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 According to UNAIDS 2016, over 37 million people worldwide were infected with 

human immunodeficiency virus (HIV) in 2016, with over 1.2 million people living with HIV in 

the United States. Of those, approximately one half will suffer from HIV-associated 

neurocognitive disorders (HAND), which is a spectrum of neurocognitive disorders ranging from 

asymptomatic neurocognitive impairment, to mild neurocognitive disorder, to HIV-associated 

dementia. While combination antiretroviral therapy (cART) has decreased the incidence of the 
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most severe forms of HAND in patients with HIV, milder forms of HAND still persist. These 

defects can include decreased motor skills, cognitive abilities, memory, and attention. While 

patients with HIV are living longer thanks to cART, there are few to no long-term options for 

managing the neurocognitive defects caused by the chronic disease of HAND. Additionally, 

opiate abuse can increase both the incidence and severity of HAND. HAND may result due to 

poor antiretroviral drug (ARV) penetration across the blood-brain barrier (BBB). Thus, a better 

understanding of the effects of HIV and opiates on the BBB may result in improved therapies for 

HAND. 

 The Tat transgenic model was used to evaluate the effects of the HIV-1 viral protein Tat 

and morphine on blood-brain barrier leakiness using varied-sized paracellular compounds.  

Secondly, antiretroviral drug accumulation in the brain of Tat transgenic mice under Tat and/or 

morphine co-exposure was measured. Specifically, the single tablet regimen of Triumeq® 

(abacavir/lamivudine/dolutegravir) was studied in these mice and antiretroviral drug measured in 

both striatum and hippocampus brain regions and plasma via LC-MS/MS. Additionally, 

morphine and its metabolites were also measured via LC-MS/MS. Lastly, macrophage turnover 

within the caudate/putamen and phagocytic macrophage/microglia accumulation in the brain was 

measured in Tat transgenic mice under Tat and/or morphine conditions. Perivascular and 

parenchymal spaces were distinguished within the caudate/putamen, while overall phagocytic 

activity was measured in all other brain regions, including the nucleus accumbens, anterior 

cingulate cortex, primary motor cortex, somatosensory cortex, agranular insular cortex, and 

piriform cortex. 
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Chapter 1: Introduction 

Over 37 million people were living with human immunodeficiency virus (HIV) infection 

worldwide in 2016, and of those up to 50% may develop symptoms of HIV-associated 

neurocognitive disorders (HAND) (McArthur 2004; Power et al. 2009; UNAIDS 2016). While 

combination antiretroviral therapy (cART) has decreased the incidence of most forms of 

neurocognitive impairment in patients with HIV, milder forms of HAND still persist. These 

milder defects include decreases in motor skills, cognitive abilities, attention, concentration, 

learning, and memory (Alfahad & Nath 2013; Antinori et al. 2007). This is a particularly 

alarming problem because despite advances in cART, which help prevent early death, there are 

few to no long-term options for managing the cognitive and neurobehavioral defects caused by 

what has become a chronic disease (Ellis et al. 2007). HAND may persist due to several factors. 

Inflammation in HIV infection leading to neurodegeneration may contribute to HAND, whether 

from immune reconstitution inflammatory syndrome (Fauci & Marston 2015; Saylor et al. 2016), 

translocation of gut bacteria disrupting the microbiome (Ancuta et al. 2008), or impediment of 

the proteasome to turnover folded proteins in brain cells (Saylor et al. 2016; Nguyen et al. 2010). 

Disruptions in bioenergetic homeostasis, including reductions in glucose uptake in the anterior 

cingulate cortex and in the mesial frontal gyrus in those patients even with undetectable HIV-1 

RNA viral load (Andersen et al. 2010; Towgood et al. 2013). HAND may also persist due to 

poor antiretroviral drug (ARV) penetration across the blood-brain barrier (BBB) (Spudich & 

Ances 2012). Some studies have found that the use of antiretroviral drug regimens with high 

CNS penetration effectiveness were associated with better neurocognitive functioning 

(Smurzynski et al. 2011; Casado et al. 2014), though these findings have not been consistently 

found in other studies (Yilmaz et al. 2010). While cART is effective in restricting viral loads 

peripherally, HIV enters the brain early in disease and is challenging to eradicate. Thus, the brain 
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serves as an HIV reservoir, allowing for HIV to persist and cause chronic inflammation (Valcour 

et al. 2013). This theory is supported by the presence of detectable HIV in the cerebrospinal fluid 

(CSF) of some patients even with undetectable HIV-1 RNA viral load in the plasma, known as 

CSF escape (Fois & Brew 2015). 

 Opiate drug abuse can exacerbate HIV progression into AIDS (Kumar et al. 2006;  

Peterson et al. 1990) as well as increase the incidence and severity of HAND (Byrd et al. 2012; 

McArthur et al. 2010; Valcour 2011). People who inject drugs are at an increased risk of 

contracting HIV both through the sharing of HIV-contaminated needles and through risky sexual 

behavior (Reddy et al. 2012; Bell et al. 1998), with up to one-third of patients with HIV reporting 

opiate abuse (Bell et al. 1998; UNAIDS 2016). Studies have revealed an interactive link between 

opiates and HIV effects. Both HIV and opiates can suppress the immune system, and HIV can 

exacerbate HIV progression into AIDS and increase the rate and replication of HIV (Roy et al. 

2011; K. F. Hauser et al. 2012; P K Peterson et al. 1990; Kumar et al. 2009; El-Hage et al. 2013). 

Patients with HIV who abuse opiates have poorer virologic suppression compared to those HIV 

patients who do not abuse opiates (Celentano & Lucas 2007; Weber et al. 2009). Even when 

receiving cART, patients with HIV who abuse opiates experience HAND, and at a higher rate 

and severity than those with HIV who do not abuse opiates (Byrd et al. 2011; Meyer et al. 2013; 

Nath et al. 2000; Robinson-Papp et al. 2012).  In multiple in vitro and in vivo models, including 

simian immunodeficiency virus (SIV), morphine increases viral loads as well as 

neuropathological progression (Bokhari et al. 2011; Kumar et al. 2006). 
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1.A. Human Immunodeficiency Virus 

 Human immunodeficiency Virus (HIV) is a lentivirus that over time causes acquired 

immunodeficiency syndrome (AIDS) (Cohen et al. 2008; UNAIDS 2016). AIDS is a condition 

where the immune system is weakened and allows for the development of opportunistic 

infections, such as Pneumocystis pneumonia and Mycobacterium avium complex, and cancers, 

such as Kaposi sarcoma (Cohen et al. 2008; UNAIDS 2016). When left untreated, patients with 

HIV will succumb to the disease after 9-11 years after infection (UNAIDS 2016).  

 HIV was first recognized in the United States in the early 1980s, particularly affecting 

young men who have sex with men and intravenous (IV) drug users (Wing 2016). The number of 

deaths due to AIDS rose throughout the 1990s, until the introduction of combined antiretroviral 

therapy (cART) in 1996. The incorporation of cART into clinical care quickly declined the rates 

of AIDS-related death by 60-80% (Moore & Chaisson 1999). Today, the tolerability of therapies 

has increased, and fixed dose combinations are available to ease administration. Classes of 

antiretroviral medications include entry inhibitors, nucleoside/nucleotide reverse transcriptase 

inhibitors, non-nucleoside reverse transcriptase inhibitors, integrase inhibitors, and protease 

inhibitors (see Appendix 1 for HIV drugs in pipeline). 

Survival following HIV infection has been shown to increase significantly with effective 

cART, with life expectancy nearly that of the non-HIV infected population in those patients with 

CD4 counts over 350 cells/µL a year after starting cART (Trickey et al. 2017). In 2016, there are 

over 37 million people worldwide are living with HIV, and over 1.2 million living in the United 

States (UNAIDS 2016). While life expectancy has improved in the post-cART era, there has 

been an increase in co-morbidities in patients with HIV, including non-AIDS cancers, 

cardiovascular disease, diabetes, kidney failure, osteoporosis, and neurocognitive disorders 

(UNAIDS 2016). 
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1.B. The Blood-Brain Barrier 

The blood-brain barrier (BBB) functions to maintain a unique microenvironmental 

homeostasis within the brain, which allows selective substances to enter, while restricting others 

(Abbott 2013). The BBB is made up of endothelial cells and serves as both a physical and 

chemical barrier to compounds from the blood to reaching the brain (Abbott & Friedman 2012) 

(Figure 1.1). Tight junctions form a seal between endothelial cells, which contributes to the 

paracellular barrier. This barrier prevents large water-soluble molecules from crossing. but 

allows smaller molecules, such as essential nutrients and ions, to pass (Abbott & Friedman 

2012). Tight junctions between the endothelial cells reduce permeation of compounds through 

the paracellular pathway (between the endothelial cells) from the blood into the brain. The major 

molecular components of the tight junctions include the structural proteins occludin, claudins, 

and junctional adhesion molecule (JAM), and the peripheral zona occludin (ZO) proteins 

(Arcangeli et al. 2013; Bazzoni et al. 2000; Furuse et al. 1999). Both claudins and occludin are 

linked to cytoplasmic scaffolding and ZO proteins (Abbott et al. 2010). Adherens junctions hold 

the endothelial cells together and provide structural support to the BBB. Cadherin proteins in 

adherens junctions span between the endothelial cells and are linked by scaffolding catenin 

proteins into the cell cytoplasm (Abbott et al. 2010). Disruption of adherens junctions is 

detrimental to tight junction protein formation, leading to BBB disruption (Abbott et al. 2010). 

Uptake and efflux drug transporters are also present which can help facilitate molecules to cross 

the BBB (uptake) or serve to exclude drugs by expelling them back into the blood (efflux) 

(Abbott 2013). Common efflux transporters at the BBB include P-glycoprotein (P-gp), Breast 

Cancer Resistance Protein (BCRP), and the multidrug resistance-associated protein family 

(MRPs) (Abbott & Friedman 2012). The brain endothelium of the BBB is supported by other 

cells within the neurovascular unit (NVU), which includes the perivascular astrocytes, pericytes, 
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and microglial cells (Abbott 2013; Abbott et al. 2006; Garcia-Segura & McCarthy 2004; Mäe et 

al. 2011). These surrounding cells may mediate the induction of many BBB properties, such as 

upregulating the expression of tight junction proteins as well as the expression of drug 

transporters such as P-glycoprotein (Abbott et al. 2006). 

The paracellular route of the BBB refers to the pathway between the endothelial cells, 

while the transcellular route of the BBB refers to the pathway through the endothelial cells. 

Small, hydrophilic compounds tend to permeate the paracellular route, while large, lipophilic 

compounds tend to traverse the transcellular route (Abbott 2013). Many antiretroviral drugs are 

thought to traverse the transcellular route, as opposed to the paracellular route, due to their 

molecular weight and polarity (Ashraf et al. 2014).  

There are few studies examining the combined effect of HIV and opiate abuse on 

transcellular antiretroviral drug transport. This is an important area of study as HAND likely 

persists due to poor penetration of antiretroviral drugs across the BBB (Mcarthur et al. 2010; 

Weksler et al. 2013).  
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Figure 1.1 Mechanisms by which substances cross the blood-brain barrier. Lipid-soluble 

compounds favor diffusion across the endothelial lipid membrane via the transcellular route. The 

endothelium contains transport proteins including efflux transporter proteins such as P-

glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 

(MRP). These proteins limit penetration of compounds across the blood-brain barrier by 

extruding these compounds back into blood. Tight junction proteins limit the penetration of 

water-soluble compounds via the paracellular route. Other mechanisms not explicitly shown 

include receptor-mediated endocytosis and transcytosis and adsorptive endocytosis.   
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1.C. HIV and HIV-Associated Neurocognitive Disorders (HAND) 

Studies suggest that not only is the prevalence of HAND increasing, but that the life 

expectancy of those with HAND are shorter (Antinori et al. 2007; Heaton et al. 2011; McArthur 

et al. 2010; Tozzi et al. 2005). These individuals may have difficulty remembering to take their 

medications (Carey et al. 2006; McArthur 2004) and have difficulty maintaining employment 

(Alfahad & Nath 2013). Even in patients treated with combination antiretroviral therapy (cART), 

chronic opiate abuse aggravates CNS inflammation (Anthony et al. 2008). Opiates worsen 

HAND symptoms, including in the areas of recall and working memory (Byrd et al. 2011; Meyer 

et al. 2013). Despite advances in HIV treatment, no therapy has been found to completely treat or 

provide protection from HAND (McArthur 2004; McArthur et al. 2010), though there is 

evidence that the degree of antiretroviral penetration into the CNS influences the extent of 

neurocognitive improvement (Letendre et al. 2004). HIV infection can result in structural and 

function changes due to dendritic beading, which can be reversible with anatomy and function 

restored (Bellizzi et al. 2005). However, long-term exposure to neurotoxic factors due to HIV-1 

infection can lead to irreversible neuronal damage (Kaul et al. 2001).  

            Disruption of the BBB is a primary characteristic of HAND (Dallasta et al. 1999; 

Eugenin et al. 2011; Eugenin et al. 2006). Low levels of HIV have been reported to infect 

astrocytes (Eugenin & Berman 2007; Wiley et al. 1986) and HIV-infected astrocytes have been 

shown to disrupt the BBB via a mechanism dependent on functional gap junction channels 

(Eugenin et al. 2011). HIV infection decreases the expression of tight junctions, including 

claudin-5, occludin, and ZO-1 (Eugenin et al. 2011; Persidsky et al. 1999; Persidsky et al. 2000). 

Studies have also shown that HIV increases monocyte transmigration across cultured endothelial 

cells (Coley et al. 2015; Eugenin et al. 2011; Persidsky et al. 1999; Persidsky et al. 2000). 

Perivascular macrophages and microglia are the predominately infected cell types by HIV in the 
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brain (Cosenza et al. 2002; Wiley et al. 1986). SIV-infected macrophages lower TEER in an 

endothelial monolayer (Sansing et al. 2012). In vitro studies have shown that HIV-1 viral protein 

Tat downregulates tight junction expression of claudin-1, claudin-5, and ZO-2 (András et al. 

2003), as well as downregulates the expression of occludin (Mahajan et al. 2008; Wang & Ho 

2011) Tat increases barrier permeability to paracellular compounds such as FITC-dextran and 

Evans Blue (András et al. 2005; Kanmogne et al. 2007), upregulates inflammation (Pu et al. 

2003; Toborek et al. 2005), triggers monocyte trafficking into the brain (Pu et al. 2003), as well 

as triggers oxidative and inflammatory signaling in brain endothelium (András et al. 2005; 

Toborek et al. 2005). 

 

1.D. HIV in Central Nervous System 

Retroviruses, including members of the lentivirus family such as HIV, are capable of 

infecting the CNS (Clements & Zink 1996; González-Scarano & Martín-García 2005). HIV 

enters the CNS early following systemic infection (An et al. 1999). One theory proposed is that 

HIV enters the CNS by a “Trojan Horse” mechanism, where HIV infects monocytes which can 

then cross the blood-brain barrier and enter the brain (Meltzer et al. 1990; Verani et al. 2005). 

Other proposed mechanisms include HIV infection of CD4+ T cells which may cross the blood-

brain barrier, adsorptive endocytosis across the blood-brain barrier, and by free cell entry via the 

paracellular route through openings in tight junction proteins of the blood-brain barrier. Secreted 

viral proteins, including Tat, can also across the blood-brain barrier into the brain parenchymal 

(González-Scarano & Martín-García 2005; Mattson et al. 2005; Eugenin et al. 2006) (Figure 

1.2).  
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Once inside the brain, infected monocytes may differentiate into perivascular 

macrophages, which can then produce HIV. Perivascular macrophages are phenotypically 

distinct from resident brain macrophages, or microglia, which may also become infected and 

replicate HIV (“productive infection”) (Hong & Banks 2015). Astrocytes have not been shown to 

produce the virus (Wiley et al. 1986; González-Scarano & Martín-García 2005). Neurons have 

not been shown to become infected by HIV nor are they capable of producing virus, likely since 

neurons lack the CD4 receptor (Hauser & Knapp 2014; González-Scarano & Martín-García 

2005).  

Although neurons are not directly infected by HIV, neurons are susceptible to injury from 

cellular and viral toxins from infected macrophages and microglia (Petito & Roberts 1995). 

Infected microglia can promote the production of soluble inflammatory mediators and cytokines 

(oxidative and inflammatory signaling), including the release of ROS, TNF-alpha, glutamate, 

CCL5/RANTES, IL-6, CCL2/MCP-1, and INF-γ, which can then lead to neuronal injury and 

death (Hong & Banks 2015; González-Scarano & Martín-García 2005; Williams & Hickey 

2002). Chemokines mediate both the recruitment and activation of leukocytes by binding to cell 

surface receptors (Eugenin 2006). CCL2 is a chemoattractant for monocytes and CCL5 is 

chemotactic for T cells, eosinophils, and basophils (Eugenin 2006). INF-γ and Il-6 are pro-

inflammatory cytokines which stimulate immune response. Additionally, this release of oxidative 

and inflammatory signaling triggers monocyte trafficking into the brain, which could allow for 

more HIV-infected monocytes and/or macrophages to enter the brain. This positive feedback 

loop can further promote irreversible neuronal injury and death (González-Scarano & Martín-

García 2005; Kaul et al. 2001).  
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The perivascular space is a major site of bone-derived cell infiltration, including 

macrophages, which are continuously repopulated from the bone marrow (Fischer-Smith et al. 

2001; Hickey et al. 1992). As much as 80-90% of HIV in the CNS is in perivascular 

macrophages (Filipowicz et al. 2016). The repopulation rate of macrophages can be accelerated 

during inflammation and infection (Burdo et al. 2010a; Hasegawa et al. 2009; Kim et al. 2003). 

Monocyte turnover has been linked to the progression into AIDS. While the depletion of CD4+ 

T cells is considered the primary cause for terminal progression into AIDS, it has been reported 

that increasing monocyte turnover was a significantly better predictor of disease progression in 

SIV-infected adult macaques (Hasegawa et al. 2009). Perivascular macrophage accumulation 

occurs during HIV infection, and is particularly seen in HIV encephalitis, which is also called 

HIV-associated dementia, the most severe form of HAND (Fischer-Smith et al. 2001; Kim et al. 

2005; Nowlin et al. 2018). Pathological changes in the brains of patients with HIV-associated 

dementia correlate with an increase in activated bone-marrow-derived cells, including 

macrophages (Williams & Hickey 2002). Accumulation and increase in the recruitment and/or 

activity of phagocytic macrophages and microglia within the brain has been associated with 

worsening prognosis. Specifically Tat exposure has been shown in in vitro models to increase 

transmigration of peripheral monocytes across a blood-brain barrier model by increased 

production of CCL2 and upregulation of CCR5 on monocytes (J. Weiss et al. 1999). CCL2 is a 

chemokine which recruits monocytes, T cells, and dendritic cells to inflammatory sites, while 

CCL5 recruits leukocytes to inflammatory sites. Accumulation of inflammatory leukocytes 

within the brain may also occur by enhanced transmigration of human CD14+CD16+ monocytes 

(including infected and uninfected monocytes) into the brain. HIV infection can increase the 

expression of junctional adhesion molecule-A (JAM-A) and activated leukocyte cell adhesion 
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molecule (ALCAM) on monocytes, which can mediate this enhanced transmigration (Arcangeli 

et al. 2013; Williams et al. 2013).   

 

 

Figure 1.2. HIV Infection within the CNS. HIV infections enters the brain via a “Trojan 

Horse” mechanism by infecting monocytes which may cross the blood-brain barrier. Virus may 

also enter the brain via infected CD4+ T-cells and as free virus through the tight junctions 

between endothelial cell of the blood-brain barrier. Once in the brain virus can then infect 

microglia, which can then produce the virus. While virus can infect astrocytes, it has not been 

shown that astrocytes can produce virus under physiological conditions in the human CNS. 

While neurons are not infected by the virus, the release of neurotoxic factors, including oxidative 

and inflammatory signaling, by bystander cells can result in neuronal injury and neuronal death. 

Image adapted from Becker JT, et al. Brain Imaging Behav (2011) 5:77-85, González-Scarano 

F., et al. Nature Reviews: Immunology (2004) 5:69-81, Hauser KF, et al. J Neurochem (2007) 

100:567-86. 

 

 

 

 



12 
 

1. E. HIV-1 Viral Protein Tat 

 

HIV-1 viral protein Tat (transactivator of transcription) is expressed earlier in HIV-1 

infection and is required for efficient HIV replication. While only certain CNS cell types can 

productively replicate HIV, HIV-1 Tat can be released from these infected cells to exhibit 

negative effects on neurons, brain microvascular endothelial cells, macrophages, macrophages, 

and astrocytes (González-Scarano & Martín-García 2005). HIV-1 Tat can contribute to neuronal 

injury and death via hyperpolarization of mitochondrial membranes and effects on synaptic 

signaling (Chauhan et al. 2003; Norman et al. 2007). Tat has also been shown to enhance the 

release of pro-inflammatory cytokines from CNS cells (Acheampong 2002, Woollard 2014) and 

alter molecular permeability across the BBB (András et al. 2003; Mahajan et al. 2008; Gandhi et 

al. 2010; Singh et al. 2004).  

Our studies utilize doxycycline (DOX)-inducible HIV Tat1-86 transgenic mice as a model 

for HAND. Tat+ mice conditionally-express the HIV-1 Tat1-86 protein in a nervous system-

targeted manner via a GFAP-driven Tet-on promoter (activated via consumption of chow 

containing doxycycline). Behavioral studies using tat transgenic mice have shown that the model 

recapitulates many cognitive deficits of HAND, including in spatial memory (Marks et al. 2016).  

 

 

1.F. The Opioid Epidemic 

Opiates refer alkaloids derived from the opium poppy plant Papaver somniferum, 

including morphine, codeine, and heroin (K. Hauser et al. 2012; Hauser & Knapp 2014). Opiates 

work by binding at specific opioid receptors, with those opiate drugs with abuse liability mainly 

acting on μ-opioid receptors (MOR) with lesser effects on δ-opioid receptors (DOR) and κ-

opioid receptors (KOR) (Hutchinson et al. 2011; McCarthy et al. 2001; K. Hauser et al. 2012). 
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Heroin is deacetylated in the CNS into the main bioactive metabolite morphine (Wright 1940; K. 

Hauser et al. 2012) 

The use of both prescription and non-prescription opioid medications has steadily 

increased in the United States since the late 1990’s (Dart et al. 2015). One cause of the opioid 

epidemic or opioid crisis has been attributed to pharmaceutical companies in the late 1990s 

claiming to medical professionals that prescription opioid medications were not addictive 

(Morone & Weiner 2013; Van Zee 2009). Healthcare providers then began overprescribing 

prescription opioid medications, which led to diversion and misuse of opioid medications before 

their highly addictive potential was realized (Morone & Weiner 2013; Van Zee 2009). Other 

causes of the opioid epidemic have been the prevalence of pill mills (clinics prescribing 

medications for non-medical purposes) as well as the focus on treating pain with medications 

instead of non-pharmacologic measures like physical therapy. In 2015 the leading cause of 

accidental death in the United States was due to drug overdose, with 52,404 overdose deaths that 

year (Rudd 2016). Of the 52,404 overdose deaths in 2015, 20,101 deaths were due to 

prescription opioids and 12,990 deaths were due to heroin (Rudd 2016). An observed trend 

during the epidemic are those who begin by misusing prescription painkillers later misusing 

heroin. The National Surveys on Drug Use and Health revealed that over 80% of misusers of 

heroin report using prescription opioid pain medications prior to first initiating heroin (Jones 

2013). Another survey published in JAMA Psychiatry in 2014 revealed that misusers of heroin 

prefer heroin over prescription opioids due to decreased cost, ease of access (likely due to 

increased illegal distribution of heroin in rural and suburban communities), and desire for greater 

“high” produced by heroin (Cicero et al. 2014).  
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HIV and opiate abuse are interlinked due to the common mode of HIV transmission via 

injection drug use. States such as New York have shown that needle exchange programs reduce 

the transmission of infections, including HIV, by people who inject drugs (PWID) (New York 

State Department of Health AIDS Institute. 2014). Unfortunately, needle exchange programs are 

not universally accepted and there are several legal and law enforcement challenges to their 

implementation nationwide (Beletsky et al. 2011). An example of the consequences due to the 

transmission interlink between PWID and HIV is the HIV outbreak that occurred in Austin, 

Indiana in 2015 (Conrad et al. 2015a; Peters et al. 2016a). While Austin, Indiana itself only has a 

population of about 5,000 people, over 150 diagnosed cases of HIV in 2015 have been attributed 

to syringe-sharing partners injecting oxymorphone (Opana®), an oral semi-synthetic opioid 

analgesic (Conrad et al. 2015b; Peters et al. 2016b). There are over 2 million PWID in both the 

United States and Canada, with a 15-20% prevalence of HIV in this population (Beyrer et al. 

2010). 

 

 

1.G. Antiretroviral Drugs and Efflux Drug Transporters 

 

 Understanding the pharmacokinetic properties of antiretroviral drugs is vital to the 

management of HIV infection. There are currently five classes of antiretroviral drugs: entry 

inhibitors, nucleoside/nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), integrase inhibitors (INSTIs), and protease inhibitors 

(PIs) (Pau & George 2014; Ashraf et al. 2014). Each of these classes act on part of the HIV life 

cycle. Entry inhibitors work early in the HIV life cycle, such as acting on the CCR5 receptor 

(maraviroc), gp41 protein (enfuvirtide), or the CD4 receptor (ibalizumab) (Pau & George 2014; 
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Ashraf et al. 2014). NRTIs block reverse transcriptase to prevent the conversion of HIV RNA to 

DNA (Pau & George 2014; Ashraf et al. 2014). Examples of NRTIs include abacavir, 

lamivudine, tenofovir, and emtricitabine. NNRTs work similarly but bind to a different site than 

NRTIs, specifically to a hydrophobic pocket near the catalytic site of reverse transcriptase (Pau 

& George 2014; Ashraf et al. 2014). Example of NNRTIs include efavirenz, etravirine, and 

rilpivirine. INSTIs block integrase, an enzyme which inserts viral DNA into host DNA (Pau & 

George 2014; Ashraf et al. 2014). Examples of INSTIs include dolutegravir, bictegravir, 

raltegravir, and elvitegravir. Protease inhibitors block protease, preventing cleavage of viral 

polypeptide precursors into mature enzymes and proteins (Pau & George 2014; Ashraf et al. 

2014). Examples of protease inhibitors include darunavir, lopinavir, and atazanavir.  

 Many antiretroviral drugs are also substrates for efflux drug transporters, such as Pgp, 

BCPR, and MRP. Efflux drug transporters located at the blood-brain barrier can expel substrates 

back into the blood, which can limit the substrate from crossing into the brain. This is an 

importance consideration for HIV therapy since many antiretroviral drugs are substrates for 

efflux transporters at the blood-brain barrier, which may limit antiretroviral drug concentrations 

within the brain. Decreased antiretroviral drug concentrations in the brain may allow for HIV 

proliferation and additional inflammation to occur in the brain. The present study examines the 

effects of HIV-1 Tat and morphine on the accumulation three antiretroviral drugs in the brain, 

which are part of the single-tablet regimen Triumeq®: abacavir, lamivudine, and dolutegravir. 

The protein binding, metabolic, and excretion properties of these drugs, as well as that for 

morphine and doxycycline are included Table 1.1. All three drugs are known substrates for the 

efflux transporter BCRP (Table 1.2). Both dolutegravir and abacavir are known substrates for 

Pgp, while abacavir and lamivudine are known substrates for MRP-4 (Table 1.2).  
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Table 1.1. Pharmacokinetic properties of drugs used in the present studies, including 

antiretroviral drugs, morphine, and doxycycline. (Glare & Walsh 1991; Olsen 1974; Triumeq 

2014; Epivir 1998; Tivicay 2013; Ziagen 1995; Bocedi et al. 2004; Yuen et al. 2008; Yeh et al. 

1977; Chittick et al. 1999; Cottrell et al. 2013; Sun & He 2009; Dowell et al. 1999; Kucuk et al. 

2009) 
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Table 1.2. Relationship between efflux drug transporters and drugs present in this study. 
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1.H. HIV and Opiate Interactions in the Brain and at the Blood-Brain Barrier 

While the incidence of more severe cognitive symptoms including encephalitis has 

declined in the era of cART, HAND remains a significant problem as HIV has evolved into a 

chronic, long term care disease (Ellis et al. 2007; Sacktor et al. 2002). Opiate drug abuse not only 

increases the incidence of HIV encephalitis (Bell et al. 2006; UNAIDS 2016), it has been shown 

to increase the incidence of HAND (Byrd et al. 2012; Meyer et al. 2013; Robinson-Papp et al. 

2012). Neurocognitive problems, such as worsening memory, have been reported in patients with 

HIV, and are reportedly worse in individuals who abuse drugs (Anthony et al. 2008; Bell et al. 

2006; Byrd et al. 2011; Meyer et al. 2013; Nath 2015b; Robinson-Papp et al. 2012). Studies 

reveal that opiates have an interactive effect with HIV, such as by increasing rate of HIV 

replication (El-Hage et al. 2013; Peterson et al. 1990), SIV/SHIV (Simian Immunodeficiency 

Virus/Simian-Human Immunodeficiency Virus) replication (Bokhari et al. 2011; Chuang et al. 

1993; Kumar et al. 2006; Kumar et al. 2004; Li et al. 2003; Li et al. 2002; Peterson et al. 1990) 

and suppressing immune function (K. Hauser et al. 2012; Roy et al. 2011). 

The main metabolic pathway of morphine is by glucuronidation by UDP-

glucuronosyltransferase (UGT) enzymes. UGT2B7 converts morphine into morphine-3-

glucuronide (M3G), an inactive morphine metabolite, and morphine-6-glucoronide (M6G), an 

analgesically active metabolite with abuse liability (De Gregori et al. 2012). Human brain 

homogenates have been shown to metabolize morphine to M3G and M6G. Importantly, M6G 

can be formed directly in the CNS and penetrate across the BBB at a high rate (Yamada et al. 

2003). Morphine has been shown to modulate tight junction protein expression, decrease TEER 

in a dose-dependent manner, increase P-gp expression, and increase the expression of pro-

inflammatory cytokines (Mahajan et al. 2008). Chronic morphine exposure has been shown to 

alter the expression and function of cytoskeletal proteins and cytoskeleton-associated 
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components in rats (Marie-Claire et al. 2004). By contrast, acute co-exposure to the partial µ-

MOR agonist, partial κ-opioid receptor (KOR) antagonist, buprenorphine was found to inhibit 

MCP1-induced monocyte chemotaxis (Carvallo, Lopez, Che, et al. 2015). Collectively, these 

results suggest that the effects of opiates on BBB function are complex. 

Opiates depress the immune system, allowing HIV-1 to proliferate (Dronda et al. 2004; 

Li et al. 2005; McDonough et al. 1980; Nath et al. 2000; Peterson et al. 1990; Wybran et al. 

1979). Opiates can act directly on microglia and astroglia resulting in neurodegenerative effects 

including neurotoxicity. Opiates have also been shown to synergistically potentiate Tat-induced 

increases in the release of IL-6, CCL5/RANTES, and CCL2/MCP-1 by astrocytes (El-Hage et al. 

2005). Morphine also potentiates neurodegenerative effects of Tat through glia expressing the µ-

opioid receptor with increased production of ROS (Zou et al. 2011). Together morphine and Tat 

have been shown to decrease ZO-1 and occludin gene expression, while increasing P-gp 

expression, JAM-2 expression, and increasing the production of pro-inflammatory cytokines 

TNF-α and IL-8 (Mahajan et al. 2008). Tat or morphine exposure decreases barrier tightness and 

increases immune cell transmigration in vitro, with co-exposure of Tat and morphine further 

exacerbating BBB permeability (Mahajan et al. 2008).  
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Chapter 2: Objective and Specific Aims 

Objective.  

Over 37 million people were living with human immunodeficiency virus (HIV) infection 

worldwide in 2016, and of those up to 70% may develop symptoms of HIV-associated 

neurocognitive disorders (HAND) (Peterson et al. 1990; Silva et al. 2014; Wybran et al. 1979). 

While combination antiretroviral therapy (cART) has decreased the incidence of most severe 

forms of neurocognitive impairment in patients with HIV, including HIV-associated dementia, 

milder forms of HAND still persist, including mild neurocognitive disorder and asymptomatic 

neurocognitive impairment. These milder defects can include decreases in memory, cognitive 

abilities, and motor skills (Alfahad & Nath 2013; Antinori et al. 2007). Despite advances in HIV 

medicine, there are currently no options to cure the neurocognitive defects caused by HAND 

(Ellis et al. 2007). While many factors are thought to contribute to the development of HAND, 

one theory is that HAND can result due to poor antiretroviral drug (ARV) penetration across the 

blood-brain barrier (BBB) (Spudich & Ances 2012). Complete eradication of HIV cannot be 

achieved when the brain serves as a reservoir for latent HIV, which can later reactivate and 

contribute to systemic infection (Saylor et al. 2016).  

 Opiate drug abuse can exacerbate HIV progression into AIDS (Kumar et al. 2006; 

Peterson et al. 1990) as well as increase the incidence and severity of HAND (Byrd et al. 2012; 

McArthur et al. 2010; Valcour 2011). Individuals abusing opiates are already at an increased risk 

of contracting HIV due to injection drug use, with up to one-third of patients with HIV reporting 

opiate abuse (Bell et al. 1998; UNAIDS 2016). Studies have revealed an interactive link between 

opiates and HIV effects. In multiple in vitro and in vivo models, including simian 

immunodeficiency virus (SIV), morphine increases viral loads as well as neuropathological 

progression (Bokhari et al. 2011; Kumar et al. 2006). Patients with HIV who abuse opiates have 
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poorer virologic suppression compared to those HIV patients who do not abuse opiates 

(Celentano & Lucas 2007; Weber et al. 2009). Even when receiving cART, patients with HIV 

who abuse opiates experience HAND, and at a higher rate and severity than those with HIV who 

do not abuse opiates (Byrd et al. 2011; Meyer et al. 2013; Nath et al. 2000; Robinson-Papp et al. 

2012). 

The objective of this dissertation is to determine if opiates in the presence of HIV-1 Tat 

exacerbates BBB disruption, alters ARV penetration into the brain, and increased monocyte 

turnover in the brain. To address these hypotheses, in vivo studies using the Tat transgenic mouse 

model will be used to study the effects of Tat and morphine exposure on BBB integrity (by 

measuring leakiness of the BBB), ARV penetration into the brain, and monocyte turnover. The 

goal of this proposal is to identify the extent to which opiates and HIV-1 exposure affects BBB 

structure and function. 

 

Aim 1: Define the effects of HIV-1 viral protein Tat and morphine on BBB integrity and 

permeability.  

Hypothesis: BBB integrity and permeability are compromised in the presence of both 

HIV-1 viral protein Tat and morphine. BBB integrity will be evaluated in Tat+ transgenic mice 

versus Tat− (control) mice ± morphine. Tracer dye mixtures (sodium fluorescein 0.376 kDa 

(NaFl), Cascade Blue 10 kDa, and Texas Red 70 kDa) will be injected intravenously and 

leakiness through the BBB into the brain will be observed. 
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Aim 2: Measure the effects of HIV-1 viral protein Tat and morphine on the flux of 

antiretroviral drug accumulation in the brain of mice. 

Hypothesis: ARV accumulation in the brain is decreased in the presence of HIV-1 Tat 

and morphine. ARVs will be administered via subcutaneous minipump and steady-state levels of 

ARV accumulation in the brain will be assessed using HIV-1 Tat-1 transgenic mice exposed to 

morphine. P-glycoprotein protein expression will be measured via western blotting. 

 

Aim 3: Determine the effects of the HIV-1 viral protein Tat and morphine on monocyte 

turnover and perivascular macrophage accumulation in the brain of mice.  

Hypothesis: Monocyte turnover and perivascular macrophage accumulation in the brain 

is increased in the presence of HIV-1 Tat and morphine. Bilateral intracerebralventricular (i.c.v.) 

infusions of labeled-dextran will be administered to HIV-1 Tat-1 transgenic mice exposed to 

morphine. Cells will be counted via immunohistochemistry. 
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Chapter 3: HIV-1 Tat Disrupts Blood-Brain Barrier Integrity and Increases Phagocytic 

Perivascular Macrophages and Microglia in the Dorsal Striatum of Transgenic Mice 

 

Leibrand CR, Paris JJ, Knapp PE, Kim W-K, Hauser KF, McRae MP. HIV-1 Tat Disrupts Blood-

Brain Barrier Integrity and Increases Phagocytic Perivascular Macrophages and 

Microglia in the Dorsal Striatum of Transgenic Mice. Neuroscience Letters. February 

2017; 640:136-143. PMID: 28057474 

 

3.A. Introduction 

About 37 million people globally were living with human immunodeficiency virus-1 

(HIV-1) in 2016, with over 1.2 million HIV-infected individuals residing within the United 

States (UNAIDS 2016). Despite the use of combination antiretroviral therapy (cART), 

approximately half of infected individuals experience HIV-associated neurocognitive disorders 

(HAND) and display deficits in memory and learning, an increased prevalence of 

neuropsychiatric disorders, and motor impairments (Saylor et al. 2016; Antinori et al. 2007). 

Understanding the ability of HIV infection to disrupt the blood-brain barrier (BBB), and to alter 

the migration of inflammatory cells to the brain is critical to understanding the pathology of 

neuroAIDS.  

The BBB is a major barrier against HIV-1 entry into the CNS. HIV is largely thought to 

enter the CNS through the trafficking of HIV-infected monocyte-derived macrophages (MDMs) 

(i.e., Trojan Horse model) (M. Meltzer et al. 1990; Verani et al. 2005). It is also hypothesized 

that some virions may enter the CNS via endothelial transcytosis or cross the BBB 

paracellularly, and that viral entry would be aided by breaches in BBB integrity (Mattson et al. 

2005). Indeed, early post-mortem analyses of HIV-infected brains reveal an accumulation of 

serum proteins, consistent with barrier breakdown (Petito & Cash 1992; Power et al. 1993). 

Molecular alterations critical for leukocyte transmigration across the BBB are increased in the 
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HIV-infected CNS (Eugenin et al. 2006) and expression of the tight junction protein, claudin-5, 

is reduced (Chaudhuri et al. 2008). However, the mechanisms by which HIV disrupts BBB 

integrity are only partially understood.  

One mechanism by which HIV may destabilize the BBB involves actions of the HIV-1 

regulatory protein, trans-activator of transcription (Tat). Tat is an early-expressed gene product, 

secreted from infected cells (Ensoli et al. 1990), that induces the expression and release of 

cytokines, chemokines, and adhesion proteins in vitro and in vivo in mice receiving intracerebral 

Tat injections (Conant et al. 1998; Pu et al. 2003). In vitro, Tat decreases expression of the tight 

junction proteins, claudin-1, claudin-5, and zonula occludens-1 (ZO-1) and/or zonula occludens-

2 (ZO-2) in brain microvascular endothelial cells (András et al. 2003; Mahajan et al. 2008; Pu et 

al. 2007). Tat-mediated effects on tight junction proteins may be dynamic given that Tat-

promoted neuroinflammation may further contribute to BBB permeability, and inhibiting Tat-

mediated translocation of NF-κB attenuates changes in claudin-5 (András et al. 2005). However, 

the extent to which these in vitro findings reflect changes in BBB function and integrity in vivo is 

uncertain (Bakri et al. 2001). Accordingly, the present investigation assessed BBB integrity in 

Tat transgenic mice. 

We hypothesized that expression of HIV-1 Tat protein in a transgenic murine model 

would disrupt the BBB, resulting in increased barrier permeability and in the increased 

recruitment/activation of macrophages/microglia within the dorsal striatum. The dorsal striatum 

is reported to be selectively vulnerable in HIV-infected individuals (Nath 2015a) and the acute 

and chronic effects of Tat-induced neuropathogenesis in this region are well-characterized in our 

transgenic mouse model (Bruce-Keller et al. 2008; Fitting et al. 2010; Paris et al. 2016). To 

assess this, mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts 
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(Tat−), received transcardial injections of sodium fluorescein (Na-F; 0.376 kDa), horseradish 

peroxidase (HRP; 44 kDa), or Texas Red®- labeled dextran (70 kDa) to determine the nature and 

extent of BBB leakiness. To assess phagocytic activity, mice were administered bilateral i.c.v. 

infusions of Alexa Fluor® 488- labeled dextran and numbers of phagocytic perivascular 

macrophages and microglia were examined 5 days later by quantitative fluorescence microscopy. 

 

3.B. Experimental 

3.B.1. Subjects and Housing 

The use of mice in these studies was approved by the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University and the experiments were conducted in 

accordance with ethical guidelines defined by the National Institutes of Health (NIH Publication 

No. 85-23). 

Adult, female mice (approximately 70 days of age) that expressed the HIV-1 tat 

transgene (Tat +; N = 10), and their control counterparts that lacked the transgene (Tat−; N = 

12), were generated in the vivarium at Virginia Commonwealth University. Briefly, Tat+ mice 

conditionally-expressed the HIV-1 Tat1-86 protein in a CNS-targeted manner via a GFAP-driven 

Tet-on promoter (activated via consumption of chow containing doxycycline). Tat− controls 

expressed only the doxycycline-responsive rtTA transcription factor as previously described 

(Bruce-Keller et al. 2008; Hauser et al. 2009). All mice were placed on doxycycline chow (Dox 

Diet #2018; 6 g/kg) obtained from Harlan Laboratories (Madison, WI) for the duration of the 

experiment (10 d). Mice were housed 4–5/cage and were maintained in a temperature- and 

humidity-controlled room on a 12:12 h light/dark cycle (lights off at 18:00 h) with ad libitum 

access to food and water. 
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3.B.2. Surgical Manipulation 

All mice underwent bilateral stereotaxic infusions as modified from prior reports to target 

the same rostral-caudal region of the striatum as previously reported, except labeled dextran will 

be injected into the lateral ventricles rather than the striatum (El-Hage et al. 2006b; El-Hage et al. 

2006). Briefly, mice received bilateral i.c.v. infusions (4 μL) under isoflurane (4%) anesthesia 

(Bregma: AP: −0.5 mm, Lat: ±1.6 mm, DV: −2 mm; (Naumenko et al. 2012a; Naumenko et al. 

2013a). Following surgery, mice were monitored to ensure weight gain, muscle tone, and proper 

neurological response and general health (Crawley & Paylor 1997). While anesthesia, including 

isoflurane anesthesia, could have effects at the BBB, it is unethical to not administer anesthesia 

to mice during surgeries and infusions. Surgical records were maintained documenting how long 

each mouse was under anesthesia, including recovery time. All mice surgery and infusion times 

were approximately the same between each mouse. 

 

3.B.3. Experiment 1: assessment of blood-brain barrier permeability 

To assess the influence of HIV-1 Tat on BBB integrity, Tat− and Tat+ mice were 

transcardially infused with 50 μL of ~0.376 kDa Na-F (2%, w/v; 10 min prior to perfusion with 

15 mL PBS), 10 μL ~44 kDa HRP (5 mg/mL; 5 min prior to perfusion with 15 mL PBS followed 

by 20 mL 4% paraformaldehyde), or 10 μL ~70 kDa dextran conjugated to Texas Red® (4 

mg/mL; 10 min prior to perfusion with 15 mL PBS) per prior methods (Ben-Zvi et al. 2014; 

Hawkins & Egleton 2006; Ramirez et al. 2012). BBB permeability was assessed via multiple 

methods: HRP brain penetration was measured  immunohistochemically in whole-brain sections, 

whereas Na-F and Texas Red®-labeled dextran were measured in brain homogenates. For HRP 

experiments, frozen coronal slices (40 μm; obtained 0.845–1.245 mm from Bregma) were 
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labeled with primary anti-HRP and visualized via appropriate secondary antibody conjugated to 

Alexa Fluor® 647 (Alexa 647, Thermo Fisher, Rockford, IL; far-red fluorescence). Slices were 

counterstained with Hoechst 33342 nuclear stain (Thermo Fisher; blue fluorescence) and imaged 

as described (Marks et al. 2016). HRP signal was normalized to background (signal intensity in 

the off-tissue area of the tiled image). HRP signal above background levels indicates BBB 

disruption and leakage of HRP into the brain (Ben-Zvi et al. 2014). Tiled images of HRP and 

Hoechst dual-labeled sections in the dorsal striatum were acquired from within a single z-plane 

(~0.50 μm-depth) within 5 μm from the surface of the section. HRP immunofluorescence was 

detected in the far-red range (Alexa 647) using diode laser excitation (637 nm) with a 640 nm 

long-pass filter. All images were acquired using a Zeiss LSM700 confocal microscope 

(Oberkochen, Germany) equipped with a 20× 1.0 NA objective. During image acquisition, the 

laser intensity, detector gain, and all other parameters were held constant within an identical 

volume of tissue across all treatment groups. Fluorescent densitometry was assessed in unaltered 

tagged image file (tif) format images using ImageJ software (National Institutes of Health).  

For Na-F and 70 kDa dextran experiments, brains were homogenized and Na-F and 

fluorescein-labeled dextrans were measured via spectrophotometry (Na-F: 440/525 nm, ex/em; 

Texas Red®-dextrans: 575/620 nm, ex/em) using a PHERAstar FS Plus microplate reader (BMG 

Labtech). Na-F and 70 kDa dextran data are expressed as fold-change in fluorescent 

intensity/well (200 uL volume) compared to Tat− control mice (Ramirez et al. 2012). 

 

3.B.4. Experiment 2: in vivo labeling of phagocytic macrophages/microglia in the CNS 

To assess the effects of Tat on the number of phagocytic macrophages/microglia within 

the brain, Tat+ and Tat− mice received a bilateral i.c.v. infusion of ~10 kDa Alexa Fluor® 488-
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dextran (Alexa 488-dextran; 4 mg/kg; Thermo Fisher; cat. # D22910) on day 5 of Tat exposure 

(approximately half-way through the Tat induction period). On day 10 of Tat exposure, mice 

were transcardially perfused with PBS followed by 4% paraformaldehyde and were prepared for 

immunohistochemistry as previously described (Marks et al. 2016). Coronal slices (40 μm; 

0.845–1.245 mm from Bregma) were counterstained with Hoechst 33342 to detect cell nuclei. 

Alexa 488-dextran was infused at 5 days following induction when Tat causes significant 

pathology in the striatum; astrogliosis and microgliosis is evident at 48 h following Tat induction 

(Bruce-Keller et al. 2008), and synaptodendritic injury occurs 7–10 days following Tat induction 

(Fitting et al. 2010). To further demonstrate that the Alexa 488-dextran-labeled phagocytes were 

macrophages/microglia, anti-Iba-1 primary antibodies (Wako Pure Chemical Industries, 

Richmond, VA) were visualized using Alexa 647-conjugated secondary antibodies (Thermo 

Fisher) and co-localized with Alexa 488-dextran. Alexa 488-dextran and Iba-1 colocalization 

was confirmed in the same cell by 3-dimensional reconstruction of multiple zstack images using 

a Zeiss LSM 700 microscope (63× 1.4 NA objective) and presented as a single compressed 

image in the present paper. To determine the relative number of phagocytic 

macrophages/microglia in the caudate/putamen of Tat− and Tat+ mice, Hoechst+ cells were 

counted in sequential fields until a criterion of 200 cells/slice was met; the number of Alexa 488-

dextran cells is reported as a proportion of the total number of Hoechst+ cells. 

 

3.B.5. Statistical Analyses 

Dependent measures for BBB permeability and phagocytic activity in perivascular 

macrophages/microglia were assessed by one-way analysis of variance (ANOVA) in the HRP 

experiment and by Student’s one-tailed t-tests for remaining experiments. Group differences in 



29 
 

main effects were determined using Fisher’s Protected Least Significant Difference post-hoc 

tests determined group. No interactions were detected. Analyses were considered significant if p 

< 0.05. 

 

3.C. Results 

3.C.1. Experiment 1: HIV-1 Tat disrupts the blood-brain barrier of Tat-transgenic mice 

Inducing HIV-1 Tat in transgenic mice significantly altered BBB permeability as 

assessed by HRP accumulation in brain [F(3,9) = 8.20, p < 0.05] (Fig, 1A–H′). Tat+ mice 

receiving transcardial infusions of HRP demonstrated significantly greater HRP signal in the 

brain compared to HRP-infused, Tat− control mice (p = 0.008), or the negative controls [Tat+ (p 

= 0.001) or Tat− (p = 0.02) mice that were not infused with HRP] (Fig. 1J). Moreover, Tat 

exposure compromised barrier integrity as assessed by Na-F accumulation in brain [t(10) = 2.09, 

p < 0.05] (Fig. 3.1I). However, the accumulation of Texas Red+ 70 kDa dextran in the brain did 

not significantly differ between Tat− or Tat+ mice (Fig. 3.1K), suggesting that there is an upper 

limit to barrier disruption induced by Tat under these experimental conditions. 

 

3.C.2. Experiment 2: Phagocytic macrophage/microglial-activity is greater following HIV-1 

Tat exposure 

Alexa 488-dextran (i.c.v.) co-localized with perivascular Iba-1-labeled cells within the 

caudate/putamen of Tat− (Fig. 3.2A-A″) and Tat+ (Fig. 3.2B-B″) mice. Morphology and dextran 

accumulation were consistent with phagocytic perivascular macrophages (3.2A-2B″). Within the 

parenchyma of the caudate/putamen, Iba-1-labeled cells with microglial morphology co-

localized with Alexa 488-dextran (Fig. 3.2C). Compared to Iba-1-labeled macrophages within 

the perivascular space, microglia within the parenchyma internalized notably less dextran; 
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however, greater amounts of dextran were observed within some microglia that were proximally 

closer to vascular boundaries (Fig. 3.2D). The co-localization of Alexa 488-dextran in 

phagocytic cells associated with the perivascular space (Fig. 3.3A–B″) and within the 

parenchyma was quantified. Compared to Tat− controls, HIV-1 Tat exposure significantly 

increased the proportion of dextran-labeled phagocytes both in the parenchyma [F(1,20) = 9.08, 

p < 0.05] (Fig. 3.3C) and in the perivascular space [F(1,20) = 23.58, p < 0.05] (Fig. 3.3D) of the 

caudate/putamen. 

 

3.D. Discussion 

Our findings support the hypothesis that Tat is a critical component mediating the known 

BBB disruptive effects of HIV-1. The results suggest that Tat-dependent disruptions to the BBB 

also contribute to the glial activation, inflammation, and neuronal injury seen in the dorsal 

striatum in the transgenic Tat mouse (Bruce-Keller et al. 2008; Fitting et al. 2010; Paris et al. 

2016).  

The leakage of Na-F and HRP tracers into the brains of mice was significantly increased 

in Tat+ compared with Tat− mice. These data are consistent with previous in vitro work 

demonstrating that Tat exposure increases brain vascular endothelial permeability to paracellular 

compounds such as Evans Blue or FITC-dextrans (Gandhi, Zainulabedin M Saiyed, et al. 2010; 

Pu et al. 2007). BBB disruption is not an “all-or-none” phenomenon and therefore varying the 

size of molecular tracers can infer the magnitude of BBB disruption (Hoffmann et al. 2011). In 

our studies, BBB breach occurred not only for a relatively small compound (Na-F; 0.376 kDa) 

but also for a compound ~100-fold larger (HRP; 44 kDa), while a 70 kDa dextran conjugate 

failed to cross, suggesting an intermediate level of disruption of the endothelium upon 10 d 
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exposure to Tat. Interestingly, HRP immunofluorescence was not uniformly distributed within 

the Tat+ mouse brain (Fig. 3.1G–1H′). Although differences in HRP leakage within the brain 

may be a specific feature of the Tat model, it may also reflect regional differences in the 

response of the BBB to Tat exposure. Future investigations may aim to examine these endpoints 

using additional models of central Tat expression, perhaps in a between-subjects design in which 

dextrans of varying size are assessed against the same fluorophore to eliminate any variance 

caused by differences in fluorescent labeling and/or the differences in the tracers themselves 

(e.g., NaF vs. HRP vs. dextran). 

We also hypothesized that Tat exposure would increase the recruitment and/or activity of 

phagocytic macrophages and microglia within the brain, which was confirmed by the observed 

increases in Alexa 488-dextran labeled cells within the parenchyma and the perivascular space of 

the caudate/putamen. We observed strong co-localization of labeled dextran within perivascular 

macrophages (Fig. 3.2A-A″ and 3.2B-B″). Of interest, we also saw dextran-labeled Iba-1-

immunoreactive microglia within the parenchyma (Fig. 3.2C). Dextran accumulation within 

microglia was notably reduced compared to that observed in perivascular macrophages; albeit, 

some microglia situated closer to the brain vasculature demonstrated increased amounts of 

dextran internalization (Fig. 3.2D) and dextran was not colocalized with some Iba-1+ microglia 

especially in the Tat− mice. Although astrogliosis and microgliosis have been observed in the 

Tat transgenic mouse (Bruce-Keller et al. 2008), alterations in macrophage/microglial function, 

as assessed by phagocytic activity, have not been previously characterized. Similar increases in 

microglia and perivascular macrophages are seen following intrahippocampal injections of Tat 

(Pu et al. 2003), though in these studies the BBB was partially disrupted by the stereotaxic 

injection of Tat. Additionally, others have demonstrated using in vitro models that Tat exposure 
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increases transmigration of peripheral monocytes across a BBB model via increased production 

of CCL2 (MCP-1) and upregulation of CCR5 on monocytes (J. M. Weiss et al. 1999). HIV 

infection increases expression of junctional adhesion molecule-A (JAM-A) and activated 

leukocyte cell adhesion molecule (ALCAM) on monocytes, both of which can mediate the 

enhanced transmigration of human CD14+, CD16+ monocytes (infected and uninfected) into the 

brain resulting in accumulation of these inflammatory leukocytes within the CNS. Despite the 

importance of JAM-A and ALCAM in monocyte trafficking, Tat’s specific role in this process is 

not yet well described (Williams et al. 2015). It is also noteworthy that the rarefaction of brain 

capillaries and altered hemodynamics seen with chronic (6 months) Tat exposure in this Tat 

transgenic mouse model (Silva et al. 2014) are likely a direct result of sustained BBB disruption, 

macrophage activation, and inflammation that we observe after 10 d of Tat induction. Given 

Tat’s dynamic capacity to decrease tight junction expression in brain microvascular endothelial 

cells (András et al. 2003; Mahajan et al. 2008; Pu et al. 2007), and to facilitate NF-κB signaling 

which may inhibit occludin expression (Wachtel et al. 2001), future studies are warranted that 

examine the importance of timing of Tat expression on BBB disruption and neuroinflammation. 

Perivascular macrophages are phenotypically distinct from resident brain macrophages, 

the microglia, and play a central role in HIV neuropathogenesis (Kim et al. 2006; Fischer-Smith 

et al. 2001; Buckner et al. 2011). Perivascular macrophages can be productively infected with 

HIV and produce soluble inflammatory mediators and cytokines which contribute to breakdown 

of the BBB (Hong & Banks 2015). Additionally, the perivascular space is a major site of 

infiltration of blood-derived cells under normal and inflammatory conditions (Ransohoff et al. 

2003; Hickey et al. 1992). They are continuously repopulated from bone marrow (Fischer-Smith 

et al. 2001; Hickey et al. 1992) and the rate of this repopulation can be accelerated in 
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inflammation and infection (Williams et al. 2001; Burdo et al. 2010b; Hasegawa et al. 2009; Kim 

et al. 2003). Accumulation of perivascular macrophages is a feature of HIV infection, including 

HIV encephalitis and HIV-associated dementia (Fischer-Smith et al. 2001; Kim et al. 2005; 

Nowlin et al. 2018). Our findings support the hypothesis that Tat has a critical role in mediating 

the increased numbers of phagocytic macrophages and microglia within the brain that are 

observed in HIV infection. 

  HIV-1-infected cells within the CNS may secrete viral proteins besides Tat (such as 

gp120), which activate surrounding macrophages, microglia and astrocytes to increase the 

release of inflammatory factors and escalate recruitment of monocytes into the CNS (Buckner et 

al. 2011; Williams et al. 2012; Gendelman et al. 2009; Carvallo et al. 2015; Eugenin & Berman 

2003). Gp120 can affect the BBB and may act in concert with Tat to further exacerbate BBB 

disruption and monocyte expansion and transmigration (Zembala et al. 1997; Nakamuta et al. 

2008). Exposure to gp120 in vitro results in the expansion of high CD16 expressing monocytes, 

which is similar to the expansion observed in vivo following HIV infection (Thieblemont et al. 

1995; Pulliam et al. 1997). Unlike most other HIV proteins, Tat appears to continue to be 

expressed by infected cells despite the suppression of viral replication by cART (Johnson et al. 

2013), and our studies demonstrate that this sustained expression of Tat could be of clinical 

importance to BBB alterations in virally suppressed patients. Current antiretroviral therapy does 

not target the early phase of HIV-1 mRNA transcription when Tat is expressed (Karn & Stoltzfus 

2012). 
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3.E. Conclusions 

The present findings demonstrate HIV-1 Tat to be a critical mediator of HIV-associated 

disruption of the intact BBB. Furthermore, in vivo Tat exposure resulted in increases in the 

proportion of dextran-labeled macrophages within the perivascular space and striatal tissue, 

which is a region of clinical significance in HAND. This Tat transgenic mouse model may be a 

useful tool in further examining BBB dynamics in monocyte trafficking within the context of 

HIV-1 Tat exposure. 
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Figure 3.1. Effects of HIV-1 Tat expression on the penetration of horseradish peroxidase 

(HRP; red) from the vasculature into the forebrain of Tat transgenic mice (A–D; Scale bar 

= 1 mm). Tat expressing (Tat+) mice that were transcardially injected with HRP showed 

increased BBB permeability (D), while mice lacking the Tat transgene (Tat−) (C) or mice that 

were injected with saline instead of HRP (A–B) served as controls. The same sections as in A–D 

were counterstained with Hoechst 33342 (blue) to reveal the underlying cytoarchitecture (A′–D′). 

Higher magnification image showing a gradient of HRP penetration from some small blood 

vessels (capillaries and some venules, indicated by arrows) into the striatal parenchyma in Tat+ 

mice (G–H′) that was minimally evident in Tat− control mice (E–F′). Scale bar = 50 μm (E, E′, 
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G, G′) or 10 μm (F, F′, H, H′). Effects of Tat expression on mice transcardially injected with 

0.376 kDa sodium fluorescein (Na-F) (I), 44 kDa HRP (J), and 70 kDa Texas Red®-labeled 

dextran (K). Tat expression increased the permeability of the BBB to Na-F and HRP, but not to 

the higher molecular weight Texas Red®-labeled dextran. * indicates p < 0.05 compared to all 

other groups. 
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Figure 3.2.  Photomicrographs of phagocytic perivascular macrophages within the 

caudate/putamen of Tat− (A-A″) and Tat+ (B-B″) transgenic mice (A–B). Perivascular 

macrophages labeled with Iba-1 (red) typically phagocytosed Alexa 488-conjugated dextran 

(infused i.c.v. at 5 d following continuous Tat induction; green). Dotted lines indicate the 

boundaries of small blood vessels. Alexa 488-dextran was also observed within Iba-1-labeled 

microglia residing in the caudate/putamen parenchyma of Tat− (C) and Tat+ (D) transgenic 

mice. Scale bar = 10 μm. 



38 
 

 

 

Figure 3.3. Photomicrographs of phagocytic perivascular macrophages within the 

caudate/putamen of Tat− (A-A) and Tat+ (B-B″) transgenic mice (A–B). Macrophages 

(arrows) were labeled with Alexa 488-dextran (infused i.c.v. at 5 d following continuous Tat 

induction; green). The dotted line indicates the boundaries of small blood vessel, while the 

asterisk (*) indicates white matter tracts indicative of the striatum. Scale bar = 10 μm. HIV-1 Tat 

exposure significantly increased the proportion of dextran-labeled phagocytes compared to Tat− 

control mice (C–D). Quantification of the proportion of phagocytic cells labeled with green 

within the parenchyma (C) or perivascular space (D). * indicates p < 0.05 compared to Tat− 

mice. 
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Chapter 4: Effects of Tat and/or Morphine on Monocyte Turnover in the Brain and 

Regional Distribution of Macrophages Using the Tat Transgenic Mouse Model 

 

 

4.A. Introduction 

Monocytic phagocytes are the primary cell type to host and proliferate human HIV within 

the CNS (Williams & Hickey 2002). Given that HIV does not infect neurons, activation of 

bystander cells, such as microglia, underlies many of the neuroinflammatory and subsequent 

toxic effects associated with central infection (Hauser et al. 2007; Becker et al. 2011). One such 

target of infection includes the blood-brain barrier (BBB), which typically serves to maintain 

homeostasis within the brain, but may be compromised following infection, prompting influx of 

activated monocytes into the CNS (González-Scarano & Martín-García 2005). Understanding 

which brain regions are most affected by the accumulation of activated monocytes, and detecting 

any trends in phagocytic cellular infiltration, are critical to further elucidate the 

neuropathogenesis of AIDS. 

It has been reported that HIV-1 Tat and morphine can trigger CNS inflammation, thus 

recruiting monocyte-derived macrophages from the periphery into the CNS. While the 

progression into AIDS is typically described by the decrease in CD4+ T cells, it has been shown 

that increases in monocyte turnover are a better predictor of disease progression in SIV-infected 

adult macaques (Hasegawa et al. 2009). However, the effects of HIV-1 Tat and morphine on 

monocyte turnover and macrophage accumulation in the Tat transgenic mouse model are not yet 

known. 

The purpose of this study is to examine the effects of HIV-1 Tat on regional distribution 

of phagocytic macrophages/microglia. We hypothesized that expression of HIV-1 Tat protein in 

a transgenic murine model would promote changes in regional activation of monocyte-derived 
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cells within the brain. In  particular, we hypothesized an increase in recruitment/activation of 

monocyte-derived macrophages (MDMs) within the caudate/putamen, a region reported to be 

selectively vulnerable in patients with HIV (Nath 2015a). Several studies have examined both 

the acute and chronic effects of Tat-induced neuropathogenesis in the caudate/putamen regimen 

in the transgenic mouse model and have demonstrated that Tat exposure is associated with glial 

activation, neuronal injury, dendritic spine loss, and increased protein oxidation (Bruce-Keller et 

al. 2008; Fitting 2010; Paris et al. 2016). To assess phagocytic activity, Tat expression was 

induced for 10 days in transgenic mice. On day 10 of tat induction, mice were administered 

bilateral i.c.v. infusions of Alexa Fluor® 594- labeled dextran with sacrifice 4 hours later. The 

number of Alexa Fluor® 594-dextran-labeled macrophages were counted by fluorescence 

microscopy. 

The purpose of this study is to examine the effects of HIV-1 Tat and/or morphine on 

monocyte turnover. We also hypothesized that HIV-1 Tat and/or morphine co-exposure would 

increase monocyte turnover and macrophage accumulation in the caudate/putamen of Tat 

transgenic mice. Worsening neurological prognosis has been associated with the accumulation 

and increase in recruitment/activity of phagocytic macrophages and microglia within the brain 

(Fischer-Smith et al. 2001). Monocyte turnover has been associated with SIV progression 

(Hasegawa et al. 2009) and SIV encephalitis (Burdo et al. 2010a). To examine changes in 

monocyte trafficking into the CNS, mice that conditionally expressed HIV-1 Tat (Tat+), or their 

control counterparts (Tat−), received i.c.v. infusions of multi-color labeled-dextran at different 

time intervals of Tat induction and/or morphine exposure.  
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4.B. Materials and Methods 

4.B.1. Subjects and Housing 

The use of mice in these studies was approved by the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University and the experiments were conducted in 

accordance with ethical guidelines defined by the National Institutes of Health (NIH Publication 

No. 85-23). Adult, female mice (approximately 70 days of age) were utilized for these initial 

studies given their capacity for a more dynamic neuroimmune response to a range of insults 

compared to adult males (Hanamsagar et al. 2017; Schwarz et al. 2012) Mice were generated in 

the vivarium at Virginia Commonwealth University and either expressed an HIV-1 tat transgene 

(Tat+), or were control counterparts that lacked the tat transgene (Tat−). Tat+ mice 

conditionally-expressed the HIV-1 Tat1-86 protein in a nervous system-targeted manner via a 

GFAP-driven, Tet-on promoter, which is activated by consumption of chow containing 

doxycycline. Tat− controls expressed only the doxycycline-responsive rtTA transcription factor 

as previously described (Bruce-Keller et al. 2008; Hauser et al. 2009). All mice were placed on 

doxycycline-containing chow (Dox Diet #2018; 6 g/kg) obtained from Harlan Laboratories 

(Madison, WI) for the duration of Tat induction and then placed on regular feed. Mice were 

housed 4–5/cage and were maintained in a temperature- and humidity-controlled room on a 

12:12 h light/dark cycle (lights off at 18:00 h) with ad libitum access to food and water. 

 

4.B.2. Surgical Manipulation 

Experiment 1: In vivo labeling assessment of regional phagocytic macrophage/microglia 

distribution in the CNS 

All mice underwent bilateral stereotaxic dextran infusions as modified from prior reports 

(El-Hage et al. 2006b; El-Hage et al. 2006). Briefly, mice received bilateral i.c.v. infusions (4 

μL) under isoflurane (4%) anesthesia (Bregma: AP: −0.5 mm, Lat: ±1.6 mm, DV: −2 mm; 
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(Naumenko et al. 2012b; Naumenko et al. 2013b). Following surgery, mice were monitored to 

ensure weight gain, muscle tone, and proper neurological response and general health (Crawley 

& Paylor 1997). 

 

Experiment 2: Assessment of monocyte turnover via in vivo labeling of phagocytic 

macrophages/microglia in the caudate/putamen 

Infusion guide cannulas (including internal and “dummy cap” cannulas to close the guide 

cannula when not in use) (PlasticsOne Inc., Roanoke, VA) were stereotaxically positioned under 

inhaled isoflurane anesthesia (4%) into the lateral ventricles of all mice (Bregma: AP: −0.5 mm, 

Lat: ±1.6 mm, DV: −2 mm) (Naumenko et al. 2012b; Naumenko et al. 2013b). The guide 

cannula avoids the need for repeated stereotaxic infusion of labeled dextran. Following surgery, 

mice were monitored to ensure weight gain, muscle tone, and proper neurological response and 

general health (Crawley & Paylor 1997). Guide cannula surgeries were performed two days prior 

to the initial dextran infusion (and three days prior to Tat induction) to allow for adequate 

recovery prior to labelling of phagocytes.  

 

4.B.3. Morphine Administration 

Only those mice in the monocyte turnover study received morphine treatment. On the 

same day as Tat induction, mice underwent osmotic minipump surgery. Briefly, mice were 

anesthetized with isoflurane (4% induction, 2% maintenance). A small mid-scapular entry was 

made through the skin and an ALZET® osmotic pump (2002 model, flow rate 0.5 µL/hr) 

delivering 0.77 mg morphine/day or placebo was implanted. Bupivacaine was applied to all 

surgical sites immediately after implantation.  

 



43 
 

4.B.4. Experiment 1: In vivo labeling assessment of regional phagocytic 

macrophage/microglia distribution in the CNS 

Tat+ and Tat− mice received a bilateral i.c.v. infusion of ~10 kDa Alexa Fluor® 594-

dextran (Alexa 594-dextran; 4 mg/kg; Thermo Fisher; cat. # D22910) on day 5 of Tat exposure 

(approximately half-way through the Tat induction period) (Fig. 4.1). On day 10 of Tat exposure, 

mice were transcardially perfused with PBS followed by 4% paraformaldehyde and were 

prepared for immunohistochemistry as previously described (Marks et al. 2016). Coronal slices 

(40 μm; 0.845–1.245 mm from Bregma) were counterstained with Hoechst 33342 to detect cell 

nuclei. 

To determine the relative number of phagocytic macrophages/microglia in the 

caudate/putamen, nucleus accumbens, anterior cingulate cortex, primary motor cortex, 

somatosensory cortex, agranular insular cortex, and piriform cortex of Tat− and Tat+ mice, the 

number of Alexa 594-dextran cells that were Hoechst+ in the whole brain section per region 

were counted using a Zeiss LSM 700 microscope (20× objective). Brain regions were 

distinguished using Allen Mouse Brain Atlas (http://www.brain-map.org). 

 

4.B.5. Experiment 2: Assessment of monocyte turnover via in vivo labeling of phagocytic 

macrophages/microglia in the caudate/putamen 

An initial i.c.v. infusion of 10 kDa, Cascade Blue® (blue fluorescence) dextran (Thermo-

Fisher, catalog number D1976) were administered one day prior to Tat induction (Fig. 4.1). One 

day after Tat induction, a second infusion of dextran, 10 kDa, Alexa Fluor® 488 (green 

fluorescence) dextran (Thermo-Fisher, catalog number D22910), were infused to visualize 

potential changes in macrophage populations immediately after Tat induction. After 13 d of Tat 

induction, a third infusion of dextran, 10 kDa, Alexa Fluor® 594 (red fluorescence) dextran 
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(Thermo-Fisher, catalog number D22913), were administered to visualize potential changes in 

macrophage populations after a longer duration of Tat induction.  After 14 d of Tat induction, 

mice were perfused with buffered paraformaldehyde and the tissue processed for fluorescence 

microscopy. Frozen coronal slices (40 μm; obtained 0.845–1.245 mm from Bregma) were 

counterstained with Hoechst 33342 nuclear stain (Thermo Fisher; blue fluorescence). The 

number of labeled macrophages in each treatment group were determined morphologically at 

63× objective counting Hoechst+ cells in sequential fields until a criterion of 600 cells/slice was 

met. 

In a previous macrophage turnover study (Appendix II), Alexa Fluor® 488 –dextran (day 

5 of Tat induction, “early”) and Alexa Fluor® 594 –dextran (day 10 of Tat induction, “late”, 4 

hours prior to sacrifice) was infused into the mice bilaterally. However, we did not see a 

difference in the proportion of phagocytes labeled early vs. late in the duration of Tat exposure. 

This provides the rationale for our current macrophage turnover experiment timeline, which 

includes the addition of the Cascade Blue®-dextran (1 day prior to Tat induction) to label 

phagocytes prior to Tat induction, as well as infusing Alexa Fluor® 488 earlier during Tat 

induction (1 day after Tat induction vs 5 days) and Alexa Fluor® 594 later during Tat induction 

(13 days after tat induction vs 10 days). These adjustments may better parse monocyte 

trafficking in the present in vivo model. 

 

4.B.6. Statistical Analyses 

Dependent measures for monocyte turnover and phagocytic activity in various brain 

regions were assessed by one-way analysis of variance (ANOVA) using Tukey's post-hoc tests in 

the monocyte turnover experiment and by Student’s one-tailed t-tests for remaining experiments. 

Group differences in main effects were determined using Fisher’s Protected Least Significant 
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Difference post-hoc tests determined group. No interactions were detected. Analyses were 

considered significant if p < 0.05. 

 

 

4.C. Results 

4.C.1. Experiment 1: HIV-1 Tat Causes CNS Regional Differences in Phagocytosis 

The number of Alexa Fluor® 594-dextran-labeled macrophages significantly decreased 

in Tat+ mice in cortical regions, including the somatosensory cortex [F(1,11) = 45.009, p < 

0.05], agranular insular cortex [F(1,11) = 15.471, p < 0.05], and piriform cortex [F(1,11) = 

55.596, p < 0.05], compared to Tat− controls (Fig. 4.2). No significant differences were observed 

within the nucleus accumbens, anterior cingulate cortex, or primary motor cortex. Within the 

caudate/putamen, an area shown vulnerable in HIV patients (Annadora J Bruce-Keller et al. 

2008; Fitting, Xu, et al. 2010) and susceptible to in vivo Tat neurotoxicity (Bansal et al. 2000), 

there was a significant increase in the number of Alexa Fluor® 594-dextran-labeled 

macrophages [F(1,11) = 73.205, p < 0.05] in Tat+ mice compared to Tat− controls (Figure 4.2). 

 

4.C.2. Experiment 2: Tat and Morphine Increase Monocyte Turnover in the Perivascular 

Space 

No significant differences in the percent of Cascade Blue®-labeled cells, the baseline 

population prior to Tat induction and/or morphine exposure, was observed among the treatment 

groups in the parenchyma or perivascular space (Figure 4.3). These Cascade Blue®-labeled cells 

are triple-labeled (Cascade Blue®, Alexa Fluor® 488-dextran, and Alexa Fluor® 594-dextran) 

indicating that these cells were located in the caudate/putamen prior to Tat and/or morphine 

induction and remained there throughout the course of the experiment. No significant differences 

in the percent of triple-labeled cells (labeled Cascade Blue®, Alexa Fluor® 488-dextran, and 
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Alexa Fluor® 594-dextran; “stable population”) was observed among the treatment groups in the 

parenchyma or perivascular space (Fig. 4.4).   

Dual-colored cells (Alexa Fluor® 488-dextran and Alexa Fluor® 594-dextran) are the 

population of cells which trafficked into the caudate/putamen with 1 day after Tat induction 

and/or morphine exposure. There was a significant increase in the percent of dual-colored cells 

(Alexa Fluor® 488-dextran and Alexa Fluor® 594-dextran co-localization; “newly recruited 

cells”) within the parenchyma in Tat+ morphine mice compared to Tat− placebo mice (p < 

0.008). Similarly within the perivascular space, there was a significant increase in the percent of 

dual-colored cells Tat+ morphine, Tat− morphine, and Tat+ placebo compared to Tat− placebo 

(p < 0.008). In addition, there was a significant difference between Tat+ morphine and Tat− 

morphine compared to Tat+ placebo (p < 0.008) (Fig. 4.5). There were no single-color Alexa 

Fluor® 594-dextran labeled cells, or the population of cells which trafficked into the 

caudate/putamen beyond 1 day of Tat induction and/or morphine exposure. There were no 

single-color Alexa Fluor® 488-dextran detected in the present study, nor any instance where a 

Cascade Blue®-labeled cell was not also co-localized with Alexa Fluor® 488-dextran and Alexa 

Fluor® 594-dextran. 

 

4.D. Discussion 

These findings suggest that the expression of HIV-1 Tat facilitates regional activation of 

monocyte-derived cells in an in vivo murine model. These findings also support the notion 

of phagocytic cellular infiltration from cortical to subcortical regions, but additional studies need 

to be conducted to verify this infiltration. In the present chapter, we detected a significant 

increase in the number of 594-labeled macrophages in the caudate/putamen in Tat+ mice 



47 
 

compared to Tat− controls. Chapter 3 determined labeling at a 63× objective, counting Hoechst+ 

cells in sequential fields until a criterion of 200 cells/slice was met. The present chapter 

examined the entire coronal slice at 20× objective, thereby counting all labeled cells within each 

region. Since cells were counted at the 20× objective, perivascular and parenchymal cells count 

not be discerned from one another.  

Additionally, monocyte turnover increased upon exposure to Tat and morphine exposure 

in the perivascular space of the caudate/putamen. Additional cells were counted in these studies 

(600 Hoechst+ cells versus 200 Hoechst+ cells) due to high variability in Cascade Blue®-labeled 

cells when counting only to 200 cells. Additional studies may also explore a varied timeline for 

measuring monocyte turnover, since Alexa Fluor® 594-dextran (“late” infiltrating cells) was 

always co-localized with Alexa Fluor® 488-dextran. One explanation could be that increased 

monocyte turnover occurs quickly following Tat and/or morphine insult, before returning to 

baseline turnover rate. A longer study, injecting Alexa Fluor® 594-dextran after 28 days of 

morphine exposure and/or Tat induction may help further elucidate Tat and morphine influence 

on monocyte turnover in the caudate/putamen. 

4.E. Conclusions 

The present findings demonstrate that Tat influences the accumulation of phagocytic 

macrophages/microglia in the CNS. In particular, Tat exposure increased regional distribution of 

phagocytic macrophages/microglia within the caudate/putamen, while decreasing distribution 

within the somatosensory cortex, agranular insular cortex, and piriform cortex. Furthermore, 

HIV-1 Tat and morphine play an important role in promoting monocyte turnover in the 

caudate/putamen of transgenic mice. Future studies may include the use of flow cytometry to 

detect changes in cell populations within the brain under Tat and/or morphine conditions. 
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Figure 4.1. Timeline for regional distribution of phagocytic monocytes timeline (A) and 

monocyte turnover timeline (B). 
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Figure 4.2. Regional differences in phagocytosis. The number of Alexa Fluor® 594-dextran-

labeled macrophages significantly increased in Tat+ mice in the caudate/putamen (A), compared 

to Tat− controls (*p < 0.05). No significant differences observed within nucleus accumbens (B), 
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anterior cingulate cortex (C), or primary motor cortex (D). The number of Alexa Fluor® 594-

dextran-labeled macrophages significantly decreased in Tat+ mice in cortical regions, including 

the somatosensory cortex (E), agranular insular cortex (F), and piriform cortex (G), compared to 

Tat− controls (*p < 0.05).  
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Figure 4.3 Differences in percent of Cascade Blue®-labeled cells within the parenchymal 

and perivascular space were not statistically significant (p > 0.05).  
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Figure 4.4. Differences in percent of triple-labeled cells within the parenchymal and 

perivascular space, representing the stable population present prior to Tat induction 

and/or morphine exposure, were not statistically significant after treatment (p > 0.05). 
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Figure 4.5.  Dual-labeled cells within the parenchyma and the perivascular space of the 

caudate/putamen. There was a significant increase in the percent of dual-labeled cells within 

the parenchymal in Tat+ morphine mice compared to Tat− mice (*p < 0.008). There was a 

significant increase in the percent of dual-labeled cells within the perivascular space in Tat+ 

morphine mice, Tat− morphine mice, and Tat+ placebo mice compared to Tat− placebo mice (*p 

< 0.008), as well as a significant increase in Tat+ morphine and Tat− morphine compared to 

Tat+ placebo (#p < 0.008) 
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Chapter 5: HIV-1 Tat and Opioids Act Independently to Limit Antiretroviral Brain 

Concentrations and Reduce Blood-Brain Barrier Integrity 

 

 

5.A. Introduction 

Despite the aggressive use of combination antiretroviral therapy (cART), HIV infection 

results in neurocognitive and neurobehavioral impairment, collectively termed neuro-acquired 

immunodeficiency syndrome (neuroAIDS) in about half of infected individuals (Cysique & 

Brew 2009; Tozzi et al. 2007; Sacktor et al. 2002; Ellis et al. 2007). Although the severity has 

diminished in the post-cART era, HIV-associated neurocognitive disorders (HAND) persist as 

HIV/AIDS evolves into a chronic disease (Vivithanaporn et al. 2011; Ellis et al. 2007). Poor 

central nervous system (CNS) penetration of antiretroviral drugs likely contributes to HIV 

persistence and chronic inflammation within the brain, despite the fact that viral loads are often 

reduced to non-detectable levels in the peripheral circulation.  

Opiate drug abuse can exacerbate the cognitive impairment and pathologic CNS changes 

in HIV-infected persons. HIV neuropathogenesis and cognitive deficits are exacerbated with 

opiate co-exposure (Hauser et al. 2007; Donahoe & Vlahov 1998), potentiating HIV replication 

(Peterson et al. 1990; Li et al. 2002; Peterson et al. 1993; Peterson et al. 1994; Kumar et al. 2006; 

Nath et al. 2002), glial activation (El-Hage et al. 2005; El-Hage et al. 2006a; El-Hage et al. 2008; 

Turchan-Cholewo et al. 2009; Zou et al. 2011), neurotoxicity (Gurwell et al. 2001; Fitting et al. 

2010; Fitting et al. 2014) and blood-brain barrier (BBB) breakdown (Dutta & Roy 2012; 

Mahajan et al. 2008). Despite HIV and drug abuse being inextricably linked, morphine- and 

HIV-interactive effects on the actual penetration of therapeutic drugs into the brain are not well 

studied.  
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HIV-derived cellular and viral toxins are known to alter the integrity of the BBB. 

Exposure to HIV alters tight junction expression (Dallasta et al. 1999; Boven et al. 2000; 

Eugenin et al. 2011; Chaudhuri et al. 2008; Persidsky et al. 2006; Chaudhuri et al. 2008) and also 

increases transmigration of cells across the barrier (Saukkonen et al. 1997; Eugenin 2006; 

Persidsky et al. 2000; Persidsky et al. 1999; Buckner et al. 2011; Coley et al. 2015; Williams et 

al. 2012; Eugenin et al. 2011). The HIV proteins Tat (transactivator of transcription) and/or 

gp120 (glycoprotein 120) decrease tight junction protein expression (Louboutin & Strayer 2012; 

Kanmogne et al. 2002; Shiu et al. 2007; Nakamuta et al. 2008; Louboutin et al. 2010; Price et al. 

2005; Kanmogne et al. 2007), increase transmigration of monocytes (Weiss et al. 1999; Williams 

et al. 2015; Wu et al. 2000; Buckner et al. 2006; Williams et al. 2013; Buckner et al. 2011), and 

increase barrier permeability to paracellular compounds (Xu et al. 2012; Pu et al. 2007; Zhong et 

al. 2008; Pu et al. 2005; Gandhi et al. 2010; Banerjee et al. 2010; Andras et al. 2003; András et 

al. 2005; Leibrand et al. 2017)  

Morphine exposure has been reported to regulate the expression of tight junction proteins 

(Wen et al. 2011; Mahajan et al. 2008) and can alter transendothelial electrical resistance (TEER; 

a measure of barrier integrity) (Mahajan et al. 2008), although the findings of the effects of 

opiates on barrier permeability are inconsistent. These differences may be attributed to the use of 

different study models, morphine concentrations, duration of exposure, and route of morphine 

administration. The range of findings include claims that morphine exposure increases BBB 

permeability (a ‘leaky’ barrier) (Wen et al. 2011), to those asserting there is no change in 

permeability (Yousif et al. 2008; Strazza et al. 2016) or even decreased permeability to 

paracellular markers, suggesting enhanced barrier function (Sharma & Ali 2006). While the 

mechanisms by which opiates effect the paracellular permeability of the BBB are uncertain, 
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morphine has been shown to disrupt tight junctional complexes in columnar epithelium lining the 

small intestine (Meng et al. 2013). In the small intestine, morphine acts via a signaling pathway 

involving the upregulation of TLR2 and TLR4 and a myosin light chain kinase-dependent 

redistribution of the tight junctional proteins, ZO-1 and occludin (Meng et al. 2013). Besides 

having effects on paracellular transport, morphine exposure can also affect the expression of 

drug efflux transporters associated with transcellular transport through the endothelial cell 

component of the BBB (Miller et al. 2008; Yousif et al. 2008; Mahajan et al. 2008). Thus, the 

nature of opiate-dependent reductions or improvements in barrier function likely result from 

independent actions on paracellular and transcellular processes, and are likely subject to the 

timing and duration of exposure (Aquilante et al. 2000; Yousif et al. 2008; Miller et al. 2008; 

Mahajan et al. 2008).  

The rate and extent to which a drug will cross the BBB and penetrate into the brain is 

influenced by the physicochemical properties of drugs, including lipophilicity, molecular weight, 

charge at physiologic pH and protein binding (Abbott et al. 2010). Additionally, depending on 

the transporter(s) involved, active transport systems can facilitate or hinder brain penetration of 

drugs. Furthermore, BBB “breakdown”, which classically refers to tight junction disruption 

and/or flux of paracellular compounds, does not necessarily predict changes in the flux of drugs 

that typically traverse the BBB by transcellular (through the cells) mechanisms  (Gan et al. 1993; 

Troutman & Thakker 2003).  

The purpose of this study was to examine the effects of the HIV-1 protein Tat and 

morphine on antiretroviral penetration into the brain in concert with measurements of any 

alterations in the integrity of the BBB.  We hypothesized that chronic opiate abuse would 

exacerbate HIV-1 Tat-mediated BBB breakdown, but also that antiretroviral penetration into the 
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brain would be limited by Tat and/or morphine exposure. To assess this, mice that conditionally 

expressed HIV-1 Tat (Tat+), or their control counterparts (Tat−) were exposed to morphine or a 

placebo treatment. All mice received the antiretroviral drug combination 

dolutegravir/abacavir/lamivudine by continuous administration via an osmotic pump. After 5 

days of antiretroviral drug exposure, brain and plasma were collected for quantitation of 

antiretroviral drug concentrations. To determine the extent of BBB leakiness, mice were exposed 

to Tat, with or without morphine, and given transcardial injections of labeled dextrans with 

Cascade Blue® (10 kDa), fluorescein (40 kDa), and Texas Red® (70 kDa). 

Understanding how opioid abuse alters the penetration of antiretroviral drugs into the 

brain may lead to an improved understanding of why opioid abusers have more severe 

neurocognitive impairment and may lead to the development of better therapeutic drug regimens 

for neuroAIDS. 

 

5.B. Materials and Methods 

5.B.1. Subjects and Housing 

The use of mice in these studies was approved by the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University and the experiments were conducted in 

accordance with ethical guidelines defined by the National Institutes of Health (NIH Publication 

No. 85-23). Adult, female mice (approximately 70 days of age) were utilized for these initial 

studies given their capacity for a more dynamic neuroimmune response to a range of insults 

compared to adult males (Hanamsagar et al. 2017; Schwarz et al. 2012) Mice were generated in 

the vivarium at Virginia Commonwealth University and either expressed an HIV-1 tat transgene 

(Tat+), or were control counterparts that lacked the tat transgene (Tat−). Tat+ mice 

conditionally-expressed the HIV-1 Tat1-86 protein in a nervous system-targeted manner via a 
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GFAP-driven, Tet-on promoter, which is activated by consumption of chow containing 

doxycycline. Tat− controls expressed only the doxycycline-responsive rtTA transcription factor 

as previously described  (Bruce-Keller et al. 2008; Hauser et al. 2009). All mice were placed on 

doxycycline-containing chow (Dox Diet #2018; 6 g/kg) obtained from Harlan Laboratories 

(Madison, WI) for the duration of Tat induction and then placed on regular feed. Mice were 

housed 4–5/cage and were maintained in a temperature- and humidity-controlled room on a 

12:12 h light/dark cycle (lights off at 18:00 h) with ad libitum access to food and water. 

 

5.B.2. Antiretroviral Drug Administration 

Triumeq® (ViiV Healthcare) is a combination tablet containing abacavir (600 mg), 

dolutegravir (50 mg) and lamivudine (300 mg), and was purchased from the VCU Health 

Systems Pharmacy. The dosing for mice was calculated via allometric scaling (Nair & Jacob 

2016), based on an average 20 g mouse and was as follows: abacavir 2.5 mg/day (123.5 

mg/kg/day), dolutegravir 0.2 mg/day (10.3 mg/kg/day) and lamivudine 1.2 mg/day (61.7 

mg/kg/day). In brief, tablets were crushed to a fine power and resuspended in normal saline. 

After centrifugation at 1000 rpm for 5 min to pellet tablet excipients, the supernatant was sterile 

filtered twice (0.45 µm followed by 0.22 µm filter). Following filtration, 220 µL was loaded into 

the ALZET® osmotic pump (Model 2001, 1 µl/h delivery). For morphine groups, morphine salt 

pentahydrate powder was diluted directly into the antiretroviral solution prior to loading into the 

pump at a concentration sufficient to deliver 2.5 mg/day. Drug preparations were made in 

batches to minimize dosing variability. Each pump was weighed before and after loading, with 

consistent weights among all pumps. 
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5.B.3. Morphine Administration 

For dextran exclusion studies, morphine or placebo administration was achieved by 

subcutaneous implantation of 25 mg morphine or placebo time-release pelleted implants 

(National Institute on Drug Abuse, Rockville, MD) under aseptic conditions and 4% isoflurane 

anesthesia.  The use of time-release morphine pelleted implants or tablets is a standard method to 

continuously administer morphine during a period of 5 to 7 d.  The 25 mg pelleted implants 

produce morphine drug levels in the brain sufficient to cause tolerance (Chefer & Shippenberg 

2009) and physical dependence (Bogulavsky et al. 2009) within 3 d in C57BL/6 mice and that 

are comparable to plasma/tissue levels achieved in humans who are opiate-dependent (Ghazi-

Khansari et al. 2006).  

Briefly, mice were anesthetized with isoflurane (4% induction, 2% maintenance). A small 

mid-scapular entry was made through the skin and either a time-release 25-mg morphine or 

placebo pellet (dextran exclusion studies) or an ALZET® osmotic pump delivering 2.5 mg 

morphine/day or placebo (antiretroviral and morphine accumulation studies) was implanted. 

Bupivacaine was applied to all surgical sites immediately post-op. Sample sizes range from 6-9 

mice/group for dextran exclusion studies and antiretroviral accumulation studies. 

 

5.B.4. Assessment of Blood-Brain Barrier Permeability 

To assess the influence of HIV-1 Tat and morphine on BBB integrity, Tat+ and Tat− 

mice received Tat induction for 14 days followed by a 5-day washout period. At the conclusion 

of the 5-day washout period, Tat+ and Tat− mice were subcutaneously implanted with either 

morphine or placebo pellets. Five days after pellet implantation, mice were transcardially infused 

with 10 mL of dextran solution in PBS containing 10 kDa dextrans conjugated to Cascade Blue® 

(0.1 mg/mL), 40 kDa dextrans conjugated to fluorescein (0.1 mg/mL), and 70 kDa dextrans 
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conjugated to Texas Red® (0.1 mg/mL) over 5 minutes. Brains were homogenized in a 10× 

volume of 50% trichloroacetic acid, centrifuged at 5,000 x g at 4°C for 10 min, and then the 

supernatant was neutralized with 5 M NaOH (1:8 ratio) per prior methods (Ramirez et al. 2012; 

Leibrand et al. 2017). Cascade Blue, fluorescein, and Texas Red-labeled dextrans were measured 

via spectrophotometry (Cascade Blue®-dextrans: 380/460 nm, ex/em; fluorescein-dextrans: 

485/520 nm, ex/em; and Texas Red®-dextrans: 575/620 nm, ex/em) using a PHERAStar FS Plus 

microplate reader (BMG Labtech) on a glass-bottom multi-well cell culture plate. Dextran data 

are expressed as fold-change in fluorescent intensity/well (500 µL volume) compared to Tat− 

placebo pellet control mice (Hawkins & Egleton 2006; Leibrand et al. 2017).  

 

5.B.5. Antiretroviral Accumulation in Dorsal Striatum and Hippocampus   

To assess the effects of HIV-1 Tat and morphine on antiretroviral accumulation in the 

dorsal striatum and hippocampus, Tat+ and Tat− mice received Tat induction for 14 d followed 

by a 5 d period in which doxycycline is not administered to clear the antibiotic from the system. 

Prior (Ngwainmbi et al. 2014) and unpublished studies indicate that Tat mRNA expression 

remains elevated (including that detected in striatum and hippocampus) for at least 3 weeks after 

withholding doxycycline. On day 5 of the doxycycline washout period, Tat+ and Tat− mice were 

subcutaneously implanted with an ALZET® osmotic pump containing antiretroviral drug 

combination dolutegravir/abacavir/lamivudine (Triumeq®) with or without morphine. Mice were 

continuously exposed to dolutegravir, abacavir, and lamivudine ± morphine for 5 d to allow 

drugs to reach steady state (corresponding to day 10 of experiment).  After 5 d drug exposure, 

the mice were anesthetized under isoflurane and transcardially perfused with PBS (Fig. 5.1). The 

dorsal striatum and hippocampus were isolated, weighed, and snap-frozen for analysis.  
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LC-MS/MS methods were used to quantify dolutegravir, abacavir and lamivudine in 

mouse plasma and tissues. Frozen tissues were weighed, then homogenized in Precellys® hard 

tissue grinding kit tubes (Cayman Chemical, MI, USA) with cold 70:30 acetonitrile:1 mM 

ammonium phosphate buffer (pH 7.4). Analytes were extracted from plasma and tissue 

homogenates following protein precipitation with the following stable isotopically labeled 

internal standards: abacavir-d4, lamivudine-15N-d2 and dolutegravir-13C-d5. Chromatographic 

separation of analytes and internal standards from matrix components was achieved using 

reverse-phase chromatography on a Waters Atlantis T3 (50 x 2.1 mm, 3 μm) column for abacavir 

and lamivudine or a Waters XTERRA MS C18 (50 x 2.1 mm, 3.5 μm) column for dolutegravir. 

Analytes were detected on an AB Sciex API-5000 triple quadrupole mass spectrometer using 

electrospray ionization in the positive ion mode for abacavir and lamivudine or atmospheric 

pressure chemical ionization (APCI) in the positive ion mode for dolutegravir. The calibrated 

ranges for abacavir, lamivudine and dolutegravir were 1-200 ng/mL, 0.125-50 ng/mL and 0.025-

50 ng/mL of tissue homogenate, respectively. The calibrated range for abacavir, lamivudine and 

dolutegravir in plasma was 1-10000 ng/mL, 1-4000 ng/mL, and 50-10000 ng/mL, respectively. 

Precision and accuracy was ± 20% (25% at the lower limit of quantification; LLOQ). All 

antiretroviral data are expressed as a brain tissue-to-plasma ratio to normalize for systemic 

exposure. 

 

5.B.6. Morphine and Morphine Metabolite Accumulation in Dorsal Striatum and 

Hippocampus   

In the same mice in which antiretroviral concentrations were quantified, the contralateral 

brain regions were used for quantification of morphine concentrations. LC-MS/MS methods 

were used to quantify morphine and its glucuronidated metabolites, morphine-3-β-glucuronide 
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(M3G) and 6-β-glucuronide (M6G). Frozen samples are weighed and thawed at ambient 

temperature. A 0.50 mL aliquot of water was added to each tissue or plasma sample. Each 

sample underwent homogenization with a micro-tissue tearor for 30 sec. Following 

centrifugation, the sample supernatant was loaded onto pre-conditioned solid phase extraction 

cartridges (Waters HLB, Waters Corporation, Milford, MS). Samples were washed with 5% 

methanol, and then eluted into a 96-well plate with 95% methanol (twice). Eluent was then dried 

under a nitrogen stream at 55°C. Samples were then reconstituted with 0.1 mL of mobile phase 

prior to a 20 µL injection undergoing liquid chromatography tandem mass spectrometry (LC-

MS/MS). Morphine and its glucuronide metabolites were separated using hydrophilic interaction 

chromatography (HILIC) with a Polaris Silica 2.0 x 30 mm, 5 µm (Agilent, Santa Clara, CA, 

USA) HPLC column under gradient conditions. Each analyte and stable isotopic internal 

standard employed the following selected reaction monitoring transitions: 286.0 > 165.0 

(morphine), 462.0 > 286.0 (M3G), 462.0 > 286.0 (M6G), 289.0 > 165.00 (morphine-d3), 465.0 > 

289.0 (M3G-d3), and 465.0 > 289.0 (M6G-d3). M3G and M6G are chromatographically 

separated (resolution >2.0), which is used for quantitative analysis. The linear range of all three 

analytes was 0.50–50 ng/mL, 1-100 ng/mL, and 10-1000 ng/mL for morphine, morphine-3-β-

glucuronide, and morphine-6-β-glucuronide, respectively. Precision and accuracy acceptance 

criteria were ± 15% (20% at the lower limit of quantification; LLOQ). 

 

5.B.7. Western Blotting 

Protein expression within striatum, hippocampus, and liver (as positive control) were 

analyzed by immunoblotting using standard techniques. Brain tissue samples were homogenized 

in lysis buffer containing protease inhibitor (Roche, Indianapolis, IN). Homogenized lysates 

were incubated at 4 °C for 30 minutes with end-over-end mixing. Liver samples were also 
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subjected to lysis buffer containing protease inhibitor (Roche, Indianapolis, IN) but using a 

Precellys 24 homogenizer (Bertin Technologies, Aix en Provence, France) at 3 rounds of 10 s of 

bead-beating at 6,000 rpm at 4 °C with ceramic beads (1.4 mm diameter, Mobio Laboratories, 

Carlsbad, CA). Cell debris from both brain and liver tissue samples was removed by 

centrifugation at 12,000 rpm for 15 min at 4 °C. Supernatants were transferred to new tubes 

stored at −80 °C until ready for use. Protein concentrations were quantified using the BCA 

protein assay (Pierce, Rockford, IL). Thirty micrograms of cell lysate was loaded on a 12% 

Mini-Protean TGX gel (Bio-Rad, Hercules, CA) for all proteins except for Tat− transgenic 

mouse liver positive control, for which 10 micrograms was used. Following electrophoresis and 

transfer to polyvinylidene difluoride (PVDF), the membrane was blocked in 5% non-fat milk 

solution and incubated overnight with appropriate primary antibody. Antibodies used include 

mouse anti-actin (1:4,000; Sigma-Aldrich; catalog number A1978) and mouse anti-P-

glycoprotein (C219; 1 µg/ml dilution; Calbiochem, Billerica, MA; catalog number 517310). 

Blots were then incubated at RT for 1 h with horseradish peroxidase-conjugated anti-mouse 

[1:20,000] secondary antibody. Signals were enhanced using chemiluminescence using the 

SuperSignal West Femto system (Thermo Fisher Scientific) and detected by exposure to the 

ChemiDoc system (Bio-Rad). The chemiluminescence signal intensity was quantified using 

ImageLab software (Bio-Rad). All protein expression data is expressed as relative density, which 

was calculated by the ratio of the absolute density of P-glycoprotein to that of β-actin absolute 

density. 

 

5.B.8. Statistical Analyses 

Dependent measures for BBB permeability and antiretroviral drug accumulation were 

assessed by two-way analyses of variance (ANOVA). Fisher's Protected Least Significant 
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Difference post-hoc tests determined group differences following main effects. Interactions were 

determined via simple main effects and main effect contrasts with error controlled for multiple 

comparisons. Morphine content was assessed via Student’s two-tailed t-tests. All analyses were 

considered significant when p < 0.05. 

 

5.C. Results 

5.C.1. HIV-1 Tat and Morphine Independently Disrupt the Blood-Brain Barrier of Mice 

Following 14 d of Tat induction, accumulation of the smallest tracer, 10 kDa labeled 

dextran, was significantly increased among Tat+ mice compared to their Tat− counterparts (p = 

0.02). Moreover, morphine exposure significantly increased 10 kDa dextran accumulation 

among Tat− mice, compared to those that received placebo pellets (p = 0.047) (Fig. 5.1). There 

was no additive effect of Tat and morphine co-exposure on dextran leakage into the brain.  

With the larger tracers, significant main effects for morphine were observed. Morphine 

exposure significantly increased brain accumulation of the 40 kDa-labeled fluorescein-

conjugated dextran [F(1,26) = 6.187, p = 0.02), as well as the 70 kDa-labeled Texas Red®-

conjugated dextran [F(1,26) = 5.696, p = 0.02], irrespective of Tat exposure (Fig. 5.1). 

 

5.C.2. Morphine Alters Antiretroviral Drug Penetration into the Brain 

Morphine exposure significantly influenced antiretroviral accumulation in the brain. The 

greatest influence was observed for morphine to significantly decrease the tissue-to-plasma ratio 

of dolutegravir within the striatum [F(1,28) = 17.43, p = 0.0004] and the hippocampus [F(1,28) 

= 13.80, p = 0.0009], irrespective of Tat exposure. Morphine exposure also significantly 

decreased the tissue-to-plasma ratio of abacavir in the striatum (but not hippocampus), 
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irrespective of Tat exposure [F(1,28) = 8.87, p = 0.007]. No effects were observed on the tissue-

to-plasma ratio of lamivudine (Fig. 5.2). 

When comparing raw concentrations (not normalized for systemic exposure) of 

antiretroviral accumulation in the brain, morphine exposure was observed to significantly 

decrease abacavir content in striatum [F(1,28) = 6.37, p = 0.02], irrespective of Tat exposure 

(Table 5.1). No other significant differences in raw antiretroviral content were observed in 

striatum, hippocampus, or plasma (Table 5.1).  

 

5.C.3. Morphine LC/MS Results    

The effects of Tat exposure on the both tissue-to-plasma ratios and raw concentrations of 

morphine and its M3G metabolite in plasma, striatum, and hippocampus were investigated. Tat+ 

mice was a strong trend towards significantly increased morphine concentrations in plasma (p = 

0.059) as compared to their Tat− counterparts (Fig. 5.3). In contrast, there was a significant 

decrease in the tissue-to-plasma morphine ratio within the hippocampus in Tat+ (p = 0.0499) 

compared to Tat− mice. No significant changes in morphine concentrations were noted in the 

striatum. Raw concentrations of M3G content within the plasma, hippocampus and striatum 

between Tat+ and Tat− mice were also compared. In the hippocampus, Tat exposure resulted in 

significantly increased M3G concentrations in the hippocampus [F(1,13) = 10.43, p = 0.0066), 

but no significant changes in M3G concentrations were observed in the plasma or striatum 

(Table 4.1).  

Additionally, M3G metabolite levels in the hippocampus positively correlated with 

dolutegravir levels in hippocampus (r2 = 0.31, p = 0.0310) and morphine levels in the plasma 

negatively correlated with dolutegravir levels in striatum (r2 0.31) = 0.32, p = 0.0344). 



66 
 

 

5.C.4. P-glycoprotein Displays Similar Baseline levels of Expression in the Striatum and 

Hippocampus, but Increases in Response to Morphine Exposure 

There were no significant differences in baseline P-gp expression levels between striatum 

and hippocampus in either Tat− placebo mice (p = 0.9727) or in Tat+ placebo mice (p = 0.3460) 

at baseline (Fig. 5.4). However, exposure to morphine, irrespective of Tat status, resulted in 

significant increases in P-gp expression in both striatum [F(1,12) = 4.752, p = 0.0499) and 

hippocampus [F(1,12) = 4.810, p = 0.0487) compared with the non-morphine exposed groups. 

(Fig. 5.4). 

 

5.D. Discussion 

The data from these studies support three main findings. The experimental results 

demonstrate that 1) morphine, and to a lesser extent Tat, exposure in mice can result in damage 

to the blood brain barrier, 2) morphine exposure results in decreased penetration of select 

antiretroviral drugs within the brain, and 3) Tat exposure results in altered distribution of 

morphine; with lower concentrations of morphine within the hippocampus of Tat+ mice. 

5.D.1. Tat Increased BBB Leakiness for 10 kDa Compound 

Our findings suggest that while Tat and morphine can independently disrupt the integrity 

of the BBB, morphine exposure results in greater damage to the BBB than Tat. We have 

previously demonstrated that following Tat induction, there is a size limited leakage of tracers 

into the brain; with 0.4 kDa and 44 kDa tracers freely leaking into the brain, while the entry of a 

larger 70 kDa tracer was unaffected by Tat (Leibrand et al., 2017). These findings are 

recapitulated within the current study, with the exception that the intermediate sized tracer did 

not display significant extravasation into the brain parenchyma in Tat exposed mice. There are a 
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few potential reasons for the discrepancy. The time course was slightly different between the two 

studies. In the previous study, BBB leakiness was measured at the end of day 10 of doxycycline; 

with no doxycycline-free period prior to sacrifice. In the present experiments, mice were fed 

doxycycline (to cause Tat induction) for 14 d, followed by a doxycycline-free period of a total of 

10 d; in which there was a 5 d washout period prior to starting ARV ± morphine. The washout 

period was designed to minimize any potential pharmacokinetic drug-drug interactions between 

doxycycline and the antiretroviral drugs ± morphine cocktail. The specific pharmacokinetic, 

metabolic and excretion profiles of each drug suggested limited potential for drug-doxycycline 

interactions; however, any unexpected interactions would potentially have confounded our 

results. Tat mRNA expression remains elevated in the striatum even after doxycycline has been 

removed for 4 weeks (Knapp and Xu, unpublished); therefore, it was expected that Tat levels 

would remain elevated over the entire study. However, it is possible that Tat protein levels 

waned in the time frame of our studies, allowing for some repair or recovery of barrier 

properties/integrity. Another potential explanation is related to the difference in the physical 

properties between dextran solutions and HRP.  Dextrans are polydisperse and therefore any one 

dextran solution, even when characterized as a particular kDa size, will actually have a broad 

distribution of sizes. This variability in size range could affect our ability to make a direct size 

comparison between dextrans and other tracers, such as HRP, used in previous studies (Venturoli 

& Rippe 2005). Regardless, the findings within this study demonstrate that morphine exposure 

resulted in greater breakdown of the BBB than that of Tat. Morphine-exposed mice, regardless of 

Tat status, had significant leakage of even the largest tracer (70 kDa). 
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5.D.2. Morphine Exposure Increased BBB Leakiness but Decreased ARV Brain 

Concentrations 

Furthermore, morphine exposure resulted in decreased ARV brain concentrations, despite 

increased BBB leakiness. Initially, it might seem paradoxical that morphine exposure increases 

the penetration of the dextran tracers, while decreasing the penetration of dolutegravir and 

abacavir without affecting the accumulation of lamivudine within the brain. It must be 

recognized that tracer leakage is a measure paracellular flux of molecules or compounds.  An 

increase in the flux of compounds that traverse the BBB paracellularly, or between the 

endothelial cells of the BBB, does not necessarily predict changes in flux of drugs that cross via 

transcellular mechanisms. For example, alterations in barrier integrity by manipulating tight 

junctions increases the influx of ranitidine, a polar paracellular compound (Gan et al. 1993). 

However, these same tight junction changes have no impact on the overall flux of two different 

substances known to traverse the BBB by transcellular mechanisms, ondansetron and 

testosterone (Gan et al. 1993; Troutman & Thakker 2003). The antiretroviral drugs used in this 

study traverse the membrane via transcellular mechanisms. The ability of drugs to cross lipid 

bilayers, such as the endothelial cells of the BBB, is influenced by the physicochemical 

properties (such as lipophilicity, size, and protein binding), as well as by active uptake transport 

processes. Abacavir, which is moderately lipophilic and not highly protein bound, would be 

expected to have some passive permeability. Lamivudine is a lower molecular weight than 

abacavir.  Although lamivudine also binds proteins minimally, it is less lipophilic than abacavir, 

which may hamper its passive penetration across the BBB (Reis et al. 2013). Alternatively, the 

entry of abacavir and lamivudine into cells is also known to be partially mediated by the uptake 

transporters organic cation transporters (OCT), OCT1, OCT2, and OCT3 (Minuesa et al. 2009; 

Casado et al. 2014; Yuen et al. 2008; Reis et al. 2013).  Dolutegravir, a lipophilic drug, can 
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permeate cells through passive permeability (Reese et al. 2013), but the net penetration of 

dolutegravir into the brain may be limited by its extensive protein binding (99%) (Reese et al. 

2013).  Additionally, net flux across the BBB is also influenced by active efflux transporters, 

such as P-glycoprotein (P-gp), where the efflux transporter itself can be a major determinant of 

CNS penetration (Edwards et al. 2002; Polli et al. 1999). Dolutegravir and abacavir, but not 

lamivudine, are substrates for P-gp (Shaik et al. 2007; Reese et al. 2013). Herein, we demonstrate 

increased protein expression of P-gp within the brain (striatum and hippocampus) in the 

morphine exposed mice (Fig. 5.5), which could account for the net decrease tissue-to-plasma 

ratio of each of these drugs within the brain. The finding that P-gp expression is increased in 

response to morphine is consistent with several other studies. Acute morphine increases P-gp 

mRNA (Yousif et al. 2008; Mahajan et al. 2008). Chronic morphine exposure increases protein 

expression of P-gp within the brain and decreases antinociceptive responses in rats (Bauer et al. 

2004; Aquilante et al. 2000). In contrast, others have demonstrated no change in P-gp activity 

with chronic morphine treated rats (Yousif et al. 2008). Other drug transporters, such as BCRP, 

are also involved in the efflux of the antiretrovirals we studied, although because P-gp is the only 

efflux transporter in common between dolutegravir and abacavir, a role of BCRPs in mediating 

the observed changes in dolutegravir and abacavir concentrations in the present study is less 

likely (Kis et al. 2010; Giri et al. 2008; Reese et al. 2013). The implications for these findings 

could be potentially widespread. If morphine exposure results in the net decrease of brain 

concentrations of P-gp substrates, this could potentially have a negative impact on the treatment 

of HIV by other antiretroviral drugs within the brain, or may even impact the efficacy of other 

CNS active drugs that are P-gp substrates.  
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5.D.3. No Regional Differences in ARV Penetration 

HIV is known to preferentially affect certain regions within the brain. Maximal viral 

loads can be found in the basal ganglia, as well as the medial temporal lobes, hippocampus and 

frontal lobes (Nath 2015a). The striatum and hippocampus were examined within this study 

because they preferentially show high viral loads in HIV-infected individuals (Nath 2015a), 

express high levels of µ-opioid receptors (Mansour et al. 1995; Arvidsson et al. 1995), and 

display substantial pathology in the HIV-1 Tat transgenic mouse (Marks et al. 2016; Schier et al. 

2017; Fitting et al. 2010). Brain regional differences in response to HIV or HIV viral proteins 

have been demonstrated previously, including regional differences in cytokine release and 

regional and cell specific dysregulation of opioid receptors (Fitting et al. 2010; Fitting et al. 

2010; Stiene-Martin et al. 1998). Within this study, the observed differences in abacavir 

concentrations between striatum (decreased) and hippocampus (no change) suggested regional 

differences in penetration of each drug. However, upon analysis, there were no significant 

regional differences in dolutegravir, abacavir or lamivudine raw concentrations between striatum 

and hippocampus within this study. Therefore, caution must be used not to over-interpret the 

abacavir results.  

 

5.D.4. Tat Altered Morphine Distribution with Brain and Plasma 

Another important finding was that Tat exposure resulted in altered morphine distribution 

within the plasma and brain as compared to Tat− mice. Decreased penetration of morphine 

within the hippocampus of Tat+ mice was not reflected, nor could have been predicted by plasma 

concentrations within these animals, which strongly trended towards an increase in morphine 

concentration. Furthermore, although the parent concentrations decreased, M3G concentrations 

within the hippocampus significantly increased. P-gp expression was increased within the 
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hippocampus and could have mediated the efflux of morphine, resulting in the observed decrease 

in morphine concentration within the hippocampus. While the mechanism(s) underlying 

increased M3G in hippocampus are not known, M3G is not thought to be a substrate for P-gp 

(Xie et al. 2000) and therefore alterations in P-gp would not have been expected to result in 

changes in the concentration of M3G systemically or in different brain regions 

Within this study, total, not unbound, antiretroviral concentrations were measured; 

therefore, we do not have a precise estimate of free drug within the brain. However, the focus of 

the present study was to assess the directionality of effects of Tat and morphine exposure on drug 

concentrations. Because ARV concentrations were measured at steady state, and because we 

have no evidence to suggest that either Tat or morphine would cause ARV displacement from its 

protein binding sites, the impact on ARV tissue concentrations would be expected to be 

proportional between total and unbound concentrations.  

 

5.E. Conclusions 

The present findings demonstrate that HIV-1 Tat and morphine are critical mediators of 

BBB disruption and that Tat exposure can alter the distribution of morphine within the mouse 

brain, resulting in decreased morphine concentrations within the hippocampus.  Furthermore, 

decreases in concentrations of dolutegravir and abacavir, along with increased expression of the 

efflux transporter P-gp, were observed within the striatum and hippocampus. Additional studies 

need to be conducted to verify the role of P-gp in mediating the observed changes in 

concentrations of cART and/or morphine and its metabolites. Furthermore, to more fully 

understand the functional impact of altered brain concentrations, future studies may include an 

infectious HIV model in order to assess the impact of morphine administration on antiviral 

efficacy. 
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Table 5.1. Raw concentrations within plasma, striatum and hippocampus. These data are 

expressed as concentration (not the tissue-to-plasma ratios); *p < 0.05; significant difference 

between morphine or M3G groups. †p < 0.05; significant main effect of morphine. Values are 

the mean ± SEM. 

 Plasma 
Drug concentration (ng/mL) 

 Placebo Morphine 

Drug Tat– Tat+ Tat− Tat+ 

Dolutegravir 433.2 ± 80.9 485.7 ± 60.9 634.5 ± 63.0 537.7 ± 26.2 

Abacavir 1790.6 ± 607.0 1519.6 ± 184.4 1326.7 ± 84.8 1311.1 ± 62 

Lamivudine 829.7 ± 320.9 500.6 ± 66.8 471.3 ± 60.2 507.8 ± 33.2 

Morphine   232.1 ± 44.5  555.5 ± 122.7 

M3G   2297.6 ± 369.3 2714.6 ± 279.0 

 

 

 Striatum  
Drug concentration (ng/mg) 

Hippocampus 
Drug concentration (ng/mg) 

 Placebo Morphine Placebo Morphine 

Drug Tat− Tat+ Tat− Tat+ Tat− Tat+ Tat− Tat+ 

Dolutegravir 4.6 ± 
1.1 

5.3 ± 
1.4 

3.4 ± 1.0 2.4 ± 
0.6 

4.8 ± 
1.1 

5.8 ± 
1.1 

3.7 ± 
0.4 

3.7 ± 
0.4 

Abacavir 134.4 ± 
26.1 

165.8 ± 
24.6 

99.9 ± 
10.6† 

93.2 ± 
5.9† 

129.2 
± 26.4 

163.1 
± 25.7 

110.1 
± 11.5 

100.2 
± 6.0 

Lamivudine 25.9 ± 
3.5 

26.7 ± 
4.9 

21.5 ± 
4.0 

19.4 ± 
1.6 

27.3 ± 
3.4 

26.3 ± 
4.5 

20.8 ± 
1.8 

26.0 ± 
3.0 

Morphine  259.0 ± 
107.6 

322.7 
± 94.2 

 143.9 
± 31.1 

113.2 
± 20.1 

M3G  3.0 ± 1.6 11.6 ± 
7.5 

 6.6 ± 
3.4* 

33.7 ± 
6.4* 
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Figure 5.1.  Effects of HIV-1 Tat and morphine on BBB leakiness after 14-day Tat 

induction.  A) Tat exposure significantly increased 10 kDa (Cascade Blue®) tracer leakage in 

placebo-treated mice (*p < 0.05) and morphine increased 10 kDa (Cascade Blue®) tracer 

leakage in Tat− mice (#p < 0.05). B, C) Additionally, there was a significant main effect of 

morphine to reduce the integrity of the BBB to higher molecular weight (40 kDa and 70 kDa) 

tracers (†p < 0.05; significant main effect of morphine). Data represent the fold-change in mean 

fluorescence intensity ± the SEM sampled from n = 8 Tat−/placebo, n = 6 Tat+/placebo, n = 9 

Tat−/morphine, and n = 7 Tat+/morphine mice. 
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Figure 5.2. Antiretroviral tissue-to-plasma ratios in striatum and hippocampus.  Morphine 

significantly reduced the levels of dolutegravir (A, D) and abacavir (B, E), but not lamivudine 

(C, F), depending on the brain region (†p < 0.05; main effect).  Data represent the tissue-to-

plasma ratios ± the SEM sampled from n = 9 Tat−/placebo, n = 9 Tat+/placebo, n = 6 

Tat−/morphine, and n = 8 Tat+/morphine mice. 
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Figure 5.3. Morphine plasma concentrations and tissue-to-plasma ratios in striatum and 

hippocampus.  Morphine levels were assessed by LC-MS/MS in both plasma and brain tissue. 

Morphine plasma levels showed a strong trend towards an increase in concentration with Tat 

exposure (A). Tat exposure decreased the morphine tissue-to-plasma ratio in the hippocampus 

(C) but not in the striatum (B) (*p < 0.05). Data represent the tissue-to-plasma ratios ± the SEM 

sampled from n = 6 Tat−, n = 9 Tat+ mice. 
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Figure 5.4. Western blots of P-gp levels in the striatum (A, C) and hippocampus (B, D) of 

Tat− or Tat+ mice ± morphine co-exposure. Western blots of P-glycoprotein (P-gp) levels 

in the striatum and hippocampus of Tat− placebo mice (E) and Tat+ placebo mice (F) at 

baseline. Data represent the relative density of P-gp (absolute density of P-gp over the absolute 

density of β-actin) ± the SEM. Exposure to morphine treatment, irrespective of Tat status, 

significantly increased P-gp expression in both striatum (A, C) (†p < 0.05) and hippocampus (B, 

D) (†p < 0.05) compared with those groups unexposed to morphine. Differences in regional P-gp 
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expression between striatum and hippocampus were not statistically significant in Tat− placebo 

mice or in Tat+ placebo mice at baseline (E, F); n = 4 for all groups. 
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Chapter 6: Overall Conclusions and Future Directions 

 

In Chapter 3, we concluded that HIV-1 Tat plays an important role in the HIV-associated 

disruption of the BBB. Tat exposure results in increased proportion of dextran-labeled 

macrophages within the perivascular space and parenchymal tissue of the caudate/putamen, 

which is a region of clinical significance in HAND. In Chapter 4, acute morphine experiment 

and (to a lesser extent) Tat induction alter MDM turnover suggest that leukocyte trafficking also 

altered. In Chapter 5, we explored the role of morphine and HIV-1 Tat on BBB disruption, 

concluding that both morphine and HIV-1 Tat are critical mediators of BBB disruption. Tat 

exposure can influence morphine distribution within the brain, resulting decreased morphine 

concentrations within the hippocampus. We found that morphine decreased the concentrations of 

dolutegravir and abacavir, along with increased the expression of the efflux transporter P-gp, 

within the striatum and hippocampus. 

Future directions include studies examining the effects of P-gp function as well as 

changes in cell populations in the brain under Tat and/or morphine exposure. Since Chapter 5 

revealed morphine effects on P-gp expression and ARV penetration into the striatum and 

hippocampus, P-gp function studies will focus on morphine effects without regard to Tat 

exposure. To further complement studies in Chapter 3 assessing phagocytic 

macrophage/microglia accumulation in the CNS, as well as in Chapter 4 assessing monocyte 

turnover under Tat and/or morphine exposure, flow cytometry studies will be performed to 

determine how cell populations (microglia, monocytes/macrophages, neutrophils) change in 

response to Tat and/or morphine. 

 



79 
 

Pgp Function Study 

 The purpose of this study is to determine how morphine affects P-gp function, using 

quinidine as a P-gp substrate and PSC833 as a P-gp inhibitor. Morphine (1.5 mg/day) or placebo 

will be delivered for 5 days in Tat transgenic mice without Tat induction. After 5 days mice will 

be administered PSC833 (10 mg/kg orally via gavage) or saline 60 minutes prior to quinidine or 

saline (40 mg/kg, I.P.). Sixty minutes after quinidine or saline administration, mice are 

sacrificed, plasma and brains harvested (striatum and hippocampus), weighted and frozen until 

analysis. Quinidine concentrations will be measured via LC-MS/MS. 

Flow Cytometry Study 

The purpose of this study is to determine how HIV-1 Tat and morphine may influence 

changes in cell populations within the brain. Populations to study include neutrophils, classical 

(previously inflammatory) monocytes, and non-classical (previously resident or patrolling) 

monocytes. Antibodies to identify these populations used include CD11b, CD45, Ly6C, and 

Ly6G. The experiment timeline would match that from the monocyte turnover study (Chapter 4), 

which includes 14 days of Tat induction and morphine exposure. 

 

 

 

 

 

 

 

 

 

 



80 
 

Appendix I. 

 

Mononuclear Phagocytic Activity. 

Tat effects on the number of phagocytic macrophages/microglia within the brain were 

assessed with the following procedure. Tat+ (n = 6) and Tat- (n = 6) mice received two sets of 

bilateral i.c.v. infusions of ~10 kDa fluorophore-conjugated dextrans separated by five days. On 

separate days after Tat-induction, Alexa Fluor® 488 –dextran (day 5) and Alexa Fluor® 594 –

dextran (day 10) (4 mg/kg; Thermo Fisher; cat.# D22910 and D22913, respectively) was infused 

into the mice bilaterally.  On day 10, 4 h after dextran infusion, mice were transcardially-

perfused with 4% paraformaldehyde and were prepared for immunohistochemistry as previously 

described (Marks et al., 2016). Coronal slices (40 µm; 0.845 – 1.245mm from Bregma) were 

counterstained with Hoechst 33342 to detect nuclei. Dextran infusates are taken up by 

phagocytic cells within the CNS, labeling activated mononuclear cells. As such, greater 

proportions of 488- or 594-labeled cells indicate longer (488- and 594- dual labeled cells), or 

shorter residing (594- single labeled cells) cells which phagocytosed the label. Cells with only 

the 594-single label were actively phagocytosing only at the later stages (10d); which could 

indicate late activation or that these cells recently migrated into the CNS (after 5d) and can be 

suggestive of turnover of these MDMs. 
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Figure A.1. No significant differences were observed between early-labeled phagocytes after 5 

days of Tat exposure (488+), vs. late-labeled phagocytes after 10 days of Tat exposure (594+). 

However, there existed a notable trend for late-labeled (594+) cells to present in greater 

proportion than dual- (488+/594+) labeled cells [F(2,20) = 3.24, p = 0.06, n.s.] within the 

caudate/putamen tissue (Figure. 2C). 
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