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Abstract 

EVALUATION AND ADAPTATION OF LIVE-CELL INTERFEROMETRY FOR APPLICATIONS IN BASIC, 

TRANSLATIONAL, AND CLINICAL RESEARCH 

By Kevin Alexander Leslie, M.S. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2018 

 

Major Director: Dr. Jason Reed, Associate Professor, Department of Physics 

 

Cell mass is an important indicator of cell health and status. A diverse set of techniques have 

been developed to precisely measure the masses of single cells, with varying degrees of 

technical complexity and throughput. Here, the development of a non-invasive, label-free optical 

technique, termed Live-Cell Interferometry (LCI), is described. Several applications are 

presented, including an evaluation of LCI’s utility for assessing drug response heterogeneity in 

patient-derived melanoma lines and the measurement of CD3+ T cell kinetics during 

hematopoietic stem cell transplantation. The characterization of mast cells during degranulation, 

the measurement of viral reactivation kinetics in Kaposi’s Sarcoma, and drug response studies in 

patient-derived xenograft models of triple-negative breast cancer are also discussed.  Taken 

together, data from these studies highlight LCI’s versatility as a tool for clinical, translational, and 

basic research applications.  
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Chapter 1 

Cell Mass: A Versatile Biomarker 
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1.0 Chapter Overview 

This chapter provides a brief overview of cell mass, including its relevance as an indicator of cell 

health, and techniques with which it can be measured. Cell mass is the common thread woven 

through all of the experiments described in this dissertation, and the sections that follow aim to 

orient the reader to this important intersection of single-cell biology and physics.  

1.1 Introduction 

Cell growth and proliferation are tightly regulated but incompletely understood processes.1,2 In 

unicellular organisms like bacteria, they are generally governed by resource availability in the 

extracellular environment.3 For multicellular organisms, comprised of varying tissue types and 

proceeding through multiple stages of development, a more complex and coordinated system of 

signaling is required to maintain homeostasis.4,5 This system, enabling individual cells to monitor 

and change or maintain their size, relies on a combination of molecular gradients within the cells 

themselves, mechanical signals from the extracellular environment, and paracrine and endocrine 

signaling.6,7,8,9 Further, as cells can grow (accumulate mass) without dividing, it is important to 

appreciate that these two processes, cell growth and cell division, can be differentially 

regulated.1  

A human’s survival and reproduction depends on the continuous and appropriate regulation of 

cell growth and proliferation. Injuries to the skin must be rapidly repaired, immune cell 

populations must expand in response to infection, egg cells must remain viable for decades, and 

muscles must adapt to mechanical demands. Even cells that appear quiescent can be quite 

dynamic, striking a delicate metabolic balancing act by exhibiting levels of biosynthesis identical 
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to growing or proliferating cells while simultaneously having higher levels of protein 

degradation.10 However, when this system of regulated cell growth and division breaks down, 

disease often results. Hearts can become enlarged, cancer can develop, and developmental 

brain disorders can occur.11–13 

The work described herein focuses on measuring the mass of a variety of human cells to 

understand how their growth and division are impacted by different stimuli, including cytotoxic 

drugs. In turn, this information could allow us to better understand basic biological processes, 

predict drug efficacy, and even modulate therapeutic regimens for cancer patients.  

1.2 Rationale 

A red blood cell weighs just 27 picograms, on average, while an ovum can be 100,000 times 

heavier, exceeding 3.5 micrograms.14  Neutrophils, important components of the immune 

system, are renewed on an almost daily basis, while neurons of the cerebral cortex can last a 

lifetime.15,16 This kind of dynamic range implies a corresponding heterogeneity in rates of mass 

accumulation and division among human cell types.17 Logically, as common processes like 

apoptosis (controlled cell death), growth, and division all encompass changes in cell size or 

protein synthesis, cells should exhibit mass kinetic signatures that correspond with these 

events.18 This should also hold true for cell type-specific functions like activation in T cells or 

degranulation in mast cells.19–23 Taken further, significant dysregulation or disruption of any of 

these processes should be detectable as a change in these kinetic signatures.  However, 

accurately characterizing baseline cell growth and, subsequently, detecting these kinetic 

signatures requires the ability to non-invasively measure cell mass with picogram sensitivity. 
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Within the last 15 years, significant progress has been made on this front, seeing the advent of 

multiple measurement platforms capable of achieving single-cell resolution. These techniques 

and their subsequent applications are discussed in the sections that follow.  

1.3 Techniques for Measuring Cell Mass 

Cellular biomass can be measured using a variety of techniques, including biochemical stains, 

mass spectrometry, electron microscopy, various forms of interference microscopy, and 

microbalances.24–50 However, most have seen limited use in clinical or research settings due to 

their technical complexity, inadequate throughput, or limited precision.51–53 For the purposes of 

this discussion, only techniques capable of measuring mass in living cells over time with 

picogram precision will be considered; they will be categorized as either optical or non-optical 

modalities.  

1.3.1 Non-optical modalities 

Non-optical modalities rely on indirect physical measurements to determine the mass of a cell. 

The two most common are Suspended Microchannel Resonators (SMRs) and Pedestal Resonant 

Sensors (PRSs). While these techniques can often be more precise than optical approaches, their 

low throughput and inability to handle a variety of cell types (i.e. adherent and non-adherent, 

clumps and single cells) tend to be limiting factors to their broad-scale adoption.  

Suspended Microchannel Resonators 

Suspended microchannel resonators derive the mass of a cell by measuring changes in the 

vibrational frequencies of a silicon cantilever.54 Briefly, the cantilever contains a small channel 
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through which liquid and particles or cells can flow. This cantilever is vibrated at multiple 

frequencies and, using small piezoresistors embedded in the silicon surface or an external laser 

doppler vibrometer, these vibrations are recorded.55 As a cell passes through the microchannel, 

a detectable alteration of vibrational patterns is induced. These patterns can be used to derive 

the buoyant mass of a cell. SMRs have been used successfully to measure a range of bacteria, 

yeast, and mammalian cell types.56  

The newest iteration of this technique involves arraying multiple SMRs in a serial fashion, 

allowing the measurement of the same cell multiple times over the course of 15 minutes with a 

precision of 50 femtograms; cells remain viable after passing through the channel. This setup has 

been used to correlate drug-induced changes in single-cell growth rates in myeloma cells to drug 

responses in several patients.57 However, SMRs are currently limited to analyzing 60-120 cells 

per hour.58 In order to detect rare cells in a heterogeneous population or conduct screens on 

multiple therapeutics simultaneously, a significant increase in throughput is required.  

Pedestal Resonant Sensors (PRS) 

Pedestal resonant sensors (PRS) operate similarly to SMRs. Briefly, the devices consist of an array 

of small sensors (60 x 60 μm2) each suspended by a set of four nanoscale springs (80 μm x 4 

μm).59,60 Single cells are deposited on, and subsequently attach to, these sensors. A laser doppler 

vibrometer measures the resonant frequencies of these sensors, over time, in the presence of 

the living cells. As cells change their mass, they detectably alter the resonant frequency of the 

sensor to which they are attached. From these resonant frequency changes, cell mass can be 

derived. Despite an ability to accurately measure cell mass over many hours, PRSs are not 
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compatible with fluorescence microscopy, preventing correlative studies.56 Like SMRs, PRSs 

suffer from low throughput (<100 cells measured simultaneously). In addition, adherent cells 

often migrate off the sensor pedestals, complicating the process of tracking single cells for 

multiple days.61  

1.3.2 Optical modalities 

Quantitative optical mass measurements of single living cells began in the 1950s48,62 and, thanks 

to advances in both digital imaging technology and computing power, newer approaches have 

increased in speed, precision, and practicality.26,27  

In their most basic form, optical mass measurements of cells can be acquired using Michelson-

style interferometry, which involves the extraction of information from the superimposition of 

two light beams that have traveled separate paths after being split from a single illumination 

source. The first beam passes through a target object (i.e. a cell), while the second (“reference”) 

beam passes through a material that simulates the optical path of the first, without the target 

object. Re-combination of these two beams yields an interference pattern from which the mass 

of the target can be derived. Specifically, the interference pattern is a result of the differing 

lengths of the optical paths (a product of the medium’s index of refraction and the geometric 

length of the light’s path) between the two beams. The dense material in the target cell, through 

which the first beam passes, increases the optical path length of the beam. When these path 

length differences are calculated across the entire area of a target object, the optical density of 

the object can be calculated. Optical density can be converted into dry mass by applying a 

whole-cell-average dry mass ratio based on the average refractive indices of biological molecules 
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(e.g., protein, DNA, RNA).46 Our group’s original live-cell interferometry platform utilized phase-

shifting interferometry (PSI) which operates using the basic principles outlined above. However, 

PSI also uses a piezoelectric transducer to rapidly introduce path length changes in one arm of 

the Michelson-style setup during image collection, resulting in the generation of multiple 

interferograms that enable the enhanced resolution of optical path differences.63 

Variations on this technique have yielded an array of quantitative phase imaging (QPI) 

microscopy platforms for the examination of biological specimens.56,64 A notable example is 

digital holographic microscopy (DHM), wherein a laser light source is used to generate 

holograms of living cells, enabling the reconstruction of three-dimensional images.65 The 

technique, like all QPI-based modalities, requires no cell staining or labeling. It is also, uniquely, 

afocal, as images can be digitally autofocused (within a range limited by the numerical aperture 

of the microscope objective) after collection depending on the z-dimension layer of interest. 

However, current implementations suffer from high noise as a result of multiple reflections and 

laser speckling inherent to DHM.66 In addition, though DHM’s use of laser illumination poses 

problems for long-term imaging of biological samples due to risks of phototoxicity, this can 

generally be mitigated by using lower intensities or longer wavelengths.67 

A low-noise alternative to DHM is quadriwave lateral shearing interferometry (QWLSI).26 In this 

QPI variant, non-laser coherent light passes through living cells and is then sheared by a 

diffraction grating into multiple replica wavefronts. These wavefronts combine to produce an 

interference pattern that yields dry mass data on the target cells. Typically, this process is 

condensed into a single camera unit, wherein the diffraction grating is fixed several millimeters 

from the camera’s CCD sensor (on which the interference pattern is produced and recorded). 



8 
 

This modular camera approach enables the technique to be easily incorporated into existing 

microscopy platforms and used in parallel with fluorescence techniques.  

Recent applications of quantitative phase microscopy using other imaging platforms include 

measurements of cell growth, cell death, membrane mechanics, individual organelles, and 

preliminary imaging studies of mouse pluripotent stem cells (PSCs).60,68–71 Emerging translational 

uses of the technique are highly promising, including its use in characterizing tissue 

inflammation, wound healing, and circulating tumor cells.72–74 

1.4 Live-Cell Interferometry (LCI) 

Prior to the initiation of the work described herein, Reed et al. utilized early versions of an optical 

single-cell mass measurement technique, termed live-cell interferometry (LCI), to investigate a 

broad range of biological processes. Based on a Michelson-style phase-shifting interferometer, 

early LCI platforms were precise but low-throughput, capable of measuring single cells with 

picogram sensitivity and CV’s less than 1%, but slowed down by required focusing and image 

collection times.  

Initially, LCI was used to address questions in basic biology, such as the quantification of 

cytoskeletal rearrangements in NIH/3T3 embryonic fibroblasts in response to mechanical 

stimulation.75 Later studies focused on the appropriation of mass between daughter cells during 

cell division, as well as the motility and distribution of mass in undifferentiated versus 

differentiated human stem cell colonies.76,77  

Applications eventually expanded to include the characterization of drug responses in a variety 

of human cancer lines. Experiments using H929 multiple myeloma cells demonstrated the LCI’s 
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ability to determine sensitivity to Tunicamycin in several hundred individual cells by measuring 

cell mass over time.78 This was followed by a similar set of experiments using Trastuzumab and 

four breast cancer cell lines of varying HER2 statuses and clustering behaviors.25 Taken together, 

these studies highlighted LCI’s ability to measure drug sensitivity in both adherent and non-

adherent cell types, as well as single cells and/or cell clusters. This versatility remains one of LCI’s 

fundamental advantages. However, at the time, the LCI’s throughput was a major limiting factor 

in expanding to new translational research projects and improving its utility for existing 

applications.  

 

 

 

 

 

 

 

 

 



10 
 

 

Chapter 2 

Technical Overview of Live-Cell Interferometry Systems 
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2.0 Chapter Overview 

This chapter provides hardware and performance descriptions of the original LCI system and its 

high-speed successor, the HSLCI (High-Speed Live-Cell Interferometry) system. The sections that 

follow provide technical context for the diverse range of applications described in later chapters.  

2.1 Original State of the VCU LCI System 

In 2012, the original VCU LCI system utilized phase-shifting interferometry63 and consisted of a 

combination of two motorized linear translation stages, one small stepper motor, one flexure 

stage, a CCD camera, a single LED illumination source, and a custom Michelson interferometric 

imaging head. It was situated on a vibration isolation table and was not enclosed. A schematic 

and image of the system are shown in Figure 1. 

The core of this system was the interferometer head (Figure 2). Briefly, 660 nm collimated light 

from a fiber-coupled LED source (Thorlabs, Inc.) enters the rightmost side of the head unit. This 

light is split by a beam splitter into two beams: a reference beam and a sample beam. The 

sample beam is directed towards the sample (containing beads or cells). The reference beam is 

directed through a reference cell designed to mimic the optical path of the sample beam, minus 

the actual sample. This reference cell is composed of two pieces of glass mounted in a small 

aluminum block, separated by 700 μm steel spheres, and filled with distilled deionized water. 

After passing through the reference cell, the reference beam encounters a mirror (whose 

position is adjustable) and reflected back towards the original beam splitter. Both the reference 

and sample beams are reflected (and subsequently recombined) towards the CCD camera after 

re-encountering the beam splitter. The retardation of the sample beam relative to the reference 
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beam, caused by the higher index of refraction of the material encountered in the sample 

objects, results in the generation of interference patterns in the light reaching the CCD camera. 

In order for this technique to work, the interferometric head’s mirror must be positioned with 

micrometer precision so that the lengths of the geometric paths traveled by both the sample 

and reference beams are identical. Additionally, the sample’s tilt must be corrected so that the 

objects being imaged are parallel to the imaging lens. Reference mirror positioning was 

accomplished manually using an external rotary knob mounted to the side of the interferometer 

head.  Tilt correction was automatically performed using a stepper motor controlled by a custom 

MATLAB script; a three-axis flexure stage (NanoMax-TS, Part# MAX301, Thorlabs, Inc.) enabled 

rapid Z-direction adjustments for phase shifting. Sample navigation was performed using two 

linear stepper motors (NRT100, Thorlabs, Inc.). Images were collected using a CCD camera 

coupled to a Mitutoyo VMU and 40X objective lens. 

Figure 1. Overview of original LCI 

system hardware. Optical 

components are arranged to form a 

Michelson interferometer (the fixed 

interferometer head contains the 

reference arm and beam splitter). 

Stepper motors and a flexure stage 

are controlled using a custom 

MATLAB interface and enable 

sample navigation, focusing, and tilt 

correction. Coherent light is 

provided by an LED. A black and 

white CCD camera collects images. 

The entire system rests on a 

vibration isolation table to minimize 

noise.  
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Samples were deposited onto 20 mm x 20 mm hand cut pieces of silicon wafer, submerged in 

culture media, in one of four wells in a custom Teflon block. Custom “optical windows,”  

  

consisting of 28.6 mm stainless steel rings coupled to optical glass and supported by three 700 

μm stainless steel spheres, were then placed on top of the silicon wafers.  

Figure 2. Overview of original LCI system optics. Collimated light from a fiber-coupled LED 

source enters the rightmost side of the head unit. This light is split by a beam splitter into 

two beams: a reference beam (blue) and a sample beam (green). The sample beam is 

directed towards the sample (containing beads or cells). The reference beam is directed 

through a reference cell designed to mimic the optical path of the sample beam, minus the 

actual sample. After passing through the reference cell, the reference beam encounters a 

mirror (whose position is adjustable) and reflected back towards the original beam splitter. 

Both the reference and sample beams are reflected (and subsequently recombined) towards 

the CCD camera after re-encountering the beam splitter. 
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All sample navigation and image collection was performed and triggered using manual 

micrometer manipulation combined with stepper motor movement and image acquisition 

controlled through a simple MATLAB graphical user interface (GUI). Capturing a single 2 x 2 grid 

of images required approximately 90 seconds.  

After collection, images were processed using a combination of custom MATLAB scripts, 

described previously by Reed et al. to unwrap the acquired phase images and calculate phase 

shifts.78 Computed phase images were “flattened” by correcting for low-frequency background.  

Single cells were segmented from the background of the flattened phase images using a spatial-

derivative edge detection kernel; their locations and optical volumes were recorded. Frame-to-

frame cell tracking was accomplished with a previously-described particle tracking algorithm.78  

Single-cell growth tracks were generated for each object tracked and then plotted as optical 

volume versus time. Performance of the system in this state was slow but robust, with data 

revealing coefficients of variation (CV) less than 0.5% and picogram sensitivity.  

2.2 Current state of the VCU LCI System 

The current high-speed live-cell interferometry (HSLCI) platform consists of a custom-built 

inverted optical microscope coupled to a quadriwave lateral shearing interferometric camera 

(SID4BIO, Phasics, Inc.).26,79,80 The camera consists of a 1600 x 1200 pixel CCD camera (B1621, 

Imprex, Inc.) fitted with a modified Shack-Hartman mask. It is self-referencing, simple to mount, 

and capable of recording at 30 fps. The SID4BIO’s flexibility and image acquisition efficiency 

ultimately precipitated its replacement of the LCI’s original interferometer head. Cells are 

imaged in single, standard-footprint (128 mm x 85 mm), glass-bottomed, multi-well plates. 
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Acquired images are analyzed in near real-time by a downstream PC (Dell Precision Tower 5810). 

All of the platform’s hardware and software components are available commercially. A basic 

schematic of the HSLCI system is provided in Figure 3.   

Briefly, a multi-well plate holder coupled to three linear translation stages enables automated 

sample movement in three dimensions during image acquisition. The scale of topographical 

variation within and between multi-well plates necessitates a flexible and robust focusing 

scheme (Supplementary Figure 1). Best focus is rapidly and consistently maintained during lateral 

scanning using a custom-built automatic feedback loop consisting of a coaxial optical beam 

deflection position sensor coupled to a one-dimensional piezo stack on which the microscope 

objective is mounted. The sample is illuminated using a 660 nm LED light source that is 

collimated and then strobed to coincide with the SID4BIO camera’s exposure, using a SID4BIO-

generated trigger, at a rate of 4 fps. After passing through the sample, the light is magnified by 

an objective lens and directed to both the SID4BIO and a wide-field CCD camera (acA645-100, 

Basler AG) utilized for correlative and fluorescent imaging (Figure 4). Either a 40X objective(Nikon 

Plan Fluorite, NA 0.75), 20x objective (Nikon Neofluar, NA 0.5 or Nikon Plan Fluorite, NA 0.3) or a 

10x objective (Nikon Plan Fluorite, NA 0.3) were used for the growth kinetics and population 

studies described herein, depending on the desired size of the field of view. The entire HSLCI 

platform is installed inside a standard cell culture incubator (Steri-Cult CO2 Incubator, 

ThermoFisher) to maintain the environmental conditions necessary for cell viability. 
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2.3 Image Analysis 

Briefly, raw interferograms acquired by the SID4BIO are converted to phase images using the 

manufacturer’s software and then analyzed with our custom MATLAB (Mathworks, Inc.) scripts. 

The phase calculation down-samples the raw interferogram image to 400 x 300 pixels, resulting in 

effective pixel sizes between 1.3 μm and 2.5 μm, depending on the objective.  

Figure 3. Overview of HSLCI system hardware. A 24-well plate containing samples for 

imaging is secured in a custom stage. The sample is illuminated from above using collimated 

light from an LED. Three stepper motors enable stage movement in X, Y, and Z directions for 

sample navigation. The focusing module uses a feedback loop to maintain a fixed distance 

between the objective and the plate bottom during imaging. The epifluorescence module 

provides illumination for the excitation of fluorophores. The image collection module is 

comprised of the Phasics QWLSI camera for the collection of interferograms and a color CCD 

camera for the collection of brightfield and fluorescent images. Mirrors are represented by 

solid green lines and dichroics are represented by double green lines. 
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The intensity signal across the phase image matrix is deconvolved in the Fourier domain around 

the spatial period of the diffraction grating to generate an unwrapped phase image. This a phase 

gradient that is then numerically integrated to derive the optical path difference. The optical path 

difference (OPD) is defined as a function of the spatial position in the wavefront.  

𝑂𝑃𝐷(𝑥, 𝑦) = ∫ [𝑛(𝑥, 𝑦) − 𝑛𝑚𝑒𝑑𝑖𝑢𝑚]𝑑𝑧
ℎ

0

 

Here, n is the refractive index of the specimen and nmedium is the refractive index of the medium.  

 

The difference is integrated over the total thickness h in the direction of propagation. As the 

resulting value is a combination of OPD from the sample and the OPD from the imaging system, a 

Figure 4. Schematic of HSLCI optical hardware and accompanying ray diagrams. Samples are 

imaged in standard-footprint multi-well plates. Phase images are collected by an off-axis 

QWLSI camera. Best focus is maintained using a feedback loop to measure the distance (f) 

between the multi-well plate’s bottom and the microscope objective. Changes in f are 

detected using an infrared laser and quadrant photo diode (QPD). A piezo actuator 

coupled to the objective compensates for any detected change by adjusting the position 

of the objective in the z direction. (Adapted from Guest, D. 2017) 
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reference image is captured prior to imaging the sample; we eliminate any contribution from the 

imaging system by subtracting the reference image. The OPD is then used to derive the optical 

volume difference OVD, wherein the OPD is integrated over the total imaging surface (S). Hence, 

𝑂𝑉𝐷 = ∬ 𝑂𝑃𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

𝑆

 

This value is directly proportional to the dry mass of the cell (referred to herein as “biomass”) by 

a constant known as the specific refractive increment α. The specific refractive increment is the 

rate of change in the refractive index n of a specific specimen.  

∬ 𝑂𝑃𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =  𝛼 ∙ 𝑚

 

𝑆

 

This can be rearranged as 

𝑚 =
1

𝛼
𝑆 ∙ 𝑂𝑃𝐷 

to find the mass (m), where S is the surface area of the specimen in microns. For the experiments 

described herein, 
1

𝛼
 is equal to 5.56 

𝑝𝑔

𝑢𝑚3
 .48 

Computed phase images are “flattened” by correcting for low-frequency background noise 

inherent to the shearing interferometry method.  Single cells are segmented from the background 

of the flattened phase images using a spatial-derivative edge detection kernel; their locations and 

optical volumes are recorded. An example of step-wise images from this process is provided in 

Figure 5. 
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Frame-to-frame cell tracking is accomplished with a previously-described particle tracking 

algorithm.78  Single-cell growth tracks are quality filtered using an upper cutoff of +/-15% 

uncertainty (SD of residuals) in the calculated growth rate, as determined by linear fitting the dry 

mass versus time data.  

2.4 HSLCI Platform Performance Metrics 

In its current configuration, the HSLCI system can, at a minimum, collect and process 960 images 

from as many unique locations in a multi-well plate every 10 minutes, yielding biomass data on 

at least 103– 104 individual cells.  Due to the mechanical and environmental stability of the HSLCI 

system, we have been able to track single cells and cell clusters for up to 10 days, with no time 

limit yet found.  The HSLCI’s stages enable lateral scanning at a maximum velocity of 2mm per 

second, while the SID4BIO camera is capable of capturing data at rates up to 30 fps. For a 24-

well plate, even at a capture rate of 4 fps, this translates to only 2.5 minutes needed to acquire 

240 unique images (40 images/well) in a single six-well column. After acquisition, deriving a 

phase image from a single raw interferogram typically requires 500 ms, while the remainder of 

post-processing  (flattening, cell segmentation, and cell tracking) typically requires 500-1,000 ms, 

on a single Intel Core i7 processor. Compared to our prior implementations, our current pipeline 

conducts image processing as soon as images are acquired and parallelizes these steps across 

eight or more processors on a single high-performance PC, resulting in near real-time processing. 

An overview of the HSLCI imaging and data analysis pipeline is provided in Figure 6. 
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Figure 5. Example of HSLCI image processing pipeline steps. Images shown are of the same location 

at three different time points. Brightfield and fluorescent images were collected with a Basler color 

CCD camera and did not undergo processing after acquisition. Interferograms were collected by a 

Phasics QWLSI camera and were subsequently converted into unwrapped phase images, flattened, 

and segmented to yield mass data for single cells. 
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Figure 6. HSLCI performance overview. Prior to imaging, cells and media (including drug or 

vehicle) are dispensed into standard-footprint, glass-bottomed multi-well plates. During 

imaging, the sample plate is translated along each row of wells, collecting 30 images per well 

on each pass. Following collection, phase images are automatically analyzed in a custom 

pipeline that includes background flattening, cell detection and segmentation, and biomass 

calculation. Individual cells are tracked between images based on their position, and biomass 

versus time plots are generated.   
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Chapter 3 

Quantifying Melanoma Drug Resistance and Heterogeneity 
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3.0 Chapter Overview 

This chapter details the deployment of HSLCI during a multi-year study on drug resistance and 

heterogeneity in patient-derived melanoma cell lines. This project was planned and executed in 

close collaboration with the Dr. Michael Teitell’s laboratory at the University of California – Los 

Angeles (UCLA). The text and figures that follow have been adapted (reproduced with permission 

of The American Chemical Society and co-authors) from a publication of the study’s results, co-

first authored by K. Leslie and D. Huang, in the journal Analytical Chemistry.81   

3.1 Introduction 

An estimated 91,270 new cases of cutaneous melanoma with 9,320 deaths will occur for the 

United States in 2018.82 Despite comprising less than 2% of skin cancer diagnoses, melanoma is 

responsible for 75% of skin cancer deaths.83 Genetic landscape studies show inter-patient, intra-

patient, and intra-tumor heterogeneity. About 50% of melanomas harbor an activating mutation 

in the BRAF gene, whereas 10-25% of cases show an activating RAS mutation, 12-18% are 

mutant in NF1, and 7-28% of tumors show mutations in genes that include AKT and PTEN.  Most 

of these mutations increase MAPK pathway signaling activity, which regulates cell proliferation, 

differentiation, and survival.84–87 Targeted therapies, most notably against BRAF V600E and 

V600K activating mutations, have improved progression-free survival for many melanoma 

patients.88 However, therapy resistance emerges in most cases of BRAF or MEK inhibitor 

monotherapy, often from preexisting or acquired mutations that reactivate the MAPK pathway 

downstream of the drug-targeted site.89 Current BRAF and MEK inhibitor combination therapies 

aim to reduce the frequency of emergent resistance.90,91 Drug selection guidance comes from 
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clinical tumor staging, mutation screening, patient health, and prognostic factors such as lactate 

dehydrogenase levels.92 Despite multifactorial guidance, resistance eventually develops even for 

up to 80% of patients receiving combination therapy.88 Genetic heterogeneity underlying 

mechanisms of preexisting and acquired resistance makes mutation screening incompletely 

predictive of drug susceptibility, both prior to the start of therapy and after the development of 

resistance, and increases the difficulty of selecting efficacious frontline and second-line 

therapies.93–95 

Current efforts in repeat tumor assessment focus on noninvasive liquid biopsy methodologies 

such as the detection and analysis of circulating exosomes, microRNAs, circulating tumor DNA, 

circulating tumor cells, and proteomic profiling of serum proteins by mass spectrometry.96,97 

While samples from the circulation provide easily accessible materials that may be more 

representative of a patient’s tumor heterogeneity than single-site tumor biopsies, there are 

presently no reliable molecular biomarkers from circulation sampling to guide targeted 

melanoma therapy or improve outcome predictions.98–100 Other limitations include a lack of 

standardization, low sample yields, and the high cost of post-isolation analyses, which makes 

many circulation-sampling methods impractical for broad-scale clinical implementations in their 

present state.101,102  

An alternative to circulating biomarkers is the in vitro measurement of drug responses in excised 

tumor cells using chemosensitivity assays, such as ATP quantification or assessments of cell 

metabolic activity.103–106 Advocated by major cancer centers and international research 

organizations, such as the American Society of Clinical Oncology (ASCO), chemosensitivity assays 

have seen minimal adoption in melanoma treatment. This is due to long, three-to-seven day 
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turnaround times that increase the likelihood of artifacts, a lack of supporting large-scale 

clinical trials, and interference from heterogeneous co-harvested tumor elements (such as 

stromal fibroblasts) that often overrun cultures and may result in false or misleading data. 107–

111 Further, the most popular cell death assays using ATP or MTT measurements are bulk 

methods, which is a significant limitation for typically-heterogeneous cancers, especially given 

that growth arrest and senescence (rather than sudden cell death) are common drug responses 

and resistance mechanisms.108,111–114 By contrast, acute cell killing assays can provide data at a 

snapshot in time using fresh tissue, but have not proven sufficiently informative as stand-alone 

assays.115–119 

High-content screening systems based on confocal microscopy, such as the commercially-

available GE In Cell Analyzer (General Electric, Inc., Boston, MA)and Yokogawa CV8000 

(Yokogawa Electric Corporation, Tokyo, Japan) platforms, were introduced as a versatile 

solution to many of these problems through their combined use of automation, environmental 

controls, and compatibility with a variety of assays. Unfortunately, these systems still require 

that cells be labeled for chemosensitivity and cytotoxicity testing. A superior, high-throughput, 

reproducible, standardized, and inexpensive approach to determine drug sensitivity before 

(and periodically during) therapy is, therefore, desirable.   

A variety of in vitro and ex vivo methodologies have emerged to address the shortcomings of 

these traditional cell viability assays in the context of personalized cancer care (Figure 7). 

Specifically, newer strategies have focused on reductions in turnaround time and sample 

quantity via microfluidics, a more accurate simulation of the tumor microenvironment, and 

novel non-genetic biomarkers of drug sensitivity.120–122 Despite progress in these areas, the 
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field has not yet achieved the required combination of accuracy, throughput and single-cell 

sensitivity needed for predictive assays to guide cancer treatment selection 

We have previously shown that optical interferometric microscopy provides an exciting potential 

solution by profiling drug-induced growth arrest in living single cells or cell clumps via changes in 

biomass over time with picogram sensitivity.25,78 However, this proof-of-principle work consisted 

of single agent, small-scale studies of limited duration.  The key remaining engineering challenge 

is to create a reliable platform for multi-agent, multi-concentration parallel screens without 

sacrificing measurement accuracy or assay acceleration.  Meeting this challenge 

 

requires, at a minimum, an order of magnitude increase in the number of different conditions 

tested within a single experiment, and a corresponding increase in the number of individual cells 

analyzed per hour.   This is a sizable hurdle, for a variety of methodological reasons, but is 

Figure 7. Overview of cell viability assays used for drug sensitivity screening. The majority 

(93%) of viability assays require the use of one or more labeling molecules to assess cell 

growth or viability. Of the label-free methodologies, only quantitative phase imaging has 

demonstrated throughput comparable to label-based techniques while maintaining single-

cell resolution.    
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absolutely required to enable practical, rapid response profiling of patterns of drug resistance, 

intra-tumor heterogeneity and for ultimately developing a reproducible therapy selection 

method.   

To reach this goal, we created and deployed the HSLCI (Figure 8).  HSLCI’s dynamic focus 

stabilization enables continuous image collection over the entire sample area without pause, and 

stage-top or whole microscope enclosures provide long-term environment stability for imaging 

under physiology-approximating conditions (37 oC, 5% CO2).  The HSLCI captures images from 

standard format, glass bottom multi-well cell culture plates and each well can contain a different 

cell type exposed to a unique drug dose or combination.  The experiments described here 

utilized 4-well and 24-well glass bottom plates, although well counts of up to 96 are possible 

depending on the experimental conditions, including cell concentration, population sampling 

depth, required temporal resolution, and other parameters. This present work describes a two-

center study using HSLCI to quantify biomass kinetics for three isogenic sensitive/resistant pairs 

of patient-derived, V600EBRAF mutant melanoma cell lines in response to the BRAF inhibitor 

(BRAFi), Vemurafenib, and a battery of FDA-approved kinase inhibitors.  We show that HSLCI-

quantified biomass kinetic signatures during 24 hours of drug exposure discriminates between 

drug-sensitive and drug-resistant tumor subpopulations.  HSLCI data are reproducible between 

study sites and consistent with longer multi-day growth inhibition assays.   

Of particular practical importance for any future clinical laboratory use is HSLCI’s compatibility 

with pre-sterilized, disposable, and standard format multi-well sample plates.  This enables 
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efficient screening of multiple drugs and drug combinations in a single assay, simplifies sample 

handling, and avoids the need to sterilize and wash dedicated microfluidic components between 

runs. 

Figure 8. Schematic of HSLCI multi-well biomass accumulation assay. A) The HSLCI system is 

configured with (i) a wide-field phase-detection camera, (ii) fiber-coupled light-emitting 

diode (LED) illumination source, and (iii) and fluorescence imaging capability (camera, filters, 

and illuminator). Motorized stages (iv) control x–y motion of the sample above the 

microscope objective, while focus is automatically adjusted continuously by a piezo actuator 

coupled to the objective [10× Nikon Plan Fluorite, numerical aperture (NA) 0.3]. B) Prior to 

imaging, cells and medium, including drug or vehicle, are dispensed into standard-format, 

glass-bottom mult-iwell plates. C) During imaging, the sample plate is translated along each 

row of wells, collecting 30 images/well on each pass. Typical imaging time is 2 min/row of six 

wells. D) Following collection, phase images are automatically analyzed in a custom pipeline 

that includes background flattening, cell detection and segmentation, and biomass 

calculation. E) Individual cells are observed between images on the basis of their position, 

and biomass versus time plots are generated. Shown is a typical normalized mass vs time 

plot for single Vemurafenib-sensitive (red) and Vemurafenib-resistant (blue) cells. 
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3.2 Methods 

Cell Lines 

M229P, M229R5, M238P, M238R1, M249P and M249R4 cell lines were grown in DMEM high 

glucose with 10% heat-inactivated FBS (Omega Scientific) and 2mM glutamine in a 37 ⁰C, 

humidified, 5% CO2 incubator. M229R5, M238R1 and M249R4 cells were exposed to 1 µM 

Vemurafenib every 2 – 3 days. Cell counting from 6-well plates with controls and a range of 

Vemurafenib concentrations was performed for five days following overnight seeding. 

Population Kinetic Response Experiments 

Cells were synchronized by growing to confluence in 75mL tissue culture flasks and collected 

using a “shake-off” technique that involved repeated tapping of the flasks against the palm to 

loosen partially-adherent (i.e. dividing) cells.  Cells were plated at 1 x 105 cells/ml in 25 mm 

dishes and incubated overnight.  Prior to imaging, samples were equilibrated thermally for one 

hour on the microscope stage, then imaged for three hours, after which either 0.1% DMSO 

vehicle control or 5 μM Vemurafenib was administered and dishes imaged for another 25 – 30 

hours.  

Vemurafenib dose response experiments.  Cells were first synchronized by shake-off, and each of 

the six melanoma cell lines seeded into four wells each of a 24-well glass bottom plate at 1 x 105 

cells/ml, and incubated overnight.  Each line was dosed with 0.1% DMSO carrier control, or 1 

μM, 5 µM, or 10 µM Vemurafenib.  Cells were incubated for 24 hours, then the entire plate was 

imaged on the HSLCI for 10 hours.   
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Fluorescence Mixing Experiments 

1.25 x 104 M249P and M249R4-GFP cells were added together in a total volume of 1mL tissue 

culture media. 0.7 mL of the mixture was dispensed into each well of an Ibidi 4-well Ph+ µ-slide. 

Cells settled over 6 hours after which 5µM Vemurafenib was added to each well. Ibidi oil sealed 

the liquid opening of each well before the plate was placed onto the LCI stage. All wells were 

imaged continuously for 48 hours. Fluorescence images were taken using a Hamamatsu EM CCD 

camera (C9100-02 EMCCD) serially after every 5 phase imaging loops were completed. Green 

fluorescence was captured using a 38 HE Green Fluorescent filter set (Zeiss) with an excitation 

wavelength of 450-490 nm, a beam splitter wavelength of 496nm and an emission wavelength of 

500-550 nm. Fluorescence excitation was provided by an X-Cite® 120Q wide-field fluorescence 

microscope excitation light source (Excelitas). 

Kinase Inhibitor Panel Assay 

M249R4 cells were plated in a 24-well optical glass-bottomed plate (Cat.# P24-0-N, Cellvis) at 1 x 

104 cells/ml (total of 1 mL in each of 24 wells) in media (DMEM, 10% Fetal Bovine Serum, 2 mM 

L-Glutamine) containing 1uM Vemurafenib. Plated cells were allowed to adhere overnight at 37 

⁰C, 5% CO2. All cells were washed with 1x phosphate-buffered saline, pH 7.4, and provided with 

fresh media. Immediately following washing and feeding, cells were dosed with inhibitors at 

dose-escalating concentrations and incubated under standard cell culture conditions for 24 

hours. After incubation, cells were imaged for 10 hours using the HSCLI system. 

3.3 Results 

Isogenic BRAFi-Sensitive and –Resistant Melanoma Cell Lines 
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We evaluated three patient-derived V600EBRAF melanoma cell lines, M229P, M238P, and 

M249P, which are sensitive to the BRAFi, Vemurafenib (IC50 < 1 μM), and their isogenic, BRAFi-

resistant sub-lines, M229R5, M238R1, and M249R4, created by Vemurafenib co-incubation over 

time (Supplementary Table 1).  M229R5 and M238R1 developed BRAFi resistance via epigenomic 

reprogramming, which is thought to occur in regressing or residual melanoma tumors from 

patients treated with MAPK inhibitor (MAPKi) therapy. This non-genomic evolution results in a 

MAPK-redundant form of resistance.33 On the other hand, M249R4 acquired a Q61KNRAS 

mutation in addition to the V600EBRAF mutation. This concurrent BRAF/NRAS mutant 

configuration results in MAPK hyper-activation and a MAPK-addicted form of resistance, which is 

frequently detected during disease progression or with clinical relapses.34-36 Thus, these pairs 

of cell lines represent pre- and post-treatment models of differential drug-sensitivity states that 

are clinically relevant and, therefore, we used these lines to evaluate HSLCI performance in 

biomass profiling.  

Biomass Kinetic Responses to Vemurafenib Exposure 

Our previous work in breast cancer and multiple myeloma indicated that changes in the 

population median growth rates between sensitive and resistant cell lines is detectable with 

confidence within a few hours of drug exposure.25,78 We also showed that the distribution of 

growth rates within a population is roughly Gaussian, in both treated and control samples.   

There is no existing data for the rate of biomass change of BRAFi-sensitive or -resistant 

melanoma cells that grow as adherent single-cells or clumps.  Therefore, we measured the 

kinetics of Vemurafenib response in the three paired, molecularly characterized melanoma lines 

using HSLCI, to establish rates and distributions of biomass change with or without drug 
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exposure. First, we performed a standard multi-day dose-escalation cell-counting assay to 

confirm sensitivity for the three parent and matched resistant lines at 1.0 µM to 10.0 µM 

Vemurafenib exposure (Supplementary Figure 2). As anticipated, the parental lines slowed and 

the matched resistant lines continued replicating with drug exposure. We next used 5µM 

Vemurafenib as the mid-point drug dose to measure the median population growth rate and cell 

mass  by HSLCI for the six cell lines in the first 25 hours of drug exposure, in order to quantify the 

average population kinetic response (Figure 9-A).  Under these conditions, drug sensitivity of the 

M249P population was detectable as early as six hours, while sensitivity of the M238P and 

M229P populations was detected at approximately 15 hours.  Significant growth rate reduction 

occurred in all three parental lines by 20 hours.  We observed significant natural variation in the 

growth rates of individual cells within each population, a result consistent with previous LCI 

studies.  The distribution of single cell hourly growth rates was typically symmetrical about the 

mean, with variation of roughly +/- 1% (SD) above and below the population mean.  For example, 

plotting the M249P growth rate distribution obtained by HSLCI for each hour showed no change 

in the population median growth rate nor in the cellular growth rate distribution over the course 

of the 25 hour experiment. (Supplementary Figure 3-A)   In contrast, under the same conditions 5 

µM Vemurafenib exposure showed population growth rate heterogeneity and a decline below 

zero growth rate by about 15 hours for >50% of cells (Supplementary Figure 3-B), indicative of 

the relative sensitivity of this line to the BRAF inhibitor.  Similar temporal single cell growth rate 

distributions were seen in the other five cell lines, with kinetics proportional to the line’s overall 

median sensitivity.  These results reproduced at both experimental sites with independently 

assembled HSLCI platforms.  
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By comparing the median cell mass of the Vemurafenib-resistant melanoma lines to the mass of 

their isogeneic, drug sensitive parent lines, we found no consistent correlation between mass 

Figure 9. Biomass accumulation response to Vemurafenib treatment. A) Normalized 

population median biomass versus time plots of each melanoma line exposed to either 5 

μM Vemurafenib (red trace) or 0.1% dimethyl sulfoxide (DMSO, blue trace). Cells were 

synchronized prior to plating in glass-bottom dishes. Each sample was imaged for 3 h, after 

which either 0.1% DMSO (vehicle control) or 5 μM Vemurafenib (treatment) was 

administered. After dosing, plates were imaged for 20–25 h by HSLCI under standard cell-

culture conditions. Typical time between repeated measurements of the same location was 

10–15 min. Each graph contains pooled data from four replicates. Error bars are ± standard 

error of measurement (SEM). B) All six synchronized cell lines were plated into a single 24-

well glass-bottom plate and dosed with either 0.1% DMSO or 1, 5, or 10 μM Vemurafenib. 

After 24 h of incubation, the plate was imaged continuously for 10 h by HSLCI. Hourly 

growth rates were automatically calculated for individual cells in each sample by linear fit to 

the biomass versus time data. Data are from a single representative experiment (n = 3). Box-

plot notches are 95% confidence intervals for the indicated medians. Each dot overlaid on a 

box plot represents the hourly growth rate of an individual cell. C) Corresponding receiver 

operator characteristic (ROC) curves for data shown in panel b. 
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and resistance (Figure 10).  This observation stands in contrast to a recent report of cell mass-

drug resistance correlation in a mouse AML model, as measured by microfluidic devices.123 

However, that study did not compare isogenic, paired sensitive and resistant tumor lines, and it 

remains to be determined whether or not mass itself is a useful metric of drug sensitivity. 

 

The mid-point kinetic response data suggested that Vemurafenib sensitivity, or lack thereof, 

would be distinguishable for all lines in a drug-escalation assay, as would be expected for cell 

counting, by measuring changes in sample growth rates after 24 hours of drug exposure.  To test 

this hypothesis, and to examine the HSLCI methodology for multi-dose and multi-agent 

screening, we collected short-term, 10-hour growth rate measurements of all three cell line pairs 

in parallel, at escalating Vemurafenib doses, using a 24-well format.  All six melanoma cell lines 

were dosed with 0.1% DMSO, or 1 μM, 5 uM, or 10 μM Vemurafenib.  The parental lines 

(M229P, M238P, and M249P) showed a clear pattern of increasing growth inhibition at 

Figure 10.  Comparing relative mass between Vemurafenib-sensitive and -resistant isogenic 

lines.  Boxplots showing distribution of single cell masses measured for each cell line.  Boxplot 

notches are indicative of the 95% confidence intervals for the medians.   
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escalating drug concentrations, whereas the resistant lines (M229R5, M238R1, and M249R4) 

showed no growth inhibition over the drug dosing range compared to a vehicle DMSO control, 

consistent with cell counting assays (Figure 9-B).   

Heterogeneity Quantification 

We used Receiver Operator Characteristic (ROC) analysis to determine the ability to distinguish 

individual resistant cells from sensitive cells, in an in silico mixture, by changes in their individual 

growth rates during exposure to Vemurafenib. (Figure 9-C)  This analysis indicated that cells from 

both M229P and M238P lines were distinguishable from their resistant derivative counterparts 

at Vemurafenib doses of 5uM (area under the curve (AUC), 0.60 and 0.85, respectively) and 

10uM (AUC, 0.78 and 0.75, respectively).  The M249P cells were the most sensitive to drug and 

easily distinguishable based on changes in growth rate, with AUC greater than 0.90 at 

Vemurafenib doses of 1uM and above (Figure 11). 

We then deployed HSLCI to quantify the changes in growth rates of an actual mixed population 

of GFP-labeled M249R4 Vemurafenib-resistant (M249R4-GFP) and unlabeled M249P 

Vemurafenib-sensitive cells during drug exposure.  Importantly, stable GFP-expression in the 

M249R4 line did not significantly alter the growth rate distribution obtained by LCI for each hour 

of 5µM Vemurafenib exposure compared with unlabeled M249R4 cells (Supplementary Figure 3-

C). Sensitive M249P and resistant M249R4-GFP cells grown together at a 1:1 ratio with 5uM 

Vemurafenib were imaged over 48 hours (Figure 12 A-C).  
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In mixed culture, individual resistant cells were discriminated from sensitive cells based on 

differences in growth rates (Figure 12-D) and because the M249R4 cells were GFP marked, they 

were easily identified relative to the unmarked M249P cells during the assay. Reproducibly, the 

population growth rate of the M249R4 cells exceeded the population growth rate of the M249P 

cells, as expected, but each marked and unmarked population also showed outlier cells. A small 

percentage of M249R4-GFP cells showed zero to slightly negative growth rates, whereas a small 

percentage of M249P cells showed net-positive growth rates, revealing unanticipated 

Vemurafenib sensitive or resistant outliers within each bulk population. As predicted from the in 

silico analysis, ROC analysis confirmed a high level of discrimination between sensitive and 

resistant melanoma cells (AUC 0.88), even when sensitive and resistant cells were combined in  

Figure 11. Vemurafenib (5 uM) sensitivity as determined by plotting pre- and post-treatment 

growth rates for Vemurafenib-sensitive (M249P) and Vemurafenib-resistant (M249R4) cell 

lines. a) Plot of pre- and post-treatment  hourly growth rates. Blue data points represent 

individual cell growth rates from the drug-sensitive cell line; red indicates data points from 

the drug-resistant line. b) ROC curve demonstrating efficacy of using calculated final growth 

rates to determine Vemurafenib sensitivity 
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the same sample wells (Figure 12-E). Similar trends were seen in 10:1 sensitive: resistant 

mixtures as well (Supplementary Figure 4). 

Figure 12. Detecting resistant cells in a mixed population. A) Optical thickness (LCI, left) and 

in-register fluorescence images (FL, right) of M249R4-GFP vemurafenib-resistant cells. B) 

LCI and fluorescence images of M249P vemurafenib-sensitive cells. C) LCI and fluorescence 

images of a 1:1 mixture of M249P (red arrows, unlabeled) and M249R4 (labeled) cells. D) 

Plot of biomass versus growth rate of a 1:1 M249P (blue)/M249R4-GFP (red) cell mixture 

exposed to 5 μM vemurafenib for 48 h. Cell identities are marked by fluorescence signals. 

E) ROC curve classifying single sensitive versus resistant cells by their growth rates during 

exposure to 5 μM vemurafenib. The blue line is calculated from M229P and M249R4 cells 

imaged in separate wells, whereas the red line is calculated from a 1:1 cell mixture in the 

same wells (representative data are shown in panel d). Data shown are from a single 

representative experiment (n = 3–5). 



38 
 

MEK Inhibitors with Vemurafenib-Resistant Melanoma 

We performed rapid HSLCI dose response assays in triplicate using a panel of three FDA-

approved and two investigational kinase inhibitors tested in clinical trials for treating metastatic 

melanoma, to simulate selection of salvage therapy for patients who develop resistance to front 

line Vemurafenib. One inhibitor in the panel targets BRAF, whereas the other four target MEK1 

or MEK1/2 (Supplementary Table 2). We selected M249R4 cells for study because of its robust 

growth profile and strong resistance to Vemurafenib.   Figure 13 shows typical results from two 

individual experimental runs, while Figure 14 shows results from all repeats fitted to a sigmoid 

dose response function, for reference.  Control DMSO-treated cells exhibited a median growth 

rate of ~2.5% per hour at 0.1% DMSO concentration (v/v), decreasing slightly to 2% per hour at 

higher concentrations (0.3%-0.5% v/v).  For each targeted kinase inhibitor, the peak tolerated 

serum concentration (Cmax (ng/mL)), as measured in clinical trials, is shown on the dose-response 

curves by an asterisk (*).  See Supplementary Methods for Cmax determination detail.  As 

expected for this highly Vemurafenib-resistant line, the BRAFi Dabrafenib showed no growth 

inhibition as compared to the DMSO control.   The MEK1 inhibitor Cobimetinib and the MEK1/2 

inhibitor Trametinib were the most effective growth inhibitors: Cobimetinib completely arrested 

median sample growth at 0.255 μM concentration, which is roughly one half of the maximum 

tolerated serum concentration, while Trametinib arrested growth at a concentration between 4 

nM and 40 nM, or between 1/10x and 1x Cmax.   MEK1/2 inhibitor Selumetinib arrested growth at 

2.55 μM, equal to 1x Cmax, while MEK1 inhibitor Binimetinib failed to halt growth at 

concentrations below 2.91 μM, or 5x Cmax, suggesting that Binimetinib would be an unlikely 

candidate for salvage therapy in this simulated case. 
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Figure 13. Effects of kinase inhibitors on Vemurafenib-resistant melanoma as measured by 

HSLCI. M249R4 cells were plated into 24-well plates and dosed at increasing concentrations 

of each inhibitor. After 24 h of incubation, the plate was imaged by HSLCI continuously for 

10 h. Typically, four different doses for each inhibitor, and four DMSO controls, were 

measured in each run simultaneously. Data in the figure represent two typical experimental 

runs, using different dose gradations. Hourly growth rates were automatically calculated for 

individual cells in each sample by linear fit to the biomass vs time data. Each box plot 

summarizes the hourly growth rates of a population of cells exposed to escalating 

concentrations of each drug. Individual dots in the underlying scatter plots represent the 

growth rates of single cells. Boxplot notches are indicative of 95% confidence intervals for 

the medians. Median number of cells per well: top panel 159 (range 79–216); bottom panel 

160 (range 59–294). 
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Figure 14. Summary of effect of five kinase inhibitors on Vemurafenib-resistant melanoma as 
measured by HSLCI.   M249R4 cells were plated into 24-well plates and dosed at increasing 
concentrations of each inhibitor.  After 24 hours incubation, plates were imaged by HSLCI 
continuously for 10 hours. Hourly growth rates were automatically calculated for individual 
cells in each sample by a linear fit to the biomass versus time data. Data for each drug-dose 
combination shown represents a sum of three independent replicates. Each boxplot 
summarizes the hourly growth rates of a population of cells exposed to escalating 
concentrations of each drug. Individual dots in the underlying scatter plots represent the 
growth rates of single cells. Boxplot notches are indicative of the 95% confidence intervals for 
the medians. Median population growth rates from all kinase panel repeats are plotted and 
fitted with sigmoid curves. Error bars indicate the 95% confidence intervals for the medians.  
The doses indicated by an asterisk (*) correspond to the maximum serum concentrations 
(Cmax) measured in the blood during clinical trials at FDA-approved therapeutic doses. Median 
number of cells tracked per well per replicate was 159 (range 79 - 294). 
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3.4 Discussion 

Here, we demonstrated the ability of our rapid HSLCI platform to quantify individual cell drug 

sensitivity in tumor cell populations. This quantification may provide critical data for treatment 

selections on a whole-tumor population level and can identify specific subpopulation drug 

sensitivities to predict drug resistance at a single cell level. Our results also show the 

reproducibility of two similar but distinct implementations by obtaining concordant data from 

two institutions with independently constructed and standardized HSLCI platforms. This two-

center study design is unique amongst live cell response profiling approaches and provides 

confidence that the newly configured HSLCI has the required consistency for further 

development towards a clinically useful approach.  

In comparison to other single live cell biomass profiling approaches, including our own prior 

interference microscopy studies, HSLCI represents a substantial technical advance in single cell 

sampling throughput, cell tracking duration and parallel measurement of multiple 

agents.34,36,74,78  For example, Stevens et al. recently used micro-channel resonators to 

demonstrate that the combined measurement of single cell mass and growth rates could be 

used to identify drug resistant cells isolated from an engineered mouse AML model.28   Their high 

throughput ‘next-gen’ system with 12 micro-resonators could measure up to 60 cells per hour,  

where cells are measured serially, each for 15 minutes, resulting in simple ‘snapshots’ in time. 

Unfortunately, tumors that grow in small clusters or clumps, as do many melanoma samples, are 

inaccessible to this platform unless they are disaggregated, which affects their growth 

characteristics and drug sensitivity.    In contrast, HSLCI typically measures between 103 and 104 

cells in each experiment, tracking each cell individually for hours to days, and is well suited to 
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tumors that grow in clusters or clumps without disaggregation.  In addition, identifying rare 

resistant clones in a population of normal or therapy-sensitive malignant cells will require deep 

sampling.  For instance, typical minimal residual disease detection using multi-color flow 

cytometry requires sampling to a depth of at least 104 and up to 106 cells.124   We believe that 

realistic improvements may allow HSLCI throughput to approach 105 cells per experiment. 

Due to the mechanical and environmental stability of the HSLCI system, we have been able to 

track single cells and cell clusters for up to 10 days, with no time limit yet found.  This is a 

dramatic increase over our previous 12-hour maximum duration interference microscopy work, 

and enables studying behaviors that evolve over many minutes, hours or days, encompassing the 

vast majority of cellular responses.   Cell tracking duration is of direct relevance to detecting drug 

responses in cells isolated from patients, as it is necessary to distinguish between growth-arrest 

(cytostasis) and death resulting from drug exposure versus other influences.   With HSLCI this is 

accomplished by repeatedly observing individual cells before and after drug exposure-response, 

a process that requires several hours or more. 

The primary drawback of HSLCI compared to microscopic, single cell ‘snapshot’ fluorescent 

assays and micro-resonator mass assays is the relatively large data footprint and extensive image 

analysis required to generate a biologically interpretable result.  At present, data analysis time, 

not hardware capability, is throughput limiting.  On the other hand, the single cell images 

generated by HSLCI are inherently information rich, allowing not only mass accumulation but 

cytokinesis, motility and cell shape information to be quantitated.   Integrating these mutually 

supporting metrics will be a direction for future research.   Furthermore, system upgrades can be 
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largely accomplished by software rather than hardware modifications, making the upgrade path 

efficient and flexible. 
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Chapter 4 

CD3+ T Cell Mass Dynamics During Stem Cell Transplantation 
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4.0 Chapter Overview 

This chapter details the use of LCI to analyze T cells extracted from the blood of patients 

undergoing stem cell transplantation at VCU’s Massey Cancer Center. This project was planned 

and executed in close collaboration with Dr. Amir Toor and Dr. Catherine Roberts. The text and 

figures that follow have been adapted (reproduced with permission of The Royal Society of 

Chemistry and co-authors) from a publication of the study’s results, first-authored by K. Leslie, in 

the journal Analyst.125,126  

4.1 Introduction 

Approximately 32,000 allogeneic stem cell transplants (SCTs) from HLA-matched donors are 

performed annually.127 In addition to an increased susceptibility to infection, recipients of these 

transplants face competing risks of malignancy relapse and graft versus host disease (GVHD). In 

HLA-matched SCT recipients, GVHD results from the recognition of recipient minor 

histocompatibility antigens by donor T cells. Despite an evolving understanding of the 

complexities of these alloreactive T cell responses and significant reductions in non-relapse 

mortality (NRM), the incidence of GVHD ranges from approximately 10% to 50% for allogeneic 

SCT recipients.128 This is particularly problematic as an increasing number of SCTs are performed 

each year, matched unrelated donors are utilized in more than half of allogeneic transplants, and 

increasingly older patients now undergo transplantation using reduced-intensity conditioning 

where a graft versus tumor (GVT) effect is critical for disease control and GVHD is especially 

deleterious. Furthermore, no reliable laboratory measures have yet emerged to allow real-time 

titration of post-transplant immunosuppression on an individualized basis to modulate 



46 
 

competing GVHD and cancer relapse risks. Essential to the development of such measures is an 

improved understanding of the immunobiological mechanisms underlying discrepancies in GVHD 

incidence, such as further characterization of the biological diversity of transplant donors and 

recipients, and efforts to identify a comprehensive marker of post-transplant alloreactivity.129,130 

Given the central role of T cell growth and differentiation in SCT, and that of processes known to 

alter cellular size and shape, one approach to studying alloreactivity in real-time might involve an 

assessment of donor-derived T cell biophysical properties. It has been shown in vitro that CD8+ 

murine T cells increase their mass upon activation and, further, that cytotoxic T cells transiently 

increase their mass when effecting cell killing, in a stylized cell culture system.58,131 Mathematical 

modeling by Toor et al. has identified distinct population growth kinetic signatures of 

lymphocyte recovery that correlate with levels of donor-derived CD3 + T cells and 

alloreactivity.132,133 Further, it has been shown that there are significant metabolic adaptations in 

T cell subsets upon engagement of an antigenic peptide-HLA complex by the T cell receptor. 

These metabolic changes include increased glycolysis and oxygen consumption as well as 

cytokine production.134 Higher levels of GLUT 1 expression have been observed in activated T 

cells, again suggesting increased metabolic & biosynthetic rates.135 Indeed, a weak correlation 

has been shown between intracellular ATP concentration in T cell subsets and severity of clinical 

GVHD in humans and between increasing glycolysis and GVHD in murine models.136,137 These 

results suggest that T cell activation and consequent metabolic, biosynthetic, and, logically, mass 

changes, may correlate with significant functional events in the SCT immune reconstitution 

process, as donor-derived T cells experience a new antigenic milieu, post-transplant. 
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At the time of this study, the HSLCI was still under development. Therefore, using the lower-

throughput LCI system, we measured biomass in populations of CD3 + T cells isolated from 

hematopoietic stem cell transplant patients, at various times pre and post-transplant, with an 

aim to identify kinetic signatures associated with immune reconstitution and GVHD.  

4.2 Methods 

Consecutive patients undergoing myeloablative conditioning and stem cell transplantation 

between May 2015 and May 2016 were enrolled on a prospective study approved by Virginia 

Commonwealth University's Institutional Review Board (VCU-IRB #HM20004916) (Table 1). 

Patients gave informed consent for stem cell apheresis product and whole blood sample 

collection, and for rabbit anti-thymocyte globulin (Thymoglobulin) either 3.5 mg kg−1 (MRD) or 5 

mg kg−1 (MUD) starting from day-3 to day-1. GVHD prophylaxis was with either tacrolimus or 

cyclosporine in combination with methotrexate (MTX) or mycophenolate mofetil (MMF). 

Antimicrobial and antifungal prophylaxis was administered. Routine surveillance for 

cytomegalovirus (CMV) and Epstein Barr virus (EBV) was carried out using PCR. Donor cell 

chimerism was studied using short tandem repeat sequence PCR. Average T cell chimerism for 

allogeneic transplant recipients was 90% at 30 days post-transplant (T30), 99% at 60 days post-

transplant (T60), and 99% at 90 days post-transplant (T90). Donor-derived CD3 + T cell (ddCD3) 

counts were calculated as previously reported.130 Average ddCD3 cell counts were 571 cells per 

μl, 1417 cells per μl, and 1019 cells per μl at 30, 60, and 90 days post-transplant, respectively. 
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Patients have had a median follow up 

of 11 months (range: 0.27–15.7) 

following SCT. Of the patients that 

underwent allogeneic SCT, 9 (69%) 

developed either acute or chronic 

GVHD. Median onset of acute GVHD (n 

= 7, 6 MUD recipients) and chronic 

GVHD (n = 4, all MUD recipients) were 

at 58 and 126 days post-transplant, 

respectively. The incidence of grade 

3–4 acute GVHD was 15% and the 

incidence of moderate to severe 

chronic GVHD was 23%. Relapse 

occurred in one MUD recipient and 

CMV/EBV reactivation developed in 

nine and five (6/3, 4/1 MUD/MRD) 

patients, respectively. Seven of eleven 

MUD recipients are surviving, as are all 

MRD and autologous SCT recipients. 

Post-transplant, two patients 

diagnosed with GVHD later died; after 

n=18

Median Age, y (range) 49 (24-65)

Gender

  Female 9

  Male 9

Disease

  Acute lymphoblastic leukemia 3

  Hodgkin's lymphoma 2

  Myelodysplastic syndromes 4

  Chronic myelogenous leukemia 1

  Non-Hodgkin's lymphoma 3

  Acute myeloid leukemia 2

  Multiple myeloma 1

  Myelofibrosis 2

Donor Type

  Matched unrelated 11

  Matched related 3

  Autologous 4

Conditioning Regimen

  TBI/Cyclophosphamide 2

  Busulfan/Cyclophosphamide 6

  Busulfan/Fludarabine 4

  Fludarabine/Melphalan 2

  BEAM 3

  Melphalan 1

CMV Status (Donor/Recipient)

  +/+ 7

  +/- 3

  -/+ 4

  -/- 0

GVHD Prophylaxis

  Tacrolimus-Methotrexate 6

  Tacrolimus-Mycophenolate mofetil 4

  Cyclosporin A-Methotrexate 2

  Cyclosporin A-Mycophenolate mofetil 1

Median CD34 Dose (E6 cells/kg) (range) 4.59 (3.11-9.40)

*Scheduling and dosing for conditioning regimens w ere as follow s:

•TBI/Cy 2 Gy TBI in 6 fractions bid days -6, -5, -4; Cyclophosphamide 60mg/kg/day days -3, -2

•Bu/Cy  Busulfan 0.8 mg/kg for 16 doses days -7, -6, -5, -4, -3; Cyclophosphamide 60 mg/kg/day days -3, -2 

•Bu/Flu Fludarabine 40 mg/m2 days -5, -4, -3, -2; Busulfan 130 mg/m2 days -4, -3, -2

•Flu/Mel Fludarabine 30 mg/m2 days -6, -5, -4, -3; Melphalan 140 mg/m2 day -2

•BEAM Carmustine 300 mg/m2 day -7; ara-C 100 mg/m2) for 8 doses days -6, -5, -4, -3; Etoposide 100mg/m2 

          for 8 doses days -6, -5, -4, -3; Melphalan 140 mg/m2 day -2

•Melphalan 200mg/m2 day -2

Table 1. Patient demographics 
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suffering multiple infections, one patient that remained GVHD-free died. 

Cell Mass Measurements 

Donor samples were obtained for mass measurement from apheresis products, with a 2 mL 

aliquot provided for each patient. Transplant recipient whole-blood samples (3 mL) were drawn 

at 14 ± 3, 28 ± 3, 56 ± 3, and 100 ± 3 days post-transplant. After acquisition, whole-blood 

samples were stored at +4 °C for no longer than four hours prior to cell isolation. CD3 + T cells 

were isolated directly from donor products and patient whole blood samples using the 

Dynabeads FlowComp Human CD3 Kit (ThermoFisher). Isolated cells were resuspended in 500 μl 

sterile phosphate-buffered saline.  

For mass imaging, isolated CD3 + cells were transferred to optical glass-bottomed cell culture 

dishes to a maximum concentration of 1 × 106 cells per mL in a 3 mL volume of sterile PBS (Figure 

15-A).  

Figure 15. Sample 
preparation and analysis 
procedure.  
A) Immunomagnetic beads 
were used to isolate CD3 + T 
cells from patient whole 
blood or donor apheresis 
product samples. B) 
Histogram of CD3 + T 
biomass distribution from a 
representative sample. C) 
Typical quantitative phase 
image of CD3 + T cells. 
Height and coloration are 
proportional to optical 
thickness. 
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Measurements were taken using a 40X objective (Nikon, NA 0.75) under standard cell culture 

conditions (37 °C, 5% CO2). The mass of each cell was calculated by taking the median of 20 

individual mass measurements. Figure 15-B shows a representative histogram of single T cell 

masses found in a patient. The mass distribution was roughly symmetrical, with most median 

masses between 60–80 pg, and intra-patient variation of roughly 30 pg. Figure 15-C shows a 

typical field of view rendered as a 3D image, with height corresponding to local mass density or 

‘optical thickness’. Individual cells appeared as extended spheres of varying density, therefore 

cellular diameter alone was not a good predictor of overall mass. 

4.3 Results 

T cell mass population medians for each sample are presented in Figure 16 as a function of time 

post-transplant. We found a pronounced rise in median T cell biomass vs. infused product 

(median +25%; p < 0.001; Student's t-test) shortly after transplant (day 14), which moderated by 

day 60. Further, the inter-patient and intra-patient cell masses were most variable at days 14 

and 30 post-transplant in both allogeneic and autologous SCT recipients (data not shown), when 

the ddCD3 count was the lowest. This is certainly consistent with the notion of a larger 

proportion of T cells post allograft being activated due to the inflammatory milieu resulting from 

conditioning related tissue/endothelial injury, infections and, in allogeneic transplant recipients, 

GVHD developing post-transplant.138,139 

Our group has previously reported that lymphocyte count and CD3 + cell recovery post-

transplant occurs as a logistic function of time, with exponential expansion occurring in the first 

few weeks following transplantation.133 The observation that T cell mass is high at these early 
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time points is consistent with the notion that higher mass may be observed in proliferating T 

cells. The initial peak and then later plateau effect seen in our T cell mass observations is also 

reflected in T cell growth kinetics recorded following viral infections, which again has to do with 

antigen-driven 

 

 proliferation.140 An alternative interpretation is that this high T cell mass in the first days reflects 

the effect of a ‘cytokine storm’ following SCT.141 Further, the lympho-depleted milieu of the early 

Figure 16. Biomass of patient-derived CD3+ T cells post-transplant. Median CD3+ T cell 

masses for all patients, grouped by time of sample acquisition (days post-transplant). Each 

point represents a single patient per time point; autologous transplant patients (green 

squares), allogeneic transplant patients (circles).  For the allogenic transplants, white 

circles indicate an absence of GVHD during the course of the study, while black circles 

indicate a diagnosis of GVHD.  Solid black lines indicate the average T cell mass for all 

patients at the specified time point. Bars above and below the data points indicate 

significant median cell mass differences between all patients at two different time points 

as calculated by Student t-tests. 
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post-transplant period may also contribute to the rapid growth of T cells and mass acquisition. In 

future studies, as T cell mass is measured, markers of proliferation will have to be assessed 

simultaneously to discern the effect of proliferation vs. T cell activation. Patients who developed 

GVHD tended to have persistently elevated or increasing masses at days 60 and 100 compared 

with their infused product T cell mass. Patients with GVHD exhibited a 

 

significant (p = 0.006; Student's t-test) difference between product and day 100 normalized 

median masses, showing a persistent elevation (∼18% higher median T cell masses than infused 

stem cell product) beyond day 30. Five patients exhibited a 20% or greater increase in median T 

cell mass at day 60 or 100, two of whom developed grade III–IV acute GVHD and one, severe 

Figure 17. Biomass and GVHD grade 

of patient-derived CD3+ T cells 60 

and 100 days, post-transplant. 

Median masses by GVHD status and 

transplant type, normalized to the 

mass of the T cells infused into the 

patient.  Each data point represents 

the median CD3+ T cell mass for one 

patient at a specified time point. 

Roman numerals indicate maximum 

acute GVHD grade, if present. 

Maximum severity of chronic GVHD 

is expressed as either mild, 

moderate, or severe, if present. 

Points with a contrasting center 

indicate patient is now deceased.    
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chronic GVHD (Figure 17). A representative example of one of these five patients is contrasted 

with a patient who did not develop GVHD, in Figure 18.  

 

Finally, one of our patients, a 24-year-old male with Hodgkin's Lymphoma, suffered Grade III 

aGVHD and exhibited normalized median T cell masses of 32% (day 60) and 25% (day 100) 

greater than the infused stem cell product. The initial cell mass increase was coincident with 

Epstein Barr virus and Cytomegalovirus reactivation. Another, a 65-year-old male with 

Myelodysplastic Syndrome, was diagnosed with severe cGVHD and exhibited median T cell 

Figure 18. Boxplots showing normalized T cell population mass distributions, over time, for 

two representative allogeneic transplant recipients.  Product, Day 30, Day 60, and Day 100 

mass measurements were normalized to the median mass of the patients’ product 

samples. All individual cell masses (blue dots) measured at a given time point have been 

overlaid onto that time point’s boxplot. A) Patient did  not develop clinical signs of GVHD 

during the course of the study. Median CD3+ T cell mass increased at day 30, but 

decreased and stabilized through days 60 and 100. B) Patient developed severe chronic 

GVHD involving the lungs 151 days post-transplant. Median CD3+ T cell mass increased 

44% above the product sample median at day 30, and remained elevated through day 100. 
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masses 36% and 45% greater than infused stem cell product cells at days 60 and 100, 

respectively. Both patients later died.  

4.4 Discussion  

If this observation is validated in a larger cohort, T cell biomass could become invaluable as an 

inexpensive biomarker of alloreactivity and GVHD risk, and be used to guide decision making 

about intensity of immunosuppression post-transplant. This may also be a useful adjunct to PCR-

based diagnosis of viral reactivation, where low level reactivation often raises the conundrum of 

whether toxic therapy should be initiated or held off on. Patients with high mass T cells in these 

instances may indeed be in the process of mounting a protective response and may be followed 

without introduction of cytotoxic drug therapy. Increasing the post-transplant sampling 

frequency would also be beneficial in order to account for the variability in onset of GVHD 

symptoms and better mitigate the effects of infections, viral reactivation, and relapse on T cell 

mass. Importantly, continued development of GVHD predictive models using T cell mass-based 

methodology must account for such potential confounding effects on this measure. However, 

contextualizing T cell mass measurements with conventional clinical manifestation of infections 

and GVHD, as well as with biomarkers, may allow real time titration of immunosuppressive 

therapy.142 

In order to simultaneously develop a more precise view of post-transplant alloreactivity and 

elucidate underlying immunobiological mechanisms, it will be necessary to go beyond CD3 + cell 

isolation and characterize relevant T cell subsets within each sample. Based on prior work by 

Meier et al. and Berrie et al. that highlight normal reconstituting T cell diversity and identify the 
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emergence of a limited number of dominant T cell clones in patients with GVHD, simultaneously 

assessing T cell clonality and mass during immune reconstitution could enhance the specificity of 

any predictive signatures.143–146 Cell mass spectra might also complement other modalities, 

including newly vetted biomarker panels for NRM and GVHD, such as those developed by 

Hartwell et al., as well as donor-derived T cell counts, lymphocyte reconstitution kinetics, and 

predictive modeling of minor histocompatibility antigens.147 Our findings underscore the notion 

that alloreactive T cell response is a multifaceted reaction of the donor T cells to the recipient 

milieu. Aside from proliferation and T cell subset differentiation, there are critical metabolic and 

functional changes associated with antigen recognition, which may result in biomass change.148 T 

cell subsets are of crucial importance to GVHD pathophysiology, therefore, measurement of T 

cell (and T cell subset) mass is a simple, clinically applicable parameter that summarizes the 

latter two adaptations of T cells to the change in the ‘antigenic landscape’.149 Despite a small 

patient cohort, results from this study provide the foundation for the continued assessment of T 

cell population mass in understanding and predicting metabolic changes in the T cells associated 

with alloreactivity and, subsequently, providing guidance for immunosuppression titration in 

allogeneic SCT recipients. 

The cell mass measurement method we use is one of many available options, each of which has 

strengths and weaknesses depending on the application. The technical performance of the 

phase sensing camera employed has been well documented by the manufacturer in a series of 

papers.26,79,80 Our results suggest that other quantitative phase microscopy modalities, in 

particular digital holography, could be employed for this application with success.150,151 Our LCI 

system was automated for ease of use and reproducibility, but would not be considered high-
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throughput. Improving the throughput and robustness of quantitative imaging platforms is an 

important direction of research for the field. 
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Chapter 5 

Applications in Basic Research 
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5.0 Chapter Overview 

This chapter details experiments investigating apoptosis in established cancer cell lines, the 

kinetics of degranulation in mast cell populations, and cell growth patterns in genetically 

engineered Kaposi’s sarcoma cells during the latent-lytic switch of an oncogenic virus.  

5.1 Apoptosis Assays 

5.1.1 Introduction 

As previously discussed, LCI’s utility hinges on the ability to correlate biological events of interest 

with changes in the mass of the cells being observed. Experiments designed to validate these 

correlations are typically conducted using LCI in parallel with established analytical methods. 

Considering our initial goal of assessing the response of cancer cell lines to cytotoxic drugs, the 

ability to quantify cell death in terms of changes in mass was an important early milestone.  

Cell death can occur as a result of internal processes like cell aging or external factors like acute 

injury or disease and, further, can proceed via several mechanisms.152 Injury and disease typically 

cause cells to die by necrosis, while certain drugs, immune cell killing, cell aging, and mitotic 

errors result in programmed cell death via apoptosis or autophagy.153–155  

Of the cell death mechanisms, apoptosis is particularly dramatic owing to its irreversible nature 

and array of associated morphological changes.156 Commercially-available kits can detect 

different stages of apoptosis using cytotoxic chemicals and fluorescent dyes, allowing 

researchers to understand the impact of specific conditions or drugs on a given cell.157 By 

coupling LCI and fluorescent imaging, we hypothesized that the induction of apoptosis and 
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subsequent cell destruction would result in significant decreases in mass that correlated with 

appropriate fluorescent dye signals. Based on this hypothesis, we designed an experiment to 

evaluate the correlation between mass loss and fluorescently-indicated apoptosis in established 

lung (A549), kidney (786-0), and breast (MCF7) cancer cell lines. 

Briefly, cells would be exposed to the apoptosis-inducing agents Actinomycin D and 

Camptothecin in the presence of the fluorescent dyes YoPro1 (YP1) and Propidium Iodide (PI).158 

YoPro1 is a DNA-intercalating dye that fluoresces green; PI is a DNA-intercalating dye that 

fluoresces red.159,160 Both dyes enter cells through plasma membranes whose structures have 

been compromised due. Because apoptosis triggers morphological changes that compromise a 

cell’s plasma membrane, these dyes can enter and bind to DNA. Importantly, as the smaller of 

the two dyes, YP1 is capable of entering dying cells earlier than PI. Taken together, we would 

expect that cells exposed to Actinomycin D and Camptothecin, in the presence of YP1 and PI, 

would simultaneously exhibit a detectable loss of mass while first fluorescing green and then red.  

5.1.2 Results & Discussion 

Control groups in each of the three lines exhibited steady single-cell growth rates of 2%/hr (MCF-

7), 2%/hr (786-0), and 3%/hr (A549). As expected of cultured populations, ~5% of cells in each 

control group were non-viable as evidenced by detectable YP1 and PI fluorescence.   

Treatment groups for each line exhibited pre-dosing growth rates similar to controls. After 

dosing, median mass lost per cell ranged from 10-60%. Line A549 responded both more robustly 

and more quickly than the other two lines, with PI fluorescence visible in almost all cells within 

140 minutes of treatment and median mass loss per cell of approximately 40%. In line 786-0, PI 
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fluorescence was similarly visible for all cells by 200 minutes, post-treatment, with a median 

mass loss of 30%. Finally, line MCF-7 exhibited the slowest response, with PI fluorescence visible 

in all cells at approximately 450 minutes after dosing. Results are summarized in Figure 19. 

Data show a correlation between the timing of drug-induced apoptotic mass loss and PI 

fluorescence in all three lines measured. However, variation between the extent and the timing 

of mass loss between cell lines was apparent. Interestingly, the longer the published doubling 

time for each cell line, the longer the amount of time required to induce mass loss and 

fluorescence. While the underlying mechanism behind this observed disparity in timing is 

unclear, our results demonstrate a clear link between the timing of cell mass loss and the 

fluorescence of established markers following exposure to inducers of apoptosis.  

5.1.3 Methods 

For each experimental replicate, cells were seeded at 5 x 104 cells/ml in a 25 cm2 diameter 

optical-glass-bottomed dish and allowed to grow for 24 hours in appropriately-supplemented 

RPMI 1640 or DMEM-based media under standard mammalian cell culture conditions (5% CO2, 

37 ⁰C). Media was exchanged 24 hours after plating. After the media exchange, the dish was 

placed on the sample stage in the LCI system for one hour to reach thermal equilibrium. YP1 and 

PI were added to the dish to final concentrations of 1 μM and 1μg/mL, respectively. After dosing, 

brightfield, fluorescence, and phase images were collected for one hour, at 10X magnification, in 

a 3x3 grid pattern to measure baseline growth rates. After one hour, 1X concentrations of 

Actinomycin D and Camptothecin were administered, and imaging proceeded for an additional 

800 minutes. 
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Figure 19. Correlation of apoptosis, PI fluorescence, and mass loss in three cancer cell Lines. 

Established cancer lines A549 (lung), 786-0 (kidney), and MCF-7 (breast) were measured for 

400 minutes using LCI. 60 minutes after the start of imaging (vertical dotted blue lines), 

treatment group cells were dosed with Actinomycin D and Camptothecin to induce apoptosis. 

The upper panel depicts mass vs. time scatter plots of each individual cell tracked during a 

single experimental replicate. Blue lines represent the median normalized mass of all cells at 

each time point, while black lines represent the bounds of the 95% confidence interval for the 

median. The lower panel depicts total red channel fluorescence intensity (i.e. the PI signal) 

over time for each location (individual lines) imaged in a given sample. Note: the brief spikes 

in fluorescence intensity following treatment represent a temporary recovery by fluorophores 

from photo bleaching. Median number of cells measured in each replicate was 109.  
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For each cell line, one control (media vehicle) and three treatment replicates were performed.  

To ensure consistency and enable troubleshooting, the temperature and CO2 concentration in 

the incubator (as well as the Z focus position of the objective) were logged during each 

experiment. These measurements are critical because fluctuations in any of the three metrics 

can alter the mass measured by the LCI, either by actually impacting the biological health of a 

cell, or producing out-of-focus images that result in artificially high or low measurements. 

5.2 Mast Cell Biology 

5.2.1 Introduction 

Mast cells are multifaceted components of the immune system best known for their role in 

mediating allergic responses.161,162 They are found in almost all tissues of the body, including the 

skin, gastrointestinal tract, respiratory mucosa, brain, and peritoneal cavity.163  Capable of 

responding rapidly to stimuli, mast cells contain an array of effector molecules (mediators), 

including histamine, serotonin, and multiple cytokines.164–166 The majority of these mediators are 

packaged into granules and, upon a cell receiving a sufficient signal to “degranulate,” are 

released.167 Effects of mediator release are numerous, including changes in the permeability of 

blood vessels and the recruitment of immune cells.161 In addition to their role in normal 

physiological responses, mast cells are implicated in wide range of conditions and diseases, 

including cancer, cardiovascular disease, obesity, and autoimmune diseases.168–172  

Degranulation is the process by which mast cells release their array of preformed mediators. The 

process can be initiated through a variety of pathways, though the most common is IgE-

mediated.173–175 Briefly, mast cells express FcεRI, a high-affinity receptor for IgE, on their 
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surfaces. IgE binds to FcεRI receptors and, when bound by its specific antigen, results in the 

crosslinking of multiple FcεRI receptors. This crosslinking triggers a signal cascade that ultimately 

results in the release of intracellular calcium and, subsequently, degranulation.176 Once 

degranulation has been initiated, granules move to the mast cell’s membrane, fuse, and release 

their contents. This entire process occurs in minutes and is accompanied by striking 

morphological changes.177–179  

As degranulation plays a central role in mast cell activity, studying its biological underpinnings 

enables both a better understanding of mast cells’ roles in disease and our ability to develop new 

therapeutic interventions.180 Of particular relevance are characterizing the quantities of 

mediators released and the recovery period required between successive triggering events.181–

183 Literature on the latter is sparse, with one study suggesting an approximately 48-hour 

recovery period in murine bone marrow-derived mast cells.179 Research laboratories commonly 

measure degranulation by fluorescently tagging released effector molecules like histamine, 

prostaglandin D2, beta-hexosaminidase, or IL-6 and then quantifying fluorescent signals.184 This is 

a useful “endpoint assay” approach, but it precludes labeled cells from being using in 

downstream experiments and requires bulk averaging of signals from cells in a population. 

Our goal, in close collaboration with Dr. John Ryan’s laboratory in the VCU Department of 

Biology, was to evaluate LCI and HSLCI as label-free tools for studying mast cell biology. In the 

process, we hoped to gain insight into how much mass was lost by mast cells undergoing 

degranulation in response to various stimuli and how long it takes for them to recover from this 

process.   
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5.2.2 Approach 

Our approach centered around a robust characterization of mast cell population mass, size, and 

behavior. A series of population-level and single-cell experiments were conducted. Briefly, 

investigations of cell mass distributions and measurement reproducibility involved imaging 

thousands of mast cells from distinct populations to examine intra- and inter-batch variation, as 

well as differences between unprimed, primed, and triggered cells. Degranulation assays focused 

on measuring mast cell masses before, during, and after the administration of known triggering 

agents to examine response kinetics and recovery time. These assays were also conducted using 

established fluorescent markers to correlate mass loss events with cell membrane disruptions 

associated with degranulation.  Two triggering agents were used: Ionomycin, a calcium 

ionophore, and DNP-HSA, a biologically-relevant antigen. 

5.2.3 Results 

Cell Mass Distribution and Variation 

Taken together, population-level studies revealed a consistently positively skewed distribution of 

masses within a given mast cell population. Median masses ranged from 150-350 pg. The 

distribution of cell masses in a representative population is show in Figure 20. Variation in pre-

treatment median masses between different cell batches was observed, with the largest median 

masses measuring 2X larger than the lowest recorded medians. Experiments comparing the 

masses of primed vs. unprimed cells from the same batch of cells revealed median masses in 

primed cell populations to be 4-9% larger than unprimed populations. 
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HSLCI Degranulation and Recovery Assays 

HSLCI degranulation and recovery assays revealed the presence of two distinct groups of cells 

based on cell size and mass (Figure 21). These groups were present in all samples and all 

treatment groups. Interestingly, the smaller of the two groups remained essentially static 

throughout the course of each experiment, neither gaining or losing mass or area. This group 

was termed “Static.” The larger of the two, termed “Active,” exhibited growth in all experiments. 

Further, a re-analysis of data from experiments conducted on the original LCI system revealed 

the presence of these same two distinct populations of cells.  

Figure 20. Distribution 

of cell masses from a 

single mast cell 

population. Histograms 

depicting the distribution 

of mast cell masses from 

a single population, as 

measured by LCI. Cells 

from the same 

population were 

measured during two 

independent but 

identical experimental 

replicates (Repetition 1 

and Repetition 2). 

Median masses and total 

cell counts (n) are 

displayed in the top right 

corner of each plot.  
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Examples of both successful and unsuccessful DNP-HSA triggering of cells in the Active groups 

are shown in Figure 22-A. An analysis of pre-treatment population median masses revealed that 

degranulation was only detected in the two most massive mast cell populations (Figure 22-B). In 

addition, in these responsive groups, a distinct pattern emerged in which treated cells rapidly 

lost mass in response to DNP-HSA, then rapidly increased in size (area). Their size quickly 

diminished to pre-treatment levels and the growth of the cells (in terms of mass and area) 

resumed (Figure 23).  

 

Figure 21. Distinct mast cell sub-populations. A) A scatter plot of cell mass vs. cell 

diameter from a single time point (prior to treatment) during a representative HSLCI 

experiment. Each point represents a single mast cell. Coloration was applied to highlight 

the two populations (Green = “Active”, Gray = “Static”); data points are rendered semi-

transparent to enable visualization of density. B) A scatter plot of median cell mass vs. 

time for the two groups, plotted with underlying lines depicting the best linear fits.  
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Figure 22. HSLCI-measured DNP-HSA response kinetics and inter-population mass 

variation. A) Plot of median Active cell mass vs. time for three different representative 

DNP-HSA response assay replicates, as measured by HSLCI. Dotted lines represent control 

groups, while solid lines represent groups treated with DNP-HSA. Green coloration 

indicates an experiment in which degranulation was successfully detected. Blue 

coloration indicates that no degranulation was detected. Numbers and coloration 

correspond to those shown in B. B) Bar plot of pre-treatment median masses from 

independent HSLCI experimental replicates. As stated previously, coloration indicates 

whether or not degranulation was measured in response to DNP-HSA treatment. 

Experiment number is arbitrary and not reflective of chronological order. Median number 

of cells measured for each experiment was 1422. 

Figure 23. Active group mass and area versus 

time.  Representative plot of Active group 

centroids from Triggered (DNP-HSA) and 

Control BMMC populations, as measured by 

HSLCI and identified using mixed model 

fitting in MATLAB. Decreasing line 

transparency corresponds with increasing 

time. Time between successive data points is 

identical. Note the rapid loss of mass and 

increase in area, followed by recovery, in the 

treated population. 
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Correlation of Degranulation with Mass Loss and Fluorescence 

Methylcellulose was successfully employed in short-term fluorescence correlation experiments. 

Mass losses ranging from 20-50% were observed in hundreds of individual cells suspended in 1% 

methylcellulose following the administration of Ionomycin. The appearance of fluorescent signals 

from PI and YP1 correlated precisely with the decline of each cell’s mass, with YP1 (the smaller of 

the two molecules) appearing several minutes prior to PI. A single-cell example is provided in 

Figure 24. 

 

Characterization of RBL-2H3 Degranulation and Recovery 

Tumor line RBL-2H3 control and pre-treatment cells exhibited growth rates ranging from 2-5% 

per hour. Cells treated with 1X DNP-HSA exhibited a rapid 30-50% decrease in mass within one 

hour of dosing, while control cells grew unabated (Figure 25). Interestingly, mass lost by treated 

cells was recovered within 1-3 hours, with cells continuing to grow steadily at 2-3% per hour for 

18 more hours. In addition to their robust growth, many RBL-2H3 cells exhibited significant 

Figure 24. Correlation of Ionomycin 

dosing with mass loss and YoPro1 

and PI Fluorescence in a single mast 

cell. A scatter plot of cell mass vs. 

time for a single mast cell. 

Ionomycin was administered at T = 

20 minutes. Fluorescence images A, 

B, and C correspond to the time 

points labeled on the scatter plot 

indicating the appearance of green 

and then red fluorescence.  
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motility during the experiment’s 20-hour duration. This is consistent with behavior noted in 

other studies.185 

 

Figure 25. RBL-2H3 cell degranulation and recovery. Upper Panel) Cell mass versus time plot 

for two representative RBL-2H3 cells. Cells were imaged using LCI for one hour, DNP-HSA or 

media vehicle was administered, and imaging resumed for 11 more hours. The red line 

represents the DNP-HSA treated cell. The blue line represents the Control (media vehicle-

treated) cell. Lines were smoothed using an interpolated spline function (fnplt, MATLAB). 

Letters A-D and gray vertical lines correspond to selected time points for which cell images 

are provided in the lower panel. Lower Panel) Images of the triggered and control cells 

plotted in the upper panel, at time points A-D. White arrows indicate the cells whose 

measurements are plotted.  
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5.2.4 Discussion 

Taken together, the data demonstrate LCI and HSLCI’s ability to reliably detect and measure 

mast cell degranulation in the form of cellular mass loss, without the need for dyes or labels. At 

present, HSLCI is best suited for population-level studies in mast cells due to its speed and multi-

sample capacity, while the system’s single-cell tracking capabilities require refinement for this 

cell type due to their rapid drifting in culture vessels. In the course of coming to these 

conclusions, several important observations were made.  

First, the presence of two distinct populations of cells was apparent in every experiment 

conducted. It is unclear what, other than their size and growth behavior, differentiate the two 

groups. Second, significant variation was seen in the median pre-treatment masses of Active 

groups from different batches of mast cells. While all mast cell populations tended to 

consistently exhibit a positively skewed distribution of cell masses, observed medians ranged 

from 150 pg to 350 pg. Priming mast cells with IgE does not seem to contribute significantly to 

this variation  

Third, as previously mentioned, our HSLCI date indicate that mass loss due to DNP-HSA-triggered 

degranulation was only detectable when median pre-treatment masses were greater than 225 

pg. The majority of cell populations measured across our experiments had median masses lower 

than this threshold. However, these same cell populations were successfully triggered using 

DNP-HSA (as measured by IL-6 ELISA), at a variety of cell densities, in the Ryan lab. It is possible 

that these response disparities might stem from a detection limit in our population-level 

approach to measuring mass loss (Figure 26). A second explanation is that there is a minimum 
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biological threshold for degranulation. Perhaps cell size and mass correlates with a measure of 

maturity (i.e. sufficient mediator content) and, therefore, cells that are not mature (i.e. too 

small, insufficient content) will not degranulate in response to FCεRI-mediated activation. This 

explanation would fit with our data, but would need to be borne out using additional assays for 

degranulation in light of the positive IL-6 ELISA. 

  

Fourth, RBL-2H3 cells consistently exhibited a rapid recovery of mass (~90 minutes) following 

degranulation. Regardless of the cause, RBL-2H3 cells behave differently from murine BMMC-

Figure 26. Proposed model of mast cell degranulation. Two distinct sub-populations of 

mast cells (“Active” and “Static”) were detected by LCI and HSLCI. Ovals represent the 

respective range of cell masses and sizes measured in our data. Static cells do not grow or 

respond in any detectable way to DNP-HSA. Active cells grow throughout each experiment 

and, in some cases, exhibit mass loss and subsequent recovery in response to DNP-HSA.  

Green arrows represent the change in mass and area of cells in the Active group in 

response to DNP-HSA, when mass loss was detected. Based on our data, we hypothesize 

that there is either an LCI detection limit and/or biological threshold of ~200 pg, below 

which degranulation (in terms of mass loss) cannot be measured and/or does not occur. 
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derived mast cells. As the tumor line is a familiar presence in mast cell research laboratories, a 

more thorough understanding of its biology is warranted.  

Mast cells play a multifaceted role of in allergy and disease.  Providing a means by which to 

assess degranulation, in addition to understanding the mechanisms that underlie the process, is 

important for basic and translational research. These studies raise important questions about the 

way in which degranulation is measured, and the effect that population variations, natural or 

otherwise, affect the outcome of experiments.  

5.2.5 Methods 

Mast cells 

All mast cells were provided by and obtained from Dr. Ryan’s laboratory at Virginia 

Commonwealth University. Unless otherwise noted, cells were derived by the Ryan lab using a 

Black 6 genetic background. Briefly, bone marrow cells are harvested from the femurs of the 

mice. These cells are cultured with Interleukin 3 (IL-3) and Stem cell factor (SCF) for four to six 

weeks, resulting in their differentiation into mast cells. These differentiated cells are 

subsequently viable for experiments for up to eight weeks when maintained with continuous 

supplementation of IL-3 and SCF in RPMI culture medium.  

Triggering Agents 

Cells triggered using DNP-HSA were first “primed” overnight using 100 ng/ml of mouse anti-DNP 

IgE. Media was exchanged and cells washed prior to experimentation and exposure to DNP-HSA. 

Cells triggered using Ionomycin did not require priming and, therefore, only a media 
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exchange was necessary prior to experimentation (Figure 27). Stocks of all triggering agents and 

media were prepared and provided by the Ryan lab.  

Population-level Dose Response Studies using LCI 

Initially, population-level investigations of mast cell degranulation utilized the first iteration of 

the LCI system. Mast cell responses to Ionomycin and DNP-HSA were assessed at multiple time 

intervals and across a range of doses. In our inaugural experiments, cells were imaged by the LCI 

in a custom, 4-well Teflon sample block. Briefly, two 20 mm x 20 mm hand-cut silicon squares 

were prepared from silicon wafers and cleaned with 70% ethanol. One silicon square was placed 

in the center of each of two wells, designated Control or Treatment, in the Teflon block. 3mL of 

cells suspended in culture medium (5 x 105 cells/ mL) was then added directly to each of the two 

wells.  An optical imaging window was placed on top of each of the silicon chips.  

Figure 27. Summary of triggering agent 

mechanisms of action. Ionomycin and 

DNP-HSA were used independently to 

trigger degranulation in BMMCs. 

Ionomycin is a calcium ionophore 

capable of trafficking calcium directly 

through mast cell membranes. DNP-

HSA binds to FcεRI -bound IgE 

molecules, triggering FcεRI crosslinking 

that results in a signaling cascade. This 

signaling cascade causes the release of 

calcium sequestered in the 

endoplasmic reticulum. Degranulation 

is triggered in both cases as a result of 

the rapid increase in intracellular 

calcium levels (Adapted from Nirmal et 

al., 2013) 
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Response kinetics were measured in response to a 1X (1 nM) dose of Ionomycin. Cells in the 

Treatment well were measured prior to dosing to establish a baseline distribution of population 

cell masses. Ionomycin was administered after these baseline mass measurements, followed by 

additional measurements every 5 minutes for 25 minutes. Imaging of the Control well was 

conducted similarly, with the administration of a media vehicle control (6 μl) in place of 

Ionomycin. Three replicates of this experiment were conducted.  

Follow-on experiments examined our ability to resolve responses across a wide range of 

Ionomycin doses. To accommodate an increased number of samples, cells were imaged on a 

modified Teflon sample block (Figure 28-A). Three standard glass microscope slides () were 

painted matte black and arrayed in parallel on the Teflon block’s surface. 20 mm x 20 mm hand-

cut squares were prepared from silicon wafers, cleaned with 70% ethanol, and arrayed in a 2x3 

grid pattern. 0.25 mm thick plastic shims were placed on top of each silicon chip. Number X glass 

cover glass squares were then placed on top of each shim. The effective imaging area for each 

sample using this arrangement of components was approximately 200 mm2. Mast cell responses 

to Ionomycin were assessed across a log scale of doses (Figure 28-B). Briefly, 1 x 106 unprimed 

mast cells were deposited on to each silicon chip and covered with cover glass. Pre-treatment 

mass measurements were collected from each dosing group’s sample. Ionomycin was then 

added to all samples at indicated doses and allowed to take effect for five minutes. Four images 

at different locations within the sample well were taken for each dose condition. After 
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each dose group had been imaged, the imaging process was repeated for a second cycle. 

Replicates of this experiment were performed three times. The order of imaging for dosing 

groups was randomized for each replicate. These time interval and log-scale dose response 

experiments were repeated, each in triplicate, with DNP-HSA (1X = 50 ng/mL) as a triggering 

agent instead of Ionomycin. 

Effects of IgE Priming on Mast Cell Mass 

Investigations of Primed vs. Unprimed mast cells consisted of comparing cells from the same 

initial population of mast cells. A group of viable cells was split and one half primed (as 

previously described). The next day, cells from both groups were deposited and imaged on the 

Figure 28. LCI sample mount and dosing overview. A) Three standard glass microscope 

slides were painted matte black and arrayed in parallel on the surface of the Teflon block’s 

surface. 20 mm x 20 mm hand-cut squares were prepared from silicon wafers, cleaned 

with 70% ethanol, and arrayed in a 2x3 grid pattern. 0.25 mm thick plastic shims were 

placed on top of each silicon chip. Number X glass cover glass squares were then placed on 

top of each shim. The effective imaging area for each sample using this arrangement of 

components was approximately 200 mm2.  B) Schematic of the sample imaging order and 

dosing used in a single Ionomycin response assay replicate. 
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modified, six-sample Teflon block (approximately 1500 cells measured per group). This was 

repeated three times, with each replicate occurring on a different day.   

Validation of LCI Measurement Reproducibility 

Reproducibility validation experiments utilized fresh unprimed mast cells. 2 mL of 5 x 105 cells/ 

mL cell suspension was pipetted on to each of six silicon chips on the modified Teflon block and 

covered with cover glass, as previously described. Four images were collected of each chip. 

Immediately following this first imaging cycle, a second identical cycle was performed. This 

experiment was performed in triplicate using different populations (different isolation days) of 

mast cells.  

Measurement reproducibility was further assessed by imaging fresh untreated cells on a single 

silicon chip. 2 mL of 5 x 105 cells were deposited onto the chip and covered with cover glass, as 

previously described. 25 images (5x5 grid pattern) were collected. After this first cycle, an 

additional five imaging cycles were performed on the same sample. Three replicates of this 

experiment were conducted, each using a different population of mast cells.  

Single-Cell Degranulation Studies Using LCI  

Experiments involving single-cell tracking utilized 35 mm, single-well, glass-bottomed dishes, 

unless otherwise noted. A custom double-dish mount was constructed to enable the 

simultaneous use of up to two of these dishes (i.e. Control and Treatment). Additionally, all mast 

cell experiments described from this point forward utilized a Phasics camera to acquire mass 

measurements (as opposed to the modified Michelson interferometer described previously).  
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Proof-of-concept cell immobilization studies were conducted using 2.5 ml of fresh untreated 

mast cells suspended to a final concentration of 5 x 105 cells/mL in a 1% methylcellulose solution 

prepared using complete RPMI culture medium. A 4x4 grid of images was collected by the LCI 

every 10 minutes for 16 hours. Phase images were processed as previously described to 

generate mass measurements for individual mast cells. 

Fluorescent imaging studies (summary provided in Supplementary Table 3) designed to correlate 

mass loss events with degranulation were performed as follows. 2.5 mL of fresh untreated mast 

cells were aliquoted and 1X concentrations of YoPro1 (YP1) and Propidium Iodide (PI) were 

added. A 1% methylcellulose solution was prepared using complete RPMI culture medium. Dyed 

cells were suspended in the solution to a final concentration of 5 x 105 cells / ml. This cell 

suspension was transferred to a single 35 mm glass-bottomed dish and incubated under 

standard cell culture conditions for one hour. After incubation, the dish was transferred to the 

LCI. Image collection was initiated in a 2 x 2 grid, with brightfield, fluorescent, and phase images 

being collected in rapid succession at each location. Ionomycin was administered to the sample 

at 1X after approximately 20 minutes of imaging. Post-dosing, imaging continued for eight hours. 

Three replicates of this experiment were performed. Variations of this experiment were also 

conducted using DNP-HSA instead of Ionomycin.  

Phase images from these fluorescent imaging studies were processed as previously described to 

generate mass measurements for individual mast cells. Fluorescent images were separated into 

individual RGB channels, with each channel being subsequently analyzed to track intensity over 

time for regions of interest identified by MATLAB’s otsu thresholding function.  
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Experiments with the adherent rat basophilic leukemia cell line RBL-2H3 were performed as 

follows. RBL-2H3 cells were obtained from the Ryan lab and immediately deposited in provided 

culture medium to a final concentration of 2 x 105 cells/mL in two glass-bottomed dishes. Dishes 

were placed in a cell culture incubator overnight to allow time for cell adherence to the dish 

surface. After incubation, dishes were transferred to the LCI system and allowed to reach 

thermal equilibrium for one hour. After one hour, 4x4 grids of images were collected from each 

dish every 15 minutes for one hour, at which point one of the dishes received a 1X dose of DNP-

HSA. After dosing, cells were imaged for an additional 36 hours. This experiment was repeated 

twice. 

Measurement of Degranulation and Recovery 

Experiments investigating the population-level mass kinetics of degranulation in response to 

DNP-HSA were conducted as follows. Mast cells were primed overnight with IgE (as previously 

described) by the Ryan lab. 3mL of primed cells in culture medium were deposited into each well 

of a 24-well plate at a final concentration of 5 x 105 cells/mL. The plate was placed in the HSLCI 

and allowed to reach thermal equilibrium for one hour. Imaging was conducted at a rate of 30 

images/well every eight minutes for one hour, with plate tilting every 10 minutes. After one 

hour, half of the wells in the plate were dosed with 1X (50ng/mL) DNP-HSA. After dosing, 

imaging continued for an additional 39 hours. Replicates of this experiment were performed 

seven times with moderate variations, including the simultaneous measurement of different 

batches of primed cells or the inclusion of an unprimed population from which primed cells were 

generated. Data generated by the experiments were filtered using manually-implemented 

cutoffs for cell mass and area to remove spurious data points. 
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5.3 Kinetics of KSHV Lytic Activation 

Kaposi’s sarcoma (KS) is an incurable cancer associated with immunosuppression or 

immunodeficiency, often occurring in patients with AIDS or those who have undergone organ 

transplantation.186 It typically effects the skin, but can occur in the lymph nodes, gastrointestinal 

tract, and major organs.187 The primary cause of KS is infection with human herpesvirus-8 (HHV-

8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), which is commonly 

transmitted via saliva.188 Briefly, after infecting host cells, KSHV’s latency program is activated by 

default, resulting in the production of several important proteins that interfere with host p53 

and retinoblastoma protein activity, ultimately compromising the cells’ genetic integrity.189,190 

Certain signals can also activate the virus’ lytic program, during which it makes thousands of 

infectious copies of itself and eventually destroys the host cell.191–193 KSHV is a particularly 

interesting because of its possession of numerous human genes, its strong association with 

multiple cancers, and its shared membership in the same viral family as Epstein-Barr virus.194 

In collaboration with the Dr. Blossom Damania’s laboratory at the University of North Carolina’s 

Lineberger Cancer Center, we conducted pilot studies on genetically-modified Kaposi’s Sarcoma 

cells in an effort to evaluate HSLCI as a tool for studying the kinetics of lytic program activation in 

KSHV. Our studies used iSLK.219 cells, a genetically engineered endothelial cell line containing 

Doxycycline-inducible latent KSHV.195 These cells also contain two fluorescent markers: green 

fluorescence protein (GFP), which is constitutively expressed, and red fluorescent protein (RFP, 

which is expressed exclusively during lytic replication of KSHV.  All cells, media, and reagents 

were provided by the Damania lab. 
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Using this model, we aimed to study mass kinetics of iSLK.219 cells immediately after exposure 

to KSHV-inducing Doxycycline. Briefly, 2 mL of 5 x 104 cells were dosed with Doxycycline (1 

μg/ml) and imaged by HSLCI for 65 hours (once every 15 minutes); both phase and fluorescent 

images were collected. Based on this approach, we would expect to see green fluorescence in 

individual cells which transitions to yellow as KSHV lytic programs are activated and RFP 

expression begins. This experiment was repeated three times (navg= 600 cells/experiment).  

Several interesting trends were observed. First, as measured by the emergence of red 

fluorescence, approximately 20-24 hours is required for Doxycycline to induce KSHV’s lytic 

program. Second, three hours after lytic activation, cell growth ceased. This “static” period lasted 

for approximately 30 hours, followed by a slow loss of mass and, finally, cell death. A 

representative single-cell example of these observations is provided in Figure 29. 

In addition to fulfilling their role as a proof of concept for our ability to conduct multi-day 

fluorescent imaging runs, these experiments show that, at least in KSHV, lytic activation has a 

distinct kinetic signature. This has implications for basic virology research as changes in cell 

growth patterns can give clues to the involvement of specific pathways during the latent-lytic 

switch. Further, it could provide a label-free metric of lytic activation for wild type cells. Beyond 

KSHV, HSLCI could be used to study the kinetics of primary infection in across a range of viruses 

and cell types. 
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Figure 29. Single-cell Doxycycline-induced KSHV lytic activation. A representative plot of cell 

mass versus time for a single iSLK.219 cell dosed at 0 minutes with Doxycycline. Individual 

point coloration indicates the fluorescence color emitted by the cell (i.e. yellow indicates 

simultaneous GFP and RFP expression, black indicates a lack of fluorescence). Note: iSLK.219 

cells constitutively express GFP and contain latent, Doxycline-inducible KSHV virus. Induction 

of the virus’ lytic program with Doxycycline also induces RFP expression. 
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6.0 Chapter Overview 

This chapter provides a summary of the work presented thus far, an overview of ongoing HSLCI 

experiments, and a discussion of future directions. 

6.2 Summary of Work Presented 

Cell mass is emerging as an important indicator of cell health and status. Improvements in digital 

imaging and processing technologies have enabled quantitative phase imaging to become a 

precise method for non-invasively studying cell mass kinetics at the single-cell level. Our work 

using the LCI and HSLCI systems has resulted in several important achievements. First, we have 

demonstrated an ability to measure cells continuously for over 10 days. This is significantly 

longer than similar QPI-based techniques and provides a sufficient window of time to observe 

the vast majority of cellular processes. Second, we have demonstrated an ability to handle a 

range of sample types on the same instrument, including single cells and clusters, non-adherent 

and adherent cells, and established cell lines and patient samples. Third, the HSLCI has enabled 

us to visualize unique mast cell populations and processes, as well as confirmed our ability to 

conduct correlative fluorescent studies. Fourth, our work with melanoma validated LCI and HSLCI 

in two independent laboratories. We demonstrated an ability to quantify heterogeneous 

responses to therapeutics and discriminate between drug-sensitive and drug-resistant cells in 

multiple patient-derived melanoma cell lines, adding to the body of evidence that the in vitro 

measurement of cell mass after drug exposure can achieve the resolution and throughput 

necessary to be clinically relevant. Finally, our pioneering work on T cell mass dynamics during 

immune reconstitution revealed previously undescribed kinetics that could be informative in 
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tailoring post-transplant immunosuppression. In summary, we have developed, validated, and 

deployed a microscopy platform that has the potential to become a powerful tool in applications 

from the bench to the bedside. 

6.3 Ongoing Work 

Work by several members of the Reed laboratory, including Graeme Murray and Daniel Guest, 

have resulted in numerous improvements in HSLCI system performance (enabling imaging 

speeds of 16 fps, 4X faster than described in our work on melanoma) and an expansion of its 

applications. The following sub-sections describe ongoing HSLCI pilot projects. 

6.3.1 Drug-Induced Cellular Senescence 

Senescence, is a protective and stable state in which the cell cycle has been arrested in response 

to a variety of signals, including telomere shortening, drug exposure, and the expression of 

growth-promoting oncogenes.196 For previously-healthy cells, entering a senescent state can 

help prevent the development of malignancies.197 In cancer cells, senescence induced by 

chemotherapy or radiation treatments can have the opposite effect: promoting aggressive drug-

resistant phenotypes.198,199 As such, the characterization and quantification of therapy-induced 

senescence is and urgent and important area of research for improving patient outcomes.   

In collaboration with Dr. David Gewirtz in the VCU Department of Pharmacology and Toxicology, 

our lab is conducting pilot studies on the mass kinetics of drug-induced senescence in cancer 

cells. Briefly, H460 (lung carcinoma) cells are exposed to Etoposide, a chemotherapeutic used in 

the treatment of a range of solid tumor and blood cancers. Following drug exposure, cells are 

sorted into senescent and non-senescent groups by flow cytometry using an established 



85 
 

fluorescent marker for cellular senescence (C12FDG, a modified substrate of β-galactosidase).200 

Sorted groups are then imaged by HSLCI for up to six days to measure cell mass and detect 

proliferative recovery. Three replicates of this experiment have been performed, to-date. 

Our data indicate that cells sorted as “senescent” are 3-4X larger in mass and area than both 

control cells and drug-treated cells that did not become senescent. These larger cells, though 

theoretically growth static, exhibited mass accumulation rates of 1% per hour, while non-

senescent treated and control cells grew at approximately 3% per hour. In addition, a small 

percentage of senescent cells eventually transitioned into a rapidly-growing (3% per hour) state 

and, subsequently, divided at three or more days, post-treatment. While further experimental 

replicates are required to confirm the reproducibility of these trends, the data demonstrate our 

ability to detect changes in proliferative states and quantify the heterogeneity of responses in 

senescent lung carcinoma cells. In addition to aiding the characterization of drug-induced 

senescence as a process, this approach could help in screening new and existing therapeutics for 

their propensity to promote drug resistance.201  

6.3.2 Effect of Radiation on Endothelial Cells 

Prostate cancer is the most commonly-diagnosed cancer in men.202 Treatment generally consists 

of classical chemotherapy, hormone ablation, or radiotherapy (targeted radiation).203 Morbidity 

and mortality vary significantly by socioeconomic status, ethnicity, and geographic location.204 

Even taking into account disparities in access to medical care and screening, men of African 

descent have significantly worse outcomes, including higher rates of radiation treatment-

induced side effects like erectile dysfunction and proctitis.205 Single-nucleotide polymorphism 
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(SNP) and genome-wide association studies (GWAS) have both supported these observations.206 

The underlying cause of many of the observed side effects and poor treatment outcomes is 

radiation-induced damage to endothelial cells that make up critical vasculature around the 

prostate.207,208  

In this context, our lab is evaluating HSLCI, in collaboration with Dr. Ross Mikkelsen in the VCU 

Department of Radiation Oncology, as a tool to measure the effects of radiation exposure in 

endothelial cells. These pilot studies utilize EA.hy926 cells, a hybrid cell type that is a fusion of 

drug-resistant lung cancer with human umbilical vein cells.209  Briefly, EA.hy926 cells are exposed 

to a range of radiation does (0, 2, 4, and 8 Gray (Gy)), seeded in a multi-well plate, incubated for 

eight hours, and then observed using HSLCI for 24 hours to measure mass kinetics. This 

experiment has been repeated two times.  

Interestingly, dose-dependent increases in median population mass were observed in treated 

groups. Specifically, while control cells grew and then divided, division in treated populations 

was not observed. Instead, treated cells accumulated mass but did not divide, with the 8 Gy 

group exhibiting the largest median cell masses at 32 hours, post-dosing. Follow-on studies aim 

to reproduce these results while observing cells over a longer time window to detect any cell 

divisions in treated groups. We hope to continue this work by comparing responses of cell lines 

derived from Caucasian and African American patients in an effort to better understand the 

effects of radiation therapy and, potentially, develop markers for the retroactive quantification 

of radiation exposure. 

6.3.3 PDX Models with HSLCI to Study Drug Resistance 
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HSLCI is highly complementary to a powerful emerging clinical research tool: patient-derived 

xenografts (PDX). PDX models maintain the genetic and histologic characteristics of the patient 

from whom they originate.210–213 Therapeutic compound screening in these models can identify 

drugs that are effective in treating tumors from the patients from which they were derived and/or 

for patients with a similar genomic profile. One of the best attributes of PDX models is that they 

are maintained within an in vivo setting from the time they are isolated from a patient. This feature 

conserves cellular heterogeneity by avoiding clonal selection due to 2D culturing on plastic 

surfaces. Further, cell-to-cell variability observed within established cell lines has been well 

documented, and studies with transgenic models have revealed genomic mechanisms that drive 

drug resistance in response to targeted therapeutics.214–216 Pairing HSLCI with PDX models could 

enable the rapid identification of patient-specific efficacious chemotherapeutics. 

We have tested the HSLCI system with patient-derived melanoma, breast, brain, lung, and 

blood cancer cell lines, as well as PDX lines. The platform is unique among biomass 

measurement methods in its combination of sampling depth, speed, and compatibility with 

both adherent and non-adherent cells, single cells and cell clusters. 

An overview of PDX model generation and usage methodologies is shown in Figure 30. Briefly, a 

tumor surgically resected from a cancer patient is disaggregated into a single-cell suspension. 

The suspension is transplanted into an immunodeficient mouse and allowed to grow. After 

sufficient growth, the tumor is removed and transplanted into a second immunodeficient mouse 

for tumor expansion. Expanded tumors can then be utilized in studies or cryopreserved for 

future use.217  
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Successful PDX model generation depends upon the optimization of several parameters, 

including the choice of an appropriate genetic background of immunodeficient mouse and 

selection of transplantation methodology and location. These choices depend both on the type 

of cancer being transplanted and the overall research aims. Specifically, establishment of models 

from primary tumor samples requires mice with a high degree of immunodeficiency and, 

therefore, necessitates the use of mouse strains such as NOD/SCID/IL2rg-/- (NSI), which lack B, 

NK, and T cells. Further, these models are now frequently humanized after transplantation via 

Figure 30. Overview of PDX model generation and usage. Tumor cells from a cancer patient 

are excised, disaggregated, and filtered to yield a single-cell suspension. The suspension is 

injected into an immunodeficient mouse, with or without membrane protein augmentation, 

for engraftment. Cells are most commonly introduced intravenously or subcutaneously. The 

tumor is allowed to expand to a size sufficient for removal and secondary transplantation 

into multiple immunodeficient mice. At this stage, the secondary transplant recipients can be 

used to multiple ends: 1) biological characterization (i.e. tumorigenesis, metastasis), 2) drug 

screening using excised tumor cells, and 3) genetic characterization of tumors via 

sequencing. Results from any of these avenues can be used to inform further studies and, 

ideally, the personalized selection of therapeutics.  
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the infusion of human hematopoietic stem cells to better mimic the human immune 

environment, improving the model’s general relevance. To enhance the likelihood of successful 

tumor establishment, transplantation of cells into these mice is frequently augmented with 

basement membrane proteins (i.e. Matrigel, Corning, Inc.) and/or fibroblasts and endothelial 

cells. Intravenous and subcutaneous (heterotopic) injections are the most common for initial 

implantation due to their relative technical simplicity and ease of monitoring, though organ-

specific (orthotopic) implantation is an option that, theoretically, better mirrors the environment 

of human tumors.  Once established, PDX models are valuable tools for both basic and preclinical 

cancer research. In addition to enabling the study of complex processes like metastasis and 

tumorigenesis, they provide a platform for screening drugs and identifying new therapeutic 

targets, both in vitro and in vivo.218–220 

In collaboration with Dr. Chuck Harrell in the VCU Department of Pathology, we are investigating 

drug responses in PDX models of Triple-Negative Breast cancer (TNBC). Briefly, in 2018, an 

estimated 266,000 women in the United States will be diagnosed with invasive breast cancer 

and ~40,000 will die of the disease.82 The annual death rate due to breast cancer has declined 

over the past several decades due to earlier detection and advances in our understanding of 

the disease’s molecular subtypes, which govern treatment and predict prognosis.221,222 

However, clinical courses and outcomes for this common malignancy remain variable despite 

the use of therapies guided by a combination of clinical assessments that include tumor 

subtyping, clinical grading and staging, and the expression of estrogen (ER), progesterone (PR), 

or amplified HER2/neu cell surface receptors.223,224  
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Accounting for ~15% of all breast cancers, TNBC is a particularly aggressive form of the 

disease that often metastasizes to vital organs, including the brain, bone, liver, and lungs .225–

228 Breast tumors that are genetically characterized as basal-like tumors (most of which are 

TNBC) often metastasize before they are surgically resected.221,222,229 This metastatic 

propensity contributes to the poor prognosis associated with this subtype.230,231  Women with 

TNBC are limited to receiving chemotherapy and, despite highly toxic therapeutic regimens, 

many eventually die from the burden of their disease.93,94,232,233  

Repeated assessments of tumor sensitivity to available therapeutics could improve clinical 

outcomes by staying ahead of developing drug resistance in patients with breast and other 

cancers. Therefore, the main goal of our current collaboration is to determine whether HSLCI 

can predict in vivo PDX drug sensitivity and resistance and, eventually, to assess the ability of the 

HSLCI to characterize mechanisms of tumor heterogeneity in PDX breast cancer models. Over 

the past four years, Dr. Harrell has developed a set of models and methods to study the growth, 

progression, and molecular mechanisms driving drug sensitivity within breast cancer PDX 

models. The focus of our current efforts are PDXs that represent the most aggressive breast 

cancer subtypes. These include TNBCs WHIM2, WHIM30, HCI01, HCI09, and HCI10. Each of the 

PDX models we are investigating has been RNA-Seq expression profiled and analyzed by 

immunohistochemistry for ER, PR, and HER2 status.  Dr. Harrell has experience growing each PDX 

model as mammary tumors and has quantified their growth rates.  

Thus far, we have demonstrated a capability to detect cell growth and death responses in cells 

freshly isolated from the WHIM2, WHIM30, HCI01, HCI09, HCI11, and PT52 TNBC PDX mouse 

models with the HSLCI platform. An example of this drug sensitivity data from two PDX lines is 
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provided in Figure 31, while an example of our ability to resolve drug resistance at the single-cell 

level is provided in Figure 32.  

 

Figure 31. Patient-derived xenograft (PDX) lines PT52 and HCI09 sensitivity to Carboplatin. Data 

for PT52 (Carboplatin-sensitive) is shown in the upper panel. Data for HCI09 (Carboplatin-

resistant) is shown in the lower panel. Each set of boxplots summarizes the hourly growth 

rates of a population of cells exposed to escalating concentrations of Carboplatin during a 

single experimental replicate. Individual dots in the underlying scatter plots represent the 

growth rates of single cells. Boxplot notches are indicative of the 95% confidence intervals for 

the medians. Median population growth rates from all experimental replicates are plotted 

and fit with sigmoid curves. Error bars indicate the 95% confidence intervals for the medians. 

Data adapted from experiments conducted with Graeme Murray in the Reed Lab.  
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Importantly, the drug responses measured to-date match those observed in in vivo studies 

conducted by Dr. Harrell (i.e. tumors sensitive to drug administered  are also sensitive in vitro). 

This data establishes the viability of the sample handling techniques we will use to obtain HSLCI-

measurable results from surgically resected material, and lays the groundwork for large-scale 

studies for quantifying drug resistance and heterogeneity.  

6.4 Future Directions 

Following the efforts described above, additional studies are planned to expand the scope of 

previous experiments and keep pace with emerging trends.  

6.4.1 Three-Dimensional Cell Culture 

While two-dimensional in vitro culturing remains dominant in cancer and drug development 

studies, mounting evidence on the importance of the tumor microenvironment has led to the 

emergence of new three-dimensional techniques that aim to better mimic in vivo conditions.234–

236 Specifically, two-dimensional cultures lack stromal cells and features like the extracellular 

matrix, have altered rates of drug diffusion, and subject cells to different surface textures than 

encountered in the body, all of which can alter behavior and responses to therapeutics.  Tumor 

Figure 32. Single-cell example of PT52 

Carboplatin response heterogeneity. 

HSLCI images of two PT52 cells, each at 

T = 0 min. and T = 600 min., exposed to 

100 uM Carboplatin. Single-cell growth 

tracks of PT52 cells (resistant, red; 

sensitive, blue) shown in HSLCI image. 

Initial and final growth rates for each 

cell are plotted as gray lines. 



93 
 

spheroids and organoids are two distinct but similar 3D approaches that have been developed to 

address these concerns.237,238  

There is currently no single standard protocol for developing these 3D models. Spheroids 

typically refer to self-assembled spherical aggregates of cells several hundred microns in 

diameter.239 Creating them involves starting with purified tumor cells (though mixed populations 

can be used) and using a variety of techniques to encourage them to form such assemblages. 

Some methods rely on preventing adhesion to culture vessel surfaces to promote cell clustering, 

while others uses a synthetic extracellular matrix called Matrigel (Corning Life Sciences, Inc.) to 

foster 3D architectures and separate tumor cells from fibroblast feeder layers.240 Others keep 

cells suspended under continuous motion to prevent adhesion; some allow them to sediment to 

the bottoms of individual media droplets. Finally, a whole range of micropatterned surfaces have 

been created to coax cells into various shapes and structures using microfluidics. Organoids 

generally refer to slightly larger, more complex, and more organized clusters of tissue excised 

from a mouse or human using enzymatic and mechanical digestion.241 Once excised, these 

primary organoids are often similarly cultured in Matrigel or collagen. Spheroids and organoids 

can eventually be transferred to traditional multi-well plates for imaging, or cultured in custom 

PDMS molds which allow gas and nutrient diffusion and have refractive indices similar to glass.  

As 3D culture becomes more common, it will be necessary to demonstrate HSLCI’s compatibility 

with spheroids and organoids.242 We have already shown an ability to reliably image cell clumps 

and clusters in two-dimensional culture models. Therefore, the biggest challenge will be the 

acquisition of data from different focal planes. If we aim to simply study whole clusters, 

generating this data requires no modifications to our system because our measurements take 
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into account the entire optical path of the light measured, whether it passes through one cell or 

ten. However, if we hope to maintain single-cell resolution for correlative fluorescent imaging, 

image acquisition approaches similar to those employed by confocal microscopy will be 

considered, in addition to the incorporation of additional QPI modalities like DHM or spatial light 

interference microscopy (SLIM).243 

6.4.2 Large-Scale Patient Studies 

A logical extension of our completed and ongoing experiments is the design of larger scale 

patient studies. For our work in melanoma, HSLCI dose response testing of primary tumor 

samples prior to the administration of therapeutic regimens would enable a comparison of our 

assays’ outcomes with actual patient responses. With this material, we could also begin attempts 

at comparing 2D and 3D culture methodologies in parallel. In addition, these assays could be 

performed for other cancers in which biopsies are straightforward to attain, including breast and 

blood cancers. Other groups have demonstrated success in correlating drug-induced in vitro 

mass changes with therapeutic efficacy in small numbers of patients.57 If HSLCI is to be adapted 

for clinical use, this type of validation will be a mandatory next step. 

Regarding our work in T cells, follow-on studies with larger patient cohorts will enable several 

lines of inquiry. First, considering the small size of our pilot study, we would hope to reproduce 

the trends we observed in our original data and increase the number of control group patients 

(autologous transplant recipients). Second, we hope to identify important T cell subsets that 

could enhance the resolution of our kinetic signatures. Accomplishing this goal requires both 

more patient material and additional resources for requisite analyses. Finally, given the range of 
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diseases that can lead to the need for SCT and the broad demographics of those patient 

populations, a larger cohort would help us account for any effects these variables might 

impart.244  

6.5 Conclusion 

HSLCI shows promise as a powerful and versatile research tool. We have demonstrated its 

compatibility with a wide range of cell types and applications and validated its performance in 

two independent laboratories. At present, HSLCI’s large data footprint is its most significant 

drawback, both in terms of the cost of data storage and time required for processing. Addressing 

this issue is, fortunately, straightforward given the existence of hardware solutions like powerful 

graphics processing units (GPUs) that are better suited to image-based tasks and high-capacity 

solid-state drives (SSDs) capable of rapidly reading and writing data. In addition, minor software 

modifications will streamline data acquisition and analysis, increasing the efficiency of storage 

and processing times. These improvements, coupled with our laboratory’s ongoing work and 

planned studies, will enable HSLCI to continue contributing to the understanding of mass kinetics 

and their importance in biology and medicine.  
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Supplementary Figures 

 

 

 

Supplementary Figure 1. 24-Well Plate Topography Topography of a typical 24-well glass-
bottomed plate, displayed in terms of the relative z position (um) of the HSLCI microscope’s 
objective. Z-position at any point is indicative of “best focus”zzz as determined by the 
platform’s automated focusing feedback loop. The feedback loop detects changes in the 
distance between the plate bottom and the microscope objective hundreds of times per 
second, adjusting a piezo to which the microscope objective is mounted to maintain best 
focus throughout lateral scanning of the sample 



112 
 

 

 

Supplementary 

Figure 2. 7-day 

proliferation assay. 

Live cell counts by 

day, normalized to 

day 0.  All three 

melanoma sensitive 

and resistance 

paired cell lines 

were exposed to 

increasing doses of 

Vemurafenib, or 

vehicle (0.1% 

DMSO) and media 

controls. A 

representative 

experiment is shown 

(n = 3). 
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Supplementary Figure 3.  Example distributions of single cell growth rates over time.  A) M249P 

parental line grown in DMEM. B) M249R4 resistant line under treatment with 5𝜇M of 

Vemurafenib. C) GFP-M249R4 under treatment with 5𝜇M of Vemurafenib.  Hourly growth 

rates are estimated by linearly fitting selected single cell data points that were collected 

within each hour of the experiment for a span of 24 hours. Single cell tracks were quality 

controlled using a upper cutoff of 1.5% standard deviation of residuals in linear regression.  

Due to the short time window, there is larger error in the estimation of growth rates than in 

data shown in Figures 19-21. 

Supplementary Figure 4.  Detecting minority 

resistant cells in a mixed population.  Example 

biomass versus growth rate data from a 10:1 

M249P (sensitive; blue) : M249R4-GFP (resistant; 

red) cell mixture exposed 5μM Vemurafenib for 48 

hours. Cell identities are marked by fluorescence 

signals. 
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Supplementary Tables 

Supplementary Table 1.  Patient-Derived Melanoma Lines 

Cell Line Designation Molecular Lesions 

M229P BRAF V600E 

M229R5 BRAF V600E, PDGFR up-regulation 

M238P BRAF V600E 

M238R1 BRAF V600E, PDGFR up-regulation 

M249P BRAF V600E 

M249R4 BRAF V600E, N-RAS Q(61)K 

 

Supplementary Table 2.  Kinase Inhibitor Dosing Chart 

Trade Drug Chemical Clinical Dose Target 
Serum Conc. 

(ng/mL) μM (1x) 

Tafinlar Dabrafenib GSK2118436 150 mg twice daily BRAF 1050 2.02 

Cotellic Cobimetinib GDC-0973 / RG7420 60 mg once daily MEK1 273 0.51 

N/A Selumetinib AZD6244 / ARRY-142886 75 mg twice daily MEK1 1165 2.55 

Mekinist Trametinib GSK1120212 2 mg once daily MEK1/2 22.2 0.04 

N/A Binimetinib MEK162 / ARRY-162 45 mg twice daily MEK1/2 257.0  0.58 

 

Supplementary Table 3. Mast Cell Fluorescence Experiments 
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Supplementary Methods 

M249R4-GFP cell generation.  Third generation lentiviral construct pMD.G (VSV-G envelope) was 

used in combination with pMDLg/pRRE (gag/pol elements) and pRSV-REV. Lentivirus was 

produced by transient plasmid co-transfection into HEK293T cells. Infections used protamine 

sulphate, with mGFP subcloned into the FUGW vector. M249R4 GFP-positive cells were obtained 

using a BD FACSAria sorter. GFP expression was determined 4 days after sorting by a BD LSRII flow 

cytometer. FACS Diva analysis showed 98.4% of M249R4-GFP cells express mGFP.  

Drug Sourcing and Preparation. Imatinib (Cat.# S1026), Dabrafenib (Cat.# S2807), Selumetinib 

(Cat.# S1008), Trametinib (Cat.# S2673), Cobimetinib (5mg, Cat.# S8041) and Binimetinib (10mg, 

Cat.# S7007) were purchased from Selleck Chemicals (Houston, TX). Imatinib, Vemurafenib, 

Dabrafenib, Selumetinib, and Trametinib were supplied at 10mM in DMSO. Cobimetinib and 

Binimetinib were supplied as dry powders but suspended in DMSO to a final stock concentration 

of 10mM upon receipt. 

Kinase Inhibitor 1X Dose Determination: For each inhibitor, a “1X” dose was calculated. Briefly, 

clinical doses were obtained from publically-available package inserts or, if none were available, 

the median dose administered in clinical trials. Doses were matched to peak serum concentration 

values (Cmax (ng/mL)) for each inhibitor as measured in clinical trials in which the doses were 

utilized. If multiple Cmax values were available, those values were averaged to yield a single peak 

serum concentration value. Using each drugs’ molecular weight, peak serum concentration values 

were converted to micromolar (μM) units and designated as “1X”.  Unless otherwise noted, clinical 
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doses were sourced from package inserts and used to identify Cmax values in studies. References 

for Cmax determinations: imatinib 4-6, dabrafenib 7-8, Cobimetinib 9, Selumetinib 10-13 (dose 

determined from median of clinical trial doses), Trametinib 14, and Binimetinib 15-16 (dose 

determined from median of clinical trial doses). 

Cell proliferation assay. Cells in multiple six-well tissue culture plates were incubated overnight at 

37oC, 5% CO2.  Each six-well plate contained one well with a media control, one well with 0.1% 

DMSO vehicle control, and four wells of Vemurafenib at 1 μM, 3 μM, 5 μM, or 10 μM 

concentrations. Cells were counted each day for five days following seeding. 
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