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Abstract 

 

Objective: To examine spillovers from a federal policy, managed care market, and community 

perspective. 

 

Data Sources/Study Setting: We studied spillovers from a federal policy and managed care 

market perspective using the Health Care Utilization Project’s (HCUP) State Inpatient Database 

(SID), American Hospital Association (AHA) data, Interstudy Commercial Managed Care, and 

Area Health Resource File (AHRF). Medicare Advantage county-level payment schedules 

originate from CMS. We examined community uninsurance spillovers using 2011-2015 Medical 

Expenditure Panel Survey (MEPS), the Area Health Resource File (AHRF), and the Small Area 

Health Insurance Estimator (SAHIE).  

 

Study Design: Ordinary Least Squares (OLS) and difference-in-difference regression analyses 

were used to examine a federal policy spillover on hospital readmissions. We used OLS and 

instrumental variable (IV) estimation to examined Medicare Advantage (MA) spillovers on 

Medicare fee-for-service (FFS) hospital readmissions. We used logistic regression to examine 

community uninsurance spillovers on the privately insured.  

 

Principal Findings: After the HRRP, Medicare FFS saw a decrease in 30-day preventable 

condition- and all-cause readmissions. Medicare Advantage saw a positive spillover after the 

HRRP. MA market penetration has no effect on Medicare FFS hospital readmissions. High 

community uninsurance rates are associated with less access to behavioral health related 

outpatient/office-based and prescription utilization.  

 

Conclusions: HRRP had a positive spillover on MA hospital all-cause readmissions. MA market 

penetration has no effect on Medicare FFS readmissions. High levels of community uninsurance 

are associated with poorer access to outpatient/office-based and prescription behavioral related 

services.  
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Chapter 1: Introduction 

Overview and Structure of the Dissertation 

SPILLOVER THEORY: UNINTENDED CONSEQUENCES OF PROVISIONS IN THE 

AFFORDABLE CARE ACT 

 

 

By Robert Tyler Braun, Ph.D., M.S. 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University.  

 

 

Virginia Commonwealth University, 2018 

 

 

 

Director: Peter Cunningham, Ph.D. 

Professor, Department of Health Behavior and Policy  

 
 

This dissertation is comprised of three empirical papers surrounding one essential theme: 

spillovers. The three papers examined spillovers from three different perspectives: spillovers 

within hospitals, managed care spillovers, and spillovers on the community level. The main 

databases used in these papers are: (a) State Inpatient Databases (SIDs) from the Health Care 

Utilization Project (HCUP) and (b) the Medical Expenditure Panel Survey (MEPS) data. The 

SID contains detailed information on the diagnoses and conditions associated with the treatment 

of patients in a given hospital. The SID tracks the primary source of payment and basic 

demographic information. The MEPS is the most comprehensive source of nationally 

representative data on individual health care utilization, expenditures, and insurance coverage of 

the U.S. non-institutionalized population. The variables of interests in this dissertation include 
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topics on quality of care outcomes such as 30-day preventable readmissions, access to behavioral 

health services, and other relevant ideas.  

The first paper (Chapter 2) examines analytically and conceptually how the Hospital 

Readmissions Reduction Program (HRRP) may pressure not only how hospitals reduce 

readmissions for its intended population (Medicare fee-for-service), but also beneficiaries who 

have Medicare Advantage or private insurance. Conceptually, the HRRP creates an economic 

incentive for hospitals to reduce Medicare fee-for-service 30-day preventable readmissions or be 

fined if they do not meet standard benchmarks. As a result, hospitals must react to the HRRP by 

organizing and changing practice behaviors to reduce preventable readmissions. Under the 

assumption that hospitals and providers are unlikely to know a patient’s payer status when he/she 

enters the hospital for a readmission, all patients receive the same care regardless of insurance 

status. As a result, adjustments in provider behavior to reduce Medicare fee-for-service 

readmissions will also be experienced by Medicare Advantage and privately insured plan 

holders. This is known as a spillover. Analytically, we examined this by isolating the HRRP on 

Medicare fee-for-service, Medicare Advantage, and privately insured preventable 30-day 

condition specific and all-cause readmissions. 

The second paper presents (Chapter 3) data on spillovers from a managed care market 

perspective. We studied how Medicare Advantage penetration affected quality of care for 

Medicare fee-for-service and Medicare Advantage patients. We used 30-day preventable 

condition specific and all-cause readmissions to gauge whether Medicare fee-for-service and 

Medicare Advantage hospital quality of care varied by Medicare Advantage penetration. 

Conceptually, when managed care is the dominant insurance at a hospital or provider’s practice, 

the more influence it has on provider practice patterns. Since managed care selectively contracts, 
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leverages a large integrated and coordinated network, and uses rigorous forms of utilization 

review to reduce utilization and costs, the expectation of fewer readmissions and higher quality 

of care for Medicare Advantage patients seems reasonable. Furthermore, greater Medicare 

Advantage penetration may also change the quality of care for Medicare fee-for-service patients 

because of managed care influence over provider practice patterns. Like previous studies, we 

isolated exogenous increases in Medicare Advantage enrollment and traced the effects of greater 

managed care penetration on hospital quality of care by using Center for Medicare and Medicaid 

Service (CMS) county-level Medicare Advantage payment schedule as an instrumental variable 

for Medicare Advantage penetration rates. We examined this instrumental variable and its 

association with preventable 30-day condition specific and all-cause readmissions.  

Paper 3 (Chapter 4) examines spillovers from a community perspective. The objective of 

this paper was to investigate the effect of community uninsurance rates on access to behavioral 

health services for individuals with continuous employer-sponsored insurance. Spillover effects 

associated with community uninsured rates have been a major concern in the U.S. since the early 

2000’s. Conceptually, over the long-term, high-uninsured rates could negatively affect access to 

care for both the insured and uninsured due to the lack of community resources available to build 

provider capacity and thus increase health care access. Analytically, we examined adults with 

continuous employer-sponsored insurance who had mental health problems and we examined 

how greater community-level uninsured rates affected their access to behavioral health services. 

Behavioral health services are defined by whether a person had (1) a mental health related 

emergency department or inpatient encounter, (2) mental health related outpatient or office-based 

encounter, or (3) was prescribed a medication for a mental health related issue.  
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Contribution 

The first paper contributes to present spillover literature by creating a formal spillover 

conceptual framework that does not exist in the current literature. This framework can be used 

for the HRRP policy and it applies to other studies examining the influence of federal and state 

policies on certain populations. Furthermore, this is the first study to examine spillovers of the 

HRRP by exclusively separating Medicare Advantage and private payers. Additionally, to our 

knowledge at this time, this study leverages data from more states than any other study 

examining the spillovers of the HRRP. Our results indicate similar conclusions as another study, 

but finds that hospitals may not be targeting condition-specific readmissions and individual 

payers, but instead are adjusting practice patterns to reduce all readmissions, regardless of payer 

status.  

 The second paper follows the analytical strategies and conceptual frameworks of several 

other studies. However, this paper contributes to the conceptual framework of how Medicare 

Advantage penetration may influence Medicare fee-for-service quality of care as it pertains to 

readmissions. Like similar studies, we find no evidence of Medicare Advantage penetration 

spillover on Medicare fee-for-service preventable readmission outcomes. In contrast to other 

studies, we find that Medicare Advantage penetration has little to no effect on Medicare 

Advantage readmissions. To our knowledge, we assert, regardless of the analytical approach 

used (ordinary least squares or instrumental variable estimation), that Medicare Advantage 

penetration has no affect on Medicare fee-for-service and Medicare Advantage preventable 

readmissions.  

 Lastly, the third paper contributes to community-level spillover research in several ways. 

This paper is the first known to examine the association of community-level uninsured rates and 
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behavioral health access. Secondly, using a report from the Institute of Medicine in 2003 as the 

foundation of our conceptual framework, we attempt to reconcile why other community-level 

spillover studies have different results. We concluded that community-level spillover analyses 

should be thought of in one of two ways: the long-term or short-term. The conceptual framework 

in this paper attempts to distinguish the two perspectives by explaining that short-term 

expansions may generate negative spillovers, while long-term effects may lead to positive 

spillovers. Short-term increases in community uninsurance could lead to temporary decreases in 

access to care for those who were already insured, as the health system did not have time to meet 

increased demand. These negative spillovers will eventually dissipate over the long-term, as 

higher coverage rates of insurance increase community resources and help build provider 

capacity. Our analytical strategy attempted to look at spillovers over the long-term by using 

county-level and year fixed effects to look at community uninsurance rates and behavioral health 

access over the course of time. We found that high levels of community uninsurance—as 

compared to low levels of community uninsurance was associated with a lower probability of 

outpatient or office-based mental health related visits, and a lower probability of mental health 

related prescription utilization. 
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Chapter 2: The Medicare Hospital Readmissions Reduction Program: Spillovers Into the 

Private Insurance Market 

 

 

Abstract 

Objective: To explore spillover effects of the Hospital Readmissions Reduction Program 

(HRRP) on hospital Medicare Advantage and privately insured beneficiaries. 

 

Data Sources/Study Setting: Health Care Utilization Project’s (HCUP) State Inpatient Database 

(SID) administrative claims data to calculate condition-specific thirty-day preventable 

readmissions. American Hospital Association (AHA) data, Interstudy Commercial Managed 

Care, and Area Health Resource File (AHRF) were used to determine hospital, managed care, 

and county-level characteristics.  

 

Study Design: Ordinary Least Squares and difference-in-difference regression analyses were 

used to estimate the effect of the HRRP on Medicare and the spillover effect on Medicare 

Advantage and private insurance condition-specific and all-cause thirty-day preventable 

readmissions. Findings were compared across payer type. 

 

Principal Findings: Overall, hospitals experienced a significant 1.73% and 3.11% decrease in 

Medicare congestive heart failure (CHF) and pneumonia (PN) thirty-day preventable 

readmissions compared to the privately insured after the HRRP, respectively. There were no 

differences between Medicare FFS and Medicare Advantage for condition-specific targeted 

readmissions. Hospitals displayed a 1% decrease in Medicare FFS and Medicare Advantage all-

cause readmissions after the HRRP, suggesting a positive spillover. There was no spillover for 

private insurance.  

 

Conclusions: In general, the HRRP may have created a positive spillover for Medicare 

Advantage and hospitals may be reducing readmissions through a comprehensive approach. 
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Introduction 

Preventing avoidable readmissions on Medicare represents an opportunity to improve 

patient quality of care and outcomes, and bends the medical cost curve (Jencks, Williams, and 

Coleman 2009; Medpac Commission 2007). Under the Affordable Care Act (ACA), the U.S. 

Congress developed new financial incentives and penalties to increase health care system 

performance. Medicare’s Hospital Readmission Reduction Program (HRRP) designates the 

reduction of avoidable readmissions as a target for health care cost savings and authorizes the 

Center for Medicare and Medicaid Services (CMS) to lower payments to hospitals with high 

risk-standardized rates of 30-day readmissions. The U.S. Congress implemented this policy as a 

response to control the costs associated with Medicare readmissions. Hospitals could be 

penalized up to 2% in the first year of the policy and 3% in the second and subsequent years by 

CMS withholding Medicare inpatient payments. Penalty readmission thresholds are calculated 

by retrospectively examining a hospital’s past three years of readmission claims data prior to 

HRRP. Penalties vary by hospital and are executed relative to staying under the expected 

calculated threshold. Hospitals that exceed the threshold are penalized by a reduction in 

payments across all Medicare admissions, not just those that resulted in readmissions. The HRRP 

started penalizing hospitals for excess preventable readmission for Congestive Heart Failure 

(CHF), Pneumonia (PN), and Acute Myocardial Infarction (AMI) in October of 2012. Targeted 

readmission conditions were expanded in 2015 to include chronic obstructive pulmonary disease 

(COPD) and total knee and hip replacement. According to one study, in the third year of the 

HRRP, 78% of hospitals were penalized for excess readmissions, totaling $428 million (Boccuti 

and Casillas 2015). 
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Recent studies found reductions in Medicare readmission rates during the HRRP 

implementation period for targeted conditions (Demiralp, He, and Koenig 2017; Zuckerman et 

al. 2016; Carey and Lin 2015; Barrett et al. 2015). A study conducted by Desai et al. (2016) 

found hospitals penalized by the HRRP had greater reductions in targeted readmissions than 

those not penalized. Another study found hospitals that were poorest performing pre-HRRP had 

the greatest reduction of HRRP related readmissions (Wasfy et al. 2016).  

Other recent studies examined the relationship between the HRRP and spillovers through 

investigation of nontargeted conditions, hospital length of stay, and its effects on payers other 

than Medicare fee-for-service (Carey and Lin 2015; Zuckerman et al. 2016; Mellor, Daly, and 

Smith 2017; Demiralp, He, and Koenig 2017; Desai et al. 2016). Carey and Lin (2015) found an 

estimated 1-percentage point decrease in nontargeted readmissions for the state of New York. 

Furthermore, Zuckerman and authors (2016) reported a 2-percentage-point reduction from a 

nationwide sample in nontargeted conditions after the HRRP implementation. Demirlap, He, and 

Koeing (2017) reported that hospitals in California and Florida with the largest reductions in 

targeted Medicare readmissions experienced higher reductions in nontargeted Medicare 

readmissions and the HRRP had no spillover on non-Medicare patients. Mellor, Daly, and Smith 

(2016) found no changes in AMI-related length of stays for hospitals in Virginia after the HRRP. 

Desai et al. (2016) found decreases in nontargeted readmissions by variation in hospital 

performance. While these findings suggest mixed evidence of spillovers associated with the 

HRRP, more research is needed to better understand the extent of such spillovers and the full 

effects of the HRRP.  

This study contributes to prior literature on the effects of HRRP in several ways. First, 

while prior literature investigated the effect of HRRP on the non-Medicare population in one or 
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two states, this study used claims data from five different states located in different regions of the 

U.S. in an attempt to make findings more generalizable. Second, other studies failed to 

disentangle HRRP’s spillover by type of insurance; this work examined readmission changes in 

Medicare FFS, private payers, and Medicare Advantage separately, and then jointly tested the 

effects of the HRRP between these payers. Fourth, we presented a formal conceptual framework, 

which offered a foundation for considering the design features of the HRRP, as well as factors 

that influenced how hospitals responded to incentives and whether the HRRP was successful in 

reaching its stated goals. The framework can also be used to guide discussions about the design 

and implementation of existing spillover research and those in development and to define a 

structured agenda for evaluating spillover theory, with the explicit goal of developing knowledge 

to improve the understanding of spillovers in health care delivery.  

Conceptual Framework 

This formal spillover conceptual framework for this study revolved around several key 

assumptions—incentive (i.e., revenue potential of the HRRP penalty, improving quality of care), 

predisposing (i.e., hospital characteristics), and enabling factors (i.e., patient factors) that drove 

the incentive by medical providers to improve patient quality of care (Dudley et al. 1998; Frølich 

et al. 2007; Dranove and White 1998; Dranove et al. 2003). Not only were these factors 

associated with direct patient outcomes, they could contribute to spillovers as well. In past 

studies, researchers examined how policy actions designed to affect one payer type 

unintentionally affected other payer types (i.e., spillover effects). However, there is a shortage of 

evidence as to how federal government financial pressures and payment reductions in relation to 

readmissions spill over into several insurance markets.  



 

 10 

Spillovers can be either positive or negative. Moreover, there could be no spillover at all. 

A positive spillover indicates that the HRRP induces hospitals to respond by adjusting quality of 

care (readmissions) not only for Medicare patients but also for other (private or Medicare 

Advantage) payer markets. To the extent that hospitals do not differentiate care between patients, 

all types of payers should see a similar reduction in readmissions and increase in quality of care. 

In the context of HRRP, a positive spillover indicates that hospitals respond by adjusting care for 

Medicare and to some degree for other payer markets. If the HRRP creates a positive spillover, 

then based on the aforementioned example and previous research findings, both types of payers 

should have a lower risk of readmission after the HRRP. 

In contrast, a negative spillover is a possible outcome. This takes place when hospitals 

differentiate patients by payer and provide different levels of care or focus only on improving 

areas of care that by measure and incentive of the HRRP, while ignoring a subsample of 

necessary services and patients. This results in variations in quality of care across patients in the 

same hospital due to time and resource constraints and profitability of a patient. If a negative 

spillover takes place, a hospital can divert resources originally in use by one payer and redirect 

them to another payer (Dranove and White 1998). In this example, assuming hospitals have a 

fixed budget, more time and resources are shifted away from private payers or Medicare 

Advantage and allocated to Medicare FFS for increased discharge planning, patient education, 

and follow-ups to care, which would result in a lower quality of care to private payers or 

Medicare Advantage and a higher risk of readmission. This suggests that hospitals with the 

largest reductions in Medicare readmissions would have smaller or no reductions in privately 

insured readmissions. However, evidence of this negative resource and effort allocation spillover 

is mixed (Demiralp, He, and Koenig 2017; Carey and Lin 2015).  
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The overarching theme to the conceptual framework in Figure 1 is that the HRRP 

financial incentives of the policy/penalty or other factors drive hospitals to reduce readmissions. 

Since hospitals must respond to the HRRP by reforming care structures or processes to reduce 

Medicare readmissions, privately insured or Medicare Advantage patients may experience the 

same improvement in preventable readmissions. If the quality of care a Medicare FFS, privately 

insured, and Medicare Advantage patient receives is the same, there should be no statistical 

difference in the rate change between Medicare, privately insured, and Medicare Advantage 

preventable readmissions (Dranove and White 1998). The identification strategy assumes that 

financial penalties of the HRRP, which are based on readmissions (quality performance) for 

Medicare patients only, are reflected in quality of care received by all patients. This is a 

reasonable assumption because many, if not all, hospitals’ responses to the HRRP financial 

penalties likely require improvements that affect all patients; it is probably not feasible for 

hospitals to specifically target Medicare FFS patients for quality improvement activities (medical 

staff are unlikely aware of payer status). Even if targeting were possible, it would be considered 

dangerous to patients and highly unethical. Therefore, resources are unlikely to shift away from 

private payers and care related to readmissions resembles a public good (Ryan and Blustein 

2011; Dranove and White 1998; Chen et al. 2010). We expected that due to the HRRP, hospitals 

and providers would change practice behavior to reduce readmissions, and that they did not 

discriminate by payer status. Therefore, we hypothesized: 

H1: Medicare FFS will see a decrease in condition-specific and all-cause readmissions 

after the HRRP.   

H2: Medicare Advantage will see a decrease in condition-specific and all-cause 

readmissions after the HRRP 
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H3: Private payers will see a decrease in condition-specific and all-cause readmissions 

after the HRRP.  

Methods 

Data Source and Sample Population Overview 

The primary data used in the analyses came from the Health Care Utilization Project’s 

State Inpatient Databases (HCUP). The databases contain detailed information on the diagnoses 

and conditions associated with index admissions/readmissions; the treatments received for the 

universe of patients in a given state; primary source of payment; and basic demographic 

information such as age, gender, and race/ethnicity. The analyses were limited to the following 

states for the years 2009–2013: California, Florida, Iowa, Massachusetts, and New York because 

they differentiated between Medicare fee-for-service and other types of insurance payment. The 

study sample consisted of all urban general hospitals that operated between 2009 and 2013. 

To measure the capacity and availability of medical and hospital resources, we derived 

the county-level commercial managed care penetration rates from the Interstudy managed care 

enrollment dataset. County-level household income, and the percentage insured came from the 

Area Health Resource File (AHRF). We used the American Hospital Association (AHA) annual 

surveys to measure hospital characteristics and to calculate hospital competition. 

We excluded the year 2011 from the analytical sample, as it coincided with the 

implementation of various components of the ACA and the anticipation of HRRP. Omitting 2011 

allowed observation of the full effects of the HRRP—specifically, any partial responses after the 

ACA passage but before the penalties went into full effect (Mellor, Daly, and Smith 2017). We 

then selected hospital discharges: Medicare FFS and Advantage patients 65 years or older, and 

privately insured patients between the ages of 45 and 64. We followed details in the construction 
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of readmission rates found in the technical reports prepared by CMS (CMS 2014). Furthermore, 

individuals who died during admission, dual-eligible Medicare patients, and those who had a 

planned readmission were excluded. We also excluded hospitals that had fewer than 30 

discharges (Chen et al. 2010).  

Outcome: Targeted Readmissions 

Dependent variables are presented in rates. There were fifteen outcome variables (three 

for each type of readmission): CHF, PN, and AMI Medicare FFS readmission rates; CHF, PN, 

and AMI Medicare Advantage readmission rates; CHF, PN, and AMI private preventable 

readmission rates; and the difference between the Medicare and private preventable readmission 

rates. The difference in the preventable readmission rate was between Medicare and Medicare 

Advantage or private payer patients. A preventable readmission was considered a 30-day 

preventable readmission for individuals hospitalized at a short-stay acute care hospital and 

experienced an unplanned readmission for CHF, PN, or AMI to an acute care hospital within 30 

days of discharge. A CHF, PN, and AMI readmission was consistent with a set of technical 

reports prepared by CMS (see Appendix 3 for list of ICD-9 codes; CMS 2011). To calculate the 

readmission rate for each condition, the numerator was the number of individuals with 30-day 

readmissions for that condition (based on ICD-9 codes), while the denominator was the total 

number of admissions for the same condition.   

Outcome: All-Cause Readmissions 

As HRRP expanded to include more conditions, more readmission outcome measures 

were incorporated into the penalty. These readmissions range from surgical readmissions for 

elective hip/knee replacements to COPD and coronary artery bypass graft surgery. Proactively, 

hospitals may have attempted to reduce HRRP readmissions and nontargeted readmissions in a 
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one-size-fits-all type of practice, anticipating that CMS might add multiple measures in the 

future. Moreover, hospitals may have attempted to reduce all-cause readmissions simply because 

it improved their overall processes and quality of care. We calculated the 30-day all-cause 

readmissions rate based on the CMS technical report (CMS 2014). There were five outcome 

variables. The first three measured the all-cause readmission rate for Medicare FFS, Medicare 

Advantage, and private payers separately. The other two outcomes were the difference between 

Medicare FFS and Medicare Advantage; and Medicare FFS and private payers.  

Independent Variable 

 

HRRP is the year fixed effect. A binary variable signified as HRRP marked the years 

after 2012–2013 as a value of 1 (reference), indicating the time of implementation.3 The value 0 

was for all other years prior to 2012. As Bertrand, Duflo, and Mullainathan (2004) 

recommended, years were collapsed into pre and post periods to produce consistent standard 

errors.  

Controls: Client and Hospital Characteristics 

We included Herfindahl-Hirschman Index (HHI) for hospital market concentration as a 

control. The HHI is a measure of how evenly hospital share is distributed across hospitals in the 

market. Herfindahl-Hirschman Index values range from 0 to 10,000; an HHI closer to zero 

indicates a more competitive market, and an HHI closer to 10,000 indicates a less competitive 

market. An HHI index below 1,000 generally indicates a highly competitive market; an HHI 

between 1,000 and 1,500 indicates an unconcentrated market; a score between 1,500 and 2,500 

indicates moderate concentration; and a value above 2,500 indicates a highly concentrated 

(uncompetitive) market. We categorized this variable as a dummy variable for hospitals above or 

below median HHI. 
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We also controlled for commercial managed care penetration. We relied on data from 

Interstudy to determine county-level private managed care organization penetration. Commercial 

managed care organization penetration was defined as the number of commercial enrollees 

(Medicare Advantage and private) in a given county divided by the county’s total population. 

We then categorized commercial managed care organization penetration into quartiles (high, 

above-average, average, and low penetration). 

We also controlled for hospital structural components, such as the type of health system 

governing a hospital (Bazzoli et al. 1999). We categorized health systems as centralized, 

moderately centralized, decentralized, and independent hospitals. We also included a hospital’s 

nurse-to-bed ratio, size of the hospital, primary care and specialty physician supply, number of 

full-time nurses, and ownership. Moreover, we controlled for several patient characteristics that 

included county-level median household income, percent insured, and percent insured in 

Medicare. 

Analytic Strategy 

We used ordinary least squares (OLS) to model the predicted average of being readmitted 

within thirty days of discharge from an index admission for Medicare FFS, Medicare Advantage, 

and the privately insured. We also used a modified difference-in-difference regression model to 

test whether the effect of the HRRP was the same between Medicare, Medicare Advantage, and 

private readmissions. Our unit of analysis was hospitals. We first estimated the average change 

in readmissions after the HRRP using the baseline specification given in equations (1, 2). We 

estimated the baseline model separately for condition-specific and all-cause cohorts in Medicare 

and privately insured populations.  

(1, 2, 3) Readmitk
it = β0 + β1HRRPit + β2

kXit + ϒk
i + εk

it 
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Within the regression equation, Readmitk
it signified the rate of preventable readmissions 

for Medicare FFS (1), Medicare Advantage (2), or privately (3) insured patients for readmission 

k at hospital i in time period t. Models 1, 2, and 3 determined the effects of HRRP on the payers 

individually. HRRPit is a dummy variable for pre- and post-HRRP policy. Xit represents a vector 

of control variables. ϒi is a time-invariant unobserved hospital-specific effect, and εit represents a 

random error.  

(3, 4) ΔQk
it = β0 + β1HRRPit + β2

kXit + ϒk
i + εk

it 

In order to assess whether the HRRP has the same effect on hospital readmission rates for 

Medicare and Medicare Advantage (3) or private payer (4) hospital readmissions, Models (3, 4) 

is the modified DD model, where ΔQk
it is the difference in preventable readmission rate between 

Medicare and Medicare Advantage, or private insurance patients at hospital i in time period t. 

Results 

Sample Characteristics  

Table 1 displays descriptive statistics for the study sample. The Medicare CHF 

preventable readmission rate across all years was 21.3%; for private payers, it was 16.0%. The 

Medicare PN and AMI preventable readmission rates was 17.5% and 14.0%; for private payers 

10.6% and 6.4%, respectively.  

Overall, after the HRRP, hospitals experienced a modest decrease in Medicare FFS, 

Medicare Advantage, and private CHF preventable readmissions by 1.8%, 1.2%, and 1%, 

respectively (Table 2). Furthermore, this trend continued for other targeted conditions. Hospitals 

experienced a modest decrease in PN and AMI readmission rates for all payers after the HRRP. 

Medicare FFS and Medicare Advantage saw a 1.1% decrease in all-cause readmissions, while 

private saw a slight increase of 0.5% after the HRRP. 
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Effects of HRRP on Targeted Readmissions 

Table 3 presents the main regression results for all models. The first results (models 1, 2, 

and 3) examined the effects of HRRP on CHF, PN, and AMI preventable readmissions on each 

payer individually, and models 4 and 5 tested whether the HRRP had the same effect on 

Medicare FFS, Medicare Advantage, private payers, respectively. In model 1, hospitals exhibited 

a significant decrease in Medicare CHF preventable readmissions post-HRRP implementation (-

0.97%, P<0.05), and models 2 and 3 indicated that there was no effect of HRRP on Medicare 

Advantage and private payer CHF preventable readmissions. Model 3 showed that there was no 

difference in CHF readmissions for Medicare FFS and Medicare Advantage. Jointly, as model 4 

showed, the HRRP had a much larger effect on Medicare than on private readmissions. Medicare 

had a significant decrease in CHF readmissions relative to private (-1.73%, P<0.05).   

The next results found that post-HRRP, hospitals exhibited a decrease in Medicare PN 

preventable readmissions (-2.75%, P<0.05); and, there was no significant change for Medicare 

Advantage and private PN preventable readmissions, indicating no spillover. Jointly, the HRRP 

had a much larger effect on Medicare FFS than on private readmissions. Medicare had a 

significant decrease in PN readmissions relative to private (-3.11%, P<0.05). There was no 

difference in Medicare FFS and Medicare Advantage PN readmissions. The third results found 

that the HRRP had no effect on hospital Medicare FFS, Medicare Advantage, and private AMI 

readmissions.  

Effects of HRRP on All-Cause Readmissions 

Table 4 presents the results that show that hospital Medicare FFS and Medicare 

Advantage all-cause readmissions displayed about a 1% decrease after the HRRP (P<0.05) and 

there appeared to be no spillover into private payers. Testing sought to determine whether the 
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difference between Medicare and Medicare Advantage all-cause readmissions showed no 

statistical difference between the two payers. This meant that the rate change between the payers 

was statistically equivalent to each other. In other words, both payers saw significant differences 

in all-cause readmissions; however, the effect of the HRRP was the same for each payer. This 

suggests that Medicare Advantage may have had a positive spillover due to the HRRP. Testing 

whether the HRRP had the same effect on Medicare and private readmissions found that 

hospitals had a 2.22% decrease in Medicare all-cause readmissions relative to private payers 

(P<0.05).   

Discussion 

The results from our analyses confirmed and expanded on previous literature. First, 

consistent with prior literature, we found that hospitals, on average, displayed decreased rates in 

Medicare FFS targeted readmissions after the implementation of HRRP (Carey and Lin 2015; 

Zuckerman et al. 2016; Demiralp, He, and Koenig 2017; Desai et al. 2016). We observed 

decreases in two of the three targeted readmission outcomes. Furthermore, much like other 

studies that found reductions in nontargeted readmissions (Carey and Lin 2015; Desai et al. 

2016; Demiralp, He, and Koenig 2017), we found decreases in all-cause readmissions after 

HRRP implementation.  

Our results expanded on other findings, and we found a positive spillover of the HRRP 

on Medicare Advantage. We found, on average, that the HRRP significantly affected Medicare 

FFS and Medicare Advantage all-cause readmission outcomes. We did not find any indication of 

a spillover into the private market. This was consistent with several other studies that found no 

changes in non-Medicare targeted readmissions (Carey and Lin 2015; Demiralp, He, and Koenig 

2017). Taken together, our findings, based on the insurance population in five states provided 
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evidence on HRRP’s spillover effects. This supported the view that financial implications played 

at least some role in the way hospitals managed care related to readmissions, and hospital 

providers might not be able to discern similar patient populations such as Medicare FFS and 

Medicare Advantage. Furthermore, hospital providers could provide private payer quality of care 

related to readmissions without having any negative consequences due to the HRRP. Hospitals 

must improve patient experiences and quality of care with fixed budgets and constraints, which 

may lead them to identify the optimal allocation of resources to reduce readmissions for certain 

populations.  

Our findings suggest, on average, that hospitals may not be targeting condition specific 

readmissions penalized under the HRRP. However, hospitals may be implementing readmission 

reduction initiatives that extend to a wider variation of conditions and populations that go beyond 

those targeted by HRRP. Additionally, the results found that Medicare Advantage could have 

benefitted in quality improvements and the privately insured was not negatively impacted due to 

the HRRP. This can be interpreted that hospitals are most likely not allocating resources away 

from nontargeted outcomes and different populations treated in the hospital, similar to the 

conclusions by Demirlap and colleagues (2017). Our results suggest a decrease in Medicare FFS 

and Medicare Advantage all-cause readmissions, which may be interpreted as hospitals finding it 

easier to implement a “one-size fits all” readmission reduction initiative rather than targeting 

specific conditions and populations that fall under the HRRP penalty. This all-inclusive approach 

to readmission reductions may be due to the hospitals having difficulty identifying certain 

conditions and populations that are counted in the HRRP penalty calculation.  

The study had several limitations. First, we did not see large effects of the HRRP on 

hospital Medicare readmissions and spillovers. The little to no effect could possibly be from 
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hospitals not making significant changes to their processes and care because the incentive factor 

of the HRRP was too small. In other words, the HRRP may not put substantial revenue at risk 

and thus may not be worth the hospital’s cost and time to lower the readmissions, so the hospital 

decides to pay the penalty. An informal term for this is “budget dust.” The HRRP could be 

considered budget dust because the penalty did not create enough incentive for hospitals to make 

major institutional reforms to reduce preventable readmissions. Second, although our sample was 

much larger than previous studies, the sample was limited to five states; therefore, results might 

not be generalizable. Third, there might be unobserved patient and hospital level effects that 

were not perfectly controlled for in models related to risk differences between Medicare and 

private insurance patients. Fourth, lag time and other policies around the implementation of the 

ACA and the HRRP might confound the results. Fifth, prior research suggested that targeted 

readmissions might be an unreliable estimator of hospital performance and all-cause 

readmissions could be a better metric to assess overall hospital quality of care (Thompson et al. 

2016). Therefore, our results related to targeted conditions should be interpreted with caution. 

Sixth, although we controlled for managed care penetration, we could not be sure that decreases 

in Medicare Advantage all-cause readmissions were due to the HRRP. Medicare Advantage 

plans may be congruently working with hospitals (i.e., via value-based contracts) to improve 

their beneficiaries’ quality of care related to readmissions, thus the results of HRRP may be 

overstated. Lastly, we cannot be certain that the decreases in readmission rates were due to 

genuine improvements in quality. 

In conclusion, the findings contributed to the general understanding of how policies 

motivated medical providers to improve performance and whether there were unintended 

positive or negative spillovers. Overall, the main results found evidence of a positive spillover 



 

 21 

into Medicare Advantage and no effect on the privately insured. This novel study lent support to 

the notion that the HRRP decreased condition specific for Medicare FFS readmissions and all-

cause Medicare FFS and Medicare Advantage readmissions. While further work was needed to 

better delineate why these relationships exist, the findings suggested that the incentive factor of 

the HRRP did make improvements in preventable readmissions for Medicare FFS and Medicare 

Advantage patients; in some cases, and did not affect care for private payers. The study extended 

beyond the normal pre and post study related to the HRRP and provided a new avenue of 

interpretation to explore ways to improve the quality of care and outcomes of patients in an often 

forgotten interconnected complex of delivery systems. 
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Figure 1. Conceptual Framework. 

  



 

 23 

 

Table 1. Sample Characteristics. 

 30-Day Preventable Readmissions   

Congestive Heart Failure (CHF)   

Medicare 20.4% 

Private 15.5% 

Medicare Advantage 19.9% 

Pneumonia (PN)   

Medicare 16.7% 

Private 10.3% 

Medicare Advantage 16.0% 

Acute Myocardial Infraction (AMI)   

Medicare 13.3% 

Private 6.1% 

Medicare Advantage 12.7% 

All-cause   

Medicare 15.31% 

Private 7.58% 

Medicare Advantage 13.38% 
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Table 2. Changes in Preventable Readmissions, Pre- and Post-HRRP. 

Readmission Type 

Pre-HRRP 

(2009-2010) 

Post-HRRP 

(2012-2013) 

30-Day Preventable Readmissions     

Congestive Heart Failure (CHF)     

Medicare 21.2% 19.4% 

Medicare Advantage 20.4% 19.2% 

Private 15.8% 14.9% 

Pneumonia (PN)     

Medicare 17.2% 15.8% 

Medicare Advantage 16.5% 15.3% 

Private 10.5% 10.1% 

Acute Myocardial Infarction (AMI)     

Medicare 13.7% 12.7% 

Medicare Advantage 13.3% 12.3% 

Private 6.4% 6.2% 

All-Cause     

Medicare 15.4% 14.4% 

Medicare Advantage 13.9% 12.8% 

Private 8.3% 8.8% 
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Table 3. Main regression results. 

 

Model 1 Model 2 Model 3 Model 4 Model 5 

  

Private MA Private MA 

  Medicare (Spillover) (Spillover) (DD) (DD) 

CHF 

     HRRP -0.97%*** 0.85% -1.88% -1.73%** 1.14% 

  (0.12) (0.68) (1.55) (0.57) (1.63) 

Controls Yes Yes Yes Yes Yes 

Hospital Fixed Effects Yes Yes Yes Yes Yes 

County Fixed Effects Yes Yes Yes Yes Yes 

Constant 0.24 0.55 -0.07 -0.28 0.38 

  (0.13) (0.32) (0.11) (0.22) (0.28) 

Observations 1,618 1,591 1,562 1,591 1,562 

R-squared 0.03 0.02 0.03 0.02 0.0215 

Number of panel_id 481 476 576 476 476 

PN   

HRRP -2.75%*** 0.47% 0.32% -3.11%** -2.61% 

  (0.75) (0.82) (0.92) (1.21) (1.24) 

Controls Yes Yes Yes Yes Yes 

Hospital Fixed Effects Yes Yes Yes Yes Yes 

County Fixed Effects Yes Yes Yes Yes Yes 

Constant 0.30 0.21 -0.02 0.12 0.48 

  (0.21) (0.30) (0.13) (0.37) (0.26) 

Observations 1,618 1,604 1,561 1,604 1,561 

R-squared 0.0 0.0 0.02 0.0 0.02 

Number of panel_id 481 480 476 480 476 

AMI   

HRRP -0.47% -0.14% -0.69% -0.44% -0.19% 

  (1.34) (0.78) (0.87) (0.40) (0.80) 

Controls Yes Yes Yes Yes Yes 

Hospital Fixed Effects Yes Yes Yes Yes Yes 

County Fixed Effects Yes Yes Yes Yes Yes 

Constant -0.0020 -0.1380 0.02 0.1974 0.10 

  (0.2770) (0.1824) (0.46) (0.1381) (0.70) 

Observations 1,601 1,512 1,509 1,508 1,505 

R-squared 0.03 0.02 0.02 0.03 0.02 

Number of panel_id 480 463 466 463 466 

Reported regressions control for hospital, client, and market forces characteristics. 

Coefficients are presented in percentage.  

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Effect of HRRP on all-cause readmissions. 

All-cause 

readmissions 

Medicare 
Private 

(Spillover) 

Medicare 

Advantage 

(Spillover) 

Difference 

between 

Medicare and 

Private  

Difference 

between 

Medicare and 

Medicare 

Advantage  

Difference Difference Difference (DD) (DD) 

HRRP −1.11%*** 1.11% -1.00%** −2.22%** -0.11% 

  (0.17) (0.89) (0.43) (0.80) (0.46) 

Reported regressions control for hospital, client, and market forces characteristics. 

Coefficients are presented in percentage. 

 *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 3: Spillover Effects Of Medicare Advantage: Does The Market Penetration 

of MA Plans Affect Hospital Care Quality? 

 

Abstract 

Objective: To investigate the spillover effects of the Medicare Advantage program on 

Medicare FFS hospital quality of care. 

 

Data Source: Health Care Utilization Project’s (HCUP) State Inpatient Database (SID) 

administrative claims data to calculate condition-specific thirty-day preventable 

readmissions. American Hospital Association (AHA) data, Interstudy Commercial 

Managed Care, and Area Health Resource File (AHRF) were used to determine hospital, 

managed care, and county-level characteristics. Medicare Advantage county-level 

payment schedules originate from CMS.  

 

Study Design: Ordinary least squares (OLS) and instrumental variable models were used 

to isolate exogenous increases in Medicare Advantage enrollment and to trace out the 

effects of greater managed care penetration on hospital quality of care. 

 

Principal Findings: We found that Medicare Advantage penetration had no effect on 

Medicare FFS readmissions as well as Medicare Advantage readmissions. There 

appeared to be no spillover from Medicare Advantage on Medicare FFS. 

 

Conclusions: As found in other studies, Medicare Advantage penetration was unlikely to 

influence Medicare FFS hospital quality of care, such as preventable readmissions. In 

contrast with earlier studies, there was no evidence that greater Medicare Advantage 

penetration was likely to reduce Medicare Advantage readmissions. 



 

 28 

Introduction 

Since the mid 2000s, Medicare Advantage has seen a dramatic increase in enrollees. In 

2016, 17.6 million beneficiaries—31% of the Medicare population—were enrolled in a Medicare 

Advantage plan (Jacobson et al. 2016). This growth reflects the ongoing expansion the position 

of Medicare Advantage plays in the Medicare program. While the rise of a meaningful Medicare 

managed care sector could affect both the financial health of the program and the physical health 

of Medicare enrollees, we focused on the former. In particular, we asked the question: Does 

Medicare Advantage penetration affect utilization sustained by fee-for-service beneficiaries?  

Spillover effects refer to changes in the care delivered to fee-for-service beneficiaries that 

arise due to changes in Medicare Advantage enrollment among Medicare beneficiaries, holding 

the health status of fee-for-service beneficiaries constant. Moreover, Medicare fee-for-service 

policies have shown spillover into Medicare Advantage and vice versa. There are several reasons 

to expect spillovers. For instance, if providers tend to practice similarly for all patients, a larger 

share of Medicare Advantage may alter practice patterns for Medicare fee-for-service patients. 

While the cost effectiveness of Medicare Advantage is up to debate, several studies concluded 

that increased Medicare Advantage enrollment affected the treatment costs and utilization of 

Medicare fee-for-service patients.  

We expanded the typical spillover analysis with an examination of the impact of 

Medicare Advantage penetration on Medicare FFS beneficiaries that had preventable 

readmissions for acute myocardial infraction (AMI), health failure (HF), and pneumonia (PN) for 

Medicare FFS enrollees.1 We also analyzed the spillover effects on FFS members for all-cause 

preventable readmissions. We examined these outcomes due to prevalence, costs, and 

                                                        
1Limiting the sample to AMI, HF, and PN enabled us to examine the impact of increased MA penetration on 

disease-specific readmissions and diagnostic procedures.  
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importance to CMS as measures of hospital performance and quality of care. Furthermore, this 

study expanded on prior spillover research by examining spillovers in two different periods: 

2008 to 2010 and 2011 to 2013 in order to capture the effectiveness of MA penetration 

coexisting with and without a Medicare policy (Hospital Readmissions Reduction Program 

[HRRP]) intended for FFS preventable readmissions, and to assess whether highly concentrated 

market areas of Medicare Advantage influenced Medicare FFS readmissions prior to HRRP. 

Leveraging methods from Chernew et al. (2008) and Callison (2016), we investigated county-

level MA penetration using payment rates to MA plans in order to address the likely endogeneity 

issues inherent in changes in the MA market share (Baicker, Chernew, and Robbins 2013; 

Callison 2016). The fundamental contribution of this study was in the potential to identify 

various causal pathways through which Medicare Advantage penetration affected Medicare FFS 

preventable readmissions.  

Conceptual Framework 

Increased enrollment in MA could impact care for the traditionally insured Medicare 

beneficiaries through effects on intensive or extensive margins of patient care. The “norms 

hypothesis” developed by Newhouse and Marquis (1978) suggested that when treating patients 

with various types of health insurance, medical providers would balance payment rates so that 

practice styles were uniform, regardless of payer status (Newhouse and Marquis 1978). For 

instance, as MA enrollment rose and MA plans incentivized providers to reduce utilization, 

providers uniformly altered their care for traditional FFS patients. This resulted in a positive 

spillover via an improvement in Medicare FFS quality of care. Fee-for-service beneficiaries may 

gain from this due to MA plans being paid on a capitated basis, which makes plans more likely 

to invest in coordinated care efforts with the expectation of reduced future outlays (Baicker, 
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Chernew, and Robbins 2013). As a result, processes of care, such as post-acute care would be the 

same or improved for Medicare FFS patients. In contrast, McGuire and Pauly (1991) suggested 

providers were able to distinguish profitable and unprofitable patients and provided different 

levels of utilization of services given their patients’ payer status; this was known as the “Utility 

Maximizing Theory”(McGuire and Pauly 1991); which may result in a negative spillover.  

Several studies discussed the potential of increased MA enrollment to induce structural 

changes in health care markets primarily through capacity and utilization reductions. Yet, when a 

policy targeting FFS patients was introduced into a spillover analysis, little was known on 

whether MA enrollment amplified or condensed spillover effects in combination with a Medicare 

policy. To arrive at whether the private sector works in concert with the public sector to affect 

FFS utilization and costs, the period in which Medicare’s HRRP was implemented was used in 

the second analysis. The HRRP designates the reduction of avoidable FFS readmissions as a 

target for health care cost savings and authorizes the Center for Medicare and Medicaid Services 

(CMS) to lower payments to hospitals with high risk-standardized rates of 30-day readmissions. 

This policy was put into place as a response to control the cost associated with FFS Medicare 

readmissions. In the first year of the policy, hospitals were penalized up to 2%, second year up to 

3%, and in all other years it maintained a 3% penalty by CMS withholding Medicare inpatient 

payments.  

We investigated the impact of Medicare Advantage penetration on medical care 

utilization incurred by Medicare FFS enrollees, pre (years 2009-2010) and post (years 2012-

2013) HRRP. If the norms hypothesis held true, we would expect readmissions and its 

expenditures to have a positive spillover in that higher Medicare Advantage penetration led to 

lower preventable readmissions for FFS beneficiaries. Furthermore, there should be no 
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significant differences in preventable readmissions between Medicare FFS and Medicare 

Advantage. However, if the utility maximizing theory held true, we would expect readmissions 

to have a negative spillover—meaning that there would be significant readmission differences 

between Medicare and Medicare Advantage beneficiaries. We also examined the differences in 

spillover effects before and after HRRP in order to understand how the Medicare policy affected 

these events.  

Mechanisms of Spillover Effects 

Prior evidence suggests that the expansion of managed care plans may negatively impact 

the care of traditional Medicare FFS beneficiaries through several mechanisms. Greater managed 

care market share may make it more difficult to access hospital care due to high demand and 

providers not being able to expand output and increase the use of factors of production (Qianwei 

Shen 2015). Underperformance on process-of-care measures, which recorded the percentage of 

patients who received appropriate care for specific conditions, was often considered an indicator 

of low hospital quality of care. According to one study, individuals living in areas with higher 

levels of managed care were more likely to report problems obtaining care than areas with lower 

levels of managed care (Litaker and Cebul 2003). 

Spillover effects may also occur through a negative impact on infrastructure investments, 

such as the volume of beds, the adoption of advanced medical technology, or allocation of 

services over time. Managed care providers are assumed to have highly elastic demand so higher 

levels of managed care penetration will force managed care providers to compete with each 

other, and as a result, managed care plans may be more successful at negotiating lower prices 

with medical providers (Baker and Phibbs 2002). Additionally, lower managed care payments; 

the encouragement of practicing conservative practice patterns (Baker 2001; Heidenreich et al. 
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2002); and slowing the timing of adopting more advanced but costly technologies (Cutler and 

Sheiner 1998), requires providers to reduce cost, thereby reducing the number of specialty 

providers and the number of services provided (Baker 2001; Heidenreich et al. 2002). Because, 

all patients share hospital resources, fewer advanced technologies affect the quality of care of 

managed care and Medicare FFS beneficiaries. Prior evidence suggests that as managed care 

penetration increased, there was an inverse relationship with the number hospital beds per capita 

(Chernew 1995). Furthermore, higher levels of managed care penetration associated with lower 

levels of MRI access (Baker and Wheeler 1998) and hospital acquisition of certain medical 

technologies (Mas and Seinfeld 2008).  

To the contrary, evidence suggested that higher levels of managed care penetration were 

likely to have a positive spillover on quality of care received by Medicare FFS patients. 

According to several studies, managed care could influence physicians’ practice patterns due to 

the incentive structures of managed care payments. Given the economic assertion that, ceteris 

paribus, effort level to managed care patients was lower than that for FFS patients, as managed 

care penetration increases, patterns of care for managed care and FFS would converge (Glied and 

Zivin 2002). In other words, providers who treat mostly managed care patients appear to adopt 

an equivalent practice style for all patients, regardless of payer. Evidence also suggests that 

hospital investment in technology infrastructure can have a positive spillover. Managed care 

plans must have the ability to collect and transfer administrative data within an internal market 

(Culyer and Newhouse 2000; Qianwei Shen 2015). The information collection capacity gives 

hospitals the incentive to increase quality of care in order to attract customers. Thus, patients will 

benefit from advanced medical technology because they do not have the choice but to use more 

expensive and effective technology.  
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Spillover Effect on Traditional Medicare FFS 

 Evidence suggests that managed care penetration has an effect on Medicare FFS 

expenditures and quality of care. Baicker et al. (2013) analyzed county- and MSA- level data, 

and found that Medicare FFS expenditures had a concave relationship with managed care 

penetration (Baker 2003). Baker (2003) found that as managed care penetration increased, 

Medicare FFS expenditures decreased. Chernew et al. (2008) leveraged county-level Medicare 

Advantage benchmark payment data as an instrument for Medicare Advantage penetration and 

found that every one percent increase in county-level penetration associated with a one percent 

reduction in annual spending for Medicare FFS beneficiaries.  

 Research found that higher levels of managed care penetration could lead to lower 

Medicare FFS expenditures. Despite these lower expenditures, this may result in reduced quality 

of care. Medicare FFS’ payments are set administratively; therefore, reductions in expenditures 

must result from reduced utilization. If reduced services are necessary, quality of care will 

decline. However, quality of care may improve in low expenditure areas if reduced expenditures 

result in reductions of unnecessary or inappropriate services. Therefore, it is essential to 

determine the spillover effect for measuring quality.  

 Unlike measuring expenditures, measuring quality of health care is difficult due to 

several confounding dimensions. No single variable can capture all the factors associated with 

hospital quality of care. As a result, researchers have found several ways to measure quality of 

care: outcome quality as measured by effectiveness of care, readmission rates, and mortality 

rates (Baicker, Chernew, and Robbins 2013; Callison 2016; Chernew, DeCicca, and Town 

2008); process quality as measured by access to care, preventable admissions, length of stays, 

and number of test performed (Decker 2012); and input quality as measured by the adoption of 
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advanced technologies, and staffing levels (i.e., nurses, primary care, and specialist) (Kaestner 

and Guardado 2008).  

 Evidence of system-wide spillover on quality of care is mixed. However, due to limited 

data, only a few studies provided evidence that managed care could influence the quality of care 

provided to Medicare FFS beneficiaries. One study found that managed care penetration was 

negatively associated with Medicare FFS 30-day post-admission mortality (Mukamel, 

Zwanziger, and Tomaszewski 2001). Another study found that areas with higher levels of 

managed care penetration received better quality of care for AMI admissions than areas with 

lower levels of managed care (Heidenreich et al. 2002). To the opposite effect, another study 

found managed care penetration negatively associated with Medicare FFS AMI admission 

treatment (Meara et al. 2004). Another study found that higher levels of Medicare Advantage 

penetration reduced Medicare FFS beneficiaries’ rates of hospitalization and mortality (Callison 

2016). Baicker et al. (2013) used changes in MA payment as a natural experiment and found 

Medicare Advantage penetration was not associated with fewer hospitalization, but was 

associated with lower expenditures and shorter hospital lengths of stay (Baicker, Chernew, and 

Robbins 2013). Using the same methods as Chernew et al. (2008), Callison (2015) found that 

MA penetration associated with reduced treatment intensity of Medicare FFS AMI admissions.  

Medicare Advantage Penetration Effects Medicare Advantage Quality of Care 

 Medicare Advantage enrollment has seen steady increases over the past couple decades, 

resulting in greater influence over the U.S. health delivery system. Even with rising MA 

penetration and the slow changes to Medicare FFS delivery that result from the shifting federal 

policy conditions, MA beneficiaries continue to have fewer avoidable hospitalizations—

compared to those in Medicare FFS. Furthermore, areas with high levels of MA penetration tend 
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to have lower avoidable hospitalization and readmission rates compared to Medicare FFS, even 

after controlling for selection effects and the health status of enrollees (Lemieux et al. 2012; 

Center 2016). This disparity may be due to a network effect, where managed care plans leverage 

pragmatic interventions and selectively contract with higher performing providers and refer 

patients to such providers in order to reduce avoidable hospitalizations and readmissions 

(Lemieux et al. 2012). As a result, we would expect that areas with higher Medicare Advantage 

penetration to have lower Medicare Advantage readmissions, and as a consequence, we would 

expect this to be the same for Medicare FFS, because of managed care’s influence over provider 

practice behaviors.    

Based on prior theoretical frameworks and evidence of MA spillover into Medicare FFS, 

we hypothesized that greater concentration of Medicare Advantage penetration: 

H1: will have a positive spillover into Medicare FFS quality of care. More specifically, 

the higher the MA concentration, the lower Medicare FFS readmissions will be.   

H2: will have a positive spillover into Medicare Advantage quality of care 

We also examined these spillovers before and after the HRRP, because it was important to 

control for any influences that the policy could have had on quality of care outcomes.  

Methods 

Data and Study Population Overview  

The primary data used in the analyses came from the Health Care Utilization Project’s 

State Inpatient Databases (SIDs). The SID contains detailed information on the diagnoses and 

conditions associated with readmissions and the treatments received for the universe of patients 

in a given state along with the primary source of payment, as well as basic demographic 

information such as age, gender, and race/ethnicity. Not all states differentiate specific 



 

 36 

information between Medicare managed care and traditional Medicare. Therefore, these analyses 

were limited to the following states that reported specific information on Medicare plan type for 

the years 2009-2013: California, Iowa, Florida, Massachusetts, and New York. The full sample 

used in the subsequent analyses consisted of all Medicare beneficiaries from the aforementioned 

states over the age of 65 years readmitted with a primary diagnosis of AMI, HF, PN, or all-cause. 

This data was then aggregated to the hospital level. We then excluded hospitals in rural areas, 

dual-eligible individuals, individuals with planned readmissions, and hospitals with less than 30 

admissions. Data on MA and FFS enrollment originated from the Interstudy Managed Care 

Survey. Center for Medicare and Medicaid Service also provided data on county-level payment 

rates to MA plans. The Area Health Resource File provided county-level data on the supply of 

health services. More specifically, the total number of hospital beds and general practitioners and 

specialists was used as a measure of capacity and availability of medical and hospital resources.  

Outcome: Condition Specific Readmissions 

Dependent variables are presented in rates. There are six outcome variables CHF, PN, 

and AMI Medicare FFS readmission rates; and CHF, PN, and AMI Medicare Advantage 

readmission rates. A preventable readmission was considered a 30-day preventable readmission 

for individuals hospitalized at a short-stay acute care hospital and who experienced an unplanned 

readmission for CHF, PN, or AMI to an acute care hospital within 30 days of discharge. A CHF, 

PN, and AMI readmission was consistent with a set of technical reports prepared by CMS (see 

Appendix 3 for list of ICD-9 codes; CMS 2011). To calculate the readmission rate for each 

condition, the numerator was the number of individuals with 30-day readmissions for that 

condition (based on ICD-9 codes), while the denominator was the total number of admissions for 

the same condition.   
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Outcome: All-Cause Readmissions 

Hospitals may attempt to reduce all-cause readmissions simply because it improves their 

overall processes and quality of care. Furthermore, managed care plans may establish value-

based benchmarks that hospitals must meet in order to receive optimal payments. Additionally, 

reducing all-cause readmissions may be more practical for hospitals to implement, and has been 

a more reliable estimate of quality of care (Thompson et al. 2016). We calculated the 30-day all-

cause readmissions rate based on the CMS technical report (CMS 2014). There were two 

outcome variables: all-cause readmission rate for (1) Medicare FFS and (2) Medicare Advantage.  

Medicare Advantage Penetration of Plans 

We relied on data from Interstudy to determine county-level Medicare managed care 

organization penetration. Medicare managed care organization penetration was defined as the 

number of commercial enrollees in a given county divided by the county’s Medicare population. 

This was considered our endogenous variable in our IV estimation.  

Hospital-level Characteristics 

We included Herfindahl-Hirschman Index (HHI) for hospital market concentration as a 

control. The HHI is a measure of how evenly hospital share is distributed across hospitals in the 

market. The HHI values range from 0 to 10,000; an HHI closer to zero indicates a more 

competitive market, and an HHI closer to 10,000 indicates a less competitive market. An HHI 

index below 1,000 generally indicates a highly competitive market; an HHI between 1,000 and 

1,500 indicates an unconcentrated market; a score between 1,500 and 2,500 indicates moderate 

concentration; and a value above 2,500 indicates a highly concentrated (uncompetitive) market. 

We categorized this as a dummy variable for hospitals above or below median HHI. 
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We also controlled for hospital structural components, such as the type of health system 

governing a hospital (Bazzoli et al. 1999). We categorized health systems as centralized, 

moderately centralized, decentralized, and independent hospitals. We also included a hospital’s 

nurse-to-bed ratio, size of the hospital, primary care and specialty physician supply, number of 

full-time nurses, and ownership.  

County-level Characteristics 

We controlled for several county-level characteristics. These included county-level 

median household income, percent insured, and percent insured in Medicare. 

Chronic Conditions 

Spillover may be affected by selection bias. According to Chernew et al. (2008), 

relatively healthier beneficiaries may be more likely to be enrolled in Medicare Advantage plans, 

and those in worse health may be left or more likely to choose Medicare FFS. As a result, this 

may create selection bias and confound the spillover results. Therefore, we introduced the 

Elixhauser Comorbidity Index to control for chronic conditions that could influence readmission 

outcomes in a hospital. This was obtained based on a patient’s index admission.  

Analytic Strategy 

The analyses goals were: (1) to estimate the effect of Medicare Advantage penetration on 

various measures of utilization for FFS Medicare patients with preventable readmissions; and (2) 

to estimate the effect of Medicare Advantage penetration effects on various measures of 

utilization prior to the year 2011 and after 2011.  

An initial model to describe association between Medicare Advantage penetration and 

utilization is as follows: 

(1) Yict = δc + ϒt + βMAct + αXict + λZct + PAYERct + εict, 
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where Y is a measure of Medicare FFS preventable readmission utilization for hospital i in 

county c in year t; MA is the county-level share of Medicare Advantage enrollment in year t; X is 

a vector of county-level characteristics; Z is a vector of hospital-level characteristics that vary 

over time including the total number of hospital beds and the total number of general 

practitioners and specialists; PAYER is the percentage of Medicare insured in a given county; δ 

and ϒ are county and year fixed effects, respectively. When we restricted the sample to 

traditional Medicare patients, the coefficient βMAct in equation (1) returned estimates of the 

spillover effect associated with Medicare Advantage penetration.  

In equation (1), ordinary least squares (OLS) estimation would likely result in biased 

estimates of the effect of Medicare managed care penetration on traditional Medicare utilization. 

This is because changes in Medicare managed care enrollment may be related to county-level 

utilization (Baker 1997; Chernew, DeCicca, Town 2008). Evidence suggests that managed care 

organizations are more likely to enter markets where costs are higher (McGuire, Newhouse, 

Sinaiko 2011; Mukamel, Zwanziger, Tomaszewski 2001). If Medicare managed care plans 

expand into areas where costs and utilization are higher, they may exploit potential cost-saving 

applications, then OLS estimates of the association between Medicare managed care and 

utilization will be biased towards zero (Chernew, DeCicca, Town 2008; Gowrisankaran and 

Town 2004).  

For this reason, the models implemented in several other studies were used to minimize 

endogeneity issues related to MA plan behavior and enrollment (Baicker, Chernew, Robbins 

2013; Callison 2015; Chernew, DeCicca, Town 2008; Gowrisankaran and Town 2004).  

Medicare Advantage payment rates from CMS were used as an instrument for Medicare 

managed care penetration. The following two-stage model is produced: 
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MAct = δ’c + ϒ’t + πRATEct + α’Xict + λ’Zct + ε’ict, 

(2) Yict = δc + ϒt + βMAct + αXict + λZct + εict, 

where RATE is the benchmark Medicare Advantage plan payment rate in county c in year t and 

the remaining variables are all as previously defined. The instrumental variable approach relied 

on the relationship between Medicare Advantage payment rates and Medicare Advantage 

enrollment (i.e., higher payment rates will attract Medicare Advantage plans that will, in turn, 

increase enrollment). These rates have been shown to be unrelated to contemporaneous changes 

in Medicare managed care enrollment (Chernew, DeCicca, Town 2008). We leveraged the two-

stage least squares methodology in two mutually exclusive ways. We first did this for the years 

2009-2010 (pre-HRRP), 2011-2013 (post-HRRP), and across all years. This was to examine how 

Medicare Advantage spillover affected Medicare FFS prior to HRRP and to what extent HRRP 

contributed to the utilization of preventable readmissions in combination with MA penetration. 

Moreover, this allowed us to examine whether HRRP was improving or worsening preventable 

readmissions and/or to what extent Medicare Advantage penetration influenced quality of care 

with and without HRRP.  

Results 

Sample Characteristics 

 To demonstrate that Medicare Advantage payments have not drastically changed over the 

course of the study, Figure 1 shows the distribution of CMS Medicare Advantage payment 

benchmarks from years 2009 to 2013. The average payment remained similar across all years. 

The average Medicare Advantage monthly payment for 2010 was about $785 and then had a 

small decline in 2013 to $765. Figure 2 demonstrates the rapid enrollment growth in Medicare 

Advantage plans for our sample of states. Medicare Advantage plans grew steadily in enrollment 
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from 2009, with an estimated additional 2 million enrollees in 2013, totaling 5.7 million. The 

average Medicare Advantage penetration rate was 30%. 

 Table 1 shows the unadjusted average readmission rate for the sample. The average 

readmission rate for CHF was 21% and 20%; PN was 17% and 15%; AMI was 13% and 11%; 

and all-cause was 15% and 13% for Medicare FFS and Medicare Advantage, respectively.  Table 

2 shows the unadjusted average readmission rate across years of the sample. Unadjusted 

condition-specific readmissions for Medicare FFS saw relatively small decreases in condition-

specific and all-cause readmissions from 2009 to 2013. The largest decreases happened after 

HRRP implementation. This trend was similar for Medicare Advantage condition-specific and 

all-cause readmissions as well.  

Endogeneity Tests 

Prior research found county-level Medicare Advantage plan penetration was endogenous 

due to time-variant county-level variables correlated with Medicare Advantage plans and quality 

of care in Medicare FFS. Due to these concerns, we tested the endogeneity assumption prior to 

running the full model to conclude whether our predictors were unbiased and efficient. We tested 

the non-zero average causal effect assumption for the CMS Medicare Advantage payment 

benchmark instrument. In order to evaluate the strength of instrument, we conducted a partial F-

test after the first stage regression results (first-stage results and partial F-test located in 

Appendix A). The F-test results indicated the instrument was highly significant (P<0.01) and had 

an F-statistic higher than 10. This test suggested the instrument had a non-zero causal effect and 

was robust.  

Years 2009-2013 
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Table 3 shows our main results. The IV estimates suggest that Medicare Advantage 

penetration has no effect on hospital Medicare FFS CHF readmissions. This result is the same for 

PN and AMI readmissions as well. Furthermore, the IV estimates suggest that Medicare 

Advantage penetration has no effect on Medicare Advantage condition-specific readmissions. 

The IV results also suggest that MA penetration has a negative effect on Medicare FFS and MA 

all-cause readmissions—with each additional 1 percentage point increase in penetration, all-

cause readmissions decrease. However, this is not significant at the alpha-level of 0.05.  

Pre-HRRP (2009-2011) 

 Table 4 shows our pre- and post-HRRP results. Similar results were found prior to the 

HRRP. There appears to be no association between Medicare Advantage penetration and any 

condition-specific type of readmission for Medicare FFS and Medicare Advantage prior to the 

HRRP. Moreover, these results were the same for all-cause readmissions, regardless of payer.  

Post-HRRP (2012-2013) 

Results from the post-HRRP analysis were similar to the pre-HRRP results. The IV 

estimates suggest that there was no association between penetration and condition-specific and 

all-cause readmissions for Medicare FFS and Medicare Advantage. Taken together when pooling 

across separate periods, the results remain the same: our IV estimation did not find an association 

between any type of readmission and Medicare Advantage penetration.  

 

 

Discussion 

Medicare Advantage plan penetration has long been associated with changes in treatment 

costs among the traditional FFS Medicare population. The instruments underlying these cost and 
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utilization spillovers have remained unclear. This research worked to address this discrepancy by 

estimating the changes in utilization for FFS Medicare beneficiaries readmitted with AMI, HF, 

or PN, pre and post the HRRP. The overarching goal of this study was to better understand how 

Medicare Advantage penetration rates “spill over” into Medicare FFS, considering its vast 

enrollment growth in recent years. More specifically, we conducted IV estimation used from 

several other studies to examine how Medicare Advantage affected Medicare FFS quality of 

care. We conducted several analyses stratified by years while controlling for selection effects.  

Using Medicare Advantage payment rates from CMS as an instrumental variable, our 

results found no associations between Medicare Advantage penetration and Medicare FFS 

condition-specific and all-cause readmissions. Likewise, there was no association found for 

Medicare Advantage readmissions. This non-significant relationship remained the same when 

stratified pre and post HRRP implementation. Since there was no primary effect on MA 

readmissions, a spillover into Medicare FFS was even more unlikely. Our results were similar to 

those of Baicker et al. who found no MA spillover of Medicare FFS quality of care outcomes 

(hospitalizations).  

Overall, our results suggest that Medicare Advantage penetration does not affect provider 

practice patterns or the sharing of resources, such as advanced medical technology. No spillover 

may be indicative of many things. First, care related to readmissions between the two payers, 

such as post-acute care may be roughly the same. Second, Medicare Advantage may simply not 

influence provider care of beneficiary Medicare FFS readmissions. Third, the constraining of 

medical resources directly related to Medicare FFS quality of care may not be influenced by 

Medicare Advantage utilization review requirements. Although, this study found no evidence of 

a spillover, Medicare Advantage penetration may influence Medicare FFS readmissions. The 



 

 44 

average penetration rate within our sample was almost 30%. As of 2017, California and Florida 

had penetration rates above 40% and several of the other states in our sample experienced 

increases of more than 10% (Jacobson et al. 2016). As Medicare Advantage enrollment growth 

continues to grow, and plans become increasingly dominant throughout the United States, 

influence over provider practice patterns and utilization control processes may create more 

pronounced spillover into Medicare FFS. An analysis with newer years of data and examining 

the association of MA penetration and readmission costs may result in different results.  
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Figure 1. Distribution of Medicare Advantage County-Level Monthly Payment Rates. 

 

Figure 2. Sample Enrollment in Medicare Plans, 2009-2013.  
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Table 1. Sample Characteristics. 

 30-Day Preventable Readmissions   

Congestive Heart Failure (CHF)   

Medicare 20.4% 

Medicare Advantage 19.9% 

Pneumonia (PN)   

Medicare 16.7% 

Medicare Advantage 16.0% 

Acute Myocardial Infraction (AMI)   

Medicare 13.3% 

Medicare Advantage 12.7% 

All-cause   

Medicare 15.31% 

Medicare Advantage 13.38% 

  
 
Table 2. Changes in Preventable Readmissions, Pre- and Post-HRRP. 

Readmission Type 

Pre-HRRP 

(2009-2010) 

Post-HRRP 

(2011-2013) 

30-Day Preventable Readmissions     

Congestive Heart Failure (CHF)     

Medicare 21.2% 19.4% 

Medicare Advantage 20.4% 19.2% 

Pneumonia (PN)     

Medicare 17.2% 15.8% 

Medicare Advantage 16.5% 15.3% 

Acute Myocardial Infraction (AMI)     

Medicare 13.7% 12.7% 

Medicare Advantage 13.3% 12.3% 

All-Cause     

Medicare 15.4% 14.4% 

Medicare Advantage 13.9% 12.8% 
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Table 3. Effects of Medicare Advantage penetration on condition specific 30-day 

preventable readmissions. 

  

Traditional Medicare 

FFS Medicare Advantage 

 

OLS IV OLS IV 

Dependent Variable (1) (1) (2) (2) 

CHF Readmission 0.02% -0.84% 0.02% -1.75% 

  (0.02) (0.71) (0.14) (1.44) 

PN Readmission -0.03% 0.07% 0.04% -0.53% 

  (0.02) (0.89) (0.18) (1.65) 

AMI Readmission 0.00% -1.25% -0.13% -1.73% 

  (0.02) (1.70) (0.22) (2.58) 

All-cause 0.01% -0.94% 0.02% -0.63% 

  (0.02) (0.49) (0.05) (0.58) 

Controls Yes Yes Yes Yes 

Hospital Fixed Effects Yes Yes Yes Yes 

County Fixed Effects Yes Yes Yes Yes 

Year Fixed Effects Yes Yes Yes Yes 

FFS, fee-for-service; OLS, ordinary least squares; IV, instrumental variable. 

Controls include indicators for age, race, gender, emergency admission, a set of 30 

comorbidities associated with increased hospital utilization, and county-level counts 

of the number of hospital beds, general practitioners, medical specialists, median 

household income, uninsured, and Medicare insurance rate.  

The IV regressions instrument for Medicare Advantage penetration rates using 

Centers for Medicare and Medicaid Services benchmark payment rates to Medicare 

Advantage plans. 

Robust standard errors are used. 

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Effects of Medicare Advantage penetration on 30-day preventable readmissions pre- and 

post-HRRP. 

  Traditional Medicare FFS Medicare Advantage 

 

OLS IV OLS IV OLS IV OLS IV 

Dependent 

Variable 

Pre-

HRRP 

Pre-

HRRP 

Post-

HRRP 

Post-

HRRP 

Pre-

HRRP 

Pre-

HRRP 

Post-

HRRP 

Post-

HRRP 

CHF Readmission 0.39% -3.12% -0.10% 0.06% -0.17% -1.05% 0.02% -0.94% 

  (0.25) (5.57) (0.08) (0.35) (0.39) (9.47) (0.03) (0.87) 

PN Readmission 0.09% -9.57% -0.15% 0.13% 0.11% 4.71% 0.02% 0.24% 

  (0.30) (10.28) (0.11) (0.42) (0.57) (13.64) (0.03) (0.96) 

AMI Readmission -0.43% 5.68% -0.33% 0.31% 0.12% 4.73% 0.05% -2.02% 

  (0.73) (9.77) (0.24) (0.83) (0.68) (18.76) (0.04) (1.42) 

All-cause 0.20% 1.11% -0.04% -0.02% 0.06% 2.38% -0.06% -0.02% 

  (0.14) (2.53) (0.05) (0.02) (0.19) (4.92) (0.07) (0.01) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Hospital Fixed 

Effects Yes Yes Yes Yes Yes Yes Yes Yes 

County Fixed 

Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

FFS, fee-for-service; OLS, ordinary least squares; IV, 

instrumental variable. 

    Controls include indicators for age, race, gender, emergency admission, a set of 30 comorbidities 

associated with increased hospital utilization, and county-level counts of the number of hospital beds, 

general practitioners, medical specialists, median household income, uninsured, and Medicare insurance 

rate.  

The IV regressions instrument for Medicare Advantage penetration rates using Centers for Medicare and 

Medicaid Services benchmark payment rates to Medicare Advantage plans. 

Robust standard errors are used. 

 *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 1. Test for Endogeneity and Strength of Instrument.  
 

                                                      Number of obs =     2174 

                                                      F( 13,  1681) =   191.64 

                                                      Prob > F      =   0.0000 

Total (centered) SS     =   .807981601                Centered R2   =   0.5895 

Total (uncentered) SS   =   .807981601                Uncentered R2 =   0.5895 

Residual SS             =   .331673173                Root MSE      =   .01405 

 

------------------------------------------------------------------------------ 

             |               Robust 

   MApenrate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       year1 |   .0098332    .000602    16.34   0.000     .0086526    .0110139 

      hhidum |    .005961   .0064285     0.93   0.354    -.0066478    .0185697 

 integration |  -.0013749   .0005969    -2.30   0.021    -.0025456   -.0002042 

   ownership |  -.0023933    .002532    -0.95   0.345    -.0073595    .0025729 

    nursebed |  -.0032888    .001739    -1.89   0.059    -.0066997     .000122 

     pcp_md1 |   .0073998   .0146429     0.51   0.613    -.0213203      .03612 

    spec_md2 |  -.0208477   .0051729    -4.03   0.000    -.0309938   -.0107017 

       ftern |   9.14e-06   7.53e-06     1.21   0.225    -5.63e-06    .0000239 

       bdtot |   -.000021   .0000141    -1.49   0.136    -.0000487    6.65e-06 

   income_mh |  -1.49e-06   2.48e-07    -6.00   0.000    -1.97e-06   -1.00e-06 

 ins_percent |   .5690869   .0746685     7.62   0.000      .422634    .7155399 

    mde_rate |   .0853359   .0644709     1.32   0.186    -.0411158    .2117876 

      ab_pay |  -.0000291   6.78e-06    -4.29   0.000    -.0000423   -.0000158 

------------------------------------------------------------------------------ 

Included instruments: year1 hhidum integration ownership nursebed pcp_md1 

                      spec_md2 ftern bdtot income_mh ins_percent mde_rate ab_pay 

------------------------------------------------------------------------------ 

F test of excluded instruments: 

  F(  1,  1681) =    18.39 

  Prob > F      =   0.0000 

 
The result from the first stage regression where we performed a regression on our instrument and 

all exogenous variables against Medicare Advantage penetration rate. Then, we used a partial F-

test to test for endogeneity. The p-value was less that 0.00; therefore, we could reject the null 

hypothesis and concluded that endogeneity existed. Moreover, we obtained an F-statistic larger 

than 10, indicating that our instrument was not weak. 
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Chapter 4: Spillovers: Does Community Uninsurance Rates Affect Access to Behavioral 

Health Services for the Privately Insured? 

 

Abstract  

Objective: To investigate the effect of local uninsurance rates on access to behavioral health 

services for individuals with continuous employer-sponsored insurance that had mental health 

problems.  

 

Data Sources: Individual-level data from the 2011-2015 Medical Expenditure Panel Survey 

(MEPS), the Area Health Resource File (AHRF), and the Small Area Health Insurance Estimator 

(SAHIE).  

 

Study Design: County-level and year fixed effects models estimated the effect of changes in 

uninsurance rates within communities on behavioral health access to care, measured by whether 

an individual had a reported a emergency room or inpatient visit, outpatient visit, or had a 

prescription related to mental health problems.  

 

Principal Findings: Higher community uninsurance rates were associated with fewer mental 

health related outpatient and prescription utilization among those who had continuous insurance 

coverage and had mental-health related problems. There was no association between community 

uninsured rates and emergency department and inpatient behavioral health related visits. 

 

Conclusions: High levels of community uninsurance were likely to affect behavioral health 

access for individuals with continuous insurance who had mental health related issues. Results 

suggest that long-term levels of high uninsurance in communities may lack community resources 

to expand behavioral health provider capacity.  
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Introduction 

The recent expansions of Medicaid and private insurance through the Affordable Care 

Act (ACA) in conjunction with the Mental Health Parity and Addiction Equity Act allowed more 

individuals to gain access to behavioral health services. As more individuals with behavioral 

health conditions obtain a form of insurance through one of these mechanisms, a change in 

demand for behavioral health services is expected. 

However, previous studies did not show how coverage expansions affected access to 

mental health care for individuals with behavioral health conditions who already had employer 

sponsored insurance. The recent uptake of the number of insured individuals could have created 

“positive or negative spillovers” that either improved or reduced the ability of people who were 

already insured to access care. As insurance expansions and behavioral health needs increase, 

positive or negative spillovers may be more pronounced for individuals with behavioral health 

conditions who already have insurance. Negative spillovers may be due to the shortages in the 

mental health and addiction workforce not being able to meet the new demand for behavioral 

health services (Anderson 2014). Moreover, these negative spillovers could be greatest where 

there were the largest gains in the insured as a percentage of the local population (Abdus and Hill 

2017).  

Recent studies examining the spillover effects of community-level uninsured rates on 

access to care are mixed. Studies examining health reform in Massachusetts suggested that 

insurance expansions resulted in access problems, longer waiting times, increased use of the 

emergency department for nonemergency conditions, and individuals that had difficulty finding 

providers that accepted their insurance (Long and Stockley 2010; Skopec et al. 2015). After 

expansion of Medicaid in Michigan, previously insured adults experienced longer waiting times 
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to see their primary care doctor, while the newly insured had shorter waiting times (Tipirneni et 

al. 2015). Other studies found positive spillovers. Communities with lower levels of uninsurance 

were associated with timely access, and improved quality of care for insured and the uninsured 

(Cunningham 1999; Cunningham and Ginsburg 2001; Cunningham and Kemper 1998; Pagán 

and Pauly 2006), and no negative spillovers with insurance expansions (Joynt et al. 2013). Other 

studies found that growing insurance coverage or community uninsured rates had no effect on 

primary care access for those enrolled prior to initiation of policies aimed at increasing the 

uptake of insurance (Abdus and Hill 2017; Sabik 2012).  

The purpose of this study was to analyze the relationship between community uninsured 

rates and access to behavioral health services for individuals who were continuously enrolled 

throughout the year in employer-sponsored insurance. Data from the 2011 to 2015 Medical 

Expenditure Panel Survey (MEPS), Area Health Resource File (AHRF), and the Small Area 

Health Insurance Estimation (SAHIE), allowed this study to estimate  county-level fixed-effect 

logistic models to assess whether community uninsured rates were related to behavioral health 

service access for individuals with behavioral health conditions. We hypothesized that among 

continuously insured adults with mental health problems; those living in communities with high-

uninsured rates used fewer behavioral health services compared to those in communities with 

low uninsured rates.     

Conceptual Framework 

The ways in which population-level increases in insurance coverage affected people who 

were already insured during the recent insurance expansions depended on several assumptions 

(Abdus and Hill 2017; Pagán and Pauly 2006; Kellermann and Snyder 2004). The first was 

provider capacity and willingness to offer more visits and supply additional services (Abdus and 
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Hill 2017; Pagán and Pauly 2006; Kellermann and Snyder 2004). If providers had excess 

capacity, then increased demand could easily be met, but many professionals expressed concern 

that providers could not supply enough additional services—especially behavioral health and 

primary care services (Abdus and Hill 2017; Pagán and Pauly 2006; Kellermann and Snyder 

2004; Hoge et al. 2013). A Substance Abuse and Mental Health Services Administration 

(SAMHSA) report concluded that there was major shortfall in professionals who were 

adequately trained and actively engaged in meeting the behavioral health needs of adults due to 

the workforce’s insufficient size, frequent turnover, and relatively low compensation (Hyde 

2013; Hoge et al. 2009; Substance Abuse and Mental Health Services Administration 2014). The 

lack of adequate compensation, behavioral health provider capacity, and continuity between the 

patient-provider relationship has been shown to be associated with lower quality of care, less 

timely access to care and a range of services, and reduced availability of specialty care when 

needed, especially for vulnerable populations (Hyde 2013; Alegria et al. 2012; Kellermann and 

Snyder 2004). To exacerbate this capacity issue even further, psychiatrists were least likely of all 

specialists to accept insurance of all kinds (Bishop et al. 2014).  

 The second factor was the extent to which the provider market was segmented by the 

types of insurances patients carried, if any (Abdus and Hill 2017; Pagán and Pauly 2006; 

Kellermann and Snyder 2004). The third factor was the effects of ACA provisions intended to 

increase health care capacity (Abdus and Hill 2017; Pagán and Pauly 2006; Kellermann and 

Snyder 2004). The ACA set its capacity-building activities in motion before the largest insurance 

expansions occurred by providing funding to expand the safety-net; training more physicians, 

mid-level practitioners, and nurses; and encouraging more providers to work in primary care and 

in underserved areas (Decker 2012; Heisler 2013). Moreover, the ACA temporarily increased 
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Medicaid payments for some services provided by primary care providers (Zuckerman, Skopec, 

and Epstein 2017; Tipirneni et al. 2015). Overwhelmingly, the largest portion of funds directed 

at increasing capacity went towards primary care capacity, while fewer resources were available 

to expand behavioral health care capacity. A recent report from the Department of Health and 

Human Services projected that the ACA expanded benefits for 62 million Americans (Beronio et 

al. 2014), while SAMHSA concluded that every 10% increase in demand for behavioral health 

related treatment would result in the need for 6,800 additional mental health providers 

(Substance Abuse and Mental Health Services Administration 2014). Meeting such demands 

could be difficult because about 5% of the adult population reported having unmet medical needs 

in the past year (Broderick 2013). The ACA developed provisions designed to address behavioral 

health capacity through mechanisms such as grants for education, training, and loan repayment, 

with specific focus on social workers and psychologist. However, physicians and nurses are not 

eligible for these grants (Hoge et al. 2013, 2009; Eden et al. 2012). Despite the attempt to 

improve the capacity of the behavioral health delivery system funds have not been authorized for 

many of these provisions and funding appropriated to such initiatives remains small relative to 

the resources devoted to primary care capacity (Hoge et al. 2013). Moreover, as suggested by 

some reports, recent health reforms that expand coverage and benefits for behavioral health to 

improve access to mental health care do not adequately incentivize or mandate behavioral health 

provider participation (Beronio, Glied, and Frank 2014; Hoge et al. 2013).  

 The spillover effects associated with community insured rates has been a major concern 

since the early 2000’s. At the time, high and mounting uninsured rates in numerous U.S. 

communities generated concern for the potential of negative spillovers. The major concern was 

that high-uninsured rates would negatively affect access to care for both the insured and 
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uninsured. In a 2003 report, the Institute of Medicine (IOM) hypothesized that high community 

uninsured rates could affect access to or quality of care for the insured and uninsured 

(Kellermann and Snyder 2004). More recently, a 2009 IOM report summary suggested evidence 

of a negative spillover effect on the insured, and stated that high community-level rates of 

uninsurance was associated with the insured having more difficulty obtaining needed health care 

(IOM 2009). Other evidence examining community uninsured rates and access to care found that 

adults with private insurance residing in high uninsurance communities were associated with 

being less likely to have a usual source of care, seeing a specialist, and being satisfied with their 

treatment and care from doctors (Pagán and Pauly 2006). Other evidence suggested uninsured 

adults reported forgoing, postponing, or having difficulty obtaining needed medical care as a 

function of the community uninsured rate (Cunningham and Kemper 1998). The main 

implications from the aforementioned evidence was that reductions in community uninsured 

rates through expansions of insurance could generated positive spillover effects on access to care 

for those that were insured.  

To the contrary, there was a second line of research posits that coverage expansions—

such as the through the ACA—could generate negative spillover effects on access to care for the 

privately and continuously insured. Abdus and Hill (2017) hypothesized that the recent and 

immediate uptake of insurance via the ACA’s coverage expansions could negatively affect those 

that were already insured because the newly insured adults would stress provider capacity and 

decrease their access to medical care. They concluded there was little to no association between 

the recent uptake of insurance in communities and access to care (Abdus and Hill 2017). Other 

evidence found negative spillovers of the immediate uptake of insurance. The Massachusetts 

insurance expansions resulted in access problems, longer waiting times, increased use of the 
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emergency department for nonemergency conditions, and individuals with difficulty finding 

providers that accepted their insurance, but this dissipated over the course of time (Long and 

Stockley 2010; Skopec et al. 2015). Medicaid expansion in Michigan led to previously insured 

adults temporarily seeing longer waiting times to visit their primary care doctor, while the newly 

insured saw shorter waiting times (Tipirneni et al. 2015). 

The difference between these two perspectives could reflect short-term and long-term 

spillover effects of coverage expansions in the community. Short-term expansions could generate 

negative spillovers, while long-term effects might lead to positive spillovers. These short-term 

increases in community uninsured rates could lead to provisional decreases in access to care for 

those already insured, as the health care system has had insufficient time to adjust to the increase 

in demand for care. Any negative spillover effects on access to care associated with an increase 

in community insurance rates may be temporary and eventually diminish over the long term, as 

higher coverage rates of insurance increase community resources and assist in the expansion of 

provider capacity.  

Furthermore, different study designs assessing spillovers may reflect differences between 

short-term and long-term effects. Studies showed positive spillovers associated with low 

uninsured rates that generally employed a community and year fixed effects study design (Pagán 

and Pauly 2006; Sabik 2012; Daysal 2012; McMorrow 2013). By contrast, studies that found  

negative or no spillovers associated with coverage expansions employed study designs that 

examined a 1- or 2-year change in community uninsured rates (Abdus and Hill 2017).  For the 

purposes of this study, we focused on understanding the spillover effects on behavioral health 

care access that reflected more cumulative and long-term patterns of health insurance coverage 

across communities, rather than spillover effects that could be associated with short-term 
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changes in coverage rates associated with the ACA. If communities with a large uninsured 

presence exist, the capacity of providers, the predictability and stability of the insurance market, 

and the willingness of providers to see patients may suffer. The presence of high uninsured rates 

in communities could lead to lower revenue streams for providers due to lower demand for care 

or a greater proportion of uncompensated care, which could affect the insured (Kellermann and 

Snyder 2004; Sabik 2012; Pagán and Pauly 2006). As a result, communities with higher 

uninsured rates may put greater stress on public hospitals, community health centers, and other 

safety net providers (Kellermann and Snyder 2004; Sabik 2012). For providers who treat both 

insured and uninsured patients, financial constraints due to uncompensated care burden may 

reduce the number of service lines offered to patients. Therefore, communities with high-

uninsured rates may be less attractive to medical providers, thus reducing health system capacity 

and access for the insured as well as uninsured.  

We examined the cumulative long-term association between community uninsured rates 

and behavioral health access for the privately insured. We justified this approach for several 

reasons. Examining immediate short-term spillovers from a policy, such as the ACA, could result 

in little to no spillover effects. Results indicating little to no spillovers may be related to 

dedicated (or lack thereof) resources invested into provider capacity building that has not had 

adequate time to operationalize and deliver care effectively for individuals and communities. 

Thus, examining spillovers from a cumulative perspective rather than from a short-term policy-

driven analysis perspective may be better suited at capturing delayed full spillover effects of 

community uninsured rates and access to care. To our knowledge, this is the first study to 

investigate the association between community uninsured rates and access to behavioral health 

care services for adults who already had and continued to have employer-sponsored insurance.  
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High community uninsured rates are associated with poorer access to care, because there 

is an insufficient supply of behavioral health providers across the United States. Therefore, we 

hypothesized that adults living in communities with higher uninsured rates—as compared to 

lower uninsured rates:  

H1: will have less behavioral health related prescription utilization. 

H2: will have less ambulatory utilization related to behavioral health issues. 

H3: and higher utilization of emergency department and inpatient utilization related to 

behavioral health problems. 

We expected that communities with higher uninsured rates would have higher emergency 

department and inpatient visits for behavioral health problems under the assumption that having 

adequate access to primary care services, such as behavioral health ambulatory care services and 

appropriate prescriptions would assist in the deterrence of preventable and unintended 

emergency department and inpatient visits.  

Methods 

Data and Sample Population Overview 

We used data from the 2011-2015 Medical Expenditures Panel Survey-Household 

Component (MEPS-HC). The MEPS is the most comprehensive source of nationally 

representative data on health care utilization, expenditures, and insurance coverage of the U.S. 

noninstitutionalized population. The MEPS-HC sample is drawn from a nationally representative 

subsample of households that participated in the prior year’s National Health Interview Survey 

(NHIS), which is based on a multi-stage area probability design that includes oversampling of 

African-Americans, Hispanics, and Asians (Agency for Healthcare Research and Quality 2017a). 
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We used the MEPS-HC, which included three rounds per year, and we combined years 

2011-2015 as repeated cross-sections to increase the sample size and the statistical precision of 

results. During each round of in-person interviews, information on health insurance coverage, 

health care utilization, health care conditions, and health care expenditures for each person in the 

household were collected. A Medical Provider Component (MPC) collected data from a sample 

of providers identified by survey respondents to both validate and supplement missing 

information on health care utilization (Agency for Healthcare Research and Quality 2017b). 

Respondents were also asked to complete self-administered questionnaires that included more 

detail on health status, access to care, and perceived quality of care.     

Survey response rates for the five years averaged 53%. We restricted the analysis to 

individuals continuously enrolled in employer-sponsored insurance. We also restricted the 

sample to people ages 18-64, and stratified the sample based on whether they were experiencing 

psychological distress (defined below). We identified continuously insured individuals with 

employer-sponsored insurance by monthly measures that indicated whether a person had 

insurance or not. Each individual was asked during each round whether he/she had insurance, 

and the type of insurance he/she had, for all three rounds. All years were pooled together to make 

a pooled-cross section of data.  

We combined data for the period of 2011-2015 from the MEPS-HC, the Area Health 

Resource File (AHRF), and the Small Area Health Insurance Estimation (SAHIE) dataset. The 

data from the five years of MEPS-HC conducted during this period allowed us to observe how 

behavioral health services for privately insured adults changed over the course of time after 

implementation of the ACA. Moreover, because spillover effects might have been largest in 

communities with the highest uninsured rate, we augmented MEPS-HC data with year and 
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county specific measures of the percent uninsured, observed from the SAHIE. We then examined 

a subgroup with a behavioral health condition that was particularly vulnerable to potential 

spillovers: adults with severe psychological distress residing in communities with varying levels 

of uninsured rates. We examined three outcomes: emergency department and inpatient, 

prescription, and ambulatory behavioral health related utilization. 

Identification of Behavioral Health Problems 

To examine and identify people with psychological distress, we used the six item Kessler 

Psychological Distress Scale, a validated measure previously used to screen for prevalence and 

severity of mental illness (diagnosed and undiagnosed; Kessler et al. 2010). We identified people 

who had a score of nine or higher, which included people at the 75th percentile or higher of the 

sample, and considered these adults to have severe psychological distress.     

Outcomes: Identification of Behavioral Health Utilization 

The MEPS respondents were asked to report on all health care utilization, including 

inpatient care, outpatient physician and nonphysician visits, and prescription drugs. For each 

medical encounter, respondents were asked a series of questions, including the specific health 

conditions associated with the visits. Our measures of behavioral health care utilization reflect 

medical encounters and prescription drugs associated with behavioral health conditions. 

 Behavioral health conditions were based on self-reports by survey respondents, who 

were asked to identify up to five health conditions associated with each medical encounter or 

visit (including inpatient, emergency department, ambulatory, prescription drugs; Agency for 

Healthcare Research and Quality 2017a). These conditions were recorded by interviewers as 

verbatim text and were subsequently coded into ICD-9 and Clinical Classification Codes by 

professional coders following specific guidelines. Behavioral health conditions were based on 
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those with Clinical Classification Codes of 650-652, 656-663, and 670. Anxiety, depression, and 

other mood disorders were by far the most prevalent self-reported conditions, but our definition 

also included psychoses, personality disorders, and substance use disorders.    

We included three utilization measures in our analysis: (1) outpatient visits related to 

behavioral health conditions (both hospital-based and office-based); (2) hospital emergency 

department and inpatient utilization related to behavioral health conditions; and (3) prescription 

drugs related to behavioral health problems. All visits associated with medical encounters and 

prescription drug utilization that had Clinical Classification Codes associated with behavioral 

health conditions (see above) were considered a visit for behavioral health. One exception was 

for outpatient provider visits, which were defined as behavioral health-related if the survey 

respondent reported that the primary reason for the visit was psychotherapy, or the provider seen 

was a psychiatrist, psychologist, social worker, or other type of mental health counselor.   

Independent Variable: Community Uninsured Rates 

 We extracted the county-level uninsured rate from the AHRF. The AHRF pulls county-

level measures from a variety of federal data sources and obtains the county-level uninsured rates 

from the SAHIE. The SAHIE estimates are conducted by the Census Bureau, which provides 

local-area estimates of the proportions of population that are uninsured (Bureau 2017). We used 

the SAHIE uninsured rates pulled from the AHRF versus the American Community Survey 

(ACS), because it allowed us to make estimates for counties with less than 60,000 people. We 

computed the annual proportion of uninsured by including adults ages 18 to 64 without insurance 

and categorized them into low, average, and high uninsured areas. County areas were defined as 

communities, if the communities were large enough to support estimates for all of the period 
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2011-2015. Community area uninsured rates from the AHRF were then merged with MEPS-HC 

data by county.   

Controls: Other sociodemographic, health status, provider capacity, and health behavior 

variables 

Both the descriptive and multivariate analysis described below included key 

sociodemographic characteristics, including age, gender, race/ethnicity (white, African-

American, Hispanic, Asian, other), and education (high school graduate or less than high school). 

Low income was defined as having a family income less than 200% of the federal poverty level; 

moderate income was defined as having family income between 200 and 400% of the federal 

poverty level; high income was defined as having family income greater than 400% of poverty. 

Self-reported general health status was reported as a person having excellent or very good, 

average, and fair or poor health. We controlled for county-level employment and  provider 

capacity variables. We also controlled for the supply of county-level primary care by using the 

simple counts of physicians, psychiatric care, and office-based psychiatric care within a given 

community.  

Analytic Strategy 

We followed a similar analytical approach as Pauly and Pagán (2006), Sabik (2012), 

Daysal (2012), and McMorrow (2013) where we used county-level and year fixed-effects 

logistic regression models to control for community-area and year factors to examine the effects 

of living in high or low uninsured communities and its association with behavioral health 

services over the course of time. For each access to care behavioral health utilization measure, 

we regressed on community-area adult uninsured rate. Each logistic regression was stratified by 

the little to no distress sample and whether a person had severe psychological distress (Kessler 



 

 63 

score of nine or above). We then converted our regression results to predicted average 

probabilities for ease of interpretation.  

(1) E(Yi,c,t = 1) = f (α + β1Uninsuredc,t +  β2Year1 + β3X1 + β4County Supply1 + β4County1 + 

εi,c,t) 

The dependent variables in the equation (Yict) are binary measures of health care 

utilization individual i, residing in community c, and in year t. The variable (Uninsuredct) is a 

categorical variable, categorized into terciles, which takes the value 0 if individual i resided in a 

low uninsured rate community area, the value 1 if individual i resided in an average community 

uninsured rate area, and 2 if individual i resided in the highest community uninsured rate area. 

Year1 is the year fixed-effect.  X is the vector of individual characteristics (age, sex, 

race/ethnicity, employment status, education, and health status). County Supply is a vector of the 

number of physicians practicing in a given community (primary care physicians, psychiatrists, 

and office-based psychiatrists). County is the county fixed effect. Including these measures 

allowed us to estimate a spillover of whether the association between behavioral health 

utilization varied by the community-level uninsured rate.  

Survey weights were used to produce nationally representative estimates, to correct for 

the unequal probabilities of selection in the MEPS sample, and to correct for survey non-

response. The MEPS public use files included variables to obtain weighted estimates and 

corrected standard errors that took into account the complex survey design, using the Taylor-

series linearization approach. Because MEPS public use files use a common variance structure 

beginning in 2002, the weight variables for the years 2011-2015 are combined in order to 

produce weighted estimates with the pooled data, as recommended in the MEPS survey 

documentation (Agency for Healthcare Research and Quality 2017a). All reported standard 
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errors and tests of statistical significance accounted for the complex survey design. We 

conducted all analyses using STATA 14.2.   

Results 

Prevalence of Severe Psychological Distress 

 Of adults in the sample with continuous employer-sponsored insurance identified in 

Table 1, those with little to no psychological distress comprised about 33% and those with severe 

psychological distress comprised about 5% of the total sample. Overall, unadjusted estimates in 

Table 2 indicated that adults with psychological distress had higher prevalence of emergency 

department and inpatient, ambulatory, and prescription behavioral related utilization than those 

with little to no distress. Those who had severe distress had about six percentage points more 

ambulatory care visits, 10 percentage points more prescriptions, and about one percentage point 

more emergency department and inpatient visits. There was little to no difference between 

samples in community uninsured rates. Adults with severe distress lived in areas with higher 

supply of primary care physicians (Mean: 847.91) psychiatric physicians (Mean: 161.34), and 

office-based psychiatric physicians (Mean: 114.25) compared to those with little to no distress. 

Both samples had slightly more females than males. The majority of both samples were also 

White. On average, those with severe distress were less educated with approximately 7% that 

had less than a high school education; however, 5% of those with little to no distress had less 

than a high school education. Furthermore, 36% of adults with severe distress graduated from 

college, whereas those with little to no distress amounted to about 42%. Both samples were 

relatively similar in age. Income as a percent of the federal poverty line was also similar between 

both samples; however, the prevalence of adults that were less than 200% of the federal poverty 
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line who had severe distress was slightly higher. People who had little to no distress were more 

likely to be employed and to report being in excellent or very good health.  

 

Characteristics of Community Uninsured Rate and Behavioral Health Services 

 Table 3 displays the characteristics of adults that live in communities with low, average, 

or high-uninsured rates that use behavioral health services. Focusing on the last column of the 

table, adults with severe distress in communities with the highest uninsured rates as compared to 

those in the lowest, had less ambulatory visits (9.99%), about the same amount of prescriptions 

(21.44%), and more emergency department and inpatient visits (1.40%). In general, the 

prevalence of emergency department and inpatient visits, ambulatory care, and prescriptions was 

much higher for those with severe distress across all communities than those with little to no 

distress.  

 Community Uninsured Rate and Behavioral Health Access 

 Full logistic regression results are presented in Appendix I. We converted these results to 

probabilities for ease of interpretation. Table 4 presents the predicted average probabilities of our 

full logistic regression results. Overall, adults with severe psychological distress in communities 

with the highest uninsured rates reported a lower probability of prescriptions and ambulatory 

visits than those in communities with the lowest uninsured rate. Results indicated that adults with 

severe psychological distress that resided in communities with average and the highest uninsured 

rates were prescribed behavioral health related medications 7 percentage points (p<0.05) and 

8.28 percentage points (p<0.1) less than those who lived in the lowest uninsured communities, 

respectively. This trend continues with ambulatory care as well. Adults that live in communities 

with an average uninsured rate reported utilizing outpatient or office-based care 8.57 percentage 
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points (p<0.01) less than those in the lowest uninsured communities. Adults living in counties 

with the highest uninsured rate saw even a larger disparity—they reported 10.58 percentage 

points (p<0.01) less outpatient or office-based visits. Adults living in the highest uninsured areas 

saw about 5% higher probability of emergency department and inpatient visits relative to 

communities with the lowest uninsured rate; however, this was not significant. For individuals 

with little or no psychological distress, there were no statistically significant differences between 

community uninsured rate and behavioral health care utilization.  

Discussion 

Our results found that high levels of community uninsurance and access to behavioral 

health services did not only affect the uninsured, but the insured as well. There appeared to be a 

negative spillover in communities with the highest uninsured rates. The privately insured 

reported lower probabilities of prescription utilization and ambulatory care for behavioral health 

related issues. We found similar results by Pauly and Pagán (2006), but different than Abdus and 

Hill (2017) and other studies that examined the spillover effects of the ACA coverage 

expansions. Like Pauly and Pagán (2006), Sabik (2012), Daysal (2012), and McMorrow (2013), 

our year and county fixed-effects study design might reflect the long-term cumulative effects of 

living in high and low uninsured communities; whereas, Abdus and Hill and other studies 

assessed the short-term changes in utilization that occurred when a community experienced a 

change in coverage over a 1- or 2-year period. A short-term increase in the community insurance 

rate could lead to a short-term decrease in access for those who already insured, as the health 

care system had insufficient time to adjust to the increased demand for care. However, any 

negative spillover effects on access associated with an increase in community insurance rates 

could be temporary and eventually reversed over the long term, as higher coverage rates were 
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associated with increases in community resources. As demonstrated by our results, communities 

with high uninsured rates affected privately insured individuals’ access to behavioral health 

services negatively, which could be a symptom of insufficient provider capacity and inadequate 

community resources. The implication is that over the long term, coverage expansions have 

positive spillover effects on the continuously insured as higher coverage rates increase 

community resources and lead to an expansion in system capacity.     

In greater detail, the negative spillover effects in high-uninsured communities may have 

occurred for several reasons. First, the thin profit margins per service that accompany a large 

uninsured presence (Pagán and Pauly 2006; Sabik 2012; Chen, Lo Sasso, and Richards 2018). 

Second, in communities with high-uninsured rates the uncertain mix of privately uninsured and 

insured adults could add unpredictability and instability to the respective markets (Chen, Lo 

Sasso, and Richards 2018; Pagán and Pauly 2006). Third, the return on investment for primary 

care specialties such as psychiatry may be negative and a far more risky discipline to enter than 

other specialties (Chen, Lo Sasso, and Richards 2018). These reasons create a scenario that may 

be detrimental to behavioral health provider capacity, reduce the demand and access for 

behavioral health services, and disincentivize behavioral health providers from seeing patients 

and offering more services.  

Policymakers and medical professionals should be cognizant that the lack of behavioral 

health supply- and demand-side incentives may have unintended consequences that may also 

affect individuals with insurance, especially those with behavioral health needs. This study 

demonstrates that high levels of community uninsured rates can have negative effects on 

privately insured individuals’ behavioral health service access. Supply-side policies that 

influence demand should be developed to bolster behavioral health provider capacity. Evidence 
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of supply-side financial incentives such as provider bonuses, benefit expansions, and payment 

increases for specific services have been documented as having positive effect on providers 

entering less-desired specialties, improving provider capacity in high need areas, and increasing 

access to medical care (Chen, Lo Sasso, and Richards 2018). As a result, resources should be 

targeted to communities with the highest uninsured rates so that individual access to behavioral 

health services is improved.  

This study had several limitations. First, we used the Kessler scale as a proxy to identify 

whether an individual had a behavioral health condition. We used this scale because of the 

endogeneity issues between identifying our sample by using behavioral health conditions at a 

provider visit and measuring behavioral health utilization. Second, there could be under-

reporting of diagnoses for behavioral health problems and over-estimates of treated cases. Third, 

a larger sample would yield more precise estimates to detect differences across community 

uninsured rates and behavioral health access. Fourth, there could be measurement error of the 

community uninsured rate in the SAHIE. Fifth, community uninsured rates continued to decline 

past 2015; therefore, spillovers on the continuously insured may have changed. Lastly, we could 

not be completely sure that disparities in behavioral health access in communities with higher 

uninsured rates were due to lower provider capacity and payments. 

Adults with psychological distress and that have continuous employer-sponsored 

coverage, in communities with higher levels of the uninsured, was associated with a negative 

spillover. On average, people were less likely to use prescriptions, and to use ambulatory 

services to receive services related to their behavioral health. There appears to be no statistically 

significant differences in county-level uninsured rates and emergency department and inpatient 
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utilization. Although, these individuals have insurance, their access to behavioral health related 

medication and ambulatory services were less likely if they lived in a highly uninsured area.  
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Table 1. Sample Summary. 

Continuously enrolled in employer-sponsored insurance (n=181,529) 

Little no psychological distress 33.04% 

Severe Psychological Distress 5.43% 

 

Table 2. Summary Statistics. 

  Little to no distress Severe Distress 

  

% % 

Mean Mean 

Behavioral Health Utilization     

Emergency Department/Inpatient 0.27% 1.12% 

Prescription 11.48% 21.09% 

Ambulatory 4.19% 10.66% 

Community Uninsured Rate1     

Low 37.37% 38.07% 

Average 34.28% 34.97% 

High 28.35% 26.96% 

County Supply-Side Variables     

Primary Care Physicians  778.27 847.91 

Psychiatric Physicians 144.82 161.34 

Office-based Psychiatric Physicians 102.90 114.25 

Controls     

Sex     

Male 49.18% 48.13% 

Female 50.82% 51.87% 

Education     

LT High school 3.56% 6.75% 

High School or GED equivalent  23.45% 25.57% 

Some College/Associates or Vocational 30.53% 31.51% 

College graduate 42.45% 36.17% 

Race/Ethnicity      

White 57.89% 55.20% 

Hispanic 11.04% 12.08% 

Black 9.01% 8.95% 

Asian 20.00% 21.58% 

Other 2.06% 2.20% 

Age     
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Table 2. Summary Statistics. 

  Little to no distress Severe Distress 

  

% % 

Mean Mean 

18-34 29.62% 31.68% 

35-49 33.89% 32.76% 

50-64 36.50% 35.57% 

Income (percent of federal poverty line)     

LT than 200% 9.38% 12.17% 

200%-400% 30.95% 32.99% 

GT than 400%  59.67% 54.84% 

Employment 86.01% 78.25% 

General Health Status     

Excellent or Very Good 70.20% 58.63% 

Good 23.54% 27.62% 

Fair or Poor 6.26% 13.75% 

Year     

2011 20.20% 20.77% 

2012 20.53% 17.41% 

2013 19.82% 18.25% 

2014 19.66% 21.56% 

2015 19.79% 22.01% 
1Community Uninsured Categories are defined as follows: 

Low: LT 14.44% 

Average: 14.44%-21.06% 

High: GT 21.06% 
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Table 3. Behavioral Health Services by Community Uninsured Area. 

  Little to no distress Severe Distress 

Community Uninsured Rate     

Emergency Department/Inpatient     

Low 0.24% 0.88% 

Average 0.35% 1.17% 

High 0.21% 1.40% 

Prescription      

Low 12.27% 21.25% 

Average 11.94% 20.65% 

High 9.89% 21.44% 

Ambulatory     

Low 4.94% 11.62% 

Average 4.28% 10.13% 

High 3.10% 9.99% 
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Table 4. Adjusted Probabilities: Stratified by Psychological Distress. 

Variable 

Little to no 

distress 

Severe 

distress 

Utilization Measures 

Predicted 

Average 

Predicted 

Average 

Emergency Department/Inpatient 

Low community-level uninsured rate (reference) 0.68% 3.40% 

  (0.21) (1.56) 

Average community-level uninsured rate 1.40% 2.27% 

  (0.32) (0.60) 

High community-level uninsured rate 1.10% 8.34% 

  (0.61) (3.59) 

RX Use 

Low community-level uninsured rate (reference) 11.77% 28.12% 

  (0.07) (2.23) 

Average community-level uninsured rate 12.79% 21.12%** 

  (0.53) (1.11) 

High community-level uninsured rate 11.92% 19.84%* 

  (0.97) (2.36) 

      

Outpatient/Office Based  

Low community-level uninsured rate (reference) 4.76% 20.25% 

  (0.41) (2.77) 

Average community-level uninsured rate 5.59% 11.67%*** 

  (0.41) (1.08) 

High community-level uninsured rate 5.59% 9.62%*** 

  (0.89) (1.51) 
1Community Uninsured Categories are defined as follows:   

Low: LT 14.44% 

  Average: 14.44%-21.06% 

  High: GT 21.06% 

  *p<0.1, **p<0.05, ***p<0.01 significantly different from reference group 
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Appendix 2. Regression Results: Association Between Community Uninsurance and 

Behavioral Health Services.  

  
Emergency 

Department/Inpatient  Ambulatory Prescription 

  

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio 

Community 

Uninsured Rate1             

Low (Reference) 

  

        

Average 2.17 0.61 1.20 0.44*** 1.11 0.60*** 

  (1.11) (0.51) (0.19) (0.12) (0.12) (0.11) 

High 1.66 3.36 1.28 0.34*** 1.02 0.54* 

  (1.45) (3.99) (0.32) (0.14) (0.17) (0.18) 

County Supply-Side 

Variables             

Primary Care 

Physicians  1.00 1.03** 1.00 0.99** 1.00 1.00 

  (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) 

Psychiatric 

Physicians 1.03 1.00 1.00 1.02 1.00 1.01 

  (0.02) (0.04) (0.01) (0.02) (0.01) (0.01) 

Office-based 

Psychiatric Physicians 0.93** 0.86** 1.00 1.02 0.99 0.99 

  (0.03) (0.06) (0.01) (0.02) (0.01) (0.02) 

Controls             

Sex             

Male (Reference) 

  

        

Female 1.98** 1.57 1.55*** 1.94*** 2.12*** 2.01*** 

  (0.59) (0.60) (0.15) (0.26) (0.13) (0.24) 

Education              

LT High school 

(reference) 

  

        

High School or 

GED equivalent  1.09 5.19*** 1.06 1.66 1.19 2.00*** 

  (0.74) (3.68) (0.37) (0.63) (0.21) (0.56) 

Some 

College/Associates or 

Vocational 0.68 4.52*** 1.51 1.88* 1.37** 2.45*** 

  (0.45) (3.57) (0.53) (0.67) (0.21) (0.67) 

College graduate 0.74 3.19 1.98 3.29*** 1.36* 3.03*** 
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Appendix 2. Regression Results: Association Between Community Uninsurance and 

Behavioral Health Services.  

  
Emergency 

Department/Inpatient  Ambulatory Prescription 

  

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio 

  (0.52) (2.78) (0.69) (1.19) (0.21) (0.88) 

Race/Ethnicity              

Hispanic 

(Reference) 

  

        

White 1.62 3.17** 2.08*** 

2.012**

* 2.18*** 2.56*** 

  (0.75) (1.71) (0.31) (0.43) (0.23) (0.54) 

Black 0.76 0.86 0.82 0.59** 0.51*** 0.45*** 

  (0.44) (0.64) (0.16) (0.16) (0.07) (0.12) 

Asian 1.49 0.57 1.36** 0.74 1.30* 1.22 

  (0.78) (0.39) (0.21) (0.19) (0.15) (0.28) 

Other 2.14 2.13 1.59 1.00 1.30 2.21** 

  (2.32) (1.81) (0.50) (0.39) (0.37) (0.76) 

Age             

18-34 (Reference) 

  

        

35-49 0.69 0.31*** 1.04 0.97* 1.17* 1.19 

  (0.24) (0.14) (0.13) (0.18) (0.10) (0.18) 

50-64 0.67 0.14*** 0.98 0.71** 1.55*** 1.27* 

  (0.20) (0.06) (0.11) (0.11) (0.12) (0.16) 

Income (percent of 

federal poverty line)             

LT than 200% 

(Reference) - -         

200%-400% 1.00 1.05 1.21 0.99 0.97 0.83 

  (0.46) (0.57) (0.21) (0.19) (0.10) (0.14) 

GT than 400%  0.64 1.07 1.13 1.07 1.00 0.77 

  (0.34) (0.60) (0.20) (0.22) (0.11) (0.14) 

Employment 1.91 0.68 0.64*** 0.40*** 0.73*** 0.52*** 

  (0.80) (0.27) (0.07) (0.08) (0.05) (0.07) 

General Health 

Status             

Excellent or Very 

Good (Reference) 

  

        

Good 2.61*** 7.38*** 1.74*** 3.05*** 1.73*** 2.95*** 

  (0.76) (3.31) (0.17) (0.48) (0.10) (0.37) 
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Appendix 2. Regression Results: Association Between Community Uninsurance and 

Behavioral Health Services.  

  
Emergency 

Department/Inpatient  Ambulatory Prescription 

  

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Little to no 

distress 

Severe 

Distress 

Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio Odds Ratio 

Odds 

Ratio 

Fair or Poor 4.77*** 

15.38**

* 2.73*** 3.97*** 3.20*** 5.03*** 

  (1.65) (6.82) (0.44) (0.68) (0.31) (0.73) 

Year             

2011 (Reference) 

  

        

2012 1.23 1.95 0.71*** 0.84 0.73*** 0.66*** 

  (0.51) (1.06) (0.07) (0.17) (0.06) (0.11) 

2013 0.86 2.27 0.66*** 0.72 0.72*** 0.67** 

  (0.46) (1.39) (0.08) (0.18) (0.07) (0.12) 

2014 1.36 1.08 0.86 0.58** 0.81** 0.60*** 

  (0.80) (0.76) (0.13) (0.14) (0.09) (0.12) 

2015 1.13 1.13 0.75* 0.39*** 0.72*** 0.43*** 

  (0.76) (0.88) (0.12) (0.12) (0.09) (0.10) 

Constant 0.04 0.00*** 0.74*** 0.23 0.02*** 0.01*** 

  (0.28) (0.00) (0.02) (1.57) (0.00) (0.00) 
1Community Uninsured Categories are defined as follows: 

Low: LT 14.44% 

Average: 14.44%-21.06% 

High: GT 21.06% 

*p<0.1, **p<0.05, ***p<0.01 
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