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ABSTRACT 

Colloidal Synthesis and Photophysical 

Characterization of Group IV Alloy and Group 

IV-V Semiconductors:  

Ge1-xSnx and Sn-P Quantum Dots. 
by  

Venkatesham Tallapally 

A dissertation submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy at Virginia Commonwealth University. 

 

Advisor: Indika U. Arachchige 

Associate Professor, Department of Chemistry 

 

Nanomaterials, typically less than 100 nm size in any direction have gained 

noteworthy interest from scientific community owing to their significantly different and 

often improved physical properties compared to their bulk counterparts. Semiconductor 

nanoparticles (NPs) are of great interest to study their tunable optical properties, primarily 

as a function of size and shape. Accordingly, there has been a lot of attention paid to 

synthesize discrete semiconducting nanoparticles, of where Group III-V and II-VI 

materials have been studied extensively. In contrast, Group IV and Group IV-V based 

nanocrystals as earth abundant and less-non-toxic semiconductors have not been 

studied thoroughly. From the class of Group IV, Ge1-xSnx alloys are prime candidates for 
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the fabrication of Si-compatible applications in the field of electronic and photonic devices, 

transistors, and charge storage devices. In addition, Ge1-xSnx alloys are potentials 

candidates for bio-sensing applications as alternative to toxic materials. Tin phosphides, 

a class of Group IV-V materials with their promising applications in thermoelectric, 

photocatalytic, and charge storage devices. However, both aforementioned 

semiconductors have not been studied thoroughly for their full potential in visible (Vis) to 

near infrared (NIR) optoelectronic applications. In this dissertation research, we have 

successfully developed unique synthetic strategies to produce Ge1-xSnx alloy quantum 

dots (QDs) and tin phosphide (Sn3P4, SnP, and Sn4P3) nanoparticles with tunable physical 

properties and crystal structures for potential applications in IR technologies. 

Low-cost, less-non-toxic, and abundantly-produced Ge1-xSnx alloys are an 

interesting class of narrow energy-gap semiconductors that received noteworthy interest 

in optical technologies. Admixing of α-Sn into Ge results in an indirect-to-direct bandgap 

crossover significantly improving light absorption and emission relative to indirect-gap Ge. 

However, the narrow energy-gaps reported for bulk Ge1-xSnx alloys have become a major 

impediment for their widespread application in optoelectronics. Herein, we report the first 

colloidal synthesis of Ge1-xSnx alloy quantum dots (QDs) with narrow size dispersity 

(3.3±0.5 – 5.9±0.8 nm), wide range of Sn compositions (0–20.6%), and composition-

tunable energy-gaps and near infrared (IR) photoluminescence (PL). The structural 

analysis of alloy QDs indicates linear expansion of cubic Ge lattice with increasing Sn, 

suggesting the formation of strain-free nanoalloys. The successful incorporation of α-Sn 

into crystalline Ge has been confirmed by electron microscopy, which suggests the 

homogeneous solid solution behavior of QDs. The quantum confinement effects have 
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resulted in energy gaps that are significantly blue-shifted from bulk Ge for Ge1-xSnx alloy 

QDs with composition-tunable absorption onsets (1.72–0.84 eV for x=1.5–20.6%) and PL 

peaks (1.62–1.31 eV for x=1.5–5.6%). Time-resolved PL (TRPL) spectroscopy revealed 

microsecond and nanosecond timescale decays at 15 K and 295 K, respectively owing 

to radiative recombination of dark and bright excitons as well as the interplay of surface 

traps and core electronic states. Realization of low-to-non-toxic and silicon-compatible 

Ge1-xSnx QDs with composition-tunable near IR PL allows the unprecedented expansion 

of direct-gap Group IV semiconductors to a wide range of biomedical and advanced 

technological studies.  

Tin phosphides are a class of materials that received noteworthy interest in 

photocatalysis, charge storage and thermoelectric devices. Dual stable oxidation states 

of tin (Sn2+ and Sn4+) enable tin phosphides to exhibit different stoichiometries and crystal 

phases. However, the synthesis of such nanostructures with control over morphology and 

crystal structure has proven a challenging task. Herein, we report the first colloidal 

synthesis of size, shape, and phase controlled, narrowly disperse rhombohedral Sn4P3, 

hexagonal SnP, and amorphous tin phosphide nanoparticles (NPs) displaying tunable 

morphologies and size dependent physical properties. The control over NP morphology 

and crystal phase was achieved by tuning the nucleation/growth temperature, molar ratio 

of Sn/P, and incorporation of additional coordinating solvents (alkylphosphines). The 

absorption spectra of smaller NPs exhibit size-dependent blue shifts in energy gaps 

(0.88–1.38 eV) compared to the theoretical value of bulk Sn3P4 (0.83 eV), consistent with 

quantum confinement effects. The amorphous NPs adopt rhombohedral Sn4P3 and 

hexagonal SnP crystal structures at 180 and 250 °C, respectively. Structural and surface 
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analysis indicates consistent bond energies for phosphorus across different crystal 

phases, whereas the rhombohedral Sn4P3 NPs demonstrate Sn oxidation states 

distinctive from those of the hexagonal and amorphous NPs owing to complex chemical 

structure. All phases exhibit N(1s) and ʋ(N-H) energies suggestive of alkylamine surface 

functionalization and are devoid of tetragonal Sn impurities. 
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CHAPTER 1 

INTRODUCTION 

Materials with at least one of their dimensions are in the range 1-100 nm are 

generally referred to as nanomaterials and their physical properties are in between bulk 

solids and atomic/molecular systems.1,2 Nanoparticles are of greatest interest because 

their properties are entirely different or sometimes superior to their bulk counterparts as 

they differ in size and morphology.3 The unique behavior of nanoparticles allowing the 

existence of a new and multidisciplinary science, nanoscience and nanotechnology.1,3 

The research efforts related to nanomaterials for their potential applications have seen a 

tremendous growth in the last three decades.1 The art of making nanoparticles has been 

known dated back to 4th century.2,4 A first synthesis of ruby colored gold nanoparticles in 

laboratory was known in 1857 by Michael Faraday.2 Developing a unique synthetic 

methodology for nanoparticles is a key step uncover their size and shape dependent 

properties.  

The research efforts on nanomaterials have risen exponentially in recent years 

owing to their promising physical properties and potential applications in advanced 

technologies.3,4 For instance, the unique physical and chemical properties of 

semiconductor nanoparticles (NPs) resulted in quantization of energy levels and tunable 

absorption and emission properties.5 The surface atoms have fewer coordinate atoms 

adjacent to them and unsaturated sites or more dangling bonds compared to the bulk 

atoms.1,6 Reduction in size to nanoscale regimes increases the ratio of atoms present on 

the surface of NPs. As a consequence, the surface atoms have direct influence on the 
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electronic structure and physical properties of NPs. Moreover, increase in the surface 

area enhances the catalytic activity due to exposure of a number of active sites present 

on the surface of the NP.1,7 The modification of physical parameters such as size, shape, 

and surface characteristics have been shown to effectively tune the physical properties 

for their applications.7 

1.1      Semiconductors 

Semiconductors are a class of materials that displays an intermediate conductivity 

between conductors and insulators (Figure 1.1).1 Semiconductors have a small to 

moderate gap between their valance band (VB) and conduction band (CB), typically 

between 0.3 – 4.0 eV. Typically, a semiconductor is composed of an extended network 

of ordered atoms that form a number of molecular orbitals with similar energy, resulting 

in the formation of a continuous band.1 5The bandgap/energy gap (Eg) in a semiconductor 

can be understood similar to the molecular orbital theory for individual molecule, thus Eg 

can be defined as the minimum energy required to excite an electron from highest 

occupied molecular orbitals (HOMO) to lowest unoccupied molecular orbitals (LUMO). In 

bulk, the number of discrete HOMO levels become the valance band and the LUMO levels 

become the conduction band. A material’s electronic and optical properties are then 

classified by the gap between the band levels (Figure 1.1).1,4  
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Figure 1.1.   A schematic demonstration of the energy gap difference between 

conductors, semiconductors and insulators, E = Energy, HOMO = Highest occupied 

molecular orbital, and LUMO = Lowest unoccupied molecular orbital. 

In conductors (metals), electrons in the valence band can flows easily through the 

conduction band as the bands overlap, resulting in zero bandgap.  In semiconductors, 

upon excitation, an electron jumps from valence band to conduction band and the gap 

between both bands defined as energy gap.4  The excitation of electron can be achieved 

through an applied current or photon absorption. It is difficult for lager bandgap energy 

electrons to excite from VB to CB, resulting lower probability for those electrons to 

conduct. Depending on energy gap, a material’s optical and electronic properties are 

classified.8 In insulators, VB and CB are separated by high energy (4.0 eV), neither 
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photon nor applied thermal energy can excite the electron.  However, each above 

discussed material types serves the purpose depending on the electronic device.4 

The incident photon energy must be higher than the energy gap of the material to 

excite the electron across the bands. As a result of the excitation, an electron jumps from 

the valance band to the conduction band leaving a positively charged hole behind.1 This 

electron-hole pair becomes the charge carrier when it is incorporated into a circuit as it 

extracts the electron. An exciton is formed when the electron-hole pair are not separated. 

The exciton is also termed as electrostatic bound state of electron-hole pair. Exciton plays 

a major role in developing a semiconducting device such as LEDs and solar cell. In 

nanoscience, excitons also referred to as Bohr radius (𝑎஻).1,4 Bohr radius is the natural 

physical distance of an electron and hole within the crystal. Each semiconductor has a 

specific distance depending on its properties as can be characterized by equation 1.1, 

where ε is the dielectric coefficient, e is the elementary charge 𝑚௘
∗  is the mass of electron 

and 𝑚௛
∗  is the mass of hole.5 Depending on the above-mentioned material properties, 

Bohr radius ranges from 1-150 nm. Bohr radius must be taken into consideration in 

developing a semiconductor device. 

𝑎஻ =  
௛మఌ

௘మ 
 [ 

ଵ

௠೐
∗ +  

ଵ

௠೓
∗  ]                                                         (1.1) 

There are two types of bandgap semiconductors, direct bandgaps and indirect 

bandgaps depending on photo excitation requirements (Figure 1.2).1,7,9 In direct bandgap 

semiconductors, the highest point of the valence band is in the same momentum plane 

as the lowest point of the conduction band. The excitation phenomenon is very simple in 
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direct bandgaps, so the electrons can easily be excited across the gap by any photon 

with sufficient energy. For this reason, the direct bandgap semiconductors readily absorb 

incident light, and reemit depending on appropriate conditions.1,9-11 

 

Figure 1.2. Direct and Indirect bandgap structures illustrating the differences in 

momentum space (k) of the lowest point in the conduction band and highest point of the 

valence band, E= Energy and k = Crystal momentum. 

Unlike the direct bandgaps, in indirect bandgap, the highest point of valence band 

and lowest point of conduction band are not in same momentum plane. In order to excite 

an electron from valence band to conduction band, the electron needs to change its 

momentum.11 As the photons does not carry momentum, a phonon interaction is required. 

The lattice vibrations in crystal are the phonons and they occur in relatively small 

quantities when compared to photons. In indirect bandgaps, it requires a phonon in 

addition to incident photon leaves the low probability of exciting an electron across the 
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bands. The same applies to relax the excited electron from conduction band to valence 

band. Both types, direct and indirect bandgap semiconductors can be found in Table 1.1. 

Table 1.1 List of Widely Used Semiconductors and their Applications1,4,11-17 

Group Compound Type Bandgap 

(eV) 

Structure Applications 

IV Si indirect 1.12 Diamond cubic Photovoltaics, 
Integrated circuits 

IV Ge indirect 0.67 Diamond cubic Power electronics 

III-V GaN direct 3.44 Zinc blend LEDs 

III-V GaAs direct 1.43 Zinc blend Integrated circuits 

III-V InP direct 1.35 Zinc blend Transistors 

II-VI CdSe direct 1.74 Wurtzite Photovoltaics 

II-VI CdS direct 2.42 Wurtzite Photovoltaics 

II-VI ZnO direct 3.37 Wurtzite Photocatalytic 

II-VI ZnS direct 3.91 Wurtzite Photocatalytic 

IV-VI PbS direct 0.37 NaCl Infrared sensors 

IV-VI PbTe direct 0.32 NaCl Infrared sensors 

IV-VI SnS direct 1.30 Wurtzite Photocatalytic 

II-V Zn3P2 direct 1.50 Tetragonal Photovoltaic 

Oxide TiO2 direct 3.02 Rutile Photocatalytic 

Oxide Cu2O direct 2.17 Cubic Rectifier diodes 

IV-V Sn3P4 indirect 0.83 Trigonal Thermoelectric 
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1.2     Group IV Semiconductor Alloys 

Group IV semiconductors (Si and Ge) are nontoxic class of materials with their 

potential applications in solar photoconversion and related optoelectronic technologies 

such as photodetectors, LEDs, and biological imaging.3,7,18,19 Si and Ge technologies are 

highly compatible with each other. Both (Si and Ge) have indirect bandgaps, which 

limiting their efficiency. However, it is possible to induce a transition from indirect to direct 

bandgap by expanding crystal structures.9,10 As a consequence of the crystal expansion, 

the interatomic spacing increases which results in alteration of orbital overlaps and 

density of states.10 The lattice expansion can be achieved using epitaxy, but it is 

expensive. Alternative approach is alloying with larger atoms into the crystal which cause 

in expanding the lattice. To serve this purpose, tin is in the same group, has similar 

chemistry to both elements with cubic structure, also an earth abundant and non-toxic.9,11 

1.2.1 Ge1−xSnx Alloys  

             Elemental tin incorporation into Ge or Si to form an alloy is a topic that has been 

studied for decades.20 Especially over the last decade, a significant development has 

been made. Theoretical studies on Ge have shown that a direct gap can be induced with 

the incorporation of 6.3-11% tin.11,21-24 The large discrepancies (~14-19%) in lattice 

constants and much higher cohesion energies of Si and Ge compared to that of α-Sn 

makes them difficult to achieve homogeneous alloys.25,26 In addition to this, the admixture 

of α-Sn (Eg = 0.08 eV) significantly reduces the energy gaps of Ge1-xSnx alloys (0.35−0.80 

eV for x = 15.0−0.00 %).21,27 

 

 



8 
 

1.2.2  Indirect to Direct Bandgap Transition in Ge1-xSnx Alloys 

Photoluminescence plays an important role in determining the transition of indirect 

bandgap to direct.10 As seen in Figure 1.2 and above discussion, the process of excitation 

and relaxation in a direct gap is more efficient, which results in a significant increase of 

quantum yield should.10,20 The high quantum yields indicate the direct bandgap 

induction.11 Experiments have shown this effect in high quality Ge1-xSnx alloy films.11,23 

Number of studies have explored the transition via strain, excitation density, temperature, 

and doping.23,28,29 Tin incorporation brings the direct gap to lower energy making it the 

favorable transition. Numerous studies have shown that after reaching the critical point of 

tin concentration, significant increase in photoluminescence occurred for compressively 

strained Ge1-xSnx alloy films.30 As can be seen in Figure 1.3, a direct correlation between 

strained Ge1-xSnx alloys remains an indirect band gap and transitioned to direct band gap 

upon relaxation.21 

 

Figure 1.3. A schematic of Sn alloying on the band structure of Ge with A schematic 

of the different band structures ( for direct and L for indirect) for unstrained Ge, 

compressively strain Ge1-xSnx and relaxed. 
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Theory and experiments on thin films suggest that the bandgap energy with respect to 

alloy composition has a nearly linear relationship. As a result, Ge1-xSnx films bandgap 

decreases from 0.67 eV (pure Ge) to ~0.35 eV for 15% Sn.21 Further Sn incorporation 

promotes the metallic character of direct-gap Ge1-xSnx alloys, eliminating any potential 

application in visible to near IR optoelectronics. In order to produce higher band gap Ge1-

xSnx alloys more suitable for absorption and emission applications, quantum confinement 

effect can be utilized.31,32  

1.3 Quantum Confinement  

When the size of a semiconductor material becomes comparable or smaller than 

the Bohr radius, the physical separation (distance) of the excitons become smaller, then 

the material undergoes the quantum confinement effect.1,33 It is also defined by the size 

of the material which is smaller than that of the Bohr radius (𝑎஻, Equation 1.1), where 𝑎஻ 

is the distance an excited election can travel from its corresponding hole. By meeting this 

condition, it becomes relevant for excitons to the particle in a box model to consider the 

size vs energy relationship. When this condition is met, the particle in a box model 

becomes relevant for excitons when considering the size vs energy relationship. The size 

confinement in bulk, nanoparticles in comparison to HOMO and LUMO levels of 

molecules can be seen in Figure 1.4.4,11  
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Figure 1.4.  Continuous energy bands in bulk and discrete energy levels in 

semiconductor nanoparticles with respect to molecular orbital theory for a single 

molecule.  

 

The energy separation between the valence band and conduction band increases 

as particle size decreases (Figure 1.4) as the electrons and holes are physically confined 

in smaller area. This brings the changes in band energy (ΔE) in the confinement range.  

This inversely proportional relationship between the bandgap energy change (ΔE) and 

the particle size under quantum confinement effect can be explained by Equation 1.2.1 

∆𝐸 =  
௛మగమ

ଶோమ
 ൤

ଵ

௠೐
∗ +

ଵ

௠೓
∗ ൨ −  

ଵ.଼௘మ

ఢோ
    (1.2) 

In this equation few assumptions were taken into consideration such as charge carrier 

masses and dielectric constants. However, it provides a decent estimation of change in 

bandgap energy in accordance with particle size and confinement effects. The ability to 

tune the size of material to tune the energy gap is one of the major driving force behind 
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development of semiconducting nanocrystals. The size at which confinement effects are 

observed is highly dependent on material properties and can range from 1-150 nm.1,25 

Thus, development of diverse synthesis methods which provide tunable sizes is of great 

importance in semiconductor research.  

1.4      Synthesis of Ge1-xSnx alloys  

Nanoparticles synthesis is a challenging task as the particles possess high surface 

to volume ratio which leads to high reactivity and unstable surfaces. With their due 

importance, there have been numerous reports describing synthesis of different 

nanoparticles with size, morphology, and composition control.34,35 Synthesis approaches 

are of mainly two types: (1) top down and (2) bottom up approach.36,37 In top down 

synthesis, the bulk materials reduced to nanoscale in size through physical or chemical 

method. Bottom up synthetic techniques are numerous and diverse, which includes solid 

state, solution phase, vapor phase, and solid-solution-vapor interface approaches where 

atoms or ions reacts with other atoms or ions.13,37,38 

As mentioned earlier, the major setback for Ge1-xSnx alloys is poor solubility of Sn 

into Ge lattice.25,39 Thin films of Ge1-xSnx alloys produced via non-equilibrium growth 

method and epitaxy overcame the solubility issue.40 The first successful report on Ge1-

xSnx thin films is a top down approach. In this process at first, 30 nm thick films were 

produced and then ion etching was utilized to remove Ge capping layer. While etching 

Ge capping layer, Ge1-xSnx layer also slowly getting etched (Figure 1.5).21  Etching time 

is critical here, when longer etching times resulted in destroyed the Ge pillar which 

released the Ge1-xSnx disk.  Certainly, these disks are confined in one direction and show 

no quantum confinement effects.21 
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Figure 1.5. Key steps in the fabrication of Ge1-xSnx thin films using non-selective and 

selective etching process. 

1.5 Colloidal Synthesis 

Solution phase synthesis provides a number of variables to control in the 

nanoparticle synthesis.1,41 The solvent can be selected based on the solubility of 

precursor material. The surfactants are used as solvent as well as to control the growth 

of crystal by passivating on the surface. Temperature and pressure can be used to 

achieve desired crystal phase.11,42 Reducing agent is useful in decomposing the 

precursor(s), especially by competing with surfactants, which alone can act as reducing 

agent to control the nucleation.31,32  

Depending on the solvent, solution-based syntheses are considered two types: (1) 

aqueous and (2) non-aqueous. In aqueous solvent syntheses, water is the main and 

versatile solvent. Most of noble metal nanoparticle syntheses utilizes water as solvent 

along with above mentioned precursor, surfactants, and reducing agent.43,44 The main 

disadvantage with the synthesis with water as solvent is that temperature and oxygen 

sensitive materials. As the water boiling point is 100 °C, the reactions which requires 

temperature higher than that are limits it’s use in the synthesis of semiconducting 
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nanocrystals. Most of the semiconductors (except oxide ones) are oxygen sensitive, 

hence water is poor choice of solvent. Thus, non-aqueous solvents have import role in 

the wet chemical synthesis, where the choice of solvents is more diverse and the boiling 

point of the solvent as well (up to 350 °C).12 Long chain hydrocarbons of alkanes, alkenes, 

alkynes, thiols, phosphines serve this purpose and this approach is termed as colloidal 

synthesis.42,45-47 

In a typical colloidal synthesis, there are mainly three steps involved, nucleation, 

growth, and isolation of the nanoparticles.1 The classical La-Mer model is used to explain 

the synthesis of nanoparticles in solution (Figure 1.6).48 A swift injection of reactants into 

coordinating solvent which is at high temperature creates an unstable supersaturation in 

the reaction flask allows the formation of nuclei. By maintaining or increasing the reaction 

temperature, the nuclei consumes the newly formed nuclei from the continuous 

decomposition of the precursor leads to growth of the particles. Understanding the growth 

process is critical to control the final size of the nanoparticles. Along with temperature, 

reaction time also plays an important role in the growth process. Consequently, a 

secondary growth process occurs as the newly formed small nanoparticles possess high 

surface energy and is called as Ostwald ripening.48 During the Ostwald ripening, small 

crystals merges dissolves back into solution and deposits on the larger particles. This 

later stage growth has different effects on the nanoparticle morphology. Alternatively, 

small crystals can also merge to form larger ones. If small crystals coalesce and connect 

randomly to result in a polycrystalline particle which has high degree of defects. On the 

other hand, if the lattices of each crystal match up to fuse results in a single crystal. One 

more important aspect of oriental attachment is that nanorods, nanowires, and other 
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morphologies can be produced.48 Therefore, to have better control over growth kinetics, 

the key reaction parameters such as precursor ratios, reaction temperature, growth time, 

and capping ligands should be adjusted.1,48 

 

 

Figure 1.6. Schematic of La-Mer nucleation model for mechanism of formation of uniform 

particles in solution. curve I: single nucleation and uniform growth by diffusion; curve II: 

nucleation, growth and aggregation of smaller subunits; curve III: multiple nucleation 

events and Ostwald ripening growth. 

 

 
1.6 Synthesis of Ge1-xSnx Alloy Nanocrystals  

Owing to lack of proper synthetic methodologies, Ge1-xSnx alloy nanocrystals have 

slowly being developed. The primary reason for the slow development the solubility of 

Sn.21 However, as discussed in earlier, the thin film technology overcome the solubility 
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issue but resulted in reducing the bandgap into mid IR region which limits their wide 

spread applications.21 To solve both solubility and opening up the energy gap to NIR-

visible range our group first reported the synthesis of Ge1-xSnx alloy QDs.31 This first 

colloidal synthesis GeI2 and SnCl2 were utilized as precursors to produced homogeneous 

Ge1-xSnx alloys with three distant size regimes with Sn composition up to 28%. The larger 

set of Ge1-xSnx alloys with sizes in the range of 15-23 nm exhibit negligible confinement 

effects with energy gaps (0.2-0.4 eV) that are red-shifted from bulk Ge (0.67 eV) and are 

similar to Ge1-xSnx thin film alloys.31 A set of smaller yet polydisperse alloy QDs with sizes 

in the range of 3.4-4.6 nm display decent size confinement effects with Sn composition 

tunable energy gaps (1.29−0.75 eV for x = 0−11.0%).31 Later, researchers at Los Alamos 

National Laboratory employed GeI2 and Tin(II) bis(trimethylsilyl)amide (Sn(HMDS)2) for 

the Production of size and composition controlled homogenous Ge1-xSnx alloy 

nanocrystals.32 Increase in Sn concentration was achieved up to 42% by compromising 

the nanocrystal sizes in the range of 7-12 nm allowing the optical properties in the near-

mid IR absorption (1.04-0.72 eV for x = 0-40%) and mid-IR PL (0.58-0.45 eV for x = 36-

38%).32 These two colloidal syntheses provided a platform to extend their optical 

properties in new scale by adjusting the size and composition.   

A set of ultra-small, strongly confined Ge1-xSnx alloy QDs of particle sizes in the 

range of 1.85-2.28 nm with composition tunable optical properties in visible range 

(absorption: 2.05-1.56 eV and PL: 2.00-1.72 eV for x = 1.8−23.6%) was reported.49 

Optical transition energies and carrier dynamics of the ultra-small QDs were also 

investigated using steady-state and time-resolved photoluminescence (PL) 

spectroscopy.50 Carrier dynamics of the alloy QDs indicate slow decay of PL at 15 K 
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owing to radiative recombination of dark excitons which are spin forbidden and carriers 

trapped at the surface states. At room temperature 295 K, The PL decays are ~3 orders 

of magnitude faster (9−28 ns) due to the bright excitons which are thermally activated and 

carrier de-trapping from surface states.50 Further, using hybrid functional calculations and 

experimental characterization on the ultra-small Ge1-xSnx alloy QDs, indicate admixing of 

α-Sn significantly enhances the oscillator strengths to result in brightly emissive alloy QDs 

with high absorption and emission efficiency.47 However, owing to less size control as 

increasing Sn concentration and polydispersity of samples show no measurable PL in 

NIR region.  More recently, Ge1-xSnx/CdS core/shell QDs have been employed to produce 

NIR PL.51 The core/shell QDs show broad-band NIR PL with neither size (8−13 nm) nor 

composition (x = 5−25%) dependent tunability. To address the size and composition PL 

tunability in the pursuit of high absorption and bright emission Ge1-xSnx alloy QDs, we 

have developed a unique colloidal synthetic strategy and the detailed discussion will be 

in chapter 3. 

 

1.7 Metal Phosphides 

Metal phosphides (MPs) have received tremendous interest as a class of materials 

that exhibit a range of physical properties of both fundamental and technological interest 

depending on their chemical identity and crystal phase.12,52-58  Synthetic techniques of 

MPs transitioned from bulk to nanoparticle ones occurred during the period 1960-2000.12 

The major driving force for this renewal was to achieve tunable bandgaps in 

semiconductors. In fact, number of MPs are semiconductors.12 In 1952, Welker 

suggested that indium phosphide (InP) could be potential candidate as a semiconductor 
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in electronic devices. Later, InP, GaP, and their alloys with arsenide have become major 

entities in their applications such as photoemitting diodes, microwave oscillators, and 

signal enhancers in biological filed.12,59 The quest for MPs originated from the field of III-

V semiconductors, where the bandgaps were successfully tuned by controlling the 

particle size. However, further extension to other metals to form variety of phosphides 

triggered the development of specific synthetic routes, which adapted to size and 

morphology control, both in terms of precursors and processes. Table 1.2 shows the list 

of MPs and their applications, in specific view of their semiconducting, magnetic, and 

catalytic properties.12,53,60,61  
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Table 1.2. List of metal phosphides and their associated properties.  

Metal Phosphide Property 

InP Semiconducting 

GaP Semiconducting 

Cd3P2 Semiconducting 

Zn3P2 Semiconducting 

SnP3 Semiconducting 

SnP Semiconducting 

Sn3P4 Semiconducting 

GeP Semiconducting 

FeP3 Semiconducting 

CoP2 Semiconducting 

NiP2 Semiconducting 

RhP2 Semiconducting 

MnP Ferromagnetic 

Fe3P Ferromagnetic 

FeP Anti-ferromagnetic 

W3P Superconducting 

Rh2P Superconducting, 
Catalytic 

Fe2P Catalytic 

Ni2P Catalytic 

MoP Catalytic 

WP Catalytic 

Co2P Catalytic 

Sn4P3 Catalytic 
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Synthetic routes became more and more empirical in most of the cases for MPs. 

For metal precursor choices, halides, carbonyls, acetates, and acetylacetonates are 

taken stoichiometric ratios. phosphorus precursor is critical in achieving the desired metal 

phosphide, Figure 1.7 overviews the use of the phosphorus precursors in the synthesis 

of MP nanoparticles.12 MPs synthesized using four major P-sources, among them trioctyl 

phosphine (TOP) and tris(trimethylsilyl)phosphine ((TMSi)3P) produced variety of 

phosphides with size, shape, and phase control. 12,62-64 

 

Figure 1.7. Overview of utilization of the main phosphorus (P) sources for the synthesis 

of metal phosphide nanoparticles.12 

1.8  Group IV-V Semiconductors 

Even though InP and GaP semiconductors were the most studied Group III-V 

materials in the 1960−2000 period, other phases were also investigated, such as Cd3P2 

(Group II-V).12 Recently Zn3P2 (Group II-V) also reported for its tunable optical properties 
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and related photovoltaic applications.61,62,65 Group IV-V materials are due in this regard 

with tunable energy gaps for their potential applications in optoelectronic and 

thermoelectric fields.14,53 Theoretical studies show that these Group IV-V materials are 

also semiconductors. In particular, IV = Si, Ge, and Sn; V = N and P single layer materials 

energy gaps are shown in Table 1.5.66 However, earlier to this dissertation study, due to 

lack of proper synthetic methodologies, Group IV-V material’s experimental values are 

not reported. We made a successful attempt to synthesize Sn-P system and reported 

experimental, tunable energy gaps in NIR region will be discussed in next section and 

chapter 4.   

 

Table 1.3. Energy gaps of Group IV-V (IV = Si,Ge, and Sn; V = N and P) materials.66 

Group IV 
element 

Group V 
element 

Energy gap of 
Group IV-V 

material (eV)* 

Si N 2.73 

P 2.17 

Ge N 2.56 

P 2.07 

Sn N 1.88 

P 2.17 

                 *Calculated from Heyd-Scuseria-Ernzerhof (HSE06) hybrid function. 

 

1.9   Tin Phosphides 

Tin phosphides make up a class of materials that have their potential applications 

in charge storage, photocatalysis, and thermoelectric devices.53,67-69 Owing to dual stable 

oxidation state of tin (Sn2+ and Sn4+), tin phosphides exists in four stoichiometries: (1) 
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Rhombohedral Sn4P3, (2) Hexagonal SnP, (3) Trigonal Sn3P4, (4) Trigonal SnP3.14 

Theoretical studies describe that except the metal rich Sn4P3, the other stoichiometries 

(SnP, Sn3P4, and SnP3) are semiconductors. Numerous reports indicate, tin phosphides 

extensively studied for battery applications. Layered crystal structure makes them 

promising anode materials for Li and Na ion batteries (LIBs & NaIBs). conducting nature 

and their main applications can be seen Table 1.3.1.14,53,66 

Table 1.4. Different crystal phase of Tin phosphides and Their Potential Applications 

 
Tin 

Phosphide 

Crystal Phase Conductivity Applications 

Sn4P3 Rhombohedral Metallic Photocatalytic, anode material in Li- & 

Na-ion batteries 

SnP Hexagonal Semiconducting Anode material in Li- & Na-ion batteries 

Sn3P4 Trigonal Semiconducting Thermoelectric 

SnP3 Trigonal Semiconducting Anode material in Li- & Na-ion batteries 

 

 

1.10 Synthesis of Tin Phosphides 

Tin phosphides can be synthesized through different approaches: (1) 

solvothermal, (2) chemical vapor deposition, and (3) mechanochemical (ball 

milling).67,70,71 Among them solvothermal and mechanochemical synthetic approaches 

are widely utilized to produce tin phosphides.  
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1.10.1      Solvothermal method 

solvothermal method can be defined as “a chemical reaction in an organic solvent 

closed system under high temperature and high-pressure conditions”.53 Typically, this 

process requires temperature higher than that of the boiling point of the solvent. In lieu of 

a non-aqueous solvent, water can be utilized as solvent and this method is called as 

hydrothermal process.68 Hydrothermal process is limited to the preparation of hydroxides, 

oxyhydroxides, and oxides. Solvothermal process is inevitable for non-oxide materials as 

it excludes water as solvent. In addition, metastable yet kinetically stable phases instead 

thermodynamically stable phases are often isolated in solvothermal method. A schematic 

of this process is shown in Figure 1.8.68,70 

 

Figure 1.8. A schematic diagram of solvothermal synthesis setup. 

In this method, the solid reactants (tin/tin halides and yellow/red/white phosphorus) 

are placed in a stainless-steel autoclave filled with an organic solvent 
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(ethanol/ethylenediamine/dimethyl formamide) to carry out the reaction.68 The Teflon-

lined autoclave is critical for high temperature and pressure conditions. In addition, it 

exhibits a strong resistance towards strong acids and sustains in alkaline media as well. 

During the earlier course the reaction, the reduced viscosity of solvent increases the 

diffusion process favors the crystal growth.72 The solvothermal method favored the 

synthesis of rhombohedral Sn4P3. However, controlling the size to nanoscale is still a 

challenge in the solvothermal method.  

1.10.2   Mechanochemical or ball milling method 

Mechanochemical process is also termed as ball milling, a process where mixture 

of powders is placed in the ball mill is subjected to high-energy collision from the balls.36 

This process was developed by Benjamin in late 1960. A high energy mechanical ball 

milling was shown a promising technique to produce tin phosphides (Figure 1.9). During 

the ball milling, a uniform environment is created, which allows the synthesis of 

homogeneous monophasic solid solutions of tin phosphides via mixing of Sn and P 

powder precursors.37 The mechanochemical process involves mechanical activation of 

chemical reactions during ball milling at relatively low temperatures.36,37 Milling of 

precursor powders leads to the formation of a nanoscale composite structure of the 

starting materials, which react during milling.36,73 The resulting nanoparticles are collected 

simply by selective removal of the matrix phase. This technique has unique advantages: 

(1) relative simplicity in operation, and (2) ease to create desired phase of tin phosphides 

such as SnP3, Sn3P4, SnP, and Sn4P3 for which Sn and P precursors taken 

stoichiometrically.67,69 The main disadvantages of this method include, (1) contamination 

from balls, typically made of stainless-steel or zirconium (tungsten carbide can be used 
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to address the impurities issue but is expensive to deal with), and (2) size control is also 

a major issue.36 

 

Figure 1.9. A Schematic view of motion of the ball and powder mixture. 

 

As the both above mentioned syntheses resulted in polydisperse samples and the 

physical properties of tin phosphides have not been reported properly owing to lack of 

unique methodology which controls crystal phase, size, and morphology.   

1.10.3      Wet chemical synthesis 

Nanoparticle synthesis requires an additional control on the surface states to limit 

the growth of the crystals which allows to control the final size and shape of the particles.1 

They relied for instance on the use of organic capping ligands in wet chemical routes. 

Prior to this dissertation study, only hexagonal SnP0.94 was synthesized via colloidal 



25 
 

synthetic strategy.67,74 Tin acetate (Sn(OAc)2) and trioctyl phosphine (TOP) were utilized 

as precursors and trioctyl phosphine oxide (TOPO) as surfactant and solvent at elevated   

reaction temperature (390 °C) for 1 h.74 However, the resulted tear-drop shaped particles 

are in micron size (~ 0.5 μm). Apart from size control, another major challenge with this 

colloidal synthetic route is that reaction temperature (390 °C) which is difficult to achieve 

and maintain for 1 h with choice of solvents we have (TOP and TOPO in this case). 

Though the Bohr radius of the semiconducting tin phosphides (SnP3, Sn3P4, SnP) are not 

known to date, certainly the micro meter size is nowhere near to achieve the quantum 

size confinement effects. Thus, we have developed a unique synthetic strategy to control 

over size, shape, crystal structure at low to moderate temperature (100-250 °C). In this 

wet chemical synthesis, oleylamine (OLA) and oleic acid (OA) were employed as 

surfactant mixture and SnI4 and tris(trimethylsilyl)phosphine ((TMSi)3P) as starting 

materials. By manipulating the reaction parameters, such as temperature, precursors 

ratio, and additional coordinating ligands the control over crystal phase, size, and 

morphology of tin phosphides were achieved. More importantly, quantum size effects 

were observed, and the energy gaps were tuned in NIR region. These observations will 

be discussed in chapter 4. 

1.11 Thesis Statement  

There are two mail goals to be achieved in this dissertation study to develop unique 

synthetic strategies for Ge1-xSnx alloys and tin phosphides. The first goal is to develop a 

wet colloidal synthesis to produce Ge1-xSnx alloy QDs and perform physical and optical 

characterizations to understand structure properties relationships (Goal 1). The second 
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goal is to develop a unique synthetic methodology to produce different phases of tin 

phosphides in nanoscale and probe their size dependent optical properties. 

The development of non-equilibrium Ge1-xSnx alloys in nanoscale is critical to 

achieve new functionalities, especially the formation of a direct bandgap in a conventional 

indirect bandgap elemental semiconductor (Goal 1). However, to synthesize Ge1-xSnx 

alloy QDs, a special care has to be taken in terms of choice of precursors with moderate 

reactivity, strong reducing agent, and surfactants with strong affinity towards Ge and Sn. 

As such careful investigation to produce Ge1-xSnx alloy nanocrystals using GeI2 and SnCl2 

as precursors, oleylamine (OLA) as surfactant, n-butyllithium (BuLi) as reducing agent 

triggered the alloy QDs research to further explore their size and composition 

dependence on physical and optical properties. The set of ultra-small (~2 nm) Ge1-xSnx 

alloy QDs with composition tunable visible PL provided important ground work for 

synthesis and understanding of 3.3-5.9 nm alloy QDs allows to expand the optical 

emission to NIR region (Goal 1). By expanding photoluminescence into NIR region, 

especially in the range of 1.3-1.9 eV is ideal for bio-imaging applications. In addition, 

these NIR alloy QDs are potential alternatives to commercial toxic NIR QDs in therapeutic 

application. 

Goal 1 is expected to be achieved through the utilization of hexadecylamine (HDA) 

as capping ligand in lieu of OLA, since HDA provided a better control over size and 

dispersity for pure Ge nanocrystals. The optimal concentration of OLA as surfactant 

results in ~2-3 nm QDs with tunable optical properties in visible region. Our own 

observation by lowering the OLA concentration to produce alloy QDs sizes above 3 nm 

instead produced polydisperse samples. In order to produce precise size QDs within 3-6 
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nm, HDA as surfactant and varied amounts of BuLi will be employed. The successful 

alloying effects can be confirmed using PXRD on the as prepared samples, which show 

a systematic shift of diffraction peaks of cubic Ge towards lower 2 angle. Along with 

PXRD, Raman peak shift and increase in Ge d-spacing values through HRTEM indicate 

a successful alloying of Sn. Homogeneous distribution of Sn and Ge throughout the QD 

further confirms the alloy formation (Goal 1). Composition tunable optical properties 

absorption of the as prepared solid alloy QDs can be probed using solid-state absorbance 

and photoluminescence measurements. A significant blue shift of energy gaps from bulk 

Ge and Ge1-xSnx thin films indicate strong size confinement effects. Relaxation pathways 

of the excited electrons provided by time resolved photoluminescence (TRPL) 

measurements along with their temperature dependence of TRPL provide significant 

detail on carrier dynamics of alloy QDs. 

There are no reports on the synthesis of tin phosphides in nanoscale until this 

dissertation study (Goal 2). The second goal is expected to be achieved through the 

selection of choice of the precursors via colloidal synthesis using OLA as surfactant. Our 

own observation with SnCl2 as Sn precursor and (TMSi)3P resulted in single phase 

(rhombohedral Sn4P3) with no control over size. Sn precursor such as SnI4 is helpful by 

decomposing slowly compared to SnCl2 is expected to slow down the nucleation and 

growth of the nanoparticles. As (TMSi)3P, a highly reactive P-source the temperature 

dependent study is critical to achieve size control and different tin phosphide phases. In 

addition to reaction temperature, the other reaction parameters such as precursor ratio, 

additional coordinating solvents, and reaction time could provide size, shape, crystal 

phase control (Goal 2). PXRD along with HRTEM are important tools to confirm the crystal 
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phase of the nanoparticles. As tin possess a stable Sn2+, and Sn4+ oxidation states, these 

formal charges of the as prepared different phases of nanoparticles can be confirmed 

using XPS measurements. Theoretical reports indicate, P-rich tin phosphides (SnP3, 

Sn3P4, and SnP) are semiconductors. The optical absorbance on as synthesized 

nanoparticles provide a first ever experimental evidence of their energy gaps. In addition, 

by employing a systematic reaction time offer size tunability allows to tunable optical 

properties (Goal 2). 
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CHAPTER 2 

CHARACTERIZAION TECHNIQUES  

Several characterization methods and techniques are required to investigate the 

structural, chemical, optical and physical properties of the materials. In this chapter, all 

material characterizations employed to probe aforementioned properties of material will 

be discussed. Primarily, powder X-ray diffraction (PXRD) was utilized to confirm the 

structure, transmission electron microscopy (TEM) for particle size and high resolution 

TEM (HRTEM) to image lattice fringes which further confirms the crystal structure. 

Materials compositional analysis was done using scanning electron microscopy (SEM) 

coupled with an energy dispersive spectroscopy (EDS). Techniques such as Raman, 

thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) provided 

diverse understandings of surface chemistry and functionalization of the surface. The 

optical properties of materials characterized by solution UV-Vis, solid-state diffuse 

reflectance spectroscopy, and photoluminescence measurements. 

2.1 Powder X-ray Diffraction  

 Powder X-Ray Diffraction (PXRD) is an important tool which provides information 

about the crystallinity and phase of a material. Every crystalline material diffracts 

distinctively, and thus provides a diffraction pattern that serve as a “fingerprint” for that 

specific material.75 Crystal structures are defined as a periodic arrangement of atoms with 

identical repeating units. A wide script of describers has been developed for crystal 

systems including orientation, symmetry, unit cells, atomic arrangements, and atomic 

distances.75-78 The X-ray wavelengths are comparable to the inter atomic spacing in 
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crystals, and so the atoms in a crystal act as scattering centers which result in diffraction. 

X-rays are produced inside an X-ray tube when high energy electrons collide with a metal 

target. X-ray tube consists of three main components: (i) a source of electrons (ii) a high 

accelerating voltage and (iii) a metal target (Figure 2.1).78 A tungsten filament, which acts 

as a cathode, generates electrons upon heating by a filament current of about 100-150 

mA. The electrons are directed across the X-ray tube at high velocities to the metal target 

(anode) by a high accelerating voltage on the order of 30,000 – 50,000 volts.  

 

Figure 2.1. Diagram of a standard vacuum X-ray tube.  

Metal target (commonly Cu) generates X-rays upon collision with high energy 

electrons and they pass through highly transparent windows made of beryllium.77,78 The 

kinetic energy associated with the high velocity electrons is converted into heat in the 

target and need to be cooled to stop melting. The efficiency of X-ray tubes is increased 

when the metal target is rotated continuously, thus exposing a fresh target metal to the 

incident electrons uninterruptedly. X-ray radiation generated inside the X-ray tube can be 

classified into two different components: (i) white radiation, which covers a broad 

e-
e-

e-
e-

e-
e-

e-
e-

X-rays

FilamentMetal Target

Vacuum X-ray tube

High Voltage



31 
 

spectrum of wavelengths and (ii) one or more monochromatic radiations. White radiation 

is produced when the high velocity electrons hit a road block in the form a metal target, 

resulting in loss of energy, a part of which is converted into electromagnetic radiation. The 

monochromatic X-rays that are commonly used in all diffraction experiments are 

generated by a diverse process that includes ionization of the target metal atoms.77,78  

 When the accelerated electrons strike the metal target, they ionize some of the 

Cu 1s (K shell) electrons (Figure 2.2). An electron from the outer orbitals (2p or 3p) falls 

to the vacant orbital and the transitions, which has a fixed energy, results in emission of 

characteristic X-rays. The 2p → 1s transition is called the Kα transition (1.5418 Å) and it 

is more intense than the 3p → 1s transition, Kβ (1.3922 Å), because the Kα transition 

occurs with greater frequency.58,77 A monochromator is used as a filter to ensure a 

selected wavelength is used for the diffraction experiments. Crystals comprise regularly 

repeating structures that act as optical gratings. When X-rays hit a sample, some of them 

are reflected at angles equal to the angle of incidence by planes on the surface of the 

sample, while some pass through and are reflected by the inner planes. 
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Figure 2.2. Electronic shell diagram of electronic transitions for X-ray production.77,78  

The reflected X-rays reinforce each other results in constructive interference if they 

are in phase or cancel out results in destructive interference if they are not in phase 

(Figure 2.3). Consider two X-ray beams A and B hitting a sample, X-ray beam A gets 

diffracted as A’ by an atom on the surface plane while B passes through the surface plane 

and is diffracted as B’ by an atom in the interior plane. Only when AA’ and BB’ are in 

phase the scattering of the X-rays is considered a diffracted beam. 
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Figure 2.3. Diffraction of X-rays by parallel crystal planes.77,78  

The conditions which leading to coherent diffraction allows us to apply the Bragg 

Law (equation 2.1) where n is the order of reflection, λ is X-ray wavelength, d is the 

distance between two incident beams, and θ is the angle between the incident beam and 

the surface to the crystal. The interfering waves which result from the narrow line widths 

of diffraction peaks produced across thousands of planes canceling out diffraction from 

non-Bragg angles.77,78 

𝑛𝜆 = 2𝑑 𝑆𝑖𝑛𝜃     (2.1) 

 In nanocrystals, the broadening of the diffraction peaks is due to not enough lattice 

planes to create beneficial interference. The size of a crystal is determined by utilizing 

Scherrer equation (2.2), which takes the advantage of the line broadening. The crystal 
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size is t, λ is the wavelength of the X-ray, B is the full width half maxima (FWHM) of the 

peak and θ is the diffraction angle.77,78   

𝑡 =  
଴.ଽ ఒ

஻ ୡ୭ୱ ఏ
     (2.2)  

Samples in this dissertation study were analyzed using a Philips X’Pert Pro, 

running Cu Kα monochromatized radiation (λ = 1.5418 Å). The powdered samples were 

loaded onto a low background Si sample holder with a spinning stage to improve sample 

averaging (Figure 2.4). Instrumental line broadening was measured with a Si standard 

and accounted for in any calculations.  

 

Figure 2.4. Schematic illustration of X-ray diffraction instrument.58,77,78 

2.2 Transmission Electron Microscopy  

 TEM is a commonly used technique for observing material’s size and morphology 

in nanoscale. In semiconducting nanocrystals, one of the most substantial topics is size 

dependent properties. There are several ways to determine the size of a nanocrystal 
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including dynamic light scattering (DLS), diffraction. However most of these only provide 

a ‘virtual’ size of the sample. Transmission electron microscopy (TEM) stands out in its 

capacity to provide an actually ‘physical’ representation of nanoparticle size. TEM show 

not only size but also the morphology and structure of nanoparticle, something the earlier 

mentioned techniques cannot provide. High resolution TEM has the ability to resolve 

crystal lattice arrangements and even individual atoms which can be combined with X-

ray spectroscopy to provide elemental identification.79  

  TEM utilizes the electron source similar to X-ray tube (Figure 2.1). A tungsten 

filament is heated up with extreme high voltage (80-400 kV) under vacuum resulting in 

the emission of electrons. In TEM, the electrons are focused through a series of magnetic 

lenses to directly probe a sample, whereas in X-ray tube the electrons are used to 

produce X-rays.79 In basic imaging, the electron beam is spread out across the sample, 

some of the electrons are blocked by the sample and a negative is created by the 

unhindered electrons. To offer the best possible contrast the sample holder must be 

significantly thin with a low electron cross section, in most cases, a thin carbon film from 

3-30 nm supported by a Cu mesh is adequate for this purpose. When the electron beam, 

a host of interaction are possible and essentially all occur concurrently (Figure 2.5). TEM 

instrument is so versatile as it involves number of interactions, with accurate control of 

the beam through focusing lenses and detection methods a numerous of information can 

be collected from a single sample. The TEM basic imaging as already described, in which 

transmitted electrons strike a detector below the sample. The change in the focus of the 

beam after sample interaction, it is possible to detect scattered and notably diffracted 

electrons for selected area electron diffraction (SAED) patterns providing data of crystal 
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structure. As the sample is bombarded with high energy electrons, some of the atoms will 

undergo excitations and resulting in emitting X-rays similar to X-rays produced in tubes.79 

 

Figure 2.5. A simplified scheme of all possible interactions of an electron beam with a 

target substrate.79 

The X-rays produced from an element is unique and can be useful in determining 

the composition through energy dispersive spectroscopy (EDS) with a detector positions 

above the sample. Few electrons are re-emitted or backscattered from the sample, 

those are typically not used in a TEM but are important for SEM.79 

 Several instruments have been used in this study to acquire basic imaging i.e. low 

resolution TEM (LRTEM), HRTEM, diffraction, and elemental maps. A Zeiss Libra 120 

was utilized to acquire LRTEM at 120 kV and SAED as well. FEI Titan 8300 microscope 
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equipped with a Gatan 794 multi-scan camera operating at 200 kV used to acquire 

elemental maps. A separate FEI Titan 8300 electron microscope operating at 300 kV was 

used to collect HRTEM. All the samples in this study, were prepared by dropping a dilute 

solution (similar dilution to solution UV-Vis) of nanocrystals dispersed in hexanes onto an 

ultra-thin carbon coated Cu TEM grid after the removal of the Formvar layer by washing 

with chloroform (CHCl3).  

2.3 Energy Dispersive Spectroscopy 

 Energy dispersive spectroscopy (EDS) within a SEM or TEM provides the average 

composition of a sample. One advantage with EDS technique is it can monitor a much 

larger area of sample at once.79 X-rays emitted from excited atoms are measured in EDS. 

Each element has unique atomic energy levels, it is possible to qualitatively analyze 

elemental composition. The emission of X-rays from substrates has already been 

described in sections 2.1 and 2.2 and Figure 2.5. In both TEM and SEM, the electron 

beams are used for imaging are simultaneously exciting the sample and subsequently 

inducing X-ray emission. The limitations of EDS are typically the energy of the incident 

electrons, spectral overlap, and range of the detectors.79  

 In this study, dried powder nanocrystal samples were spread onto a conductive 

carbon tape attached to an aluminum stub. No further sample preparation was needed 

before loading the samples into Hitachi SU-70 running at 20 kV accelerating voltage. The 

compositions obtained from the EDS measurements averaged over five separate areas. 

2.4 X-ray Photoelectron Spectroscopy  

 Nanoparticles are known for large surface to volume rations with as much as 60% 

of atoms being on the surface of the particle. The surface chemistry plays a vital role in 
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many nanoparticle properties. X-ray photoelectron spectroscopy (XPS) is one of the most 

powerful techniques for surface analysis.80 XPS is one of the few methods of identifying 

atomic composition, detail on their bonding environment, and oxidation state of the 

elements.81,82 Moreover, even though it is a surface technique, the X-rays penetration 

depth is around 5-10 nm. Therefore, in small enough nanocrystals, both the surface and 

the core of the particle is measured.80   

 Similar to X-ray tube (Figure 2.1), XPS also uses X-rays as source to bombard the 

surface, as the X-ray photons strike with atomic electrons they are kicked out as 

photoelectrons.80 The energy required to kick out the electrons is equivalent to the 

electrons binding energy. The unique electron binding energy of each element allows to 

differentiate elements, individual orbitals, and chemical environment. A high-level vacuum 

is compulsory for accurate XPS measurements. The ultra-high vacuum requirement has 

driven the design of XPS instruments. To avoid contamination during outgassing, 

samples are loaded through a preparation chamber which pumps samples down (Figure 

2.6). The analysis chamber is maintained under a constant level of ultra-high vacuum. 

The analysis chamber is equipped with certain extra items for charge control such as ion 

beams for etching and Argon flow. Al Kα is the X-ray source of choice due to its production 

of high energy and narrow line width. The analyzed high-energy photoelectrons require a 

method to maintain sensitivity and adequately resolve closely spaced peaks. The 

hemispherical analyzer can switch between the desired effects though variable voltage 

which will affect the path length of the electron for detection.80  
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Figure 2.6. Diagram of X-ray photoelectron spectrometer with a hemispherical 

detector.80  

    In this study, a Thermofisher ESCALAB 250 equipped with Al κα source. Dried 

powder nanocrystals were pressed onto indium foil and taped to an aluminum sample 

holder with conductive carbon tape. To avoid oxidation and atmospheric contamination, 

samples were stored and prepared in a glove box then loaded into the instrument using 

an air free sample loader. The pass energy was 20 keV and an average of 30 scans was 

used. Charge correction was carried out with adventitious carbon and double checked 

against indium. 

2.5 Raman Spectroscopy   

 Raman spectroscopy has been developed to probe molecular vibrations that can 

provide substantial information on chemical makeup of a sample. Raman is a unique 

spectroscopy, it measures changes in energy of scattered photons.83 The scattering 
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phenomenon occurs by the photons interaction with a molecules vibrational induced 

dipole.83 As molecular vibrations are well known for many organic and inorganic 

compounds, Raman can be used to screen nanoparticle systems for surface ligands, 

unwanted amorphous impurities, and more importunately changes in composition.83  

 The fundamental physics behind the Raman measurement is its biggest limitation. 

Photon interactions with phonon’s have a very low probability which is impaired by how 

infrequent phonon are in comparison to incident photons. To obtain a reasonable signal 

is collected it is necessary to input extremely high intensity of photon, that is why Raman 

instruments utilize laser sources (Figure 2.7).83 When the photons hit the sample some 

of them are inelastically scattered, the scattered light is then channeled through a grating 

and the change in energy with respect to the incident beam, is measured called as the 

Raman shift. The control behind this lays in the dependency on vibrational modes of 

sample. For example, if the molecules being examined are visualized as two balls 

connected by a spring it is easy to understand why (Figure 2.8). The Raman shift is 

proportional to the frequency and amplitude of the vibrations between the two balls. If the 

mass of one of the balls changes or the distance between them the frequency will 

decrease resulting in a smaller Raman shift.83  
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Figure 2.7. Block diagram of Raman spectrometer.83 

 

Figure 2.8. A schematic of lighter atom (A) replaced by heavier atom (B) results in 

increase in bond length, subsequently Raman vibrational frequency decreases. 

In this dissertation study, powdered samples were analyzed with a 532 nm laser 

in a Horiba LABram HR Evolution Confocal Raman Spectrometer. Nanocrystal powder 

samples were placed on an aluminum substrate and maintained 50-100% laser strength 

to probe the structural changes in the sample.  

Laser Source Detector

Sample

Beam 
Splitter

Grating



42 
 

2.6 UV-Visible absorption spectroscopy 

 UV-Vis spectroscopy provides absorption/reflectance of compounds and materials 

in ultraviolet-visible spectral region (200 – 800 nm). Measuring the optical transitions of 

compounds and materials using UV-Vis is one of the oldest method to study chemical 

physics. Energy levels in compounds: HOMO-LUMO for molecules and bandgaps for 

materials, are studied by measuring across the UV-Vis region and monitoring light input 

vs transmitted light. The set up includes a series of mirrors and beam splitters allowing to 

simultaneous measurements of a sample with respective to a reference (Figure 2.9).1,84  

 

Figure 2.9. Schematic of a multi-source double beam UV-Vis spectrometer. 

The absorption value is basically the difference between sample and reference 

values.  Typically, the measurement is carried out with the analyte dissolved in an optically 

transparent solvent. The absorption is related to the concentration (c) of the analyte, the 
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path length (l) through the solution, and the molar absorptivity (ε) of the analyte by the 

Beer-Lambert Law (equation 2.3).1,84  

𝐴 = 𝜀𝑙𝑐     (2.3) 

  The onset of the absorption can be equated to the bandgap in semiconductors. 

Below the onset value, it does not have enough energy to induce excitation from valance 

band to the conduction band.  Also, beyond the onset value, the absorption can be related 

to the density of states. In nanocrystals, this technique plays an important role and can 

be utilized to explore the changes in gap energy as a function of size of nanoparticle and 

quantum confinement.1,85  

 In this study, all solution-based measurements were performed soon after the 

isolation of as prepared nanoparticles. The samples were dissolved in CHCl3 and 

transferred to a quartz cuvette. Absorption spectra were collected in a Cary 6000i UV-

Vis-NIR spectrometer (Agilent Technologies).  

2.7 Diffuse Reflectance Spectroscopy 

Diffuse reflectance spectroscopy analyzes the scattered light in the form of 

reflectance which occur in addition to absorption from a sample. From a practical 

standpoint, majority of semiconducting applications utilize solid samples. It is important 

to have a better understanding of light mater interactions of an aggregated solid, diffuse 

reflectance spectroscopy serve this purpose. In this reflectance spectroscopy, the 

reflected light is recollected and can be evaluated by utilizing Kubelka-Munk remission 

function (equation 2.4).86,87 In this method, the percent reflectance (R) is equated to a 
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pseudo-absorption coefficient (K/S) which is similar to that obtained through transmission 

experiments.86,87  

𝑓௄ெ(𝑅) =  
(ଵିோ)మ

ଶோ
=  

௄

ௌ
   (2.4)  

To estimate the bandgap of semiconductors, Kubelka-Munk function is only one 

method which does not account for the type of transition occurring, meaning that the 

measurements are taken in reflectance and the outcome is absorbance.87 Tauc analysis 

is another method to probe bandgaps in which the absorption probabilities are based on 

crystal momentum and photon-phonon interactions. Applying the Tauc equation to 

reflectance the absorption coefficient (α) is similar to k/s term from the Kubelka-Munk 

formula.88 By using the absorption (𝛼ℎ𝑣) and density of states (ℎ𝑣 − 𝐸𝑔)ଵ/௡ in 

semiconductors, the Tauc equation can be seen equation 2.5, where hʋ is the energy of 

an incident photon, A is proportionality coefficient, and Eg is the bandgap. The exponent 

n value is dependent on the interband transition being modeled, ½ for allowed indirect, 2 

for allowed direct.88  

(𝛼ℎ𝑣)௡ = 𝐴 (ℎ𝑣 − 𝐸௚)     (2.5) 

        The practical difficulty with Tauc equation was that never meant for application to 

nanocrystals since it was developed for bulk semiconductors. Though it has been 

accepted for nanocrystals in literature, the Tauc analysis results should be taken with 

careful consideration.88  

        In this dissertation study, energy-gaps were estimated by Tauc and Kubelka-Munk. 

In both methods, absorbance value is considered as the intersection point of the linear 
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extrapolation of the absorption onset and baseline. The nanocrystals were dispersed in a 

BaSO4, a non-absorbing medium to minimize the scattering. All measurements were 

performed with a Cary 6000i UV-Vis-NIR spectrometer (Agilent Technologies) equipped 

with an internal DRA 2500 integrating sphere.  

2.8 Photoluminescence Spectroscopy  

          Photoluminescence (PL) refers to emission of light by excited molecules that 

absorb energy from an excitation source. This emission spectroscopy is a very well-

known technique for the analysis of the electronic structure and photophysical properties 

of semiconductor NCs. Photo and electrical excitements are of the greatest interest in 

semiconductor nanocrystals owing to their potential applications in devices such as solar 

cells, LEDs, detectors, and sensors.5,89 

          Number of electronic states are involved in the excitation and emission process 

due to rotational and vibrational energy levels. Upon excitation, an electron is bumps from 

a singlet ground state (S0) to an excited singlet state (S1).5 The relaxation of the excited 

electron occurs from S1 to S0 through the release of a photon is called fluorescence 

(Figure 2.10).89 The energy of the released photon will directly correspond to the energy-

gap between the two states involved in the process. The relaxation occurs rapidly typically 

on the order nano-micro second time scales. However, fluorescence is not the only 

pathway that an excited electron can relax through. If the excitation energy is higher than 

that of the energy-gap, the excited electron must first relax from the higher energy levels 

through a non-radiative process. Release of heat energy in the form of molecular vibration 

is one form of non-radiative relaxation. Intersystem crossing to an excited triplet state (T1) 

is another pathway of non-radiative processes.89,90 Typically, triplet states are formed by 
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impurities or defects and have lower energy than the S1 state. The Intersystem crossing 

(ISC) process and subsequent phosphorescence results in much longer lifetimes (3-5 

orders of magnitude) for the excited states than that of fluorescence.  

 

Figure 2.10.  A schematic illustration of absorption followed by fluorescence and  

phosphorescence processes under the effect of light energy.89 

           Quantum confined nanocrystals PL measurements are used to probe size and 

composition dependent optical properties.89 To understand energy levels and excitonic 

behavior is advantageous in semiconducting devices designing. Time resolved PL 

(TRPL) measurements can be employed using ultra-fast spectroscopy.91 By combining 

temperature and excitation density studies, it is possible to develop overall understanding 
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on light-mater interactions of nanocrystals.90  In this study, A frequency doubled Ti: 

sapphire laser (385 nm wavelength, 150 fs pulse width, and 160 kHz to 80 MHz repetition 

rate) was utilized as excitation source to record steady-state PL and TRPL spectra of 

nanocrystals dispersed in CCl4 and drop casted (~5 μL increments of solution for a thick 

layer) onto clean Si substrates. 

2.9.     Fourier Transform Infrared (FT-IR) Absorption Spectroscopy  

Infrared spectroscopy is a commonly used spectroscopic technique that measures 

IR frequencies of chemical functional groups of a sample by positioning the sample in the 

optical path of an incident IR light.34,64,92 Infrared spectroscopy typically involves 

transitions between vibrational or rotational energy levels that have low energy (4000 – 

400 cm-1). The compound must undergo a net change in dipole moment in order to absorb 

IR radiation. By using the interferometer and Fourier transform data processing, FT-IR 

has been proven a convenient, inexpensive, fast and non-destructive material 

characterization technique. A representative a simple illustration of a typical FT-IR set-up 

shown in Figure 2.11, which includes; (i) the Nernst glower source, (ii) the Michelson 

interferometer, and (iii) the triglycine sulfate pyroelectric detector.92 The Michelson 

interferometer contains a KBr beam splitter.86,93 To generation of an interferogram, both 

fixed and movable mirrors are essential. Since nanocrystals possesses high surface to 

volume ratio, FT-IR is one of earliest and most popular techniques to probe surface 

chemical activities. As molecular vibrations are dependent on the surrounding chemical 

bonds involved, each molecule exhibits a unique vibrational absorption frequency that 

referred as a “fingerprint” of that specific material. Nowadays, the main use of FT-IR in 

nanoparticle characterization is the identification of specific functional groups, surface 
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bound solvents, and surfactants present on the surface. The FT-IR spectra of all the samples 

in this study were recorded using a Nicolet 670 Fourier transform infrared (FT-IR) instrument 

equipped with a single reflection diamond ATR attachment.86,92,94  

 
 

Figure 2.11. A typical FT-IR set-up utilizing a Nernst Glower source, a Michelson  

interferometer and a pyroelectric detector.92 

2.10.   Time-Resolved Photoluminescence (TRPL)  

Time Resolved Photo-Luminescence (TRPL) is an experimental technique 

measured by exciting luminescence from a sample with a pulsed light source. Then, 

recording the subsequent decay of photoluminescence as a function of time.91 The 

electron-hole pair generated by the short pulse of light decay to lower energy level of the 
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measuring sample and can subsequently recombine to emit light.  The light emitted in this 

process is composed of a set of wavelengths corresponding to transition energies of the 

sample. Consequently, to measure the transition energies and their lifetimes, the optical 

spectrum provides the means as a function of time. As the decay times are on the order 

of picoseconds or microseconds, the intensity of light emitted is generally weak. A 

conventional spectrum analyzer cannot offer required resolution. So, it is necessary to 

use a streak camera to provide better resolution.91 

As can be seen in Figure 2.12, TRPL via time-correlated single photon counting 

(TCSPC) is specifically suited for fast charge carrier dynamics for III-V or II-VI 

semiconductors.91  In TCSPC, it can be measurable that the time between sample 

excitation by a pulsed laser and the arrival of the emitted photon using a detector. A 

defined “start” signal requires in TCSPC to provide the electronics steering the laser 

pulse/photodiode, and a defined “stop” signal as well to allow the detection with single-

photon sensitive detectors. The time decay measurement is repeated many a times for 

the interpretation of the fluorophores emission. The delay times are collected into a 

histogram which plots the occurrence of emission over time.91 
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Figure 2.12. Schematic diagram of the experimental setup of a fluorescence lifetime 

imaging microscope time-resolved photoluminescence.91 
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CHAPTER 3 

Ge1-xSnx Alloy Quantum Dots with Composition-

Tunable Energy Gaps and Near-Infrared 

Photoluminescence 

 

3.1      Introduction  

           Group-IV semiconductors show immense potential in a number of optical 

technologies including solar energy conversion, photo-detection, chemical sensing, and 

imaging.16,95-97 However, indirect energy gaps of crystalline Si (1.1 eV) and Ge (0.67 eV) 

limit their widespread application in optical devices, significantly decreasing the 

absorption cross section and emission efficiency.16,96 Thus, a number of different 

methods, including application of mechanical stress,40 heteroepitaxial growth,98-100 and 

alloying with Sn,21,23,101  have been investigated to produce direct gap Group IV 

semiconductors with promising photophysical properties. Specifically, admixing of α-Sn 

into crystalline Si and Ge has been shown to decrease the energy of the  (direct) valley 

of conduction band relative to the L (indirect) valley producing direct bandgap Si1-xSnx or 

Ge1-xSnx alloys.21,23,100-102 This transition stems from the expansion of cubic Si and Ge 

structure induced by α-Sn, the diamond-like structural equivalent to Si and Ge.102 

Theoretical and experimental reports suggest an indirect to direct-gap cross over in bulk 

Ge1-xSnx when Sn composition reaches 6.3−11%.21-24,102,103 In addition, incorporation of 
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Sn enhances the electron and hole mobility, making direct-gap Ge1-xSnx alloys promising 

candidates for high speed optoelectronics.104,105 Unfortunately, the fabrication of 

homogeneous alloys has proven difficult, because of large discrepancies (~14-19%) in 

lattice constants and much higher cohesion energies of Si and Ge compared to that of α-

Sn.106 Moreover, the admixture of α-Sn (bandgap (Eg) = 0.08 eV) significantly reduces the 

energy gaps (0.35−0.80 eV for x = 15.0−0.00 %)9 and promotes the metallic character of 

direct-gap Ge1-xSnx alloys, eliminating any potential application in visible to near IR 

optoelectronics.  

           To promote direct-gap behavior and expand the optical range, quantum 

confinement effects have been utilized to produce low-dimensional nanostructures of Ge1-

xSnx alloys.31,32,49-51 Quantum dots (QDs) and nanowires (NWs) of Ge1-xSnx have been 

reported both at strongly-confined and weakly-confined size regimes that promote wider 

direct energy gaps from visible to near IR spectrum.31,32,49-51,105,107-109 Recently, our group 

reported the first colloidal synthesis of Ge1-xSnx alloy QDs with varying sizes (~2-23 nm) 

and Sn compositions (x = 0−28%).20 The larger Ge1-xSnx alloys (15−23 nm) exhibit 

minimum or no confinement effects and absorption energy gaps (0.2−0.4 eV) that are 

red-shifted from bulk Ge, similar to those reported for bulk Ge1-xSnx thin film alloys. In 

contrast, smaller Ge1-xSnx alloy QDs (~2−5 nm) show strong confinement effects with 

composition-tunable absorption onsets and visible PL, exclusively for ultra-small QDs 

(1.8−2.2 nm).20-23,47 A recent theoretical study suggests that admixture of α-Sn into Ge 

significantly increases the oscillator strengths, with the potential to produce brightly 

emissive QDs with high molar absorptivity and PL efficiency.47 Nonetheless, size- and 

composition-dependent PL properties of near IR emitting Ge1-xSnx QDs have not been 
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properly quantified to date, owing in part to high polydispersity of as-synthesized particles 

and significantly low PL quantum yields.31 More recently, inorganic passivation of Ge1-

xSnx QDs has been attempted to produce Ge1-xSnx/CdS core/shell QDs.51 However, 

resultant alloys exhibit broad-band IR PL with no size (8−13 nm) or composition (x = 

5−25%) dependent tunability. As such, the synthesis of Ge1-xSnx alloys with enhanced 

near IR absorption and tunable near IR PL has proven a challenging task to further 

expand the optical window of direct-gap and silicon-compatible Group IV alloys.  

           Herein, we report the first colloidal synthesis of narrowly disperse (3.3 ± 0.5–5.9 ± 

0.8 nm), near IR emitting (1.62–1.31 eV) Ge1-xSnx alloy QDs with wide range of Sn 

compositions (x = 1.5−20.6%) via alkyllithium reduction of precursor halides (GeI2 and 

SnCl2). Control over QD diameter and composition was achieved by employing 

hexadecylamine (HDA) as the surfactant and changing the molar ratio of halides: 

reducing agent. The absorption energy gaps were tuned over a wide spectral region 

(1.72–0.84 eV) for narrowly disperse Ge1-xSnx QDs with x = 1.5−9.1%. As-synthesized 

alloy QDs exhibit intense near IR emissions (1.62–1.31 eV for x = 1.5−5.6%) and a clear 

red shift in PL energy with increasing Sn composition. It was found consistently that at 

room temperature (295 K) the PL decay of the alloy QDs was on the order of 10–20 ns, 

while it was ~3 orders of magnitude slower (1–10 μs) at low temperature (15 K). Such 

temperature dependence of carrier dynamics suggests clearly distinguishable 

contributions from dark and bright excitons as well as the interplay between surface traps 

and core electronic states.  
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3.2        Experimental Section  

3.2.1    Materials. Germanium diiodide (99.99+ %) and tin dichloride (99.9985 %) were 

purchased from Strem Chemicals and Alfa Aesar, respectively. n-butyllithium (BuLi, 1.6 M 

in hexane) was purchased from Sigma Aldrich. 1˗octadecene (ODE, 90%) was purchased 

from Fisher Scientific. 1-Hexadecylamine (HDA), toluene, CCl4, and methanol of ACS 

grade were purchased from Acros. ODE was dried at 120 °C under vacuum for 1 h. 

Methanol and toluene were dried over molecular sieves and Na, respectively and distilled 

under N2 prior to use.  

3.2.2    Synthesis of 3-6 nm Ge1-xSnx Alloy QDs.  

            In a typical synthesis of 3–6 nm Ge1-xSnx QDs, 3.00 g of HDA in a 50 mL three 

neck round bottom flask was fitted with a condenser and degassed under vacuum at 115 

°C for 1 h. This set up was cooled to room temperature and transferred to a nitrogen 

glovebox. Then, appropriate amounts of GeI2 and SnCl2, 0.6 mmol of metal total, were 

combined with HDA and the sealed set up was connected to a Schlenk line. This mixture 

was degassed at 115 °C for 1 h to produce a homogeneous orange color solution. Then 

the reaction was flushed with nitrogen for 15 min and the temperature was raised to 230 

°C, at which point 1.16–1.48 mmol (Table 3.1) of BuLi in 3.0 mL of ODE was swiftly 

injected. The injection caused a temperature drop to 209–213 °C and the mixture was 

reheated to 300 °C within 15 min to produce Ge1-xSnx alloy QDs. The flask was then 

rapidly cooled with compressed air to ~100 °C and 10 mL of freshly distilled toluene was 

added. Then, 10 mL of freshly distilled methanol was added, followed by centrifugation at 

4000g to precipitate the alloy QDs. The supernatant was discarded and the QD precipitate 
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was purified by dispersing in toluene and subsequent precipitation with methanol 2–3 

times under ambient conditions. 

Table 3.1. The molar ratio of GeI2, SnCl2, and n-BuLi used in the synthesis of 3.3 ± 0.5–

5.9 ± 0.8 nm Ge1−xSnx (x = 1.5 – 20.6%) alloy QDs. The total moles of GeI2 and SnCl2 

was fixed at 0.6 mmol. 

 
Sample GeI2 

(mmol) 
SnCl2 

(mmol) 
n-BuLi 

(mmol) 

Ge0.985Sn0.015 0.591 0.0090 1.48 

Ge0.981Sn0.019 0.5886 0.0114 1.46 

Ge0.973Sn0.027 0.5838 0.0162 1.43 

Ge0.966Sn0.034 0.5796 0.0204 1.42 

Ge0.958Sn0.042 0.5748 0.0252 1.40 

Ge0.944Sn0.056 0.5664 0.0336 1.38 

Ge0.936Sn0.064 0.5619 0.0381 1.36 

Ge0.921Sn0.079 0.5526 0.0474 1.34 

Ge0.909Sn0.091 0.5454 0.0546 1.30 

Ge0.888Sn0.112 0.5328 0.0672 1.25 

Ge0.846Sn0.154 0.5076 0.0924 1.20 

Ge0.794Sn0.206 0.4764 0.1236 1.16 

 

3.3      Results and Discussion  

The lattice mismatch between Ge and Sn (~14%) causes a great challenge to 

produce homogeneous Ge1-xSnx alloys.9,23 Because of its covalent bonding nature Ge 

requires high temperature (300-400 °C) to crystallize whereas Sn melts above 231 °C.110-



56 
 

112 Hence these two elements are poorly miscible (~1% equilibrium solubility of Sn in bulk 

Ge) in the solid state. With consideration of aforementioned complications, we have 

developed a unique synthetic strategy to produce 3.3 ± 0.5 – 5.9 ± 0.8 nm Ge1-xSnx alloy 

QDs with Sn content up to 20.6%. Colloidal synthesis provides a unique platform to 

incorporate significant Sn into Ge without altering its diamond cubic structure and 

simultaneously expanding the energy gaps owing to unique size confinement effects. 

Previous wet-chemical reports utilized oleylamine/octadecene as the surfactant/solvent 

and constant amount of reducing agent (n-butyllithium, BuLi) to produce 3.4–4.6 nm Ge1-

xSnx alloy QDs.31 However, the fixed amount of n-BuLi resulted in minimum control over 

nanocrystal size (size dispersity = 15–25% for x = 0.0 – 11.0%) because Sn promotes the 

growth of larger polydisperse QDs.31 Herein, by manipulating the nucleation and growth 

kinetics, a modified synthetic strategy has been developed to produce phase-pure Ge1-

xSnx alloy QDs with narrow size dispersity (11–15%) and nearly spherical morphology 

(Scheme 3.1). The size and composition of the alloy QDs were effectively controlled by 

varying the amount of n-BuLi across wide a range of Sn compositions (0.58–0.75 mmol 

of n-BuLi for x = 20.6–1.5%) to equalize the growth effects of Sn. 

Scheme 3.1.  An Illustration of the Synthesis of Near Infrared Emitting Ge1-xSnx Alloy 

QDs. 
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            Powder X-ray diffraction (PXRD) patterns of Ge1-xSnx alloy QDs indicate the 

phase purity of particles and Bragg reflections corresponding to diamond cubic Ge 

structure (Figure 3.1A). No diffraction peaks corresponding to GeO2, α-Sn, or β-Sn 

(tetragonal Sn) impurity phases were detected suggesting the production of 

homogeneous alloys. The major diffraction peaks were indexed to (111), (220), and (311) 

planes of diamond-cubic Ge (JCPDS # 01-089-5011). The peak broadening is quite 

significant as a result of Scherrer scattering, consistent with the synthesis of 

nanoalloys.113 The crystallite sizes computed using Scherrer formula are in the range of 

2.01 ± 0.2 – 3.82 ± 0.2 nm for x = 1.5–20.6%. With increasing Sn, diffraction patterns shift 

to lower 2 angles owing to expansion of cubic Ge structure by α-Sn. Unlike the bulk 

lattice constants, which show significant bowing, average lattice parameters calculated 

from diffraction patterns indicate near linear expansion of the cubic Ge structure with 

increasing Sn, consistent with the Vegard’s rule (Figure 3.1B).114  Lattice constants for 

cubic Ge and α-Sn are 5.66 and 6.49 Å, respectively. In contrast, as-synthesized alloy 

QDs exhibit intermediate lattice parameters of 5.64–5.85 Å, further supporting the 

synthesis of strain–free, homogeneous nanoalloys. 
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Figure 3.1. (A) PXRD patterns of Ge1-xSnx alloy QDs with varying Sn composition: (1) x 

= 1.5%, (2) x = 2.7%, (3) x = 5.6%, (4) x = 6.4%, (5) x = 7.9%, (6) x = 9.1%, (7) x = 11.2%, 

(8) x = 15.4%, and (9) x = 20.6%.  The ICDD-PDF overlay of diamond cubic Ge (JCPDS 

# 01-089-5011) is shown as vertical black lines. (B) A plot illustrating the variation of 

experimental (obtained from PXRD analysis) and theoretical (calculated using Vegard’s 

rule) lattice parameters of selected QDs as a function of Sn composition. Experimental 

lattice parameters and Sn compositions were obtained from analysis of 3–5 individually 

prepared samples.  

 

            Raman spectroscopy was utilized to further study the alloying effects in Ge1−xSnx 

QDs. Crystalline Ge exhibits a Raman peak at 300 cm−1 that corresponds to the optical 

phonon mode of Ge−Ge bonds.115 As heavier Sn atoms are incorporated into the Ge 

crystal, a systematic red shift of Ge–Ge phonon mode is expected.115 Nonetheless, single 

element Ge QDs exhibit a broad, red shifted Ge–Ge peak at 297–300 cm-1 owing to 

phonon confinement effects.51,116 Therefore, the combined effects of phonon confinement 
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and Sn induced shifting cannot be distinguished preventing quantification of Sn-induced 

expansion effects in the alloy. However, a systematic red shift of the Ge−Ge phonon mode 

(295−287 cm−1 for x = 0.000−0.206) with increasing heavier Sn atoms is observed for 3.3 

± 0.5 – 5.9 ± 0.8 nm alloy QDs, consistent with the weakening (or lengthening) of the 

Ge−Ge bond and lattice constants computed from Vegard’s law (Figure 3.2B). The 

broadening of Ge–Ge peak is consistent with the increased alloy disorder and size 

confinement effects.49,86  

 

Figure 3.2. (A) Raman spectra of Ge1−xSnx alloy QDs with varying Sn compositions: (a) 

x = 0.00%, (b) x = 4.2%, (c) x = 6.4%, (d) x = 9.1%, (e) x = 11.2%. (f) x = 15.4%, and (g) 

x = 20.6%. (B) A plot illustrating the systematic red-shifting of Ge–Ge optical phonon mode 

with increasing Sn composition.  

           TEM was used to investigate the morphology and size dispersity of alloy QDs. The 

LRTEM images of as-synthesized particles show narrow size dispersity (3.3 ± 0.5 – 5.9 ± 

0.8 nm) and near spherical morphology across varying Sn compositions (Figure 3.3A–F). 

No size selective precipitation steps were employed during the isolation and purification 
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of samples. A slight increase in particle size with increasing Sn composition was noted 

possibly due to Sn-induced growth of QDs.31 The narrow size distribution of as-

synthesized QDs was confirmed through size analysis of 150–200 particles across 

multiple individually prepared samples, which yields dispersity of 11–15% (Figure 3.4–

3.6). In contrast, prior reports of 3.4 ± 0.4 – 4.6 ± 1.2 nm Ge1-xSnx alloy QDs, produced in 

oleylamine, are reported to exhibit much higher size dispersity of 15–25%. The improved 

size and size dispersity control is attributed to strong interaction between Ge1-xSnx and 

HDA, which prevents the growth of larger polydisperse particles. In addition, HRTEM 

images of Ge1-xSnx alloy QDs indicate the single crystalline nature of particles with a 

lattice spacing of 3.32–3.41 Å for x = 2.7–20.6%, consistent with an expanded (111) plane 

of cubic Ge (3.3 Å, Figure 3.7). 
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Figure 3.3. Representative low-resolution TEM images of Ge1−xSnx alloy QDs with 

varying Sn composition: (A) x = 1.5%, (B) x = 5.6%, (C) x = 7.9%, (D) x = 11.2%, (E) x = 

15.4%, and (F) x = 20.6%. Insets in C and D show the high resolution TEM Images of 

selected QDs.  
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Figure 3.4. Size histograms of Ge1−xSnx alloy QDs with varying Sn composition: (A) x = 

1.5%, (B) x = 2.7%, (C) x = 4.2%, (D) x = 5.6%, (E) x = 7.9%, (F) x = 9.1%, (G) x = 11.2%, 

(H) x = 15.4%, and (I) x = 20.6%.  
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Figure 3.5. Representative TEM images of Ge1−xSnx alloy QDs with varying Sn 

composition: (A) x = 2.7%, (B) x = 5.6%, (C) x = 7.9%, (D) x = 11.2%, (E) x = 15.4%, and 

(F) x = 20.6%.  
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Figure 3.6. Representative low-resolution TEM images of Ge1−xSnx alloy QDs with 

varying Sn composition: (A) x = 1.5%, (B) x = 2.7%, (C) x = 4.2%, (D) x = 5.6%, (E) x = 

7.9%, (F) x = 9.1%, (G) x = 11.2%, (H) x = 15.4%, and (I) x = 20.6%. 

 



65 
 

 

Figure 3.7. High resolution TEM images of Ge1−xSnx alloy QDs displaying lattice fringes 

corresponding to expanded (111) plane of diamond cubic Ge: (A) x = 2.7% (B) x = 5.6%, 

(C) x = 7.9%, (D) x = 11.2%, (E) x = 15.4%, and (F) x = 20.6%. 

            High-angle annular dark-field (HAADF) images and STEM-EDS elemental maps 

were utilized to probe the homogeneous solid solution behavior of Ge1−xSnx QDs. 

Elemental mapping of near IR emitting alloy QDs was difficult due to extremely small size 

(3.3 ± 0.5 – 5.9 ± 0.8 nm) and complete destruction of particles is often noted under the 

high energy beam. Therefore, a set of larger polydisperse (8-20 nm) alloy nanocrystals 

was produced, by extending the growth temperature (10 min.) at 300 °C, solely for STEM-

EDS analysis. Elemental maps of 8-20 nm Ge0.888Sn0.112 alloy QDs indicate 

homogeneous distribution of Ge and Sn in the entire crystal, suggesting the solid solution 

behavior (Figure 3.8 and Figure 3.9). Therefore, the smaller near IR emitting alloy QDs, 
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which act as seeds for the growth of larger polydisperse (8-20 nm) particles, should also 

be homogeneous, consistent with prior reports on colloidally synthesized Ge1-xSnx 

nanoalloys.32,49,105,107,108 It should be noted while elemental maps were recorded from 

larger QDs that provide high counts from individual particles, the elemental composition 

of near IR emitting alloy QDs were obtained from multiple individually prepared 3.3 ± 0.5 

– 5.9 ± 0.8 nm alloy particles and the average values are shown in Table 3.2.  

 

 

Figure 3.8. (A) Dark filed TEM image of 8–20 nm Ge0.888Sn0.112 alloy QDs along with 

STEM-EDS elemental maps of (B) Ge, (C) Sn, and (D) an overlay of Ge and Sn indicating 

the homogeneous distribution of elemental components throughout the alloy lattice. 
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Figure 3.9. (A) Dark field TEM image of ~15 nm Ge0.919Sn0.091 alloy QD along with 

STEM/EDS elemental maps of (B) Ge, (C) Sn, and (D) an overlay of Ge and Sn, indicating 

the homogeneous distribution of elemental components throughout the alloy lattice. 

 

            The binding energies of Ge and Sn obtained from XPS spectra are consistent with 

prior reports of Ge1−xSnx nanoalloys (Figure 3.10).31,49 The survey XPS spectra exhibit 

peaks corresponding to Ge, Sn, C, and O with no other impurities, consistent with the 

EDS analysis (Figure 3.11 and Figure 3.12). The peak at 28.4 eV in the Ge 3d5/2 spectra 
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can be attributed to Ge(0), which has been shifted from the expected value of 29.4 eV, 

likely due to surface charging effects.117 The peak at 31.2 eV is likely arising from surface 

Ge2+ species coordinated to alkylamine and alkene passivating ligands.31,32 Consistent 

with XPS data, FTIR spectra of alloy QDs indicates the presence of HDA on QD surface 

(Figure 3.13). Occasionally, a minor peak at 34.0 eV is observed in Ge 3d5/2 spectra, 

which can be attributed to Ge4+ likely produced by surface oxidation (Figure 3.14). The 

examination of the Sn (3d5/2) region indicates similar behavior with both core Sn0 (483.9 

eV) and surface Sn2+/4+ (485.6 eV) species bound to stabilizing ligands.31,32,42,118 It is 

important to note that no GeOx or SnOx impurities were detected in PXRD and Raman 

spectra of QDs (Figure 3.1A and Figure 3.2A). However, the presence of higher oxidation 

state peaks (i.e. Ge4+ and Sn4+ in particular) can also be attributed to minor oxide 

impurities produced via surface oxidation.31,32,49 Nonetheless, similar core and surface 

species were noted in Ge (3d and 2P) and Sn (3d) spectra of alloy QDs with varying Sn 

compositions, consistent with prior reports of  Ge1−xSnx nanoalloys.31,32,49  
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Figure 3.10. Representative (A) Ge (3d5/2) and (B) Sn (3d5/2) XPS spectra of Ge0.888Sn0.112 

alloy QDs. Dotted lines represent the spectral data and the red and green lines are fitted 

deconvolutions of core Ge0/Sn0 and different oxidation states (Ge2+, Sn2+ and Sn4+) of 

surface species, respectively. Blue lines are spectral envelopes. 
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Figure 3.11. X-ray photoelectron spectra (survey scan) of Ge0.888Sn0.112 alloy QDs. 

Similar survey scans were obtained from QDs with other compositions.  

 

Figure 3.12. Representative SEM-EDS spectrum of Ge0.909Sn0.091 alloy QDs. The X-ray 

peak corresponding to aluminum (Al) is arising from sample holder. 
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Figure 3.13. FT-IR spectra of Ge1−xSnx alloy QDs synthesized HDA/ODE. (a) x = 0.015, 

(b) x = 0.056, (c) x = 0.112, and (d) x = 0.206. The peaks at 2920 and 2850 cm-1 are 

arising from C−H asymmetric and symmetric stretching vibrations of alkyl chains, 

respectively.19 The vibrations at 1361−1460 cm−1 corresponds to C−H bending δ(CHx) 

modes of alkyl chains.119 A broader peak observed at 1622 cm−1 can be assigned to ν(C=C) 

whereas the weak band at ~3300 cm-1 can be attributed to ν(N−H) further indicating the 

presence of HDA on the QD surface. A broad band observed at 790−860 cm−1 can be 

attributed to ν(Ge−O) arising from adsorbed surface oxygen species19, consistent with XPS 

O(1s) spectrum shown in Figure 3.14. 
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Figure 3.14. Representative X-ray photoelectron spectra of Ge0.909Sn0.091 alloy QDs 

displaying the (A) Ge(3d), (B) Ge(2P), (C) Sn(3d), and (D) O(1s) spectral regions. Dotted 

lines are spectral data, solid red and green lines are fitted deconvolutions, and blue lines 

are spectral envelopes. The peak at 531.5 eV in O(1s) spectrum corresponds to adsorbed 

H2O. 

           Solid state diffuse reflectance (converted to absorption) spectroscopy was utilized 

to probe the absorption onsets of alloy QDs and effects of size confinement. The energy 

gaps obtained from Kubelka Munk87 analysis indicate strong quantum confinement effects 
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in 3.3 ± 0.5 – 5.0 ± 0.7 nm Ge1−xSnx QDs with well-defined absorption onsets from 1.72–

0.84 eV for x = 1.5–9.1% compositions (Figure 3.15). A clear red-shift in absorption onset 

is noted with increasing Sn content for QDs with similar average size, consistent with Sn 

induced lowering of energy gaps. The solid-state energy gaps of alloy QDs with higher 

Sn content (x ˃ 9.1%) could not be probed because of the instrumental limitations. Thus, 

solution absorption spectra were recorded to estimate the energy gaps over a wide range 

of Sn compositions (0–20.6%). The solution phase energy gaps estimated using Tauc 

function,6,32,87,88,95,120 yield values from 2.05–0.90 eV for x = 1.5–20.6% compositions 

(Figure 3.16). However, the energy gaps obtained from solid-state absorption spectra 

(Kubelka−Munk analysis) are in close agreement with the gap energies estimated from 

PL measurements (Figure 3.17 and Table 3.2). It should also be noted that both solid-

state and solution-state energy gaps of Ge1−xSnx alloy QDs are significantly larger than 

those reported for bulk Ge1−xSnx thin film alloys (0.35−0.80 eV for x = 15.0−0.00%),9 

consistent with the expected quantum confinement effects.  
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Figure 3.15. Solid state diffuse reflectance spectra (converted to absorption using 

Kubelka−Munk remission function) of Ge1−xSnx alloy QDs with varying Sn composition: 

(1) x = 1.5% (1.72 eV), (2) x = 1.9% (1.61 eV), (3) x = 2.7% (1.52 eV), (4) x = 3.4% (1.48 

eV), (5) x = 4.2% (1.30 eV), (6) x = 5.6% (1.22 eV), (7) x = 6.4% (1.02 eV), (8) x = 7.9% 

(0.94 eV), and (9) x = 9.1% (0.84 eV). Corresponding absorption onset values are shown 

in parentheses.  
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Figure 3.16. Solution absorption spectra (Tauc-indirect) of Ge1−xSnx alloy QDs as a 

function of Sn composition: (a) x = 1.5% (2.05 eV), (b) x = 2.7% (1.90 eV), (c) x = 5.6% 

(1.58 eV), (d) x = 9.1% (1.35 eV), and (e) x = 11.2% (1.33 eV), (f) x = 15.4% (1.19 eV), 

and (g) x = 20.6% (0.90 eV). Corresponding energy gaps are shown in parentheses. 
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Table 3.2. Comparison of the Elemental Composition, Crystallite and Primary Particle 

Size, and Room Temperature Solid-State Absorption Onsets and Photoluminescence 

Peak maxima for 3.3 ± 0.5 – 5.9 ± 0.8 nm Ge1−xSnx Alloy QDs. 

aElemental compositions were obtained from EDS analysis of multiple individually 
prepared samples and averaged values are presented. bAverage particle sizes were 
calculated from 150−200 individual QDs from TEM images of multiple individually 
prepared samples. cCrystallite sizes were calculated by applying the Scherrer formula to 
(111), (220), and (311) reflections of PXRD patterns and average values are presented. 
dEnergy gaps were estimated from extrapolating the first major absorption onset to the 
intersection point of the baseline using linear fits. eOnset cut off due to detector limitation. 
f No detectable PL was noted. 

Sample Sn 

Composition 

(x)a 

Particle Size 

(nm)b 

Crystallite 

Sizec 

(nm) 

Energy 

gap (eV)d 

 

PL Peak 

Position 

(eV) 

1 0.015 3.3 ± 0.5 nm 1.9 ± 0.2 1.72 1.62 

2 0.019 3.4 ± 0.5 nm 2.1 ± 0.2 1.61 1.52 

3 0.027 3.5 ± 0.6 nm 2.2 ± 0.2 1.52 1.43 

4 0.034 3.7 ± 0.5 nm 2.4 ± 0.2 1.48 1.38 

5 0.042 3.9 ± 0.6 nm 2.8 ± 0.2 1.30 1.34 

6 0.056 4.4 ± 0.7nm 2.8 ± 0.2 1.22 1.31 

7 0.064 4.5 ± 0.6 nm 2.9 ± 0.2 1.02 n/af 

8 0.079 4.6 ± 0.8 nm 3.0 ± 0.3 0.94 n/af 

9 0.091 5.0 ± 0.7nm 3.3 ± 0.2 0.84 n/af 

10 0.112 5.2 ± 0.6 nm 3.5 ± 0.3 n/ae n/af 

11 0.154 5.5 ± 0.8 nm 3.6 ± 0.3 n/ae n/af 

12 0.206 5.9 ± 0.8 nm 3.8 ± 0.2 n/ae n/af 
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           Solid-state emission spectra of Ge1−xSnx alloy QDs exhibit composition tunable PL 

peak energies in the near IR spectrum (1.62–1.31 eV for x = 0.015–0.056, Figure 3.17). 

Consistent with absorption studies, a clear red shift in PL maxima was noted with 

increasing Sn composition. The PL peak energies are red shifted from those reported for 

ultra-small (1.8–2.2 nm) Ge1−xSnx alloy QDs (2.0–1.72 eV for x = 1.8–23.6%), owing to 

larger particles produced in the current study.49,50 It is important to note that this is the first 

report on tunable near IR emitting Ge1−xSnx alloy QDs with wide range of Sn 

compositions. Previous studies on 6–11 nm Ge1−xSnx/CdS core/shell QDs with 5 and 25% 

Sn compositions showed broad-band PL (800–1200 nm) with no tunability as a function 

of size or composition.51 Likewise, larger (9–10 nm) Ge1−xSnx alloy QDs with high Sn 

content (x = 36–39%) are reported to exhibit broad and weak PL in the deep IR region 

(~0.45–0.55 eV).32 In contrast, alloy QDs reported in this study exhibit wide tunability of 

near IR PL across different Sn compositions. Moreover, the solid-state absorption onsets 

are in close agreement with the PL peak maxima, suggesting that the PL results from 

fundamental direct energy gap transitions (Figure 3.18). However, PL from QDs with Sn 

content higher than 5.6% could not be probed possibly due to poor surface passivation 

and/or weaker confinement effects, resulting in higher degree of non-radiative 

recombination. As such, efforts are currently underway to utilize different surface 

passivation strategies to eliminate surface defects, enhanced the PL efficiency, and 

improve the chemical and optical stability of QDs with higher Sn compositions. 
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Figure 3.17. Room-temperature solid-state photoluminescence spectra of Ge1−xSnx alloy 

QDs with varying Sn compositions: (1) x = 1.5% (1.62 eV), (2) x = 1.9% (1.52 eV), (3) x 

= 2.7% (1.43 eV), (4) x = 3.4% (1.38 eV), (5) x = 4.2% (1.34 eV), and (6) x = 5.6% (1.31 

eV). Corresponding PL peak maxima are shown in parentheses.  
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Figure 3.18. Experimental energy gaps of 3.2 ± 0.2 – 5.7 ± 0.5 nm Ge1−xSnx alloy QDs 

as a function of Sn composition (x = 1.5−5.6%). Data were obtained from room-

temperature solid-state absorption and photoluminescence (PL) studies. 

 

               To investigate carrier relaxation pathways and further understand the origin of 

near IR PL, temperature dependent time-resolved PL experiments were performed. 

Figure 3.19 shows the PL transients measured for Ge1−xSnx alloy QDs with x = 1.9%, 

4.2%, and 5.6% at 295 K and 15 K. All transients are well described by biexponential 

decay fits, providing fast decay constants of fast = 8–11.7 ns and slow decay constants 

of slow = 80–119 ns at room temperature (295 K, Table 3.3). In contrast, the PL decays 

are much slower at 15 K:  fast = 1–1.6 s, slow = 7.8–10.8 s. This drastic difference can 
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be explained by a combined effect of surface trap states and dark-bright exciton splitting 

in QDs.49,50 The spin-forbidden dark exciton recombination is slow at 15 K, and increased 

thermal energy at room temperature makes bright excitonic states accessible, improving 

the recombination rates. Moreover, slow recombination at 15 K may also be partially due 

to charge trapping at the surface states, which can lead to long carrier times owing to 

separation of photoexcited carriers. Nearly an order of magnitude reduction in PL 

intensities at 295K compared to those at 15 K suggests a dominant role of nonradiative 

recombination at increased temperatures. While it is outside the scope of this report, 

further studies are currently underway to differentiate the individual contributions from 

different carrier relaxation pathways to better understand the origin of near IR PL.  

 

Figure 3.19. PL transients at (A) 295 K and (B) 15 K for Ge1−xSnx alloy QDs with varying 

Sn compositions: (a) x = 1.9%, (b) x = 4.2%, and (c) x = 5.6%. The solid lines are 

biexponential fits. 
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Table 3.3. Time Constants Extracted from Biexponential Decay Fit ( fast slow
t t

fast slowA e A e  

) to PL Transients of Near IR Emitting Ge1−xSnx Alloy QDs.  

@295 K 
fast

 (ns) 
slow

 (ns) A
fast

/A
slow

 

x = 0.019 8.0  0.2 80.2  1.3 2.44 

x = 0.042 11.7  0.8 119.1  4.2 1.54 

x = 0.056 11.5  0.6 111.1  2.7 1.41 

@15 K 
fast

 (s) 
slow

 (s) A
fast

/A
slow

 

x = 0.019 1.1  0.1 7.8  0.4 1.64 

x = 0.042 1.3  0.1 10.8  1.1 4.27 

x = 0.056 1.6  0.1 8.5  0.2 1.78 

 

3.3        Conclusions  

             In conclusion, for the first time we have successfully produced narrowly disperse 

Ge1−xSnx alloy QDs with wide tunability of Sn compositions (0–20.6%) and composition-

tunable near IR absorption and intense PL. The diameter of alloy QDs was tuned by 

varying the molar ratio of precursor halides: n-BuLi minimizing the size dispersity to ~11-

15%, across varying Sn compositions. The lattice parameters computed from PXRD 

analysis indicate near linear expansion of diamond cubic Ge structure with increasing Sn 

content, suggesting the formation of strain-free nanoalloys. The successful incorporation 

of α-Sn into cubic Ge has been further confirmed by PXRD patterns, STEM-EDS 

elemental maps, and Raman spectroscopy studies. The quantum confinement effects 

have resulted in energy gaps that are significantly blue-shifted from bulk Ge1-xSnx thin film 

counterparts for alloy QDs with composition-tunable absorption onsets (1.72–0.84 eV for 



82 
 

x = 1.5–20.6%) and PL maxima (1.62–1.31 eV for x= 1.5–5.6%) primarily in the near IR 

spectrum. The temperature dependent TRPL spectroscopy suggests microsecond and 

nanosecond PL decays at 15 K and 295 K, respectively owing to radiative recombination 

of dark and bright excitons and carriers trapped at surface states. The colloidal synthesis 

reported here has expanded the optical window of direct-gap Ge1−xSnx alloy QDs into 

near IR spectrum allowing less-toxic, earth abundant, and silicon-compatible Group IV 

elements for application in a broad range of electronic and photonic technologies.  
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CHAPTER 4 

Photophysical Properties of Ultra-Small Ge1-xSnx 

Alloy QDs 

4.1        Introduction 

             In an effort to expand the spectral range and to improve the efficiency of the 

optical transitions, recently there has been increased interest in the synthesis of alloy 

nanostructures to exploit the size confinement effects.31,32,47,49 Taking advantage of the 

low-temperature colloidal synthesis and nucleation and growth control, we have reported 

the synthesis of 3.3-5.9 nm homogeneous Ge1-xSnx nanoalloys. The photophysical 

properties of the aforementioned 3.3-5.9 nm alloy QDs exhibit composition tunable NIR 

optical properties were discussed exclusively in chapter 3. To prober the optical properties 

of alloy QDs that show enormously high quantum confinement effects, we have 

developed the synthesis of ultra-small Ge1-xSnx alloy QDs (2.1-2.7 nm) with composition 

(x = 4.3-12.5%) tunable absorption and orange to red color emission. More importantly, 

by synthesizing the alloy QDs in 2-3 nm size regime resulted in photoluminescence in 

visible region. Temperature dependent, time resolved photoluminescence (PL) 

spectroscopy has been utilized to study the carrier dynamics of Ge1-xSnx QDs, which 

suggest micro second decay of PL at 15 K, likely due to slow recombination of dark 

excitons and carriers trapped at surface states, and roughly one order of magnitude faster 

recombination with increasing Sn concentration to 23.6%.47 Increasing temperature to 

295 K led to three orders of magnitude faster decay (nanosecond) owing to the thermal 
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activation of bright excitons and carrier de-trapping from surface states. In addition to 

expansion of optical window into visible region, ultra-small QDs exhibit an opposite PL 

energy splitting (ΔE) compare to NIR QDs. Ultra-small, 2-3 nm samples PL peaks at room 

temperature are blue-shifted (ΔE = 35-50 meV) compared to those at 15 K, whereas NIR 

(3.3-5.9 nm) samples PL peaks are red-shifted (ΔE = 30-56 meV) at room temperature 

compared to those at 15 K. Alternatively, post synthetic surface passivation of ultra-small 

QDs with oleic acid resulted in 8-fold PL enhancement. Oleic acid surface passivated 

samples PL peaks are blue-shifted (ΔE ~50 meV) compared to those of not treated ones, 

consistent with the samples at room temperature. 

4.2               Experimental Section 

Materials.  Germanium diiodide (99.99+ %) and tin dichloride (99.9985 %), were 

purchased from Strem Chemicals and Alfa Aesar, respectively. N-butyllithium (BuLi) 1.6 

M in hexane was purchased from Sigma Aldrich and stored in a N2 glove box at < 5°C. 

1- octadecene (ODE, 90%) was purchased from Fisher Scientific. Oleylamine (OLA, 

>98% primary amine) and oleic acid (OA) were purchased from Sigma Aldrich. Toluene, 

chloroform, carbon tetrachloride, and methanol of ACS grade were purchased from Acros. 

OLA and ODE were dried by heating at 120 °C under vacuum for one hour prior to storage 

in a N2 glovebox. Methanol and toluene were dried over molecular sieves and Na, 

respectively and distilled prior to use. Caution: n-butyllithium is highly pyrophoric and 

ignite in air so must be handled in air free conditions by properly trained personnel. 

Carbon tetrachloride is highly toxic, and its use should be minimized to limit exposure. 
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4.2.1    Synthesis of ~ 2nm Ge1-xSnx Quantum Dots 

            In a typical synthesis of 1.8-2.3 nm Ge1-xSnx QDs, appropriate amounts of GeI2 

and SnCl2, 0.6 mmol of metal total, were combined with 20 mL of OLA in a 50 mL three 

neck flask inside a glovebox. The sealed set up was transferred to a Schlenk line and 

degassed under vacuum at 120 °C to produce a homogeneous orange color solution. The 

reaction temperature was then raised to 230 °C under nitrogen and 0.5-0.9 mL of BuLi in 

3.0 mL of ODE was swiftly injected. The temperature dropped to 209-213 °C and the 

mixture was reheated to 300 °C within 10-14 min to produce Ge1-xSnx alloy QDs. The 

flask was then rapidly cooled with compressed air to ~100 °C and 10 mL of freshly distilled 

toluene was added. Then, 60-90 mL of freshly distilled methanol was added, followed by 

centrifugation at 4000g for 5-10 min to precipitate the alloy QDs. The supernatant was 

discarded, and the precipitate was purified by dispersing in toluene and subsequent 

precipitation with methanol.  

4.3       Results and Discussion 

      Ge1-xSnx alloy QDs with sizes in the range of 2-3 nm (ultra-small) were produced 

with Sn composition ranging from 4.3-12.5% to probe tunable visible PL and extreme size 

confinement effects.  Photophysical properties of 2-3 nm QDs were compared with 4-6 

nm QDs reported previously. To induce strong size confinement effects in 2-3 nm QDs, 

oleylamine (OLA) was employed as the surfactant by following a route reported by our 

group.49 In a typical synthesis, GeI2 and SnCl2 (0.6 mmol in total) were co-reduced using 

1.5-1.3 mmol of n-butlylithium (n-BuLi) at 230 °C to form Ge-Sn nuclei, followed by growth 

of the alloy nuclei at 300 °C (Scheme 4.1). In order to equalize the growth effects of Sn, 

varied amounts of n-BuLi (1.5-1.3 mmol for x = 4.3-12.5%) was employed. 
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Scheme 4.1. An Illustration of the Synthesis of Ge1-xSnx alloy QDsa 

 

aCo-reduction of Ge and Sn precursor halides dissolved in oleylamine (OLA), followed 

by the growth of resulting Ge1-xSnx alloy nuclei at 300 °C has been successfully utilized 

to produce homogeneous Ge1-xSnx alloy QDs. 

 

Powder X-ray diffraction (PXRD) was utilized to confirm the structural homogeneity 

of alloy QDs and the absence of the undesirable byproduct impurities. PXRD patterns of 

Ge1-xSnx alloy QDs suggest that the as-synthesized 2-3 QDs are consisting of diamond 

cubic crystal structure similar to 4-6 nm QDs reported previously.31,49 No α-Sn, or β-Sn 

(tetragonal Sn) impurity phases detected indicate successful Sn incorporation into Ge 

lattice to form homogeneous alloys (Figure 4.1).26,102 As Sn content increases, a 

systematic shift of diffraction peaks towards lower 2 angles suggest the larger Sn 

incorporation into smaller Ge. A significant broadening of cubic Ge diffraction peaks 

indicates small crystallite size of the alloys QDs. In addition, disorder in alloy couple with 

strain in the lattice can also contribute further broadening of Bragg’s reflections.49 Thus, 

calculating the crystallite size using Scherrer’s formula and lattice parameters are not 

accurate for the broad peaks. However, experimental lattice constants for somewhat 

larger 4-6 nm QDs synthesized with similar synthesis were obtained. Here we obtain 

experimental lattice constants using the powder X-ray diffraction patterns of alloy QDs. 
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However, diffraction peak positions of (111), (220), and (311) Bragg reflections were 

accurately determined and the lattice constants were calculated by applying the Bragg’s 

equation to all peaks (Figure 4.2). The experimental lattice parameters obeying Vegard’s 

rule and are in close agreement with theoretical studies using local density approximation 

(LDA) for 1.4-2.7 nm Ge1-xSnx QDs.47 

 

Figure 4.1. PXRD patterns of (a) b-Sn, (b) a-Sn, (c) cubic Ge (JCPDS # 01-089-5011) 

along with Ge1-xSnx QDs with varying Sn composition: (d) x = 4.3%, (e) x = 8.1%, and (f) 

x = 12.5%. 



88 
 

 

Figure 4.2. Average lattice constant of the 1.4, 2.1 and 2.7 nm diameter Ge1-xSnx QDs 

calculated using the LDA relaxed atomic structures compared with experimental 

measurements of 4-6 nm Ge1-xSnx QDs. Dashed line shows the Vegard’s rule for the 

bulk Ge1-xSnx alloy, obtained from LDA.47  

 

     TEM was utilized to investigate the size and morphology of alloy QDs (Figure 4.2). 

The LRTEM images of as-synthesized particles show near spherical morphology and 

fairly narrow size dispersity (2.1 ± 0.3 – 2.7 ± 0.4 nm for x = 4.3-12.5%). Due to Sn-

induced growth of alloy QDs, a slight increase in particle size with increasing Sn 

composition was noted.31 The size analysis of 100-150 particles across multiple individual 



89 
 

samples indicate narrow size distribution (14-15% for 2-3 nm QDs) of as-synthesized 

QDs. 

 

 

Figure 4.3. Representative low-resolution TEM images of Ge1−xSnx alloy QDs with 

varying Sn composition: (A) x = 4.3% (2.1 ± 0.4 nm), (B) x = 8.1% (2.4 ± 0.6 nm), and (C) 

x = 12.5% (2.7 ± 0.5 nm). Corresponding average particle sizes are shown in 

parentheses.  

 

      Absorption measurements were carried out on solid samples using solid state diffuse 

reflectance (converted to absorption) spectroscopy. The absorbance (energy gap) of the 

alloy QDs were estimated from Kubelka-Munk analysis indicate strong quantum 

confinement effects in ultra-small QDs with well-defined onsets in the visible spectrum 

(Figure 3A).86,87 The energy gaps of ultra-small Ge1−xSnx QDs are in visible region ranging 

from 1.92-1.75 eV for x = 4.3-12.5%. In contrast, 4-6 nm QDs reported in the chapter 3 

show onsets in the NIR region (1.72 eV-0.84 eV for x = 1.5-9.1%). However, a clear red-

shift in absorption onset is noted with increasing Sn composition because of Sn induced 

lowering of energy gaps. 
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Figure 4.4. Solid state diffuse reflectance spectra (converted to absorption using 

Kubelka−Munk remission function) of Ge1−xSnx alloy QDs with varying Sn composition: 

(a) x = 4.3% (1.92 eV), (b) x = 8.1% (1.86 eV), and (c) x = 12.5% (1.75 eV). Corresponding 

energy gaps are shown in parentheses. 

 

The ultra-small QDs produced in this study exhibit high intensity PL both in solution 

state and solid state. However, consistent with solid-state absorption, the PL of the 

samples measured in solid state using study-state photoluminescence spectroscopy. The 

ultra-small alloy QDs exhibit composition tunable PL peak energies in the visible spectrum 

(2.0–1.86 eV for x = 4.3-12.5%, Figure 4.5). A systematic red shift in PL maxima was 

noted with increasing Sn composition, consistent with absorption onsets. The Room-
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temperature time-resolved photoluminescence (TRPL) spectra of Ge1−xSnx alloy QDs 

show a nanosecond decay, consistent with earlier reports (Figure 4.6 and Table 4.1).  

 

 

Figure 4.5. Room-temperature solid-state photoluminescence spectra of Ge1−xSnx alloy 

QDs with varying Sn compositions: (1) x = 4.3% 2.00 eV), (2) x = 8.1% (1.89 eV), and (3) 

x = 12.5% (1.86 eV). Corresponding PL peak maxima are shown in parentheses.  
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Figure 4.6. Room-temperature time-resolved photoluminescence (TRPL) spectra of 

Ge1−xSnx alloy QDs with varying Sn compositions: (A) x = 8.1% 2.00 eV) and (B) x = 

13.1%. 

Table 4.1. Time Constants Extracted from Biexponential Decay Fits (

fast slow
t t

fast slowA e A e   ) to PL Transients of Visible Emitting Ge1−xSnx Alloy QDs.  

Ge1−xSnx (x%) 
fast

 (ns) 
slow

 (ns) A
fast

/A
slow

 

8.1 0.15 ± 0.01 1.16 ± 0.05 8.2 

13.1 1.57 ± 0.03 39.45 ± 5.49 22.4 
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4.3.1    Surface Passivation to Enhance Visible Photoluminescence Brightness of 

Ultra-small Ge1-xSnx Alloy QDs 

 Additional surface passivation of as prepared alloy QDs was carried out using oleic acid. 

The as prepared samples were dispersed in toluene first, followed by 3 mL of oleic acid 

and stir the mixture for 24 h. Interestingly, PL intensities of the oleic acid treated samples 

exhibit a significant enhancement. However, this enhancement is less for already bright 

samples (Figure 4.7), whereas for the samples with low PL intensities show a 8-fold 

enhancement (Figure 4.8).  

  

Figure 4.7. Room-temperature solid-state photoluminescence spectra of Ge1−xSnx alloy 

QDs (x = 13.1%, 1.74 eV) exhibit visible PL: (a) As prepared QDs and (b) post-synthetic 

additional surface passivation using oleic acid results in 1.2-fold PL enhancement. The 

insets show bright red color PL for both as prepared and oleic acid treated QDs. 
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Figure 4.6. Room-temperature solid-state photoluminescence spectra of Ge1−xSnx alloy 

QDs (x = 13.1%, 1.74 eV) exhibit visible PL: (a) As prepared QDs and (b) post-synthetic 

additional surface passivation using oleic acid results in 8-fold PL enhancement. The 

insets show bright red color PL for oleic acid treated sample compared to as prepared 

one. 

 

           To understand and explain the above-mentioned enhancement with oleic acid 

along with temperature dependence of PL, theoretical studies are currently underway. 
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CHAPTER 5 

Multivariate Synthesis of Tin Phosphide 

Nanoparticles: Temperature, Time, and Ligand 

Control of Size, Shape, and Crystal Structure 

5.1       Introduction  

            Tin phosphides have gained significant interests as a class of materials that 

exhibit a range of physical properties of both fundamental and technological interest 

depending on their chemical identity and crystal phase. For instance, tin-rich 

rhombohedral Sn4P3 is metallic in nature whereas phosphorus-rich trigonal SnP3, 

hexagonal SnP, and highly disordered Sn3P4 are narrow bandgap semiconductors.14,121-

124 These distinct properties make them attractive as low-cost, earth abundant catalytic, 

photocatalytic, and semiconductor materials depending sensitively on the electronic 

structure, stoichiometry, and crystal phase.14,125 Scaling down the size to nanoscale 

regimes has been shown to augment these properties, providing an incentive to develop 

robust and reproducible syntheses that enable control over morphology and crystal 

phase.12 Despite considerable understanding of bulk physical properties, nanoscale 

properties of tin phosphides are poorly understood to date, owing in part to lack of well-

developed syntheses that enable precise control over size, shape, and crystal phase.  

           The metal rich Sn4P3 possess a layered crystal structure, which makes it promising 

as high capacity, cycle-stable anode material for Li- and Na-ion batteries.69,126-129 
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Moreover, because of tin rich crystal structure, rhombohedral Sn4P3 is also known as a 

promising material in photocatalytic degradation of organic compounds and alkylation of 

silanes.125 In contrast, the phosphorus-rich, trigonal Sn3P4 is a narrow bandgap 

semiconductor that exhibits a transition from n-type to p-type below 150 K, with potential 

application in thermoelectrics.14 Conversely, for bulk SnP, there is no known stable phase 

at ambient conditions whereas the existence of a metastable/high pressure phase has 

been reported.71,130 Nonetheless, recent reports on colloidal syntheses of tin phosphides 

have yielded micron-sized, hexagonal SnP particles with unique morphologies and 

physical (charge storage) properties.74,131 Despite significant differences in fundamental 

properties, the crystal structures of Sn3P4 and Sn4P3 are remarkably similar and indicate 

the presence of two distinct Sn atoms: Sn(1) atoms are octahedrally coordinated by 

phosphorus atoms whereas Sn(2) atoms confine a [3+3] coordination consisting of three 

phosphorus and three Sn(2) atoms.14 Theoretical studies of Sn3P4 suggest an indirect 

bandgap of 0.83 eV, owing to the presence of filled bonding and nonbonding states and 

vacant antibonding states.14,132 Therefore, optoelectronic transitions are expected in 

between those energy levels resulting in semiconducting properties. 

           Among tin phosphides, the synthesis of rhombohedral Sn4P3 has been studied 

both as extended solids and micron-sized particles.69,125-129 Phase pure Sn4P3 has been 

produced by direct reaction of metallic tin with red phosphorous at elevated 

temperatures,121-124 hydrothermal and solvothermal syntheses,53,68,70,72 chemical or 

pulsed vapor deposition,133 and mechanical milling.69,127-129 Specifically, high energy 

mechanical milling has been widely studied for the synthesis of agglomerated, micron-

sized Sn4P3 powders/particles as anode material for Li- and Na-ion batteries.69,127-129 The 
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first synthesis of Sn4P3 nanorods has been reported by Xie et al. where aggregated 

bundles of anisotropic particles were obtained via solvothermal method with no control 

over growth mechanics.70 Later, micron-sized, aggregated Sn4P3 spheres, tubes, hollow 

nanostructures, and polycrystalline powders with high degree of size dispersity have also 

been produced via solvothermal synthesis.53,68,72 In contrast, only a handful of efforts on 

colloidal synthesis of tin phosphide NPs are reported. Kim et al. exploited alkylphosphines 

and tin acetate to produce teardrop-shaped, hexagonal SnP0.94 microcrystals for Li-ion 

battery applications.74 Aso et al. utilized thermal decomposition of tin salts in high boiling 

alkylamine and phosphines to produce hexagonal SnP0.94  along with tetragonal Sn 

impurities.131 However, neither reported comprehensive physical characterization of tin 

phosphide NPs nor achieved nanoscale control over size, shape, and crystal structure. 

To our knowledge, the synthesis of phosphorus rich Sn3P4 and SnP3 phases on the 

nanoscale has not been reported.  

           Herein, we report the first colloidal synthesis of rhombohedral Sn4P3, hexagonal 

SnP, and trigonal Sn3P4 NPs with control over size, shape, and crystal structure using a 

generalized chemical route. The NP morphology and crystal phase were tuned by varying 

the nucleation and growth temperature, altering the Sn/P molar ratio of the reaction, 

and/or using the additional coordinating solvents. A significantly smaller set of quantum 

confined tin phosphide NPs was produced at low temperatures (100 °C), which undergo 

trigonal Sn3P4 to rhombohedral and hexagonal phase transitions at 180 and 250 ºC, 

respectively. The surface characterization of tin phosphide NPs suggests the presence of 

three distinct oxidation states of tin (Sn0 484.8 eV, Sn2+ 486.4 eV and Sn4+ at 487.4 eV) 

across multiple phases reported. However, the analysis of P(2p) region indicates that the 
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P-Sn bond is only marginally sensitive to the oxidation states of tin observed in distinct 

crystal phases. 

5.2       Experimental Section  

5.2.1 Materials: Oleylamine (OLA), 1-octadecene (ODE), 1-dodecanethiol (DDT), and tri-

n-butylphosphine (TBP) were purchased from Acros. Tin(II) chloride, tin(IV) iodide 

(99.998%) and oleic acid (OA) were purchased from Alfa Aesar. 

Tris(trimethylsilyl)phosphine ((TMSi)3P), 10 wt% in hexane) and tri-n-octylphosphine 

(TOP) were purchased from Strem Chemicals. Oleylamine and 1-octadecene were 

degassed and dried under vacuum at 120 ºC for 2 h. Toluene was dried with Na and 

methanol was dried with molecular sieves and both were distilled under nitrogen before 

use. All other chemicals were used as received without further purification. [Caution: 

(TMSi)3P is pyrophoric and will immediately ignite in air. TBP has the potential to generate 

pyrophoric phosphorus. Therefore, only properly trained personnel should carry out this 

synthesis under air-free conditions.]  

5.2.2  Synthesis of Rhombohedral Sn4P3 NCs and Larger, Partially Crystalline 

Sn4P3 NPs:  In a typical synthesis of rhombohedral Sn4P3 NCs, stock solutions of 

(TMSi)3P/ODE (0.24 mmol of (TMSi)3P in 1 mL of ODE) and TBP/ODE (1 mL of TBP in 1 

mL of ODE) were freshly prepared in a nitrogen glovebox. Anhydrous SnI4 (0.2 mmol), 

OLA (5 mL), and OA (25 µL) were taken in a 50 mL three neck flask and degassed at 120 

ºC for 1 h. Then, the reaction was flushed with nitrogen for 10 min and heated to 180 ºC. 

At this temperature, stock solutions of TBP/ODE and (TMSi)3P/ODE were swiftly injected. 

Upon injection, the temperature was dropped to 160–165 ºC and allowed to heat back to 

180 ºC within 3–4 min to produce phase pure, rhombohedral Sn4P3 NCs. Larger, partially 
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crystalline Sn4P3 NPs were obtained using the same synthetic protocol with no use of 

alkylphosphine (TBP).  

5.2.3  Synthesis of Hexagonal SnP NCs: In a typical synthesis of hexagonal SnP NCs, 

a stock solution of (TMSi)3P in ODE (0.35 mmol of (TMSi)3P in 1 mL of ODE) was 

prepared in a nitrogen glove box. Ultra-dry SnI4 (0.2 mmol, 0.125 g), OLA (5 mL), and OA 

(25 µL) were taken in a 50 mL three neck flask and degassed under vacuum at 120 ºC 

for 1 h. The reaction was flushed with nitrogen and the temperature was raised to 250 ºC 

within 15–20 min. Then, the (TMSi)3P/ODE solution was rapidly injected. The reaction 

color changed to black within ~2 seconds and the resulting nuclei were grown for 5, 30, 

60, and 180 seconds at 250 ºC to produce hexagonal SnP NCs with different sizes.  

5.2.4  Synthesis of Smaller, Trigonal Sn3P4 NPs: In a typical synthesis of smaller trigonal 

Sn3P4 NPs, a stock solution of (TMSi)3P/ODE (0.24 mmol of (TMSi)3P in 1 mL of ODE) 

was freshly prepared in a nitrogen glovebox. Ultra-dry SnI4 (0.2 mmol, 0.125 g), OLA (5 

mL), and OA (25 µL) were mixed in a 50 mL three neck flask and degassed under vacuum 

at 120 ºC for 1 h. Then, the reaction was flushed with nitrogen and 1 mL of TBP in 1 mL 

of ODE was injected. The injection caused a temperature drop to 108–110 ºC and the 

reaction was cooled to 100 ºC under nitrogen. Then, the (TMSi)3P/ODE mixture was 

rapidly injected. The resultant nuclei were grown at 100 ºC for different time intervals (5–

180 seconds) to produce trigonal Sn3P4 NPs with different sizes. 

5.2.5   Isolation and Purification: After desired growth time, the reactions were 

quenched rapidly by blowing compressed air, followed by the injection of toluene (6–8 

mL) at ~80 ºC. The resulting NPs were precipitated with excess methanol, followed by 

centrifugation at 3500g for 5-10 min.  The NPs were purified by re-dispersion and re-
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precipitation in toluene (2–3 mL) and methanol (10–15 mL), respectively. This process 

was repeated twice to obtain black color precipitates, which were dried under vacuum 

prior to further characterization. 

5.3       Results and Discussion 

5.3.1   Nucleation and Growth Control Tin Phosphide NPs. Although tin phosphides 

exist in multiple crystal phases, the synthesis of rhombohedral Sn4P3 and hexagonal SnP 

were only reported owing to highly ordered crystal structures and significant 

applications.74,127 Herein, we have systematically explored the possible options for 

colloidal synthesis of aforementioned phases by employing a number of Sn and P 

precursors, additional coordinating solvents (TBP and TOP), and varying molar ratio of 

Sn/P. To produce rhombohedral Sn4P3, tin(II) chloride and TOP were initially employed in 

OLA/OA/ODE. It has been reported that the amount of alkylamines is critical in obtaining 

a desired metal phosphide phase when alkylphosphines are employed as the 

phosphorus-source.45,58,134 Therefore, varying molar ratio of Sn: OLA was explored in the 

synthesis along with TOP. At high concentrations of OLA (i.e. Sn: OLA molar ratio of 0.2: 

15.2 mmol), Sn2+ is found to be strongly coordinated by alkylamines, hence the reaction 

with TOP did not produce tin phosphides (or elemental Sn) even at ~350 °C, despite the 

potential to produce reactive phosphorus.45,55,135 Lowering the concentration of OLA (i.e. 

Sn: OLA molar ratio of 0.2: 1.52 mmol) caused the nucleation of tetragonal Sn at ~350 

°C, as the precursor amino-tin complex is less shielded (Figure 5.1). Therefore, highly 

reactive (TMSi)3P was employed along with a number of Sn halides in OLA/OA/ODE. The 

advantage of the latter route is that (TMSi)3P is a stoichiometric reagent and therefore is 

helpful in tuning the reaction parameters to optimize the synthesis of desired crystal 
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phases.64,65,136 Initially, metal rich Sn4P3 was produced using SnCl2 and (TMSi)3P at 180 

°C (Figure 5.2). Although OLA could serve as strongly passivating agents, challenge 

remained in obtaining smaller Sn4P3 nanocrystals (NCs).  The PXRD pattern of the 

reaction product exhibits sharp Bragg’s reflections pertaining to the growth of larger Sn4P3 

particles (40-90 nm). As the nucleation (< 5 seconds) and growth is fast, neither rapid 

cooling nor incorporation of additional coordinating solvents (DDT, TOP, and TBP) 

resulted in controlled growth of Sn4P3 NCs. The addition of latter two reagents has slowed 

down the reaction and the nucleation were delayed up to 50–60 seconds. 

 

Figure 5.1. (a) Powder XRD pattern of the product obtained from the reaction of SnCl2 

and TOP in OLA/OA/ODE at 350 ºC for 3 h along with the (b) ICDD-PDF overlay of 

tetragonal Sn (JCPDS No. 00-004-0673). 
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Figure 5.2. (A) (a) Powder XRD pattern of the product obtained from the reaction of SnCl2 

and (TMSi)3P in OLA/OA/ODE at 180 ºC for 3 min along with the (b) ICDD-PDF overlay 

of rhombohedral Sn4P3 (JCPDS No. 01-073-1820). (B) A representative TEM image of 

the as-prepared particles. 

           The incorporation of DDT caused the synthesis of rhombohedral Sn4P3 along with 

orthorhombic SnS impurities as evidenced by structural characterization (Figure 5.3). 

Likewise, the attempts to alter nucleation and growth using substitute tin halides (SnBr2 

and SnI2) along with (TMSi)3P showed no change in reaction kinetics. However, the use 

of SnI4/(TMSi)3P precursors provided significant control over NP growth besides slow 

nucleation (50–60 seconds). Therefore, SnI4 and (TMSi)3P were employed in the 

synthesis of tin phosphide NPs with varying size, shape, and crystal structures (Scheme 

5.1). 



103 
 

 

Figure 5.3. (a) Powder XRD pattern of the product obtained from the reaction of SnCl2 

and (TMSi)3P in OLA/OA/ODE with DDT at 180 ºC for 12 h along with the ICDD- PDF 

overlays of (b) rhombohedral Sn4P3 (JCPDS No. 01-073-1820) and (c) orthorhombic SnS 

(JCPDS No. 39-0354). 
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Scheme 5.1 Reaction protocols for the synthesis of size, shape, and phase controlled 

rhombohedral Sn4P3, hexagonal SnP, and trigonal Sn3P4 NPs. RNH2 = oleylamine. 

 

5.3.2   Phase Pure Rhombohedral and Partially Crystalline Sn4P3 NPs. In a typical 

synthesis of partially crystalline Sn4P3 NPs, SnI4:(TMSi)3P molar ratio of 1: 1.2 was 

allowed to react in OLA/OA/ODE at 180 ºC for 1–10 min to produce NPs with desired 

sizes. When the reactions were performed without OA, resultant particles exhibit high 

degree of size dispersity. However, the use of OA has allowed us to control the NP size 

in a much narrower regime (18.7 ± 1.5 nm – 35.4 ± 4.9 nm) by manipulating the growth 

time at 180 ºC (Figure 5.6A-D).  

           The structural analyses of the reaction products suggest the presence of 

amorphous to partially crystalline Sn4P3 NPs. The PXRD and SAED patterns indicate 

broad and ambiguous diffraction, likely because of the lack of long-range crystal order 
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and the possible presence of amorphous domains (Figure 5.5).35 Conversely, HRTEM 

reveals lattice fringes with a d spacing of 0.31 nm, corresponding to the (105) plane of 

the rhombohedral Sn4P3 crystal structure (Figure 5.5). The elemental analyses indicate 

Sn/P atomic ratios of 57.4−58.6/42.6−41.4 (Sn/P ∼ 1.38) for all samples, which are in 

close agreement with the atomic composition of rhombohedral Sn4P3 (Figure 5.5). 

Remarkably, phase pure crystalline Sn4P3 NCs can also be produced at 180 °C in the 

presence of TBP (Figure 5.6E, F). Scherrer analysis of rhombohedral Sn4P3 NCs indicates 

an average crystallite size of 35.2 ± 0.2 nm,76 which is in close agreement with size 

estimated from TEM images (38.4 ± 4.8 nm, Figure 5.6E). The Sn4P3 crystallites exhibit 

flower-like morphology caused potentially by the agglomeration of smaller NPs. Further 

attempts to produce size tunable Sn4P3 NCs were not successful and resulted in larger, 

polydisperse mixed phases of crystalline tin phosphides (Figure 5.7-5.9). 
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Figure 5.5. (A) A representative powder XRD pattern of amorphous to partially crystalline 

Sn4P3 NPs produced at 180 °C for 5 min using SnI4 and (TMSi)3P precursors, without the 

use of alkylphosphines (TBP or TOP). (B) SEM/EDS spectrum of the corresponding 

Sn4P3 NPs along with (C) HRTEM, and (D) the selected area electron diffraction pattern 

recorded from 200 nm x 200 nm area of the sample indicating short-range crystalline 

order of rhombohedral Sn4P3. The broad and not well-defined peaks in the PXRD is due 

to lack of long-range crystalline order. The average Sn: P atomic ratio obtained from 5 

individual measurements of the same sample are also shown suggesting the growth of 

Sn4P3 particles. 
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Figure 5.6. TEM images of amorphous to partially crystalline Sn4P3 NPs synthesized in 

the OLA/OA/ODE system at 180 °C without TBP for growth times of (A) 5 s (18.7 ± 1.5 

nm), (B) 1 min (19.5 ± 3.4 nm), (C) 5 min (26.7 ± 4.2 nm), and (D) 10 min (35.4 ± 4.9 nm). 

(E) Representative TEM image and (F) PXRD pattern of the phase pure, rhombohedral 

Sn4P3 NCs (38.4 ± 4.8 nm) produced in the OLA/OA/ODE system at 180 °C with 4 mM 

TBP. The ICDD−PDF overlay of rhombohedral Sn4P3 (JCPDS Card No. 01-073-1820) is 

shown as vertical black lines. 
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Figure 5.7. (a) Powder XRD pattern of the product obtained from the reaction of SnI4 and 

(TMSi)3P in OLA/OA/ODE at 180 ºC for 3 min in the presence of 12 mM TBP. ICDD-PDF 

overlays of (b) tetragonal tin (JCPDS No. 00-004-0673), (c) rhombohedral Sn4P3 (JCPDS 

No. 01-073-1820), and (d) hexagonal SnP (JCPDS No. 03-065-9787) are also shown.   
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Figure 5.8. (a) Powder XRD pattern of the product obtained from the reaction of SnI4 and 

(TMSi)3P in OLA/OA/ODE at 180 ºC for 3 min in the presence of 4 mM of TOP. ICDD-

PDF overlays of (b) rhombohedral Sn4P3 (JCPDS No. 01-073-1820) and (c) hexagonal 

SnP (JCPDS No. 03-065-9787) are also shown.    
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Figure 5.9. (A) Powder XRD pattern of (a) the product obtianed from the reaction of SnI4 

and (TMSi)3P in OLA/OA/ODE at 220 ºC for 15 min. ICDD-PDF overlays of (b) 

rhombohedral Sn4P3 (JCPDS No. 01-073-1820) and (c) hexagonal SnP (JCPDS No. 03-

065-9787) are also shown. (B) A representative TEM image of the as-prepared particles.  

4.3.3   Role of TBP in Prompting the Crystallinity of Sn4P3. To uncover the key factors 

critical for inducing crystallinity in Sn4P3, a series of control experiments were 

implemented. With no TBP, the NPs produced at 180 °C were partially crystalline, 

whereas fully crystalline rhombohedral Sn4P3 NCs were produced in the presence of TBP. 

It was also revealed that the amount of TBP is critical in the synthesis of phase pure Sn4P3 

NCs. In our observation, 4 mM of TBP is sufficient to attain rhombohedral Sn4P3 NCs with 

no additional impurities. Further increasing TBP (8-12 mM) has slowed down the 

nucleation, hence required longer growth times (5-10 min) to attain the crystallinity. The 

reactions carried out with 8-12 mM TBP produced rhombohedral Sn4P3 along with 

tetragonal Sn and hexagonal SnP impurity phases (Figure 5.7). Long chain 

alkylphosphines (TOP) have also been used in lieu of TBP yet resulted in mixed phases 
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of Sn4P3 and SnP (Figure 5.8). It is likely that the coordination of the alkylphosphines to 

Sn4+ precursors plays an important role in the crystal growth and both the length of alkyl 

chain and the amount of phosphines used in the synthesis is highly sensitive for the 

production of phase pure Sn4P3. The reason for this remarkable contrast in structure can 

potentially be attributed to the in-situ generation of Sn(IV)-TBP complexes such as Sn-

phosphanediide cages.137 Since TBP is a weakly coordinating ligand, it can potentially 

produce Sn(IV)-TBP complexes that control the ordered growth of tin phosphide nuclei. A 

similar phenomenon has been reported in the synthesis of Ge NCs, where 

hexamethyldisilazane (HMDS) has been used to produce diamond-like cubic Ge in lieu 

of amorphous NPs.112 In the above report, the formation of Ge-HMDS complex and 

subsequent ordered crystal growth is presumed to induce the crystallinity of Ge NCs. With 

further increasing the growth temperature (>180 ºC), hexagonal SnP NCs were obtained 

with trace amounts of rhombohedral Sn4P3 NCs (Figure 5.9). It is important to note that 

the reactions performed at 190-240 ºC consistently resulted in mix phases of SnP and 

Sn4P3. TEM images of the mixed phases produced at 220 ºC indicate the presence of 

short rods and oblong-shaped particles. The typical length of nanorods is 40-60 nm 

whereas the width is 15-25 nm. In contrast, oblong-shaped particles are ~20-80 nm in 

diameter.   

5.3.4   Synthesis of Phase Pure Hexagonal SnP NCs. Phase pure, hexagonal SnP NCs 

were produced in OLA/OA/ODE at 250 ºC when SnI4:(TMSi)3P precursor ratio of 1: 1.75 

is employed in the synthesis. The narrowly disperse, spherical SnP NPs with wider 

tunability of sizes were obtained by varying the growth time at 250 ºC. The structural 

analyses of the reaction product indicate the presence of hexagonal SnP with significant 
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line broadening consistent with the growth of smaller crystallites (Figure 5.10). No 

extraneous Bragg reflections corresponding to tetragonal Sn or other tin phosphide 

impurities were detected suggesting that as-synthesized NCs are phase pure. 

Conversely, the rhombohedral Sn4P3 impurities were often detected in reactions 

performed below 250 ºC (Figure 5.9). 

 

 

Figure 5.10. PXRD patterns of hexagonal SnP NCs produced in OLA/OA/ODE at 250 °C 

for (a) 5, (b) 30, (c) 60, and (d) 180 seconds. ICDD-PDF overlay of hexagonal SnP 

(JCPDS No. 03-065-9787) is shown as vertical black lines. 
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            TEM was employed to investigate the morphological evolution of hexagonal SnP 

NCs as a function of growth time (Figure 5.11). The NCs produced at 250 ºC exhibit 

spherical morphology and narrow size dispersity with average size in the range of 12.2 ± 

1.2 – 20.0 ± 2.9 nm. Additional TEM images of SnP NCs produced at different time 

intervals are shown in Figure 4.12 and Figure 4.13. At shorter growth times (< 30 sec.), 

SnP NCs exhibit narrower size dispersity (8-10%) however, with increasing growth time 

anisotropic nanostructures were also produced likely due to Ostwald ripening. The 

anisotropic growth of SnP NCs is accompanied by a slight change in morphology from 

spherical to quasi-spherical and cuboidal shapes (Figure 5.11A-D). Interestingly, the 

particle size estimations from TEM images were not consistent with the crystallite sizes 

obtained from Scherrer calculations (Table 5.1).76 This discrepancy can be attributed to 

the presence of an amorphous tin phosphide shell around hexagonal SnP core crystals, 

which is evident in low resolution TEM images (Figure 5.13). Additionally, HRTEM images 

of all samples indicate the single crystalline SnP core with an amorphous shell and a 

lattice spacing of 0.32 nm, corresponding to (011) plane of hexagonal SnP (Figure 5.11E). 

However, the crystallite size increases with increasing growth time similar to primary 

particle size obtained from TEM analyses. Moreover, a slight decrease in amorphous shell 

thickness (from 1.7 to 1.4 nm) is noted with increasing growth time, possibly due to 

coarsening of the amorphous shell. The selected area electron diffraction patterns of SnP 

NCs exhibit the main diffraction rings corresponding to the hexagonal structure type 

(Figure 5.11F). The elemental analysis based on SEM/EDS indicates Sn:P atomic ratios 

of 48.7-50.5: 51.3-49.5 % for NCs produced at different times, consistent with the 

stoichiometry of hexagonal SnP (Figure 5.14). 
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Figure 5.11. TEM images of the hexagonal SnP NCs produced in OLA/OA/ODE at 250 

°C for [A] 5 sec. (12.2 ± 1.2 nm) [B] 30 sec. (12.9 ± 1.7 nm) [C] 60 sec. (15.9 ± 2.2 nm) 

and [D] 180 sec. (20.1 ± 2.9 nm). (E) HRTEM of the SnP NCs from part (A) showing (011) 

lattice spacing. (F) A selected area (~200 nm x 200 nm) electron diffraction pattern of the 

hexagonal SnP NCs shown in part (A). The diffractions rings are indexable to a hexagonal 

lattice. The size histograms of SnP NCs grown at 250 °C for [G] 5, [H] 30, [I] 60, and [J] 

180 sec.  

 



115 
 

 

Figure 5.12. Representative TEM images of the phase pure hexagonal SnP NCs 

synthesized in OLA/OA/ODE at 250 ºC for (a) 5, (b) 30, (c) 60, and (c) 180 seconds. 
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Figure 5.13. Low resolution and high resolution TEM images of the hexagonal SnP NCs 

prepared in OLA/OA/ODE at 250 ºC for (a) 5, (b) 30, (c) 60, and (c) 180 seconds showing 

the presence of a crystalline SnP core and amorphous shell with varying thickness. 
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Figure 5.14. A representative SEM/EDS spectrum of the hexagonal SnP NCs 

synthesized at 250 ºC without the use of TBP for 60 seconds. The average Sn: P atomic 

ratio obtained from 5 individual measurements of the same sample are also shown.  
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Table 5.1. Primary Particle Size, Core Crystal Size, Thickness of the Amorphous Shell, 

and Crystallite Size of Hexagonal SnP NCs Produced at 250 ºC for different growth times.  

Growth Time at 
250 ºC 

(seconds) 

Primary 
Particle Size 

(nm)a 

Core Size 
(nm)b 

Amorphous 
Shell 

Thickness 
(nm)c 

Crystallite Size 
from Scherrer 
Calculations 

(nm)d 

5 12.2 ± 1.2 8.7 ± 0.8 1.7 ± 0.2 8.4 ± 0.2 

30 12.9 ± 1.7 9.8 ± 0.9 1.5 ± 0.3 9.3 ± 0.2 

60 15.9 ± 2.2 12.9 ± 1.7 1.5 ± 0.2 12.1 ± 0.2 

180 20.1 ± 2.9 17.2 ± 2.0 1.4 ± 0.4 16.4 ± 0.2 

 aPrimary particle size, bcore crystal size, and camorphous shell thickness were measured 

from TEM analysis of 150−250 individual NCs. dCrystallite size was calculated by applying 

the Scherer formula76 to (011) reflection after making appropriate correction for 

instrumental broadening using a Si standard. 

5.3.5   Quantum Confinement Effects in trigonal Sn3P4 NPs. Synthesis of a 

significantly smaller set of quantum-confined, tin phosphide NPs was achieved at 100 °C 

in the presence and absence TBP (Figure 5.15). Notably, the physical and optical 

characterization of NPs suggests the formation of the trigonal Sn3P4 phase. The PXRD 

patterns of trigonal Sn3P4 NPs show diffuse diffraction due to a lack of long-range crystal 

order and the possible presence of amorphous domains (Figure 5.16). The short-range 

crystal order of as-synthesized NPs was confirmed by HRTEM that indicates lattice 

fringes of 0.20 and 0.31 nm corresponding to the (116) and (015) planes of trigonal Sn3P4, 

respectively.26 Diffuse diffraction from the (116) plane is also visible in the SAED patterns 

(Figure 5.16).26 Additionally, the compositional analyses based on SEM/EDS reveal Sn/P 
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atomic ratios of 41.8−42.9/58.2−57.1 (Figure 5.17), which are in close agreement with the 

composition of trigonal Sn3P4 (Sn/P ratio of ∼0.75). Previous reports on tin phosphides 

suggest that Sn rich phases are metallic whereas P-rich phases are semiconductors. In 

rhombohedral Sn4P3, all phosphorus atoms exhibit 100% occupancy with octahedral 

coordination by Sn atoms. Hence, phosphorus atoms do not form any homonuclear 

bonds, and the structure remains metallic. As such, we did not observe absorption band 

onsets for Sn4P3 NCs. In contrast, the phosphorus-rich phases, SnP and Sn3P4, possess 

P24− dumbbells with Sn2+ leading to the formation of (Sn2+)2(P24−)1 and 

(Sn4+)1(Sn2+)2(P24−)2 units, respectively.1 In both structures, the bonding and nonbonding 

states are filled and the antibonding states are vacant; hence, optoelectronic transitions 

are expected between those energy levels. As such, the trigonal Sn3P4 NPs produced in 

this study could possibly exhibit size confinement effects similar to those of their tin 

chalcogenide counterparts reported in the literature (bulk bandgaps of SnS and SnSe are 

1.3 and 0.86 eV, respectively).38  
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Figure 5.15. TEM images of the trigonal Sn3P4 NPs grown in OLA/OA/ODE at 100 ºC in 

the presence of 4 mM TBP for (A) 5 sec. (3.0 ± 0.4 nm) (B) 60 sec. (5.9 ± 0.6 nm) (C) 120 

sec. (6.3 ± 0.8 nm) and (D) 180 sec. (8.6 ± 1.8 nm). The size histograms of the as-

prepared trigonal NPs grown at 100 °C for [E] 5, [F] 60, [G] 120, and [H] 180 sec. are also 

shown.  



121 
 

 

 

Figure 5.16. (A-B) HRTEM images of trigonal Sn3P4 NPs synthesized at 100 °C for 3 min 

using SnI4 and (TMSi)3P in OLA/OA/ODE in the presence of TBP. (C) SAED and (D) 

PXRD patterns of the corresponding sample along with ICDD-PDF overlay of trigonal 

Sn3P4 generated from crystal maker (black lines). 
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Figure 5.17. Representative SEM/EDS spectrum of trigonal Sn3P4 NPs synthesized in  

OLA/OA/ODE at 100 ºC with 4 mM TBP for 60 sec. The average Sn: P atomic ratio 

obtained from 5 individual measurements of the same sample are also shown. 

 

           To examine the size confinement effects, solid state diffuse reflectance 

spectroscopy was implemented. The absorption spectra of Sn3P4 NPs (3.0 ± 0.4 to 8.6 ± 

1.8 nm) exhibit bandgap onsets (1.38−0.88 eV) that are blue-shifted from the theoretical 

value of bulk trigonal Sn3P4 [0.83 eV (Figure 5.18)], consistent with the size confinement 

effects.39 Moreover, a systematic red shift in absorption onsets with an increasing NP size 

is noted. The confinement effects observed in as synthesized Sn3P4 NPs further indicate 

that the semiconducting, trigonal phase has been produced at 100 °C with an optimal 

TBP concentration of 4 mM (Figure 5.15). 
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Figure 5.18. Solid state diffuse reflectance spectra (converted to absorption) of smaller, 

trigonal Sn3P4 NPs synthesized in OLA/OA/ODE in the presence of 4 mM TBP at 100 °C 

for (a) 5 sec., (b) 60 sec., (c) 120 sec., and (d) 180 sec. 

           To further elucidate the dependence of optical properties on NP size/shape, a 

series of controlled experiments were implemented, both in the presence and absence of 

TBP at 100 °C. With no TBP, the bandgaps were tuned in a shorter range (0.78–0.96 eV) 

for highly polydisperse particles (Figure 5.19). The corresponding TEM images revealed 

popcorn-shaped NPs with size ranging from 5.2 ± 1.5 – 27.5 ± 3.6 nm (Figure 5.20).  
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Figure 5.19. Diffuse reflectance spectra (converted to absorption using Kubelka-Munk 

remission function) of trigonal Sn3P4 NPs synthesized in OLA/OA/ODE without TBP at 

100 ºC for (a) 1, (b) 2, and (c) 3 minutes. 
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Figure 5.20. Representiavtive TEM images of trigonal Sn3P4 NPs synthesized in 

OLA/OA/ODE at 100 ºC without TBP for (A) 5 sec, (B) 1 min, (C) 2 min, and (D) 3 min. 

(E) and (F) are electron diffraction patterns of NPs shown in (C) and (D), respectively.  
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           It is likely that alkylphosphines can act as additional coordinating solvents and 

allow the control growth of trigonal Sn3P4 NPs at 100 °C. However, further increasing TBP 

(6 – 12 mM) resulted in the growth of polydisperse NPs that exhibit inconsistent optical 

properties. It is important to note that smaller, quantum confined NPs (3.0 ± 0.4 – 8.6 ± 

1.8 nm) exhibit Sn: P atomic ratios of 41.8–42.9: 58.2–57.1 % (Figure 5.21), which are in 

close agreement with the composition of highly disordered Sn3P4 (Sn/P ratio is ~0.75).  

 

 

Figure 5.21. Representative SEM/EDS spectrum of trigonal Sn3P4 NPs synthesized in 

OLA/OA/ODE at 100 ºC with 4 mM TBP for 60 sec. The average Sn: P atomic ratio 

obtained from 5 individual measurements of the same sample are also shown.  
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           Theoretical studies suggest that the tin-rich phosphides (i.e. rhombohedral Sn4P3) 

are metallic whereas the phosphorous-rich phosphides (i.e. Sn3P4) are semiconducting.14 

In the case of rhombohedral Sn4P3, all phosphorous atoms exhibit 100% occupancy with 

octahedral coordination by Sn atoms.14 Hence, phosphorous atoms do not form any 

homonuclear bonds and the structure remains metallic. As such, we did not observe 

absorption band onsets for Sn4P3 NCs produced at 180 °C. In contrast, the phosphorous-

rich phases, SnP and Sn3P4, possess P24- dumbbells with Sn2+ leading to the formation of 

(Sn2+)2(P24-)1 and (Sn4+)1(Sn2+)2(P24-)2 units, respectively.14 In both structures, the bonding 

and nonbonding states are filled and the antibonding states are vacant, hence electronic 

transitions are expected in between those energy levels. Theoretical studies of bulk Sn3P4 

predict an indirect bandgap of 0.83 eV.132 In contrast, the smaller, trigonal Sn3P4 NPs 

produced in this study exhibit bandgap onsets that are blue shifted (0.88-1.38 eV) from 

theoretical value, consistent with the quantum confinement effects.  

           The surface properties of tin phosphide NPs were probed by FT-IR (Figure 5.22) 

and XPS spectroscopy. The FT-IR spectra of all samples exhibit vibrations corresponding 

to ʋ(CHx) at 2850 - 2960 cm-1 and ẟ(CHx) modes at 1381-1463 cm-1 of alkyl chains. A broader 

peak at 1620 cm-1 arising from ʋ(C=C) and a weaker band at 3420 cm-1 corresponding to 

ʋ(N-H) further indicate the presence of OLA on NP surface.138 Besides alkylamines, the 

peaks at 1261 cm-1 and 801 cm-1 suggest the presence of [Si(CH3)] and ʋ(Si-C) modes of 

residual trimethylsilyl species, respectively.139 The broad peak at ~1020 cm-1 can be 

attributed to ʋ(POx) of phosphorous-oxygen, which is further discussed in the XPS 

analyses.139 
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Figure 5.22. FT-IR spectra of tin phosphide NPs synthesized OLA/OA/ODE. (a) 

rhombohedral Sn4P3 NCs produced at 180 °C for 3 min, (b) hexagonal SnP NCs at 250 

°C for 5 seconds, and (c) trigonal Sn3P4 NPs produced at 100 °C for 3 min. 

           XPS was performed to determine the oxidation state of tin and phosphorus in 

rhombohedral Sn4P3, hexagonal SnP, and trigonal Sn3P4 NPs (Figure 5.23). 

Corresponding survey scans are shown in Figure 5.24-5.26.  
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Figure 5.23. XPS of (A) Sn(3d5/2) and (B) P(2p) regions of (a) rhombohedral Sn4P3 NCs 

produced at 180 °C for 3 min, (b) hexagonal SnP NCs produced at 250 °C for 5 seconds, 

and (c) trigonal Sn3P4 NPs produced at 100 °C for 3 min. The dotted squares represent 

the spectral data and the red, green, and blue lines are fitted deconvolutions. 
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Figure 5.24. X-ray photoelectron spectrum (survey scan) of rhombohedral Sn4P3 NCs 

produced at 180 ºC for 3 min. 
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Figure 5.25. X-ray photoelectron spectrum (survey scan) of hexagonal SnP NCs 

produced at 250 °C for 5 seconds. 
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Figure 5.26. X-ray photoelectron spectrum (survey scan) of trigonal Sn3P4 NPs produced 

at 100 ºC for 3 min. 

           The experimental binding energies of Sn(3d5/2) suggest the presence of Sn0 484.8 

eV and Sn2+ 486.4 eV in rhombohedral Sn4P3 NCs (Figure 5.23A). Literature reports on 

Sn4P3 have used X-ray absorption (XAS) and Mössbauer spectroscopy to investigate the 

atomic structure and bonding. However, these studies were unable to assign the 

stoichiometric formal charges to all atoms in the rhombohedral Sn4P3 structure.14,140 

Mössbauer spectroscopy indicates that the bonding energy of Sn in Sn4P3 is similar to 

metallic β-Sn141,142 whereas XAS data suggests the presence of Sn-P and Sn-P- 
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           Sn bonding modes in Sn4P3.69 Accordingly, the binding energies observed in 

Sn4P3, Sn2+ 486.4 eV and Sn0 484.8 eV, likely arise from the two different types of Sn 

present in the crystal structure.14,69 Based on the N(1s) and O(1s) XPS spectra there is 

an expected contribution of Sn2+ from the surface atoms bound to OLA and surface oxides 

(Figure 5.27A, B).31,65 The P(2p) region has a doublet peak at 128.7 eV, which is 

consistent with metal-phosphide bonds in the Sn4P3 structure (Figure 5.23B).62,139,143  The 

peak at 132.7 eV can be assigned to surface P atoms bound to either OLA (P-N) or 

surface oxides (P-O) similar to prior reports of metal phosphide NCs.62,65,139  

            In contrast, hexagonal SnP NCs and trigonal Sn3P4 NPs display binding energies 

corresponding to all three oxidation states in the Sn(3d) region (Sn0 484.8 eV, Sn2+ 486.4 

eV and Sn4+ at 487.4 eV, Figure 4.23A). The presence of all three Sn oxidation states 

cannot be fully explained by the SnP bonding structure, (Sn2+)2(P24-)1.14 However, 

hexagonal SnP has previously been shown to exhibit metallic β-Sn like bonding,141 similar 

to Sn4P3, which may explain the Sn0 484.8 eV peak.74,142 The presence of Sn4+ (487.4 

eV) could be accounted for Sn-O bonds present in the O(1s) spectrum (Figure 5.27B). 

Conversely, if the trigonal Sn3P4 NPs are considered to be similar to highly disordered 

Sn3P4, it can be expected that Sn2+ and Sn4+ would both be present according to the 

assignment of formal charges.14 This suggests the Sn4+ could originates from the 

amorphous shell on the hexagonal SnP core crystals. Furthermore, in both the 

rhombohedral and hexagonal samples the Sn0 can possibly be attributed to amorphous 

Sn species, however this is highly unlikely due to Sn low crystallization temperature.144 
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Figure 5.27. X-ray photoelectron spectra of (A) N(1s) and (B) O(1s) regions of (a) 

rhombohedral Sn4P3 NCs produced at 180 °C for 3 min., (b) hexagonal SnP NCs produced 

at 250 °C for 5 seconds, and (c) trigonal Sn3P4 NPs produced at 100 °C for 3 min.  
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            The hexagonal SnP NCs and trigonal Sn3P4 NPs exhibit P-Sn bonds, P(2p) 128.9 

eV, with little change noticeable between any of the three phases reported (Figure 4.23B). 

This is possibly due to the small difference between the electronegativity of P (2.19) and 

Sn (1.96) Pauling constants.74 The surfactant ligands (OLA) and oxide species bound to 

the surface phosphorous atoms (P-N or P-O) are likely the origin of the peak at 132.7 eV. 

The peak at 137.9 eV can be assigned to P5+ surface oxides and the corresponding O-P 

peak is present in the O(1s) spectra of both samples (Figure 5.27B). The exact nature of 

the P5+ impurities has not been fully elucidated. It is suspected that poorly passivated 

surface phosphorus can be readily oxidized during the ambient isolation process with 

toluene/methanol, contaminating the sample. 

4.3.6  Trigonal Sn3P4 to Rhombohedral Sn4P3 and Hexagonal SnP Phase 

Transformation via Low Temperature Annealing. To investigate the phase stability of 

tin phosphide NPs, a systematic annealing study was conducted under rigorous air free 

conditions. In this study, the smaller, trigonal Sn3P4 NPs (3.0 ± 0.4 – 8.6 ± 1.8 nm) were 

annealed at 150–250 ºC for 16–48 h (Figure 5.28). The PXRD patterns of the samples 

annealed at 150–170 ºC for 16-48 h exhibit no changes in structure. In contrast, NPs 

annealed at 180 ºC for 16 h show rhombohedral Sn4P3 structure. The phase pure, 

hexagonal SnP crystallites were only obtained in samples annealed at 250 ºC for 16–24 

h. In contrast, the trigonal Sn3P4 NPs annealed at 190−240 °C exhibit both rhombohedral 

Sn4P3 and hexagonal SnP crystal phases. Therefore, it is likely that the as-synthesized 

Sn3P4 NPs undergo phase transformation to hexagonal SnP via rhombohedral Sn4P3 

intermediate phase. Consistent with this study, tin phosphide crystallites produced at 180, 

220, and 250 °C indicate the presence of rhombohedral Sn4P3, a mixture of Sn4P3/SnP, 
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and hexagonal SnP phases, respectively. This suggests that the thermodynamic stability 

of Sn−P phases changes on the nanoscale. The literature reports on bulk tin phosphides 

indicate that Sn4P3 and Sn3P4 phases are stable as extended solids up to ∼530 °C; 

however, SnP is known as either a high-pressure tetragonal or a metastable hexagonal 

phase.4,14 It is likely that the high surface area/volume ratio and surface ligands of the 

NPs are responsible for the observed changes in phase stability. 

 

Figure 5.28. PXRD patterns of (a) the trigonal Sn3P4 NPs synthesized in OLA/OA/ODE 

with TBP at 100 ºC for 3 min along with trigonal Sn3P4 NPs annealed at (b) 150 ºC, (c) 

180 ºC, (d) 230 ºC, and (e) 250 °C for 16 h. The ICDD-PDF overlay of rhombohedral Sn4P3 

(JCPDS No. 01-073-1820) and hexagonal SnP (JCPDS No. 03-065-9787) are also 

shown.  
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5.4       Conclusions  

            In conclusion, we have reported the first colloidal synthesis of size, shape, and 

phase controlled, narrowly disperse rhombohedral Sn4P3, hexagonal SnP, and trigonal 

Sn3P4 NPs utilizing a generalized synthetic approach. The control over crystal structure 

and morphology was achieved by varying the nucleation and growth temperature, 

stoichiometry of SnI4 and (TMSi)3P precursors, and concentration of additional 

coordinating solvents (TBP or TOP). Phase pure, rhombohedral Sn4P3 NCs were 

produced at 180 °C in the presence of TBP, whereas amorphous to partially crystalline 

Sn4P3 NPs were achieved at the same temperature with no use of TBP. The role of 

alkylphosphines as the crystallizing agent has been systematically studied, and 4 mM 

TBP is found to be optimal for the synthesis of phase pure Sn4P3 NCs at 180 °C. In 

contrast, narrowly disperse, hexagonal SnP NCs with wider tunability of sizes were 

produced at 250 °C with no use of TBP. A smaller, quantum confined, trigonal Sn3P4 NPs 

(3.0 ± 0.4 – 8.6 ± 1.8 nm) with size-tunable absorption onsets (0.88 – 1.38 eV) were 

produced at 100 °C in the presence of TBP. Although each Sn-P phase has unique atomic 

arrangement, the tin bonding energies of hexagonal SnP NCs and trigonal Sn3P4 NPs 

cannot be distinguished in part due to the presence of amorphous shell on hexagonal 

core crystals. Conversely, the rhombohedral Sn4P3 NCs stand apart in that no Sn4+ is 

detected and the structure consisting only of Sn2+ and Sn0 species. In contrast, the 

phosphorus bonding energies are consistent across multiple Sn-P phases reported with 

minimal or no effect from different metal phosphide bonds. The trigonal to rhombohedral 

phase transition is achieved at 180 °C whereas rhombohedral to hexagonal transition is 

achieved at 250 ºC. The control over NP size, shape, and crystal structure realized 

through reported colloidal synthesis can be extended to produce other anisotropic 
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nanostructures of tin phosphides as well as to probe the structure and size/shape 

dependent charge storage and photocatalytic properties. Specific studies to test these 

premises are currently underway. 
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CHAPTER 6 

CONCLUSIONS AND PROSPECTUS  

In this dissertation study, we have successfully developed synthetic strategies for 

Ge1-xSnx alloy QDs with wider tunability of Sn compositions (x = 1.5-20.6%) and different 

crystal phases of tin phosphide nanocrystals and studied their composition- and size-

dependent physical and photophysical properties (Goal 1 and Goal 2). Both goals have 

been achieved thoroughly and explored in detail. Their significance is novel and will have 

potential for their technological advancement.  

In chapter 3, we have developed the synthesis of Ge1-xSnx alloy QDs with size in 

the range of 3.3-5.9 nm for NIR absorption and emission with Sn composition as high as 

20.6%. The structural and surface characterizations on as prepared samples indicate no 

detectable impurities. Previously, the colloidal synthesis of Ge1-xSnx alloy QDs were 

explored (by our group and Los Alamos National Laboratory) for their tunable optical 

properties, especially, emission in visible and mid IR range. Both the syntheses utilized 

wet chemical method, but different routes. However, to achieve tunable NIR emission, we 

have employed Gel2 and SnCl2 as precursors, HDA as surfactant, more importantly varied 

amounts of reducing agent (BuLi). In order to achieve the QDs size within 6 nm, the critical 

parameter is to adjust the BuLi amount in accordance with Sn composition (1.48-1.16 

mmol BuLi for 1.5-20.6% Sn). By doing so, the energy gaps estimated form Kubelka-

Munk, a solid-state absorbance were in the range of 1.72-0.84 eV for x = 1.5-9.1%. Using 

Tauc analysis, a solution phase absorption, the energy gaps for all the samples (x = 1.5-
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20.6%) were in the range of 2.05-0.90 eV. The energy gaps estimated using both the 

above-mentioned methods are in the widest possible range for Ge1-xSnx alloy QDs as of 

today, allow them potential candidates in the relevant technologies. For the first time, a 

tunable PL was achieved in the range of 1.62-1.31 eV for x = 1.5-5.6%, again this is the 

broadest range for visible and NIR Ge1-xSnx alloy QDs. It is important to note that, for bio-

imaging the ideal emission wavelength is in the range of 1.9-1.3 eV and our Ge1-xSnx alloy 

QDs exhibit PL within this range makes them an alternative to toxic bio-imaging lead (Pb) 

and tellurium (Te) based QDs. However, PL from alloy QDs with Sn concentration higher 

than 5.6% could not be probed. 

To achieve PL from the alloy QDs with Sn composition higher than 5.6% the 

following challenge(s) need to be addressed. (1) effective surface passivation and/or (2) 

strong size confinement effects (for QD size >4.5 nm). In order to minimize non-radiative 

pathways, treating the as prepared samples with additional capping ligands such as oleic 

acid or alkylthiol. However, with this post synthetic additional ligand treatment using oleic 

acid resulted in enhancement in PL intensity by 1-3-fold increment. This PL enhancement 

is effective for samples with lower intensity. For example, upon oleic acid treatment for 

16-24 h, the samples with very low PL intensity exhibited 3-fold increment whereas the 

samples with bright PL show 1-fold increment. Unfortunately, the oleic acid treatment for 

samples with Sn content higher than 5.6% could not useful in achieving measurable PL. 

Thus, it directs to inorganic passivation of the surface by growing a shell on the alloy QDs. 

Earlier reports on Ge and Ge1-xSnx alloy nanocrystals suggest that the presence of an 

epitaxial CdS or ZnS shell enhances the PL intensity significantly. The recent report on 

Ge1-xSnx/CdS core/shell QDs with 6-11 nm core size claim an enhancement in PL intensity. 
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However, the larger core size QDs resulted a broad-band IR PL with no size (8−11 nm) 

or composition (x = 5−25%) dependent tunability. As this dissertation study focused on 

3-6 nm alloy QDs, upon successful core-shelling, it is possible to probe tunable PL across 

the samples (x = 1.5-20.6%) and to achieve brighter PL. Added advantage with Ge1-xSnx 

core and epitaxial growth of  CdS or ZnS shell is that there is a potential to incorporate 

more Sn (>20.6%) by allowing increase in particle size (>6 nm) will also Another way to 

induce PL in samples with Sn content, is to effectively reduce the particle size within 4.5 

nm for which strong size confinement effects will be expected. The size control in high Sn 

concentration (x>5.6%) samples can be achieved through careful manipulation of 

reaction parameters such as concentration of surfactant (HDA) and/or reducing agent 

(BuLi).  

Temperature dependent (295 K and 15 K) time-resolved PL experiments were 

performed on solid samples to understand carrier relaxation pathways and the origin of 

NIR PL. At room temperature (295 K), the PL range was 1.62-1.31 eV with decay lifetimes 

of 80-111 ns due to the thermal energy makes bright excitonic states accessible, resulting 

in faster recombination rates. In contrast, the PL decays at low temperature (15 K) are 

much slower with lifetimes of 8-11 μs owing to combined effect of surface trap states and 

dark-bright exciton splitting in QDs. In addition, nearly an order of magnitude increases in 

PL intensities at 15 K when compare to the those at 295 K suggests a dominant role of 

nonradiative recombination at increased temperatures. Interestingly, the PL peak position 

as a function of Sn content show a systematic red-shift at 15 K when compare to 295 K. 

The PL splitting energy (ΔE) of 15 K and 295 K is systematically increasing from 30-56 

meV as decrease in Sn content from 4.2-3.5%. On the contrary, ~2 nm Ge1-xSnx alloy 
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QDs show an opposite trend, the visible PL peaks at room temperature are blue-shifted 

compared to those at 15 K by 35-50 meV for 5.5-12.5% Sn. In the case of ~2 nm QDs, 

the PL splitting energy is systematically increasing from 30-50 meV as increase in Sn 

content from 5.5-12.5%. It will be interesting to study the fundamental differences 

between both visible and NIR PL sets to understand the temperature dependent PL peak 

shifts. Overall, 3.3-5.9 nm alloy QDs expanded the optical range to NIR. 

          In chapter 5, we have successfully produced different tin phosphides in nanoscale 

for the first time. Owing to lack of proper synthetic methodology which could provide the 

control over size and crystal phase of tin phosphides weren’t explored for their full 

potential in optical, photocatalytic, thermoelectric, and Li-/Na- ion battery applications. In 

order to produce tin phosphide nanoparticles, we have explored all the possible Sn 

(SnCl2, SnBr2, SnI2, Sn(OAc)2, and SnI4) and P (TOP, TBP, and (TMSi)3P) precursors. 

Some combinations weren’t fruitful in reacting Sn and P at atomic level, while the other 

produced either single phase/mixed phase or β-Sn (tetragonal Sn) with less to no control 

over size of the particles. The success was achieved with a combination of relatively slow 

decomposing SnI4 as Sn source and highly reactive (TMSi)3P as P precursor. 

           We have developed a generalized colloidal synthetic approach for the production 

of size, shape, and phase controlled, narrowly disperse rhombohedral Sn4P3, hexagonal 

SnP, and trigonal Sn3P4 NPs. By adjusting the key reaction parameters such as nucleation 

and growth temperature, stoichiometry of SnI4 and (TMSi)3P precursors, and 

concentration of additional coordinating solvents (TBP or TOP) the control over crystal 

structure and morphology was achieved. It is important to note that both TBP and TOP 

are potential P-sources in various metal phosphides, but in this synthesis they both as 
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additional coordinating solvent, induced long range crystallinity in short range crystalline 

samples. In the presence of TBP, metal-rich rhombohedral Sn4P3 NCs were produced at 

180 ºC whereas with no use of TBP, larger, amorphous to partially crystalline Sn4P3 NPs 

were achieved at the same temperature. The amount of TBP is also critical to achieve 

single phase nanocrystals and 4 mM of TBP is found to be optimal for the synthesis of 

phase pure Sn4P3 NCs at 180 ºC. By changing the reaction temperature to 250 °C, 

narrowly disperse, highly reproducible hexagonal SnP NCs with wider tunability of sizes 

were produced with no use of TBP. With a significant reduction in the reaction temperature 

to 100 °C , a smaller, quantum confined trigonal Sn3P4 NPs were produced in the 

presence of TBP. The P-rich trigonal Sn3P4 NPs exhibit size-tunable energy gaps (1.38 – 

0.88 eV for 3.0 ± 0.4 – 8.6 ± 1.8 nm). The energy gaps obtained were significantly blue 

shifted compared to bulk theoretical bandgap (0.83 eV) indicate size confinement effects. 

There is a potential to expand this optical absorption window from NIR to visible be 

reducing the particle size below 3 nm. Apart from PXRD and HRTEM data, we have 

utilized XPS to probe surface and core of the as synthesized NPs. In addition, the formal 

charges obtained from XPS analysis indicate Sn possess stable Sn2+ and Sn4+ oxidation 

states across three phases. To investigate the phase stability of tin phosphide NPs, a 

systematic annealing study has been carried out. Trigonal-to-hexagonal phase transition 

is achieved at 250 ºC via rhombohedral intermediate phase at 180 °C.  

           This colloidal synthetic approach can be extended to produce other anisotropic 

nanostructures of tin phosphides as well. By doing so, structure and size/shape 

dependent charge storage, photocatalytic, and thermoelectric properties will be studied 

effectively. To produce tin phosphide nanostructures, one potential way to explore the 
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utilization of TBP at 180 °C and 250 °C for longer growth times. Since 3 out of 4 stable tin 

phosphides are synthesized using this wet chemical approach, the remaining P-rich 

phase (trigonal SnP3) can also be produced with a systematic investigation, mainly by 

employing more (>3% (TMSi)3P) at temperature higher than 250 °C.  

          Theoretical studies suggest that hexagonal SnP is also a semiconductor, however 

with the 12-20 nm particle sizes we couldn’t probe the experimental energy gaps, due to 

possibly (1) minimum size confinement effects and/or (2) onset cut off due to detector 

limitation (energy gaps below 0.68 eV could not be measured). However, with effective 

control over hexagonal SnP nanocrystal size potentially below 10 nm could induce size 

confinement effects. 
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