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Abstract

ROTATING SUPPORTING HYPERPLANES AND SNUG CIRCUMSCRIBING

SIMPLEXES

By Ghasemali Salmani Jajaei

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2018.

Director: Professor José H. Dulá

Department of Supply Chain Management and Analytics

This dissertation has two topics. The first one is about rotating a supporting

hyperplane on the convex hull of a finite point set to arrive at one of its facets.

We present three procedures for these rotations in multiple dimensions. The first

two procedures rotate a supporting hyperplane for the polytope starting at a lower

dimensional face until the support set is a facet. These two procedures keep current

points in the support set and accumulate new points after the rotations. The first

procedure uses only algebraic operations. The second procedure uses LP. In the third

procedure we rotate a hyperplane on a facet of the polytope to a different adjacent

facet. Similarly to the first procedure, this procedure uses only algebraic operations.

Some applications to these procedures include data envelopment analysis (DEA) and

integer programming.

xiii



The second topic is in the field of containment problems for polyhedral sets.

We present three procedures to find a circumscribing simplex that contains a point

set in any dimension. The first two procedures are based on the supporting hyper-

plane rotation ideas from the first topic. The third circumscribing simplex procedure

uses polar cones and other geometrical properties to find facets of a circumscribing

simplex. One application of the second topic discussed in this dissertation is in hy-

perspectral unmixing.
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CHAPTER 1

INTRODUCTION

This dissertation deals with operations and procedures involving finite point sets

in multiple dimensional space. It treats two topics. First topic is about rotating

supporting hyperplanes on a convex hull of a finite point set in multidimensional

space until they land on a facet. The second topic is about the generation of simplexes

that contain convex hulls. The results from the first topic are used to design some

of the procedures in the second topic.

In the first topic of the dissertation, we present three procedures to rotate a

supporting hyperplane for a polytope defined as the convex hull of a finite point

set in <m. These procedures start with a supporting hyperplane somewhere on the

convex hull and end on a facet. The support set of a supporting hyperplane for a

polytope contains a set of extreme points of this polytope that are located in this

supporting hyperplane.

In one procedure, the dimension of the rotated hyperplane for the convex hull of a

point set increases by at least one at each iteration. So, the support set for the rotated

hyperplane will eventually be a facet of the polytope. This procedure uses only

1



linear algebra operations. In the next procedure, we rotate a supporting hyperplane

such that the support set is a facet after a single rotation. This procedure uses

linear programming (LP). Finally, we introduce a procedure to rotate a hyperplane

from one facet to another adjacent facet. This procedure does not rely on LP. This

procedure is equivalent to a dual simplex pivot.

In the second topic of the dissertation, the goal is to find a special simplex that

contains a point set. In order to achieve this we present three procedures to find

a circumscribing simplex with special properties for a given point set. For a full

dimensional polytope in m dimensions, the minimum number of facets that contain

a point set and makes a polytope is m+ 1. This polytope is called a simplex. Facial

decomposition of a simplex, that is, finding its facets given m + 1 extreme points

(and vice-versa), is easy.

In the first topic of the dissertation we study the problem of rotating supporting

hyperplanes over convex hulls of a finite point set. We use this in the second part

in procedures for enclosing convex hulls of finite point sets in m dimensions with

simplexes. We develop procedures that confine a convex hull of a point set in m

dimensions with a convex hull of m+ 1 points. These are snug in the sense that they

intersect the contained hull in some ways.

Consider a given point set A such that its convex hull has full dimension. We

generate a polytope that contains A with smallest number of facets such that the

convex hull of a point set A is tight in the sense that m of its facets coincide with m

facets of the convex hull of the point set A, and all its facets coincide with all facets

of the convex hull of the point set A when this is a simplex.
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1.1 Convex analysis

The backdrop for this dissertation is optimization and computational geometry.

These two fields use many different concepts and definitions. We review some of

them in this section. In this document we consider the point set A = {a1, . . . , an} in

<m.

Definition 1.1. A set in <m is convex if the line segment between any two arbitrary

points in this set lies in the set [1].

More formally, for the two different points ap and aq in the set, then λap + (1−

λ)aq is in this set for any λ ∈ [0, 1] [1].

Fig. 1. shows a convex set P1 and a non-convex set P2 in <2.

Fig. 1.: Convex set P1 and non-convex set P2

Definition 1.2. A set in <m is affine if the entire line through any two points in

this set lies in the set [1].
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So, for the two points ap and aq in the set, then λap + (1−λ)aq is in this set for

any λ ∈ < [1].

Definition 1.3. A subspace is an affine set that contains the origin [2].

Definition 1.4. The points a1, . . . , an in <m are said to be linearly independent if

System

{ n∑
j=1

ajλj = 0

}
has a unique solution λj = 0 for j = 1, . . . , n [2].

Definition 1.5. The points a1, . . . , an in <m are said to be affinely independent if

System

{ n∑
j=1

ajλj = 0,
n∑
j=1

λj = 0

}
has a unique solution λj = 0 for j = 1, . . . , n

[2].

An important result from these two recent definitions is that the points a1, . . . , an

in <m are affinely independent if and only if the vectors a2−a1, . . . , an−a1 are linearly

independent. Moreover, the maximum numbers of linearly and affinely independent

points in <m are m and m+ 1 respectively.

Definition 1.6. The dimension of a point set A in <m is the number of affinely

independent points in A minus one [2], or is the dimension of the smallest affine set

that contains A.

In <m, the dimension of a single point, line, and plane is zero, one, and two

respectively. If the dimension of the convex hull of a point set is m in <m, then this

convex hull has full dimension.

1.2 Polyhedral sets

There are two ways to characterize a polyhedral set: 1) as the intersection of finite

halfspaces, 2) as a constrained linear vector combination of finite point sets. The
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former is referred to as an “external” representation the latter is said to be an

“internal” representation [2]. Any polyhedral set can be expressed internally or

externally. Given a characterization of a polyhedral set as either internal or external,

the other characterization can be found. This is known by many names. In [3], it

is known by Motzkin’s representation theorem. Going from one characterization to

another is referred to here as facial decomposition.

In the following, linear, affine, conical, and convex hulls definitions are internal

representations, and polyhedron, halfspace, and hyperplane definitions are external

representations.

1.2.1 Linear hull

Consider a point set A = {a1, . . . , an} in <m. All points y define the linear hull of

these n points if y is represented as [4]

lin(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y, λj ∈ <; j = 1, . . . , n

}
. (1.1)

When the number of the linearly independent points in A is one, the linear

hull of the point set A is a line. Furthermore, when the number of the linearly

independent points in A is m − 1, the linear hull of the point set A can define a

hyperplane that contains the origin.

If the point set A has m linearly independent points, then the linear hull of the

point set A spans <m, so we have lin(A) = <m. In other words, any point in <m is

in the linear hull of these m linearly independent points.

Overall, if the number of the linearly independent points in A is k, then the
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dimension of lin(A) is k. Note that the linear hull of a non-empty point set always

contains the origin, therefore it is a subspace.

1.2.2 Affine hull

If sum of the multipliers used to combine the point set is 1, then this hull is said to

be affine.

Consider a point set A = {a1, . . . , an} in <m. All points y define the affine hull

of these n points if y is represented as [1]

aff(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y,
n∑
j=1

λj = 1, λj ∈ <; j = 1, . . . , n

}
. (1.2)

The affine hull of the point set A is exactly a single point when the number of

affinely independent points in A is one. Note that in this case, there exists just one

variable λ1 such that λ1 = 1.

When there exists m affinely independent points in <m, the affine hull of the

point set A is a hyperplane. The dimension of a hyperplane is m−1 in <m. In other

words, a subspace of (m−1)-dimensional in <m is called a hyperplane. We will later

explain some hyperplane’s properties in this chapter.

An affine hull of m+ 1 affinely independent points in <m spans <m.

If the number of affinely independent points in A is k, then the dimension of

aff(A) is k − 1.

Note that the affine hull of the non-empty point set always contains all the

points in this point set.
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1.2.3 Conical hull

If all the multipliers used to combine the point set are non-negative, then this hull

is said to be conical.

Consider a point set A = {a1, . . . , an} in <m. All points y define the conical

hull of these n points if y is represented as [3]

pos(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y, λj ≥ 0, λj ∈ <; j = 1, . . . , n

}
. (1.3)

If the point set A has only one non-zero point a1, then the conical hull of A is

a half-line such that starts from the origin and approaches to infinity.

When the point set A has two affinely independent points but not linearly

independent, the conical hull of A can be either a half-line or a line. If these two

points are on the same orthant, then the conical hull of A is a half-line, otherwise it

is a line.

If the point set A has m linearly independent points, then the conical hull of

A is a cone among m vectors such that each vector contains one of the linearly

independent points, and the origin is the vertex of this cone.

If pos(A) = <m, then the point set A has m+ 1 affinely independent points.

Similarity to the linear hull, the conical hull of the non-empty point set always

contains the origin and all the points in this point set. Note that the conical hull of

a point set is always an unbounded region.
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1.2.4 Convex hull

If sum of the multipliers used to combine the point set is one, and all these multipliers

are non-negative, then this hull is said to be convex.

Consider a point set A = {a1, . . . , an} in <m. All points y define the convex hull

of these n points if y is represented as [1]

con(A) =

{
y ∈ <m

∣∣∣∣ n∑
j=1

ajλj = y,

n∑
j=1

λj = 1, λj ≥ 0, λj ∈ <; j = 1, . . . , n

}
. (1.4)

Unlikely to a conical hull, the convex hull of a point set is a bounded region always.

Furthermore, the convex hull of a point set in <m contains the origin if and only if

the conical hull of them spans <m.

If the point set A has m + 1 affinely independent points, then con(A) is a full

dimension body in <m. Overall, when the number of affinely independent points in

A is k, the dimension of con(A) is k − 1.

1.2.5 Externally characterized polyhedral sets

A non-empty set P ⊂ <m is a polyhedron if there is a system of finitely many

inequalities 〈πj, x〉 ≤ βj for j = 1, . . . , n such that

P =

{
x ∈ <m

∣∣∣∣ 〈πj, x〉 ≤ βj; πj ∈ <m, βj ∈ < : j = 1, . . . , n

}
. (1.5)

A polyhedron can be bounded or unbounded and can have zero to m dimensions.

A bounded polyhedron is called a polytope [5].

Fig. 2. shows two polyhedra, one unbounded polyhedron P1, and one bounded

polyhedron P2 in <2.
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Fig. 2.: Polyhedron: Two polyhedra: one unbounded polyhedron P1, and one

bounded polyhedron P2 in <2.

Note that any polyhedron is convex [6].

1.2.6 Polytope

A bounded polyhedron is called a polytope [7].

The convex hull of a finite point set is a polytope [8].

A Polytope in <2 is called polygon [7]. Polygon is a bounded region of a plane

that is bounded with finite straight lines [5]. A regular polygon is a polygon that all

its angles are same, and all its facets are same too [9].

1.2.7 Hyperplane

A hyperplane is an affine set. A hyperplane H(π, β) external representation is [1]

H(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 = β; π ∈ <m, β ∈ <
}
. (1.6)

9



A hyperplane is a point, a line, and a plane in <, <2, and <3 respectively. There

exists a unique hyperplane that contains m affinely independent points in <m. As

with any polyhedral set, there is also an internal representation of a hyperplane.

1.2.8 Halfspace

A halfspace H+(π, β) is the set of all points such that [2]

H+(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 ≥ β; π ∈ <m, β ∈ <
}
. (1.7)

Same way, a halfspace H−(π, β) is the set of all points such that

H−(π, β) =

{
x ∈ <m

∣∣∣∣ 〈π, x〉 ≤ β; π ∈ <m, β ∈ <
}
. (1.8)

Fig. 3. shows two halfspaces H+(π, β) and H−(π, β).

Fig. 3.: Halfspace: The shadow area in the left figure shows the halfspace H+(π, β),

and in the right figure shows the halfspace H−(π, β).

One important remark is that any halfspace is convex [10].
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1.3 Computational geometry

Computational geometry is the study of polyhedral sets defined either externally or

internally. Computational geometry traces its beginnings to the problems that arise

from facial decomposition of polyhedral sets especially focused in the case of convex

hulls and polytopes. Computational geometry identifies geometrical properties of

polyhedral sets to design algorithms and extract information to solve a problem.

The field of computational geometry was shaped by combining two fields of

algorithms design and analysis in the 1970’s [11], grew quickly in the 1980’s and

1990’s, and is still developing [12].

There are many applications in the field of computational geometry [13]. Some

important applications of computational geometry are LP, computer graphics, nu-

merical analysis, geographic information systems, and robotics ([11], [13], [14])

1.3.1 Separating hyperplane

Let P1 and P2 be two nonempty disjoint convex sets, and 〈π, a0〉 ≤ β for all a0 ∈ P1

and 〈π, a0〉 ≥ β for all a0 ∈ P2. The hyperplane H(π, β) is called a separating

hyperplane for these two sets P1 and P2 [1]. If we have 〈π, a0〉 < β for all a0 ∈ P1

and 〈π, a0〉 > β for all a0 ∈ P2, then the hyperplane H(π, β) is called a strict

separation of the these two sets P1 and P2 [1].

Fig. 4. shows two convex sets P1 and P2, and their separation hyperplane

H(π, β).

We conclude that the value of 〈π, a0〉−β is non-positive on P1 and non-negative

on P2 [1].
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Fig. 4.: Separation hyperplane: Two convex sets P1 and P2, and their separation

hyperplane H(π, β).

For any two nonempty disjoint convex sets P1 and P2, there exists a π 6= 0 and

a β such that 〈π, a0〉 ≤ β for all a0 ∈ P1 and 〈π, a0〉 ≥ β for all a0 ∈ P2 [1].

To construct a separating hyperplane between two convex sets, assume the clos-

est point from convex set P1 to convex set P2 is a1, and the closest point from convex

set P2 to convex set P1 is a2. The hyperplane H(π, β) that is perpendicular to the

line segment a1a2, and divide it to exactly two parts, is a separating hyperplane for

these two sets P1 and P2 [1].

Fig. 5. shows two convex sets P1 and P2, and their separation hyperplane

H(π, β) that is perpendicular to a1a2.
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Fig. 5.: Constructing a separation hyperplane: Two convex sets P1 and P2, and their

separation hyperplane H(π, β) that is perpendicular to a1a2.

1.3.2 Supporting hyperplane

Consider a convex set P in <m, and a0 is a point in its boundary. If we have

〈π, aj〉 ≤ 〈π, a0〉 for all points aj in P , then the hyperplane H(π, β) is called a

supporting hyperplane to P at the point a0 where β = 〈π, a0〉 [1]. In fact, the

hyperplane H(π, β) separates the point a0 and the set P , and the hyperplane H(π, β)

is tangent to P at a0 [1]. Note that the halfspace H−(π, β) contains P .

Fig. 6. shows the supporting hyperplane H(π, β) at a0 ∈ P for the convex set

P .

Consider the point set A = {a1, . . . , an} in <m. The dimension of a supporting

hyperplane H(π, β) for the convex hull of a point set A is the number of affinely

independent points from A that are located in the hyperplane H(π, β) minus one.

More formally, if the the hyperplane H(π, β) contains k affinely independent points
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Fig. 6.: Supporting hyperplane: Supporting hyperplane H(π, β) at a0 ∈ P for convex

set P .

of A, the dimension of the hyperplane H(π, β) for the convex hull of a point set A is

k− 1. Since there are at most m affinely independent points in a hyperplane in <m,

so we always have 1 ≤ k ≤ m. We conclude that the dimension of the hyperplane

H(π, β) for the convex hull of a point set A is always between zero to m− 1 [15].

For any nonempty convex set P , and any boundary point a0, there exists a

supporting hyperplane to P at a0 [1].

1.3.3 Recession cone

Consider a non-empty unbounded convex set P in <m such that the origin is not in

P . A cone C contains all half-lines in P , is called a recession cone [2]. Therefore we

have [16]

C =

{
x ∈ <m

∣∣∣∣ a0 + λx ∈ P ; a0 ∈ P , λ ≥ 0

}
. (1.9)

14



In Fig. 7. we show an unbounded convex polyhedron P , and the recession cone

for three arbitrary points a1, a2, a3 of P in <2.

Fig. 7.: Recession cone: An unbounded polyhedron P , and its recession cone for

three arbitrary points a1, a2, a3 of P in <2.

Notice that all recession cones in an unbounded convex polyhedral set are the

same independently of the cone’s vertex.

1.4 Simplexes

A simplex is a polytope with at most m+ 1 affinely independent vertexes in <m. A

full dimension simplex in <m has m+1 facets. A full dimension simplex is a segment,
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triangle, and tetrahedron in <,<2, and <3 respectively. The following figures show

a simplex in <,<2, and <3.

In computational geometry, if we have all vertexes of a polytope, finding its

facets of a polytope can be difficult when the number of vertexes is more than m+ 1

in <m. It becomes intractable when the number of vertexes is large. On the other

hand, by having all facets of a polytope, finding its vertexes is just as difficult. We

refer to this as facial decomposition.. If a polytope is a simplex, finding its facets by

having its vertexes, or finding its vertexes by having its facets is simple and easy.

Fig. 8. shows three simplexes in <, <2, and <3.

Fig. 8.: Simplex: Three simplexes in <, <2, and <3 from the left hand side respec-

tively.

In this dissertation every time we mention a simplex, it refers to a full dimension

simplex, unless otherwise specified.
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1.4.1 Finding m + 1 facets of a simplex, by having its ver-
texes

Consider a simplex with m+ 1 affinely independent vertexes a1, . . . , am+1 in <m. To

find all m + 1 facets of this simplex, we need to solve m + 1 systems of equations.

There are m + 1 vertexes, so any m of these vertexes generate a hyperplane that

contains a facet of the simplex. Therefore, to find the normal of the hyperplane

H(πj, β) where j = 1, . . . ,m+ 1, we construct the following system of equations:

〈ai, πj〉 = β; i = 1, . . . , j − 1, j + 1, . . . ,m+ 1, (1.10)

where β is an arbitrary nonzero scalar. Since thesem vertexes a1, . . . , aj−1, aj+1, . . . , am+1

are affinely independent, and this system of equations has m variables and m equa-

tions, then it has a unique solution that yields the normal of the hyperplane H(πj, β)

where j = 1, . . . ,m+1. Here we assume that no facet of this simplex contains origin.

1.4.2 Finding m + 1 vertexes of a simplex, by having its
facets

Facial decomposition finds the normal and the level of the hyperplanes that contains

the facets of a polyhedron for a given collection of m+ 1 affinely independent points.

The converse is also referred to as facial decomposition.

Consider a full dimension simplex in <m. Assume m + 1 different hyperplanes

H(πj, βj) for j = 1, . . . ,m + 1 contain the facets of a simplex. Any m different

hyperplanes in <m make a pointed cone, so to find their intersection, it is enough

to solve a system of equations. To find the vertexes aj for j = 1, . . . ,m + 1, we
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construct and solve the following system of equations.

〈aj, πi〉 = βi; i = 1, . . . , j − 1, j + 1, . . . ,m+ 1. (1.11)

1.4.3 Volume of a simplex

Consider a simplex with m+1 affinely independent vertexes a1, . . . , am+1 in <m. The

volume of this simplex is the absolute value of V(x) that is calculated as follows [17].

V(x) = (
1

m!
)

det

a1

1 . . . a1
m 1

...
. . .

...
...

am+1
1 . . . am+1

m 1


(m+1)×(m+1)

 . (1.12)

Note that the m+1 vertexes of the simplex should be affinely independent, otherwise

the value of V(x) is zero.

1.4.4 Polar cone

Consider k vectors d1, . . . , dk in <m the positive hull of which define a cone C. So we

have

C =

{
y ∈ <m

∣∣∣∣ k∑
i=1

λid
i = y, λi ≥ 0; i = 1, . . . , k

}
. (1.13)

The polar cone of C is given by C∗ and defined as [2]

C∗ =

{
x ∈ <m

∣∣∣∣ 〈x, y〉 ≤ 0, ∀y ∈ C
}
. (1.14)

Fig. 9. shows two polar cones for a singleton vector d1 and an obtained cone by
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two vectors d1 and d2.

Fig. 9.: Polar Cone: Two cones and their polars in 2D: the first one for a singleton

vector and the second generated by two vectors.

1.5 Degenerate facet and vertex

There needs to be m affinely independent points in <m to define a unique hyperplane.

A facet of a polytope with more than m extreme points, is said to be degenerate.

Moreover, the intersection of m non-parallel hyperplanes in <m defines a unique

point. If an extreme point of a polytope contacts more than m facets, then this is a

degenerate vertex.
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1.6 Assumptions and properties

The procedures in this dissertation make use of the following assumptions. Consider

a point set A = {a1, . . . , an} in <m.

• Assumption 1. There exist m + 1 affinely independent points in A. This

means that con(A) has full dimension. This also means n ≥ m+ 1.

• Assumption 2. All the points of A are extreme for con(A) (the set A is its

own frame). Finding the frame of a point set is a relatively easy operation.

• Assumption 3. There are no duplicate points in A.

• Assumption 4. No face of con(A) with one or more dimensions is parallel to

an axis of <m. See remark below.

• Assumption 5. No two faces of con(A) with one or more dimensions are

parallel. See remark below.

• Assumption 6. The polytope con(A) has no degenerate face.

Remark. Two affine sets are “parallel” if their uniquely defined subspaces are such

that one is a subset of the other. Notice that two parallel affine sets never meet

unless one is a subset of the other. However, this definition allows affine sets with

different dimensions to be compared regarding this property.

1.7 Conclusion

In this chapter, we reviewed definitions and concepts that we will be using in this

dissertation. This document has two main topics and both of them are under the
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field of computational geometry.

We described four polyhedral sets, because polyhedral sets play a central role in

understanding our procedures in this document. Moreover, we explain the properties

of simplexes, because the second topic of the dissertation is about finding a special

circumscribing simplex such that contains a given finite point set.

Finally, we presented five assumptions to make sure that all procedures work

correctly.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review previous works in the two topics that we present in this

document. The first section of this chapter is about the background and literature re-

view of rotating a hyperplane. Next, we present the literature review of containment

problems, and specialty snug circumscribing simplexes.

2.1 Rotating hyperplanes

Perhaps the oldest example of hyperplane rotation of a supporting hyperplane on a

polyhedron comes from LP. The way we think about LP is identifying vertexes of a

polyhedron and then performing operations where we move from one vertex to an

adjacent vertex, until we find the vertex where the optimal solution is located. The

dual version of this algorithm, known as a dual simplex proceeds in an analogous,

but not identical way [18].

The dual simplex instead of generating a sequence of adjacent vertexes, generates

a sequence of adjacent facets of a different polyhedron. The dual simplex algorithm

starts with a full facet of the polyhedron, and we rotate this facet to an adjacent
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facet, and continue rotating supporting hyperplanes from one facet to an adjacent

facet until the optimal solution is reached.

We will discuss in the next chapter how Procedure Facet To Facet (FTF) rotation

can be a procedure itself, and separate from a dual simplex pivot.

López and Dulá [19] introduce a procedure about rotating a hyperplane, and use

it to add and remove an attribute in a special hull of a finite point set used in Data

Envelopment Analysis (DEA). They name it HyperClimb. HyperClimb procedure

uses linear algebra operations to uncover extreme points after a new dimension has

been added.

Consider A = {a1, . . . , an} is a point set in <m. We define a hyperplane

H(π, β) = {y | 〈π, y〉 = β} where π = (π1, . . . , πm) is a non-zero vector in <m,

and β ∈ < [1], and consider the supporting hyperplane H(π, β) for the convex hull

of a point set A, con(A), contains the extreme efficient decision-making unit, DMU,

ak, and the hyperplane H(π̃, β̃) in <m+1, where π̃T = [π γ] and γ ∈ <.

Construct the system of equations

〈π, ak〉+ γakm+1 = β (2.1)

〈π, aj〉+ γajm+1 ≤ β; j = 1, . . . , n. (2.2)

From (2.1) and (2.2), we get

γ ≤ − 〈π, a
j〉 − 〈π, ak〉

ajm+1 − akm+1

; j = 1, . . . , n, (2.3)

when aim+1 − akm+1 > 0. The maximum value of γ yields a rotation of that removes
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Fig. 57 shows the different real time (seconds) for the point sets in dimensions

m = 2, 3, 5, 10. Procedure MVSA increases faster than other procedures, although the

four procedure looks behaving linear or polynomial. Procedure MVSA does not behave

consistently in dimensions m = 2, 3. For example in dimension m = 2, the average

time of finding a simplex with cardinality n = 30000 is larger than the average time

of finding a simplex with cardinality n = 45000. Moreover, in dimension m = 3,

the average time of finding a simplex with cardinality n = 15000 is larger than the

average time of finding a simplex with cardinality n = 30000.

Fig. 57.: The real times for finding a simplex for the point sets using Procedures

MVSA, ARS, FRS, and BOS in dimensions m = 5, 10, 15, 20.
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Fig. 58 shows the different real times (seconds) for the point sets in cardinalities

n = 1000, 15000, 30000, 45000. These figures illustrate Procedures ARS and BOS

are linear. They also indicate that Procedures FRS is quadratic. In cardinalities

n = 15000, 30000, 45000, Procedure MVSA is exponential. Notice that, when we

use Procedure MVSA with cardinality n = 1000, the average time of finding a simplex

decreases by increasing the dimension.

Fig. 58.: The real times for finding a simplex for the point sets using Procedures

MVSA, ARS, FRS, and BOS in cardinalities n = 1000, 15000, 30000, 45000.
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6.1 Conclusion

In this chapter we demonstrate an application of finding a snug circumscribing sim-

plex for a finite point set is in hyperspectral unmixing. We compare our three

procedures with one existed procedure, MVSA. Based on obtained times and volumes,

we suggest to the users that to use Procedures ARS, FRA, and BOS to find a circum-

scribing simplex in low dimensions e.g. in dimensions m = 2, 3, 5 when there exists

pure pixels and we can add them to the point set.
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CHAPTER 7

CONCLUSION

In this dissertation we have two research topics: Rotating Supporting Hyperplanes,

and Snug Circumscribing Simplexes.

We present three Procedures ARH, FRH, and FTF to rotate a supporting hyper-

plane on the convex hull of a finite point set. Procedures ARH and FTF relies on

linear algebraic operations, and Procedure FRH uses the solution of an LP to rotate a

hyperplane on the polytope. Procedures ARH and FTF are used when the dimension

of the support set for the initial hyperplane in <m is fewer than m − 1. When this

dimension is m, Procedures FTF is applied. The results of this research topic has ap-

plications in DEA, integer programming, finding a circumscribing for a finite point

set simplex.

In the second topic, we present three Procedures ARS, FRS, and BOS to find a

circumscribing simplex for a finite point set. To apply two Procedures ARS and FRS,

we first initialize it with PreSnug. To do so, we use linear algebraic operations to

find PreSnug. Then, by applying Procedures ARH and FRH in Procedures ARS and

FRS respectively, we rotate m hyperplanes containing m facets of PreSnug such that
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rotated hyperplanes contain m facets of the convex hull of the point set. If there

exists duplicate facets, then we use Procedure FTF to rotate it. Finally, we apply

Boundedness LP to find the last facet of a snug circumscribing simplex. Procedure

BOS uses polar cone’s properties and Gauge LP to find a circumscribing simplex. The

results of this research topic has applications in NMF and hyperspectral unmixing.

We applied the procedures for snug simplexes to this last topic.

7.1 Future works

We here present five possible future works that can extend the two presented research

topics in this dissertation as follows:

1. Adopted Procedure ARH for using in dual simplex: implementation and test as

an efficient for dual simplex.

2. Improve Procedure ARS to find a snug circumscribing simplex using only linear

algebraic operations.

3. Improve Procedures ARS, FRS, and BOS to find a simplex with less volumes for

some applications.

4. Present a new procedure to find a snug circumscribing simplex that it first finds

the m facets containing a certain vertex of a polytope. Then, it finds the last

facet (cap).

5. Using the obtained circumscribing simplex to construct a robust set.
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Appendix A

A.1 Procedure FTF:

Consider two hyperplanes H(π1, 1) and H(π2, 1) containing two adjacent facets of

con(A). Assume, wlog, the hyperplane H(π1, 1) contains the points a1, . . . , am−1, am,

and the hyperplaneH(π2, 1) in the adjacent facet will contain the points a1, . . . , am−1, ak

where ak is one of the point am+1, . . . , an.

One way to find the normals of the hyperplane H(π1, 1) is to solve the system

of equations Bπ1 = 1̄m×1 where

B =


a1

1 . . . a1
m

...
. . .

...

am1 . . . amm


m×m

. (A.1)
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We define the matrix

Bij =



a1
1 . . . a1

j−1 a1
j+1 . . . a1

m

...
. . .

...
...

. . .
...

ai−1
1 . . . ai−1

j−1 ai−1
j+1 . . . ai−1

m

ai+1
1 . . . ai+1

j−1 ai+1
j+1 . . . ai+1

m

...
. . .

...
...

. . .
...

am1 . . . amj−1 amj+1 . . . amm


(m−1)×(m−1)

(A.2)

for i = 1, . . . ,m and j = 1, . . . ,m. This is the matrix B without ith row and jth

column.

The matrix B is non-singular, so we have

B−1 =


b11 . . . bm1

...
. . .

...

b1m . . . bmm


m×m

, (A.3)

where

bij = (−1)i+j
| Bij |
| B |

, i = 1, . . . ,m, and j = 1, . . . ,m. (A.4)

The matrix B is non-singular, hence the determinant of B is not zero. We have

| B |=
m∑
j=1

amj | Bmj |, (A.5)

so at least determinant of one Bmj for j = 1, . . . ,m is not zero. Assume, wlog,

| Bm1 | 6= 0, then remove the last row of the matrixes B (related to mth point) and
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1̄. Hence, we get
a1

1 . . . a1
m

...
. . .

...

am−1
1 . . . am−1

m



π1

1

...

π1
m

 =


1

...

1

 =⇒


π1

2

...

π1
m

 =


a1

2 . . . a1
m

...
. . .

...

am−1
2 . . . am−1

m


−1 

1− a1
1π

1
1

...

1− am−1
1 π1

1

 .
(A.6)

We have the matrix

Bm1 =


a1

2 . . . a1
m

...
. . .

...

am−1
2 . . . am−1

m


(m−1)×(m−1)

, (A.7)

and we define the matrix

Bij
m1 =



a1
2 . . . a1

j−1 a1
j+1 . . . a1

m

...
. . .

...
...

. . .
...

ai−1
2 . . . ai−1

j−1 ai−1
j+1 . . . ai−1

m

ai+1
2 . . . ai+1

j−1 ai+1
j+1 . . . ai+1

m

...
. . .

...
...

. . .
...

am−1
2 . . . am−1

j−1 am−1
j+1 . . . am−1

m


(m−2)×(m−2)

, (A.8)

for i = 1, . . . ,m − 1 and j = 2, . . . ,m. This is the matrix Bm1 without ith row
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and jth column. So, we get

B−1
m1 =


g12 . . . g(m−1)2

...
. . .

...

g1m . . . g(m−1)m


(m−1)×(m−1)

, (A.9)

where

gij = (−1)i+j+1 | B
ij
m1 |

| Bm1 |
; i = 1, . . . ,m− 1, and j = 2, . . . ,m. (A.10)

From (A.6) and (A.10), we get

π1
k =

m−1∑
i=1

gik

(
1− ai1π1

1

)
; k = 2, . . . ,m. (A.11)

The points a1, . . . , am−1 are common in both hyperplanes, hence for the points

am, . . . , an, we construct the system of inequalities

m∑
j=1

akjπ
1
j ≤ 1; k = m, . . . , n. (A.12)

From (A.11) and (A.12), we get

ak1π
1
1 +

m∑
j=2

akjπ
1
j ≤ 1 =⇒ ak1π

1
1 +

m∑
j=2

m−1∑
i=1

akj gij

(
1− ai1π1

1

)
≤ 1

=⇒

ak1 − m∑
j=2

m−1∑
i=1

akja
i
1gij

 π1
1 ≤ 1−

m∑
j=2

m−1∑
i=1

akj gij. (A.13)
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By applying (A.10), we getak1 − 1

| Bm1 |

m∑
j=2

m−1∑
i=1

(−1)i+j+1akja
i
1 | B

ij
m1 |

 π1
1 ≤ 1− 1

| Bm1 |

m∑
j=2

m−1∑
i=1

(−1)i+j+1akj | B
ij
m1 |.

(A.14)

We define the matrix

Ek
i =



a1
2 . . . a1

m

...
. . .

...

ai−1
2 . . . ai−1

m

ai+1
2 . . . ai+1

m

...
. . .

...

am−1
2 . . . am−1

m

ak2 . . . akm


(m−1)×(m−1)

(A.15)

for i = 1, . . . ,m− 1. In fact, the matrix Ek
i is the matrix Bm1 by removing ith row,

shifting up the rows of (i + 1)th, . . . , (m − 1)th, and adding the row with the values

ak2, . . . , a
k
m as a last row. The determinant of the matrix Ek

i is

| Ek
i |=

m∑
j=2

(−1)j+makj | B
ij
m1 |. (A.16)
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Then, from (A.14) and (A.16), we getak1 − 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i |

 π1
1 ≤ 1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i |.

(A.17)

We define two matrixes

F k =



a1
1 . . . a1

m

...
. . .

...

am−1
1 . . . am−1

m

ak1 . . . akm


m×m

, and Ek =



1 a1
2 . . . a1

m

...
...

. . .
...

1 am−1
2 . . . am−1

m

1 ak2 . . . akm


m×m

. (A.18)

Matrix F k is the matrix B that by removing its last row (related to the point

am), and using the element of the point ak instead of it. The matrix Ek is the matrix

F k that we set the first element of each row to 1 value.

Based on Assumption 4, the determinant of F k
m is non-zero. The determinant

of the matrix F k is

| F k | = (−1)m+1ak1 | Bm1 | +
m−1∑
i=1

(−1)i+1ai1 | Ek
i |

= (−1)m+1 | Bm1 |

ak1 − 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i |

 . (A.19)
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So, we get

ak1 −
1

| Bm1 |

m−1∑
i=1

(−1)i+m+1ai1 | Ek
i | =

| F k |
(−1)m+1 | Bm1 |

. (A.20)

The determinant of the matrix Ek is

| Ek | = (−1)m+1 | Bm1 | +
m−1∑
i=1

(−1)i+1 | Ek
i |

= (−1)m+1 | Bm1 |

1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i |

 . (A.21)

So, we have

1− 1

| Bm1 |

m−1∑
i=1

(−1)i+m+1 | Ek
i | =

| Ek |
(−1)m+1 | Bm1 |

. (A.22)

Next, from (A.17), (A.20), and (A.22), we get(
| F k |

(−1)m+1 | Bm1 |

)
π1

1 ≤
| Ek |

(−1)m+1 | Bm1 |
=⇒ π1

1 ≤
| Ek |
| F k |

, or π1
1 ≥
| Ek |
| F k |

.

(A.23)

From [A.23], we get the biggest closed interval [l, u] for two real numbers l and

u such that π1
1 is feasible for all k = m, . . . , n. The last step is to set π1

1 to the end

points l and u separately, and by finding the values of π1
2, . . . , π

1
m from (A.11), we

get two different supporting hyperplanes. These two hyperplanes coincide with two

adjacent facets of con(A). One of them contains the points a1, . . . , am, and another

one contains the points a1, . . . , am−1, ak, where ak is one of the point am+1, . . . , an.
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A.2 The proof of Theorem 3.8

For the given point set A, consider the following LP.

min
λ

n∑
i=1

λi (A.24)

s.t. ATλ = ao,

λi ≥ 0, i = 1, 2, . . . , n,

where ao is an arbitrary point in <m, λT = [λ1 . . . λn]1×n, and

AT =


a1

1 . . . an1
...

. . .
...

a1
m . . . anm


m×n

. (A.25)

Assume, λ1, . . . , λm are optimal basic feasible solutions. We denote the optimal

basis as BT . Therefore the updated tableau at optimality is as follows.

λ1

λ2

...

λm

λ1 λ2 . . . λm λm+1 . . . λn updated rhs

1 0 . . . 0
∑m

j=1 a
m+1
j b1j . . .

∑m
j=1 a

n
j b1j

∑m
j=1 a

o
jb1j

0 1 . . . 0
∑m

j=1 a
m+1
j b2j . . .

∑m
j=1 a

n
j b2j

∑m
j=1 a

o
jb2j

...
...

. . .
...

...
. . .

...
...

0 0 . . . 1
∑m

j=1 a
m+1
j bmj . . .

∑m
j=1 a

n
j bmj

∑m
j=1 a

o
jbmj

0 0 . . . 0 1−
∑m

i=1

∑m
j=1 a

m+1
j bij . . . 1−

∑m
i=1

∑m
j=1 a

n
j bij

(A.26)

The hyperplane H(π, 1) that contains the points a1, . . . , am, is a supporting

hyperplane for con(A). Some subsets of m − 1 points on the hyperplane H(π, 1)
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define a supporting hyperplane with m− 2 dimensionally for con(A). If one variable

leaves from basis, the entering variable to basis is found by applying the minimum

ratio test for DSP. Assume λl leaves the basis for l = 1, . . . ,m, then the entering

variable is found from following test.

argmin

{
−

1−
∑m

i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j blj

; k = m+ 1, . . . , n

∣∣∣∣∣
m∑
j=1

akj blj < 0

}
. (A.27)

Suppose λm leaves the basis. From (A.27), we have n−m values

MRT k = −
1−

∑m
i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j bmj

, k = m, . . . , n. (A.28)

Clearly, MRTm is zero. In addition, from (A.23), for k = m, . . . , n, we get n−m

values for |E
k|

|Fk| . We just need to show that there is a linear relation between MRT k

and |Ek|
|Fk| for k = m, . . . , n.

In (A.27), assume λm leaves from the basis. Regardless of its condition,
∑m

j=1 a
k
j blj <

0, we have n−m values

MRT k = −
1−

∑m
i=1

∑m
j=1 a

k
j bij∑m

j=1 a
k
j bmj

, k = m, . . . , n. (A.29)

Clearly, MRTm is zero. In addition, from (A.23), for k = m, . . . , n, we get

n−m values for |E
k|

|Fk| . Prove that there is a linear relation between MRT k and |Ek|
|Fk|

for k = m, . . . , n as follows.

MRT k =
| B |
| Bm1 |

.
| Ek |
| F k |

− | H |
| Bm1 |

, (A.30)
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where the matrix H is

H =


1 a1

2 . . . a1
m

...
...

. . .
...

1 am2 . . . amm


m×m

. (A.31)

The matrix H is the matrix B that the first element of the each row of it is

replaced by one value.

Proof. Assume λm leaves from the basis. So, λk enters to the basis, where k =

m+ 1, . . . , n. Then, from (A.4) and (A.29), we get

MRT k = −
| B | −

∑m
i=1

∑m
j=1(−1)i+jakj | Bij |∑m

j=1(−1)m+jakj | Bmj |
. (A.32)

We define the matrix

F k
i =



a1
1 . . . a1

m

...
. . .

...

ai−1
1 . . . ai−1

m

ai+1
1 . . . ai+1

m

...
. . .

...

am1 . . . amm

ak1 . . . akm


m×m

(A.33)

for i = 1, . . . ,m, and k = m + 1, . . . , n. This is the matrix B without ith row, and

adding the elements of the point ak as the last row for k = m+ 1, . . . , n.
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The determinant of the matrix F k
i is

| F k
i |=

m∑
j=1

(−1)m+jakj | Bij | . (A.34)

In addition, we have

| F k |=
m∑
j=1

(−1)m+jakj | Bmj | . (A.35)

Therefore, From (A.32), (A.34) and (A.35), we get

MRT k = − | B | −
∑m

i=1 (−1)i+m | F k
i |

| F k |
. (A.36)

We define the matrix

F =



1 a1
1 . . . a1

m

...
...

. . .
...

1 am1 . . . amm

1 ak1 . . . akm


(m+1)×(m+1)

. (A.37)

The determinant matrix F is

| F |= (−1)m

| B | − m∑
i=1

(−1)i+m | F k
i |

 . (A.38)

Finally, from (A.36) and (A.38), we get

MRT k = − (−1)m
| F |
| F k |

. (A.39)

If λm leaves from the basis, and λk enters to the basis, then the optimal solution
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of variables correspond to the new hyperplane with the level of one. This hyper-

plane, is a supporting hyperplane for con(A) that coincides with a facet of con(A),

and contains the points a1, . . . , am−1, ak. This is a way for rotating a supporting

hyperplane from a facet to another facet of the convex hull of a point set. According

to the defined matrixes, (A.30), and (A.39), we need to prove the equation

− | F |
| F k |

= (−1)m
| B |
| Bm1 |

(
| Ek |
| F k |

− | H |
| B |

)
. (A.40)

To continue the proof, we use the following theorem.

Blocks matrixes Theorem [45]. Consider the matrix Mm×m with four blocks

matrixes A1, A2, A3, and A4

M =

A1 A2

A3 A4


m×m

(A.41)

such that A4 is invertible. Then we have |M | = | A4 | . det
(
A1 − A2A

−1
4 A3

)
. four

submatrixes of matrixes F,B, F k, Ek, and H are as follows.

AF1 =


1 a1

1
...

...

1 am−1
1


(m−1)×2

, AF2 = Bm1, AF3 =

1 am1

1 ak1


2×2

, AF4 =

am2 . . . amm

ak2 . . . akm


2×(m−1)

,

(A.42)

AB1 =


a1

1
...

am−1
1


(m−1)×1

, AB2 = Bm1, AB3 =
[
am1

]
1×1

, AB4 =
[
am2 . . . amm

]
1×(m−1)

,

(A.43)
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AF
k

1 =


a1

1
...

am−1
1


(m−1)×1

, AF
k

2 = Bm1, AF
k

3 =
[
ak1

]
1×1

, AF
k

4 =
[
ak2 . . . akm

]
1×(m−1)

,

(A.44)

AE
k

1 =


1
...
1


(m−1)×1

, AE
k

2 = Bm1, AE
k

3 =
[
1
]

1×1
, AE

k

4 =
[
ak2 . . . akm

]
1×(m−1)

,

(A.45)

AH1 =


1
...
1


(m−1)×1

, AH2 = Bm1, AH3 =
[
1
]

1×1
, AH4 =

[
am2 . . . amm

]
1×(m−1)

.

(A.46)

To simplify the proof, we define P1 =
∑m−1

i=1

∑m
j=2 a

m
j gij, P2 =

∑m−1
i=1

∑m
j=2 a

k
j gij,

P3 =
∑m−1

i=1

∑m
j=2 a

i
1a
m
j gij, and P4 =

∑m−1
i=1

∑m
j=2 a

i
1a
k
j gij. Then, by applying the

Blocks matrixes theorem, the determinant of the matrix F, B, F k, Ek, and H are

as follows.

| F | =

∣∣∣∣∣∣∣
AF1 AF2

AF3 AF4

∣∣∣∣∣∣∣ = | AF2 | . det
(
AF3 −AF4

(
AF2

)−1
AF1

)
= | Bm1 |

∣∣∣∣∣∣∣
1− P1 am1 − P3

1− P2 ak1 − P4

∣∣∣∣∣∣∣ .
(A.47)

| B |=

∣∣∣∣∣∣∣
AB1 AB2

AB3 AB4

∣∣∣∣∣∣∣ = (−1)m−1 | AB2 | . det
(
AB3 −AB4

(
AB2

)−1
AB1

)
= (−1)m−1 | Bm1 | (am1 − P3).

(A.48)
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| F k | =

∣∣∣∣∣∣∣
AF

k

1 AF
k

2

AF
k

3 AF
k

4

∣∣∣∣∣∣∣ = (−1)m−1 | AFk2 | . det
(
AF

k

3 −AF
k

4

(
AF

k

2

)−1
AF

k

1

)
= (−1)m−1 | Bm1 | (ak1 − P4).

(A.49)

| EK | =

∣∣∣∣∣∣∣
AE

k

1 AE
k

2

AE
k

3 AE
k

4

∣∣∣∣∣∣∣ = (−1)m−1 | AEk2 | . det
(
AE

k

3 −AE
k

4

(
AE

k

2

)−1
AE

k

1

)
= (−1)m−1 | Bm1 | (1− P2).

(A.50)

| H | =

∣∣∣∣∣∣∣
AH1 AH2

AH3 AH4

∣∣∣∣∣∣∣ = (−1)m−1 | AH2 | . det
(
AH3 −AH4

(
AH2

)−1
AH1

)
= (−1)m−1 | Bm1 | (1− P1).

(A.51)
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From (A.40), (A.47), (A.48), (A.49), (A.50), and (A.51), we get

(−1)m
| B |
| Bm1 |

(
| Ek |
| F k |

− | H |
| B |

)

=
(−1)m

| Bm1 | | F k |

(
| Ek | | B | − | H | | F k |

)

=
(−1)m

| Bm1 | | F k |

(
(−1)2m−2 | Bm1 |2 (1− P2)(am1 − P3)− (−1)2m−2 | Bm1 |2 (1− P1)(ak1 − P4)

)

= (−1)m
| Bm1 |
| F k |

(
(1− P2)(am1 − P3)− (1− P1)(ak1 − P4)

)

= − (−1)m
| F |
| F k |

.� (A.52)
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