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Secreted proteins play important roles in many cellular functions and molecular 

processes. Because secreted proteins potentially enter the blood stream, they can serve 

as valuable measures of health and disease useful for disease diagnosis and prognosis, 

therapeutic target identification, and patient stratification in personalized medicine. 

Consequently, significant interest exists in secreted protein analysis within complex 

biospecimens, particularly blood but significant bioanalytical challenges including the 

wide protein dynamic range >10 orders of magnitude remain. The cellular secretome 

therefore represents a viable alternative to direct biomarker discovery in biofluids. Finally, 

cellular systems are amenable to labeling for the production of intact stable isotope 

labeled (SIL) proteins that can be used as global internal standards for quantitative 

proteomics. In this dissertation, two secretome-focused studies were undertaken. 

The first study involving candidate biomarker discovery in radiation-induced autophagy 

utilized the p53-null and inducible H1299 non-small cell lung cancer (NSCLC) secretome. 

The study identified 364 secreted proteins that were mainly associated with exosomes 

(N=224) and chaperone activity (N=21). CHGB and SCG2 were identified as potential 

population-based biomarkers (for patient stratification) due to their consistent 

overexpression in p53-null H1299 cell secretomes compared to p53-wt cells before and 

after radiation. FAM3C, CANX, EIF5A, GPI, and TXNRD1 were identified as candidate 

biomarkers for patient prognosis following radiotherapy due to their differential expression 

only in response to radiation treatment. 

In the second study, a comprehensive glycoproteomics characterization of the SILAC-

labeled HepG2 secretome was undertaken. 1635 SIL proteins, 492 of which were major 

plasma proteins including 192 cancer biomarkers were identified with high sequence 



 
 

 
 

coverage spanning six orders of magnitude. EDTA plasma spiked with the SIL 

secretomes yielded 63 proteins that were quantified with H/L ratios in all samples out of 

1405 total proteins identified. Additionally, LC-MS/MS analysis of the Con A and WGA 

enriched 72h secretome:plasma sample afforded an opportunity to clearly distinguish 

between glycoproteins in plasma and the HepG2 secretome that share/differ in N-glycan 

structures.  

Collectively, the two studies reveal the suitability of the H1299 cancer cell secretome as 

an experimental model for biomarker studies and support the HepG2 secretome as a 

viable platform for producing SIL glycoproteins.
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Chapter 1: General Introduction 

 

 

 

1.1 Mass Spectrometry-Based Proteomics 

Mass spectrometry is generally viewed as the use of the mass spectrometer in the 

determination of the molecular weight of various species via the measurement of the 

mass-to-charge ratios (m/z) of ions [1]. Mass spectrometry has also been defined by John 

Fenn, the developer of the electrospray ionization technique, as the measurement of 

atomic mass or molecular weight, which may be enough, usually necessary and always 

important for identification of different species [2]. Mass spectrometry is one of the most 

versatile analytical techniques with varied applications in physics, biology, chemistry, as 

well as medicine. The applications of mass spectrometry range from the analysis of 

chemicals and the identification of trace amounts of impurities in drug or biological 

samples to the analysis of biomolecules of which proteins form an important part.  

In the past decade or two, mass spectrometry has become the analysis technique of 

choice not only in research or industry but also in clinical analysis [3]. Mass spectrometry 

offers a number of advantages over other analytical techniques. Amongst its advantages 

are its high molecular specificity in the determination of identity, speed of analysis, wide 

dynamic signal range, quantitative ability and the possibility of coupling with different 
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separation platforms including the more popular chromatographic systems such as gas 

chromatography (GC) and liquid chromatography (LC), and capillary electrophoresis (CE) 

[4, 5].  

Proteomics, coined as an analogous term to genomics, refers to the study of the entire 

protein complement of a cell or tissue or plasma collected at a given time usually to 

determine cellular function [6, 7]. It is a broad field that encompasses many disciplines 

including microscopy, biochemical imaging, and immunoassays [7, 8]. When looked at as 

such, the development of the two-dimensional gel electrophoresis (2D-GE) technique  

that allowed for the display and identification of multiple proteins in complex matrices from 

cells, and/or tissues can be viewed as the early beginnings of proteomics [9, 10]. 

Proteomics  may be classified into qualitative proteomics involving the identification of 

proteins and post-translational modifications (PTMs), quantitative proteomics involving 

the determination of protein levels, and lastly, protein-protein interaction [9]. 

Mass spectrometry (MS)-based proteomics may therefore be defined as the large-scale 

qualitative and quantitative study of proteins using the mass spectrometer. The mass 

spectrometer has gained increasing importance as the most widely used instrument 

platform for proteomics analyses involving complex proteomes [11, 12].  

1.2 Instrumentation 

Pioneering work that formed the basis of mass spectrometry began in the 1880’s with the 

discovery of a new type of radiation that was named Kanalstrahlen, by Eugen Goldstein 

[13, 14]. Sir J. J. Thomson, whose work resulted in the discovery of electrons in 1897, 

developed the first mass spectrometer years later in 1913 by building on the 
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developments of earlier years involving cathode rays [14, 15]. He won the Nobel Prize in 

Physics for measuring the mass of the electron in 1906 [16]. Thomson’s mass 

spectrometer, referred to at the time as a parabola spectrograph, separated ions 

according to differences in the paths of travel in electromagnetic fields and the ions were 

detected by a photographic plate [15]. In the ensuing years, continuous research resulted 

in several developments to the mass spectrometer. For instance, one of the first 

improvements in mass spectrometry came by way of Francis W. Aston, a student of J. J. 

Thomson’s at the University of Cambridge, improving upon the resolving power of 

Thomson’s mass spectrometer. This led to the ability to study isotopes of the same 

element. This happened sometime after World War I around which same time the first 

electron-impact ionization source was developed by A. J. Dempster of the University of 

Chicago in a mass spectrometer with a magnetic analyzer that also improved resolution. 

The work of these scientists formed the basis of modern mass spectrometry and the 

instrumentation. 

The current mass spectrometer consists primarily of three parts, namely an ion source, a 

mass analyzer, and a detector [7]. The ion source is responsible for the conversion of 

molecules to ions that are then separated based on their mass-to-charge (m/z) ratios in 

the mass analyzer and finally detected by the detector [1].  

1.2.1 Ionization 

Ionization is the process of converting molecular analyte species into charged ions and 

is necessarily the most critical step in mass spectrometry especially as it relates to 

macromolecules such as peptides and proteins. It may also involve the transfer of already 
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charged molecules into the gaseous phase [2]. The conversion of neutral molecules into 

charged species may occur via protonation or deprotonation, electron removal or addition, 

or by cationization [2]. 

Ionization of species affords the ability to obtain information on the m/z of the intact 

molecule (precursor), and fragments of the precursor ion. These two pieces of information 

are critical in the identification and quantification of peptides and proteins in MS-based 

proteomics measurements. There have been many developments in the ionization of 

molecules since the popularization of mass spectrometry as an analytical technique. The 

revolution of ionization has gone from hard ionization sources such as electron-impact 

ionization (EI - 1918), and chemical ionization (CI - 1966) to the so-called soft ionization 

techniques such as field desorption MS of organic molecules (1969), plasma desorption 

(1974), fast atom bombardment (FAB - 1981), matrix-assisted laser desorption ionization 

(MALDI – 1983), and electrospray ionization (ESI - 1984) [15].  The “soft ionization” 

techniques are so called because of the minimum internal energy transferred to the 

analyte ions during the process. Other ionization techniques including atmospheric 

pressure chemical ionization (APCI) and atmospheric pressure photo-ionization (APPI) 

exist and have application in mass spectrometry analysis involving small molecules. 

These are often used in the analysis of small biomolecular species unlike ESI and MALDI 

despite being considered “soft ionization” techniques.  

The first and most characterized ionization method is the electron-impact ionization 

developed by A. J. Dempster. In EI, an electron beam is applied to the neutral analyte 

molecules in the gas phase causing electrons to be knocked off the neutral molecules, 

which leads to a positively charged analyte ion [13]. Alternatively, in CI, a reagent gas 
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molecule (e.g. methane, isobutene, ammonia) is ionized by electrons and the resulting 

reagent gas ions or radicals react with neutral reagent molecules to cause ionization. 

Together with electron ionization, CI has a practical mass range of up to 0.5 kDa. Samples 

amenable to EI and CI must be thermally volatile and stable. Mass spectra obtained using 

EI are very informative due to the presence of sufficient fragment information. Being also 

that EI mass spectra are very reproducible, EI is applied in the generation of spectral 

libraries for many small molecules. As a hard ionization technique, EI may result in either 

a molecular ion of the neutral molecule or fragment ions. The molecular ion is however 

hardly observed. Compared to EI, CI produces relatively simpler mass spectra due to less 

fragmentation. 

Mass spectrometers were originally employed in the study of elements and their naturally 

occurring isotopes. Hard ionization techniques were therefore sufficient for the 

applications of the instrument. Organic compound studies using mass spectrometers did 

not happen until the late 1950s and in 1959 peptides and oligonucleotides were 

sequenced [17]. By the 1980s, mass spectrometry had become routine for the analysis of 

smaller organic biomolecules. The existing ionization methods could however, not be 

used for the mass spectrometry analysis of macromolecular species such as proteins due 

to the inability to analyze intact species without extensive fragmentation. It was not until 

the development of ESI that macromolecules such as proteins were analyzed 

successfully. For these thermolabile samples (proteins and oligopeptides), successful 

proteomics analysis required “soft ionization” techniques such as FAB, ESI and MALDI in 

order to produce ions with little fragmentation [1, 18].  
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FAB, among the early “soft ionization” techniques to be developed, involves the ionization 

of analytes applied onto a target and bombarded with a continuous high current of atoms, 

neutral molecules, or ions [2]. The analyte is dissolved in a liquid matrix (e.g. glycerol, 

thioglycerol, m-nitrobenzyl alcohol) prior to bombardment by the beam of particles which 

results in the desorption of the analyte. Owing to the ability to generate multiply charged 

species, later “soft ionization” techniques such as ESI and MALDI have become the 

predominant techniques used in LC-MS/MS-based proteomics with ESI being the most 

widely used and preferred mode of ionization [18–20].  

1.2.1.1 Electrospray Ionization (ESI) 

The introduction and development of electrospray ionization is credited primarily to 

Yamashita and John B. Fenn, but the efforts of the Aleksandrov group are recognized [21, 

22]. Fenn’s efforts led to the joint award of half of the 2002 Nobel Prize in Chemistry with 

Koichi Tanaka who first reported his work with laser desorption ionization of proteins [23]. 

The pioneering work that set the stage for the possibility of electrospray ionization began 

with Malcolm Dole as Fenn himself attested to [24, 25]. 

ESI represented a huge breakthrough in the efforts to extend the applications of mass 

spectrometry to biomolecules especially proteins and large peptides. In electrospray 

ionization, a high voltage (~ 1.5 to 5 kV) is applied to a stream/aerosol of molecules 

emanating from a narrow tip resulting in charged droplets. It occurs at atmospheric 

pressure [26]. Solvents used for ESI typically combine water and a volatile organic solvent, 

which improves the sensitivity of the analysis. Low concentrations of acids such as formic 

acid may be used to enhance ionization of analytes. 
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Two major theories exist to explain the mechanism of ion production from the charged 

droplets namely the ion evaporation model (IEM) and the charge residue model (CRM) 

[21, 24–28]. In the IEM, an applied high temperature then results in the evaporation of the 

droplets until the concentration of charges on the droplets reaches a limit greater than the 

Rayleigh limit [26]. Small charged droplets are then formed and from these droplets, ions 

emerge and are directed into the mass spectrometer [21, 26]. The charged residue model 

proposes that droplets from the electrospray tip undergo shrinkage due to solvent 

evaporation. Successive fission events that ultimately result in very small droplets 

containing single ions of the analyte [21]. It is generally believed that, in ESI, the IEM 

provides a better explanation for gas phase ion production whereas for very large 

molecules, the CRM is more likely [24, 26]. 

As a “soft ionization” technique, ESI has a number of advantages including most 

importantly, the compatibility with liquid chromatography coupled to the mass 

spectrometer. Again, the formation of multiply charged ions helps to extend the mass 

range of fixed range analyzers. Furthermore, being a “soft-ionization” technique, the ions 

produced retain the structural properties of the original molecule permitting structural 

analysis. ESI is also useful in the analysis of many non-covalent complexes due to the 

relatively low energy transferred to molecules during ionization [18]. Very low detection 

limits in the femtomole range have been achieved with ESI [2, 29]. Amongst its 

disadvantages, ESI is known to be affected by ion suppression due to matrix effects and 

may not be sufficient for the efficient ionization of neutral and non-polar or low polarity 

species such as lipids [18, 29, 30].  

1.2.1.2 Matrix-Assisted Laser Desorption Ionization (MALDI) 
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MALDI, like ESI, is a “soft ionization” method used for the mass spectrometry analysis of 

macromolecules. The development of MALDI is erroneously credited to Koichi Tanaka 

citing the Nobel Prize even though the award to Tanaka and Fenn was "for their 

development of soft desorption ionization methods for mass spectrometric analyses of 

biological macromolecules" [16]. It is important to note that Karas and Hillenkamp 

contributed significantly towards what is now referred to as MALDI [31]. In Tanaka’s laser 

desorption ionization experiment, he used glycerol and an ultrafine cobalt powder (300 Å 

diameter) mixture as the matrix and showed the ionization of protein molecules up to 100 

kDa [32, 33]. Tanaka’s work was very important in showing that large biomolecules could, 

in fact, be analyzed using laser desorption. Alternatively, for their ultraviolet-laser MALDI 

work, Karas and Hillenkamp used nicotinic acid, an organic compound, as the matrix 

which was later proven to be more sensitive and produced more stable ions than Tanaka’s 

approach [16, 32]. The Karas and Hillenkamp laser desorption approach was more widely 

accepted and used by the mass spectrometry community owing to its superiority. 

In its currently used configuration, MALDI mass spectrometry involves the mixture of the 

protein or peptide sample to be analyzed with a matrix consisting of a compound able to 

absorb ultraviolet light from a laser pulse. Organic matrices such as nicotinic acid, 

sinapinic acid, α-cyano-4-hydroxycinnamic acid, or 2,5-dihydrobenzoic acid are typically 

used with sinapinic acid and α-cyano-4-hydroxycinnamic acid being the most commonly 

used matrices for protein and peptide analysis respectively [17, 30]. The mixture of the 

analyte and the matrix is transferred onto a metal plate and dried, after which the laser 

pulse is applied. The wavelength of the laser used is dependent upon the organic matrix 

being used. The matrix molecules absorb the laser and the mixture is desorbed from the 
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surface of the plate carrying analyte molecules with them into the gas phase [30]. Excited 

matrix molecules then transfer charges to the analyte molecules resulting in the ionization 

of the analyte. In addition to UV lasers, infrared lasers also find use in some MALDI 

applications. MALDI differs from FAB in that in MALDI, a pulsed laser is used to desorb 

analyte molecules from the target whereas a continuous beam of particles is used in FAB 

[2]. The use of pulsed lasers and the subsequent generation of ions in pulses has made 

MALDI most suited to time-of-flight (TOF) mass spectrometers and as a result, the 

majority of MALDI applications now are used in tandem with TOFs [32]. MALDI, as an 

ionization technique, is however capable of being coupled with other kinds of mass 

spectrometers.  

Various advantages are associated with the use of MALDI in LC-MS/MS. Unlike ESI, 

MALDI is not sensitive to the presence of salts, detergents, and contaminants at low 

concentrations [13]. MALDI also has a practical mass range up to 300 kDa but higher 

molecular weight species have been observed with MALDI and a high current detector [2]. 

In MALDI, the use of lasers may result in photodegradation of the analyte and the matrix 

may interfere with the identification of small molecules up to 0.7 kDa [2]. 

1.2.2 Mass Analyzers 

In the mass analyzer, ions from the ion source are separated and detected. The degree 

of separation and detection of ions with very close m/z ratios is denoted by the resolution 

R, of the instrument. Resolution R is calculated as the width of the ion signal peak (Δm – 

typically taken at half of the peak height) divided by the mass M of the species [30]. 

Enormous challenges occur in the analysis of various samples by mass spectrometry 
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owing to the complexity of mixtures analyzed in proteomics [7, 34, 35]. In response to the 

increasing complexity of samples in proteomics analysis, mass spectrometers continue 

to see improvements in sensitivity, selectivity, speed and resolution through development 

of mass analyzers [34, 36].  

The development of the mass-resolution double-focusing mass spectrometer by Alfred 

Nier, an engineer and physicist, contributed immensely to the advancement and 

widespread adoption of mass spectrometry. In collaboration with Enrico Ferni, Nier 

successfully separated the uranium isotopes 238U and 235U using his high-mass-resolution 

double-focusing mass spectrometer [15, 16]. Further advancements resulted in TOF 

analyzers which were developed in the 1940s but only made public after World War II 

due to issues of secrecy during the war [37]. TOFs operate under the principle that ions of 

different masses or m/z will travel at different velocities through a known distance towards 

a detector; larger ions move slower relative to smaller ions of the same charge. 

Theoretically, TOF analyzers have limitless mass range even though this is not seen in 

practice [15].  

The development of quadrupole mass analyzers and later quadrupole ion traps in the 

1950s was championed by Von Wolfgang Paul and Helmut Steinwedel [1, 15]. Quadrupoles 

currently constitute the most common mass analyzers in mass spectrometry. They 

consist of four carefully engineered parallel rods equidistant from one another. 

Quadrupoles may function as ion traps where they store ions and as mass analyzers for 

the resolution and measurement of m/z ratios of the stored ions [38]. Von Wolfgang Paul 

received a Nobel Prize in Physics in 1989 for his research on ion trapping. When 

functioning as mass analyzers, ions passing centrally through quadrupoles are separated 
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according to their m/z ratios using electric fields generated by voltages applied to the 

rods. Quadrupoles may be used to permit the passage of only ions of a given mass-to-

charge ratio by controlling the magnitude of fixed direct current and alternating radio 

frequency voltages applied to the rods. These ions subsequently move into a detector 

while ions with different m/z ratios simply collide with the rods, as they are unable to 

traverse the trajectory created by the applied voltages. The stability of quadrupoles and 

their ability to do tandem MS saw them adopted and used more than Nier’s double-

focusing mass spectrometer even though the latter was more accurate [15].  

Marshall and Comisarow, colleagues at Stanford and then at the University of British 

Columbia in Canada, were the pioneers of Fourier transform ion cyclotron resonance (FT-

ICR) mass spectrometry in 1974 [16, 39]. ICR had originally been used by J. A. Hipple and 

colleagues in the late 1940s but Marshall and Comisarow applied FT to the technique, 

truly transforming mass spectrometry [15, 16, 40]. ICR instruments operate by the application 

of a radio frequency electric field (same frequency as the ions cyclotron) under a uniform 

magnet field, which ultimately results in the oscillation of these charged species in the 

electromagnetic field [15, 16]. Detection is recorded as the current produced as rotating ions 

strike a collector. FT-ICR instruments are highly sensitive and accurate with powerful 

resolution and large dynamic range of detection and quantitation [7]. Resolution in the sub-

ppm range is possible with FT-ICR [15]. ICR instruments and quadrupoles represent 

different forms of ion traps and are also known respectively as Penning and Paul ion traps 

[39]. 

Increasing complexity of samples analyzed (e.g. cell and tissue lysates, plasma, urine, 

cerebrospinal fluid) in mass spectrometry has necessitated continuous developments in 
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mass analyzers for increased sensitivity, speed, and resolution [34]. Recent improvements 

in mass spectrometry have mainly come by way of analyzers involving different 

combinations of the four main separation principles currently in existence: quadrupole 

mass filters, time-of-flight, linear ion traps, and Orbitrap™ mass analyzers [18, 34]. 

Combinations of two or more mass analyzer types in instruments such as the triple-

quadrupole, and quadrupole/time-of-flight (Q-TOFs) mass spectrometers represent the 

early efforts at improving resolution compared to single analyzer instruments [4].  

1.2.2.1 Orbitrap-based Mass Analyzers 

The orbitrap represents the latest development in mass analyzers and was first described 

by Makarov in 2000 [41]. These mass analyzers came after the ion traps. While very 

important in mass spectrometry, ion traps have been shown to have disadvantages 

including limited range and charge capacity as well as inadequate mass accuracy.  

Developed by Makarov, the orbitrap represents an improvement in mass accuracy, 

reduced size and cost, and increased linear dynamic range as well as charge capacity. 

The orbitrap operates on the principle of orbital ion trapping where injected ions are 

trapped between a coaxial outer electrode and an axial inner spindle-shaped electrode 

[41, 42]. The trapped ions rotate around the spindle-shaped central electrode while 

oscillating along the horizontal axis. The frequency of the harmonic oscillations is directly 

proportional to the √z/m [41]. The time-domain signal current produced on the outer 

electrodes is converted to frequency-domain and then to m/z ratio via Fourier transform 

[34, 43]. Modern orbitrap instruments are capable of resolving powers of up to 1M and mass 

accuracies in the low parts per million (ppm) [42, 44]. Different hybrid combinations of 
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orbitrap have been developed since the single orbitrap analyzer instrument was first 

developed and described including the linear ion trap-orbitrap (LTQ-Orbitrap) 

configuration [34]. The Q-Exactive is a tandem mass spectrometer that combines a 

quadrupole mass filter with Orbitrap mass analysis (Figure 1). The unique configuration 

of the Q-Exactive affords it the ability to develop new proteomics methods based on high 

resolution and accurate mass (HR/AM) analysis including targeted analysis in both MS 

and MS/MS modes [45]. The Q-Exactive differs from the earlier LTQ-Orbitrap instruments 

due to the presence of an S-lens, which ensures the transfer of higher number of ions 

into the MS [11, 34]. Resolutions of 140K full width half maximum (FWHM) at m/z 200 can 

be achieved on the Q-Exactive [11].  

In the Q-Exactive, protein/peptide molecules ionized as they emerge from the ESI tip are 

transferred into the MS via an ion transfer tube through the S-lens. Ions then pass through 

an injection multipole into a bent flatapole configured to allow droplets to exit easily. From 

the bent flatapole, by means of a lens, ions enter the quadrupole where all ions may be 

Figure 1 - Schematic of a nanoLC coupled to a Q-Exactive Mass Spectrometer 
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transmitted directly into the adjoining octapole or only a given m/z window is isolated and 

allowed to go through. Another lens at the exit of the quadrupole transfers ions to the 

octapole from where they are sent into the C-trap. In MS mode, ions are transmitted from 

the C-trap to the orbitrap for detection; in MS/MS mode, ions are transferred into the 

higher-energy collision-induced dissociation (HCD) cell where they are fragmented by 

manipulating the radiofrequency rods and then sent back into the C-trap, and transmitted 

into the orbitrap for detection [34]. Trapping of fragmented ions in the HCD cell requires 

that the offset of the radiofrequency rods in the HCD cell make the cell negative relative 

to the C-trap and the HCD exit lenses [34]. This also permits the entry of other precursor 

ions for fragmentation and transfer of all fragment ions to the C-trap and then to the 

orbitrap for detection. 

The complexity of the proteomics samples analyzed using mass spectrometers such as 

the Q-Exactive necessitates the separation of the component species prior to MS analysis 

to allow for maximum identification and quantification. Consequently, mass 

spectrometers are coupled to many separation platforms including high performance 

liquid chromatography, gas chromatography, and capillary electrophoresis [1, 5, 18]. The 

majority of mass spectrometry-based proteomics measurements however employ 

reverse-phase high-performance liquid chromatography coupled to a high-performance 

tandem mass spectrometer (MS/MS) due to a combination of factors such as high peak 

capacity, decreased ion suppression, and compatibility of solvents with ESI [46, 47]. 

Collectively this instrument platform is referred to as LC-MS/MS. 

1.2.3 High Performance Liquid Chromatography (HPLC) 
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The Russian botanist Mikhail Tswett is acknowledged as the pioneer of liquid 

chromatography based on his separation of various plant pigments from a petroleum-

ether extract by passing the extract through a powdered calcium carbonate glass column 

[48]. Tswett’s work did not gain much interest until the 1930s when chromatography was 

employed for biochemical separations.  

Liquid chromatography now represents one of the most popular and important analytical 

tools in science. The technique involves the separation of samples based on their 

differential interactions between the components of the sample and two phases: a solid 

support called the stationary phase and a liquid called the mobile phase. Csaba Horváth’s 

work in the 1960s with capillary columns of 276 µm internal diameter (I.D.) to separate 

nucleotides formed the foundation for the development of high performance liquid 

chromatography which greatly improved the separation capability and analysis time of 

liquid chromatography [24, 49]. Previously referred to as high-pressure liquid 

chromatography, HPLC involves the use of high pressures to generate the flow of liquid 

necessary to allow for chromatographic analysis involving packed columns. 

Developments in instrumentation (such as increased pressure up to 6,000 psi) that 

consequently resulted in higher performance of the technique prompted the change of 

the name to high performance liquid chromatography.  

Chromatographic sample separation can be done via one of three major separation 

mechanisms. These mechanisms include polarity, charge, and size. In HPLC/UPLC, four 

modes of separation are employed namely normal phase (polarity), reverse phase 

(polarity), ion exchange (charge), and size exclusion/gel permeation (size). Size exclusion 

chromatography is usually employed for the separation of species based on weight. 
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Stationary phases have pores into which smaller species go and are retained, therefore 

eluting much later than larger species, which move around the particles and are not 

retained. In ion exchange chromatography, samples are separated based on their charge. 

The stationary phase is usually a charged resin that attracts and retains species of 

opposite charge. The mobile phase comprises solutions with increasing concentration of 

salts with oppositely charged species that displace tightly retained or bound species. 

Normal and reverse phase HPLC, the most common separation technique used in LC-

MS/MS, involve the separation of species based on polarity (hydrophilicity or 

hydrophobicity). In normal phase, a polar (hydrophilic) stationary phase, usually free 

silica, and a non-polar (hydrophobic) mobile phase are employed. Hydrophilic samples 

have higher affinity for and partition more into the hydrophilic stationary phase. They are 

therefore bound more tightly to the stationary phase and elute later than hydrophobic 

species that partition more into the mobile phase, and are eluted much earlier. Reverse 

phase HPLC employs the opposite configuration where the stationary phase is usually a 

hydrophobic support of alkyl-chain molecules (e.g. butyl, pentyl, octadecylsilane, octyl, 

cyclohexyl etc.) bonded to silica, and the mobile phase is hydrophilic [43]. Long-chain 

carbon, usually, C-18 (octadecyl) is used for most proteomics applications involving 

peptide and oligopeptide analysis while shorter chains such as butyl and octyl are typically 

used in intact protein analysis [43]. This is the most commonly employed mode of HPLC 

for tandem mass spectrometry-based proteomics analysis. 

1.2.1.1 Principles of Nanoscale Liquid Chromatography (nano-LC) 
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Conventional HPLC typically involves the use of large columns with internal diameters 

ranging from 3.5 – 4.6 mm and the flow rates employed in separation using these columns 

are usually in the mL per minute range [50]. In nano-LC, internal column diameters range 

from 10 – 150 µm with 75 µm being the most common while typical flow rates in the 10 – 

1000 nL per minute range are routinely used [50–52]. The use of micro- and nanoscale 

columns and flow rates have become increasingly routine, due primarily to applications 

in biomolecule analysis carried out with MS-based proteomics due to a combination of 

many advantages of nano-flow chromatography systems. These include the increased 

efficiency of separation, increased sensitivity, considerable decrease in sample quantity 

requirement, and decrease in stationary and mobile phase volumes necessary for 

effective separation [47, 50, 53]. Importantly, the compatibility with nano-ESI introduced by 

Wilmar and widely employed in mass spectrometry has been very instrumental in the 

current widespread adoption of nanoscale liquid chromatography in proteomics [47, 50]. 

This compatibility has contributed to the detection and quantitation of very low 

concentrations of peptides possible [21, 22, 46]. 

In liquid chromatography, the efficiency of separation and length of time that a component 

molecule spends on the column interacting with the stationary phase are affected by a 

number of factors. These include the dimensions of the column (length, internal diameter 

I.D.), stationary phase particle size, porosity of the stationary phase packing, and the 

composition and flow rate of the mobile phase [54]. The efficiency of the chromatographic 

separation process is dependent on the degree of dilution of the analyte by the mobile 

phase (chromatographic dilution) during the separation process. Chromatographic 

dilution (D) is related to the column I.D. as shown in the equation below [50]. 
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𝐷 =  
𝐶𝑜

𝐶𝑚𝑎𝑥
=  

𝜋𝑑𝑐
2𝜀(1 + 𝑘)√2𝐿𝐻𝜋

4𝑉𝑖𝑛𝑗
 

where 𝐶𝑜 and 𝐶𝑚𝑎𝑥  are the initial and final concentrations of the analyte respectively, 𝑘 is the retention factor 

(k = 0 for a non-retained analyte), 𝐿 the column length, 𝐻 is the theoretical plate height, 𝑉𝑖𝑛𝑗 is the volume 

of sample injected, and dc is the internal diameter (I.D.) of the column. 

From the equation, it is evident that decreasing column diameter and length results in a 

consequent decrease in chromatographic dilution, which ultimately leads to increased 

analyte concentration and a consequent increase in instrument sensitivity. The use of 

increasing mobile phase strength in gradient elution may compensate for the loss of 

sensitivity that results from high chromatographic dilution but this is less than the effect 

of column diameter on the sensitivity [52]. Furthermore, in nano-LC, peak broadening 

which is related to both the column I.D. and length may present issues with separation 

efficiency and lead to poor chromatographic resolution. Peak broadening decreases with 

decreasing column I.D. and length which is positive for resolution [50]. This also has 

implications on quantification of analytes since better-resolved peaks allows for more 

accurate quantification of the component species of the sample. Other factors that may 

affect resolution due to peak broadening include pre- and post-column dead volume [50, 

52]. The effect of dead volume on peak broadening is more pronounced in shorter 

columns, all other factors being kept constant. To decrease the effect of dead volume on 

the efficiency of nano-LC chromatographic separation, low volume tubing together made 

of fused silica with short and tight fittings, usually made of polyetheretherketone (PEEK) 

are employed [50, 52]. Alternatively, some applications employ nano-ESI emitters with 

stationary phase material which considerably decreases dead volume [52].  
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Other factors that influence the degree and quality of separation achieved in 

chromatographic separation and hence peak capacity are column length and gradient 

time. In principle, with all other factors kept constant, longer gradients results in less 

interaction time between sample and stationary phase resulting in faster elution and 

consequently decreased retention time.  

1.3 Approaches to Protein Identification 

There are four different technological platforms necessary for mass spectrometry-based 

protein identification. These include platforms for the isolation, extraction, or separation 

of proteins from complex mixtures/matrices and instrumental analysis of the separated 

proteins to obtain structural information [7, 55]. The results of the instrumental analysis then 

need to be compared to an available gene and/or protein database, and lastly 

bioinformatics platforms usually involving computer programs and complex algorithms for 

matching raw data to the database information to give protein identification and 

quantification [56].  

Before the widespread use of mass spectrometry for protein identification and 

quantitation, techniques such as one and two dimensional gel electrophoresis (1DE/2DE), 

Western blots, were the major methods for molecular weight determination as well as 

comparative proteomics [30]. Edman degradation was used in sequencing peptides and 

proteins by cleaving amino acids from the N-terminus [57]. The techniques use protein 

migration differences resulting from differences in size and charge to separate proteins; 

the same protein from different samples may then be compared using different 

visualization strategies including fluorescence staining. 2DE is now used for protein 
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separation following which isolated proteins may be analyzed either via top-down or 

bottom-up proteomics [43, 55]. To extract proteins, gels are excised and solvents applied to 

the gel to dissolve the protein of interest. 

There are two main approaches in mass spectrometry-based proteomics namely top-

down and bottom-up strategies. In top-down proteomics, intact proteins are isolated or 

extracted and analyzed by mass spectrometry whereas in bottom-up proteomics, 

proteolytic peptides that result from digestion of intact proteins are analyzed by mass 

spectrometry [55, 58]. The limited fixed mass range of most commercial mass 

spectrometers makes top-down proteomics rather limited in its routine application in many 

proteomics labs. While large proteins may be capable of carrying more charge, it is more 

difficult to ionize them [55]. Again, separation of macromolecules is more challenging 

compared to the bottom-up approach using conventional modes of separation such as 

reverse phase chromatography. Furthermore, the effect of analyzer resolution is more 

apparent with higher molecular weights making it necessary for instruments used in top-

down proteomics to be capable of very high resolution [55]. Higher energy is also needed 

for fragmentation of higher molecular weight species. In spite of the stated challenges, 

top-down proteomics is useful for a number of reasons. It allows for the characterization 

of many properties of a protein relating to structure e.g. PTMs [43]. Moreover, since the 

analysis is of intact proteins, major issues associated with inferring protein presence from 

peptides are avoided. Top-down proteomics may also be better suited for the 

characterization of protein-protein interactions. Advancements in mass spectrometry from 

sample preparation to analyzer m/z range, sensitivity, and resolution present hope for the 

imminent adoption and routine use of the top-down approach for proteomics studies. 
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Of the two approaches, bottom-up proteomics also called shotgun proteomics is currently 

the most widely used by proteomics researchers for protein identification and 

quantification [6].  

1.3.1 Bottom-Up Approach 

In bottom-up or shotgun proteomics, proteins are digested into peptides using chemicals 

or enzyme; enzymes used are specific in their proteolytic activity [43]. The most commonly 

used enzyme is trypsin, which being specific in its cleavage of the peptide bond, cleaves 

only at the C-terminal of arginine and lysine residues unless these are C-linked to proline 

or N-linked to aspartic acid. Trypsin is also used due to the ability of tryptic peptides to be 

charged positively at both N- and C-termini. Due to the specificity of the enzyme, an in 

silico digestion of all proteins in the database may be carried out using the specific rules 

of cleavage and a list of the theoretical m/z ratios of the resulting peptides generated. In 

the identification of proteins, the m/z values should fall within a given range of the 

theoretical or in silico generated m/z values. It is therefore very essential that the charge 

states of the ions be accurately determined as this provides an accurate starting point for 

the identification process. High-throughput protein identification relied on the use of the 

Peptide mass fingerprinting (PMF) for quite a long time. PMF is a technique in which a 

single, usually unknown, protein is digested and the masses of the resulting peptides 

determined experimentally and compared to a database of proteins and their 

corresponding peptides [56]. 

Despite being the most commonly used proteomics approach, various issues associated 

with the use of peptides to make inferences on the presence and quantities of proteins in 
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an analyte mixture remain. Peptides that are not specific to a given protein may be 

wrongly assigned which affects protein identification. In addition to potential wrong 

assignment of peptides to proteins, not all peptides coming from a digest protein may be 

observed or identified in the mass spectrometry analysis resulting in lost information 

which may be important, necessary even, for the identification of possible PTMs, 

sequence variation, or domains for binding etc. [43].   

1.3.2 Fragmentation 

Tandem MS information obtained from fragmentation of peptides is the backbone of some 

of the search algorithms used in protein identification. Many fragmentation methods exist 

but the most predominantly used method in many mass spectrometers including the triple 

quadrupoles, the Q-TOF, and the LTQ-Orbitrap is collision induced dissociation (CID) [34, 

59]. In CID, precursor molecular ions are accelerated and made to collide with the 

molecules of an inert gas (e.g. nitrogen, helium, or argon) which results in bond cleavage 

through the conversion of kinetic energy into internal energy [59]. CID usually involves the 

use of low energy gas molecules (less than 100 eV) for the collision. This produces 

cleavage of amino acids predominantly along the peptide bond and yields b-ions, y-ions, 

and neutral water or ammonia losses. Many search algorithms therefore use b- and y-ion 

information in identification of peptides (Figures 2 & 3) [59]. 
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A higher energy variation of CID known as higher energy collisional dissociation (HCD) 

is used in orbitrap-based systems including the Q-Exactive [34]. Other fragmentation 

methods used in mass spectrometry include electron capture dissociation (ECD), surface 

induced dissociation (SID), and electron transfer dissociation (ETD) [59, 60]. 

1.3.3 Database Searching for Protein Identification 

Proteins are identified by one of three main methods including database searching using 

a database of proteins of the relevant species, de-novo sequencing, or tag-based 

algorithms [61]. Database searching is by far the most popular method. 

There are three main database searching approaches to protein identification including 

the use of only peptide (precursor) masses, the use of tandem MS information from one 

or more peptides of a protein, or the use of both mass data and amino acid sequence 

information or physicochemical data directly related to the amino acid composition [59, 62]. 

Figure 2 - Tandem MS fragmentation of a generic 
dipeptide 
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The main aim of database searching in protein identification is to correctly identify proteins 

in the experimental data that are in the database or in the case of proteins which are not 

in the experimental database, identify the proteins that are closest in sequence homology 

to the experimental proteins [62]. There are a number of protein databases, the most 

popular amongst them being the Uniprot, human IPI, and NCBI databases. The Uniprot 

database uses the Fasta format, which comprises amino acid sequence represented by 

single letters and written as a string of characters usually 60 characters per line and never 

exceeding 80. The databases consist of all experimentally identified and validated 

proteins (and sometimes, theoretical proteins based on mRNA expression). 

Figure 3 - Intact Peptide Identification and Fragmentation 

The monoisotopic peak 587.3092 of the intact peptide ITSEIPQTER was identified around ~ 35 mins and picked for 

MS/MS fragmentation and analysis. Many y-ions and a couple of b-ions were identified from the MS/MS spectrum of 

the fragmented peptide. 
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The acquisition software of an LC-MS/MS system produces a chromatogram of both 

peptide and fragment ions (Figure 3) from the raw data obtained from the instrument. 

Within the chromatogram are the spectra (represented by single peaks positioned at the 

center of the mass to charge ratio distribution and referred to as centroids) of all identified 

precursor and fragment ions. The spectra are identified and converted to m/z ratio data 

by complex deconvolution algorithms within the various software packages. The accurate 

estimation of the m/z ratio of a precursor ion is predicated upon the correct determination 

of the charge of that precursor. Using the isotopic peak distribution of a precursor ion, 

deconvolution algorithms are used to determine the charge states of a peptide and hence, 

the m/z ratio [59].  

In-silico peptides are generated through the digestion of all proteins in the database using 

computer algorithms. The in-silico peptides are then fragmented by the program and the 

similarities between these theoretical computer-generated spectra compared to the 

experimental spectra generated on the instrument [61]. The quality of the spectra 

generated by the mass spectrometer therefore plays a key role in correct matching of 

sequences and subsequent identification. The quality of the experimentally generated 

spectra is therefore very important; the poorer the quality of a spectrum, the higher the 

likelihood of false identifications based purely on chance. Algorithms assessing spectral 

quality therefore exist to help eliminate poor quality spectra. Some of these algorithms 

use statistical regressions to determine the quality of spectra and hence determine which 

spectra to eliminate [59, 63]. 

Various models also exist which are used by different programs or algorithms to predict 

the fragment ions and spectra of a given peptide against which to search the experimental 



 
 

26 
 

data [59]. The fragment ions are usually predicted to be mostly composed of b- and y-ions, 

which result from breaking the amide bond between amino acids in the peptide structure. 

Other ions such as a-, x-, c-, and z-ions may arise but these are not normally used [59]. 

The MS/MS spectra of all experimental peptides that were within the allowed mass range 

of a given precursor mass are matched to theoretical fragment spectra and scores 

assigned to all the matching spectra using a model [59, 64]. The score is a function of the 

calculated probability that the match is a true match or happened by chance [59, 62, 64]. A 

program such as Mascot uses this probability scoring to filter out the candidate precursor 

masses [64]. The highest scoring matches, which have the lowest probability of being 

chance events, are then used to estimate the protein scores. The precursor m/z values 

are compared to the in-silico or predicted values and a list of candidate proteins generated 

by the algorithm. The candidate precursors (peptides) are validated according to a 

number of criteria which may include, for instance, the number of fragment ion matches 

[59, 65]. Unique peptides are more easily matched to their respective proteins. For the 

peptides that are not unique, a program like MaxQuant employs the “Occam’s Razor” rule 

and assigns non-unique peptides to the protein with the most identified peptides. Mascot 

uses the “Principle of Parsimony” and chooses the protein ID with the simplest and most 

reasonable justification [64]. Some algorithms (such as Percolator in Proteome Discoverer) 

employ a target-decoy search tool in the protein identification sequence, which reveals 

the number of false identifications and hence sets the false discovery rate (FDR). The 

decoy databases comprise ‘nonsense’ protein sequences (reverse or random protein 

sequences of the actual database). The decoy database may be concatenated with the 

actual database and searched as one or the actual and decoy databases may be 
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searched individually against the experimental data. Any hits in the decoy database 

represent false identifications or false positives which are then used to determine the FDR 

calculated as the ratio of false positives to total number of identifications [61]. Percolator 

employs an iterative machine learning algorithm to learn different features of correct and 

incorrect identifications in the actual and decoy databases respectively [61]. The target 

decoy database searching which provides the FDR may be a limitation in analyzing lots 

of different datasets of the same proteome as opposed to one or a few [58]. It is important 

to note however, that when analyzing many datasets, there is a disproportionate increase 

in true positives versus false positives owing to the duplication or repeated sampling of 

the same proteome. The independence of false positives on the proteome against which 

the data is searched may give rise to this [58]. Again, some search algorithms such as 

Mascot employ probability scoring and rely on the size of the database to set the FDR 

threshold. Accordingly, the use of concatenated decoy databases increases the size of 

the database and therefore raises the FDR which translates into fewer peptide 

identifications or hits [61]. A workaround is to keep target and decoy databases separate 

and searching the data against them separately. 

The identification of non-unique proteins by the programs is a limitation of current 

methods. Proteins with significant sequence homology, such as isoforms of the same 

protein, may not be correctly separately identified by the program and such proteins are 

usually put into one protein group when they may in fact be different proteins. Again, the 

accuracy of protein identifications may be further complicated by the presence of 

modifications on the proteins. Modifications may be PTMs or have occurred during the 

sample processing steps. This introduces a complexity into the identification process 
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seeing as the modifications may increase exponentially the number of possible hits for a 

given mass to charge ratio. The software and the user may not be able to provide a list 

of all these modifications to accurately determine the exact sequence matches for the 

proteins in the experimental data. One other limitation of protein identification using 

database searching is the limited number of proteins available in the protein databases. 

However, until there is a comprehensive and exhaustive list of all possible proteins, there 

is always the possibility of missing important information in the mass spectra generated 

by the instrument. An exhaustive protein database seems an impossible feat right now 

considering all the possible PTMs and SNP/splice variants that may exist for each protein. 

In organisms with incomplete genome sequences where proteomics studies may seek to 

identify novel proteins, this is particularly problematic.  

De-Novo sequencing algorithms attempt to circumvent this problem of limited databases 

but that has its own challenges. In de-novo sequencing, algorithms extract information on 

the (partial) sequence of peptides using tandem MS information. Fragmentation produces 

successive fragment ions (and corresponding peaks) from which the sequence may be 

constructed. For two consecutive fragments, the difference in mass (distance between 

the peaks on the m/z scale) represents the mass of an amino acid residue. This can be 

done for all peaks in the series and used to generate the (partial) sequence that may be 

blasted against the genome database of better-characterized species to find sequences 

with appreciable homology. 

1.4 Quantitative Approaches 
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Quantitative proteomics is an essential component of mass spectrometry-based 

proteomics studies and provides information to augment identification of 

proteins/peptides in complex mixtures. Many approaches exist but these are broadly 

grouped into label-free and labeling strategies. The label-free approach involves the 

quantitation of proteins/peptides without the need for tags whereas labeling approaches 

use different labels/tags to enable comparative analysis between samples in the same 

workflow. Quantitative approaches may be absolute or relative [66]. Figure 4 is a summary 

of the major quantitative strategies currently used in the majority of proteomics studies. 

1.4.1 Label-free Strategies 

Label-free proteomics is possibly the simplest and fastest form of quantitative proteomics 

owing to the absence of extra labeling steps [67–69]. Here, different samples are analyzed 

separately and not mixed together with each sample going through the same processing 

steps. There is inherently less sample ‘complexity’ in label-free quantitation relative to 

labeled samples, which are always a combination of differentially labeled proteomes. By 

virtue of its simplicity and the fact that no special reagents have to be purchased, label-

free strategies are also the least costly protein quantification strategies [67].  

Due to the direct analysis of proteomes without the use of labels, label-free proteomics 

can be applied to all samples whether in vitro or in vivo. In regards to the instrument 

analysis, more peptides are analyzed and detected in label-free workflows than in labeled 

workflows for the same instrument duty cycle. There is maximum amount of scanning to 

obtain more microscans per second for the same ion species than in labeling methods. 

This affords the ability to obtain the maximum amount of data in label-free analysis since 
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the instrument scans multiple species (e.g. heavy and light labeled) for the same ion in 

labeling strategies and ultimately results in longer scan time and less tandem mass 

spectra [60]. It can be assumed that in the time that it scans two or more differentially 

labeled species (multiplex) of the same ion in labeled workflows, it will scan two or more 

different ions in label-free workflow. This maximum scanning therefore potentially results 

in greater depth of proteome coverage in label-free proteomics [46].  

Label-free approaches are however, beset with a number of issues principal among them 

being the inherent differences in the final sample to be analyzed due to separate 

processing for different samples. There is less quantitative precision compared to labeling 

techniques due to the susceptibility of label-free quantification to pre- and post-analytical 

variability. Owing to the fact that samples are prepared separately, there is the likelihood 

of introducing bias from the analyst, or the materials used. Different tubes in which sample 

processing is carried out may have different properties, which may affect sample losses, 

for instance, through differential protein/peptide binding to the walls of the tubes. Again, 

instrument performance differences from sample to sample during analysis may affect 

quantitation. This may consequently affect reproducibility of analysis in label-free 

workflows, which significantly impacts quantification. Consequently, high reproducibility 

from sample run to run is necessary in label-free quantitation. The development of 

different software with improved algorithms for normalization and data analysis such as 

LFQ in the MaxQuant platform seek to combat the effect of pre-analytical variability in 

label-free workflows [67].  

Label-free quantification of peptides and/or proteins is done using one of two approaches: 

spectral-based methods or intensity-based methods [69–71].   
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1.4.1.1 Spectral Counting 

In spectra-based methods, the number of experimental MS/MS spectra of a given 

peptide/protein that match with known spectra in the database is used to quantify 

peptides/proteins. The number of matched spectra is referred to as a spectral count. 

Spectral count methods rely on the assumption that the more abundant a protein is in a 

mixture, the greater the number of peptides it will produce and hence the more spectra it 

will generate [60, 72]. Various studies have demonstrated a strong relationship between the 

spectral counts and relative abundance of peptides/proteins [60]. There are however, 

problems with spectral counting methods that should prompt caution in interpreting 

results. For example, the size of a protein largely determines how many peptides can be 

produced from it. Consequently, for two proteins with equimolar amounts in a matrix, the 

larger protein tends to produce more tryptic peptides and hence, more MS/MS spectra 

[60]. Further, a number of factors including ionizability of peptides and efficiency of peptide 

fragmentation affect MS signal intensity, which affects the selection of precursor masses 

for fragmentation [60]. These issues tend to introduce bias into peptide/protein 

quantification. Spectral counting methods have also been found in some studies to 

provide less precise quantitative information and be less likely to detect small changes in 

protein abundance compared to labeled methods [73].  

To attenuate the problem arising from large proteins having more spectra, normalized 

spectral counts have been developed and used with success [6, 74]. This notwithstanding, 

spectral methods are generally not as commonly used as intensity-based methods for 

protein quantification. 
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1.4.1.2 Intensity-based Methods 

Intensity-based methods use the height or area under the curve in the chromatogram as 

a quantitative measure of how much peptide or protein there is present in a sample. There 

are a host of intensity-based label-free quantification tools currently in use in proteomics 

amongst which is MaxLFQ [67], an algorithm proposed and used by the Mann group at the 

Max Planck Institute of Biochemistry in Germany. In MaxLFQ, the problem of differences 

resulting from separate sample treatments is solved by a concept the authors term 

‘delayed normalization’. This concept involves keeping normalization coefficients (factors) 

as free variables under the assumption that the proteome of a cell or organism remains 

largely unchanged between conditions [67]. The response (intensity) of a peptide in a 

fraction is multiplied by an unknown normalization coefficient. This is done for all peptides 

in all fractions. The differences between the logarithms of each product for all possible 

fraction pairs is then squared for each peptide and the results summed up. The algorithm 

then determines the values of the coefficients as those values, which produce the least 

value of the sum of the logarithmic fold changes. These values consequently translate 

into the least differences in peptide abundances across the various fractions, which 

constitutes the basic assumption underlining the LFQ algorithm.  

1.4.2 Labeling Strategies 

Sample labeling is one of the more important strategies in quantitative mass 

spectrometry. Labeling approaches do not only enable the multiplexing of samples, which 

reduces analysis times, but also ensure the elimination of the effects of bias in the sample 

preparation steps. There are two major approaches to labeling in proteomics studies 

including metabolic labeling and chemical labeling. 
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1.4.2.1 Metabolic Labeling 

Metabolic labeling involves the introduction of stable isotope labeled amino acids into 

protein structure using the metabolic machinery of cells and/or whole organisms. This 

approach to stable isotope labeling has achieved high rates of success, particularly in cell 

culture but also in whole organisms such as Caenorhabditis elegans and the fruit fly, 

Drosophila melanogaster [75–77]. Among the currently used metabolic labeling approaches 

(i.e. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC), Biorthogonal Non 

Canonical Amino Acid Tagging (BONCAT), and 15N labeling), SILAC is the most 

commonly used. 

Figure 4 - Quantitative Proteomics Approaches 

A) Label-free quantitative proteomics involving separate sample prep for each sample. B) Click Reaction involving 

metabolic labeling using the methionine mimetic, azidohomoalanine (AHA). C) Typical workflow for Stable Isotope 

Labeling by Amino Acids in Cell Culture involving 1:1 w/w sample mixing before sample prep. D) Chemical tagging 

approach (TMT, iTRAQ) involving chemical labeling of samples following trypsin digestion 
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SILAC, together with the other stable isotope-based labeling strategies, currently 

represent the gold standard in quantitative proteomics [67]. SILAC involves the 

supplementation of cell culture media with 13C- and 15N-labeled amino acids (arginine and 

lysine) which are taken up by cells for use in protein formation [78, 79]. Two sets of cells (or 

more depending on the number of treatments and cell types being studied) are therefore 

cultured, one with regular (light) arginine and lysine and the other with the ‘heavy’ labeled 

forms. Lysates from the different cell cultures are mixed in equal proportion, digested, 

and analyzed via LC-MS/MS. Heavy and Light labeled peptides, having similar 

physicochemical properties, elute from the HPLC column at the same time and are 

analyzed by the mass spectrometer but are differentiated by the mass spectrometer by a 

constant mass difference between these peptides due to the different stable isotope 

labels. 

More recently, the applications of SILAC have been extended to biospecimen, including 

patient tumor tissues, in what has been termed Super SILAC [80, 81]. In the Super SILAC 

approach, a master sample of proteins is generated by combining lysates from different 

SILAC heavy-labeled cell lines of a given cancer or tumor type. The master sample 

contains a near-exhaustive mixture of proteins expected to be present in the tumor cells. 

This is then spiked into different samples (e.g. patient tumor before and after radiation 

treatment) and serves as an internal standard to measure changes in protein types and 

quantities in the samples. In a recent proof of concept study, our lab has been able to 

demonstrate the applicability of the Super SILAC approach to study the plasma proteome 

in human plasma samples [82]. 
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BONCAT, another metabolic labeling technique uses the copper-catalyzed azide-alkyne 

cycloaddition reaction known mostly as click chemistry [83, 84]. In the application of this 

technique in cell culture, an amino acid analog of methionine bearing an azide group (that 

can be ‘clicked’ with an alkyne functional group) is fed to cells as part of the culture media. 

In the absence of methionine in the culture media, cells incorporate this analog into 

protein formation resulting in proteins having this azide functional group, which can then 

be pulled down with the alkyne (clicking reagent). This strategy is particularly useful in 

secretome studies in which only proteins secreted by the cells are wanted. An added 

advantage of this strategy in secretome studies is the use of serum in the labeling media, 

which ensures that cells have requisite nutrients to grow as they normally would. Unlike 

other labeling strategies, BONCAT is not inherently quantitative. BONCAT is typically 

used to facilitate protein identification rather than quantification.   

Metabolic labeling including SILAC, has the advantage of avoiding bias due to pre-

analytical variability since samples are mixed early in the sample preparation protocol and 

undergo essentially the same treatment steps [85]. Other advantages of SILAC include 

being robust, simple to perform, and the ability to fully label whole proteomes without the 

need for chemical reactions [79, 85]. 

Labeling strategies, however, are generally more expensive than label-free strategies and 

require more steps before sample analysis [67]. Relative to chemical labeling strategies, 

metabolic labeling also has the disadvantage of being limited in the number of labels that 

can be used (usually 3) as well as being unsuitable for labeling clinical and animal-based 

samples or cells that do not grow very well in labeled media [60, 67, 70]. Researchers, 

including our lab, have faced a problem with BONCAT where the cells were unable to 
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grow in the media containing the labeled methionine (azidohomoalanine, AHA) past a few 

hours. The workaround for this method is therefore to employ short labeling times [86, 87] 

where the cells are grown in regular media till desired confluency and exchanged with 

AHA containing media for 30 – 60 minutes and the media collected after. This makes the 

BONCAT approach mainly useful for studying short-term secretory profiles instead of 

long-term secretion. 

1.4.2.2 Chemical Labeling 

Chemical labeling techniques, unlike metabolic labeling, involve the labeling of proteins 

or peptides following protein extraction and/or digestion. Isotope Coded Affinity Tags 

(ICAT) have been used in the past but Isobaric Tagging for Relative and Absolute 

Quantification (iTRAQ) and Tandem Mass Tags (TMT) represent the two main isobaric 

chemical labeling tags currently used routinely in quantitative proteomics [66, 88]. N,N-

Dimethyl leucine (DiLeu) and Deuterium isobaric Amine Reactive Tag (DiART) are two 

less commonly known and less frequently used isobaric tags [89]. 

Isobaric tags are chemical species of identical mass and chemistry that permit these tags 

to co-elute at the same retention times when bound to peptides to be analyzed by mass 

spectrometry [90]. There are three regions of isobaric tags, four with the peptide included. 

The regions are the reporter region which is the tag (consists of varying 13C substitutions 

depending on the intended tag mass), a mass normalization region that is synthesized to 

balance the tag mass and ensure that all tags have the same mass regardless of label, 

and a peptide/protein reactive group that reacts with the peptide [90]. Tags are 

manufactured to ensure that cleavage from CID yields reporter ions of different masses 
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that are used to quantify the peptides to which they were bound and from which they were 

cleaved. 

Isobaric tags have the advantage of being used simultaneously with multiple samples; up 

to 8 or 10 samples can be multiplexed in iTRAQ or TMT respectively and this affords a 

very precise way to determine expression differences between large sample numbers [91]. 

This ability to combine many unique samples increases sample throughput and can 

permit the analysis of many more samples per unit time compared to label-free strategies. 

In isobaric tagging, same peptides (from different samples) labeled with different tags 

have the same mass regardless of which sample they come from unlike SILAC where 

labeled peptides from different samples have different masses. Peptides labeled with the 

different isobaric tags therefore arise as one peak in the MS precursor ion scan [89]. This, 

in fact, increases the precursor ion intensity and decreases sample complexity relative to 

SILAC, which may further increase depth of proteome coverage. Duty cycles may thereby 

be higher than in SILAC. Quantification is done by a direct comparison of the reporter ion 

intensities in the MS/MS spectrum. Peptide identifications are done with the fragment ion 

information obtained in the high m/z region of the product ion spectrum. Peptides which 

did not pick up the tags/labels are not quantified as there are no reporter ions from the 

CID events in MS/MS [90]. The labeling efficiency of the tagging therefore plays a very 

important role in protein identification and by extension differential abundances observed. 

Isobaric tags can be used on in vitro as well as in vivo samples because the peptides are 

labeled after digestion unlike in classical SILAC where proteins are labeled inside the 

cells. 
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Pre-analytical variability may not be entirely avoided in isobaric tagging techniques 

because samples are labeled after enzymatic digestion. Any variations resulting from 

reagents, materials, or analyst may therefore affect the results. In spite of these potential 

issues, iTRAQ has been shown to give accurate and very reproducible results with mean 

CVs of 0.09 in one study [88, 92]. Furthermore, because the samples are labeled before 

analysis in the mass spectrometer, post-analytical variability, including differential 

instrument performance from sample to sample, is avoided. However, pre-analytical 

variability may persist owing to the separate tryptic digestion of samples; differences in 

digestion efficiency may bias results. The overall reproducibility of isobaric tagging 

workflows may not be as good as with SILAC but certainly more so than label-free 

approaches.  

1.5 The Secretome 

First publicly used by Tjalsma et al., the term secretome represents the complement of 

all proteins secreted into the extracellular environment by cells, tissues, or organisms [93, 

94]. It is estimated that about 10 – 15% of known and predicted human proteins are soluble 

and may be secreted. Protein secretion constitutes a part of the natural mechanism of 

homeostasis. Cells also secrete proteins and other macromolecules in the body as a 

response to injury. For example, inflammatory cells secrete various factors as part of the 

immune response while tumor cells may secrete factors to promote their growth or in 

response to treatment [95].  

Due to the vast amounts of information contained in cell secretomes, they have generated 

interest as important resources for many MS-based proteomics studies. The cancer 
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secretome in particular has been shown to contain microvesicles and exosomes which 

contain proteins that play vital roles in tumor progression in vivo [96, 97]. Protein secretion 

may occur via one of two broad secretory mechanisms – the classical/conventional 

secretory pathway or the non-conventional pathways.  

1.5.1 Classical/Conventional Protein Secretory (CPS) Pathway 

Conventional protein secretion refers to the secretion of proteins involving transport 

through the endoplasmic reticulum (ER) to the Golgi Apparatus and ultimately to the cell 

membrane from where the proteins are secreted into the extracellular environment [98]. 

Proteins secreted via the CPS pathway have N-terminal secretory signal peptides, usually 

about 16-30 amino acids, or transmembrane domains that direct them to the membrane 

of the ER where they are translocated into the lumen [96, 98–100]. In the lumen of the ER, 

signal peptides are cleaved off and the proteins transported to the Golgi Apparatus in coat 

protein II (COPII)-coated vesicles [99].  

1.5.2 Non-Classical/Unconventional Secretory Pathways 

The long held belief in the scientific community was that protein secretion only occurred 

via the classical pathway and a signal peptide was necessary for protein targeting to the 

secretory pathway. It is now widely believed, however, that alternative pathways exist for 

protein secretion, broadly classified as unconventional protein secretion (UPS). Recent 

research in different labs have delineated the molecular processes involved in different 

aspects of UPS. 

Proteins that go through the UPS pathway may be subdivided into two subgroups 

including those that have a signal peptide and enter the ER but do not go through the 
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Golgi Apparatus prior to secretion and those that have no signal peptide popularly 

referred to as leaderless proteins [98]. Proteins without signal peptides may reach the 

extracellular environment through one of three mechanisms namely pore-mediated 

translocation (Type I), ABC transporter mediated transfer (Type II), or 

autophagosome/endosome-associated transport (Type III) [98]. Types I and III involve 

translocation across the cell and autophagosomal membranes respectively while Type II 

typically involves acylated peptide and yeast mating peptides. The secretion of proteins 

with secretory signal peptides via the UPS pathway is referred to as Type IV UPS.  

UPS pathways are believed to be stress-induced especially in situations where stress 

results in an impairment in the classical pathway. For instance, Type IV protein secretion 

via the Golgi bypass mechanism involving proteins of the Golgi re-assembly and stacking 

protein (GRASP) family constitutes one of the major consequences of ER stress 

induction. Similarly, autophagosome-mediated protein secretion (Type III) of proteins 

such as interleukin 1-β (IL1- β) and acyl-CoA-binding protein (ACBP)  has been shown to 

be GRASP-dependent [98, 99, 101].  

1.5.3 Approaches and Challenges in Secretome Analysis  

The use of immortalized cancer cells as experimental models for studying cancer has 

become the mainstay of cancer research in vitro [102]. Cell lines represent a readily 

available model that can be studied under carefully controlled experimental conditions. 

Cell lines are also relatively easy to grow and manipulate genetically. In spite of the merits 

of using cell lines as experimental models for basic or applied research, limitations exist 

including the lack of a tumor microenvironment associated with 2D cell cultures. Howe 
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ver, the imminent rise of 3D cell cultures seeks to make cell cultures more representative 

of what goes on in vivo while retaining the ease of growth and amenability to 

manipulation[102]. 

Cell secretomes have emerged as viable alternatives to the use of plasma in the discovery 

of proteins that may serve as important biomarkers of disease. This is in part due to the 

difficulties observed in direct plasma-based biomarker studies including the vast 

abundance of only a minority of proteins and the large dynamic range (~10 orders of 

magnitude) therein [102]. Furthermore, being representative of proteins likely to be found 

in biological fluids (e.g. plasma, cerebrospinal fluid), the secretome represents an 

important surrogate with the potential for use in biomarker discovery studies [103]. Cancer 

Figure 5 - Conventional and unconventional protein secretion 

Classical secretion is depicted as 1; processes 2 – 6 depict the different types of unconventional secretion. Image 

taken from https://www.omicsonline.org/articles-images/JPB-05-Editorial16-g001.html 
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cell secretomes are very likely to contain proteins involved in key functional activities in 

vivo owing to the dysregulation of various pathways in cancer.  

Typically, cell and tissue culture media is supplemented with up to 10% serum (e.g. fetal 

bovine serum - FBS, or fetal calf serum - FCS). The high protein and amino acid content 

of serum necessitates the use of serum-free media in efforts to circumvent the high 

protein background. Cells are therefore grown in serum containing media for some time 

following which the media is removed and the cells washed extensively to remove the 

serum. However, it is known that despite the washing, some serum persists. Being 

necessary therefore to be able to distinguish between proteins secreted from cells and 

proteins already present in culture media from serum, labeling strategies such as SILAC 

and/or Click Chemistry are sometimes employed.  

In SILAC, proteins made by the cell and secreted into the media will contain labels (13C 

and/or 15N) not present in FBS-derived proteins. Similarly, in Click Chemistry, secreted 

proteins from the cell will expectedly contain either an azide or an alkyne group 

(depending on the labeling agent used) that should be absent in serum-derived proteins. 

Most labeled secretome studies also use dialyzed serum, which consists of serum in 

which small molecules particularly amino acids together with hormones and cytokines 

have been significantly depleted. Depletion of amino acids ensures that protein 

production in cells only utilizes supplemented labeled amino acids used. 

The use of dialyzed serum and/or serum-free media may present biological issues in 

proteomics studies. It is believed that cell culture in serum-free media for extended 

periods may result in changes in cell protein dynamics as well as apoptosis, senescence, 

or autophagy. Where apoptosis is induced by the use of serum-free media, secretion of 
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proteins from the lysed or dead cells may contribute to the secretome measured. To 

ensure that the contribution of apoptotic cells to the secretome is insignificant or minimal, 

we and other labs conduct apoptosis assays to determine the percentage of apoptotic 

cells following secretome collection. Using the apoptosis assays, different labs may 

decide how long it is appropriate to culture cells in serum-free conditions while 

maintaining the integrity of the secretome. Some groups have used very low serum (~1% 

FBS) to avoid substantial cell death in their secretome studies. 

Another issue often encountered in secretome studies is the lack of proteins with equal 

rates of secretion in “all” cells to be used for normalization of samples similar to the 

housekeeping proteins used in Western Blotting. This is important especially following 

identification of candidate potential biomarkers from secretome proteomics experiments 

where further tests using Western blots, ELISAs etc. are warranted [103]. 

1.6 Protein Glycosylation 

Glycosylation refers to the addition of glycan groups to different residues on proteins 

through the activity of glycosyltransferases [104]. Typically, glycosylation occurs in the 

ER/Golgi but it has been known to sometimes take place in the cytoplasm or nucleus [105]. 

Glycosylation is the most predominant protein PTM and has been demonstrated to have 

very pertinent effects on protein function (e.g. receptor interactions, immune response 

mechanisms, secretion, and transport) and physicochemical properties (e.g. solubility, 

stability, and folding) [104, 106, 107]. For instance, glycoproteins with a mannose-6-phosphate 

group are known to be targeted to lysosomes and one such glycoprotein, tripeptidyl-

peptidase 1, is implicated in classical late-infantile neuronal ceroid lipofuscinoses (LINCL) 
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[96, 108]. In addition, cancers have been found to commonly present with changes in 

glycosylation [105]. 

Up to 50% of all proteins are estimated to have one or more glycoforms particularly 

proteins that are secreted or targeted to the cell surface [105, 109]. Among the notable 

plasma proteins known to be glycosylated are antithrombin III, fibrinogen, alpha-1-acid 

glycoprotein, alpha-1-antitrypsin, apolipoproteins B-100, D, and F [106, 110]. The abundance 

of glycoproteins coupled with the many roles they play in cellular function and disease 

makes glycoproteins well suited for investigation as potential biomarkers of early 

diagnosis or treatment prognosis [111]. 

Glycoproteins may have more than one site of glycosylation and that site may be occupied 

by more than one glycan resulting in different glycoforms of the protein. While 

glycosylation patterns may differ between people depending on genetic differences, diet, 

disease, and lifestyle, it has proven to be very stable in individuals [106, 111, 112]. Additionally, 

age and sex have been shown to correlate with the glycosylation status such as the 

increased bisection and decreased galactosylation of immunoglobulin G (IgG) with age 

[106, 113].  

The central dogma of molecular biology is the formation of RNA from DNA and the 

subsequent formation of protein from the RNA template. While this process of protein 

manufacture in cells follows a template (i.e. DNA), glycosylation is very complex and not 

template-driven, making glycoprotein analysis such as sequence determination a huge 

analytical challenge.  

1.6.1 Glycans 
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Glycans are carbohydrate moieties typically found in the body attached to proteins or 

lipids, as mono-, di-, or oligosaccharides, but they may also exist as free molecules. The 

molecule to which the glycan (glycone) is bonded is referred to as an aglycone. Glycans 

have been known to be involved in different cellular functions facilitating cell-cell, cell-

matrix, or cell-molecule interactions such as pathogen recognition and inflammation [111, 

114]. 

Glycans exist as polyhydroxy molecules of aldehydes or ketones and may be 

monosaccharides referring to the simplest glycan consisting of only one sugar unit (e.g. 

glucose shown in Figure 6) or oligosaccharides comprising many sugar units. Multiple 

oligosaccharide units bonded together are referred to as polysaccharides. An aldose 

refers to a monosaccharide with an aldehyde group whereas one with a ketone group is 

referred to as a ketose. In the free state, monosaccharides exist as ring or open chain 

molecules whereas oligosaccharides exist primarily as ringed structures. 

Glycans have two ends – the reducing end containing the aldehyde or ketone functional 

group and the opposite non-reducing end. Single glycan units may be bonded to each 

Figure 6 - Different forms of D-glucose 

The image on the left panel is the open form of D-glucose whereas the middle image represents the ring form. The 

ring form may take two conformations – the boat or the chair conformation (shown in the image on the right panel). 

Substitution of the hydroxyl groups around the structure result in different molecules with distinct properties. 
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other via two similar but distinct linkages – α or β linkages. The two linkages have been 

demonstrated, as in the case of starch (α1-4 linkages) and cellulose (β1-4 linkages), to 

result in different structural and biological properties even though they are both polymers 

of glucose [114]. Glycans are highly complex and diverse species in that the 

monosaccharides may be linked to each other via several different hydroxyl groups in 

either the α or β conformation. For instance, three six-carbon monosaccharide units 

(hexoses) may be linked to each other in up to 27,648 different possible ways compared 

to the six tripeptides or trinucleotides possible from three amino acids or nucleotides 

respectively [114]. Increasing the number of units of a polysaccharide unit increases the 

possible number of products geometrically e.g. six hexose units can form > 1 trillion 

possible hexasaccharide structures [114, 115]. 

The most commonly occurring monosaccharide units are five-carbon (e.g. xylose Xyl) and 

six-carbon (e.g. glucose Glc, galactose Gal, and mannose Man) neutral or non-neutral 

species [114]. Glucosamine and galactosamine are six-carbon units with the hydroxyl 

group at position 2 substituted with an amino (NH2-) group. The amino group may be 

acetylated to give hexosamines such as N-acetylglucosamine (GlcNAc) and N-

acetylgalactosamine (GalNAc). The hydroxyl group at position 6 may be removed to give 

a deoxyhexose such as fucose (Fuc) or replaced with a carboxylate (COO-) group to give 

uronic acids such as glucuronic acid (GlcA) and iduronic acid (IdoA). Sialic acids (Sia) 

such as N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) 

comprising nine carbon atoms are also common in nature.  
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Glycans are generally classified into four major types namely O-linked glycans, N-linked 

glycans, glycolipids/glycosphingolipids, and glycosaminoglycans, depending on the type 

of linkage to the aglycone [105]. 

1.6.1.1 O-Linked Glycans 

O-linked glycans are formed by the glycosidic linkage of glycans to the oxygen of the 

hydroxyl group on serine (S) or threonine (T) residues. The process of O-glycosylation 

begins in the Golgi apparatus. It is the predominant form of glycosylation found in mucins 

in the body. The glycan is covalently bonded through an α-linkage to the protein by N-

acetylgalactosamine. The resulting product is referred to as a mucin-O-glycan or O-

GalNAc [105, 116]. Mucins are found in secretions of mucosa in different epithelial cell 

surfaces and body fluids. O-glycans may also be bonded to the aglycone via a β-linkage 

using N-acetylglucosamine resulting in O-GlcNAc [105]. The GalNAc residue is extended 

by different monosaccharide units including Gal, Fuc, or Sia but not Glc, Man, or Xyl 

residues [116]. 

While there is no consensus motif for O-glycosylation, the presence of a proline at the N-

terminal side of the S/T group or three amino acid residues away from the S/T group has 

been shown to favor O-linked glycan formation. 

1.6.1.2 N-Linked Glycans 
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N-glycoproteins are formed from the covalent bonding of an N-glycan group to an 

asparagine (N) residue of a polypeptide or protein [117]. Studies have revealed an Asn-X-

Ser/Thr (N-X!P-S/T) consensus sequence that is most commonly found at N-glycosylated 

asparagine sites (Figure 7) in a polypeptide chain where X is any amino acid except 

proline. Other sequences such as the N-X-C sequon have been observed in nature to be 

N-glycosylated [117]. It must be noted however, that there are several N-X-S/T sequons in 

the human proteome that have not been shown to harbor a glycan.  

Figure 7 - N-linked glycans 
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About five different monosaccharide molecules may be found linked to the asparagine 

residue but the most common group is GlcNAc. The formation of N-glycans has been 

shown to begin with dolichol phosphate (Dol-P), a lipid polymer of five-carbon isoprene 

molecules. The entire oligosaccharide glycan molecule is synthesized on Dol-P and then 

transferred onto the aglycone unit. Synthesis of the oligomannose begins on the 

cytoplasmic side of the ER membrane where Dol-P accepts an N-acetylglucosamine-

phosphate (GlcNAc-P) group from UDP-GlcNAc to form Dol-P-P-GlcNAc catalyzed by 

GlcNAc-1-phosphotransferase [117]. Successive additions of GlcNAc and Man residues 

results in the formation of a pentasaccharide core that is common to all N-glycans. The 

common core is typically made up of two GlcNAc units and three mannose sugars [111]. 

Figure 8 - Types of N-glycans 
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The addition reactions are catalyzed by different saccharyltransferases. The N-glycan 

molecule is then translocated to the lumenal side of the ER where additional 

monosaccharide units may be added before transfer of the glycan molecule onto the 

protein structure occurs while ribosomal translation is taking place. Importantly, 

Tunicamycin, a nucleosidic antibiotic, possesses inhibitory activity against GlcNAc-1-

phosphotransferase and has been used in studies to inhibit protein glycosylation [107]. 

As depicted in Figure 8, N-glycans may be broadly divided into three types. These are 1) 

oligomannose consisting only of mannose units joined to the common core, 2) complex 

N-glycans consisting of two to three antennae starting with GlcNAc joined to the common 

core plus different monosaccharides including sialic acids, hexoses, or other 

hexosamines, and  3) hybrid N-glycans consisting of two or more “antennae” with one 

antenna having only mannose units [111, 117]. 

1.6.2 Mass Spectrometry Analysis of Glycoproteins 

The importance of protein glycosylation on cellular development and function cannot be 

overstated. From protein folding to cell proliferation and signaling, glycans have proven 

to be pertinent mediators of biological function. Furthermore, their role in cancer can 

means they can serve as biomarkers of disease where they can facilitate early disease 

diagnosis and treatment prognosis. Known to be influenced by age and being involved in 

the etiology of such diseases as Alzheimer’s, Huntington’s, and some autoimmune 

conditions, glycans may be used for the detection of these age-related diseases [111, 118].  

Mass spectrometry-based analysis has been instrumental in the recent rise in interest in 

the study of protein glycosylation and glycan differences. Together, the lack of standards, 
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high variability between different subjects, vast number of possible isomers per glycan 

structure per glycosite, and the paucity of automated tools/software for interpreting 

complex MS/MS data from fragmentation of glycoproteins/glycopeptides make the 

identification and quantification of glycans for use as disease biomarkers or therapeutic 

targets an enormous analytical challenge. The absence of chromophores or fluorophores 

also means that mass spectrometry represents one of the best analytical tools for glycan 

analysis [115]. 

MALDI-MS and ESI-MS are the two most commonly used MS platforms for glycan 

analysis. Fragmentation events in MS/MS analysis allows for structural elucidation of 

glycopeptides/glycoproteins. In ESI-MS, the separation method chosen may be reverse 

phase, normal phase, hydrophilic interaction (HILIC), porous graphitized carbon (PGC) 

chromatography, or capillary electrophoresis. In MALDI-MS analyses of glycans, labile 

sialic acid residues may be cleaved off making derivatization in order to stabilize the 

monosaccharide units essential [111].  

1.6.2.1 Derivatization of Glycans for MS Analysis 

The standard modus operandi in glycoprotein (glycan) analysis by mass spectrometry 

involves the enzymatic (N-glycans) or chemical (O-glycans) release of the glycan group, 

identification of the site of glycosylation via an analysis of the deglycosylated 

protein/peptide, and identification and quantification of the released glycans. Released 

glycans may be derivatized to make them more amenable to commonly used hyphenated 

chromatographic and mass spectrometry techniques. Glycan derivatization, extensively 

reviewed by David Harvey [115], may be done by reactions with the hydroxyl group (e.g. 
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permethylation, acetylation), reducing end (e.g. reductive amination, hydrazone 

formation), or sialic acid residues. Permethylation is the most popular derivatization 

approach involving the complete or near-complete addition of methyl groups to all 

hydroxyl and where present carboxylic acid groups [115]. The INLIGHT glycan tagging 

approach developed by David Muddiman and coworkers at the North Carolina State 

University is an example of the hydrazone formation strategy [119].  

1.6.2.2 Enrichment Strategies 

In order to increase glycoprotein and glycan identification and quantification, different 

enrichment strategies may be employed. Different strategies including 

immunoprecipitation using antibodies, covalent hydrazide derivatization, and lectin affinity 

binding exist for enriching glycoproteins/glycopeptides [118].  The most popular enrichment 

strategy currently used in glycoprotein/glycopeptides analysis is however the lectin 

enrichment approach and its applicability has been demonstrated in analysis of lung, 

breast, and liver cancers [120–122]. In hydrazide-based enrichment, 

glycoproteins/glycopeptides are immobilized by reacting the reducing end of the glycan 

(aldehyde) with a solid hydrazide support ensuring that only glycosylated proteins are 

retained on the column. Peptide-N-Glycosidase F (PNGase F) may then be used to 

cleave the glycan off and the deglycosylated protein analyzed [118]. 

Lectins are proteins known to have high affinities for carbohydrates or glycan species. 

This property of lectins is therefore exploited in the enrichment of glycoproteins in 

complex protein mixtures. A wide variety of lectins have been isolated from many different 

sources including mushrooms, legumes like beans and peanuts, garden snails, potatoes, 
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wheat, and tomatoes among others. Concanavalin A (Con A), wheat germ agglutinin 

(WGA), and Ricinus communis agglutinin (RCA) represent some of the more commonly 

used lectins in glycoproteomics studies. 

Con A and WGA have been demonstrated to have higher affinities for certain glycan units 

more than others. Con A is generally associated with higher affinities for the high 

mannose N-glycan type whereas WGA preferentially binds glycoproteins with sialic acid 

residues (e.g. N-acetylneuraminic acid) and N-acetylglucosamine residues [81, 123]. 

Hydrogen bonding and hydrophilic interactions between lectins and glycans bound to 

glycoproteins/glycopeptides accounts for the selective enrichment of 

glycoproteins/glycopeptides using lectins. 

1.7 Dissertation Objectives 

This dissertation comprises two projects dealing with the use of mass spectrometry-based 

proteomics to analyze secreted proteins. The first project is a clinical applications study 

in pursuit of candidate biomarkers for diagnostic or prognostic use in NSCLC. The second 

project discussed in this dissertation is a more fundamental proteomics study in which we 

carry out a comprehensive characterization of glycoproteins in the HepG2 cell secretome. 

1.7.1 H1299 Study 

NSCLC is responsible for more deaths worldwide than any other form of cancer due to a 

combination of late stage diagnosis and relapse following chemo/radiation combination 

therapy. One primary mechanism of post-treatment cancer cell survival is thought to be 

that of autophagy. Previous studies including studies in the Gewirtz lab have indicated a 

relationship between p53 status and the functional form of autophagy induced in response 
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to radiotherapy [124–126]. In tumor cells with functional p53, autophagy has been 

determined to be cytoprotective in response to ionizing radiation whereas in tumor cells 

without p53, non-protective autophagy is known to be induced. Where the cytoprotective 

form of autophagy is present, it can be pharmacologically inhibited to sensitize cancer 

cells to chemotherapy and ionizing radiation treatment. However, this approach is unlikely 

to be effective when the autophagy is non-protective and there are currently no available 

biomarkers to stratify patients according to whether autophagy is protective, non-

protective or, in fact, cytotoxic to the tumor cell. This also provides a plausible explanation 

for the potential failure of clinical trials exploring the inhibition of autophagy as a cancer 

treatment enhancement strategy as patients could not be stratified based on the nature 

of the autophagy exhibited by their tumor [127]. In this study, we used p53-null and p53-

inducible H1299 NSCLC cell lines as models of non-protective and protective autophagy, 

respectively, in an effort to identify candidate biomarkers.  

The overarching aim of this study is to understand the proteomic signatures involved in 

radiation-induced autophagy in NSCLC in an effort to identify candidate proteins that may 

be developed into diagnostic and/or prognostic biomarkers, as well as therapeutic targets. 

This will help to distinguish between NSCLC patient groups in which autophagy 

manipulation may or may not be a beneficial therapeutic strategy. The specific aims of 

this study are: 

1. To characterize the response of the H1299 NSCLC cells to ionizing radiation 

treatment as a function of p53 status 

2. To identify the proteomic signatures that differentiate between cytoprotective and 

non-protective autophagy. 
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1.7.2 HepG2 Study 

One of the limitations of label-free quantitative proteomics is the sensitivity to pre-

analytical variability, which affects sample-to-sample reproducibility and quantitative 

precision. The SILAC approach, initially developed as a quantitative strategy for cell 

culture analysis, was recently extended to clinical samples by Matthias Mann and 

colleagues and other groups including our lab [80, 82, 128, 129]. In this extended application, 

a library of labeled intact proteins pooled from different samples are used as spike-in 

internal standards to analyze clinical samples including tissue biopsies and plasma. With 

plasma representing the primary, and perhaps most important, clinical biospecimen [130], 

our previously published proof-of-principle study [82] demonstrated the use of the HepG2 

cell line to produce labeled plasma proteins that can then be spiked into plasma for 

comparative quantitative analysis. The overall goal of this research is therefore to develop 

the HepG2 cell secretome as an expression platform for the generation of a library of 

intact stable isotope labeled proteins to serve as internal standards in quantitative 

proteomics applications. To do this effectively, it is essential to characterize the SILAC 

labeled HepG2 secretome especially relating to plasma protein glycosylation. 

The specific aims of this study include: 

1. Quantitative analysis of temporal plasma protein secretion in HepG2 cells. 

2. Qualitative and quantitative analysis of plasma protein glycosylation in the HepG2 

secretome. 

3. Comparative plasma proteomics analysis of HepG2 secretome spiked plasma. 
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Chapter 2: 

Proteomics Insights into Autophagy 

 

 

 

This chapter is drawn from a published review article by Cudjoe EK et al. 2017 

 

2.1 Introduction 

Autophagy is one of the most widely studied cellular mechanisms owing to the myriad of 

roles it plays in the cell. Dr. Ohsumi Yoshinori, one of the pioneers in the study of 

autophagy, recently received the 2016 Nobel Prize in Physiology or Medicine for his 

seminal role and contributions to the discovery of major signaling and molecular pathways 

in autophagy [131]. Autophagy, as the name implies, is a mechanism whereby cells “eat” 

or digest the components of their cytoplasm by presenting these subcellular organelles 

to lysosomes for degradation by hydrolases [132–136]. The term was coined by Christian de 

Duve and the process is a highly conserved mechanism observed in single and 

multicellular eukaryotes [137]. Autophagy occurs in cells at basal levels and in response to 

various stimuli, notably stress triggers such as starvation, chemotherapy, and 

radiotherapy. As a basal cellular mechanism, autophagy plays a homeostatic role, 

maintaining levels of proteins and energy in the cell [134] whereas in stress-induced 

autophagy the cells use breakdown products for energy and metabolic precursor 

generation, and survival. The importance of autophagy in both health and disease, has 
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generated significant interest in defining related signaling mechanisms, sub-cellular 

location of signaling elements (e.g. proteins), and extracellular signals that affect cell-cell 

communication. Autophagy represents a primarily homeostatic mechanism. In the 

process of autophagy, cellular components that may be damaged, dysfunctional, or 

excessive are captured into double-membrane vesicles known as autophagosomes from 

where they are transported to lysosomes that degrade the contents of the 

autophagosome (Figure 9). As a homeostatic mechanism, basal autophagy is involved 

in the maintenance of cellular integrity and the generation of building blocks of energy 

and metabolism that facilitate cell survival in response to starvation and/or stress. 

As a cellular process, autophagy is primarily classified into macro-autophagy, micro-

autophagy, or chaperone-mediated autophagy based on how the substrate cargo is 

delivered to the degradation machinery [134, 137–139]. Macro-autophagy, ubiquitously used 

to mean autophagy, refers to the process wherein a double membrane phagophore is 

formed that sequesters the substrates and matures into the autophagosome. In micro-

autophagy, however, the cargo is recognized and sequestered directly by the invagination 

of the lysosomal membrane for degradation [134]. Chaperone-mediated autophagy (CMA) 

involves the delivery of selected substrates, soluble proteins, to the lysosome via 

chaperone proteins. CMA is considered to be very selective whereas micro-autophagy 

and macro-autophagy may be selective or non-selective [140, 141]. In the context of cancer, 

different forms of autophagy have been identified and have been classified as either 

cytoprotective, cytotoxic, cytostatic or non-protective [125, 142–144]. This classification 

applies primarily to the case of autophagy induced in response to therapy in the tumor 

cell. Basal autophagy is however, virtually always cytoprotective. Functionally, autophagy 
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is said to be cytoprotective when its induction, as a response to stress including chemo- 

and radiotherapy, results in cell survival [125]. Cytotoxic autophagy results in cell death, 

either directly or by facilitation of apoptosis and is considered to be a desirable outcome 

of treatment in cancer cells [145].  This form has been referred to as autophagic cell death 

in some literature and is believed to occur when autophagy is induced to excessive levels 

[134]. Cytostatic autophagy refers to induced autophagy that results in the arrest of cell 

growth but not cell death. Currently, more than 36 autophagy-related (Atg) genes have 

been identified to be involved in some capacity in the autophagic machinery [146]. Many of 

these genes have been discovered through yeast genetic screening efforts. Being a 

conserved mechanism, most of the Atg genes discovered in yeast have homologs in 

Figure 9 – The Process of Autophagy 

The process of autophagy involves the formation of a double membrane structure that matures into the autophagosome 

and fuses with the lysosome. The autophagosome may also fuse with late endosomes (from the process of endocytosis) 

into an amphisome that may fuse with a lysosome or result in protein secretion. 
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mammalian cells. Autophagy begins with the formation of the double-membrane 

autophagosome from the phagophore and continues with the fusion of the 

autophagosome with the lysosome to form the autolysosome. Autophagosome formation, 

which represents the initiation of autophagy, takes place in four main steps namely 

induction, nucleation, elongation and completion [141, 147]. Basal autophagy under normal 

nutrient conditions generally occurs at very low levels, with some exceptions such as  

pancreatic cancer cells, which tend to have endogenously high levels of autophagy [148, 

149]. Stress-induced autophagy is generally observed under nutrient or oxygen starvation 

or when the cell is challenged by chemotherapy or radiotherapy. In yeast, the target of 

rapamycin (TOR) is a key autophagy inhibitor and inhibits Atg1, a serine/threonine kinase 

which is necessary for the formation of the Atg1-Atg13-Atg17 complex [148] under normal 

nutrient conditions. In mammalian cells, mTOR inhibits the Atg1 homologs, Unc-51-like 

kinases ULK1 and ULK2. However, during nutrient and amino acid starvation, AMP-

activated protein kinase (AMPK) is activated, which inhibits mTOR [147, 148]. It should be 

noted that autophagy induction by rapamycin (dependent on mTOR signaling) is not the 

exclusive pathway for this process. As reported by Sarkar et al. there are a number of 

small molecule enhancers (SMERs) and inhibitors (SMIRs) of the cytostatic effects of 

rapamycin that may induce autophagy independently of rapamycin and mTOR [147, 150]. 

This induction step results in the activation of ULK1 and ULK2, which are known to 

phosphorylate Atg13 and FIP200, the mammalian homolog of yeast Atg17. A ULK-Atg13-

FIP200 complex localized to the phagophore is then formed; Atg 101 is believed to bind 

to and stabilize Atg13 in the complex [148, 151, 152].  
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Mercer et al. found that Atg101, a novel autophagy protein, also interacts with ULK1 in 

an Atg13-dependent manner and is a part of the ULK-Atg13-FIP200 complex [151]. This 

marks the nucleation step, which requires the phosphatidylinositol 3-kinase (PtdIns3K) 

complex comprising vacuolar sorting protein 34 (Vps34), p150, Atg14, and Beclin-1 [147, 

148]. Vps34, the only class III PI3 kinase in mammalian cells, is responsible for the 

phosphorylation of phosphatidylinositol to phosphatidylinositol-3-phosphate (PtdIns3P) 

[147, 153]. This phosphorylation process is facilitated by Beclin-1. Several proteins bind to 

Beclin-1 and may result in either promotion or inhibition of autophagy. Among the Beclin-

1 binding partners that promote autophagy are Atg14L and the UV radiation resistance-

associated gene (UVRAG) whereas binding to Bcl-2 and Bcl-XL results in inhibition of 

autophagy [147].  

Conjugation of two ubiquitin-like (Ubl) protein complexes – Atg5-Atg12-Atg16 and Atg8–

Phosphatidylethanolamine mediates the elongation and completion phases of autophagy 

which involves Atg3, Atg5, Atg7, Atg10, Atg12 and Atg16L as well as microtubule-

associated protein light chain 3 (LC3) [141, 148, 154, 155]. Yeasts have only one Atg8 protein 

whereas in mammals there are many homologs in the Atg8 family of proteins including 

LC3, GABARAP, and GATE-16 [155]. The completion of autophagosome formation is 

associated with the formation of an Atg5-Atg12-Atg16 complex that results in the 

conversion of cytosolic LC3 to the lipidated membrane-bound isoform, LC3-II [154]. It was 

previously believed that Atg5 and Atg7 are necessary for autophagy in mammalian cells 

but an alternative pathway independent of Atg5/Atg7 has been identified [156]. Autophagy 

enters into completion via the fusion of the autophagosome with the lysosome to form the 

autolysosome where the cargo (contents of the autophagosome) are broken down by 
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hydrolases to generate energy, metabolic precursors, or amino acids for protein 

synthesis.  

2.2 Proteomics Approaches to Study Autophagy 

Mass spectrometry-based proteomics has proven invaluable for studying protein 

structure, expression, sub-cellular location, protein-protein interactions and PTMs [157, 158]. 

In recent years, mass spectrometry-based proteomics technology has played a major role 

in advancing our knowledge relating to autophagy and increased our understanding of 

the content of autophagic structures such as autophagosomes and lysosomes. While 

some of these studies have focused on autophagy-related mechanisms, other studies 

reflect global proteomics analysis to investigate cells and disease states, which provide 

insight into known and/or novel functions of various proteins linked to the autophagic 

machinery. A variety of proteomics approaches, including labeling (e.g. Stable Isotope 

Labeling by Amino Acids in Cell Culture (SILAC), biorthogonal noncanonical amino acid 

tagging (BONCAT), and isobaric tagging for relative and absolute quantification (iTRAQ)) 

and label-free methods, have been used in combination with immuno-based techniques, 

among others, in exploring autophagy [149, 159–165]. In this review, we will cover proteomics 

studies focused on autophagy in the context of the cell compartments analyzed and 

shown in Figure 10. A brief summary of each study including the cell and/or animal 

models, treatment conditions, and analytical approaches used as well as key regulated 

proteins is provided in Table 1. 

2.2.1 Whole Cell Proteomics Analysis 
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Proteomics has been used successfully to screen whole cell lysates for differential protein 

expression and PTMs as a function of different stress stimuli including drug treatments 

and radiation [160, 162, 164, 166–170]. Cells exposed to exogenous stimuli are subsequently 

lysed to obtain the entire complement of proteins that may have been affected, but without 

regard to cellular compartment or function. In global studies, comparative data analysis 

reveals the effects of the stimuli on biological function relating to autophagy. Proteomics 

studies have served to reveal novel proteins or novel functions of known proteins and 

their involvement in the process of autophagy. 

Autophagy 

Whole Cell Fractionation Secretome 

Autophagosomes Lysosomes 

Bagshaw et al. Tharkeshwar et al. 
Chapel et al. Gao et al. 
Sleat et al.  Naureckiene et al. 
Kollman et al. Della Valle et al. 

Dengjel et al. Gao et al. 
Mancias et al. Suzuki et al. 
Overbye et al. Naureckiene et al. 

Zhang et al. Bertin et al. 
Kang et al.  Patella et al. 
Zhuo et al.  Mathew et al. 
Zhao et al.  Kim et al. 
Rodolfo et al. Wang et al. 
Tavera-Mendoza et al. 

Kraya et al. 
Kang et al.  
Ohman et al. 
Cudjoe et al (unpublished)

  

Figure 10 - Overview of proteomics characterization of Autophagy with respect to cellular and sub-cellular 
compartments. 
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In two recent publications, Zhang et al describe a proteomics method involving a 

combination of BONCAT labeling and iTRAQ for the detection and quantification of de 

novo protein synthesis in autophagy [166, 167]. The BONCAT approach involved introducing 

azidohomoalanine (AHA), an azide methionine mimetic, into the culture media, which 

subsequently is incorporated into newly synthesized cellular proteins. Autophagy was 

induced in AHA-treated HeLa cells via amino acid starvation (in amino acid-free media) 

followed by total cell lysis and enrichment of newly synthesized AHA-containing proteins 

via click reaction coupling of biotin-linked alkyne groups and subsequent avidin bead 

capture. Bound AHA-containing proteins were then digested and treated with iTRAQ 

reagents followed by LC-MS/MS proteomics identification and quantification. Zhang et al 

profiled 711 proteins using this method. Among the proteins identified and verified were 

ATP synthase, H+ transporting, mitochondrial F1 complex, β polypeptide (ATP5B), heat 

shock protein family E [Hsp10] member 1 (HSPE1) and solute carrier family 25 member 

3 (SLC25A3), receptor for activated C kinase 1 (RACK1/GNB2L1) and PNP (purine 

nucleoside phosphorylase) [166]. Gene knockdown (using siRNA) of ATP5B, RACK1, or 

SLC25A3 resulted in decreased autophagic flux indicating a role for these proteins in the 

promotion of autophagy. The approach used in the study is applicable to many multiple 

experimental designs and can be very useful in understanding protein synthesis during 

stress-induced autophagy. 

Kang et al. performed proteomics analysis on starvation-induced autophagy in HCT116 

cells and identified Annexin A1 (ANXA1) as a potential regulator of autophagic 

degradation [41]. 2D-gel electrophoresis and subsequent MALDI-TOF MS analysis of the 

proteins identified various proteins that were up or downregulated after autophagy 
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induction. Kang et al. reasoned that downregulated proteins following autophagy 

induction may be targets of autophagic degradation whereas upregulated proteins may 

be involved in the process of autophagy itself. ANXA1 levels increased by ~3 fold 

following the induction of autophagy and when it was knocked down by siRNA, there was 

no difference in LC3 degradation between ANXA1 siRNA and wild type cells after 

starvation. Notably, a modest decrease in p62 levels was observed which the authors 

argue may be indicative of a later role related to autophagic degradation for ANXA1 [171]. 

Zhuo et al. in an iTRAQ comparative proteomics study of autophagy in mouse embryonic 

fibroblasts (MEFs) with and without the autophagy gene Atg7 revealed a connection 

between F-actin and autophagy [172]. Functional enrichment and network analysis of the 

results indicated an upregulation of proteins in the F-actin network [172]. Further analysis 

revealed the F-actin fibers in the Atg7 -/- cells were highly disorganized compared to wild 

type cells. The functional relevance of F-actin in autophagy was investigated by inducing 

F-actin depolymerization in Atg7 wild type cells using cytochalasin D (CD) which resulted 

in increased LC3 conversion and p62 degradation following starvation. However, in CD-

treated cells following starvation, more LC3 degradation but decreased p62 degradation 

was seen implying a decrease in autophagosome degradation [172]. F-actin was therefore 

shown to be important in the maturation of autophagosomes and completion of the 

autophagy process. 

Toll-like receptors (TLRs) are immune system proteins that recognize certain microbial 

molecules. TLRs have been shown to be involved in the regulation of autophagy but the 

role of specific Toll-like receptors such as TLR-9 in autophagy remains controversial [173–

175]. Delgado et al. showed, through their comprehensive study of Toll-like receptors, that 



 
 

65 
 

CpG – a TLR-9 ligand, did not induce autophagy while Sanjuan et al. showed that CpG 

activated autophagy [173, 174, 176]. A comparative global proteomics study by Bertin et al., 

however, showed that CpG is involved in the autophagic process in tumor cells as well 

as human embryonal kidney HEK293 cells expressing murine TLR9 [175]. In their study, 

CpG-treated tumor cells showed autophagy induction characterized by LC3I conversion 

to LC3II. They also observed changes in autophagy regulated proteins such as annexin 

A1 (ANXA1). In another study, Li et al. investigated changes in the host proteome 

following infections with the rabies virus in mice brains and determined factors that may 

be responsible for different pathogenicity [177]. They used two strains of the virus and found 

one strain, CVS-11, to be more virulent than the SRV9 strain and that SRV9 infection was 

attenuated between 10 – 14 days post infection. Autophagy, together with associated 

pathways such as mTOR signaling, was one of the top 5 canonical pathways differentially 

dysregulated between CVS-11 infection and SRV9 infection in the Li et al. study [177]. Li 

et al also demonstrated that autophagy induction was not simply a result of viral infection 

but a function of viral replication. NA cells were infected with UV-inactivated rabies virus 

and they found no significant induction of LC3 conversion compared to mock-infected 

cells. Increased autophagosome accumulation was observed in attenuated SRV9-

infected samples compared to CVS-11-infected samples. The presence of viral genomic 

RNA material in the SRV9-infected cells after attenuation of infection when viral titers fell 

below detectable levels may indicate that autophagy induction is more a response to viral 

RNA than to viral particles. 

Patella et al. sought to identify changes in the proteome of endothelial cells (ECs) 

associated with the transition from sub-confluence to confluence [178]. Cultured ECs are 
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motile and proliferate when sub-confluent whereas confluent cells establish cell-cell 

adhesion and secrete various autocrine and paracrine factors into the extracellular space 

that facilitate decreased cell proliferation and permeability and promote quiescence [178, 

179]. These investigators identified proteins that were differentially regulated in sub-

confluent and confluent cells. Most of the proteins upregulated in sub-confluent cells 

compared to confluent cells were related to cell division and DNA/RNA-processes, 

suggesting decreased growth in confluent cells, which is consistent with our 

understanding of the confluent state. The proteins upregulated in confluent cells were 

mostly enriched for extracellular matrix organization, metabolic processes and vesicle 

organization. Vacuole organization was the most enriched and within this group, several 

lysosomal proteins were present. Their results also indicated that p62/SQSTM1, a protein 

that is generally reduced via autophagic degradation, was downregulated in confluent 

cells. Patella et al. further sought to identify the impact of autophagy on EC function and 

found that inhibition of autophagy via Atg5 silencing resulted in decreased cell 

proliferation while both Atg5 silencing and bafilomycin treatment impaired EC barrier 

integrity and increased EC permeability [178]. Pathway analysis was used to predict the 

factors driving the global changes in proteome induced by autophagy inhibition. Among 

the identified factors was hydrogen peroxide, a widely known inducer of reactive oxygen 

species (ROS). In autophagy-deficient cells, Rho-related GTP-binding protein (RHOB), 

which has been shown to be upregulated in response to oxidative stress in pulmonary 

endothelial cells, was found to be upregulated following autophagy inhibition suggesting 

that autophagy inhibition results in oxidative stress [178]. Treatment of bafilomycin-treated 

cells with the ROS scavengers, N-acetyl-L-cysteine and ascorbic acid, resulted in a partial 
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restoration of EC barrier integrity. This showed that the increased EC permeability 

following autophagy inhibition was a consequence of ROS generation.  

Mathew et al. carried out a comparative proteomics study to identify differences in the 

proteomes of autophagy-proficient and –deficient Ras-driven cancer cells [162]. Autophagy 

was induced in SILAC-labeled baby mouse epithelial (iBMK) cells via starvation followed 

by LC-MS/MS analysis. A total of 3181 proteins were found to be differentially expressed 

before and after starvation in the autophagy-proficient and –deficient cell comparison. 

This finding reflects the extent of protein turnover during autophagy and further provides 

insight into proteins that serve as cargo for the autophagic machinery. Autophagy was 

also determined to be largely targeted to proteins that promote cell survival. In autophagy-

deficient cells, poly(ADP-ribose) polymerase (PARP), known to be involved in single-

strand DNA repair, and STAT1, known to be involved in interferon-mediated cell death, 

were upregulated [162]. 

The EVA1A gene is necessary for autophagosome formation during autophagy via its 

interaction with Atg16L [180] and it is also reported to induce cell death [181]. Proteomics 

studies have subsequently revealed that EVA1A regulates genes that are involved in the 

pathogenesis of neurodegenerative diseases including Alzheimer’s and Huntington’s, 

thereby shedding some light on the potential involvement of autophagy in 

neurodegeneration [164]. Autophagy has also been determined to be involved in the 

metabolism of amyloid beta as well as its secretion [182]. In the study by Zhong et al, 

EVA1A homozygous knockout mice (Eva1a-/-) showed higher levels of 

neurodegeneration compared to EVA1A wild type mice [164]. This was detected by 

determining both mRNA and protein levels of the neuronal marker, β-tubulin III, which 
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showed a marked decrease in knockout mice. Fluorescence detection of β-tubulin III 

showed a similar result. The effect of EVA1A deficiency was only apparent in neurons but 

not other cell types. The proteomics analysis identified 5438 proteins of which 4462 were 

quantified in all three replicates. 28 proteins were differentially regulated by EVA1A 

knockdown and pathway analysis determined an enrichment of neurodegenerative 

disease-relevant proteins [164]. 

Further insight into the actions of certain drugs using proteomics tools have revealed the 

central role played by autophagy in drug sensitivity. Zhao et al. found that the neurotoxicity 

of bupivacaine is strongly linked to the generation of excess reactive oxygen species and 

activation of autophagy. It is also related to its inhibitory effects on PI3K [160].  The 

phosphoinositide-3-kinases (PI3Ks) represent one of the more important family of genes 

involved in autophagy. The class 1 PI3Ks are known to be inhibitory while the class III 

PI3Ks are known to be stimulatory in autophagy [148]. A phosphoproteomics study was 

carried out by Zhang et al. using 2 lung cancer cell lines H3255 and H1975 [168]. The 

H3255 cells carry a single mutation in the EGFR gene which makes them susceptible to 

EGFR-targeted tyrosine kinase inhibitors (TKIs) such as erlotinib while the H1975 cells 

carry a double mutation in the EGFR gene which makes them resistant to erlotinib. Zhang 

et al. found that in erlotinib sensitive cells but not erlotinib resistant cells, the key 

autophagy signaling protein ULK1, is not phosphorylated upon treatment. This implies 

that the sensitivity of the lung adenocarcinoma cells used in the study to erlotinib may be 

autophagy dependent [168]. The phosphorylation action of kinases is known to be 

regulated in the body by ATP binding and hydrolysis [183, 184]. Kinases are also thought to 

be involved in the ability of cancer cells to evade chemotherapy. Kim et al. therefore 
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conducted a proteomics study to determine the effects of MEK-inhibitor drug treatment 

on the ATP-binding proteome in KRAS mutant lung cancer cell lines with different 

p53/LKB1 mutation statuses including A427, A549 (p53 wild type/LKB1 mutant), Calu-1, 

Calu-6 (p53 mutant/LKB1 wild type); and H157 (p53 mutant/LKB1 mutant). Cells were 

treated with 2 MEK-inhibitors, lysed, and the ATP-binding kinome enriched, using a 

kinase enrichment kit, for subsequent digestion and LC-MS/MS analysis. The study found 

that changes in the ATP-binding proteome were cell type dependent and not KRAS 

mutation dependent [184]. Furthermore, p53/LKB1 status was not determined to be a major 

factor in changes in the ATP-binding proteome. MEK-inhibition was also determined to 

effect changes in glucose metabolism in A427, A549, and Calu-1 cells. Kim et al. found 

that ULK1, ULK3 and AMPK were upregulated in cells treated with MEK-inhibitors 

compared to untreated cells. The findings of the study by Kim et al. align with MEK-

inhibitors having been previously reported as inducing protective autophagy in KRAS 

mutant non-small cell lung cancer (NSCLC), and suggests that upregulation of autophagy 

in KRAS mutant lung cancer may be kinase dependent [184, 185]. When validated, this may 

provide a reasonable basis for combination chemotherapy with kinase inhibitors. 

Some anticancer agents including Ophiobolin A (OP-A), a fungal toxin, have been 

determined to induce autophagy [169].  Rodolfo et al. investigated the anticancer activity 

of OP-A using a human melanoma cell model (A375, and CHL-1 cell lines) [169]. A 

comparative proteomics experiment was used to determine differentially regulated 

proteins due to OP-A treatment. In the study, OP-A induced autophagy based on 

increased LC3 conversion with increasing drug concentrations as well as activating 

apoptosis. Following 2D gel electrophoresis, Rodolfo et al. used LC-MS/MS to identify 24 
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protein spots that were significantly affected by OP-A treatment. Among the differentially 

regulated proteins were fructose 1,6 bisphosphate aldolase A (ALDOA) and triose 

phosphate isomerase (TPI) [169]. These enzymes, found to be associated with autophagy, 

have been shown to be important enzymes in glycolysis in a cell type dependent manner 

[186, 187]. Wang et al [170] used proteomics to identify potential targets of the natural product 

curcumin in HCT116 colon cancer cells via an alkyne-labelled curcumin probe. The 

curcumin bound-proteins were biotinylated via azide-linked biotin tags, enriched with 

avidin beads, digested with trypsin and then labeled with iTRAQ tags, and analyzed by 

LC-MS/MS. Wang et al. identified 197 proteins with unique cellular locations and 

biological functions [170]. Among the biological pathways enriched in their data were eIF2 

signaling, eIF4 and p70S6K signaling, and the mTOR signaling pathway which is directly 

related to autophagy. Wang et al. went on to investigate curcumin treatment effect on 

protein synthesis using AHA. Newly synthesized AHA-containing proteins were 

fluorescent labeled via a click reaction and the fluorescence intensity of cells analyzed 

with flow cytometry. Curcumin treatment resulted in a decrease in protein synthesis 

evidenced by a 50% reduction in fluorescence signal following treatment. Previous 

reports in literature [188] that curcumin may inhibit mTOR phosphorylation led Wang et al. 

to determine the effect of curcumin on autophagy. The results of their immunoblotting 

work confirmed that curcumin induces autophagy, which was signaled by an increased 

autophagic flux and increased LC3 levels. The inhibitory effect of curcumin on mTOR was 

also confirmed via decreased phosphorylation of the mTOR substrate S6 [170]. 

Vitamin D, acting through activation of the vitamin D receptor (VDR), has been 

determined to induce autophagy and have anti-proliferative activity [189]. A study by our 
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group demonstrated a novel switch in autophagy function from a cytoprotective to a 

cytostatic form following vitamin D combination treatment with irradiation in non-small cell 

lung cancer cells [126]. A recent proteomics study by Tavera-Mendoza et al. also showed 

autophagy induction by vitamin D in luminal-like breast cancer cells as well as anti-

proliferative effects [190]. Tavera-Mendoza et al. used rapid immunoprecipitation mass 

spectrometry (RIME) to identify proteins associated with DNA-bound VDR. The RIME 

process followed the procedures reported by Mohammed et al [191]. Briefly, cells are 

cultured, media exchanged and crosslinked in 1% formaldehyde following which proteins 

are extracted and the lysate incubated with magnetic beads prebound with antibody for 

overnight immunoprecipitation. Beads are then washed and digested for LC-MS analysis. 

The RIME analysis by Tavera-Mendoza et al. revealed a regulatory role of vitamin D-

bound VDR for autophagy in breast cancer cells. VDR was shown to downregulate 

autophagy via constitutive LC3B repression and this repression appears to be abrogated 

by vitamin D treatment. This abrogation of LC3B repression, together with the 

upregulation of transcription of autophagy-related genes defines the regulatory role of 

vitamin D in autophagy in the breast cancer model used [190]. 

2.2.2 Subcellular Fractionation 

Proteomics studies involving subcellular fractionation of various organelles is increasing 

in popularity and application. These approaches can provide critical information relating 

to the biological functions of these organelles in the cell and the roles played by specific 

proteins. While this research strategy is useful by affording a spatiotemporal subset of the 

proteome and a less complex proteome, it suffers from the cross contamination between 

subcellular compartments during sample preparation. The subcellular fractionation 
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methods typically employ differential gradient centrifugation in sucrose or Nycodenz 

gradients and/or affinity-based immunocapture or enrichment. 

2.2.2.1 Autophagosomes 

In an effort to provide comprehensive insight as to the types and amounts of proteins 

associated with the autophagosome, a limited number of studies have isolated and 

characterized the proteome of the autophagosome [149, 159, 192, 193]. Isolation of 

autophagosomes have been carried out using Nycodenz gradient centrifugation, GFP-

tagged LC3 immunoprecipitation or immunoisolation via GFP antibody purification or a 

combination of the two. One of the earliest reported methods of autophagosome isolation 

is the study by Stromhaug et al. and forms the basis of most subsequent proteomics 

autophagosome isolation studies [194]. 

Dengjel et al. sought to generate a comprehensive list of various proteins contained in 

autophagosomes while demonstrating that different inducers of autophagy produce 

different protein dynamics within the autophagosome [159]. The study employed the protein 

correlation profile (PCP) method that involves the analysis of peptide contents in the 

various fractions of a density gradient. The PCP strategy assumes that proteins/peptides 

from the same organelle would have a largely similar profile across the various fractions 

[157, 159]. In this work, autophagy was induced via amino acid starvation using Hank’s 

Balanced Salt Solution (HBSS), rapamycin treatment, and concanamycin A (Con A - a 

lysosomal degradation inhibitor) treatment. Dengjel et al. identified 728 enriched proteins 

in their autophagosomal fractions, 94 of which were present in the context of all three 

autophagy stimuli. In contrast, proteomics studies of the autophagosome by Overbye et 
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al. and Gao et al. did not generate many autophagosome-enriched proteins; 39 and 101 

respectively [192, 193]. There was little overlap between the 3 studies which could be due to 

the fact that the experimental approaches adopted by Overbye et al. and Gao et al. were 

limited to autophagosomal membrane proteins while the Dengjel et al. study analyzed the 

entire autophagosome [159]. Also, the Overbye study was conducted in primary 

hepatocytes isolated from Male Wistar rats and autophagy induction was done via 

starvation while the Gao study was in HEK293 and HCT116 cells in which autophagy was 

induced by calcium phosphate precipitate (CPP) [192, 193]. 

To distinguish between proteins truly associated with autophagosomes and non-specific 

proteins in the Dengjel et al. study, some cells were treated with Con A during starvation. 

Autophagosome associated proteins would be expected to be enriched in Con A-treated 

starved cells (due to the accumulation of autophagosomes) compared to starvation only 

cells. Dengjel et al. showed less enrichment of known autophagy-related proteins LC3B, 

p62/SQSTM1, GABARAPL2 in starvation-induced autophagosomes signifying higher 

depletion of these proteins following stimulation of autophagy compared to rapamycin 

and Con A treatment.  

One of the very significant proteomics studies of autophagy in which autophagosomes 

were isolated was performed by Mancias et al. and resulted in the identification of nuclear 

receptor coactivator 4 (NCOA4) as a cargo receptor in iron turnover through autophagy 

[149]. In this work, autophagosomes were isolated from SILAC-labelled PANC-1 and PA-

TU-8988T pancreatic cells as well as MCF7 breast cancer cells using a density gradient. 

Autophagosome accumulation was increased by treatment with chloroquine, an 

autophagy inhibitor that acts by raising lysosomal pH and thereby preventing fusion of 
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autophagosomes and lysosomes. This was a similar strategy to the Dengjel study in 

which autophagosome accumulation was achieved via Con A treatment. The isolation of 

autophagosomes enabled the unbiased identification of 94 proteins highly associated with 

autophagosome formation or maturation and by inference with autophagy.  

These autophagosome isolation studies have not only provided insights into the protein 

composition of the autophagosomal membranes and cargo, but have further provided 

general insights into the process itself. Dengjel et al. also showed, through their mass 

spectrometry-based proteomics study, a significant association between autophagy and 

the proteasome and extended their work to probe the relationship using western blotting 

and fluorescence microscopy [159]. This research group determined that the levels of 

various proteasomal proteins decreased upon autophagy stimulation via amino acid 

starvation as well as rapamycin treatment, and this was reversed when autophagy was 

inhibited by 3-methyladenine (3-MA). Data analysis of the candidate proteins in the 

Mancias et al. study revealed NCOA4 as the most consistently enriched protein in all their 

datasets. NCOA4 was also identified in the Dengjel et al. study but was not highlighted 

as one of their cluster A proteins [149, 159]. The cluster A proteins consisted of the highly 

confident autophagosomal candidate proteins believed to not be “contaminated” with 

proteins from similar organelles such as the endoplasmic reticulum, Golgi apparatus and 

endolysosomes [159]. Mancias et al. found a novel function of NCOA4, where it is required 

in ferritin turnover in a process they termed ferritinophagy [149]. The mass spectrometry 

data from their autophagosomal fraction showed increased expression of both ferritin 

heavy (FTH1) and light (FTL) chains and affinity purification-mass spectrometry showed 
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NCOA4 to interact with FTH1 and FTL as well as HERC2 and NEURL4. Importantly, the 

latter two proteins were not found to be enriched in autophagosomes [149]. 

Other proteomics studies involving isolation of autophagosomes include the work of 

Suzuki et al [195] where various cargo proteins were identified in the autophagosomes of 

Saccharomyces cerevisiae. Suzuki et al. optimized autophagosome isolation by 

monitoring GFP-labeled aminopeptidase 1, which represents a selective cargo in the 

yeast Saccharomyces cerevisiae. It appeared that some of the cargo proteins are 

delivered to the vacuole, where degradation takes place in yeast, independent of the 

essential autophagy-related protein Atg11 [195].  

2.2.2.2 Lysosomes 

Lysosomes are single membrane organelles within the cytoplasm involved in one of two 

main degradation mechanisms employed by eukaryotic cells [157, 196]. The lysosomes play 

a major role in autophagy by fusing with autophagosomes and supplying hydrolases for 

the degradation of the inner membrane and contents of the autolysosome. The 

hydrolases found in the lysosome function at an optimum acidic pH, which may be 

inhibited with agents that raise luminal pH. Lysosomes also play a role in the endosomal 

pathway [196]. Lysosomes have been found to affect many human disease pathologies 

particularly the lysosomal storage diseases (LSDs) but also other diseases including 

neurodegenerative disorders such as Alzheimer’s disease, the neuronal ceroid 

lipofuscinoses (NCLs) and some cancers [196, 197]. Understandably, many LSDs have also 

been shown to have attendant defects in the autophagy pathway [198]. To know the protein 

content of the lysosome would be to understand the possible range of functions the 



 
 

76 
 

organelle controls or is associated with in the cell and human body. Studying the 

lysosomal proteome under different conditions of stress or stimuli may also help to shed 

some light on the protein dynamics in response to the various stimuli [197]. Using classical 

biochemical approaches, lysosomal protein content had been studied but the full 

complement of the lysosome was not known [199]. However, the combination of mass 

spectrometry-based proteomics, affinity-based purification techniques, and subcellular 

fractionation has resulted in an increase in the number of proteins identified in the 

lysosomes [197]. Kieffer-Jaquinod et al. outline an affinity-based method for the purification 

of lysosomal proteins that involves the isolation of these soluble proteins on the basis of 

their mannose-6-phosphate content [200]. This isolation strategy has provided the rationale 

for many studies that have investigated soluble lysosomal proteins [108, 201–203]. 

Bagshaw et al. conducted a proteomics study to identify the proteins contained in the 

lysosomal membrane [196]. Lysosomes were isolated by the Triton WR-1339 approach 

used by Leighton et al [204] and 215 lysosomal membrane proteins were identified, some 

of which had not previously been reported as being associated with the lysosomes [196]. 

Cytochrome P450 enzymes such as CYP2A1, CYP2C13, CYP2D3, and CYP4A3 as well 

as various ATP synthase subunits including the α, f0 β, F1 complex O, and γ chain 

subunits were identified in the Bagshaw study [196]. Other lysosomal isolation proteomics 

studies have contributed to what we now know about the protein composition of 

lysosomes and their functional relevance, including autophagy. Chapel et al. identified 

734 proteins in a study in which rat liver lysosomes were isolated using differential 

centrifugation in a density gradient [205]. Of the identified proteins in the lysosomal fraction, 

207 constituted known and predicted lysosome-associated proteins whereas 527 proteins 
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were either previously reported to be associated with other cellular organelles or not 

associated with any organelle. A total of 46 potential lysosomal transport proteins were 

identified, 12 of which were validated as lysosomal proteins via overexpression in HeLa 

cells and confirmation of colocalization with lysosomal markers [205]. The authors point out 

that proteins identified in their study that had not been previously reported could be cargo 

delivered by autophagy or endocytosis to the lysosomes for degradation. Using iTRAQ 

labeling and two dimensional peptide separation involving strong cation exchange and 

reverse phase chromatography, Della Valle et al. also report the MALDI-TOF proteomics 

identification of high confident lysosomal proteins using an isolation strategy involving the 

combination of differential centrifugation with sucrose density centrifugation following 

treatment with Triton-WR1339 [206]. Among their high confident proteins were cathepsin 

D (CTSD), classical lysosomal acid phosphatases (ACP2, ACP5), and lysosomal 

associated membrane protein 2 (LAMP2). 

The identification of a glycoprotein candidate that may be responsible for classical late-

infantile NCL (LINCL) was made possible through a proteomics study [108, 197] using gel 

electrophoresis and affinity chromatography. In this work, where Sleat et al. compared 

detergent-soluble extracts of brain autopsies from LINCL patients and controls [108], 

soluble proteins with a mannose-6-phosphate (M6P) post-translational modification 

(PTM) were detected using mannose-6-phosphate receptors (MPRs). In LINCL brain 

samples, a protein that was visibly absent compared to controls was identified using 

affinity enrichment of M6P modified glycoproteins, gel isolation, and protein sequencing 

as having a molecular weight of 46-kD. The protein was determined to be resistant to 

pepstatin degradation and to have considerable sequence similarities with carboxyl 
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peptidases of both Pseudomonas and Xanthomonas [108]. The study represented the first 

report of a pepstatin-insensitive protease in mammals. A study by Vines and Warburton 

revealed substantial similarities between tripeptidyl peptidase I (TPP-I) and the pepstatin-

insensitive protease identified in the Sleat et al. work and suggested the two proteins may 

be the same [207]. 

NCL has been found to possess many common features with other mitochondrial 

disorders in which autophagy of the mitochondria, often termed mitophagy, is defective 

[208]. Other proteomics studies of the lysosome have resulted in the identification of genes 

that have been found to be pivotal in the etiology of certain LSDs. Human epididymis-

specific protein 1 (HE1), a cholesterol-binding protein was found in a proteomics study by 

Naureckiene et al. to be contained in lysosomes [201]. This discovery, together with prior 

knowledge of the involvement of this protein in cholesterol binding, led to the investigation 

of the possibility of its involvement in LSDs that involve lysosomal cholesterol storage [197, 

201]. This resulted in the discovery of mutations in the gene in Niemann-Pick disease type 

C2 (NP-C2) patients [201]. Kollman et al. employed the M6P immunoisolation strategy in 

conducting a comprehensive proteomics analysis of lysosomal matrix proteins [209]. Using 

the knowledge that M6P-deficient mouse embryonic fibroblasts secrete the lysosomal 

matrix proteins that would have otherwise been targeted to the lysosome, Kollman et al. 

isolated M6P proteins using affinity purification. The secretome of the fibroblasts was then 

analyzed which resulted in the identification of 34 known and 4 potential lysosomal matrix 

proteins [209]. Among the proteins identified were the cathepsins B, D, and Z as well as 

mammalian ependymin-related protein-2 (MERP-2), Protein CREG, and retinoid-

inducible serine carboxypeptidase (RISC). 
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In a recent proteomics study using NP-C1 as a case study, Tharkeshwar et al. 

demonstrated a novel method of isolating lysosomes for downstream proteomics 

applications [210]. The method utilizes a magnetic isolation approach with 

superparamagnetic iron oxide nanoparticles (SPIONs). These SPIONs consist of an 

organic or inorganic outer shell covering a magnetic core [210]. These investigators first 

optimized SPION preparation and found that dimercatosuccinic acid (DMSA)-coated 

SPIONs were most suited to targeting the late endosomes or lysosomes (LE/LYS). The 

SPION design and targeting efficiency was validated with proteomics and lipidomics 

profiling of plasma membranes and isolated lysosomes. The lack of proteins from 

contaminating organelles and abundance of membrane-enclosed luminal proteins was 

consistent with the isolation of very homogenous fractions of plasma membranes and 

LE/LYS. Their study also evaluated proteome and lipidome changes in HeLa cells with 

and without wild-type NP-C1. The NP-C1 protein is primarily located in the membrane of 

LE/LYS. NP-C1 and NP-C2 regulate the transport of cholesterol from lysosomes [210, 211]. 

Tharkeshwar et al. isolated plasma membranes and LE/LYS using their SPIONs and 

compared the protein as well as lipid content. The analysis showed that the plasma 

membrane proteome and lipidome remained largely the same with minor changes (6 

differentially regulated proteins) whereas the lysosomal fractions showed more variation 

in protein and lipid levels (53 differentially regulated proteins). This observation was 

consistent with the view that defects in lipid and protein transport related to lysosomes do 

not typically affect the composition of the cellular membrane but rather the intracellular 

proteins. Various autophagy-related proteins including p62/SQSTM1 and the annexins 
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A3 (ANXA3) and A5 (ANXA5) were identified and quantified in their dataset with ANXA5 

being upregulated in LYS of NP-C1 KO [210]. 

In a study by Gao et al. to determine the effect of bacterial and viral infection on global 

lysosomal function, the authors isolated lysosomes from murine RAW 264.7 macrophage 

cells [212].  Changes in the proteome as well as the glycoproteome following infection with 

Listeria monocytogenes, herpes simplex virus type 1 (HSV-1) and vesicular stomatitis 

virus (VSV) were then assessed [212]. Isolation of lysosomes was achieved via differential 

centrifugation using density gradients. Without complementing their isolation with any 

immunocapture techniques, the proteins identified in this study may not be solely 

representative of the lysosome (>80% lysosomal purity). The identification of proteins 

annotated as ER, Golgi, and mitochondrial was indicative of the effect of infection on 

protein turnover resulting in translocation of these proteins to the lysosomes. Gao et al. 

found that there was generally a decrease in lysosomal enzymes expression following 

infection except the cathepsins K and L which increased after VSV and Listeria infection 

[212]. They also found, consistent with expectation of lysosomal pH being regulated within 

very narrow limits, that proton ATPases in the lysosomal remained largely unchanged 

following infection. The TLRs were identified in the study and HSV-1 infection was 

observed to cause upregulation of TLR3 and TLR9, which has been shown to induce 

autophagy in other studies [175, 212]. 

2.2.2.3 Other Subcellular Fractionation studies 

A few other subcellular fractionation proteomics experiments have been conducted that 

have provided some insights into the process of autophagy. One such study by Yu et al. 
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examined the impact of aging on the proteome of lipid droplets in a filamentous fungus 

[165]. Lipid droplets are known to be multifunctional and are involved in many processes in 

oleaginous microbes including protein storage and autophagy [165, 213, 214]. This study 

found >400 proteins in the lipid droplets, 62 of which were significantly affected by aging. 

The authors reported the downregulation of enzymes involved in glutathione metabolism 

in the aging cells, signaling a malfunction in the antioxidant system. Autophagy has been 

shown to be involved with cellular signaling in response to reactive oxygen scavenging 

[215]. Combining findings from a previous study by their group in which mycelia were found 

to be degraded during aging, the authors then hypothesized that this malfunction resulted 

in autophagy activation by reason of an autophagy related protein that was upregulated 

in the aging sample.   

Shui et al. isolated phagosomes using latex beads incorporation into mouse 

macrophages and subsequent sucrose gradient centrifugation and carried out a mass 

spectrometry-based proteomics analysis of the isolated phagosomes [216]. In this study, 

they confirmed proteins identified in previous phagocyte isolation studies but also many 

proteins that had not been identified in phagosomes. Among the proteins identified in their 

study are Vesicle-associated membrane protein 4 (VAMP4), TLR7, TLR9, and LC3-II [216]. 

Shui et al. also studied the association between autophagy and phagosomes based, in 

part, on the presence of LC3-II in the phagosomal isolates. The authors induced 

autophagy by nutrient starvation and studied the effect of inhibiting autophagosome 

formation and autophagosome degradation on LC3-II levels in the phagosomes. Inhibition 

of autophagosome formation using 3-MA reduced LC3-II levels in phagosomes while 

inhibiting autophagosome degradation using vinblastine resulted in increased LC3-II 
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levels in phagosomes. The authors therefore hypothesized that LC3-II is transferred from 

autophagosomes to phagosomes during the process of autophagy. The increased protein 

expression in phagosomes following inhibition of autophagosome degradation was also 

evident with VAMP but not with other proteins of the phagosomal isolates including 

transferrin receptor (TfR), lysosomal-associated membrane protein-1 (LAMP1), and 

CTSD. This suggests that VAMP4 and LC3-II trafficking to the phagosomes specifically 

occurs during autophagy.  

In a proteomics study involving the purification of the coat protein II (COPII) inner coat of 

the yeast Saccharomyces cerevisiae, Davis et al highlighted the effect of phosphorylation 

on autophagosome formation [217]. Mass spectrometry-based phosphoproteomics 

analysis resulted in the identification of 27 phosphorylation sites on Sec24, a COPII cargo 

adaptor. It was found in this study that phosphorylation of Sec24 at 3 conserved amino 

acid sites (T324/T325/T328) contributes to the redirection of COPII coated vesicles to 

autophagosome formation instead of the Golgi during starvation [217]. It was also 

demonstrated that casein kinase 1 is responsible for the phosphorylation of the sites. 

2.3 The Secretome: Proteomics Biomarker Discovery 

The secretome represents one of the best opportunities for the application of proteomics 

as a tool for biomarker discovery in the study of autophagy due to the wealth of 

information resident in cellular secretomes. The cancer secretome contains various 

extracellular vesicles (EVs) such as microvesicles (MVs) and exosomes with central roles 

in tumor development and progression [218–220]. Cell secretions into culture media could 

represent a surrogate for secretion into blood/plasma, which could potentially provide a 
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rich resource for the discovery of protein markers of disease [219]. While autophagy has 

been classically known to be primarily a catabolic mechanism, recent studies have shed 

light on additional autophagic functions such as cellular protein secretion [221].  

2.3.1 Autophagy and Cellular Secretion 

Cellular secretion is known to occur either via the endoplasmic reticulum (ER) /Golgi 

pathway, which represents conventional (classical) secretion, or via alternate pathways 

that are independent of the ER/Golgi secretory machinery, representing non-conventional 

secretion. Studies have showed that about 10 – 15% of all synthesized proteins are 

eventually secreted into the extracellular environment through both classical and non-

classical secretory pathways [93, 222]. Proteins secreted via the classical pathway are 

known to have an N-terminal secretory peptide signal, which makes them recognizable 

to the secretory apparatus. During protein synthesis, the growing protein sequences are 

transported to the ER membrane where they are translocated across the membrane [223, 

224]. In the lumen of the ER, the signal peptides are cleaved before vesicles coated by 

COPII fuse with the Golgi apparatus. Proteins to be secreted are stored in vesicles within 

the Golgi and are directed to the cell membrane where secretion occurs [99].  

Non-conventional secretion occurs through various mechanisms and may or may not 

involve vesicles [99, 221, 225]. Secreted proteins may contain signal peptides but are not 

transported to the cell surface for secretion through either COPII or the Golgi machinery 

or do not contain signal peptides nor depend on the ER or Golgi machinery for delivery 

to the cell surface for secretion [99]. Non-vesicular transport may occur, among others, via 
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transporters (e.g. MATa, a yeast mating factor) or binding to macromolecules such as 

lipids (e.g. fibroblast growth factor 2, FGF2) [225].  

Autophagy has been found to have a role that interfaces with both conventional and non-

conventional secretion. The non-conventional secretion of various proteins that have 

been shown to be secreted via autophagic vesicles  in mammalian cells include high-

mobility group box 1 protein (HMGB1), amyloid beta (Aβ), and interleukin 1 beta (IL-1β) 

[182, 221, 226, 227]. The soluble yeast protein acyl-coenzyme A-binding protein (Acb1) and its 

homologs in various organisms are also known to utilize the autophagy machinery for 

secretion [99, 221, 228]. Non-conventional secretion via autophagy is mediated by 

autophagosomes and also involves the Golgi re-assembly and stacking protein, GRASP 

which makes it unique from other modes of non-conventional secretion [221, 228]. GRASP, 

while being a protein that is involved in Golgi organization, plays a role in non-

conventional secretion but not classical secretion through the ER/Golgi machinery. The 

involvement of the autophagosome in non-conventional protein secretion via autophagy 

coupled with the fact that autophagosomes are believed to possibly originate from certain 

sections of the ER gives rise to the possible interfacing with conventional secretion [180, 

221, 229]. 

2.3.2 Proteomics of Autophagy-Associated Secretion 

Mass spectrometry-based proteomics has contributed to the elucidation of the role of 

autophagy in secretion. A study by Kraya et al. assessed the role of autophagy in the 

secretion of proteins from melanoma cell lines, WM793 and 1205Lu, differing in 

metastatic ability and basal autophagy levels [161]. In the highly autophagic metastatic 
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1205Lu cell line, levels of IL-1β (interleukin 1, β), CXCL8 (chemokine C-X-C motif ligand 

8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), 

and DKK3 (dickkopf WNT signaling pathway inhibitor 3) were found to be elevated. The 

expression and secretion of these proteins consequently decreased when Atg7 was 

knocked down in the highly autophagic cells while secretion increased when the low 

autophagic non-metastatic cells were treated with tat-BECN1, an autophagy inducing 

peptide. The findings were validated in melanoma patient plasma samples where serum 

levels of IL-1β, CXCL8, LIF, FAM3C, and DKK3 were found to be upregulated in patients 

with highly autophagic tumors compared to patients with low autophagic tumors. These 

results suggest a possible role for autophagy-associated protein secretion in tumor 

metastasis. The use of proteomics tools, in conjunction with other molecular approaches, 

to determine the proteins and elucidate the mechanisms involved in these roles is 

therefore warranted and important. 

A proteomics study by Kang et al. determined the effect of oxidative stress on the 

exosomes, a key component of cellular secretomes, in aqueous humor of patients with 

Neovascular Age-related Macular Degeneration (AMD). Cells were treated with Paraquat, 

an agent that induces oxidative stress which is a risk factor in AMD. Oxidative stress via 

ROS production is widely believed to be one of the major pathways of stress-induced 

autophagy [215]. The results of the study showed the upregulation of proteins associated 

with autophagy, including cathepsin D (CTSD) [230]. The cathepsins are known proteases 

found and activated in the acidic pH of the lysosome. Cathepsins were upregulated both 

in the exosomes isolated from the secretome of Paraquat-treated human retinal pigment 

epithelial ARPE-19 cells and the aqueous humor of AMD patients (relative to control cells 
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and patients respectively). In the Kang et al. study, the number of exosomes in the 

secretome correlated with oxidative stress levels.   

Ohman et al. studied the activation of unconventional protein secretion in human 

macrophages using 1,3-β-Glucans, curdlan and GBY [227]. They hypothesized that β-

Glucans, a principal component of fungal cell walls, constitute a key arm of fungi-induced 

human cell immunoactivation. Dectin-1 is the primary recognition receptor of β-Glucans 

in macrophages and dendritic cells [227, 231]. Mouse bone marrow-derived dendritic cells 

(BMDCs) with and without Dectin-1 were utilized to examine the hypothesis relating to 

the β-Glucans. Ohman et al. used iTRAQ labeling mass spectrometry to determine 

differences in protein secretion between control cells (no treatment and LPS treatment as 

negative controls) and β-Glucan-treated cells. This work determined that β-Glucan 

treatment significantly increased protein secretion and this was associated with various 

pathways including immune signaling, chemokine signaling pathway and leukocyte 

transendothelial migration [227]. The presence of many autophagy-related proteins led the 

authors to investigate the connection between autophagy and protein secretion in their 

model. Their findings indicated a strong association between autophagy and the dectin-

1-mediated regulation of protein secretion. LC3 conversion was shown to increase upon 

treatment with curdlan and inhibition of autophagy significantly diminished IL-1β secretion 

even though IL-1β mRNA levels were not affected. Similarly, total protein secretion 

decreased with Beclin-1 knockdown (50%). The secretion of CTSD, ANXA1, tubulin, and 

galectin-3 in dectin-1 activated cells were all shown to decrease upon autophagy 

inhibition via Beclin-1 knockdown [227]. 

2.4 Autophagy and Cancer Therapy: How Proteomics Could Help 
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As discussed above, autophagy has been implicated in the pathogenesis of multiple 

diseases [154, 126, 232–235]. It is also well-established that autophagy represents a pivotal 

cellular stress response to DNA-damaging cancer therapy [236]. As a survival mechanism, 

cancer therapy-induced autophagy has been studied extensively as a resistance 

mechanism by which tumor cells can thrive under unfavorable conditions [237, 238]. 

Accordingly, multiple clinical trials have been conducted with the goal of inhibiting 

autophagy in combination with conventional or targeted cancer therapy 

(www.clinicaltrials.gov). These studies have overall shown inconsistent outcomes [236, 127]. 

This is likely due in part to the heterogeneous roles that autophagy can play. As 

mentioned earlier, autophagy is not always cytoprotective, and we and others have 

identified different functions of autophagy where it can facilitate cell death rather than 

survival [125]. In addition, the classical protective function of autophagy can be diminished 

under certain circumstances and autophagy inhibition may fail to influence tumor cell 

survival, a form we have termed non-protective autophagy [233]. Collectively, this 

inconsistency in the functions of autophagy provides a challenge to autophagy modulating 

therapy which is largely directed to inhibit autophagy induction or completion.  

Despite the increased understanding of what dictates the function of autophagy, this field 

is critically lacking in biomarkers that might predict how autophagy will affect tumor cell 

response to therapy, which consequently would determine whether pharmacological 

autophagy inhibition would result in desirable outcomes. It is quite feasible that 

proteomics could prove to be a rigorous tool for the identification of novel markers that 

would allow for clinical evaluation of autophagy function in patients [239].  The primary goal 

is to be able to predict when chemotherapy-induced and/or radiation-induced autophagy 
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will be cytoprotective, based on specific serum markers secreted by tumor cells that are 

dependent on autophagy for survival. The compelling need for such markers provides an 

ideal opportunity for the application of mass spectrometry-based proteomics. To this end, 

our group has carried out an initial exploratory study of the secretome of p53 wild type 

(p53wt) and p53-null H1299 (NSCLC) cells as a function of radiation-induced autophagy 

(manuscript in preparation). This is an effort to identify potential blood based biomarkers 

that may be useful in distinguishing between NSCLC patients on the basis of response to 

radiation therapy during cancer treatment.  

The study was carried out with the knowledge that about half of all cancers have 

mutations in p53 which may impact prognosis during treatment [240–242]. We also used the 

inducible H1299 cell line as a model of NSCLC because our previous studies had shown 

that in p53wt cells, autophagy was protective whereas autophagy was non-protective in 

p53-null cells [126, 233]. By exploring the secretome of these cells with differing p53 status 

using mass spectrometry-based proteomics, we identified differences due to p53 status 

as well as changes in secretion following ionizing radiation treatment. The proteins, 

regulated by p53 and/or radiation treatment, included chromogranin B (CHGB), 

secretogranin 2 (SCG2, glucose phosphate isomerase (GPI), thioredoxin (TXNRD1), 

protein FAM3C, calnexin (CANX), and eukaryotic translation initiation factor 5A-1 

(EIF5A). By this study of secretion differences due to p53 status as a function of radiation 

treatment in NSCLC, we have demonstrated the potential of mass spectrometry to 

provide plausible leads in biomarker discovery efforts towards being able to predict 

whether the response to radiation in the context of autophagy would be beneficial. 

2.5 Conclusions 
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We have discussed the process of autophagy and its signaling machinery from a mass 

spectrometry-based proteomics perspective in this review. The proteomics studies that 

have been described and discussed highlight the usefulness of mass spectrometry for 

global and targeted analysis of the autophagy process and its role on various cellular 

processes ranging from cell signaling to response to infections and drug action. 

Improvements in mass spectrometry instrumentation as well as continuous analytical 

software developments have enhanced the ability to measure qualitatively and 

quantitatively proteome changes with high accuracy and reproducibility. Autophagy is a 

potential mechanism of cellular resistance to therapy. However, in the absence of 

biomarkers that might predict benefit from autophagy modulation as a clinical strategy to 

complement chemotherapy and/or radiotherapy, proteomics studies that probe the cell 

and secretome in a largely unbiased approach could provide the avenue for identification 

and clinical application of such biomarkers.
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Table 1 - Summary of reviewed proteomics studies on autophagy 

Authors Reference 

Number 

Type of study/Cell 

compartment 

Cells used Treatment 

Conditions 

Analytical 

Approach 

No of 

proteins 

Proteins of 

Interest 

Some Key 

Proteins of 

Interest 

Mancias et al 20 Autophagosomes PANC-1, PA-

TU-8988T, 

MCF7 

Wortmannin, 

Chloroquine 

SILAC-based 

density gradient 

centrifugation, 

LC-MS/MS  

>2000 33 NCOA4, FTH1, 

FTL, MAP1LC3B, 

SQSTM1, 

CALCOCO1, 

SLC38A2, 

SLC7A1 

Dengjel et al. 30 Autophagosomes MCF7-eGFP-

LC3, Yeast 

(Saccharomyc

es cerevisiae) 

Amino acid 

starvation, 

rapamycin, 

concanamycin 

A 

Iodixanol density 

centrifugation, 

Protein 

correlation profile 

(PCP)-SILAC, 

LC-MS/MS 

7935 94 CAP1, VPS35, 

EEF1G, LC3, NP, 

RHEB, GNB2L1 

Zhao et al. 31 Whole cell SH-SY5Y Bupivacaine iTRAQ, SCX, LC-

MS/MS 

4139 241 PIK3CB, PIK3R2 

Kraya et al. 32 Secretome WM793, 

1205Lu, WM9, 

WM1346, 

WM1361A, 

WM164, 

WM1366, 

A375 

tat-BECN1, 

ATG7 

silencing 

SDS-PAGE, 

Label-free LC-

MS/MS 

599 28 FAM3C, IL1B, 

CXCL8, LIF, 

DKK3 
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Mathew et al. 33 Whole cell iBMKs Starvation, 

ATG5 

knockout, 

Bafilomycin A1 

SILAC, SCX, Off-

gel fractionation, 

LC-MS/MS 

7184 3181 MCM3, MCM, 

LIG1, PARP, 

STAT1, AK4, 

PARG, PSMC5, 

PSMC2, SNAP29 

Zhong et al. 35 In vivo Mouse EVA1A 

knockout 

Label-free LC-

MS/MS 

5438 28 Nnt, Ugp2, Uqcrq, 

Plcb3 

Yu Y et al. 36 Lipid droplets Mortierella 

alpina 

(Filamentous 

fungus) 

Time (aging) Density gradient 

fractionation, 

SDS-PAGE, 

Label-free LC-

MS/MS 

>400 62 Histone H4, 

Histone H2B, 

Tubulin alpha-1C 

chain, Actin, 

GLELO, 

EC:2.4.1.25-

disproportionating 

enzyme, 

EC:2.5.1.6-

adenosyltransfera

se, EC:6.3.1.2-

ligase, 

EC:2.5.1.54-

synthase 

Zhang et al. 38 Whole cell HeLa Amino acid 

starvation 

AHA labeling 

(BONCAT), 

iTRAQ, LC-

MS/MS 

711 5 HSPE1, ATP5B, 

SLC25A3, 

RACK1/GNB2L1, 

PNP 



 
 

92 
 

Zhang et al. 39 Whole cell H3255, H1975 Erlotinib SILAC, TiO2 

Phosphopeptide 

enrichment, SCX, 

LC-MS/MS 

11207 

phosphosit

e (3086 

proteins) 

~ 37 ULK1, EGFR, 

MAPK3, RIPK2, 

WNK1, STAT5B, 

ATG16L1, SSH2, 

PTPN14 

Rodolfo et 

al. 

40 Whole cell A375, CHL-1 Ophiobolin A 2D Gel 

electrophoresis 

LC-MS/MS 

N/A 24 ALDOA, TPI 

Wang et al 41 Whole cell HCT116 Curcumin Click chemistry, 

AHA labeling, 

iTRAQ, LC-

MS/MS  

370 212 (197) PRDX1, TUBB, 

HS90, GAPDH, 

FASN 

Kang et al. 41 Whole cell HCT116 EBSS induced 

starvation 

2D Gel 

electrophoresis, 

MALDI-TOF 

> 1500 GE 

spots 

52 ANXA1, Hsc70, 

GRP78, PDIA3, 

ENO1, GST-P1 

Zhuo et al. 43 Whole cell MEFs Starvation, 

Cytochalasin D 

for F-actin 

depolymerizati

on 

Itraq, online 2D 

LC-MS/MS 

1234 114 F-actin network 

Bertin et al. 46 Whole cell (In vitro 

and in vivo) 

DHD/K12/RP

Ob (rat), MCF-

7, PC-3, 

HEK293 

CpG-ODN, 

Rapamycin 

2D Gel 

electrophoresis, 

LC-MS/MS 

N/A 16 ANXA1, PGAM1, 

DPYSL3, CNN3, 

TPM1, GAPDH, 

PHB, eIF4A1, PC, 

MnSOD, GRP78 



 
 

93 
 

Li et al. 48 Whole cell Mouse brain, 

NA cells 

Rabies viruses 

(CVS-11, 

SRV9) 

iTRAQ, LC-

MS/MS 

2285 265 PRDX5, mTOR, 

SOD1, SOD2, 

ATP5C1, EIF3E, 

EIF4B 

Patella et al. 49 Whole cell HUVECs siATG5, 

Bafilomycin 

SILAC spike-in, 

LC-MS/MS 

7565 2221 CD55, CRIM1, 

RHOB, ESM1, 

CTSA, CTSB, 

CTSZ, PPT1, 

TPP1 

Kim et al.  55 Whole cell A427, A549, 

Calu-1, Calu-

6,H157 

MEK-inhibitors 

(AZD6244 and 

MEK162) 

ATP-binding 

proteome labeling 

and enrichment, 

LC-MS/MS 

1925 24 JAK1, FAK1, 

MKK3, MKK6, 

PLK1, ULK1, 

ULK3, AMPK, 

AURKA 

Tavera-

Mendoza et 

al 

62 Whole cell MCF-7, MDA-

MB-231, MDA-

MB-453, ZR-

75-1, MCF-

12A 

1,25(OH)2D3 Rapid 

Immunoprecipitati

on Mass 

Spectrometry 

(RIME) 

N/A N/A LC3B, p62, 

HSP90AB1, 

EGFR, ULK2, 

CXCR4 

Overbye et al 64 Autophagosomes Male Wistar 

Rat primary 

hepatocytes 

Starvation, 

Vinblastine 

Differential 

centrifugation, 2D 

gel 

electrophoresis, 

MALDI-TOF 

> 1500 GE 

spots 

39 PEBP, COMT, 

BHMT, IPP, 

AMPK 
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Gao et al. 65 Autophagosomes HEK-293, 

HCT116 

Starvation, 

Calcium 

phosphate 

precipitate 

Immunoisolation, 

2D gel 

electrophoresis, 

MALD-MS/MS 

101 N/A LC3, ATG5, 

ATG16, ATG9, 

SQSTM1, UMP-

CMP Kinase, 

GRP-78, Rab4, 

Rab5 

Suzuki et al. 67 Autophagosomes Saccharomyce

s cerevisiae 

Starvation GFP-fuse 

aminopeptidase 

fluorescence, 

Iodixanol gradient 

centrifugation, 

LC-MS/MS 

40 N/A prApe1, Ald6, 

Pyk1, Yef3, 

Hsc82, Eft1   

Bagshaw et 

al. 

68 Lysosomes Male Sprague-

Dawley rat 

liver 

lysosomes 

Triton-

WR1339, 

Tyloxapol 

Differential 

sucrose density 

centrifugation, 

lysosomal 

subfractionation, 

sepharose cation 

exchange, 1D gel 

electrophoresis,L

C-MS/MS 

215 N/A LAMP1, LAMP2, 

LIMPII, Rab6, 

Rab7, Rab1A, 

Rab11B, VAMP8, 

CYP2A1, 

CYP2C29, 

CYP2D2, 

CYP4A3, APOA-

V, APOE, APOB, 

ST6Gal 
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Naureckiene 

et al. 

73 Lysosomes Human brain 

biopsies, rat 

liver 

NP-C2 

disease, 

Controls (No 

disease or NP-

C1 patients), 

Triton-

WR1339 

Mannose-6-

phosphate affinity 

enrichment, 2D 

SDS-PAGE, 

differential 

sucrose density 

centrifugation, 

anion exchange 

chromatography 

N/A 1 HE1 

Sleat et al. 74 Lysosomes Human brain 

biopsies 

LINCL disease 

and Controls 

(No disease) 

Mannose-6-

phosphate affinity 

chromatography 

purification, 2D 

gel 

electrophoresis, 

Edman 

degradation 

N/A 1 Pepstatin 

Chapel et al. 78 Lysosomes Rat liver 

lysosomes, 

HeLa 

- Differential 

centrifugation, 

Nycodenz density 

gradient 

fractionation, 

liquid-liquid 

extraction, SDS-

PAGE, LC-

MS/MS 

734 12 LOH12CR1, 

MFSD1, 

PTTG1IP, 

SLC37A2, 

SLC38A7, 

SLC46A3, 

SLCO2B1, 

STARD10, 

TMEM104, 

TMEM175, 

TTYH2, TTYH3 
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Della Valle et 

al 

79 Lysosomes Male Wistar 

Rat liver 

homogenates 

Triton-

WR1339 

Differential 

centrifugation, 

isopycnic sucrose 

density 

centrifugation, 

iTRAQ, 2D SCX 

and RP peptide 

separation, 

MALDI-TOF 

1273 gene 

products 

N/A CTSD, ACP2, 

LAMP2, ACP5 

Kollman et 

al. 

82 Lysosomal 

proteins/Secretome 

MEF23-1SV 

mouse 

fibroblasts 

MPR46 and 

MPR300 

deficiency, 

Pepstatin A 

and Leupeptin 

Mannose-6-

phosphate affinity 

enrichment, 2D 

gel 

electrophoresis, 

MALD-TOF, 

MudPIT 

38 N/A CTSD, CTSB, 

CTSZ, MERP-2, 

M2B2, CREG, 

RISC 

Tharkeshwar 

et al. 

83 Lysosomes HeLa NP-C1 

knockout 

SPION isolation, 

LC-MS/MS 

~ 2400 53 LIPA, IFI30, 

IGF2R, 

GABARAPL2, 

CALCOCO2, 

SQSTM1, FOLR1, 

ACKR3, RHOB, 

ITGA11, Rab5 

Gao et al. 85 Lysosomes Murine RAW 

264.7 

macrophage 

cells 

Listeria 

monocytogene

s, HSV-1, VSV 

infections 

Differential 

centrifugation, 

density gradient 

fractionation, 

TMT labeling, LC-

MS/MS 

3704 ~ 204 Fam120c, Clec4e, 

Cxcl2, Ccl9, 

Hspe1, Hspa2, 

Hmox1, Slc15a3, 

Cd274 
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Shui et al. 89 Phagosomes Mouse 

macrophages 

3-

methyladenine 

(3-MA) 

Sucrose gradient 

centrifugation, 2D 

SDS-PAGE, LC-

MS/MS 

546 N/A EEA1, TfR, CatD, 

VAMP4, TLR7, 

TLR9, LC3-II, 

LAMP1, JAK1 

Davis et al. 90 COPII coated 

vesicles 

Saccharomyce

s cerevisiae 

Nitrogen 

starvation, 

Rapamycin, 

0.5% 

galactose 

(Sec24 

induction) 

His tag protein 

purification, LC-

MS/MS 

27 

phosphosit

es 

3 

phosphosit

es 

Sec24 

(T324/T325/T328) 

Ohman et al. 102 Secretome/Exosome Human 

PMBC-derived 

primary 

macrophages, 

Mouse BMDC 

LPS, 1,3-β-

Glucans 

(Curdlan, 

GBY), 3- MA, 

SykII, Src 

inhibitor I, 

Brefeldin A, 

Dectin-

deficiency 

Exosome 

isolation via 

ultracentrifugation

, iTRAQ, SCX, 

LC-MS/MS 

1597 6 pathways Chemokine 

signaling pathway, 

cytokine- cytokine 

receptor 

interaction, and 

MAPK signaling 

pathways, 

cytosolic DNA-

sensing pathway, 

Jak-STAT 

signaling path- 

way,NOD-like 

receptor signaling 

pathways (IL-1β, 

CTSD, ANXA1, 

Tubulin, LEG3) 
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Kang et al. 105 Aqueous 

humor/Secretome/E

xosome 

ARPE-19, 

AMD patients 

and controls 

Paraquat, 

serum-free 

Exosome 

isolation via 

precipitation, 

SDS-PAGE, LC-

MS/MS, LC-MRM 

1209 6 CTSD, HSPA1, 

ACTA2, KRT8, 

KRT14, MYH9 
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Chapter 3: 

Secretome Analysis of Non-Small Cell Lung Cancer in Response to Ionizing 

Radiation and p53-status 

 

 

 

3.1 Lung Cancer Statistics: US and Worldwide 

Lung cancer refers to cancer that starts in the tissues or cells of the lungs. It is currently 

the deadliest type of cancer in both men and women, killing more people than breast, 

colorectal and prostate cancers combined and accounting for about 1.59 million deaths 

worldwide in 2012 [243]. About 159,000 estimated deaths are projected in the US in 2014 

[244]. In spite of the decreasing trends in the incidence of lung cancer amongst both males 

and females [245], it continues to be one of the most prevalent cancers both nationwide 

and around the world.  

The majority of lung cancer patients living today were diagnosed within the last 5 years 

and this is because of the low 5-year relative survival (16.8 – 17.8%) [246]. In 1977, the 5-

year relative survival for lung cancer was 12.3% [247]. The 5-year survival depends largely 

on the stage of diagnosis with early stage NSCLC patients having a survival of >50% 

compared to <5% in late stage patients [245, 248]. This relatively low survival rate is a result 

of late diagnosis for majority of cases and/or ineffectiveness of available treatments. Of 

the new NSCLC patients in the US, ~16% are found to have local or early stage while 

~57% are metastatic at diagnosis [245]. This makes early detection of lung cancer a priority 
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in cancer research in the bid to improve survival. Current standard treatment regimen 

involves the use of chemotherapy and radiation concurrently [249] but the evidence of 

relapse, disease recurrence, and/or mortality indicates then that the current treatments 

are ineffective or at best insufficient. Amongst the possible mechanisms responsible for 

the resistance and/or relapse is autophagy [161].  

3.2 Types of Lung Cancer 

Lung cancer is characterized by molecular heterogeneity, comprising of various small 

populations of cells with distinct features. This heterogeneity may be within a given lung 

tumor or between one tumor type and another [250]. 

Lung cancer pathogenesis is associated primarily with smoking even though non-

smokers do develop the disease [247, 250]. Smoking accounts for > 80% of lung cancer 

inside and outside the US [247]. Exposure to different agents including asbestos, arsenic, 

and radiation from homes and mines (radon gas) as well as air pollution constitute some 

of the other causative agents in lung cancer [247]. These causative factors may act in 

synergy to result in disease [247]. There are two main types of lung cancer depending on 

the type of cells affected in the lungs namely small cell lung cancer (SCLC ~10-15%) and 

non-small cell lung cancer (NSCLC ~ 85%) [246, 250, 251]. Some sources add a third type, 

lung carcinoid tumor estimated to be found in ~5% of lung cancer cases. It is uncommon, 

grows slower than the two major types and constitutes neuroendocrine cells [252, 253]. 

3.2.1 Small Cell Lung Cancer 

SCLC is aggressive and highly metastatic, and estimated to be responsible for ~ 250,000 

deaths throughout the world each year. The vast majority of SCLC patients currently 
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smoke or smoked heavily in the past [251]. With a 5-year survival rate of 7%, SCLC is one 

of the most aggressive tumors, being designated at one time a “recalcitrant cancer” [251, 

254]. The scarcity of tumor tissue, or the lack thereof, for scientific research greatly 

hindered advancements in the understanding of the disease. Consequently, most SCLC 

patients are still treated with only the first line platinum-based chemotherapeutic agents 

such as cisplatin with the only second line treatment option being topotecan [254]. Given 

that there is loss of the tumor suppressor genes TP53 and RB1 in almost all SCLC cases, 

it is plausible that relapse and resistance to therapy develops after the responsiveness of 

tumors to initial treatment [250, 254].  

3.2.2 Non-Small Cell Lung Cancer 

NSCLC is classified into three types namely squamous cell carcinoma (LUSC), 

adenocarcinoma (LUAD), and large cell carcinoma [246]. Despite being associated with 

SCLC, neuroendocrine features have been identified in a “fourth class” of NSCLC cells 

(~3%) referred to as large cell neuroendocrine tumors [255].  

Squamous cell carcinoma and adenocarcinoma constitute the most prevalent subtypes 

of NSCLC with LUSC making up about 25-30% and LUAD about 40% of all lung cancer 

cases [246, 250]. Of the two most common types of NSCLC, squamous cell carcinoma has 

the stronger association with smoking. Most lung cancer patients who have never 

smoked, mostly women, are usually diagnosed with adenocarcinoma [250]. LUAD is 

relatively slower growing and may be detected before it metastasizes out of the lungs; it 

is also normally associated with exposure to second-hand smoke and carcinogens like 

asbestos and radon gas [246, 250]. 
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Relative to SCLC, NSCLC has seen the most advancement particularly regarding 

treatment options. Over the past two decades, more sophisticated and individualized 

treatment options have been developed with some promising results [250]. This has been 

due to the ready availability of clinical samples for scientific studies owing to the 

significantly greater number (and percentage) of cases encountered compared to SCLC.  

This chapter focuses on NSCLC due to the aforementioned reasons together with the 

historically poor prognosis following treatment [256] and the 5-year survival rate of ~ 17%.  

3.3 NSCLC Treatment Options 

NSCLC treatment depends on the stage of the disease at diagnosis. In early disease 

where the tumor is resectable (based on imaging and biopsies), surgery is the first line of 

treatment for stage I, II, and IIIA NSCLC [246]. This initial surgery is usually followed by 

adjuvant chemo- and/or radiotherapy as well as targeted therapy [246, 257].  

3.3.1 Chemotherapy 

In about 40% of patients where diagnosis first happens at stage IV of the disease, 

combination cytotoxic chemotherapy constitutes the first line of treatment [246]. This is 

dependent upon the comorbid conditions, tumor histology, patient age, and performance 

status (PS). Frequency and types of side effects as well as patient tolerance to side 

effects of the cytotoxic agents informs the specific combination regimen selected for a 

patient [246].  

When PS ≤ 1, along with palliative care and symptomatic treatment, a platinum in 

combination with paclitaxel, gemcitabine, docetaxel, vinorelbine, irinotecan, or 
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pemetrexed is used per the American Society of Clinical Oncology treatment guidelines 

[246, 258]. Studies have shown that these combinations are similar in effect and no one is 

superior to the other with median overall survival around 8-10 months. When PS=2, only 

one chemotherapeutic agent is recommended and this treatment is stopped in the event 

of intolerable adverse effects, tumor size growth, or stable disease but no decrease in 

tumor size after four treatment cycles. For patients with PS of 3, supportive care rather 

than chemotherapy is recommended. Chemotherapy offers little to no benefit to these 

patients and may result in significant decline in patients’ quality of life. 

3.3.1.1 Advances in Chemotherapy  

There has been significant advancement in the survival stats for NSCLC patients 

following the advent of personalized medicine that targets certain gene mutations and/or 

rearrangements. Currently, targeted therapy exists for patients with mutations of the 

epidermal growth factor receptor (EGFR) (~10-15% of LUAD patients of Caucasian or 

European descent), and BRAF (1-4% of all NSCLC) genes as well as gene 

rearrangements involving the anaplastic lymphoma kinase (ALK) gene (~3-7% of usually 

younger patients) and the ROS1 gene [246, 259]. Other mutations with promising targeted 

therapy include KRAS and HER2 mutations. EGFR mutations are treated with such 

agents as erlotinib and gefitinib while crizotinib represents the treatment of choice for 

patients with previously untreated, advanced ALK mutations in non-squamous NSCLC 

[246].  

The immune system has been shown to have a dual role in cancer development; 

suppressing growth of some tumor cells while promoting the progression of other tumor 
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cells able to survive in immunocompetent hosts [260]. In its protective role in cancer, the 

immune system is able to considerably slow down or stop the growth of tumor cells and 

prevent metastases [246, 260]. Immunotherapy involving agents that are thought to enhance 

the immune system’s ability to differentiate between cancer cells and normal body cells 

is one of the advances in cancer treatment. Immunotherapy targets mechanisms through 

which cancer cells evade the immune system such as checkpoint pathways. For example, 

the protein PD-L1, a ligand for the inhibitory cytotoxic receptor programmed cell death-1 

(PD-1), is a target of the immunotherapy drugs pembrolizumab and nivolumab [246, 259, 261].  

3.3.2 Radiation Treatment 

Approximately 50% of all cancer patients receive radiation therapy at some point in their 

disease management [262]. Radiation may be used to target tumors at specific sites in the 

body and may be used alone, in combination with chemotherapy or as neo-adjuvant 

therapy to shrink tumors thereby making surgery easier and more likely to succeed. In a 

retrospective study of patients with stage III NSCLC using the Surveillance, Epidemiology, 

and End Results (SEER) database, neo-adjuvant radiotherapy was shown to be 

associated with significant increase in 3-year overall survival compared to other treatment 

regimen including surgery only, radiation only, or surgery plus postoperative radiotherapy 

[256]. In patients with advanced lung cancer that is not amenable to surgical resection, or 

patients that do not respond to surgery or chemotherapy, radiation treatment is used in 

combination with palliative care [246].  

Radiotherapy may be administered with an external radiation machine (external-beam 

radiation therapy) or internally (internal-beam radiation therapy or brachytherapy) via 
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radioactive agents, placed in or near the tumor cells inside the body [263]. In stereotactic 

body radiation therapy (SBRT), tumors are located with precision using imaging 

techniques and advanced coordinate systems in order to administer precise and 

concentrated doses of focused radiation to the tumors. This is typically used in early 

disease where tumors have not metastasized [246]. 

Radiation treatment involves the use of high-energy beams that result in DNA damage in 

cancer cells. Radiation is measured in Grays (Gy) and the dose used is dependent on the 

type, histology, and stage of cancer. Radiotherapy acts by penetrating cells and directly 

causing clustered DNA damage including double-stranded breaks (DSB) that ultimately 

results in cell death if the break is not repaired [263, 264]. Radiation also generates single-

stranded breaks as well as reactive oxygen species (ROS) that result in the oxidation of 

proteins and lipids in cells [263]. ROS generated as a by-product of aerobic metabolism 

induces about 50,000 lesions of DNA damage. This is, in fact, more than the number of 

lesions induced by ionizing radiation treatment with 2 Gy radiation therapy [264]. However, 

the major difference between endogenous ROS-induced DNA damage and radiotherapy-

induced DNA damage is the production of lethal DSB which has deleterious cytotoxic 

effects in the body [264]. The lethality of DSB is a consequence of the inherent difficulty of 

the DNA repair mechanisms to repair such breaks relative to SSBs. 

3.3.3 Limitations of Current Treatment 

Many advancements have been made in the development of new therapies for lung 

cancer, particular NSCLC. However, the fact remains that the vast majority of NSCLC 

diagnosis are often made in late disease when the tumors have grown in size and have 
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metastasized. Furthermore, in spite of increased disease- or symptom-free periods 

facilitated by the availability of newer more targeted chemotherapeutic agents, majority 

of NSCLC patients ultimately relapse or develop resistance to therapy [265]. Tumor cells 

exploit a number of mechanisms for promoting proliferation and evading cell death by 

apoptosis amongst which include the functional loss of p53 tumor suppressor activity, and 

autophagy [266–268].  

About 50% of all cancers and ~50-60% of lung cancer cases are estimated to have a loss 

of function mutation of the TP53 gene [240–242]. NSCLC tumors have been shown to  evade 

treatment-induced cell death via various strategies that include tumor heterogeneity [269], 

and autophagy [267, 270].  

3.3.4 NSCLC Tumor Response to Therapy 

Radiation-induced DNA damage induces different responses in cells including but not 

limited to apoptosis, senescence, and autophagy. When cells are exposed to such 

external stress as radiotherapy, the initial response is cell survival through mechanisms 

which include the heat shock response (HSR), unfolded protein response (UPR), the DNA 

damage response, and the oxidative stress response [271]. However, depending on the 

level and duration of the stress, these mechanisms may fail and the cell may switch to 

cell death signaling pathways, which include apoptosis, necrosis, and mitotic catastrophe. 

Tumor cells seek to disrupt the normal homeostatic balance that exists naturally between 

cell proliferation and cell death [271]. By decreasing the rate of cell death through the 

disruption of cell death signaling pathways, tumor cells are able to survive longer and 

proliferate more. 
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3.3.4.1 Apoptosis 

Apoptosis is a major cellular process and represents one of the most extensively studied 

mechanisms of cell death. Apoptosis is one of several cellular mechanisms that occur in 

response to external stress such as ionizing radiation when cell survival mechanisms fail 

to contain the stress or stop its deleterious effects. Also known as programmed cell death, 

apoptosis was first coined as a term in 1972 and refers to a highly organized intracellular 

event [272, 273].  

During apoptosis, cells undergo changes that include chromatin condensation, 

detachment from the surrounding tissue and shrinkage, as well as blebbing of their cell 

membranes [274]. Two mechanisms of apoptosis namely caspase-dependent and 

caspase-independent mechanisms have been elucidated. The classical caspase-

dependent mechanism may be initiated either by intrinsic or extrinsic factors. The intrinsic 

or mitochondrial pathway is mediated by activation of BAX and BAK of the Bcl-2 family 

proteins while the extrinsic pathway is mediated by death receptors (CD95 aka 

APO1/Fas), Tumor necrosis factor alpha (TNFα) receptors, and TNF related apoptosis 

inducing ligand (TRAIL) receptors that are stimulated by their respective ligands. When 

the intrinsic pathway is initiated via the Bcl2 family protein activation, Cytochrome C is 

released into the cytosol where it binds to apoptotic protease activating factor (Apaf1) and 

forms a complex [274–276] which activates caspase-9 that sets off the caspase cascade. 

The intrinsic pathway may however, also initiate the caspase-independent mechanism 

where it results in the release of apoptosis inducing factor and endonuclease G which 

results in chromatin condensation [275, 276].  
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In the extrinsic pathway, binding of the ligands to their receptors results in the attraction 

of adaptor molecules such as FADD which recognizes a death domain and leads to the 

activation of caspase-8 which culminates in the activation of the entire caspase cascade 

[275–277]. A consequence of apoptosis is the proteolytic cleavage of poly(ADP-

ribose)polymerase-1 (PARP-1), a DNA repair enzyme involved in transcriptional 

regulation [278]. 

In essence, apoptosis is a suicide mechanism where cells that are no longer needed by 

the organism or that are diseased beyond repair kill themselves. In normal cells, 

apoptosis represents a homeostatic process which ensures tissue growth and aging, but 

represents a response mechanism in tumor treatment therapy [271]. Apoptosis may also 

be a response to DNA double strand breaks resulting from ionizing radiation treatment 

[279] and is usually the fastest mode of cell death induced in tissues while the other forms 

such as necrosis and autophagic cell death kick in with inhibition of apoptosis [275, 278]. In 

his paper, Meyn distinguishes between two different forms of apoptosis following ionizing 

radiation treatment depending on occurrence before or after post-irradiation mitosis [273]. 

He refers to the programmed cell death observed before the first mitotic division (4 – 6 

hrs. post irradiation) as primary apoptosis whereas he terms as secondary apoptosis, the 

cell death that occurs after the first mitotic division (>24 hrs. post irradiation). He argues 

for the relevance of this observation, especially in radiotherapy, because cells that 

undergo primary apoptosis actually affect clonogenic survival compared with those that 

undergo secondary apoptosis by which time cells would have divided anyway and so 

death does not necessarily decrease the live cell number. As a cellular response to 

radiotherapy, apoptosis may likely be representative of an intrinsic sensitivity or otherwise 
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in that whereas 5 Gy of IR is usually sufficient to induce apoptosis in sensitive cells, more 

radiation is needed for secondary apoptosis and is observed much later [273].  

Apoptosis may result in decreased tumor clonogenic survival and consequently enhance 

sensitivity to chemo- and/or radiotherapy. Studies have shown that tumors with high 

apoptotic indices before treatment tend to respond better and this index has been found 

to be predictive of patient survival indicating the desirability of apoptosis as a treatment 

outcome [273, 280, 281]. It is important to note that while apoptosis may be a desirable 

outcome of treatment, it may also be a mechanism of eliminating susceptible cells so that 

the tumor can have only resistant cells, which can then mutate to result in ‘intractable’ 

tumors. 

3.3.4.2 Autophagy and Senescence 

Autophagy, as discussed extensively in chapter 2, is an intracellular mechanism in which 

cells recycle some of their cytoplasmic components, in response to stress such as 

starvation, chemotherapy or radiation, by degradation with the help of lysosomes for the 

production of energy [96, 155, 274, 282–285]. The recycling occurs via the fusion of 

autophagosomes with lysosomes, which release hydrolases to degrade the contents of 

the autophagosome.  

Autophagy was historically thought to serve a protective function; however, recent studies 

have painted a more complex picture. At least four functional forms of autophagy have 

been identified in the context of cancer cells; protective, non-protective, cytotoxic, and 

cytostatic [125]. Within these functional forms, protective autophagy holds the most 

promise for pharmacological inhibition through increased sensitization to standard of care 
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chemo-radiation treatment [126]. The identification of these four functional forms of 

autophagy also provides a plausible explanation for the potential failure of clinical trials 

exploring the inhibition of autophagy as a cancer treatment enhancement strategy as 

patients could not be stratified based on the nature of the autophagy exhibited by their 

tumor [127]. 

Senescence, on the other hand, is a growth arrest phenomenon whereby cells are alive 

and have active metabolism but cannot divide [286]. Two major forms of senescence have 

been identified, replicative senescence in which cells cannot divide anymore owing to 

reaching a length of telomere referred to as the “Hayflick Limit”, which does not permit 

further cell division and stress-induced premature senescence which does not depend on 

telomere length [287–290]. When cells reach the Hayflick Limit suggesting that the cells are 

approaching senescence, a DNA damage response is initiated and cells show foci that 

indicate the presence of γ-H2AX. The proteins – p53 binding protein 1 (53BP1), nibrin 

(NBS1), and Mediator of DNA damage checkpoint protein 1 (MDC1) which are DNA 

damage response proteins also show up and activation of ataxia telangiectasia-mutated 

(ATM) and ataxia telangiectasia and Rad3-related protein (ATR) is seen [289, 291]. ATM and 

ATR subsequently induce the activation of checkpoint kinase 1 (CHK1) and CHK, which 

may then lead to the activation of p53 and several other factors and proteins that are 

related to and regulate the cell cycle. Together with p53, activation of Rb, a tumor 

suppressor and its downstream signals including p16INK4A has also been demonstrated in 

senescence [288, 289]. Silencing p19ARF, a direct upstream regulator of p53, or p16INK4A 

resulted in a consequent prevention of Ras oncogene induced senescence [289, 292].  
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In various cancer cells, it appears as though autophagy and senescence may be induced 

concurrently or consecutively. However, reports of the relationship between autophagy 

and senescence in the literature are inconclusive at best. While some studies have 

showed autophagy and senescence to be directly related, other studies have essentially 

established that the two processes are dissociable. Young et al. showed in their work that 

autophagy was directly related to oncogene induced senescence by showing an increase 

in LC3-II levels, a marker of the initiation of autophagy, in senescent but not quiescent 

cells [286]. The association between autophagy and senescence was however, not very 

strong when autophagy genes ATG5 and ATG7 were silenced. In their silencing studies, 

the production of IL-6 and IL-8 which are senescence-associated cytokines was 

comparable in empty vector and ATG5 silenced cells albeit there was slightly more IL-6 

on day 4 in the vector. Senescence could therefore be said to have only been delayed by 

the inhibition of autophagy. This may suggest that autophagy may play a role in the onset 

of senescence but not the sustenance thereof. Progression of senescence may thus be 

independent of autophagy. Gewirtz et al. also showed, like in the Young paper, that 

senescence is reduced and/or delayed, but not entirely blocked, in MCF-7 and HCT-116 

tumor cells with pharmacological or genetic inhibition of autophagy [293]. Anna Knizhnik et 

al. have demonstrated temozolomide-induced senescence that is completely abolished 

by inhibition of autophagy with 3-methyladenine (3-MA) [294]. Considering however, that 

3-MA can have off-target effects, caution has to be exercised in assuming the complete 

inhibition of senescence was due only to autophagy. Strong evidence of a relationship 

between autophagy and senescence is also presented in a study of autophagy competent 

cells which express proteolytic Cyclin E fragment (p18-CycE) where ATG7 was silenced 
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and which resulted in a consequent decrease in senescence associated markers β-

galactosidase and HP1γ [295]. Some studies have pointed to the decrease in chaperone-

mediated autophagy in senescent cells [289]. Studies have shown a cytostatic form of 

autophagy [126] which is functionally similar to senescence in that cells are alive and 

metabolically active but do not proliferate. Regarding the signaling pathways of both 

autophagy and senescence, some overlap has been reported. Amongst the overlapping 

features of both pathways are ROS generation, activation of ATM kinase, TP53 induction, 

CDKN1A/p21 induction and dephosphorylation of Rb [283, 296]. In a study where Regulator 

of Cullins-1 (ROC-1) was knocked down, there was the induction of senescence 

(mediated by p21) and a time dependent increase in autophagy (marked by increased 

LC3-I to LC3-II conversion) [297]. This points to a strong molecular /signaling association 

between the two. These pathway signaling overlaps have however, are still undergoing 

rigorous scientific interrogation and therefore no conclusions can be made yet regarding 

the interdependence of the two processes.  

3.4 TP53 and Autophagy 

Autophagy has been considered as a central cellular response for some cancer cell types, 

including NSCLC cells, to avoid radiation-induced cell death [126, 232, 233]. The TP53 gene 

has been shown to promote cell survival via autophagy activation following starvation 

whereas autophagy suppresses the activity of p53 suggesting a negative feedback 

mechanism [298, 299].  

In a study of 188 patients with early stage NSCLC, Ahrendt et al. found that p53 mutations 

in patients’ tumors resulted in poor prognosis and significantly higher deaths [241]. Levine 
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et al. also showed that the TP53 gene plays a role in the increased cellular secretion of 

some proteins and the decreased secretion of others particularly via exosomes in NSCLC 

cell lines including H460 and H1299 [300]. Chenau et al. used the NSCLC cell line as a tool 

to investigate secreted proteins in which they found the secretion of about 91 proteins to 

be affected by the p53 status of the cell [301]. The high prevalence of TP53 mutation in 

cancers and more specifically NSCLC combined with its reported association with 

treatment resistance arising from protective autophagy makes TP53 an important gene 

for study. 

3.5 Justification and Objectives of the Study 

• Promotes cell death when induced 
• Unlikely to mediate actions of 

chemotherapy 

Cytotoxic  

Cytoprotective 

Cytostatic  Non-protective 

AUTOPHAGY 

• Does not appear to be relevant to 
resistance 

• Inhibition does not affect sensitivity 
to treatment 

• Mediates growth inhibition 
• May be associated with senescence 
• Results in reduced clonogenic 

survival 

• May confer resistance to therapy 
• Inhibition increases sensitivity 
• Possibly involved in normal 

homeostasis 

Figure 11 - Functional forms of autophagy 
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The search for biomarkers for the detection of at-risk persons and early disease diagnosis 

remains one of the major focuses of lung cancer research [97, 247]. Many potential markers 

of disease have been proposed through various studies but issues of sensitivity and/or 

specificity and selectivity affect their adaptation in clinics [247]. Blood-based markers are 

of particular interest due to the limited access to the lung, a visceral organ, except by 

direct invasive approaches [247]. Working on the hypothesis that some proteins that are 

eventually secreted into the blood are up- or downregulated due to the development of 

cancer, proteomics studies aim to detect these proteins early in disease pathogenesis in 

order to serve as biomarkers [97]. 

Several reports have shown the value of using cancer cell lines as experimental models 

for identifying potential protein biomarkers secreted and/or shed into the media (i.e., 

secretome) [161, 249, 301–304]. High resolution and accurate mass spectrometry (HRAM) LC-

MS/MS provides an unbiased method for identifying protein signatures of autophagy that 

may be useful in differentiating between different responses to radiation in NSCLC.  

Various cell lines have shown differences in response to the manipulation of autophagy 

using both pharmacological and genetic strategies. For instance, cytoprotective 

autophagy has been demonstrated following ionizing radiation (IR)  in tumor cells from a 

variety of backgrounds, including A549, H460, and CT26 [305], and HTB35 [232] cells. The 

protective function of radiation-induced autophagy has however, been observed primarily 

if not exclusively in cancer cells with functional p53, as in H1299 and H460 cells with wild-

type p53 [126]. In contrast, H1299 cells that do not express functional p53 demonstrated 

non-protective autophagy in that the cells were not sensitized to radiation when 

autophagy was blocked by pharmacologic or genetic approaches [233].  
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H1299 cells are immortalized non-small cell lung cancer cells derived from lymph nodes. 

The cells do not produce the p53 protein due to a homozygous partial deletion of the 

TP53 gene. However, H1299 cells capable of producing p53 via a tetracycline-inducible 

p53 construct were developed by Constantinos Koumenis resulting in an isogenic cell line 

with and without p53. Consequently, in the present study, we have used quantitative 

proteomics to investigate the effect of p53 expression on non-small cell lung cancer 

response to ionizing radiation, using the isogenic H1299 cell line. The H1299 secretome 

was analyzed in an effort to identify potential candidate protein biomarkers or therapeutic 

targets of cytoprotective autophagy. 

3.6 Experimental 

3.6.1 Materials and Reagents 

Chemicals were purchased from Invitrogen, Gibco, Thermo Scientific, Sigma Ultra, 

Fisher, Promega, Fluka, and Honeywell Burdick & Jackson and used as received unless 

otherwise stated. 

3.6.2 Cell Culture Conditions and Ionizing Radiation Treatment 

H1299 TP53-null (p53-null) and TP53-inducible (p53-wt) cells, originally developed by Dr. 

Constantinos Koumenis,[306] were obtained from Drs. Frank and Suzy Torti (University of 

Connecticut). H1299 cells were cultured in low glucose Dulbecco’s Modified Eagle Media 

(Invitrogen) supplemented with 10% Fetal Bovine Serum (Thermo Scientific), 1% 100 

U/ml Penicillin G sodium/1% 100 µg/ml Streptomycin sulfate (Invitrogen) at 37°C and 5% 

CO2. H1299 p53-wt cells were maintained in 1 mg/ml Doxycycline to induce tp53 

expression. H1299 p53-wt and H1299 p53-null cells were seeded in two sets of 9 × 10 
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cm dishes at 20,000 cells/mL with 10 mL of media and grown to ~85% confluency over 

48 hours. At ~85% confluency, the 10% FBS media the culture media was aspirated from 

all plates. The plates were washed once with 5 mL of Phosphate Buffered Saline 1X pH 

7.4 (Gibco) and then twice with 5 mL serum-free DMEM. A final 5 mL volume of serum-

free DMEM was added to all plates. A set of 3× p53-wt and 3× p53-null cells were then 

immediately treated with ionizing radiation (6Gy) after which all plates were incubated for 

12 hours. The serum-free media containing secreted proteins (secretomes) were 

collected into 15 mL tubes after a 12-hour incubation and stored at -80oC until processing.  

3.6.3 Western Blot 

Cells were pelleted and washed briefly with cold PBS (Gibco) after which they were lysed 

using CHAPS buffer containing protease and phosphatase inhibitors (Sigma Aldrich). 

Total protein concentration of samples was determined using the Bradford assay (Bio-

Rad Labs). Equivalent amounts of proteins were then run on an SDS-PAGE gel and 

blotted onto polyvinylidene difluoride (PVDF) membranes (Bio-Rad Labs). The quality of 

the transfer was then determined by staining with Ponceau S stain. The blots were then 

processed and visualized as described by Sharma et al. using antibodies against p53 and 

GAPDH [126]. 

3.6.4 Proteomics Sample Preparation 

The collected media (secretomes) samples were removed from -80oC, thawed, 

centrifuged at 2500 rpm for 5 minutes at 8oC, and the supernatant concentrated in 3 kDa 

MWCO filters (Millipore Amicon Ultra) at 7500 × g for 30 minutes at 8oC. The concentrated 

secretomes were then transferred into 10 kDa MWCO filters (Millipore Amicon Ultra) and 
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washed with 3 × 500 µL Tris HCl buffer pH 8.1. Remaining solutions were made up to the 

same volume and total protein concentration for each secretome determined at 280 nm 

using a BioTek Synergy H1 plate reader fitted with a Take3 Plate. The secretomes were 

processed for proteomics analysis using the FASP method [307]. Specifically, each 

secretome sample in the 10 kDa MWCO filter was reduced using 40 µL of 50 mM 

Dithiothreitol (Fisher Scientific) by incubation for 45 mins at 56oC, alkylated at room 

temperature in the dark with 30 µL of 142 mM Iodoacetamide (SigmaUltra), and then 

rinsed with 300 µL of Tris-HCl pH 8.1 at 14,000 × g for 10 minutes. Digestion was 

performed with 6 µL of 1 µg/ µL Trypsin Gold (Promega) solution overnight at 37oC and 

then terminated with 200 µL of 0.1% acetic acid (Fluka Analytical).  

3.6.5 LC-MS/MS Analysis 

50 µL solutions of 100 ng/µL peptide sample were prepared by dilution with 0.1% Acetic 

Acid for LC-MS/MS analysis. The LC-MS/MS system consists of an Eksigent nLC 415 

(ABSciex) in a trap and elute configuration. The reverse phase trap column (75 µm x 1 

cm) and analytical column (75μm x 15cm) were both packed in-house with 5 µm Magic 

AQ C18, 200Å stationary phase. The nLC system was coupled to a Q-Exactive (Thermo 

Scientific, San Jose, CA) mass spectrometer equipped with the Nanospray-Flex 

ionization source fitted with a 10 μm ID emitter tip (New Objective). 2 µL of sample was 

loaded onto the trap column and desalted at a flow rate of 2.25 μL/min for 5 minutes using 

mobile phase A. Desalted peptides were then eluted at 300 nL/min with the following 

gradient: 5% B (0 – 4 minutes), 35% B (95 minutes), 75 % B (105 – 110 minutes), 5% B 

(115 minutes) and held for 5 minutes until the run finishes at 120 minutes. Mobile phase 

A consisted of 98% H2O/2% acetonitrile, 0.1% formic acid and mobile phase B consisted 
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of 2% H2O/98% acetonitrile, 0.1% formic acid. The electrospray emitter tip was charged 

with a voltage of 1.80 kV in positive ion mode and the Q-Exactive inlet temperature and 

S-lens setting were maintained at 250C and 62 V, respectively. Full scan (400-1600 m/z) 

resolution was set at 70,000 FWHM with an AGC target of 3 × 106. MS/MS was set to a 

resolution of 17,500 with an AGC target of 2 × 104 at 120 ms maximum inject time and 

selection of the top 12 ions at a 30 second dynamic exclusion. HCD voltage was 

maintained at 30 NCE throughout.  

3.6.6 Data Analysis 

Proteomic datasets were processed in MaxQuant (ver. 1.5.2.8) with the Andromeda 

search algorithm using the Uniprot Human proteome Fasta database (downloaded on 04-

04-2016); mass accuracies: MS = 5 ppm, MS/MS = 0.02 Da; fixed modifications: 

carbamidomethyl (C), variable modifications: acetyl (N-terminus) and methionine 

oxidation (M), and a false discovery rate (FDR) of 1%. 

Protein quantification was done in MaxQuant using the LFQ algorithm[67] and the 

threshold for quantification set to 2 or more shared peptides. Statistical analyses were 

carried out in Perseus (ver. 1.5.1.6) and JMP Pro 11 Statistical Software. One-way 

analysis of variance (ANOVA) tests were carried out followed by t-test pairwise 

comparisons to determine significant effects using the Benjamini-Hochberg correction. 

Imputation of missing values was done in Perseus by replacing with random numbers 

drawn from the lower (left) boundary of a normal distribution. Gene Ontology (GO) 

annotation enrichment analysis was performed using the Functional Enrichment 

(FunRich) Analysis Tool, a bioinformatics software tool for functional and network analysis 
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developed by the Mathivanan lab [308]. FunRich uses hypergeometric tests for significance 

testing and the Benjamini-Hochberg procedure to decrease false discovery rate.  

3.7 Results 

3.7.1 Secretome Analysis of Radiation-treated H1299 cells 

Inducible H1299 cells, with or without doxycycline treatment to induce stable p53 

expression or not (hereon referred to as p53-wt or p53-null respectively), were treated 

with or without ionizing radiation (+IR or –IR, respectively). Secretomes from the 4 

experimental conditions (p53-wt -IR, p53-wt +IR, p53-null -IR, and p53-null +IR) were 

collected 12-hours post-irradiation and then analyzed by LC-MS/MS. Prior to the 

secretome analysis, the p53 status of the cells was verified, specifically to ensure that we 

were using an isogenic paired set of H1299 cells, one of which is p53-inducible with the 

native cell line being p53-null (Figure 12). A total of 364 secreted proteins were identified 

Figure 12 - H1299 Secretome Experimental Design 
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post-filtering from the 4 experimental secretomes in triplicate (Figure 13A). Out of the 

364 identified proteins, we considered 163 proteins after filtration based on label-free 

quantification (LFQ)[67]. Thus, a protein should be quantified with an LFQ value in a 

minimum of 2 (in at least one condition) out of 12 replicates across all conditions. Out of 

the 163 quantified proteins, 123 were detected in all 4 groups (Figure 13B). Functional 

enrichment analysis was performed on the 163 quantified using the FunRich functional 

enrichment analysis tool. Enriched cellular components in the quantified secretome 

proteins included exosomes (~5.3 fold, p-value = 4.52 × 10-66), lysosomes (~4.8 fold, p-

value = 5.89 × 10-40), cytoplasm (~2.1 fold, p-value = 6.73 × 10-29), centrosome (~7.03 

fold, p-value = 9.70 × 10-28), cytoskeleton (~7.3 fold, p-value = 4.51 × 10-66), and 

mitochondria (~3.61 fold, p-value = 9.35 × 10-16) as shown in Figure 13C. The molecular 

functions most enriched in this same dataset were related to chaperone activity (~15.1 

fold, p-value = 5.12 × 10-13) which is one of the more prominent processes in autophagy, 

and lysosomal function (Figure 13D). Notable secretory proteins (GO Cellular 

Component - Figure 13C) include protein FAM3C, which has been reported in other 

works as a potential blood based marker of autophagy[103, 161], C-type lectin domain family 

11 member A (CLEC11A), Annexin A2 (ANXA2), and the heat shock protein HSP90B1. 

3.7.2 Quantitative Analysis of the Secretome 

The 163 quantified proteins from the four experimental conditions were analyzed to 

identify statistically significant changes in secretion. An analysis of variance (ANOVA) for 

the LFQ values identified 25 proteins (Table 2) that showed significant changes (p<0.05) 

in one or more of the experimental conditions tested. The data were transformed into a 

hierarchically clustered heatmap plotting the log2 LFQ protein levels in each condition 
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relative to the average log2 LFQs across all four experimental conditions (Figure 14). 

Comparing the protein intensity levels in individual samples to the average intensities 

Figure 13 - Preliminary Qualitative Data Analysis of H1299 Secretome 

(A) Summary of identified proteins and subsequent filtering Experimental Design of secretome analysis (B) Distribution of 

LFQ intensities of filtered proteins before imputation in Perseus (C) Gene Ontology Cellular Component analysis of 163 

filtered proteins (D) Gene Ontology Molecular Function analysis of 163 filtered proteins 
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across all samples rather than a baseline intensity value is deliberate. We believe it is 

essential to define upregulation or downregulation in the context of clinical samples and 

in using the average intensities, we are able to define these as protein levels above or 

below the population mean. The results of the hierarchical clustering indicates that the 

primary contributing factor to differential protein secretion is p53 expression status. 

Among the most prominent proteins in this group are Chromogranin B (CHGB), 

Secretogranin 2 (SCG2), Clusterin (CLU), and Destrin (DSTN) where protein level 

Figure 14 - Hierarchical Clustering of ANOVA significant proteins 

Hierarchical clustering and heat map analysis of 25 differentially secreted proteins shows that p53 status drives 
the major changes in the secretome whereas radiation treatment drives changes within cells of the same p53 
status.  
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differences are dictated by p53 status and irradiation has no significant effect on their 

secreted levels. Similar effects, but to a lesser extent, are observed for FAM3C, Calnexin 

(CANX), U6 snRNA-associated Sm-like protein LSm8 (LSM8), C-type lectin domain 

family 11 member A (CLEC11A), Kinectin (KTN1), Metalloproteinase inhibitor 1 (TIMP1), 

and Nucleobindin-1 (NUCB1). The levels of the remaining proteins in the secretome are 

more significantly impacted by irradiation than p53 status. These include Nucleoside 

diphosphate kinase A (NME1), Eukaryotic translation initiation factor 5A-1 (EIF5A), 

Aminopeptidase N (ANPEP), Glucose-6-phosphate isomerase (GPI), Thioredoxin 

reductase 1, cytoplasmic (TXNRD1), Adenosylhomocysteinase (AHCY), GTP-binding 

nuclear protein Ran (RAN), 14-3-3 protein eta (YWHAH), Beta-2-microglobulin (B2M), 

Stress-70 protein, mitochondrial HSPA9), Calsyntenin-1 (CLSTN1), Fructose-

bisphosphate aldolase A (ALDOA), 60 kDa heat shock protein, mitochondrial (HSPD1), 

and Actin, cytoplasmic 2 (ACTG1). We also conducted a 2-way ANOVA model to 

determine the effects of p53 status and IR treatment as well as their interaction on the 

expression of the proteins in the secretomes.  
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Table 2 - Proteins that were found to be significantly differentially expressed (using ANOVA) in the 
secretomes of p53wt and p53-null H1299 cells before and after ionizing radiation treatment. 

Gene 

names 
Protein names 

Sequence 

Coverage 

-Log ANOVA p 

value 

ACTG1 Actin, cytoplasmic 2 36.9 1.93048 

AHCY Adenosylhomocysteinase 13.4 1.59804 

ALDOA Fructose-bisphosphate aldolase A 26.6 2.73084 

ANPEP Aminopeptidase N 5.8 1.38492 

B2M Beta-2-microglobulin 28.2 2.06836 

CANX Calnexin 3 1.52497 

CHGB Secretogranin-1 5.5 3.66691 

CLEC11A C-type lectin domain family 11 member A 15.8 2.21017 

CLSTN1 Calsyntenin-1 9.2 2.11829 

CLU Clusterin 6 1.45451 

DSTN Destrin 14.2 2.47716 

EIF5A Eukaryotic translation initiation factor 5A-1 10.9 1.48163 

FAM3C Protein FAM3C 17.2 1.78124 

GPI Glucose-6-phosphate isomerase 8.6 1.9333 

HSPA9 Stress-70 protein, mitochondrial 4.4 1.85985 

HSPD1 60 kDa heat shock protein, mitochondrial 11.5 1.79067 

KTN1 Kinectin 2.9 3.76623 

LSM8 U6 snRNA-associated Sm-like protein LSm8 19.8 1.31747 

NME1 Nucleoside diphosphate kinase A 33.6 1.38612 

NUCB1 Nucleobindin-1 13.6 1.55122 

RAN GTP-binding nuclear protein Ran 12.9 1.91709 

SCG2 Secretogranin-2 7 4.41865 

TIMP1 Metalloproteinase inhibitor 1 11.2 1.58608 

TXNRD1 Thioredoxin reductase 1, cytoplasmic 4.3 2.14274 

YWHAH 14-3-3 protein eta 16.7 1.59071 
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Of the differentially secreted proteins, GPI and TXNRD1 showed an interaction effect i.e. 

the effect of p53 status on the expression of GPI and TXNRD1 in the secretome depends 

on whether or not the cells received IR treatment. 

Following the ANOVA analyses, we conducted pairwise comparisons of the secretomes 

of p53-wt and p53-null H1299 cells before and after ionizing radiation treatment using t-

tests. We sought to identify proteins with the best potential to be population-based or 

individual/personalized biomarkers.  

3.7.3 p53 Expression Status Promotes Differential Protein Secretion Before and 

After Ionizing Radiation Treatment 

3.7.3.1 p53wt-IR vs p53-null –IR 

15 proteins were found to be differentially secreted between H1299 p53-wt -IR and p53-

null -IR cells (Figure 15A) and include CHGB, SCG2, DSTN, CLEC11A, CLU, GPI, 

ANPEP, phosphoglycerate kinase 1 (PGK1), hepatoma-derived growth factor (HDGF), 

protein disulfide-isomerase A4 (PDIA4), heterogeneous nuclear ribonucleoproteins 

A2/B1 (HNRNPA2B1), nuclease-sensitive element-binding protein 1 (YBX1), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aspartate aminotransferase 

(GOT2), and nuclear migration protein nudC (NUDC).  

Among the differentially secreted proteins, CLU, DSTN, PDIA4, YBX1, CLEC11A, 

HNRNPA2B1, NUDC, and HDGF were overexpressed by ≥ 2-fold in the secretome of 

p53-null cells compared to p53-wt cells whereas secretion of GAPDH, PGK1, GOT2, 

ANPEP, and GPI was higher in p53-wt cells by ≥ 2-fold than in p53-null cells. HDGF, also 

known as HMG-1L2, is a known repressor gene that is involved in DNA binding and cell 
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growth [309] and has been demonstrated to have the ability to stimulate growth in 

Figure 15 - Volcano Plots showing IR and TP53 effects on H1299 Secretome 

Differential protein secretion for H1299 cells (A) un-irradiated and (B) irradiated. Red data points with gene 

labels indicate proteins with log2 difference ≥ │1│ and p-value < 0.05 



 
 

127 
 

fibroblasts and some liver cancer cells [310]. 

3.7.3.2 p53wt +IR vs p53-null +IR 

In the pairwise comparison between p53-null and p53-wt cells treated with IR (Figure 

15B), proteins over-secreted in p53-null cells by ≥ 2 fold include LSM8, CANX, CHGB 

and SCG2 whereas guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1) 

was over-expressed by >2 fold in p53-wt cell secretomes. Calnexin is known to contain a 

signal peptide (1 – 20) which by manual inference, is responsible for its secretion and is 

reported to be a molecular chaperone [311, 312]. The significant differences in CHGB and 

SCG2 secretion between p53-wt and p53-null H1299 cells were observed both before 

and after ionizing radiation, suggesting a potential role for these proteins as population 

based biomarkers for patient stratification before treatment particular as a function of 

autophagy response. 

3.7.4 Association between Significant Proteins and Patient Survival 

Kaplan-Meier plots for the significant proteins were performed using the online kmplotter 

by Gyorffy et al [313]. Of the differentially secreted proteins, TXNRD1 and GPI were found 

to be significantly associated with survival in lung cancer patients (Figure 16). 

3.8 Discussion 

Approximately 10 – 15% of all proteins are secreted into the extracellular matrix via 

classical and non-classical pathways [93, 222]. The classical pathways involve the 

endoplasmic reticulum (ER)/Golgi apparatus. Here a protein undergoing synthesis and 

having the appropriate signaling sequence, generally at the N-terminus, results in the 
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transport of the ribosome to the ER membrane where the growing peptide chain is 

Figure 16 - Kaplan Meier survival plots for selected proteins 

Association between GPI levels (A) and HSPA9 levels (B) on probability of survival plot in lung cancer patients 

with or without radiation but not chemotherapy; n=310. (C) Association between p53 levels and patient survival 

in lung cancer; n=1926. Analysis conducted using Kaplan-Meier Plotter at kmplot.com  Ref: Gyorffy B, Surowiak 

P, Budczies J, Lanczky A. PLoS One, 2013 Dec 18;8(12):e82241. 
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translocated across the ER membrane [223]. The newly synthesized proteins are mostly 

found in tiny vesicles in the ER which fuse with the Golgi apparatus where secretory 

proteins are eventually sorted into transport vesicles that migrate to the cell membrane 

and are released via exocytosis into the extracellular environment [224]. The non-classical 

secretory pathway was proposed and described due to the discovery of secreted proteins 

that lack the N-terminal secretory signal sequence, are excluded from the ER/Golgi 

machinery and are not affected by inhibition of the ER/Golgi – dependent secretory 

mechanism [314]. Both pathways are involved in cells differentially expressing p53 [300, 315] 

and under different environmental stimuli including ionizing radiation [300].  

The secretory pathways associated with autophagy have been investigated in yeast and 

in cancer cells. The role of autophagy in protein secretion borders on both classical and 

nonconventional secretion and this has potential downstream ramifications for biomarker 

discovery [161, 221, 225, 304]. In this study, we quantitatively characterized the H1299 

secretome as a function of p53 expression and ionizing radiation to potentially identify 

proteomic signatures to discriminate between the response to ionizing radiation in the 

context of protective and non-protective forms of autophagy. As demonstrated in many 

studies, proteomics affords the ability to view the entire proteome, for internal cellular 

signatures, and secretome, for surrogate plasma biomarkers [94, 103, 161, 301, 302, 316–318].  

Lung cancer has been associated with abnormal protein secretion and evidence shows 

that interactions between lung cancer cells and their microenvironment contribute to 

disease progression [302]. Such communication involves the secretion of proteins and 

exosomes, most of which contain proteins, which play a role in cancer cell – cell 

interaction and which may either promote tumor progression or serve some anti-tumor 
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capacities within the body [93, 223]. Autophagy as a cellular mechanism has been shown in 

various studies to contribute to chemotherapy resistance [270, 319]. This protective form of 

autophagy appears to be associated with the presence of functional p53 in the case of 

radiation [126]. During the course of autophagy, protein turnover occurs in response to the 

applied stress. The findings of our GO Biological Process analysis is consistent with our 

expectation of cells undergoing stress from ionization radiation and in which autophagy 

is induced. The biological processes most enriched in our dataset include protein folding 

(p-value = 0.0008) (e.g. HSPD1, CANX, and PPIA), protein metabolism (p-value = 1.0 × 

10-11) (e.g. CTSZ, FAM3C, and RAN), and energy pathways (p-value = 1.0 × 10-4) (e.g. 

NME1, GPI, PGD, and PGAM1).  

3.8.1 Cathepsin D (CTSD) 

Our current work has identified a number of proteins reported in different lung cancer 

studies and that may be closely associated with autophagy. Amongst these proteins are 

CANX, Bifunctional purine biosynthesis protein PURH (ATIC), caspase 3 (CASP3), 

cathepsin B (CTSB) and cathepsin D (CTSD). Cathepsin D (CTSD) was only quantified 

in p53-wt +IR and p53-null -IR cells meaning levels in p53-wt -IR and p53-null +IR were 

not sufficient for quantitation by the LFQ algorithm. Consistent with reports of 

cytoprotective autophagy in cells with p53, the e2levated secretion of CTSD in p53-wt 

+IR cells and its decreased presence in p53-null +IR cells  may be an indication of its role 

in protective autophagy, as reported in a study in which dichloroacetate was used to 

induce protective autophagy in LoVo cells [320]. Koukourakis et al. have also reported poor 

prognosis of NSCLC associated with increased CTSD expression [321]. CTSB was 

identified in our dataset but filtered due to our stringent criteria. It has been associated 
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with the cleavage of Disabled-2 (DAB2) to promote autophagy in cells treated with 

Transforming growth factor-β (TGF-β) and when, in that study, CTSB was inhibited cells 

became apoptotic in the long term [322]. 

In determining the potential of these differentially secreted proteins to serve as 

biomarkers to predict benefit from autophagy modulation in combination with 

chemotherapy or radiation therapy, we reasoned that proteins consistently 

overexpressed or under-expressed based on p53-status and independent of radiation 

treatment are more likely to serve as population-based biomarkers before treatment. That 

is, the secretion of these proteins may contribute to prediction of benefit from treatment 

and/or help to stratify patients in clinical trials using autophagy inhibition as a tumor 

sensitization strategy.  

We identified CHGB and SCG2 to be consistently overexpressed in p53-null secretomes 

at very high levels while GIP, and TXNRD1 were consistently overexpressed in the p53-

wt secretome. Therefore, CHGB, SCG2, GPI, and TXNRD1 with consistently high levels 

have the potential to serve as population-based markers. FAM3C, CANX, and LSM8 

levels were consistently downregulated in the p53-wt +IR secretome while EIF5A levels 

were consistently low in p53-wt –IR secretomes; therefore these proteins may serve a 

role in distinguishing between patients following radiation treatment. Patients whose 

FAM3C, CANX, and LSM8 levels decrease and those whose EIF5A levels increase 

following ionizing radiation treatment may be found to have tumors that respond to 

autophagy inhibition. The secretory profiles of these proteins are shown in Figure 17. 

3.8.2 Chromogranin B and Secretogranin 2 (CHGB and SCG2) 
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The chromogranin-secretogranin proteins are known to be associated primarily with 

neuronal cells[323]. SCG2 has been shown to be involved in angiogenesis and proliferation 

Figure 17 – H1299 secretory profile of selected proteins across the different conditions  

Log2 LFQ values were plotted across the four conditions (IR treated and untreated p53-null and p53-wt H1299 for 

proteins CHGB, EIF5A, FAM3C, GPI, TXNRD1, and SCG2  
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in endothelial cells through an anti-apoptotic mechanism[324]. SCG2 is cleaved into 2 

chains: the 33-amino acid secretoneurin and manserin. Secretoneurin has been shown 

in in vivo studies to induce neovascularization in cornea and stimulate proliferation of 

serum-starved human umbilical vein endothelial cells (HUVECs)[324]. With angiogenesis 

being a prominent feature of tumor progression, it is not unexpected that SCG2 would be 

overexpressed in the secretomes of H1299 p53-null cells which undergo non-protective 

autophagy in response to radiation. Secretoneurin has also been shown to contribute to 

the growth and protection of neuronal cells [325]. This neuroprotection has been observed 

in primary cortical cell cultures during oxygen or glucose starvation[325]. Glucose 

starvation is known to induce autophagy. Chromogranin B (CHGB) is also known to be 

cleaved into the peptides GAWK and CCB which have been found to be elevated in 

pancreatic islet-cell and bronchial tumors while secretoneurin from SCG2 has been found 

to be elevated in gastroenteropancreatic neuroendocrine tumors, small cell lung tumors 

and pheochromocytomas[323, 326, 327]. There are reports of using neuroendocrine 

differentiation as a prognostic marker of NSCLC disease response to therapy[328, 329]. 

Given that the chromogranins and secretogranins are closely related to neuroendocrine 

differentiation, CHGB and SCG2 may have potential prognostic utility in NSCLC.  

3.8.3 Glucose-6-phosphate isomerase (GPI) 

The differential levels of GPI and TXNRD1 was found to be associated with both p53 

status and radiation treatment status. GPI, also known as autocrine motility factor (AMF), 

was overexpressed in the secretomes of p53-null cells by ~2.8 fold following irradiation. 

However, in p53-wt cells, levels of GPI in the secretome were not affected by IR 

treatment, implying that p53 status impacts the response of GPI following radiation as 
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confirmed by the least squares model including the interaction of p53 status and IR 

treatment (p-value=0.0276). The level of GPI in the p53-null secretome before irradiation 

was the lowest and significantly different from the other 3 conditions. GPI has different 

functions in the intracellular and extracellular compartments. GPI  has been identified in 

various cancers including renal cell carcinoma, endometrial cancer, and breast cancer[330, 

331]. In the cytoplasm, GPI acts in glycolysis in the conversion of glucose-6-phosphate to 

fructose-6-phosphate and vice versa. In the extracellular space, it may act to induce 

secretion of immunoglobulin or facilitate neuronal survival. The differential secretion of 

GPI between p53-wt and p53-null cells pre-irradiation suggests that it could prove to be 

useful as a biomarker to predict potential patient benefit from IR and autophagy inhibitor 

combination treatment before the first dose of ionizing radiation. Using the online KM 

Plotter[313], GPI was also found to be significantly associated with probability of survival 

(log Rank p = 0.0026) in lung cancer patients who may or may not have been treated with 

IR but not chemotherapy (Figure 16).  

3.8.4 Thioredoxin reductase 1 (TXNRD1) 

Studies have shown that TXNRD1, identified in this study to be significantly differentially 

secreted only in untreated p53-wt cells, has different isoforms that may display different 

functions. Isoform 4 promotes transcription of estrogen receptors while isoform 5 is 

involved in interferon beta and retinoic acid induced apoptosis [332, 333]. We determined 

from this study that the effect of IR on TXNRD1 secretion is dependent on the p53 status 

(p-value = 0.0157). Like GPI, the significant difference in TXNRD1 secretion between 

p53-wt cells and p53-null cells before IR treatment suggests that it may be used as a 

diagnostic marker (before patients undergo radiotherapy) rather than a prognostic marker 
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given that the levels after radiation are not significantly different. TXNRD1 has been 

reported to have a prognostic association in breast cancer in a study that found that high 

levels of TXNRD1 RNA in node-negative breast tumor samples correlated with a higher 

risk of metastasis [334]. 

3.8.5 Protein FAM3C 

In our study FAM3C, also referred to as interleukin-like EMT inducer (ILEI), was 

expressed ~1.5 fold higher in p53-null cell secretomes compared to p53-wt cells before 

radiation whereas there was a ~3.2-fold increase in expression in p53-null cell 

secretomes compared to p53-wt after radiation treatment. FAM3C is a member of the 

FAM3 family of proteins and its gene codes for secreted proteins known to play a role in 

autophagy [161, 335]. A number of studies have also found the gene to be overexpressed in 

esophageal, colorectal and pancreatic cancer [103, 335, 336]. A study by Ling-Zhi et al. 

indicates that FAM3C is overexpressed in the exosomes of NSCLC patient plasma 

compared to healthy patients and is also linked to cell migration in K-ras mutant cells [337]. 

Its role in cell migration may be related to metastasis and poor prognosis [337]. 

Overexpression of FAMC3in H1299 p53-null cells, which represent the non-protective 

form of autophagy, is consistent with previous studies that have linked FAM3C to poor 

prognosis in colorectal cancer and metastasis in lung cancer cells [336, 338]. 

3.8.6 Calnexin (CANX) 

Together with FAM3C, CANX was shown to be overexpressed principally in the p53-null 

secretome following radiation treatment. Calnexin (CANX) is a calcium-binding 

membrane protein of the endoplasmic reticulum [339]. It is thought to be a chaperone in 
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protein translocatin from the ER to the extracellular membrane [339] and is known to be 

cleaved during regular growth into 2 fragments in yeasts [340]. This cleavage of calnexin 

has been found to depend on autophagy in a study that showed CANX processing to be 

defective following knockdown of autophagy-related genes [340]. In yeasts, autophagy 

occurs primarily in the vacuoles and CANX has been showed to co-localize with the 

vacuole following autophagy induction via nitrogen starvation [340]. CANX has also been 

reported in a recent study as  a  novel sero-diagnostic marker of lung cancer [341]. Its role 

as a chaperone protein is consistent with this study in which we have characterized 

autophagy associated secretion induced by ionizing radiation in the H1299 NSCLC cell 

line.  To our knowledge, this is the first report of differential secretion of calnexin in 

isogenic cell lines of  NSCLC differing only in p53 expression and functional autophagy 

status. The association of calnexin with autophagy combined with its recent report as a 

potential sero marker of lung cancer suggests that it could potentially serve as a marker 

for the autophagic response during chemo- or radiotherapy.  

3.8.7 U6 snRNA-associated Sm-like protein LSM8 

LSM8, quantified in all conditions except p53-wt -IR and overexpressed in p53-null +IR 

secretome compared to p53-wt +IR cells, is widely viewed as a component of the 

spliceosome. In a study of different cell lines including mammary and lung carcinoma 

cells, the spliceosomal machinery was demonstrated to be associated with autophagy 

where depletion of key spliceosome genes SNRPE or SNRPD1 resulted in autophagy 

induction [342]. LSM8 was found to be secreted in similar quantities in p53-null cells before 

and after radiation; however, secretion was elevated after irradiation in p53-wt cells. This 

may indicate a role of LSM8 in protective autophagy after IR treatment. LSM8 has been 
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reported to be directly involved in P-body regulation, its overexpression resulting in a 

concomittant decrease in P-body structures while depletion of LSM8 results in an 

increase in P-body structures [343]. LSM8 is believed to interact with the other LSM 

proteins in the cytoplasm [344, 345]. Persistent higher expression of LSM8 in H1299 p53-

null secretomes which represent the model of non-protective autophagy which is 

unresponsive to modulation may also imply a role in non-protective autophagy when it is 

upregulated before IR treatment. 

3.8.8 Eukaryotic translation initiation factor 5A-1 (EIF5A) 

EIF5A is the only protein in humans known to have the amino acid hypusine in its structure 

[346, 347]. The modification of lysine to hypusine has been shown to be important for cell 

viability [347]. Two gene encode for two isoforms of the protein; EIF5A1 and EIF5A2 with 

84% sequence homology. EIF5A has been shown to be directly or indirectly involved with 

the p53 signaling pathway in lung cancer cells [348] as well as the regulation of autophagy 

in drosophila [349]. EIF5A2 has also reported to be important for epithelial-mesenchymal 

transition in NSCLC and overexpressed in stage 1 NSCLC patients with poor prognosis 

[350, 351]. EIF5A has been found to promote the metastatic phenotype of pancreatic cancer 

through modulatory activity on various proteins [352]. In our study, EIF5A is virtually absent 

prior to irradiation in p53-wt cells whereas it is increased by more than 3-fold following 

irradiation. Conversely, EIF5A levels in the p53-null cells do not change in response to 

irradiation. The marked upregulation of EIF5A in p53-wt cell secretomes following 

radiation treatment suggests a role in the cellular response to radiation in p53-wt cells 

and makes EIF5A a potential predictor of functional autophagy type in response to 

radiation.  
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A comparison of our data with the protein list from the study by Daub et al [353] where 23 

NSCLC cell lines were profiled reveals overlap between proteins identified in this study 

and their study (Figure 18). We also found a number of proteins that may prove to be 

peculiar to the H1299 cell line that were not identified in the Daub et al.  study including 

H2AFV, HIST1H2BK, TMA7, PKM, SUMO2 and RHOBTB3. Similar comparisons of our 

data with the proteins in the exocarta database as well as the protein list obtained by Hu 

et al. who used TMT-labeled samples to examine the secretome of the H1993 metastatic 

NSCLC cell line shows substantial overlap between the identified proteins (Figure 18) 

[302]. The overalp between these findings supports the validity of the label-free approach 

we used in our study. 

3.9 Conclusions 

The current study has identified, among many proteins, CHGB, SCG2, GPI, TXNRD1, 

FAM3C, CANX, and EIF5A as potential diagnostic and prognostic blood based 

biomarkers in NSCLC. While FAM3C and CANX have been reported as being 

Figure 18 - Comparative Venn Diagrams 

Comparison of proteins identified in our study to the Exocarta database and a recently published study by 
Rongkuan et al. to the autophagy protein database and to a study of 23 NSCLC cell lines by Daub et al. 
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overexpressed in some cancers including NSCLC, for many of the proteins identified in 

our study, this is the first report of overexpression in a NSCLC (H1299) secretome in the 

context of autophagy and ionizing radiation treatment. We determined that CHGB, SCG2, 

GPI, and TXNRD1 have potential as population-based biomarkers (for patient 

stratification) due to their consistent overexpression as a function of p53 status and not 

radiation treatment whereas FAM3C, CANX, and EIF5A hold potential as personalized 

biomarkers to predict patient response following ionizing radiation treatment due to their 

differential secretion in radiation treated versus untreated cells. On the basis of this study, 

plans are in place to conduct larger studies to optimize the sensitivity and specificity of 

these proteins in NSCLC and the validity of using these proteins as stratification tools to 

determine which patients may benefit from autophagy modulation in combination with 

chemo- and/or radiotherapy. 

It is necessary to provide a critical caveat to these findings. Although our stated goal in 

this work was to identify proteins that could potentially be utilized as biomarkers to 

distinguish between the cytoprotective and non-protective forms/functions of autophagy, 

we fully recognize that the observed profile of proteins in the secretome may be related 

primarily to the p53 status of the tumor cell models. Identifying potential linkages to 

autophagy will require further studies where the levels of these proteins are genetically 

modulated to determine their impact on autophagic function. 
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Chapter 4: 

Glycoproteomics Characterization of the SILAC-Labeled HepG2 Secretome as a 

Platform for the Generation of Stable Isotope Labeled Plasma Proteins 

 

 

 

4.1 Introduction 

The development and implementation of untargeted (i.e., global) quantitative proteomics 

strategies has transformed the study of complex biological systems. With regard to clinical 

biospecimen analysis, label free (i.e., spectral counts, LFQ) and isobaric tagging (i.e., 

iTRAQ and TMT) have played a predominant role in comparative un-targeted proteomics 

studies. The successful implementation of both approaches requires minimal sample 

preparation variation including total protein determination, consistent digestion efficiency, 

and control of chemical modifications (e.g. alkylation, oxidation, isobaric tagging, etc.). 

Although it is possible to minimize these sources of variation, it can become increasingly 

difficult scaling up to larger numbers of samples. Finally, as the number of samples 

increases and the desire to venture outside of traditional peptide-level quantification (e.g., 

complex carbohydrates), so too does the difficulty in maintaining quantitative precision 

across samples. Furthermore, the recognition that large amounts of biologically important 

information in the form of PTMs is not captured. 

Plasma remains an important clinical biospecimen for comparative proteomics analysis 

but it is one of the most complex proteomes to quantitatively study with >1010 dynamic 
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range of concentration, disproportionate levels of high abundant proteins such as albumin 

and immunoglobulins, heterogeneous protein complexes (e.g. lipoproteins), and protein 

glycoforms [82, 130]. Although many comparative plasma proteomics studies have focused 

on identifying low abundant proteins using extensive depletion and fractionation, many of 

the major plasma proteins hold important biological functions and potential diagnostic 

value. In fact, many high- and mid-level plasma proteins have been identified as 

candidate biomarkers for cancer [354]. For instance, some of these proteins (e.g., CA-125, 

APOA1, B2M, TF, and ALB used in the OVA-1 test) have been used for FDA-approved 

diagnostics and prognostics applications. An added dimension of complexity and 

opportunity lies in plasma protein PTMs. Glycosylation is very common for PTM, 

particularly for major plasma proteins, and dysregulated forms of glycoproteins are 

believed to be potentially important. Despite their importance, there are limited 

quantitative approaches to address this potentially important aspect of comparative 

plasma proteomics measurements. 

The extension of the SILAC quantitative proteomics strategy to biological samples termed 

Super-SILAC has improved the precision and accuracy of LC-MS/MS analysis of 

biospecimen [80]. We have showed in a proof-of-principle study that this approach makes 

possible the quantitative analysis of changes in the plasma proteome [82]. In that study, 

the HepG2 cell, shown in the literature to secrete many of the major plasma proteins, was 

used [82, 355]. The use of the HepG2 cell line secretome for the generation of stable isotope 

labeled (SIL) intact proteins is however, not limited in applicability to only plasma 

analyses. There are ongoing studies in our lab in which we show extended applicability 

of the SIL labeled secretome to enzyme digestion kinetics, biospecimen degradation, and 
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interaction studies. These studies are respectively in pursuit of sequences that influence 

protein digestion and peptide formation rates, factors such as collection strategies 

affecting biospecimen integrity, and novel binding motifs of heparin and heparan sulfate. 

Glycosylation is one of the most important PTMs in cellular protein production [107, 356, 357]. 

The importance of glycosylation in normal cell function as well as in disease is well 

established in the literature [358–360]. Glycosylation introduces carbohydrate (or sugar) 

moieties onto certain amino acids in the protein structure. Glycans may be N-linked or O-

linked referring to the atom of the amino acid to which the glycan is linked to the protein. 

To use the HepG2 cell line as the platform for the generation of intact SIL proteins to be 

used as standards for mass spectrometry analyses of plasma and other biospecimens, it 

is essential to characterize the complement of secreted proteins and to determine 

similarities and differences compared to plasma especially regarding PTMs such as 

glycosylation. The results of our previous study [82] suggested potential differential 

glycosylation between plasma and the HepG2 secretome as was the case with alpha-1-

glycoprotein 2 (ORM2). In this study, we present an in-depth glycoproteomics 

characterization of the HepG2 secretome.  

4.2 Experimental 

4.2.1 Reagents  

SILAC DMEM (arginine- and lysine-free high glucose Dulbecco’s Modified Eagle Media) 

was purchased from Thermo Scientific. 13C6 L-arginine-HCl (>98%) and 13C6 L-lysine-

2HCl (>98%) were purchased from Cambridge Isotopes Laboratories. Dialyzed Fetal 

Bovine Serum was purchased from Gibco. Penicillin, streptomycin, and amphotericin B 

were obtained as a 100X solution from Invitrogen. LC-MS grade acetonitrile (ACN) and 
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water were obtained from Burdick and Jackson. LC-MS grade formic acid, Iodoacetamide 

(IAA), and Dithiothreitol (DTT) were purchased from Sigma-Aldrich. Reagent grade Tris 

base and 12 M hydrochloric acid were obtained from Fisher Scientific, and trypsin gold 

was obtained from Promega.  

4.2.2 Cell Culture Conditions 

HepG2 cells were obtained from the American Type Culture Collection (ATCC, HG-8065, 

Manassas, VA), and cultured in high glucose SILAC DMEM supplemented with 10% 

dialyzed Fetal Bovine Serum (FBS), 50 mg 13C6 L-arginine-HCl (>98%), 50 mg 13C6 L-

lysine-2HCl (>98%), and 1% 100 U/ml Penicillin G sodium/1% 100 µg/ml Streptomycin 

sulfate at 37°C and 5% CO2 for nine population doublings. Cells were then transferred 

into freeze media and stored in liquid nitrogen until needed. Heavy SILAC-labeled HepG2 

cells were seeded in three sets of 3 × 10 cm dishes at ~200,000 cells in 10 mL of media 

and grown to ~85% confluency over 48 hours. At ~85% confluency, the 10% dialyzed 

FBS culture media was aspirated from all plates, cells washed with 2 × 5 mL of Phosphate 

Buffered Saline 1X pH 7.4 (Gibco) and then once with 5 mL serum-free DMEM [361]. A 

final 10 mL volume of serum-free SILAC heavy DMEM was added to the 9 plates. All 

plates were then incubated at 37oC. The serum-free media containing secreted proteins 

(secretomes) were collected into 3 × 15 mL tubes after 24-, 48-, and 72-hour incubation 

times and stored at -80oC. Cells from the plates were then harvested, pelleted by 

centrifugation at 1500 rpm for 5 minutes at 8oC, washed with PBS, and stored at -80oC 

until use. 

4.2.3 Annexin V/Propidium Iodide staining 
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Quantification of apoptotic cells via flow cytometry was performed per the manufacturer’s 

instructions (Annexin V - FITC apoptosis detection kit, BD Biosciences, 556547). Flow 

cytometry analysis was performed using BD FACSCanto II and BD FACSDiva software 

at the Virginia Commonwealth University Flow Cytometry Core Facility. 

4.2.4 Proteomics Sample Preparation 

Secretome Only 

The collected media (secretomes) samples were removed from -80oC, thawed, and 

centrifuged at 2500 rpm for 5 minutes at 8oC to remove cellular debris. The supernatant 

was then collected and concentrated in 3 kDa MWCO filters at 6900 × g for 30 minutes 

at 8oC in 5 mL aliquots. Centrifugation was repeated until there was ~500 µL of 

concentrated secretome in the filter. To remove the phenol red color, 3 × 500 µL of Tris 

HCl buffer pH 8.1 was added to each secretome and centrifuged at 6900 × g for 30 

minutes at 8oC. The concentrated secretomes were then transferred into 10 kDa MWCO 

filters and washed with 2 × 400 µL of Protease Inhibitor (PI) in Tris HCl pH 8.1 buffer by 

centrifugation at 15,000 × g for 10 minutes. Remaining secretome in the filters were then 

made up to 300 µL with PI in Tris HCl pH 8.1 buffer and transferred into 1.5 mL centrifuge 

tubes. 300 µL of PI in Tris HCl pH 8.1 buffer was pipetted into each filter, vortexed briefly, 

and transferred into the same corresponding 1.5 mL centrifuge tube. The biological 

replicates of each time point were then pooled to give 3 samples: 24h, 48h, and 72h. Total 

protein concentration was determined at 280 nm using a BioTek Synergy H1 fitted with a 

Take3 Plate. 6 × 100 µL aliquots of each sample was then pipetted into 6 new 10 kDa 

MWCO filters secretomes and were processed for proteomics analysis using the FASP 
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method [307]. For each time point, samples in three filters were subjected to PNGase F 

digestion preceding trypsin digestion while samples in remaining three filters served as 

controls in which no PNGase F digestion was carried out before trypsin digestion. 

Samples were processed concurrently. Briefly, each filter was centrifuged at 15,000 × g 

for 10 minutes. Samples in the 10 kDa MWCO filter were then reduced with 50 µL of 50 

mM DTT (to give a final concentration of 25 mM DTT) by incubation for 45 mins at 56oC. 

Reduced samples were then alkylated with 100 µL of IAA to a final concentration of 40 

mM IAA at room temperature in the dark. Reduced and alkylated samples were 

centrifuged at 15,000 × g for 10 minutes and subsequently rinsed with 350 µL of Tris-HCl 

pH 8.1. PNGase F digestion was carried out based on protein concentration with 5 µL, 6 

µL, and 7 µL PNGase F for 24, 48, and 72 h samples respectively. Samples were 

incubated at 37oC overnight. Control samples were incubated without PNGase F. Trypsin 

digestion was performed with 5.75 µL, 6.91 µL, and 8.03 µL of 1 µg/ µL Trypsin Gold 

(Promega) solution corresponding to 50:1 protein to enzyme ratio. Samples were 

incubated overnight at 37oC and then digestion terminated with 200 µL of 0.1% acetic 

acid (Fluka Analytical). 

Secretome - Plasma Combinations 

Previously concentrated secretome samples and frozen human plasma samples were 

removed from -80oC, and thawed at room temperature. Total protein concentration was 

determined at 280 nm using a BioTek Synergy H1 fitted with a Take3 Plate. 35.6 µL 

aliquots of 24 h, 48 h, and 72 h secretomes were then combined with 22.7 µL (150 µg) of 

plasma in different centrifuge tubes. Different weight-to-weight combinations (1:1, 1:10, 

and 10:1) of 72 h secretome and plasma were also prepared. Each secretome-plasma 
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combination sample was reduced with 50 mM DTT (to give a final concentration of 25 

mM DTT) by incubation for 45 mins at 56oC. Reduced samples were then alkylated with 

80 mM IAA to a final concentration of 40 mM IAA at room temperature for 30 minutes in 

the dark. Reduced and alkylated samples were centrifuged at 15,000 × g for 10 minutes 

and subsequently rinsed with 350 µL of Tris-HCl pH 8.1. Trypsin digestion was performed 

with 5 µL, of 1 µg/ µL LC-MS/MS Trypsin (Pierce) solution. Samples were incubated 

overnight at 37oC and then digestion terminated with 200 µL of 50 mM acetic acid (Fluka 

Analytical). 

Peptides were then desalted using C18 StageTips (Thermo) according to the instructions 

in the manufacturer kit. Briefly, 24 × 10 µg capacity StageTips were washed with 20 µL 

of 80% acetonitrile in 5% formic acid by centrifugation at 500 × g for 5 minutes. The 

StageTips were then equilibrated with 20 µL of 5% formic acid. 15 µL of each peptide 

sample was loaded onto a StageTip and centrifuged at 1000 × g for 5 minutes. StageTips 

were then washed with 20 µL of 5% formic acid to remove salts. Peptides were then 

manually eluted with 2 × 20 µL of 80% acetonitrile in 5% formic acid using the CombiTips 

provided with the Thermo StageTips kit. Eluted peptides were then dried in the speedvac 

and reconstituted in 20 µL of 2% acetonitrile in 0.1% formic acid. The reconstituted 

peptide samples were then transferred into LC vials and analyzed by nanoLC-MS/MS. 

Lectin Enrichment and PNGase F Digestion 

Two 1 g solutions of a 1:1 w/w mixture of the 72 h secretome and plasma were prepared 

in two different tubes for lectin enrichment. The secretome-plasma mixtures were diluted 

with the 5X binding buffer from the Thermo glycoprotein kit in a 4:1 protein buffer ratio. 
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100 µL each of WGA and Con A lectin slurries were pipetted into separate columns, 

labeled, and centrifuged at 1000 × g for 1 minute. Unless otherwise stated, centrifugation 

of lectin columns was done at 1000 × g for 1 minute. The columns were then rinsed three 

times with 1X binding buffer via centrifugation. The diluted protein samples were then 

transferred into the labeled lectin columns and incubated at room temperature for 60 mins 

with mild shaking on a vortex. The columns were then centrifuged and the flow-through 

(FT) collected and transferred into centrifuge tubes labeled WGA FT or Con A FT. 2 × 

200 µL of 1X binding buffer was added to the columns, centrifuged and the eluates added 

to the FT tubes. The columns were then incubated with 200 µL of 1X binding buffer for 

15 mins at room temperature. Columns were centrifuged followed by a wash with 200 µL 

of 1X binding buffer. Eluates were combined in the FT tubes. 200 µL of glycoprotein 

elution buffer was then added to each column and incubated at room temperature for 20 

mins. Columns were subsequently centrifuged and transferred into tubes labeled WGA 

binders or Con A binders. Incubation with the elution buffer was repeated for 20 mins 

following which columns were centrifuged and the glycoprotein eluates transferred into 

their corresponding labeled centrifuge tubes. Flow-through proteins and the eluted lectin-

enriched glycoproteins were then reduced, alkylated, and digested with PNGase F 

overnight followed by an overnight digestion with trypsin. 

4.2.5 Gel Electrophoresis 

A 1D gel electrophoresis of concentrated secretome samples (24h, 48h, and 72 h) was 

run as previously described [82]. 20 µg aliquots of secretomes were pipetted and made up 

to 20 µL with HPLC grade water. The samples were denatured and reduced by mixing 

with 20 µL of 50 mM DTT in 2X Laemmli buffer and incubating at 100oC for 5 minutes. 
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The resulting 40 µL of each sample was then loaded onto a 10% Criterion Tris-HCl 

precast gel (Bio-Rad) and run at 200V for 1 hr. The gel was washed with distilled water 

for 3 × 10 minutes followed by Coomassie staining on an orbital shaker for 30 minutes. 

The stain was then washed with distilled water for 30 minutes. The stained gels were then 

visualized with a Bio-Rad gel imager and stored at 8oC. 

4.2.6 LC-MS/MS Method 

75 µL solutions of peptide samples were pipetted into LC vials for nLC-MS/MS analysis. 

The LC-MS/MS system consists of an Eksigent nLC 415 (ABSciex) in a vented column, 

trap and elute configuration. The reverse phase trap column (75 µm x 5 cm) and analytical 

column (75μm x 15cm) were both packed in-house with Magic AQ C18 3µm and 200Å 

material. The nLC system was coupled to a Q-Exactive (Thermo Scientific, San Jose, CA) 

mass spectrometer equipped with the Nanospray-Flex ionization source fitted with a 10 

μm ID emitter PicoFrit tip (New Objective). 2 µL of peptide sample was loaded onto the 

trap column and desalted at a flow rate of 2.25 μL/min for 5 minutes using mobile phase 

A (98% H2O/2% acetonitrile, 0.1% formic acid). Desalted peptides were then separated 

on the C18 self-pack column at 300 nL/min with increasing mobile phase B (2% H2O/98% 

acetonitrile, 0.1% formic acid) using the following gradient:  5% B (0 – 4 minutes), 35% B 

(95 minutes), 75 % B (105 – 110 minutes), 5% B (115 minutes) and held for 5 minutes 

until the run finishes at 120 minutes. The electrospray emitter tip was charged with a 

voltage of 1.80 kV in positive ion mode and the Q-Exactive inlet temperature and S-lens 

setting were maintained at 250C and 62 V, respectively. Full scan (400-1600 m/z) 

resolution was set at 70,000 FWHM with an AGC target of 3 × 106. MS/MS was set to a 

resolution of 17,500 with an AGC target of 2 × 104 at 120 ms maximum inject time and 
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selection of the top 12 ions at a 30 second dynamic exclusion. HCD voltage was 

maintained at 30 NCE throughout.  

4.2.7 LC-MS/MS Protein Identification, Quantification, and Data Analysis  

Proteomic raw files were processed in the MaxQuant computational platform (ver. 1.5.8.3) 

with the Andromeda search algorithm using the Uniprot Human proteome database 

(common contaminants were added to the search). Up to two missed cleavages, mass 

accuracies: MS = 5 ppm, MS/MS = 0.02 Da; fixed modifications: carbamidomethyl (C), 

variable modifications: acetyl (N-terminus) and methionine oxidation (M), and a false 

discovery rate (FDR) of 1% were included in the search parameters. Quantification of 

proteins was done in MaxQuant using the LFQ algorithm requiring at least 2 shared 

peptides[67]. Statistical analyses were carried out in Perseus (ver. 1.5.8.8) and JMP Pro 

13 Statistical Software. One-way analysis of variance (ANOVA) tests were carried out 

followed by t-test pairwise comparisons to determine significant effects using the 

Benjamini-Hochberg correction. Imputation of missing values was done in Perseus by 

replacing with random numbers drawn from the lower (left) boundary of a normal 

distribution. Gene Ontology (GO) annotation enrichment analysis were performed using 

the David Bioinformatics Resource (ver 6.8) [362, 363]. For the GO enrichment analysis in 

David, a term is said to be enriched if the proportion of proteins associated with the GO 

term in the data set is significantly higher (using a modified Fisher Exact test) than the 

proportion of proteins associated with the term in the human proteome. In the Perseus 

statistical analysis, protein identification lists were filtered by removing contaminants and 

reverse database sequence hits.  
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4.3 Results & Discussions 

The use of the SIL HepG2 secretome as a global internal standard for plasma versus cell 

lysates offers some critical advantages for LC-MS/MS comparative studies. The majority 

of plasma proteins are produced by liver hepatocytes. The HepG2 cell line is derived from 

liver adenocarcinoma and has been used as a model for liver hepatocyte function 

including plasma protein synthesis. Primary hepatocytes were not used due to concerns 

with the ability to continue cell propagation after stable isotope labeling that occurs in 

about nine doublings (over 2 – 3 passages). To use the HepG2 cell line to produce SIL 

plasma proteins, serum-free conditions are necessary to avoid the issue of high protein 

background from fetal bovine serum [361]. However, there are concerns regarding cell 

survival as well as the contribution, from lysed apoptotic cells, of proteins that would 

otherwise not have been secreted into the media to the total secretome [361]. In other 

Figure 19 - Protein Content of the HepG2 Secretome over 72 hours 

A) Total protein concentration determined by UV absorbance at 280nm on a plate reader. Total protein levels 

increased from 2.88 mg/mL (± 0.11) at 24 hours to 3.46 mg/mL (± 0.08) at 48 hours and 4.02 mg/mL (± 0.08) at 72 

hours. Statistical significance was determined using t-tests. B) Coomassie stained 1D-Gel image of HepG2 

secretomes at 24, 48, 72 hours relative to human plasma. 
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words, sustained incubation of HepG2 cells under serum free conditions may stress the 

cells and potentially reduce the overall number of viable cells. Thus, our initial efforts were 

focused on exploring the protein production of HepG2 cells under serum-free conditions 

over an extended period while concurrently monitoring cell viability. 

To address these issues, we measured total protein production of HepG2 cells at 24h, 

48h, and 72h under serum-free conditions while concurrently measuring cell viability 

under the same conditions. HepG2 cells were cultured in triplicate in 6-well plates in high 

glucose SILAC DMEM supplemented with 10% dialyzed FBS, 13C6 L-arginine-HCl, 13C6 

L-lysine-2HCl, and 1% 100 U/ml Penicillin G sodium/1% 100 µg/ml Streptomycin sulfate 

Figure 20 - Annexin V/PI Apoptosis Assay 

Flow cytometry of Annexin V/PI stained cells shows no significant induction of apoptosis in HepG2 cells following 

serum starvation (Serum-free) compared to serum fed (Control) cells at 24, 48, and 72 hours following initiation of 

serum-free conditions 
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at 37°C and 5% CO2. At ~ 85% confluence (after 48 hrs), the media was replaced with 

serum-free SILAC DMEM-high glucose media following which conditioned media 

(secretomes) were collected and total protein concentration measured at 280 nm on the 

BioTek Synergy Hybrid Take3 Plate Reader. The results reported in Figure 19A showed 

a sustained and statistically significant increase with time. Total protein levels increased 

from 2.88 mg/mL (± 0.11) at 24 hours to 3.46 mg/mL (± 0.08) at 48 hours and 4.02 mg/mL 

Figure 21 - Protein Distribution in the HepG2 Secretome 

Quantitative proteomics results showing the A) total LFQ intensities at 24h, 48h, and 72h and B) 

distribution of individual quantified proteins. C) Rank ordered LFQ abundance levels of plasma proteins 

(*Nanjappa et. al. 2014) and cancer biomarkers (Polanski and Anderson 2007) quantified in this study. 
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(± 0.08) at 72 hours. The distribution of secreted proteins was also assessed by 1D gel 

electrophoresis (Figure 19B). Furthermore, all time points showed similar bands to 

human plasma including the prominent albumin band at ~ 66 kDa. Concurrent with the 

secretome analysis in Figure 19, we determined the effect of serum starvation up to 72 

hours on HepG2 cells using the BD Biosciences apoptosis kit. The extent of apoptosis 

was evaluated at 24, 48, and 72 hours according to the manufacturer’s directions. The 

results revealed very low levels of apoptosis in both control cells and cells exposed to 

serum starvation (Figure 20). There were very few cells in early or late apoptosis with 

most samples in both control and serum-starved cells showing mostly no cells in late 

apoptosis. 

4.3.1 Quantitative Analysis of the SILAC HepG2 Secretome 

Pooled concentrated secretome samples were then reduced, alkylated, and digested for 

nLC-MS/MS analyses. This increasing protein concentration correlated directly with total 

LFQ intensity levels which increased from 2.38E11 (± 3.20E9) at 24 hours to 2.63E11 (± 

2.78E9) at 48 hours and then to 3.03E11 (± 2.55E9) at 72 hours in the PNGase F-treated 

secretome samples (Figure 21A). As shown in Supplementary Figure 1, increased 

protein secretion over time was not a result of increased protein from lysed apoptotic cells 

with increasing incubation time in serum-free media.  

The nLC-MS/MS analysis of the HepG2 secretome revealed the identification of 1635 

unique proteins. Using LFQ[67] quantification to filter the proteins, 1229 were identified to 

be quantified in 2 or more replicates of at least one time point. Further quantitative 

analysis showed that 1187, 1225, and 1374 proteins were quantified at least once in the 
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24h, 48h, and 72h secretomes respectively. A summary of the distribution, including 

overlap, of quantified proteins across the three time points is illustrated in Figure 21B. 

1016 proteins were quantified at least once in all time points while the 72h secretome had 

the most unique proteins quantified (283). Bioinformatics functional enrichment analysis 

was performed on the 1229 proteins using David 6.8. The results revealed the enrichment 

of cellular components including extracellular exosomes (~3.57 fold, p-value = 3.13 × 10-

257), cytosol (~2.48 fold, p-value = 7.02 × 10-115), cell-cell adherens junction (~5.87 fold, 

p-value = 1.69 × 10-65), focal adhesion (~4.16 fold, p-value = 1.92 × 10-38), membrane 

Figure 22 - Gene Ontology Cellular Component (GOCC) Analysis 

Bioinformatics functional analysis of 1229 proteins quantified in ≥ 2 replicates of one or more groups 

(secretome only analysis) revealed the Gene Ontology Cellular Component (GOCC) most enriched 

in the HepG2 secretome include extracellular exosome, cytosol, cell-cell adherens junction, focal 

adhesion, membrane, and intracellular ribonucleoprotein complex. 
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(~1.90 fold, p-value = 1.27 × 10-27), and intracellular ribonucleoprotein complex (~5.98 

fold, p-value = 1.75 × 10-27) as shown in Figure 22. 

The HepG2 hepatocarcinoma cell line has been demonstrated to secrete many proteins, 

including the major plasma proteins at levels comparable to plasma, with function in 

different physiological processes[82, 364]. Many of these plasma proteins (e.g. ORM1, TF, 

Figure 23 - Differential protein secretion over 72 hours in HepG2 cells. 

Volcano plots showing significantly different proteins (shown in red circles) between the 48 hour 

secretomes compared to the 24 hour secretome (A), the 72 hour secretome compared to the 24 hour 

secretome (B), and the 72 hour secretome compared to the 48 hour secretome (C). 
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FGA, A2M, and APOA2) serve as biomarkers of disease e.g. cancer [365]. Among the 

major plasma proteins of interest are apolipoproteins, protease inhibitors, complement 

factors, and coagulation factors. A comparison of the 1635 identified proteins in the 

HepG2 secretome with the plasma protein database curated from the Nanjapa et al 

manuscript [365] and downloaded from http://plasmaproteomedatabase.org revealed an 

overlap of 491 non-redundant proteins. Included in the 491 proteins are many 

apolipoproteins including APOA1, APOA2, APOA4, APOA5, APOB, APOC1, APOC3, 

APOE, APOH, APOL, and APOM, as well as many serine protease inhibitors (SERPINs) 

http://plasmaproteomedatabase.org/
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Figure 24 – Hierarchical Clustering of Secreted Proteins in HepG2 Cells 

Heatmap of z-score normalized HepG2 protein secretion over 72 hours showing increasing and decreasing levels of different plasma proteins 

over time. Proteins corresponding to various GO terms clustered together and are colored as follows: purple – associated with complement and 

coagulation cascade, red – associated with serine-type endopeptidase inhibitor activity, brown – associated with protein binding, and green – 

associated with protein processing in the ER. 
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such as alpha-1-antitrypsin (SERPINA1), antithrombin III (SERPINC1), and heparin 

cofactor 2 (SERPIND1). Apolipoproteins are the major players in the plasma lipid 

transport system and their quantitative measurements serve important roles in 

cardiovascular disease diagnosis and prognosis. A plot of the rank ordered total LFQ 

intensity (computed by an algebraic sum of the LFQ intensity across all technical 

replicates of each sample) of the 491 plasma proteins showed quantification over six 

orders of magnitude (Figure 21C).  

Statistical analysis using t-tests were performed on the HepG2 secretome dataset to 

determine changes in the HepG2 protein secretion dynamics. Significant differences were 

found mainly to be between the 24 h secretome and 48 h or 72 h secretomes. Few 

differences in protein secretion were observed between the 48 h and 72 h secretomes. 

112 proteins were found to be significantly different between 24 h and 48 h (Figure 23A), 

while 279 proteins differed significantly between the secretomes at 24 h and 72 h (Figure 

23B), using an α value of 0.0167 for 3 pairwise comparisons and ≥ 2-fold difference. 

There were 44 significantly different proteins between the secretomes at 48 h and 72 h 

(Figure 23C).  

Additionally, we were interested in proteins with consistently increasing or decreasing 

secretory levels in the secretome from 24 – 72 hours. A z-score hierarchical cluster of 96 

plasma proteins found to be significantly decreasing or increasing over the 72-hour period 

is shown in Figure 24. Of these, 67 showed increasing levels, while 29 showed 

decreasing levels in the HepG2 secretome. 

4.3.2 N-Glycosylation of Plasma Proteins 
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To carry out N-glycosylation analysis of HepG2 secreted proteins, the concentrated 

secretome was treated with PNGase F prior to trypsin digestion. Following PNGase F 

treatment to cleave N-glycans from asparagine residues and generation of tryptic digests, 

the deglycosylated peptides were analyzed by LC-MS/MS and raw data processed.  

Manual data analysis via a cross reference of the 491 identified plasma proteins against 

the Uniprot database indicated 163 of them were N-glycosylated and represented 707 

unique N-glycosites. Among the 163 Uniprot plasma N-glycoproteins, 76 were identified 

with deglycosylated peptides in the PNGase F-treated HepG2 secretome (Figure 25A). 

Further analysis revealed that plasma N-glycoproteins in the HepG2 dataset with 

Figure 25 - Plasma N-glycoproteins in the HepG2 Secretome 

A) Bar graph showing the distribution of Uniprot-verified plasma N-glycoproteins and the corresponding number of N-

glycosites found in the HepG2 Secretome. B) Scatter plot of the 163 plasma glycoproteins with identified and 

unidentified glycosites in the PNGase F-treated HepG2 secretome. Glycoproteins with identified sites of glycosylation 

had a greater mean LFQ value than those with unidentified glycosites. C) N-glycosite analysis of  293 proteins 

corresponding to 621 glycosites identified in the PNGase F-treated HepG2 secretome showed 34% consensus with 

the N-X-T/S motif  D) N-glycan motif analysis of the 76 plasma glycoproteins with 283 identified glycosites showed 143 

glycosites (~50%) consistent with the N-X-T/S motif.  
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identified N-glycosites had a higher mean LFQ intensity across all time points compared 

to N-glycoproteins with unidentified glycosites (Figure 25B).  

An illustration of the most highly represented sequence motifs in the glycoproteins 

identified in the HepG2 secretome data is displayed in Figures 25C-D. PNGase F 

treatment revealed the presence of 621 sites of N-glycosylation in the HepG2 secretome, 

~ 34% of which were consistent with the conserved N-X-T/S motif as shown in Figure 

25C. However, for the 76 plasma N-glycoproteins, a greater proportion of the 283 

identified N-glycosites (143 representing ~ 50%)  were identified as valid N-glycosites 

(Figure 25D). 

4.3.3 SIL HepG2 secretome protein levels versus plasma 

This present study involves the characterization of the stable isotope labeled (SIL) HepG2 

secretome with downstream applications including plasma analysis. Consequently, we 

Figure 26 - Plasma Protein Secretion Changes over 72 hours in HepG2 Cells 

A) Median heavy:light (H/L) ratios for 143 proteins quantified in 2 replicates of at least one sample as a function of 

time. B) Extracted median H/L ratios of apolipoproteins and SERPINs identified and quantified in the HepG2 

secretome 
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spiked the SILAC heavy labeled HepG2 secretome into an 

ethylenediaminetetraaceticacid (EDTA) plasma sample. Here, three SILAC 

secretome:plasma samples were prepared by spiking an equal volume (35.60 µL) of each 

secretome sample (24 h – 2.976 µg/mL, 48 h – 3.596 µg/mL, and 72 h – 4.213 µg/mL) 

into 150 µg of plasma (6.607 µg/mL) in three different 1.5 mL centrifuge tubes. The SILAC 

mixtures were subsequently processed and analyzed via nLC-MS/MS before and after 

PNGase F treatment, with and without lectin enrichment of N-glycoproteins.  

For the samples analyzed without PNGase treatment, an additional 10:1 heavy to light 

mixture (300 µg:30 µg) was prepared by combining 71.21 µL of the 72 h HepG2 

secretome with 4.54 µL of plasma, resulting in twelve sample replicates representing four 

sample groups (24 h, 48 h, 72 h 1:1, and 72 h 10:1). This was done to assess linearity of 

the nLC-MS/MS method. In the plasma spike-in study 1405 proteins in total were 

identified and of these 143 proteins were quantified with ≥ 2 valid H/L ratios in at least 

one group (Figure 26A). Consistent with the total protein concentration at 280 nm, LFQ 

intensity and 1D gel results of the secretome only analysis, heavy:light (H/L) ratios of 

identified proteins in the spike-in study revealed increasing protein ratios from 24 to 72 

hours. Figure 26B shows that for apolipoproteins and protease inhibitors (quantified with 

valid H/L ratios in all replicates of all samples), secretion was generally trending upwards. 

H/L ratios were seen to increase by approximately ten-fold from the 72h 1:1 sample to 

72h 10:1 sample. However, this was not observed for all proteins due to the presence of 

proteins for which valid H/L ratios were obtained for the 72h 1:1 sample but not for the 

72h 10:1 sample. 
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In a proof of concept study [82] showing the potential for using the SILAC-labeled HepG2 

secretome as an internal standard for comparative LC-MS/MS analysis of plasma, the 

potential impact of glycosylation on the quantitative value of this approach was 

demonstrated. In that study, carried out without enzymatic deglycosylation, the heavy 

isotope labeled peptide QNQCFYNSSYLNVQR from alpha-1-acid glycoprotein 2 (ORM2) 

was identified in the HepG2 secretome sample whereas the light-labeled peptide from 

plasma was not identified. We predicted that this might have been a result of differential 

glycosylation at the 93 position of the protein between the HepG2 secretome and plasma. 

Thus, we incorporated PNGase F cleavage of N-glycans into the workflow for the present 

study. Manual data analysis and interpretation of the secretome:plasma mixture without 

PNGase F treatment revealed the same observation wherein the QNQCFYNSSYLNVQR 

was identified in the HepG2 secretome but not plasma (Figure 27). However, both the 

heavy and light isotopes of the peptide were detected and quantified in the PNGase F-

treated mixture (Figure 27). That the peptide was not identified in plasma without 

Figure 27 - Peptides from alpha-1-acid-glycoprotein 2 (ORM2) 

Heavy and Light isotopes of the peptide QNQCFYNSSYLNVQR ORM2. Heavy isotope was identified with 

or without PNGase F treatment of the SILAC combined sample whereas the light isotope from plasma was 

only identified with PNGase F treatment. 
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PNGase F treatment is suggestive of differential glycosylation between the HepG2 and 

plasma forms of the protein. Additionally, this finding is indicative of the effect of 

glycosylation on the quantitation of certain peptides.  

Figure 28 - The effect of lectin enrichment on N-glycoprotein levels between proteins in the HepG2 
secretome and plasma 

Proteins that were quantified with valid H/L ratios in ≥ 2 replicates of at least one sample group were extracted 

and their Log
2
 H/L ratios computed; missing values were imputed. The graphs were then plotted to illustrate 

the changes in protein levels due to enrichment using lectins with different specificities (Con A and WGA). 

Graphs are shown for A) Alpha Fetoprotein (AFP), B) Anti-thrombin III (SERPINC1), C) Serotransferrin (TF), 

and D) Apolipoprotein A1 (APOA1). 
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4.3.4 Differential glycosylation of SIL HepG2 secretome versus plasma 

glycoproteome 

Complex glycopeptides and/or glycan identification can be improved using glycoprotein 

enrichment strategies including lectin affinity capture[80, 81, 366] and solid phase 

extraction[107]. Several lectins exist with widely differing binding affinities for different 

glycan moieties. Wheat germ agglutinin (WGA) and Concanavalin A (Con A) are two of 

the most widely lectins for glycoprotein/glycopeptide enrichment. Despite the general 

knowledge in glycomics that there is some overlap between WGA and Con A binding 

preferences, the degree of overlap is generally not known. It is widely accepted however, 

that WGA binds preferentially to glycoproteins with N-acetylglucosamine residues and 

sialic acid residues (e.g. N-acetylneuraminic acid) whereas Con A binds to mannose[81, 

123, 367]. Consequently, we pursued lectin enrichment of the 72 h secretome:plasma SILAC 

sample and explored, where present, glycan differences in major plasma proteins 

including apolipoproteins and SERPINS using WGA and Con A. 894 proteins were 

identified in the lectin enrichment study with 119 proteins quantified with valid H/L ratios 

in at least one of the groups. Among the 119 proteins are many apolipoproteins, 

complement factors, and serine protease inhibitors identified with sequence coverages 

as high as 70%. H/L protein ratios were transformed to Log2 values following which 

missing values were computed. We then determined median Log2 H/L ratios for each 

protein in each group. While protein glycosylation plays a vital role in various molecular 

processes in the body, the microheterogeneity of glycans found on a single site of 

glycosylation in proteins poses challenges [368]. 



 
 

165 
 

It is important to note that when the same types of glycan structures are present at a given 

glycosite of both the heavy (HepG2 secretome) and light (plasma) isotopes of a given 

protein, the H/L ratios determined for the Con A or WGA lectin-enriched samples would 

be expected to largely be similar, if not equal. Furthermore, this ratio will not be different 

from the unenriched sample. However, when a given glycosites harbors different kinds of 

glycans in the secretome compared with the plasma, the H/L protein ratio determined for 

the unenriched sample will differ from the ratios determined for either Con A- or WGA-

enriched samples. For example, AFP shows similar ratios for the unenriched sample and 

the Con A-enriched sample but a significantly different ratio for the WGA-enriched sample 

(Figure 28A) signifying that the heavy- and light-labeled isotopes of AFP have similar 

types of mannose-containing glycans but different sialic acid or N-acetylglucosamine 

residues. While AFP has two possible sites of N-glycosylation, only one known site is 

reported in Uniprot. Although controversial, serum AFP levels have been used as a 

marker for hepatocellular carcinoma (HCC) and nonseminomatous germ cell tumors 

(NSGCT) [369, 370]. Johnson et al. reported, in 1999, the isolation and structural elucidation 

of eleven glycan structures from HCC and NSGCT patients including seven N-linked 

glycans with different levels of sialylation, fucosylation, and galactosylation[369]. The 

authors stated that the glycans present on AFP may be useful for diagnosis as the glycan 

structures may be related to the type of tumor present in the patient. A study by Kim et 

al.[370] then showed that the glycosylated (or deglycosylated) form of AFP performed 

better as a diagnostic tool for HCC than the un-glycosylated form of the protein. 

Ajdukiewicz et al.[371] also reported abnormal glycosylation of AFP in some HCC making 

it plausible that the glycosylated heavy-labeled AFP in the secretome differs from that 
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present in the plasma sample due to the different origin of the samples. Moreover, this 

highlights the value of the SILAC HepG2 secretome as an internal standard for the 

analysis and detection of differential glycosylation in patient plasma. 

Again, SERPINC1 showed similar ratios for the unenriched and WGA-enriched samples 

but a different for the Con A-enriched sample as illustrated in Figure 28B suggesting 

similar sialic acid residues but different mannose residues between the HepG2 secreted 

protein and its plasma isotope. As a necessary factor for the inhibitory effect of heparin 

on thrombin and factor Xa in the clotting cascade, the discovery of potential differences 

Figure 29 - Deglycosylated Peptides from serotransferrin (TF) 

Heavy and Light isotopes of two peptides from serotransferrin (TF), CGLVPVLAENYNK and 

QQQHLFGSNVTDCSGNFCLFR showing distinct differences in the amounts present in the Con A-

enriched and WGA-enriched samples. Heavy peptides are shown in red font and light peptides in black. 
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in SERPINC1 glycosylation between the HepG2 secretome and human plasma is very 

relevant. Moreover, it is known that differences between the alpha and beta forms of 

SERPINC1 regarding the glycan composition is responsible for the approximately ten-

fold difference in heparin binding affinity[372]. We also observed differing H/L ratio for 

various proteins including serotransferrin (TF), and APOA1 between the Con A- and 

WGA-enriched samples compared to samples that were not enriched (Figures 28C-D). 

N-glycan analysis of TF by Fu et al. resulted in the identification of trisialylated 

carbohydrate species [373]. The higher H/L ratio of TF following WGA enrichment 

Figure 30 - Differential enrichment of 68 SIL HepG2 glycoproteins relative to human plasma 

Glycoproteins enriched by more than ±1.5 are indicated in red. SIL glycoproteins were enriched primarily 

with WGA lectin affinity relative to ConA lectin affinity.  
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compared to the unenriched sample suggests an overexpression of sialylated glycan 

residues in the HepG2 secretome relative to plasma. It is still largely unknown, for most 

major proteins, how glycosylation differs between healthy and disease patients. 

Consequently, the interaction of under- or overexpression of certain glycans with patient 

disease remains unclear [374]. Using our SILAC HepG2 secretome as an internal standard 

approach for comparative plasma studies, these interactions can be delineated to provide 

some insight into these very pertinent questions. The results of the quantitative analysis 

showed that of the two known N-glycopeptides from TF that were identified and quantified 

in the unenriched PNGase F-treated SILAC sample, CGLVPVLAENYNK was quantified 

only in the Con A-enriched sample and QQQHLFGSNVTDCSGNFCLFR only in the 

WGA-enriched sample. However, further manual data interpretation revealed that both 

peptides were present in both lectin-enriched samples albeit the light peptide was always 

more abundant in the Con A-enriched sample while the heavy peptide was always more 

abundant in the WGA-enriched sample (Figure 29). In addition, the lack of quantitative 

information on CGLVPVLAENYNK in the WGA-enriched sample is attributable to the low 

quality of the spectra compared to the spectra seen in the Con A-enriched sample. 

Finally, in Figure 30, we evaluated the general relationship between all proteins with 

sufficient quantitative information in the Con A and WGA-enriched samples. Except for a 

few proteins, the results indicate that there is a general bias towards WGA enrichment in 

the HepG2 secretome compared to plasma. This observation is consistent with previous 

reports in the literature that tumor cells present with hypersialylation [375, 376]. 

4.4 Conclusion 



 
 

169 
 

The extension of the applications of the SILAC labeled proteome to the analysis of 

biospecimen has been demonstrated in different studies. We provided, in a previous proof 

of principle study, evidence to show that these applications can be extended to plasma, 

the most abundant biospecimen in clinical settings. Apolipoproteins (e.g. APOA1, and 

APOE) and serine protease inhibitors (e.g. SERPINA1, SERPINA3, and SERPINA5) 

serve as biomarkers in various diseases in the clinic. In this present study, we have 

identified and quantified many of these usually difficult to measure apolipoproteins and 

SERPINs, demonstrating the utility of the SILAC HepG2 secretome as a spike-in internal 

standard for the analysis of clinical specimen such as plasma. Moreover, in comparison 

to our previously published proof-of-principle study, we have improved upon the total 

number of proteins quantified in the secretome:plasma sample from 62 to 143. 

Furthermore, we have successfully characterized the temporal SILAC-labeled HepG2 

secretome particularly as it relates to similarities and differences in glycosylation 

compared to human plasma. In so doing, we have further demonstrated the applicability 

and value of mass spectrometry-based proteomics, using the SILAC-labeled HepG2 

secretome as an internal standard, in comparative analysis of clinical samples. We have 

showed differences in the glycosylation of proteins e.g. AFP, SERPINC1, TF, and APOA1 

between the HepG2 secretome and plasma. Lastly, our results suggest an 

overrepresentation of sialylated glycans in the HepG2 secretome relative to plasma. 

Ongoing studies in our lab aim to demonstrate further applications of this approach and 

the potential to use the SILAC-labeled library of proteins generated from the HepG2 

secretome in identifying different glycan-binding ligands in plasma. 
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Chapter 5: Overall Conclusions 

 

 

 

Mass spectrometry-based proteomics has contributed enormously to research efforts that 

have led to many important discoveries that have resulted in improved understanding of 

cellular function and disease states over the past two decades [377]. With the current focus 

on the bridging the gap between clinical practice and basic science research, research 

efforts are directed at findings that can be easily transferred to the clinic to guide both 

clinical practice – early disease detection and diagnosis – as well as patient management 

[378, 379]. At the forefront of the clinical translation research paradigm is the search for 

novel, faster, and simpler ways of carrying out point-of-care tests. For this reason, MS-

based proteomics leads the search for biomarkers of disease aimed towards helping in 

early detection, diagnosis, and prognosis of disease and treatment. In addition, current 

MS-based efforts are aimed at the extension of traditional sample analysis to more 

complex and detailed analysis of biomolecular species including complex carbohydrates 

often found bound to proteins and sometimes lipids. 

Plasma represents the primary biospecimen for disease diagnosis and prognosis in the 

clinic and is therefore the sample of choice in the search for clinical biomarkers [93, 130, 380]. 

Initial research efforts however, benefit from looking into secreted proteins (secretome) 
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in cell culture. This approach is due, in part, to the complexity of plasma with protein levels 

spanning more than 10 orders of magnitude, as well as the analytical challenges involved 

in its LC-MS/MS analysis [82, 130]. As part of the normal homeostatic mechanism of the 

body and/or in response to different types of injury, cells secrete various proteins and 

other macromolecules into the extracellular environment. These secreted proteins may 

be found in the interstitial fluid, blood, cerebrospinal fluid (CSF), and bronchoalveolar 

lavage (BAL) fluid [130, 381]. Cell secretions contain many proteins with described function 

in cell-cell signaling and communication, immunity, and coagulation [93]. 

The cell culture secretome represents a surrogate for blood useful for early discovery and 

development research [93, 96] due to a combination of decreased complexity, more control 

of the experimental sample, and the relatively lower heterogeneity of samples compared 

to plasma [382, 383]. The secretome represents a great resource for these studies due also 

to the depth of information contained therein.  

5.1 H1299 NSCLC Study  

As has been demonstrated using MS-based proteomics, the secretome holds great 

experimental value as a model for biomarker discovery and development. In Chapter 3, 

the suitability of the secretome of the isogenic H1299 NSCLC cell line in biomarker 

discovery involving radiation-induced autophagy was demonstrated by the discovery of 

candidate biomarkers with potential use for diagnostic and prognostic purposes. Having 

been established, in previous studies in the Gewirtz lab, that cytoprotective and non-

cytoprotective autophagy are induced in response to ionizing radiation treatment in p53-

wt and p53-null H1299 cells respectively, this study aimed to explore the differences in 
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protein expression and secretion between p53-wt and p53-null cells before and after 

ionizing radiation treatment. The study was to delineate the value of different proteins as 

candidates for distinguishing between patients for whom autophagy modulation in 

addition to radiotherapy would or would not be beneficial. Initial data analysis revealed 

that the H1299 secretome was enriched for proteins associated with exosomes (~5.3 fold, 

p-value = 4.52 × 10-66) and chaperone activity (~15.1 fold, p-value = 5.12 × 10-13). An 

analysis of variance was conducted to determine protein differences across samples and 

yielded 25 proteins. Hierarchical clustering subsequently revealed that differential protein 

secretion was primarily dependent on p53 status. We then compared the protein levels in 

each sample to the mean protein level across all samples as a means of expressing 

protein secretion per sample/condition as a function of a population value. Levels of 

CHGB, SCG2, GPI, TXNRD1, FAM3C, CANX, and EIF5A were determined to be differ in 

the secretome based on radiation treatment and/or p53 status.  

Overall, we demonstrated differences in protein secretion and discovered the above-

mentioned candidate biomarkers that may serve a diagnostic purpose in early disease 

detection or prognostic role following radiotherapy. 

5.1.1 Future Studies 

While we have successfully developed MS-based proteomics methods for global protein 

analysis in the H1299 for biomarker discovery, it is necessary to recognize that more work 

may be done to build on the results of these studies.  

First, the study may be replicated in different NSCLC cell lines to determine if the protein 

secretion response observed in our study is generalizable or limited to only H1299 
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NSCLC cells. Following the identification of candidate biomarkers, it is essential to screen 

and validate the panel of proteins. Consequently, the H1299 radiation-induced autophagy 

biomarker study will benefit from further studies involving immunoassay (Western blot or 

ELISA) analysis of the proteins, both in the secretome and in cell lysates, to verify the 

increased or decreased protein levels observed in our MS-based proteomics study. 

Furthermore, it would be appropriate to explore the effect of pharmacological and genetic 

inhibition of autophagy on the levels of these proteins before and after radiation treatment. 

Indeed, if the secretion of the candidate proteins is altered significantly in autophagy-

competent versus autophagy incompetent cells, that would offer more support to their 

potential roles as biomarkers of radiation response in these H1299 cells. Finally, studies 

may be conducted to validate the presence and differential levels of these candidate 

proteins in the plasma of NSCLC patients before and after radiotherapy.  

5.2 HepG2 Study  

In Chapter 4, secreted proteins from HepG2 hepatocellular carcinoma cells were 

characterized as part of a larger effort in the generation of a library of intact SIL internal 

standards for comparative proteomics. HepG2 cells were cultured in serum-free 

conditions for 24h, 48h, and 72h and the conditioned media collected and analyzed via 

nLC-MS/MS. Protein secretion was generally observed to increase from 2.88 mg/mL (± 

0.11) at 24 hours to 3.46 mg/mL (± 0.08) at 48 hours and 4.02 mg/mL (± 0.08) at 72 hours. 

Expectedly, the increasing protein secretion over time translated into increasing protein 

intensities (LFQ) from 2.38E11 (± 3.20E9) at 24 hours to 2.63E11 (± 2.78E9) at 48 hours 

and then to 3.03E11 (± 2.55E9) at 72 hours. Among the Gene Ontology (GO) terms found 
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to be highly enriched in the HepG2 secretome are extracellular exosomes (~3.57 fold, p-

value = 3.13 × 10-257), and membrane (~1.90 fold, p-value = 1.27 × 10-27). 

A total of 1635 proteins were identified in the HepG2 secretome out of which 491 were 

determined to be plasma proteins through comparative analysis with the plasma proteins 

database curated by Nanjappa et al [365]. Despite known difficulties in LC-MS/MS analysis 

of apolipoproteins, the study showed the identification and quantification of many 

apolipoproteins including APOA1, APOA2, APOB, APOC1, and APOM. Serine protease 

inhibitors including SERPINA1, SERPINC1, and SERPIND1 were also among the major 

plasma proteins identified and quantified with high sequence coverage. 67 proteins were 

determined to increase consistently with time whereas 29 proteins decreased consistently 

over 72 hours. A Uniprot cross reference of the 491 plasma proteins revealed that 163 

proteins were N-glycosylated at 707 unique N-X-S/T sites. Of the Uniprot N-glycoproteins, 

76 were identified with 143 N-glycosites in the PNGase F-treated HepG2 secretome.  

A plasma spike in study was conducted, with and without lectin (Con A and WGA) 

enrichment of glycoproteins, in comparison of protein glycosylation between the SIL 

HepG2 secreted proteins and plasma. Differential glycosylation of proteins including AFP, 

SERPINC1, TF, and APOA1 was observed between plasma and the HepG2 secretome 

using the difference in levels of the Con A-enriched samples and WGA-enriched samples. 

Taken together, this study validated the HepG2 cell line as a good source for the 

generation of a library of intact SILAC labeled plasma proteins. Moreover, it demonstrated 

the extended applicability of the SILAC labeling strategy to plasma and other bodily fluids. 

5.2.1 Future Studies 
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In bottom-up MS-based glycomics, three essential pieces of information are necessary 

for a complete understanding and elucidation of glycoprotein structure. These are the 

sites of glycosylation, the intact glycopeptide sequences, and the types and numbers of 

different glycan species occupying the determined glycosites. Currently however, one of 

the major bottlenecks in glycomics is the successful elucidation of the glycans occupying 

specific glycosites on a protein on a global scale. Issues of the number of possible glycan 

structures combined with the paucity of reliable software necessary to automate the 

structural elucidation of glycan species contribute to this bottleneck.  

Future studies may focus on the identification of glycopeptide sequences from the HepG2 

secretome alone and in combination with plasma. Furthermore, it will be necessary to 

determine the structures of the glycans shown in the lectin enrichment study to differ 

between plasma and the HepG2 secretome. Information obtained from determining intact 

glycopeptide sequences may then be utilized in the determination of glycan structures; 

the glycopeptide weight minus the weight of the deglycosylated peptide gives the weight 

of the glycan(s) that inhabit the N-glycosite(s) on the peptide sequence. This offers a good 

starting point for beginning to elucidate the structure of the glycans. Through glycan 

structure elucidation, it will be possible to conclusively determine the differences in 

sialylation between plasma and the HepG2 secretome. 

In conclusion, the results of the studies outlined in this dissertation support the use of the 

cancer cell secretome for biomarker discovery as demonstrated in the H1299 NSCLC 

study as well as the extension of the SILAC proteome to comparative plasma studies. 

Furthermore, the HepG2 study offers a foundation for building on the glycomics of the 
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HepG2 secretome as a platform for the generation of plasma proteins capable of use as 

internal standards. 
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