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 Land cover classifications are useful in a broad range of ecological applications, yet 

publicly available classifications are not always useful for the needs of specific projects. Custom 

classifications are always a possibility, however, they can be financially or computationally out 

of reach for many researchers. Here we present a custom 1m resolution land cover classification 

created using freely available imagery and a random forest classification approach. This 

classification detected shrub cover more accurately and at a finer resolution than previous 

classifications. With the creation of this map, we were then able to examine landscape factors 

influencing occupancy dynamics of the golden-winged warbler, a rapidly declining shrubland 
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specialist, at two ecologically relevant scales. Our findings indicate that shrub cover is important 

in predicting warbler occupancy and persistence at scales relevant to nesting, while forest 

characteristics are important at scales relevant to foraging and fledgling dispersal. 
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Chapter 1: Using an object-based random forests classification framework to surmount the 

challenges of identifying shrub in a mountainous landscape 

 

Elizabeth Schold and Lesley Bulluck, Ph.D. 

Expected submission to IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 

 

Abstract 

 Land cover classification maps are essential in a wide range of ecological applications, 

yet publicly available land cover classifications are not always useful for the needs of specific 

research or management projects. Here we present a framework for classifying a high-elevation 

landscape in the eastern United States using freely available 4-band, 1m resolution imagery, with 

emphasis on capturing shrub cover in a region dominated by forest and pasture with varying 

levels of grazing and agriculture. Using terrain metrics, texture metrics, and segmented imagery 

within a random forests classification framework, we were able to produce a landscape 

classification with an overall accuracy of 92.4% and >80% accuracy for each land cover class. 

Segmented spectral data were consistently ranked as important predictors in the overall 

classification, though texture metrics also proved important. With the exception of elevation, 

terrain metrics unexpectedly ranked very low in importance in this topographically complex 

landscape. The results of this classification demonstrate the potential for researchers to create 

accurate custom classifications of their study areas on relatively limited budgets and timelines, 

even in complex landscapes.  
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Introduction to the Problem 

Land cover classification maps are essential in a wide range of applications; they can be 

used in development planning, resource inventory, tracking landscape changes, and in ecological 

research. There are many existing, publicly available landcover datasets, including the National 

Land Cover Database (Homer et al. 2015) and more locally available datasets such as Virginia’s 

Land Cover Dataset (Virginia Geographic Information Network 2016).  Land cover datasets 

intended for broad use necessarily have some shortcomings for specific applications. The 

agencies creating the classifications are limited by time and resources in the scope of what they 

can produce and must therefore prioritize certain scales and classes that will be valuable to the 

greatest number of users. For example, the National Landcover Database, covering the entire 

continental United States and intended for large-scale applications, has a 30m resolution. While 

this may be effective for analyzing variation in large areas, it does not capture the fine-scale 

detail necessary for other applications. More local land cover datasets can have relatively fine-

scale resolution (i.e., 1m); however, as they are often designed to capture variation across what 

are still relatively large areas (i.e., county, state) they capture only the most common and 

generally important land cover classes. 

Custom classifications are therefore a necessity for projects whose goals require 

additional land cover classes or finer-scale resolution, but creating these classifications can 

require significant expenditure of resources. Creating accurate land cover classification maps is 

greatly simplified by using high resolution, multi-spectral data (Xie et al. 2008); however, these 

data can be expensive, on the order of $50-$100 per square meter, making them of limited use 

for management applications where budgets are often limited and/or where focal areas are large.  

Freely available four-band imagery (red, green, blue, and near-infrared) has limitations in 
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comparison to multi-spectral imagery, but has been successfully used in many classifications 

(Frescino et al. 2005, Hurd and Civco 2009, Davies et al. 2010, Moskal et al. 2011, Hayes et al. 

2014, Maxwell et al. 2014, Gonçalves et al. 2016).  This imagery is also increasingly available in 

relatively high resolution (i.e., 1m) for the entire continental United States through the National 

Agricultural Imagery Program (NAIP), and occasionally available through state-level programs.  

Several studies have made up for the shortcomings of four-band imagery by calculating 

additional object-based metrics, including texture and shape, from the original spectral bands. 

Texture metrics describe the variation in a user-defined window around each pixel, and have 

proven effective in helping to differentiate between land cover classes (Haralick et al. 1973, 

Hudak and Wessman 1998, Wulder et al. 1998, Thomas et al. 2003, Kluckner et al. 2009, Hayes 

et al. 2014, Niphadkar et al. 2017). These texture metrics incorporate the differences between 

adjacent cells and have been shown to improve classification accuracies by up to 10-15% 

(Franklin et al. 2000). Other studies have successfully used segmentation to assist in 

differentiating land cover classes (Ryherd S. et al. 1996, Laliberte et al. 2004). This technique 

groups spectrally similar neighboring pixels and can reduce noise and assist in clarifying edges 

between class types, especially at finer scales (e.g. Hansen and Ostler 2000, Laliberte and Rango 

2009).   

Shrub has proven to be a particularly elusive class to isolate from aerial imagery in 

various landscapes. Due to the relatively small radius of individual shrubs, they are typically not 

captured in images with large (>1m) pixel size. Shrub is also spectrally similar to forest in moist 

temperate regions; efforts to classify shrubs in arid landscapes have been more successful 

(Laliberte and Rango 2009). LiDAR data provides information on the elevation of landscape 

features and can assist in differentiating shrub from forest (Martinuzzi et al. 2009, Hellesen and 
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Matikainen 2013).  However, LiDAR is often prohibitively expensive and logistically complex 

for many large-scale studies. For these reasons, many studies that do not require distinction 

between tree and shrub have grouped these two classes together (Cleve et al. 2008). The lack of 

shrub cover maps is a major stumbling block in many areas of research, as shrub is an 

ecologically relevant feature on the landscape. Early successional shrubland, along with the 

biological diversity it supports, is in decline in areas such as the northeast and mid-Atlantic 

region of the United States (Askins 2001); correspondingly, species dependent on these habitats 

have been declining throughout the northeast and mid-Atlantic region (King and Schlossberg 

2014), driving a strong interest in managing for these species.  

Using freely-available spectral imagery in conjunction with terrain, texture and 

segmentation metrics, we create an accurate landscape classification map that can assist in land 

management challenges relating to shrublands in a target region of the central Appalachian 

Mountains. We describe our methodology here, which is the first to successfully classify shrub in 

this moist temperate region where shrub and forest are spectrally quite similar, in hopes that this 

relatively simple and cost-effective approach may be replicated in other similar systems where 

researchers require custom classifications. 
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Methods  

 

Study area 

 We have identified the need for a custom landscape classification in Highland County, 

Virginia, for use in ongoing research and management projects for the golden winged warbler 

(Vermivora chrysoptera), a declining species of migratory bird. In this region, golden-winged 

warblers often breed in high-elevation pasture land, where they require shrub cover to 

successfully nest and fledge offspring (Confer et al. 2003). A map that accurately delineates 

shrub cover in this region is of paramount importance to management of this and other shrub-

dependent species; it will be useful in predicting these species’ distributions, obtaining more 

accurate estimates of population size for focal species, and identifying and prioritizing areas for 

habitat restoration or maintenance. Existing landcover classifications do not adequately describe 

the shrub cover on the landscape for the needs of this project, and in fact, the shrub cover class is 

often missing entirely (Figure 1.1). Our goal was to create a de novo classification including five 

ecologically relevant classes: shrub, pasture, human infrastructure (houses and roads), water, and 

forest. This classification used freely available four band imagery as primary inputs, both for 

budgetary purposes and as a proof of concept. The framework we developed here will ideally be 

useful for land managers working in similar landscapes. 

 Highland County (Figure 1.2) is located in the Allegheny Mountains and borders West 

Virginia. The county is mountainous, with 22% of the landscape greater than 1000m in elevation 

and mountain ridges running primarily in a southwest to northeast direction. The eastern and 

western borders of the county include the George Washington and Jefferson National Forest and 

Monongahela National Forest, respectively, and much of the mountainous terrain in the center of 
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the county is primarily forested. Thirty-six percent of the county is agricultural land situated in 

the valleys, with the bulk of this land being used for cattle and sheep grazing (Highland County 

Chamber of Commerce 2011). Shrubs tend to be found along the edges of pasture and expand 

into pastures when grazing pressure is low as well as in regenerating timber harvests. We define 

shrub as either (1) persistently low growing species such as blackberry (rubus sp.), multiflora 

rose (Rosa multiflora), blueberry (Vaccinium sect. Cyanococcus sp.), autumn olive (Elaeagnus 

umbellata), elderberry (Sambuccus nigra), and barberry (Berberis sp.), hawthorn (Crataegus 

sp.), as well as (2) saplings of larger tree species such as walnut (Juglans sp.), hackberry (Celtis 

occidentalis), black locust (Robinia pseudoacacia), cherry (Prunus sp.), maple (Acer sp.), apple 

(Malus pumila), crabapple (Malus sp.), and hickory (Carya sp.) (Albrecht-Malinger, unpublished 

data).  

 Highland County presents some unique problems for classification. It is mountainous, 

which creates shadowed regions in aerial imagery, causing the same land cover class to have 

different spectral signatures depending on its location on the landscape. To handle this, we 

incorporated the aspect of the land surface, or the direction that the slope is facing, as an input to 

our classification scheme. We also subdivided certain land cover classes (e.g. forest) into sun and 

shade categories.  

 

Imagery and Elevation Data Acquisition  

  We acquired 1m resolution orthoimagery collected through the National Agricultural 

Imagery Project (NAIP) from the USGS Earth Explorer (USGS 2015) for Highland County, 

Virginia as a color-corrected Compressed-County Mosaic (CCM). These data were collected 

during the leaf-on period (i.e., in the growing season) of 2012 by flyover with digital cameras 
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collecting four-band imagery. We also acquired 1ft resolution leaf-off data (i.e., not during the 

growing season) for Highland County through the Virginia Base Mapping Program (VBMP) 

(WorldView Solutions 2011) through the Earth Explorer portal. This is also a four-band image 

and was collected via flyover with digital camera in March and April of 2011. Though both of 

the imagery resources are updated every two to three years, we required older imagery for use 

with our biological data which were collected between 2012 and 2014. Lastly, we acquired 1/3 

arc-second (approximately 10m) resolution elevation data for Highland County from the USGS 

National Elevation Dataset.  

 

Training and Validation Datasets 

We created training and validation data sets using the leaf-on and leaf-off high resolution 

orthoimagery described above.  Specifically, we created polygons around areas of known cover 

types, informed by visual inspection, ground-truthed data (Albrecht-Mallinger and Bulluck 

2016), and personal knowledge of the area (Bulluck, Schold).  Seven land cover classes (shrub, 

pasture, human infrastructure, water, mixed/deciduous forest in shade, mixed/deciduous forest in 

sun, and evergreen forest) were selected for the study, based on spectral characteristics of cover 

types as well as on future planned uses for the classified landscape for management of shrub-

dependent species. Larger polygons were divided into 10m square polygons, and 1000 of these 

polygons were randomly selected per training class across the entire landscape. These polygons 

were further randomly divided, with 500 assigned to a training set and 500 assigned to a 

validation data set (Figure 1.3).  
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Image processing  

 We performed image processing in ArcGIS 10.4 (Esri 2016) prior to use in classification. 

Inputs included 28 individual layers which can be described as either terrain, texture, spectral, or 

segmented. All imagery was resampled to 1m resolution and aligned with the NAIP imagery 

prior to further manipulation. Because we are working in a mountainous region, we needed to 

account for variation in reflectance resulting from differences in slope and aspect.  The terrain 

layers of slope and aspect were calculated from our digital elevation model (DEM) using 

ArcGIS. A binary aspect class layer was created by reclassifying the aspect layer, with all east-

facing cells categorized as a single class and all west-facing cells categorized as a single class. 

Texture metrics were calculated using the focal statistics tool; layers were generated to describe 

the range and standard deviation of cells in a 3x3 and 5x5 window around each cell in each of 

the two scenes (leaf-on and leaf-off). Such texture metrics have been shown to effectively predict 

patchy, shrubby habitat (Timm and McGarigal 2012), and visual observation of our study area 

suggested that the texture of shrub would be captured at a 3-5m scale. Segmentation was 

performed using the segment mean shift tool (Cheng 1995) on both the NAIP and VBMP inputs, 

producing three separate outputs for the three bands (red, green, and blue) in each of the scenes. 

Segmentation groups nearby cells sharing similar spectral characteristics and has been shown to 

reduce graininess in final classifications (Laliberte and Rango 2009). For each scene, we 

produced two segmented layers with different minimum allowed segment size (8 pixels and 16 

pixels). Normalized difference vegetation index (NDVI) was calculated for both NAIP and 

VBMP imagery. NDVI has been shown to effectively characterize vegetation “greenness” and 

may help to discriminate shrub, pasture and forest classes (Defries and Townshend 1994).  All 



9 

 

layers were exported as GeoTIFFs for further processing in the R statistical software (R Core 

Team 2018). 

 

Classification 

 We used a Random Forests framework (Breiman 2001) to classify the different land 

cover types of interest.  We chose this classifier for several reasons.  First and foremost, Random 

Forests is a powerful classification tool with high rates of accuracy; further, it can handle large 

datasets, and is less computationally intensive than methods with comparable accuracy (Gislason 

et al. 2006). The algorithm is a bootstrapping ensemble method that operates by averaging a 

large number of randomly generated decision trees for a single final model with low variance 

and high accuracy (Breiman 2001).  

Classification was performed using the randomForests (Breiman and Cutler 2012) and 

raster (Hijmans et al. 2014) packages in R version 3.4 (R 2017). All processing was performed 

on the Compile cluster available through Virginia Commonwealth University. The 28 predictor 

layers and the training polygons described above were used as inputs to the algorithm, and a final 

classification layer and predictor importance ranking were generated. Several iterations of this 

process were run as inaccurately classified areas were identified, unimportant predictor layers 

were removed, and training and validation polygons were revised. We ceased the process upon 

achieving at least 80% accuracy of all classifications. A visual representation of this work flow 

can be found in Figure 1.4. 
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Validation 

 Validation of classification accuracy was performed through a pixel-to-pixel comparison 

of the reserved 10m2 validation polygons to the classified landscape. Overall accuracy of the 

classification was calculated, as well as user and producer accuracy for each class. Producer 

accuracy refers to the number of validation sites classified accurately divided by the total number 

of validation sites for that class (which is a complement to omission error), while user accuracy 

is the total number of correct classifications for a particular class divided by the total number of 

cells for that class (which is a complement to commission error) (Foody 2002). 

 

Results 

 

Classification Accuracy 

 Seven iterations of training data refinement were required to achieve our final 

classification. Overall accuracy of the final classified image was 92.4%. Visual examination of 

focal areas of known suitable habitat showed that shrub was satisfactorily classified (Figure 1.5). 

Producer and user accuracies for each individual class were between 84.5% and 98.6% (Table 

1.1). Common misclassifications included confusion between water and human infrastructure, 

confusion among forest types, and occasional misclassification of shrub as forest (Table 1.2).  

We also noted misclassification of pasture as forest on some north-facing slopes in one atypical 

region of our study area (Figure 1.6). 
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Predictor Importance 

 Classification predictors were ranked in importance for determining each class as part of 

the output of the classification process. Results presented here are from the final classification. 

(Table 1.3). In previous iterations, we removed six segmented image layers (red, green, and blue 

layers of leaf-on segmented imagery with a minimum allowed segment size of 8 pixels, and red, 

green, and blue layers of leaf-off segmented imagery with a minimum allowed segment size of 

16 pixels). These layers were removed due to their low ranked importance, redundancy with 

other segmented layers, and the computational intensity of production. 

  Notably, texture metrics were within the top 5 predictors for every class, with NAIP 3x3 

cell standard deviation ranked within the top 5 predictors for all classes other than shrub and 

pasture. Segmented spectral imagery was ranked higher than unsegmented imagery for all bands 

and classes with the exception of the NAIP blue band, which was ranked above the blue 

segmented layer for all classes other than human infrastructure. Of our terrain metrics, elevation 

was the only metric included within the top 5 predictors of any class, and was particularly 

important in classifying shrub, pasture, light forest, and evergreen. 

 For our focal cover class, shrub, the most important predictors were the green band of 

segmented leaf-on imagery, the blue band of unsegmented leaf-on imagery, the red band of leaf-

off segmented imagery, elevation, and one texture metric describing the range of values within 

5x5m in the leaf-off imagery (Table 1.3).  

 

Discussion 

 The classification has exceeded initial goals of at least 80% accuracy for each land cover 

class and is more than sufficient for the analysis of avian habitat for which it was initially 
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designed. It represents substantial improvement over previous publicly available land cover 

classifications for Highland County, especially for applications that require knowledge of shrub 

distribution on the landscape. 

The ranking of the most important predictors for individual land cover classes (Table 1.3) 

demonstrates the need for considering spectral properties of potential inputs for any 

classification. Rather than adding all possible inputs, it is most resource-efficient to consider 

only those inputs which are most likely to inform classification decisions. For future, similar 

projects in the focal region, we would likely eliminate several of the less important predictors to 

save time and reduce computational requirements.  

Segmented imagery was a better predictor of most classes than unsegmented imagery, 

with the only exception being the NAIP blue band, which was ranked above the blue segmented 

layer for all classes other than human infrastructure. Leaf-on segmented imagery proved to be 

the first-ranked predictor of shrub, shaded forest, and evergreen forest, as well as the second-

ranked predictor of pasture, human infrastructure areas, and water. This was somewhat 

surprising given that shrub and forest often appear similar to each other in the growing season 

from an aerial view (Figure 1.7A) (Feng et al. 2015), and we anticipated that texture metrics 

would rank more highly than spectral characteristics in differentiating these classes. However, 

this finding does highlight the importance of segmentation to our classification. The 

demonstrated importance of segmentation in this complex focal landscape supports previous 

studies that show object-based classification is more effective than pixel-based approaches for 

classifying landforms (Drǎguţ and Blaschke 2006) urban areas (Myint et al. 2011), and savanna 

vegetation (Whiteside et al. 2011). The value of object-based, segmented imagery is that it adds 
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spatial context to spectral information by grouping spectrally similar neighboring pixels (Hussain 

et al. 2013).  

Leaf-off NDVI was unexpectedly the highest-ranked predictor of the pasture class. This 

is likely due to the dominance of cool-season grasses in our focal region (Figure 1.7B), which 

stand out spectrally on the otherwise relatively brown leaf-off landscape. Interestingly, neither 

leaf-on nor leaf-off NDVI was ranked in the top six most important predictors of any classes 

other than pasture. This result was surprising, as we would expect NDVI to be important in 

predicting evergreen forest (Defries and Townshend 1994). 

Texture metrics were of intermediate importance to our land cover classification. We 

initially selected several potentially relevant texture metrics and scales, as the literature has 

suggested that different systems are best classified with differently sized windows (Laliberte et 

al. 2004, Feng et al. 2015). Given our primary interest in classifying shrubs, we included both 

range and standard deviation within 3x3m and 5x5m windows. Leaf-off 5x5m range proved to 

be the fifth most important predictor of shrub, which corresponds with visual observations of 

small clumps of shrub often appearing as much darker than surrounding pasture in the winter 

(leaf-off) imagery (Figure 1.7C), thus increasing the range of values within a 5x5m window 

where shrub is present.  Leaf-on 3x3m standard deviation was the most important predictor of 

water, and the second most important predictor of evergreen forest, likely because these tend to 

be homogenous landscape features with little variation within a 3x3m window (Figure 1.7D). 

Of the terrain-related predictors, elevation was relatively highly ranked for several classes 

(fourth for shrub, third for pasture, second for light forest, and fifth for dark forest), likely 

because these classes are more likely to be located at certain elevations in our focal region 

(Figure 1.7E) (Franklin 1995). Pasture tends to be found in valleys and lower slopes as these 
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areas are easily cleared and worked by farmers for agriculture, while the higher elevation forests 

tends to be left intact along the ridges. Shrub is found most often at low to mid-elevations, and 

not along the forested ridges.  Likewise, we also expected that slope would be important for 

classifying land cover in this region because steep areas are unlikely to be cleared of forest or 

heavily grazed. However, slope was never ranked more highly than the eighth most important 

predictor for any class. We also expected aspect and aspect class to aid in differentiation between 

dark and light forest (Figure 1.7F), though these predictors never ranked higher than 18th. 

 

Weaknesses of the Classification 

 The classifier confused water with human infrastructure areas relatively frequently. This 

is likely due to the similar spectral properties of roads (particularly dirt roads) and turbulent 

flowing water in full sun; both have very high albedo and a similar shape. Likewise, small farm 

ponds have similar spatial arrangement and spectral properties as human structures (i.e., barns 

and houses). The classifier also mistook some areas of steeper north-facing pasture as forest 

(Figure 1.6); this is likely because training polygons did not include shadowed pasture, but only 

flat pasture in full sun. These areas make up a small proportion of the landscape and are therefore 

of little concern to the current project.  Further training of these areas and land cover types would 

likely remedy these issues. 

 

Validation  

 We recognize that the clustering of training and validation pixels on the landscape within 

the same polygons (Figure 1.4) may bias our validation, and that the entire landscape is likely 

classified less accurately than our validation suggests. We plan to address this issue through 
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random seeding of points across the landscape around which to create training and validation 

polygons. We will also avoid including subsets from the same polygons in both training and 

validation data sets.  

 

Classification Uses and Future Directions 

 This landscape classification was designed with particular attention to the needs of 

ornithological researchers studying the golden-winged warbler. The high level of classification 

accuracy of the cover classes of interest (shrub, pasture, and forest) will enable us to examine the 

relationship of landscape metrics to known distributions and occupancy dynamics of these birds, 

as well as to predict the likelihood of occurrence in previously unsurveyed areas. Such analyses 

will uncover the broader scale habitat requirements for this species, which have never been 

quantified due to the lack of an accurate shrub layer, better enabling land managers to identify 

potential areas for restoration or conservation. This is a major advancement, as this species is 

under consideration for the US Endangered Species list, and there are ongoing efforts and 

funding programs to facilitate habitat creation and management on public and private lands in 

this region. 

There are better data sources for construction of landscape classification maps of 

complex, shrubby landscapes than were used in the current study, but none that are as readily 

available and affordable. LiDAR data, which can be used to create a three-dimensional landscape 

model, is useful in discriminating shrubs from trees and grasses due to differences in feature 

height (Dalponte et al. 2008, Antonarakis et al. 2008). Higher resolution imagery is almost 

always preferable (Yu et al. 2006), and, depending on the application, can be necessary for 

accurate classification (Kalliola and Syrjanen 1991, Harvey and Hill 2001). Multi-spectral and 
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hyper-spectral imagery is also preferable to simple three- or four-band imagery (Robinove 1981). 

Combining both LiDAR and high-resolution imagery produces the most precise and accurate 

classifications (Mundt et al. 2006, Ke et al. 2010). The advantages of our classification 

framework lie in its cost- and labor-efficiency; while perhaps not as accurate as a classification 

using more expensive source data, the framework compromises with a useful product for the 

resources expended and is a significant improvement over the complete absence or inaccurate 

representation of shrub cover in current land cover maps. We anticipate that remote sensing 

technology will continue to increase in quality and decrease in cost, therefore eventually being 

within the scope of the majority of researchers and land managers; however, when working on 

time-sensitive projects, we must work with the best tools available at present. 

Our classification system using public domain imagery makes us optimistic for the future 

of low-cost, accessible classifications for the needs of specific projects. We are already 

implementing this particular classification framework for 5 more counties in western Virginia for 

use in golden-winged warbler research and management. The additions of texture and 

segmentation in a classification framework would likely enable classifications in other 

ecosystem types containing ecologically important shrub, such as coastal dune ecosystems, heath 

balds, sagebrush steppes, sage scrub, and grasslands. Thoughtful consideration of the textural 

and spectral features of the classes of interest, along with biological considerations that may 

predict or limit the presence of classes in certain locations, can assist in the development of 

accurate classifications with limited expenditure. 
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Table 1.1. Producer and user accuracy for each landscape class in this study.  

Class Producer 

Accuracy  

User 

Accuracy 

Shrub 88.3% 89.5% 

Pasture 98.0% 98.6% 

Human 

Infrastructure 

84.5% 90.3% 

Water 96.3% 96.8% 

Forest (Light) 96.2% 91.7% 

Forest (Shadow) 89.6% 92.1% 

Evergreen 87.1% 91.3% 

 

 

Table 1.2. Validation confusion matrix of correctly and incorrectly classified sites. Values 

represent the number of 1m cells in each category 

 

 

 

 

 

 

 

 

 

 
Shrub Pasture 

Human 

Infrastructure 
Water 

Forest, 

Light 

Forest, 

Dark 
Evergreen Total 

Shrub 

 
22457 430 170 64 307 1159 512 25099 

Pasture 

 
121 35550 322 4 7 44 12 36060 

Human 

Infrastructure 

 

126 182 9915 721 31 1 1 10977 

Water 

 
9 1 765 23848 1 2 2 24628 

Forest, Light 

 
476 8 136 9 36698 1493 1214 40034 

Forest, Dark 

 
1783 77 335 56 844 33777 1566 38438 

Evergreen 

 
454 45 95 50 263 1229 22316 24452 

Total 

 
25426  36293 11738 24752 38151 37705 25623 199688 

Actual Cover Class 
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Table 1.3. Variable importance rankings for each predictor layer used in the land cover 

classification for each land cover type in Highland County, VA.  The top five predictor layers for 

each cover type are highlighted in green. All layers are described in more detail in the methods. 

 

Layer Shrub Pasture 
Human 

infrastructure 
Water 

Light 

Forest 

Dark 

Forest 
Evergreen 

NAIP segmented 

imagery, green band 
1 2 2 2 4 1 1 

NAIP blue band 2 13 8 5 1 3 4 

VBMP segmented 

imagery, red band 
3 7 7 4 3 2 3 

Elevation 4 3 6 9 2 11 5 

VBMP 5x5 cell 

range 
5 10 13 6 7 8 7 

NAIP 3x3 cell 

standard deviation 
6 8 4 1 5 4 2 

NAIP red band 7 17 14 11 9 12 8 

NAIP segmented 

imagery, blue band 
8 15 3 10 8 14 9 

NAIP infrared band 9 5 15 12 12 10 6 

VBMP segmented 

imagery, green band 
10 4 1 3 6 6 14 

NAIP 5x5 cell 

standard deviation 
11 21 10 16 15 13 11 

VBMP green band 12 12 5 13 10 5 12 

VBMP blue band 13 16 17 17 17 15 16 

Slope 14 14 11 8 14 9 18 

VBMP red band 15 6 9 21 16 7 13 

NAIP segmented 

imagery, red band 
16 18 12 14 13 17 17 

VBMP NDVI 17 1 16 7 11 20 10 

NAIP 5x5 cell range 18 9 19 27 19 16 15 

NAIP green band 19 19 20 15 18 19 19 

VBMP 3x3 cell 

range 
20 22 18 20 21 24 21 

NAIP NDVI 21 27 21 26 23 18 25 

NAIP 3x3 cell range 22 23 24 23 27 26 27 

Aspect 23 26 23 18 28 28 22 

VBMP segmented 

imagery, blue band 
24 24 28 25 25 22 20 

Aspect Class 25 25 25 24 24 23 23 

VBMP 3x3 cell 

standard deviation 
26 11 26 19 20 21 24 

VBMP 5x5 cell 

standard deviation 
27 20 27 28 26 25 26 

VBMP infrared 

band 
28 28 22 22 22 27 28 
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Figure 1.1. Three views of a single extent of potential golden-winged warbler habitat in 

Highland County, VA, including (a) 1m resolution NAIP imagery from Highland county, VA, 

(b) the 30m resolution National Land Cover Dataset, and (c) the 1m resolution Virginia 

Information Technologies Agency classification. Both classification schemes fail to capture any 

of the shrub cover apparent within the first scene. 

 

 

(a) 

 

(c) 

 

(b) 
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Figure 1.2. Aerial imagery of Highland County, VA, illustrating general regional topography, 

with green forested mountain ridges running from southwest to northeast and cleared brown/grey 

pastureland in the valleys between mountains. Red shading in lower-right inset indicates location 

within the state of Virginia. 
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Figure 1.3. Workflow for Random Forests classification. 

 

 
Figure 1.4. Example of polygon division and subsetting in an area of mature forest in Highland 

County, VA. Each small square represents a 10m x 10m validation (blue) or training (red) 

polygon. Five hundred training polygons and five hundred validation polygons were created for 

each land cover class across the landscape. 
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Figure 1.5. Two example landscapes from NAIP imagery and corresponding classification from 

Highland County, VA where each color represents a certain cover type.  The left two panels 

show an area known to contain a considerable amount of shrubland, correctly identified in the 

classification. The right two panels show mainly forest with some pasture and human structures 

as well as two openings in the forest; the first (red circle) is regenerating from a timber harvest 

and accurately identified as shrub; the second (yellow circle) is maintained as a mowed field 

with sparse trees, also correctly identified in the classification. 
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Figure 1.6. Notable areas of poor performance included north-facing pasture slopes (red circles) 

with some shrub cover, here classified as forest.  
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Figure 1.7. Scenes from Highland County, VA, exhibiting various characteristics important 

when considering classification, including (A) similar spectral characteristics of trees (red circle) 

and shrub (magenta circle) in leaf-on imagery; (B) presence of cool-season grasses in leaf-off 

scenes; (C) spectral contrast of shrub (red circle) from background of pasture in leaf-off imagery; 

(D) visual homogeneity of water (left) and evergreen (right); (E) elevational and topographical 

restrictions of certain cover classes, such as pasture, which is found only at low elevations and on 

relatively flat terrain; and (F) spectral differences in shaded and sunny regions of same cover 

type caused by sun angle and topography. 
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occupancy dynamics in western Virginia 

 

Elizabeth Schold, Dan Albrecht-Mallinger, and Lesley Bulluck, Ph.D. 

Expected submission to The Journal of Wildlife Management 

 

Abstract 

 Conservation planning for declining avian species requires an understanding of how 

landscape level habitat characteristics affect individuals. These habitat effects will often have 

differing effects at different scales (e.g., nest site scale, territory scale, or foraging area scale). 

The majority of studies to date have used traditional ground vegetation surveys to identify factors 

that predict occurrence of individuals at a site. We use a custom landscape classification with 

fine (1m) resolution to assess the association of landscape characteristics of interest at multiple 

scales with probability of site occupancy and persistence by the golden-winged warbler, a shrub-

dependent species of conservation concern. We expected that shrub characteristics would be 

important at small scales used for nesting, while forest characteristics would be important at 

larger scales used for foraging and fledgling dispersal. Using data collected from three years of 

point counts across high elevation pasture lands in Highland County, VA, we developed and 

tested occupancy, colonization, and extinction models in an information theoretic framework. 

While our initial predictions about factors important at different scales were correct, we also 

found evidence that birds prefer a more homogenous landscape at smaller scales and a more 

diverse landscape at larger scales. We anticipate that the findings of this study will provide 
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helpful information for land managers seeking to improve habitat for golden-winged warblers in 

the southern Appalachians. 

 

Introduction  

 Conservation of declining species requires a thorough understanding of how landscape 

composition and complexity influence their distribution. For decades, studies have examined 

how vegetation characteristics may affect wildlife abundance or occurrence (Macarthur and 

Macarthur 1961, James and Shugart 1970), which is of critical importance considering that 

habitat loss has been recognized as the leading cause of species decline worldwide (Sala et al. 

2009). These studies have traditionally prioritized the role of fine scale vegetation structure (i.e., 

within patch, 11.3m radius plot) rather than broader scale habitat features such as landscape 

composition and complexity. This level of detail can be informative, especially in understanding 

how vegetation impacts a particular activity, such as nesting or foraging; however, it fails to 

capture larger scale variation which can be particularly important at broader scales of habitat 

selection (Mayor et al. 2009).  Further, species that use different components of a landscape for 

different purposes (habitat complementation) are likely to use larger scale patterns when 

selecting habitat. For example, some bird species require mature forest for breeding, and young 

dense forests for the post breeding period when predation rates are highest (Pacen 2000, King et 

al. 2009); such species will therefore prefer to breed in landscapes where a mix of forest age 

classes are available.  Management practices that focus on landscape composition will be more 

effective for these species than those that focus solely on fine scale vegetation structure.    

 More recently, as spatial data and the technology to analyze those data have become 

readily available, studies have investigated how characteristics at scales of hectares or square 
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kilometers influence species occurrence dynamics (Thogmartin 2010, Lee and Carroll 2014). 

Understanding vegetation characteristics at both the within-patch and broader landscape scales 

can provide a more complete picture of the habitat needs of threatened species and provide 

important information for land managers. For example, thresholds in habitat use are more likely 

to emerge where the affinity for certain characteristics may be important at one scale but not at 

another (Leblond et al. 2011). Despite widespread recognition of the value of multi-scale habitat 

assessments, explicitly assessing the scale dependence of habitat selection is rarely done in 

practice (McGarigal et al. 2016). Another advantage of the availability of landscape-scale data is 

the ability to assess not only the amount of certain habitat types, but also the arrangement, or 

spatial complexity, of those habitat types.  This is especially important where species rely on 

complex mosaics of habitats within a landscape, as is the case for many species that rely on early 

successional shrublands during part or all of their annual cycle (Askins 2001). 

 Early successional habitats are of key importance to the golden-winged warbler, a 

shrubland-dependent species of significant conservation concern that is currently being 

considered for federal protection under the Endangered Species Act (Lyder 2011). The golden-

winged warbler  is declining across its breeding range in eastern North America, but populations 

in the southern Appalachian region are showing particularly concerning patterns (8.5% annual 

declines, versus 2.6% range-wide) (Sauer et al. 2011) and have been listed as a Tier 1 species of 

greatest conservation need by the Virginia Wildlife Action plan (VDGIF 2015). This species 

occupies habitats with a complex mosaic of cover types that includes shrubs, saplings, grasses 

and forbs within a forested landscape (Buehler et al. 2007). It is well known that these birds rely 

on shrub cover when constructing their nests (Klaus and Buehler 2001, Confer et al. 2003, 

Bulluck and Buehler 2008). Recent telemetry studies tracking adults and fledglings in Minnesota 



28 

 

demonstrated that golden-winged warblers in both life stages will use mature forest habitat 

(Streby et al. 2012, Streby and Andersen 2013a). Despite a significant amount of research effort 

in recent years on this declining species, very few studies have assessed landscape level habitat 

patterns and none have assessed whether habitat composition and complexity predict changes in 

occupancy over time.  This is likely due in part to the absence of maps that accurately show the 

location of shrub cover.  Shrubs are often misclassified as forests or grassland in most national 

and state-level land cover classifications (Cleve et al. 2008). With the creation of a new 1m 

resolution land cover classification (Chapter 1), it is now possible to model how broader-scale 

habitat characteristics predict golden-winged warbler site occupancy, as well as changes in 

occupancy over time (i.e., probability of local colonization and extinction).  

 Occupancy modeling is a useful tool for assessing the probability of species occurrence 

within a given area, as it takes into account detection probability, thus accounting for the fact that 

observers will not always detect an animal present in a surveyed area (Thompson et al. 1998, 

MacKenzie et al. 2002, Lancia et al. 2005). Dynamic occupancy modeling takes multiple surveys 

into account over the course of a single breeding season and/or across years and can model how 

birds move between sampling locations (Betts et al. 2008, Frey et al. 2012). These models 

produce estimates of detection and site occupancy, as in traditional occupancy modeling, but also 

provide estimates of colonization and extinction rates as a function of habitat covariates. While a 

high probability of occupancy at a site may be an indicator of suitable habitat, continuous 

occupancy, or persistence – as assessed with colonization and extinction models – may also 

illustrate factors that cause sites to be less suitable and therefore only occupied sporadically.  

 In this study, we examine whether relatively broad scale patterns in habitat features 

predict the probability of golden-winged warbler site occupancy, as well as the probability of site 
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colonization and extinction between survey years. Landscape metrics are best assessed at 

biologically meaningful scales; we expect that some characteristics may be important at more 

local scales (100m), while others are important at broader scales (500m). The 100m radius is 

approximately the size of a golden-winged warbler breeding territory (~3ha) (Streby et al. 2012). 

The 500m radius represents the area a single adult bird might reasonably venture from its 

territory to nearby resources (Streby and Andersen 2013a) and that a fledgling will disperse 

when still reliant on parental care (Streby et al. 2012). Based on what we know of the breeding 

biology of golden-winged warblers, we expect that shrub characteristics (both amount and 

complexity of shrub cover) will be important at the smaller 100m scale, while forest cover will 

be important at the broader 500m scale. Relating occupancy dynamics to land cover composition 

and heterogeneity at these different scales will provide valuable information about the scale at 

which habitat attributes are most important for golden-winged warblers. 

 

Methods 

Study Area 

 This work was conducted in Highland County, Virginia, located in the Allegheny 

Mountains on the border with West Virginia. Twenty-two percent of the county is higher than 

1000m in elevation, and the landscape is a mosaic of forest and agricultural land, primarily under 

private ownership (Highland County Chamber of Commerce 2011). High-elevation pasturelands 

in the region frequently contain shrubby patches consisting of persistently low growing species 

such as blackberry (Rubus sp.), multiflora rose (Rosa multiflora), blueberry (Vaccinium sect. 

Cyanococcus sp.), autumn olive (Elaeagnus umbellata), elderberry (Sambucus nigra.), and 
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barberry (Berberis sp.); as well as saplings of larger tree species such as hawthorn (Crataegus 

sp.), walnut (Juglans sp.), hackberry (Celtis occidentalis), black locust (Robinia pseudoacacia), 

cherry (Prunus sp.), maple (Acer sp.), apple (Malus pumila), crabapple (Malus sp.), and hickory 

(Carya sp.) (Albrecht-Malinger, unpublished data). 

 

Point Count Surveys 

 Our analyses utilized point count data that were collected for a previous study of golden-

winged warblers (Albrecht-Mallinger and Bulluck 2016). These data were collected throughout 

Highland County in habitat on private lands that could potentially support breeding golden-

winged warblers, defined as greater than 600m in elevation with at least 30% shrub cover. Fixed 

radius point count surveys (100m) were conducted during the breeding seasons (April 28 – June 

18) of 2012 – 2014 at 173 points across 60 private properties each year (Figure 2.1). Each point 

was surveyed three times over the course of each season to account for potential within-season 

variation in detection. Points were placed at least 200-300m apart to ensure there was no double 

counting of individuals at more than one point, a decision informed by the average golden-

winged warbler breeding territory size (approximately 3ha) (Streby et al. 2012). Point counts 

were 9 minutes in duration and included two periods of golden-winged warbler male song being 

broadcast. The broadcast of male song during surveys is warranted for cryptic species with low 

detection probability such as the golden-winged warbler as it significantly increases the 

likelihood of detection (Kubel and Yahner 2007, Aldinger and Wood 2014, McNeil et al. 2014). 
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Landscape Metrics 

 Using ArcGIS version 10.4 (Esri 2016), we created 100m and 500m buffers around each 

of the 173 surveyed points, for a total of 346 polygons of interest. We then clipped a 1m 

resolution landscape classification raster (Chapter 1) to each polygon. The landscape 

classification included areas defined as shrub, pasture, human infrastructure (roads and 

buildings), water, and forest. The resulting 346 rasters were exported to Fragstats version 4.2.1 

(MacGarigal and Marks 1995) in order to calculate class and landscape level metrics within the 

buffers around each survey point. We wanted to determine whether landscape composition 

and/or landscape complexity were important for predicting golden-winged warbler occupancy 

dynamics and therefore focused on metrics that we thought best characterized these factors 

(Table 2.1). Landscape composition metrics consisted of percent of the landscape composed of 

shrub and percentage of the landscape composed of forest; landscape complexity metrics 

consisted of a shrub clumpiness index, which represents the degree of shrub 

dispersion/aggregation, and Simpson’s diversity index for richness and evenness of cover types. 

After calculating these metrics, they were summarized and assessed for variation. Because many 

of the outputs from Fragstats tend to be highly correlated, all metrics were assessed for co-

linearity and variables with r values > |0.7| (Dormann et al. 2013) were noted and not included 

within the same model. The remaining variables were used to develop occupancy models. 

 

Occupancy Modeling 

 Dynamic occupancy models estimate the probability of site occupancy, colonization and 

local extinction as a function of covariates (MacKenzie et al. 2003). We developed multi-season 
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occupancy models using the colext function (Kéry and Chandler 2012) in Package Unmarked 

(Fiske and Chandler 2011) in program R (R 2017). The three annual surveys (2012-2014) were 

considered the primary sample periods between which extinction and colonization are possible, 

and the three surveys within each breeding season were the secondary sample periods, with an 

assumption of population closure (no extinction or colonization) during that time. All 

observation- and site-level covariates were normalized for better model convergence, and then 

back-transformed for model interpretation and visualization. We compared candidate models 

using the Akaike Information Criterion (AIC) (Akaike 1974).  

 One major benefit of occupancy models is that researchers can explicitly model variation 

in detection probability and incorporate that variation into models of occupancy. We tested five 

linear detection models with the following covariates: time of day, day of year, temperature, 

percent forest cover within the 100m survey radius, and viewshed within the 100m survey radius. 

Time of day and day of year are known factors that can impact detection probability of songbirds 

as they typically sing less later in the day and later in the season; temperature may also impact 

detection, particularly on cold mornings when birds may sing less often (Nichols et al. 2000, 

Nadeau et al. 2008, Conway and Gibbs 2011).  Forest cover may impact detection as birds 

foraging in or along forest edges may be seen and heard less frequently than those foraging in 

more open habitats. Viewshed is the proportion of the point count radius that was visible to the 

observer based on topography and was calculated using a digital elevation model in ArcGIS (Esri 

2016).  We hypothesized that birds may be less likely to be detected in point count locations 

where a larger portion of the count radius is not visible. The best model for detection probability 

was then incorporated into all models of occupancy, colonization, and extinction. 
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 We developed separate models to predict the probability of occupancy, extinction, and 

colonization for each of our two focal scales (100m and 500m). We included linear and quadratic 

functions for all landscape variables listed in Table 2.1. We used quadratic functions because we 

expected there may be some non-linear relationships and/or optimal ranges for some landscape 

metrics.  All univariate models (i.e., only including one variable for each response) were tested, 

as well as null and global models. We also tested models including additive effects and 

interaction terms between the covariates from all univariate models performing better than the 

null model. The best model for occupancy at each scale was incorporated into models of 

colonization and extinction at the same scale. 

 

Results 

 All landscape metrics used in these analyses were calculated and examined for variation 

across sites (Table 2.2). Before incorporating landscape metrics into potential occupancy, 

colonization, and extinction models, we assessed all potential variables for co-linearity at each of 

our scales. There were no correlations with r > |0.7|. 

 

Detection Probability Models 

 The best supported model for detection probability incorporated percent forest cover 

within a 100m radius of the point (Table 2.3, Table 2.4). In the absence of forest cover, detection 

probability was 72.2%, and declined linearly with increasing percentage of forest cover within 
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the survey radius (Figure 2.2). The impact of forest cover on detection probability was carried 

forward into all further models. 

 

Occupancy Modeling 

 At the 100m scale, the best supported model using only single predictors included the 

shrub clumpiness index; however, this model performed only slightly better than the other top 

performing models. We proceeded to develop models incorporating additive and interaction 

terms between our predictors from all models performing better than the null model. An additive 

model incorporating percent shrub cover and Simpson’s diversity index performed best, and a 

model incorporating an interaction between percent shrub cover and Simpson’s diversity index 

performed similarly (ΔAIC = 1.43, Table 2.5). Because these models do not differ markedly 

(both indicate a positive relationship between shrub cover and the probability of occupancy that 

varies with the diversity of cover types) (Table 2.3), we present the simpler additive model that 

performs best. The positive relationship between shrub cover and golden-winged warbler 

occupancy is strongest when the diversity of cover types is high (i.e., a 100m radius includes 

forest, pasture, shrub and water/human infrastructure) and weakest when the diversity of cover 

types is low (i.e., a 100m radius includes just shrub and pasture) (Figure 2.3). There is a negative 

relationship between Simpson’s diversity index and probability of occupancy at this scale such 

that occupancy is uniformly high when the diversity of cover types is low (Figure 2.3). 

 At the 500m scale, the top ranked occupancy model was the global additive model which 

included all four landscape variables (Table 2.6) where Simpson’s diversity index, shrub 

clumpiness and percent forest cover were all significantly positively associated with golden-
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winged warbler site occupancy (Table 2.3, Figure 2.4, panels A-C). Percent shrub cover was not 

a significant predictor of occupancy (p = 0.99) at this scale. The second ranked model (ΔAIC = 

2.89) incorporated percent forest cover as a quadratic term with the maximum probability of 

golden-winged warbler site occupancy between 40-60% forest cover within a 500m radius 

around the survey location (Figure 2.4, panel D). 

 

Colonization and Extinction 

 In our system, 22.0% of our sites experienced a likely colonization, while 32.4% 

experienced a likely extinction. No models of golden-winged warbler site colonization between 

survey years ranked better than the null model at the 100m scale (Table 2.7) or the 500m scale 

(Table 2.8).  However, the highest ranked model for site extinction between survey years at the 

100m scale incorporated percent shrub cover (Table 2.9), indicating that the probability of 

golden-winged warbler site extinction decreases as shrub cover increases within the survey 

radius (Table 2.3).  Specifically, sites have an approximately 0.25 probability of extinction when 

shrub cover is less than 10% and approaches 0 as shrub cover is greater 40% within 100m 

around the survey location (Figure 2.5). 

 At the 500m scale, the top ranked model predicting golden-winged warbler site extinction 

was the global additive model (Table 2.10); however, percent forest cover was the only 

significant predictor in that model, having a negative relationship with probability of occupancy 

(Table 2.3, Figure 2.6a). The second ranked extinction model at 500m included only a quadratic 

percent forest cover term, with the probability of site extinction decreasing with increasing 

percent forest cover up to about 40% forest cover at which point the probability of site extinction 
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is very low. Though there is a slight apparent increase in the probability of extinction with high 

(>80%) forest cover, this may be a function of the large standard error (and low sample size) at 

these extreme values. (Figure 2.6b).  

 

Discussion 

 This study has confirmed the importance of land cover characteristics at multiple scales 

when investigating predictors of occupancy and persistence. Generally, as expected, we found 

that shrub characteristics best predicted occupancy at the 100m scale, and that forest 

characteristics best predicted occupancy at the 500m scale. Interestingly, this trend was 

complicated by diversity of cover types – at the smaller scale, high land cover diversity reduced 

the probability of occupancy, while the opposite was true at the 500m scale. We found no 

support for any colonization models at either scale. The best extinction models mirrored our 

findings for occupancy, with shrub cover being important at smaller scales and forest cover 

being important at larger scales. In considering colonization and extinction, it is important to 

note that golden-winged warblers tend to have high site fidelity (Confer 1992, Schlossberg 2009, 

Albrecht-Mallinger and Bulluck 2016). Site extinction typically occurs only with mortality or if a 

pair experienced low nest success and therefore does not return the following year. Site 

colonization typically occurs either when a second-year bird is looking for a territory for its first 

breeding season or when a bird previously experienced low nest success and is seeking a better 

territory.  
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Detection Probability 

 Our best model for detection probability incorporated percent forest cover within the 

100m survey radius, with detection probability declining with higher forest cover. While this is 

an intuitive finding, it highlights the potential importance of incorporating spatial land cover data 

into detection modeling. This technique seems to be more common in literature concerning 

visual detection of mammals (Belt and Krausman 2012, Ransom et al. 2012). Few ornithological 

studies to date have incorporated such covariates into detection models and many researchers 

could therefore potentially be over- or underestimating detection probabilities, and this will bias 

the resulting probabilities of site occupancy. While this result does not negate the well-known 

impact of factors such as time of day, date, and temperature on detection probability (Nichols et 

al. 2000, Nadeau et al. 2008, Conway and Gibbs 2011), we recommend also exploring spatial 

factors that could potentially have an impact. 

 

Occupancy and Extinction at the 100m scale 

 At the 100m scale, our most supported model predicting occupancy incorporated shrub 

cover as well as Simpson’s diversity index of cover types (Figure 2.3). As hypothesized, shrub 

was important in predicting occupancy, supporting the idea that shrub cover is important within a 

defensible territory used for nesting, as found in multiple other studies (Confer and Knapp 1981, 

Confer et al. 2003, Askins et al. 2007, Bulluck and Harding 2010). However, the relationship 

between shrub cover and predicted occupancy was not as strong when diversity of cover types 

was low. Areas with low diversity of cover types typically only contained shrub and pasture; 

when a relatively high diversity of cover types was present, the other classes beyond shrub and 
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pasture were typically forest, and less often human infrastructure and water. Therefore, it appears 

that the amount of shrub cover is a more important predictor of occupancy when cover types 

unsuitable for nesting (primarily forest, but also including human infrastructure and water) are 

present in a potential nesting area. 

 Extinction at the 100m scale was also best predicted by percent shrub cover in the 

landscape, with less shrub cover predicting a higher probability of extinction. This may indicate 

that low shrub cover is indicative of reduced breeding success, as found in previous studies 

(Confer et al. 2003, Bulluck and Buehler 2008), leading birds to seek new territories in future 

breeding seasons. This is in line with what we know of golden-winged warbler breeding biology, 

as shrub has proven to be a key factor in predicting occupancy and nest success in many studies 

(Bulluck and Harding 2010, Bakermans et al. 2015, Leuenberger et al. 2017), though no studies 

to date have demonstrated this relationship at a broader spatial scale or using remotely sensed 

land cover metrics as we have done here. 

 

Occupancy and Extinction at the 500m scale 

At the 500m scale, our best supported model predicting golden-winged warbler site 

occupancy incorporated all four of our land cover variables. Out of these four terms, percent 

forest, shrub clumpiness, and diversity of cover types all had significant, positive relationships 

with probability of occupancy. This supports previous knowledge of the importance of forest for 

breeding season behaviors of golden-winged warblers, as adults have been shown to forage in 

forest edges and fledglings tend to disperse into forested areas (Streby et al. 2012, Streby and 

Andersen 2013a). Shrub clumpiness is, interestingly, important at the 500m scale, where it was 
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not important at the 100m scale in which shrub attributes were hypothesized to best predict 

occupancy. This may be related to the distribution of shrub on the landscape. The edges of 

forests in our study area often have contiguous shrubby edges; therefore, the importance of shrub 

clumpiness may actually be an indicator of the importance of forest edges, which tend to have 

higher densities of insect prey (Helle and Muona 1985, Winnet-Murray 1986, Murcia 1995), and 

have been shown to be associated with golden-winged warbler territories (Rossell et al. 2003). 

Greater diversity of cover types predicts higher occupancy at the 500m scale, while the 

opposite is true at the smaller 100m scale. This suggests that having a more even distribution of 

forest, shrub, and pasture (the three main cover types on the landscape) within a 500m radius 

area is an indicator of suitable habitat, potentially providing enough shrub for successful nesting 

as well as enough forest for foraging and dispersal of fledglings. At the 100m radius scale, a high 

diversity of cover types implies less of the preferred nesting habitat – shrub – and more habitat 

unsuitable for nesting (mainly forest, but also including water and human infrastructure). These 

findings, both for occupancy being linked to increased shrub aggregation and more cover types, 

highlights the importance of habitat complexity at the larger 500m scale. 

The second best supported model of golden-winged warbler site occupancy at the 500m 

scale is also potentially informative of the habitat needs of golden-winged warblers. This model 

suggests that within a 500m radius, these birds require approximately 50% of their habitat to be 

forested (i.e., approximately 40ha within an 80ha area). This knowledge provides a clear, easily 

implemented recommendation for land management practices to increase the likelihood of 

golden-winged warbler occurrence. 
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 At the 500m scale, the top-ranked extinction model was the global additive model, 

including percent shrub cover, percent forest cover, shrub clumpiness, and Simpson’s diversity 

index. Out of these terms, however, only percent forest proved significant (p < 0.05), with a 

negative relationship between forest cover and probability of extinction. This model implies that 

at this broader scale, birds are less likely to return to breed at a site if there is not sufficient forest 

cover. The second-ranked model for site extinction at the 500m scale incorporated percent forest 

cover squared. The probability of extinction is highest when percent forest cover is less than 

approximately 40% of a 500m radius area. There is also a slight trend toward higher probability 

of extinction when forest cover is greater than 80%, though not as exaggerated a trend as when 

forest cover is low. This is likely due to the fact that very few of our survey locations (N = 4) had 

forest cover >80%.  This finding expands upon the results of our top 500m scale occupancy 

model, demonstrating that forest cover is important not only for occupancy, but also for 

persistence. 

 

Future Directions  

 This study is the first to model how broad scale land cover metrics influence the 

occupancy dynamics of the golden-winged warbler, a species of high conservation concern and 

for which management recommendations at these scales have been lacking or based on anecdotal 

observations.  Despite the importance of this study, there is room for improvement in future 

iterations.  None of our colonization models had more support than the null model, indicating 

that none of the landscape metrics we examined affect colonization at the scales we examined. 

Colonization may be driven by interactions with blue-winged warblers, which hybridize with and 
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compete with golden-winged warblers on the breeding grounds. Studies of landscape partitioning 

between the two species suggest that golden-winged warblers prefer higher elevation habitats 

(Welton 2003, Patton et al. 2010) than blue-winged warblers. As the blue-winged warbler range 

expands and as climate change influences temperature and rainfall at higher elevations, golden-

winged warblers may be pushed into higher elevation sites. We would recommend incorporating 

site elevation into future colonization models. The scale at which we examined potential 

variables may also have been an issue, as birds selecting habitat may do so based on scales that 

are broader than 500m, as has been demonstrated for other species (Wiens et al. 1987, Orians 

and Wittenberger 1991, Mayor et al. 2009, Harms et al. 2017).  However, our point count 

locations are too close to warrant broader buffers that would overlap considerably and therefore 

decrease independence among survey points. 

 We also recommend that future studies assess the influence of golden-winged warbler 

site occupancy at nearby points by including a spatial autocovariate (Lee and Carroll 2014). 

Birds will often interpret the presence of conspecifics as an indicator of suitable habitat, and 

there is some evidence that golden-winged warblers, in particular, may be more likely to breed in 

areas near conspecifics (Albrecht-Mallinger and Bulluck 2016). Accounting for such spatial 

autocorrelation will lead to improved model estimates (Betts et al. 2006). 

 While the results of this study can likely be extended to other Appalachian regions where 

pasture is an important component of the habitat (e.g., West Virginia, North Carolina), they may 

not be applicable to areas of the Great Lakes region.  Future studies should test the ability of 

these models to predict occupancy dynamics in these other regions, though the lack of shrub 

cover maps likely precludes this in the near term. 
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Management Implications  

 As funding for conservation of non-game avian species is extremely limited, it is 

important to have as much information as possible to make informed decisions about how to 

invest resources. The findings of this study have clear and important management implications 

for golden-winged warblers. It is apparent that golden-winged warblers require significant 

forested areas within their breeding season habitat, as has been suggested, but never quantified, 

in previous studies from the Great Lakes region (Streby et al. 2012, Streby and Andersen 2013b). 

Additionally, this study has confirmed the importance of shrub at smaller scales. We show here 

that these land cover characteristics promote not only occurrence of golden-winged warblers on 

the breeding grounds, but also persistence between years. We have also found that diversity of 

cover types is a strong predictor of occurrence, with low diversity of cover types predicting 

higher occupancy at smaller scales and high diversity of cover types predicting higher occupancy 

at larger scales.  

 Our findings can assist land managers in setting restoration goals and prioritizing 

potential restoration sites. The golden-winged warbler is a focal species in an ongoing effort to 

create and maintain habitat on private lands (Working Lands for Wildlife) that is funded by the 

Natural Resources Conservation Service. Using the findings of this study in conjunction with our 

land cover classification, identification of potentially occupied areas that have not yet been 

surveyed should be possible, which is particularly important in our study system, as the majority 

of golden-winged warbler habitat is found on private lands. We hope that our model results will 

assist land managers in seeking sites important to not only golden-winged warblers, but other 

focal shrubland species as well as identifying potential landowner restoration partners.  
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Table 2.1. Landscape metrics used as predictors for the probability of site occupancy, 

colonization and extinction, calculated separately for 100m and 500m scales. 

Landscape Metric Description 

Percentage Shrub The percentage of pixels within a raster classified as shrub. 

Percentage Forest The percentage of pixels within a raster classified as forest. 

Shrub Clumpiness Index A metric of the aggregation of shrub pixels, where a value of 1 

indicates maximum aggregation, a value of -1 indicates maximum 

disaggregation, and a value of 0 indicates random distribution of 

shrub pixels. 

Simpson’s Diversity Index A measure of richness and evenness of cover classes within a 

raster, where a value of 0 indicates minimum diversity (dominated 

by one cover type) and a value of 1 indicates maximum diversity 

(even mix of five different land cover types).  

 

Table 2.2. Summary of all landscape metrics used in creating and testing detection, occupancy, 

colonization and extinction models for golden-winged warblers in Highland County, VA. 

Detection covariates describe the area within the 100m fixed radius point count.  

Landscape Metric Mean Standard 

Error 

Minimum Maximum 

 

Detection covariates 

    

Visibility 0.540 0.014 0.101 0.993 

Percent Forest Cover 39.331 1.435 5.057 90.644 

 

100m radius patch covariates 

    

Percent Shrub Cover 24.582 0.945 3.973 60.642 

Percent Forest Cover 39.331 1.435 5.057 90.644 

Shrub Clumpiness Index 0.618 0.004 0.449 0.778 

Simpson’s Diversity Index 0.598 0.008 0.171 0.742 

 

500m radius patch covariates 

    

Percent Shrub Cover 16.307 0.552 3.658 34.647 

Percent Forest Cover 47.788 1.286 9.200 83.970   

Shrub Clumpiness Index 0.635 0.004 0.525 0.802 

Simpson’s Diversity Index 

 

0.581 0.007 0.280 0.731 
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Table 2.3. Parameter estimates for most supported models of golden-winged warbler detection, 

site occupancy and site extinction models. 

Term Estimate Standard 

Error 

p 

Detection    

       Intercept 0.545 0.0779 <0.001 

       Percent Forest -0.204 0.0750 <0.01 

    

100m Occupancy    

       Intercept 0.815 0.184 <0.001 

       Simpson’s Diversity Index -0.555 0.225 <0.05 

       Percent Shrub 0.538 0.219 <0.05 

    

100m Extinction    

Intercept -1.88 0.253 <0.001 

Percent Shrub -0.580 0.273 <0.05 

    

500m Occupancy – Global    

Intercept 0.854 0.195 <0.001 

Percent Shrub -0.005 0.295 0.99 

Percent Forest 0.872 0.297 <0.01 

Shrub Clumpiness Index 0.589 0.272 <0.05 

Simpson’s Diversity Index 0.956 0.338 <0.01 

    

500m Occupancy – (Forest Cover)2    

       Intercept 1.442 0.270 <0.001 

       Percent Forest 0.231 0.179 <0.05 

       (Percent Forest)2 -0.636 0.172 <0.001 

    

500m Extinction - Global    

Intercept -2.155 0.471 <0.001 

Percent Shrub -0.680 0.474 0.15 

Percent Forest -1.182 0.411 <0.05 

Shrub Clumpiness Index 0.058 0.393 0.88 

Simpson’s Diversity Index -0.139 0.887 0.88 

    

500m Extinction – (Forest Cover)2    

Intercept -2.462 0.386 <0.001 

Percent Forest -0.716 0.323 <0.05 

(Percent Forest)2 0.514 0.302 <0.05 

 

Table 2.4. Model selection results for factors influencing golden-winged warbler detection 

probability in surveys carried out in Highland County, VA, 2012-2014. 
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Model AIC ΔAIC 
AIC 

Weight 

Cumulative 

Weight 

Percent Forest 1694.86 0.00 0.708 0.71 

Date 1698.25 3.39 0.130 0.84 

Null 1700.15 5.29 0.050 0.89 

Viewshed 1700.31 5.45 0.046 0.93 

Time of Day 1700.39 5.53 0.044 0.98 

Temperature 1701.89 7.03 0.021 1.00 

 

Table 2.5. Model selection results for factors influencing golden-winged warbler occupancy 

within a 100m radius around survey locations carried out in Highland County, VA, 2012-2014. 

Model AIC ΔAIC AICwt 
Cumulative 

Weight 

Simpson’s Diversity Index + Percent Shrub 1688.95 0.00 0.42 0.42 

Simpson’s Diversity Index * Percent Shrub 1690.38 1.43 0.20 0.62 

Simpson’s Diversity Index + Percent Shrub + 

Shrub Clumpiness Index + Percent Forest 1692.86 3.91 0.06 0.68 

(Shrub Clumpiness Index)2 1693.41 4.46 0.04 0.72 

Simpson’s Diversity Index + (Shrub Clumpiness 

Index)2 1693.54 4.59 0.04 0.76 

Simpson’s Diversity Index * (Shrub Clumpiness 

Index)2 1695.54 4.59 0.04 0.81 

Percent Shrub + (Shrub Clumpiness Index)2 1693.79 4.84 0.04 0.84 

Simpson’s Diversity Index 1694.20 4.85 0.04 0.88 

Percent Shrub 1694.20 5.24 0.03 0.91 

Null 1694.86 5.91 0.02 0.93 

Shrub Clumpiness Index 1695.36 6.41 0.02 0.95 

(Percent Shrub)2 1695.67 6.72 0.01 0.96 

(Simpson’s Diversity Index)2 1695.68 6.73 0.01 0.98 

Percent Shrub * (Shrub Clumpiness Index)2 1696.43 7.47 0.01 0.99 

Percent Forest 1696.86 7.91 0.01 0.99 

(Percent Forest)2 1697.58 8.62 0.01 1.00 
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Table 2.6. Model selection results for factors influencing golden-winged warbler site occupancy 

within 500m around survey locations carried out in Highland County, VA, 2012-2014. 

Model AIC ΔAIC AICwt Cumulative 

Weight 

Simpson's Diversity Index + Percent Shrub + Shrub 

Clumpiness Index + Percent Forest 

1680.28 0.00 0.73 0.73 

(Percent Forest)2 1683.18 2.89 0.17 0.90 

(Shrub Clumpiness Index)2 1686.48 6.20 0.03 0.93 

Percent Shrub 1686.73 6.45 0.03 0.96 

Shrub Clumpiness Index 1687.22 6.94 0.02 0.98 

(Percent Shrub)2 1688.32 8.04 0.01 1.00 

Simpson's Diversity Index 1692.44 12.16 0.00 1.00 

(Simpson's Diversity Index)2 1693.54 13.26 0.00 1.00 

Null 1694.86 14.58 0.00 1.00 

Percent Forest 1696.62 16.34 0.00 1.00 

 

Table 2.7. Model selection results for factors influencing golden-winged warbler site 

colonization within 100m around survey locations carried out in Highland County, VA, 2012-

2014. 

Model AIC ΔAIC AICwt Cumulative 

Weight 

Null 1688.95 0.00 0.168 0.17 

Percent Forest 1689.21 0.26 0.148 0.32 

(Simpson's Diversity Index)2 1689.22 0.26 0.148 0.46 

Percent Shrub 1689.72 0.77 0.115 0.58 

Shrub Clumpiness Index 1689.73 0.77 0.114 0.69 

(Shrub Clumpiness Index)2 1690.48 1.52 0.079 0.77 

Percent Shrub + Shrub Clumpiness Index + 

Percent Forest + Simpson's Diversity Index 

1690.86 1.91 0.065 0.84 

Simpson's Diversity Index 1690.92 1.96 0.063 0.90 

(Percent Forest)2 1691.13 2.18 0.057 0.96 

(Percent Shrub)2 1691.66 2.70 0.044 1.00 
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Table 2.8. Model selection results for factors influencing golden-winged warbler site 

colonization within 500m around survey locations carried out in Highland County, VA, 2012-

2014. 

Model AIC ΔAIC AICwt Cumulative 

Weight 

Null 1680.28 0.00 0.25 0.25 

Shrub Clumpiness Index 1680.84 0.56 0.19 0.43 

Percent Forest 1682.10 1.82 0.10 0.53 

(Shrub Clumpiness Index)2 1682.22 1.94 0.09 0.63 

Percent Shrub 1682.27 1.98 0.09 0.72 

Simpson's Diversity Index 1682.28 2.00 0.09 0.81 

(Simpson's Diversity Index)2 1682.29 2.01 0.09 0.90 

(Percent Forest)2 1683.62 3.34 0.05 0.95 

(Percent Shrub)2 1684.13 3.84 0.04 0.98 

Percent Shrub + Shrub Clumpiness Index + Percent 

Forest + Simpson's Diversity Index 

1685.56 5.28 0.02 1.00 

  

Table 2.9. Model selection results for factors influencing golden-winged warbler site extinction 

within 100m around survey locations carried out in Highland County, VA, 2012-2014. 

Model AIC ΔAIC AICwt Cumulative 

Weight 

Percent Shrub 1685.59 0.00 0.40 0.40 

(Percent Shrub)2 1687.07 1.48 0.19 0.59 

(Shrub Clumpiness Index)2 1688.46 2.87 0.10 0.68 

Null 1688.95 3.36 0.07 0.76 

Shrub Clumpiness Index 1689.28 3.68 0.06 0.82 

(Simpson's Diversity Index)2 1689.41 3.82 0.06 0.88 

Simpson's Diversity Index 1690.01 4.42 0.04 0.92 

Percent Forest 1690.19 4.60 0.04 0.96 

Percent Shrub + Shrub Clumpiness Index + Percent          

Forest + Simpson's Diversity Index 

1691.52 5.93 0.02 0.98 

(Percent Forest)2 1691.71 6.12 0.02 1.00 
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Table 2.10. Model selection results for factors influencing golden-winged warbler site extinction 

within 500m around survey locations carried out in Highland County, VA, 2012-2014. 

Model AIC ΔAIC AICwt 

Cumulative 

Weight 

Percent Shrub + Shrub Clumpiness Index + Percent 

Forest + Simpson's Diversity Index 1672.29 0 0.515 0.51 

(Percent Forest)2 1674.05 1.75 0.2142 0.73 

Percent Forest 1674.21 1.91 0.1977 0.93 

Percent Shrub 1677.95 5.66 0.0304 0.96 

(Percent Shrub)2 1679.28 6.99 0.0156 0.97 

Null 1680.28 7.99 0.0095 0.98 

Shrub Clumpiness Index 1680.98 8.69 0.0067 0.99 

(Shrub Clumpiness Index)2 1681.18 8.89 0.0061 1 

Simpson's Diversity Index 1682.25 9.96 0.0035 1 

(Simpson's Diversity Index)2 1684.14 11.84 0.0014 1 
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Figure 2.1. Map of 173 survey locations within Highland County, VA. 
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Figure 2.2. Estimated detection probability of golden-winged warblers during 9-minute fixed 

radius point counts as a function of percent forest cover within a 100m radius of the surveyed 

point. Error bars represent 95% confidence intervals. 
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Figure 2.3. Probability of golden-winged warbler site occupancy (Ψ) at the 100m scale as a 

function of shrub cover stratified by (a) minimum (0.17), (b) mean (0.60), and (c) maximum 

(0.74) values of Simpson’s diversity index across our study sites. Error bars represent 95% 

confidence intervals. 

 

 

(a) 

(c) 

(b) 
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Figure 2.4. Probability of site occupancy (Ψ) by golden-winged warblers within a 500m radius 

around survey points (~80ha). Panels A-C show probability of occupancy as predicted by single 

terms within the top-ranked global model when other terms are set to their respective means. 

Panel D shows probability of occupancy as predicted by percent forest cover squared, our 

second-ranked model. Error bars represent 95% confidence intervals. 
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Figure 2.5. Probability of golden-winged warbler site extinction between survey years as a 

function of percent shrub cover within a 100m radius of the survey point (3.14ha). Probability of 

extinction decreases with increasing shrub cover. Error bars represent 95% confidence intervals. 
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Figure 2.6. Probability of golden-winged warbler site extinction at the 500m scale as a function 

of (A) percent forest cover (a single term within the top-ranked global model when other terms 

are set to their respective means) and (B) percent forest cover squared, the second-ranked model. 

Error bars represent 95% confidence intervals. 
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