug’s hyperplanes. Just recall

that to rotate a supporting hyperplane H(π, β) on the convex hull of a point set
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A = {a1, . . . , an} ∈ <m, wlog, with S = {a1} in the support set by using Procedure

ARH, we first define π̃ = (γ1, π2, . . . , πm)T . When aj1 − a1
1 6= 0 for j = 1, . . . , n, we

have:

γ1


≤ − 〈π,a

j〉−〈π,a1〉
aj1−a11

; if aj1 − a1
1 < 0;

≥ − 〈π,a
j〉−〈π,a1〉
aj1−a11

; if aj1 − a1
1 > 0;

(4.12)

where π = (π2, . . . , πm)T , and aj = (aj2, . . . , a
j
m)T for j = 1, . . . , n. This system of

inequalities generates at least a bound for γ1. If we set γ1 to this bound, the obtained

hyperplane with the normal π̃ and the level β̃ = 〈π̃, a1〉 corresponds to a supporting

hyperplane for con(A) such that contains a1 and another point of A.

To rotate the first hyperplane H(π1, β1), we define π̃1 = (−1, γ1, 0)T . So we

have:

〈π̃1, a2〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≥ −
(−1)(1) + (0)(2)− (−1)(3)− (0)(5)

(4)− (1)
= −2

3
; (4.13)

〈π̃1, a3〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≥ −
(−1)(1) + (0)(2)− (−1)(2)− (0)(3)

(4)− (2)
= −1

2
; (4.14)

〈π̃1, a4〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≤ −
(−1)(1) + (0)(2)− (−1)(2)− (0)(6)

(4)− (5)
= 1; (4.15)

〈π̃1, a5〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≥ −
(−1)(1) + (0)(2)− (−1)(4)− (0)(1)

(4)− (3)
= −3; (4.16)

〈π̃1, a6〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≤ −
(−1)(1) + (0)(2)− (−1)(3)− (0)(4)

(4)− (5)
= 2; (4.17)

〈π̃1, a7〉 ≤ 〈π̃1, a1〉 =⇒ γ1 ≥ −
(−1)(1) + (0)(2)− (−1)(9)− (0)(2)

(4)− (3)
= −8. (4.18)

This generates the following bounds for γ1; −1/2 ≤ γ1 ≤ 1.

So we have the lower bound, a minimum ratio, is −1/2 for γ1. If we set γ1 =
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−1/2, we get the hyperplane H(π1L,−6) where π1L = (−2,−1, 0)T with the support

set S1L = {a1, a3}.

The upper bound, a minimum ratio, is 1 for γ1. By setting γ1 = 1, we get the

hyperplane H(π1U , 3) where π1U = (1,−1, 0)T with S1U = {a1, a4} in the support

set.

The dimension of the support set of the hyperplane H(π1L,−6) for con(A) is 2.

To rotate this hyperplane using ARH, we define π̃1L = (−2, γ1, γ2)T . Thus, we have:

〈π̃1L, a2〉 ≤ 〈π̃1L, a1〉 =⇒ −3γ1 + 3γ2 ≤ 4; (4.19)

〈π̃1L, a3〉 ≤ 〈π̃1L, a1〉 =⇒ −2γ1 + γ2 = 2; (4.20)

〈π̃1L, a4〉 ≤ 〈π̃1L, a1〉 =⇒ γ1 + 4γ2 ≤ 2; (4.21)

〈π̃1L, a5〉 ≤ 〈π̃1L, a1〉 =⇒ − γ1 − γ2 ≤ 6; (4.22)

〈π̃1L, a6〉 ≤ 〈π̃1L, a1〉 =⇒ γ1 + 2γ2 ≤ 4; (4.23)

〈π̃1L, a7〉 ≤ 〈π̃1L, a1〉 =⇒ − γ1 ≤ 16. (4.24)

From(4.20), we get γ2 = 2γ1 + 2. If in all the inequalities we set γ2 = 2γ1 + 2,

then it generates the bounds; −8/3 ≤ γ1 ≤ −2/3.

For a lower bound γ1 = −8/3, we get γ2 = −10/3. It yields the hyperplane

H(π1LL,−29) where π1LL = (−3,−4,−5)T with the support set S1LL = {a1, a3, a5}.

This hyperplane contains a facet of con(A) that contains three points a1, a3 and a5.

When we set γ1 = −2/3, an upper bound for γ1, then we get γ2 = 2/3. This

corresponds to the hyperplane H(π1LU ,−5) where π1LU = (−3,−1, 1)T with S1LU =

{a1, a2, a3, a4} in the support set. This hyperplane contains a facet of con(A) that

contains four points a1, a2, a3 and a4. By rotating the hyperplane H(π1U , 3), we get
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two supporting hyperplanesH(π1UL, 20) andH(π1UU ,−5) where π1UL = (−2, 6,−1)T

and π1UU = (−3,−1, 1)T with S1UL = {a1, a4, a6} and S1UU = {a1, a2, a3, a4} in

their support sets. Among these four rotated hyperplanes, we select the hyperplane

H(π1UU ,−5) to be a hyperplane containing a facet of the final snug circumscribing

simplex.

By using Procedure ARH to rotate the hyperplane H(π2,−1), we get four hy-

perplanes H(π2LL,−5), H(π2LU ,−7), H(π2UL,−65), and H(π2UU , 169) where πLL =

(−3,−1, 1)T , π2LU = (0,−2,−1)T , π2UL = (2,−21,−10)T , and π2UU = (14,−3, 26)T

with S2LL = {a1, a2, a3, a4}, S2LU = {a2, a3, a5}, S2UL = {a2, a5, a7}, and S2UU =

{a2, a4, a7} in their support sets. Among all these hyperplanes, we pick up the

hyperplane H(π2LL,−5) as the hyperplane that contains a facet of the final snug

circumscribing simplex.

Finally, rotating the hyperplane H(π3,−1) by using Procedure ARH, can yield

four different hyperplanesH(π3LL,−29),H(π3LU , 23),H(π3UL,−65), andH(π3UU , 23)

where π3LL = (−3,−4,−5)T , π3LU = (1, 8,−5)T , π3UL = (2,−21,−10)T , and π3UU =

(1, 8,−5)T with S3LL = {a1, a3, a5}, S3LU = {a1, a5, a6, a7}, S3UL = {a2, a5, a7}, and

S3UU = {a1, a5, a6, a7} in their support sets. We keep the hyperplane H(π3UU , 9) as

the hyperplane that contains a facet of the final snug circumscribing simplex.

Therefore, we have three hyperplanesH(π1UU ,−5),H(π2LL,−5), andH(π3UU , 9)

that contain two facets of the final snug circumscribing simplex. The hyperplanes

H(π1UU ,−5) and H(π2LL,−5) correspond to the same facet of con(A). In this

case, we use Procedure FTF to rotate one of these two hyperplanes H(π1UU ,−5) and

H(π2LL,−5). We selectH(π2LL,−5). The support set of the hyperplaneH(π2LL,−5)
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contains four extreme points. This is a degenerate facet. We need to select two ex-

treme points from the support set S∈LL to locate in the next rotated hyperplane using

Procedure FTF. This is 4-choose-2. There are 6 different possibilities. Not all these

possibilities can be conducted to rotate the hyperplane H(π2LL,−5) using Procedure

FTF. If two selected points to locate in the next rotated hyperplane are adjacent,

then using Procedure FTF yields a new hyperplane containing a facet of con(A). We

select two adjacent points a2 and a4 to be in the support set of the next rotated

hyperplane. We define a family of a hyperplane H(π, 1) where π = (γ1, γ2, γ3)T . So

we have the system of equations:

〈π, a2〉 = 1 =⇒ 3γ1 + γ2 + 5γ3 = 1; (4.25)

〈π, a4〉 = 1 =⇒ 2γ1 + 5γ2 + 6γ3 = 1. (4.26)

We can solve this system of equations to get γ2 and γ3 in terms of γ1 and a

constant value as follows:

γ2 =
8

19
γ1 −

1

19
; (4.27)

γ3 = −13

19
γ1 +

4

19
. (4.28)

Next, for other points a1, a3, a5, a6, a7 below the hyperplane H(π2LL,−5), and
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considering System (4.27 - 4.28), we have the system of inequalities:

〈π, a1〉 ≤ 1 =⇒ γ1 + 4γ2 + 2γ3 ≤ 1 =⇒ γ1 ≤
3

25
; (4.29)

〈π, a3〉 ≤ 1 =⇒ 2γ1 + 2γ2 + 3γ3 ≤ 1 =⇒ γ1 ≤
3

5
; (4.30)

〈π, a5〉 ≤ 1 =⇒ 4γ1 + 3γ2 + γ3 ≤ 1 =⇒ γ1 ≤
9

44
; (4.31)

〈π, a6〉 ≤ 1 =⇒ 3γ1 + 5γ2 + 4γ3 ≤ 1 =⇒ γ1 ≤
8

45
; (4.32)

〈π, a7〉 ≤ 1 =⇒ 9γ1 + 3γ2 + 2γ3 ≤ 1 =⇒ γ1 ≤
14

169
. (4.33)

This generates an upper bound for γ1; γ1 ≤ 14/169.

Therefore we use this value γ1 = 14/169 to calculate the other two unknowns

using System (4.27 - 4.28) to get γ2 = −3/169 and γ3 = 26/169. This is a new

hyperplane H(π̂, 169) where π̂ = (14,−3, 26)T , and its support set includes Ŝ =

{a2, a4, a7}.

So three hyperplanesH(π1,−5),H(π2, 169), andH(π3, 9) where π1 = (−3,−1, 1)T ,

π2 = (14,−3, 26)T , and π3 = (1, 8,−5)T contain three facets of the final snug cir-

cumscribing simplex.

To find the last facet of the final snug, we use Boundedness LP for ε = 0.01 as
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follows:

max
π∈<3,
µ∈<3,β

24π1 + 23π2 + 23π3 − 7β (4.34)

s.t. π1 + 4π2 + 2π3 ≤ β,

3π1 + π2 + 5π3 ≤ β,

2π1 + 2π2 + 3π3 ≤ β,

2π1 + 5π2 + 6π3 ≤ β,

4π1 + 3π2 + π3 ≤ β,

3π1 + 5π2 + 4π3 ≤ β,

9π1 + 3π2 + 2π3 ≤ β,

π1 = 3µ1 − 14µ2 − µ3,

π2 = µ1 + 3µ2 − 8µ3,

π3 = −µ1 − 26µ2 + 5µ3,

µi ≥ 0.01; i = 1, 2, 3.

By solving this LP, we get the optimal solution π∗1 = 0, π∗2 = −0.23451, π∗3 =

−0.117255, β∗ = −0.820784, µ∗1 = 0.060196, µ∗2 = 0.01, µ∗3 = 0.040588. So we get the

hyperplane H(π4,−7) where π4 = (0,−2,−1)T with S4 = {a2, a3, a5} in the support

set. Fig. 48. shows how final snug circumscribing simplex contains con(A).
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Fig. 48.: Three views of the final snug circumscribing simplex obtained by applying

Procedure ARS.

4.4 Procedure Full Rotation Snug (FRS)

In Procedure FRH, similar to Procedure ARH, first we generate PreSnug for the given

point set. Assume all m+1 hyperplanes H(πj, βj) for j = 1, . . . ,m+1 contain m+1

facets of PreSnug. Then, select m hyperplanes among all these m + 1 hyperplanes

and perform Procedure FRH to rotate them such that each of them contains a facet

of con(A). The procedures to avoid having duplicate hyperplanes, and finding last

facet of the final snug circumscribing simplex are the same as Procedure ARS.

4.4.1 Procedure FRS pseudocode

Recall that to rotate a hyperplane H(πk, βk) with, wlog, Sk = {a1, . . . , ak} in

the support set, we define a hyperplane H(πk+1, βk+1) where πk+1 = (γ1, . . . , γk,

πkk+1, . . . , π
k
m) where all the constant values are not zero together. Then, the optimal

solution of the following LP formulation yields the normal of the rotated hyperplane
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H(πk+1, βk+1).

max
γ1,...,γk

n∑
j=k+1

〈πk+1, aj − a1〉 FRH LP

s.t. 〈πk+1, aj〉 = 〈πk+1, a1〉; j = 2, . . . , k,

〈πk+1, aj〉 ≤ 〈πk+1, a1〉; j = k + 1, . . . , n.

Finding a snug circumscribing simplex by using Procedure FRS for a given point

set is as follows.

Procedure FRS

Input : A point set A = {a1, . . . , an} ∈ <m.
Output: A snug circumscribing simplex for A.

1 Generate PreSnug: Assume PreSnug’s facets are contained by the hyperplanes
H(πi, βi) with Si containing the extreme points of A from its support set for
i = 1, . . . ,m+ 1;

2 for i← 1 to m do
3 Use Procedure FRH to rotate H(πi, βi) on a facet of con(A);
4 Update Si;
5 Set j = 1;
6 while (j < i) do
7 if

(
H(πi, βi) ≡ H(πj , βj)

)
then

8 Use Procedure FTF to rotate H(πi, βi) on another facet of con(A);
9 Set j = 0;

10 end
11 Set j = j + 1;

12 end

13 end
14 Solve Boundedness LP for the variables π, β, and µ;
15 The optimal solution of variables πm+1 and βm+1 correspond to the normal and

the level of the last facet respectively;
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Three observations about Procedure FRS are as follows:

Remark 1. The m facets of the snug circumscribing simplex contain m different

facets of con(A), and the last facet contains a face (may be a facet that is different

from the previous m found facets) of con(A).

Remark 2. There is needed solving an LP to find each facet of the snug circum-

scribing simplex, and overall the m+ 1 LPs.

Remark 3. Assume to find a snug circumscribing simplex for a certain point set

by applying Procedures FRS, it does not need to use Procedures FTF. Then on the

complexity of Procedures FRS, one overall needs to solve m+ 1 LPs that each of the

first m LPs has m − 1 variables and n − 1 constraints, and the last LP has 2m + 1

variables and 2m+ n constraints to find the final snug circumscribing simplex.

4.4.2 Example: Using Procedure FRS to find a snug circum-
scribing simplex for a finite point set in <3

Consider the point set A = {a1 = (1, 4, 2)T , a2 = (3, 1, 5)T , a3 = (2, 2, 3)T , a4 =

(2, 5, 6)T , a5 = (4, 3, 1)T , a6 = (3, 5, 4)T , a7 = (9, 3, 2)T} in <3 and its PreSnug

from last example. To rotate the first hyperplane H(π1,−1) of PreSnug where π1 =

(−1, 0, 0)T with the support set S1 = {a1} by using Procedure FRH, we define the

hyperplane H(π̃1, β̃1), and parametrize π̃1 = (−1, γ1, γ2)T . We thus have the FRH
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LP:

max
γ1,γ2

− 5γ1 + 9γ2 (4.35)

s.t. − 3γ1 + 3γ2 ≤ 2,

− 2γ1 + γ2 ≤ 1,

γ1 + 4γ2 ≤ 1,

− γ1 − γ2 ≤ 3,

γ1 + 2γ2 ≤ 2,

− γ1 ≤ 8.

We get the optimal solution γ∗1 = −1
3

and γ∗2 = 1
3
. These values drive the hy-

perplane H(π̃1, β̃1) where π̃1 = (−3,−1, 1)T and β̃1 = −3, with S̃1 = {a1, a2, a3, a4}

in the support set.

We use the same way to rotate the second hyperplane H(π2,−1) of PreSnug

where π2 = (0,−1, 0)T with the support set S2 = {a2}, and third hyperplane

H(π3,−1) of PreSnug where π3 = (0, 0,−1)T with S2 = {a5} in the support set. We

then get the supporting hyperplanesH(π̃2, β̃2) andH(π̃3, β̃3) where π̃2 = (2,−21,−10)T ,

β̃2 = −65, π̃3 = (1, 8,−5)T , and β̃3 = 23, with S̃2 = {a2, a5, a7} and S̃3 =

{a1, a5, a6, a7} in their support sets.

Finally, we use Boundedness LP to find the last hyperplane H(π̃4, β̃4) where

π̃4 = (14,−3, 26)T and β̃4 = 169, with the support set S̃4 = {a2, a4, a7}.

The final snug circumscribing simplex and con(A) is shown in Fig. 49.
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Fig. 49.: Three views of the final snug circumscribing simplex obtained by applying

Procedure FRS.

4.5 Procedure Breakout Snug (BOS)

In this procedure we identify faces of the convex hull of a point set A = {a1, . . . , an}

in <m to find a circumscribing simplex. An assumption for the procedure is that

con(A) contains origin. The points in A can be translated such that the convex hull

contains origin. We will assume that is already the case.

Recall the dual of the Gauge LP from (2.21) placed here again:

max
π∈<m

〈π, b〉 Dual Gauge LP (4.36)

s.t. 〈π, aj〉 ≤ 1; j = 1, . . . , n;

for some 0 6= b ∈ <m. The Gauge LP is feasible and bounded (Theorem 2.1). An

optimal solution, π∗ to this LP, is the normal of a hyperplane supporting con(A).

If the optimal solution is basic, the supporting hyperplane contains a facet of the

convex hull.

The following two results will be used in the procedure. Let P be a polyhedron

with r facets the normals of which are π1, . . . , πr in <m.
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Theorem 4.4. The normals of the facets of P positively span <m if and only if P

is a full-dimensional bounded polyhedron.

Proof. Assume r hyperplanes H(πj, βj) for j = 1, . . . , r contains r facets of P . The

polyhedron P is:

P =
{
y ∈ <m|〈πj, y〉 ≤ βj; j = 1, . . . , r

}
. (4.37)

We first prove that if pos(π1, . . . , πr) = <m, then P is a full-dimensional bounded

polyhedron. When pos(π1, . . . , πr) = <m, the system

r∑
j=1

πjλj = b, λj ≥ 0; j = 1, . . . , r, (4.38)

has a solution for any b ∈ <m. We rewrite this system as

System I ≡

 Πλ = b;

λ ≥ 0,
(4.39)

where Π = [π1 . . . πr] and λ = [λ1 . . . λn]T . By Farkas’ Lemma,

System II ≡

 yTΠ ≥ 0;

bTy < 0,
(4.40)

cannot have a solution. No solution to System II means there is no non-trivial

solution to the homogeneous system in (4.37) which means no unbounded ray is

possible in the polyhedron must be bounded.

To show the converse we note that if the positive hull of the vectors pos(π1, . . . , πr)

do not span <m then for some nonzero b, System I has no solution and System II

can be solved for that b. This solution provides a direction of recession for P . �
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An immediate corollary of Theorem 4.4 is this:

Corollary 4.1. The normals of the m + 1 facets of a full-dimensional bounded

simplex positively span <m.

Recall that the normals of the m+1 facets of a full-dimensional bounded simplex

form an affinely independent set.

The third and last procedure for circumscribing simplexes, BOS relies on these

and other geometrical properties. The idea is to generate a sequence of m + 1

hyperplanes each supporting a face of con(A) in a part of the polytope that is far

away from the previous faces. All this is an attempt to capture as much of the

geometry of the convex hull. To this end, new supporting hyperplanes are generated

one at a time so that each normal is in the polar of the cone of normals of all previous

supporting hyperplanes until there are m+ 1 of them. The polar cone is, in a sense,

an extreme geometric counterpart to the original cone since it is in the region of

the space were vectors are beyond their orthogonals. The more encompassing the

generating cone, the narrower its polar; and vice-versa. Each iteration of BOS will

generate a hyperplane by adding one new “polarity” constraint to the Dual Gauge

LP in (4.36) in addition to the original support constraints. This requires modifying

the Dual Gauge LP in (4.36) at every one of m iterations by adding a “polarity”

constraint.

The following result establishes the validity of Procedure BOS.

Theorem 4.5. Consider m + 1 vectors in <m : π1, . . . , πm+1, such that the first m

are linearly independent and πk ∈ pos∗(π1, . . . , πk−1); k = 2, . . . ,m + 1, where pos∗

is the polar cone. Then, pos(π1, . . . , πm+1) = <m.
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Proof. Suppose pos(π1, . . . , πm+1) 6= <m. Then by Farkas’ Lemma the following

system has a non-trivial solution.

〈πk, y〉 ≤ 0; k = 1, . . . ,m+ 1.

This means there exists a hyperplane through the origin that supports the cone gen-

erated by the m+1 vectors. One such solution defines a supporting hyperplane which

contains m− 1 of these vectors. Assume, wlog, this supporting hyperplane contains

the first m−1 of the vectors. Since the first m vectors are linearly independent, πm is

left off the hyperplane. Consider the two-dimensional cone pos(πm, πm+1). The angle

between these two vectors is greater than 90◦ by construction. Then, necessarily πm

must have an angle less than 90◦ with the supporting hyperplane and hence with all

the other vectors. This contradicts that πm is in the polar of the previous m − 1

vectors and therefore rejects the possibility that pos(π1, . . . , πm+1) 6= <m under the

premises of the theorem. �

To find the kth normal πk of a hyperplane H(πk, 1) that contains a facet of the

snug circumscribing simplex where 2 ≤ k ≤ m+ 1, we form the LP:

max
π∈<m

k−1∑
i=1

〈
− πi

‖πi‖
, π

〉
Polar Cone LP (4.41)

s.t. 〈aj, π〉 ≤ 1; j = 1, . . . , n,

〈πi, π〉 ≤ 0; i = 1, . . . , k − 1.

The optimal solution of this LP πk yields the normal of a new facet that we have

not met before. Therefore we get m + 1 hyperplanes H(πk, 1) for k = 1, . . . ,m + 1
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that contain m+ 1 facets of the final circumscribing simplex.

4.5.1 Procedure BOS pseudocode

The pseudo-code of Procedure BOS for a given point set A that contains origin is as

follows.

Procedure BOS

Input : A point set A = {a1, . . . , an} ∈ <m.
Output: A circumscribing simplex for A.

1 Choose an arbitrary point b ∈ <m;
2 The optimal solution π1 of Dual Gauge LP in (4.36) is the normal of a hyperplane
H(π1, β1) that contains a facet con(A);

3 for k ← 2 to m+ 1 do
4 The optimal solution πk of Polar Cone LP, (4.41), is the normal of a new

supporting hyperplane H(πk, βk) that contains a facet of the final
circumscribing simplex;

5 end

The m+ 1 hyperplanes H(πk, βk) for k = 1, . . . ,m+ 1 contains m+ 1 facets of

the final circumscribing simplex.

Four observations about Procedure BOS are as follows:

Remark 1. All the facets of a final circumscribing simplex support con(A), and at

least one facet (the first founded facet) of the final circumscribing simplex contains

a facet of con(A).

Remark 2. There is needed solving an LP to find each facet of the circumscribing

simplex, and overall the m+ 1 LPs.

Remark 3. It is possible that one of the polar hyperplane’s normal is generated by

Polar Cone LP is not linear independent from the previous ones.

Remark 4. On the complexity of Procedures BOS, one overall needs to solve m+ 1
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LPs that each of them has m variables and the ith LP has n + i− 1 constraints for

i = 1, . . . , n+ 1 to find the final circumscribing simplex.

4.5.2 Example: Using Procedure BOS to find a circumscrib-
ing simplex for a finite point set in <3

Consider the point set A = {a1 = (1, 4, 2)T , a2 = (3, 1, 5)T , a3 = (2, 2, 3)T , a4 =

(2, 5, 6)T , a5 = (4, 3, 1)T , a6 = (3, 5, 4)T , a7 = (9, 3, 2)T} in <3 from the first exam-

ple. The polytope con(A) does not contain the origin. To use Procedure BOS, we

translateA such that the origin is contained by con(A). Consider translated point set

Ã = {ã1 = (−4, 1,−1)T , ã2 = (−2,−2, 2)T , ã3 = (−3,−1, 0)T , ã4 = (−3, 2, 3)T , ã5 =

(−1, 0,−2)T , ã6 = (−2, 2, 1)T , ã7 = (4, 0,−1)T}.

To find the first facet of a circumscribing simplex, we select a point b = (−5, 1,−2)T ,

and construct Dual Gauge LP in (4.36). So, we have:

max
π∈<3

− 5π1 + π2 − 2π3 (4.42)

s.t. − 4π1 + π2 − π3 ≤ 1,

− 2π1 − 2π2 + 2π3 ≤ 1,

− 3π1 − π2 ≤ 1,

− 3π1 + 2π2 + 3π3 ≤ 1,

− π1 − 2π3 ≤ 1,

− 2π1 + 2π2 + π3 ≤ 1,

4π1 − π3 ≤ 1.

The optimal solution of this LP yields the hyperplane H(π1, 13) where π1 =

(−3,−4,−5)T , with S̃1 = {ã1, ã3, ã5} in the support set. This hyperplane contains a

facet of the final circumscribing simplex.
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To find the second facets of the final circumscribing simplex, we construct Polar

Cone LP in (4.41).

max
π∈<3

3√
50
π1 +

4√
50
π2 +

5√
50
π3 (4.43)

s.t. − 4π1 + π2 − π3 ≤ 1,

− 2π1 − 2π2 + 2π3 ≤ 1,

− 3π1 − π2 ≤ 1,

− 3π1 + 2π2 + 3π3 ≤ 1,

− π1 − 2π3 ≤ 1,

− 2π1 + 2π2 + π3 ≤ 1,

4π1 − π3 ≤ 1,

− 3π1 − 4π2 − 5π3 ≤ 0.

The optimal solution yields the hyperplane H(π2, 30) where π2 = (14,−3, 26)T ,

with S̃2 = {ã2, ã4, ã7} in the support set.

We found two facets of the circumscribing simplex so far. We need to find two

more facets. To find the third facet, we construct Polar Cone LP in (4.41), by having

two hyperplanes H(π1, 13) and H(π2, 30) as follows:
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max
π∈<3

(
3√
50
− 14√

881
)π1 + (

4√
50

+
3√
881

)π2 + (
5√
50
− 26√

881
)π3 (4.44)

s.t. − 4π1 + π2 − π3 ≤ 1,

− 2π1 − 2π2 + 2π3 ≤ 1,

− 3π1 − π2 ≤ 1,

− 3π1 + 2π2 + 3π3 ≤ 1,

− π1 − 2π3 ≤ 1,

− 2π1 + 2π2 + π3 ≤ 1,

4π1 − π3 ≤ 1,

− 3π1 − 4π2 − 5π3 ≤ 0,

14π1 − 3π2 + 26π3 ≤ 0.

The optimal solution of this LP yields the hyperplane H(π3, 9) where π3 =

(1, 8,−5)T , with S̃3 = {ã1, ã5, ã6, ã7} in the support set.

Finally, to find the last facet, we construct Polar Cone LP in (4.41) as follows:

max
π∈<3

(
3√
50
− 14√

881
− 1√

90
)π1 + (

4√
50

+
3√
881
− 8√

90
)π2 + (

5√
50
− 26√

881
+

5√
90

)π3

(4.45)

s.t. − 4π1 + π2 − π3 ≤ 1,

− 2π1 − 2π2 + 2π3 ≤ 1,

− 3π1 − π2 ≤ 1,

− 3π1 + 2π2 + 3π3 ≤ 1,

− π1 − 2π3 ≤ 1,

− 2π1 + 2π2 + π3 ≤ 1,

4π1 − π3 ≤ 1,

− 3π1 − 4π2 − 5π3 ≤ 0,

14π1 − 3π2 + 26π3 ≤ 0,

π1 + 8π2 − 5π3 ≤ 0.
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This LP yields the last hyperplane H(π4, 10) where π4 = (−3,−1, 1)T , with

S̃4 = {ã1, ã2, ã3, ã4} in the support set.

We found the four facets of a circumscribing simplex that this simplex contains

con(Ã). If translate back the point set to the original place, the four hyperplanes

H(π1, 29), H(π2, 169), H(π3, 23), and H(π4,−5), where π1 = (−3,−4,−5)T , π2 =

(14,−3, 26)T , π3 = (1, 8,−5)T , and π4 = (−3,−1, 1)T , contain four facets of the

final circumscribing simplex that contains con(A). The support sets of these four

hyperplanes include S1 = {a1, a3, a5}, S2 = {a2, a4, a7}, S3 = {a1, a5, a6, a7}, and

S4 = {a1, a2, a3, a4} respectively.

In Fig 50, the obtained circumscribing simplex by this procedure is illustrated

in three views.

Fig. 50.: Three views of the final circumscribing simplex obtained by applying Pro-

cedure BOS.

In this example, the four facets of the final circumscribing simplex contain the

four facets of con(A). As we mentioned earlier in this section, it does not happen

always.
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4.6 Conclusion

In this chapter we present three Procedures ARS, FRS, and BOS to find a circumscribing

simplex for a finite point set.

To apply two Procedures ARS and FRS, we first initialize it with PreSnug. To do

so, we use linear algebraic operations to find PreSnug. Then, by applying Procedures

ARH and FRH in Procedures ARS and FRS respectively, we rotate m hyperplanes con-

taining m facets of PreSnug such that rotated hyperplanes contain m facets of the

convex hull of the point set. If there exists duplicate facets, then we use Procedure

FTF to rotate it. Finally, we apply Boundedness LP to find the last facet of a snug

circumscribing simplex.

Procedure BOS uses polar cone’s properties and Gauge LP to find a circumscrib-

ing simplex.

Table 2 shows the complexity of three Procedures ARS, FRS, and BOS when they

do not need to use Procedure FTF.

System of equations Min/Max ratio tests
LP

(rows) × (columns)

ARS m ∗
(

(m−1)(m−2)
2

)
m ∗

(
(m−1)(2n−m)

2

)
(2m+ n)× (2m+ 1)

FRS - -
(
(2m+ n)× (2m+ 1)

)
+

m∑
i=1

(
(n− 1)× (m− 1)

)
BOS - -

m+1∑
i=1

(n+ i− 1)× (m)

Table 2.: On the complexity of three Procedures ARS, FRS, and BOS.

127



CHAPTER 5

COMPUTATIONAL
EXPERIMENTS

In this chapter we present comprehensive numerical experiments for all the pro-

cedures developed in Chapters 3 and 4. To reveal how rotating hyperplanes and

circumscribing simplexes procedures perform, we implement, test, and report the

results for the procedures a large and varied suite of test data in the form of point

sets. In this chapter, we discuss about different procedures for rotating a hyperplane

or finding a circumscribing simplex, regarding the computational time (seconds).

We test and report the results for the procedures with the 24 different point sets

in dimensions m = 5, 10, 15, 20, with cardinalities n = 100, 1000, 2500, 5000,

10000, 25000. Note that all the points in each point set are extreme points for their

convex hull.

We report the results in two sections for two separate topics. There are two

collections of figures in each section. The first has four figures where each one

demonstrates a comparison between time versus dimension (m = 5, 10 , 15, 20)

for the procedures. There are seven figures in the second collection where each figure
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presents a comparison between time versus cardinality (n = 100, 1000, 2500, 5000,

7500, 10000, 25000) for the procedures.

The experiments were conducted on an OS X Yosemite machine with 3 GHz Intel

Core i7 and 16 GB 1600 MHz DDR3 RAM. All the procedures were implemented

in C and we used GNU - GSL version 1.2 to perform all the matrix operations. All

LPs were solved with Gurobi 6.5.0.

5.1 Results and analysis for hyperplane rotation

We presented three procedures in this topic of the dissertation. Let the point set

A = {a1, . . . , an} in <m. Recall that from Chapter 3, Procedures ARH and FRH can

be initialized by a supporting hyperplane H(π̃, β̃) for con(A) in <m where

π̃ = 1̄, and β̃ = max


m∑
i=1

aji

∣∣∣ aj ∈ A
 . (5.1)

We have π̃ = (1, . . . , 1)T , so the supporting hyperplane H(π̃, β̃) contains a point

from A in which the sum of its elements is greater than the sum of the elements of

any other point in A.

We rotated the hyperplane H(π̃, β̃) on the convex hull of 24 point sets by ap-

plying the two Procedures ARH and FRH.

Recall that in Procedure ARH, we do not solve LPs and only apply algebra

operations and that the number of the extreme points from A in the support set for

the hyperplanes increases at least one at a time (in all our experiments it increased

exactly one). Consider a supporting hyperplane containing k points of A. To rotate

this hyperplane such that it contains a facet of con(A), there are needed m − k

129



iterations at most.

If we apply Procedure FRH to rotate a supporting hyperplane on the convex hull

of a point set, the rotated hyperplane contains a facet of the convex hull of this point

set after only one iteration.

We use the same point sets to evaluate Procedure FTF. To this end, we rotate

the obtained hyperplanes that contain a facet of the convex hull from Procedure FRH

in the 24 point sets. Recall that similar to Procedure ARH, Procedure FTF does not

rely on LP.

Table 3 presents the computational times for the three procedures ARH, FRH,

and FTF. An immediate observation from this table is that Procedure ARH is faster

than Procedure FRH to arrive at a facet of a convex hull in all our experiments.

This comparison implemented when the cardinality of a point set is fewer then 5000,

then there is not huge different to use either Procedures ARH and FRH for rotating a

supporting hyperplane on the convex hull of the point set.

It takes 0.375 seconds to rotate a supporting hyperplaneH(π̃, β̃) on con(20by25000)

when Procedure FRH is applied. This is the largest time in all our experiments.

Procedure FTF is fast to rotate the supporting hyperplane H(π̃, β̃) on the convex

hull of the tested point sets, even at the highest dimension and largest cardinality

point set (20by25000).

Fig. 51. illustrates the different CPU times for the 24 point sets for m = 5, 10

, 15, 20 separately. They indicate that by increasing cardinality, the difference of

the obtained times between the two Procedures ARH and FRH becomes larger. When

the cardinality n is fewer than 2500, there is not huge different in times by applying
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either Procedure ARH or Procedure FRH to rotate the supporting hyperplane H(π̃, β̃)

on the convex hull of the tested point sets. Increasing the cardinality, this difference

becomes more tangible. It becomes more clear if there is a choice of Procedures

ARH or FRH: it is faster to rotate a supporting hyperplane on the convex hull of a

point set in large scale cardinality, regardless of the dimension, to use Procedure

ARH. Moreover, recall that another advantage of Procedure ARH is that it relies on

linear algebra operations, whereas Procedure FRH requires formulating and solving

an LP. Therefore, it saves time to apply Procedure ARH for rotating a supporting

hyperplane on the convex hull of a point set for large cardinality (n ≥ 2500).

Although Procedure ARH is faster than Procedure FRH in all tested point sets to

rotate a supporting hyperplane H(π̃, β̃), but Procedure FRH has a simpler structure

and pseudocode. So, we advise when the time to rotate a supporting hyperplane is

not critical, or the cardinality n is fewer than 2500, analysts apply Procedure FRH.

Procedure FTF should not be compared directly to the two Procedures ARH and

FRH. The reason refers to the dimension of the support set for the supporting hy-

perplane that get rotated on the convex hull of the point sets. We apply Procedure

FTF to rotate a supporting hyperplane on the convex hull of a point set when the

dimension of this supporting hyperplane for the convex hull of the point set is m− 1

in <m, whereas Procedures ARH and FRH are applied for rotating a supporting hy-

perplane on the convex hull of a point set when the dimension of the support set for

this hyperplane is fewer than m− 1. Thus, the requirements for applying Procedure

FTF with two other Procedures ARH and FRH are different.

In all our experiments, the obtained time to rotate a supporting hyperplane on

131



the convex hull of a point set by applying Procedure FTF is extremely fast, even when

the largest point set (20by25000) is involved. The largest value of the obtained time

in Procedure FTF is just 0.008 seconds.

Another indication is that by increasing the cardinality of the point set, the

obtained time by applying Procedures ARH and FRH are growing much faster than

applying Procedure FTF.

Fig. 52. illustrates of CPU times for all 24 tested point sets are depicted based

on different cardinalities n = 100, 1000, 2500, 5000, 7500, 10000, 25000.

Figures in 51 and 52 suggest that the three Procedures ARH, FRH, and FTF are

polynomial on their dimensions, and linear on their cardinalities.
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File name ARH FRH FTF

05by00100 0.00E+0 1.00E-3 0.00E+0
05by01000 0.00E+0 5.00E-3 0.00E+0
05by02500 1.00E-3 1.10E-2 0.00E+0
05by05000 3.00E-3 1.70E-2 0.00E+0
05by07500 4.00E-3 2.60E-2 1.00E-3
05by10000 5.00E-3 3.50E-2 1.00E-3
05by25000 1.20E-2 8.30E-2 2.00E-3
10by00100 0.00E+0 2.00E-3 0.00E+0
10by01000 2.00E-3 8.00E-3 0.00E+0
10by02500 5.00E-3 1.90E-2 0.00E+0
10by05000 9.00E-3 3.20E-2 1.00E-3
10by07500 1.30E-2 5.00E-2 1.00E-3
10by10000 1.80E-2 6.90E-2 2.00E-3
10by25000 3.90E-2 1.67E-1 4.00E-3
15by00100 1.00E-3 3.00E-3 0.00E+0
15by01000 5.00E-3 1.20E-2 0.00E+0
15by02500 9.00E-3 2.50E-2 1.00E-3
15by05000 1.80E-2 5.10E-2 1.00E-3
15by07500 2.90E-2 7.60E-2 2.00E-3
15by10000 3.40E-2 1.04E-1 3.00E-3
15by25000 8.90E-2 2.49E-1 6.00E-3
20by00100 1.00E-3 4.00E-3 0.00E+0
20by01000 9.00E-3 1.70E-2 0.00E+0
20by02500 1.60E-2 3.90E-2 1.00E-3
20by05000 3.10E-2 7.30E-2 2.00E-3
20by07500 4.60E-2 1.06E-1 3.00E-3
20by10000 6.40E-2 1.43E-1 3.00E-3
20by25000 1.48E-1 3.75E-1 8.00E-3

Table 3.: Comporison of CPU times (seconds) for rotating a supporting hyperplanes

for Procedures ARH, FRH, and FTF.

133



Fig. 51.: CPU times for rotating hyperplanes for the 24 point sets in dimensions

m = 5, 10, 15, 20.
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Fig. 52.: CPU times for rotating hyperplanes for the 24 point sets with cardinalities

n = 100, 1000, 2500, 5000, 7500, 10000, 25000.
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5.2 Results and analyses in circumscribing sim-

plexes

In this section of the dissertation we compare the computational times of applying

the three Procedures ARS, FRS, and BOS to find a circumscribing simplex for the 24

point sets.

Recall that a circumscribing simplex is snug (at least the m facets of the circum-

scribing simplex contains the m different facets of the convex hull of a given point set)

when we apply either ARS or FRS. In both procedures ARS or FRS, we initialize using

linear algebra operations to find PreSnug. Then, by applying Procedures ARH and

FRH in Procedures ARS and FRS respectively, we rotate to find m facets of PreSnug

such that the m rotated facets contain the m different facets of the convex hull for

each point set. Finally, we apply Boundedness LP to find the last facet. Note that to

find the first m facets of a snug circumscribing simplex using ARS, we just use linear

algebra operations. To find each facet of a circumscribing simplex by using either

ARS orBOS, we need to solve an LP.

The computational times for the three Procedures ARS, FRS, and BOS are pre-

sented in Table 4. The obtained times reveal that the times taken by applying Pro-

cedures FRS and BOS are almost double and sometimes triple the time taken to find

a circumscribing simplex by applying Procedure ARS respectively for the same point

set and dimension. The longest time for finding a circumscribing simplex is 11.911

seconds. This value refers to Procedure BOS in the largest point set (20by25000).

Procedure ARS is fastest among all procedures for finding a circumscribing simplex

for a given point set with any cardinality and dimension.
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In Fig. 53., the different CPU times when we apply the three Procedures ARS,

FRS, and BOS to find a circumscribing simplex for the 24 point sets for m = 5, 10

, 15, 20 are depicted separately. There are four charts in Fig. 53. These four

charts are indicated that by increasing cardinality, the difference of the obtained

times between two Procedures FRS and BOS with Procedure ARS is becoming larger.

Another immediate indication is that the diagram of all these three procedures appear

to be linear. This is an important result to predict the time taken by applying

Procedure ARS to find a circumscribing simplex in a larger point set with certain

dimension and any cardinality.

In Fig. 54., the illustrations of obtained CPU times when we apply Procedures

ARS, FRS, and BOS to find a circumscribing simplexes for all the 24 point sets are

depicted using cardinalities n = 100, 1000 , 2500, 5000, 7500 , 10000, 25000. The

diagram of either Procedures ARS, FRS, or BOS are appear to be polynomial, perhaps

a quadratic in all seven charts. An observation about these seven figures is that

Procedure ARS is faster than other two procedures for any of the cardinalities. When

n = 100, Procedure BOS is faster than Procedure FRS. This is the only case in all our

experiments that Procedure BOS is faster than Procedure FRS.
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File name ARS FRS BOS

05by00100 3.00E-3 4.00E-3 3.00E-3
05by01000 9.00E-3 2.10E-2 2.20E-2
05by02500 2.20E-2 4.00E-2 4.80E-2
05by05000 3.50E-2 8.10E-2 9.20E-2
05by07500 4.90E-2 1.22E-1 1.47E-1
05by10000 6.30E-2 1.68E-1 1.99E-1
05by25000 1.55E-1 4.57E-1 5.93E-1
10by00100 5.00E-3 1.20E-2 9.00E-3
10by01000 2.60E-2 5.80E-2 6.60E-2
10by02500 5.70E-2 1.37E-1 1.60E-1
10by05000 1.13E-1 2.79E-1 3.16E-1
10by07500 1.59E-1 4.31E-1 5.27E-1
10by10000 2.14E-1 6.21E-1 7.82E-1
10by25000 5.23E-1 1.73E+0 1.92E+0
15by00100 1.40E-2 2.30E-2 1.80E-2
15by01000 6.90E-2 1.36E-1 1.38E-1
15by02500 1.50E-1 3.22E-1 3.63E-1
15by05000 2.92E-1 6.19E-1 7.08E-1
15by07500 4.36E-1 1.00E+0 1.05E+0
15by10000 5.85E-1 1.44E+0 1.58E+0
15by25000 1.47E+0 3.64E+0 4.81E+0
20by00100 2.70E-2 4.30E-2 3.60E-2
20by01000 1.37E-1 2.50E-1 3.35E-1
20by02500 3.39E-1 6.36E-1 1.02E+0
20by05000 6.36E-1 1.29E+0 2.08E+0
20by07500 9.34E-1 1.91E+0 3.26E+0
20by10000 1.27E+0 2.77E+0 4.69E+0
20by25000 3.09E+0 7.36E+0 1.19E+1

Table 4.: Comparison of CPU times (seconds) for finding a circumscribing simplex

for Procedures ARS, FRS, and BOS.
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Fig. 53.: CPU times for finding a snug circumscribing simplex for the 24 point sets

in dimensions m = 5, 10, 15, 20.
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Fig. 54.: CPU times for finding a snug circumscribing simplex for the 24 point sets

with cardinalities n = 100, 1000, 2500, 5000, 7500, 10000, 25000.
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5.3 Conclusion

This chapter presents the results of applying the procedures for rotating hyperplanes

and snug circumscribing simplex for the convex hull of a finite point set in multiple

dimensions using the 24 point sets. The point sets are in dimensions m = 5, 10,

15, 20. In each dimension we test seven point sets in cardinalities n = 100, 1000,

2500, 5000, 7500, 10000, 25000.

The results of rotating hyperplanes show that Procedure ARH is faster than

Procedure FRH to rotate a supporting hyperplane on the convex hull of a given

point set. Procedure FTF performs a different task and is much faster in rotating a

supporting hyperplane from one facet to an adjacent one for the largest point set

(20by25000).

In the second section we presented the results of applying Procedures ARS, FRS,

and BOS to find a circumscribing simplex in the 24 point sets. The results showed

that, to find a circumscribing simplex in the 24 point sets, the time taken by applying

Procedure FRS and BOS are double and triple of applying Procedure ARS respectively.
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CHAPTER 6

APPLICATION:
HYPERSPECTRAL UNMIXING

In hyperspectral unmixing, the extreme points are known as “endmembers”. The-

ses endmembers are unknown usually and calculated by the existence pixels [41].

Having a mixture of pixels is a typical problem in satellite images [41]. One goal in

hyperspectral unmixing is to find (or estimate) endmembers based on the existence

mixed pixels [42] This procedure is so called “mixed pixel decomposition”, because

endmembers are based on a decomposition of abundance of the mixed pixels [42].

The procedures to identify the endmembers in hyperspectral unmixing are based on

computational geometric and statistical [43]. The way how to deal with mixed pixels

to find a containment polytope plays the central role in hyperspectral unmixing [43].

One suite polytope to contain mixed pixels is a simplex [43].

To make this problem clearer, and interpret its relation with computational

geometry, consider a small example using concrete. Imagine concrete as a blend of

three ingredients cement, sand, and gravel. Depending on how the concrete will be

used, a specified blend of these ingredients will be required. Two measurements can
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be made about a given blend: volume and weight. These are depicted in Fig. 55.

The object in the figure is a simplex, because there are three ingredients and two

measurements. Note that m measurements and m + 1 ingredients will produce a

simplex in m dimensions. From a geometrical point of view, consider Fig. 55.

Fig. 55.: Different concretes with two measurements and three ingredients.

There is a unique amount of each of the three ingredients, cement, sand, and

grave, for any blend. These three ingredients correspond to what are referred to

as “endmembers” in this simple analogy to hyperspectral unmixing. Consider a

concrete blend x̂, and assume wx̂, vx̂ show the weight and the volume of blend x̂

respectively. So to find the proportions of the three ingredients in this blend we need

to solve the following system of equations.

wcement λ1 + wsand λ2 + wgravel λ3 = wx̂, (6.1)

vcement λ1 + vsand λ2 + vgravel λ3 = vx̂, (6.2)

λ1 + λ2 + λ3 = 1, (6.3)
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where λ1, λ2, λ3 are non-negative variables. Every point inside of the convex hull

of a point set is a linear combination of the extreme points, also referred to as

“endmembers” in hyperspectral unmixing, of the set with non-negative coefficients.

Because the convex hull is a simplex, System (6.1-6.3) has a unique solution.

This system of equations in the special case when x̂ contains a single ingredient

has two zero variables, and the value of the another variable is one. In hyperspectral

unmixing, this case happens when there exists pure pixels.

In this example the ingredients of the tested substance was three, so we defined

two measurements. In general, if the number of ingredients is m, there needs to

be m − 1 measurements. If there are more than m − 1 measurements, the m − 1

most important measurements can be used, or the data can be projected to lower

dimensions.

Li et al., 2015 presented Procedure MVSA, Minimum Volume Simplex Analysis,

to find a simplex for hyperspectral unmixing with minimum volume [44]. The au-

thors distributed their procedure in MATLAB. There is a parameter p as a number

of endmembers. When this parameter is defined, then this code selects p affinely

independent points, True, in <P−1, and generates N points inside the convex hull of

these p points. The left hand side figure in Fig. 56, is a simulation of their code’s

output when p = 4, and the right hand side figure is this point set with their convex

hull (a simplex). To depict these two figures we use their code’s output.

We used their code to generate the point sets in dimensions m = 2, 3, 5, 10 with

cardinalities n = 1000, 15000 ,30000, 45000. The point sets are generated inside a

simplex. It selects p affinely independent points, and generates data inside of their
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Fig. 56.: The left hand-side is a generated point set in three dimensions, and the

right hand side shows a simplex that contains this point set.

convex hull. We added these p points to the point sets for finding a simplex by

three procedures ARS, FRS, and BOS. The experiments were conducted on an OS X

Yosemite machine with 3 GHz Intel Core i7 and 16 GB 1600 MHz DDR3 RAM.

All the procedures were implemented in C and we used GNU - GSL version 1.2 to

perform all the matrix operations. All LPs were solved with Gurobi 6.5.0.

In the generated point sets, we set SIGNATURES-TYPE = 3. The point sets

are generated uniformly in [0, 1]. We multiplied point sets to 100 to manage them

better, specialty in large cardinalities. We set signal-to-noise ratio and number of

bands to 100 and 200 respectively: SNR = 100, L =200. To generate data uniformly

over the simplex, we set SHAPE-PARAMETER = 1. Moreover, to avoid having

outliers in the point sets, we set OUTLIERS = 0.
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We consider the case of having pure pixels. In this case, we set MAX-PURIRY

= 1.00.

Li et al., implemented their results by average 30 independent runs [44]. We thus

report the obtained times, and the volumes of the obtained simplexes by applying four

procedures MVSA, ARS, FRS, and BOS. In this dissertation, we did same to report the

obtained times for Procedure MVSA. To report the volume of the obtained simplexes,

we selected a random point set in each dimension and cardinality.

Table 5 presents the obtained volume in Case 1, when we have pure pixels.

File name MVSA ARS FRS BOS

02by01000 1.50191E+05 1.46233E+05 1.46233E+05 1.46233E+05
02by15000 1.43447E+05 1.43504E+05 1.43504E+05 1.43504E+05
02by30000 1.38154E+05 1.38170E+05 1.38170E+05 1.38170E+05
02by45000 1.45507E+05 1.43623E+05 1.43623E+05 1.43623E+05
03by01000 2.40477E+07 2.29582E+07 2.29582E+07 2.29582E+07
03by15000 2.27274E+07 2.27406E+07 2.27406E+07 2.27408E+07
03by30000 2.32552E+07 2.32646E+07 2.32646E+07 2.32647E+07
03by45000 2.46771E+07 2.46809E+07 2.46809E+07 2.46809E+07
05by01000 2.60052E+11 2.69471E+11 2.69469E+11 2.69469E+11
05by15000 1.97712E+11 1.98074E+11 1.98042E+11 1.98045E+11
05by30000 2.20555E+11 2.04353E+11 2.04353E+11 2.04353E+11
05by45000 2.08174E+11 2.08269E+11 2.08258E+11 2.08252E+11
10by01000 9.70105E+19 1.07413E+20 1.07367E+20 2.09818E+21
10by15000 1.19588E+20 1.20312E+20 1.20312E+20 1.81531E+21
10by30000 1.22849E+20 1.00914E+20 1.00910E+20 3.88743E+21
10by45000 9.97874E+19 1.01093E+20 1.01092E+20 8.50383E+21

Table 5.: The volumes of the obtained simplexes for the point sets using Procedures

MVSA, ARS, FRS, and BOS.

In dimensions m = 2, 3, 5, the volumes of the obtained simplexes by either of

the four procedures are very close to each other.
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In dimension m = 10, the obtained volumes for Procedure BOS is not as good

as other three procedures. In this dimension three Procedures MVSA, ARS, and FRS

yields some simplexes that their volumes are kind of equal.

Table 6 presents the obtained times. We must emphasize that we implemented

Procedures ARS, FRS, and BOS in C, and Procedures MVSA is implemented in MAT-

LAB. Each value is obtained by the average of 30 independent runs.

File name MVSA ARS FRS BOS

02by01000 1.386E+00 1.000E-03 1.000E-02 8.000E-03
02by15000 2.201E+00 4.600E-02 8.200E-02 5.600E-02
02by30000 4.214E+00 7.900E-02 1.580E-01 1.070E-01
02by45000 3.778E+00 1.270E-01 2.410E-01 1.790E-01
03by01000 1.379E+00 6.000E-03 1.200E-02 9.000E-03
03by15000 2.653E+00 5.800E-02 1.340E-01 8.300E-02
03by30000 2.616E+00 1.110E-01 2.710E-01 1.690E-01
03by45000 4.793E+00 1.620E-01 4.800E-01 2.480E-01
05by01000 1.276E+00 1.200E-02 2.200E-02 1.700E-02
05by15000 2.544E+00 9.500E-02 2.650E-01 1.480E-01
05by30000 5.155E+00 1.930E-01 5.600E-01 2.850E-01
05by45000 7.370E+00 2.930E-01 8.940E-01 4.540E-01
10by01000 1.294E+00 3.000E-02 5.400E-02 2.900E-02
10by15000 8.326E+00 3.700E-01 9.310E-01 4.510E-01
10by30000 1.479E+01 7.160E-01 2.058E+00 8.470E-01
10by45000 2.006E+01 1.075E+00 3.075E+00 1.580E+00

Table 6.: Comparison of the real times (seconds) to find a simplex using Procedures

MVSA, ARS, FRS, and BOS.

In all experiments, Procedure ARS is fastest. Procedure BOS is faster than Pro-

cedure FRS. Although there is not huge different between these two procedures.
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Fig. 57 shows the different real time (seconds) for the point sets in dimensions

m = 2, 3, 5, 10. Procedure MVSA increases faster than other procedures, although the

four procedure looks behaving linear or polynomial. Procedure MVSA does not behave

consistently in dimensions m = 2, 3. For example in dimension m = 2, the average

time of finding a simplex with cardinality n = 30000 is larger than the average time

of finding a simplex with cardinality n = 45000. Moreover, in dimension m = 3,

the average time of finding a simplex with cardinality n = 15000 is larger than the

average time of finding a simplex with cardinality n = 30000.

Fig. 57.: The real times for finding a simplex for the point sets using Procedures

MVSA, ARS, FRS, and BOS in dimensions m = 5, 10, 15, 20.
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Fig. 58 shows the different real times (seconds) for the point sets in cardinalities

n = 1000, 15000, 30000, 45000. These figures illustrate Procedures ARS and BOS

are linear. They also indicate that Procedures FRS is quadratic. In cardinalities

n = 15000, 30000, 45000, Procedure MVSA is exponential. Notice that, when we

use Procedure MVSA with cardinality n = 1000, the average time of finding a simplex

decreases by increasing the dimension.

Fig. 58.: The real times for finding a simplex for the point sets using Procedures

MVSA, ARS, FRS, and BOS in cardinalities n = 1000, 15000, 30000, 45000.
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6.1 Conclusion

In this chapter we demonstrate an application of finding a snug circumscribing sim-

plex for a finite point set is in hyperspectral unmixing. We compare our three

procedures with one existed procedure, MVSA. Based on obtained times and volumes,

we suggest to the users that to use Procedures ARS, FRA, and BOS to find a circum-

scribing simplex in low dimensions e.g. in dimensions m = 2, 3, 5 when there exists

pure pixels and we can add them to the point set.
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CHAPTER 7

CONCLUSION

In this dissertation we have two research topics: Rotating Supporting Hyperplanes,

and Snug Circumscribing Simplexes.

We present three Procedures ARH, FRH, and FTF to rotate a supporting hyper-

plane on the convex hull of a finite point set. Procedures ARH and FTF relies on

linear algebraic operations, and Procedure FRH uses the solution of an LP to rotate a

hyperplane on the polytope. Procedures ARH and FTF are used when the dimension

of the support set for the initial hyperplane in <m is fewer than m − 1. When this

dimension is m, Procedures FTF is applied. The results of this research topic has ap-

plications in DEA, integer programming, finding a circumscribing for a finite point

set simplex.

In the second topic, we present three Procedures ARS, FRS, and BOS to find a

circumscribing simplex for a finite point set. To apply two Procedures ARS and FRS,

we first initialize it with PreSnug. To do so, we use linear algebraic operations to

find PreSnug. Then, by applying Procedures ARH and FRH in Procedures ARS and

FRS respectively, we rotate m hyperplanes containing m facets of PreSnug such that
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rotated hyperplanes contain m facets of the convex hull of the point set. If there

exists duplicate facets, then we use Procedure FTF to rotate it. Finally, we apply

Boundedness LP to find the last facet of a snug circumscribing simplex. Procedure

BOS uses polar cone’s properties and Gauge LP to find a circumscribing simplex. The

results of this research topic has applications in NMF and hyperspectral unmixing.

We applied the procedures for snug simplexes to this last topic.

7.1 Future works

We here present five possible future works that can extend the two presented research

topics in this dissertation as follows:

1. Adopted Procedure ARH for using in dual simplex: implementation and test as

an efficient for dual simplex.

2. Improve Procedure ARS to find a snug circumscribing simplex using only linear

algebraic operations.

3. Improve Procedures ARS, FRS, and BOS to find a simplex with less volumes for

some applications.

4. Present a new procedure to find a snug circumscribing simplex that it first finds

the m facets containing a certain vertex of a polytope. Then, it finds the last

facet (cap).

5. Using the obtained circumscribing simplex to construct a robust set.
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Appendix A

A.1 Procedure FTF:

Consider two hyperplanes H(π1, 1) and H(π2, 1) containing two adjacent facets of

con(A). Assume, wlog, the hyperplane H(π1, 1) contains the points a1, . . . , am−1, am,

and the hyperplaneH(π2, 1) in the adjacent facet will contain the points a1, . . . , am−1, ak

where ak is one of the point am+1, . . . , an.

One way to find the normals of the hyperplane H(π1, 1) is to solve the system

of equations Bπ1 = 1̄m×1 where

B =


a1

1 . . . a1
m

...
. . .

...

am1 . . . amm


m×m

. (A.1)
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We define the matrix

Bij =



a1
1 . . . a1

j−1 a1
j+1 . . . a1

m

...
. . .

...
...

. . .
...

ai−1
1 . . . ai−1

j−1 ai−1
j+1 . . . ai−1

m

ai+1
1 . . . ai+1

j−1 ai+1
j+1 . . . ai+1

m

...
. . .

...
...

. . .
...

am1 . . . amj−1 amj+1 . . . amm


(m−1)×(m−1)

(A.2)

for i = 1, . . . ,m and j = 1, . . . ,m. This is the matrix B without ith row and jth

column.

The matrix B is non-singular, so we have

B−1 =


b11 . . . bm1

...
. . .

...

b1m . . . bmm


m×m

, (A.3)

where

bij = (−1)i+j
| Bij |
| B |

, i = 1, . . . ,m, and j = 1, . . . ,m. (A.4)

The matrix B is non-singular, hence the determinant of B is not zero. We have

| B |=
m∑
j=1

amj | Bmj |, (A.5)

so at least determinant of one Bmj for j = 1, . . . ,m is not zero. Assume, wlog,

| Bm1 | 6= 0, then remove the last row of the matrixes B (related to mth point) and
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1̄. Hence, we get
a1

1 . . . a1
m

...
. . .

...

am−1
1 . . . am−1

m



π1

1

...

π1
m

 =


1

...

1

 =⇒


π1

2

...

π1
m

 =


a1

2 . . . a1
m

...
. . .

...

am−1
2 . . . am−1

m


−1 

1− a1
1π

1
1

...

1− am−1
1 π1

1

 .
(A.6)

We have the matrix

Bm1 =


a1

2 . . . a1
m

...
. . .

...

am−1
2 . . . am−1

m


(m−1)×(m−1)

, (A.7)

and we define the matrix

Bij
m1 =



a1
2 . . . a1

j−1 a1
j+1 . . . a1

m

...
. . .

...
...

. . .
...

ai−1
2 . . . ai−1

j−1 ai−1
j+1 . . . ai−1

m

ai+1
2 . . . ai+1

j−1 ai+1
j+1 . . . ai+1

m

...
. . .

...
...

. . .
...

am−1
2 . . . am−1

j−1 am−1
j+1 . . . am−1

m


(m−2)×(m−2)

, (A.8)

for i = 1, . . . ,m − 1 and j = 2, . . . ,m. This is the matrix Bm1 without ith row
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and jth column. So, we get

B−1
m1 =


g12 . . . g(m−1)2

...
. . .

...

g1m . . . g(m−1)m


(m−1)×(m−1)

, (A.9)

where

gij = (−1)i+j+1 | B
ij
m1 |

| Bm1 |
; i = 1, . . . ,m− 1, and j = 2, . . . ,m. (A.10)

From (A.6) and (A.10), we get

π1
k =

m−1∑
i=1

gik

(
1− ai1π1

1

)
; k = 2, . . . ,m. (A.11)

The points a1, . . . , am−1 are common in both hyperplanes, hence for the points

am, . . . , an, we construct the system of inequalities

m∑
j=1

akjπ
1
j ≤ 1; k = m, . . . , n. (A.12)

From (A.11) and (A.12), we get

ak1π
1
1 +

m∑
j=2

akjπ
1
j ≤ 1 =⇒ ak1π

1
1 +

m∑
j=2

m−1∑
i=1

akj gij

(
1− ai1π1

1

)
≤ 1

=⇒

ak1 − m∑
j=2

m−1∑
i=1

akja
i
1gij

 π1
1 ≤ 1−

m∑
j=2

m−1∑
i=1

akj gij. (A.13)
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By applying (A.10), we getak1 − 1

| Bm1 |

m∑
j=2

m−1∑
i=1

(−1)i+j+1akja
i
1 | B

ij
m1 |

 π1
1 ≤ 1− 1

| Bm1 |

m∑
j=2

m−1∑
i=1

(−1)i+j+1akj | B
ij
m1 |.

(A.14)

We define the matrix

Ek
i =



a1
2 . . . a1

m

...
. . .

...

ai−1
2 . . . ai−1

m

ai+1
2 . . . ai+1

m

...
. . .

...

am−1
2 . . . am−1

m

ak2 . . . akm


(m−1)×(m−1)

(A.15)

for i = 1, . . . ,m− 1. In fact, the matrix Ek
i is the matrix Bm1 by removing ith row,

shifting up the rows of (i + 1)th, . . . , (m − 1)th, and adding the row with the values

ak2, . . . , a
k
m as a last row. The determinant of the matrix Ek

i is

| Ek
i |=

m∑
j=2

(−1)j+makj | B
ij
m1 |. (A.16)

163



Then, from (A.14) and (A.16), we getak1 − 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i |

 π1
1 ≤ 1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i |.

(A.17)

We define two matrixes

F k =



a1
1 . . . a1

m

...
. . .

...

am−1
1 . . . am−1

m

ak1 . . . akm


m×m

, and Ek =



1 a1
2 . . . a1

m

...
...

. . .
...

1 am−1
2 . . . am−1

m

1 ak2 . . . akm


m×m

. (A.18)

Matrix F k is the matrix B that by removing its last row (related to the point

am), and using the element of the point ak instead of it. The matrix Ek is the matrix

F k that we set the first element of each row to 1 value.

Based on Assumption 4, the determinant of F k
m is non-zero. The determinant

of the matrix F k is

| F k | = (−1)m+1ak1 | Bm1 | +
m−1∑
i=1

(−1)i+1ai1 | Ek
i |

= (−1)m+1 | Bm1 |

ak1 − 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i |

 . (A.19)
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So, we get

ak1 −
1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i | =

| F k |
(−1)m+1 | Bm1 |

. (A.20)

The determinant of the matrix Ek is

| Ek | = (−1)m+1 | Bm1 | +
m−1∑
i=1

(−1)i+1 | Ek
i |

= (−1)m+1 | Bm1 |

1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i |

 . (A.21)

So, we have

1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i | =

| Ek |
(−1)m+1 | Bm1 |

. (A.22)

Next, from (A.17), (A.20), and (A.22), we get(
| F k |

(−1)m+1 | Bm1 |

)
π1

1 ≤
| Ek |

(−1)m+1 | Bm1 |
=⇒ π1

1 ≤
| Ek |
| F k |

, or π1
1 ≥
| Ek |
| F k |

.

(A.23)

From [A.23], we get the biggest closed interval [l, u] for two real numbers l and

u such that π1
1 is feasible for all k = m, . . . , n. The last step is to set π1

1 to the end

points l and u separately, and by finding the values of π1
2, . . . , π

1
m from (A.11), we

get two different supporting hyperplanes. These two hyperplanes coincide with two

adjacent facets of con(A). One of them contains the points a1, . . . , am, and another

one contains the points a1, . . . , am−1, ak, where ak is one of the point am+1, . . . , an.
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A.2 The proof of Theorem 3.8

For the given point set A, consider the following LP.

min
λ

n∑
i=1

λi (A.24)

s.t. ATλ = ao,

λi ≥ 0, i = 1, 2, . . . , n,

where ao is an arbitrary point in <m, λT = [λ1 . . . λn]1×n, and

AT =


a1

1 . . . an1
...

. . .
...

a1
m . . . anm


m×n

. (A.25)

Assume, λ1, . . . , λm are optimal basic feasible solutions. We denote the optimal

basis as BT . Therefore the updated tableau at optimality is as follows.

λ1

λ2

...

λm

λ1 λ2 . . . λm λm+1 . . . λn updated rhs

1 0 . . . 0
∑m

j=1 a
m+1
j b1j . . .

∑m
j=1 a

n
j b1j

∑m
j=1 a

o
jb1j

0 1 . . . 0
∑m

j=1 a
m+1
j b2j . . .

∑m
j=1 a

n
j b2j

∑m
j=1 a

o
jb2j

...
...

. . .
...

...
. . .

...
...

0 0 . . . 1
∑m

j=1 a
m+1
j bmj . . .

∑m
j=1 a

n
j bmj

∑m
j=1 a

o
jbmj

0 0 . . . 0 1−
∑m

i=1

∑m
j=1 a

m+1
j bij . . . 1−

∑m
i=1

∑m
j=1 a

n
j bij

(A.26)

The hyperplane H(π, 1) that contains the points a1, . . . , am, is a supporting

hyperplane for con(A). Some subsets of m − 1 points on the hyperplane H(π, 1)
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define a supporting hyperplane with m− 2 dimensionally for con(A). If one variable

leaves from basis, the entering variable to basis is found by applying the minimum

ratio test for DSP. Assume λl leaves the basis for l = 1, . . . ,m, then the entering

variable is found from following test.

argmin

{
−

1−
∑m

i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j blj

; k = m+ 1, . . . , n

∣∣∣∣∣
m∑
j=1

akj blj < 0

}
. (A.27)

Suppose λm leaves the basis. From (A.27), we have n−m values

MRT k = −
1−

∑m
i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j bmj

, k = m, . . . , n. (A.28)

Clearly, MRTm is zero. In addition, from (A.23), for k = m, . . . , n, we get n−m

values for |E
k|

|Fk| . We just need to show that there is a linear relation between MRT k

and |Ek|
|Fk| for k = m, . . . , n.

In (A.27), assume λm leaves from the basis. Regardless of its condition,
∑m

j=1 a
k
j blj <

0, we have n−m values

MRT k = −
1−

∑m
i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j bmj

, k = m, . . . , n. (A.29)

Clearly, MRTm is zero. In addition, from (A.23), for k = m, . . . , n, we get

n−m values for |E
k|

|Fk| . Prove that there is a linear relation between MRT k and |Ek|
|Fk|

for k = m, . . . , n as follows.

MRT k =
| B |
| Bm1 |

.
| Ek |
| F k |

− | H |
| Bm1 |

, (A.30)
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where the matrix H is

H =


1 a1

2 . . . a1
m

...
...

. . .
...

1 am2 . . . amm


m×m

. (A.31)

The matrix H is the matrix B that the first element of the each row of it is

replaced by one value.

Proof. Assume λm leaves from the basis. So, λk enters to the basis, where k =

m+ 1, . . . , n. Then, from (A.4) and (A.29), we get

MRT k = −
| B | −

∑m
i=1

∑m
j=1(−1)i+jakj | Bij |∑m

j=1(−1)m+jakj | Bmj |
. (A.32)

We define the matrix

F k
i =



a1
1 . . . a1

m

...
. . .

...

ai−1
1 . . . ai−1

m

ai+1
1 . . . ai+1

m

...
. . .

...

am1 . . . amm

ak1 . . . akm


m×m

(A.33)

for i = 1, . . . ,m, and k = m + 1, . . . , n. This is the matrix B without ith row, and

adding the elements of the point ak as the last row for k = m+ 1, . . . , n.
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The determinant of the matrix F k
i is

| F k
i |=

m∑
j=1

(−1)m+jakj | Bij | . (A.34)

In addition, we have

| F k |=
m∑
j=1

(−1)m+jakj | Bmj | . (A.35)

Therefore, From (A.32), (A.34) and (A.35), we get

MRT k = − | B | −
∑m

i=1 (−1)i+m | F k
i |

| F k |
. (A.36)

We define the matrix

F =



1 a1
1 . . . a1

m

...
...

. . .
...

1 am1 . . . amm

1 ak1 . . . akm


(m+1)×(m+1)

. (A.37)

The determinant matrix F is

| F |= (−1)m

| B | − m∑
i=1

(−1)i+m | F k
i |

 . (A.38)

Finally, from (A.36) and (A.38), we get

MRT k = − (−1)m
| F |
| F k |

. (A.39)

If λm leaves from the basis, and λk enters to the basis, then the optimal solution
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of variables correspond to the new hyperplane with the level of one. This hyper-

plane, is a supporting hyperplane for con(A) that coincides with a facet of con(A),

and contains the points a1, . . . , am−1, ak. This is a way for rotating a supporting

hyperplane from a facet to another facet of the convex hull of a point set. According

to the defined matrixes, (A.30), and (A.39), we need to prove the equation

− | F |
| F k |

= (−1)m
| B |
| Bm1 |

(
| Ek |
| F k |

− | H |
| B |

)
. (A.40)

To continue the proof, we use the following theorem.

Blocks matrixes Theorem [45]. Consider the matrix Mm×m with four blocks

matrixes A1, A2, A3, and A4

M =

A1 A2

A3 A4


m×m

(A.41)

such that A4 is invertible. Then we have |M | = | A4 | . det
(
A1 − A2A

−1
4 A3

)
. four

submatrixes of matrixes F,B, F k, Ek, and H are as follows.

AF1 =


1 a1

1
...

...

1 am−1
1


(m−1)×2

, AF2 = Bm1, AF3 =

1 am1

1 ak1


2×2

, AF4 =

am2 . . . amm

ak2 . . . akm


2×(m−1)

,

(A.42)

AB1 =


a1

1
...

am−1
1


(m−1)×1

, AB2 = Bm1, AB3 =
[
am1

]
1×1

, AB4 =
[
am2 . . . amm

]
1×(m−1)

,

(A.43)
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AF
k

1 =


a1

1
...

am−1
1


(m−1)×1

, AF
k

2 = Bm1, AF
k

3 =
[
ak1

]
1×1

, AF
k

4 =
[
ak2 . . . akm

]
1×(m−1)

,

(A.44)

AE
k

1 =


1
...
1


(m−1)×1

, AE
k

2 = Bm1, AE
k

3 =
[
1
]

1×1
, AE

k

4 =
[
ak2 . . . akm

]
1×(m−1)

,

(A.45)

AH1 =


1
...
1


(m−1)×1

, AH2 = Bm1, AH3 =
[
1
]

1×1
, AH4 =

[
am2 . . . amm

]
1×(m−1)

.

(A.46)

To simplify the proof, we define P1 =
∑m−1

i=1

∑m
j=2 a

m
j gij, P2 =

∑m−1
i=1

∑m
j=2 a

k
j gij,

P3 =
∑m−1

i=1

∑m
j=2 a

i
1a
m
j gij, and P4 =

∑m−1
i=1

∑m
j=2 a

i
1a
k
j gij. Then, by applying the

Blocks matrixes theorem, the determinant of the matrix F, B, F k, Ek, and H are

as follows.

| F | =

∣∣∣∣∣∣∣
AF1 AF2

AF3 AF4

∣∣∣∣∣∣∣ = | AF2 | . det
(
AF3 −AF4

(
AF2

)−1
AF1

)
= | Bm1 |

∣∣∣∣∣∣∣
1− P1 am1 − P3

1− P2 ak1 − P4

∣∣∣∣∣∣∣ .
(A.47)

| B |=

∣∣∣∣∣∣∣
AB1 AB2

AB3 AB4

∣∣∣∣∣∣∣ = (−1)m−1 | AB2 | . det
(
AB3 −AB4

(
AB2

)−1
AB1

)
= (−1)m−1 | Bm1 | (am1 − P3).

(A.48)
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| F k | =

∣∣∣∣∣∣∣
AF

k

1 AF
k

2

AF
k

3 AF
k

4

∣∣∣∣∣∣∣ = (−1)m−1 | AFk2 | . det
(
AF

k

3 −AF
k

4

(
AF

k

2

)−1
AF

k

1

)
= (−1)m−1 | Bm1 | (ak1 − P4).

(A.49)

| EK | =

∣∣∣∣∣∣∣
AE

k

1 AE
k

2

AE
k

3 AE
k

4

∣∣∣∣∣∣∣ = (−1)m−1 | AEk2 | . det
(
AE

k

3 −AE
k

4

(
AE

k

2

)−1
AE

k

1

)
= (−1)m−1 | Bm1 | (1− P2).

(A.50)

| H | =

∣∣∣∣∣∣∣
AH1 AH2

AH3 AH4

∣∣∣∣∣∣∣ = (−1)m−1 | AH2 | . det
(
AH3 −AH4

(
AH2

)−1
AH1

)
= (−1)m−1 | Bm1 | (1− P1).

(A.51)
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From (A.40), (A.47), (A.48), (A.49), (A.50), and (A.51), we get

(−1)m
| B |
| Bm1 |

(
| Ek |
| F k |

− | H |
| B |

)

=
(−1)m

| Bm1 | | F k |

(
| Ek | | B | − | H | | F k |

)

=
(−1)m

| Bm1 | | F k |

(
(−1)2m−2 | Bm1 |2 (1− P2)(am1 − P3)− (−1)2m−2 | Bm1 |2 (1− P1)(ak1 − P4)

)

= (−1)m
| Bm1 |
| F k |

(
(1− P2)(am1 − P3)− (1− P1)(ak1 − P4)

)

= − (−1)m
| F |
| F k |

.� (A.52)
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