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Abstract 

 
Structural Equation Modeling (SEM) is a framework of statistical methods that allows us to 

represent complex relationships between variables. SEM is widely used in economics, genetics 

and the behavioral sciences (e.g. psychology, psychobiology, sociology and medicine). Model 

complexity is defined as a model’s ability to fit different data patterns and it plays an important 

role in model selection when applying SEM. As in linear regression, the number of free model 

parameters is typically used in traditional SEM model fit indices as a measure of the model 

complexity. However, only using number of free model parameters to indicate SEM model 

complexity is crude since other contributing factors, such as the type of constraint or functional 

form are ignored. 

 To solve this problem, a special technique, Confirmatory Tetrad Analysis (CTA) is examined. 

A tetrad refers to the difference in the products of certain covariances (or correlations) among 

four random variables. A structural equation model often implies that some tetrads should be 

zero. These model implied zero tetrads are called vanishing tetrads. In CTA, the goodness of fit 

can be determined by testing the null hypothesis that the model implied vanishing tetrads are 

equal to zero. CTA can be helpful to improve model selection because different functional forms 

may affect the model implied vanishing tetrad number (t), and models not nested according to 

the traditional likelihood ratio test may be nested in terms of tetrads. 

  

In this dissertation, an R package was created to perform CTA, a two-step method was 

developed to determine SEM model complexity using simulated data, and it is demonstrated how 

the number of vanishing tetrads can be helpful to indicate SEM model complexity in some 

situations. 

 

KEY WORDS: 

Structural Equation Modeling; Model complexity; Confirmatory Tetrad Analysis; Model 

selection; R package; Simulated data 
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Chapter 1 Introduction 
 

 

 

 

Structural Equation Modeling 

Structural Equation Modeling (SEM) is a series of statistical methods that allow for the statistical 

modeling of complex relationships between one or more independent variables and one or more 

dependent variables. SEM is widely used in the behavioral sciences (e.g. psychology, 

psychobiology, sociology). The history of SEM traces back to three different traditions: (1) 

factor analysis from Charles Spearman (Spearman, 1904), (2) path analysis and tracing rules 

developed by the geneticist Sewall Wright (Wright, 1934), (3) simultaneous-equation models, as 

developed in economics. In the early 1970s, many different researchers made significant 

contributions to merge these three traditions (Bollen 2014). After the first SEM software 

LISREL (LISREL represents for Linear Structural RELations) developed by Karl Jöreskog and 

Dag Sörbom in 1973, was introduced, more researchers accessed this new statistical approach of 

SEM and many advances were made (Rosseel, 2012). 

Path analysis, first described by Sewall Wright can be seen as a precursor of SEM. It provides 

three important tools that contribute to building a SEM model: (1) path diagram, (2) 

decomposition of covariances and correlations variables, (3) decomposition of effects in a 

specific model. 
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Generally, drawing a path diagram is always the first step to build a SEM model, it can be seen 

as a pictorial representation of a system of simultaneous equations. For many researchers this 

picture may represent the relationships more clearly than the equations (Bollen 2014). Symbols 

used in path diagrams are listed in Table 1.1.1. 

 

Table 1.1.1 Symbols in Path diagrams 

 A box represents an observed variable 

 A circle or ellipse represents an unobserved or 
latent variable 

 A single headed straight arrow represents the 
influence (“cause”) of one variable on another 

 A unenclosed variable represents an error term 

 A double-headed curved arrow represents a 
covariance or correlation between two 
variables 
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A widely used general representation of structural equations with observed variables from Bollen 

(1989) is shown below: 

𝛈 = 𝐁𝛈 + 𝚪𝛏 + 𝛇    (1.1.1) 

𝐲 = 𝚲𝒚𝛈 + 𝛆     (1.1.2) 

𝐱 = 𝚲𝒙𝛏 + 𝛅      (1.1.3) 

Function (1.1.1) is called the latent variable model. 

where    𝛈 = m×1 vector of latent endogenous random variables 

𝛏 = n×1 vector of latent exogenous random variables 

𝐁 = m×m coefficient matrix (called “beta”) 

𝚪 = m×n coefficient matrix (called “gamma”) 

𝛇 = 𝑝×1 vector of errors (called “zeta”), 𝐸(ζ) = 0, uncorrelated with ξ 

 

Functions (1.1.2) and (1.1.3) are called the measurement model. 

where    y = 𝑝×1 vector of observed endogenous variables 

𝐱 = 𝑞×1 vector of observed exogenous variables 

𝚲𝒚 = 𝑝×n coefficient matrix  

𝚲𝒙 = q×n coefficient matrix  

𝛆 = 𝑝×1 the errors of measurement for y, 𝐸(𝛆) = 0, uncorrelated with 𝛅 

𝛅 = 𝑞 ×1 the errors of measurement for x, 𝐸(𝛅) = 0, uncorrelated with 𝛆 
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A simple example of path diagram is shown in Figure 1.1.1 and represents a multiple regression 

model with two predictors.  

Figure 1.1.1 Path diagram of a simple SEM model 

 

There is no measurement error or latent variables in this example, thus Equation 1.1.2 and 

Equation 1.1.3 are not necessary, and Equation 1.1.1 becomes 

𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇     (1.1.4) 

where    y = 𝑝×1 vector of observed endogenous variables 

𝐱 = 𝑞×1 vector of observed exogenous variables 

𝐁 = 𝑝×𝑝 coefficient matrix (called “beta”) 

𝚪 = 𝑝×𝑞 coefficient matrix (called “gamma”) 

𝛇 = 𝑝×1 vector of errors (called “zeta”) 

𝚿 = 𝑝×𝑝 covariance matrix of errors (called “psi”) 

𝚽 = 𝑞×𝑞 covariance matrix of exogenous variables (called “phi”) 
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In SEM, a variable that is not causally related to another variable in the model is called an 

exogenous variable, like 𝑥  and 𝑥  in Figure 1.1.1. A variable that is causally related to one or 

more variables in the model is called endogenous variable, like 𝑦  in Figure 1.1.1. In this 

example, number of endogenous variables is 1(𝑝=1) and number of exogenous variables is 2 

(𝑞=2).  

 

Apply Equation 1.1.4 to the path diagram in Figure 1.1.1, the results are: 

  [𝑦 ] = [0] ∗ [𝑦 ] + [𝛾 𝛾 ] ∗
𝑥
𝑥 + [𝜁 ]   (1.1.5) 

        𝚿 = [𝜓 ]                            𝚽 =
𝜙 𝜙
𝜙 𝜙

 

 
After the theorized models are specified, the next step is to check the identification of these 

models, which means determining if a unique solution exists for estimates of 𝚲, 𝚽 and 𝚿. One 

necessary but not sufficient rule is the number of parameters to be estimated (free parameters 

implied in the model) must be less than the number of known parameters.  This is also an 

important role as it defines the degrees of freedom in a SEM model and requires that they be 

greater than zero. Known parameters are the non-redundant items in the observed covariance 

matrix. Use 𝑝 to represent the number of observed 𝑦 variables and 𝑞 to represent observed 𝑥 

variables, the known parameter number is:  

(𝑝 + 𝑞)(𝑝 + 𝑞 + 1)

2
 

 

Use 𝑡 to represent the number of free parameters in a model (t is the total number of 𝜆’s, 𝛾’s, 

𝜙’s, and  ψ’s). An identified SEM model must have (𝑝 + 𝑞)(𝑝 + 𝑞 + 1) > 𝑡. 
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And the degrees of freedom of this SEM model can be calculated by:  

𝑑𝑓 = 1/2 (𝑝 + 𝑞)(𝑝 + 𝑞 + 1) − 𝑡. 

After the identification, the next step is to estimate the parameter values in these specified 

models. SEM is commonly conceptualized as a hybrid between some form of analysis of 

variance (ANOVA)/regression and some form of factor analysis (Bollen, 2014). However, there 

is a difference between SEM and multiple regression/ANOVA in the concept of estimating the 

model. In multiple regression/ANOVA, the regression coefficients derive from the minimization 

of the sum of squared errors between the predicted and observed dependent variable, or the 

coefficients are derived from the maximization of the likelihood of observed raw data. However, 

SEM minimizes the difference between the sample covariances and the covariances predicted by 

the model. If the model were correct and if all parameters of the model were known, the 

population covariance matrix would be exactly reproduced. The fundamental hypothesis in SEM 

can be shown as: 

Σ = Σ(θ)        (1.1.6) 

In Equation (1.1.6), Σ is the population covariance matrix of observed variables, θ is a vector that 

contains the model parameters, and Σ(θ) is the covariance matrix written as a function of θ. This 

equation provides a unified way of including many of the most widely used statistical 

techniques. Regression analysis, simultaneous equation systems, confirmatory factor analysis, 

canonical correlations, panel data analysis, ANOVA, analysis of covariance, and multiple 

indicator models all can be seen as special cases of (1.1.1, 1.1.2 &1.1.3). 
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Appling some linear algebra to Equation 1.1.4, the model implied covariance matrix can be 

found by calculating the expectations of  𝐱𝐱 , 𝐲𝐲 , and 𝐱𝐲 : 

Σ (θ) = E(𝐲𝐲 ) = E[(𝐁𝐲 + 𝚪𝐱 + 𝛇) ∗ (𝐁𝐲 + 𝚪𝐱 + 𝛇) ] 

                       = (𝐈 − 𝐁) (𝚪𝚽𝚪 + 𝚿)(𝐈 − 𝐁) ′ 

Σ (θ) = E(𝐱𝐲 ) = E[𝐱 ∗ (𝐁𝐲 + 𝚪𝐱 + 𝛇)] = 𝚽𝚪 ∗ (𝐈 − 𝐁) ′    

Σ (θ) = E(𝐱𝐱 ) = 𝚽                                   (1.1.7) 

where 𝐈 is an identity matrix of size 𝑝 (𝑝=number of endogenous variables). 

Then the model implied covariance matrix Σ(θ) can be shown as: 

Σ(θ) =
Σ (θ) Σ (θ)

Σ (θ) Σ (θ)
 

         =
(𝐈 − 𝐁) (𝚪𝚽𝚪 + 𝚿)(𝐈 − 𝐁) ′ (𝐈 − 𝐁) 𝚪𝚽

𝚽𝚪 (𝐈 − 𝐁) ′ 𝚽
           (1.1.8) 

To estimate the parameters in the equation 𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇, structural equation models 

encompass a wide range of multivariate statistical techniques. Bollen (2014) identified three 

components in today’s general structural equation models: (1) path analysis, (2) the conceptual 

synthesis of latent variable and measurement models, and (3) general estimation procedures. The 

confirmatory tetrad analysis (CTA) will be discussed later and is one of the newest methods for 

building structural equation models. 
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1.2 Fit Indices in the Selection of Structural Equation Models 

Testing the model fit for all selected models that best represents the data (the sample covariance 

or correlation matrix) is a crucial part of structural equation modeling, after the potential 

structural equations models were selected and high quality data were selected.  The population 

covariance is noted as Σ and the covariance produced by the proposed model is noted as Σ(θ), 

where θ represents the parameters in the model. Thus the null hypothesis for the global model fit 

test in SEM is H : Σ = Σ(θ). For a particular sample dataset, the sample covariance matrix 𝑆 can 

be measured and the potential structural equations based on 𝑆 can be marked as Σ θ . Thus the 

global fit can be measured by comparing the sample covariance matrix 𝑆 and the implied 

covariance matrix Σ θ  that determined by the estimate of θ. Ideally, if H : Σ = Σ(θ) is true, the 

population residual covariance matrix Σ(e) = Σ − Σ(θ) should be a zero matrix. However, this 

situation will not happen in most cases. In the residual covariance matrix, the element for 𝑖th row 

and 𝑗th column can be marked as 𝑒 , a positive value for 𝑒  means that the structural equations 

under estimated the covariance between variable i and j, while a negative value means the 

predicted covariance is too high. Once the sample covariance matrix (𝑆) and estimated 

covariance implied by the model (Σ θ ) is obtained, fitting functions are used to test the overall 

discrepancy between 𝑆 and Σ θ .  
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In sum, the sample residual matrix 𝑆 − Σ θ  can identify the sample variance or covariance 

elements in a SEM model, and it would be helpful to have tests of whether the residuals depart 

from the population values of zero. The difference between the population covariance/correlation 

matrix (Σ) and sample covariance/correlation matrix (𝑆) is affected by sample size N, such that 

when N gets larger, the differences between the sample and the population become smaller. Tests 

of fit, therefore should consider sample size.  

To test the overall model fit in SEM, the maximum likelihood fitting function developed by 

Jöreskog (1967) is one of the most popular tests of fit. It offers an inference about the 

relationship between estimated covariance/correlation matrix and the sample 

covariance/correlation matrix, it can be shown as: 

𝐹 = log Σ θ + 𝑡𝑟 𝑆 ∗ Σ θ − log|𝑆| − (𝑝 + 𝑞) 

where “|∙|” Indicates the determinant of a matrix, “tr” indicates the trace and 𝑝 + 𝑞 is the total 

number of manifest variables in the model (𝑝 is the number of y in the model, and 𝑞 is the 

number of x in the model).  

When Σ θ = 𝑆, 𝐹  equals to zero: 

𝐹 = log|𝑆| + 𝑡𝑟(𝑆 ∗ 𝑆 ) − log|𝑆| − (𝑝 + 𝑞) = 𝑡𝑟(𝐼) − (𝑝 + 𝑞) = 0 

Thus, if a model can predict the values of the sample covariance matrix perfectly, it’s 𝐹  should 

equal zero. 

The assumption of this maximum likelihood fitting function is multivariate normality of the 

variables in the model. If the assumption is met, the relationship between 𝑆 and Σ θ  can be 

determined by the value of 𝐹 .  
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Using the maximum likelihood fitting functions, the validity of estimated models can be tested, 

and there are many fit indices which use the maximum likelihood function. 

One example is the chi-square test, based on the fact that if the null hypothesis is true (H : Σ =

Σ(θ)), (𝑁 − 1)*𝐹  will follow an asymptotic chi-square distribution (Bollen, 2014). 

Under the null hypothesis that Σ = Σ(θ), the specification of the fixed, free and constrained 

parameters is valid. Form Σ θ  as the sample predicted covariance matrix of the observed 

variables under H , the log likelihood is:   

 𝑙𝑜𝑔 𝐿 = −
(𝑁 − 1)

2
{log Σ θ + 𝑡𝑟 𝑆 ∗ Σ θ } 

Under the alternative hypothesis, set Σ θ = 𝑆 can maximize the log likelihood: 

𝑙𝑜𝑔 𝐿 = −
(𝑁 − 1)

2
{log|𝑆| + 𝑡𝑟(𝑆 ∗ 𝑆 )} = −

(𝑁 − 1)

2
{log|𝑆| + 𝑝 + 𝑞} 

And 𝑙𝑜𝑔 (𝐿  /𝐿 ) multiplied by -2 will follow the chi-square distribution when sample size N is 

large. Its degrees of freedom are (𝑝 + 𝑞)(𝑝 + 𝑞 + 1) − 𝑡, where 𝑡 is the number of free 

parameters in θ (𝑡 is the total number of 𝜆’s, 𝜙’s, and  𝜓’s in the model):  

−2 𝑙𝑜𝑔
𝐿

𝐿
= (𝑁 − 1) ∗ 𝐹  

Thus, when comparing (𝑁 − 1) ∗ 𝐹  to the critical values of chi-square distribution, the overall 

model fit can be determined. 

Generally, overall model fit tests are affected by four factors: The first factor is the departure 

of  Σ  from Σ(θ), which is what we want to determine by using the model fit tests. The second 

factor is the scales of the observed variables, for instance, if observed variables are measured in 
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different units, the magnitudes of the variables will vary and in this situation, the sample 

covariance matrix should not be used to determine model fit (i.e. one would use the sample 

correlation matrix instead). Third, the sample size both affects the sample covariance matrix and 

the sample correlation matrix, in general cases, 𝑆 converges to Σ and Σ θ  converges to Σ(θ) as 

sample size increases. The fourth factor is random sampling variability. If the sample data do not 

meet the assumptions of statistical tests, the validity of the test result will be questioned. 

Therefore, in the interest to detect the  departure of Σ  from Σ(θ), effects from the scales of the 

observed variables r and the effect from sample size should be minimized.  

In an attempt to improve the measurement of model fit in different situations, statisticians have 

sought and developed several criteria that reflect many facets of model fit. These criteria are also 

called fit indices. They all have their own strengths and limitations and should be used in the 

most appropriate situation. For example, the 𝐹  mentioned in the maximum likelihood fitting 

function can be counted as a fit index, when chi-square test is used, the limitations of chi-square 

test (such as sensitive to sample size) follow. Many statisticians have attempted to overcome 

these limitations, and tried to find the better ways to reflect model fit. As a result, a variety of fit 

indices are available. The most widely respected and reported fit indicates can be classified as (1) 

absolute fit indices, (2) incremental fit indices, (3) parsimony fit indices. 
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1.2.1 Absolute Fit Indices 

Absolute fit indices are used to determine how well a model fits the sample data and are used to 

demonstrate which model has the best fit among several proposed models. These measures 

provide the most fundamental indication of how well the proposed models fit the data. Their 

calculations rely on measures of how well the model fits in comparison to no model at all 

(Jöreskog and Sörbom, 1993). Included in this category are the Chi-Squared test, Root Mean 

Square Error of Approximation (RMSEA), Goodness of Fit (GFI), Adjusted Goodness of Fit 

(AGFI), the Root Mean Square Residual (RMR) and the Standardized Root Mean Square 

Residual (SRMR). Their recommended threshold levels are listed in table 1.2.1. 

Table 1.2.1 Absolute fit indices and their acceptable thresholds(Moss, 2009) 

  

Fit Index Acceptable Threshold Levels Description 
Chi-Square 𝜒  p-value > 0.05 Hypothesis test of  Σ = Σ(θ) 

RMSEA Values less than 0.05 or 0.07  Has a known distribution. Favours parsimony.  
Values less than 0.03 represent excellent fit. 

GFI Values greater than 0.95 Scaled between 0 and 1, with higher values 
indicating better model fit. 

AGFI Values greater than 0.95 Adjusts the GFI based on the number of 
parameters in the model.  
Values can fall outside the 0-1.0 range. 

RMR Good models have small RMR Residual based, unstandardized, the average 
squared differences between the residuals of the 
sample covariances and the residuals of the 
estimated covariances.  

SRMR Values less than 0.08 Standardized version of the RMR. 
Easier to interpret due to its standardized nature. 
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Among the absolute fit indices, Chi-square (𝜒 ) is the original fit index for structural models and 

is derived from the maximum likelihood fitting function (𝜒 = (𝑁 − 1) ∗ 𝐹 , where N is the 

total sample size), it is also a direct test of the null hypothesis, so it is routinely reported in all 

SEM results sections. However, it is not considered to be a very useful fit index by most 

researchers, because it is affected by many factors, i.e. sample size, variable numbers, and 

distribution of variables. All absolute indices with the exception of the SRMR have similar 

problems to those of the chi-square, because they are transformations of the chi-square. To 

minimize these problems, alternative measures of chi-square fit have been developed. For 

example, the chi-square test is generally a reasonable fit index when the sample size is between 

75 and 200 (Kenny, 2015). For sample sizes beyond this range, chi-square test tends to reject the 

null hypothesis for large samples and lacks power for small samples. One alternative fit measure 

is the Relative Chi-square. It uses the ratio of chi-square value and the degrees of freedom (df) as 

a fit index for the model tominimize the impact of sample size on the chi-square test result.  

The RMSEA was first developed by Steiger and Lind (1980, cited in Steiger, 1990) and currently 

it’s a popular measure of absolute model fit, its formula is shown below: 

RMSEA = ε =
Δ

𝑑𝑓 ∗ (𝑁 − 1)
 

Δ = max (0, 𝜒 − 𝑑𝑓 ) 

where N is the sample size and 𝑑𝑓 is the degrees of freedom of the model. 

A universal threshold of RMSEA≤0.05 (or 0.07) is often used to indicate a good fit. This is a 

one sided test and the null hypothesis is ε ≤ 0.05. The RMSEA is usually reported in computer 

output with the 90% CI [ϵ , ϵ ].  ϵ ≤ 0.05 indicates close fit and ϵ ≥ 0.05 indicates a not 
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close fit. When the 90% CI contains 0.05 (or 0.07), the probability 𝑃(ε ≤ 0.05) should be 

calculated and compared to the significant level like α = 0.05 to make the judgement. RMSEA 

is largely based on the Relative Chi-square, thus it is also sensitive to the number of estimated 

parameters in the model. In other words, it tends to choose the model with less parameters. An 

advantage of RMSEA is that a confidence interval can be calculated for the RMSEA, which  

providesinformation regarding  the precision RMSEA estimate.  

The GFI is another transformation of the chi-square and it relies on the proportion of variance 

and covariances in the proposed model, and therefore determines the model’s ability of 

reproduce the observed covariance matrix. The AGFI adjusts the GFI on degrees of freedom, like 

RMSEA, it penalizes complicated models.  

The RMR and the SRMR are defined as the square root of the difference between the residuals 

of the sample covariance (correlation) matrix and the model implied covariance (correlation) 

matrix and they do not penalize for model complexity. Calculation functions for RMR and 

SRMR are: 

RMR =
(𝑠 − 𝜎(𝜃) )

𝑞(𝑞 + 1)
 

SRMR =
(𝑟 − 𝜌(𝜃) )

𝑞(𝑞 + 1)
 

RMR = 0 indicates perfect fit and because it based on the sample covariance matrix, RMR 

values and range depend on scale of observed variables. Thus, the results of RMR may change 

when the scales of the observed variables changed. Therefore, SRMR, which designed to 
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computer on correlation rather than covariances, which can be seen as a standardized version of 

the RMR, will be more stable when the scales of the observed variables vary. 

 

  



17 
 

1.2.2 Incremental Fit Indices 

Incremental fit indices, also known as comparative or relative fit indices, are a group of indices 

that do not use the chi-square in its raw form but compare the chi-square value to a baseline 

model. With some exceptions, (i.e. latent growth model) the null hypothesis is that all variables 

are uncorrelated (there are no latent variables). The first of these indices to appear in LISREL 

output is the Normed Fit Index (NFI: Bentler and Bonnet, 1980). The Comparative Fit Index 

(CFI: Bentler, 1990) is a rescaled version of the NFI, the values of NFI can fall outside the 0-1.0 

range. The NFI tends to underestimate fit in small samples and therefore, Bentler (1990) reversed 

NFI to take sample size into account and suggest the CFI. The NNFI/TLI (Bentler and Bonnet, 

1980) imposes a greater relative penalty for model complexity than the CFI, but only one of 

these two fit statistics should be reported because their values are highly correlated (Kenny, 

2014). The Bollen’s Incremental Fit Index (IFI, also called BL89, Bollen, 1989), is relatively 

insensitive to sample size. Their recommended threshold levels are listed in table 1.2.2. 

Table 1.2.2 Incremental Fit Indices and their acceptable thresholds (Moss, 2009) 

 

 

Fit Index Acceptable Threshold Levels Description 
NFI Values greater than 0.95 Assesses fit relative to a baseline model which assumes no 

covariances between the observed variables.  
Often underestimated when samples are small. 
The fit can be overestimated if the number of parameters is 
increased. Can be resolved in NNFI (TLI). 

NNFI (TLI) Values greater than 0.95 Non-normed, values can fall outside the 0-1 range.  
Favours parsimony. 
Performs well in simulation studies 

CFI Values greater than 0.95   Normed, 0-1 range. 

IFI Values greater than 0.90 Non-normed, values can fall outside the 0-1 range.  



18 
 

Most of these fit indices are calculated by using ratios of the model chi-square and the null 

model chi-square taking into account their degrees of freedom. All of these indices have values 

that range between approximately 0 and 1.0 where 1.0 is the best result. Some indices are 

“normed” so that their values cannot be below 0 or above 1 (e.g., NFI, CFI). Others are 

considered “nonnormed” because they may be larger than 1 or slightly below 0 (e.g., NNFI, IFI). 

The Bentler CFI is another incremental fit index that is also a goodness-of fit statistic. The CFI 

compares the amount of departure from close fit for the researcher’s model against that of the 

independence (null) model.  

Δ = max (0, 𝜒 − 𝑑𝑓 ) for compared model 

Δ = max (0, 𝜒 − 𝑑𝑓 ) for baseline model 

CFI = 1 −
Δ

Δ
 

The value of 𝜒  is often relatively large and 𝜒 ≤ 𝑑𝑓  is not usually seen in real data. The result 

CFI = 0.90, says that the fit of the compared model is about 90% better than that of the baseline 

model. 
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1.2.3 Parsimony Fit Indices 

Parsimony fit indices are designed to penalize models that are less parsimonious, which means 

simpler models are favored over complex models. When the model becomes more complex, it 

will fit better to the sample data, however, researchers risk overfitting when complexity is not 

considered in the model-fitting process (Preacher 2006). To overcome this problem, four 

parsimony of fit indices have been developed (Hooper, 2008): (1) the Parsimony Goodness-of-

Fit Index (PGFI, based on GFI), (2) the Parsimonious Normed Fit Index (PNFI, based on NFI), 

(3) the Parsimony Incremental Fit Index 2 (PNFI2, based on Bollen’s IFI), (4) the Parsimony 

Comparative Fit Index (PCFI, based on CFI). 

Among these indices, the PGFI is based upon the GFI by adjusting for loss of degrees of 

freedom. The function of PGFI is: 

PGFI =
𝑑𝑓

𝑑𝑓
× GFI =

2 × 𝑑𝑓

𝑘(𝑘 + 1)
× GFI 

where 𝑑𝑓  is the degrees of freedom for the tested model and 𝑑𝑓 is the degrees of freedom for 

the null model, 𝑘 is the number of observed variables. 

The PNFI also adjusts for degrees of freedom and it is based on the NFI: 

PNFI =
𝑑𝑓

𝑑𝑓
× NFI =

2 × 𝑑𝑓

𝑘(𝑘 + 1)
× NFI 

Because the penalty for model complexity, after adjust for degrees of freedom, the values of 

parsimony fit index are lower or equal to the values unadjusted indices ( ≤ 1). For example, 

comparing the PGFI and the GFI, in a particular case, the PGFI can give different results while 

the GFI fits well because the ratio of  
×

( )
 is large. So far, no confirmed threshold levels have 
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been recommended for these indices, (one recommendation from Mulaik et al 1989 is to obtain 

parsimony fit indices within the 0.50 region while other goodness of fit indices achieve values 

over 0.90). This variation makes these Parsimony fit indices difficult to interpret. 

“Information criteria” indices like the Akaike Information Criterion (AIC), the Consistent 

Version of AIC (CAIC, which adjusts for sample size, Akaike, 1974), and Bayesian information 

criterion (BIC: Schwarz, 1978) can be seen as other forms of parsimony fit indexes.  

AIC = 𝜒 + 2𝑞 

BIC = 𝜒 + 𝑞 × 𝑙𝑛(𝑁) 

where 𝑞 is the number of free model parameters and N is the sample size. 

Like the parsimony fit indices, results of these indices are also adjusted for number of parameters 

or sample size. For example, AIC adjusts the result of chi-square test using number of free 

parameters in the model, this change is a function of model complexity. And the relative 

correction for complexity of the AIC becomes smaller as the sample size increases, thus BIC 

includes sample size in the adjustment. 

These indices are generally used when comparing models estimated with the same data. Smaller 

values suggest a better fit. Generally, “information criteria” indices will not be used when there 

is only one model, because it’s difficult to suggest a cut-off. Additionally, these indices need a 

sample size of 200 or more to perform well (Homburg, 1991). 
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1.2.4 Reporting Fit Indices 

While there is no consensus on rules for assessment of model fit, using a variety of indices in 

research is necessary because different indices reflect a different aspect of model fit. However, it 

will be a burden both for the researcher and reader if the researcher includes every index in their 

reports. Choosing the most appropriate fit indices and not the indices that indicate the best fit for 

a particular situation is important. When the most appropriate fit indices are undefined, one 

suggestion is using combinations of fit indices. For example, Hu and Bentler, 1999 suggested a 

two-index presentation format, and the commonly used combinations are listed in Table 1.2.4.  

 

Table 1.2.4 Two-Index Presentation Strategy 

  Fit Index Combination Combinational Rules 

NNFI (TLI) and SRMR NNFI ≥ 0.95, SRMR ≤ 0.08 

RMSEA and SRMR RMSEA ≤ 0.05, SRMR ≤ 0.08 

CFI and SRMR CFI ≥ 0.95, SRMR ≤ 0.08 
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1.3 The Inadequacy of Traditional Fit Indices 

Degrees of freedom and sample size are often used to adjust fit indices. In most cases, potential 

SEM models are built on the same sample data covariances or correlation matrix. Thus, sample 

size for all these models are either the same or approximately the same. The most important 

factor that penalizes more complex models is the degrees of freedom. Many traditional fit indices 

are already adjusted by degrees of freedom or number of free model parameters. For example, 

SRMR, PGFI are adjusted by model degrees of freedom and AIC, BIC are adjusted by number of 

free model parameters.  

In SEM, the number of free model parameters (q) instead of degrees of freedom of a SEM model 

(df) is more often used to indicate model complexity. It is defined as the number of free 

parameters minus the number of functional constraints placed in a model. Generally, with all else 

being equal, models with larger q (small df) are considered as more complex (Kenny, 2014).  

However, there is no guarantee that model complexity is accounted for by the number of free 

parameters. In fact, evidence indicates the inadequacy of traditional fit indices (Preacher, 2006). 

Preacher, 2006 showed that some SEM models performed better than the others using the same 

fit index, even though these models had same number of free parameters. I define fitting 

propensity (FP) as a model’s average ability to fit different data patterns, when all else is equal. 

That is, two SEM models may have different FP, even though they have the same number of free 

model parameters. 

Preacher (2006), built two models that have the same number of free model parameters (Model 

A and B showed in Figure 1.3.1, both have q =11).  
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Figure 1.3.1 Model A and Model B from Preacher, 2006 (q =11) 

 

 

To test their complexity, 10,000 random data sets (10,000 6 × 6 correlation matrices) were 

generated. Then Model A and Model B were used to fit these data sets, fit index SRMR was used 

to detect how these models fit the generated data. As mentioned in section 1.2.1, SRMR is the 

standardized version of the RMR, it is calculated as: 

𝑆𝑅𝑀𝑅 =
𝑡𝑟(𝑆 − Σ θ )

𝑝(𝑝 + 1)
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A good fit occurs if the value of SRMR is less than 0.08. Cumulative frequency distribution (CDF) 

of SRMR for both Model A and Model B were showed in Figure 1.3.2. 

 

Figure 1.3.2 CDFs of SRMR for Model A and Model B from Preacher, 2006 

 

 

Results showed that Model B fit random samples better than Model A, even though they had same 

number of free parameters. This is strong evidence to show the complexity of models is not fully 

controlled by the number of free parameters. Thus, more factors that can reflect some characters 

of the SEM model should be identified and used to either adjust the traditional fit indices or to 

create new fit indices. For example, the confirmatory tetrad analysis (Bollen, 1993) has been 

proposed as one way to build SEM models and potentiallyprovide a reasonable way to improve 

the measurement of model complexity.  
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1.4 Confirmatory Tetrad Analysis 

Confirmatory tetrad analysis (CTA) is a technique to estimate model fit of structural equation 

models by using the features of tetrads, first proposed by Spearman (1904).  The tetrad approach 

was used in SEM model testing but has been replaced by the maximum likelihood method 

popularized by Jöreskog (1970) in the LISREL program. Due to the development of computers, 

Glymour et al. (1987) proposed vanishing tetrads as a method to search for SEM models, the 

proposed exploratory tetrad analysis (ETA) was based on a computer intensive search algorithm. 

And then, confirmatory tetrad analysis (CTA) was developed by Bollen & Ting (1993) to test 

one of several specific SEM models. After a set of Stata commands for CTA was developed by 

Bauldry & Bollen (2016), the CTA has become more accessible. 

Like all the other techniques in SEM, the primary goal of CTA is to test 𝐻 : Σ = Σ(θ). However, 

CTA focuses on the vanishing tetrads implied by the proposed model rather than the estimation 

of coefficients in the function 𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇. In Bollen & Ting (1993), a "tetrad" refers to the 

difference in the products of certain covariances (or correlations) among four random variables. 

A structural equation model often implies that some tetrads should be zero, and this model 

indicated that zero tetrads are called "vanishing tetrads". Thus, by testing the model implied 

vanishing tetrads equal to zero or not, the goodness of fit of the model can be determined.  

Compared to the traditional model fit indices in SEM, the potential benefits from CTA are the 

following:, 1) CTA can be applied to some under-identified models (at least one parameter in 

function 𝐲 = 𝐁𝐲 + 𝚪𝐱 + 𝛇 that cannot be consistently estimated) and some models that are not 

nested according to the traditional LR test are nested in terms of vanishing tetrads. 2) there is  no 

parameter estimate process in CTA, which means CTA does not require numerical minimization 
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and thus avoids the associated convergence problems that are present with other estimation 

approaches. 

The example below is designed to illustrate the concept of tetrad and vanishing tetrad. 

Figure 1.4.1 Path diagram of a factor model 

 

The factor model shown in Figure 1.4.1 has one latent variable ξ  and four observed variables 

𝑥  to 𝑥 . The equations corresponding to this factor model are of the form: 

𝑥 = 𝜆 ξ + 𝛿     (1.4.1) 

where 𝛿  is the random error term with E(𝛿 ) = 0 for all i, COV(𝛿 , 𝛿 ) = 0 for 𝑖 ≠ 𝑗, and the 

COV(ξ , 𝛿 ) = 0 for all i. Then the population covariances (σ ) of the observed variables can be 

calculated by the following form: 

σ = 𝜆 𝜆 𝜙     (1.4.2) 
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where σ  is the population covariance of the i and j variables and 𝜙 is the variance of ξ . If the 

model is correct, then we can use covariance algebra (e.g., Bollen 1989, p. 21) to prove that the 

equalities below must hold: 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 𝜆 𝜆 𝜙 ∗ 𝜆 𝜆 𝜙 − 𝜆 𝜆 𝜙 ∗ 𝜆 𝜆 𝜙 = 0 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 0 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 0          (1.4.3) 

 

A τ  shown in 1.4.3 is called a “tetrad” in confirmatory tetrad analysis, and when τ  is zero 

for a model, it is so called a “vanishing tetrad”. From the results in 1.4.3, the factor model in 

Figure l.4.1 implies three vanishing tetrads (τ , τ  and τ ). If the construction of SEM 

model changed, the composition of vanishing tetrads will also change. Similar to the model 

showed in Figure 1.4.1, the factor model showed in Figure 1.4.2 also has 4 observed variables 

(𝑥  to 𝑥 ), however, it has 2 latent variables (ξ  and ξ ). 

Figure 1.4.2 Path diagram of a factor model with two latent variables 
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Figure 1.4.2 showed a different path diagram for the same observed variables (𝑥  to 𝑥 ) in Figure 

1.4.1. We use 𝜎 = 𝐶𝑂𝑉(ξ , ξ ) to represent the covariance between ξ  and ξ , it is not equal to 

zero. Thus, the 6 population covariances (σ ) of these 4 observed variables are calculated as: 

σ = 𝜆 𝜆 𝜙   σ = 𝜆 𝜆 𝜙  

σ = 𝜆 𝜆 𝜎  σ = 𝜆 𝜆 𝜎 

σ = 𝜆 𝜆 𝜎  σ = 𝜆 𝜆 𝜎 

In this factor model, the assumption assumed that 𝜙 ≠ 𝜙 , thus, there is only one vanishing tetrad 

implied in this model: 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 𝜆 𝜆 𝜎 ∗ 𝜆 𝜆 𝜎 − 𝜆 𝜆 𝜎 ∗ 𝜆 𝜆 𝜎 = 0   (1.4.4) 

Algebraic substitution between vanishing tetrads will show that some of the vanishing tetrads 

can be derived from the others and are redundant for the test. Therefore, not all the vanishing 

tetrads should be used in the test of overall model fit in CTA, and the identification of 

nonredundant vanishing tetrads is necessary before the test of model it. There are three situations 

in which redundancy will occur: (1) When none of the covariances exist in one varnishing tetrad 

are exist in other vanishing tetrads: Algebraic substitution is impossible, and this tetrad is 

nonredundent. (2) When two vanishing tetrads have three or more covariances in common: They 

must be identical, thus they are redundant. (3) Vanishing tetrads having one or two covariances 

in common: We need to distinguish the redundant/nonredundant tetrads (Bollen, 1993). 
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For vanishing tetrads having two covariances in common, we always have 3 different tretrads for 

one choice of 4 observed variables. For example, in Example shown in Figure 1.4.1, we have: 

τ = σ σ − σ σ = 0 

τ = σ σ − σ σ = 0 

τ = σ σ − σ σ = 0 

We can see any 2 of these 3 equations can imply the third equation.  

When τ   and τ  are true, from τ  , we know 𝜎 𝜎 = 𝜎 𝜎 , then replace 𝜎 𝜎  

using 𝜎 𝜎  in τ , we have 𝜎 𝜎 − 𝜎 𝜎 = 0, which is the same as τ . Thus τ  is a 

redundant vanishing tetrad that need to be removed before significance test. 

For vanishing tetrads having one covariance in common, algebraic substitution will lead to a 

vanishing equation with six covariances, and no additional vanishing tetrad will be implied.  

For example, in a SEM model, we have: 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 0 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 0 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 0 

From τ  and τ  that have one common covariance in common (𝜎 ) we know:  

𝜎 = 𝜎 𝜎 /𝜎  

Then put this in τ , we will get: 

𝜎 𝜎 𝜎 − 𝜎 𝜎 𝜎 = 0 
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Thus this equation and τ  implied: 

𝜎 𝜎 = 𝜎 𝜎  

𝜎 𝜎 𝜎 − 𝝈𝟏𝟔𝜎 𝝈𝟑𝟓 = 𝜎 𝜎 𝜎 − 𝝈𝟏𝟑𝝈𝟓𝟔𝜎 = 𝜎 𝜎 − 𝜎 𝜎 = τ   

That means given vanishing tetrads τ , τ  and τ , the vanishing tetrad τ  is 

redundant. Thus, before we compute the test statistic, a set of nonredundant vanishing tetrads 

must be selected. For example, model in Figure 1.4.1 we can select 3 different nonredundant 

vanishing tetrad sets. It is possible that difference sets might yield different results, thus Hipp 

and Bollen (2003) recommended randomly selecting sets of vanishing tetrads multiple times and 

assessing the sensitivity of the results to different selections. 

After model implied nonredundant vanishing tetrads are determined, a simultaneous significance 

test showed below was proposed by Bollen (1990) and it can be used to determine whether the 

model is consistent with the sample data (covariances or correlation matrix).  

√𝑁𝒕 → 𝑁(0, Σ )      

Σ = (𝜕𝛕/𝜕𝛔) Σ (𝜕𝛕/𝜕𝛔)      

𝑇 = 𝑁𝒕 Σ 𝒕 ~ 𝜒       1.4.5 

where  𝑁 is the sample size. 

 𝒕 is the column vector of the independent tetrad differences. 

 Σ  is the covariance matrix of the limiting distribution of the sample tetrad differences. 

Σ  is the covariance matrix of the limiting distribution of the sample covariances appear 
in the sample tetrad differences. 

𝛕    is a vector of the population tetrads that are implied to be zero for a specific model. 

𝛔    is a column vector of all unique covariances appear in the population tetrads. 

𝑡     is the number of population tetrads.  
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Use the vector 𝛕 to represent the population tetrads that are implied to be zero for a specific 

model in 1.4.5, model goodness of fit can be tested by evaluating whether all model implied 

vanishing tetrads are equal to zero based on the sample covariance matrix instead of evaluating 

how well the model implied covariance matrix can match the sample covariance matrix. The null 

hypothesis of test in 1.4.5 is H : 𝛕 = 0, instead of  H : Σ = Σ(θ). Test statistic 𝑇 will 

approximates a chi-square variate with degrees of freedom equal to the number of tetrad 

differences simultaneously examined. A nonsignificant test statistic means that the implied 

vanishing tetrads hold and the model is reasonable. If a significance test result was found, the 

model should be rejected.  

This simultaneous test statistic for multiple vanishing tetrads used in CTA can be applied to 

normally or nonnormally distributed observed variables. Testing vanishing tetrads provides a test 

for model fit that can lead to results different from the usual likelihood-ratio (LR) test associated 

with the maximum likelihood methods that dominate the structural equation field (Bollen & 

Ting, 1993). Also, as mentioned before, some models that are not nested according to the 

traditional LR test (nested in parameters) are nested in terms of vanishing tetrads, CTA may be a 

good choice to do the comparison in these cases. For example, the vanishing tetrad implied by 

the model in Figure l.4.2 is a subset of the vanishing tetrads implied by the model in Figure l.4.1, 

thus, these two models have "nested tetrads." If the difference in the test statistics for the two 

models is not significant, this lends support to the model that implies the more vanishing tetrads. 

If the test result is significant, the model having fewer vanishing tetrads is preferred (Bollen, 

1993). Therefore, just like number of free parameters, number of vanishing tetrads can be seen as 

another factor to determine the complexity of SEM models.  
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Based on these characters, number of vanishing tetrads appears to have potential to complement 

traditional likelihood methods to test the model goodness of fit, and number of vanishing tetrads 

may be another index of model complexity.  

 

1.5 Summary 

In section 1.3, we indicated an inadequacy of SEM fit indices, that is, in commonly used fit 

indices, only model degrees of freedom/number of free parameters is used to penalize the model 

complexity. However, the complexity of a model is not determined solely by the degrees of 

freedom.  Preacher (2006) examined the relationship between model complexity and the number 

of free parameters and, after comparing SEM models that have same number of free parameters, 

he confirmed that models may have different model complexity even though they have same 

number of free parameters. These differences exist because they have different constraints or 

different functional forms. It becomes clear these kinds of differences cannot be distinguished by 

model degrees of freedom/number of free parameters, thus, these differences were ignored in the 

traditional fit indices. 

Confirmatory tetrad analysis (CTA) is an alternative and potentially complementary method of 

testing and comparing the fit of SEM models to the commonly used likelihood ratio tests (Bollen 

2016), models not nested in traditional approaches may nested in terms of their vanishing tetrads. 

Furthermore, the vanishing tetrad numbers of a model is not only based on the number of 

observed variables, but also affected by the constraint types and functional form. Thus, vanishing 

tetrad numbers may be a good method for penalizing complex model constrains and complex 

functional forms.  
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On the other hand, when comparing SEM models that have “nested” vanishing tetrads in CTA, 

models that has larger vanishing tetrad numbers are considered the restrictive model (𝑡 > 𝑡 ), 

and if there is no significant difference in the CTA test results, the model with largest vanishing 

tetrad numbers will be retained. This is very similar to the comparison of nested linear models. In 

linear regression, the restricted model is obtained from the full model, so restricted model has 

larger model degrees of freedom than full model (𝑑𝑓 > 𝑑𝑓 ). The restrictive model is preferred 

if there is no significant difference between them. Thus, the role of vanishing tetrad number in 

CTA is very similar to the role of model degrees of freedom in linear regression. This provides 

strong support of our hypothesis that vanishing tetrad numbers can be another indicator of SEM 

model complex. 

The main purpose of this dissertation is to examine whether the SEM model complexity is 

related to the number of vanishing tetrads implied in the models. To determine model 

complexity, large numbers of plausible random data sets (correlation matrices) are needed to 

represent the full data space. In this study, two kinds of random data were generated using R 

version 3.3.1. One is uniform random correlation matrices and the other is known-model random 

correlation matrices. For uniform random correlation matrices, several data generation methods 

were developed and compared, with the most suitable one being used to examine tetrad numbers 

ability to account for model complexity. To demonstrate that vanishing tetrad number is an 

indicator of model complexity, several model pairs that have the same number of free parameters 

but different vanishing tetrad numbers will be fit to the generated data. It is hypothesized that 

when models have the same model degrees of freedom, model that has largest vanishing tetrad 

number will be the most complex model. 
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The second purpose of this dissertation is to find the situations in which the vanishing tetrad 

number serves as a complement to model degrees of freedom to indicate SEM model 

complexity. Because in many situations, model complexity cannot all indicated by number of 

vanishing tetrads. For example, when some constraints are added to a SEM model and changed 

model complexity, its number of vanishing tetrad will not change while its model degrees of 

freedom do change. Thus, vanishing tetrad numbers should be used in specific situations to 

improve the evaluation of model complexity. It is hypothesized that when models are nested in 

terms of tetrads, vanishing tetrad number can be helpful to indicate which model is more 

complex. 

The third purpose of this dissertation is to create an R program to conduct the Confirmatory 

Tetrad Analysis, including the calculation of model implied vanishing tetrad numbers using the 

empirical method, the CTA test (chi-square test) result and several fit indices (e.g. RMSEA, 

RMR, SRMR, AIC, BIC). Other R programs will be created to generate the random data set and 

to do the comparison of model complexity. 
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Chapter 2 Methods 
 

 

 

2.1 Two Methods to Assess SEM Model Complexity 

To examine the tetrad number as a new indicator of model complexity, one need to access the 

relationship between tetrad numbers and model complexity. As mentioned in Section 1.3, model 

complexity is defined as a model’s average ability to fit different data patterns. Thus, in order to 

investigate the complexity of SEM models, large numbers of computer-generated random 

correlation matrices were needed in this study. The idea of using computer-generated random 

correlation matrices to investigate the complexity of SEM models was proposed by Collyer 

(1985) and already successfully used in Preacher’s evaluation of SEM model complexity 

(Preacher, 2003).  

This study included two different methods to assess SEM model complexity, and they use two 

different kinds of random data. One uses the uniform random correlation matrices, the other one 

uses the known-model random correlation matrices, both defined by Collyer (1985). 

 

2.1.1 Uniform Random Correlation Matrices 

In order to investigate SEM model complexity, large numbers of uniform random correlation 

matrices will be needed (Preacher, 2006). Uniform random correlation matrices defined by 

Cutting (2000) as matrices where every possible square, symmetric, positive semidefinite 

matrix with 1s on the diagonal and off-diagonal elements in the range {0, 1} has an equal 

probability of being selected.  Negative values are rarely seen in sample covariance matrices, 

and in this dissertation, we prefer to emphasis on fitting models to “plausible” data rather than 
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to “possible” data (Roberts and Pashler, 2000). Furthermore, the requirement of positive semi-

definite makes the elements in correlation matrices are not uniformly distributed.  However, 

correlation matrices generated according to these criteria can be seen as uniformly distributed 

because (1) they do not presume a particular model and (2) every possible matrix fitting the 

criteria has an equal chance of being selected (Preacher 2003). It is necessary to use uniformly 

distributed random correlation matrices in this study because the density plot of fitting results, 

the cumulative frequency distribution (CDF) plot of fitting results and the frequency of data sets 

fit well/better by a SEM model when apply to these random correlation matrices are a 

representation model complexity. If the random correlation matrices are not uniformly 

distributed, bias would occur. Some existing methods of generating uniform random correlation 

matrices are discussed in section 2.2. Each method will be described in terms of computational 

efficiency and representativeness. 
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2.1.2 Known-model Random Correlation Matrices 

The other type of random correlation matrices used to examine the complexity of competing 

SEM models is Known-model random population correlation matrices. Known-model random 

population correlation matrices were generated using each of the competing SEM models by 

randomly generate the values of linear coefficients in the model (random values between 0.05 

and 0.95), then fixing the variances for each variable equal to 1 by adjusting the variance of 

random error terms. When developing SEM models, linear coefficients with value close to 0 or 

1 are rarely seen, thus on the purpose to emphasis on fitting models to “plausible” data rather 

than to “possible” data, range (0.05, 0.95) was used instead of range (0.00, 1.00). 

Using different sets of parameter values, different Known-model population correlation 

matrices can be generated based on Equation 1.1.4 and 1.1.8, since all elements in the model 

implied population correlation matrix are related to the parameters and random error terms. 

Thus, in Know-model analysis, if a model can fit random population correlation matrices that 

are generated by its competitor model, it should be seen as a more complex model than its 

competitor model (Collyer, 1985).  

 

2.2 Methods to Generate Uniform Random Correlation Matrices 

2.2.1 The Uniform Correlation Matrix (UCM) Method 

The uniform correlation matrix method, also called the direct acceptance-rejection method is 

used for generating random correlation matrices that proposed by Botha et al. (1988). To 

generate a 𝑝 × 𝑝 random correlation matrix, the first step is generating 𝑝(𝑝 − 1) random 

numbers which follow a uniform (0, 1) distribution. The second step is putting them to the upper 

triangle of a 𝑝 × 𝑝 matrix and transposing the upper triangle elements to the lower triangle. After 
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setting all the diagonal elements equal to 1, a random matrix is generated. This random matrix 

should be retained in this study if it is positive definite, otherwise it should be excluded. Thus the 

third step is check the eigenvalues of a generated random matrix. If there are 𝑝 positive 

eigenvalues for a 𝑝 × 𝑝 matrix (all eigenvalues are positive), this matrix can be retained as a 

random correlation matrix.  

Botha et al. found that the UCM method is simple and effective when the dimension of a matrix 

is low (𝑝 ≤ 6). However, when the dimension increases, it becomes harder for the UCM method 

to find a positive definite matrix from the generated matrices. This is shown by our examination 

of the UCM method. In our findings, when 𝑝 = 5, the UCM method takes 2 seconds for a Core 

i5 6500 processor to generate 1000 positive definite matrices using R 3.3.1. When 𝑝 = 6, UCM 

method takes 11 seconds to generate 1000 retained matrices because approximately one out of 

every 50 matrices is positive definite. And when 𝑝 is larger than 7, the UCM method slows down 

rapidly. When 𝑝 = 8, it takes 3 seconds to generate 1 positive definite matrix and when 𝑝 = 10, 

it takes 100 seconds to generate 1 positive definite matrix. Because this study needs a large 

amount of random correlation matrices (n>10000) with dimensions at times greater than 10, the 

UCM method should not be used in these comparisons. 

Therefore, generating methods are faster and more reasonable than UCM, and will be the focus 

of this dissertation. 
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2.2.2 The Markov Chain Monte Carlo Method 

The use of Markov Chain Monte Carlo (MCMC) method has become very common in 

evaluating statistical estimators for structural equation models. To generate a 𝑝 × 𝑝 positive 

definite correlation matrix, MCMC method has the same logic as the UCM method. Like UCM 

method, the first step is to generate 𝑝(𝑝 − 1) random numbers on the interval {0, 1}, put them 

in the upper triangle of the matrix, then transpose them to the lower triangle, and after setting all 

the diagonal elements equal to 1 a random correlation matrix is generated. The difference 

between MCMC method and UCM method is their ways to find positive definite correlation 

matrix among these generated random correlations.  

To generate positive definite random correlation matrices using MCMC method, the first step is 

set a square, symmetric, positive definite (or nearly positive definite) matrix as the starting 

matrix. At the first iteration, the algorithm uses the starting matrix and perturbs the off-diagonal 

elements, retaining symmetry to generate a new random correlation matrix. Then the new 

generated matrix is checked to see if it is positive definite. If it is not positive definite, the matrix 

is ignored and another random matrix is generated; the staring matrix is used again as the starting 

point. When a new positive definite random correlation matrix is found, this new matrix will be 

retained and chosen as the starting point for the next iteration. After a sufficient number of 

iterations (the burn-in phase), the distribution of the retained matrices approximates the target 

distribution of random uniform matrices, because there is a dependency between a generated 

matrix and the matrices that were used to generate it. To minimize the dependency problem, 

generated matrices are selected and thinned. For example, if the thinning value is set as 10, that 

means the next retained random correlation matrix will be the matrix after 10 times iteration. 
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Preacher (2003) compared the Metropolis-Hastings MCMC algorithm with the UCM method. 

His conclusion is that in the UCM method, the ratio of the number of unacceptable correlation 

matrices increases exponentially with orders higher than 7 thus is inefficient for this study. The 

MCMC method will also decrease efficiency when the order increased, but to a far lesser degree. 

After comparing the generated positive definite random correlations from UCM method and 

MCMC method, Preacher (2003) concluded that “the MCMC method was judged to provide 

correlation matrices indistinguishable from those generated by the UCM method, yet at a much 

faster rate”. Thus, the Metropolis-Hastings MCMC algorithm was considered as a potential data 

generation method in this study. 

 

2.2.3 Partial Correlation Method 

Partial correlation method is an effective way to generate positive definite random correlation 

matrices that functions based on the terms of the correlations and the partial correlations, 

proposed in Joe (2006). Consider a correlation matrix that represents the correlations between 

variables 𝑥 , 𝑥  and 𝑥 . If the correlations between 𝑥 , 𝑥  and 𝑥 , 𝑥  are 𝑟 = 0.80 and 𝑟 =

0.80 respectively, the first-order partial coefficient of correlations 𝑟 .  is 

𝑟 . =
( )( )

     (2.2.2.2) 

Thus, to ensure −1 ≤ 𝑟 . ≤ 1，𝑟  must between 0.28 and 1.00 (Stanley & Wang 1969).  

To generate a positive definite random correlation matrix using partial correlation method, first 

generate some correlations (e.g. correlations in the first row/column of the matrix) independently 

in the interval (0, 1).  Then use Equation 2.2.2.2 to calculate the range of other allowable 
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correlations and then generate random values in these ranges until all correlations in the matrix 

are generated. 

By doing this, we can generate a positive definite random correlation matrix easily. For example, 

it takes only 2 seconds for the partial correlation method to generate 1000 positive definite 

random 10 by 10 correlation matrices meanwhile, the UCM method needs approximate 100 

seconds to generate 1 positive definite random 10 by 10 correlation matrix under the same 

conditions.  Therefore, the partial correlation method was also considered as a candidate for the 

data generation method in this study. 
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2.3 Determining the Best Method to Generate Uniform Random Correlation Matrices 

Random correlation matrices generated by UCM method should be the most suitable random 

data in this study. However, when p larger than 7, the UCM method will be very slow thus 

impractical to generate large samples. For random correlation matrices that have p larger than 7, 

the MCMC method and the Partial Correlation method are potential alternative data generation 

methods. To compare the methods, their speeds of generation and the distribution of data 

samples should be considered. In general, the method that takes less time and also can generate 

random correlation matrices whose distribution match closely to the random correlation matrices 

generated by UCM method are better for generating random correlation matrices. 

Three data generation methods (UCM, MCMC and PCM) were mentioned in Section 2.2, on the 

purpose of determining the most suitable method for this study, all three methods were used to 

generate 10,000 uniform random correlation matrices. Random seed 123 and correlation matrices 

with 4 different dimensions were used (𝑝 =4, 5, 6, and 7), in each setting, we measured the data 

generation speed for each method and compared the correlation matrices to see if MCMC or 

PCM can yield equally distributed matrices to UCM. To compare the similarity of the matrices, 

the lower triangle elements were selected from every matrix and used to create histograms and 

plots of the empirical cumulative distribution function (CDF). Comparison of density plots and 

CDF plots showed high similarity for UCM and MCMC, but low similarity for Partial 

Correlation Method. 
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Figure 2.3.1 Empirical CDF plots of lower triangle elements for UCM(Black), MCMC(Blue), 
and PCM(Red) algorithms for 4 x 4 matrices. 

 

 

 

Figure 2.3.2 Empirical CDF plots of lower triangle elements for UCM(Black), MCMC(Blue), 
and PCM(Red) algorithms for 5 x 5 matrices. 
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Figure 2.3.3 Empirical CDF plots of lower triangle elements for UCM(Black), MCMC(Blue), 
and PCM(Red) algorithms for 6 x 6 matrices. 

 

 

Figure 2.3.4 Empirical CDF plots of lower triangle elements for UCM(Black), MCMC(Blue), 
and PCM(Red) algorithms for 7 x 7 matrices. 
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Figure 2.3.5 Histogram of lower triangle elements for UCM(Black), MCMC(Blue), and 
PCM(Red) algorithms for 4 x 4 matrices. 

 

Figure 2.3.6 Histogram of lower triangle elements for UCM(Black), MCMC(Blue), and 
PCM(Red) algorithms for 5 x 5 matrices. 

 

Figure 2.3.7 Histogram of lower triangle elements for UCM(Black), MCMC(Blue), and 
PCM(Red) algorithms for 6 x 6 matrices. 
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Figure 2.3.8: Histogram of lower triangle elements for UCM(Black), MCMC(Blue), and 
PCM(Red) algorithms for 7 x 7 matrices. 

 

 

To further test the similarity of correlation matrices generated from the UCM, MCMC and PCM 

algorithm, eigenvalues were calculated and from every matrix and ordered from largest to 

smallest values. Then histograms of these eigenvalues were used to examine the differences 

between the matrices generated from different data generation methods. From the eigenvalue 

histograms, we confirmed that UCM and MCMC algorithms generated very similar correlation 

matrices in every dimension setting while the correlation matrices from PCM algorithm were 

very different. 
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Figure 2.3.9: Eigenvalue distribution from UCM, MCMC, and PCM algorithms for  

4 x 4 matrices. 
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Figure 2.3.10: Eigenvalue distribution from UCM, MCMC, and PCM algorithms for  

5 x 5 matrices. 
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Figure 2.3.11: Eigenvalue distribution from UCM, MCMC, and PCM algorithms for  

6 x 6 matrices. 
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Figure 2.3.12: Eigenvalue distribution from UCM, MCMC, and PCM algorithms for 7 x 7 
matrices. 
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In summary, UCM method is the simplest way to generate random uniform correlation matrices, 

when dimension of the matrices is less than 7. From our experience, based on 1,000 trials the 

empirical rejection rates are 0.584, 0.874, 0.978 and 0.998, respectively, for dimension 4, 5, 6 

and 7. To generate 10,000 random uniform correlation matrices, the UCM method needs 6 

seconds when the dimension is 4, 19 seconds when the dimension is 5, 2 minutes when the 

dimension is 6 and 30 minutes when the dimension is 7.  

MCMC method is more complex than UCM method in coding and runs slower than UCM 

method when dimension is less than 7 because the MCMC method needs a large number of 

matrices to burn in. However, the speed of MCMC method is still acceptable when the 

dimension is small and when the dimension is larger than 6 it runs much faster than the UCM 

method. From our experience, to generate 10,000 matrices, MCMC method need 2 minutes 45 

seconds when dimension is 4, 2 minutes 53 seconds when dimension is 5, 4 minutes when 

dimension is 6 and 4 minutes 36 seconds when dimension is 7. 

PCM method is the fastest way to generate positive definite correlation matrices because no 

generated matrices are rejected. It only needs 4 seconds to generate 10,000 4 by 4 matrices, 6 

seconds for 5 by 5 matrices, 9 seconds for 6 by 6 matrices and 12 seconds for 7 by 7 matrices. 

But the matrices yielded from this method did not similar to the matrices yielded from MCMC or 

UCM. 

In this study, random uniform correlation matrices with larger than 7 dimensions will be used to 

measure the model complexity, larger sample space is needed. So MCMC method was used to 

generate all the uniform correlation matrices. 
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2.4 A Two-Step Strategy for Model Complexity Comparison 

Chapter 2 introduced two kinds of random correlation matrices to compare the model complexity 

between SEM models. The uniform random correlation matrices can be seen as the total data 

space for SEM models, by fitting SEM models to uniform random correlation matrices, we can 

access the complexity of competing SEM models and determine which model is more complex if 

we can observe a significant difference in their fitting results. For example, in the comparison 

between model A and Model B showed in Figure 2.4.1, 10,000 uniform random correlation 

matrices were generated using MCMC method with random seed 123. 

 

Figure 2.4.1 Two Models with 4 observed variables, same model degrees of freedom but 
different functional forms 

 

Setting the sample size equal to 100 and fitting all uniform random correlation matrices to both 

Model A and Model B, Model A fits well (p-value of chi-square test larger than 0.05) in 𝑁  cases, 

Model B fits well in 𝑁  cases and they both fit well in 𝑁  cases. Thus, we can determine the 

complexity of Model A as it fits well in 𝑁   out of 10,000 random samples and the complexity of 

Model B as it fits well in 𝑁  out of 10,000 random samples. If  𝑁 > 𝑁  we can say Model B fits 
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better than Model A in uniform random correlation matrices, therefore Model B is more complex 

than Model A. Otherwise, when 𝑁 < 𝑁  Model A is more complex than Model B. 

When the number of observed variables is small (4 observed variables in this case), the 

probability of a model fitting well in uniform random correlation matrices for a particular SEM 

model is high (near 3% for Model A and near 9% for Model B). Thus, in these cases, the model 

complexity can be determined in a reasonable time and we can decide which model is more 

complex since they have very different model complexity (in this case, R 3.3.1 only needs 12 

minutes to get fitting results of one SEM model in 10000 uniform random correlation matrices). 

However, when the number of observed variables increased, the model fitting process will take 

more time (i.e. R 3.3.1 needs 2 hours to get fitting results of one SEM model in 10,000 6*6 

uniform random correlation matrices). Also, the SEM models will have lower probability of 

fitting well in uniform random correlation matrices. Data generation settings like the random 

seed will affect the model complexity result, therefore larger random data sample will be needed 

to determine model complexity. Moreover, when the model complexity of SEM models are very 

close (as often happens when models have same model degrees of freedom), the uniform random 

correlation matrices will not be suitable to assess the model complexity comparison. 

For example, in the comparison of Model A and Model B in Figure 2.4.2, two models both have 

6 observed variables.  
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Figure 2.4.2 Two Models with 6 observed variables, same model degrees of freedom but 
different functional forms 

 

We generated 10,000 uniform random correlation matrices with random seed 123, set the sample 

size equal to 100 and fit all data sets to both Model A and Model B. R 3.3.1 took 4 hours to get 

all the fitting results. From these results, the frequencies of data sets fitted well by Model A or 

Model B are both low (< 100), therefore, using different random seed will affect the results of 

complexity comparison. In this kind of cases, we tried to increase the number of uniform random 

correlation to get better comparison results.  

Thus, we fitted Model A and Model B again using 100,000 uniform random correlation matrices 

with random seed 123. This time, even though the frequencies of data sets fitted well by Model 

A or Model Bare about 10 times higher (Model A fitted well in 595 random samples, Model B 

fitted well in 629 random samples and they both fitted well in 417 random samples), it is still 

hard to say which model is more complex, even though we spent 40 hours fitting the models. 

In these kind of cases, we use known-model random population correlation matrices instead of 

uniform random correlation matrices to further examine SEM model complexity. In the 

comparison of Model A and Model B in Figure 3.3.4, first we used know-model data generation 
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method in 2.1.2 to generate 10,000 random population correlation matrices with random seed 

123 from Model A, in these random samples, Model A fits perfectly (p-value=1.00) in 10,000 

cases, and Model B fits well in 7,306 cases. Then we used the same method to get 10,000 

random samples from Model B, Model B fits perfectly in 10,000 cases and Model A fits well in 

7,635 cases. Thus, say Model B is more complex than Model A.  

In this case, from the fitting results of SEM models in uniform random correlation matrices, we 

can see both Model A and Model B have low probability of fitting well (both lower than 1%) and 

the model complexity between these two models are very close. Thus, known-model random 

population correlation matrices are needed to do the comparison of model complexity. 

In conclusion, in this dissertation, on the purpose to examine how tetrads can be used to access 

SEM model complexity, determine the model complexity (especially for models have same 

degrees of freedom) is a crucial part.  Both uniform random correlation matrices and known-

model random population correlation matrices should be used. For every comparison of SEM 

models in this study, 10,000 uniform random correlation matrices will be generated and used to 

get a general estimate of model complexity for models in the comparison first, then for each 

model in the comparison, 10000 known-model random population correlation matrices should be 

generated and used to compare the complexity of SEM models. Sample size will be set to 100 for 

every SEM models in comparison. 
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2.5 R codes for Tetrad Analysis 

In order to determine the tetrad numbers of SEM models, a function named “TetradAnalysis” in 

the R system for statistical computing was created and published on GitHub 

(https://github.com/Hangcheng1989/TetradAnalysis). It takes input of a covariance matrix, a 

specified SEM model, and a sample size and returns the test statistic for the multivariate tetrad 

test, p-value for multivariate tetrad test, a set of nonredundant vanishing tetrads   implied by the 

inputted SEM model, and the number of nonredundant vanishing tetrads implied by inputted 

SEM model.  

The inputted covariance matrix must have a minimum of four dimensions because the tetrad 

analysis requires at least four variables in the model. The column names of the inputted 

covariance matrix must match the names used in the model specification of inputted SEM model. 

In this tetrad analysis function, the R package lavaan (Rosseel 2012) was used to produce the 

model implied covariance matrix, thus the specification of the inputted model must follow the 

model specification rules of   lavaan.  

Below is an example showing the procedure for using the created r function, “TetradAnalysis.” 

In this example, the tested model is a SEM model with two latent variables (𝜂 and 𝜉 ) and six 

observed variables (𝑥 to 𝑥 ), each latent variable is related to three observed variables and 

variable 𝑥  is also a indicator of variable 𝑥  (see Figure 2.5.1).  
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Figure 2.5.1 CFA model with 6 observed variables and two latent variables 

 

A sample covariance matrix “SamplecovA” shown below is generated from this model with 

sample size equal to100. 

 

The following R code shows the specification of inputted model and how to use function 

“TetradAnalysis”. The syntax used here is the same as syntax in package “lavaan” (Rosseel, 

2012). 
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In the tetrad analysis process, first we use the “cfa” function in lavaan to do the model analysis, 

then we can got the model implied covariance matrix named “Modelcov” from the result of “cfa” 

function. 

 

Then using the model implied covariances, the empirical method from Bollen (1993) can be used 

to identify which tetrads were vanished in the inputted SEM model. “TetradAnalysis” can 

provide us a list of the tetrads implied by inputted model and which are vanishing in the 

empirical method. The first column showed the tetrad labels, column 2 to 5 showed the 

covariances included in each tetrad setting, column showed the indicate the tetrad is vanishing or 

not (1=yes, 0=no) and the last column showed the tetrad residual value calculated from the 

model implied covariances. If the absolute value of a tetrad residual is larger than 0.001, this 

tetrad is a vanishing tetrad in the inputted model. 
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After the model implied vanishing tetrads were determined, the sweep operator was used to 

identify sets of nonredundant vanishing tetrads. Thus, we can also provide the number of 

nonredundant vanishing tetrads of inputted model, use the sample covariance matrix to conduct 

the individual tetrad tests for each nonredundant vanishing tetrad and the multivariate tetrad test 

for the whole model. The first column of list “Result” showed there were 6 nonredundant 

vanishing tetrads implied by the model, the second model provides the nonredundant vanishing 

tetrads, the third column showed the sample value for each tetrad, the forth column showed 

asymptotic variance for the given tetrad, the fifth column showed the test statistic for each 
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individual tetrad test, and the p-value showed in last column can be used to determine whether 

the tetrad is vanishing. 

 

The final section of the output showed the test statistic and the p-value for multivariate tetrad 

test. In this case, the p-value is larger than 0.05, which means the inputted model is consistent 

with the sample data. 
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2.6 Investigating the Relationship between Model Complexity and Tetrad Numbers 

2.6.1 The Strategy to Determine SEM Model Complexity 

Two kinds of random correlation matrices were introduced in this chapter, the uniform random 

correlation matrices and known-model random correlation matrices. The uniform random 

correlation matrices represent the data space relevant to SEM models uniformly. In this study, 

one criterion of model complexity is defined as how well the SEM models can fit the uniform 

random correlation matrices and the known-model random correlation matrices. In general, a 

more complex model will have higher a convergence rate when applied to both uniform random 

correlation matrices and known-model random correlation matrices. Furthermore, in uniform 

random correlation matrices where both models can converge, the more complex model will 

have better fitting results in most fit indices. 

When comparing models, the number of data sets that converge by models is the first criterion 

for comparison, model with higher convergence rate in uniform random correlation matrices 

should be more complex. For the random correlation matrices where both converge, model 

complexity can be further determined by comparing models’ overall performance measured by 

many different fit indices. Absolute fit indices RMSEA, RMR and SRMR, incremental fit 

indices TLI, CFI and IFI, and parsimony fit indices AIC and BIC will be used in this part. After 

fitting models to the same random correlation matrices, the complexity of competing SEM 

models can be determined by comparing the mean value of fitting results, the frequencies of 

datasets fit well by models (number of data sets that models have better results than the 

threshold value for a fit index, i.e. SRMR <0.08) and the frequencies of data sets one model fits 

better than the other (i.e. number of data sets that one model has lower SRMR value than the 

other). All acceptable threshold levels for fit indices mentioned in this section are listed in Table 
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1.2.1 and Table 1.2.2. Density plots and cumulative frequency distributions of fitting results 

from those fit indices are also be provided. 

After the definition of strategy to determine model complexity, the selection of models that will 

be useful to determine the situations where vanishing tetrad number can be useful to indicate 

model complexity is another important part of this study. The rules for model selection are 

described in following sections. 

 

2.6.2 Models with Same Number of Free Parameters but Different Vanishing Tetrads 

To test if the model complexity is related to the number of model implied vanishing tetrads, 

several model pairs that have same model degrees of freedom but different vanishing tetrad 

numbers will be compared. It is expected that when applying these models to same random 

data, their goodness of fit will not be the same.  Additionally, it is expected that when SEM 

models have same model degrees of freedom, the model that has larger vanishing tetrad number 

is the more complex model. That is, the model with the larger vanishing tetrad numbers will fit 

better in both uniform random correlation matrices and known model random correlation 

matrices. 

 

2.6.3 Models with Same Number of Free Parameters, Same Vanishing Tetrads but 

Different Constraint Types 

Vanishing tetrad number cannot replace the role of model degrees of freedom to indicate model 

complexity, it should be a complementary of model degrees of freedom. Because in many 

situations, when some constraints (i.e. set constant parameter values) are added to a SEM 

model, neither tetrad number nor number of free parameters will change. This means some 
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model complexity change will not be detected by vanishing tetrad numbers, thus vanishing 

tetrad number cannot be used to indicate model complexity alone. To demonstrate this, 

comparisons between models with same degrees of freedom, same vanishing tetrads but 

different constraint types will be used. 

 

2.6.4 Summary of Comparison Settings 

There will be two types of comparisons between different SEM models in this study. In each 

comparison, all models will base on the same random sample (random correlation matrices), 

which means they will have same number of observed variables. In Section 2.6.2, SEM models 

in one comparison will have same model degrees of freedom, and different vanishing tetrad 

numbers. Based on the results from these comparisons, we can determine the relationship 

between model complexity and number of vanishing tetrads.  

In Section 2.6.3, SEM models in one comparison will have same vanishing tetrad number and 

same model degrees of freedom. Models may have the same functional form but different 

parameter settings. Thus, the results of comparison are expected to show that SEM model 

complexity cannot be fully assessed even model degrees of freedom and vanishing tetrad 

number are both used. 

Based on the comparisons in Section 2.6.2 and 2.6.3, our hypothesis that vanishing tetrad 

should be a complement of model degrees of freedom to indicate SEM model complexity will 

be proved.  

All the data generation processes, SEM model building, the values of fit indices and the 

comparison of overall model fit will be conducted in R 3.3.1. For the data generation part, three 

sets of R commands will be created to perform UCM, MCMC, partial correlation and known 
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model random data generation and for each comparison, the most suitable data generation 

method will be used. For the vanishing tetrad analysis, an R 3.3.1 package will be written to 

calculate all the model implied tetrads, determine which of them are vanished, and also select a 

set of nonredundant vanishing tetrads from the vanishing tetrads. Thus, the vanishing tetrad 

number of the SEM models in our study can be calculated very easily. Value of fit indices in 

this study will be calculated using R package “lavaan”. 
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Chapter 3 Results 
 

 

 

3.1 Overview of Chapter 3 

Section 1.4 introduced Confirmatory Tetrad Analysis (CTA) as a complement of traditional SEM 

methodologies to test model fit because testing vanishing tetrads provide a goodness-of-fit test 

for a model that can lead to results different from the usual likelihood-ratio test associated with 

maximum likelihood (ML)/ weighted least squares (WLS) methods. Additionally, in some model 

comparison situations, models are not nested in traditional likelihood-ratio (LR) test are nested in 

terms of vanishing tetrads, hence a nested test in CTA can be used for model selection in this 

situation. When two models with nested tetrads have close fitting results, the model with fewer 

vanishing tetrads is preferred, just like nested model comparisons in the traditional LR test, 

model where a fewer number of unknown parameters is preferred. From Chapter 1, we already 

know that in traditional SEM fit indices the number of free parameters is often used to indicate 

model complexity, and we also find evidence that shows only using the number of free 

parameters is not always appropriate for evaluating model complexity. Since CTA can be seen as 

a complement of traditional SEM methodologies to test model fit, we want to know if the 

number of vanishing tetrads can also be used as a complement of number of free parameters to 

indicate SEM model complexity. The goal of this chapter will be to explore if the number of 

vanishing tetrads can be used to indicate SEM model complexity, especially when models have 

same number of free parameters.  
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In this chapter, several model testing scenarios are proposed. Structural equation models with 

same number of free parameters but different functional forms will be fit to the generated 

random data. Using the two-step model complexity comparison strategy mentioned in section 

2.4, the degree of complexity of particular models can be assessed by fitting uniform random 

correlation matrices and the relative model complexity to other models in the same comparison 

setting can be assessed by fitting known-model random population correlation matrices. Each 

model is fit to 10,000 uniform random correlation matrices generated by the MCMC method 

mentioned in section 2.3, then fit to 10,000 random population correlation matrices generated 

from itself and 10,000 random population correlation matrices generated from comparable 

model. By comparing the frequencies of data sets fit well by models in comparison and mean 

value of commonly used SEM fit indices, model complexity can be assessed. Comparison results 

are summarized in tables and plots. After model complexity for each model was accessed, the R 

function mentioned in section 2.5 was be used to conduct Confirmatory Tetrad Analysis (CTA), 

thus identifying number of vanishing tetrads. From these results, we can demonstrate that in 

SEM models, functional form can contribute to model complexity and it may also contribute to 

the number of vanishing tetrads.  
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3.2 Complexity Due to Functional Forms: Different Relationship between Two Variables 

When considering SEM models, functional forms refers to the set of simultaneous equations 

relating observed variances and covariances to free parameters (Preacher 2006). In SEM models, 

to explain the relationship between two related variables, two different relationships are often 

used, one is the effect of one variable on another, represented by a direct effect in path diagram, 

and the other one is correlation/covariance between variables, represented by a double-headed 

curved arrow. Both effect and correlation/covariance relationships add one unknown parameter 

to the model, which means that when using the number of unknown parameters to evaluate 

model complexity, they are the same. However, adding an effect or correlation/covariance 

relationship in SEM model will have different influences on model implied vanishing tetrad 

numbers in CTA, thus two models shown in Figure 3.2.1 and 3.2.2 were specified to examine 

how this small change in functional form will affect the model complexity. 

Model 1A and 1B are both based on 6 observed variables 𝑥  to 𝑥 .  The exogenous latent 

variable 𝜉  has an effect on endogenous latent variable 𝜂 . A direct effect was used between 𝑥  

and 𝑥 , in Model 1A, and in Model 1B, we assume the random error terms of 𝑥  and 𝑥  are 

correlated.  
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Figure 3.2.1 Model 1A – Path model with 𝑥  regressed on 𝑥  

 

Figure 3.2.2 Model 1B – Path model with the random error terms of 𝑥  and  𝑥  correlated 

 

After we fit these two models to uniform random correlation matrices, the convergence rate for 

Model 1A was 75.26% (7,526 out of 10,000 matrices) while the convergence rate for Model 1B 

is 79.34% (7,934 out of 10,000 matrices). The two models both converged in 6,877 matrices and 

their average fitting results are listed in Table 4.2.1, histograms and cumulative frequency 

distribution (CDF) plots of fitting results are showed in Figure 3.2.3. 
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Table 3.2.1. Fitting results for Model 1A and 1B in 6,877 uniform random correlation matrices 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 1A 1B 1A 1B 1A 1B 1A 1B 

Mean 0.002 0.002 0.152 0.160 0.361 0.358 0.814 0.816 

SD 0.032 0.032 0.077 0.089 0.130 0.126 0.063 0.063 

N of fit well 62 57 536 461 60 56 111 106 

N of fit better 3333 3544 3969 2908 3329 3542 3294 3583 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 1A 1B 1A 1B 1A 1B 1A 1B 

Mean 0.741 0.745 0.446 0.454 1436.605 1434.747 1473.077 1471.219 

SD 0.130 0.130 0.281 0.277 105.040 106.713 105.040 106.713 

N of fit well 186 178 186 178     

N of fit better 3329 3542 3333 3544 3333 3544 3333 3544 
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Figure 3.2.3. Histograms and CDF plots of fitting results for Model 1A (Red) and 1B (Blue) to 
6,877 uniform random correlation matrices 
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Figure 3.2.3. Histograms and CDF plots of fitting results for Model 1A (Red) and 1B (Blue) to 
6,877 uniform random correlation matrices 

 

 



72 
 

From the fitting results for those random datasets where Model 1A and 1B both converged, 

Model 1B has better mean values than 1A in most fit indices (SRMR, GFI, CFI,  TLI, AIC, 

BIC), has better fitting results in more data sets using most fit indices (𝜒 , RMSEA, GFI, CFI, 

TLI, AIC, BIC). Histograms and CDF plots confirmed these results are consistent. Although the 

frequency of data sets fitted well by Model 1A is slightly higher than Model 1Busing most fit 

indices, considering Model 1B has much higher convergence rate (79.34% vs 75.26%), Model 

1B fits better than Model 1A in uniform random correlation matrices.  

Known-model random population correlation matrices were also used to ensure we obtain the 

correct comparison results in the previous comparison. In random population correlation 

matrices generated from Model 1A, using chi-square test as a fit index, Model 1B fits well (p-

value > 0.05) in 98.34% (9,834 out of 10,000) cases. In correlation matrices generated from 

Model 1B, Model 1A fits well in 82.84% (8,284 out of 10,000) cases. Hence this comparison 

result can confirm Model 1B is more complex than Model 1A. 

As expected, Model 1B fits random data better than Model 1A, although they have same number 

of unknown parameters, which means a correlation/covariance relationship is more complex than 

a direct effect relationship and number of unknown parameter (or degrees of freedom) cannot 

recognize this difference. Then the R function “TetradAnalysis” was used to conduct 

Confirmatory Tetrad Analysis for both Model 1A and 1B. From the CTA results, 6 vanishing 

tetrads (τ , τ , τ , τ , τ , τ ) are implied by Model 1A while 7 vanishing tetrads 

(τ , τ , τ , τ , τ , τ , τ ) are implied by Model 1B, moreover, Model 1A is 

nested in Model 1B in terms of vanishing tetrad. Thus, the nested tetrad test can be used in this 

case to know which model fits better in confirmatory tetrad analysis. Their fitting results in tetrad 

analysis for uniform random correlation matrices are listed in Table 3.2.2. In Confirmatory 
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Tetrad Analysis, because Model 1A and 1B are nested in terms of tetrads and 1B has more 

vanishing tetrads, Model 1A should be preferred if the result from nested tetrad test is significant 

(p-value < 0.05). From CTA results, although 1A has a higher frequency of data sets fitted well 

(1,649 data sets for 1A and 1,384 data sets for 1B), nested tetrad test should be used as the gold 

standard to identify which model fits better. From nested tetrad test results, 1A was chosen as a 

better model in 19.54% uniform random correlation matrices (1,954 significant better results 

found from 10,000 samples). Therefore, nested tetrad test results from CTA is another evidence 

to show Model 1B fits better in random data and in this comparison, model with more vanishing 

tetrad is more complex. 

 

Table 3.2.2. Fitting results from CTA for Model 1A and 1B in 10,000 uniform random 
correlation matrices 

 
P-value of tetrad test P-value of nested tetrad test 

Threshold Level > 0.05 < 0.05 

 1A 1B 1A nested in 1B 

Mean 0.039 0.031 0.413 

SD 0.102 0.086 0.370 

N of fit well 1649 1384 1954 
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3.3 Complexity Due to Functional Forms: Different Levels of Specification 

When SEM models have different functional forms, one model may have specified stronger 

assumptions than another even though they have same number of unknown parameters.  This 

will make this model more difficult to fit random data. For example, Model 2A in Figure 3.3.1 is 

a simple model based on 6 observed variables 𝑥  to 𝑥  with two correlated latent variables. 

Model 2B in Figure 3.3.2 based on same data, but Model 2B assumes two latent variables are 

uncorrelated, and use an extra factor loading of 𝑥  on latent variable 𝜉  instead. So these two 

models have same number of degrees of freedom (df = 8) but different functional form. Clearly 

Model 2B is more specific than Model 2A since many variables are not allowed to be correlated 

in 2B while in Model 2A all variables are correlated. This specification will make model more 

difficult to fit random data because the values in observed random correlation matrices are 

unlikely to be zero.  

 

Figure 3.3.1 Model 2A – A simple CFA with two factors correlated 
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Figure 3.3.2 Model 2B – A simple CFA with 𝑥  regressed on factor 𝜉  

 

When fitting to uniform random correlation matrices, Model 2A converged in 8,163 matrices 

while Model 2B converged 5,131 matrices, both converged in 4,372 matrices. The two models 

have very different convergence rates because Model 2B specified an extra factor loading for 𝑥  

instead of using a correlation/covariance constraint between two latent variables.  The fitting 

results for Model 2A and 2B in those both converged matrices are listed in Table 3.3.1, 

histograms and cumulative frequency distribution (CDF) plots of the fitting results are showed in 

Figure 3.3.3. 

Table 3.3.1. Fitting results for Model 2A and 2B in 4,327 uniform random correlation matrices. 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 2A 2B 2A 2B 2A 2B 2A 2B 

Mean 0.001 0.000 0.164 0.335 0.377 0.453 0.786 0.745 

SD 0.000 0.000 0.095 0.321 0.130 0.130 0.071 0.071 

N of fit well 21 0 214 0 23 1 30 1 

N of fit better 1527 230 4105 267 3520 852 3453 919 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 2A 2B 2A 2B 2A 2B 2A 2B 

Mean 0.691 0.555 0.420 0.166 1450.268 1500.534 1484.135 1534.402 

SD 0.141 0.164 0.265 0.307 100.806 99.397 100.806 99.397 

N of fit well 44 5 44 5     

N of fit better 3520 852 3520 852 3520 852 3520 852 
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Figure 3.3.3. Histograms and CDF plots of fitting results for Model 2A (Red) and 2B (Blue) to 
4,327 uniform random correlation matrices 
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Figure 3.3.3. Histograms and CDF plots of fitting results for Model 2A (Red) and 2B (Blue) to 
4,327 uniform random correlation matrices 
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From fitting results for those 4,327 uniform random correlation matrices Model 2A and 2B both 

converged, Model 2A has better fit than 2B in all fit indices showed in Table 3.3.1, when 

comparing mean values, frequencies of data sets fit well and frequencies of data sets fit better. 

Histograms and CDF plots confirmed these results are consistent. In random population 

correlation matrices generated from Model 2A, using the chi-square test as a fit index, Model 2A 

fits perfectly in all cases and Model 2B only fits well in 2.08% (208 out of 10,000) cases. In 

correlation matrices generated from Model 2B, Model 2B fits perfectly in all cases and Model 

2A fits well in 28.74% (2,874 out of 10,000) cases. These results proved Model 2A is more 

complex than Model 2B when their model degrees of freedom are both equal to 8.  

Although these two models have same model degrees of freedom, they have different numbers of 

vanishing tetrads. Seven vanishing tetrads were found in Model 2B (τ ,  τ ,

τ ,  τ ,  τ ,  τ , τ ) and 8 vanishing tetrad was found in Model 3A (τ ,

τ , τ , τ , τ , τ , τ , τ ), which means Model 2B is nested in Model 2A in 

terms of vanishing tetrads. Their fitting results in CTA for 10,000 uniform random correlation 

matrices are listed in Table 3.3.2.  

Table 3.3.2. Fitting results from CTA for Model 2A and 2B in 10,000 uniform random 
correlation matrices 

 P-value of tetrad test P-value of nested tetrad test 

Threshold Level > 0.05 < 0.05 

 2A 2B 2B nested in 2A 

Mean 0.032 0.036 0.406 

SD 0.080 0.090 0.305 

N of fit well 1434 1622 1410 

 

From CTA results, although Model 2A fit well (p-value of tetrad test >0.05) in fewer cases than 

2B (1,434 for 2A and 1,622 for 2B), Model 2B is nested in 2A in terms of tetrads and nested 
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tetrad test result shows Model 2B was selected as a better model in 14.10% data sets (1,410 

significant better results found from 10,000 samples). Therefore, 2A is more complex than 2B 

from CTA results and it has more vanishing tetrads. 
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3.4 Complexity Due to Functional Form: Different Regions of Good Fit 

When developing SEM models, different functional forms can be built on the same data and 

different functional forms are designed to fit different patterns of correlation matrix. Among 

them, some functional forms can fit more kinds of correlation patterns than others, thus it is more 

complex.  

To illustrate this idea, two SEM models with very different functional forms are shown in Figure 

3.4.1 and Figure 3.4.2. Model 3A and 3B both have 4 observed variables 𝑥  to 𝑥 . Model 3A is 

an unrestricted simplex model, often used when observed variables are repeated measurements 

of a single variable or when correlation matrix has a band-diagonal pattern. Model 3B is a one-

factor model with two factor loadings constrained to be equal, and it is expected to be more 

complex because it can potentially fit more correlation patterns.  Each of these two models have 

same model degrees of freedom (df = 3). 

 

Figure 3.4.1 Model 3A – An unrestricted simplex model 
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Figure 3.4.2 Model 3B – A one-factor model with one equality constraint 

 
 

After fitting uniform random correlation matrices, Model 3A converged in all matrices while the 

convergence rate for Model 3B is 96.37% (9,637 out of 10,000). Fitting results for Model 3A and 

3B in both converged matrices are listed in Table 4.4.1, histograms and cumulative frequency 

distribution (CDF) plots of fitting results are showed in Figure 3.3.3. 

Table 3.4.1. Fitting results for Model 3A and 3B in 9,637 uniform random correlation matrices 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 3A 3B 3A 3B 3A 3B 3A 3B 

Mean 0.010 0.030 0.195 0.221 0.536 0.370 0.781 0.852 

SD 0.071 0.118 0.084 0.255 0.247 0.202 0.095 0.084 

N of fit well 310 840 823 1330 214 616 470 1304 

N of fit better 1571 6150 3836 5801 1910 7716 1774 7863 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 3A 3B 3A 3B 3A 3B 3A 3B 

Mean 0.271 0.508 0.054 0.537 1032.778 983.53 1048.409 1001.766 

SD 0.321 0.277 0.516 0.322 75.686 90.097 75.686 90.097 

N of fit well 101 297 213 648     

N of fit better 1910 7716 1914 7723 2067 7570 2271 7366 
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Figure 3.4.3 Histograms and CDF plots of fitting results for Model 3A (Red) and 3B (Blue) to 
9,637 uniform random correlation matrices 
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Figure 3.4.3 Histograms and CDF plots of fitting results for Model 3A (Red) and 3B (Blue) to 
9,637 uniform random correlation matrices 
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From the fitting results of those 9,637 datasets Model 3A and 3B both converged, Model 3B has 

a higher frequency of data sets fit well and a higher frequency of data sets fit better in every fit 

index. Model 3B also has better mean values for most fit indices except for SRMR. Histograms 

and CDF plots confirm these results are consistent. Moreover, in 10,000 random population 

correlation matrices generated from Model 3A with random seed 123, using the chi-square test 

as a fit index, Model 3A fits well in all cases and Model 3B fits well in 2,942 cases. In 10,000 

correlation matrices generated from Model 3B, Model 3B fits well in 10,000 cases and Model 

3A fits well in 468 cases. These results show that Model 3B fits random data better than Model 

3A, although they have same number of unknown parameters, which means models with 

different functional forms can be very different in model complexity. 

In this comparison case, model implied vanishing tetrads for these two models can also tell the 

difference between the model complexity of the two models. Confirmatory Tetrad Analysis can 

recognize Model 3B as a more complex model because Model 3B implies 2 vanishing tetrads 

(τ , τ ), and Model 3A has only one vanishing tetrad (τ ) which is nested in the 

vanishing tetrads implied by 3B. Their fitting results in CTA for uniform random correlation 

matrices are listed in Table 3.4.2.  

Table 3.4.2. Fitting results from CTA for Model 3A and 3B in 10,000 uniform random 
correlation matrices 

 P-value of tetrad test P-value of nested tetrad test 

Threshold Level > 0.05 < 0.05 

 3A 3B 3A nested in 3B 

Mean 0.188 0.083 0.193 

SD 0.277 0.187 0.278 

N of fit well 4555 2446 9522 

 



85 
 

From CTA, Model 3A is nested in 3B and nested tetrad test result shows Model 3A was selected 

as a better model in 95.22% cases (9,522 significant better results found from 10,000 samples). 

That means based on nested tetrad test results in CTA, Model 3A should be a more complex 

model, however, all previous fitting result in this section against this idea thus we still conclude 

Model 3A is are more complex model and it has more vanishing tetrads. 

Therefore, in the comparison between Model 3A and 3B, we further demonstrated the utility of 

using vanishing tetrad number as an index of SEM model complexity when two models have 

same number of degrees of freedom, different functional form and nested vanishing tetrad 

settings.  
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3.5 Complexity Due to Functional Form: Model Not Nested in Terms of Vanishing Tetrads 

In section 3.2, 3.3 and 3.4, we demonstrated the feasibility of using the number of vanishing 

tetrads to compare model complexity when models are nested in terms of vanishing tetrads. In 

this section, we will examine if the vanishing tetrad number still has the ability to indicate model 

complexity even if two models are not nested in terms of vanishing tetrads. 

Figure 3.5.1 Model 4A – Path model with 𝑥  as the central mediator 

  

Figure 3.5.2 Model 4B – Path model with 𝑥  as the central mediator 
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In comparison 4, we have two CFA models (Model 4A in Figure 3.5.1 and Model 4B in Figure 

3.5.2) based on 5 observed variables 𝑥  to 𝑥 . In Model 4A shown in Figure 3.5.1, 𝑥  is used as 

the central mediator and it is directly connected to variable 𝑥 . In Model 4B showed in Figure 

3.5.2, 𝑥  is used as the central mediator. Two models have same degrees of freedom (df = 4) but 

different model implied vanishing tetrads. Model 4A has 3 vanishing tetrads(τ ,  τ ,

τ ), Model 4B has 2 vanishing tetrads(τ ,  τ ) and they are not nested. The two step 

model complexity determination method was also used to compare their model complexity. This 

comparison allows us to examine if it is still true that model with more vanishing tetrads is more 

complex even two models are not nested in terms of tetrads. 

When fit to uniform random correlation matrices, Model 4A and 4B both converged in all 

matrices. Fitting results for Model 4A and 4B in these cases are listed in Table 3.5.1, histograms 

and cumulative frequency distribution (CDF) plots of fitting results are shown in Figure 3.5.3. 

Table 3.5.1 Fitting results for Model 4A and 4B in 10,000 uniform random correlation matrices. 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 4A 4B 4A 4B 4A 4B 4A 4B 

Mean 0.004 0.004 0.201 0.165 0.518 0.522 0.784 0.787 

SD 0.002 0.002 0.201 0.063 0.207 0.209 0.084 0.080 

N of fit well 138 138 619 939 101 96 264 262 

N of fit better 2432 2295 3843 6157 5054 4942 4761 5239 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 4A 4B 4A 4B 4A 4B 4A 4B 

Mean 0.555 0.551 -0.001 -0.010 1247.010 1249.272 1267.851 1270.113 

SD 0.222 0.219 0.500 0.492 93.059 88.875 93.059 88.875 

N of fit well 216 194 216 194     

N of fit better 5054 4942 5056 4944 5056 4944 5056 4944 
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Figure 3.5.3 Histograms and CDF plots of fitting results for Model 4A (Red) and 4B (Blue) to 
10,000 uniform random correlation matrices 
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Figure 3.5.3 Histograms and CDF plots of fitting results for Model 4A (Red) and 4B (Blue) to 
10,000 uniform random correlation matrices 
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From Table 3.5.1 and Figure 3.5.3, we can see Model 4A and 4B have very close fitting results 

in many fit indices, and Model 4A fits slightly better than 4B in most fit indices except SRMR. 

When examining their fitting results in known model analysis Model 4B can fit well (p-value of 

the chi-square test > 0.05) in 14.91% (1,491 out of 10,000) cases. Meanwhile Model 5B Model 

4A can fit well in 21.34% (2,134 out of 10,000) cases.  

Therefore, in our analysis Model 4A is a more complex model than Model 4B and in this 

comparison, vanishing tetrad number still works to indicate model complexity even though 

models in this comparison are not nested in terms of vanishing tetrads. 
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To further test the correctness of using vanishing tetrad number to indicate model complexity 

when models are not nested in terms of vanishing tetrads, one more comparison was tested in our 

study.  In comparison setting 5, two models both have 9 observed variables 𝑥  to 𝑥 . In Model 

5A, 𝑥  was used as a mediator and Model 5B use 𝑥  and 𝑥  as two mediators to represent an 

alternative model building. Both models have 13 degrees of freedom but different model implied 

vanishing tetrad settings. Model 5A has 26 vanishing tetrads, Model 5B has 25 vanishing tetrads 

and they are not nested. Using uniform random correlation matrices and known model random 

population correlation matrices, we compared their model complexity. 

 

Figure 3.5.4 Model 5A – Path model with 𝑥  as a mediator 
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Figure 3.5.5 Model 5B – Path model with 𝑥  and 𝑥  as two mediators 

 

When fit to uniform random correlation matrices, Model 5A converged in 81.63% (8,163 out of 

10,000) matrices while Model 5B converged in all matrices. Fitting results for Model 5A and 5B 

in these both converged cases are listed in Table 3.5.2, histograms and cumulative frequency 

distribution (CDF) plots of fitting results are showed in Figure 3.5.6. 

 

Table 3.5.2 Fitting results for Model 5A and 5B in 8,163 uniform random correlation matrices. 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 5A 5B 5A 5B 5A 5B 5A 5B 

Mean 0.000 0.000 0.158 0.193 0.450 0.436 0.786 0.779 

SD 0.000 0.000 0.035 0.210 0.106 0.102 0.037 0.041 

N of fit well 0 0 112 222 0 0 0 0 

N of fit better 356 448 4727 5273 4113 5887 5851 4149 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 5A 5B 5A 5B 5A 5B 5A 5B 

Mean 0.375 0.416 -0.094 -0.023 2153.469 2136.744 2184.732 2168.006 

SD 0.159 0.148 0.279 0.258 109.894 106.356 109.894 106.356 

N of fit well 0 0 0 0     

N of fit better 4113 5887 4113 5887 4113 5887 4113 5887 
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Figure 3.5.6 Histograms and CDF plots of fitting results for Model 5A (Red) and 5B (Blue) to 
8,163 uniform random correlation matrices 
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Figure 3.5.6 Histograms and CDF plots of fitting results for Model 5A (Red) and 5B (Blue) to 
8,163 uniform random correlation matrices 
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From fitting results showed in Table 3.5.2, because models in this comparison setting have 9 

observed variables, the fitting results in uniform random correlation matrices for both models are 

not very good. The mean values for Model 5A and 5B are very close, and Model 4B has slightly 

higher frequency of data sets fit better than 5A for most fit indices (except GFI). Histograms and 

CDF plots confirmed these results are consistent. Because neither of them can fit well in random 

uniform correlation matrices, results from known model analysis are very important for this 

comparison. In random population correlation matrices generated from Model 5A, use p-value 

from chi-square test as fit index, Model 5B fits well in 11.76% (1,176 out of 10,000) cases. In 

correlation matrices generated from Model 5B, Model 5A fits well in 2.89% (289 out of 10,000) 

cases. These results showed Model 5B is a more complex model even though it has same model 

degrees of freedom with Model 5A and smaller number of model implied vanishing tetrad.  

In comparison 5, we have demonstrated that when compare the complexity of two models which 

are not nested in terms of vanishing tetrads, using the number of vanishing tetrads to indicate 

model complexity is not always correct. 
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3.6 Complexity Due to Constraint Type 

In SEM models, different constraint types can be used between variables, for example, fixed-

value constraints and equality constraints are often used. It is reasonable to assume that equality 

constraints will have different effects on model complexity compared to fixed-value constraint. 

Moreover, when a variable only has one constraint to other variables in the model, if we set the 

value of this constraint equals to zero, this variable will be independent from other variables in 

the model. It is expected that this special case will have the lowest complexity among those 

constraint types. 

Our expectation about the relationships between model complexity and constraint types can be 

tested by fitting 3 models to the same data. Model 6A, 6B and 6C shown in Figure 3.6.1, Figure 

3.6.2 and Figure 3.6.3 have same functional forms, same model degrees of freedom (df = 7) but 

different constraint types. In Model 6A, the effect between 𝑥  and 𝑥  is fixed to 0.5. In Model 

6B, the constraints between  𝑥  and 𝑥 , 𝑥  and 𝑥  have equal values. In Model 6C, the effect 

between 𝑥  and 𝑥  is fixed to 0. 
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Figure 3.6.1 Model 6A, effect between 𝑥  and 𝑥  is fixed to 0.5 

 

 

Figure 3.6.2 Model 6B, effects between  𝑥  and 𝑥 , 𝑥  and 𝑥  are equal 

 

 

Figure 3.6.3 Model 6C, effect between 𝑥  and 𝑥  is fixed to 0 
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In uniform random correlation matrices analysis, all three models had 100% convergence rate. 

Fitting results for Model 6A and 6B in these matrices are listed in Table 3.6.1, and results for 

Model 6A and 6C are listed in Table 3.6.2. Histograms and cumulative frequency distribution 

(CDF) plots of fitting results are showed in Figure 3.6.4 and Figure 3.6.5. 

 

Table 3.6.1 Fitting results for Model 6A and 6B in 10,000 uniform random correlation matrices. 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 6A 6B 6A 6B 6A 6B 6A 6B 

Mean 0.000 0.000 0.193 0.178 0.493 0.491 0.746 0.758 

SD 0.000 0.000 0.003 0.003 0.024 0.024 0.005 0.004 

N of fit well 15 14 147 284 15 14 23 20 

N of fit better 809 1099 2766 7234 4031 5969 3171 6829 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 6A 6B 6A 6B 6A 6B 6A 6B 

Mean 0.544 0.549 0.023 0.034 1507.786 1506.710 1544.258 1543.182 

SD 0.032 0.030 0.146 0.140 7839.187 7379.284 7839.187 7379.284 

N of fit well 41 31 41 31     

N of fit better 4031 5969 4031 5969 4031 5969 4031 5969 

 

Table 3.6.2 Fitting results for Model 6A and 6C in 10,000 uniform random correlation matrices. 

 P-value of 𝝌𝟐 test SRMR RMSEA GFI 

Threshold Level > 0.05 < 0.08 < 0.1 > 0.95 

 6A 6C 6A 6C 6A 6C 6A 6C 

Mean 0.000 0.000 0.193 0.204 0.493 0.503 0.746 0.755 

SD 0.000 0.000 0.003 0.003 0.024 0.023 0.005 0.004 

N of fit well 15 7 147 141 15 7 23 14 

N of fit better 1166 899 6350 3650 5404 4596 4147 5853 

 CFI TLI AIC BIC 

Threshold Level > 0.95 > 0.95     

 6A 6C 6A 6C 6A 6C 6A 6C 

Mean 0.544 0.528 0.023 -0.011 1507.786 1514.508 1544.258 1550.98 

SD 0.032 0.031 0.146 0.140 7839.187 7252.617 7839.187 7252.617 

N of fit well 41 21 41 21     

N of fit better 5404 4596 5404 4596 5404 4596 5404 4596 
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Figure 3.6.4. Histograms and CDF plots of fitting results for Model 6A (Red) and 6B (Blue) to 
10,000 uniform random correlation matrices 
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Figure 3.6.4. Histograms and CDF plots of fitting results for Model 6A (Red) and 6B (Blue) to 
10,000 uniform random correlation matrices 
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Figure 3.6.5. Histograms and CDF plots of fitting results for Model 6A (Red) and 6C (Blue) to 
10,000 uniform random correlation matrices 
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Figure 3.6.5. Histograms and CDF plots of fitting results for Model 6A (Red) and 6C (Blue) to 
10,000 uniform random correlation matrices 
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From fitting results showed in Table 3.6.1, Model 6B has better mean values than Model 6A in 

almost all fit indices and it has more number of better fit than 6A in every fit indices, although 

6B has lower frequency of data sets fit well in some fit indices, we can say Model 6B fits those 

uniform random correlation matrices better than Model 6A, and this difference is clearly showed 

in Figure 3.6.4.  

Comparison results between Model 6A and 6C are shown in Table 3.6.2. In this table, we can see 

Model 6A has better mean values, a higher frequency of data sets fit well and a higher frequency 

of data sets fit better than Model 6C in almost every fit index (except GFI), which indicates 

Model 6A is more complex than Model 6C. 

As expected, from the fitting results to uniform random correlation matrices, among these three 

models with different constraints, the model with equality constraints (Model 6B) is the most 

complex model, the model with fixed value constraint (Model 6A) is the second complex model 

and the model with a zero constraint (Model 6C) is the least complex model. Thus, we 

demonstrated that different constraint types can result in different model complexity. 

In model complexity due to different constraint type situations, model implied vanishing tetrad 

numbers are not useful to indicate model complexity. Because in tetrad analysis, set constraints 

fixed values or equal values will not change model implied vanishing tetrad numbers in most 

times. For example, τ  showed below is one tetrad should be tested in Model 6A, 6B and 6C, 

and it is not equal to zero before we set special constraints to the model. We can see how 

different constraint types can affect its value. 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 𝜙 ∗ (𝛽 ∗ 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝛽 ∗ 𝜙 ) 

−𝜙 ∗ (𝛽 ∗ 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝛽 ∗ 𝜙 )  (3.6.1) 
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In Model 6A, we set 𝛽 = 0.5, so model implied τ  value will change to: 

τ = 𝜎 𝜎 − 𝜎 𝜎 = 𝛽 ∗ 𝜙 ∗ (𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 ) 

                                                  −𝛽 ∗ 𝜙 ∗ (𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 ) 

                                 = 0.5 ∗ 𝜙 ∗ (𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 ) 

 −0.5 ∗ 𝜙 ∗ (𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 + 𝛽 ∗ 𝜙 ) (3.6.2) 

Thus, the model implied τ  value in Model 6A will not equal to zero although we set fixed 

value for 𝛽 . 

In Model 6B, we set 𝛽 = 𝛽 , so model implied τ  will remain the same since 𝛽  is not 

included in the equation 3.6.1. 

In Model 6C, we set 𝛽 = 0, which is a strong assumption, means variable 𝑥  is not correlated 

to any other observed variables in the model. Under this assumption 𝜎 , 𝜎 , 𝜎 , and 𝜎  should 

all equal to 0, thus τ = 𝜎 𝜎 − 𝜎 𝜎 = 0, that means τ  should be a vanishing tetrad 

in Model 6C. 

When no constraints are placed on the model, there are six model implied vanishing tetratds 

(τ , τ , τ , τ , τ , τ ). When we set 𝛽 = 0.5 in Model 6A and set 𝛽 = 𝛽  in 

Model 6B, model implied vanishing tetrads remain the same. In Model 6C, we set 𝛽 = 0 and it 

causes many model implied covariance values to equal 0, so there are 7 vanishing tetrads 

(τ , τ , τ , τ , τ , τ , τ ) implied in this model. Moreover, the 6 vanishing 

tetrads implied by Model 6A and 6B are nested in those 7 vanishing tetrads implied by Model 

6C.  
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In this comparison, vanishing tetrad numbers cannot recognize the difference in model 

complexity (Model 6A vs Model 6B) and the model with more vanishing tetrad numbers is not a 

more complex, even though models are nested in terms of vanishing tetrads (Model 6A or 6B vs 

Model 6C). So vanishing tetrad number cannot be used to indicate model complexity when 

model complexity is caused by different constraint types. 
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3.7 Summary 

This chapter introduced a new two-step method of comparing model complexity in uniform 

random correlation matrices first then use the fitting results from known model implied 

population matrices to confirm the difference we found in the first step. With mean values, the 

frequency of data sets fit well and the frequency of data sets fit better using many commonly 

used SEM fit indices, we can get a comprehensive understanding about how well the compared 

models can fit random data. In this chapter, when comparing model complexity in fitting results 

from uniform random correlation matrices, the model that fits better in more fit indices is 

considered as a more complex model. 

By comparing model complexity of several comparative SEM models, we demonstrated that: (1) 

Vanishing tetrad numbers can be used to recognize different functional forms in SEM models; 

and (2) Vanishing tetrad numbers can be used to indicate model complexity when two SEM 

models have same model degree of freedom but different functional form and models are nested 

in terms of vanishing tetrads. In this situation, nested tetrad analysis can be used to compare 

model fit. The model with more vanishing tetrads is a more complex model. (3) When two 

models are not nested in terms of vanishing tetrads, using vanishing tetrad number to indicate 

model complexity is not always correct, and researchers should not determine model complexity 

only by vanishing tetrad numbers (4) Vanishing tetrad number cannot be used to indicate model 

complexity when model complexity is caused by different constraint types. 
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Chapter 4 Application 
 

 

 

4.1 Introduction 

In Chapter 3, several comparisons between different SEM models were used to demonstrate the 

possibility of using model implied vanishing tetrad number to indicate model complexity when 

models have same model degrees of freedom. Results lead to the conclusion that when models 

are nested in terms of vanishing tetrads, model with more vanishing tetrads should be the more 

complex model. When models are not nested in terms of vanishing tetrads, vanishing tetrad 

number can be used in already compared functional forms to indicate model complexity.  

In substantive SEM studies, different functional forms are often used and compared, and 

improperly accounting for model complexity may lead to wrong decisions about the best model 

of the study. Therefore, an example was found in published research to illustrate how model 

complexity analysis and vanishing tetrad numbers can work to improve model selection. 
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4.2 A Substantive Model Selection Example 

In Brady (2005), four service evaluation models showed in Figure 4.2.1 were identified that are 

commonly offered to depict the relationships amongst the primary service evaluation constructs 

of sacrifice (SAC), service quality (SQ), service value (VAL), satisfaction (SAT), and behavioral 

intentions (BI). The author tried to determine the best fitting model by testing these four models 

using samples of service consumers in Australia, Hong Kong, Morocco, the Netherlands, and the 

United States, as well as across varied temporal and service settings. 

 

Figure 4.2.1 Four service evaluation models from Brady (2005) 
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Among four service evaluation models from Brady (2005), the “Value” model and “Satisfaction” 

model both have 84 model degrees of freedom (Including 4 degrees of freedom from structural 

model and 80 degrees of freedom from indicators which are omitted in Figure 4.2.1) and they are 

not nested in traditional ways. However, in section 3.5, we already demonstrated the functional 

form in the “Value” model has more vanishing tetrads than the functional form in the 

“Satisfaction” model, thus the “Value” model should be considered a more complex than the 

“Satisfaction” model. 

Results for the “Value” and “Satisfaction” models in Australian sample are shown in Table 4.2.1. 

Two models had the same CFI and RMSEA values and the “Value” model has a lower chi-

square value. Thus, in Brady (2005), the “Value” model is considered as a better fit model than 

“Satisfaction” model in Australia sample. 

 

Table 4.2.1 Model fitting results for Value model and Satisfaction model in Australia sample, 
from Brady (2005) 

 

 

Using model complexity analysis, we can show that the “Value” model can fit random data 

better than the “Satisfaction” model if we use CFI and RMSEA as fit indices (see Table 3.5.1). 
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Therefore, when two models have the same CFI and RMSEA results, “Satisfaction” model 

should be preferred, which means we made a different conclusion as compared to Brady (2005).  

In this case, since two models have very similar fitting results, the model selection result is 

highly depending on model complexity analysis result. Model implied tetrad number and model 

complexity method from our study can be very helpful to determine which model is better. 
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Chapter 5 Conclusions and Discussion 
 

 

 

5.1 Summary 

This dissertation has introduced and further demonstrated the inadequacy of traditional fit 

indices in structural equation modeling found by Preacher 2006, which didn’t always account 

for model complexity correctly. Chapter 1 introduced the basics of structural equation 

modeling, explained how traditional fit indices measure model fit, and why they are not 

adequate. Also, confirmatory tetrad analysis, a technique to estimate SEM model fit in another 

way was introduced, and the model implied vanishing tetrad number was treated as a potential 

index of model complexity. Chapter 2 introduced different methods to determine SEM model 

complexity using a large number of simulated data and three different ways to generate random 

samples. I then explained how to investigate the relationship between model complexity and 

tetrad number. Chapter 2 also introduced a new R package to perform tetrad analysis and 

explained why a two-step method is preferred in this study to compare SEM model complexity. 

Chapter 3 used the method in Chapter 2 to compare model complexity between SEM models 

which have same degrees of freedom, then demonstrated that tetrad number can be used in some 

scenarios to indicate model complexity and should be tested in more cases. Chapter 4 applied 

complexity comparison method in Chapter 2 in real models chosen from a published paper and 

analyzed model implied vanishing tetrads to demonstrate how complexity analysis and tetrad 

number can improve model selection in an SEM study. 
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5.2 Primary Findings 

First of all, from all model complexity comparison results between SEM models with the same 

degrees of freedom but different functional forms or different constraint types, the inadequacy 

of traditional SEM model fit indices was demonstrated. Comparison results showed that only 

using model degrees of freedom to measure SEM model complexity is not always correct, and it 

is necessary to consider the effect of other factors such as functional form and constraint type in 

model selection. Secondly, a two-step method to evaluate/compare SEM model complexity was 

presented in Chapter 2 and applied to all comparison examples in this study, and all these 

comparison results showed this method is useful in some situations. Thirdly, an R package to 

run confirmatory tetrad analysis was developed in Chapter 2. It can be used to get model 

implied vanishing tetrad numbers, test if models are nested in terms of tetrads and run test of 

model fit in tetrad analysis. Fourthly, the possibility of using the model implied vanishing tetrad 

number as another index of SEM model complexity was examined in Chapter 2. Comparisons 1 

to 5 demonstrated that different functional forms can affect model complexity and also 

vanishing tetrad number, for models that have the same degrees of freedom and are nested in 

terms of tetrads, models with more vanishing tetrads should be more complex. For models not 

nested in terms of tetrads, this rule is not always true. Comparison 6 demonstrated that SEM 

models with different constraint types may have different model complexity but neither degrees 

of freedom nor tetrad number can be used to detect this difference. 
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5.3 Implications and Recommendations for SEM Model Selection 

On the purpose of selecting the best model, researchers should do their best to evaluate the 

goodness of fit and model complexity. In this study, we demonstrated that a model that performs 

better in one fit index may perform worse in another. Thus, the more evidence researchers can 

find, the more confident they will be, about their model selection results. Compared to goodness 

of fit, model complexity is hard to quantify and always evaluated crudely in traditional SEM fit 

indices (e.g. only evaluated by number of free parameters).  Therefore, improvement of the 

evaluation of SEM model complexity is necessary. 

Confirmatory tetrad analysis is recommended in model selection because it provides another way 

to measure the goodness of model fit. Models not nested according to the traditional LR test may 

be nested in terms of tetrads, and different tetrad number may suggest different model 

complexity. R package created in this study is easy to access and not hard to use, to run 

confirmatory tetrad analysis. Therefore, tetrad analysis can be treated as a complement of 

traditional fit indices to do model selection, because when models have different tetrad numbers 

or different tetrad settings, they may have different model complexity. When models are nested 

in terms of tetrads, nested tetrad test can be used to do model selection and tetrad number can be 

used as another index of model complexity. However, the correctness of using tetrad number as 

another index of model complexity has not been fully verified. Although all comparisons 

between models nested in terms of tetrads in this study showed models with more vanishing 

tetrads are more complex, the relationship between SEM model complexity and number of 

vanishing tetrads is not fully clear. For example, nested tetrad test results for Model 3A and 3B 

in section 3.4 showed 3A fitted better while all other fit indices showed Model 3B fitted better, 

thus nested tetrad test results were not treated as a crucial standard to determine the goodness of 
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model fit in this case. Therefore, neither tetrad analysis nor traditional measures can fully 

account for SEM model complexity in every situation.  

The two-step method presented in this study is highly recommended to quantify and compare the 

model complexity. Although it needs several hours to conduct, it can provide more complete and 

more defensible result than only use CTA or traditional fit indices to evaluate model complexity.  

Chapter 5 showed a successful example of how to use this two-step method to improve model 

selection in research. Moreover, when considering SEM model selection, determination of 

goodness of model fit and model complexity are not only factors researchers should keep in 

mind. Other factors such as theoretical meaning of the model must also be considered because 

SEM models are used to explain the relationships between variables. Therefore, models without 

theoretically meaningful explanations should not be selected even if they can fit the data 

perfectly. When models have close goodness of fit and model complexity, think about which 

model is more theoretical reasonable for the study may be a good way to determine which model 

should be selected. 
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5.4 Limitations 

Due to computational power, the comparison results using uniform random correlation matrices 

may not be very accurate because some models have close fitting results and factors like random 

seed used in data generation may affect fitting results. A larger sample and using different 

random seeds would result in more accurate results.  Therefore, comparison results from known-

model population correlation matrices must be used in every case to support or against the 

comparison results from uniform random correlation matrices.  

In known-model data generation, all linear coefficients were set as uniform distributed variables 

in range (0.05, 0.95) instead of range (0.00, 1.00) because linear coefficients closer to 0 may be 

considered as non-significant parameters in SEM model analysis and parameter values closer to 

1 will make the variance of its random error term closer to 0. Different range of linear coefficient 

values may affect fitting results in known-model analysis. 

Moreover, in order to get a better understanding about the relationship between tetrad number 

and SEM model complexity, more comparisons of SEM models would be useful, especially 

when models have same degrees of freedom and nested in terms of tetrads. 
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5.5 Directions for Future Research 

In the future research of SEM model comparison, using computational power or developing a 

new index of model fit are two possible ways to determine model complexity. Using 

computational power to determine SEM model complexity by fitting models to large random 

samples is a safe but slow way to improve model selection. Future research should improve this 

method by using larger samples and increasing efficiency. Increased computing power, faster 

data generation methods and faster model fit processes should be very helpful.  

Another possible way to improve SEM model complexity measurement is trying to find or create 

a new index of model complexity. For example, tetrad number has been demonstrated as a 

possible index of complexity, especially when models are nested in terms of tetrads. Future 

research should test more models nested in terms of tetrads to demonstrate this possibility and if 

it is always true, quantify the relationship between model complexity and tetrad number, then 

find a way to combine tetrad number and traditional fit indices to create better indices of SEM 

model fit. 
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APPENDIX A 
 

R CODES FOR CONFIRMATORY TETRAD ANALYSIS 
 
The R codes in Appendices A, B, and C were written and compiled using R 3.3.4.  
 
install.packages("lavaan") 
################################################################################## 
############################## Tetrad Function ###################################### 
################################################################################## 
TetradAnalysisNoRandom<-function(Samplecov,FactorModel,Size){ 
### "sweep_all" function is necessary to find Nonredundant vanishing tetrads from empirical vanishing 
tetrads ### 
sweep<-function(A,k) { 
 B<-matrix(0,nrow=nrow(A),ncol=ncol(A)) 
 if (abs(A[k,k])<2.2*10^(-10)){ 
  B=A 
  for (i in 1:nrow(B)){ 
   B[i,k]=0 
   B[k,i]=0 
  } 
 } 
 else if (A[k,k] !=0) { 
  for (i in 1:nrow(A)) { 
   for (j in 1: ncol(A)) { 
   if (i== k & j==k){ 
      B[i,j]=1/A[k,k] 
    } 
   else if (i == k & j != k) { 
    B[i,j] = A[k,j]/A[k,k] 
    } 
   else if (i != k & j == k) { 
    B[i,j] = -A[i,k]/A[k,k] 
    } 
   else if (i != k & j != k) { 
    B[i,j] = A[i,j] - ( A[i,k]*A[k,j] / A[k,k]) 
    } 
    } 
  } 
 } 
 return(B) 
} 
 
sweep_all<-function(A) { 
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 B<-matrix(0,nrow=nrow(A),ncol=ncol(A)) 
 for (i in 1: nrow(A)) { 
  B=sweep(A,i) 
  A=B 
 } 
 return(B) 
} 
################################################################################## 
### Tetrad Function Part 1: Use Empirical Method to find model implied tetrad ################# 
################################################################################## 
### Information needed for Part 1 ### 
### 1. Sample covariance matrix "Samplecov". ### 
### 2. SEM model need to be tested "FactorModel". ### 
### 3. Sample size "Size". ### 
### Use function "ExampleTetrad" to get all model implied vanishing tetrads using empirical method. 
### 
EmpiricalMethod<-function(FactorModel,Samplecov){ 
### Package "lavaan" is used to get model implied covariance matrix "Modelcov", the synatax used to 
sepecify model is the same as syntax in "lavaan". ### 
 library(lavaan) 
 FactorOut<-cfa(FactorModel, sample.cov=Samplecov, sample.nobs =Size) 
 Modelcov<-data.frame(lavTech(FactorOut, "cov.ov"))*Size/(Size-1) 
### List all tetrads in matrix "Tetrad", when there are N observed variables in inputted model. ### 
 N<-ncol(Modelcov) 
 x<-combn(1:N,4) 
 TetradNum<-choose(N, 4) 
 x1<-t(x) 
 x2<-cbind(x[1,],x[4,],x[2,],x[3,]) 
 x3<-cbind(x[1,],x[3,],x[4,],x[2,]) 
 y<-rbind(x1,x2,x3) 
 rownames(y)<-rep(1:TetradNum,3) 
 Y<-y[order(as.numeric(rownames(y))),] 
 Tetrad<-Y[,1]*1000+Y[,2]*100+Y[,3]*10+Y[,4] 
### Calculate all tetrad values based on model implied covariance matrix "Modelcov". ### 
### Save all tetrad values in a vector named "T", if the absolute tetrad value is less than 0.001, we 
assume it is a vanishing tetrad. ### 
 T<-matrix(1,nc=1,nr=nrow(Y)) 
 for(i in 1:nrow(Y)){ 
 T[i,1]<-round(Modelcov[Y[i,2],Y[i,1]]*Modelcov[Y[i,4],Y[i,3]] 
    -Modelcov[Y[i,3],Y[i,1]]*Modelcov[Y[i,4],Y[i,2]],2) 
 } 
 colnames(T) <- c("ImpliedValue") 
 implied<-matrix(,nrow=nrow(T)) 
 colnames(implied) <- c("Implied") 
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 for(i in 1:nrow(T)){ 
 if(abs(T[i,1])>0.001) {implied[i,1]<-0} else{implied[i,1]<-1} 
 } 
 Tvalue<-matrix(1,nc=4,nr=nrow(Y)) 
 for (i in 1:nrow(Y)){ 
 Tvalue[i,1]<-min(Y[i,1],Y[i,2])*10+max(Y[i,1],Y[i,2]) 
 Tvalue[i,2]<-min(Y[i,3],Y[i,4])*10+max(Y[i,3],Y[i,4]) 
 Tvalue[i,3]<-min(Y[i,1],Y[i,3])*10+max(Y[i,1],Y[i,3]) 
 Tvalue[i,4]<-min(Y[i,2],Y[i,4])*10+max(Y[i,2],Y[i,4]) 
 } 
 colnames(Tvalue) <- c("1","2","3","4") 
 EmpiricalMethod_list<-list(EmpiricalMethod=cbind(Tetrad,Tvalue,implied,T), 
Modelcov=Modelcov) 
 return(EmpiricalMethod_list) 
} 
################################################################################## 
########## Tetrad Function Part 2: Find Nonredundant vanishing tetrads ###################### 
################################################################################## 
### Information needed for Part 2 ### 
### 1. Model implied vanishing tetrads "ModelTetrad". ### 
ExampleTetrad<-EmpiricalMethod(FactorModel,Samplecov)    # Use 
"EmpiricalMethod" function. # 
ModelTetrad<-ExampleTetrad$EmpiricalMethod[ExampleTetrad$EmpiricalMethod[,6]==1,] # 
Implied=1 means tetrad vanished in model. # 
EmpiricalTetrads<-ModelTetrad[,1,drop=FALSE]     # Model implied tetrad 
names. # 
### 2. All covariances in the model. ### 
COV<-ModelTetrad[,2:5,drop=FALSE] 
### 3. Model implied covariance matrix "Modelcov". ### 
Modelcov<-ExampleTetrad$Modelcov 
################################################################################## 
### Use function "NRVT_Fun" to identify model implied nonredundant vanishing tetrads. ### 
NRVT_Fun<-function(COV,ModelTetrad,Modelcov) { 
  if (nrow(COV)==1){   # If there is only one model implied vanishing tetrad, 
identify is unnecessary. # 
   NRVT<-ModelTetrad[1,1] 
  NRVT_Num<-1 
 } 
 
 else if (nrow(COV)>1) {  # If there is more than one model implied vanishing tetrad, 
identify is necessary. # 
  uc<-unique(as.vector(COV)) # Find all unique covariances among vanishing tetrads. # 
  SigmaSS<-matrix(1,nc=length(uc),nr=length(uc)) 
  for (i in 1:length(uc)){ 
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   for (j in 1:length(uc)) { 
   e<-uc[i]%/%10 
   f<-uc[i]%%10 
   g<-uc[j]%/%10 
   h<-uc[j]%%10 
   efgh<-Modelcov[e,g]*Modelcov[f,h]+Modelcov[e,h]*Modelcov[f,g] 
   SigmaSS[i,j]<-efgh 
   } 
  } 
### Get model implied SigmaTT based on model implied covariance matrix "Modelcov". ### 
  dtaudsigmaCOV<-matrix(0,ncol=length(uc),nrow=nrow(COV)) 
  for (i in 1:nrow(dtaudsigmaCOV)){ 
   for(j in 1:ncol(dtaudsigmaCOV)){ 
   if (COV[i,1]==uc[j]) 
{dtaudsigmaCOV[i,j]=Modelcov[COV[i,2]%/%10,COV[i,2]%%10]}  
   if (COV[i,2]==uc[j]) 
{dtaudsigmaCOV[i,j]=Modelcov[COV[i,1]%/%10,COV[i,1]%%10]}  
   if (COV[i,3]==uc[j]) {dtaudsigmaCOV[i,j]=-
Modelcov[COV[i,4]%/%10,COV[i,4]%%10]}  
   if (COV[i,4]==uc[j]) {dtaudsigmaCOV[i,j]=-
Modelcov[COV[i,3]%/%10,COV[i,3]%%10]}  
   } 
  } 
### use sweep operator to identify set of nonredundant vanishing tetrads. ### 
  SigmaTT<-dtaudsigmaCOV %*% SigmaSS %*% t(dtaudsigmaCOV) 
  SweepResults<-sweep_all(SigmaTT) 
  rowsum<-rowSums(SweepResults) 
  nrvt <- matrix(0, ncol=1, nrow=nrow(COV)) 
  NRVT_Num<-0 
  for (i in 1: nrow(COV)) { 
   if ( rowsum[i] != 0 ) {   # If rowsum==0, that tetrad is 
redundant.# 
   nrvt[i,] = ModelTetrad[i,1] 
   NRVT_Num<-NRVT_Num+1 
    } 
   } 
 NRVT<-nrvt[nrvt[,1]!=0,] 
  
 } 
 NRVT_list<-list(NRVT=NRVT, NRVT_Num=NRVT_Num, uc=uc,Modelcov=Modelcov) 
 return(NRVT_list) 
} 
 
NRVT_Results<-NRVT_Fun(COV,ModelTetrad,Modelcov) 
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NRVT_Num<-NRVT_Results$NRVT_Num 
NRVT<-NRVT_Results$NRVT 
UniqueCov<-NRVT_Results$uc 
 
################################################################################## 
########## Tetrad Function Part 3: Individual Test and Multivariate Test  ###################### 
################################################################################## 
### Information needed for Part 3 ### 
### 1. Model implied nonredundant vanishing tetrads "NRVT". ### 
NRVT_Results<-NRVT_Fun(COV,ModelTetrad,Modelcov) # Use "NRVT_Fun" function. # 
NRVT<-NRVT_Results$NRVT 
### 2. Model implied nonredundant vanishing tetrad number "NRVT_Num" ### 
NRVT_Num<-NRVT_Results$NRVT_Num 
### 3. All unique covariances in vanishing tetrads "uc". ### 
uc<-NRVT_Results$uc 
 
################################################################################## 
######### Individual test for every nonredundant tetrad ################################### 
Tetrad<-matrix(1,nc=1,nr=NRVT_Num) 
AVAR<-matrix(1,nc=1,nr=NRVT_Num) 
Teststat<-matrix(1,nc=1,nr=NRVT_Num) 
Pvalue<-matrix(1,nc=1,nr=NRVT_Num) 
Fun<-t(t(NRVT))    # Get all nonredundant tetrads. # 
NRVT_COV<-matrix(0, nrow=NRVT_Num,ncol=4)  
for (k in 1:NRVT_Num){ 
  e<-Fun[k,1]%/%1000 
  f<-Fun[k,1]%/%100%%10 
  g<-Fun[k,1]%/%10%%10 
  h<-Fun[k,1]%%10 
 sigma<-
c(min(e,f)*10+max(e,f),min(g,h)*10+max(g,h),min(e,g)*10+max(e,g),min(f,h)*10+max(f,h)) 
 NRVT_COV[k,1]<-sigma[1] 
 NRVT_COV[k,2]<-sigma[2] 
 NRVT_COV[k,3]<-sigma[3] 
 NRVT_COV[k,4]<-sigma[4] 
 SigmaSS<-matrix(1,nc=length(sigma),nr=length(sigma)) # Get SigmaSS based on Sample 
covariance matrix "Samplecov". # 
  for (i in 1:length(sigma)){ 
   for (j in 1:length(sigma)) { 
   ee<-sigma[i]%/%10 
   ff<-sigma[i]%%10 
   gg<-sigma[j]%/%10 
   hh<-sigma[j]%%10 
   efgh<-Samplecov[ee,gg]*Samplecov[ff,hh]+Samplecov[ee,hh]*Samplecov[ff,gg] 
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  SigmaSS[i,j]<-efgh 
   } 
  } 
dt<-matrix(c(Samplecov[g,h],Samplecov[e,f],-Samplecov[f,h],-Samplecov[e,g]),ncol=4,nrow=1) 
VAR<-(1/Size)* dt %*% SigmaSS %*% t(dt) 
T<-Samplecov[e,f]*Samplecov[g,h]-Samplecov[e,g]*Samplecov[f,h]  # Calculate T values for 
individual tests. # 
stat<-T^2/VAR 
Chipvalue<-1-pchisq(stat,df=1)      # Calculate P-values for 
individual tests. # 
 Tetrad[k,1]<-round(T,3) 
 AVAR[k,1]<-round(VAR,3) 
 Teststat[k,1]<-round(stat,3) 
 Pvalue[k,1]<-round(Chipvalue,3) 
} 
Result<-cbind(Fun,Tetrad,AVAR,Teststat,Pvalue) 
colnames(Result) <- c("Model Implied Tetrad","t","AVAR","TestStatistic","P-value") # All results for 
individual tests. # 
 
############################################################################ 
######### Multivariate test for overall model fit #################################### 
### Get SigmaSS based on sample covariance matrix "Samplecov". ### 
 SigmaSS<-matrix(1,nc=length(uc),nr=length(uc))  
  for (i in 1:length(uc)){ 
   for (j in 1:length(uc)) { 
   e<-uc[i]%/%10 
   f<-uc[i]%%10 
   g<-uc[j]%/%10 
   h<-uc[j]%%10 
   efgh<-Samplecov[e,g]*Samplecov[f,h]+Samplecov[e,h]*Samplecov[f,g] 
   SigmaSS[i,j]<-efgh 
    } 
   } 
 
### Get SigmaTT, use dtau/dsigma and based on sample covariance matrix "Samplecov". ### 
 dtaudsigmaCOV<-matrix(0,ncol=length(uc),nrow=NRVT_Num) 
  for (i in 1:nrow(dtaudsigmaCOV)){ 
   for(j in 1:ncol(dtaudsigmaCOV)){ 
   if (NRVT_COV[i,1]==uc[j]) 
{dtaudsigmaCOV[i,j]=Samplecov[NRVT_COV[i,2]%/%10,NRVT_COV[i,2]%%10]}  
   if (NRVT_COV[i,2]==uc[j]) 
{dtaudsigmaCOV[i,j]=Samplecov[NRVT_COV[i,1]%/%10,NRVT_COV[i,1]%%10]}  
   if (NRVT_COV[i,3]==uc[j]) {dtaudsigmaCOV[i,j]=-
Samplecov[NRVT_COV[i,4]%/%10,NRVT_COV[i,4]%%10]}  
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   if (NRVT_COV[i,4]==uc[j]) {dtaudsigmaCOV[i,j]=-
Samplecov[NRVT_COV[i,3]%/%10,NRVT_COV[i,3]%%10]}  
   } 
  } 
SigmaTT<-dtaudsigmaCOV %*% SigmaSS %*% t(dtaudsigmaCOV) 
 
t<-t(t(Result[,2]))    # Get T values for all individual tests, use function 
"Result". # 
T<-Size*t(t) %*% solve(SigmaTT) %*% t  # T value for multivariate test. # 
MultiPvalue<-1-pchisq(T,df=NRVT_Num)  # P-value for multivariate test. # 
colnames(T) <- c("TestStatistic For Multivariate Test") 
colnames(MultiPvalue) <- c("P-value For Multivariate Test") 
 
################################################################################## 
########## Tetrad Function Part 4: Output all analysis results ################################# 
################################################################################## 
 
results<-list(T=T, MultiPvalue=MultiPvalue,NRVT=NRVT,NRVT_Num=NRVT_Num, 
    EmpiricalTetrads=EmpiricalTetrads,Modelcov=Modelcov) 
return(results) 
} 
########### Tetrad Function End####################################################### 
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################################################################################## 
################################## Nested or not Function ############################# 
################################################################################## 
### Information needed  ### 
### 1. Two sample covariance matrices "Samplecov1" and "Samplecov2". ### 
### 2. Two SEM models "FactorModel1" and "FactorModel2". ### 
### 3. Two sample size "Size1" and "Size2". ### 
### 4. Function “TetradAnalysisNoRandom” ### 
################################################################################## 
NestedOrNot<-function(Samplecov1,FactorModel1,Size1,Samplecov2,FactorModel2,Size2){ 
 Model1<-TetradAnalysisNoRandom(Samplecov1,FactorModel1,Size1) 
 Model2<-TetradAnalysisNoRandom(Samplecov2,FactorModel2,Size2) 
 EmpiricalTetrads1<-Model1$EmpiricalTetrads 
 EmpiricalTetrads2<-Model2$EmpiricalTetrads 
 
 if (nrow(EmpiricalTetrads1)<=nrow(EmpiricalTetrads2)){  # Check which model has more 
vanishing tetrads after empirical method. # 
 if (all(EmpiricalTetrads1[,1] %in% EmpiricalTetrads2[,1])==TRUE){ # If all vanishing tetrads 
for one model are all exist in another model, then they are nested. #  
  nest<-"Two models are nested"}else{ 
  nest<-"Two models are not nested"} 
 }else{ 
  if (all(EmpiricalTetrads2[,1] %in% EmpiricalTetrads1[,1])==TRUE){ 
  nest<-"Two models are nested"}else{ 
  nest<-"Two models are not nested"} 
 } 
 results<-list(Model3BOV=Model1$Modelcov, 
     Model2COV=Model2$Modelcov, 
     NRVT1=Model1$NRVT, 
     NRVT2=Model2$NRVT, 
     NRVT_Num1=Model1$NRVT_Num,   
     NRVT_Num2=Model2$NRVT_Num, 
     NEST=nest) 
### Output nonredundant tetrad setting, nonredundant tetrad number and nested or not status for 
these two models. ### 
 
 return(results) 
} 
########### NestedOrNot Function End############################################# 
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################################################################################## 
############################## TetradAnalysisOnly  Function ########################## 
################################################################################## 
### Information needed ### 
### 1. Nonredundant vanishing tetrad setting: “NRVT”. ### 
### 2. Nonredundant vanishing tetrad number: “NRVT_Num”.### 
### 3. Sample covariance/correlation matrix " Samplecov ". ### 
 
######### Individual Test ######################################################## 
TetradAnalysisOnly<-function(Samplecov, NRVT, NRVT_Num) { 
Tetrad<-matrix(1,nc=1,nr=NRVT_Num) 
AVAR<-matrix(1,nc=1,nr=NRVT_Num) 
Teststat<-matrix(1,nc=1,nr=NRVT_Num) 
Pvalue<-matrix(1,nc=1,nr=NRVT_Num) 
Fun<-t(t(NRVT)) 
NRVT_COV<-matrix(0, nrow=NRVT_Num,ncol=4)  
for (k in 1:NRVT_Num){ 
  e<-Fun[k,1]%/%1000 
  f<-Fun[k,1]%/%100%%10 
  g<-Fun[k,1]%/%10%%10 
  h<-Fun[k,1]%%10 
 sigma<-
c(min(e,f)*10+max(e,f),min(g,h)*10+max(g,h),min(e,g)*10+max(e,g),min(f,h)*10+max(f,h)) 
 NRVT_COV[k,1]<-sigma[1] 
 NRVT_COV[k,2]<-sigma[2] 
 NRVT_COV[k,3]<-sigma[3] 
 NRVT_COV[k,4]<-sigma[4] 
 SigmaSS<-matrix(1,nc=length(sigma),nr=length(sigma)) 
  for (i in 1:length(sigma)){ 
   for (j in 1:length(sigma)) { 
   ee<-sigma[i]%/%10 
   ff<-sigma[i]%%10 
   gg<-sigma[j]%/%10 
   hh<-sigma[j]%%10 
   efgh<-Samplecov[ee,gg]*Samplecov[ff,hh]+Samplecov[ee,hh]*Samplecov[ff,gg] 
  SigmaSS[i,j]<-efgh 
   } 
  } 
dt<-matrix(c(Samplecov[g,h],Samplecov[e,f],-Samplecov[f,h],-Samplecov[e,g]),ncol=4,nrow=1) 
VAR<-(1/Size)* dt %*% SigmaSS %*% t(dt) 
T<-Samplecov[e,f]*Samplecov[g,h]-Samplecov[e,g]*Samplecov[f,h] 
stat<-T^2/VAR 
Chipvalue<-1-pchisq(stat,df=1) 
 Tetrad[k,1]<-round(T,3) 
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 AVAR[k,1]<-round(VAR,3) 
 Teststat[k,1]<-round(stat,3) 
 Pvalue[k,1]<-round(Chipvalue,3) 
} 
Result<-cbind(Fun,Tetrad,AVAR,Teststat,Pvalue) 
colnames(Result) <- c("Model Implied Tetrad","t","AVAR","TestStatistic","P-value") 
 
######### Multivariate test ################################################### 
uc<-unique(as.vector(NRVT_COV)) 
 SigmaSS<-matrix(1,nc=length(uc),nr=length(uc)) 
  for (i in 1:length(uc)){ 
   for (j in 1:length(uc)) { 
   e<-uc[i]%/%10 
   f<-uc[i]%%10 
   g<-uc[j]%/%10 
   h<-uc[j]%%10 
   efgh<-Samplecov[e,g]*Samplecov[f,h]+Samplecov[e,h]*Samplecov[f,g] 
   SigmaSS[i,j]<-efgh 
    } 
   } 
 dtaudsigmaCOV<-matrix(0,ncol=length(uc),nrow=NRVT_Num) 
  for (i in 1:nrow(dtaudsigmaCOV)){ 
   for(j in 1:ncol(dtaudsigmaCOV)){ 
   if (NRVT_COV[i,1]==uc[j]) 
{dtaudsigmaCOV[i,j]=Samplecov[NRVT_COV[i,2]%/%10,NRVT_COV[i,2]%%10]}  
   if (NRVT_COV[i,2]==uc[j]) 
{dtaudsigmaCOV[i,j]=Samplecov[NRVT_COV[i,1]%/%10,NRVT_COV[i,1]%%10]}  
   if (NRVT_COV[i,3]==uc[j]) {dtaudsigmaCOV[i,j]=-
Samplecov[NRVT_COV[i,4]%/%10,NRVT_COV[i,4]%%10]}  
   if (NRVT_COV[i,4]==uc[j]) {dtaudsigmaCOV[i,j]=-
Samplecov[NRVT_COV[i,3]%/%10,NRVT_COV[i,3]%%10]}  
   } 
  } 
SigmaTT<-dtaudsigmaCOV %*% SigmaSS %*% t(dtaudsigmaCOV) 
t<-t(t(Result[,2])) 
T<-Size*t(t) %*% solve(SigmaTT) %*% t 
MultiPvalue<-1-pchisq(T,df=NRVT_Num) 
colnames(T) <- c("TestStatistic For Multivariate Test") 
colnames(MultiPvalue) <- c("P-value For Multivariate Test") 
results<-list(T=T, MultiPvalue=MultiPvalue) 
return(results) 
}  
########### TetradAnalysisOnly  Function End############################################# 
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APPENDIX B 
 

R CODES FOR GENERATING UNIFORM RANDOM CORRELATION MATRICES 
 
################################################################################### 
############################## UCM method ######################################### 
################################################################################### 
set.seed(123)   # Random seed for data generation 
d<-6    # Matrix dimension 
UCM<-list()   # Create a list to keep generated data 
m<-1 
k<-10000   # Number of matrices needed 
repeat{          
rr <- matrix(0, d, d) 
 for (i in 1:d) { 
 for (j in i:d){ 
 rr[i, j] <- runif(1, 0, 1)        # Every correlation is uniform(0,1) distributed # 
 rr[j, i]<-rr[i, j] 
 } 
 } 
diag(rr) <- 1 
eigen<-eigen(rr)$values 
z<-sign(eigen) 
if(sum(z)==d){UCM[[m]]<-rr} # Check eigen values to know a matrix is positive definite or not # 
if(sum(z)==d){m<-m+1} 
  if(m==k+1){ 
    break 
  } 
} 
######### “UCM” is a list with 10000 6*6 correlation matrices ######### 
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################################################################################### 
################# Partial Correlation Method ########################################### 
################################################################################### 
 
# Function 'PCM' created for random correlation method ##### 
PCM<-function (d, alphad = 1)   # d is the dimension of matrix,  
{        # alphad=1 means we set correlation distribution Beta(1,1) 
    rjm<-function (rsub, alp)  
  { 
    b <- nrow(rsub) 
    ii <- 2:(b - 1) 
    r1 <- rsub[ii, 1] 
    r3 <- rsub[ii, b] 
    R2 <- rsub[ii, ii] 
    Ri <- solve(R2) 
    rcond <- rbeta(1, alp, alp)           # Beta(1,1) is the same as Uniform(0,1) 
    tem13 <- t(r1) %*% Ri %*% r3 
    tem11 <- t(r1) %*% Ri %*% r1 
    tem33 <- t(r3) %*% Ri %*% r3 
    res <- tem13 + rcond * sqrt((1 - tem11) * (1 - tem33))    # give res a random value based on tem13 # 
    return(res) 
  } 
    d <- as.integer(d) 
    if (d <= 0 || !is.integer(d)) { 
        stop("The dimension 'd' should be a positive integer!\n") 
    } 
    if (alphad <= 0) { 
        stop("'alphad' should be positive!\n") 
    } 
    if (d == 1) { 
        rr <- matrix(1, 1, 1) 
        return(rr) 
    } 
    if (d == 2) { 
        rho <- runif(1, 0, 1) 
        rr <- matrix(c(1, rho, rho, 1), 2, 2) 
        return(rr) 
    } 
    rr <- matrix(0, d, d) 
    diag(rr) <- 1 
    for (i in 1:(d - 1)) { 
        alp <- alphad + (d - 2)/2 
        rr[i, i + 1] <- rbeta(1, alp, alp)  
        rr[i + 1, i] <- rr[i, i + 1] 
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    } 
    for (m in 2:(d - 1)) { 
        for (j in 1:(d - m)) { 
            rsub <- rr[j:(j + m), j:(j + m)] 
            alp <- alphad + (d - 1 - m)/2 
            rr[j, j + m] <- rjm(rsub, alp) 
            rr[j + m, j] <- rr[j, j + m] 
        } 
    } 
    return(rr) 
} 
########## Generate 10,000 random correlation matrices use PCM ######## 
set.seed(123) 
dim<-6 
p<-dim*dim 
Randomcor<-list()  # “Randomcor” has all generated matrices 
j<-1 
repeat{ 
random<- PCM (dim,alphad=1) 
eigen<-eigen(random)$values 
z<-sign(eigen) 
if(sum(z)==dim){Randomcor[[j]]<-random} 
if(sum(z)==dim){j<-j+1} 
  if(j==10001){ 
    break 
  } 
} 
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###################################################################### 
########################## MCMC method ############################## 
###################################################################### 
 
### set burn in 100,000, number of matrices=10,000, thin=10 ### 
o<-6 
nmat<-10000  # Number of matrices 
irt<-100000  # Burn in 
thin<-irt/nmat  # For all generated matrices, remain 1 matrix in “thin” matrices 
nr<-o*(o-1)/2  # number of correlation in matrix 
xcand<-rep(0.5,nr) 
xtemp<-rep(0,nr) 
jmpsize<-0.5  # jump size between 0 and 1, affact the speed 
reject<-0 
MCMC<-list()  # Final matrices store in “MCMC” 
MCMCall<-list() 
mm<-1 
ii<-1 
rejectY<-0 
rejectR<-0 
n<-0 
set.seed(123) 
repeat{ 
 n<-n+1 
 tmp<-rnorm(nr,0,1)  
 xtemp<-runif(1,0,1)  
 xtmp<-rep(0,nr) 
 for (i in 1:nr){ 
  xtmp[i]<-xtemp^(1/nr)*tmp[i]/length(tmp) 
  } 
 ycand<-rep(0,nr) 
 yflag<-rep(1,nr) 
 for (i in 1:nr){ 
  ycand[i]<-xcand[i]+jmpsize*xtmp[i] 
  if(ycand[i]>0 && ycand[i]<1){yflag[i]<-0} 
  } 
 if(sum(yflag)!=0){rejectY<-rejectY+1}   
 if(sum(yflag)==0){ 
 k<-1 
 rr <- matrix(1, o, o) 
    for (m in 1:(o - 1)) { 
      for (j in 1:(o - m)) { 
            rr[j, j + m] <- ycand[k] 
            rr[j + m, j] <- rr[j, j + m] 
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  k<-k+1 
       } 
       } 
 eigen<-eigen(rr)$values  # Check positive definite 
 z<-sign(eigen) 
 if(sum(z)!=o){rejectR<-rejectR+1} 
 if(sum(z)==o){ 
  xcand<-ycand 
  MCMCall[[mm]]<-rr 
  mm<-mm+1 
 if((mm>irt)&(mm%%thin==0)){MCMC[[ii]]<-rr # Skip burn in & remain 1 matrix in “thin” matrices 
       ii<-ii+1} 
  }  
  } 
if(ii==nmat+1){break} 
} 
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APPENDIX C 
 

R CODES FOR COMPLEXITY COMPARISON FOR COMPARISON SET 3 IN SECTION 4.4 
 
################################################################################## 
############################## Comparison 3 ######################################## 
################################################################################## 
 
# Roughly generate data based on SEM model, then apply Tetrad function to get Nonredundant tetrads 
set and tetrad number ### 
############################# Model 3A ####################################### 
## Simulate data ### 
set.seed(123) 
x1<-rnorm(n=100,0,1) 
x2<-0.8*x1+rnorm(n=100,0,1) 
x3<-0.8*x2+rnorm(n=100,0,1) 
x4<-0.8*x3+rnorm(n=100,0,1) 
X3A<-cbind(as.matrix(x1),as.matrix(x2),as.matrix(x3),as.matrix(x4)) 
Samplecov3A<-var(X3A) 
cor(X3A) 
colnames(Samplecov3A) <- c('x1','x2','x3','x4') 
 
### Get tetrad information ### 
FactorModel3A<-' 
x1 ~ x2 
x2 ~ x3 
x3 ~ x4 
' 
Size<-100 
Samplecov3A 
FactorOut3A<-cfa(FactorModel3A, sample.cov=Samplecov3A, sample.nobs =Size) 
summary(FactorOut3A) 
 
# Model degrees of freedom=3, number of unknown parameter =4*5/2-3=7 # 
 
# Model implied tetrad for model 3A # 
ExampleTetrad3A<- TetradAnalysisNoRandom (FactorModel2A, Samplecov2A, size) 
NRVT3ANoRandom<-1342 
NRVT_Num3ANoRandom<-1 
# Tetrads: 1342 # 
# Tetrad number: 1 # 
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###################### Model 3B ############################## 
### Simulate data ### 
set.seed(123) 
y1<-rnorm(n=100,0,1) 
x1<-Y1+rnorm(n=100,0,1) 
x2<-0.8*Y1+rnorm(n=100,0,1) 
x3<-0.8*Y1+rnorm(n=100,0,1) 
x4<-0.5*Y1+rnorm(n=100,0,1) 
 
X3B<-cbind(as.matrix(x1),as.matrix(x2),as.matrix(x3),as.matrix(x4)) 
### we can get both correlation matrix and covariance matrix in known model analysis ### 
Samplecov3B<-var(X3B) 
cor(X3B) 
colnames(Samplecov3B) <- c('x1','x2','x3','x4') 
 
### Get tetrad information use same parameters for x2 and x3 ### 
FactorModel3B<-' 
y1 =~ x1 + v2*x2 + v2*x3 + x4 
' 
Size<-100 
Samplecov3B 
FactorOut3B<-cfa(FactorModel3B, sample.cov=Samplecov3B, sample.nobs =Size) 
summary(FactorOut3B) 
 
# Model degrees of freedom=3, number of unknown parameter =4*5/2-3=7 # 
 
# Model implied tetrad for model 3B # 
ExampleTetrad3B<- TetradAnalysisNoRandom (FactorModel3B, Samplecov3B, size) 
NRVT3BNoRandom<-c(1342,1234) 
NRVT_Num3BNoRandom<-2 
 
# All 3 tetrads are implied, use 1342 and pick one from the left two vanishing tetrads # 
# Tetrads: 1342 1234 # 
# t=2   # 
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############# Complexity analysis use uniform random correlation matrices ################## 
 
### Generate random correlation matrices ### 
 
###################################################################### 
######### MCMC method to generate uniform distributed correlation matrix ###### 
###################################################################### 
 
### set burn in 10000, number of matrices=1000, thin=10 ### 
o<-4 
nmat<-10000  # Number of matrices 
irt<-100000 
thin<-irt/nmat 
nr<-o*(o-1)/2  
xcand<-rep(0.5,nr) 
xtemp<-rep(0,nr) 
jmpsize<-0.5 
reject<-0 
MCMC<-list() 
MCMCall<-list() 
mm<-1 
ii<-1 
rejectY<-0 
rejectR<-0 
n<-0 
set.seed(123) 
repeat{ 
 n<-n+1 
 tmp<-rnorm(nr,0,1)  
 xtemp<-runif(1,0,1)  
 xtmp<-rep(0,nr) 
 for (i in 1:nr){ 
  xtmp[i]<-xtemp^(1/nr)*tmp[i]/length(tmp) 
  } 
 ycand<-rep(0,nr) 
 yflag<-rep(1,nr) 
 for (i in 1:nr){ 
  ycand[i]<-xcand[i]+jmpsize*xtmp[i] 
  if(ycand[i]>0 && ycand[i]<1){yflag[i]<-0} 
  } 
 if(sum(yflag)!=0){rejectY<-rejectY+1}   
 if(sum(yflag)==0){ 
 k<-1 
 rr <- matrix(1, o, o) 
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    for (m in 1:(o - 1)) { 
      for (j in 1:(o - m)) { 
            rr[j, j + m] <- ycand[k] 
            rr[j + m, j] <- rr[j, j + m] 
  k<-k+1 
       } 
       } 
 eigen<-eigen(rr)$values 
 z<-sign(eigen) 
 if(sum(z)!=o){rejectR<-rejectR+1} 
 if(sum(z)==o){ 
  xcand<-ycand 
  MCMCall[[mm]]<-rr 
  mm<-mm+1 
 if((mm>irt)&(mm%%thin==0)){ 
  colnames(rr) <- c('x1','x2','x3','x4') 
  MCMC[[ii]]<-rr 
  ii<-ii+1 
   } 
  }  
  } 
if(ii==nmat+1){break} 
} 
 
### List “MCMC” contains 10,000 matrices ### 
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##################### Fitting results for Model 3A ################################# 
PResultsA<-numeric(10000) 
TResultsA<-numeric(10000) 
TestsA<-numeric(10000) 
TRMSEAA<-numeric(10000) 
SRMRA<-numeric(10000) 
ChisquareA<-numeric(10000) 
RMSEAA<-numeric(10000) 
AICA<-numeric(10000) 
BICA<-numeric(10000) 
PvalueA<-numeric(10000) 
GFIA<-numeric(10000) 
AGFIA<-numeric(10000) 
CFIA<-numeric(10000) 
TLIA<-numeric(10000) 
ConvergedA<-numeric(10000) 
 
for (i in 1:10000){ 
 Samplecor<-MCMC[[i]] 
 colnames(Samplecor) <- c('x1','x2','x3','x4') 
 x<-TetradAnalysisOnly(Samplecor,NRVT3ANoRandom,NRVT_Num3ANoRandom) 
 MultiPvalue<-x$MultiPvalue 
 PResultsA[i]<-x$MultiPvalue 
 TResultsA[i]<-x$T 
 TRMSEAA[i]<-sqrt(max(0,x$T-NRVT_Num2ANoRandom))/sqrt(NRVT_Num2ANoRandom*(100-
1)) 
 if(MultiPvalue<0.05){TestsA[i]<-1} else{TestsA[i]<-0} 
 
 FactorOut3A<-cfa(FactorModel3A, sample.cov=Samplecor, sample.nobs =Size) 
 ConvergedA[i]<-lavInspect(FactorOut3A, what = "converged") 
 if (ConvergedA[i]==0){ 
   SRMRA[i]<-0 
   ChisquareA[i]<-0 
   RMSEAA[i]<-0 
   AICA[i]<-0 
   BICA[i]<-0 
   PvalueA[i]<-0 
   GFIA[i]<-0 
   CFIA[i]<-0 
   TLIA[i]<-0 
   AGFIA[i]<-0 
   }  
  else{ 
   SRMRA[i]<-fitMeasures(FactorOut2A, "srmr") 
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   ChisquareA[i]<-fitMeasures(FactorOut3A, "chisq") 
   RMSEAA[i]<-fitMeasures(FactorOut3A, "rmsea") 
   AICA[i]<-fitMeasures(FactorOut3A, "aic") 
   BICA[i]<-fitMeasures(FactorOut3A, "bic") 
   PvalueA[i]<-fitMeasures(FactorOut3A, "pvalue") 
   GFIA[i]<-fitMeasures(FactorOut3A, "gfi") 
   AGFIA[i]<-fitMeasures(FactorOut3A, "agfi") 
   CFIA[i]<-fitMeasures(FactorOut3A, "cfi") 
   TLIA[i]<-fitMeasures(FactorOut3A, "tli") 
   } 
} 
 
setwd("C:/Users/Administrator/Desktop") 
ResultsA <- 
data.frame(ChisquareA,PvalueA,SRMRA,RMSEAA,GFIA,AGFIA,CFIA,TLIA,AICA,BICA,TResultsA,PResultsA,T
RMSEAA,ConvergedA) 
write.csv (x =ResultsA , file = "Results3ASeed123N10000.csv") 
 
 
##################### Fitting results for Model 3B ################################# 
PResultsB<-numeric(10000) 
TResultsB<-numeric(10000) 
TestsB<-numeric(10000) 
TRMSEAB<-numeric(10000) 
SRMRB<-numeric(10000) 
ChisquareB<-numeric(10000) 
RMSEAB<-numeric(10000) 
AICB<-numeric(10000) 
BICB<-numeric(10000) 
PvalueB<-numeric(10000) 
GFIB<-numeric(10000) 
AGFIB<-numeric(10000) 
CFIB<-numeric(10000) 
TLIB<-numeric(10000) 
ConvergedB<-numeric(10000) 
 
for (i in 1:10000){ 
 Samplecor<-MCMC[[i]] 
 colnames(Samplecor) <- c('x1','x2','x3','x4') 
 x<-TetradAnalysisOnly(Samplecor,NRVT3BNoRandom,NRVT_Num3BNoRandom) 
 MultiPvalue<-x$MultiPvalue 
 PResultsB[i]<-x$MultiPvalue 
 TResultsB[i]<-x$T 
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 TRMSEAB[i]<-sqrt(max(0,x$T-NRVT_Num2BNoRandom))/sqrt(NRVT_Num2BNoRandom*(100-
1)) 
 if(MultiPvalue<0.05){TestsB[i]<-1} else{TestsB[i]<-0} 
 
 FactorOut2B<-cfa(FactorModel3B, sample.cov=Samplecor, sample.nobs =Size) 
 ConvergedB[i]<-lavInspect(FactorOut3B, what = "converged") 
 if (ConvergedB[i]==0){ 
   SRMRB[i]<-0 
   ChisquareB[i]<-0 
   RMSEAB[i]<-0 
   AICB[i]<-0 
   BICB[i]<-0 
   PvalueB[i]<-0 
   GFIB[i]<-0 
   CFIB[i]<-0 
   TLIB[i]<-0 
   AGFIB[i]<-0 
   }  
  else{ 
   SRMRB[i]<-fitMeasures(FactorOut3B, "srmr") 
   ChisquareB[i]<-fitMeasures(FactorOut3B, "chisq") 
   RMSEAB[i]<-fitMeasures(FactorOut3B, "rmsea") 
   AICB[i]<-fitMeasures(FactorOut3B, "aic") 
   BICB[i]<-fitMeasures(FactorOut3B, "bic") 
   PvalueB[i]<-fitMeasures(FactorOut3B, "pvalue") 
   GFIB[i]<-fitMeasures(FactorOut3B, "gfi") 
   AGFIB[i]<-fitMeasures(FactorOut3B, "agfi") 
   CFIB[i]<-fitMeasures(FactorOut3B, "cfi") 
   TLIB[i]<-fitMeasures(FactorOut3B, "tli") 
   } 
} 
ResultsB <- 
data.frame(ChisquareB,PvalueB,SRMRB,RMSEAB,GFIB,AGFIB,CFIB,TLIB,AICB,BICB,TResultsB,PResultsB,T
RMSEAB,ConvergedB) 
write.csv (x =ResultsB , file = "Results3BSeed123N10000.csv") 
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### Generate random population correlation matrices from known model ### 
 
################## From Model 3A ############################################# 
# Set all observed variables have variance equal to 1, sample size equal to 100 
Size<-100 
set.seed(123) 
j<-0 
beta1<-c() 
beta2<-c() 
beta3<-c() 
KNOWN3A<-list() 
for (i in 1:10000){ 
 beta1[i]<-round(runif(1,0.05,0.95),3) 
 beta2[i]<-round(runif(1,0.05,0.95),3) 
 beta3[i]<-round(runif(1,0.05,0.95),3) 
 cov12<-beta1[i] 
 cov13<-beta1[i]*beta2[i] 
 cov14<-beta1[i]*beta2[i]*beta3[i] 
 cov23<-beta2[i] 
 cov24<-beta2[i]*beta3[i] 
 cov34<-beta3[i] 
 CorMatrix <- matrix(rep(1,4*4), nrow=4) 
 CorMatrix[1,2]<-CorMatrix[2,1]<-cov12 
 CorMatrix[1,3]<-CorMatrix[3,1]<-cov13 
 CorMatrix[1,4]<-CorMatrix[4,1]<-cov14 
 CorMatrix[2,3]<-CorMatrix[3,2]<-cov23 
 CorMatrix[2,4]<-CorMatrix[4,2]<-cov24 
 CorMatrix[3,4]<-CorMatrix[4,3]<-cov34 
 if(is.positive.definite(CorMatrix, tol=1e-8)=="TRUE"){ 
 KNOWN3A[[j+1]]<-CorMatrix 
 j<-j+1 
 } 
} 
 
# List “KNOWN3A” contain 10,000 random population correlation matrices generated from Model 3A # 
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################## From Model 3B ############################################# 
j<-0 
Size<-100 
set.seed(123) 
KNOWN3B<-list() 
beta1<-c() 
beta2<-c() 
beta3<-c() 
beta4<-c() 
for (i in 1:10000){ 
 beta1[i]<-1 
 beta2[i]<-beta3[i]<-round(runif(1,0.05,0.95),3) 
 beta4[i]<-round(runif(1,0.05,0.95),3) 
 cov12<-beta2[i] 
 cov13<-beta3[i] 
 cov14<-beta4[i] 
 cov23<-beta2[i]*beta3[i] 
 cov24<-beta2[i]*beta4[i] 
 cov34<-beta3[i]*beta4[i] 
 CorMatrix <- matrix(rep(1,4*4), nrow=4) 
 CorMatrix[1,2]<-CorMatrix[2,1]<-cov12 
 CorMatrix[1,3]<-CorMatrix[3,1]<-cov13 
 CorMatrix[1,4]<-CorMatrix[4,1]<-cov14 
 CorMatrix[2,3]<-CorMatrix[3,2]<-cov23 
 CorMatrix[2,4]<-CorMatrix[4,2]<-cov24 
 CorMatrix[3,4]<-CorMatrix[4,3]<-cov34 
 if(is.positive.definite(CorMatrix, tol=1e-8)=="TRUE"){ 
 KNOWN3B[[j+1]]<-CorMatrix 
 j<-j+1 
 } 
} 
 
# List “KNOWN3B” contain 10,000 random population correlation matrices generated from Model 3A # 
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####################### Fitting results for matrices from known models ################ 
# Fitting results for Model 3A in matrices generated from Model 3B # 
PResultsA<-numeric(10000) 
TResultsA<-numeric(10000) 
TestsA<-numeric(10000) 
TRMSEAA<-numeric(10000) 
SRMRA<-numeric(10000) 
ChisquareA<-numeric(10000) 
RMSEAA<-numeric(10000) 
AICA<-numeric(10000) 
BICA<-numeric(10000) 
PvalueA<-numeric(10000) 
GFIA<-numeric(10000) 
AGFIA<-numeric(10000) 
CFIA<-numeric(10000) 
TLIA<-numeric(10000) 
ConvergedA<-numeric(10000) 
 
for (i in 1:10000){ 
 Samplecor<-KNOWN3B[[i]] 
 colnames(Samplecor) <- c('x1','x2','x3','x4') 
 x<-TetradAnalysisOnly(Samplecor,NRVT3ANoRandom,NRVT_Num3ANoRandom) 
 MultiPvalue<-x$MultiPvalue 
 PResultsA[i]<-x$MultiPvalue 
 TResultsA[i]<-x$T 
 TRMSEAA[i]<-sqrt(max(0,x$T-NRVT_Num3ANoRandom))/sqrt(NRVT_Num3ANoRandom*(100-
1)) 
 if(MultiPvalue<0.05){TestsA[i]<-1} else{TestsA[i]<-0} 
 FactorOutA<-cfa(FactorModel3A, sample.cov=Samplecor, sample.nobs =Size) 
 ConvergedA[i]<-lavInspect(FactorOutA, what = "converged") 
 if (ConvergedA[i]==1){ 
   SRMRA[i]<-fitMeasures(FactorOutA, "srmr") 
   ChisquareA[i]<-fitMeasures(FactorOutA, "chisq") 
   RMSEAA[i]<-fitMeasures(FactorOutA, "rmsea") 
   AICA[i]<-fitMeasures(FactorOutA, "aic") 
   BICA[i]<-fitMeasures(FactorOutA, "bic") 
   PvalueA[i]<-fitMeasures(FactorOutA, "pvalue") 
   GFIA[i]<-fitMeasures(FactorOutA, "gfi") 
   AGFIA[i]<-fitMeasures(FactorOutA, "agfi") 
   CFIA[i]<-fitMeasures(FactorOutA, "cfi") 
   TLIA[i]<-fitMeasures(FactorOutA, "tli") 
   }  
  else{ 
   SRMRA[i]<-0 
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   ChisquareA[i]<-0 
   RMSEAA[i]<-0 
   AICA[i]<-0 
   BICA[i]<-0 
   PvalueA[i]<-0 
   GFIA[i]<-0 
   CFIA[i]<-0 
   TLIA[i]<-0 
   AGFIA[i]<-0 
   } 
} 
 
setwd("C:/Users/Administrator/Desktop") 
ResultsA <- 
data.frame(ChisquareA,PvalueA,SRMRA,RMSEAA,GFIA,AGFIA,CFIA,TLIA,AICA,BICA,TResultsA,PResultsA,T
RMSEAA,ConvergedA) 
write.csv (x =ResultsA , file = "Known3BResults3AN10000.csv") 
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# Fitting results for Model 3B in matrices generated from Model 3A # 
 
PResultsB<-numeric(10000) 
TResultsB<-numeric(10000) 
TestsB<-numeric(10000) 
TRMSEAB<-numeric(10000) 
SRMRB<-numeric(10000) 
ChisquareB<-numeric(10000) 
RMSEAB<-numeric(10000) 
AICB<-numeric(10000) 
BICB<-numeric(10000) 
PvalueB<-numeric(10000) 
GFIB<-numeric(10000) 
AGFIB<-numeric(10000) 
CFIB<-numeric(10000) 
TLIB<-numeric(10000) 
ConvergedB<-numeric(10000) 
 
for (i in 1:10000){ 
 Samplecor<-KNOWN3A[[i]] 
 colnames(Samplecor) <- c('x1','x2','x3','x4') 
 x<-TetradAnalysisOnly(Samplecor,NRVT3BNoRandom,NRVT_Num3BNoRandom) 
 MultiPvalue<-x$MultiPvalue 
 PResultsB[i]<-x$MultiPvalue 
 TResultsB[i]<-x$T 
 TRMSEAB[i]<-sqrt(max(0,x$T-NRVT_Num3BNoRandom))/sqrt(NRVT_Num3BNoRandom*(100-
1)) 
 if(MultiPvalue<0.05){TestsB[i]<-1} else{TestsB[i]<-0} 
 
 FactorOutB<-cfa(FactorModel3B, sample.cov=Samplecor, sample.nobs =Size) 
 ConvergedB[i]<-lavInspect(FactorOutB, what = "converged") 
 
 if (ConvergedB[i]==1){ 
   SRMRB[i]<-fitMeasures(FactorOutB, "srmr") 
   ChisquareB[i]<-fitMeasures(FactorOutB, "chisq") 
   RMSEAB[i]<-fitMeasures(FactorOutB, "rmsea") 
   AICB[i]<-fitMeasures(FactorOutB, "aic") 
   BICB[i]<-fitMeasures(FactorOutB, "bic") 
   PvalueB[i]<-fitMeasures(FactorOutB, "pvalue") 
   GFIB[i]<-fitMeasures(FactorOutB, "gfi") 
   AGFIB[i]<-fitMeasures(FactorOutB, "agfi") 
   CFIB[i]<-fitMeasures(FactorOutB, "cfi") 
   TLIB[i]<-fitMeasures(FactorOutB, "tli") 
   }  
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  else{ 
   SRMRB[i]<-0 
   ChisquareB[i]<-0 
   RMSEAB[i]<-0 
   AICB[i]<-0 
   BICB[i]<-0 
   PvalueB[i]<-0 
   GFIB[i]<-0 
   CFIB[i]<-0 
   TLIB[i]<-0 
   AGFIB[i]<-0 
   } 
} 
ResultsB <- 
data.frame(ChisquareB,PvalueB,SRMRB,RMSEAB,GFIB,AGFIB,CFIB,TLIB,AICB,BICB,TResultsB,PResultsB,T
RMSEAB,ConvergedB) 
write.csv (x =ResultsB , file = "Known3AResults3BN10000.csv") 
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####################### R codes for comparison tables and plots #################### 
############ 3A vs 3B when random seed is 123, N=10,000 ########### 
ResultsAData <- read.csv(file=" Results3ASeed123N10000.csv", header=TRUE, sep=",") 
ResultsBData <- read.csv(file=" Results3BSeed123N10000.csv", header=TRUE, sep=",") 
 
ChisquareA<-ResultsAData["ChisquareA"][1:10000,] 
PvalueA <-ResultsAData["PvalueA"][1:10000,] 
SRMRA<-ResultsAData["SRMRA"][1:10000,] 
RMSEAA<-ResultsAData["RMSEAA"][1:10000,] 
GFIA<-ResultsAData["GFIA"][1:10000,] 
AGFIA<-ResultsAData["AGFIA"][1:10000,] 
CFIA<-ResultsAData["CFIA"][1:10000,] 
TLIA<-ResultsAData["TLIA"][1:10000,] 
AICA<-ResultsAData["AICA"][1:10000,] 
BICA<-ResultsAData["BICA"][1:10000,] 
TResultsA<-ResultsAData["TResultsA"][1:10000,] 
PResultsA<-ResultsAData["PResultsA"][1:10000,] 
TRMSEAA<-ResultsAData["TRMSEAA"][1:10000,] 
ConvergedA<-ResultsAData["ConvergedA"][1:10000,] 
 
ChisquareB<-ResultsBData["ChisquareB"][1:10000,] 
PvalueB <-ResultsBData["PvalueB"][1:10000,] 
SRMRB<-ResultsBData["SRMRB"][1:10000,] 
RMSEAB<-ResultsBData["RMSEAB"][1:10000,] 
GFIB<-ResultsBData["GFIB"][1:10000,] 
AGFIB<-ResultsBData["AGFIB"][1:10000,] 
CFIB<-ResultsBData["CFIB"][1:10000,] 
TLIB<-ResultsBData["TLIB"][1:10000,] 
AICB<-ResultsBData["AICB"][1:10000,] 
BICB<-ResultsBData["BICB"][1:10000,] 
TResultsB<-ResultsBData["TResultsB"][1:10000,] 
PResultsB<-ResultsBData["PResultsB"][1:10000,] 
TRMSEAB<-ResultsBData["TRMSEAB"][1:10000,] 
ConvergedB<-ResultsBData["ConvergedB"][1:10000,] 
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### Comparison results ### 
# Chisquare 
# Get the values when 3A and 3B both converged # 
Chisquare<-cbind(ChisquareA,ChisquareB,ConvergedA,ConvergedB) 
ChisquareValid<-Chisquare[Chisquare[,3]==1& Chisquare[,4]==1,] 
ChisquareMean<-cbind(mean(ChisquareValid[,1]),mean(ChisquareValid[,2])) 
ChisquareVar<-cbind(var(ChisquareValid[,1]),var(ChisquareValid[,2])) 
ChisquareABetter<-nrow(ChisquareValid[ChisquareValid[,1]<ChisquareValid[,2],]) 
ChisquareBBetter<-nrow(ChisquareValid[ChisquareValid[,1]>ChisquareValid[,2],]) 
ChisquareOut<-
list(ChisquareMean=ChisquareMean,ChisquareVar=ChisquareVar,ChisquareABetter=ChisquareABetter,C
hisquareBBetter=ChisquareBBetter) 
 
# Pvalue 
Pvalue<-cbind(PvalueA,PvalueB,ConvergedA,ConvergedB) 
PvalueValid<-Pvalue[Pvalue[,3]==1& Pvalue[,4]==1,] 
PvalueMean<-cbind(mean(PvalueValid[,1]),mean(PvalueValid[,2])) 
PvalueVar<-cbind(var(PvalueValid[,1]),var(PvalueValid[,2])) 
PvalueABetter<-nrow(PvalueValid[PvalueValid[,1]>PvalueValid[,2],]) 
PvalueBBetter<-nrow(PvalueValid[PvalueValid[,1]<PvalueValid[,2],]) 
PvalueNoBetter<-nrow(PvalueValid[PvalueValid[,1]==PvalueValid[,2],]) 
PvalueA0.05<-nrow(PvalueValid[PvalueValid[,1]>0.05,]) 
PvalueB0.05<-nrow(PvalueValid[PvalueValid[,2]>0.05,]) 
PvalueAB0.05<-nrow(PvalueValid[PvalueValid[,1]>0.05 &PvalueValid[,2]>0.05,]) 
PvalueOut<-
list(PvalueMean=PvalueMean,PvalueVar=PvalueVar,PvalueABetter=PvalueABetter,PvalueBBetter=Pvalu
eBBetter,PvalueNoBetter=PvalueNoBetter,PvalueA0.05=PvalueA0.05,PvalueB0.05=PvalueB0.05,PvalueA
B0.05=PvalueAB0.05) 
 
# SRMR 
SRMR<-cbind(SRMRA,SRMRB,ConvergedA,ConvergedB) 
SRMRValid<-SRMR[SRMR[,3]==1& SRMR[,4]==1,] 
SRMRMean<-cbind(mean(SRMRValid[,1]),mean(SRMRValid[,2])) 
SRMRVar<-cbind(var(SRMRValid[,1]),var(SRMRValid[,2])) 
SRMRABetter<-nrow(SRMRValid[SRMRValid[,1]<SRMRValid[,2],]) 
SRMRBBetter<-nrow(SRMRValid[SRMRValid[,1]>SRMRValid[,2],]) 
SRMRNoBetter<-nrow(SRMRValid[SRMRValid[,1]==SRMRValid[,2],]) 
SRMRA0.08<-nrow(SRMRValid[SRMRValid[,1]<0.08,]) 
SRMRB0.08<-nrow(SRMRValid[SRMRValid[,2]<0.08,]) 
SRMRAB0.08<-nrow(SRMRValid[SRMRValid[,1]<0.08 &SRMRValid[,2]<0.08,]) 
SRMROut<-
list(SRMRMean=SRMRMean,SRMRVar=SRMRVar,SRMRABetter=SRMRABetter,SRMRBBetter=SRMRBBet
ter,SRMRNoBetter=SRMRNoBetter,SRMRA0.08=SRMRA0.08,SRMRB0.08=SRMRB0.08,SRMRAB0.08=SRM
RAB0.08) 
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# RMSEA 
RMSEA<-cbind(RMSEAA,RMSEAB,ConvergedA,ConvergedB) 
RMSEAValid<-RMSEA[RMSEA[,3]==1& RMSEA[,4]==1,] 
RMSEAMean<-cbind(mean(RMSEAValid[,1]),mean(RMSEAValid[,2])) 
RMSEAVar<-cbind(var(RMSEAValid[,1]),var(RMSEAValid[,2])) 
RMSEAABetter<-nrow(RMSEAValid[RMSEAValid[,1]<RMSEAValid[,2],]) 
RMSEABBetter<-nrow(RMSEAValid[RMSEAValid[,1]>RMSEAValid[,2],]) 
RMSEANoBetter<-nrow(RMSEAValid[RMSEAValid[,1]==RMSEAValid[,2],]) 
RMSEAA0.1<-nrow(RMSEAValid[RMSEAValid[,1]<0.1,]) 
RMSEAB0.1<-nrow(RMSEAValid[RMSEAValid[,2]<0.1,]) 
RMSEAOut<-
list(RMSEAMean=RMSEAMean,RMSEAVar=RMSEAVar,RMSEAABetter=RMSEAABetter,RMSEABBetter=R
MSEABBetter,RMSEANoBetter=RMSEANoBetter,RMSEAA0.1=RMSEAA0.1,RMSEAB0.1=RMSEAB0.1) 
 
# GFI 
GFI<-cbind(GFIA,GFIB,ConvergedA,ConvergedB) 
GFIValid<-GFI[GFI[,3]==1& GFI[,4]==1,] 
GFIMean<-cbind(mean(GFIValid[,1]),mean(GFIValid[,2])) 
GFIVar<-cbind(var(GFIValid[,1]),var(GFIValid[,2])) 
GFIABetter<-nrow(GFIValid[GFIValid[,1]>GFIValid[,2],]) 
GFIBBetter<-nrow(GFIValid[GFIValid[,1]<GFIValid[,2],]) 
GFINoBetter<-nrow(GFIValid[GFIValid[,1]==GFIValid[,2],]) 
GFIA0.95<-nrow(GFIValid[GFIValid[,1]>0.95,]) 
GFIB0.95<-nrow(GFIValid[GFIValid[,2]>0.95,]) 
GFIOut<-list(GFIMean=GFIMean,GFIVar=GFIVar,GFIABetter=GFIABetter,GFIBBetter=GFIBBetter, 
   GFINoBetter=GFINoBetter,GFIA0.95=GFIA0.95,GFIB0.95=GFIB0.95) 
 
# AGFI 
AGFI<-cbind(AGFIA,AGFIB,ConvergedA,ConvergedB) 
AGFIValid<-AGFI[AGFI[,3]==1& AGFI[,4]==1,] 
AGFIMean<-cbind(mean(AGFIValid[,1]),mean(AGFIValid[,2])) 
AGFIVar<-cbind(var(AGFIValid[,1]),var(AGFIValid[,2])) 
AGFIABetter<-nrow(AGFIValid[AGFIValid[,1]>AGFIValid[,2],]) 
AGFIBBetter<-nrow(AGFIValid[AGFIValid[,1]<AGFIValid[,2],]) 
AGFINoBetter<-nrow(AGFIValid[AGFIValid[,1]==AGFIValid[,2],]) 
AGFIA0.95<-nrow(AGFIValid[AGFIValid[,1]>0.95,]) 
AGFIB0.95<-nrow(AGFIValid[AGFIValid[,2]>0.95,]) 
AGFIOut<-
list(AGFIMean=AGFIMean,AGFIVar=AGFIVar,AGFIABetter=AGFIABetter,AGFIBBetter=AGFIBBetter, 
   AGFINoBetter=AGFINoBetter,AGFIA0.95=AGFIA0.95,AGFIB0.95=AGFIB0.95) 
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# CFI 
CFI<-cbind(CFIA,CFIB,ConvergedA,ConvergedB) 
CFIValid<-CFI[CFI[,3]==1& CFI[,4]==1,] 
CFIMean<-cbind(mean(CFIValid[,1]),mean(CFIValid[,2])) 
CFIVar<-cbind(var(CFIValid[,1]),var(CFIValid[,2])) 
CFIABetter<-nrow(CFIValid[CFIValid[,1]>CFIValid[,2],]) 
CFIBBetter<-nrow(CFIValid[CFIValid[,1]<CFIValid[,2],]) 
CFINoBetter<-nrow(CFIValid[CFIValid[,1]==CFIValid[,2],]) 
CFIA0.95<-nrow(CFIValid[CFIValid[,1]>0.95,]) 
CFIB0.95<-nrow(CFIValid[CFIValid[,2]>0.95,]) 
CFIOut<-list(CFIMean=CFIMean,CFIVar=CFIVar,CFIABetter=CFIABetter,CFIBBetter=CFIBBetter, 
   CFINoBetter=CFINoBetter,CFIA0.95=CFIA0.95,CFIB0.95=CFIB0.95) 
 
# TLI 
TLI<-cbind(TLIA,TLIB,ConvergedA,ConvergedB) 
TLIValid<-TLI[TLI[,3]==1& TLI[,4]==1,] 
TLIMean<-cbind(mean(TLIValid[,1]),mean(TLIValid[,2])) 
TLIVar<-cbind(var(TLIValid[,1]),var(TLIValid[,2])) 
TLIABetter<-nrow(TLIValid[TLIValid[,1]>TLIValid[,2],]) 
TLIBBetter<-nrow(TLIValid[TLIValid[,1]<TLIValid[,2],]) 
TLINoBetter<-nrow(TLIValid[TLIValid[,1]==TLIValid[,2],]) 
TLIA0.95<-nrow(TLIValid[CFIValid[,1]>0.95,]) 
TLIB0.95<-nrow(TLIValid[CFIValid[,2]>0.95,]) 
TLIOut<-list(TLIMean=TLIMean,TLIVar=TLIVar,TLIABetter=TLIABetter,TLIBBetter=TLIBBetter, 
   TLINoBetter=TLINoBetter,TLIA0.95=TLIA0.95,TLIB0.95=CFIB0.95) 
 
# AIC 
AIC<-cbind(AICA,AICB,ConvergedA,ConvergedB) 
AICValid<-AIC[AIC[,3]==1& AIC[,4]==1,] 
AICMean<-cbind(mean(AICValid[,1]),mean(AICValid[,2])) 
AICVar<-cbind(var(AICValid[,1]),var(AICValid[,2])) 
AICABetter<-nrow(AICValid[AICValid[,1]<AICValid[,2],]) 
AICBBetter<-nrow(AICValid[AICValid[,1]>AICValid[,2],]) 
AICNoBetter<-nrow(AICValid[AICValid[,1]==AICValid[,2],]) 
AICOut<-list(AICMean=AICMean,AICVar=AICVar,AICABetter=AICABetter,AICBBetter=AICBBetter, 
   AICNoBetter=AICNoBetter) 
 
# BIC 
BIC<-cbind(BICA,BICB,ConvergedA,ConvergedB) 
BICValid<-BIC[BIC[,3]==1& BIC[,4]==1,] 
BICMean<-cbind(mean(BICValid[,1]),mean(BICValid[,2])) 
BICVar<-cbind(var(BICValid[,1]),var(BICValid[,2])) 
BICABetter<-nrow(BICValid[BICValid[,1]<BICValid[,2],]) 
BICBBetter<-nrow(BICValid[BICValid[,1]>BICValid[,2],]) 
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BICNoBetter<-nrow(BICValid[BICValid[,1]==BICValid[,2],]) 
BICOut<-list(BICMean=BICMean,BICVar=BICVar,BICABetter=BICABetter,BICBBetter=BICBBetter, 
   BICNoBetter=BICNoBetter) 
 
# TResults 
TResults<-cbind(TResultsA,TResultsB) 
TResultsMean<-cbind(mean(TResults[,1]),mean(TResults[,2])) 
TResultsVar<-cbind(var(TResults[,1]),var(TResults[,2])) 
TResultsABetter<-nrow(TResults[TResults[,1]<TResults[,2],]) 
TResultsBBetter<-nrow(TResults[TResults[,1]>TResults[,2],]) 
TResultsNoBetter<-nrow(TResults[TResults[,1]==TResults[,2],]) 
 
TResultsOut<-
list(TResultsMean=TResultsMean,TResultsVar=TResultsVar,TResultsABetter=TResultsABetter,TResultsBB
etter=TResultsBBetter, TResultsNoBetter=TResultsNoBetter) 
 
# PResults 
PResults<-cbind(PResultsA,PResultsB) 
PResultsMean<-cbind(mean(PResults[,1]),mean(PResults[,2])) 
PResultsVar<-cbind(var(PResults[,1]),var(PResults[,2])) 
PResultsABetter<-nrow(PResults[PResults[,1]>PResults[,2],]) 
PResultsBBetter<-nrow(PResults[PResults[,1]<PResults[,2],]) 
PResultsNoBetter<-nrow(PResults[PResults[,1]==PResults[,2],]) 
PResultsA0.05<-nrow(PResults[PResults[,1]>0.05,]) 
PResultsB0.05<-nrow(PResults[PResults[,2]>0.05,]) 
PResultsOut<-
list(PResultsMean=PResultsMean,PResultsVar=PResultsVar,PResultsABetter=PResultsABetter,PResultsB
Better=PResultsBBetter,PResultsNoBetter=PResultsNoBetter,PResultsA0.05=PResultsA0.05,PResultsB0.0
5=PResultsB0.05) 
 
# TRMSEA 
TRMSEA<-cbind(TRMSEAA,TRMSEAB) 
TRMSEAValid<-TRMSEA[TRMSEA[,1]!=0& TRMSEA[,2]!=0,] 
TRMSEAMean<-cbind(mean(TRMSEAValid[,1]),mean(TRMSEAValid[,2])) 
TRMSEAVar<-cbind(var(TRMSEAValid[,1]),var(TRMSEAValid[,2])) 
TRMSEAABetter<-nrow(TRMSEAValid[TRMSEAValid[,1]<TRMSEAValid[,2],]) 
TRMSEABBetter<-nrow(TRMSEAValid[TRMSEAValid[,1]>TRMSEAValid[,2],]) 
TRMSEANoBetter<-nrow(TRMSEAValid[TRMSEAValid[,1]==TRMSEAValid[,2],]) 
TRMSEAA0.1<-nrow(TRMSEAValid[TRMSEAValid[,1]<0.1,]) 
TRMSEAB0.1<-nrow(TRMSEAValid[TRMSEAValid[,2]<0.1,]) 
TRMSEAOut<-
list(TRMSEAMean=TRMSEAMean,TRMSEAVar=TRMSEAVar,TRMSEAABetter=TRMSEAABetter,TRMSEABB
etter=TRMSEABBetter,TRMSEANoBetter=TRMSEANoBetter,TRMSEAA0.1=TRMSEAA0.1,TRMSEAB0.1=TR
MSEAB0.1) 
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#TNested 
TNested<-TResultsA-TResultsB 
mean(TNested[,1]) 
var(TNested[,1]) 
Critical<-qchisq(.95, df=1) 
TNestedA0.05<-length(TNested[TNested[,1]<Critical,]) 
1-pchisq(3.84,df=1) 
TNestedPvalue<-numeric(10000) 
for(i in 1:10000){ 
 TNestedPvalue[i]<-1-pchisq(TNested[i,1],df=1)} 
mean(TNestedPvalue) 
var(TNestedPvalue) 
sum(TNestedPvalue>=0.05) 
 
########################################################## 
# Check how many times SEM converged # 
sum(ConvergedA) 
sum(ConvergedB) 
Bothvalid<-cbind(ConvergedA,ConvergedB) 
nrow(Bothvalid[Bothvalid[,1]==1& Bothvalid[,2]==1,]) 
 
### Comparison results for Table 4.4.1 ### 
ChisquareOut 
PvalueOut 
SRMROut 
RMSEAOut 
GFIOut 
AGFIOut 
CFIOut 
TLIOut 
AICOut 
BICOut 
 
# Tetrad test Results 
PResultsOut 
nrow(TRMSEA[TRMSEA[,1]!=0,]) 
nrow(TRMSEA[TRMSEA[,2]!=0,]) 
nrow(TRMSEA[TRMSEA[,1]!=0& TRMSEA[,2]!=0,]) 
TRMSEAOut 
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###################     R codes for Figure 4.4.3     ####################################### 
### Pvalue, 0.05 as the cutoff for good fit models ### 
par(mfrow=c(2,2)) 
# Density plot # 
densityPvalue3A <- density(PvalueValid[,1]) 
densityPvalue3B <- density(PvalueValid[,2]) 
plot(densityPvalue3A ,col='RED', main ='Chi-square test P-value Histogram, Model 3A vs Model 
3B',xlab='P-value') 
lines(densityPvalue3B,col='BLUE') 
abline(v = 0.05,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
Pvalue3Avalid.ordered = sort(PvalueValid[,1]) 
n = sum(!is.na(PvalueValid[,1])) 
plot(Pvalue3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'Chi-square test P-value 
CDFplots, Model 3A vs Model 3B',xlab="P-value") 
Pvalue3Bvalid.ordered = sort(PvalueValid[,2]) 
n = sum(!is.na(PvalueValid[,2])) 
lines(Pvalue3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1, v = 0.05,lty=2,col='black') 
 
### SRMR comparison ### 
### SRMR, 0.08 as the cutoff for poor fitting models ### 
# Density plot # 
DensitySRMR3Avalid <- density(SRMRValid[,1]) 
DensitySRMR3Bvalid <- density(SRMRValid[,2]) 
plot(densitySRMR3Avalid   ,col='RED',ylim = c(0, 12),xlim = c(0, 0.4), main ='SRMR Histogram, Model 3A 
vs Model 3B',xlab='SRMR value') 
lines(densitySRMR3Bvalid   ,col='BLUE') 
abline( v = 0.08,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
SRMR3Avalid.ordered = sort(SRMRValid[,1]) 
n = sum(!is.na(SRMRValid[,1])) 
plot(SRMR3Avalid.ordered , (1:n)/n, ylim = c(0, 1),xlim = c(0, 0.4), col='red', type = 's', main = 'SRMR 
CDFplots, Model 3A vs Model 3B',xlab="SRMR value") 
SRMR3Bvalid.ordered = sort(SRMRValid[,2]) 
n = sum(!is.na(SRMRValid[,2])) 
lines(SRMR3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1, v = 0.08,lty=2,col='black') 
par(mfrow=c(2,2)) 
### RMSEA, 0.10 as the cutoff for poor fitting models ### 
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# Density plot # 
DensityRMSEA3A <- density(RMSEAValid[,1]) 
DensityRMSEA3B <- density(RMSEAValid[,2]) 
plot(densityRMSEA3B  ,col='BLUE', ylim = c(0, 4), main ='RMSEA Histogram, Model 3A vs Model 
3B',xlab='RMSEA value') 
lines(densityRMSEA3A ,col='RED') 
abline( v = 0.1,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
RMSEA3Avalid.ordered = sort(RMSEAValid[,1]) 
n = sum(!is.na(RMSEAValid[,1])) 
plot(RMSEA3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'RMSEA CDFplots, Model 
3A vs Model 3B',xlab="RMSEA value") 
 
RMSEA3Bvalid.ordered = sort(RMSEAValid[,2]) 
n = sum(!is.na(RMSEAValid[,2])) 
lines(RMSEA3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1, v = 0.1,lty=2,col='black') 
 
### GFI comparison ### 
# Density plot # 
densityGFI3Avalid <- density(GFIValid[,1]) 
densityGFI3Bvalid <- density(GFIValid[,2]) 
plot(densityGFI3Bvalid ,col='BLUE',ylim = c(0, 11), main ='GFI Histogram, Model 3A vs Model 
3B',xlab='GFI value') 
lines(densityGFI3Avalid   ,col='RED') 
abline(v = 0.95,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
GFI3Avalid.ordered = sort(GFIValid[,1]) 
n = sum(!is.na(GFIValid[,1])) 
plot(GFI3Avalid.ordered , (1:n)/n, ylim = c(0, 1),xlim = c(0.5, 1), col='red', type = 's', main = 'GFI CDFplots, 
Model 3A vs Model 3B',xlab="GFI value") 
 
GFI3Bvalid.ordered = sort(GFIValid[,2]) 
n = sum(!is.na(GFIValid[,2])) 
lines(GFI3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1,v = 0.95,lty=2,col='black') 
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par(mfrow=c(2,2)) 
### CFI comparison ### 
# Density plot # 
densityCFI3Avalid <- density(CFIValid[,1]) 
densityCFI3Bvalid <- density(CFIValid[,2]) 
plot(densityCFI3Bvalid,ylim = c(0, 3), col='BLUE', main ='CFI Histogram, Model 3A vs Model 3B',xlab='CFI 
value') 
lines(densityCFI3Avalid   ,col='RED') 
abline(v = 0.95,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
CFI3Avalid.ordered = sort(CFIValid[,1]) 
n = sum(!is.na(CFIValid[,1])) 
plot(CFI3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'CFI CDFplots, Model 3A vs 
Model 3B',xlab="CFI value") 
 
CFI3Bvalid.ordered = sort(CFIValid[,2]) 
n = sum(!is.na(CFIValid[,2])) 
lines(CFI3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1,v = 0.95,lty=2,col='black') 
 
### TLI comparison ### 
# Density plot # 
densityTLI3Avalid <- density(TLIValid[,1]) 
densityTLI3Bvalid <- density(TLIValid[,2]) 
plot(densityTLI3Bvalid,ylim = c(0, 1.6), col='BLUE', main ='TLI Histogram, Model 3A vs Model 
3B',xlab='TLI value') 
lines(densityTLI3Avalid   ,col='RED') 
abline(v = 0.95,lty=2,col='black') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
TLI3Avalid.ordered = sort(TLIValid[,1]) 
n = sum(!is.na(TLIValid[,1])) 
plot(TLI3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'TLI CDFplots, Model 3A vs 
Model 3B',xlab="TLI value") 
 
TLI3Bvalid.ordered = sort(TLIValid[,2]) 
n = sum(!is.na(TLIValid[,2])) 
lines(TLI3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
abline(h = 0:1,v = 0.95,lty=2,col='black') 
 
 



157 
 

### AIC BIC plots ### 
par(mfrow=c(2,2)) 
# AIC # 
# Density plot # 
densityAIC3A <- density(AICValid[,1]) 
densityAIC3B <- density(AICValid[,2]) 
plot(densityAIC3A ,col='red', ylim = c(0, 0.005),main ='AIC Histogram, Model 3A vs Model 3B',xlab='AIC 
value') 
lines(densityAIC3B ,col='blue') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
AIC3Avalid.ordered = sort(AICValid[,1]) 
n = sum(!is.na(AICValid[,1])) 
plot(AIC3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'AIC CDFplots, Model 3A vs 
Model 3B',xlab="AIC value") 
AIC3Bvalid.ordered = sort(AICValid[,2]) 
n = sum(!is.na(AICValid[,2])) 
lines(AIC3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
 
# BIC # 
# Density plot # 
densityBIC3Avalid <- density(BICValid[,1]) 
densityBIC3Bvalid <- density(BICValid[,2]) 
plot(densityBIC3Avalid ,ylim = c(0, 0.005),col='RED', main ='BIC Histogram, Model 3A vs Model 
3B',xlab='BIC value') 
lines(densityBIC3Bvalid ,col='BLUE') 
 
# CDF plot # 
y <- seq(-10, 10, 0.01) 
BIC3Avalid.ordered = sort(BICValid[,1]) 
n = sum(!is.na(BIC3Avalid.ordered)) 
plot(BIC3Avalid.ordered , (1:n)/n, ylim = c(0, 1), col='red', type = 's', main = 'BIC CDFplots, Model 3A vs 
Model 3B',xlab="BIC value") 
BIC3Bvalid.ordered = sort(BICValid[,2]) 
n = sum(!is.na(BIC3Bvalid.ordered)) 
lines(BIC3Bvalid.ordered ,col='blue',(1:n)/n, type = 's') 
 
####################### R codes for comparison tables and plots END#################### 
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