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The organic cation transporters (OCTs) play a critical role in the absorption, 

distribution and elimination of many drugs, hormones, herbal medicines, and 

environmental toxins. Given the broad substrate specificity of OCTs, they fall victim to the 

high susceptibility for contributing to harmful drug-drug interactions. Further defining how 

human (h)OCTs mechanistically bind to its broad array of substrates will provide 

significant insight to the understanding and prediction of drug-drug interactions in 

polypharmacy patients and the advancement of future rational drug design for 
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therapeutics targeting OCTs. The goal of the current study was to elucidate the critical 

amino acid residues for transporter-substrate binding interactions on human (h)OCT1 and 

2 utilizing in silico molecular modeling techniques (homology modeling and automated 

docking), as well as in vitro mutagenesis and kinetic transport experiments.  

Three-dimensional homology models were generated for hOCT1 and 2 using 

Piriformospora indica phosphate transporter (PiPT) serving as template. A putative 

binding pocket was identified and used to dock the prototypical substrate MPP+. Docking 

studies revealed five residues for each transporter (hOCT1 and hOCT2) that may be 

critical for substrate-transporter interactions. The in silico data was used to guide 

subsequent in vitro site-directed mutagenesis and kinetic analysis. Four hOCT1 mutants 

(Gln241Lys, Thr245Lys, Tyr361Ala, and Glu447Lys) and three hOCT2 mutants 

(Gln242Lys, Tyr362Phe, and Tyr362Ala) showed complete loss of MPP+ transporter 

activity. Decreased affinity for MPP+ was observed for Phe244Ser and Thr245Ser in 

hOCT1, and Tyr245Ala in hOCT2. All amino acid residues highlighted in the in vitro 

experiments may be potentially critical for substrate-transporter interactions particularly 

Tyr361, Phe244 and Thr245 in hOCT1; and Tyr362 and Tyr245 in hOCT2. Docking of 

known structurally divergent hOCT1 and hOCT2 substrates revealed similar binding 

interactions as that identified for MPP+, albeit with some unique residues, suggesting the 

presence of a large central cavity within both transporters.  

Through the combination of in silico and in vitro experiments, a putative binding 

pocket was defined and several residues important for substrate-transporter interaction 

were identified and verified for hOCT1 and hOCT2. Further defining how OCTs 

biochemically interact with their broad array of substrates will provide significant insight 
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to the understanding and prediction of drug-drug interactions in polypharmacy patients 

and the advancement of future rational drug design for therapeutics targeting OCT1 and 

OCT2.  

 
 



 

1 
 

CHAPTER 1 

 

OVERVIEW OF EXPRESSION AND FUNCTION OF ORGANIC CATION AND ANION 

TRANSPORTERS 

 

Adapted from manuscript published in Journal of Food and Drug Analysis. (2018) 2: 

S45-S60 [1] 

 

1.A SOLUTE CARRIER 22 TRANSPORTER FAMILY 

Almost a quarter century has passed since the cloning of the first member of what 

is now recognized as the Solute Carrier 22 (SLC22) organic cation/anion/zwitterion 

transporter family. Currently, the Human Genome Organization Gene Nomenclature 

Committee recognizes some 50 SLC families (http://www.genenames.org/cgi-

bin/genefamilies/set/752) with the SLC22 family containing 23 proposed members. The 

SLC22 family includes the organic anion transporters (OATs), organic cation transporters 

(OCTs) and organic cation/carnitine transporters (OCTNs) [2]. Eight members are 

extensively understood in terms of transport function, substrate specificity and driving 

forces; OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3), OAT1 (SLC22A6), OAT2 

(SLC22A7), OAT3 (SLC22A8), OAT4 (SLC22A11) and urate transporter 1 (URAT1, 

SLC22A12). While SLC22 family members are expressed in virtually every barrier 

membrane within the human body (including the blood-testis barrier, blood-brain barrier, 

blood-cerebrospinal fluid barrier, and various CNS cell types), expression and function in 

kidney, liver and intestine has received the most attention (Figure 1.1).  
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Structurally, members of the SLC22 family are proposed to have 12 membrane-

spanning alpha helical domains, a large extracellular glycosylated loop between 

transmembrane domains (TMD) 1 and 2, a large intracellular loop between TMDs 6 and 

7, and intracellular N and C-terminal domains [3] (predicted secondary structure of SLC22 

family transporters shown in Figure 1.2). Within the large loop between the first and 

second TMDs, three N-linked glycosylation sites are present which are proposed to serve 

a variety of functions including protein stabilization, intracellular trafficking, and 

extracellular protease protection [4]. Six sulfhydryl groups (conserved cysteine residues) 

are also present which are theorized as mediators for forming ionic salt bridges which 

help stabilize the three dimensional loop structure critical for transporter oligomerization 

[3–5]. SLC22 family transporters are known to be polyspecific, in other words, they have 

the ability to translocate a variety of structurally diverse small molecules and can be 

inhibited by numerous other compounds [6–9]. Transporters within a given subtype 

commonly share a similar group of preferred substrates and inhibitors, as well as their 

mechanism of transport. 

OCT and OAT substrates cover a wide array of chemical structures and classes 

including pharmacological agents (e.g., morphine, tamoxifen, metformin, cimetidine, 

penicillin G, furosemide, adefovir, cidofovir, indomethacin), neurotransmitters and their 

metabolites (e.g., dopamine, serotonin, homovanillic acid), hormones (e.g., 

prostaglandins, estrone sulfate), environmental toxins/pollutants (e.g., paraquat, 1-

methyl-4-phenylpyridinium, ochratoxin A) and active components found in herbal 

preparations (e.g., lithospermic acid, rosmarinic acid, rhein). 
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Experiments with renal membrane vesicles, tissue slices and intact tubules 

demonstrated that the inside negative membrane potential of a cell drives the uptake 

(cellular entry) of organic cations [10]. That is, cellular entry of organic cations mediated 

by SLC22 family members involves facilitated diffusion, which is ‘powered’ by the 

membrane potential difference and chemical gradient (Figure 1.3). The driving force for 

cellular exit mediated by this transport system was found to be a three-step process 

ending in organic cation/proton (H+) exchange [10]. Initially, Na+/K+-ATPase directly 

hydrolyzes ATP and pumps Na+ out of the cell to establish an inwardly directed Na+ 

gradient, which is subsequently used by Na+/H+ exchanger 3 to establish an inwardly 

directed H+ gradient, that ultimately serves to power cellular exit of organic cations via an 

organic cation/H+ antiporter (Figure 1.3). 
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Figure 1.1 Prominent human SLC22 family members expressed in intestine, kidney 
and liver.  
 
Representative depictions of a human enterocyte, hepatocyte and renal proximal tubular 
cell indicating SLC22 transporters expressed in each tissue and their plasma membrane 
localization.  
 
Figure taken from reference [1]. 
  



 
 

5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Predicted secondary structure of SLC22 transporters. 
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Figure 1.3 Model depicting driving forces for SLC22 family members.  

Mechanisms/driving forces utilized for cellular entry and exit on the ‘classical’ organic 
cation and organic anion transport systems, using renal proximal tubule cell as an 
example.  
 
Figure taken from reference [1]. 
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For organic anions, cellular entry mediated by SLC22 family members requires 

energy input to drive their movement against the membrane potential (Figure 2). 

Experiments utilizing the above-mentioned systems demonstrated that uptake was 

coupled to established ion gradients (e.g., Na+, α-ketoglutarate) and not to direct ATP 

hydrolysis [10]. That is, cellular entry of organic anions mediated by SLC22 family 

members is driven by a three step process (similar to exit of organic cations) in which 

Na+/K+-ATPase establishes the inwardly directed Na+ gradient, the Na+/dicarboxylate 

symporter 3 utilizes the movement of Na+ ions down their concentration gradient (into the 

cell) to power entry of α–ketoglutarate into the cell (maintaining an outwardly directed 

gradient) and, finally, an organic anion/dicarboxylate antiporter mediates organic anion 

uptake in exchange for α–ketoglutarate [10]. Evidence supports cellular exit via this 

transport system occurring either by facilitated diffusion (using the membrane potential 

as driving force) or anion exchange (antiport) [10].  

A brief synopsis of the discovery of the well-characterized family members is 

presented below, for additional detail see [11–14]. For the purposes of this dissertation, 

subsequent discussion and experimental focus will be on human OCT1, OCT2, and 

OCT3. 
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1.B MAJOR ORGANIC CATION AND ANION TRANSPORTERS 

OCT1 (SLC22A1). First isolated from rat kidney in 1994, orthologs have been 

identified in mouse and human (as well as other species) [15–17]. In humans, OCT1 

expression has been conclusively reported in enterocytes and hepatocytes [15,18]. Rat 

Oct1 transport function correlated with changes in membrane potential, but not proton 

gradient manipulations, indicating OCT1 is driven by facilitated diffusion [17]. Protein 

expression in rats was subsequently confirmed by immunocytochemistry in renal proximal 

tubules and hepatocytes [19,20]. 

OCT2 (SLC22A2). Isolated in 1996 from rat kidney, orthologs have been identified 

in mouse and human (as well as other species) [15,21,22]. In humans, significant OCT2 

expression has been reported in kidney, as well as in the CNS compartment [15,23–25]. 

Rat Oct2 transport function was ablated by membrane depolarization or a trans-applied 

proton gradient, indicating it is also driven by facilitated diffusion [26]. Renal expression 

and basolateral membrane targeting in intact rat proximal tubules was observed [27,28]. 

OCT3 (SLC22A3). Initially cloned from rat placenta [29], mouse and human 

orthologs (as well as other species) have been identified [30,31]. OCT3 appears to have 

the widest tissue distribution among the SLC22 family, including liver, kidney and intestine 

in humans [24,29,30]. Rat Oct3 function was demonstrated to be sensitive to changes in 

membrane potential indicating that it also is a facilitated diffusion carrier [29].  

OAT1 (SLC22A6). Isolated in 1997 from rat kidney [32,33], orthologs have been 

identified in mouse and human (as well as additional species) [34–36]. OAT1 is expressed 

in kidney of all three species, but not in intestine or liver [25,33–35]. Renal expression 

and basolateral membrane targeting in isolated proximal tubules and human and rat 
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kidney was observed [37–39]. Mechanistic examination of rat Oct1 transport function 

demonstrated it is an organic anion/dicarboxylate exchanger [33]. 

OAT2 (SLC22A7). OAT2 was initially cloned from rat liver [40] and human and 

murine orthologs have been isolated [41,42]. Expression of OAT2 in kidney and liver, but 

not intestine, has been detected in mouse, rat and human [43,58,60,61]. OAT2-mediated 

uptake was characterized as being insensitive to trans-stimulation by dicarboxylates 

leading to the interpretation it likely operates via facilitated diffusion [45]. However, 

mechanistically, this would be inconsistent with its postulated role as an uptake carrier.  

OAT3 (SLC22A8). OAT3 was first isolated from rat [46] with mouse and human 

(as well as other species) orthologs identified [47,48]. OAT3 expression has been 

observed in human kidney, but not liver or intestine [47]. Hepatic expression was reported 

in rats, but not mice [44,48]. Immunohistochemistry yielded signal for OAT3 in rat and 

human renal proximal tubules [37,38]. Exploration of OAT3 transport energetics identified 

Na+-dependent trans-stimulation by glutarate indicating that it is driven by organic 

anion/dicarboxylate exchange [49]. 

OAT4 (SLC22A11). OAT4 was discovered in human kidney and placenta [25,50]. 

No additional orthologs or tissues of expression have been identified. Immunodetection 

in proximal tubules has been observed [51]. However, OAT4’s precise mechanism of 

action remains unclear as it has been reported to be a facilitated-diffusion carrier [50], an 

organic anion/dicarboxylate exchanger [52], and a urate/OH- exchanger [53]. 

URAT1 (SLC22A12). Originally isolated from mouse kidney, with rat and human 

orthologs subsequently identified [54–56]. Expression of URAT1 appears to be kidney 
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specific [55,56]. Characterization of URAT1-mediated transport indicated it functions as 

an organic anion/urate exchanger, however, tested dicarboxylates failed to inhibit [55,56]. 

Three key factors needed to most accurately define each individual SLC22 

transporter’s contribution to the transepithelial flux of substrate molecules in each tissue 

are (i) individual transporter affinities for each compound, i.e., Km, Ki, IC50, (ii) the 

concentration of each compound in the systemic circulation, and (iii) absolute SLC22 

protein expression levels in each tissue, ideally in both normal and disease states. Robust 

affinity data are relatively easy to come by using in vitro expression systems of which a 

great deal already exists (Table 1.1). Limited clinical systemic concentration information 

is available in the literature (Table 1.2), however, interpretation of these data should be 

approached with caution at this time due to the use of non-standardized dosage forms 

and inconsistent amounts of individual compounds administered in each study. Thus, 

more formalized clinical studies that administer actual marketed products are required to 

obtain relevant, product-specific (unbound) Cmax values for each compound. Within this 

framework, organ-specific SLC22 protein expression data will further enhance our ability 

to accurately predict their impact on the absorption/flux of drugs, herbal supplement 

components and endogenous compounds. Toward this end, advances in liquid 

chromatography/tandem mass spectrometry methodology have begun to yield 

preliminary data regarding ‘normal’ human transporter expression levels in native cell 

membranes (summarized for SLC22 transporters in Table 1.3). 

Future studies quantifying transporter expression levels in patients suffering from 

acute and chronic disease appear essential (e.g. renal or hepatic failure), as recent 

studies using rat models of ischemia/reperfusion injury and chronic renal failure have 
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demonstrated dramatic changes in SLC22 transporter expression levels. A common 

theme to all of these studies was a significant (~50-85%) downregulation of Oat1 and 

Oat3, and in one instance Oct2, protein expression in rat kidney as determined by 

immunoblotting [57–62]. When examined, this downregulation of SLC22 expression 

correlated with decreased renal clearance of Oat1 and Oat3 substrates [57,58,61]. For 

example, in the ischemia/reperfusion model, significant accumulation of endogenous 

indoxyl sulfate in the systemic circulation was observed beginning at 6 hours post injury 

and the concentration of administered famotidine (20 mg/kg), a substrate for both OCTs 

and OATs, was significantly elevated compared to control rats [58,59]. Thus, quantifying 

transporter protein levels under conditions of organ dysfunction/insufficiency should 

substantially improve modeling and prediction of compound distribution in such patients. 
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Table 1.1 Example compound interactions associated with SLC22 transporters. 
        Kinetics (µM)   

Perpetrator 
Victim 

substrateb 
Transporterc Cell Typed Km IC50 Ki Reference 

Aloe-emodin 6-CF hOAT1 MDCK  2.29  [63]  
6-CF hOAT3 HEK293  5.37  [63] 

Chrysophanol 6-CF hOAT1 MDCK  >10   [63] 
6-CF hOAT3 HEK293  >10   [63] 

Cisplatin  hOCT2 HEK293 11   [64] 
CMPFa  hOAT1 HEK293 141   [65] 

 hOAT3 HEK293 27   [65] 
Diclofenac Adefovir hOAT1 CHO  4  [66] 
Diflunisal Adefovir hOAT1 CHO  0.85  [66] 
Emodin 6-CF hOAT1 MDCK  0.61  [63] 

6-CF hOAT3 HEK293  1.22  [63] 
Ethambutol MPP+ hOCT1 HEK293  93  [67] 

MPP+ hOCT2 HEK293  254  [67] 
 MPP+ hOCT3 HEK293  4100  [67] 
Etodolac Adefovir hOAT1 CHO  50  [66] 
Flurbiprofen Adefovir hOAT1 CHO  1.5  [66] 
Gallic acid PAH hOAT1 CHO  1.2 1.1 [68] 

ES hOAT3 HEK293  9 8.4 [68] 
Ibuprofen Adefovir hOAT1 CHO  8  [66] 
Indomethacin Adefovir hOAT1 CHO  3  [66] 
Indoxyl sulfate  hOAT1 HEK293 21   [65] 

 hOAT3 HEK293 263   [65] 
Ketoprofen Adefovir hOAT1 CHO  1.3  [66] 
Lithospermic acid PAH hOAT1 CHO   20.8 [69] 

ES hOAT3 HEK293   0.59 [69] 
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PAH mOat1 CHO   14.9 [69] 
ES mOat3 CHO   31.1 [69] 

Nadolol  hOCT2 HEK293 122   [70] 
Naproxen Adefovir hOAT1 CHO  5.8  [66] 
p-cresyl sulfate  hOAT1 HEK293 128     [71] 
  hOAT3 HEK293 >5000     [71] 
Phenacetin Adefovir hOAT1 CHO  200  [66] 
Physcion 6-CF hOAT1 MDCK  > 10   [63] 
 6-CF hOAT3 HEK293  > 10  [63] 
Piroxicam Adefovir hOAT1 CHO  20.5  [66] 
Rhein 6-CF hOAT1 MDCK  0.23  [63] 
 6-CF hOAT3 HEK293  0.08  [63] 
 

PAH hOAT1 CHO 
 0.077 

0.07
2 [72] 

 
ES hOAT3 CHO 

 0.008 
0.00

8 [72] 
 ES hOAT4 CHO  >100  >100  [72] 
 

PAH mOat1 CHO 
  0.19

8 [72] 
 

ES mOat3 CHO 
  0.21

6 [72] 
Rosmarinic acid PAH hOAT1 CHO   0.35 [69] 
 ES hOAT3 HEK293   0.55 [69] 
 PAH mOat1 CHO   5.5 [69] 
 ES mOat3 CHO   4.3 [69] 
Rosuvastatin ES hOAT3 Xenopus oocytes 7.4 25.7  [73] 
Salvianolic acid A PAH hOAT1 CHO   5.6 [69] 
 ES hOAT3 HEK293   0.16 [69] 
 PAH mOat1 CHO   4.9 [69] 
 ES mOat3 CHO   21.3 [69] 
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a Data acquired from reference [164] 
  

Table 5.3 hOCT3 substrate docking summarya. 
Residue MPP+ Epinephrine Metformin 5-HT TPA 
Phe36 x x       

Val40 x x 
 

x 
 

Asn162 
 

x 
 

x 
 

Met248 
 

x x x 
 

Trp358 x 
 

x 
 

x 

Gln366 
 

x 
   

Glu451 x 
    

Ser474 
  

x 
  

Cys477 
 

x 
   

Asp478 x x x x   
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It was previously reported that transport activity was completely abolished by an 

Asp478 mutation in hOCT3 [164]. Through sequence alignment, the homologous site in 

hOCT2 was identified as Asp475. The analogous conservative substitution of hOCT2 

Asp475 was generated and stably expressed in CHO cells for functional screening 

studies. In stark contrast to the hOCT3 results, the conserved mutant in hOCT2 showed 

no difference from wild-type hOCT2 in transport activity of MPP+ (data not shown). This 

finding was supported by our hOCT2 in silico model wherein Asp475 was located outside 

of the binding pocket and not predicted to interact with MPP+. The difference in transporter 

function and affinity observed between hOCT3 Asp478Glu and hOCT2 Asp475Glu 

suggests that the critical residues for MPP+-transporter interaction may vary depending 

on the OCT paralog even for the same substrate and supports the contention that the 

binding pocket in hOCT3 is distinct from that for hOCT1 and hOCT2. Despite a high 

degree of sequence similarity (70%) and identity (51%) between hOCT2 and hOCT3, the 

conserved aspartic acid residue (position 475 in hOCT2 and position 478 in hOCT3) 

previously demonstrated to be essential for MPP+ interaction with hOCT3 appears to 

exert no influence on MPP+ interaction with hOCT2. 

The whole story detailing the most accurate depiction of the nature of the 

physiochemical interactions for hOCT1, 2, and 3 is far from complete. The utilization of 

homology models with the most closely related available transporter templates is currently 

the leading strategy in achieving the overarching goal of the elucidation of the amino acids 

critical for protein-ligand interaction. A comprehensive list of future work is necessary for 

reaching stronger conclusions on the current hOCT interaction studies. This includes 

additional studies to resolve the issue related to evaluating transporter targeting to plasma 
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membrane. Acquiring this information will significantly dictate the validity of the claims 

made for the hOCT non-functional mutants. Given the lack of specificity of commercial 

antibodies tested and the inconclusive results of the GFP fusion construct studies, an 

alternative approach could be the addition of a polypeptide tag with a known commercial 

antibody (e.g. FLAG, c-Myc, 6x His) to the hOCT proteins. The establishment of double 

mutants for hOCT1 and 2 will be helpful in providing additional valuable kinetic information 

for functioning single mutants showing attenuated affinity. This analysis will in turn 

determine any potential changes in double-mutant affinity for MPP+ which could offer 

further insight to the significance for specific residues involved with transporter-substrate 

interaction. Finally, the additional amino acid residues that were identified in the analysis 

of docking known structurally disparate hOCT substrates will need to be further 

investigated. This can be conducted through the generation of stably transfect mutants 

based on the additional residues identified and subsequent kinetic transport analysis of 

the structurally disparate substrates.  

The data collected from the current study in addition to the proposed future 

experiments will bring forward new information regarding the substrate binding site of 

hOCT1-3 of which will provide the necessary clues for their underlying mechanism of 

transport. The identified amino acid residues that contribute to substrate binding may offer 

useful insight to the transporter-substrate recognition by other members of the SLC22 

family owing to their similarities in sequence homology. In the end, unveiling the critical 

residues for hOCT1-3 will steer the future of drug design by improving safety/efficacy as 

well as strengthening our predictions that eventually could lead to reductions in the rates 

of harmful drug-drug interactions.  
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