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By Jong Myoung Shin, Bachelors of Science 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 
at Virginia Commonwealth University. 
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Director: Javier Gonzalez-Maeso, PhD 

Associate Professor, Physiology and Biophysics Department 

 

 The group II metabotropic glutamate receptors are known for their involvement in 

various psychiatric disorders. The mGluR2 in particular is linked with etiology of schizophrenia 

especially in the context of crosstalk with 5-HT2A. Thus, the mGluR2 has attracted attentions for 

its potential therapeutic applications. Despite numerous physiological evidences on the actions of 

mGluR2, its mechanism is still unclear to this day. It is partially due to the lack of understanding 

in characteristics of mGluR2 homodimer which is its functionally active form. Therefore, the 

characterization of dimeric interaction serves as a foundation to advanced understanding of the 

role of mGluR2. On that note, the role of the conserved cysteine residue (C121) in the ligand 

binding domain of mGluR2 has been evaluated in this study as they are known to play a critical 

part in homodimer formation. Collectively, C121 has been shown to affect the dimerization, 

subcellular localization, and pharmacokinetics of mGluR2. Lastly, the effect of mGluR2 on 

mouse behavior was examined in a partial effort to elucidate its role in crosstalk with 5-HT2A. 
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Chapter 1. Introduction 

 

1.1. G Protein-Coupled Receptors 

 

G Protein-Coupled Receptors (GPCRs) comprise a large family of membrane receptors 

modulated by extracellular stimulation transducing intracellular signal cascade to regulate 

physiological processes in eukaryotic organism (Prazeres, 2015). There are myriad receptor 

ligands including chemical compounds, hormones, neurotransmitters, small molecules, and 

peptides involved in vital biological processes such as cell proliferation, migration, and 

inflammation (Tadagaki, 2012). These receptors are ubiquitously expressed throughout the 

system. Owing to their abundance, they are responsible for a numerous physiological 

abnormalities including various psychiatric disorders (Komatsu, 2015). For such reason, the 

researches to better understand functionalities of GPCRs continuously gained tractions in the 

past several decades. 

 

1.1.1. Heterotrimeric G Proteins 

 

GPCRs are associated with guanine nucleotide-binding proteins (G-proteins) that are 

either monomeric or heterotrimeric (Flock, 2015). Of those two major classes, the heterotrimeric 

G-proteins are particularly important in cell signaling and receptor trafficking, hence it is an 

attractive research subject from a pharmacological perspective. As the name suggests, 

heterotrimeric G-proteins involve three distinctive proteins that are membrane bound: alpha (Gα), 



12 
 
 

beta (Gβ), and gamma (Gγ). These G-proteins act as molecular switches for pertinent GPCRs 

turning the receptors on or off by binding either GTP or GDP, respectively. Depending on which 

GPCRs they are associated with, the Gα proteins can be subdivided into four main subclasses 

(Gαs, Gαi, Gαq, and Gα12/13) based on the protein sequence and the effectors they activate 

(Beaulieu & Gainetdinov, 2011). Upon GTP hydrolysis, these G-proteins detach from the GPCR 

into two separate units as Gα and Gβγ, which individually activate their corresponding effectors 

such as adenylyl cyclases, phospholipases, and ion channels (Figure 1.1).  

 

1.1.2. Class C GPCR 

 

GRAFS classification groups GPCRs into five main families in human: Glutamate 

(G/Class C), Rhodopsin (R/Class A), Adhesion (A/Class B), Frizzled (F/Class F), and Secretin 

(S/Class B) (Schioth, 2005). Within these families, the class C GPCRs are known for their large 

extracellular domain serving as orthosteric binding sites known as the venus flytrap domain 

(Figure 1.2). Additionally, they are known to constitutively form strict dimers as a part of their 

activation mechanism (Levitz, 2016; Xue, 2015). The class C GPCRs consist of eight 

metabotropic glutamate receptors (mGluRs), two γ aminobutyric acid (GABA) receptors, single 

calcium sensing receptor (CASR), and sweet and amino acid taste receptors, pheromone 

receptors, and odorant receptors (Pin, 2003). As the L-glutamate is the most prevalent 

neurotransmitter in the excitatory synapses in the mammalian CNS, the mGluRs are of particular 

interest in its therapeutic utility to treat various neurological and psychiatric disorders.  
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Figure 1.1 Schematics of GPCR signal cascade and downstream effects. Examples of 
different sensory inputs are listed in the box. Four discrete G-proteins are depicted in the diagram 
above. The following blue arrows indicate the corresponding targets being activated by each G-
protein. The bottom-most box contains a partial list of the physiological effects occurred by these 
G-proteins (Schou, 2015). 
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Figure 1.2 Diagram of Class C GPCR as a homodimer. Venus flytrap domains are located at 
the extracellular ligand binding domains serving as orthosteric binding sites. The proposed 
mechanism distinguishes three different state of the homodimer based on ligand availability in 
the binding sites (Niswender, 2010). 
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1.2. Metabotropic glutamate receptor II (mGluR2) 

 

The mGluRs can be further categorized into three distinct groups (group I, II, III) according 

to G-protein coupling, ligand selectivity, and sequence homology (Niswender, 2010). The 

mGluR2 belongs to the group II of these sub-classes along with mGluR3. The mGluR2 are 

characteristically coupled to Gi/o alpha proteins inhibiting activities of adenylyl cyclase, which in 

turn decrease intracellular cAMPs (Figure 1.3). This regulation of the secondary messenger 

modulates neurotransmitter synthesis, storage, release, receptor sensitivity, neuronal growth and 

differentiation (Duman & Nesler, 1999).   

 

1.2.1. Glutamate hypothesis of schizophrenia 

 

Glutamatergic neurotransmission is required in most of the normal brain functions in that 

it is also responsible for many neuropathological disorders such as schizophrenia. There are 

numerous reports suggesting that disruptions of neurotransmitter communication contribute to 

such clinical conditions (Brichta, 2013; Marecos, 2014). The group II mGluRs are of particular 

interest in schizophrenia research due to the glutamate hypothesis, which speculates dysfunction 

of glutamatergic neurotransmission to be involved in the etiology of schizophrenia (Javitt, 2012). 

With the basis of the hypothesis, mGluR2 and mGluR3 have been investigated for their possible 

influences from different parts of post-mortem human brain. One particular study compared the 

expression levels between affected and unaffected schizophrenia brain samples. The expression 

levels of the group II mGluRs showed lower level of mGluR2 in the prefrontal cortex and 
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cerebellum while there was not a significant change in the mGluR3 levels (Gonzalez-Maeso, 

2008).  

 

1.2.2. Homo-dimerization of mGluR2 

 

Along with the other groups of mGluRs, mGluR2 takes a functional form as a strict 

homodimer. Hence, there may be a mixed population of monomeric and dimeric mGluR2 in the 

cells that expresses this protein. Although the comprehensive mechanism for this dimerization is 

still unclear, a number of studies previously suggested the involvement of different 

transmembrane interactions as a part of possible mechanism (Moreno, 2016; Xue, 2014). 

Furthermore, another report showed a cooperativity as a homodimer mechanism via 

communication between two ligand binding domains (LBDs). G-protein activation requires 

dimerization of full length mGluRs and is partially mediated by an intersubunit disulfide bridge 

between the LBDs (Levitz, 2016). However, the latter claim is still subject to questions as there 

has not been a thorough investigation on this particular matter, which is a compelling idea for 

discussion as it is the only known residue that participates in an extracellular intersubunit 

covalent bonding. Thus, this topic alone deserves experimentation of its own.  

 

1.2.3. Conserved cysteine residue at position 121 

 

The intersubunit disulfide bridge between the LBDs is formed by two cysteine residues at 

position 121. It is the only known cysteine residue that covalently connects two mGluR2s from 

the extracellular domains although there are several other cysteines that are available for 
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disulfide linkage (Niswender, 2010; Rondard, 2006). This residue is conserved throughout all 

mGluRs and is known to play its role in stabilizing the mGluR2 homodimer structure in 

conjunction with hydrophobic interaction between the LBDs (Levitz, 2016, Figure 1.4). 

However, the precise functions of C121 is still controversial due to the lack of thorough 

investigation on this topic. This calls upon an inquiry for further study on this specific cysteine 

residue to elucidate its effect on dimerization, functionality, and trafficking of mGluR2.  
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Figure 1.3 Gi/o dependent adenylyl cyclase inhibition mechanism. Activated Gi/o protein 
inhibits adenylyl cyclase preventing the conversion of ATP into cAMP. Decreased cAMP level 
ultimately prevents release of glutamate from the presynaptic terminal of neurons (Li, 2015). 
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Figure 1.4 mGluR2 homodimer. Two mGluR2 protomers come together to form a quaternary 
structure with multiple contacts at ligand binding domains and transmembrane domains. The 
C121 contributes to the stability of the homodimer structure via extracellular disulfide bridge 
(Moller, 2017).  
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1.3. 5-HT2A-mGluR2 Heteromerization 

 

Heteromerization between different receptors is a unique physiological phenomena that it 

can promote or attenuate original signal transduction which can lead to a new signaling pathway 

in some cases. (Albizu, 2010; Figure 1.5). Namely, a number of evidences corroborates such 

existence of class A GPCR heterodimers, although the topic is still in debate (Franco, 2016; 

Moutkine, 2017). The serotonin 5-HT2A, a class A GPCR, and the mGluR2 are known to 

heterodimerize, and they have been linked to the pathophysiology of schizophrenia (Gonzalez-

Maeso, 2008; Levitz, 2016; Moreno, 2016; Xue 2015). In the HEK-293 cells that co-express 5-

HT2A and mGluR2, a synthetic mGluR2 agonist could increase the intracellular calcium level 

with the absence of 5-HT2A agonist suggesting that the crosstalk was initiated from the activation 

of mGluR2 inducing downstream signal transduction via 5-HT2A-coupled Gq alpha protein, 

which activates the phospholipase C that triggers inositol triphosphate (IP3) calcium signaling 

pathway (Moreno, 2016).  

  

1.3.1. Potential mGluR2 homodimer interference in the heteromerization 

 

As two mGluR2 protomers are covalently stabilized by C121, it is possible that the 

presence of homodimer can potentially interfere with the formation of 5-HT2A-mGluR2 

heteromer. While these receptors can theoretically form a multi-complex oligomer between two 

homodimers, a few reports suggest a possible combination of heteromer potentially consisting of 

5-HT2A and mGluR2 monomers (Baki, 2016; Moreno, 2018). However, it is difficult to propose 

a mode of interaction without an explicit structural information of the homodimer or heteromer, 
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or a properly devised mechanism. In order to elucidate this crosstalk mechanism, it calls for the 

need for an in-depth investigation on the role of C121 as it may constitute a crucial part of 

forming a homodimer.  

 

1.3.2. Heteromer crosstalk in a mouse model 

 

Hallucination is one of the hallmark positive symptoms of schizophrenia (Lysaker, 1999). 

In addition, increased expression of 5-HT2A and decreased expression of mGluR2 in the 

prefrontal cortex of the human post-mortem sample were reported (Gonzalez-Maeso, 2008). 

Thus, many seratonergic hallucinogens such as lysergic acid diethylamide (LSD) and 2,5-

dimethoxy-4-iodoamphetamine (DOI) are used to emulate psychotic behaviors in mice and rats, 

which exhibits peculiar side-to-side head movements, known as head twitch response (HTR), 

upon receiving the drugs (Willins, 1997). As the LSD-induced hallucination resembled positive 

symptoms of schizophrenia, 5-HT2A activation in the prefrontal cortex led to the development of 

psychosis model in rodents. Therefore, 5-HT2A signaling efficiency was coupled to a prediction 

of vulnerability to psychiatric illness (Gonzalez-Maeso & Meana, 2006). Furthermore, the 

activation of mGluR2 seems to modulate the effect of 5-HT2A-dependent hallucinogens. In that 

regard, 5-HT2A-mGluR2 heteromer was explored as a therapeutic target for schizophrenia in a 

mouse model by attempting to inhibit the HTR from mGluR2 activation (Benvenga, 2018).  
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Figure 1.5 Schematics for different actions of heteromer mechanism. (a) Depiction of 
receptor desensitization upon binding corresponding ligand. (b) Heteromerization can affect the 
ability of ligand binding. Two receptors can show positive (+) or negative (-) cooperativity, 
which can either increase or decrease affinity for ligands. (c) Heteromer can engender a new 
signal pathway and produce different physiological responses that were not possible in 
monomeric or homodimeric forms (Albizu, 2010). 
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Chapter 2. Objectives 
 

 

The mGluR2 is considered an important piece to a variety of neuropathological disorders in 

the range from depression to Alzheimer’s disease (Duman, 2018; Lee, 2009). This receptor has 

been in the center of conversation as a key element for the glutamate hypothesis of 

schizophrenia. Since the evidence for 5-HT2A-mGluR2 heteromer existence was published, this 

heteromer revealed a new scope of understanding the mechanism of this psychotic disorder and 

attracted attention as a potential therapeutic target. While the crosstalk between these receptors 

were biochemically demonstrated previously (Gonzalez-Maeso, 2008), the mechanism behind 

the process has not been clearly elucidated. It is partially due to the class C GPCRs’ ability to 

constitutively form a strict dimer. Hence, the study of mGluR2 homodimer is a crucial part to 

illustrate comprehensive picture of the crosstalk mechanism. In order to better understand the 

process of mGluR2 homodimer formation, C121 holds a great value as this conserved cysteine 

residue readily forms extracellular disulfide bridge between two LBDs, which stabilizes overall 

homodimer structure. To further investigate the role of C121 in homodimer formation and the 

impact of mGluR2 modulation of 5-HT2A in a schizophrenia mouse model, the following four 

aims were employed: 

 

1. Evaluate the effect of C121A on subcellular localization of mGluR2 in HEK-293 cells. 

2. Investigate the changes in the binding affinity and binding potential of the C121A 

mutant.  
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3. Assess the mGluR2 monomer-dimer equilibrium between the WT and C121A mutant. 

4. Examine the Gi coupling to assess the functionality of mGluR2 

5. Characterize the modulating effect of mGluR2 on 5-HT2A-dependent head twitch 

behavior in animal models of psychosis. 
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Chapter 3. Materials and Methods 
 

3.1. Construction of mGluR2-C121A plasmid 
 

 

 Previously constructed pcDNA3.1(+)-HA-mGluR2-mCitrine plasmid by Dr. Javier 

Gonzalez-Maeso was used as a template to introduce a single point mutation via QuikChange II 

Site-Directed Mutagenesis Kit according to the protocol of manufacturer (Agilent). All PCR 

assays were performed with PfuUltra High-Fidelity DNA polymerase (Agilent). Cycling 

conditions were 16 cycles of 95oC for 30s, 55oC for 1 min, and 68oC for 9 minutes with an initial 

denaturation step of 95oC for 30s. Forward (5’-

GGCTCACGCCACATCGCGCCCGACGGCTCTTAT-3’) and reverse (5'-

ATAAGAGCCGTCGGGCGCGATGTGGCGTGAGCC-3') mutagenesis primers were ordered 

(Agilent). The PCR product was transformed into XL1-Blue Competent Cells according to the 

protocol of manufacturer (Stratagene). The selected bacterial colonies were cultured in the LB-

ampicillin medium for 18 hours, and the plasmids were purified using the QIAGEN plasmid 

Miniprep and Maxiprep kits. Purified plasmids were digested with NheI and XbaI restriction 

enzymes for band analysis. Band weight confirmed plasmid samples were sequence verified as a 

final step of quality control (Eurofin).    

 

3.2. HEK-293 transient transfection of mGluR2-C121A plasmid  
 

 

HEK-293 cells were maintained in the Dulbecco’s modified Eagle’s medium (DMEM; 

contains 4.5 g/L glucose) supplemented with 10% (v/v) dialyzed fetal bovine serum (dFBS) and 
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1% (v/v) P/S at 37°C in a 5% CO2 humidified atmosphere. dFBS was used to prevent 

contamination by glutamate from using undialyzed FBS. Transfection for immunofluorescence 

microscopy and western blot was performed with PEI using 3ug of plasmid materials incubated 

for 24 hours. For the rest of application, transfection was performed with PEI using 10ug of 

plasmid materials without P/S for 24 hours. Lower amounts of DNA materials were used for the 

former assays due to their sensitivity to over-expression of the receptors.   

 

3.3. Generation of stably expressing cell line 
 

 

HEK-293 cells were transiently transfected as described in 3.2. After 24 hours 

incubation, the cells were split into 1:200, 1:400, and 1:600 dilutions and allowed for them to 

stabilize in DMEM (contains 4.5 g/L glucose) supplemented with 10% (v/v) dFBS and 1% (v/v) 

P/S at 37°C in a 5% CO2 humidified atmosphere. After 24 hours, the medium was replaced with 

the DMEM supplemented with hygromycin B (250 ug/ml) for selection. Until adequate number 

of foci was grown, the culture was continuously supplied with a new DMEM containing 

hygromycin B. Once foci matured, they were screened for fluorescence under the microscope. 

The medium was removed and washed with pre-warmed Dulbecco's phosphate-buffered saline 

(dPBS). Foci were circumscribed with cloning rings and completely isolated from their 

surroundings. The cloning rings were adhered to the plate with 2% agarose gel. Foci were 

trypsinized (Thermofisher) and transferred to 96-well plates for morphology screening.  
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3.4. Immunofluorescence microscopy 
 

 

HEK-293 cells were grown on poly-D-lysine-treated glass coverslip (number 0 thickness) 

and transiently transfected to express either HA-mGluR2-mCitrine or HA-mGluR2-C121A-

mCitrine. After 24 hours transfection period, the medium was removed and the cells were fixed 

with 2% PFA for 15 minutes followed by three 10 minutes washes with PBS. For 

permeabilization, 0.2% Triton-X-100 was treated for 10 minutes at RT followed by three 10 

minutes washes with PBS. To reduce the unspecific binding of antibodies, the cells were blocked 

with BSA prior to the incubation with antibodies. The cells were incubated with the mouse anti-

HA tag antibody (Cell Signaling) for 60 minutes in RT followed by three 5 minutes washes with 

PBS. For additional block after primary antibody incubation, the cells were washed with BSA 

three times for 5 minutes. The cells were incubated in dark with the rabbit anti-mouse antibody 

labeled with Alexa Fluor 594 (ThermoFisher) for 60 minutes in RT followed by three 5 minutes 

washes with PBS. For nuclei staining, the cells were incubated with Hoechst 33342 dye solution 

(ThermoFisher) in dark at RT for 5 minutes followed by three 5 minutes washes with PBS. 

Residual PBS is gently washed with distilled water. The coverslip was inverted onto Vectashield 

antifade on a microscope slide and sealed with nail polish. Zeiss LSM 710 confocal fluorescent 

microscope was used to resolve the prepared slides. 
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3.5. Membrane preparation 
 

 

The cells were harvested by centrifugation (1,000 g, 5 minutes, 4oC) in cold dPBS. dPBS 

was aspirated and the cell pallet was frozen at least for an hour. The cells were thawed and 

homogenized in an ice-cold Tris buffer (50 mM Tris-HCl, pH 7.4). The homogenate was 

centrifuged (1,000 g, 5 minutes, 4°C) to remove nuclei, and the supernatant was collected and 

centrifuged (40,000 g, 10 minutes, 4°C). The pellet was washed with 5 ml of ice-cold Tris buffer 

and recentrifuged (40,000 g, 5 minutes, 4°C). The resultant pellet was stored at -80°C for future 

use. 

 

3.6. Western blot 
 

 

The amount of protein in the membrane preparation was estimated using Bradford assay. 

20 ug of proteins were chemically reduced with 2-mercaptoethanol. The protein sample was 

resolved in 10% SDS-PAGE and transferred to nitrocellulose membranes by electrophoresis 

overnight. The membranes were blocked with blocking buffer containing milk and BSA for 1 

hour at RT, which was then immunoblotted with primary antibody (mouse anti-HA, 1:1000, 

Abcam) overnight at 4oC. Subsequently, the membranes were incubated with the horseradish 

peroxidase-conjugated secondary antibody (rabbit anti-mouse, 1:5000, Abcam) for 1 hour at RT. 

Immunoreactivity was detected from the protein sample by the enhanced chemiluminescence 

system (SuperSignal WestPico #34080, Thermofisher) according to the protocol of 

manufacturer. The resultant western blot films were analyzed for band intensity by densitometry 

using the GelQuantNET software (v. 1.8.2.).  
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3.7. [3H]LY341495 saturation binding assay 
 

 

Various concentrations of [3H]LY341495 (American Radiolabeled Chemicals (ARC). 

Cat# ART-1439) from 0 to 15 nM were incubated with 5 ug of membrane proteins per each well 

on ice for 60 minutes in a total volume of 200 uL. Subsequently, the concentrations of 

[3H]LY341495 used were corrected according to radioactivity measured by TRI-CARB 4910TR 

110 V Liquid Scintillation Counter (PerkinElmer). The membrane proteins were re-suspended in 

the phosphate buffer (10 mM K2HPO4, 1 mM KH2PO4, 100 mM KBr, pH 7.6). Non-specific 

binding was determined for each concentration of radioligand in the presence of 1 mM L-

glutamate. For harvesting radioligands, Unifilter-96 cell harvester was used (PerkinElmer). The 

96-well plates of the membrane incubation were harvested on the GF/A filter papers soaked in 

0.5% PEI. The filter paper was dried at 65oC for 30 minutes. Dried filter paper was soaked with 

40 ml Microscint-20 cocktail, which was then counted on Perkin Elmer Microbeta2 2450 

microplate counter.    

 

3.8. [35S]GTPγS binding assay 
 

 

The membrane proteins were prepared as indicated in Section 3.5. The prepared 

membranes were re-suspended in the assay buffer (20 mM HEPES, 100mM NaCl, 3mM MgCl2, 

1 mM EGTA, pH 7.6) accordingly to accommodate 5 ug per each well. 0.5 nM [35S]GTPγS 

(PerkinElmer. Cat# NEG030H250UC) and 50 uM GDP were used along with various 

concentrations of LY379268 ranging from 0 to 10 uM to incubate membrane proteins in 30oC for 
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2 hours in a total volume of 200 uL per each condition. Non-specific binding was determined 

using 10 uM non-radioactive GTPγS. For harvesting radioligands, Unifilter-96 cell harvester was 

used (PerkinElmer). The 96-well plates of the membrane incubation were harvested on the GF/A 

filter papers soaked in the assay buffer. The filter paper was dried at 65oC for 30 minutes. Dried 

filter paper was soaked with 40 ml Microscint-20 cocktail, which was then counted on Perkin 

Elmer Microbeta2 2450 microplate counter. 

 

3.9. Automated head twitch behavior test 
 

 

Small magnets were previously implanted on the skull of adult C57BL/6 mice by Dr. 

Mario de la Fuente Revenga. The mice were weighed and calculated for proper drug dosing. 

These mice were placed in copper-wire-wrapped plastic chambers to capture their HTRs from 

the NI DAQ data acquisition system (National Instruments; Figure 3.1). First, the baseline HTR 

of these mice were captured for 15 minutes as a habituation process. Appropriate test drugs were 

intraperitoneally administered followed by HTR measurement for a designed time period. After 

the drug interval, the head twitch was induced by DOI and captured for a designed time period. 

The mice underwent washout period of at least 1 week prior to any experiments. The 

experiments were repeated by crossing the group. 
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3.10. Data Analysis 
 

 

In Bradford assay, the total protein contents of the samples were estimated by 

interpolating the integrated optical density of different concentrations of BSA proteins. Two 

binding assays conducted in this thesis, [3H]LY341495 saturation assay and [35S]GTPγS 

functional assay, were analyzed with GraphPad Prism software using a one-site nonlinear 

regression model to plot the graph. The vertical axis of [3H]LY341495 saturation binding assay 

was reported as femtomole of radioligands bound to mg of total proteins. This allowed the 

calculation of equilibrium dissociation constants (Kd) and the maximal number of binding sites 

(Bmax), which were used to calculate the binding potential as described in Chapter 4.3. The 

vertical axis of [35S]GTPγS functional binding assay was reported as relative fold increases from 

the basal activity. Corresponding statistical comparison shown on Figure 4.6.2 was conducted 

using unpaired t-test between mGluR2-WT and mGluR2-C121A.  

For assessing the automated head twitch behavior data, the GraphPad Prism software was 

used to plot the data in bar graphs. Multiple t-tests were used to statistically compare the 

difference in two experimental groups (vehicle versus LY341 or LY404 groups). Statistical 

significance of experiments involving multiple groups with two experimental conditions was 

assessed by two-way ANOVA followed by Sidak’s post hoc test. All data are presented as mean 

± standard error of the mean (SEM). All statistical comparisons were made at a p-value of 0.05 

unless stated otherwise. 
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Figure 3.1 Set up for NI DAQ data acquisition system. Two acquisition systems are 
simultaneously being operated. Copper wires (red) are wrapped around the plastic chamber 
where the mice were enclosed inside during the behavioral test. The chamber was closed with 
mouse cage covers to prevent escape.  
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Chapter 4. Results 
 

4.1. Visualization of receptor expression and its subcellular localization 
 

 

 The expression and subcellular localization of the HA-tagged mGluR2-WT and mGluR2-

C121A were evaluated under the confocal fluorescence microscope. The HEK-293 cells were 

transiently transfected with either mGluR2-WT or mGluR2-C121A, thus the reason for 

untransfected population of cells in the image. In the case of non-permeabilized cells, the 

antibody seems to bind on the surface of the cells that expresses either receptors (Figure 4.1.1). 

When the cells were treated with Triton-X-100, a chemical detergent, to permeabilize the plasma 

membrane to allow antibodies to bind receptors that are subcellularly located inside the cell, the 

co-localization between mCitrine (green) and anti-GFP (red) was more distinctively visible 

(Figure 4.1.2). Also, there was a noticeable number of burst cells that had lost fluorescence from 

mCitrine while retaining signals from the antibody appearing in red (not shown). Comparing the 

cells with intact structural integrity, the mGluR2-C121A seems to show more accumulation 

inside the cells compare to the wild type receptor. In regards to the plasma membrane, a 

qualitatively comparable fluorescence around the cells is suggestive of the receptor presence at 

the cell surface even with the permeabilization.  

 Next, the expression profile of the stable cell lines that expresses either mGluR2-WT or 

mGluR2-C121A were assessed, thus the spinning disc confocal microscopy was employed for 

higher resolution imaging (Figure 4.2). Similar to the results from the immunofluorescence 

microscopy, both receptors seem to traffic to the cell surface. In contrast, the subcellular 

aggregates of the C121A mutant was not detectable in this live cell imaging.  
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Figure 4.1.1 Immunofluorescence microscope images without permeabilization. HEK-293 
cells were transiently transfected with either mGluR2-WT or mGluR2-C121A. The nuclei were 
stained with Hoechst dye (blue). The proteins were visualized by the conjugated mCitrine 
fluorescence protein (green) and the anti-HA antibody labeled with fluorophore (red). The wild 
type mGluR2 (top row) is compared with mGluR2 with C121A mutation (bottom row). 
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Figure 4.1.2 Immunofluorescence microscope images with permeabilization. HEK-293 cells 
were transiently transfected with either mGluR2-WT or mGluR2-C121A. The nuclei were 
stained with Hoechst dye (blue). The proteins were visualized by the conjugated mCitrine 
fluorescence protein (green) and the anti-HA antibody labeled with fluorophore (red). The wild 
type mGluR2 (top row) is compared with mGluR2 with C121A mutation (bottom row). 
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Figure 4.1.3 Transfection optimization. (A) 3ug plasmids with PEI (B) 10ug plasmids with 
PEI (C) 10ug plasmids with PEI (without P/S) (D) 10ug plasmids with PEI (without P/S) (E) 6ug 
plasmid with Lipofectamine 2000 (without P/S) (F) 12ug plasmids with Lipofectamine 2000 
(without P/S)  
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Figure 4.2 Spinning disc confocal microscopy. Live cell images of the HEK-293 cells stably 
expressing either mGluR2-WT or mGluR2-C121A. The apparent difference in fluorescence 
intensity is attributed to the focal point, not the expression level of the receptors. (A) mGluR2-
WT (B) mGluR2-C121A. 

 

 

  



38 
 
 

4.2. mGluR2 monomer-dimer equilibrium assessment by western blot 
 

 

 The western blot was performed on the membrane preparation of HEK-293 cells stably 

expressing either mGluR2-WT or mGluR2-C121A (Figure 4.3). The monomeric HA-tagged 

mGluR2 with mCitrine fluorescent protein after post-translational modification weighs about 140 

kDa. Therefore, theoretical molecular weight of the homodimer would be about 280 kDa. The 

alpha-tubulin was detected as a loading control to ensure that equal amount of proteins were 

loaded.  

As predicted, both monomeric and dimeric forms of the receptor were detected at the 

expected size on the wild type. The mutant mGluR2, on the other hand, had a significantly less 

dimeric form of the receptor compared to that of the wild type. The 140 kDa band intensities 

corresponding to the mGluR2 monomer was comparably similar between the wild type and the 

mutant.  

For quantification of the bands, the intensity of these four bands (140 and 280 kDa of WT 

and C121A) were analyzed with densitometer, and the band intensity was plotted after 

normalized to the loading control (Figure 4.4). Similarly with the initial qualitative assessment, 

the band intensity for the mutant dimer was lower than that of the wild type while the band 

intensities corresponding to the monomer were comparably similar. 
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Figure 4.3 Western blot of the membrane preparation. mGluR2-WT (left) and mGluR2-
C121A (right) show both monomeric and dimeric bands at 140 kDa and 280 kDa, respectively. 
There is significantly less dimeric population of the mutant relative to the wild type according to 
the estimation by the qualitative assessment on the WB. The monomeric band intensity of the 
wild type and mutant is comparable. The alpha-tubulin was detected as a loading control.  
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Figure 4.4 Quantified western blot band intensity by densitometer. Each intensity is 
normalized to the density counts of the alpha-tubulin. (A) the band pertinent to a monomeric 
mGluR2 receptor. The density counts are comparable. (B) the band pertinent to a dimeric 
mGluR2 receptor. The density counts are higher on mGluR2-WT. 
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4.3. Change in binding potential in [3H]LY341495 saturation binding assay 
 

 

 The effect of the C121A mutation on binding characteristics was examined with 

radioligand binding assay. The membrane preparation was incubated with the radioactive 

mGluR2/3 antagonist, [3H]LY341495, and the result was graphed with respect to the fmol of 

radioligand bound to milligram of total proteins (Figure 4.5). For this experiment, the HEK-293 

cells stably expressing either mGluR2-WT or mGluR2-C121A were used as a source of 

receptors. Multiple clones of each cell line were used as replicates to confer statistical power. 

Binding curves produced from these clones were combined to generate Figure 4.5. 

The Bmax refers to the total density of the receptors and is largely dependent on the 

expression level of the receptor in the cell. The Kd is the radioligand equilibrium dissociation 

constant, which is the inverse of the receptor affinity to the ligand. Interestingly, both the Bmax 

and Kd values were comparably similar as opposed to the initial hypothesis.  

 

 
 

Comprehensively, the BP (binding potential) coins these two different terms together to 

estimate a specific binding capacity of the receptor. As a result of the similar Bmax and Kd values 

between the wild type and the mutant, the BP was not significantly affected by the C121A 

mutation. 
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Figure 4.5 Slightly lower binding potential of the mGluR2-C121A. The [3H]LY341495 
saturation binding curves are plotted. Due to the similar Bmax and Kd values, the BP of the wild 
type and mutant is comparably similar. Calculated BP values for mGluR2-WT and mGluR2-
C121A are 15497 and 12071, respectively. The experiments were performed in duplicate.   
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4.4. [35S]GTPγS functional assay indicates affected G-protein coupling 
 

 

 In order to assess the functional aspect of the mGluR2 upon C121A mutation, Gi 

coupling of the receptor was examined by [35S]GTPγS functional binding assay. The radioactive 

GTPγS was incubated with the membrane preparation at different concentration of LY379268, a 

mGluR2/3 agonist, to allow the constitutive activation of the receptor. The vertical axis was 

reported as fold increases from the basal level of activation maintained without any agonist 

(Figure 4.6.1). Multiple clones of HEK-293 cells that either expresses mGluR-WT or mGluR2-

C121A were used in this experiment to confer higher statistical power. 

A combined binding curve from five different clones expressing mGluR2-C121A showed 

diminished Gi coupling compared to that of the wild type (Figure 4.6.1). The EC50 is a value of 

the concentration of a drug at which half of the maximal response occurs. The EC50 value for 

mGluR2-WT is approximately 22 nM. As the mutant binding curve is slightly shifted to the 

right, the EC50 value has resultantly increased for mGluR2-C121A, which occurs around 40 nM. 

Each point of experiment with varying concentrations of LY379268 was quantitatively compared 

between the wild type and the mutant by unpaired t-test (Figure 4.6.2). The most significant 

statistical difference was observed at 100 nM concentration where the EC50 occurs. 
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Figure 4.6.1 Decreased Gi coupling of the mGluR2-C121A. The [35S]GTPγS binding curves 
are plotted. Diminished activation can be seen from mGluR2-C121A compared to the wild type. 
The curve is slightly shifted to the right responsible for the slightly increased EC50 value. The 
experiments were performed in triplicate.   
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Figure 4.6.2 Quantitative analysis of the [35S]GTPγS binding assay. Each point of LY379268 
concentration was compared using unpaired t-test (p < 0.05). Statistical difference was began to 
be seen from 10 nM LY379268. The most significant difference between the wild type and the 
mutant was observed at 100 nM concentration of LY379268 where their EC50 values occur. 
***P < 0.001, ****P < 0.0001. Data are means ± SEM of experiments performed in triplicate.  
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4.5. mGluR2 modulation in 5-HT2A-dependent psychosis mouse model 
 

 

 The effect of functional mGluR2 was evaluated in mice that were evoked DOI-induced 

head twitch behavior. In the first experiment, the mGluR2/3 antagonist, LY341495 (3 mg/kg), 

was administered in mice before they were injected with DOI (0.5 mg/kg) to induce the HTR. 

The analyzed data were plotted to compare the HTR between the saline and LY341 group 

(Figure 4.7.1; Figure 4.7.2). The HTR of the saline group was maintained on the average of 20 

head twitches in each 15 minutes blocks for 90 minutes. The HTR of the LY341 group was 

significantly enhanced after 30 minutes of the drug administration where the most difference can 

be seen in the first 45 minutes of DOI injection. Furthermore, the drug itself did not increase the 

HTR. The effect of the drug was seen only when 5-HT2A-dependent HTR was induced by DOI. 

After 45 minutes since the DOI administration, the HTR started decreasing as the drugs were 

being washed out.  

 The following experiment was performed with the mGluR2/3 agonist, LY404039 (5 

mg/kg). The previous experiments (Figure 4.9.1; Figure 4.9.2) indicated relatively short half-life 

of the drug, thus the drug incubation time was maintained only for 5 minutes before injecting 

mice with DOI (1 mg/kg). The analyzed data were plotted to compare the HTR between the 

saline and LY404 group (Figure 4.8.1; Figure 4.8.2). As the DOI used in this experiment was 

doubled, the average HTR was higher than that of LY341. For the LY404 group, the HTR was 

significantly attenuated in the first 30 minutes. After the active drug period, the head twitch 

counts continued to increase until they reached the comparable level as the saline group. Similar 

to the LY341 experiment, the LY404 itself did not decrease the head twitch counts.   
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Figure 4.7.1 Positive 5-HT2A modulation by mGluR2 deactivation. The initial 15 minutes of 
basal measurement served as habituation period. Either vehicle (saline) or drug (LY341495) was 
injected into mice after the habituation period. After 30 minutes from the time of injection, DOI 
was administered. HTR of animal was recorded throughout the experiment. Statistically 
significant multiple t-tests in all DOI groups (p < 0.05).  
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Figure 4.7.2 Positive 5-HT2A modulation by mGluR2 deactivation. The initial 15 minutes of 
basal measurement served as habituation period. The mice were injected with either saline or 
LY341495. Two-way ANOVA analysis shows statistically significant interactions between 
saline and LY341 groups (F(8,234) = 3.986; P = 0.0002). p < 0.05, significant difference was 
observed between the period of DOI(15m) and DOI(75m) from the ANOVA and Sidak’s post 
hoc tests. ** P < 0.01, ***P < 0.001, ****P < 0.0001. Notice statistical significance is lost after 
75 minutes of DOI administration (n = 14 per each group). 
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Figure 4.8.1 Negative 5-HT2A modulation by mGluR2 activation. The initial 15 minutes of 
basal measurement served as habituation period. Either vehicle (saline) or drug (LY404039) was 
injected into mice after the habituation period. After 5 minutes from the time of injection, DOI 
was administered. HTR of animal was recorded throughout the experiment. Statistically 
significant multiple t-tests in first two DOI groups (p < 0.05). 
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Figure 4.8.2 Negative 5-HT2A modulation by mGluR2 activation. The initial 15 minutes of 
basal measurement served as habituation period. The mice were injected with either saline or 
LY404039. Two-way ANOVA analysis shows statistically significant interactions between 
saline and LY404 groups (F(7,176) = 7.126; P < 0.0001). p < 0.05, significant difference was 
observed between the period of DOI(15m) and DOI(30m) from the ANOVA and Sidak’s post 
hoc tests. ** P < 0.01, ****P < 0.0001. Notice statistical significance is lost after 30 minutes of 
DOI administration (n = 12 per each group). 
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Figure 4.9.1 LY404039 incubation for 30 minutes. The initial experiment with 30 minutes of 
drug incubation. Either vehicle (saline) or drug (LY404039) was injected into mice after the 
habituation period. After 30 minutes from the time of injection, DOI was administered. HTR of 
animal was recorded throughout the experiment. Notice the decrease in head twitch counts while 
the drug is still effective during the first 15 minutes of DOI administration (n = 6 per each 
group). Statistically significant multiple t-tests in only the first DOI groups (p < 0.05). 
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Figure 4.9.2 LY404039 incubation for 30 minutes. The initial 15 minutes of basal 
measurement served as habituation period. The mice were injected with either saline or 
LY404039. Two-way ANOVA analysis shows statistically significant interactions between 
saline and LY404 groups (F(8,90) = 2.152; P = 0.0387). p < 0.05, significant difference was still 
observed at the time period of DOI(15m) from the ANOVA and Sidak’s post hoc tests. Most of 
the statistical power is lost compared to the subsequent experiment with 5 minutes drug injection 
(Figure 4.8.2). *P < 0.05. Notice statistical significance is immediately lost after 15 minutes of 
DOI administration (n = 6 per each group).  
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Chapter 5. General Discussion 
 

 

 In order to elucidate the functional role of C121 in homodimeric mGluR2, a point 

mutation was introduced in the human mGluR2 gene to replace cysteine with alanine at the 

corresponding location. The mGluR2 carries the HA-tag at N-terminal end with the mCitrine 

fluorescent protein conjugated at the C-terminal end of this protein. These two elements were 

engineered into its gene primarily for visualization purposes by serving as epitopes for antibody, 

which were used on immunofluorescence microscopy and western blot protocols. Furthermore, 

the first 54 bps of the gene, which translates the human mGluR2 signal peptide, was replaced 

with the rat mGluR5 signal peptide sequence, because the signal peptide cleavage during 

translocation into endoplasmic reticulum (ER) also removed the HA-tag in the process. 

Therefore, the rat mGluR5 signal peptide sequence was used instead, which would still localize 

the mGluR2 into the ER while it does not interfere with the functionality of the receptor (Bhave, 

2003).  

 Next, sequence verified mGluR2 recombinant genes were transiently transfected into the 

HEK-293 cells. As the previous experiment (not shown) with 48-hour incubation showed 

comparable expression level of 24-hour incubation, all subsequent experiments were carried out 

with a 24-hour incubation period. Also, the transfection protocol was optimized prior to the 

experiments (Figure 4.1.1). Since the transfection with PEI using 10 ug of plasmids without 

antibiotics yielded highest transfection efficiency, such specifics were used throughout the 

experiment. On a side note, the PEI was selected over Lipofectamine 2000 due to the economic 

advantage and Lipofectamine’s sensitivity to plasmid to Lipofectamine ratio, which attributes to 
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the transfection failure when 12 ug plasmids were used without compensating for the vehicle 

reagent (Figure 4.1.1, F).  

 The effect of C121A mutation on the receptor expression and subcellular localization was 

explored by using immunofluorescence microscopy technique. The cells grown on the coverslips 

were also treated with a chemical detergent to perforate the cell membrane. The anti-HA tag 

antibody was used to detect the receptors trafficked to the cell surface where the antibody was 

only accessible as long as the cell did not lose its structural integrity. As it can be seen from the 

immunofluorescence images (Figure 4.1), the fluorescence from the antibody was detected on 

the non-permeabilized cell surface, which suggests that the mutation did not compromise 

receptor’s ability to traffic to the cell membrane. However, the effect of this mutation on 

trafficking should not be disregarded as it can partially affect the process. When the cells were 

permeabilized with the detergent, the signal from antibody accurately co-localized with mCitrine 

fluorescence indicating that there is subcellular population of the intact receptors. For that 

matter, the mutation seems to subcellularly accumulate receptors in the cells. One hypothesis is 

that the lack of covalent stability lowered the efficiency of dimerization in that it increased the 

number of monomeric receptors in the cells, which were unable to traffic to the cell surface. 

However, this idea is only reasonable if there is an evidence that dimerization occurs prior to 

reaching the cell surface. Therefore, the next step would be to produce the receptors that are 

incapable of dimerizing to see if monomers traffic to the plasma membrane of the cell. If these 

monomers fail to exist at the surface level, it will further support the hypothesis that C121A 

affects the homodimerization of mGluR2. 
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 To bolster the qualitative assessment by immunofluorescence microscopy, the western 

blot technique was used to quantitatively analyze mGluR2 monomer-dimer equilibrium (Figure 

4.4). Here, previously generated stable cell lines that constitutively expresses either mGluR2-WT 

or mGluR2-C121A were harvested for the membrane preparation, which was chemically reduced 

before running in the SDS-PAGE. As a side note, the membrane samples were not heat treated 

due to the formation of aggregate falsely contributing to increased dimer population. Even after 

these harsh treatments, it is surprising to see the presence of significant amount of dimer in the 

western blot. It may be due to several other cysteine residues from CRD and LBD that could 

potentially contribute to the stability of dimers (Muto, 2007; Niswender, 2010). Regardless, a 

distinctive difference in the monomer-dimer equilibrium between these two receptors was visible 

(Figure 4.3). The 140 kDa band is approximately the molecular weight of the post-translationally 

modified mGluR2-mCitrine. From the quantitative analysis by densitometry, the monomeric 

band intensity of both the wild type and the C121A mutant was comparably similar indicating 

that expression level of mGluR2 was not affected by possible alteration in trafficking. On the 

contrary, the 280 kDa band, that is pertinent to the dimeric population of mGluR2, was affected 

by the mutation. As expected, the formation of the dimer was significantly reduced by the 

C121A mutation as it was seen from the western blot image. This finding can serve as an 

additional evidence that C121A is involved in the dimerization process and structural stability of 

homodimer. 

Interestingly, there were two bands corresponding to the MW of mCitrine (not shown). 

This can be a possible indication that there is a population of the receptor without the mCitrine, 

in which case explains the smearing of the band as different combinations of heteromer are 
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possible. It is also relevant to note that the intensities of the loading control were comparable. 

This further validates the result produced in the western blot.  

 Subsequently, the effect of C121A mutation on ligand binding property was assessed by 

radioligand saturation binding assay with the [3H]LY341495. This substrate is a specific 

orthosteric antagonist for group II mGluRs, which is known to increase the effect of 5-HT2A-

dependent hallucinogenic drugs in a mouse model (Gewirtz, 2000). The ability of binding 

mGluR2 orthosteric site and its high affinity to the receptor make [3H]LY341495 a great 

candidate for receptor quantification and characterization of binding capacity. As for the receptor 

source, the cell lines that stably express either mGluR2-WT or mGluR2-C121A were generated 

as previous results from the transiently transfected cells were inconsistent due to the varying 

transfection efficiency for each experiment (not shown). Several binding curves generated from 

different cell lines were combined to produce two averaged binding curves for comparison. 

Surprisingly, binding properties and pharmacokinetics of the receptor was not affected by 

C121A mutation. Furthermore, the Bmax and Kd values are comparably similar although 

calculated BP values indicates slightly higher binding potentials of wild type receptor. This 

suggests that the mutation changed binding affinity to a certain degree, however, it is arguable if 

this effect is functionally significant. In spite of these changes, the binding profile does not seem 

to be affected for the most part. 

In order to investigate the functional consequences of C121A mutation, [35S]GTPγS 

binding assay was conducted to assess the heterotrimeric G-protein coupling of mGluR2. A 

specific ratio of radioactive GTPγS and GDP was incubated with the membrane preparation to 

allow the constitutive activation of the receptor. To activate the receptor, a specific orthosteric 
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agonist for group II mGluRs known as LY379268 was used to generate dose-response binding 

curves. 

While the mutation did not have much impact on pharmacokinetics of mGluR2 as it was 

demonstrated from [3H]LY341495 saturation binding assay, it is interesting to see that Gi 

coupling has significantly diminished in mGluR2-C121A. It is possibly due to the need for 

dimerization in taking activatable conformation. This suggests that binding characteristics of 

mGluR2 was not sufficiently influenced by the mutation whereas the dimerization property was 

negatively altered to ultimately reduce G-protein coupling affecting the function of the receptor.     

 Lastly, the mGluR2 modulation of the 5-HT2A-dependent hallucination was revisited in 

the context of the head twitch response. This experiment was done as a partial evidence for the 

overall scheme of the crosstalk between 5-HT2A and mGluR2, which will help elucidate the 

heteromerization mechanism. To achieve that, C57BL/6 mice are injected with either LY341495 

or LY404039 that are mGluR2/3 antagonist and agonist, respectively. These pre-treatments were 

followed by DOI administration to induce the HTR.  

 As expected, the LY341495 visibly increased HTR and its effects lasted up to 75 minutes 

from the DOI injection until the statistical significance of HTR difference was lost. It is 

important to note that the antagonist alone did not alter the head twitch counts. It increased the 

counts only in conjunction with the DOI injection despite the low dosage of DOI. These results 

demonstrate the ability of LY341495 to potentiate the actions of 5-HT2A by inactivating 

mGluR2. Subsequent cross-group experiments resulted in very similar outcomes, which were 

then combined with the initial experimental data to produce the reported graphic plot (Figure 

4.7.1). 
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 Followed by the antagonist experiments, the effect of mGluR2 activation on 5-HT2A-

dependent HTR was investigated using LY404039. Here, the mGluR2 agonist noticeably and 

immediately decreased head twitch counts for 30 minutes, which the effect of the drug seems to 

have expired after that time point. Similar to the antagonist experiments, the drug was not 

responsive to the basal level head twitch counts, and it rather directly modulated the behavioral 

effect of 5-HT2A (Figure 4.8.1). In this experiment, the incubation time for LY404039 was 

limited to only 5 minutes as the previous experiments with longer incubation period resulted in 

less statistical power due to a short half-life of the drug (Figure 4.9.1).  

 With the 5-HT2A-dependent behavior modulation by either mGluR2 agonist or 

antagonist, it was successfully shown here that mGluR2 affects the effect of 5-HT2A. Also, these 

drugs specifically targeted the actions of 5-HT2A without changing the basal HTR. In other 

words, the antagonist potentiated the 5-HT2A and the agonist interfered with the signaling by 5-

HT2A. While these animal studies have shown the interaction between 5-HT2A and mGluR2, 

these experiments alone do not provide a sufficient evidence for either heteromerization or 5-

HT2A-mGluR2 crosstalk as they could work independently. However, other studies have already 

reported biochemical and electrophysiological corroborations for the existence of 5-HT2A-

mGluR2 heteromer, thus these behavioral data support the claims for this relatively novel idea 

(Albizu, 2010; Gonzalez-Maeso, 2008; Levitz, 2016; Xue, 2015).  

 Throughout the thesis, continuous efforts to elucidate the role of C121A mutation on 

mGluR2 were expressed from the perspective of biochemistry and molecular biology. The 

absence of this conserved cysteine residue affected dimerization property leading to more 

subcellularly populated monomeric mGluR2 as it was shown by immunofluorescence 
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microscopy while disturbed dimer formation was observed from the western blot. From the 

[3H]LY341495 saturation binding assay, the mutation did not seemed to affect binding 

characteristics of mGluR2 as both Bmax and Kd values were comparably similar. On the other 

hand, Gi coupling was diminished on mGluR2-C121A as it was shown in the [35S]GTPγS 

binding assay suggesting a potential adverse impact the mutation has on proper functioning of 

mGluR2. Finally, 5-HT2A-dependent increase or decrease in HTR by mGluR2 modulation in a 

mouse model further supported the existence of 5-HT2A-mGluR2 crosstalk. As a future direction, 

it would be interesting to perform follow-up studies on heteromerization of 5-HT2A with this 

particular mutant receptor to compare the receptors interaction and crosstalk efficiency. 

Collectively, the C121 plays a notable part in the formation and maintenance of mGluR2 

homodimer, and therefore calls for further investigation on subcellular localization, dimerization, 

binding affinity, and functionality of mGluR2-C121A as it could shed light on the specifics of 

the mGluR2 signal mechanism which may involve 5-HT2A and perhaps other receptors as well.    
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