
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2018 

EXAMINING THE CONFIRMATORY TETRAD ANALYSIS (CTA) AS A EXAMINING THE CONFIRMATORY TETRAD ANALYSIS (CTA) AS A 

SOLUTION OF THE INADEQUACY OF TRADITIONAL STRUCTURAL SOLUTION OF THE INADEQUACY OF TRADITIONAL STRUCTURAL 

EQUATION MODELING (SEM) FIT INDICES EQUATION MODELING (SEM) FIT INDICES 

Hangcheng Liu 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Biostatistics Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5565 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 





24 
 

A good fit occurs if the value of SRMR is less than 0.08. Cumulative frequency distribution (CDF) 

of SRMR for both Model A and Model B were showed in Figure 1.3.2. 

 

Figure 1.3.2 CDFs of SRMR for Model A and Model B from Preacher, 2006 

 

 

Results showed that Model B fit random samples better than Model A, even though they had same 

number of free parameters. This is strong evidence to show the complexity of models is not fully 

controlled by the number of free parameters. Thus, more factors that can reflect some characters 

of the SEM model should be identified and used to either adjust the traditional fit indices or to 

create new fit indices. For example, the confirmatory tetrad analysis (Bollen, 1993) has been 

proposed as one way to build SEM models and potentiallyprovide a reasonable way to improve 

the measurement of model complexity.  

 

  



25 
 

1.4 Confirmatory Tetrad Analysis 

Confirmatory tetrad analysis (CTA) is a technique to estimate model fit of structural equation 

models by using the features of tetrads, first proposed by Spearman (1904).  The tetrad approach 

was used in SEM model testing but has been replaced by the maximum likelihood method 

popularized by Jöreskog (1970) in the LISREL program. Due to the development of computers, 

Glymour et al. (1987) proposed vanishing tetrads as a method to search for SEM models, the 

proposed exploratory tetrad analysis (ETA) was based on a computer intensive search algorithm. 

And then, confirmatory tetrad analysis (CTA) was developed by Bollen & Ting (1993) to test 

one of several specific SEM models. After a set of Stata commands for CTA was developed by 

Bauldry & Bollen (2016), the CTA has become more accessible. 

Like all the other techniques in SEM, the primary goal of CTA is to test 𝐻଴: Σ = Σ(θ). However, 

CTA focuses on the vanishing tetrads implied by the proposed model rather than the estimation 

of coefficients in the function 𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇. In Bollen & Ting (1993), a "tetrad" refers to the 

difference in the products of certain covariances (or correlations) among four random variables. 

A structural equation model often implies that some tetrads should be zero, and this model 

indicated that zero tetrads are called "vanishing tetrads". Thus, by testing the model implied 

vanishing tetrads equal to zero or not, the goodness of fit of the model can be determined.  

Compared to the traditional model fit indices in SEM, the potential benefits from CTA are the 

following:, 1) CTA can be applied to some under-identified models (at least one parameter in 

function 𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇 that cannot be consistently estimated) and some models that are not 

nested according to the traditional LR test are nested in terms of vanishing tetrads. 2) there is  no 

parameter estimate process in CTA, which means CTA does not require numerical minimization 
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and thus avoids the associated convergence problems that are present with other estimation 

approaches. 

The example below is designed to illustrate the concept of tetrad and vanishing tetrad. 

Figure 1.4.1 Path diagram of a factor model 

 

The factor model shown in Figure 1.4.1 has one latent variable ξଵ and four observed variables 

𝑥ଵ to 𝑥ସ. The equations corresponding to this factor model are of the form: 

𝑥௜ = 𝜆௜ଵξଵ + 𝛿௜     (1.4.1) 

where 𝛿௜ is the random error term with E(𝛿௜) = 0 for all i, COV(𝛿௜, 𝛿௝) = 0 for 𝑖 ≠ 𝑗, and the 

COV(ξଵ, 𝛿௜) = 0 for all i. Then the population covariances (σ௜௝) of the observed variables can be 

calculated by the following form: 

σ௜௝ = 𝜆௜ଵ𝜆௝ଵ𝜙     (1.4.2) 
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where σ௜௝  is the population covariance of the i and j variables and 𝜙 is the variance of ξଵ. If the 

model is correct, then we can use covariance algebra (e.g., Bollen 1989, p. 21) to prove that the 

equalities below must hold: 

τଵଶଷସ = 𝜎ଵଶ𝜎ଷସ − 𝜎ଵଷ𝜎ଶସ = 𝜆ଵଵ𝜆ଶଵ𝜙 ∗ 𝜆ଷଵ𝜆ସଵ𝜙 − 𝜆ଵଵ𝜆ଷଵ𝜙 ∗ 𝜆ଶଵ𝜆ସଵ𝜙 = 0 

τଵଷସଶ = 𝜎ଵଷ𝜎ସଶ − 𝜎ଵସ𝜎ଷଶ = 0 

τଵସଶଷ = 𝜎ଵସ𝜎ଶଷ − 𝜎ଵଶ𝜎ସଷ = 0          (1.4.3) 

 

A τ୥୦୧୨ shown in 1.4.3 is called a “tetrad” in confirmatory tetrad analysis, and when τ୥୦୧୨ is zero 

for a model, it is so called a “vanishing tetrad”. From the results in 1.4.3, the factor model in 

Figure l.4.1 implies three vanishing tetrads (τଵଶଷସ, τଵଷସଶ and τଵସଶଷ). If the construction of SEM 

model changed, the composition of vanishing tetrads will also change. Similar to the model 

showed in Figure 1.4.1, the factor model showed in Figure 1.4.2 also has 4 observed variables 

(𝑥ଵ to 𝑥ସ), however, it has 2 latent variables (ξଵ and ξଶ). 

Figure 1.4.2 Path diagram of a factor model with two latent variables 
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Figure 1.4.2 showed a different path diagram for the same observed variables (𝑥ଵ to 𝑥ସ) in Figure 

1.4.1. We use 𝜎 = 𝐶𝑂𝑉(ξଵ, ξଶ) to represent the covariance between ξଵ and ξଶ, it is not equal to 

zero. Thus, the 6 population covariances (σ௜௝) of these 4 observed variables are calculated as: 

σଵଶ = 𝜆ଵଵ𝜆ଶଵ𝜙ଵ  σଷସ = 𝜆ଵଶ𝜆ଶଶ𝜙ଶ 

σଵଷ = 𝜆ଵଵ𝜆ଵଶ𝜎  σଵସ = 𝜆ଵଵ𝜆ଶଶ𝜎 

σଶଷ = 𝜆ଶଵ𝜆ଵଶ𝜎  σଶସ = 𝜆ଶଵ𝜆ଶଶ𝜎 

In this factor model, the assumption assumed that 𝜙ଵ ≠ 𝜙ଶ, thus, there is only one vanishing tetrad 

implied in this model: 

τଵଷସଶ = 𝜎ଵଷ𝜎ସଶ − 𝜎ଵସ𝜎ଷଶ = 𝜆ଵଵ𝜆ଵଶ𝜎 ∗ 𝜆ଶଵ𝜆ଶଶ𝜎 − 𝜆ଵଵ𝜆ଶଶ𝜎 ∗ 𝜆ଶଵ𝜆ଵଶ𝜎 = 0   (1.4.4) 

Algebraic substitution between vanishing tetrads will show that some of the vanishing tetrads 

can be derived from the others and are redundant for the test. Therefore, not all the vanishing 

tetrads should be used in the test of overall model fit in CTA, and the identification of 

nonredundant vanishing tetrads is necessary before the test of model it. There are three situations 

in which redundancy will occur: (1) When none of the covariances exist in one varnishing tetrad 

are exist in other vanishing tetrads: Algebraic substitution is impossible, and this tetrad is 

nonredundent. (2) When two vanishing tetrads have three or more covariances in common: They 

must be identical, thus they are redundant. (3) Vanishing tetrads having one or two covariances 

in common: We need to distinguish the redundant/nonredundant tetrads (Bollen, 1993). 
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For vanishing tetrads having two covariances in common, we always have 3 different tretrads for 

one choice of 4 observed variables. For example, in Example shown in Figure 1.4.1, we have: 

τଵଶଷସ = σଵଶσଷସ − σଵଷσଶସ = 0 

τଵଷସଶ = σଵଷσସଶ − σଵସσଷଶ = 0 

τଵସଶଷ = σଵସσଶଷ − σଵଶσସଷ = 0 

We can see any 2 of these 3 equations can imply the third equation.  

When τଵଶଷସ  and τଵଷସଶ are true, from τଵଶଷସ , we know 𝜎ଵଶ𝜎ଷସ = 𝜎ଵଷ𝜎ଶସ, then replace 𝜎ଵଷ𝜎ସଶ 

using 𝜎ଵଶ𝜎ଷସ in τଵଷସଶ, we have 𝜎ଵଶ𝜎ଷସ − 𝜎ଵସ𝜎ଷଶ = 0, which is the same as τଵସଶଷ. Thus τଵସଶଷ is a 

redundant vanishing tetrad that need to be removed before significance test. 

For vanishing tetrads having one covariance in common, algebraic substitution will lead to a 

vanishing equation with six covariances, and no additional vanishing tetrad will be implied.  

For example, in a SEM model, we have: 

τଵଶଷହ = 𝜎ଵଶ𝜎ଷହ − 𝜎ଵଷ𝜎ଶହ = 0 

τଵଶ଺ସ = 𝜎ଵଶ𝜎଺ସ − 𝜎ଵ଺𝜎ଶସ = 0 

τଵ଺ଷହ = 𝜎ଵ଺𝜎ଷହ − 𝜎ଵଷ𝜎ହ଺ = 0 

From τଵଶଷହ and τଵଶ଺ସ that have one common covariance in common (𝜎ଵଶ) we know:  

𝜎ଵଶ = 𝜎ଵଷ𝜎ଶହ/𝜎ଷହ 

Then put this in τଵଶ଺ସ, we will get: 

𝜎ଵଷ𝜎ଶହ𝜎଺ସ − 𝜎ଵ଺𝜎ଶସ𝜎ଷହ = 0 
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Thus this equation and τଵ଺ଷହ implied: 

𝜎ଵ଺𝜎ଷହ = 𝜎ଵଷ𝜎ହ଺ 

𝜎ଵଷ𝜎ଶହ𝜎଺ସ − 𝝈𝟏𝟔𝜎ଶସ𝝈𝟑𝟓 = 𝜎ଵଷ𝜎ଶହ𝜎଺ସ − 𝝈𝟏𝟑𝝈𝟓𝟔𝜎ଶସ = 𝜎ଶହ𝜎଺ସ − 𝜎ହ଺𝜎ଶସ = τଶସହ଺  

That means given vanishing tetrads τଵଶଷହ, τଵଶ଺ସ and τଵ଺ଷହ, the vanishing tetrad τଶସହ଺ is 

redundant. Thus, before we compute the test statistic, a set of nonredundant vanishing tetrads 

must be selected. For example, model in Figure 1.4.1 we can select 3 different nonredundant 

vanishing tetrad sets. It is possible that difference sets might yield different results, thus Hipp 

and Bollen (2003) recommended randomly selecting sets of vanishing tetrads multiple times and 

assessing the sensitivity of the results to different selections. 

After model implied nonredundant vanishing tetrads are determined, a simultaneous significance 

test showed below was proposed by Bollen (1990) and it can be used to determine whether the 

model is consistent with the sample data (covariances or correlation matrix).  

√𝑁𝒕
஽
→ 𝑁(0, Σ௧௧)      

Σ௧௧ = (𝜕𝛕/𝜕𝛔)ᇱΣ௦௦(𝜕𝛕/𝜕𝛔)      

𝑇 = 𝑁𝒕ᇱΣ෠௧௧
ିଵ𝒕 ~ 𝜒௧

ଶ      1.4.5 

where  𝑁 is the sample size. 

 𝒕 is the column vector of the independent tetrad differences. 

 Σ௧௧ is the covariance matrix of the limiting distribution of the sample tetrad differences. 

Σ௦௦ is the covariance matrix of the limiting distribution of the sample covariances appear 
in the sample tetrad differences. 

𝛕    is a vector of the population tetrads that are implied to be zero for a specific model. 

𝛔    is a column vector of all unique covariances appear in the population tetrads. 

𝑡     is the number of population tetrads.  
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Use the vector 𝛕 to represent the population tetrads that are implied to be zero for a specific 

model in 1.4.5, model goodness of fit can be tested by evaluating whether all model implied 

vanishing tetrads are equal to zero based on the sample covariance matrix instead of evaluating 

how well the model implied covariance matrix can match the sample covariance matrix. The null 

hypothesis of test in 1.4.5 is H଴: 𝛕 = 0, instead of  H଴: Σ = Σ(θ). Test statistic 𝑇 will 

approximates a chi-square variate with degrees of freedom equal to the number of tetrad 

differences simultaneously examined. A nonsignificant test statistic means that the implied 

vanishing tetrads hold and the model is reasonable. If a significance test result was found, the 

model should be rejected.  

This simultaneous test statistic for multiple vanishing tetrads used in CTA can be applied to 

normally or nonnormally distributed observed variables. Testing vanishing tetrads provides a test 

for model fit that can lead to results different from the usual likelihood-ratio (LR) test associated 

with the maximum likelihood methods that dominate the structural equation field (Bollen & 

Ting, 1993). Also, as mentioned before, some models that are not nested according to the 

traditional LR test (nested in parameters) are nested in terms of vanishing tetrads, CTA may be a 

good choice to do the comparison in these cases. For example, the vanishing tetrad implied by 

the model in Figure l.4.2 is a subset of the vanishing tetrads implied by the model in Figure l.4.1, 

thus, these two models have "nested tetrads." If the difference in the test statistics for the two 

models is not significant, this lends support to the model that implies the more vanishing tetrads. 

If the test result is significant, the model having fewer vanishing tetrads is preferred (Bollen, 

1993). Therefore, just like number of free parameters, number of vanishing tetrads can be seen as 

another factor to determine the complexity of SEM models.  
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Based on these characters, number of vanishing tetrads appears to have potential to complement 

traditional likelihood methods to test the model goodness of fit, and number of vanishing tetrads 

may be another index of model complexity.  

 

1.5 Summary 

In section 1.3, we indicated an inadequacy of SEM fit indices, that is, in commonly used fit 

indices, only model degrees of freedom/number of free parameters is used to penalize the model 

complexity. However, the complexity of a model is not determined solely by the degrees of 

freedom.  Preacher (2006) examined the relationship between model complexity and the number 

of free parameters and, after comparing SEM models that have same number of free parameters, 

he confirmed that models may have different model complexity even though they have same 

number of free parameters. These differences exist because they have different constraints or 

different functional forms. It becomes clear these kinds of differences cannot be distinguished by 

model degrees of freedom/number of free parameters, thus, these differences were ignored in the 

traditional fit indices. 

Confirmatory tetrad analysis (CTA) is an alternative and potentially complementary method of 

testing and comparing the fit of SEM models to the commonly used likelihood ratio tests (Bollen 

2016), models not nested in traditional approaches may nested in terms of their vanishing tetrads. 

Furthermore, the vanishing tetrad numbers of a model is not only based on the number of 

observed variables, but also affected by the constraint types and functional form. Thus, vanishing 

tetrad numbers may be a good method for penalizing complex model constrains and complex 

functional forms.  


