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The organic cation transporters (OCTs) play a critical role in the absorption, 

distribution and elimination of many drugs, hormones, herbal medicines, and 

environmental toxins. Given the broad substrate specificity of OCTs, they fall victim to the 

high susceptibility for contributing to harmful drug-drug interactions. Further defining how 

human (h)OCTs mechanistically bind to its broad array of substrates will provide 

significant insight to the understanding and prediction of drug-drug interactions in 

polypharmacy patients and the advancement of future rational drug design for 
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therapeutics targeting OCTs. The goal of the current study was to elucidate the critical 

amino acid residues for transporter-substrate binding interactions on human (h)OCT1 and 

2 utilizing in silico molecular modeling techniques (homology modeling and automated 

docking), as well as in vitro mutagenesis and kinetic transport experiments.  

Three-dimensional homology models were generated for hOCT1 and 2 using 

Piriformospora indica phosphate transporter (PiPT) serving as template. A putative 

binding pocket was identified and used to dock the prototypical substrate MPP+. Docking 

studies revealed five residues for each transporter (hOCT1 and hOCT2) that may be 

critical for substrate-transporter interactions. The in silico data was used to guide 

subsequent in vitro site-directed mutagenesis and kinetic analysis. Four hOCT1 mutants 

(Gln241Lys, Thr245Lys, Tyr361Ala, and Glu447Lys) and three hOCT2 mutants 

(Gln242Lys, Tyr362Phe, and Tyr362Ala) showed complete loss of MPP+ transporter 

activity. Decreased affinity for MPP+ was observed for Phe244Ser and Thr245Ser in 

hOCT1, and Tyr245Ala in hOCT2. All amino acid residues highlighted in the in vitro 

experiments may be potentially critical for substrate-transporter interactions particularly 

Tyr361, Phe244 and Thr245 in hOCT1; and Tyr362 and Tyr245 in hOCT2. Docking of 

known structurally divergent hOCT1 and hOCT2 substrates revealed similar binding 

interactions as that identified for MPP+, albeit with some unique residues, suggesting the 

presence of a large central cavity within both transporters.  

Through the combination of in silico and in vitro experiments, a putative binding 

pocket was defined and several residues important for substrate-transporter interaction 

were identified and verified for hOCT1 and hOCT2. Further defining how OCTs 

biochemically interact with their broad array of substrates will provide significant insight 
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to the understanding and prediction of drug-drug interactions in polypharmacy patients 

and the advancement of future rational drug design for therapeutics targeting OCT1 and 

OCT2.  
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CHAPTER 1 

 

OVERVIEW OF EXPRESSION AND FUNCTION OF ORGANIC CATION AND ANION 

TRANSPORTERS 

 

Adapted from manuscript published in Journal of Food and Drug Analysis. (2018) 2: 

S45-S60 [1] 

 

1.A SOLUTE CARRIER 22 TRANSPORTER FAMILY 

Almost a quarter century has passed since the cloning of the first member of what 

is now recognized as the Solute Carrier 22 (SLC22) organic cation/anion/zwitterion 

transporter family. Currently, the Human Genome Organization Gene Nomenclature 

Committee recognizes some 50 SLC families (http://www.genenames.org/cgi-

bin/genefamilies/set/752) with the SLC22 family containing 23 proposed members. The 

SLC22 family includes the organic anion transporters (OATs), organic cation transporters 

(OCTs) and organic cation/carnitine transporters (OCTNs) [2]. Eight members are 

extensively understood in terms of transport function, substrate specificity and driving 

forces; OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3), OAT1 (SLC22A6), OAT2 

(SLC22A7), OAT3 (SLC22A8), OAT4 (SLC22A11) and urate transporter 1 (URAT1, 

SLC22A12). While SLC22 family members are expressed in virtually every barrier 

membrane within the human body (including the blood-testis barrier, blood-brain barrier, 

blood-cerebrospinal fluid barrier, and various CNS cell types), expression and function in 

kidney, liver and intestine has received the most attention (Figure 1.1).  
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Structurally, members of the SLC22 family are proposed to have 12 membrane-

spanning alpha helical domains, a large extracellular glycosylated loop between 

transmembrane domains (TMD) 1 and 2, a large intracellular loop between TMDs 6 and 

7, and intracellular N and C-terminal domains [3] (predicted secondary structure of SLC22 

family transporters shown in Figure 1.2). Within the large loop between the first and 

second TMDs, three N-linked glycosylation sites are present which are proposed to serve 

a variety of functions including protein stabilization, intracellular trafficking, and 

extracellular protease protection [4]. Six sulfhydryl groups (conserved cysteine residues) 

are also present which are theorized as mediators for forming ionic salt bridges which 

help stabilize the three dimensional loop structure critical for transporter oligomerization 

[3–5]. SLC22 family transporters are known to be polyspecific, in other words, they have 

the ability to translocate a variety of structurally diverse small molecules and can be 

inhibited by numerous other compounds [6–9]. Transporters within a given subtype 

commonly share a similar group of preferred substrates and inhibitors, as well as their 

mechanism of transport. 

OCT and OAT substrates cover a wide array of chemical structures and classes 

including pharmacological agents (e.g., morphine, tamoxifen, metformin, cimetidine, 

penicillin G, furosemide, adefovir, cidofovir, indomethacin), neurotransmitters and their 

metabolites (e.g., dopamine, serotonin, homovanillic acid), hormones (e.g., 

prostaglandins, estrone sulfate), environmental toxins/pollutants (e.g., paraquat, 1-

methyl-4-phenylpyridinium, ochratoxin A) and active components found in herbal 

preparations (e.g., lithospermic acid, rosmarinic acid, rhein). 
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Experiments with renal membrane vesicles, tissue slices and intact tubules 

demonstrated that the inside negative membrane potential of a cell drives the uptake 

(cellular entry) of organic cations [10]. That is, cellular entry of organic cations mediated 

by SLC22 family members involves facilitated diffusion, which is ‘powered’ by the 

membrane potential difference and chemical gradient (Figure 1.3). The driving force for 

cellular exit mediated by this transport system was found to be a three-step process 

ending in organic cation/proton (H+) exchange [10]. Initially, Na+/K+-ATPase directly 

hydrolyzes ATP and pumps Na+ out of the cell to establish an inwardly directed Na+ 

gradient, which is subsequently used by Na+/H+ exchanger 3 to establish an inwardly 

directed H+ gradient, that ultimately serves to power cellular exit of organic cations via an 

organic cation/H+ antiporter (Figure 1.3). 
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Figure 1.1 Prominent human SLC22 family members expressed in intestine, kidney 
and liver.  
 
Representative depictions of a human enterocyte, hepatocyte and renal proximal tubular 
cell indicating SLC22 transporters expressed in each tissue and their plasma membrane 
localization.  
 
Figure taken from reference [1]. 
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Figure 1.2 Predicted secondary structure of SLC22 transporters. 
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Figure 1.3 Model depicting driving forces for SLC22 family members.  

Mechanisms/driving forces utilized for cellular entry and exit on the ‘classical’ organic 
cation and organic anion transport systems, using renal proximal tubule cell as an 
example.  
 
Figure taken from reference [1]. 
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For organic anions, cellular entry mediated by SLC22 family members requires 

energy input to drive their movement against the membrane potential (Figure 2). 

Experiments utilizing the above-mentioned systems demonstrated that uptake was 

coupled to established ion gradients (e.g., Na+, α-ketoglutarate) and not to direct ATP 

hydrolysis [10]. That is, cellular entry of organic anions mediated by SLC22 family 

members is driven by a three step process (similar to exit of organic cations) in which 

Na+/K+-ATPase establishes the inwardly directed Na+ gradient, the Na+/dicarboxylate 

symporter 3 utilizes the movement of Na+ ions down their concentration gradient (into the 

cell) to power entry of α–ketoglutarate into the cell (maintaining an outwardly directed 

gradient) and, finally, an organic anion/dicarboxylate antiporter mediates organic anion 

uptake in exchange for α–ketoglutarate [10]. Evidence supports cellular exit via this 

transport system occurring either by facilitated diffusion (using the membrane potential 

as driving force) or anion exchange (antiport) [10].  

A brief synopsis of the discovery of the well-characterized family members is 

presented below, for additional detail see [11–14]. For the purposes of this dissertation, 

subsequent discussion and experimental focus will be on human OCT1, OCT2, and 

OCT3. 
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1.B MAJOR ORGANIC CATION AND ANION TRANSPORTERS 

OCT1 (SLC22A1). First isolated from rat kidney in 1994, orthologs have been 

identified in mouse and human (as well as other species) [15–17]. In humans, OCT1 

expression has been conclusively reported in enterocytes and hepatocytes [15,18]. Rat 

Oct1 transport function correlated with changes in membrane potential, but not proton 

gradient manipulations, indicating OCT1 is driven by facilitated diffusion [17]. Protein 

expression in rats was subsequently confirmed by immunocytochemistry in renal proximal 

tubules and hepatocytes [19,20]. 

OCT2 (SLC22A2). Isolated in 1996 from rat kidney, orthologs have been identified 

in mouse and human (as well as other species) [15,21,22]. In humans, significant OCT2 

expression has been reported in kidney, as well as in the CNS compartment [15,23–25]. 

Rat Oct2 transport function was ablated by membrane depolarization or a trans-applied 

proton gradient, indicating it is also driven by facilitated diffusion [26]. Renal expression 

and basolateral membrane targeting in intact rat proximal tubules was observed [27,28]. 

OCT3 (SLC22A3). Initially cloned from rat placenta [29], mouse and human 

orthologs (as well as other species) have been identified [30,31]. OCT3 appears to have 

the widest tissue distribution among the SLC22 family, including liver, kidney and intestine 

in humans [24,29,30]. Rat Oct3 function was demonstrated to be sensitive to changes in 

membrane potential indicating that it also is a facilitated diffusion carrier [29].  

OAT1 (SLC22A6). Isolated in 1997 from rat kidney [32,33], orthologs have been 

identified in mouse and human (as well as additional species) [34–36]. OAT1 is expressed 

in kidney of all three species, but not in intestine or liver [25,33–35]. Renal expression 

and basolateral membrane targeting in isolated proximal tubules and human and rat 
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kidney was observed [37–39]. Mechanistic examination of rat Oct1 transport function 

demonstrated it is an organic anion/dicarboxylate exchanger [33]. 

OAT2 (SLC22A7). OAT2 was initially cloned from rat liver [40] and human and 

murine orthologs have been isolated [41,42]. Expression of OAT2 in kidney and liver, but 

not intestine, has been detected in mouse, rat and human [43,58,60,61]. OAT2-mediated 

uptake was characterized as being insensitive to trans-stimulation by dicarboxylates 

leading to the interpretation it likely operates via facilitated diffusion [45]. However, 

mechanistically, this would be inconsistent with its postulated role as an uptake carrier.  

OAT3 (SLC22A8). OAT3 was first isolated from rat [46] with mouse and human 

(as well as other species) orthologs identified [47,48]. OAT3 expression has been 

observed in human kidney, but not liver or intestine [47]. Hepatic expression was reported 

in rats, but not mice [44,48]. Immunohistochemistry yielded signal for OAT3 in rat and 

human renal proximal tubules [37,38]. Exploration of OAT3 transport energetics identified 

Na+-dependent trans-stimulation by glutarate indicating that it is driven by organic 

anion/dicarboxylate exchange [49]. 

OAT4 (SLC22A11). OAT4 was discovered in human kidney and placenta [25,50]. 

No additional orthologs or tissues of expression have been identified. Immunodetection 

in proximal tubules has been observed [51]. However, OAT4’s precise mechanism of 

action remains unclear as it has been reported to be a facilitated-diffusion carrier [50], an 

organic anion/dicarboxylate exchanger [52], and a urate/OH- exchanger [53]. 

URAT1 (SLC22A12). Originally isolated from mouse kidney, with rat and human 

orthologs subsequently identified [54–56]. Expression of URAT1 appears to be kidney 



 
 

10 
 

specific [55,56]. Characterization of URAT1-mediated transport indicated it functions as 

an organic anion/urate exchanger, however, tested dicarboxylates failed to inhibit [55,56]. 

Three key factors needed to most accurately define each individual SLC22 

transporter’s contribution to the transepithelial flux of substrate molecules in each tissue 

are (i) individual transporter affinities for each compound, i.e., Km, Ki, IC50, (ii) the 

concentration of each compound in the systemic circulation, and (iii) absolute SLC22 

protein expression levels in each tissue, ideally in both normal and disease states. Robust 

affinity data are relatively easy to come by using in vitro expression systems of which a 

great deal already exists (Table 1.1). Limited clinical systemic concentration information 

is available in the literature (Table 1.2), however, interpretation of these data should be 

approached with caution at this time due to the use of non-standardized dosage forms 

and inconsistent amounts of individual compounds administered in each study. Thus, 

more formalized clinical studies that administer actual marketed products are required to 

obtain relevant, product-specific (unbound) Cmax values for each compound. Within this 

framework, organ-specific SLC22 protein expression data will further enhance our ability 

to accurately predict their impact on the absorption/flux of drugs, herbal supplement 

components and endogenous compounds. Toward this end, advances in liquid 

chromatography/tandem mass spectrometry methodology have begun to yield 

preliminary data regarding ‘normal’ human transporter expression levels in native cell 

membranes (summarized for SLC22 transporters in Table 1.3). 

Future studies quantifying transporter expression levels in patients suffering from 

acute and chronic disease appear essential (e.g. renal or hepatic failure), as recent 

studies using rat models of ischemia/reperfusion injury and chronic renal failure have 
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demonstrated dramatic changes in SLC22 transporter expression levels. A common 

theme to all of these studies was a significant (~50-85%) downregulation of Oat1 and 

Oat3, and in one instance Oct2, protein expression in rat kidney as determined by 

immunoblotting [57–62]. When examined, this downregulation of SLC22 expression 

correlated with decreased renal clearance of Oat1 and Oat3 substrates [57,58,61]. For 

example, in the ischemia/reperfusion model, significant accumulation of endogenous 

indoxyl sulfate in the systemic circulation was observed beginning at 6 hours post injury 

and the concentration of administered famotidine (20 mg/kg), a substrate for both OCTs 

and OATs, was significantly elevated compared to control rats [58,59]. Thus, quantifying 

transporter protein levels under conditions of organ dysfunction/insufficiency should 

substantially improve modeling and prediction of compound distribution in such patients. 
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Table 1.1 Example compound interactions associated with SLC22 transporters. 
        Kinetics (µM)   

Perpetrator 
Victim 

substrateb 
Transporterc Cell Typed Km IC50 Ki Reference 

Aloe-emodin 6-CF hOAT1 MDCK  2.29  [63]  
6-CF hOAT3 HEK293  5.37  [63] 

Chrysophanol 6-CF hOAT1 MDCK  >10   [63] 
6-CF hOAT3 HEK293  >10   [63] 

Cisplatin  hOCT2 HEK293 11   [64] 
CMPFa  hOAT1 HEK293 141   [65] 

 hOAT3 HEK293 27   [65] 
Diclofenac Adefovir hOAT1 CHO  4  [66] 
Diflunisal Adefovir hOAT1 CHO  0.85  [66] 
Emodin 6-CF hOAT1 MDCK  0.61  [63] 

6-CF hOAT3 HEK293  1.22  [63] 
Ethambutol MPP+ hOCT1 HEK293  93  [67] 

MPP+ hOCT2 HEK293  254  [67] 
 MPP+ hOCT3 HEK293  4100  [67] 
Etodolac Adefovir hOAT1 CHO  50  [66] 
Flurbiprofen Adefovir hOAT1 CHO  1.5  [66] 
Gallic acid PAH hOAT1 CHO  1.2 1.1 [68] 

ES hOAT3 HEK293  9 8.4 [68] 
Ibuprofen Adefovir hOAT1 CHO  8  [66] 
Indomethacin Adefovir hOAT1 CHO  3  [66] 
Indoxyl sulfate  hOAT1 HEK293 21   [65] 

 hOAT3 HEK293 263   [65] 
Ketoprofen Adefovir hOAT1 CHO  1.3  [66] 
Lithospermic acid PAH hOAT1 CHO   20.8 [69] 

ES hOAT3 HEK293   0.59 [69] 
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PAH mOat1 CHO   14.9 [69] 
ES mOat3 CHO   31.1 [69] 

Nadolol  hOCT2 HEK293 122   [70] 
Naproxen Adefovir hOAT1 CHO  5.8  [66] 
p-cresyl sulfate  hOAT1 HEK293 128     [71] 
  hOAT3 HEK293 >5000     [71] 
Phenacetin Adefovir hOAT1 CHO  200  [66] 
Physcion 6-CF hOAT1 MDCK  > 10   [63] 
 6-CF hOAT3 HEK293  > 10  [63] 
Piroxicam Adefovir hOAT1 CHO  20.5  [66] 
Rhein 6-CF hOAT1 MDCK  0.23  [63] 
 6-CF hOAT3 HEK293  0.08  [63] 
 

PAH hOAT1 CHO 
 0.077 

0.07
2 [72] 

 
ES hOAT3 CHO 

 0.008 
0.00

8 [72] 
 ES hOAT4 CHO  >100  >100  [72] 
 

PAH mOat1 CHO 
  0.19

8 [72] 
 

ES mOat3 CHO 
  0.21

6 [72] 
Rosmarinic acid PAH hOAT1 CHO   0.35 [69] 
 ES hOAT3 HEK293   0.55 [69] 
 PAH mOat1 CHO   5.5 [69] 
 ES mOat3 CHO   4.3 [69] 
Rosuvastatin ES hOAT3 Xenopus oocytes 7.4 25.7  [73] 
Salvianolic acid A PAH hOAT1 CHO   5.6 [69] 
 ES hOAT3 HEK293   0.16 [69] 
 PAH mOat1 CHO   4.9 [69] 
 ES mOat3 CHO   21.3 [69] 
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Salvianolic acid B PAH hOAT1 CHO   22.2 [69] 
 ES hOAT3 HEK293   19.8 [69] 
 PAH mOat1 CHO   236 [69] 
 ES mOat3 CHO   845 [69] 
Tanshinol PAH hOAT1 CHO   40.4 [69] 
 ES hOAT3 HEK293   8.6 [69] 
 PAH mOat1 CHO   136 [69] 
 ES mOat3 CHO   1940 [69] 
Ursolic Acid ES hOAT3 HEK293   19   [74] 

a CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid   
b 6-CF, 6-Carboxyfluorescein; PAH, p-aminohippurate; ES, estrone sulfate   
c h, human; m, murine    
d MDCK, Madin-Darby canine kidney; HEK293, human embryonic kidney; CHO, Chinese hamster ovary 
 

Table taken from reference [1] 
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Table 1.2 Clinical concentrations of example compounds. 

Compound 
Mean 

Cmax (µM)a 
Route of 

Administration 
Dose Species Reference 

Aloe-emodin 0.29 PO 1.25 mg/kgb Rat [75] 
Cisplatin 0.02-0.03 IV 80 mg/m2 Human [76] 
Chrysophanol 4.7 PO 1.25 mg/kgb Rat [75] 
CMPFc 24.8 - - Human [77] 
Diclofenac 6.6 PO 100 mg Human [78] 
Diflunisal 247.8 PO 500 mg Human [79] 
Emodin 0.14 PO 1.25 mg/kgb Rat [75] 
Ethambutol 22, 4.8-26.9 PO 25 mg/kg, 400 mg  Human [80], [81] 
Etodolac 26.1-57.1 PO 50 mg/kg  Rat [82] 
Flurbiprofen 172.3 PO 100 mg Human [83] 
Gallic acid 0.55 PO 400 mg/kg (40 µg)d  Human [84] 
Ibuprofen 208.4-282.1 PO 800 mg Human [85] 
Indomethicin 3.9-6.7 PO 40 mg, 50 mg Human [86] 
Indoxyl Sulfate 2.5 - - Human [87] 
Ketoprofen 13.8-17.8 PO 100 mg Human [88] 
Lithospermic Acid 55.7 IV 10 mL/kg (0.3 mg/kg)e Rat [89] 
Nadolol 0.17 PO 30 mg Human [90] 
Naproxen 187.1 PO 220 mg Human [91] 
p-cresyl sulfate 425.1 - - Human [87] 
Phenacetin 12.5 PO 900 mg Human [92] 
Physcion 1.7 PO 1.25 mg/kgb Rat [75] 
Piroxicam 1.3 PO 20 mg Human [93] 
Rhein 0.54, 2.6 PO 1.25 mg/kgc, 6 g/kgf Rat [75], [94] 
Rosmarinic acid 317.2 PO 20 g/kg (0.391 mg/g)g Rat [95] 
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 516.2 IV 10 mL/kg (1.86 mg/kg)e Rat [89] 
Rosuvastatin 0.012-0.076 PO 20 mg Human [96] 
Salvianolic acid A 0.28 PO 15 g/kg (37.9 mg/kg)h  Rat [97] 
 66.7 IV 10 mL/kg (0.33 mg/kg)e Rat [89] 
Salvianolic acid B 0.14 PO 15 g/kg (15 mg/kg)h Rat [97] 
 237.9 IV 10 mL/kg (1.714 mg/kg)e Rat [89] 
Tanshinol 781.7 PO 20 g/kg (0.743 mg/g)g Rat [95] 
Ursolic acid 2 PO 0.1 g/kgi Rat [98] 
a Converted to µM from original study 
b Semen Cassiae extract  
c CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid 
d Mang-Guo-Zhi-Ke tablet, value in parenthesis represents amount of compound quantified in dosage form 
e Danshen injection, value in parenthesis represents amount of compound quantified in dosage form 
f Rhubarb extract 
g Denshen-Chuanxiong-Honghua extract; value in parenthesis represents amount of compound quantified in dosage form 
h Jitai tablet; value in parenthesis represents amount of compound quantified in dosage form 
i Folium Eriobotryae effective fraction 
 
Table taken from reference [1] 
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Table 1.3 Absolute native tissue protein expression levels for human SLC22 transporters. 

Transporter Kidneya Livera Intestinea Reference 

OAT1 5.33±1.88 NEb NEb [25] 

OAT2 0.93±0.32 1.91±0.58 NEb [25], [99] 

OAT3 3.50±1.55 NEb NEb [25] 

OAT4 0.52±0.23 NEb NEb [25] 

OCT1 NEb 7.35 ± 3.26, 4.45 ± 1.89 0.50c [99], [100], [101] 

OCT2 7.42±2.84 NEb NEb [25] 
 

OCT3 NRd NRd 0.10c [101] 

a Data are presented as pmol/mg protein ± SD 
b NE = not expressed in this tissue in humans 
c Values estimated from Figure 4 in reference [101], expressed in ileum only 
d NR = not reported  
 
Table taken from reference [1] 
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Human OCT1, OCT2, and OCT3 share overlapping substrate specificity, which 

may be due to a number of factors including having significant sequence similarity (70% 

identical) and similar two-dimensional structure (12 membrane spanning alpha helices) 

[6]. Strong evidence has shown OCTs bind to hundreds of clinically important 

compounds, and as a result of this polyspecificity, their function impacts the 

pharmacokinetic and dynamic effects associated with commonly prescribed medications 

(e.g. cimetidine, metformin), as well as complications arising from drug-drug interactions 

(DDI) [102]. Clinical studies have shown a 1.2-1.7 fold increase in metformin AUC and an 

overall decrease in its renal elimination when co-administered with the OCT2 inhibitors 

cimetidine, trimethoprim, or lansoprazole [103–105]. Similarly, in vivo studies in rats found 

altered pharmacokinetics and decreased elimination of cationic medications were 

associated with downregulation of OCT2 [106,107]. Additional clinical studies have shown 

that OCT1 genetic polymorphisms can also contribute to variations in patient response to 

metformin, particularly its efficacy and distribution [108,109]. Finally, studies utilizing 

OCT3 knockout mice found decreased bioavailability and decreased elimination of orally 

administered metformin [110,111]. Thus, all three OCT paralogs may differentially impact 

the overall pharmacokinetics and efficacy of metformin according to their tissue 

expression and polarity of membrane targeting (Figure 1.1).  

 By virtue of where they are expressed, OCTs have clearly exhibited a strong 

presence in potentiating pharmacokinetic properties of numerous drugs and DDIs. Major 

regulatory agencies, including the U.S. Food and Drug Administration (FDA) and 

European Medicines Agency (EMA), through their guidances strongly suggest the 

importance of in vitro testing of new drug candidates to determine their renal elimination 
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and drug-drug interaction potential, specifically emphasizing their interaction likelihood 

with the SLC22 members OCT2, OAT1, and OAT3 [112,113]. From recent discussions 

within the International Transporter Consortium, OCT1, is an emerging clinically important 

transporter that soon could be included in the guidances due to an increasing number of 

studies showing strong associations between OCT1 polymorphisms and pharmacokinetic 

and pharmacodynamic drug effects [114–119]. As such, conducting additional 

pharmacogenomic studies may be strongly advised for new drugs that are substrates of 

OCT1, particularly those with narrow therapeutic windows. It would not be surprising to 

soon see OCT3 added to this list as well. 

Despite this broad evidence supporting the significance of the role of OCT1, OCT2, 

and OCT3 in the translocation of scores of endogenous and exogenous compounds, little 

to nothing is known regarding the biochemical nature of the interactions between known 

substrates/inhibitors and the transporters. In order to establish a strong predictive model 

for DDIs and optimize drug delivery while minimizing harmful side effects for novel drug 

candidates in the pharmaceutical pipeline, identifying the three-dimensional structure, 

substrate-binding pocket, as well as the critical amino acid residues involved in OCT-

substrate interactions is paramount [120]. The most direct method to achieve this overall 

objective is through the utilization of x-ray crystallography. However, to date, only a limited 

number of membrane bound proteins have been successfully crystallized, none of which 

includes any members of the SLC22 family [121]. Therefore, it is of utmost importance to 

resort to alternative approaches. To that end, the construction and application of 

homology models that are based on the experimentally determined high resolution 

structure of related proteins has served as a promising option for characterizing 
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transporter structural properties, substrate-transporter interactions, and mechanisms of 

substrate translocation [121–123].  

1.C CURRENT SCOPE OF MOLECULAR MODELING 

Initial attempts to understand the nature of transporter-substrate interactions for 

organic cation transporters were initially performed on rat Oct1 and Oct2 [124,125]. 

Preliminary knowledge of secondary structure derived from hydropathy sequence 

analysis was used in conjunction with identified evolutionarily conserved amino acid 

regions and amino acid physicochemical properties, in order to identify potential critical 

regions for ligand binding [124,125]. Since OCT ligands carry a positive charge, acidic 

amino acids in these regions were targeted. For example, the aspartic acid at position 

475, located in TMD 11, which is conserved in OCTs, but not OATs, was subjected to 

mutagenesis resulting in changes in rat (r)Oct1 transport activity and suggesting its 

potential significance as an important binding site [124]. Follow up studies were 

performed to determine the amino acids responsible for the higher affinity of the steroid 

hormone, corticosterone, for rOct2 compared with rOct1 [126,127]. Through a series of 

mutations involving the exchange of amino acids between the two paralogs and the 

measurement of different transporter properties, amino acids that may be critical for 

substrate-transporter interactions were identified (Table 1.5) [125]. Thus, what specifically 

distinguishes the OCT paralogs in terms of substrate affinity and/or specificity may be 

related to amino acid differences in these critical regions.  

Despite some apparent success utilizing 2-D models as the basis for establishing 

potential critical binding residues, a significant limitation was the inability to determine the 

binding pockets for substrate-transporter interaction. This limitation can be addressed 
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through the use of more advanced technologies such as X-ray crystallography and NMR. 

However, these methods also have their own limitations such as requiring pure sample 

preparations in concentrations significantly higher than how much they normally appear 

in their natural system. For using NMR to determine protein structure, there also exists 

the hurdle of size limitation, with current technology only being able to process protein 

masses up to 15 kD [128]. Nevertheless, obtaining such structural knowledge can be 

extremely useful for designing effective and safe therapeutic medications [122], 

understanding disease caused by protein polymorphisms [129], as well as optimizing the 

process of elucidating the biochemical interactions of proteins [128].  

Comparative or homology modeling has gained traction in bridging the gap 

between sequence and structural space, as it allows investigators to obtain a reasonable 

prediction of the tertiary structure for proteins that are difficult to crystallize or for which 

structure determination via experimental methods like NMR is not feasible. Homology 

modeling relies on the basis that two proteins that are evolutionarily similar in sequence 

also exhibit analogous structures [130]. The protein with the known structure serves as 

the template for the construction of a model for the protein for which the tertiary structure 

is not known. According to Protein Data Bank [131], the repository of experimental 

structures, the total number of experimental protein structures available to date has 

reached 83,975, however, the rate at which structures are solved experimentally is still 

outpaced by the rate at which new proteins are discovered [132]. This fact adds enhanced 

emphasis to the importance of utilizing homology modeling as a technique that can assist 

in the drug discovery process by aiding the study of the biochemical basis of ligand-

protein interactions, providing novel insight to processes impacting substrate specificity, 
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as well as elucidating structure-function relationships [122]. The degree of structural 

insight provided by homology modeling relies heavily on the degree of sequence similarity 

between the template and target protein [133]. In general, models derived by sequence 

identities > 30% are deemed homologous and presumed to share a common 3-D 

structure based on their evolutionary divergence [134]. Models based on sequence 

identities of 25-50% are considered sufficient for informing site-directed mutagenesis 

experiments, and those >50% are considered reliable for structure-based drug design, 

while sequence identities below 15% are considered suspect for structural modeling 

[134]. The basic steps for homology modeling includes the following: template selection, 

template-target alignment, model building, and model evaluation [135]. This process has 

more recently been coupled with molecular docking in order to optimize models for 

protein-ligand interaction studies as well as structure-based drug design [136].  

Template selection begins through the utilization of a sequence search program 

(e.g. BLAST). Interestingly, although sharing >40% sequence similarity is considered a 

reasonable template for most target proteins, many SLC family members share the same 

secondary structure (same number of folds) in spite of their low overall sequence 

similarity (~10%) [137]. Next, the template and target protein sequences are aligned 

based on their evolutionarily conserved regions by the commonly used program ClustalX 

[138]. Sources of dissimilarity may be due to the presence of large exposed loops 

between transmembrane domains. For optimal homology modeling, especially for 

challenging targets like SLC22s, it is thus important to visually inspect the results, remove 

such loop sequences, and perform any necessary manual adjustments to minimize the 

gaps in the sequence [135]. Once the template-target alignment is generated, 3-D model 
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building is initiated based on the template protein structure. The frequently used program, 

MODELLER (University of California at San Francisco, San Francisco, CA) [139], 

depends on satisfaction of spatial and stereochemical constraints derived from the 

template structure guided by the template-target alignment [123]. The top ranked models 

are then subjected to careful visual inspection to refine errors caused by target-template 

sequence divergence of the top-ranked models and validated using a variety of different 

methods. Such validation methods include the evaluation of stereochemical properties 

(e.g. PROCHECK) [140] and the environment of each amino acid in the model with 

respect to the environment found in experimentally determined structures (e.g. Z-DOPE) 

[141]. Membrane transporters in general pose several challenges for homology modeling 

given their diverse transmembrane secondary structure profiles and their relatively low 

sequence identities/similarities to related solved crystal structures [135]. 
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Table 1.4. Summary of the SLC family homology model template recommendationsa. 

Family 
Template transporter 

Name Function 
SLC7 AdiC Amino acid antiporter 

SLC10 ASBTNM Apical sodium-dependent bile acid transporter 

SLC15 PepTSO Peptide transporter 

SLC22 High-affinity phosphate importer PiPT Organic cation/anion/zwitterion transporters 

SLC28 vcCNT Concentrative nucleoside transporter 

SLC47 NorM Multidrug and toxin extrusion (MATE) transporters 

a Table adapted from reference [142] 
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Two transporters, derived from Escherichia coli (E. coli), that were successfully 

crystallized, lactose permease transporter (LacY, PDB ID: 1PV6) and glycerol-3-

phosphate transporter (GlpT, PDB ID: 1PW4) have been used previously to homology 

model rat Oct1, rabbit Oct1 and Oct2, and human OCT2 [143–146]. Transport activity for 

MPP+ and TEA was measured in mutants of 18 consecutive amino acids in TMD 4 of rat 

Oct1 [143]. The rationale behind the mutation strategy was based on the fact that TMD4 

contains amino acids on one side of the presumed alpha helix that are conserved within 

the three paralogs of OCTs, but not the OATs. The changes observed in transport activity 

of MPP+ and TEA identified three amino acid residues (Tyr218, Tyr222, and Thr226) 

critical in a proposed binding pocket (Table 1.5). Subsequent homology modeling using 

LacY as template appeared to support this contention [143]. Similarly, in a different study, 

markedly different affinities for selected substrates between rabbit Oct1 and Oct2 were 

demonstrated through site directed mutational studies [145]. Glu447 was found to exert 

a marked influence for substrate selectivity in rabbit Oct2. This result was consistent with 

a subsequently constructed inward open 3-D homology model derived from GlpT, which 

showed Glu447 residing in a hydrophilic cleft of the putative docking region of rabbit Oct2 

[145,147]. An additional study was conducted showing that substitutions at Cys451 

decreased rabbit Oct1 affinity for choline, which was later shown to reside in the choline 

binding domain of a LacY derived homology model [148]. Another group further studied 

human OCT2 and tested the interaction potential of several homologous conserved 

cysteine residues found within TMD 10 and 11 that were theorized to comprise the 

hydrophilic binding cleft [146]. A 3-D homology model was generated for human OCT2 

using GlpT as template to help validate their findings showing that Cys474 serves to form 
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a transport pathway for the OCT2 substrate TEA [146]. Notably, these studies utilized 

homology modeling in an attempt to correlate their mutational study results rather than 

using homology modeling and docking to drive the mutational studies. Amino acid 

residues deemed critical for substrate-binding resulting from these initial tertiary structure-

based modeling studies are summarized in Table 1.5. 
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Table 1.5 Summary of critical residues discovered through initial OCT modeling studies.   

Transportera 
Topology 

Model Template Critical residue Substrate Reference 
rOct1 2-D - Asp475 (TMD11) MPP+ [124] 

rOct1 2-D - Ile443, Leu447, Gln448 (TMD 10) MPP+, TEA, Corticosterone [125] 

rOct2 2-D - Ile443, Tyr447, Glu448 (TMD 10) MPP+, TEA, Corticosterone [125] 

rOct1 3-D LacY Tyr218, Tyr222, Thre226 (TMD 4) TEA [143] 

rbOct1 3-D LacY Cys451 (TMD 10) Choline [144] 

rbOct2 3-D GlpT Glu447 (TMD 10) TEA [145] 

hOCT2 3-D GlpT Cys474 (TMD 4) TEA [146] 

a r, rat; rb, rabbit; h, human     
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While in the aforementioned studies, several potentially important amino acids for 

substrate binding were identified, the relatively low sequence identity of LacY and GlpT 

with the OCTs (~15%) casts strong doubt as to the exact alignment between the target 

and template [134]. A recent comprehensive comparative analysis of key SLC member 

sequences was conducted, resulting in updated recommendations for crystal structure 

templates in SLC homology modeling [142]. As indicated in Table 1.4, a new protein, 

Piriformospora indica phosphate transporter (PiPT) from the major facilitator superfamily 

(MFS) that has recently been crystallized is considered as the best available template for 

OCT homology modeling studies [149]. Piriformospora indica is a eukaryotic endophytic 

fungus that colonizes the roots of several plant species and is involved in enhancing plant 

growth [149]. PiPT has been recently shown to be a high-affinity transporter responsible 

for improving phosphate nutrition levels in the host plant [150]. PiPT, like hOCTs, has 12 

membrane domain spanning alpha helices [149]. There are specific residues at Tyr328 

and Trp320 on TMD 7 of PiPT that are highly conserved in the SLC22 family which 

suggests a shared substrate-binding mechanism using this helix. PiPT possesses higher 

sequence identity with OCTs (~21% identical, 40% similar) than LacY and GlpT, thus 

increasing the confidence for guiding mutagenesis experiments. Furthermore, PiPT is 

derived from a eukaryotic organism making it evolutionarily more related with the 

mammalian OCTs compared to LacY and GlpT which are both derived from a prokaryote 

(E. coli). LacY and GlpT were both crystallized in an inward-open state while PiPT was 

crystallized in the occluded state which adopts a compact helical arrangement around the 

substrate binding site maximizing the possible interactions between the docked ligand 

and proposed transporter interaction pocket [147,149,151]. An important feature that 
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PiPT possesses that is absent in LacY and GlpT is the intracellular loop between TMD 6 

and 7 that is also evolutionarily conserved in OCTs. 

Therefore, given the aforementioned information, it would seem prudent that 

homology modeling studies in hOCTs be considered using the most recently crystallized 

MFS member, PiPT, to elucidate the amino acid residues critical for transporter-substrate 

binding interactions in human OCT1 and OCT2. 
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CHAPTER 2 

 

RESEARCH OBJECTIVES AND SPECIFIC AIMS 

 

2.A  RESEARCH OBJECTIVES AND HYPOTHESIS 

The overarching goal of the current study is to elucidate the critical amino acid 

residues for transporter-substrate binding interactions on human (h)OCT1 and OCT2 

through in silico molecular modeling techniques (homology modeling and automated 

docking), followed by in vitro mutagenesis and kinetic transport experiments. Our 

hypothesis is that through the substitution of hOCT1 and hOCT2 amino acids involved in 

substrate-transporter interactions, identified by in silico homology modeling with 

Piriformospora indica phosphate transporter (PiPT) as template and molecular docking 

studies, a change in affinity (Km) of the transporter to its prototypical substrate MPP+ will 

be produced. 

 

2.B  SPECIFIC AIMS TO ADDRESS HYPOTHESIS 

SPECIFIC AIM 1 

To identify critical amino acid residues for substrate-binding in hOCT1 and hOCT2  

a. An in-silico 3-dimensional (3-D) predictive homology model of hOCT1 and 

hOCT2 will be constructed using Piriformospora indica phosphate 

transporter (PiPT) as the model template. 
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b. Ligand docking studies will be conducted using the organic cation 

transporter model substrate 1-methyl-4-phenylpyridinium (MPP+) to 

determine the putative substrate binding pocket(s) for hOCT1 and hOCT2. 

c. Putative amino acid residues involved in MPP+ substrate-transporter 

interaction will be identified. 

 
SPECIFIC AIM 2 

To confirm the validity of the predicted critical residues associated with hOCT1 and 

hOCT2 substrate recognition determined through 3-D homology modeling and ligand 

docking, a series of steps to examine changes in substrate affinity will be performed 

including: 

a. The introduction of conservative and non-conservative substitutions that 

alter predicted critical amino acid residues using site-directed mutagenesis. 

b. The creation of stably transfected cell lines expressing hOCT1 and hOCT2 

mutants. 

c. Kinetic analysis to determine the affinity of hOCT1 and hOCT2 mutants for 

the prototypical substrate MPP+. 

d. Confirming membrane targeting for hOCT1 and hOCT2 mutants with 

attenuated transport activity (e.g. via immunodetection with Western blots 

or immunocytochemistry). 
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SPECIFIC AIM 3 

To further evaluate the generated in silico hOCT1 and hOCT2 models, substrates 

with disparate structures will be docked to determine the presence of alternative and/or 

additional critical amino acid residues in the binding pocket(s). This will be evaluated by: 

a. Performing additional docking studies using OCT substrates with varying 

structures (e.g. epinephrine, tetrapentylammonium (TPA), serotonin, 

metformin, cimetidine). 

b.  Comparisons of proposed critical amino acid residues mediating 

transporter-substrate interactions across human OCT1, OCT2 (current 

work) and OCT3 (previous work).  
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CHAPTER 3 

 

IDENTIFYING STRUCTURAL ELEMENTS OF HUMAN ORGANIC CATION 

TRANSPORTER 2 (SLC22A2) MEDIATING SUBSTRATE-TRANSPORTER 

INTERACTIONS 

3.A  INTRODUCTION 

Transporters, which have garnered much interest in the field of clinical 

pharmacology and pharmaceutics, are extensively expressed throughout the body. They 

serve a variety of functions that include the uptake and elimination of both endogenous 

and exogenous compounds. One group of transporters that recognize a broad-spectrum 

of small organic compounds with positive charge are the organic cation transporters 

OCT1, OCT2, and OCT3 [6]. These transporters belong to the solute carrier 22 family 

(SLC22) of the major facilitator superfamily (MFS) and share high sequence homology 

[6,152]. The OCTs are proposed to have 12 membrane-spanning alpha helical domains, 

a large extracellular glycosylated loop between transmembrane domains (TMD) 1 and 2, 

a large intracellular loop between TMDs 6 and 7, and intracellular N- and C-terminal 

domains. 

Due to their expression in intestine, liver, and kidney, the OCTs exert significant 

impact on the pharmacokinetic and pharmacodynamic effects relating to the safety and 

efficacy of many common medications, as well as on the resulting complications arising 

from drug-drug interactions. Both the U.S. Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) have issued guidance documents recognizing the 

importance of transporter research in the drug development process [112,113]. The 
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guidances define circumstances under which new investigational drugs should be 

evaluated in vitro as potential transporter substrates, to project their drug-drug interaction 

potential, specifically SLC22 family members including OCT2 (SLC22A2), OAT1 

(SLC22A6), and OAT3 (SLC22A7) [112]. OCT1 (SLC22A1) is an emerging clinically 

important transporter under consideration for addition to the guidances. 

Despite the vast literature base detailing the hundreds of different endogenous and 

pharmaceutical substrates and inhibitors associated with OCTs, the biochemical nature 

of their binding interactions has yet to be determined. The approach to better 

understanding the intricacies of drug transport and ultimately optimizing drug delivery and 

elimination while reducing toxicity lies in 1) revealing the structural foundations of the 

substrate binding region(s), 2) understanding how the variety of substrates bind to 

this(ese) region(s), and 3) how substrate binding contributes to its translocation across 

membranes [120]. The simplest and most direct approach to achieving this goal is to 

determine the structure of the transporter-substrate complex through x-ray 

crystallography. However, to date, no crystal structure of any of the OCTs has been 

successfully solved. An alternative strategy involves the construction of a homology 

model using the known crystal structure of a closely related transporter protein. The 

homology model can then be used to dock substrates in silico to identify putative binding 

pocket(s) and critical residues participating in the binding interactions between substrate 

and transporter.  

Previous homology modeling of rabbit Oct1 and Oct2, and human OCT2 based on 

the tertiary structure of the lactose permease (LacY) and glycerol-3-phosphate (GlpT) 

transporters from E. coli has been performed [143,146,148,153]. However, it is important 
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to note that these bacterial transporter templates exhibit extremely low (~15%) sequence 

identity with mammalian (human) OCTs. Generally, sequence identities of 25-50% are 

considered necessary to generate models useful for informing site-directed mutagenesis 

experiments, with sequence identities below 15% considered suspect for structural 

modeling [134]. Recently, the crystal structure of a more closely related MFS member, 

the Piriformospora indica phosphate transporter (PiPT), has been solved [149]. PiPT 

exhibits ~21% sequence identity with human OCT1, OCT2, and OCT3, and, therefore, 

should provide a better template for generating homology models of these transporters.  

Thus, in order to elucidate the critical amino acid residues for transporter-substrate 

binding interactions on hOCT2, a series of in silico and in vitro experiments were 

conducted. Initially, a novel 3-D homology model for hOCT2 was developed using the 

known crystal structure PiPT. The PiPT structure represents the transporter in its 

occluded state, with endogenous ligand bound. The resulting hOCT2 homology model 

was then used to dock the prototypical substrate, MPP+, to identify the binding pocket(s) 

and potential substrate interacting residues located within it. Next, mutant hOCT2 

transporters containing conservative and non-conservative substitutions of interacting 

residues predicted from the generated model were constructed through site-directed 

mutagenesis. Subsequently, cell lines stably expressing the individual mutant hOCT2 

transporters were established and used to conduct kinetic transport assays (saturation 

analysis) to determine any changes in transporter function and affinity (Km) for MPP+.  
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3.B  MATERIAL AND METHODS 

3.B.1  Chemicals and reagents 

Tritiated [3H] MPP+ was purchased from PerkinElmer Life and Analytical Science 

(Waltham, MA) and unlabeled MPP+ was obtained from Sigma-Aldrich (St. Louis, MO). 

Quinine monohydrochloride dihydrate was purchased from Acros Organics (Fair Lawn, 

NJ). Bio-Rad protein assay dye reagent concentrate was purchased from Bio-Rad 

Laboratories, Inc. (Hercules, CA). Specific primers for mutation reactions were purchased 

from Integrated DNA Technologies (IDT; Coralville, IA). QuikChange Lightning Site-

Directed Mutagenesis Kit was purchased from Agilent Technologies (Santa Clara, CA). 

Lipofectamine® 2000 Transfection Reagent and Prolong diamond antifade mountant with 

DAPI was purchased from ThermoFisher Scientific (Waltham, MA). QIAprep spin 

miniprep kit and QIAprep spin midiprep kit [154] were purchased from QIAGEN Inc. 

(Germantown, MD). GoTaq green master mix was purchased from Promega (Madison, 

WI). Opti-Mem reduced serum and Dulbecco’s modified eagle’s medium were purchased 

from Life Technologies (Carlsbad, CA). Abcam plasma membrane protein extraction kit 

(ab65400) was purchased from Abcam (Cambridge, United Kingdom). Rabbit anti-

SLC22A2 polyclonal antibody (GTX46838) was purchased from GeneTex (Irvine, CA), 

anti-rabbit IgG alkaline phosphatase (AP)-linked antibody (7054S) was purchased from 

Cell Signaling Technology (Danvers, MA), goat anti-actin polyclonal antibody (SC-1616), 

donkey anti-goat IgG-AP (sc-2022), goat anti-rabbit IgG- fluorescein isothiocyanate 

(FITC) (SC-2012), and donkey anti-goat IgG-FITC (SC-2024) were purchased from Santa 

Cruz Biotechnology (Dallas, TX). Nitro-blue tetrazolium and 5-bromo-4-chloro-3'-
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indolyphosphate (NBT/BCIP) and complete mini protease inhibitor cocktail tablets were 

purchased from Roche Diagnostics (Mannheim, Germany).  

3.B.2  Homology modeling and docking studies 

The hOCT2 (UniProt ID: O15244) and PiPT (PDB ID: 4J05) sequences were 

obtained from the Universal Protein Resource (UniProt) and PDB, respectively [131,155]. 

Protein sequence alignment of PiPT and hOCT2 was performed with ClustalX and 

followed by sequence curating via loop removal and manual refinement of gaps based on 

the transmembrane domains observed in the PiPT crystal structure and predicted for 

hOCT2 using ICM Browser (Molsoft LLC) and Phobius (Stockholm Bioinformatics 

Center). Amino acid sequence alignment of hOCT2 with the template and subsequent 

generation of a population of 100 homology models were performed using ClustalX 2.1 

and MODELLER v9.17, respectively. Using SYBL-X 2.1, a structural cavity search was 

conducted for each model to identify putative binding pocket(s). The hOCT2 substrates, 

MPP+, epinephrine, serotonin, cimetidine, tetrapentylammonium (TPA) and metformin, 

and inhibitor, quinine, (Figure 3.1) were sketched and energy-minimized using SYBL-X 

2.1 (Tripos Force Field, Gasteiger-Hückle charges distance-dependent dielectric constant 

= 4.0 D/Å) and docked into each of the 100 models within a 15 Å radius of Trp355 (a 

residue present within the identified binding pocket) using GOLD Suite 5.5. A favorable 

model was selected based on the combined MODELLER discrete optimized protein 

energy (DOPE) score, GOLD docking score, and Ramachandran plot results. The DOPE 

score, accounting for spherical and finite shape of the native structures, helps to 

determine the quality of the protein models. The GOLD score evaluates the interactions 

of the docked substrate within the proposed binding pocket(s). Ramachandran plots were 
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used to help visualize energetically allowed regions for backbone dihedral angles against 

amino acid residues in the protein structure. A model with more than 90% of amino acids 

located in the favorable regions of a Ramachandran plot is generally considered an 

acceptable model. High resolution images were obtained using PyMOL v1.8.and SYBL-

X-2.1. 
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Figure 3.1 Chemical structures of compounds docked into hOCT2 homology 
models. 
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3.B.3 Bacterial transformation 

Plasmid DNA (pcDNA3-hOCT2) was transformed through the following steps: 

adding 10 ng of DNA to 50 µL of DH5alpha competent cells, incubating on ice for 30 

minutes, and then applying heat shock at 42°C for 20 seconds. The mixture was then 

added to 950 µL of 37°C preheated LB broth and incubated while shaking (225 rpm) at 

37°C for one hour. Afterward, the mixture was plated onto LB agar plates containing 

ampicillin (0.1 mg/mL) and incubated overnight at 37°C. The following day, colonies were 

picked and grown overnight (with shaking at 225 rpm) in LB broth with ampicillin 

(0.1mg/mL) at 37°C. Plasmid DNA extraction was performed using the Qiaprep spin 

miniprep kit according to the manufacturer’s recommendations [154]. Bacterial pellets 

were resuspended and lysed, followed by the use of spin columns to isolate plasmid DNA 

and wash/discard any impurities in the flow through. Eluted plasmid DNA from the column 

was stored at -20°C. Plasmid DNA concentration and purity were determined via UV 

spectrophotometry.  

3.B.4 Point mutation of plasmid DNA 

Synthetic oligonucleotide primers containing the desired DNA mutations were 

designed using the QuikChange Primer Design program (Agilent Technologies) (Table 

3.1). Amino acid substitutions were introduced into the hOCT2 coding sequence via site 

directed mutagenesis (QuikChange Lightning Site-directed Mutagenesis Kit) according to 

the manufacturer's recommendations. The resulting mutant plasmids were transformed 

into XL 10-GOLD ultra-competent cells according to the manufacturer’s protocol and 

plated on LB-agar plates with ampicillin (0.1 mg/mL) and incubated overnight at 37°C. 
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Colonies were picked, purified, and the presence of the desired mutation was then 

confirmed by DNA sequencing. 
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Table 3.1 Primers for hOCT2 site directed mutagenesis. 
Protein residue Direction Mutant oligonucleotide (5'→ 3') 
Gln242Glu Forward GAA CAG TGG GGA TTT TTT ACG AAG TTG CCT ATA CAG TTG G 

 
Reverse CCA ACT GTA TAG GCA ACT TCG TAA AAA ATC CCC ACT GTT C 

Gln242Lys Forward GAA CAG TGG GGA TTT TTT ACA AAG TTG CCT ATA CAG TTG G 

 
Reverse CCA ACT GTA TAG GCA ACT TTG TAA AAA ATC CCC ACT GTT C 

Tyr245Phe Forward TTT TTA CCA AGT TGC CTT TAC AGT TGG GCT CCT GG 

 
Reverse CCA GGA GCC CAA CTG TAA AGG CAA CTT GGT AAA AA 

Tyr245Ala Forward GAT TTT TTA CCA AGT TGC CGC TAC AGT TGG GCT CCT GGT G 

 
Reverse CAC CAG GAG CCC AAC TGT AGC GGC AAC TTG GTA AAA AAT C 

Thr246Ser Forward TTT ACC AAG TTG CCT ATT CAG TTG GGC TCC TGG T 

 
Reverse ACC AGG AGC CCA ACT GAA TAG GCA ACT TGG TAA A 

Thr246Lys Forward GGA TTT TTT ACC AAG TTG CCT ATA AAG TTG GGC TCC TG 

 
Reverse CAG GAG CCC AAC TTT ATA GGC AAC TTG GTA AAA AAT CC 

Tyr362Phe Forward CAC GAG CTC TGT GCT CTT CCA GGG CCT 

 
Reverse AGG CCC TGG AAG AGC ACA GAG CTC GTG 

Tyr362Ala Forward CAC GAG CTC TGT GCT CGC CCA GGG CCT CAT CAT G 
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Reverse CAT GAT GAG GCC CTG GGC GAG CAC AGA GCT CGT G 

Glu448Asp Forward GAT CAC AAT GGC CTA TGA TAT AGT CTG CCT GGT CAA T 

 
Reverse ATT GAC CAG GCA GAC TAT ATC ATA GGC CAT TGT GAT C 

Glu448Ala Forward GAT CAC AAT GGC CTA TGC GAT AGT CTG CCT GGT CA 

  Reverse TGA CCA GGC AGA CTA TCG CAT AGG CCA TTG TGA TC 
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3.B.5 Cell line transfection and maintenance 

Mutant transporter expressing CHO cell lines were generated using cationic lipid-

based transfection. Briefly, 1μg plasmid DNA was combined with 2 µL Lipofectamine 

2000 (Invitrogen), mixed, diluted in 100 µL Opti-MEM (Invitrogen) and applied to CHO 

cells at 50-60% confluency in 12-well plates (Corning Inc, Corning, NY). Fresh culture 

medium (DMEM/F12) was applied just prior to the addition of transfection agents. After 

incubating for 24 hours at 37°C / 5% CO2, the transfection medium was removed and 

replaced with fresh medium containing Geneticin (G418; 1 mg/mL) to select for 

successfully transfected cells for a period of 14-21 days. Cells viable in the presence of 

G418 were transferred to culture flasks and continued to be maintained under antibiotic 

selective pressure (250 µg/mL G418). 

CHO control, CHO-hOCT2 and CHO-hOCT2 mutant cell lines were maintained in 

Dulbecco’s Modified Eagle’s Medium/F12 (DMEM/F12) with 10% FBS, and 1% 

Penicillin/Streptomycin at 37°C with 5% CO2 in 25 or 75mm2 polystyrene flasks. G418 

(250μg/mL) was included in the medium for maintaining selective pressure on stably-

transfected cell lines. Cells were sub-cultured every 3-4 days and passages 10-40 were 

used for experiments. 

3.B.6 Cell accumulation assays 

 Mutant functional screening 

The procedure for the cell accumulation assay has been described previously 

[68,69]. Briefly, cells were seeded into 24-well tissue culture plates at a density of 1.5×105 

cells/well in the absence of antibiotics and cultured for 48 hours. Cells were equilibrated 

with transport buffer for 10 min (500 µL of Hanks’ balanced salt solution containing  
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10 mM HEPEs, pH 7.4). Equilibration transport buffer was replaced with 400 µL of fresh 

transport buffer containing 1 µM unlabeled MPP+ spiked with trace [3H]MPP+ (0.25 µCi/ml) 

in the presence or absence of the inhibitor quinine (200 µM). After incubation for 10 

minutes, the cells were immediately rinsed 3 times with ice cold transport buffer, lysed 

with 200 µL 1N NaOH, neutralized with 250 µL 1N HCl and 200 µL 10mM HEPES. The 

radioactivity in cell lysates was quantified by liquid scintillation counting, and uptake 

normalized by the total protein content determined by the Bradford method. The 

intracellular accumulation of substrates was reported as picomoles of substrate per 

milligram total protein. All uptake data were corrected for background accumulation in 

corresponding CHO empty vector cells.  

Kinetic assays 

The Michaelis-Menten constant (Km) was determined for MPP+ uptake in each of 

the generated mutant hOCT2-expressing cell lines via saturation analysis according to 

our established protocol [156]. The experiment was carried out in the same way as 

described for the functional screening assay with the exception that the equilibration 

transport buffer was replaced with 400 µL of fresh transporter buffer containing increasing 

concentrations (1-200 µM) of unlabeled MPP+ spiked with [3H]MPP+ (0.25 µCi/ml) and 

incubated for a period of 1 minute. After incubation, the cells were immediately rinsed 3 

times with ice cold transport buffer and lysed with 1N NaOH, neutralized with 250 µL 1N 

HCl and 200 µL 20mM HEPES. The Km estimate, which represents the concentration of 

substrate at half maximum velocity of the transporter, was calculated using nonlinear 

regression with the enzyme kinetics model in GraphPad Prism 5.0 (GraphPad Software 

Inc., San Diego, CA). Individual saturation experiments were repeated at least three times 
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with duplicate wells and plotted as mean ± SD. Km estimates were reported as mean ± 

SE.  

3.B.7 Genomic DNA integration confirmation 

Cells were suspended in 500 μL lysis buffer [1 M Tris (pH 8.0), 5 M NaCl, 0.5 M 

EDTA, and 10% SDS] containing proteinase K (0.4 mg/mL) and incubated at 55°C while 

shaking overnight. Genomic DNA was thoroughly extracted from samples with an equal 

volume of phenol/chloroform/isoamyl alcohol (25:24:1) after gentle mixing for 10 min, and 

centrifugation for 10 min at 15,000 g. The upper aqueous phase was carefully collected, 

isopropanol was added and mixed well, then centrifuged immediately at 15,000 g for 30 

min to obtain DNA pellet. The pellet was washed with 70% ethanol, dried, and 

resuspended with 50 µL TE buffer [10 mM Tris (pH 8.0), and 1 mM EDTA]. Concentration 

of DNA was determined through UV spectrophotometry. Genomic DNA (2 ng), 2x Go-taq 

Master Mix (5 μL), as well as 1 μL primer pair mix (T7: 5’- TAATACGACTCACTATAGGG-

3; hOCT2-REV: 5’- CCAGTGAGGAAGTGCGTAAG -3’) were added together to a final 

volume of 20 µL and run in a thermocycler: initial denaturation at 95°C for 5 min, followed 

by 30 cycles of: denaturation at 95°C for 2 min, annealing at 50-52°C for 30 seconds, and 

elongation at 72°C for 30 seconds. Final elongation step at 72°C for 5 min and held at 

4°C. PCR products were loaded into a 1% agarose gel for separation using 

electrophoresis at 120 V for 60 min and visualized by UV light following ethidium bromide 

staining. 

3.B.8 Cell harvest for immunoblotting 

Cell lines were harvested according to the Abcam plasma membrane extraction kit 

protocol (Abcam, Cambridge, United Kingdom): Briefly, cells were removed by scraping 
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in phosphate buffered saline (PBS, Gibco/Invitrogen), centrifuged for 5 minutes at 700 x 

g, washed with ice cold PBS, then resuspended with the homogenization buffer and 

mixed with a Dounce homogenizer on ice. Afterward, the homogenate was centrifuged at 

700 x g for 10 minutes at 4°C. The supernatant was collected and transferred to a new 

vial and centrifuged at 10,000 x g for 30 minutes at 4°C. Supernatant (cytosolic fraction) 

was collected and stored at -80°C.  

3.B.9 SDS-PAGE and Immunoblotting 

The cytosolic and plasma membrane fractions were harvested according to the 

plasma membrane extraction kit protocol (Abcam). Protein concentration was quantified 

using the Bradford method. Samples (20 µg) were subjected to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using the Bio-Rad Mini-PROTEAN 

system. Samples were separated using 12% polyacrylamide gels at 170V for 1.5 hours 

and then transferred onto polyvinylidene difluoride (PVDF) membrane (Bio-Rad, 

Hercules, CA) for 1 hour at 100 mA. Membranes were blocked with 5% BSA in TBST (19 

mM Tris base, 137 mM NaCl, 2.7 mM KCl, 0.05% Tween 20, 0.05% sodium azide) for 1 

hour. The rabbit anti-OCT2 polyclonal antibody was diluted (1:400) to 2.5 µg/mL in 5% 

BSA and the blots probed overnight at 4°C with rocking (18 hours). Three 5-minute 

washes were performed with TBST then alkaline phosphatase conjugated secondary 

antibody diluted (1:1000) in 5% BSA was added and incubated for 2 hours at room 

temperature with rocking. Blots were washed three times for 5 minutes with TBST before 

being developed in 0.1 M Tris, 0.1 M NaCl, 5mM MgCl2 phosphatase buffer (pH 9.4) 

containing 0.25 mg/ml 5-bromo-4-chloro-3-indolyl phosphate (BCIP, Sigma-Aldrich) and 
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0.25 mg/ml nitro blue tetrazolium (NBT, Sigma-Aldrich) in the dark. Blots were digitally 

scanned. 

3.B.10   Immunocytochemistry  

Cells were prepared for immunostaining by plating 6 x 104 cells/ml onto flame 

sterilized 12 mm cover slips (Fisher Scientific) in 6-well plates (Corning, Inc.) overnight in 

the absence of antibiotics. Cells (~70% confluent) were washed with PBS, fixed with 4% 

paraformaldehyde in PBS for 10 minutes, and permeabilized with 0.01% TritonX in PBS. 

The cells were then washed with 1x PBS followed by blocking with 1% BSA in 1x PBS for 

1 hour at room temperature. The rabbit anti-OCT2 primary antibody was diluted (1:100) 

with 1% BSA in TBST and incubated with the cells at room temperature for 1 hour. Cells 

were washed three times for 5 minutes with PBS. FITC anti-rabbit secondary antibody 

was diluted to (1:100) in 1% BSA in TBSTA and applied to the cells for 1 hour at room 

temperature in the dark. Cells were washed three times for 5 minutes with PBS, placed 

on slides with DAPI prolong diamond mounting media and imaged with a fluorescence 

microscope (Olympus I51, Olympus, upper Saucon Township, PA). 

3.B.11   Green fluorescent protein (GFP) plasmid construction 

To make the hOCT2-GFP fusion construct, the full length hOCT2 cDNA fragment 

was removed from the isolated library clone, pcDNA3/hOCT2, using the restriction 

enzymes Kpn I and Xba I. The fragment was gel isolated and ligated into the pEGFP-C1 

vector in frame at the carboxyl terminal end of GFP forming the plasmid pEGFP-

C1/hOCT2, where “E” denotes “enhanced”. Plasmid construction was performed 

commercially (GenScript, Picataway, NJ). The lyophilized GFP plasmid construct, was 

resuspended and diluted in TE pH 8, transformed into DH5-alpha cells and DNA extracted 
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using the Qiagen miniprep kit. The construct was confirmed by DNA sequencing. Non-

functional hOCT2 mutants were reproduced in the hOCT2-GFP construct using the 

original primers (Table 3.1) and the QuikChange Lightning site-directed mutagenesis kit. 

3.B.12   Microscopic imaging  

An Olympus IX-70 inverted microscope fit with a 12-bit camera (Olympus, Melville, 

NY) was used in order to capture phase contrast and fluorescent images. Fluorescent 

images were taken with two second exposures using a 595 nm dichroic long pass filter 

(Chroma, Rockingham, VT) illuminated by a mercury arc lamp. The images were 

processed using Olympus Microsuite v.5. Confocal fluorescent images were obtained at 

the VCU Microscope Core facility using a Zeiss LSM 710 Axio Observer inverted laser 

scanning confocal microscope fit with a 63x oil immersion objective. Images were 

collected by illuminating samples with a blue diode laser at 405 nm. Images were 

processed using Zeiss ZEN 2 Blue edition software (Oberkochen, Germany). 

3.B.13  Statistics 

The data plots were presented as means ± SD. Dose response curve (Km estimate) 

data were reported as mean ± SE for at least n = 3. Km estimates were fit based on the 

equation: V0 = Vmax * [S] / (Km + [S]). One-way ANOVA with post-hoc Dunnett’s test was 

used to evaluate differences compared to a single control where indicated. Statistical 

calculations were performed using Prism 5.0 (GraphPad Software, Inc., San Diego, CA). 

A difference was deemed statistically significant if p < 0.05. 
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3.C RESULTS 

3.C.1 Identification of a hOCT2 model 

The hOCT2 peptide sequence (Uniprot ID: O15244) was aligned with the PiPT 

template sequence (PDB ID: 4J05) (Figure 3.2) as input for the program MODELLER to 

generate 100 initial hOCT2 homology models. Analysis of the initial 100 models identified 

a single large cavity in the central region of the transporter as a potential binding pocket. 

MPP+ was subsequently docked in this region. After docking MPP+ into the generated 

hOCT2 models, the most favorable interaction model was selected based on three main 

criteria: GOLD docking score, DOPE score, and the total number of clusters. 

The genetic optimized ligand docking (GOLD) scoring is essentially a method to 

quantify which poses generated for a particular ligand are most likely to occur based on 

the interactions present within the transporter. GOLD scores for the top ten most 

favorable docked poses of MPP+ in the binding pocket of the hOCT2 models (ranging 

from 58.49 to 66.59) were ranked (Table 3.2). Amongst this select group, the top three 

model’s GOLD scores had a difference of 0.77 between them, thus were considered to 

be virtually identical. The difference between the top and fourth ranked model was 

increasingly larger (1.61). The discrete optimized protein energy (DOPE) score accounts 

for the shape of native structures which in turn helps to evaluate the quality of the whole 

protein structure. The DOPE scores for the top ten models ranged between -48,186 and  

-47,268 (Table 3.2). Additionally, the number of homology models which contained a 

given substrate pose (number of clusters) was also accounted for in model selection. The 

greater the number of models that have a particular substrate pose docked, the higher 

the likelihood that the specific pose occurs within the binding pocket.  Out of the top 10 
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models, models 30 and 64 had 6 clusters, while the rest had 4 or less. Among the top 

three ranked GOLD score models, model 64 stood out as having the lowest DOPE score 

(-48,030; second lowest DOPE score overall) in conjunction with the highest number of 

clusters (6). Taken together, these three selection criteria indicated model 64 as the most 

favorable docked model and thus it was selected for subsequent studies. The generated 

tertiary structure for model 64 with MPP+ docked in the hypothesized binding pocket is 

shown in Figure 3.3. The docked hOCT2 model shows MPP+ residing inside a large 

central cavity of the 12-membrane spanning alpha helical domains (Figure 3.3). 

Ramachandran plots were utilized as a method for determining and visualizing 

“allowed regions” for the backbone dihedral angles that make up amino acids in the 

generated model. For the amino acids that made up our selected hOCT2 model, 91.4% 

were in the most favored regions, 6.1% were in the additionally allowed region, and only 

2.4% were in the generously allowed and disallowed regions combined (Figure 3.4). The 

most favored regions category was > 90%, thus supporting the selected hOCT2 model 

as acceptable. 
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Figure 3.2 Sequence alignment of PiPT and hOCT2.  
 
The alignment was constructed with ClustalX, followed by manually refining gaps based 
on the transmembrane regions observed in the PiPT crystal structure and predicted for 
hOCT2 using Phobius, a topology prediction algorithm. Residues forming the large 
extracellular and intracellular loop between transmembrane domain 1 and 2 and 
intracellular loop between 6 and 7 of PiPT and hOCT2. The transmembrane domains in 
the hOCT2 model (red) and PiPT tertiary structure (blue) are highlighted. “*” indicates 
exact sequence match, “:” indicates high sequence similarity, “.” indicates low sequence 
similarity 
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Table 3.2 Summary of hOCT2 model evaluation scores. 

GOLD Rank Model ID Gold score DOPE Score 
No. of 

Clusters 
1 24 66.59 -47676.04688 2 

2 12 66.52 -47487.76953 2 

3 64 65.82 -48030.84375 6 

4 47 64.98 -47691.90625 3 

5 2 64.1 -47665.14453 1 

6 30 62.73 -47813.59766 6 

7 95 61.53 -47268.98438 4 

8 100 60.53 -48186.85547 3 

9 55 59.64 -47915.82422 4 

10 71 58.49 -47584.00781 1 
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Figure 3.3 hOCT2 homology model. 
 
The generated 3-D molecular structure of hOCT2 (ribbons) is shown with MPP+ (space-filled) positioned in the putative 
binding pocket viewed from (A) profile and (B) top-down angles.  
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Figure 3.4 Ramachandran plot for hOCT2 homology model. 

Phi and psi indicate backbone conformation dihedral angles of amino acid residues, 
representing the rotations of a polypeptide main chain N-Cα and Cα-C bonds. Amino 
acids are displayed in different regions: most favored region (red), additional allowed 
region (yellow), generously allowed region (light yellow), and disallowed region (white). 
Residues depicted in red squares are in the generously allowed and disallowed regions. 
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3.C.2 Identifying amino acid residues important for MPP+ hOCT2 interaction 

Several amino acids were identified that made up the binding pocket (within the 

designated 5 Å radius of the substrate) for docked MPP+ in the selected hOCT2 model. 

The identified amino acid residues were found in several different TMDs that came 

together in the central area forming a large distinct cavity of the transporter—TMD 1: 

Phe17; TMD 5: Ile239, Gln242, Val243, Tyr245, Thr246, Val247, Leu249; TMD 7: Trp355, 

Ser358, Ser359, Tyr362, Gln363, Gln387; TMD 8: Gln387, Phe388, Ala391, Ile394; TMD 

10: Trp407, Met445, Ala446, Tyr447, Glu448, Val450, Cys451 (Figure 3.5). Within the 

proposed binding pocket, five amino acids were identified (Gln242, Tyr245, Thr246, 

Tyr362, and Glu448) as potential candidates critical for transporter-MPP+ binding 

interactions. Hydrophobic interactions were found between MPP+ and amino acid 

residues Gln242, Thr246, and Glu448, and one of the aromatic rings of MPP+ was 

recognized as forming edge-face-pi and pi-stacking interactions with Tyr245 and Tyr362, 

respectively (Figure 3.6 and Table 3.3).  

To further evaluate the generated in silico hOCT2 model, known substrates with 

disparate structures were optimized and docked into the population of 100 models to 

determine the presence of alternative and/or additional critical amino acid residues in the 

binding pocket(s). The process involved with selecting the most favorable model for 

MPP+, was repeated for each docked substrate. Amino acids identified with the greatest 

overlap across the different docked compounds were Tyr245, Ser358, Tyr362, and 

Glu448 (Figure 3.7 and Table 3.3). There were several amino acids identified that were 

also unique to particular compounds including Thr246 for MPP+; Gln363, Gln387 and 

Cys451, for serotonin; Cys474 for TPA; and Asp475 for cimetidine.  
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Figure 3.5 3-D rendering of putative binding pocket of hOCT2 with docked MPP+. 

Amino acid side chains (white) comprising the binding pocket surrounding the substrate MPP+ (orange) is shown viewed 
from (A) profile and (B) top-down angles. 
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Figure 3.6 Structure of hOCT2 with MPP+ docked. 
 
The docked substrate (MPP+, orange) and the amino acids (white side chains) is shown 
localized in the predicted substrate binding pocket of hOCT2.  
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Table 3.3 hOCT2 docking interaction summary. 

Substrate Amino Acid 
Sequence 
position 

Bond Interaction TMD 

MPP+ Gln 242 Hydrophobic 5 

Tyr 245 Hydrophobic/Edge-Face Pi 5 

Thr 246 Hydrophobic 5 

Tyr 362 Pi-stack 7 

Glu 448 Hydrophobic 10 

Cimetidine Asn 157 H-bond 2 

 

Tyr 245 Hydrophobic 5 

 
Ser 358 H-bond 7 

 
Tyr 362 Pi-stacking 7 

 
Glu 448 H-bond (salt bridge) 10 

  Asp 475 H-bond (salt bridge) 11  

Epinephrine Tyr 245 Hydrophobic 5 

 
Ser 358 H-bond 7 

 
Tyr 362 Pi-stack 7 

  Glu 448 H-bond (salt bridge) 10 

Metformin Ser 358 H-bond 7 

 
Tyr 362 Pi-stack 7 

  Glu 448 H-bond (salt bridge) 10 

Quinine Phe 24 Hydrophobic 1 

 

Asn 157 H-bond (weak) 2 
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Phe 160 Hydrophobic 2 

 

Gln 242 H-bond 5 

 
Tyr 245 Hydrophobic 5 

  Tyr 362 Pi-stacking 7 

Serotonin Tyr 245 Hydrophobic 5 

 
Ser 358 H-bond 7 

 
Tyr 362 Pi-stack 7 

 
Gln 363 H-bond 7 

 
Glu 387 H-bond (salt bridge) 8 

 
Glu 448 H-bond (salt bridge) 10 

  Cys 451 H-bond 10 

TPA Phe 24 Hydrophobic 1 

 

Phe 160 Hydrophobic 2 

 

Tyr 245 Hydrophobic 5 

  Cys  474 Hydrophobic 11 
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Figure 3.7 Known hOCT2 substrates docked into hOCT2 homology model. 

Known hOCT2 substrates (purple or orange) (A) cimetidine, (B) epinephrine, (C) metformin, (D) quinine, (E) serotonin, and 
(F) TPA, were docked into their respective favorable hOCT2 models. Proposed interactions of interactions are summarized 
in Table 3.3. 
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3.C.3 Substitution of hOCT2 amino acid residues in putative binding pocket 

We investigated the role of the predicted amino acids in hOCT2-MPP+ interactions 

through conservative and non-conservative amino acid substitutions introduced into the 

hOCT2 coding sequence to evaluate potential changes in hOCT2 function and affinity for 

MPP+. The pcDNA3/hOCT2 plasmid vector map is shown in Figure 3.8. The rationale for 

deciding each conservative and non-conservative amino acid substitution was based on 

a scheme developed by Bordo et al. which categorizes roughly equivalent amino acid 

residues based on their physicochemical properties of their side chains (Figure 3.9) [157]. 

Substitutions for residues deemed critical were Gln242Glu, Tyr245Phe, Thr246Ser, 

Tyr362Phe, and Glu448Asp (conservative); and Gln242Lys, Tyr245Ala, Thre246Lys, 

Tyr362Ala, and Glu448Ala (non-conservative) (Tables 3.4, 3.5 and 3.6). All hOCT2 

mutants were confirmed by DNA sequencing prior to generating stable cell lines. Figure 

3.10, depicts a representative DNA-oligonucleotide duplex and sequencing 

chromatogram in which TAC, coding for Tyr362 in wildtype hOCT2, was changed to TTC, 

coding for the hOCT2 mutant Tyr362Phe. 
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Figure 3.8 pcDNA3/hOCT2 vector map. 
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Figure 3.9 Suggested guidance for amino acid residue conservative substitution. 

Roughly equivalent amino acid residues categorized based on physiochemical properties into five subgroups.  
 
Diagram is an adapted figure from reference [157]  
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Table 3.4 Summary of hOCT2 residue substitutions. 

  Substitution 

Residue Conservative Non-Conservative 

Gln242 Glu Lys 

Tyr245 Phe Ala 

Thr246 Ser Lys 

Tyr362 Phe Ala 

Glu448 Asp Ala 
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Table 3.5 hOCT2-MPP+ interaction based conservative substitutions. 

Amino Acid 
Sequence 
position 

Codon Mutant Codon Substitution 

Gln 242 CAA GAA Gln → Glu 

Tyr 245 TAT TTT Tyr → Phe 

Thr 246 ACA TCA Thr → Ser 

Tyr 362 TAC TTC Tyr → Phe 

Glu 448 GAG GAC Glu → Asp 
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Table 3.6 hOCT2-MPP+ interaction based non-conservative substitutions. 

Amino Acid 
Sequence 
position 

Codon Mutant Codon Substitution 

Gln 242 CAA AAA Gln → Lys 

Tyr 245 TAT GCT Tyr → Ala 

Thr 246 ACA AAA Thr → Lys 

Tyr 362 TAC GCC Tyr → Ala 

Glu 448 GAG GCG Glu → Ala 
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Figure 3.10 Representative sequencing chromatogram for hOCT2 mutants. 
(A) DNA template-primer duplex for hOCT2 Y362F. Chromatogram for (B) hOCT2 
wildtype and (C) hOCT2 Y362F are shown with triplet codon corresponding to mutation 
site highlighted. 
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3.C.4 Critical amino acid confirmation through kinetic assays 

In functional screening assays evaluating [3H] MPP+ transport (Figure 3.11), wild-

type hOCT2 demonstrated a 4.5-fold higher uptake of MPP+ compared to mock 

expressing (pcDNA3) background control cells (15.7 ± 0.4 pmol mg protein-1 10 min-1 vs. 

3.5 ± 2.7 pmol mg protein-1 10 min-1). Quinine (200 µM), a known inhibitor for OCTs, 

virtually abolished hOCT2 mediated MPP+ transport. Two non-conservative mutants, 

hOCT2 Glu242Lys and Tyr362Ala, and one conservative mutant, hOCT2 Tyr362Phe, 

resulted in a complete loss of MPP+ transport activity (Figure 3.11). All other mutants 

retained some level of transport activity and were subjected to saturation analysis in order 

to estimate Km (Figure 3.12, Table 3.7).  

The affinity of MPP+ determined for wildtype hOCT2 was comparable to values in 

prior studies (Km = 19.7 ± 3.4) [158]. When comparing the Km estimates for hOCT2 

mutants against wildtype hOCT2, only the non-conservative substitution Tyr245Ala 

resulted in a significant change in affinity for MPP+. The mutants Gln242Glu, Tyr245Phe, 

Thr246Ser, Thr246Lys, Glu448Asp, Glu448Ala, and Asp475Glu all demonstrated no 

significant change in affinity for MPP+.  
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Figure 3.11 Functional screen of CHO-hOCT2 wild type and mutant expressing cell 
lines. 
 
CHO cells were treated with transport buffer containing 1 µM [3H] MPP+ (0.25 µCi/mL) in 
the absence or presence of inhibitor (quinine) for 10 min. Conservative and non-
conservative mutations appear above original amino acid position. Data shown as 
duplicate wells ± SD. ** denotes p<0.01; *** denotes p<0.001; compared against wild type 
control by one-way ANOVA followed by post-hoc Dunnett’s t-test.  
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Figure 3.12 Representative dose response curves for wild type and mutant hOCT2. 

Michaelis-Menten kinetics of [3H] MPP+ transport (1–200 µM) for hOCT2 and hOCT2 
mutants in stably transfected CHO cells.  
 

  



 
 

72 
 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3.7 Summary of Km estimates for hOCT2 constructs. 

hOCT2 Transporter Km (µM)  
WT  19.7 ± 3.4 

Gln242Glu 31.9 ± 6.2 

Tyr245Phe 22 ± 7.5 

Tyr245Ala 36.5 ± 5* 

Thr246Ser 15.5 ± 2.8 

Thr246Lys 27.4 ± 12.3 

Glu448Asp 17.9 ± 3.6 

Glu448Ala 17.2 ± 3.8 

Asp475Glu 13.5 ± 4 

Mean Km estimates acquired from at least 3 experiments ± SE. 
* denotes p < 0.05 compared against wild type control by one-
way ANOVA followed by post-hoc Dunnett’s t-test. 
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3.C.5 Genomic integration of non-functional hOCT2 mutant constructs 

To eliminate failed genomic DNA integration as an explanation for the lack of 

transport activity in non-functional hOCT2 mutants, genomic DNA was extracted and PCR 

amplified using the primers T7 and hOCT2 REV, that flanked 5’ and 3’ ends of the hOCT2 

coding sequence of the pcDNA3 plasmid (hOCT2 amplicon ~1.8 kb). PCR products of 

the expected size (~1.8 kb) were obtained for wildtype hOCT2 and all hOCT2 mutants 

(Gln242Lys, Tyr362Phe, and Tyr362Ala), while no product was observed for negative 

controls (water and pcDNA3) demonstrating that all hOCT2 plasmids had been 

successfully integrated (Figure 3.13).  

3.C.6 Immunodetection of non-functional hOCT2 mutants 

To investigate the translation and membrane targeting for hOCT2 mutants that 

failed to demonstrate MPP+ transport, Western blotting was performed on isolated 

cytoplasmic and plasma membrane fractions from each mutant-expressing cell line using 

hOCT2 polyclonal antibody (Figure 3.14). Protein bands were observed at the expected 

position for wildtype hOCT2 (~62 kD), however, a similar band was also seen for CHO 

empty vector membrane fraction. Detection for β-actin was consistently observed (~43 

kD) in all experiments (Figure 3.14). 

An alternative method for evaluating membrane targeting of non-functional hOCT2 

mutants was pursued. The same antibodies used to probe for hOCT2 in earlier Western 

blot studies were also used for immunocytochemistry experiments. Cells expressing 

wildtype pcDNA3/hOCT2 constructs showed strong cytosolic fluorescence for both actin 

and hOCT2 staining, with no detectable signal in the nucleus (Figure 3.15). Strong 



 
 

74 
 

membrane localization, however, was not present in any of the observed cells. Control 

transfections (lipofectamine only) showed no fluorescent signal (data not shown).  

3.C.7 Membrane targeting of hOCT2-GFP fusion construct 

The full length hOCT2 cDNA fragment was gel isolated and ligated into vector 

pEGFP-C1 forming the plasmid pEGFP-C1/hOCT2 containing hOCT2 fused in frame to 

the carboxyl terminal of GFP (Figure 3.16). CHO cells expressing the hOCT2-GFP fusion 

construct showed strong fluorescence within the cytosol and lack of signal in the nucleus 

(Figure 3.17). This pattern is consistent with an intact GFP fusion construct versus 

expression of “free” GFP. However, no noticeable fluorescence at the plasma membrane 

was observed. Control transfections (lipofectamine only) showed no fluorescent signal 

(data not shown). In order to have a reference of the membrane localization of OCTs, 

MDCK cells stably transfected with a rat Oct2-GFP fusion construct from a previous study 

were grown and observed [159] (Figure 3.18).   
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Figure 3.13 PCR analysis of genomic DNA isolated from hOCT2 cell lines. 

Confirmation of successful genomic integration of mutant hOCT2 constructs that lacked 
transport activity. Lanes: (1) water, (2) pcDNA3, (3) hOCT2, (4) hOCT2 Gln242Lys, (5) 
hOCT2 Tyr362Phe, and (6) hOCT2 Tyr362Ala. 
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Figure 3.14 Western blot of CHO cell lysates probing for hOCT2.  

Lanes: (1) Protein size standard, (2) mock cytosolic fraction, (3) mock membrane fraction, 
(4) hOCT2 cytosolic fraction, (5) hOCT2 membrane fraction.  
†, denotes actin; *, denotes expected hOCT2 size. 
 
 
 
 
 
 
 
 
 

* 
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Figure 3.15 Immunocytochemistry of CHO-hOCT2. 

CHO cells expressing hOCT2 were probed with anti-actin (A) or anti-hOCT2 (B) 
antibodies followed by FITC conjugated secondary antibody and observed under 
fluorescent microscopy (40x magnification).  
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Figure 3.16 pEGFP-C1/hOCT2 fusion protein vector map. 
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Figure 3.17 Expression patterns of pEGFP-C1/hOCT2. 

CHO cells transfected with pEGFP-C1/hOCT2 were fixed, permeabilized, and mounted 
at 24 hours post transfection then viewed under confocal microscopy: (A) phase contrast, 
(B) GFP, (C) DAPI, and (D) merge. Scale bar = 20 µm 
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Figure 3.18 Expression of pEGFP-C3/rOct2 in MDCK cells. 

MDCK cells stably transfected with pEGFP-C3/rOct2 were thawed, grown in culture for 
48 hours, then observed by fluorescence microscopy (40x magnification). Observed cells 
were used in a study performed in reference [159]. 
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3.D DISCUSSION 

The broad structural substrate diversity of the OCTs make them highly susceptible 

sites for potentially harmful drug-drug interactions. Therefore, an increased 

understanding of the biochemical nature of the interactions between transporter and 

substrates could provide a prevailing advantage in improving the prediction of drug 

interactions involving these membrane transporters. Recently, increased efforts have 

been devoted towards better understanding the biochemical interactions between 

transporter and substrate among organic cation transporters [124,125,146,148,153]. 

Several studies utilized hypothesized 3-D structures of their target transporter (e.g. rat 

Oct1, rabbit Oct1 and Oct2, and hOCT2) in order to confirm experimentally predicted 

critical residues [143,146,148,153] (Table 1.5 in Chapter 1). These early studies 

generated homology models of OCTs based on the solved crystal structures of 

prokaryotic MFS transporters (from E. coli). Although the studies provided information on 

the structural details for OCTs that were previously unknown, the templates they used to 

generate models (i.e. LacY, GlpT) were limited in the fact that they share a low sequence 

identity with mammalian (human) OCTs (~15%) perhaps due to their prokaryotic origin.  

Therefore, in the current study, homology models of the tertiary structure of hOCT2 

were generated using the known crystal structure of PiPT serving as the template. PiPT, 

also a member of the MFS, was chosen as the designated template due to a number of 

factors including its relative sequence homology to the hOCTs (~21% identical, 40% 

similar), eukaryotic origin (Piriformospora indica), and the fact that it was crystallized in 

the occluded state. The occluded conformation grants the transporter maximum binding 

interaction sites for bound ligands. After docking MPP+ into the generated hOCT2 models, 
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amino acid residues were identified that formed the putative binding pocket (within a 5 Å 

radius surrounding the substrate) (Figure 3.5). This approach required that several 

assumptions be made during the in silico model building process including that adequate 

structural similarity exists between the crystallized tertiary structure of PiPT and hOCT2 

and that the presence of water molecules in the occluded binding pocket was negligible 

and therefore not considered during the docking analysis.  All models were generated 

based on PiPT and the hOCT2 protein sequence with transmembrane domains globally 

energy minimized.  

Amino acid residues deemed “critical” for hOCT2-MPP+ binding interactions were 

identified in silico based on substrate proximity and interaction types (Table 1.5). Within 

the proposed binding pocket, hydrophobic interactions were identified between MPP+ and 

amino acid residues Gln242, Thr246, and Glu448, and one of the aromatic rings of MPP+ 

was found to be involved in edge-face pi and pi-stacking interactions with Tyr245 and 

Tyr362, respectively. Subsequently, stably transfected CHO cells expressing hOCT2 

mutants were established and utilized for a series of in vitro kinetic assays to confirm their 

role in substrate binding. From the functional screening study, transport activity of MPP+ 

was absent for both conservative and non-conservative substitutions of Tyr362, and for 

the non-conservative substitution of Gln242 (Figure 3.11). Because MPP+ transport was 

lacking for both conservative and non-conservative substitutions at Tyr362, this 

suggested that it may be a critical site for substrate binding. This result correlates with the 

MPP+ docking data where Tyr362 was predicted to participate in the strongest substrate 

interaction (pi-pi stacking). However, the loss of transport activity with the conservative 

phenylalanine substitution, where the only structural difference is a loss of an aromatic 
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hydroxyl group, suggests that the hydroxyl group in Tyr362 may mediate additional 

important interactions with other residues within the binding pocket beyond pi-pi stacking 

with the substrate, thus playing a significant role in forming the structure of the binding 

pocket. When the hydroxyl is absent, as in the Tyr362Phe mutant, the residue may exist 

in a different spatial conformation that makes it less accessible for substrate-pi-stacking 

interactions. For hOCT2 mutants retaining MPP+ transport function, only Tyr245Ala 

demonstrated a significant decrease in affinity for the substrate compared to wildtype 

(Table 3.7). As such, Tyr245 also may be deemed an important site for hOCT2-MPP+ 

interaction. To briefly summarize, these initial findings suggest that Gln242, Tyr245, and 

particularly Tyr362 may be important for hOCT2-MPP+ interactions within the proposed 

binding pocket. Tyr362 demonstrates the strongest case for importance considering both 

its conservative and non-conservative substituted mutants eliminated transporter activity 

for MPP+.  

There are several explanations for the hOCT2 mutants (Gln242Lys, Tyr362Phe, 

and Tyr362Ala) that exhibited complete loss of MPP+ transport activity. The specific 

amino acid may be a critical residue for transporter-MPP+ substrate interactions and thus 

when substituted leads to a complete absence of MPP+ accumulation. Alternatively, the 

proposed transporter-binding pocket conformation could be altered as a result of the 

mutated residue. Another possibility is that transfection was not successful and therefore 

cDNA integration into the genomic DNA would be absent. Finally, the amino acid could 

be critical for maintaining the tertiary and quaternary structure of the transporter and when 

mutated could lead to a misfolded protein that is subsequently degraded rather than 

trafficking to the cell membrane following translation.  
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Genomic integration of intact cDNA for hOCT2 mutants was confirmed by PCR 

and gel electrophoresis (Figure 3.13) which ruled out a failed transfection. In order to 

confirm that inactive mutant hOCT2 transporters were translated and inserted into the 

plasma membranes of transfected mammalian cell lines Western blotting was performed. 

Transporter protein detected in the cell membrane fraction of nonfunctional mutants 

would suggest that the wildtype amino acid is likely a critical residue for interactions with 

MPP+. However, in this study, the polyclonal hOCT2 antibody failed to discriminate 

between CHO mock and hOCT2 transfected cells (Figure 3.14). Additionally, the antibody 

did not appear to bind specifically to hOCT2, as signal was detected at the expected 

position in membranes prepared from CHO mock, as well as from wildtype hOCT1 or 

hOCT3 expressing cells (data not shown). The consistent detection of a clear, single band 

for actin ruled out any issues related to assay technique. When hOCT2 was probed in 

subsequent immunocytochemistry experiments using the same polyclonal hOCT2 

antibody, no consistent fluorescent signal localized in the plasma membrane of CHO cells 

expressing hOCT2 was observed indicating the issue was related to the commercial 

hOCT2 antibody’s lack of specificity. Thus, no conclusions could be drawn from these 

experiments.  

Previous studies successfully demonstrated plasma membrane targeting when the 

transporter sequence for rOct1 or rOct2 was fused in frame to the C-terminus of GFP and 

transfected into MDCK cells [159,160]. A similar approach was performed in the current 

study by fusing the coding sequence of hOCT2 to the C-terminus of GFP to evaluate 

membrane targeting of non-functional hOCT2 mutants. However, we failed to observe 

targeting at the plasma membrane in CHO cells transiently transfected with the wildtype 
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hOCT2-GFP fusion construct. Instead we observed a consistent pattern of fluorescence 

in the cytosol surrounding the nucleus. The discrepancy in what was observed compared 

to the prior studies may be due to differences associated with the cell line used (MDCK 

vs CHO cells). A future study involving the transfection of our pEGFP-hOCT2 fusion 

construct into MDCK cells should be considered.  

In the analysis of docking known substrates with varying structures into the hOCT2 

homology models, interacting amino acids were identified to be unique for some 

substrates and shared for others (Table 3.3). For example, Glu448 was amongst the 

residues identified that was shared across many substrates including MPP+, cimetidine, 

epinephrine, metformin, and serotonin. This residue corresponds to Glu477 in rabbit Oct2, 

which was identified as being critical for mediating TEA transport and verified by a rabbit 

Oct2 homology model based on GlpT [153]. Glu447/Glu448, an amino acid with an acidic 

side chain, may be a critical site for anchoring positively charged substrates under 

physiological conditions. Cys474, which was identified in a prior study as a critical site for 

forming a pathway for hOCT2 mediated TEA transport and confirmed through homology 

models  based on the crystallized structure of LacY [146], was also identified in the 

present study for interacting with TPA. This finding was not too surprising considering the 

shared quaternary nitrogen-based structural scaffold of TEA and TPA. From these 

observations, our model suggests that there may be one binding pocket along the central 

cavity of hOCT2. Within this binding pocket, there may be a core set of amino acids that 

interact with most substrates, in conjunction with additional substrate-specific amino acids 

that accommodate structurally diverse (typically larger) substrates. Additional in vitro work 
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involving transporter mutagenesis experiments and subsequent kinetic analysis for each 

substrate would be necessary to support the preliminary in silico findings. 

Based on the in silico hOCT2 modeling and subsequent in vitro kinetic studies, the 

amino acids most critical for MPP+ interactions reside in TMDs 5, 7 and 10. Prior studies 

based on secondary and tertiary structures identified critical interacting residues in TMDs 

4, 10, and 11 [124,125,143,146,148,153]. There are a number of factors that could 

explain this apparent discrepancy. The majority of the prior substrate interaction studies 

were done with rodent OCTs; thus, species differences could account for the variations 

of identified residues. Additionally, different substrates were examined; TEA and choline 

were used in the rat and rabbit studies whereas the focus of the current work was on 

interactions with MPP+. As revealed in the analysis of docking diverse substrates in the 

current study, critical interacting amino acids may be unique to each substrate. This is not 

a surprising result given the diverse array of structures represented by OCT2 substrates. 

Finally, for the homology studies that have been performed previously, the templates 

utilized (LacY and GlpT) were both crystallized in the inward open conformation. 

Considering that PiPT was crystallized in the occluded state, different amino acids may 

be exposed to the substrates during in silico docking across the two conformation states. 

It may most likely be a combination of the latter two aspects in that structurally diverse 

substrates interact with unique sets of amino acids in a “transport channel” and these also 

vary as the transporter transitions through outward open, occluded, and inward open 

stages during substrate translocation. 

In summary, a homology model for hOCT2 based on an existing crystallized 

structure of PiPT was successfully generated. Amino acid residues that may be critical 
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for hOCT2 transporter-substrate interactions along with a proposed binding pocket region 

were identified based on the selected MPP+ docked model and were probed in vitro 

through mutagenesis studies. Additionally, a study involving the docking of known 

substrates into hOCT2 models identified overlapping and additional residues that may 

mediate transporter binding interactions. The results obtained in our combined in silico 

and in vitro study suggests a single binding region present along a central cavity within 

hOCT2 that shares some similarity with models generated in earlier published work. 

Future work, particularly confirming successful membrane targeting of non-functional 

hOCT2 mutants, will be necessary to strengthen our conclusions. Despite this 

shortcoming, the data acquired in the present study provides a sound foundation for 

understanding the physiochemical nature of hOCT2-substrate interactions that may 

ultimately serve to help optimize future rational drug design.   
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CHAPTER 4 

 

IDENTIFYING STRUCTURAL ELEMENTS OF HUMAN ORGANIC CATION 

TRANSPORTER 1 (SLC22A1) MEDIATING SUBSTRATE-TRANSPORTER 

INTERACTIONS 

 

4.A  INTRODUCTION 

The organic cation transporters (OCTs), OCT1, OCT2, and OCT3, are members 

of the solute carrier 22 (SLC22) subfamily of the major facilitator superfamily and via 

facilitated diffusion are responsible for the cellular entry of a variety of structurally diverse 

small organic molecules typically with positive charge. The OCT paralogs share 

similarities in their sequence, transmembrane topology, preferred substrates, and 

mechanism of substrate translocation. Despite these similarities, their sites of expression 

in the major organ systems vary. In humans, OCT1 and OCT3 both mediate substrate 

entry into enterocytes (OCT1 and OCT are expressed along the basolateral membrane 

and brush border, respectively) [1]. OCT1 and OCT3 are expressed along the sinusoidal 

membrane of hepatocytes in the liver playing a role in the first steps of hepatic elimination 

for their substrates [6]. In kidney, OCT2 and OCT3 are expressed on the basolateral 

membrane of proximal convoluted tubules governing the initial process of renal 

elimination [1]. OCTs have been shown to interact with hundreds of different endogenous 

and exogenous substrates/inhibitors under physiological conditions which include 

metabolites (e.g. creatine), neurotransmitters (e.g. serotonin, dopamine), hormones (e.g. 
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corticosterone), receptor antagonists (e.g. cimetidine), and antidiabetics (e.g. metformin) 

[1]. Due to their polyspecific nature and their tissue expression profiles, OCTs play a 

pivotal role in the absorption and elimination of their substrates impacting their 

pharmacokinetics and efficacy. As such, there is an increased potential for drug-drug 

interactions in patients taking concomitant medications. 

OCT2, is an important mediator of renal elimination and also a major site for 

clinically important drug-drug interactions. In turn, OCT2 has been routinely studied 

during the drug development process and is even included in regulatory guidances (e.g. 

FDA and EMA) as a protein target for the evaluation of new drug entities as 

substrates/inhibitors [112,113]. OCT1, on the other hand, despite being expressed in the 

sinusoidal membrane of hepatocytes and potentiating the initial steps of hepatic 

elimination for hundreds of compounds, has only recently emerged as a “clinically 

important” transporter. Evidence has been reported highlighting the significance of OCT1 

in drug-drug interactions and pharmacogenetic variability [116,161,162]. For example, 

fenoterol, a widely used narrow therapeutic window anti-asthmatic drug, was shown to 

have its pharmacokinetics and pharmacodynamics affected by genetic variants of OCT1 

[161]. Compared to healthy individuals, OCT1-deficient patients demonstrated a 1.9-fold 

increase in systemic fenoterol exposure and 1.7-fold decrease in volume of distribution. 

As a result, heart rate and blood glucose both significantly increased by 1.5-fold, and 3.4-

fold, respectively [161]. OCT1 also was shown to mediate hepatic uptake of sumatriptan, 

a drug used to treat acute migraines [116]. Systemic exposure of sumatriptan was 

increased by 2.1-fold in OCT1-deficient patients which was comparable to individuals with 

liver impairment. OCT1 polymorphisms, showed similar pharmacokinetic effects for the 
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active metabolite of the opiate analgesic tramadol, tropisetron, where systemic exposure 

was increased by 2-fold in homozygous OCT1 variant carriers [162]. These studies 

strongly suggest hepatic OCT1 to be a clinically important mediator of pharmacogenetic, 

pharmacokinetic and pharmacodynamic variability, and potentially drug-drug interactions. 

For the aforementioned studies, OCT1 serves as the rate limiting step for the transfer of 

many drugs from the systemic circulation to the liver. As OCT1 governs the hepatic 

clearance of these compounds, it essentially serves to mediate systemic drug exposure, 

thus establishes itself from a mechanistic DDI perspective as a potential major 

determinant of pharmacokinetics and drug clearance [163]. In light of the evidence, 

members of the International Transporter Consortium have even raised strong 

suggestions that evaluations of OCT1 be included as part of a rational drug design 

strategy [163]. 

Having the 3-D structural information available for hOCT1 is paramount for 

obtaining a better understanding of transporter-substrate interactions from a 

physicochemical perspective. However, to date, a crystal structure for any SLC22 family 

member has yet to be solved. An alternative strategy involves the construction of a 

homology model using the known crystal structure of a closely related protein (in this case 

transporter). Earlier studies have used the prokaryotic lactose permease (LacY) and 

glycerol-3-phosphate (GlpT) transporters as templates for studying the structures of 

OCT1 and OCT2 in rat, rabbit, and human [124,127,143,145,146,148] (Table 1.5). 

Despite these efforts identifying a number of amino acid residues that may be critical for 

OCT-substrate interaction, their models were generated based on templates that were 

prokaryotic in origin, crystallized in an inward facing conformation, and shared low OCT 
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sequence similarity (~15%). Additionally, the homology models were generated in order 

to confirm the spatial orientation of important residues identified in vitro, rather than used 

as a preliminary step for guiding amino acid mutational experimentation.  

In the current study, the elucidation of critical amino acid residues for transporter-

substrate binding interactions of hOCT1 was conducted by the generation of homology 

models using the Piriformospora indica phosphate transporter (PiPT), a structurally 

related eukaryotic transporter, as template. The information acquired from the newly 

constructed model was utilized in order to make predictions and assist in facilitating site 

directed mutagenesis studies to assess the homology model’s validity and to observe any 

potential changes in transport function and/or affinity (Km) for its prototypical substrate, 

MPP+. Docking studies for hOCT1 were performed for additional known substrates with 

varying structure in order to more broadly investigate transporter-substrate interaction. 

Further defining how OCT1 biochemically interacts with its broad array of substrates will 

provide significant insight to the understanding and prediction of drug-drug interactions in 

polypharmacy patients and the advancement of future rational drug design for 

therapeutics targeting OCT1. 
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4.B MATERIAL AND METHODS 

4.B.1 Chemicals and reagents 

Tritiated [3H] MPP+ was purchased from PerkinElmer Life and Analytical Science 

(Waltham, MA) and unlabeled MPP+ was obtained from Sigma-Aldrich (St. Louis, MO). 

Quinine monohydrochloride dihydrate was purchased from Acros Organics (Fair Lawn, 

NJ). Bio-Rad protein assay dye reagent concentrate was purchased from Bio-Rad 

Laboratories, Inc. (Hercules, CA). Specific primers for mutation reactions were purchased 

from Integrated DNA Technologies (IDT; Coralville, IA). QuikChange Lightning Site-

Directed Mutagenesis Kit was purchased from Agilent Technologies (Santa Clara, CA). 

Lipofectamine® 2000 Transfection Reagent and Prolong diamond antifade mountant with 

DAPI was purchased from ThermoFisher Scientific (Waltham, MA). QIAprep spin 

miniprep kit and QIAprep spin midiprep kit [154] were purchased from QIAGEN Inc. 

(Germantown, MD). GoTaq green master mix was purchased from Promega (Madison, 

WI). Opti-Mem reduced serum and Dulbecco’s modified eagle’s medium were purchased 

from Life Technologies (Carlsbad, CA).  

4.B.2 Homology modeling and docking studies 

The hOCT1 (UniProt ID: O15245) and PiPT (PDB ID: 4J05) sequences were 

obtained from the Universal Protein Resource (UniProt) and PDB, respectively [131,155]. 

Protein sequence alignment of PiPT and hOCT1 was performed with ClustalX and 

followed by sequence curating via loop removal and manual refinement of gaps based on 

the transmembrane domains observed in the PiPT crystal structure and predicted for 

hOCT1 using ICM Browser (Molsoft LLC) and Phobius (Stockholm Bioinformatics 

Center). Amino acid sequence alignment of hOCT1 with the template and subsequent 
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generation of a population of 100 homology models were performed using ClustalX 2.1 

and MODELLER v9.17, respectively. Using SYBL-X 2.1, a structural cavity search was 

conducted for each model to identify putative binding pocket(s). The hOCT2 substrates, 

MPP+, epinephrine, serotonin, cimetidine, tetrapentylammonium (TPA) and metformin, 

and the hOCT2 inhibitor, quinine, (Figure 4.1) were sketched and energy-minimized using 

SYBL-X 2.1 (Tripos Force Field, Gasteiger-Hückle charges distance-dependent dielectric 

constant = 4.0 D/Å) and docked into each of the 100 models within a 15 Å radius of Trp354 

(a residue present within the identified binding pocket) using GOLD Suite 5.5. A favorable 

model was selected based on the combined MODELLER discrete optimized protein 

energy (DOPE) score, GOLD docking score, and Ramachandran plot results. The DOPE 

score, accounting for spherical and finite shape of the native structures, helps to 

determine the quality of the protein models. The GOLD score evaluates the interactions 

of the docked substrate within the proposed binding pocket(s). Ramachandran plots were 

used to help visualize energetically allowed regions for backbone dihedral angles against 

amino acid residues in the protein structure. A model with more than 90% of amino acids 

located in the favorable regions of a Ramachandran plot is generally considered an 

acceptable model. High resolution images were obtained using PyMOL v1.8.and SYBL-

X-2.1. 
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Figure 4.1 Chemical structures of compounds docked into hOCT1 homology 
models. 
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4.B.3 Bacterial transformation 

Plasmid DNA (pcDNA3-hOCT1) was transformed through the following steps: 

adding 10 ng of DNA to 50 µL of DH5alpha competent cells, incubating on ice for 30 

minutes, and then applying heat shock at 42°C for 20 seconds. The mixture was then 

added to 950 µL of 37°C preheated LB broth and incubated while shaking (225 rpm) at 

37°C for one hour. Afterward, the mixture was plated onto LB agar plates containing 

ampicillin (0.1 mg/mL) and incubated overnight at 37°C. The following day, colonies were 

picked and grown overnight (with shaking at 225 rpm) in LB broth with ampicillin 

(0.1mg/mL) at 37°C. Plasmid DNA extraction was performed using the Qiaprep spin 

miniprep kit according to the manufacturer’s recommendations [154]. Bacterial pellets 

were resuspended and lysed, followed by the use of spin columns to isolate plasmid DNA 

and wash/discard any impurities in the flow through. Eluted plasmid DNA from the column 

was stored at -20°C. Plasmid DNA concentration and purity were determined via UV 

spectrophotometry.  

4.B.4 Point mutation of plasmid DNA 

Synthetic oligonucleotide primers containing the desired DNA mutations were 

designed using the QuikChange Primer Design program (Agilent Technologies) (Table 

4.1). Amino acid substitutions were introduced into the hOCT1 coding sequence via site 

directed mutagenesis (QuikChange Lightning Site-directed Mutagenesis Kit) according to 

the manufacturer's recommendations. The resulting mutant plasmids were transformed 

into XL 10-GOLD ultra-competent cells according to the manufacturer’s protocol and 

plated on LB-agar plates with ampicillin (0.1 mg/mL) and incubated overnight at 37°C. 
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Colonies were picked, purified, and the presence of the desired mutation was then 

confirmed by DNA sequencing. 
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Table 4.1 Primers for hOCT1 site directed mutagenesis. 
Protein residue Direction Mutant oligonucleotide (5' → 3') 
Gln241Glu Forward CCG TGA AGG CCA TCT CGT ACA TGA TCG CCA C 

 
Reverse GTG GCG ATC ATG TAC GAG ATG GCC TTC ACG G 

Gln241Lys Forward CCG TGA AGG CCA TCT TGT ACA TGA TCG CCA C 

 
Reverse GTG GCG ATC ATG TAC AAG ATG GCC TTC ACG G 

Phe244Tyr Forward CAG CCC CAC CGT GTA GGC CAT CTG GTA 

 
Reverse TAC CAG ATG GCC TAC ACG GTG GGG CTG 

Phe244Ser Forward CAG CCC CAC CGT GGA GGC CAT CTG GTA 

 
Reverse TAC CAG ATG GCC TCC ACG GTG GGG CTG 

Thr245Ser Forward CCA GCC CCA CCG AGA AGG CCA TCT G 

 
Reverse CAG ATG GCC TTC TCG GTG GGG CTG G 

Thr245Lys Forward CAG CCC CAC CTT GAA GGC CAT CTG GTA CAT 

 
Reverse ATG TAC CAG ATG GCC TTC AAG GTG GGG CTG 

Tyr361Phe Forward GAG CCC CTG AAA GAG CAC AGA GTC CGT GA 

 
Reverse TCA CGG ACT CTG TGC TCT TTC AGG GGC TC 
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Tyr361Ala Forward CAC GGA CTC TGT GCT CGC TCA GGG GCT CAT CCT G 

 
Reverse CAG GAT GAG CCC CTG AGC GAG CAC AGA GTC CGT G 

Gln447Glu Forward CAC CAG GCA GAT CAT TTC TAT TGC AAT GGT GAT TCC 

 
Reverse GGA ATC ACC ATT GCA ATA GAA ATG ATC TGC CTG GTG 

Gln447Lys Forward TCA CCA GGC AGA TCA TTT TTA TTG CAA TGG TGA TTC CC 

  Reverse GGG AAT CAC CAT TGC AAT AAA AAT GAT CTG CCT GGT GA 
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4.B.5 Cell line transfection and maintenance 

Mutant transporter expressing CHO cell lines were generated using cationic lipid-

based transfection. Briefly, 1μg plasmid DNA was combined with 2 µL Lipofectamine 

2000 (Invitrogen), mixed, diluted in 100 µL Opti-MEM (Invitrogen) and applied to CHO 

cells at 50-60% confluency in 12-well plates (Corning Inc, Corning, NY). Fresh culture 

medium (DMEM/F12) was applied just prior to the addition of transfection agents. After 

incubating for 24 hours at 37°C / 5% CO2, the transfection medium was removed and 

replaced with fresh medium containing geneticin (G418; 1 mg/mL) to select for 

successfully transfected cells for a period of 14-21 days.  

CHO control, CHO-hOCT1 and CHO-hOCT1 mutant cell lines were maintained in 

Dulbecco’s Modified Eagle’s Medium/F12 (DMEM/F12) with 10% FBS, and 1% 

Penicillin/Streptomycin at 37°C with 5% CO2 in 25 or 75mm2 polystyrene flasks. G418 

(250μg/mL) was included in the medium for maintaining selective pressure on stably-

transfected cell lines. Cells were sub-cultured every 3-4 days and passages 10-40 were 

used for experiments. 

4.B.6 Cell accumulation assays 

 Mutant functional screening 

The procedure for the cell accumulation assay has been described previously 

[68,69]. Briefly, cells were seeded into 24-well tissue culture plates at a density of 1.5×105 

cells/well in the absence of antibiotics and cultured for 48 hours. Cells were equilibrated 

with transport buffer for 10 min (500 µL of Hanks’ balanced salt solution containing 10 

mM HEPEs, pH 7.4). Equilibration transport buffer was replaced with 400 µL of fresh 

transport buffer containing 1 µM unlabeled MPP+ spiked with trace [3H]MPP+ (0.25 µCi/ml) 
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in the presence or absence of the inhibitor quinine (200 µM). After incubation for 10 

minutes, the cells were immediately rinsed 3 times with ice cold transport buffer, lysed 

with 200 µL 1N NaOH, neutralized with 250 µL 1N HCl and 200 µL 10mM HEPES. The 

radioactivity in cell lysates was quantified by liquid scintillation counting, and uptake 

normalized by the total protein content determined by the Bradford method. The 

intracellular accumulation of substrates was reported as picomoles of substrate per 

milligram total protein. All uptake data were corrected for background accumulation in 

corresponding CHO empty vector cells.  

Kinetic assays 

The Michaelis-Menten constant (Km) was determined for MPP+ uptake in each of 

the generated mutant hOCT1-expressing cell lines via saturation analysis according to 

our established protocol [156]. The experiment was carried out in the same way as 

described for the functional screening assay with the exception that the equilibration 

transport buffer was replaced with 400 µL of fresh transporter buffer containing increasing 

concentrations (1-200 µM) of unlabeled MPP+ spiked with [3H]MPP+ (0.25 µCi/ml) and 

incubated for a period of 1 minute. After incubation, the cells were immediately rinsed 3 

times with ice cold transport buffer and lysed with 1N NaOH, neutralized with 250 µL 1N 

HCl and 200 µL 20mM HEPES. The Km estimate, which represents the concentration of 

substrate at half maximum velocity of the transporter, was calculated using nonlinear 

regression with the enzyme kinetics model in GraphPad Prism 5.0 (GraphPad Software 

Inc., San Diego, CA). Individual saturation experiments were repeated at least three times 

with duplicate wells and plotted as mean ± SD. Km estimates were reported as mean ± 

SE. 
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4.B.7  Genomic DNA integration confirmation 

Cells were suspended in 500 μL lysis buffer [1 M Tris (pH 8.0), 5 M NaCl, 0.5 M 

EDTA, and 10% SDS] containing proteinase K (0.4 mg/mL) and incubated at 55°C while 

shaking overnight. Genomic DNA was thoroughly extracted from samples with an equal 

volume of phenol/chloroform/isoamyl alcohol (25:24:1) after gentle mixing for 10 min, and 

centrifugation for 10 min at 15,000 g. The upper aqueous phase was carefully collected, 

isopropanol was added and mixed well, then centrifuged immediately at 15,000 g for 30 

min to obtain DNA pellet. The pellet was washed with 70% ethanol, dried, and 

resuspended with 50 µL TE buffer [10 mM Tris (pH 8.0), and 1 mM EDTA]. Concentration 

of DNA was determined through UV spectrophotometry. Genomic DNA (2 ng), 2x Go-taq 

Master Mix (5 μL), as well as 1 μL primer pair mix (T7: 5’- TAATACGACTCACTATAGGG-

3; hOCT1-REV: 5’- TGAAGGCCATCTGGTACATG -3’) were added together to a final 

volume of 20 µL and run in a thermocycler: initial denaturation at 95°C for 5 min, followed 

by 30 cycles of: denaturation at 95°C for 2 min, annealing at 50-52°C for 30 seconds, and 

elongation at 72°C for 30 seconds. Final elongation step at 72°C for 5 min and held at 

4°C. PCR products were loaded into a 1% agarose gel for separation using 

electrophoresis at 120 V for 60 min and visualized by UV light following ethidium bromide 

staining. 

4.B.8  Green fluorescent protein (GFP) plasmid construction 

To make the hOCT1-GFP fusion construct, the full length hOCT1 cDNA fragment 

was removed from the isolated library clone, pcDNA3/hOCT1, using the restriction 

enzymes Kpn I and Xba I. The fragment was gel isolated and ligated into the pEGFP-C1 

vector in frame at the carboxyl terminal end of GFP forming the plasmid pEGFP-
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C1/hOCT1, where “E” denotes “enhanced”. Plasmid construction was performed 

commercially (GenScript, Picataway, NJ). The lyophilized GFP plasmid construct, was 

resuspended and diluted in TE pH 8, transformed into DH5-alpha cells and DNA extracted 

using the Qiagen miniprep kit. The construct was confirmed by DNA sequencing. Non-

functional hOCT1 mutants were reproduced in the hOCT1-GFP construct using the 

original primers (Table 4.1) and the QuikChange Lightning site-directed mutagenesis kit.  

4.B.9  Microscopic imaging  

An Olympus IX-70 inverted microscope fit with a 12-bit camera was used to 

capture phase contrast and fluorescent images (Olympus, Melville, NY). Fluorescent 

images were taken with two second exposures using a 595 nm dichroic long pass filter 

(Chroma, Rockingham, VT) illuminated by a mercury arc lamp. The images were 

processed using Olympus Microsuite v.5. Confocal fluorescent images were obtained at 

the VCU Microscope Core facility using a Zeiss LSM 710 Axio Observer inverted laser 

scanning confocal microscope fitted with a 63x oil immersion objective. Images were 

collected by illuminating samples with a blue diode laser at 405 nm. Images were 

processed using Zeiss ZEN 2 Blue edition software (Oberkochen, Germany). 

4.B.10  Statistics 

The data plots were presented as means ± SD. Dose response curve (Km estimate) 

data were reported as mean ± SE for at least n = 3. Km estimates were fit based on the 

equation: V0 = Vmax * [S] / (Km + [S]). One-way ANOVA with post-hoc Dunnett’s test was 

used to evaluate differences compared to a single control where indicated. Statistical 

calculations were performed using Prism 5.0 (GraphPad Software, Inc., San Diego, CA). 

A difference was deemed statistically significant if p < 0.05.  
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4.C RESULTS 

4.C.1 Identification of a hOCT1 model 

The hOCT1 peptide sequence (Uniprot ID: O15245) was aligned with the PiPT 

template sequence (PDB ID: 4J05) (Figure 4.2) as input for the program MODELLER to 

generate 100 initial hOCT1 homology models. Analysis of the initial 100 models identified 

a single large cavity in the central region of the transporter as a potential binding pocket. 

MPP+ was subsequently docked in this region. After docking MPP+ into the generated 

hOCT1 models, the most favorable interaction model was selected based on three main 

criteria: GOLD docking score, DOPE score, and the total number of clusters. 

The genetic optimized ligand docking (GOLD) scoring is essentially a method to 

quantify which poses generated for a particular ligand are most likely to occur based on 

the interactions present within the transporter. GOLD scores for the top ten most 

favorable docked poses of MPP+ in the binding pocket of the hOCT1 models (ranging 

from 58.52 to 64.5) were ranked (Table 4.2). Amongst this select group, the top four 

model’s GOLD scores had a difference of 1.85 between them, thus were considered to 

be virtually identical. The difference between the top and fifth ranked model was 

increasingly larger (2.72). The discrete optimized protein energy (DOPE) score accounts 

for the shape of native structures which in turn helps to evaluate the quality of the whole 

protein structure. The DOPE scores for the top ten models ranged between -48,992 and  

-47,382 (Table 4.2). Additionally, the number of homology models which contained a 

given substrate pose (number of clusters) was also accounted for in model selection. The 

greater the number of models that have a particular substrate pose docked, the higher 

the likelihood that the specific pose occurs within the binding pocket. Out of the top 10 
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models, models 35 and 47 had the highest number of clusters (12 and 8 clusters, 

respectively), while the rest had 5 or less. Among the top four ranked GOLD score 

models, model 35 stood out as having the lowest DOPE score (-48,141; fifth lowest DOPE 

score overall) in conjunction with the highest number of clusters (12). Taken together, 

these three selection criteria indicate model 35 as the most favorable docked model and 

thus it was selected for subsequent studies. The generated tertiary structure for model 35 

with MPP+ docked in the hypothesized binding pocket is shown in Figure 4.3. The docked 

hOCT1 model shows MPP+ residing inside a large central cavity of the 12-membrane 

spanning alpha helical domains. 

Ramachandran plots were utilized as a method for determining and visualizing 

“allowed regions” for the backbone dihedral angles that make up amino acids in the 

generated model. For the amino acids that made up our selected hOCT1 model, 90.0% 

were in the most favored regions, 7.3% were in the additionally allowed region, and only 

2.7% were in the generously allowed and disallowed regions combined (Figure 4.4). The 

most favored regions category was considered high enough to support the selected 

hOCT1 model as acceptable. 
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Figure 4.2 Sequence alignment of PiPT and hOCT1.  
 
The alignment was constructed with ClustalX, followed by manually refining gaps based 
on the transmembrane regions observed in the PiPT crystal structure and predicted for 
hOCT1 using Phobius, a topology prediction algorithm. Residues were truncated for the 
large extracellular and intracellular loop between transmembrane domain 1 and 2 (TMD 
1 and 2) and between TMD 6 and 7 of PiPT and hOCT1, respectively. The 
transmembrane domains in the hOCT1 model and PiPT tertiary structure are shaded. “*” 
indicates exact sequence match, “:” indicates high sequence similarity, “.” indicates low 
sequence similarity 
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Table 4.2 Summary of hOCT1 model evaluation scores. 

GOLD Rank Model ID GOLD score DOPE Score 
No. of 

Clusters 
1 93 64.5 -47779.43359 5 

2 22 63.65 -47533.55859 1 

3 35 63.07 -48141.65625 12 

4 100 62.65 -48001.56641 3 

5 91 61.78 -48538.58984 3 

6 47 60.58 -48042.83594 8 

7 85 60.31 -47898.90625 1 

8 46 60.21 -48336.22656 2 

9 80 58.99 -47382.37891 1 

10 73 58.85 -48217.75 2 
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Figure 4.3 hOCT1 homology model.  
 
The generated 3-D molecular structure of hOCT1 (ribbons) is shown with MPP+ (space-filled) positioned in the putative 
binding pocket viewed from (A) profile and (B) top-down angles.  
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Figure 4.4 Ramachandran plot for hOCT1 homology model. 

Phi and psi indicate backbone conformation dihedral angles of amino acid residues, 
representing the rotations of a polypeptide main chain N-Cα and Cα-C bonds. Amino 
acids are displayed in different regions: most favored region (red), additional allowed 
region (yellow), generously allowed region (light yellow), and disallowed region (white). 
Residues depicted in red squares are in the generously allowed and disallowed regions. 
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4.C.2 Identifying amino acid residues important for MPP+ hOCT1 interaction 

Several amino acids were identified that made up the binding pocket (within the 

designated 5 Å radius of the substrate) for docked MPP+ in the selected hOCT1 model. 

The identified amino acid residues were found in several different TMDs that came 

together in the central area forming a large distinct cavity of the transporter—TMD 1: 

Trp16; TMD 5: Ile238, Gln241, Met242, Phe244, Thr245, Val246; TMD 7: Trp354, 

Asp357, Ser358, Tyr361, Gln362; TMD 8: Glu386, Ile387, Ala390; TMD 10: Ile444, 

Gln447, Ile449, Cys473 (Figure 4.5). Within the proposed binding pocket, five amino acids 

were identified (Gln241, Thr245, Phe244, Tyr361, and Gln447) as potential candidates 

critical for transporter-MPP+ binding interactions. Hydrophobic interactions were found 

between MPP+ and amino acid residues Gln241, Thr245, and Glu447, and one of the 

aromatic rings of MPP+ was recognized as forming edge-face-pi and pi-stacking 

interactions with Phe244 and Tyr361, respectively (Figure 4.6 and Table 4.3).  

To further evaluate the generated in silico hOCT1 model, known substrates with 

disparate structures were optimized and docked into the population of 100 models to 

determine the presence of alternative and/or additional critical amino acid residues in the 

binding pocket(s). The process involved with selecting the most favorable model for 

MPP+, was repeated for each docked substrate. Amino acids identified with the greatest 

overlap across the different docked compounds were Phe244, Asp357, Tyr361, and 

Gln447 (Figure 4.7 and Table 4.3). There were several amino acids identified that were 

also unique to particular compounds including Thr245 for MPP+; Trp16, Asn156, Phe159, 

and Asp474 for cimetidine; Gln20 for epinephrine; Leu23 for quinine; Ser358 for 

serotonin; and Ile449 for TPA.   
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Figure 4.5 3-D rendering of putative binding pocket of hOCT1 with docked MPP+. 

Amino acid side chains (white) comprising the binding pocket surrounding the substrate MPP+ (orange) is shown viewed 
from (A) profile and (B) top-down angles. 
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Figure 4.6 Structure of hOCT1 with MPP+ docked. 
 
The docked substrate (MPP+, orange) and the amino acids (white side chains) is shown 
localized in the predicted substrate binding pocket of hOCT1.  
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Table 4.3 hOCT1 docking interaction summary. 

Substrate Amino Acid 
Sequence 
position 

Bond Interaction TMD 

MPP+ Gln 241 Hydrophobic 5 

 Phe 244 Edge Face pi 5 

 Thr 245 Hydrophobic 5 

 Tyr 361 Pi-stack 7 

 Gln 447 Hydrophobic 10 

Cimetidine Trp  16 Hydrophobic 1 

 Asn 156 H-bond 2 

 Phe 159 Pi-stacking 2 

 Trp 217 Hydrophobic 4 

 Phe 244 Hydrophobic 5 

 Asp 357 H-bond (salt bridge) 7 

 Tyr 361 Pi-stacking 7 

 Gln 362 H-bond 7 

 Asp 474 H-bond (salt bridge) 11 

Epinephrine Gln 20 H-bond 1 

 Phe 244 Edge-face pi 5 

 Asp 357 H-bond 7 

 Tyr 361 Pi-stacking 7 

 Gln 447 Hydrophobic 10 

 Cys 450 Hydrophobic 10 

Metformin Phe 244 Edge-face pi 5 
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 Trp 354 Hydrophobic 7 

 Asp 357 H-bond (salt bridge) 7 

 Tyr 361 Pi-stack 7 

 Gln 447 Hydrophobic 10 

 Cys 473 Hydrophobic 10 

Quinine Leu 23 Hydrophobic 1 

 Trp 217 Hydrophobic (weak) 4 

 Phe 244 Hydrophobic 5 

 Asp 357 H-bond  7 

 Tyr 361 Pi-stacking 7 

 Gln 447 H-bond  10 

 Cys 473 Hydrophobic 10 

Serotonin Gln 241 H-bond 5 

 Phe 244 Hydrophobic 5 

 Asp 357 H-bond 7 

 Ser 358 Hydrophobic 7 

 Tyr 361 Pi-stack 7 

 Gln 362 H-bond 7 

 Ile 444 Hydrophobic 10 

 Cys 473 H-bond 10 

TPA Phe 244 Hydrophobic 5 

 Asp 357 Ionic w/quaternary N 7 

 Tyr 361 Hydrophobic 7 
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 Ile 444 Hydrophobic 10 

 Gln 447 Hydrophobic 10 

 Ile 449 Hydrophobic 10 

  Cys 450 Hydrophobic 10 
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Figure 4.7 Known hOCT1 substrates docked into hOCT1 homology model. 

Known hOCT1 substrates (purple or orange) (A) cimetidine, (B) epinephrine, (C) metformin, (D) quinine, (E) serotonin, and 
(F) TPA, were docked into their respective favorable hOCT1 models. Proposed interactions of interactions are summarized 
in Table 4.3. 
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4.C.3 Substitution of hOCT1 amino acid residues in putative binding pocket 

We investigated the role of the predicted amino acids in hOCT1-MPP+ interactions 

through conservative and non-conservative amino acid substitutions introduced into the 

hOCT1 coding sequence to evaluate potential changes in hOCT1 function and affinity for 

MPP+. The pcDNA3/hOCT1 plasmid vector map is shown in Figure 4.8. The rationale for 

deciding each conservative and non-conservative amino acid substitution was based on 

a scheme developed by Bordo et al. which categorizes roughly equivalent amino acid 

residues based on their physicochemical properties of their side chains (Figure 4.9) [157]. 

Substitutions for residues deemed critical were Gln241Glu, Phe244Tyr, Thr245Ser, 

Tyr361Phe, and Gln447Glu (conservative); and Gln241Lys, Phe244Ser, Thr245Lys, 

Tyr361Ala, and Gln447Lys (non-conservative) (Tables 4.4, 4.5, and 4.6). Several 

attempts were made to generate the hOCT1 Tyr361Phe mutant. However, each time, the 

desired mutation was present as a tandem repeat, i.e., the entire target region 

incorporated into the mutation generating primers was duplicated in the final product. We 

were unable to resolve how or why this occurred. All successfully constructed hOCT1 

mutants were confirmed by DNA sequencing prior to generating stable cell lines. Figure 

4.10, depicts a representative DNA-oligonucleotide duplex and sequencing 

chromatogram in which CAA, coding for Gln447 in wildtype hOCT1, was changed to GAA, 

coding for the hOCT1 mutant Gln447Glu. 
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Figure 4.8 pcDNA3/hOCT1 vector map. 
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Figure 4.9 Suggested guidance for amino acid residue conservative substitution. 

Roughly equivalent amino acid residues categorized based on physiochemical properties into five subgroups.  
 
Diagram is an adapted figure from reference [157] 
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Table 4.4 Summary of hOCT1 residue substitutions. 

  Substitution 

Residue Conservative Non-Conservative 

Gln241 Glu Lys 

Phe244 Tyr Ser 

Thr245 Ser Lys 

Tyr361   Phea Ala 

Gln447 Glu Lys 

a Mutant was not able to be generated 
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Table 4.5 hOCT1-MPP+ interaction based conservative substitutions. 

Amino Acid 
Sequence 
position 

Codon Mutant Codon Substitution 

Gln 241 CAG GAG Gln → Glu 

Phe 244 TTC TAC Phe →Tyr 

Thr 245 ACG TCG Thr → Ser 

Tyr 361 TAT TTT Tyr → Phea 

Gln 447 CAA GAA Gln → Glu 

a mutant was not able to be generated 
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Table 4.6 hOCT1-MPP+ interaction based non-conservative substitutions. 

Amino Acid 
Sequence 
position 

Codon Mutant Codon Substitution 

Gln 241 CAG AAG Gln → Lys 

Phe 244 TTC TCC Phe →Ser 

Thr 245 ACG AAG Thr →Lys 

Tyr 361 TAT GCT Tyr → Ala 

Gln 447 CAA AAA Gln → Lys 
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Figure 4.10 Representative sequencing chromatogram for hOCT1 mutants. 
 
(A) DNA template-primer duplex for hOCT1 Q447E. Chromatogram for (B) hOCT1 
wildtype and (C) hOCT1 Q447E are shown with triplet codon corresponding to mutation 
site highlighted 
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4.C.4 Critical amino acid confirmation through kinetic assays 

In functional screening assays evaluating [3H] MPP+ transport (Figure 4.11), wild-

type hOCT1 demonstrated a 5-fold higher uptake of MPP+ compared to mock expressing 

(pcDNA3) background control cells (11.7 ± 4.9 pmol mg protein-1 10 min-1 vs. 2.4 ± 0.02 

pmol mg protein-1 10 min-1). Quinine (200 µM), a known inhibitor for OCTs, virtually 

abolished hOCT1 mediated MPP+ transport. Four non-conservative mutants, hOCT1 

Glu241Lys, Thr245Lys, Tyr361Ala, and Gln447Lys, resulted in a complete loss of MPP+ 

transport activity (Figure 4.11). All other mutants retained some level of transport activity 

and were subjected to saturation analysis in order to estimate Km (Figure 4.12, Table 4.7).  

The affinity of MPP+ determined for wildtype hOCT1 was comparable to values in 

prior studies (Km = 16.3 ± 3) [158]. When comparing the Km estimates for hOCT1 mutants 

against wildtype hOCT1, the non-conservative substitution Phe244Ser and the 

conservative substitution Thr245Ser resulted in a significant decrease in affinity for MPP+. 

The mutants Gln241Glu, Phe244Tyr, and Gln447Glu, all demonstrated no significant 

change in affinity for MPP+.  
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Figure 4.11 Functional screen of CHO-hOCT1 wild type and mutant expressing cell 
lines. 
 
CHO cells were treated with transport buffer containing 1 µM [3H] MPP+ (0.25 µCi/mL) in 
the absence or presence of inhibitor (quinine) for 10 min. Conservative and non-
conservative mutations appear above original amino acid position. Data shown as 
duplicate values ± SD. ** denotes p<0.01; *** denotes p<0.001; compared against wild 
type control by one-way ANOVA followed by post-hoc Dunnett’s t-test. 
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Figure 4.12 Representative dose response curves for wild type and mutant hOCT1. 

Michaelis-Menten kinetics of [3H] MPP+ transport (1–200 µM) for hOCT1 and hOCT1 
mutants in stably transfected CHO cells.  
.  
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Table 4.7 Summary of Km estimates for hOCT1 constructs. 

hOCT1 Transporter Km (µM) 
WT 16.3 ± 2.5 

Gln241Glu 18.2 ± 1.2 

Phe244Tyr 24 ± 0.32 

Phe244Ser 33.4 ± 5* 

Thr245Ser 37.4 ± 6.4* 

Gln447Glu 14.3 ± 2.6 

Mean Km estimates acquired from triplicate experiments ± SE.  
* denotes p < 0.05 compared against wild type control by one-way 
ANOVA followed by post-hoc Dunnett’s t-test. 
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4.C.5 Genomic integration of non-functional hOCT1 mutant constructs 

To eliminate failed genomic DNA integration as an explanation for the lack of 

transport activity in non-functional hOCT1 mutants, genomic DNA was extracted and PCR 

amplified using the primers T7 and hOCT1 REV, that flanked 5’ and 3’ ends of the hOCT1 

coding sequence of the pcDNA3 plasmid (hOCT1 amplicon ~1.7 kb). PCR products of 

the expected size (~1.7 kb) were obtained for wildtype hOCT1 and all hOCT1 mutants 

(Gln241Lys, Tyr361Ala, Thr245Lys, and Gln447Lys), while no product was observed for 

negative controls (water and pcDNA3) demonstrating that all hOCT1 plasmids had been 

successfully integrated (Figure 4.13).  

4.C.6 Membrane targeting of hOCT1-GFP fusion construct 

The full length hOCT1 cDNA fragment was gel isolated and ligated into vector 

pEGFP-C1 forming the plasmid pEGFP-C1/hOCT1 containing hOCT1 fused in frame to 

the carboxyl terminal of GFP (Figure 4.14). CHO cells expressing the hOCT1-GFP 

fusion construct showed strong fluorescence within the cytosol and lack of signal in the 

nucleus (Figure 4.15). This pattern is consistent with an intact GFP fusion construct 

versus expression of “free” GFP. However, no noticeable fluorescence at the plasma 

membrane was observed. Control transfections (lipofectamine only) showed no 

fluorescent signal (data not shown). In order to have a reference of the membrane 

localization of OCTs, MDCK cells stably transfected with a rat Oct2-GFP fusion 

construct from a previous study were grown and observed [159] (Figure 4.16). 

 

  



 
 

128 
 

 

 

 

 

 

Figure 4.13 PCR analysis of genomic DNA isolated from hOCT1 cell lines. 

Confirmation of successful genomic integration of mutant hOCT2 constructs that lacked 
transport activity. Lanes: (1) water, (2) pcDNA3, (3) hOCT1, (4) hOCT1 Gln241Lys, (5) 
hOCT1 Thr245Lys, (6) hOCT1 Tyr361Ala, (7) hOCT1 Gln447Lys 
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Figure 4.14 pEGFP-C1/hOCT1 fusion protein vector map. 
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Figure 4.15 Expression patterns of pEGFP-C1/hOCT1. 

CHO cells transfected with pEGFP-C1/hOCT1 were fixed, permeabilized, and mounted 
at 24 hours post transfection then viewed under confocal microscopy: (A) phase contrast, 
(B) GFP, (C) DAPI, and (D) merge. Scale bar = 20 µm 
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Figure 4.16 Expression of pEGFP-C3/rOct2 in MDCK cells. 

MDCK cells stably transfected with pEGFP-C3/rOct2 were thawed, grown in culture for 
48 hours, then observed by fluorescence microscopy (40x magnification). Observed cells 
were used in a study performed in reference [159] 
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4.D DISCUSSION 

The polyspecific nature of the OCTs make them prime targets for potentially 

unwarranted effects of drug-drug interactions. Any insight on the physiochemical nature 

of the substrate interactions for these transporters will undoubtedly serve to guide the 

prediction of such occurrences. The importance of understanding OCT-substrate 

interactions has recently garnered more attention. Several important studies have 

identified probable residues for OCT substrate interaction through the use of homology 

models based on the crystallized structures of the prokaryotic MFS transporters LacY or 

GlpT [143,146,148,153]. Their initial findings were helpful in establishing the usefulness 

of this relatively novel technique for the understanding of OCT transport, however, may 

be limited due to low sequence identities shared between the templates used and 

mammalian OCTs (~15%).  

Therefore, in the current study, homology models of the tertiary structure of hOCT1 

were generated using the known crystal structure of PiPT serving as the template. PiPT, 

also a member of the MFS, was chosen as the designated template due to a number of 

factors including its relative sequence homology to the hOCTs (~21% identical, 40% 

similar), eukaryotic origin (Piriformospora indica), and the fact that it was crystallized in 

the occluded state. The occluded conformation grants the transporter maximum binding 

interaction sites for bound ligands. After docking MPP+ into the generated hOCT1 models, 

amino acid residues were identified that formed the putative binding pocket (within a 5 Å 

radius surrounding the substrate) (Figure 4.6). This approach required that several 

assumptions be made during the in silico model building process including that adequate 

structural similarity exists between the crystallized tertiary structure of PiPT and hOCT1 
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and that the presence of water molecules in the occluded binding pocket was negligible 

and therefore not considered during the docking analysis. All models were generated 

based on PiPT and the hOCT1 protein sequence with transmembrane domains globally 

energy minimized. Amino acid residues deemed “critical” for hOCT1-MPP+ binding 

interactions were identified in silico based on substrate proximity and interaction type 

(Table 4.3).  

Within the proposed binding pocket, hydrophobic interactions were identified 

between MPP+ and amino acid residues Gln241, Thr245, and Glu447, and one of the 

aromatic rings of MPP+ was found to be involved in edge-face pi and pi-stacking 

interactions with Phe244 and Tyr361, respectively. Subsequently, stably transfected CHO 

cells expressing hOCT1 mutants were established and utilized for a series of in vitro 

kinetic assays to confirm their role in substrate binding. From the functional screening 

study, transport activity of MPP+ was absent in the non-conservative substitution of 

Gln241, Thr245, Tyr361, and Gln447 (Figure 4.11). All conservative substituted mutants, 

and one non-conservative substitution retained transport function (Phe244). The MPP+ 

docked hOCT1 model predicted strong interactions for Phe244 and Tyr361 (edge-face pi 

and pi-pi stacking, respectively). The retained transport function for both mutants of 

Phe244 contradicted the model’s prediction. Loss of transport function by the 

conservative Tyr361Ala mutation suggested that this residue may be a critical site for 

substrate binding. This result correlates with the MPP+ docking data where Tyr361 was 

predicted to participate in the strongest substrate interactions (pi-pi stacking). However, 

in contrast to hOCT2, we were unable to isolate the conservative hOCT1 Tyr361Phe 

mutant. Thus, whether or not a similar possibility as observed for hOCT2 exists for hOCT1 
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for the aromatic hydroxyl group to mediate additional important interactions with other 

residues within the binding pocket beyond pi-pi stacking with MPP+ and, thus, playing a 

significant role in forming the structure of the binding pocket, is unknown. Evaluating the 

transport function for the conservative substituted mutant of Tyr361 (mutant was unable 

to be constructed) would provide stronger support as a critical residue for MPP+ 

interaction.  For hOCT1 mutants retaining MPP+ transport function, Phe244Ser and 

Thr245Ser displayed significantly decreased substrate affinity (Table 4.7). In turn, it is 

plausible to suggest that Phe244Ser and Thr245Ser are important sites for MPP+ 

interaction. Future studies involving the generation of a Phe244Ser/Thr245Ser double 

mutant could provide additional evidence to support their importance for substrate 

interaction. These preliminary findings suggest that Glu241, Phe244, Thr245, Tyr361, and 

Gln447 are the leading candidate residues that may be involved in hOCT1-MPP+ 

interactions. Among these, Thr245 holds the strongest case since its conservative 

substituted mutant had significantly attenuated affinity and its non-conservative mutant 

demonstrated a complete loss of activity for the transport of MPP+.  

The complete loss of MPP+ transport activity by hOCT1 mutants (Gln241Lys, 

Thr245Lys, Tyr361Ala, and GLn447Lys) may be due to several of the following factors. 

The amino acid could be largely responsible for MPP+ interactions such that when 

mutated will lead to the loss of transport and/or a change in the overall conformation of 

the binding pocket. Alternatively, there could have been issues during the transfection 

process leading to the absence of cDNA integration into the genome. Another possibility 

is that the amino acid may be critical for the structural integrity or trafficking of the 

transporter within the cell. If this were the case, mutations at this residue could lead to 
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protein misfolding that is subsequently degraded rather than integrating into the cellular 

membrane following its translation.  

Genomic integration of intact cDNA for hOCT1 mutants was confirmed by PCR 

and gel electrophoresis (Figure 4.13) thus ruling out failed transfection. In order to confirm 

that inactive mutant hOCT1 transporters were translated and inserted into the plasma 

membranes of transfected mammalian cell lines, a hOCT1-GFP fusion construct was 

made by fusing the coding sequence of hOCT1 to the C-terminus of GFP and transfected 

into CHO cells. Plasma membrane targeting was achieved in earlier studies using a 

similarly constructed GFP fusion construct for rat Oat1 and rat Oct2 transfected into 

MDCK cells [159,160]. In the current study, however, plasma membrane targeting was 

not observed in CHO cells transiently transfected with the wildtype hOCT1-GFP fusion 

construct. Instead a consistent pattern of fluorescence in the cytosol was noticed. The 

discrepancy in what was observed compared to the prior studies perhaps may be due to 

differences associated with the cell line used (MDCK vs CHO cells). A future study 

involving the transfection of our pEGFP-hOCT1 fusion construct into MDCK cells should 

be considered.  

For the analysis of docking known substrates with a diverse array of structural 

features into hOCT1 homology models, amino acids identified were unique to some 

substrates and shared for others (Table 4.3). For example, Glu 447 was among the group 

of residues that was shared across a diverse group of substrates which included MPP+, 

epinephrine, metformin, quinine, and TPA. The conserved residue in rabbit Oct2 (also at 

position 447) was identified as a critical site for mediating TEA transport which was 

subsequently confirmed in a rabbit Oct2 homology model on GlpT [153]. Under 
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physiological conditions, the acidic side chain present in Glu477 may be anchoring the 

transport of positively charged compounds. Cys451, identified in a previous study as a 

residue important for mediating choline transport by rabbit Oct1 and verified through 

homology models based on the solved structure of LacY [144], was also identified in the 

present study (Cys450) for interacting with epinephrine and TPA. This observation is 

consistent chemically since both choline and TPA both contain a quaternary amine. TPA 

was also predicted to interact with Cys473 in the hOCT1 homology model in the current 

study. In a different study, the conserved residue, Cys474, in hOCT2 was demonstrated 

to mediate TEA transport and verified by a hOCT2 homology model generated based on 

the crystallized tertiary structure of GlpT [146]. Both TEA and TPA also share a similar 

quaternary nitrogen backbone in their chemical structures which may explain their shared 

interaction with cysteine in this particular binding region in hOCT transporters. From these 

observations, our model suggests that there may be one binding pocket along the central 

cavity of hOCT1. Within this binding pocket, there may be a core set of amino acids that 

interact with most substrates, in conjunction with additional substrate-specific amino acids 

that that accommodate structurally diverse substrates. Additional in vitro work involving 

transporter mutagenesis experiments and subsequent kinetic analysis for each substrate 

would be necessary to support the preliminary in silico findings. 

From the in silico hOCT1 modeling and subsequent in vitro kinetic work in the 

current study, TMDs 5, 7, and 10 were the regions that contained the amino acids 

predicted to interact with MPP+. Other OCT-substrate interaction studies identified 

important residues in TMDs 4, 10, and 11 [124,125,143,146,148,153]. Several factors 

should be considered that could help delineate these apparent disparate observations. 
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OCT models generated from different species of rodents were evaluated in the earlier 

interaction studies, thus species differences could account for the variations of identified 

residues. Interaction studies were conducted on different substrates. The current work 

generated hOCT1 models which were docked with MPP+, while the other studies on rat 

and rabbit docked TEA and choline. As determined in the analysis involving docking 

known hOCT1 substrates, amino acid residues critical for interaction may be unique to 

each compound. Given the diverse substrate specificity of hOCT1, this result was not 

unexpected. In prior homology model studies, rodent Oct1 was modeled based on the 

tertiary structures of LacY and GlpT. The differences in observations may have been 

anticipated since the models constructed in the present study were generated by PiPT, a 

transporter with higher sequence identity with the mammalian OCTs. And finally, there is 

the fact LacY and GlpT were crystallized in the inward conformation which differs from 

the occluded state structure solved for PiPT. As such, amino acids that are accessible to 

interacting substrates during the in silico docking steps may vary.  

In summary, a homology model for hOCT1 based on the solved structure of PiPT 

was successfully constructed. Through the docking of MPP+ into the generated homology 

models, important residues associated with substrate binding interactions as well as the 

putative binding pocket were identified. Identified amino acids were further investigated 

in subsequent in vitro mutagenesis studies and kinetic analysis. The findings of the 

current study suggest that many substrates share both overlapping and unique interaction 

sites. Although differences in the identified important residues were recognized through 

comparisons with other similar studies, there were a few that were shared. Future work, 

particularly confirming successful targeting of the membrane for non-functional hOCT1 
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mutants, will be required to strengthen the current claims. Findings from the current study 

certainly lays down the foundation for future work that could ultimately offer important 

direction for optimizing drug design as well as mitigating the rates of OCT related drug-

drug interactions.  
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CHAPTER 5 

 

COMPARISON OF SUBSTRATE BINDING INTERACTIONS BETWEEN HUMAN 

ORGANIC CATION TRANSPORTERS 1, 2, AND 3 

 

In human, organic cation transporters play a critical role in mediating the transport 

of a vast array of endogenous and exogenous compounds across barrier epithelia of the 

major distribution and eliminating organ systems; namely the intestine, liver, and kidney 

[1]. As such, OCTs, in particular OCT1, 2, and 3, have garnered additional attention from 

investigators hoping to better understand their roles in drug disposition and elimination. 

To date, due to the lack of a solved crystal structure, very little is known about the three-

dimensional structure of human OCTs or substrate/protein interactions involved in their 

transport. Some early efforts involving the use of secondary structure information to 

determine important binding sites of the rat Oct1 and 2 have been conducted [124,125]. 

Since then, newer strategies involving computational homology modeling have been 

conducted to assist in forming more robust predictions as well as helping guide 

mutagenesis experiments [128,132]. In the current study, potentially critical amino acid 

residues important for transporter-substrate interactions were identified for human OCT1 

and OCT2 through in silico molecular modeling techniques, paired with in vitro 

mutagenesis and kinetic transporter experiments.  

Tertiary homology models for hOCT1 and hOCT2 were successfully generated 

using the recently crystallized MFS transporter, PiPT, as template. The generated models 

were in silico docked with the prototypical OCT substrate MPP+. The most favorable 
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docked MPP+ model was selected based on a series of computational validation methods 

and subsequently used to predict several potentially important sites for substrate-

transporter interaction. This information was used to guide in vitro mutagenesis studies 

and kinetic experiments. This experimental strategy was carefully implemented for the 

elucidation of residues in both hOCT1 and hOCT2.  

From the results obtained from the functional screening assay, four non-

conservative mutations of hOCT1 (Glu241Lys, Thr245Lys, Tyr361Ala, and Gln447Lys) 

resulted in a complete loss of MPP+ transport activity (Figure 4.11). For hOCT2, this was 

the case for two non-conservative mutants, hOCT2 Glu242Lys and Tyr362Ala, and one 

conservative mutant hOCT2 Tyr362Phe (Figure 3.11). In a different study conducted in 

hOCT3, two conservative mutants, (Trp358Phe and Asp475Glu) and two non-

conservative mutants (Val40Ala and Trp358Ala) demonstrated a loss of MPP+ transport 

activity [164]. Across OCT1-3, the only residue overlap for these sets of experiments was 

observed for hOCT1 and hOCT2 (Tyr361/Tyr362 and Gln241/Gln242). The Tyr residue 

at these positions in particular were both predicted to participate in the strongest 

interactions with MPP+ in their respective homology models (pi-pi stacking) which 

correlates with this functional result acquired in vitro. Alternatively, the loss of MPP+ 

transport activity for the conservative hOCT2 mutant, Tyr362Phe, suggests that the 

hydroxyl group in Tyr362 may be interacting with other residues and thus could be a major 

contributor to the tertiary structure of the binding pocket. Similar observations were not 

able to be made at the conserved site in hOCT1 (Tyr361) since the generation of the 

Tyr361Phe mutant was unsuccessful. The most critically involved amino acid in hOCT3-

MPP+ interactions was Trp358, where both conservative and non-conservative 
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substitutions yielded a loss of substrate transport [164]. Taken together, these results 

suggest that hOCT1 and hOCT2 share a similar binding pocket with one another, 

whereas, the binding pocket for hOCT3 appears unique.  

For mutants that retained transport activity, saturation analysis was conducted to 

evaluate potential changes in transporter affinity for MPP+. When compared with wildtype 

(Km = 16.3 ± 2.5), hOCT1 mutants that were observed to have a significant decrease in 

transporter affinity was the non-conservative substitution Phe244Ser and the 

conservative substitution Thr245Ser (Km = 33.4 ± 5 and 37.4 ± 6.4, respectively) (Table 

4.7). In hOCT2, only the non-conservative substitution Tyr245Ala resulted in a significant 

change in affinity for MPP+ (Km = 36.5 ± 5) (Table 3.7). In hOCT3, the conservative mutant 

Val40Leu and non-conservative mutants Phe36Ala, Glu451Ala, and the double mutant 

Val40Leu/Glu451Ala showed a significant change in substrate affinity [164]. The double 

mutant in hOCT3 confirmed Val40 and Glu451 importance in binding interactions since 

the affinity was lowered significantly more when both mutations were changed compared 

to each mutant changed individually.  

The homology models for hOCT1, 2, and 3 were further evaluated by docking 

known substrates with disparate structures into each population of 100 models to 

determine the presence of alternative and/or additional critical amino acid residues in the 

binding pocket(s). Epinephrine, metformin, serotonin, and TPA were docked into all three 

OCT models. Additional compounds, cimetidine and quinine, were docked into hOCT1 

and hOCT2. Several amino acids, which made up the “core binding residues” based on 

their high frequency of overlap across the different docked compounds for each 

transporter were identified: hOCT1: Phe244, Asp357, Tyr361, and GLn447 (Table 5.1); 
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hOCT2: Tyr245, Ser358, Tyr362, and Glu448 (Table 5.2); and hOCT3: Val40, Met248, 

Trp358, and Asp478 (Table 5.3). Amongst this list across hOCT1-3, aspartic acids and 

glutamic acids, particularly in TMDs 10 and 11, seem to be important for substrate 

interactions. These amino acids with acidic side chains, under physiologic conditions (pH 

7.4) are likely to anchor cations as they translocate across the membrane through the 

transporter.  
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Table 5.1 hOCT1 substrate docking summarya. 
Residue MPP+ Cimetidine Epinephrine Metformin Quinine 5-HT TPA 
Trp16   x           

Gln20 
  

x 
    

Leu23 
    

x 
  

Asn156 
 

x 
     

Phe159 
 

x 
     

Trp217 
 

x 
  

x 
  

Gln241 x 
    

x 
 

Phe244 x x x x x x x 

Thr245 x 
      

Trp354 
   

x 
   

Asp357 
 

x x x x x x 

Ser358 
     

x 
 

Tyr361 x x x x x x x 

Gln362 
 

x 
   

x 
 

Ile444 
     

x x 

Gln447 x 
 

x x x 
 

x 

Ile449 
      

x 

Cys450 
  

x 
   

x 

Cys473 
   

x x x 
 

Asp474   x           

a Data acquired from Figure 4.7 and Table 4.3 
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Table 5.2 hOCT2 substrate docking summarya. 
Residue MPP+ Cimetidine Epinephrine Metformin Quinine 5-HT TPA 
Phe24         x   x 

Asn157 
 

x 
  

x 
  

Phe160 
    

x 
 

x 

Gln242 x 
   

x 
  

Tyr245 x x x 
 

x x x 

Thr246 x 
      

Ser358 
 

x x x 
 

x 
 

Tyr362 x x x x x x 
 

Gln363 
     

x 
 

Glu387 
     

x 
 

Glu448 x x x x 
 

x 
 

Cys451 
     

x 
 

Cys474 
      

x 

Asp475   x           

a Data acquired from Figure 3.7 and Table 3.3 
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a Data acquired from reference [164] 
  

Table 5.3 hOCT3 substrate docking summarya. 
Residue MPP+ Epinephrine Metformin 5-HT TPA 
Phe36 x x       

Val40 x x 
 

x 
 

Asn162 
 

x 
 

x 
 

Met248 
 

x x x 
 

Trp358 x 
 

x 
 

x 

Gln366 
 

x 
   

Glu451 x 
    

Ser474 
  

x 
  

Cys477 
 

x 
   

Asp478 x x x x   
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It was previously reported that transport activity was completely abolished by an 

Asp478 mutation in hOCT3 [164]. Through sequence alignment, the homologous site in 

hOCT2 was identified as Asp475. The analogous conservative substitution of hOCT2 

Asp475 was generated and stably expressed in CHO cells for functional screening 

studies. In stark contrast to the hOCT3 results, the conserved mutant in hOCT2 showed 

no difference from wild-type hOCT2 in transport activity of MPP+ (data not shown). This 

finding was supported by our hOCT2 in silico model wherein Asp475 was located outside 

of the binding pocket and not predicted to interact with MPP+. The difference in transporter 

function and affinity observed between hOCT3 Asp478Glu and hOCT2 Asp475Glu 

suggests that the critical residues for MPP+-transporter interaction may vary depending 

on the OCT paralog even for the same substrate and supports the contention that the 

binding pocket in hOCT3 is distinct from that for hOCT1 and hOCT2. Despite a high 

degree of sequence similarity (70%) and identity (51%) between hOCT2 and hOCT3, the 

conserved aspartic acid residue (position 475 in hOCT2 and position 478 in hOCT3) 

previously demonstrated to be essential for MPP+ interaction with hOCT3 appears to 

exert no influence on MPP+ interaction with hOCT2. 

The whole story detailing the most accurate depiction of the nature of the 

physiochemical interactions for hOCT1, 2, and 3 is far from complete. The utilization of 

homology models with the most closely related available transporter templates is currently 

the leading strategy in achieving the overarching goal of the elucidation of the amino acids 

critical for protein-ligand interaction. A comprehensive list of future work is necessary for 

reaching stronger conclusions on the current hOCT interaction studies. This includes 

additional studies to resolve the issue related to evaluating transporter targeting to plasma 
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membrane. Acquiring this information will significantly dictate the validity of the claims 

made for the hOCT non-functional mutants. Given the lack of specificity of commercial 

antibodies tested and the inconclusive results of the GFP fusion construct studies, an 

alternative approach could be the addition of a polypeptide tag with a known commercial 

antibody (e.g. FLAG, c-Myc, 6x His) to the hOCT proteins. The establishment of double 

mutants for hOCT1 and 2 will be helpful in providing additional valuable kinetic information 

for functioning single mutants showing attenuated affinity. This analysis will in turn 

determine any potential changes in double-mutant affinity for MPP+ which could offer 

further insight to the significance for specific residues involved with transporter-substrate 

interaction. Finally, the additional amino acid residues that were identified in the analysis 

of docking known structurally disparate hOCT substrates will need to be further 

investigated. This can be conducted through the generation of stably transfect mutants 

based on the additional residues identified and subsequent kinetic transport analysis of 

the structurally disparate substrates.  

The data collected from the current study in addition to the proposed future 

experiments will bring forward new information regarding the substrate binding site of 

hOCT1-3 of which will provide the necessary clues for their underlying mechanism of 

transport. The identified amino acid residues that contribute to substrate binding may offer 

useful insight to the transporter-substrate recognition by other members of the SLC22 

family owing to their similarities in sequence homology. In the end, unveiling the critical 

residues for hOCT1-3 will steer the future of drug design by improving safety/efficacy as 

well as strengthening our predictions that eventually could lead to reductions in the rates 

of harmful drug-drug interactions.  
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