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Abstract 

The detection and analysis of lipids in biological matrices for clinical applications poses 

many challenges, but rapid and reliable detection will prove invaluable for clinical diagnosis.  

Herein, we report the application of drop-casted Ag nanoplatelets as surface enhanced Raman 

scattering (SERS) substrates for qualitative detection of 20-hydroxyeicosatetraenoic acid (20-

HETE), which is a potential biomarker for diagnosis of hypertensive disorders. Biomarker peaks 

of 20-HETE can be reliably detected and differentiated from those of the structurally similar lipids 

(arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid) commonly found in human 

blood, even 1 pM concentrations. Additionally, one study mixed 20-HETE with three structurally 

similar lipids at concentrations several orders of magnitude greater than the target lipid and 20-

HETE could still be detected under these conditions. These experiments demonstrate the viability 

of SERS for the rapid and reliable detection of endogenous bioactive lipids, which has significant 

clinical impact in enabling point of care diagnostics. 

 

Key Words: 20-HETE, SERS, lipid, detection, Raman, silver, nanoplatelet, enhancement 
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Chapter 1: Introduction 

 Nanomaterials have gained increasing interest over the last two decades, since they were 

mentioned by President Bill Clinton in 2000 at an address on scientific policy at Caltech.2  At the 

time, it was fascinating to the non-science community that such small materials could be made 

and worked with, even if they could not fully comprehend the size of the particles nor the 

magnitude of the effects that they would have in everyday life.  Nanomaterials quickly became 

an important asset in consumer electronics, energy generation, storage and delivery, medicine 

and industry. The interest in these materials are derived from the unique properties that they 

exhibit.  Materials from 1-100 nanometers are classified as nanomaterials.3  This small, but 

highly varied class of materials includes semiconductors, sensors, biomaterials, catalysts and 

magnetic nanoparticles (NPs).  Small variations in the size, morphology and composition can 

make immense differences in the characteristics of these particles.4 
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1.1 Nanomaterials 

 

The phrase “bigger is better” is used quite often, however it does not always hold true 

with materials.  NPs derive many of their unique physical and chemical properties from size 

related effects.  NPs have inherently high surface area to volume ratios.4–6 Most reactions occir at 

the surface of a material, lending the increaased surface of nanostructures to improve catalytic 

activity.7,8  The surface atoms are more strained than core atoms in a nanomaterial, which leads 

to lower melting points for smaller nanoparticles.9,10  This high surface strain also leads to the 

tendancy of nanoparticles to aggregate, leading to many nanoparticles created by chemical 

methods having  capping agents to stabilize the particles.11,12 Many other intersting 

properties of nanotechnology are dervied from quantum physics.  NPs are small enough that 

some netwonian physics does not apply, and instead quantum mechanical properties are 

observed.13,14  One of the most important quantum properties seen in nanoscience is quantum 

Figure 1.1 Demonstration of surface area to volume ratio effects, where a= edge length, V= 

volume and SA= surface area. As the volume of a regular three dimensional shape increases, 

the surface area to volume ratio decreases. 
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confinement.  When a particle is smaller than the bohr radius of the material it is made of, it is 

said to be quantum confined.15–17  A quantum confined particle will have a large bandgap than 

the bulk material.18,19  The energy of the bandgap will be size dependant, leading to the 

development of quantum dots, luminescent quantum confined NPs that are more efficient than 

their bulk counterparts at light absoprtion and emission.18–20   This efficency is derived from an 

effect known as quantum confinement.  When the Bohr radius of a particle is smaller than the 

exciton of the material it is made from, the energetics of the particle are changed,15,17 The system 

is considered quantum confined when the particle is below the de Broglie wavelength of an 

electron (also referred to as the exciton Bohr radius) for that material, making its excitations 

more energetically demanding than a bulk material, or even non-quantum confined 

nanoparticles.21,22  Below the excitation Bohr radius, the emission of a particle will blueshift 

because the discrete energy levels will be further seperated 

 Taking into account the three dimensional particle in a box model, one can begin to 

further understand the quantum confinement effect.23,24  As the volume of a speherical particle, 

aproximated as a three dimensional potential well, is squeezed to a smaller radius, it increases 

the energy of the system, as represented by the equation: 

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=  

ℏ2𝛱2

2𝑚
[(

𝑛𝑥

𝐿𝑥
)

2

+ (
𝑛𝑦

𝐿𝑦
)

2

+ (
𝑛𝑧

𝐿2
)

2

]25 

 Nanospheres have three dimensions of confinement while nanowires and nanorods with the 

longitudinal radius below the de Broglie wavelength have two dimensions of excitation.26–28  As 

the raius of any of these dimensions is decreased, the denominator of one of the terms on the 

right side of the equation will be cedreased, increasing the energy of the excitation.  This 

principle dictates why quantum dots are desirable for solar cell applications, in which a more 

energetic absorption and emision will often shiift the wavelength into regions of the 
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electromagentic spectrum that are more intensely emitted by the sun, firther increasing the 

energetic efficienct of these particles.28–32 

1.2 Bandgaps 

 

 The properties of NPs are largely dependnat on the elements that they are composed of.  

The element will not only determine the Bohr radius of the nanoparticles, but will also determine 

the elecectrical properties of the particles.18,30,33  There are three electrically relevant 

classifications for materials: conductors, semiconductors and insulators.34  These classifications 

are determoined by the bandgap of the material, or amount of energy that is required to excite an 

electron from the valence band to the conduction band.35,36  The valence band is formed by the 

overlay of the descrete highest occubied molecular orbitals (HOMOs) of the material while the 

conduction band is formed by the overlap of the lowest unocupied moleulcar orbitals 

(LUMOs).13,32,37  This bandgap will determine charactersitic properites of a material, such as the 

electrical resistance and emission wavelength of the particles.38  Insulators have a bandgap 

Figure 1.2 Band gap effects of quantum dots, where the blue quantum dot is quantum confined, 

resulting in the largest tuned bandgap.  As particles decrease in size, the band gap increases.  

There is a large bandgap increase when a particle is quantum confined by the particle’s radius 

becoming smaller than the Bohr radius of that material, as represented by the large band gap 

increase between the green and blue quantum dots above. 
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greater than 4 eV, semiconductors have between a 0.5 and 4 eV bandgap and conuctors have less 

than a 0.5 eV bandgap.32,39  In a conductor, the valence band and conduction band overlap, 

allowing the electrons to freely flow from one band to the other, resulting in low electrical 

resistance and high conduction materials.  Semiconductors can have two different trnaisitions: 

direct and indirect band gaps.18,32,40,41  In a direct bandgap semiconductor, both the momenta of 

the lowest energy position in the conduction  band and highest energy section of the valence 

band align, allowing for facile transitions of electrons when they are exposed to photons of the 

proper energy. 18,32,40,41  Indirect bandgap materials require the momentum of the electron to 

change in going from the valence to the conduction band because the local extrema are not in the 

same momentum.42–45  This process requires both an exciation photon and a photon to change the 

momentum of the electron in order for an electron to move from one band to the other. 42–45 

Because of the requirment for this second photon, inidrect bandgap semiconducotrs are less 

efficent than direct bandgap semiconductors.45,46 
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1.3 Nanoparticles in Medicine  

 Medicine has taken interst in nanoparticles for several theraputic mechanisms, including 

the use of magnetic NPs and thermotheraputic particles.47–49  Magnetic NPs have been used in 

Germany for several experiment involving targetic specific regions of the body for drug delivery 

or thermotehraputics.48,50–52  A properly engineered magnetic field can contain a large number of 

the particles to a particular region of the body, allowing for more localized therapy.  If the NPs 

are used for drug delivery, they will be held to the region of the body until the drug has had 

enough time to be released.3,51  If it is instead used for thermotheraputics, the particle 

 

 

Figure 1.3 Direct (left) and Indirect (right) bandgaps.  In a direct bandgap, the smallest energy 

difference between the valence and conduction bands is in the same momentum.  In an 

indirect bandgap, the bandgap is the least energetically different at two different momenta, 

making electronic excitation less efficient due to the requirement for the momentum change. 
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concentration will be increased within the field, increasing the effectiveness of the therapy.  In 

thermotheraputics, nanoparticles are designed to heat up after exposure to radiation of a 

wavelength that is not normally harmful to biological samples.47,49–51   By causing a localized 

heating of the afflicted cells through targeted exposure of radiation from a laser, the particles will 

be heated above 40° C and held long enough to kill the cells in that region.48  This allows for a 

high degree of target descrimination within the desired region, giving rise to the ability to kill a 

tumor without harming the healthy cells surrounding it.  These particles can be combined with 

Figure 1.4 The band gaps of insulators (left), semiconductors (middle) and conductors (right) 

are displayed with a graphical representation of the valence and conduction bands.  Insulators 

have a large band gap, reducing the probability of transitions from the valence to the 

conduction band.  Semiconductors have a smaller bandgap, making excitation more probable.  

The bands of a conductor overlap, causing a high probability of transition from the valence to 

the conduction band. 
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quantum dots for imaging and drug delivery NPs to further increae the power of NPs for cancer 

treatments.48 

 As sensors, nanomaterials have become famous for their low limits of detection, 

specificity and biocompatibility.53  The highly energetic surface of atoms of NPs make them 

more photoactive, increasing their detectibility.49  This small size also allows greater motion of 

the particles.  Diffusion rates in fluids are drag dependant, making a greater number of small 

particles more adventageous than a small number of large senosrs.54–56  The increased surface 

 

 

 

Figure 1.5 Magnetic thermotherapeutic nanoparticles being used for regionally selective 

cancer therapy. These NPs are designed to allow a magnetic field to hold the particles in 

place (magnetic) and can be heated up by exposure to an excitation source, such as an IR 

laser, creating an area specific cancer therapy. 
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area also means a greater number of collions between the sensor particles and potential analyes.  

This drastically decreases the lower limit of detection (LOD) of these mateirals, lending them to 

highly active imaging media.55–58  In more traditional sensors, nanowires allow for smaller 

devices to be made, giving rise to more specific detection, as well as the ability to link multiple 

sensors into a single device that is still small enough to detect biological activity without 

interfering in normal funciton.   

1.4 Non-medical Nanoparticle Applications 

 Nanoparticle use is not limited to the nanoscale.  In many new and invesitgational 

materials, nanoparticles are being incorporated into currently existing bulk materials to change 

their properties.3  Similarly to alloying or dpoing, adding a small amount of one materaisl to a 

large amount of another can introduce charactersitics of both materials.59–61  Nanoparticles can 

be used to change the electrical conductivity, melting point, stregth or reactivity of a material.  

Nanoparticles have also been used because fo their optical properties for millenia, tracing roots 

back to ancient artwork where they were used as pigments.62,63  Famously, metal nanopartilces 

were used to make stained glass, which can be obserged in decadent cathedrals throughout 

Europe.64,65  More recently, it has been discovered that nanoparticles interact with light by doing 

more than just absorbing and emitting wavelengths that are astheticly pleasing.  It has been 

discovered that the  numerous light interactions of nanoparticles make them ideal for sensing 

applications.   
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1.5 Surface Enhanced Raman Spectroscopy

 

The small size also changes the color of these particles.  Since even at 100 nm, 

nanoparticles are smaller than the wavelength of the visible and UV spectrum, light interactions 

with nanoparticles do not produce the same visible color effects that bulk materials exhibit.3,52,66  

Gold’s signature color in the bulk is lost in the nanoscale, replaced b y purple and red colored 

nanoparticles.  This effect is due to the localized surface plasmon resonance (LSPR),67  The 

LSPR is derived from an oscilllation of the electron cloud of plasmonic metal nanoparticles that 

are being stimulated by light.68  This oscillation of electrons greats an electric field, which will 

have a magnetic field that is orthogonal to it.67–69  The resultant fields of this plasmon oscillation 

can induce a surface enhancement effect in Raman Spectroscopy (discussed later in this chapter) 

by changing the polarizability of any analytes. 8,54,70,71 

Figure 1.6 Size comparison of 532 nm light to 100 nm nanoparticle.  Because the wavelength 

is greater than the size of the particle, that wavelength would not be able to be used for particle 

imaging.  It can, however, impart energy on the particle, inducing effects such as LSPR. 
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The study of interactions between electromagnetic radiation and matter, known as 

spectroscopy, has provided insight into chemical and physical properties of materials and 

systems for centuries.  There are four common electromagnetic interactions with matter: 

reflection, transmission, absorption and scattering.72–78  In reflection, light bounces from a 

surface without changing the wavelength.76–81  Some of the energy of the incident light is lost to 

inelastically if the reflectance of the surface is less than absolute, which can be approached but 

has not been reached.79,81  Diffuse reflection spectroscopy can be used to learn what wavelengths 

a solid absorbs by seeing which wavelengths are reflected, and therefore not observed.  

Absorption is the transfer of energy of a photon to become internal energy of the absorber.76,77  

Figure 1.7 Simplified diagram of localized surface plasmon resonance.  When excitation 

energy of the proper frequency (in this case, light) interacts with the nanoparticle, it 

causes oscillation of the electron cloud.  Since the magnetic field is perpendicular to the 

electric field created by the oscillation, it causes the magnetic field to shift as well. 
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Absorption, such as UV-visible absorption spectroscopy can be used to determine the 

concentration of solutions, observe charge transfer effects and observe organic reactions, which 

will change absorption based on changes inn pH, conjugation of the system and solution 

polarity.20,74,82,83  Transmission is the ability of a wavelength to pass through an object or 

solution without being absorbed.78,84–87  It is typically coupled with absorption spectroscopy 

techniques as a complementary mode, representing similar data in an inverse manner, showing 

high intensity in transmission mode where low intensity is shown in absorption mode.88  

Scattering involves the deviation of the emission from the straight-line trajectory that it was 

initially on, causing bending of the light.26,70,73,74,78,89 Some modes of scattering change the 

wavelength of the light while others do not.  A common spectroscopy technique based around 

measuring scattering is Raman Spectroscopy.  Numerous SERS studies can be found showing 

increased sensitivity using rhodamine as an analyte, however practical applications of this 

technology are still few and far between.54,71,90–93  Though some studies have been done with 

DNA, showing the viability of using SERS to detect complex biomolecules, no known studies 

have successfully used SERS for medical diagnosis.33,38–42 Several review papers from 2005 

onward projected that SERS would be usable for clinical diagnosis, but no known studies have 

been reported hitherto.43–46  Lipid studies have been done with Raman and SERS imaging, 

however it has not been used as a point of care device for diagnosis.  

1.6 Hypertension, Preeclampsia and Lipids 

One medical condition that would be hypothetically easy to detect with SERS would be 

hypertension.  Several lipid metabolites are linked closely to hypertensive disorders by inducing 

vasoconstirction.102–105  Specifically, the cytochrome P450 facilitated arachidonic acid cascade 

has been shown to induce hypertension through the creation of epoxyeicosatrienoic acids (EETs) 
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and their counterparts, the hydroxy epoxyeicosatrienoic acid derivatives (HETEs) are known 

biomarkers of hypertensive disorders.106–113  One specific HETE derivative, 20-

hydroxyeicosatetraenoic acid (20-HETE) has been well studied as a biomarker for 

hypertension.107,108,113  20-HETE (structure shown in Figure 1.9) is differentiated from other  

HETEs by having a terminal hydroxyl group (the 20th carbon position), while all other HETEs 

will have a terminal-CH3 and a different substitution of the hydroxyl group.  The significance of 

20-HETE, combined with the difference in functional groups between it and other EETs and 

HETEs makes it an ideal metabolite for study by SERS analysis with a final goal of clinical 

diagnosis of hypertensive disorders.   

 

Early preeclampsia detection is of utmost significance.  It has been identified as the most 

common of the severe birthing complications.  In 2005, an article in Science claimed that around 

2.5-3% of pregnancies result in preeclampsia or eclampsia.114  in 2016, in the journal of 

Pregnancy Hypertension,  it was reported that in the US, 49% of pregnancies result in a 

hypertensive condition.115  Of those hypertensive pregnancies in the US, 25.8% were 

preeclampsia.115  This statistics mean that over the course of 11 years, the rate of preeclampsia 

Figure 1.8 Molecular structure of 20-hydroxyeicosatetraenoic acid (20-HETE), the primary 

biomarker for preeclampsia as determined by MCV and the primary analytical target for the 

studies of this thesis. 
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has increased from 2.5% to 12.64%, a 405% increase.   The Journal of Maternal-Fetal & 

Neonatal Medicine suggested a 5% worldwide preeclampsia rate in 2018, suggesting a 100% 

increase worldwide during the same time period.116  Within the same month, International 

Journal of Reproduction, Contraception, Obstetrics and Gynecology suggested a 7-10% rate of 

preeclampsia in US pregnancies.117  Regardless of the statistics that are used, there is a general 

trend toward an increase in preeclampsia’s prevalence and due to its high mortality rate, early 

detection of the condition is desirable for the sake of preventing still births and maternal 

suffering and death.114 

  

 

A possible explanation for the increased prevalence of the birthing complication with the 

highest mortality rate in the western world was given in June 2016 by Mayoral-Andrade et al.118  

The authors suggest that 6-keto prostaglandin f1ɑ (6-keto), the original target given by the 

Figure 1.9  Structure of 6-keto prostaglandin f
1ɑ

 (6-keto).  This lipid is a powerful 

vasodilator found in high abundance in women with proper lipid balance during pregnancy 

and in seminal fluid. 



15 
 

Medical College of Virginia for this project, is directly correlated to onset of this hypertensive 

disorder.  Like many prostaglandins, is a vasodilator.119  This lipid is found in high 

concentrations in seminal fluid and known to increase vaginal and uterine blood flow in 

coatus.120  It is also known well that the human body rejects foreign bodily fluids and tissues, 

including the womb reacting to reject seminal fluid until it becomes accustomed to the presence 

of a particular composition of seminal fluid, causing immune responses, including 

vasoconstriction, upon initial exposure to the RNA and protein composition of a particular man’s 

semen.121–124  Upon increased exposure to the RNA and protein composition of a particular 

seminal fluid mixture, the immunoresponse decreases.122,125  When this immune response 

decreases, the effect of 6-keto is more prevalent, causing decreased blood pressure post-coitus.126    

Mayoral-Andrade et al. suggest that the increase in preeclampsia is derived from an increased 

use of barrier method contraceptives decreasing the amount of exposure that the average woman 

has to seminal fluid of her partner prior to conception, leading to blood pressure complications 

due to immnunoresponse of the expectant mother and insufficient vasodilation from the 6-keto 

content of the father’s seminal fluid.118  They conclude that with increased prevalence of the use 

of barrier method contraceptives to prevent the spread of STDs and pregnancy, there is a direct 

increase of the risk of preeclampsia.    

Later studies have suggested that 6-keto may not be the leading lipid of concern in 

preeclampsia, nor the most viable target molecule for diagnostic detection.  Figure 1.9 shows a 

molecule of  20-HETE)  This lipid has shown recent ties to hypertensive conditions and has been 

suggested to be a major contributor to the vasoconstriction and hypertension.113,127,128  For this 

reason, in the majority of studies shown in this thesis, 20-HETE will be the target lipid for 

detection.  On top of the biological significance as a vasoconstrictor in pregnant women, the 
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research shown in chapter 3 of this thesis will demonstrate the ability to selectively detect this 

lipid, even when it is in a mixture with other lipids, which are all at far greater concentrations, 

making it a viable diagnostic target.  

Early detection and diagnosis of preeclampsia is essential for the health of both the 

mother and developing child.  If detected before symptoms present. It is possibly to put the 

mother on a baby aspirin regiment that would prevent hypertension from setting in.  Preventing 

hypertension prevents stress on the uterus and fetus, which can lead to birth defects.  

Preeclampsia, at late stages, will also cause seizures in both the mother and the offspring, which 

lead to further damage to both the mother and child from convulsions and insufficient oxygen 

flow to the brain.   

Currently, the symptoms of preeclampsia can be mitigated, however it is often too late to 

act quickly enough to alleviate all symptoms, nor early enough to prevent them entirely.  

Currently, this birthing complication is only able to be diagnosed after symptoms have presented 

themselves, mostly in the form of regular blood pressure checks. However, the pharmacological 

changes that occur in the mother’s body theoretically begin to occur at conception, generating 

the possibility of designing an assay capable of detection and diagnosis prior to the onset of 

symptoms.  Many of the more stable biomolecules involved in this condition are lipids found in 

human blood and urine, leading to the investigation into detecting these lipids before detriment 

to the mother and offspring occur.   

1.7 Challenges of Surface Enhanced Raman Spectroscopy  

 SERS of lipids provides challenges beyond the similarities of molecules.48,49  Lipids are 

flexible molecules, allowing for variability in how they can lay on the substrate, and therefore 
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which functional groups are found in the hot spot of the nanoparticles (see Figure 1.11 for 

illustrated example)131. Furthermore, lipids easily burn, forming amorphous carbon peaks in their 

spectra.  The facile burning of lipids arises not only from the flexibility of the molecules 

allowing for substantial amounts of energy to be imparted in a localized area, but also from the 

energetics of the photons of the excitation source (in the studies associated with this thesis, a 

532.11nm laser).  The energy of less than two photons per bond is necessary to induce 

dissociation.72,132  Even if only one thousandth of a percent of the energy of a photon were able 

to be converted to bond breaking, there would still be the possibility of breaking ten thousand 

molecules per second with the nine-microwatt beam energy at the focused area of observation, 

using the one hundred times optical objective from this experiment.  The semi-conjugated 

systems of many EETs and HETEs will provide resonance stabilization, however even this can 

be overcome by the massive number of photons emitted by the excitation laser.103,113,133,134 

Moreover, silver nanoparticles are photoactive catalysts, resulting in the substrate increasing the 

number of dissociative events.  Still more complications in detecting lipids arise from lipid 

interactions in polar solvents.129,135–137  In water and ethanol, micelles often form due to the 

entropic favorability of exposing the polar head to the solvent while protecting the nonpolar tails 

of the lipids.  The nonpolar tails will interact with one another, reducing the systemic energy and 

increasing stability.  The formation of micelles will also result in aggregates of lipids, reducing 

the chances of lipids being in the observed area, reducing the chances of uniform 

etection.106,138,139 
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Substrate Surface 

Hot Spot 

Figure 1.10 Illustrated example of the variability of functional groups found in the 

plasmonic hot spot, based on the assumption that one functional group will serve as a pivot 

point for interaction with the substrate surface, in this case the carboxylic acid.  

  

Table 1.1 Bond enthalpies and energetics of bond breaking using 532.11nm excitation lasers 

for common organic bonds. 
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1.8 Current Detection Methods 

 Although SERS comes with its own unique challenges, it shows promise for clinical 

applications, filling a void created by the weaknesses of other analytical techniques.   The rapid 

detection, low limit of detection, high sensitivity, mechanical simplicity and ease of use give 

SERS a competitive edge in the world of modern medicine.   

Figure 1.11 Micelle formed from arachidonic acid.  Because of solvent interactions, it is 

believed that AA forms micelles in ethanol solution at high concentrations, because it would 

be energetically favorable to have all of the non-polar tails of the lipid interacting with each 

other rather than the ethanol while the carboxylic acid heads would still interact with the 

ethanol. 
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 Currently, many diagnosis are made with liquid chromatography coupled with mass 

Spectrometry (LC-MS).94,140,141  LC-MS is the coupling of two separate analytical techniques.  

LC uses a high pressure column that separates the analytes by a chemical or property that the 

column is designed to exploit.142,143  These properties range from pH sensitivity to functional 

groups present on the molecules to the size of the analyte particles.144  The column then uses a 

mass spectrometer as a detector and second dimension of data collection.  The mass 

spectrometers used in LC-MS typically have an electrospray ionization source.145–147  This works 

by having a highly charged needle will transfer an electron to the analyte molecules as they pass 

through the tip.145–147  The solvent will not be ionized and is easily extracted before getting to the 

mass analyzer.148  Most of the time, the MS analyzer associated with one of these systems would 

either be a quadrupole (quad) or a triple quad system.149,150  A quad works by generating an 

electromagnetic field that will allow only analytes of a certain mass to charge ratio to remain 

within the field and all others will be ejected from the field before they can pass through the 

quad.151,152  To achieve this, field, typically two opposing poles will have an RF current running 

through them while the other two have DC currents.151,152  If a triple quad option is used, the first 

quad system is employed, the first cell can be used as an initial mass analyzer, the second as a 

collision cell to induce molecular dissociation and the third as a post collision cell mass analyzer, 

to gleam further information about the functionality of the analytes.152,153 

Though LC-MS is a powerful technique, it has many drawbacks for clinical applications.  

The first and most prevalent complication with liquid chromatography is biofouling.142,154  When 

looking at blood samples, clotting, aggregation of hemoglobin and infectious globs can clog the 

pores of the column, increasing pressure, reducing flow and decreasing the efficiency for peak 

separation.142  To avoid this from causing issues with data collection,  Many components of 
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biological fluids are also difficult to separate because they have similar chemical properties in 

regards to polarity and chemical interactions.154  Additionally, the column must be flushed to 

remove any previous samples to prevent contamination with future samples.154  Furthermore, 

maintenance of these systems requires scrupulous care to ensure proper separation, with 

particular attention having to be paid to the pump system and the inlet.155  Additionally, there are 

vast quantities of solvents that are washed through the system, often requiring expensive disposal 

options to be used due to the nature of biological fluids and the organic solvents required for 

proper separation.149 

 Even if the LC does not interfere with the sample, mass spectrometry (MS) has 

complications of its own, both the sample introduction mechanism and detector limit the utility 

of MS in clinical settings.  Firstly, the substance being studied must be able to be ionized in a 

reproducible manner without damaging it.156,157  Electrospray ionization can ionize many 

Figure 1.12 Block diagram of a liquid chromatography-mass spectrometry (LC-MS) 

instrument set to daughter ion mode, in which the liquid chromatography column is used 

for separation of analytes, the first quadrupole detects the mass of non-fragmented ions 

introduced to the MS, the middle quadrupole is used as a collision cell to fragment the ions 

to gleam information about functional groups present in it and the last quadrupole detects 

the fragmented ion masses by measuring the charge to weight ratio of ions that are not 

ejected from the electromagnetic field of the quadrupole.  
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analytes, however some biological molecules will be dissociated by ionization.146,158  Others will 

not have a consistent amount of charge added to them by this method.159  Moreover, the lower 

limit of detection of a typical LC-MS system, though it is theoretically able to detect a single 

molecule, in all reality is typically around 100 ng/ mL.160  The key analyte studied in this 

research is found at approximately 28 ng/mL in a preeclamptic pregnant woman, and would need 

to be able to detected at even lower concentrations for possible detection before symptoms 

present.108,112,134  Furthermore, quantitation with MS requires a mixture between precise 

calculation and artful guessing of the bounds of peaks in order to integrate the area under the 

curve, and often requires the use of an internal standard.  Lastly, and most importantly, LC-MS 

cannot be used because many of the lipids found in human plasma have the same molecular 

weight and functional groups, making absolute identification by this method highly 

improbable.161   

 Aside from LC-MS, few other analytical tools are viable for lipid analysis.  Common 

techniques like infrared spectroscopy (IR) or nuclear magnetic resonance (NMR) require a pure 

sample.162  GC-MS does not allow detection of non-volatile substances.141  UV-Vis spectroscopy 

does not have the necessary resolution to differentiate one class of lipids from another, let alone 

various substitutions of isomers.83  Though cryogenic scanning tunneling electron microscopy 

(cryo-STEM) is close to having the resolution needed to differentiate one lipid from another, it is 

an imaging technique that would require vast quantities of time to look at a large enough sample 

to make concentration calculations.163  Florescence spectroscopy, though sensitive enough to 

detect at the necessary LOD, does not have the resolving power nor the specificity needed to 

differentiate lipids and would only be helpful in detecting florescent lipids.164  Electrophoretic 

separation and detection techniques require differences in electrical potential of the analyte, and 



23 
 

thus would not have the separatory ability necessary for lipid analysis.165  Though many 

techniques exist, they all present insurmountable challenges for this clinical application.  Herein, 

this thesis will discuss the viability of detecting 20-HETE, a metabolite believed to play a key 

role in hypertensive disorders (including preeclampsia), via surface enhanced Raman 

spectroscopy (SERS) down to 1 pM concentrations, even when mixed with other lipids at orders 

of magnitude higher concentrations, showing the preliminary clinical viability of SERS for 

medical diagnosis. 

1.9 Surface Enhanced Raman Spectroscopy Substrates 

 Selection of an adequate SERS substrate must consider several factors.  The main 

considerations are the nanoparticle material, nanoparticle shape, plasmon resonance of particles, 

deposition method employed and capping agent selection (when applicable).166  Herein, this 

section will discuss the reasons why the final substrate used for this research were drop-cast 

silver nanoplatelets capped with trisodium citrate. 
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 Initial experiments of the research presented here used isotropic non-polar gold 

nanoparticles.  Later, silver nanoplatelets with a polar capping ligand were used to increase the 

enhancement factor, decreasing the lowest limit of detection of the system.167  Though there were 

no longer lipid-aliphatic interactions, the vertices focused the LSPR, increasing the strength of 

the localized magnetic field at the corners and enhancing the overall signal of the substrate, 

through what is referred to as the plasmonic antennae effect.133,133,168,169  The absolute intensity 

of a 1 pM concentration of a lipid was only 1137 counts above the baseline with round 

nanoparticles while it was 17942 with platelet nanoparticles.  Both particle substrates had a peak 

Figure 1.13 Difference in intensity of peaks between thiol coated Au NPs (left) and citrate 

coated Ag nanoplatelets (right), ceteris paribus.  The citrate coated Ag nanoplatelets 

provide greater enhancement, resulting in a far higher absolute intensity of the Raman 

signal, as compared to the thiol coated Au NPs, which was unexpected due to expected 

lipid-thiol interactions and lipid-citrate repulsion. 
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absorbance in their UV-Vis spectrum that matched the wavelength of the excitation laser.  The 

laser power was the same and the collection parameters were identical.  Other than the particles 

used for the substrate, everything else in these experiments was run identically. 

 Nanoparticle substrates can be fabricated through several methods.  Substrates can be 

developed most uniformly through a method known as lithography.  In lithography, a gradient is 

used to allow light to interact with only certain regions of a plate covered in the substrate 

material (i.e.  silver, gold…).170  This causes particle formation only where the light is allowed to 

shine.171,172  This method requires expensive specialized equipment, and therefore was not used.  

Spin coating can deposit thin layers of  particles that are still randomly distributed, but relatively 

evenly dispersed.173  Challenges with this method include even deposition of substrate, which 

often requires utilization of a low volatility organic solvent for rapid evaporation without 

cracking.174  A bigger problem for SERS, is that an additional compound must be introduced.173  

This compound, usually a silane, serves to attach the particles to the slide (typically glass, quartz 

or aluminum).166  It adds more interference to the SERS spectrum because more functional 

groups will be found within the system’s focal depth that are also located within the plasmonic 

hot spot of the nanoparticles.175  This method does not guarantee uniform enhancement, adds 

spectral interferences and requires specialized equipment.  A third, more facile and less precise 

method of slide fabrication is through drop casting176.  A drop cast substrate is made by simple 

deposition of the substrate solution onto the desired slide and allowing the solvent to evaporate 

either naturally, through reduced pressure or by increased temperature.101  Drying under vacuum 

conditions quickens the process compared to natural evaporation and prevents particle 

deformation that can result from thermally induced evaporation.177  This substrate preparation 

method was used in all studies herein mentioned in this research. 
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1.10 Thesis Statement 

 Herein lies the thesis research and goals.  Two main goals were developed for this 

research, in conjunction with the funding from the National Institute of Child Health and Human 

Development /NIH/DHHS (1U01HD087198-01).  These goals were (Goal 1) to develop a 

substrate capable of 1 pM detection of lipid biomarkers associated with preeclampsia and (Goal 

2) to demonstrate the viability of using SERS as a diagnostic clinical tool for medical conditions 

involving deviations from normal lipid levels in bodily fluids. 

 Goal 1 was pursued by first establishing the proper metal to be employed in developing 

the substrate.  Though gold was initially used due its plasmon absorbance around the wavelength 

of the excitation source, later silver was used to allow for greater nanoparticle growth, which 

allowed tuning of the plasmon to the laser wavelength.  Next, the shape of the particles was 

selected.  Initially, gold nanospheres were used because of the ease of making monodisperse gold 

particles of this shape in a low volatility organic solvent.  Later, platelets were selected, because 

their sharp edges took advantage of the antennae effect, generating stronger plasmonic hot spots, 

which resulted in increased signal enhancement.  Originally, 1-octanethiol was used as a capping 

ligand, with the hypothesis that the aliphatic chain of the organic capping ligand would interact 

with the nonpolar regions of the lipid, allowing for more uniform placement of functional groups 

in plasmonic hot spots.  Eventually, citrate was used due to limitations of silver platelet ligand 

exchange and maintenance of a clean region of the spectrum of the substrate, allowing for facile 

detection of the characteristic peaks of the biomarker lipid (20-HETE).  Lastly, drop casting was 

employed for the sake of rapid synthesis of slides, allowing large volumes of data to be gathered 

during the short span of this research. 
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 Goal 2 was accomplished by looking at lipids in progressively more complex systems.  

Initially, solid lipids were studied with Raman spectroscopy to establish a reference spectrum and 

allow for analysis of functional group activity at the surface of the substrate.  Next, lipid 

solutions of a single lipid in pure ethanol were analyzed with SERS substrates to study the 

effects of concentration on the signals.  After that, lipids were mixed to ensure that the desired 

lipid could be identified in various concentration ratios, ranging from a 1:1 ratio of the biomarker 

to competitor lipid to a 1:1000 ratio.  Lastly, a “synthetic plasma” was developed by mixing the 

biomarker lipid with three competitor lipids to establish that the biomarker could still be 

identified in biologically relevant concentrations.   
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Chapter 2: Experimental 

2.1 Raman Spectroscopy and Surface Enhanced Raman Spectroscopy  

The primary technique for lipid analysis in this study was Surface Enhanced Raman 

Spectroscopy (SERS).  SERS is a modification of Raman Spectroscopy.  Raman spectroscopy is 

a fingerprinting technique used to take rovibrational measurements of analytes that are deposited 

in the solid state or dissolved in solutions.178  The Raman effect, discovered by C. V. Raman in 

1928, is derived from an inelastic scattering event causing wavelength shifting of 

monochromatic source light due to energy being imparted by the light on the rotational and 

vibrational modes of the analyte, inducing scattered light with a different wavelength than the 

incident light.179  There are three kinds of light scattering observed in nature: Raleigh scattering, 

Stokes scattering and anti-Stokes scattering.26  Raleigh scattering is the most common scattering 

event, which occurs when a vibrational mode is excited to a virtual state and comes back down to 

the initial state.180,181  This results in excitation and emission wavelengths of the scattered light 

resulting in no change of wavelength, and thus does not provide any spectroscopically useful 

data.26 The other two categories of scattering, Stokes and anti-Stokes scattering are sometimes 

lumped together into the category of Raman scattering, even though they are distinctly different 

scattering events.182  Both can provide useful Raman spectroscopy data.  In a Stokes scattering 

event, excitation occurs from an initial excitation state to the virtual state and returns to a higher 

state than the initial state, resulting in a red shift due to energy being absorbed by the 

analyte,26,182,183 increasing the wavelength and decreasing the frequency and energy of the 

scattered light.182  In Anti-stokes scattering, as one can deduce, the opposite phenomenon occurs.  

A scattering event occurs with an electron from an excited energy state, goes to a virtual state 

and upon relaxation, induces a blue shift by returning to a lower energy state than the initial 
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state.182  As the Maxwell- Boltzmann distribution or an energy well diagram would suggest 

(shown in Figure 6), Stokes scattering is more common than anti-stokes scattering because 

starting in a lower energy state is more common, making this form of scattering more commonly 

accessible than the excited vibrational states that are required for anti-stokes scattering.184 As a 

result of this effect, stokes scattering, which results in positive wavenumber measurements, lends 

itself to greater intensity spectra.182  Though anti-stokes scattering results in less intense signals, 

it also results in a large reduction in laser induced fluorescence.183  Highly fluorescent analytes 

can have up to fourteen orders of magnitude greater fluorescent intensity than the Raman 

scattering intensity.185  However, since the matrices studied during my tenure at VCU were  only 

minimally fluorescent , the increased intensity of Stokes spectra were desirable in order to 

decrease the LOD.28,186 
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Figure 2.1 Raman spectrometer instrumentation. 
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To further increase the signal of Raman spectra, plasmonic nanostructures are employed 

to make a substrate which increases the scattering efficiency of the system.  This techniques is 

known as Surface Enhanced Raman Spectroscopy (SERS).185,187,188 A localized surface plasmon 

resonance (LSPR) is induced on the roughened surface of select metal nanostructures, resulting 

in enhancement of scattering efficiency.185,189,190 A graphic of how an LSPR works is shown in 

Figure 7.  Plasmonic metals must possess a small positive imaginary dielectric constant and a 

negative value for the real function of the complex number.13–15  This limits the metals that are 

used to typically silver and gold, however there are reports of copper, aluminum. Lithium, 

sodium, indium, zinc, platinum, tantalum and cadmium being used to produce plasmonic effects 

for SERS.193–197  A plasmonic structure that is oriented perpendicularly to the excitation source 

that is in resonance with the substrate will induce an electromagnetic field that enhances photon 

excitation, increasing the frequency of scattering events, and therefore increasing the intensity of 

a Raman signal.198  Because of this, roughened surfaces tend to make better SERS 

substrates.133,198  Additionally, roughened surfaces can act as antennas, creating a focusing effect 

Figure 2.2 Vibrational energy well diagram 
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of the LSPR to generate more intense plasmonic “hot spots” with more focused magnetic 

fields.133,169,195  These “hot spots” arise from displacement of charge density from the equilibrium 

state of the surface of the nanoparticles, inducing an oscillation, which on point surfaces will 

cause interference patterns of magnetic fields as the electronic charge traverses the 

nanoparticle.24–27   

 

 There is an additional cause of Raman enhancement that was not observed in these 

studies.  A charge transfer mechanism can also enhance Raman scattering if chemical adhesion 

of the analyte to the plasmonic structure is present.89,90,203  Electrons are transferred at double the 

wavelength of the inherent electronic exciton of the absorbed analyte.204  Since most organic 

molecules have inherent excitations in the ultraviolet (UV)range, this transition is often most 

efficiently with a visible excitation source.203,205  This method of enhancement was not likely 

utilized in the studies discussed in this thesis because it requires a chemical bond between the 

substrate and adsorbate.   
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Figure 2.3 Diagram of localized surface plasmon resonance. 
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2.2 Ultraviolet-Visible-Near Infrared Spectroscopy 

 

 Another key instrument for this study was ultraviolet-visible absorption spectroscopy 

(UV-Vis).82,83  UV-Vis operates by shining light through a grating and scanning the frequency of 

light passing through a sample to determine the absorbance at a given wavelength range.  A 

typical system for a dual path UV-Vis spectrometer is displayed in Scheme 2.2.  

 Many UV-Vis spectrometers use multiple lamps to ensure full coverage of the full 

spectrum of desired analysis.82,206  In this case, a deuterium lamp was sued as a UV source will a 

tungsten lamp was used as the visible light lamp.206  This broadband of light is then passed 

through a monochromator and swept through the desired wavelengths.  The beam is split.  One 

part of the beam is passed through a blank or reference sample.  This sample is used to consider 
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Figure 2.4 UV-Vis operational schematic.  
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any absorption by the cuvette, solvents or solvates other than the desired analyte.  Additionally, it 

allows for correction of power fluctuations from the source.  The other beam is passed through 

the desired sample and transmitted light is measured, allowing the absorbed light to be quantified 

at each measured wavelength.   

2.3 Nanoscale Microscopy and Imagine 

 The third and final characterization technique used for the studies that will follow was 

Transmission Electron Microscopy (TEM).  In 1931, Ernst Ruska and Max Knoll designed the 

first electron microscope, earning the Nobel Prize for Physics in 1986 for developing the first 

TEM, an instrument capable of imaging objects smaller than what could be probed with visible 

light.   The diffraction limit of an imaging technique is the smallest difference between features 

that can be seen with the given source for the imaging.  It is determined by several factors, such 

as the diameter of the detector, angular separation of observed features and the wavelength of the 

electromagnetic radiation (EMR) used to take the image.  The most constraining factor of a given 

system will determine the minimum size that will be visible with a system.  With modern 

imaging devices, the wavelength of the probing EMR is typically the limiting factor.  Since 

visible microscopes rely on the wavelength range visible to the human eye from approximately 

390-700 nm, 390 nm is the smallest sized structure that it can probe.  Since nanostructures are 

definitionally less than 100 nm, another technique using a small wavelength had to be developed.   
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Transmission electron microscopes use a high energy electron beam to minimize the 

wavelength of the probing source and increase the resolution of the device.  The greater the 

voltage of an electron beam is, the smaller the wavelength of the electrons will be.  Table 2.1 

shows the minimum resolution achievable with various voltages of electron beams.  This size 

corresponds to the De Broglie wavelength of the electron at that energy, given by the 

equation:𝜆 [𝑝𝑚] = ℎ𝑐/𝑝𝑐 where λ [pm] is the wavelength in picometers, h is Plank’s constant, c 

is the speed of light and pc is the relativistic kinetic energy.  The electron microscopes used for 

this study used 120 keV beams.  The theoretical minimum size that can be probed will, of course, 

be pixelated with the minimum wavelength representing the smallest pixel size that can be 

shown, making the effective minimum size larger than this wavelength.   

 The electrons are focused into a beam by electromagnetic lenses, reducing multiple 

scattering events and increasing cohesion of the beam.  The instrument works under a high 

vacuum to decrease interference, interactions of the beam with gas molecules and degradation 

under the high energy beam.  As the beam contacts an object, primarily the analyte, electrons 

will interact with the shell electrons of the substance being observed.  Electronic detectors have 

replaced the electron sensitive plates that were originally used in conjunction with films for 

images.   

Table 2.1  Energy and De Broglie wavelengths of electron beams. 
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 Images gathered by transmission electron microscopy in this research served several 

purposes.  The showed the morphology, or shape, of the particles.  It also allowed for sizing of 

particles.  Lastly, the homogeneity or heterogeneity of an imaged sample could be determined for 

a sample to gleam the importance of the shape, size and uniformity of particles.   

 Particles are prepared on carbon girds by depositing a small aliquot (10 μL) of a dilute 

particle solution.  This grid was then thoroughly dried, initially at ambient pressure to reduce 

damage done to the grid and aggregation of particles.  Later, the grids were placed under vacuum 

to ensure that all solvent was evaporated from the grad, preventing issues with the instrument’s 

vacuum or interference and noise in the image due to electron beam interactions with the solvent.    

 Two important imaging techniques for nanotechnology are scanning electron microscopy 

(SEM) and atomic force microscopy (AFM).  SEMs operate by scanning a focused beam of 

electrons across the surface, allowing for images of thin films, shown in chapter 4 of this thesis.  

Detectors around the instrument chamber show images derived from the effects of electrons from 

the beam interacting with the atoms.  These detectors detect back scattered electrons, secondary 

electrons, characteristic x-rays, cathodoluminescence and transmitted electrons.  This technique 

can image objects down to 1nm.  In order to reduce interferences, the imaging chamber is under 

vacuum.  AFM is a high-resolution technique that (in tapping mode) determines a depth profile 

of a given area by seeing how far down the tip of the probe has to travel before making contact 

and subtracting that distance from how far down the probe tip goes to the lowest point in the 

scanned area.  These depths are then represented by a color spectrum which shows a two-

dimensional image of the surface.    
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Chapter 3: Initial Studies- Thiol, Thromboxane and Prostaglandin 

3.1 Substrate and Acquisition Parameters 

 Initial studies done before I joined the project (the National Institute of Child Health and 

Human Development /NIH/DHHS (1U01HD087198-01)), included the choice of the laser 

wavelength for this study (determined by the VCU Department of Physics) and target analytes 

(determined by the Medical Campus of Virginia) were set as 6-keto prostaglandin-f1ɑ (6-keto) 

and Thromboxane B2 (TXB2) and soon after shifted to targeting 20-Hydroxyeicosatetraenoic 

Acid (20-HETE).  A 532.11 nm diode laser was used for this study because it had the greatest 

molecular absorption cross section of the lasers available for Raman studies on the Monroe Park 

Campus.  Though a 785 nm laser would decrease the luminescent background of the analyte, the 

molecular cross section at this wavelength is nearly non-existent, because C-C, C=C, O-H, C=O, 

C-O and C-H bonds have strong absorbances in the UV region of the visible spectrum, lending 

the target lipids to better scattering efficiencies with a green laser than a red or NIR laser.   
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 Due to the laser choice, the initial studies indicated that it was best to use of gold 

nanoparticles capped with glutathione with a peak absorbance at 530 nm (see Figure 3.2 A).  

These particles showed major Raman peaks from 950-990 cm-1 and 1280-1420 cm-1 (Figure 3.2 

B).  To ensure the right absorbance, these particles were grown to approximately 30 nm (see 

Figure 3.2 C).   

3.2 Materials 

Octanethiol, L-glutathione (GSH) reduced 98%, Poly(sodium-p-styrenesulfonate) (PSSS, 

MW = 70K), citric acid, trisodium salt dihydrate (99%), L(+)-ascorbic acid (99%) was purchased 

from Sigma-Aldrich. Sodium borohydride (NaBH4) 98% and chloroauric acid (HAuCl4) 99.999% 

were purchased from Strem Chemicals. Sodium hydroxide (NaOH), ethanol ((99.8%, extra dry, 

AcroSeal™), methanol (99+%, extra pure) and acetone (ACS grade) were purchased from Fisher 

300 400 500 600 700 800

A
b

s
o

rb
a

n
c
e

 (
a

rb
. 

u
n

it
s
)

Wavelength (nm)

400 600 800 1000 1200 1400 1600 1800 2000

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
s
)

Raman Shift (cm-1)

A B C 

Figure 3.2 (A) UV-Vis spectrum with 530 nm plasmon, (B) Raman spectrum with 

multiple interfering functional groups which would make lipid detection less definitive 

and (C) TEM image of glutathione capped gold nanoparticles, used to determine a 30nm 

average particle size and that the synthesis produced homogenous particles. 
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Scientific. 16 MΩ milli-Q filtered water was used in all syntheses. All chemicals were used as 

received without further purification.  

3.3 Synthesis of Octanethiol-Functionalized Au Nanoparticle Thin Films 

The glutathione coated Au NPs were produced by employing a literature method with 

significant modification to scale up the synthesis.1 In a typical reaction, 3 mL of 10 mM HAuCl4 

and 300 μL of 10 mM GSH were added to 50 mL of ice cold milli-Q water. Then, 10 mL of 0.1 M 

NaOH was added to adjust the pH ~12 that resulted in a color change from colorless to pale yellow 

suggesting the formation of Au NPs. Finally, 3.6 mL of 10 mM ascorbic acid was slowly added at 

a rate of 0.5 mL min-1 to produce a yellow-brown solution of Au NPs. This reaction is repeated 

multiple times to produce significant amount of Au NPs.  As-prepared Au NPs were purified and 

concentrated using centrifuge filtration to produce 3 mM Au NP solution. The centrifuge filters 

(Sartorius, Vivaspin 20 mL MW 30000) filled with ternary NP sol was centrifuged at 3500g for 

7–8 min to reduce the volume to 2–3 mL. The concentrated sols were then mixed with 5–10 mL 

of milli-Ω water and centrifuged to remove the residual byproducts (Na, NO3
-, OH-, and unreacted 

thiolates).  

HAuCl
4
 

Glutathione 

NaOH 

Ascorbic Acid 
Glutathione  

AuNPs 
1-Octanethiol 

Hexane 

Octanethiol 
Coated 
AuNPs 

Scheme 3.1 Synthesis of AuNPs. 
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The concentrated particle solution is then added to a clean round bottom flask with 2-

propanol (10 mL), octanethiol (0.400 mL), and hexane (25 mL). The flask is sealed with a rubber 

septum and stirred at max speed for 6 h.  The contents of the flask are then sonicated and poured 

into a separatory funnel. The bottom (water and 2-propanol) layer is removed and discarded. The 

top layer (hexane and octanethiol coated round silver nanoparticles) is collected and centrifuged. 

The particles are driven to the bottom of the centrifuge tube. All but 2.5 mL of the hexane layer is 

decanted and discarded. The remainder of the contents of the centrifuge tube are sonicated to re-

suspend the nanoparticles. As-synthesized octanethiol-coated Au NPs were drop casted onto glass 

slides.  Each slide is coated by 10 aliquots of 10 µL of hexane suspension.  Between each additional 

aliquot, the previous addition is allowed to evaporate. The centrifuge tube is sonicated before each 

transfer of the suspension from the tube to the slides. 
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3.4 Substrate Durability Testing 

  

To ensure that any peaks observed during lipid analysis were not due to degradation of the 

substrate, the substrate was thoroughly tested (Figure 3.3).  The substrate, without any added 

analytes, was tested for ten sets of six-minute collection times, comprised of twenty collection 

periods of thirty seconds each.  The laser was set to 100 μW, ten times the power used for lipid 

SERS data acquisition.  It should be noted that in Figure 3.3 Spectrum h, a spike at 642 cm-1 is due 

to a solar flare.  Data is not shown for 6 min or 36 min points because they contained too many 
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Figure 3.3 Burning study of platelet substrate.  In this study, a 532.11nm laser emitting at 20 

μW was shined on the substrate to test stability of the substrate under the laser at (a) 1 min, 

(b) 12 min, (c) 18 min, (d) 24 min, (e) 30 min, (f) 42 min, (g) 48 min, (h) 54 min, (i) 60 min 
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solar flare peaks to provide useful data.  At 1035 cm-1, there is peak diminishment, suggest 

dissociation of oxygen from the citrate capping ligand.  In later 20-HETE studies, this was 

important observation supported the assignment of the 1029 cm-1 to 20-HETE, and not the 

substrate, because this peak could be seen growing in intensity and sharpening when the lipid was 

present, while it broadened and decreased in intensity when only the substrate was present.  Peak 

growth at 1518 and 1606 cm-1 are due to the growth of amorphous carbon, due to laser induced 

dissociation of carbon elements of the substrate.   

 

3.5 Acquisition parameters of Raman and SERS Spectra of Lipids  

Raman spectra involving lipids were recorded on a Horiba LabRam HR Evolution 

Confocal Raman Spectrometer equipped with a 532 nm laser. Dilute solutions of (1 mM to 1 pM) 

lipids were produced in ethanol and 10 µL of lipid solution was dropped onto as-prepared Ag 

nanoparticle thin films. Lipid solution was dried under ambient conditions prior to spectra 

acquisition. For all measurements, SERS spectra were acquired with a fixed laser power of 10 μJ, 

100X objective, spot size of 2.5 microns, receiving slit width of 200 μm, and 20 second acquisition 

times and 20 acquisitions, totaling 400 seconds of acquisition per spectrum. No smoothing, 

baseline correction or any other manipulations were done on any of the data presented.  

 

3.6 Spherical Silver Nanoparticle as SERS Substrates Final Outcomes 

Initially, spherical Au nanoparticles coated with octanethiol were utilized to detect 6-keto 

prostaglandin-f1ɑ (6 Keto) and Thromboxane (TXB2).  It is assumed that hydrophobic octanethiol 

coating will allow the hydrophobic lipids to better interact with the SERS substrates, and 

consequently produce optimal signal enhancement. To differentiate Raman peaks of octanethiol 
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and lipids, we have primarily focused on the 1600-800 cm-1 region of the SERS spectrum, which 

shows no peaks corresponding to SERS substrate and only the highest intensity peaks 

characteristic of lipids that can be assigned to C=C or C=O vibrations.129  

Figure 11 shows the Raman spectrum of 6-keto prostaglandin-f1ɑ  along with SERS 

spectra of different dilutions of 6-keto prostaglandin-f1ɑ recorded with octanethiol-coated Ag 

nanoparticle thin films. The highest intense peak at 1679 cm-1 in the pure 6-keto is shifted to 1627 

cm-1, which is typical for SERS measurements. The SERS spectra recorded at 1 mM and 1 μM 

solutions are highly reproducible and consistently showed characteristic C=C or C=O bond 

vibrations at 1627-1633 cm-1. With 1 mM solution (and higher concentrations), decomposition 6-

keto prostaglandin-f1ɑ and production of amorphous carbon was characterized by a doublet 

observed at 1500-1535 cm-1. However, decomposition of lipid is less evident in 1 μM and 1 nM 

solutions. SERS spectra recoded from ~1 cm2 region of lipid droplet show consistent data, 

suggesting high reproducibility for SERS analysis of 6-keto with spherical Au nanoparticles. It 

should also be noted that attempts to detect 1 nM and 1 pM 6-keto with octanethiol-coated Au 

nanoparticles were unsuccessful. Thus, the lower limit of detection (LOD) of 6-keto with 

octanethiol-coated Ag nanoparticle films is likely in the range of 1 μM – 1nM. 
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Figure 3.4 (a) Raman spectrum of pure 6-keto prostaglandin-f1ɑ along with SERS spectra of 6-

keto prostaglandin-f1ɑ acquired with 10 μL aliquots of (b) 1 mM, (c) 1 μM, and (e) 1 nM 

dilutions. Octanethiol-coated Au nanoparticle films were used as SERS substrates.  

Figure 3.4 shows the Raman spectrum of TXB2 along with SERS spectra of different 

dilutions of TXB2 recorded with octanethiol-coated Au nanoparticles. Pure TXB2 shows a 

characteristic high intensity doublet at 1656 cm-1 and 1691 cm-1. This signal is apparently shifted 

to 1633 cm-1 in the SERS spectra of TXB2 similar to that observed with 6-keto prostaglandin-f1ɑ 

spectrum (Figure 11). SERS spectra recorded from 1 mM and 1 μM. TXB2 (Figure 12) solutions 

consistently showed characteristic TXB2 peak at 1633 cm-1 suggesting high reproducibility of 

measurements. It should be noted that characteristic TXB2 peak (1633 cm-1) is slightly shifted 

away from that of 6-keto (1627 cm-1), which may help with selective analysis of both lipid. 
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Nonetheless, 1 nM dilutions of TXB2 is undetectable with octanethiol-coated Ag nanoparticle 

films. While the decomposition of TXB2 is observed at 1 mM concentrations, no such destruction 

is noted at low concentrations (1μM and 1 nM dilutions). Because of this study, it can be concluded 

that limit of detection of TXB2 with octanethiol-coated Ag nanoparticle films is in the range of 1 

μM to 1 nM. 
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Figure 3.5 (a) Raman spectrum of pure Thromboxane B2 along with SERS spectra of 

Thromboxane B2 acquired with 10 μL aliquots of (b) 1 mM, (c) 1 μM, and (e) 1 nM dilutions. 

Octanethiol-coated Au nanoparticle films were used as SERS substrates. 
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3.7 Citrate-Coated Silver Platelets as SERS Substrates 

It has been shown that Ag nanostructures with high degree of pointy surfaces and faceted 

structures can produce increased number of plasmonic hot spots for optimum SERS signal 

enhancement. As such, to further increase the SERS detection capability of targeted lipids, citrate-

coated Ag nanoplatelets were also produced. Figure 13-15  show the SERS spectra of different 

dilutions of 6-keto, 20-HETE, and TXB2 recorded with citrate-coated Ag platelets, respectively. 

SERS spectra of 6-keto display characteristic C=C or C=O bond vibrations (observed in pure 

compound at 1679 cm-1) at 1600 cm-1 (Figure 3). In addition, significant enhancement of a new 

peak at 1060 cm-1 is noted with different dilutions of lipids. While the 1060 cm-1 peak can originate 

from both lipid and the Ag substrate, time-dependent SERS spectra collected on lipid and only the 

substrate indicate that 1060 cm-1 peak is characteristic to 6-keto prostaglandin-f1ɑ and can be used 

as a biomarker. With Ag nanoplatelets, detection of 6-keto down to 1 pM level was noted both 

with 1600 cm-1 and 1060 cm-1 Raman vibrations. It should be noted that SERS signal intensity of 

characteristic 6-Keto peaks are significantly higher at 1 nM dilutions in comparison to 1 pM 

dilutions. It is possible that at high concertation of lipids, crystal growth can happen leading to 

segregation, limiting the homogeneous distribution of analyte on the SERS substrate. SERS 

spectra recorded from 1 pM 6-keto on different days and times consistently produced characteristic 

biomarkers (1600 cm-1 and 1060 cm-1), suggesting high reproducibility of the analysis. 

On the contrary, SERS spectra of 20-HETE recorded with Ag nanoplatelets show three 

prominent vibrations (1000 cm-1, 1060 cm-1, and ~1600 cm-1) that can be used for selective analysis 

of 20-HETE (Figure 3.5). These characteristic peaks are visible in from 1 mM to 1 pM dilutions 

of 20-HETE dilutions and Raman spectral maps collected from a lipid drop area of ~1 cm2. It is 

important note that SERS signal intensity of 1 pM 20-HETE is higher than that of 1 nM 20-HETE. 
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Reproducible results were obtained from 1 pM dilutions of targeted lipids on different days and 

time intervals.   

Although 6-keto and 20-HETE exhibit high sensitivity and selectivity for SERS detection with 

citrated–coated Ag nanoplatelets, attempts to detect similar dilutions of TXB2 were unsuccessful. 

SERS spectra of different dilutions of TXB2 recorded with citrate-coated Ag platelets exhibit no 

characteristic peaks that can be confidently assigned to TXB2. Thus, we intend to utilize other 

high efficiency SERS substrates such as Ag hollow NPs, dendritic structures and nanorods in the 

future for selective analysis/detection of TXB2.  
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Figure 3.6 (a) Raman spectrum of pure 6-keto postaglandin-f1ɑ along with SERS spectra of 6-

keto prostaglandin-f1ɑ acquired with 10 μL aliquots of (b) 1 mM, (c) 1 μM, (d) 1 nM, and (e) 1 

pM dilutions.  Thin films of citrate-coated Ag nanoplatelets were used as the SERS substrates. 
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Figure 3.7 (a) Raman spectrum of TXB2 (pure compound) along with SERS spectra of TXB2 

acquired with 10 μL aliquots of (b) 1 mM, (c) 1 μM dilutions. Thin films of citrate-coated Ag 

nanoplatelets were used as the SERS substrates. 
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Figure 3.8 (a) Raman spectrum of 20-HETE (pure compound) along with SERS spectra of 20-

HETE acquired with 10 μL aliquots of (b) 1 mM, (c) 1 μM, (d) 1 nM, and (e) 1 pM dilutions.  

Thin films of citrate-coated Ag nanoplatelets were used as the SERS substrates. 
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3.8 Peak Assignment and Lipid Stability 

 

In addition to the concentration gradient of 20-HETE done at NCC, a burning study on 

this lipid was completed as well, for more than one hour of lipid burning.  This study (Figure 

3.9) was done using the 532.11 nm diode laser with spectra displayed at the following collection 

times: 400s, 800s,1700s, 2600s, 3500s and  4400s. These spectra were collected at NCC on the 

LabRam EvoHR, which showed peaks shifted as compared to the the LabRam HR500 used for 

later studies.  In later studies, the peaks refered to as having 1000, 1029 and 1080 cm-1 shifts are 

found at 008, 1032 and 1072 cm-1 respectively in this study.  This study showed the stability of 

the 1000 and 1029 cm-1 peaks at 3500s, a longer period of laser exposure than any lipid SERS 
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Figure3.9 The 20-HETE burning study was done on citrate covered triangular silver 

nanoplatelets, with spectra record at the following time intervals: (a) 400s, (b) 800s, (c) 

1700s, (d) 2600s, (e) 3500s and (f) 4400s. 
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studies that were used for cocnentration gradients of mixing studies found in Chapter 4 of this 

thesis.  The prominent peaks at 976 cm-1 and 1450 cm-1 in this study were not observed on the 

physics instrument.  The growth of the 1450 peaks is believed to be broadened in the physics 

instrument.  This peak is attirbutable to a C-H vibration band in 20-HETE.  This may be growing 

due to dissocatiation of double bonds in the hydrophobic chain of the lipid, increasing the 

prevalence of the C-H vibrations.  The loss of the shoulder around 1130 cm-1 may be due to C-C 

bond cleavage.  The stability of this lipid indicated that there was apossibility of burning other 

lipids and being left with 20-HETE, making long acquisition periods desirable for this lipid.  A 

TXB2 burning study was also done, but will not be presented in this thesis because it is a very 

noisy spectrum and though burning was evident due to amorphous carbon growth, but 

information on other peaks could not be gleamed from this study.  The largest takeaway from 

this study was that 20-HETE is more stable than at least some of the eicosonoids, possibly 

allowing an avenue of differentiating 20-HETE from them in mixtures.  This was not 

investigated further.   
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Chapter 4: Applications of Surface Enhanced Raman Scattering Towards the Detection of 

the Bioactive Lipid: 20-HETE 

(Adapted from my publication in ACS Applied Nanomaterials,  

DOI: 10.1021/acsanm.8b00840 
207) 

4.1 Experimental Section 

4.1.1 Materials. All lipids used in this investigation were purchased from Cayman Chemical 

Company.  Absolute ethanol (200 proof), hydrogen peroxide (30%, stabilized ACS grade), sulfuric 

acid (ACS grade), poly(styrene sulfonate) (97%, MW=70,000), sodium hydroxide, ethanol 

(99.8%, extra dry, AcroSeal™), methanol (99+%, extra pure), acetone (ACS grade) and premium 

glass microscope slides were purchased from Fisher Scientific. Trisodium citrate (99%) was 

purchased from Acros Organics. L(+)-ascorbic acid (99%) was purchased from Sigma-Aldrich. 

Sodium borohydride (99.99%) and silver nitrate (99.99%) were purchased from Strem Chemicals. 

Aluminum pans were purchased from TA Instruments. Milli-Q filtered (EMD Millipore, 18 MΩ) 

water was used in all syntheses. All chemicals were used as received without further purification. 

4.1.2 Synthesis of Citrate-Capped Ag Triangular Nanoplatelets.  Ag triangular nanoplatelets 

were produced in a two-stage synthesis reported by Aherne et al.167 In the first stage, a precursor 

Ag seed solution is produced by mixing 5.00 mL of trisodium citrate (10 mM), 1.0 mL of sodium 

borohydride (10 mM), and 0.250 mL poly(styrene sulfonate) (10 mM) in a round bottom flask 

using a magnetic stirrer. Then, a syringe pump is used to add 5.0 mL of silver nitrate (0.5 mM) at 

a rate of 2 mL/min to the above mixture. The Ag triangular nanoplatelets were then produced by 

adding 1.6 mL of seed solution, 1.2 mL of ascorbic acid (10 mM) and 50 mL of deionized water 

to a round bottom flask with continuous stirring. A syringe pump is used to add 7.50 mL of silver 

nitrate (0.5 mM) at a rate of 2.5 mL/min.  Thirty seconds after the last of the silver nitrate is pumped 
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into the vessel, 1.00 mL of 10 mM trisodium citrate is added to the reaction mixture, to ensure full 

growth of silver platelets and complete surface passivation with the citrate ligands. The solution is 

then centrifugally filtered to concentrate it to fifty times the native concentration. The visibly 

purple triangular nanoplatelet solution exhibit a peak of plasmonic absorption at 532 nm with a 

full width at half max no greater than 70 nm.  

4.1.3 Fabrication of SERS Substrates. Glass slides for SERS substrate deposition were carefully 

cleaned in piranha solution (3:1 concentrated sulfuric acid and 30% hydrogen peroxide), which 

will destroy any organics found on the glass or its coatings via submersive bath for a minimum of 

1 h. Caution: Piranha solution should be handled with extreme care.  It is a very caustic solution 

and produces caustic vapors upon the initial mixing of sulfuric acid and hydrogen peroxide, and 

such should only be used in a properly functioning hood while the user is wearing proper personal 

protective equipment, including thick gloves, a lab coat, and goggles. Cleaned slides were 

carefully rinsed in three cycles of adding 100 mL of deionized water to a clean beaker containing 

the slides and sonicated for 10 min. of sonication.  Rinsed slides were then dried in an oven at 130° 

C for 2 h. The dried slides were then used to drop cast the Ag triangular nanoplatelet solution. 

After dropping 1 drop of Ag solution, substrates were placed in a vacuum oven and held at -20 

mm Hg for 1 h at 25ºC. This procedure was repeated five times to have a sufficiently thick layer 

of Ag platelets.  Drop-casted Ag slides were then stored in the vacuum oven at 25ºC to reduce 

oxidation until a maximum of one day before use.   

4.1.4 Physical Characterization of Ag Triangular Nanoplatelets. X-ray diffraction patterns (XRD) 

of Ag samples were recorded using PANalytical powder X-ray diffractometer equipped with a Cu 

Kα radiation. A Nicolet 670 FT−IR instrument equipped with a single-reflection diamond ATR 

was used to record the infrared (IR) spectra of samples. Transmission electron micrographs (TEM) 
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were recorded using a Zeiss Model Libra 120 microscope operating at an accelerating voltage of 

120 kV. Solution UV-visible absorption spectra of Ag NPs were recorded using a Cary 6000i 

UV−vis−near IR spectrophotometer in the double beam mode. The reflectance spectra of Ag NPs 

were acquired using a diffuse reflectance accessory attached to the UV−vis−near IR 

spectrophotometer using a BaSO4 background holder and converted to absorption using the 

Kubelka-Munk remission function.208 A Hitachi SU-70 scanning electron microscope (SEM) and 

MFD-3D Asylum Research Atomic Force Microscope were used to record SEM and AFM images 

of Ag nanoplatelets, respectively. 

4.1.5 SERS and Raman Data Collection. The SERS analysis of lipids was performed by placing 

two aliquots of 5.00 µL of analyte dispersed in ethanol on SERS substrate, approximately 0.25 cm 

each edge on the x-axis and centered on the y-axis, ensuring coverage of the full slide. Raman 

spectra were collected on pure lipids that were dissolved in ethanol and deposited on aluminum 

pans. After deposition, 5 min. drying time under ambient air was allowed for the ethanol to 

evaporate. On humid days, additional drying time was allowed if the characteristic 880 cm-1 peak 

of ethanol was present after the first spectrum was collected. Special care was taken to use only 

clean gloves and tweezers when moving slides and to avoid all forms of contamination, including 

breathing on or near the substrate. Raman spectra were collected for 1800 seconds whereas SERS 

spectra were collected for 900 seconds. All spectra were collected using a Horiba LabRam HR 500 

spectrometer equipped with a liquid nitrogen cooled CCD detector and a 532.11 nm diode laser 

running with LabSpec 4.0 software. For all samples, the grating was set to 800, with a 100 µm slit 

and 50 µm aperture hole laser power was set to 8 µW and a 100x objective, making a 4.5 µm2 

focused beam spot.  
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Scheme 4.1. A schematic illustration of the synthesis of Ag triangular nanoplatelets for SERS 

detection of bioactive lipids.  

 

4.2 Results and Discussion 

4.2.1 SERS Substrate Design and Thin Film Fabrication. Fabrication of a suitable plasmonic 

substrate is of utmost importance for the enhancement of specific SERS signals of an analyte 

lending to qualitative detection and possibly quantification. Because of their high stability and 

simplicity of morphological  control, Au and Ag nanostructures are commonly used plasmonic 

metals for SERS application.187 In this study, elemental Ag was selected as the plasmonic substrate 

because of its LSPR can be conveniently tuned to match the absorption at the wavelength of the 

laser excitation (532.11 nm). It is well known that the anisotropic growth of Au and Ag particles 
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red shifts the LSPR maxima, thus changing the peak maxima of plasmonic absorbance. For 

instance, Au nanospheres show a plasmon peak at 520 nm.209,210 Growth of Au nanospheres into 

rods, triangles, and dendrites causes the LSPR to red shift past the 532.11 nm excitation, because 

the plasmon is largely determined by the longest edge length of the nanostrcture.73 Minimal 

anisotropic growth of Au NPs results in red shifting of LSPR past the targeted laser excitation, 

reducing the SERS signal enhancement with the given laser by minimizing the absorption cross 

section at that wavelength.210,211 In contrast, the 410 nm plasmon of Ag NPs allows for substantial 

red shifts in LSPR, as a function of nanoparticle anisotropy, thus allowing the LSPR maxima to 

be tuned to targeted laser excitation (~532 nm).  

Another consideration in designing an appropriate SERS substrate is the shape of the 

plasmonic NPs. The particle shape plays two important roles: tuning of the plasmon and 

optimization of the plasmonic hot spots. In this study, Ag triangular nanoplatelets were 

investigated as SERS substrates for lipid analysis. This shape was chosen due to the plasmonic 

antenna effect.200  The sharper the angles of the particle are, the greater the ability of the particles 

to focus the enhancement and form more intense Raman hot spots.200  Triangular platelets, in being 

the regular polygon with the fewest faces, have the greatest antennae effect because it is the only 

regular three dimensional structure with angles sharper than right angles. Though not all particles 

in this synthesis had sharp angles, they still provide greater enhancement than spherical Ag NPs 

do. 

A final consideration for SERS study is the intermolecular interactions of the surface 

functionality of Ag triangular nanoplatelets with the analyte of interest. It is believed that surfactant 

ligands may help the lipids to be positioned in the plasmonic hot spots of the platelets, while not 

providing any Raman peaks within the region of the spectrum where the characteristic peaks of 
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the target lipids are found, so that lipids of interest can be detected unambiguously.100 Though it 

is not possible to select a capping ligand without any signal, it is possible to select one that does 

not interfere with the desired analyte. Additionally, this investigation requires that the 20-HETE 

biomarker peaks selected to have Raman shifts that are different from the other structurally similar 

lipids found in blood and plasma.  Figure 4.1 shows a Raman spectrum of the substrate   Most 

lipids have polar heads with long non-polar tails. This leaves two options for selecting a ligand. A 

non-polar ligand, such as a long aliphatic chain, should interact with the tail of the lipid, causing a 

large portion of the lipid to be in contact with the plasmonic NPs, theoretically enhancing a greater 

number of peaks.135  The other option is to use a polar capping ligand, such as citrate.212  By making 

a polar surface on the triangular nanoplatelets, the polar head of the lipid should interact with the 

particle. It was believed that the interactions with the polar head would limit the number of physical 

arrangements of the lipid on the surface, resulting in more constant and stronger relative 

enhancement for a limited number of SERS peaks.213 With the goal of attaining the lowest possible 

LOD, the polar ligands appeared to be a more sensible choice, thus citrate was selected. Citrate is 

also water soluble, allowing for more environmentally friendly synthesis than nonpolar ligands, 

which require the use of harsh organic solvents. Figure 4.4E shows a representative TEM image 

of Ag nanoplatelets with face-centered cubic crystal structure that show a solution-state LSPR 

maxima at 532 nm with a full width at half maxima no greater than 70 nm (Figure 4.4B).  More 

TEM Images are found in Figure 4.5. In contrast, the drop-casted Ag nanoplatelets show a broader 

plasmonic resonance from 350-750 nm owing to agglomeration of the particles (Figure 4.4C). 

TEM images of as-synthesized Ag NPs suggest triangular morphology of platelets with an average 

edge length of ~40-70 nm (Figure 4.4E). In addition, a few oblong-shaped platelets with rounded 
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edges and a spherical Ag NPs (10-20 nm) from seed solutions were often observed in as-

synthesized samples.   
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Figure 4.1. Representative SERS spectrum of the Ag nanoplatelet substrate deposited on glass 

showing that the region between 1000-1100 cm-1 does not interfere with 20-HETE peaks in this 

region of the spectrum.  

 

The morphology and radial distribution of Ag NPs on glass substrates were investigated 

using AFM and SEM. AFM images show the flat nature of Ag nanoplatelets on the base and top 

of the particles and an average thickness of 40 nm (Figure 4.4E).  Conversely, the SEM images of 

the Ag NPs deposited on a silicon wafer indicate heterogeneous distribution of the particles and 

significant variances in thickness of large aggregates on the surface, shown in Figure 4.2. Despite 

the non-uniformity, SERS were reasonably consistent both in terms of spectral peaks position and 
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relative peak intensity. Additionally, non-magnified, 10x and 100x visible microscope images 

show the heterogeneity of the drop-casted substrate (Figure 4.3). The lines and splotches on the 

slide show aggregates of Ag NPs. The irregularity of the surface is due to the nature of drying high 

surface tension solvents, such as water, which do not deposit particles homogenously. 

 

 

Figure 4.2. SEM image of the Ag nanoplatelet substrate show polydispersity and aggregation of 

nanoparticles. 
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Figure 4.3. Photographs showing visible images of drop-cased Ag nanoplatelet substrate with (A) 

1X, (B) 10X, and (C) 100X magnification showing randomly distributed and aggregated particles.  

Despite polydispersity and aggregation on the surface of the coverslip, the Intensity of UV-Vis 

transmission spectra maintained the same pattern and within 10% transmission for any given 

wavelength, determined by 5 collected spectra on visible different spots. 

 

A SERS spectrum of the Ag nanoplatelet substrate is shown in Figure 4.1. Ag nanoplatelets 

show distinct SERS peaks at 962, 1423 and 1585 cm-1, which can be attributed to  surfactants used 

in NP synthesis.  Nonetheless, no peaks were detected in the 1000-1100 cm-1 region of the 

substrate, where characteristic peaks of targeted lipids are expected to be present. Consistent with 

SERS spectra, FTIR spectra (Figure 4.4D) of Ag NPs suggest the presence of citrate, and PSS 

ligands on the surface, which were used as the structure directing to produce triangular Ag 

platelets.  

A B C
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Figure 4.4. (A) Powder XRD pattern, (B) Solution-state and (C) solid-state UV-Visible 

absorbance spectra and (D) FT- IR spectra of (a) Ag nanoplatelets along with (b) trisodium citrate 

and (c) poly(styrenesulfonate) surfactants used in the synthesis Ag particles. (E) A representative 

TEM image of Ag nanoplatelets used in the SERS detection of bioactive lipids. (F) An AFM image 

of Ag nanoplatelets drop-casted on glass substrates including depth profile.  
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Figure 4.5. TEM Image of triangular Ag nanoplatelets used in the SERS detection of bio-active 

lipids.  Highlights of these images include (A) a representative distribution of triangles with 

sharp corners, rounded corners and amorphous platelets, (B) similar sized triangular platelets 

with a narrow size distribution, (C) several sharp colored shapes, (D) three nice triangles with 

sharp angles, (E) a single platelet of ideal size and (F) a good distribution of particles with 

varying sizes but consistent shape. 

 

4.2.2 Pure Lipid Spectra of 20-HETE, AA, EPA, and DHA. The normal Raman spectra of pure 

20-HETE and selected other lipids obtained by drop-casting a concentrated solution of lipid 

dissolved in absolute ethanol on aluminum pans are shown in Figure 4.6. These spectra were used 

as reference patterns for the SERS studies and to identify characteristic molecular vibrations of 

each lipid without enhancement. Though SERS can cause shifting of peaks, the normal Raman 

A B C

D E F
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spectra provide a clear indication, where characteristic peaks of each lipids are expected to occur 

in the corresponding SERS patterns. Additionally, these spectra indicate which lipids exhibit peaks 

that could interfere with the target analyte (i.e. 20-HETE). It is important to note that Raman 

spectra of AA, DHA, and EPA show no peaks in the 990-1200 cm-1 region (Figure 4.6 B-D). In 

contrast, 20-HETE exhibits three characteristic peaks at 1000, 1029, and 1080 cm-1, which are 

believed to be derived from the (C-H) stretch, enabling its selective detection in the presence of 

other lipid interferents (Figure 4.6A). Since AA, DHA, and EPA have such similar chemical 

structures, their vibrational spectra are also very similar in nature. With a high enough resolution 

instrument, these peaks can be differentiated, despite similar vibrational frequencies. The 

broadening of peaks in the 830-967 cm-1 region should allow for these lipids to be detected by 

decreasing the width of the associated peaks. The peak at 864 cm-1 for AA and 840 cm-1 for EPA, 

which are attributed to carboxylic acid (C-O) vibration will not likely be distinguishable. However, 

the 956 cm-1 peak that is believed to originate from the (C-H) vibration of EPA should allow the 

lipids to be distinguished.  DHA has a prominent peak at 830 cm-1 that is likely derived from (C-

H) vibration, which should distinguish it from the other three lipids. Though this study did not focus 

on the discernment of all these lipids and focused on 20-HETE, it should be possible for all four 

lipids to be distinguished in a mixture based on the peaks. The locations of all prominent peaks 

and their proposed assignments are reported in Table 1. All peak assignments are based on the data 

provided in a recent review by Czamara et. al.129  
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Figure 4.6. Normal Raman spectra of pure lipids and their molecular structures: (A) 20-

Hydroxyeicosatetraenoic acid (20-HETE), (B) arachidonic acid (AA), (C) docosahexaenoic acid 

(DHA), and (D) eicosapentaenoic acid (EPA).  
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Table 4.1. Raman Peak Assignments of 20-Hydroxyeicosatetraenoic Acid (20-HETE), 

Arachidonic Acid (AA), Docosahexaenoic Acid (DHA), and Eicosapentaenoic Acid (EPA). Key 

vibrations Note are ɑ= Scissoring, β= Bending, δ= Deformation, τ= Twisting, and v= Stretching. 

Lipid Peak Value (cm-1) Proposed Associated Vibration 

20-HETE 1000 β(CH) 

 1029 β(CH) 

 1080 v(C-C) 

 1295 τ(CH2) 

 1386 ɑ(CH2/CH3) 

 1431 vC-H 

 1521 vC-H 

 1597 vC-H 

 1652 v(C=C) 

AA 864 v(C-O) 

 1450 ɑ(CH2/CH3) 

 1648 v(C=C) 

DHA 840 vC-O 

 1235 δ(CH) 

 1283 δ(CH2) 

 1428 ɑ(CH2/CH3) 

 1626 v(C=C) 

EPA 862 v(C-O) 

 928 β(CH) 

 966 β(CH) 

 1262 δ(CH2) 

 1439 ɑ(CH2/CH3) 

 1648 v(C=C) 

 

For the SERS studies, citrate-capped Ag triangular nanoplatelet substrates drop-cast on 

glass slides were investigated. Figure 4.7 shows the SERS spectra of four different lipids (20-

HETE, AA, DHA, and EPA) collected at different concentrations (1 μM, 1 nM, and 1 pM) on Ag 

platelets. Shifting of Raman peaks compared to pure compound spectra was often observed, 

consistent with prior reports.8,96,204,214  It is important to note that all lipids investigated in this 
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study can be detected down to 1 pM concentrations with citrate-coated Ag triangular nanoplatelets 

(Figure 4.7 A-D). Interestingly, the highest intensity peaks were visible when spectra were 

acquired at the lowest concentration studied (1 pM) for all lipids. This increase of the peak intensity 

and band sharpening is expected to arise from one of two possible phenomena. The first 

phenomenon arises from the fact that having a lower concentration means that there is a lower 

probability of direct interactions between analyte molecules, such as dimerization of carboxylic 

acid groups or crystallization of analyte molecules. These latter situations could lead to 

heterogeneous environments, with reduced enhancement of specific vibrations arising from 

isolated molecules.86 Furthermore, crystallization can reduce the ability to detect a given analyte.  

The lower layers of the crystal, which would be in contact with the substrate, can be enhanced, 

however the Raman scatter might not be able to penetrate upper layers of the lattice, preventing 

detection.175 The second possible reason is that lipid micellar structures may be forming in the 

ethanol-based lipid solution. Since ethanol is a polar protic solvent, entropy considerations will 

drive the solution to increase interactions between the polar heads while decreasing the interactions 

between the nonpolar tail of the lipids and the polar solvent.138 The structure that best optimizes 

those interactions would be the formation of micellar structures with the nonpolar tails of the lipids 

in the center of the aggregate. This aggregation would reduce the probability of lipid molecules 

finding a hot spot limiting the number of molecules in closed proximity to the substrate surface, 

leading to minimal analyte being located in a plasmonic hot spot.  To mitigate aggregation, vials 

were vigorously shaken for 30 seconds immediately prior to sample deposition, likely breaking up 

aggregates and micelles. This produced more uniform spectra throughout a slide, indicating more 

regular deposition of lipids on the substrate. In contrast, at higher concentrations, the micelles 

begin to reform nearly instantly due to increased molecular collisions between lipid molecules, 
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which can likely increase the segregation and lower signal intensity.  The unexpected effects on 

the peak intensity and irregular peak shifting could also be derived from the different SERS 

enhancement mechanisms at play. 

There are two possible mechanisms for enhancement of Raman spectra by NPs.  The first, 

and most commonly discussed is plasmonic enhancement.73,84,215,216 Through this avenue of 

enhancement, the inelastic scattering cross section of the molecules near the roughened surface of 

plasmonic nanostructures are increased drastically by the electromagnetic field generated by the 

NPs.89,204,205  The free electrons of the metallic nanostructures are collectively excited in a localized 

surface plasmon resonance (LSPR).217  This LSPR creates small, intense electromagnetic fields, 

which increase the probability of inelastic scattering events, thus increasing the Raman 

intensity.217,218 The second mechanism is charge transfer enhancement (CTE).  In CTE, an electron 

is transferred from the nanostructure to a chemical adsorbed analyte when the Fermi energy level 

of the NP matches the LUMO energy of the adsorbate and the laser energy.219 This induces rapid 

changes between a lower energy state and a higher energy transfer charge state.194,219 This 

mechanism is not fully understood, but it has been reported to cause enhancement factors (EFs) of 

up to five orders of magnitude and peak shifting. Both mechanisms can be found in the same 

system, and both are believed to be present in this study. Plasmonic enhancement does not result 

in large shifting of peaks. CTE is believed to be present due to the disappearance of the 1652 cm-

1 peak in the Raman spectra of 20-HETE, the most prominent peak before the NP substrate is 

introduced. Carboxylic acids tend to deprotonate in ethanol, forming a COO- terminus on the 

lipids. It has been previously reported that the COOH of AA binds to silver NPs; thus it is likely 

that COO- can bind to the Ag+ on the surface of the Ag platelets, allowing for CTE.91,220 
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Identification of 20-HETE in the current study is based on the peaks found at 1000 and 

1029 cm-1 in the non-enhanced Raman spectrum.   The 1000 cm-1 Raman peak of 20-HETE is 

consistently observed in SERS spectra with a three-wavenumber shift to 997 cm-1 (Figure 4.7A). 

The 1029 cm-1 peak of 20-HETE is observed in all characteristic spectra without shifting. These 

peaks likely arise from the β(C-H) frequency of 20-HETE. For AA, the β(C-H) vibration appears at 

974 cm-1 in the pure lipid and is red shifted to 930 cm-1 in the SERS spectra (Figure 4.7 B). The 

1049 cm-1 peak of AA can be attributed to C-C vibrations. The 1649 cm-1 in the Raman spectrum 

of DHA likely downshifts to 1597 cm-1 in the SERS spectra and the β(C-H) band likely shifts from 

969 cm-1 to 959 cm-1 in the SERS spectra (Figure 4.7 C). In EPA, the β(C-H) band is observed at 

969 cm-1 in both the Raman spectrum and the SERS spectra (Figure 4.7 D). The 1442 cm-1 peak 

is likely an ɑ(CH2) vibration, which downshifts to 1440 cm-1 in the SERS spectra.35 The 

characteristic peaks of 20-HETE in the aforementioned spectra are discernable in approximately 

72% of the collected spectra in this study.  

Table 4.2: Quantitate Analysis of Targeted Lipids Detection using Drop-Casted Ag Nanoplatelet 

Substrates that show the Reproducibility and Statistical Significance.  

Lipid Number of 

Spectra Taken 

Number of 

Spectra without 

Human Error, 

Instrument 

Error/ Solar 

Flares 

Number of 

Spectra where 

the targeted  

lipid detectible 

based on 

biomarker peaks 

 

% 

Reproducibility 

20-HETE 472 446 371 83.1% 

 

Arachidonic 

Acid 

356 340 229 67.4% 

Docosahexaenoic 

Acid 

179 162 89 54.9% 

Eicosapentaenoic 

Acid 

103 88 57 64.8% 

Total Spectra 1110 1036 746 72.0% 
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Figure 4.7. (a) Raman spectra and (b) 1 µM SERS, (c) 1 nM SERS, and (d) 1 pM SERS spectra 

of (A) 20-HETE, (B) AA, (C) DHA and (D) EPA. The dash lines of each spectrum indicate the 

significant peaks that were used for qualitative analysis corresponding lipids in mixing studies. 

 

To investigate the selective detection of 20-HETE in the presence of other interfering, 

structurally similar lipids, mixing studies were performed with varying ratios of AA, EPA, DHA, 

and 20-HETE. Specifically, 1 pM 20-HETE was mixed with the interfering lipids at varying 

concentrations, with reported values for every three orders of magnitude, starting with 10-6 M (1 

μM, 1nM, and 1 pM) and SERS spectra were taken on drop-casted Ag triangular nanoplatelets. 
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The SERS spectra of these four lipids of interest provided further evidence that the peaks near 

1000 cm-1 and 1029 cm-1 for 20-HETE were specific to that lipid. This specificity allowed for 

selective detection of 20-HETE in mixtures even when the other lipids (AA, EPA, and DHA) were 

present at significantly higher concentrations (Figure 4.8-10). Though the 1000 cm-1 peak can be 

argued to be due to AA, but the 1029 cm-1 peak can only be attributed to 20-HETE, further 

confirming the presence of 20-HETE. Thus, these mixed lipid studies show that the biomarker 

peaks for 20-HETE are distinguishable, even with the structurally similar lipid interferences at 

concentrations three orders of magnitude greater than that of 20-HETE (Figure 4.8-10).   

To demonstrate the potential clinical relevance of SERS for selective analysis of targeted 

lipid, all four lipids were mixed in concentrations similar to their biological levels in plasma 

(Figure 4.11). The solution consisted of 4.56 μM AA, 821.1 nM DHA, 129 nM EPA, and 86.7 nM 

20-HETE in absolute ethanol, based on values from the Human Metabolome Database.221 In the 

corresponding SERS spectra, characteristic 20-HETE peaks are still distinguishable at 1000 and 

1030 cm-1. The broadening of the 20-HETE peaks is likely caused by the intermolecular 

interactions of the analyte with other lipids, causing variations in the frequency of the molecular 

vibrations.  The intense and broad peaks found from 866-960 cm-1 are a combination of peaks from 

the substrate, β(C-H), and v(C-O) vibrations of AA, DHA and EPA. The low intensity, broad region 

from 1500 to 1750 cm-1 is due to amorphous carbon growth that results from the burning of lipids.  

These carbon peaks can be seen growing in intensity as time elapses during a given spectral 

collection, indicating burning of lipids due to energy imparted by the laser.   
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Figure 4.8.  (a) Raman spectrum of 20-HETE along with SERS spectra of (b) 1 nM AA and 1 nM 

20-HETE, (c) 1 nM AA and 100 pM 20-HETE, (d) 1 nM AA and 10 pM 20-HETE, (e) 1 nM AA 

and 1 pM 20-HETE and (f) Raman spectrum of AA. These data suggest that 20-HETE is still 

detectable in the presence of AA with three orders of magnitude higher concentration. The 

highlighted region indicates the prominent 20-HETE peaks. 
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Figure 4.9. (a) Raman spectrum of 20-HETE along with SERS spectra of (b) 1 nM DHA and 1 

nM 20-HETE, (c) 1 nM DHA and 100 pM 20-HETE, (d) 1 nM DHA and 10 pM 20-HETE, (e) 1 

nM DHA and 1 pM 20-HETE and (f) Raman spectrum of DHA. These data suggest that 20-HETE 

is detectable in the presence of DHA with three orders of magnitude higher concentration. The 

highlighted region indicates the prominent 20-HETE peaks. 
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Figure 4.10. (a) Raman spectrum of 20-HETE along with SERS spectra of (b) 1 nM EPA and 1 

nM 20-HETE, (c) 1 nM EPA and 100 pM 20-HETE, (d) 1 nM EPA and 10 pM 20-HETE, (e) 1 

nM EPA and 1 pM 20-HETE and (f) Raman spectrum of EPA. This data suggests that 20-HETE 

is detectable in the presence of EPA with three orders of magnitude higher concentration. The 

highlighted region indicates the prominent 20-HETE peaks. 
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Figure 4.11. (a-c) SERS spectra of a mixture of 4.56 μM AA, 821.1 nM DHA, 129 nM EPA, and 

86.7 nM 20-HETE, demonstrating that at biologically relevant concentrations of these lipids, 20-

HETE can still be reproducibly detected and differentiated from other lipids. The highlighted 

region indicates the prominent 20-HETE peaks. 
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Chapter 5: Conclusions 

 

Initial studies provided several valuable insights into SERS detection of the lipids 

associated with preeclampsia development.  The characteristic SERS peaks of 6-keto 

prostaglandin-f1ɑ are found in different regions of the spectrum with octanethiol-coated Au 

nanoparticles, as compared to citrate-coated Ag nanoplatelets. It was believed that the hydrophobic 

interactions between the lipids and octanethiol would increase the likelihood of the nonpolar tails 

of the lipids to be drawn into the hot spots when compared to the hydrophilic interactions between 

the lipid and citrate-covered particles.  Conversely, it was observed that silver nanoplatelets were 

still more advantageous for this application because enhancement from the sharp angles 

outweighed the potential detriment of having a polar capping ligand. Furthermore, one can observe 

that the shape of the lipid associated peaks at 1 nM and 1 pM concentrations are drastically 

different from those at 1 μM and 1 mM concentrations. This is believed to be due to the ability of 

lipids to aggregate and crystalize. In more dilute samples, it is assumed that the molecules are not 

interacting with each other as much and cannot crystalize as easily, leading to individual molecules 

being detected as opposed to aggregated crystals interacting with the hot spots in higher 

concentrations. Later, a hypothesis concerning micelle formation was developed, giving more 

insight into the different peak shapes and intensities at varying concentrations. Additionally, it was 

observed that TXB2 does not generate distinguishing peaks with the citrate-coated Ag platelets. 

This may be due to interactions between the lipid and the substrate itself. Based on this study, both 

6-keto and 20-HETE can be detected down to 1 pM levels using Ag nanoplatelets with high a low 

enough limit of detection to be clinically prevalent.  

 Surface enhanced Raman spectroscopy further demonstrated its potential to be a diagnostic 

tool for clinicians to use for detection of hypertensive disorders, such as preeclampsia 
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development, which was further evidenced by more meticulous 20-HETE studies. The low limit 

of detection makes it ideal for studies of analytes at biologically relevant concentrations, having 

demonstrated the ability to detect 1 pM concentrations of relevant lipids.  In being a “fingerprinting 

technique,” it provides sufficiently unique patterns for the differentiation of various biomolecules 

to allow sensitive instruments to differentiate between structurally similar metabolites. It was 

demonstrated that 20-HETE, AA, DHA and EPA can be reproducibly detected down to 1 pM level 

using drop cast Ag nanoplatelet SERS substrates. Moreover, selective identification of 20-HETE 

can be done even in the presence of structurally similar lipid interferences (i.e. AA, DHA, and 

EPA) with concentrations three orders of magnitude greater than that of 20-HETE. In biological 

concentrations, 20-HETE can be distinguished from AA, DHA, and EPA, the three structurally 

similar lipids found in greater native concentration than the target analyte in human plasma. It 

should also be noted that these data were collected with multiple individually prepared SERS 

substrates and spectra were collected on different times of the day to validate the reproducibility 

of results. To improve the system for medical diagnostic analysis, the substrate should be made 

monodisperse to give quantitative analysis capabilities, ideally through lithography. This study has 

shown the viability of SERS as a potential diagnostic technique for detection of the increased 20-

HETE levels associated with blood pressure related conditions, showing viability for this technique 

to be used to diagnose hypertension disorders.   

 To carry this work forward toward clinical applications, several steps must still be taken.  

First, a monodisperse substrate should be made.  Second, all lipids found in human plasma should 

be investigated, both individual and mixed together.  Key lipids would include the eicosanoids, 

eicosatetraenoic acids and the other hydroxyeicosatetraenoic acids.  After that, human plasma 

would need to be investigated, and a method of removing interferences, such as the carotenoid 
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proteins, would be desired.  Additionally, other laser wavelengths should be investigated to see if 

shorter wavelengths can increase scattering and decrease luminescence further.  A 380 nm InGaN 

diode would be interesting to contrast to 532.11 nm, green diode laser.    Lastly, an inclusive device 

would need to be developed for clinical simplicity.   

Theoretically, an instrument in which blood samples could be directly added would reduce 

the risk of misdiagnosis.  This device would need to include an apparatus for doing an ethanol 

extraction from blood, removing the lipids and removing any platelets, cells and non-ethanol 

soluble proteins.  The solution could then use size exclusion high performance liquid 

chromatography (SE-HPLC), allowing lipids to pass through while removing any remain proteins.  

At this point, a perfect system would inject an internal standard and mix it in to verify 

quantification by the system.  After this, two possible methods of automated SERS detection seem 

plausible. The first involves a system of using an autosampler to deposit the sample onto the 

substrate.  After analysis, the substrate would be cleaned by either a high-pressure solvent washing 

or else must be replaced.  Another option would be to develop a through flow SERS system with 

a uniform substrate coating inside of tubing with a reflective interior.  This would allow a beam to 

be passed through the sample and gather scattering data.  After the sample is analyzed, a solvent 

flush would have to be done to remove any analytes on the substrate.  Though the first system 

would be simpler, the second should allow for superior reproducibility because the same substrate 

would be used for a greater period.  Finally, the analysis software would have to be programmed 

to calculate the concentration of each lipid in the sample.   
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