
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2019 

The Application of Index Based, Region Segmentation, and Deep The Application of Index Based, Region Segmentation, and Deep 

Learning Approaches to Sensor Fusion for Vegetation Detection Learning Approaches to Sensor Fusion for Vegetation Detection 

David L. Stone 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5708 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5708&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarscompass.vcu.edu%2Fetd%2F5708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5708?utm_source=scholarscompass.vcu.edu%2Fetd%2F5708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


i 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©David Stone                    2019 

All Rights Reserved 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

The Application of Index Based, Region Segmentation, and 
Deep Learning Approaches to Sensor Fusion for Vegetation 

Detection 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University. 

 
 
 
 

By 

David L. Stone 

O.E, Massachusetts Institute of Technology 1982 

M.S.M.E, Massachusetts Institute of Technology 1982 

B.S.E.E, Purdue University 1973 

 

 

Director: Yuichi Motai, Ph.D., 

Associate Professor, Electrical and Computer Engineering 

 

 

 

Virginia Commonwealth University 

Richmond, Virginia 

January, 2019 



iii 
 

 

Acknowledgment 
 
 

This study was supported in part by the Office of Naval Research, in part by the Naval Surface 

Warfare Center Dahlgren Division (NSWCDD), in part by the Marine Corps Warfighting Lab, 

Quantico, VA, and in part by Air Force Research Laboratory, Rome NY.  I would also like to 

acknowledge Adrian Rosebrock and his PyImageSearch Deep Learning book and course for his 

invaluable guidance in learning deep learning with python. 

I would like to express my deepest appreciation to my Ph.D. advisor Dr. Yuichi Motai for the 

continuous support for my studies and related research, for patience, motivation, and immense 

knowledge. His guidance helped me in all the time of research and writing of this dissertation. I 

would like to thank my dissertation committee members, Dr. Ashok Iyer, Dr. Alen Docef, Dr. 

Ruixin Niu, Dr. Milos Manick, and Dr. Kayvan Najarian for their help and for their direction with 

this dissertation.  

I would like to thank my fellow graduate students Emrah Benli, Seonyeong Park, Nahian Alam 

Siddique, Ammar Osama for their support during this great period. I would also like to express my 

appreciation to Gurav Shaw for his help throughout my time at VCU.  

Finally, I would like to thank my wife Nancy Stone, my children Michelle, Daniel, John, Eddie, 

and Eric for their unending love and patience during the past eight years it has taken me to graduate.  

I would also like to thank my peers at work for their unending support and patience during this 

period. 

  



iv 
 

 
Table of Contents 

Acknowledgment ......................................................................................................................................... iii 

List of Tables .......................................................................................................................................... vii 

Table of Figures ..................................................................................................................................... viii 

List of Abbreviations ................................................................................................................................ x 

Abstract ........................................................................................................................................................ xi 

1. Chapter - Introduction ........................................................................................................................... 1 

1.1. Problem Statement ............................................................................................................................ 1 

1.2. Introduction of Omnidirectional far-infrared Camera System and Calibration ................................ 3 

1.3. Introduction to Index Based and Region Segmentation Based Vegetation Detection ...................... 5 

1.4. Introduction to Deep Learning Sensor Fusion .................................................................................. 8 

1.5. Impact ............................................................................................................................................. 10 

1.6. Innovations ...................................................................................................................................... 13 

1.7. Summary ......................................................................................................................................... 16 

2. Chapter – Prior Related Works ........................................................................................................... 18 

2.1. Prior Related Works for Omni-direction Camera Calibration ........................................................ 18 

2.2. Prior Related Works for Index and Vegetation Region Segmentation Methods ............................ 23 

2.3. Prior Related Works for Deep Learning Sensor Fusion .................................................................. 29 

2.3.1. Visual and Infrared Index, Histogram, and Region Segmentation Based Vegetation Detection 29 

2.3.2. Deep Learning Convolution Neural Network Fusion of O-D IR and O-D Visual Stream ......... 31 

3. Chapter – Technical Approach for the Three Methods ....................................................................... 35 

3.1. Technical Approach for Direct Spherical Calibration of Omnidirectional Far Infrared Camera 
System 35 

3.1.1. Omnidirectional IR camera geometry ......................................................................................... 35 

3.1.2. DSC omnidirectional IR camera calibration methodology ......................................................... 37 

3.1.3. Optimal number selection of image capture of calibration boards ............................................. 46 

3.1.4. Comparison to other methods - Baselines 1,2,3 .......................................................................... 49 

3.2. Technical Approach for Index and Region Segmentation for Sensor Fusion of Omnidirectional 
Far-infrared Camera and Visual Camera for Vegetation Detection ............................................................ 51 

3.2.1. Omni-direction Camera Setting .................................................................................................. 52 

3.2.2. Visual and IR Index Based Vegetation Detection ....................................................................... 54 

3.2.3. IR Stream Segmentation using Region based Thermal Analysis ................................................ 59 



v 
 

3.2.4. Genetic Algorithm ...................................................................................................................... 63 

3.2.5. Thermal Region Fusion ............................................................................................................... 63 

3.3. Technical Approach for Vegetation Detection through Deep Learning Sensor Fusion of 
Omnidirectional (O-D) Far-infrared and O-D Visual Stream ..................................................................... 68 

3.3.1. Overview of Technical approach for Deep Sensor Fusion ......................................................... 68 

3.3.2. Omni-direction Camera Setting .................................................................................................. 71 

3.3.3. Visual and Infrared Index, Histogram, and Segmentation Based Vegetation Detection ............ 71 

3.3.4. Autoencoder - Convolution Neural Network .............................................................................. 73 

3.3.4.1. Auto-encoder Neural Network ................................................................................................ 74 

3.3.4.2. Sparse Auto-encoder ............................................................................................................... 76 

3.3.5. Convolution Neural Network (CNN) .......................................................................................... 78 

3.3.6. Deep Learning Fusion Network (DeepFuseNet) ......................................................................... 81 

3.3.7. Validation Methodologies ........................................................................................................... 84 

3.3.8. Visulization of Network Filters ................................................................................................... 85 

4. Chapter – Experimental Results for the Three Methods ..................................................................... 88 

4.1. Direct Spherical Calibration Experimental Results ........................................................................ 88 

4.1.1. Calibration data setting for evaluation ........................................................................................ 88 

4.1.2. DSC calibration ........................................................................................................................... 91 

4.1.3. Comparison to other Baseline calibration methods .................................................................... 93 

4.1.4. Error analysis of four methods .................................................................................................... 96 

4.1.5. Optimal number selection of image capture of calibration boards ............................................. 99 

4.2. Index Based and Thermal Region Fusion Experimental Results .................................................. 105 

4.2.1. Omni-direction Camera and Data Setting ................................................................................. 105 

4.2.2. Visual and IR Index Based Vegetation Detection ..................................................................... 107 

4.2.3. IR Stream Segmentation using Region based Thermal Analysis .............................................. 109 

4.3. DeepFuseNet Experimental Results .............................................................................................. 114 

4.3.1. Omni-direction Camera Setting ................................................................................................ 114 

4.3.2. Visual and Infrared MNDVI and TRF Vegetation Detection ................................................... 115 

4.3.3. Autoencoder - Convolution Neural Network Fusion of O-D IR and Visual Stream ................ 116 

4.3.4. Convolution Neural Net (CNN) ................................................................................................ 118 

4.3.5. DeepFuseNet ............................................................................................................................. 123 

5. Chapter – Conclusion ........................................................................................................................ 126 



vi 
 

5.1. Direct Spherical Calibration (DSC) Conclusion ........................................................................... 126 

5.2. Index Based and Thermal Region Fusion Methods Conclusion ................................................... 127 

5.3. DeepFuseNet Conclusion .............................................................................................................. 128 

5.4. Summary Conclusion .................................................................................................................... 128 

APPENDIX A ........................................................................................................................................... 132 

REPRESENTATIVE MATLAB AND PYTHON CODES ..................................................................... 132 

A.1 Calibration GUI (omni_calib_gui_normal_s.m) ............................................................................ 133 

A.2 Go_omni_calib (go_omni_calib_itr_s.m) ...................................................................................... 136 

A.3 Spherical Coordinates (Spherical_s.m) .......................................................................................... 161 

A.4 Multi-objective Optimization () ..................................................................................................... 163 

A.5 Compute Omnidirectional Error (comp_omni_error_s.m) ............................................................ 163 

A.6 Analyse Error (analyse_err_s.m) ................................................................................................... 165 

A.7 Vegetation Detection IR Region (vegdetect_IRR.m) .................................................................... 170 

A.8 IR Region (IR_Region.m) .............................................................................................................. 179 

A.9 Genetic Algorithm Clustering (GACluster.m) ............................................................................... 180 

A.10 Clustering Cost Function (ClusteringCost2.m) ............................................................................ 183 

A11. Bottleneck Feature Extractor (veg_bottleneck.py) ....................................................................... 184 

A12. Autoencoder Feature Extractor .................................................................................................... 188 

A.13 Vegetation Finetuning (veg_finetune.py) .................................................................................... 191 

A14. Deep Fusion Network (DeepFuseNet_plants18.py) ..................................................................... 193 

References ................................................................................................................................................. 206 

 

  



vii 
 

 

List of Tables 
Table 1.  Camera Settings ............................................................................................................................. 8 
Table 2. Significance, Innovation and Technical Merits ............................................................................ 15 
Table 3. Methodology Summary ................................................................................................................ 19 
Table 4.  Omnidirectional (O-D) Camera Applications Summary ............................................................. 24 
Table 5.  Vegetation Detection Methodology Summary ............................................................................ 25 
Table 6.  Segmentation and Histogram Method Summary ......................................................................... 26 
Table 7. Sensor Fusion Method Summary .................................................................................................. 27 
Table 8.  Vegetation Detection Methodology Summary ............................................................................ 30 
Table 9.  Histogram and  Segmentation Method Summary ........................................................................ 31 
Table 10.  Neural Network and Deep Learning Method Summary ............................................................ 31 
Table 11.  Relationship Between Eccentricity e and Mirror Parameter  ξ .................................................. 41 
Table 12.  Five Process Steps for DSC ....................................................................................................... 45 
Table 13.  Methodology Comparison ......................................................................................................... 49 
Table 14.  Proposed TRF Algorithm: Sensor Fusion of MNDVI Vegetation Index and Region Based IR 64 
Table 15.  Deep Fusion Network for o-d ir and visual stream .................................................................... 68 
Table 16.  Calibration Image Sets ............................................................................................................... 89 
Table 17.  Methodology Numerical Comparison ........................................................................................ 99 
Table 18.  Ratio Calibrated to Actual(Rca) Comparison .......................................................................... 101 
Table 19.  Optimality Comparison ............................................................................................................ 104 
Table 20.  Camera Data Settings ............................................................................................................... 105 
Table 21.  Thermal Segmented Region Fusion Results -  Comparison of MNDVI to TRF ..................... 110 
Table 22.  Other Method Comparison Results .......................................................................................... 111 
Table 23.  Camera Data Settings ............................................................................................................... 114 
Table 24.  Baseline and DeepFuseNet Results ......................................................................................... 124 
Table 25. Summary of Methodologies ...................................................................................................... 129 

 

 
 
 
 
 
  



viii 
 

 

Table of Figures 
Figure 1. Omnidirectional IR calibration images ........................................................................... 5 
Figure 2. Robot and Camera Setting ............................................................................................... 6 
Figure 3.  Robot with O-D IR, O-D Visual, and Kinnect Cameras .............................................. 10 
Figure 4.  Representative depiction of three goals ........................................................................ 15 
Figure 5.  Concept level depiction of Deep Learning Training and DeepFuseNet deployment ... 17 
Figure 6. Omnidirectional Camera Geometry .............................................................................. 36 
Figure 7. Omnidirectional Geometry Relationship ....................................................................... 37 
Figure 8. Camera Calibration Overview ....................................................................................... 38 
Figure 9. Camera Calibration setup: ............................................................................................. 39 
Figure 10.  Spherical Coordinate Diagram: .................................................................................. 42 
Figure 11. Calibration Board Capture ........................................................................................... 44 
Figure 12. Pareto Optimization Diagram: ..................................................................................... 47 
Figure 13. Ratio Calibrated to Actual: .......................................................................................... 48 
Figure 14.  Baseline Fusion Block Diagram ................................................................................. 51 
Figure 15.  Geometry Relationship ............................................................................................... 54 
Figure 16.  Spherical-Cartesian Coordinates ................................................................................ 56 
Figure 17.  MNDVI Approach ...................................................................................................... 57 
Figure 18.  Cumulative Density Function ..................................................................................... 58 
Figure 19.  IR Region Segmentation............................................................................................. 60 
Figure 21.  MNDVI and TRF Comparison O-D and Kinect ........................................................ 65 
Figure 22.  MNDVI and TRF Comparison O-D Cameras ............................................................ 67 
Figure 23.  Deep Fusion Network Block Diagram ....................................................................... 70 
Figure 24.  MNDVI False Detects ................................................................................................ 72 
Figure 25.  Autoencoder Layers.................................................................................................... 75 
Figure 26.  Autoencoder Fusion.................................................................................................... 78 
Figure 27.  Merged Model Functional Block Diagram ................................................................. 83 
Figure 28.  Deep Fusion Network (DeepFuseNet) ....................................................................... 84 
Figure 29.  Convolution Layer Feature Map Visualization .......................................................... 86 
Figure 30.  Activation Filter Map Visualization ........................................................................... 87 
Figure 31. Robot and Camera Setup: ............................................................................................ 89 
Figure 32. Calibration Re-projection points: ................................................................................ 90 
Figure 33. Extrinsic Mapping: ...................................................................................................... 91 
Figure 34.  Sparse Data Set Error ................................................................................................. 92 
Figure 35.  Moderate Data Set Error ............................................................................................. 93 
Figure 36.  Dense Data Set Error .................................................................................................. 95 
Figure 37.  Error Scatter Plot ........................................................................................................ 96 
Figure 38.  Error vs Radius Plot.................................................................................................... 97 
Figure 39.  Comparison Polar Plot .............................................................................................. 100 



ix 
 

Figure 40.  Ratio Calibrated to Actual (RCA) .............................................................................. 102 
Figure 41.  Methods - Error Bar Chart ........................................................................................ 103 
Figure 42.  Pareto Optimization Plot .......................................................................................... 104 
Figure 43.  RGB and IR Histogram for O-D IR and Kinect Camera.......................................... 106 
Figure 44.  RGB and IR Histogram for O-D IR and O-D Visual Cameras ................................ 107 
Figure 45.  O-D IR and Kinnect MNDVI and TRF Comparison ............................................... 108 
Figure 46.  O-D IR and O-D Visual MNDVI and TRF Comparison ......................................... 109 
Figure 47.  Receiver Operator Curve (ROC) O-D IR and Kinnect ............................................ 111 
Figure 48.  Receiver Operator Curve for O-D IR and O-D Visual ............................................. 112 
Figure 49.  RGB and IR Histogram ............................................................................................ 115 
Figure 50. TRF Fusion Results ................................................................................................... 116 
Figure 51.  VGG16 Autoencoder Accuracy and Loss ................................................................ 117 
Figure 52.  Autoencoder Fusion Accuracy and Loss .................................................................. 118 
Figure 53.  ResNet Accuracy and Loss Fine-tuning ................................................................... 119 
Figure 54.  VGG16 Bottleneck Feature Extractor ...................................................................... 120 
Figure 56.  R5 Accuracy Comparison......................................................................................... 121 
Figure 57.  Cross-Entropy Loss Comparison .............................................................................. 122 
Figure 58.  Fine-tuned Merged Model ........................................................................................ 123 
Figure 59.  Vegetation Detection Results ................................................................................... 124  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



x 
 

 

List of Abbreviations 
2D  2 Dimensional 
3D   3 Dimensional 
ANN  Artificial Neural Network 
CNN  Convolutional Neural Network 
DL  Deep Learning 
DLSF  Deep Learning Sensor Fusion (DeepFuseNet) 
DLT  Direct Linear Transform 
DOD  Department of Defense 
DSC  Direct Spherical Calibration 
FOV   Field of View  
FPR/TPR  False Positive Rate / True Positive Rate  
FPGA   Field-Programmable Gate Array  
HRI   Human Robot Interaction  
IR   Infrared  
IRP   Intelligent Robotic Perception  
KF   Kalman Filter  
EKF   Extended Kalman Filter  
Lidar   Light Imaging, Detection, and Ranging  
MAP   Maximum A Posteriori  
MNDVI Modified Normalized Difference Vegetation Index 
NDVI  Normalized Difference Vegetation Index 
O-D   Omni-Directional 
ONR  Office of Naval Research 
SURF   Speeded Up Robust Features  
SFM   Structure from Motion  
RGB  Red Green Blue  
RMSE  Normalized Root Mean Squared Error  
RCTA  Robotics Collaborative Technology Alliance  
STD   Standard Deviation  
SUMET Small Unit Mobility Enhancement Technology 
SVD   Singular Value Decomposition  
TRF   Thermal Region Fusion 
UGV   Unmanned Ground Vehicle  
UCR   Ubiquitous Collaborative Robots  
 
 
 
 
 
 
 
 
 



xi 
 

Abstract 
 

This thesis investigates the application of index based, region segmentation, and deep learning 

methods to the sensor fusion of omnidirectional (O-D) Infrared (IR) sensors, Kinnect sensors, and 

O-D vision sensors to increase the level of intelligent perception for unmanned robotic platforms. 

The goals of this work is first to provide a more robust calibration approach and improve the 

calibration of low resolution and noisy IR O-D cameras.  Then our goal was to explore the best 

approach to sensor fusion for vegetation detection.  We looked at index based, region 

segmentation, and deep learning methods and compared them with a goal of significant reduction 

in false positives while maintaining reasonable vegetation detection.   

The results are as follows: 

 Direct Spherical Calibration of the IR camera provided a more consistent and robust 

calibration board capture and resulted in the best overall calibration results with sub-

pixel accuracy 

 The best approach for sensor fusion for vegetation detection was the deep learning 

approach, the three methods are detailed in the following chapters with the results 

summarized here. 

o Modified Normalized Difference Vegetation Index approach achieved 86.74% 

recognition and 32.5% false positive, with peaks to 80% 

o Thermal Region Fusion (TRF) achieved a lower recognition rate at 75.16% but 

reduced false positives to 11.75% (a 64% reduction) 

o Our Deep Learning Fusion Network (DeepFuseNet) results demonstrated that 

deep learning approach showed the best results with a significant (92%) reduction 
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in false positives when compared to our modified normalized difference 

vegetation index approach.   The recognition was 95.6% with 2% false positive. 

Current approaches are primarily focused on O-D color vision for localization, mapping, and 

tracking and do not adequately address the application of these sensors to vegetation detection. We 

will demonstrate the contradiction between current approaches and our deep sensor fusion 

(DeepFuseNet) for vegetation detection. The combination of O-D IR and O-D color vision coupled 

with deep learning for the extraction of vegetation material type, has great potential for robot 

perception. This thesis will look at two architectures: 1) the application of Autoencoders Feature 

Extractors feeding a deep Convolution Neural Network (CNN) fusion network (DeepFuseNet), 

and 2) Bottleneck CNN feature extractors feeding a deep CNN fusion network (DeepFuseNet) for 

the fusion of O-D IR and O-D visual sensors. We show that the vegetation recognition rate and the 

number of false detects inherent in the classical indices based spectral decomposition are greatly 

improved using our DeepFuseNet architecture.  

We first investigate the calibration of omnidirectional infrared (IR) camera for intelligent 

perception applications.  The low resolution omnidirectional (O-D) IR image edge boundaries are 

not as sharp as with color vision cameras, and as a result, the standard calibration methods were 

harder to use and less accurate with the low definition of the omnidirectional IR camera.   In order 

to more fully address omnidirectional IR camera calibration, we propose a new calibration grid 

center coordinates control point discovery methodology and a Direct Spherical Calibration (DSC) 

approach for a more robust and accurate method of calibration. DSC addresses the limitations of 

the existing methods by using the spherical coordinates of the centroid of the calibration board to 

directly triangulate the location of the camera center and iteratively solve for the camera 

parameters.  We compare DSC to three Baseline visual calibration methodologies and augment 
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them with additional output of the spherical results for comparison.    We also look at the optimum 

number of calibration boards using an evolutionary algorithm and Pareto optimization to find the 

best method and combination of accuracy, methodology and number of calibration boards.  The 

benefits of DSC are more efficient calibration board geometry selection, and better accuracy than 

the three Baseline visual calibration methodologies.  

In the context of vegetation detection, the fusion of omnidirectional (O-D) Infrared (IR) and 

color vision sensors may increase the level of vegetation perception for unmanned robotic 

platforms.  A literature search found no significant research in our area of interest.  The fusion of 

O-D IR and O-D color vision sensors for the extraction of feature material type has not been 

adequately addressed.  We will look at augmenting indices based spectral decomposition with IR 

region based spectral decomposition to address the number of false detects inherent in indices 

based spectral decomposition alone.  Our work shows that the fusion of the Normalized Difference 

Vegetation Index (NDVI) from the O-D color camera fused with the IR thresholded signature 

region associated with the vegetation region, minimizes the number of false detects seen with 

NDVI alone.  The contribution of this work is the demonstration of two new techniques, 

Thresholded Region Fusion (TRF) technique for the fusion of O-D IR and O-D Color.  We also 

look at the Kinect vision sensor fused with the O-D IR camera. Our experimental validation 

demonstrates a 64% reduction in false detects in our method compared to classical indices based 

detection.  

We finally compare our DeepFuseNet results with our previous work with Normalized 

Difference Vegetation index (NDVI) and IR region based spectral fusion. This current work shows 

that the fusion of the O-D IR and O-D visual streams utilizing our DeepFuseNet deep learning 

approach out performs the previous NVDI fused with far infrared region segmentation.  Our 



xiv 
 

experimental validation demonstrates an 92% reduction in false detects in our method compared 

to classical indices based detection.   This work contributes a new technique for the fusion of O-D 

vision and O-D IR sensors using two deep CNN feature extractors feeding into a fully connected 

CNN Network (DeepFuseNet). 
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1. Chapter - Introduction 
Accurate estimation of the materials in a robot agent’s (agent) environment is crucial to Intelligent 

Robotic Perception (IRP). Without the recognition of the semantic structure of the scene, the agent will 

not be able to adequately interact with the world or the people in it.  Many existing techniques handle 

object detection by placing walls or non-passable blocks in the world map when the sensors detect 

something in the environment [1].  Others place color maps representing the height of obstacles and thus 

identifies the area as non-passable [2].  These approaches have a major drawback as they do not address 

the density of or pass-ability of the materials in the environment. An example is when the agent is 

following its human counterpart and the human walks into tall grass.  The human recognizes it as grass 

and that it is passable.  The current state of robot perception is that the agent sees it as a wall and goes a 

different less efficient route.  Other methods attempt to address this by several methods of vegetation 

detection, but these have a lot of false detects and can’t detect dry grass [3]. 

1.1.   Problem Statement 
 

In robotic platform development, there is a need for overcoming perception issues and applying 

robust cognitive behaviors to make the use of robotic platforms more practical. While there has 

been a great deal of research in the area of intelligent robotic perception, the practical application 

of Unmanned Ground Vehicles (UGV) to operation with small teams of humans in many civilian, 

service, and military applications is limited by the current state of intelligent perception and the 

high cost of sensors.  The current state of obstacle detection and avoidance is able to handle well-

structured obstacles, but is limited in distinguishing between solid obstacles and low density 

passable objects.    We are leveraging the benefits of potentially low cost Omni-Directional (O-D) 

infrared (IR) and color vision sensors coupled with intelligent perception algorithms to better 

address this perceptual framework. O-D far-IR is required to augment the visual scene perception 
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by adding a world view of the thermal characteristics of the materials in the robot’s environment.  

The thermal properties will be fused with the visual color and texture properties to better 

characterize the scene materials semantic structure. 

Thus, our goals in this research are to identify the spectral and thermal signature of materials 

in the environment, and to build a semantic overlay model that better characterizes the scene. For 

these, we pursue the following technical merits. 

1) By introducing a Direct Spherical Calibration (DSC) method to address calibration of the 

omnidirectional (O-D) far infrared camera which will be used to provide thermal region data for 

our algorithms.  We make a significant improvement in the reliability of calibration board capture 

in the low resolution and noisy IR O-D camera.  We also significantly reduce the error to sub-pixel 

accuracy.   

2) By introducing the scene semantic feature extraction algorithm, more precise material 

characteristics such as spectral signature, thermal properties, color and texture can be learned and 

extracted to better characterize the agent’s scene. 

3) By reconstructing the semantic scene through deep learning artificial neural network fusion, the 

proposed novel study can offer valuable scene characteristics for the agent to better evaluate its 

environment.  More accurate decisions will be possible by allowing the agent a better 

understanding of scene semantics due to an advantage of recognition of O-D infrared and visual 

cues to aid the recognition of materials. 

The results are as follows: 
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 Direct Spherical Calibration of the IR camera provided a more consistent and robust 

calibration board capture and resulted in the best overall calibration results with sub-

pixel accuracy 

 The best approach for sensor fusion for vegetation detection was the deep learning 

approach, the three methods are detailed in the following chapters with the results 

summarized here. 

o Modified Normalized Difference Vegetation Index approach achieved 86.74% 

recognition and 32.5% false positive, with peaks to 80% 

o Thermal Region Fusion (TRF) achieved a lower recognition rate at 75.16% but 

reduced false positives to 11.75% (a 64% reduction) 

o Our Deep Learning Fusion Network (DeepFuseNet) results demonstrated that 

deep learning approach showed the best results with a significant (92%) reduction 

in false positives when compared to our modified normalized difference 

vegetation index approach.   The recognition was 95.6% with 2% false positive. 

1.2.   Introduction of Omnidirectional far-infrared Camera System and 
Calibration 

The contribution of this work is the development of a new O-D IR camera calibration framework, 

called Direct Spherical Calibration (DSC).   Based on our experimental results, the DSC method 

fits in IR O-D sensing, because it provides IR O-D camera calibration with: 

 A more accurate and robust calibration board geometry selection,  

 More direct calibration method, and that it more effectively finds the key projection 

point for each calibration board with resultant improvement in accuracy (sub pixel), 

when compared to the existing methods. 

 Best fit of ratio of calibrated to actual.   
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While there has been a great deal of research in the area of camera calibration in general, and 

omnidirectional (O-D) camera calibration in particular, there has been little published work on the 

calibration of lower resolution O-D infrared (IR) cameras.  We propose a new omnidirectional IR 

camera calibration framework, called Direct Spherical Calibration (DSC), and we apply a more 

robust corner selection method to overcome the problems with identifying the control points from 

the calibration grid in the lower resolution O-D IR camera.  The authors are leveraging the benefits 

of potentially low cost omnidirectional (O-D) infrared (IR) camera and color vision sensors applied 

to sensing for intelligent robotic perception applications.   The motivation for the calibration of the 

O-D camera is to lay the foundation for our work in vegetation detection, human tracking, and 3D 

scene reconstruction.  The calibration helps us find the center of the camera and more accurately 

reconstruct the semantic geometry of the scene.   Fig. 1 shows an example of the calibration grid 

captured by the O-D IR camera, and the problem with accurately capturing the grid corner 

intersections in the low resolution calibration grid can be seen from the lack of clarity in some of 

the images sampled around the O-D IR camera.   All of the baseline methods that we used for 

comparison used automatic corner selection which was not reliable in the lower resolution IR 

camera and required the authors to manually correct the baseline method’s corner selection results.  

The poor quality of the grid selection in the lower resolution IR image resulted in higher error and 

in some cases a failure of the baseline calibration methods to converge.  We propose a more 

effective direct triangulation approach. 

The existing omnidirectional camera calibration methods are optimized for visual cameras. The 

omnidirectional IR image edge boundaries are not as sharp as with color vision cameras, and as a 

result, the standard calibration methods were harder to use and in some cases failed when applied 

to the low definition omnidirectional IR camera, and in some cases completely failed. 
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The traditional approaches use a re-projection method based on unreliable control point resolution 

in the low resolution IR setting.  The motivation for the calibration of the O-D camera is to lay the 

foundation for our work in vegetation detection, human tracking, and 3D scene reconstruction.  

The calibration helps us find the center of the camera and more accurately reconstruct the semantic 

geometry of the scene. Omnidirectional cameras are being applied in computer vision and robotics 

because of their advantages in wide field of view (FOV).  Much work has been done on calibration 

methods optimized in the visual band but very little in the IR band. 

1.3.   Introduction to Index Based and Region Segmentation Based 
Vegetation Detection 

While there has been a great deal of research in the area of intelligent perception, the practical 

application of Omnidirectional (O-D) sensing, both O-D Infrared (IR) and O-D color vision 

 

Figure 1. Omnidirectional IR calibration images 

 O-D camera images with several representative calibration board grids.  Due to the low resolution 

you can see the problem with accurately capturing the calibration control points. 
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sensors, to vegetation detection has not received adequate attention.  This work explores the 

reduction of false positives in index based vegetation recognition by the fusion of these two 

sensors.  The contribution of this work is the demonstration of a new technique called Thresholded 

Segmentation Fusion (TRF) to fuse the visual/IR Normalized Difference Vegetation Index (NDVI) 

based results with the segmented thermal vegetation region from the O-D IR sensor.  

 

Figure 2. Robot and Camera Setting 
O-D IR, O-D Color, and Kinect cameras, and onboard computer.  Showing a sample O-D IR 

image and two extracted IR and Color images of front of the house and a man crouched behind 

the bush. 

The authors are leveraging the benefits of potentially low cost omnidirectional (O-D) infrared 

(IR) and O-D Color Cameras Fig 2.  While we were waiting for our O-D Color camera, we 

investigated the fusion of the O-D IR camera with the Kinect color vision sensor. These sensors 

coupled with intelligent perception algorithms may provide the solution of this problem. With 

improved omnidirectional systems, the corrections required are reduced, compared to multiple 

camera stitching, to create 360-degree fusion of our Omnidirectional (O-D) IR and O-D Color 
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cameras, the computation requirements are reduced and sources of error are improved for electro-

optical cameras.  Additionally, multi-spectral sources can be fused with reduced error and the 

calculation errors for sensor fusion do not propagate forward in the perception system world 

model.  This makes these O-D sensors ideal for low cost perception of the robot’s environment.  

This work is laying out the concept for improved vegetation detection through the fusion of the 

IR and visual streams. We initially provide experimental results using a 360-degree far-IR camera 

coupled with three Kinect cameras.  We also apply the techniques to an O-D IR camera and an O-

D visual camera.  The current sensors are mounted on top of a robot platform and we will develop 

a more robust data set and analysis.  Fig. 2 is an example of the O-D IR, O-D Color, and Kinect 

cameras mounted on top of the robot, and a sample of a frame extracted from the scene by the IR 

and Color cameras.   

The reason for choosing O-D IR and O-D vision is due to their superior performance in the 

following areas: 

 Wide Field of View (FoV) - 360° 

 Optical Flow or Structure from Motion – translation and rotational flow fields has different 

characteristic shape in spherical system. 

 With camera and mirror axis perpendicular to the floor – vertical lines map to radial lines in 

the spherical coordinate system. 

 O-D far-IR provides robustness in varying light conditions day or night 

 A single O-D image completely defines the visual characteristics of a location. 

Table 1. summarizes the camera setting.    
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The contribution of this work is to adopt an O-D far-IR camera and O-D Color camera on our 

mobile robot and developing a new fusion framework, called Thresholded Region Fusion (TRF) 

for semantic extraction multi-spectral fusion of O-D IR and O-D Color vision.  Our approach will 

fuse a Modified Normalized Difference Vegetation Index (MNDVI), modified for far IR instead 

of near-IR (NIR) with a region based thermal semantic structure to improve the number of false 

detects with the traditional NDVI approach.  

1.4.   Introduction to Deep Learning Sensor Fusion 
Our Deep Learning Sensor Fusion (DeepFuseNet) approach achieved the best overall results: 

 Significant reduction in false positives from 32.5% for Modified Normalized Difference 

Vegetation Index to 2% for the DeepFuseNet.  

While there has been a great deal of research in intelligent robotic perception, the practical use 

of Unmanned Ground Vehicles (UGV) to operate with small teams of humans in many civilian, 

service, and military applications, are limited by the current state of intelligent perception and the 

high cost of sensors. While the current state of obstacle detection and avoidance enables the 

handling of well-structured obstacles, it is limited in distinguishing between solid obstacles and 

low density passable objects.  With improved utilization of deep learning and convolutional neural 

networks (CNN) coupled with omnidirectional (O-D) camera systems, the corrections required 

and errors introduced are reduced when creating a 360-degree fusion of our visual and IR O-D 

cameras. In addition, the computation requirements are reduced and sources of error are improved 

Table 1.  Camera Settings 

Sensor Image 

Type 

Advantage Disadvantage 

O-D IR far-IR Wide FoV Low Resolution 

Kinect Red/Near-IR High Resolution Narrow FoV 

O-D Color Visual Wide FoV Mid Resolution 
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for the fusion of O-D infrared (IR) and O-D electro-optical cameras.  Multi-spectral sources can 

also be fused with reduced error while the calculation errors for sensor fusion do not propagate 

forward in the perception system world model. This makes these O-D sensors ideal for low cost 

perception of the robot’s environment.  

The authors are leveraging the benefits of potentially low cost, O-D IR and O-D color vision 

sensors coupled with intelligent deep learning perception algorithms to the solution of this 

problem. This work lays out a concept for improved vegetation detection and the reduction of false 

detects through the fusion of the infrared and visual streams, and provides initial experimental 

results using our DeepFuseNet approach with an O-D far IR camera coupled with an O-D visual 

camera, and are compared to our previous work with region based fusion of O-D IR/Visual Kinect 

cameras and with the O-D IR/O-D visual camera are compared in the experiments section.   

Fig. 3 is an example of the Pioneer robot with an O-D IR, and O-D visual camera, mounted on 

top, the Kinect cameras, and a blow-up sketch of the camera with internal mirror geometry overlaid 

are also shown.  The reason for choosing O-D vision and IR is due to their superior performance 

in the following areas: 

 Wide Field of View (FOV) - 360° 

 Optical Flow or Structure from Motion – translation and rotational flow fields has 

different characteristic shape in spherical system. 

 With camera and mirror axis perpendicular to the floor – vertical lines map to radial lines 

in the spherical coordinate system. 

 O-D Far-Infrared provides robustness in varying light conditions day or night 

 A single O-D image completely defines the visual characteristics of a location. 

The contribution of this work is to utilize an O-D color camera on top of an O-D far IR camera by 
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developing a new fusion framework, called a deep learning (DL) convolution neural network 

(CNN), or fusion network (DeepFuseNet) which provides for semantic scene extraction and multi-

spectral sensor fusion of O-D IR and O-D vision sensors. Our approach will fuse the visual 

semantics with thermal region semantic structure to improve the number of false detects with the 

traditional NDVI approach.  

1.5.   Impact   

The widespread interest in Unmanned Ground Vehicle (UGV) platforms for commercial, 

civilian, police, emergency response and military applications has increased the number of 

 

   

Figure 3.  Robot with O-D IR, O-D Visual, and Kinnect Cameras 

 Robot with O-D IR and O-D visual cameras, and onboard computer. A blow-up view of camera with geometry 

overlay. 
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unmanned system applications throughout the world.  The significance and utilization of these 

unmanned system applications has increased the emphasis and research in the area of intelligent 

perception and autonomous robot operation over the last several decades.  The Office of Naval 

Research (ONR) conducted a Small Unit Mobility Enhancement Technologies (SUMET) study 

[1] with several significant findings: 

 Across the Department of Defense (DOD) over $2B has been invested in autonomy. 

 Current trend is focused on optimizing multi-modal sensors to compensate for poorly 

performing algorithms. 

 Current state-of-the-art sensor suites are the major UGV cost driver and are cost 

prohibitive. 

The Robotics Collaborative Technology Alliance (RCTA) identifies an R& D level 6.2 

investment gap in three areas: 

 Advanced Perception  

 Intelligent Control Architectures and Tactical behaviors  

 Human-Robot Interface  

For Unmanned Ground Vehicles to become practical and cost effective in these applications, 

it is necessary to achieve a more robust and affordable perceptual framework.  Finally, the 

application of O-D wide field of view sensors both visual and infrared will allow the agents to 

operate both in the day and in the night. 

Goal Statement  
 

The goal is to establish a new framework for the robot’s scene semantics that can be recognized 

by the combination of a scene semantics feature extractor and artificial neural network fusion of 

the O-D infrared and visual stream approach.  It is also hypothesized that backpropagation 
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matching of the scene feature space and transfer learning from a larger data set can realize accurate 

3D scene reconstruction with a semantic overlay.  Therefore, we will seek three goals below: 

Goal 1: Direct Spherical Calibration (DSC) of O-D far infrared (IR) camera 

The proposed DSC will use a Direct Spherical Calibration (DSC) method to find the center of the 

camera, focal lengths, and camera properties of the calibration board images. Current O-D 

calibration methods are optimized for visual O-D cameras.  The fuzzy edges in the thermal images 

make corner extraction more difficult, and the baseline calibration methodologies explored rely 

heavily on multiple corner selection from a calibration board grid.  We improve the method by 

selecting the centroid from the four outside corners to use as the direct spherical input to a 

simplified re-projection calibration algorithm.  

The algorithm will iterate to minimize the re-projection error of the spherical coordinates of 

the calibration board centroid while adjusting the intrinsic and extrinsic camera properties to match 

a simplified spherical calibration equation. To verify the robustness and improvement for 

estimation accuracy, Root Mean Square Error (RMSE) will be used as a criterion.  The optimum 

calibration setting will be explored using a Pareto Optimization algorithm while minimizing 

circularity of the re-projected data, re-projection error, and computation time.  

Goal 2: Vegetation feature extraction with an Auto-encoder Neural Network 

For providing the vegetation detection using multi-spectral O-D far infrared and visual stream, 

a scene semantic feature extraction algorithm will be proposed. To build the semantic scene feature 

vector, we use a combination of a modified normalized vegetation difference index (MNVDI) 

spectral decomposition, and thermal region decomposition kernel filters as input into a self-

organizing feed forward feature extractor implemented by a Sparse Autoencoder Artificial Neural 
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Network (AANN) algorithm, the performance of the proposed vegetation detection target 

modeling will be evaluated via infrared and visual data captured with our robot setting.  

Goal 3: Robot semantic scene reconstruction using DeepFuseNet - Deep Learning Sensor 

Fusion (DLSF)  

Based on the proposed DSC method in goal 1 we will apply transfer learning to a deep learning 

(DL) convolution neural network (CNN).  We will use the proposed scene semantic feature 

extraction algorithm in goal 2, to extract the important features for recognizing the composition 

of the scene.  We applied deep learning sensor fusion to semantic scene reconstruction using 

Deep Learning Sensor Fusion (DLSF) to reconstruct the scene semantics reconstruction 

modeling as input into transfer learning of a Convolution Kernel Neural Network (CNN) as a 

feed forward unsupervised scene semantic feature classification model.  The scene semantics 

reconstruction will be implemented using the AANN Semantic Feature Extractor and the CNN 

Classifier mapped to the semantic scene geometry.  The resulting semantic mapping will be 

matched with a semantic behavior vector for passibility decisions.  Analyzing outcomes from the 

scene semantics reconstruction model will present the percentage of non-detects, false detects, 

and incorrect classification.  The RMSE and statistical values will be calculated for each 

semantic feature to validate.  

1.6.   Innovations 
The technical merits, science, and new contributions are comprised of the three major 

innovations given in Sections 1.6.1, 1.6.2, and 1.6.3 which is further described below.  

1.6.1. Direct Spherical Calibration (DSC) of O-D far infrared camera 
DSC investigates the calibration of O-D infrared (IR) camera for intelligent perception in 

unmanned system platforms. Current O-D camera calibration approaches are optimized for visual 

O-D cameras.  A literature search found no significant research for calibration of O-D infrared 
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cameras. The calibration of O-D IR cameras and the use of O-D IR vision have not been adequately 

addressed.   With the IR image the edge boundaries are not as sharp as with color vision cameras. 

This leads to error in the identification of control points for re-projection, at the calibration board 

grid corners, which are extracted from the calibration board image and re-projected.  The camera 

properties are iterated and the re-projection error is minimized in order to find the camera intrinsic 

and extrinsic properties   In order to fully address O-D IR camera calibration, we propose a Direct 

Spherical Calibration (DSC) approach for a more robust method of calibration. The newly 

proposed method, DSC, will address this by using the centroid of the calibration board and its 

spherical coordinates to directly calculate the re-projection parameters.  We compare DSC to three 

baseline visual calibration methodologies and augment them with output of the spherical results.  

We also look at the optimum number of calibration boards using an evolutionary algorithm and 

Pareto optimization to find the compromise between accuracy and methodology and number of 

calibration boards.  The benefits of DSC are more accurate calibration board geometry selection, 

better accuracy, and less computation time than the two baseline visual calibration methodologies.   

1.6.2. Vegetation Detection in 2D with Auto-encoder Neural Network 
The fusion of O-D Infrared (IR) and vision sensors is proposed to increase the level of intelligent 

perception for unmanned system platforms. Current approaches are primarily focused on O-D 

color vision for localization, mapping, and tracking, and a literature search found no significant 

research in our area of interest.   The combination of O-D IR and color vision for the extraction of 

feature material type, has not been adequately addressed.  We will look at augmenting indices 

based spectral decomposition with IR region based thermal decomposition to address the number 

of false detects inherent in indices based spectral decomposition.  Our work shows that the fusion 

of the Normalized Difference Vegetation Index modified for far infrared with the IR signature 

region representing vegetation minimizes the number of false detects seen with NDVI alone.  The 
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benefits of O-D IR region based thermal decomposition coupled with visual signature analysis for 

texture recognition and semantic extraction will be the contribution of this work. 

1.6.3. Robot semantic scene reconstruction using DeepFuseNet 
 The final step will be the reconstruction of the scene with a semantic vegetation scene overlay 

through a neural network fusion of the O-D IR and vision streams.  By fusing these proposed O-

D IR and visual sensor streams utilizing DLSF and transfer learning techniques from networks 

trained on the ImageNet dataset, it is expected that reconstruction of the scene semantic structure 

will be realized.  The significance, innovation, and technical merits of our three goals are shown 

in Table 2.  More methodological details about these goals will be presented in the following 

sections.  We present representative modules for the three goals in Fig. 4. 

 

Figure 4.  Representative depiction of three goals 

Direct spherical calibration of O-D IR camera, vegetation detection through index based and region segmentation fusion, and 

deep learning sensor fusion for vegetation detection. 

Table 2. Significance, Innovation and Technical Merits 

 

Step Significance and Innovation Technical Merit 

1  Simplify calibration board centroid 

capture 

  Improve the omnidirectional infrared 

camera calibration accuracy with the 

 Provide a more robust, accurate, and lower computation time 

methodology for the calibration of infrared omnidirectional 

camera. 

 Provide a basis for 3D scene reconstruction in SA3 
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1.7.   Summary 
The innovation of this work is the improvement in robotic vegetation detection utilizing a 

deep sensor fusion network architecture which reduces false positives in vegetation detection 

while maintaining a reasonable recognition rate.  The recognition rate achieved is 95.6% with 

a 92% reduction in false positives over the classical index based approach. 

 

The remainder of this Thesis is organized as follows: Chapter 2 is prior related works.  Chapter 

Direct Spherical Calibration (DSC) 

algorithm. 

2  Build the environmental vegetation 

feature extraction kernel from 

MNVDI based feature extraction. 

 Build the Infrared thermal region 

based feature extraction utilizing 

kernel feature filters. 

 Unsupervised feature learning using a 

2D auto-encoder neural network. 

 Provide a fusion technique, which overcomes the false detect 

problem in the semantic overlay in the reconstructed images. 

 Provide a robust unsupervised feature learning tool for 2D material 

feature extraction.  

 Provide a 2D semantic map of the scene to better identify object 

materials in the scene and identify passable obstacles.   This will 

better achieve semantic scene mapping in SA3.  

3  Apply unsupervised machine learning 

to extract 3D feature map 

 Extend the Autoencoder and add 

artificial Convolution Kernel Neural 

Network (CKNN) semantic model  

 Develop the artificial convolution kernel neural network sensor 

fusion model based on the infrared and visual streams from the 

scene images and apply a 3D semantic scene overlay of the 

materials in the scene to aid improved robot perception. 

 Improve robot perception to allow the robot agent to better 

understand the semantic construct of its environment, and enhance 

the accuracy of semantic mapping, path planning, and scene 

reconstruction  
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3 is the Technical Approach for the three methods.  Chapter 4 is the Experimental Results for the 

three methods.  Chapter 5 is the Conclusion for the three methods.    

The best performance was achieved by the DeepFuseNet approach with 95.6% recognition and 

2% false positives.  Fig. 5 shows the training and deployment concept and is further explained in 

Chapter 3 Section 3.3.6. 

 

Figure 5.  Concept level depiction of Deep Learning Training and DeepFuseNet deployment 

On the left is the high level Deep Learning training pipeline, on the right is how the DeepFuseNet is deployed.  The DeepFuseNet 
Training block is detailed in figure 27 in Chapter 4 Section  
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2. Chapter – Prior Related Works 
Chapter 2 covers related works and is organized as follows: Section 2.1 covers O-D Camera 

Calibration, Section 3.2 describes some prior work in O-D applications, and sensor fusion, Section 

4.2 describes some prior work in O-D applications, and sensor fusion, 

2.1.   Prior Related Works for Omni-direction Camera Calibration 
Section 2.1 covers O-D Camera Calibration and is organized as follows:  Section 2.1.1, 

Omnidirectional Camera Geometry, Section 2.1.2., Omnidirectional Visual Camera Calibration 

Methodologies, Section 2.1.3., and Omnidirectional IR Camera Calibration for Geometry 

Transformation, Section 2.1.4 Non-standard methods, Section 2.1.5., Omnidirectional IR camera 

calibration methodology Pareto optimization. 

2.1.1. Omni-direction camera geometry 
There has been a large body of research in the area of omnidirectional camera geometry, and 

calibration of omnidirectional visual cameras.  There is little work in the calibration of IR 

omnidirectional cameras.  The various methodologies are summarized in Table 3. 

Geometrical Approaches - 3D omnidirectional geometry approaches are presented in [1-4].  The 

central catadioptric imaging process was shown in [5] to be a two-step projection process; first 

from the 3D world point X = (x, y, z) T to a point on the unit sphere Xs = (xs, ys, zs)T, and from the 

sphere to a point m on the image plane m(u, v).  
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Table 3. Methodology Summary 

Method Ref, Model Approach Views 

Geometry [1-5] N/A Mixed N/A 

Survey [6], [18] N/A Mixed N/A 

DLT [11] Sphere Linear Eq. Single 

Distortion 2D  [7-8], 

[12],[13] 

Distort Polynomial Multiple 

Two-step Estimation [10] Planer Motion Joint Optimization Single & 

Odometric 

Overlapping views [14] Lucas-Kanade Bundle adjust multiple 

3D Reconstruct [15] Multiple 

Observation 

Mixed Multiple 

Spherical 2D  [10],[18] Sphere Single viewpoint Multiple 

Spherical Lines [3-5, 16] 

[19, 23, 28] 

Sphere Line projection Single 

Straight lines, line scan,  

lines from image 

[20-21], 

[31] 

Lines from motion, 

photogrammetry, lines 

from LIDAR and image 

Vanishing 

viewpoint,  

Multi-camera 

multiple 

Visual motion [22] Camera Pose - two 

spherical images 

Bayesian Uncert. 

Analysis 

Moving 

camera 

Moving objects [30] N-view matching SFM multiple 

Generic [33, 34] Planes Multiple Single 

Multiple Spherical Surfaces [30] 2 mirror optics IR point sources Single 

Infrared [35-37] Not described Not described various 

Non-standard [38-39] Optical flow depth map Multi axis stereo multiple 

Pareto [40-41] Pareto Frontier Pareto Optimize N/A 
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2.1.2.  Omnidirectional visual camera calibration methodologies 
Omnidirectional cameras are being applied in computer vision and robotics because of their 

advantages in wide field of view (FOV).  Much work has been done on calibration methods 

optimized in the visual band but very little in the IR band. 

  Survey of Methods - [6] of about 25 methods was categorized into four principal approaches. 

 Direct Linear Transform (DLT) approach – uses a spherical model and obtains a closed form 

solution using 3D – 2D correspondences.   

 Spherical-2D Pattern – uses a spherical model coupled with multiple views of 2D pattern with 

as many points as possible in the pattern.  

 Distortion 2D Pattern – Models the 2D images as distorted images and uses a Taylor expansion 

polynomial approximation as the projection function to find the distortion parameters.  

 Spherical Lines – This approach uses the spherical camera model, a single omnidirectional 

image with at least three lines.  The 3D lines are mapped to conics in the omnidirectional 

image.   

[6] evaluated the four primary methods of omnidirectional calibration.  Three of these methods 

(DLT-like, Spherical 2D Pattern, and Distortion-2D Pattern) showed good results with very similar 

performance.  Of these three, the Distortion-2D Pattern approach had the best results in real world 

applications. All of these methods have been applied to omnidirectional color vision cameras but 

not to IR omnidirectional cameras.  Three of the four primary methods identified in [6] were based 

on spherical geometry.   

The first two Baseline methods we used for comparison were chosen based on the best two 

methods found for visual omnidirectional camera calibration in the author’s literature search.  We 

also added a third more generic method for comparison.  The three methods chosen to compare 
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were Baseline 1: The Distortion-2D Pattern approach used by [7-9], and the Baseline 2: Spherical-

2D Pattern approach [10].  The review of a radically different approach was also evaluated, 

Baseline 3: a generic calibration model [35, 36].  

Other methods - were briefly evaluated and not used. A Direct Linear Transform (DLT) like 

approach is presented in [11].   

 The presentation of a hand-eye camera calibration approach which takes into account a lens 

distortion camera mode is given in [12-13].  The approach optimizes the intrinsic and extrinsic 

camera parameters using an iterative extended Kalman filter.  

A 360 degree Distributed Aperture System composed of 6 narrow field of view cameras [14] is 

presented and uses forward additive Lucas-Kanade algorithm with bundle adjustment strategy to 

solve for offline estimation of camera orientation.   

A multiple observation 3D reconstruction is presented in [15].  A minimization of the re-

projection error assuming that the angle of incidence between the point on the mirror is equal to 

the reflection angle or angle to the center of the mirror [16].   

[17] also did a survey of omnidirectional calibration methods and characterized the methods by 

geometrical approach such as 3D to 2D, straight line, spherical and mixed approaches. Calibrating 

the para-catadioptric camera from the projection of a sphere onto the image plane is also presented 

in [18].   

[19, 20] use the fact that lines in space map to circles in an omnidirectional image leveraged to 

find points on the line projections, and then apply best fitting circles to those points.  The authors 

use an offline calibration of surveillance cameras using camera height coupled with line geometries 

extracted from moving vehicles in the scene [21].  The authors in [22] use a moving fisheye camera 

to study camera pose uncertainty in a pipe inspection setup.  Calibration was accomplished using 
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the [8] omnidirectional toolbox.   

The relationship of line and sphere invariant geometry and the projection of lines to conic curves 

are further investigated [23, 27, 28].    The authors present a self-calibration method using 

projection rays to individual pixel matches between images [24-25].  An approach for nonlinear 

localization of corner points to least squares fit the corner gray scale model to the image is 

presented [26].  An omnidirectional sensor is used in [29] to map the 360-degree environment 

around the robot. [30] Calibrates a multi-axial imaging systems consisting of a camera viewing 

multiple spherical reflecting or refracting surfaces to achieve wide angle views.  Then from the 

rays of two or more spheres the pose of a single calibration grid is obtained by linear decomposition 

independent of the sphere locations and radius.  In [31], the authors use the environment to find 

points, lines and planes in both the image and the laser data to identify trihedron of lines from 

which to calibrate the camera and the laser.  The four outside corners are selected and then the 

internal control points are extrapolated. The four outside corners are selected and then the internal 

control points are extrapolated.  [32] is the MATLAB calibration toolbox.   The authors [33-34] 

give a generic calibration method that we used as our third baseline comparison. 

2.1.3. Omnidirectional IR camera calibration for geometry 
transformation  

Very little work has been done in the area of IR omnidirectional sensors or sensor calibration.  

This is the reason our work is important.  An evaluation of five IR reflective hot mirror materials 

and a log-polar mapping technique is presented in [35], but they do not present any calibration 

information. A box with four thermal point sources is used to calibrate the camera, but do not 

describe their calibration methodology [36].  The authors in [37] use thermal cameras to measure 

odometry on a robotic platform.  The calibration is accomplished using the standard checkerboard 

approach with the application of aluminum grid to improve the thermal reflectance. 
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2.1.4. Non-standard methods 

In [38], the authors use an array of multiple micro lenses focused on the various scene light fields 

from the single primary lens to extract depth information from the different light fields from the 

scene.  As a result, the authors take advantage of the geometry to perform a non-parametric 

calibration based on optical flow. The authors in [39] use the optical properties of water-drops on 

glass to estimate a depth map using stereo from multiple water drops.  The method has limitations 

because the perspective camera cannot get high resolution images through the water drops. 

2.1.5. Omnidirectional IR camera calibration methodology Pareto 
optimization 

Pareto optimization is a methodology commonly used for multi-variant optimization problems.    

Visualization techniques are described for multi-dimensional optimization problems using 

multivariate mesh displays, color mappings, and multiple views [40].  Techniques for multi-variant 

objective optimization are given in [41].    

2.2. Prior Related Works for Index and Vegetation Region Segmentation 
Methods 

Robust and inexpensive intelligent perception is a key enabler to the practical application of 

Unmanned Ground Vehicles (UGV) operating with teams of humans in areas of police, rescue, 

and military applications.  In addition, truly commercial applications will benefit from this research 

and other intelligent perception work as well.  Our review of the literature highlights that the focus 

of recent research with O-D cameras has been primarily in the area of improvements in mapping, 

localization and tracking, robot navigation, and obstacle detection.   

The authors believe that the fusion of O-D IR and Vision has the potential to provide 3.2.1  

Omni-direction Camera Setting, Section 3.2.2 Visual and IR Index Based Vegetation Detection; 

Section 3.2.3 IR Stream Segmentation using Region based Thermal Analysis, and Section 3.2.4 
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Sensor Fusion Methodologies.   

2.2.1. Omni-direction Camera Setting 
The spherical geometry characteristics of the O-D sensor are leveraged.  Table 4. summarizes 

the literature review for this section.    

The O-D geometry approach exploits the radial straight line geometric feature of O-D vision to 

map to semantic primitives of the environment (doors, buildings, walls, edges, trees, corners, and 

radiators) and track these primitives as the robot moves through the environment.  There are several 

approaches to localization and homography (determining the visual geometry of the scene) [42-

47].  [42] applies O-D vision and odometry to self-localization of a UGV in a non-static 

environment, and to determine robot’s global pose (x, y, θ).   They also looked at several sensor 

fusion models and whether fusing data then detecting/classifying (low level fusion) or the 

utilization of individual sensor modality to detect/classify and then fusing the results (high level 

fusion) gave better overall results.  Our approach in this chapter is to use feature level fusion 

coupled with segmentation techniques as described in section 3.3. 

 Homography (Visual Geometry) estimation from feature points extracted from a moving Omni-

vision sensor is another popular approach used in both [43], and [44]; [43] uses multiple 

homographies from virtual image planes in O-D vision pairs.  Navigation is explored in [45 The 

Table 4.  Omnidirectional (O-D) Camera Applications Summary 

Method Reference Model Approach 

Localization [42] SLAM Mixed 

Homography [43, 44] Visual Geometry Mixed 

Navigation [45] Sphere Optical Flow 

Calibration [46] O-D camera 

calibration 

Direct Spherical Calibration 

Robotic Feature Tracking [47] Vertical Line Recognition Robust Feature Descriptor 
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authors calibration approach for our O-D camera is presented in [46].  Identification of vertical 

line geometry in the image is addressed in [47]. 

2.2.2. Visual and IR Index Based Vegetation Detection 
Vegetation detection is required because the identification of vegetation aids the robot in 

detecting materials that it can pass through such as grass or small bushes. Table 5. summarizes the 

literature review for this section.  [48-56] address different aspects of vegetation detection.  

However, these approaches are prone to false detects which we hope to minimize through our 

approach.   

The identification of vegetation is especially useful. If the object detected is made out of leafy 

vegetation or grass, it is more likely passable than a tree trunk or a man-made object.  The use of 

the NIR spectrum in addition to the visual spectrum has been shown to provide useful information 

in the detection of vegetation in remote satellite imaging [48, 49]. 

 The application of multispectral and hyperspectral techniques is explored in [50].  [51-56] 

Normalized Difference Vegetation Index (NDVI) is a very popular index approach to vegetation 

classification in remote sensing. However, these approaches that are applied in satellite imagery 

are taking a macro look at large data sets to classify ground cover.  In the NDVI approach a 

comparison of the levels of red reflectance to the NIR reflectance has been shown to correspond 

Table 5.  Vegetation Detection Methodology Summary 

Method Reference Model Approach 

NIR [48,49] Index Based Satellite Remote Sensing 

Multi 

Spectral 

[50] Hyperspectral Mixed 

NDVI [51 - 53] Various Improve NDVI 

NDVI Variant [54] Principal Component Analysis Statistical Framework 

NDVI  [55-56] Topological Effects Sensitivity Analysis 
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to vegetation.   

2.2.3. IR Stream Segmentation using Region based Thermal Analysis  

Segmentation and fusion techniques have been explored [57-66], and both region based and edge 

based approaches have been demonstrated.   [57] augments the NDVI with 3D LIDAR point cloud 

to compensate for the vegetation index shortcomings; this is an approach which utilizes expensive 

sensors.   Table 6. summarizes the literature review for this section. 

 [58] evaluates the calibration of Spectral Response Functions from multiple sensors to improve 

the fusion of Multi-sensor NDVI time series.  Our approach will fuse low cost optical and IR 

sensors to minimize the false detects.  Localization from O-D vision using RBG color histograms 

[59-61] to match images in the database of regions the robot may visit is another approach.   

  Region Segmentation techniques have been explored [62-26], and both region based and 

edge based approaches have been demonstrated.  [62] apply a multi-mode sensor fusion of Lidar, 

color vision and near-IR cameras fused to provide perception of the terrain around a mobile robot.   

Localization from O-D vision using RBG color histograms [63], and a similar approach saves 

computing power by extracting a numerical signature gray scale histogram using Haar Discrete 

Wavelet Transform [64].   This approach also uses expensive Lidar sensors which we are trying to 

avoid.  Histogram approaches have also been used for region segmentation [63-66] using 

clustering techniques based on histogram thresholds.     

Table 6.  Segmentation and Histogram Method Summary 

Method Reference Model Approach 
LIDAR and NDVI 
Fusion 

[56] Sensor Fusion Fusion of Lidar and NDVI results 

Multi-sensor [57] NDVI time series Spectral Response Functions 
Histograms [58-60] RGB and Gray Scale 

Histogram 
Region matching 

Region 
Segment 

[61-65] 
 

Mixed Region and Edge, Histograms 
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2.2.4. Sensor Fusion Methodologies 

 Sensor Fusion techniques have been explored in several multi-sensor approaches [67-91].   

Table 7. summarizes the literature review for this section.   

The following are presented: 

 Local Point Statistic 

 Conditional Local Point Statistic 

 2D-3D Feature Fusion 

 Laser Remission 

 NDVI-Laser Fusion
 

 SVM Multi-Cam Fusion 

 Multi-Cam NDVI Fusion 

 [67] provides a survey of sensor fusion methods which are categorized into three levels: 

Table 7. Sensor Fusion Method Summary 

Method Reference Model Approach 
Structured overview [67] Survey Various 
Extended Kalman Filter [67] Decision fusion Composite process health index 
Raw Data Level Fusion [68-69], [74], [80], 

[84] 
Data fusion Improve signal to noise similar 

sense 
Feature Level Fusion [70-71], [78-79], 

[81-83] 
Feature fusion Feature Extraction at sensor level 

Decision Level Fusion [72-73], 
[76-77] 

High level decision Individual sensor analysis high 
level probabilistic confidence 
fusion 

Human-Robot Fusion [75] Bayesian Soft Max Gaussian priors and human 
guidance 

IR-Vision Fusion [85] Visual Gradient and 
infrared intensity  

Feature Level Fusion 

IR-Vision Fusion [86] Non subsampled 
Contour-let Transform 

Fuse sub-bands and low level 
features 

IR-Vision Fusion [87]   
Label-Me [88] Label-Me MIT CSAIL Labeling Tool 
Compressive Data Fusion [89] Compressive Fusion Compressive Random Projections 
NDVI [90-91] 

[92-93] 
NDVI  Analysis of ground cover for loss 

of forest cover. 
Lidar-Hyperspectral 
Fusion 

[94] Lidar point cloud plus 
Mixture-tuned matched 
filter for Hyperspectral 

Lidar – canopy structure, 
Hyperspectral – species spectral 
signature 
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1) Raw data level fusion – sensors with similar characteristics are fused to improve signal to 

noise [68-69], [74], [80], [84] 

2) Feature level fusion – features are extracted from different types of sensors and then similar 

features are fused for improved confidence [70-71], [78, 79], [81-83]. 

3) Decision level fusion – the sensors are processed individually and then the relevant 

information is then fed into a separate decision processor to decide on the most confident 

outcome [72-73], [76-77]. 

Where [72] applies decision level fusion to fuse the process sensors of vibration, noise, and force.  

[73] applies sensor fusion to robot off-road navigation, fusing individual sensor results by 

probability of blocked / unblocked and feeding this into high level behavior decision model.  A 

data level fusion of sensor signals [74] is used to develop a thresholded composite failure index 

that combines both data fusion and degradation modeling to establish the composite index.   The 

fusion of multiple machining quality sensors.  [75] characterizes forest canopy using airborne 

LIDAR and hyperspectral feature based fusion.  [76] applies data fusion to an omnidirectional and 

PTZ camera for optimal multi target tracking. 

 The fusion of environmental features [77] from visual and IR cameras is used to calculate 

the probability of pedestrian location.  The automatic scene segmentation into salient features is 

accomplished by different methods and their results fused.  The fusion of depth and color features 

[78] is used to distinguish crops from weeds. Feature fusion of visual and Synthetic Aperture Radar 

(SAR) is used to extract roads and buildings [79]. 

[80] uses the data level fusion of IR and Visual camera, preserving the intensity distribution of the 

IR image and the gradient variation of the visible image.   [81] surveys several feature fusion 

methods including; substitution techniques-based, independent component analysis (ICA)-Based, 
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principal component analysis (PCA)-based, segmentation-based, Neural Network-based, 

mathematical morphology-based, and Multi Scale Transform (MST)-based fusion schemes.  [82- 

83] utilize feature extraction at the sensor level.  [84] provides fusion at the raw data level.  [85] 

applies Gradient Transfer Fusion to extract the gradient information from the visual image fused 

with minimization of the total variation of the infrared intensity data.  [86] applies a Multi-Scale 

Transform using a Non-Subsampled Contour-let Transform to extract high and low frequency sub 

images and fuse with low level features.   [87] uses region growing for segmentation.  The authors 

applied the MIT CSAIL LabelMe database and web tool for image annotation to label the images 

[88]. 

2.3.   Prior Related Works for Deep Learning Sensor Fusion 

Robust and inexpensive intelligent perception is a key enabler to the practical use of Unmanned 

Ground Vehicles operating with teams of humans in areas of police, rescue, and military 

applications. Commercial applications will also find benefit from this research as well.  The 

authors believe that the fusion of O-D IR and O-D Vision has the potential to provide 

improvements in intelligent robotic perception.  This section covers related works and is organized 

Section 4.2.1 Visual and Infrared Index, Histogram, and Region Segmentation Based Vegetation 

Detection, segmentation, Section 4.2.2 Deep Learning -  Convolution Neural Networks (CNN), 

and deep learning to scene recognition.   

2.3.1. Visual and Infrared Index, Histogram, and Region Segmentation 
Based Vegetation Detection 

Vegetation detection is required because the identification of vegetation aids the robot in detecting 

materials that it can pass through such as grass or small bushes. Table 8 summarizes the literature 

review for this section. 



30 
 

The identification of vegetation is especially useful. If the object detected consists of leafy 

vegetation, it is more likely passable than a tree trunk or a man-made object. The use of the near 

infrared (NIR) spectrum in addition to the visual spectrum has been shown to provide useful 

information in the detection of vegetation in remote satellite imaging. [95], [96], the application 

of multispectral and hyperspectral techniques is explored in [97], [98].  However, these approaches 

that are applied in satellite imagery are taking a macro look at large data sets to classify ground 

cover.  Bradley et al. [99] explore the application of the Normalized Difference Vegetation Index 

(NDVI) to vegetation perception in the DARPA Preceptor off road UGV.   A comparison of the 

levels of red reflectance to the NIR reflectance has been shown to correspond to vegetation.   

Table 9 summarizes the histogram and segmentation approaches. Histogram and region 

segmentation approaches have also been applied to vegetation detection [100-108].  [100] applies 

the fusion of visual and LIDAR point clouds.  [101-104] apply histogram approaches, and [105-

108] apply region segmentation approaches. 

Table 8.  Vegetation Detection Methodology Summary 

Method Reference Model Approach 

NIR [95-96] Index Based Satellite Remote Sensing 

Multi 

spectral 

[97] Hyperspectral Mixed 

NDVI  [98-99] Topological Effects Sensitivity Analysis 
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2.3.2. Deep Learning Convolution Neural Network Fusion of O-D IR 
and O-D Visual Stream 

Table 10 summarizes the literature review for this section.  Neural Network learning is applied to 

obstacle avoidance in [109-138].  

 A three-layer Neural Network (NN) is trained to recognize red colored visual objects [109] and 

the output of the NN is three movement commands (Forward, Turn Right, or Turn Left). Mapping 

of the objects in the robot’s environment [110] is divided into two map representations, a set of 

perceptual maps from each sensor derived by a Neural Network Feature Extractor and a Self-

Table 9.  Histogram and  Segmentation Method Summary 

Method Reference Model Approach 

LIDAR & NDVI Fusion [99] Sensor Fusion Fusion of Lidar and NDVI results 

Histograms [100-104] RGB & Gray Scale 

Histogram 

Region matching 

Region Segment [105-108] Mixed Region and Edge, Histograms 

Table 10.  Neural Network and Deep Learning Method Summary 

Method Reference Model Approach 

Neural Networks [109-111] Supervised Learning Terrain Classification 

Neural Networks [112-115] Unsupervised learning Face Recognition 

Autoencoder [116-119] Input  Matching Feature Extraction 

Deep Fusion Network [120] Residual Network  

Classifier Fusion [121] Low and High Level 

Classifier 

Classifier Fusion 

CNN [122-128] Mixed Road signs, road boundary 

Databases [129-130] ImageNet, City Scapes Classification databases 

Deep Learning [131-138] Various Transfer learning, finetuning 
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Organizing Map algorithm, and a spatial map representing the location of each of the objects in 

the perceptual maps which is built up by a Growing Cell Structure NN approach.   

Dynamic obstacle motion is tracked using a multilayer feedforward Artificial Neural Network 

(ANN) [111] by fusing ultrasonic and visual cues. The ANN is trained off-line using a relative 

error backpropagation algorithm. On-line the ANN predicts in real time the distance to the dynamic 

and stationary obstacles.  [111] Applies an environmental predictor ANN rather than a motion 

predictor to provide the robot with what areas will be occupied by obstacles.  The algorithm fuses 

data from multiple ultrasonic sensors to identify the correlation between them and predict the 

future sensor reading.  

The use of unsupervised learning for classification of terrain travers ability is explored in [112]. 

On-line learning is achieved by establishing a correspondence between the vehicles navigation 

experience (successful traversals, slippage, collisions) using onboard sensors (IMU, bumper, and 

motor current), and visual characteristics of the terrain from a stereo vision sensor.  The travers 

ability level is established as a travers ability affordance or rating of terrain difficulty to be 

traversed.    

Unsupervised feature learning [113-114], is applied in [115] to face recognition.  The method used 

applies two simple learning algorithms 1) a K-Means clustering algorithm to pre-filter the data, 

and 2) agglomerative clustering to group simple cells into “complex cells” that are invariant 

features. An analysis of the application of single-layer networks to unsupervised learning is given 

in [115]. In this work they apply several unsupervised learning algorithms followed by a 

convolution (conv) classifier to evaluate the effect of different parameters used in unsupervised 

learning and CNN.   
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Autoencoders [116-119] which are a class of Neural Networks where the network is trying to 

approximate the identity matrix are used as feature extractors where the learned weights of the 

sparse hidden layer represent features in the image.  Rather than use labeled data, the Autoencoder 

tries to match the output to the input and thus learn feature patterns in the data. 

Converting high dimensional data to low dimensional data using Autoencoders [116], and a 

method of initializing weights that enable a deep Autoencoder network to operate more efficiently 

is presented.   The method is applied to character recognition and facial feature recognition.  

 Intentional noise corruption of random pixels is introduced and a DE noising Autoencoder 

[117] is applied to a deep learning network to provide a more robust initialization of the network 

by guiding the intermediate steps based on the correction of the corruptions. While [118] looks at 

efficient sparse Autoencoder techniques. [119] presents a two-stream architecture the first being a 

de-noising autoencoder to encode pixel spectral values and the second stream is the image being 

evaluated.  These are then fused using a CNN. 

[120] applies residual learning to optimize CNN layer learning, and fuse the output of different 

hierarchical layers of the network.  [121] Evaluates several low and high classifiers and looks at 

the fusion of the classification results for color, texture, and geometry for terrain classification.  

[122] applied automatically generated training data for CNN building detection. 

 [32-37] apply CNN to the classification of terrain and vegetation in the environment. 

In our work we utilized the ImageNet [129] and City Scape [130] databases.  We also referenced 

[131-134] for refining our deep learning approach.  [135] was our prior paper that we used for 

comparison to our prior methods.   [136] applied automatically generated training data for CNN 
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building detection.  [137] applied sparsity for unsupervised deep feature learning. [138] applied 

deep learning to building extraction in remote data.  The authors in [138] applied data 

augmentation to expand their training set. 
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3. Chapter – Technical Approach for the Three Methods 

3.1. Technical Approach for Direct Spherical Calibration of 
Omnidirectional Far Infrared Camera System 

Chapter 3 proposes our new work Direct Spherical Calibration (DSC), starting Section 3.1.1, 

Omnidirectional IR camera geometry, Section 3.1.2, Direct spherical omnidirectional IR camera 

calibration methodology, and Section 3.1.3, Optimal number selection of image capture of 

calibration boards, and Section 3.1.4 Comparison to other methods. describes some prior work in 

omnidirectional camera calibration. 

3.1.1. Omnidirectional IR camera geometry 
Using parabolic reflecting surfaces, a projected 360-degree field of view is created and 

transformed into a single 360 linear plane.  With a single omnidirectional vision approach, Fig. 6, 

reconstructions of scenes create a reduced set of unknowns in the equations as compared to the 

many camera approach.  The camera, parabolic mirror, and the geometry of the focusing lens and 

mirror are shown in Fig. 6, and is described in the equations (1-4) below: 

ଶݎ  = ݔ
ଶ + ݕ

ଶ  (1),  ߠ = tanିଵ ቀ
ݕ

ݔ
ൗ ቁ              (2) 

         ߮ = cosିଵ(ݖ ⁄ݎ ݖ  ,(3)  ( =
൫ݔ

ଶ + ݕ
ଶ − ℎଶ൯

2ℎ
൘   (4) 

The IR camera is mounted in the housing above the parabolic lens, with a hole in the center of 

the lens.  The point P in space is reflected from the parabolic mirror down to the base mirror P’ 

and focused by the lower lens through the hole in the center of the parabolic mirror to the camera 

lens and image plane.  F is the focus of the parabolic mirror.   
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Figure 6. Omnidirectional Camera Geometry   
shows the layout of the camera and the geometry of the omnidirectional parabolic mirror, and 

the relationship of the camera and focusing mirror/lens in the bottom of the structure.  The 

Omnidirectional Camera geometry is presented, showing the relationship of the scene point P 

to the spherical point ρ and the x, y, z rectangular coordinates to the r, θ, φ spherical 

coordinates. 

Where xp and yp are the pixel In the coordinates of the pixel, and P is the point in space being 

observed by the omnidirectional camera.    spherical coordinate system θ and φ define the direction 

of the ray and r is the distance to the origin of the mirror in pixel coordinates and θ ranges from 0° 

to 360° around the edge of the mirror, and the pitch φ, ranges from 0° when pointing straight down, 

to 90° when pointing at the horizon.  Fig. 6 shows the coordinate system in the O-D camera case, 

relating the (x, y, z) point to the sensor coordinate in (r, θ, φ). The camera geometry is shown in 

Fig. 2 Section  2.3.4.   
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Figure 7. Omnidirectional Geometry Relationship 
(a) Shows the omnidirectional image, and (b) Shows the O-D IR image with the r, θ geometry 

overlaid. (c) Shows the unwrapped rectangular image, and the X, Y, Z geometry axis. 

The (x, y) points in the world coordinates are related to (xp, yp) by equations (1-4).  The 

orientation, Fig. 7 a) shows the omnidirectional IR sensor.  The sensor annotated with the two 

coordinate systems is shown in Fig. 7b) with the r, θ, and φ parameters overlaid.  Fig. 7c) is the 

unwrapped image showing the relationship to x, y, and z coordinates, r is related to x, y by (1), and 

theta (θ) and Phi  (φ) to x, y, by (2) and (3), z is related to r and h by (4).  

3.1.2. DSC omnidirectional IR camera calibration methodology 
With the IR image the edge boundaries are not as sharp as with color vision cameras.  As a result, 

the corner selection algorithms and automatic methods do not accurately find the corners.  This 

affects both the error and the scatter in the error results. The newly proposed method, DSC, will 

address this by directly using the spherical coordinates of the centroid of the calibration board, 

found from the four outside corners of the calibration board grid, and will use the spherical 

coordinates of the calibration board center to directly calculate the re-projection parameters.   
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Fig. 8 shows a block diagram of the geometry transformation and the relationship of the spherical 

mirror to the captured calibration boards.   

 

Figure 8. Camera Calibration Overview 
Capture the location of center of calibration boards at different radius and angle from the 

omnidirectional IR camera. 

The calibration process uses the planar calibration pattern to capture a matrix of spherical 

coordinates of the calibration board center points and then minimizes a least squares minimization 

function of the difference between the actual and re-projected points to converge on the camera 

intrinsic and extrinsic calibration parameters.   

The proposed DSC consists of the six steps as follows. 

STEP 1: ESTABLISH A THERMAL CALIBRATION GRID 2D PLANAR PATTERN. 

The calibration setup is shown in Fig. 9 and consisted of a pattern of reflective tape applied on 

a closely laid out grid with +/- 0.03215 accuracy on a white board with two IR heat lamps shining 
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on the surface. The calibration board was calibrated by careful measurement of the grid spacing. 

Fig. 8a).  Fig. 8b) shows the sensor on the robot with the board and heat lamps repositioned around 

the robot and camera.  Three data sets were captured, sparse consisting of ten (10) images, 

moderate consisting of twenty-five (25) images, and dense consisting of forty-seven (47) images.         

The three setups were done on different days with the board and lamps being repositioned for each 

data image. The reflected image was then captured by the omnidirectional IR camera shown on 

top of the robot in Fig. 8a and 8b. 

                   

a) Camera Calibration setup                                          b)  Calibration setup 

Figure 9. Camera Calibration setup: 
a) Calibration setup diagram, with two heat lamps and a calibration board with thermally 

reflective pattern b) the calibration pattern illuminated by )IR lamp with robot in foreground 

displaying Omnidirectional IR image. 

 

  These images were then processed by the three algorithms for comparison.  The method used 

in [31] to capture a calibration pattern from an LCD screen would not work with our IR O-D 

camera, due to the constant temperature of the screen.   The methods used in [22 and 37] both used 

multiple cameras and were more complex than our setup. [22] Required a frame camera and a line 

scan camera, while [37] required an LCD projector, two stereo cameras and an IR camera. [30] 
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used a single camera looking through multiple spherical lenses on different axis, this again was 

more complex than our setup and did not apply to our camera setup. 

STEP 2: DIRECT SPHERICAL CALIBRATION (DSC) CAMERA MODEL. 

The DSC methodology uses the direct spherical coordinates of the calibration grids in equation 

(11) below to find the projection error.  The process then minimizes the error in order to solve for 

the intrinsic parameters (5).  

The world point P(X,Y,Z) X = (x, y, z)T is projected to a point on the unit sphere Xs = (xs, ys, zs)T, 

and from the sphere to a point m on  the image plane m(u, v).  Kc equation (5) is the intrinsic 

camera parameter matrix.  

           Kୡ = 
γ୶ s u
0 γ୷ v

0 0 1
൩           (5) 

Where focal length is γx, γy, s is the image skew, and p (u0, v0, 1)T the principal point.  The skew s 

is affected by both the focal length (γ) and the aspect ratio α.   The imaging projection process is 

then captured by extending the single view point camera model m=KC[R t]X relating the space 

point matrix X, intrinsic parameters KC, the extrinsic parameters R’ and t to the image projection 

matrix m(u’, v’) and are substituted in equation (6). 

݉ߚ         = ܭ ቀ
ோᇲା௧

‖ோᇲା௧‖
ቁ +    (6)        ݁ߦ

where β is a scale factor, R’ is a 3 x 3 rotation matrix, t is the vector of translation t = (tx, ty, tz)T 

and ξ is the mirror shape parameter.  The mirror is a paraboloid if ξ = 1, an ellipsoid or hyperboloid 

if 0< ξ<1, and a plane if ξ = 0.  R’ is the mirror to camera rotation matrix, and t is the mirror to 

camera translation matrix as before.  

The eccentricity e is a vector of the eccentricity in the x, and y direction and is a measure of how 

much the cross section deviates from being circular.  The values and their interpretation are given 
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below. 

The eccentricity of a circle is zero. 

• The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. 

• The eccentricity of a parabola is 1. 

• The eccentricity of a hyperbola greater than 1. 

The relationship between ξ and e is given in equation (7) and summarized in Table 11. 

Both xi (ξ) and eccentricity (e) were iterated during the calibration.  xi (ξ) converged towards 1.0 

and ex, ey converged towards 1.0. 

ߦ =
ଶ∗

ଵାమ      (7) 

Table 11.  Relationship Between Eccentricity e and Mirror Parameter  ξ 

 Ellipsoidal Paraboloid Hyperbolical Planar 

e 0 < e < 1 e = 1 e > 1 e  →∞ 

ξ 0 <  ξ  < 1 ξ  = 1 0<  ξ  < 1 ξ   = 0 

In our case the IR omnidirectional camera with parabolic mirror, the relationship between the 

world point (X, Y, Z) and the spherical point (r, θ, φ) are given by applying trigonometry as in Fig. 

10 and as noted in equations (1) to (4), and resulting in equations (8), (9), and (10). 

        ܺ = ݎ sin ߮ cos  (8)           ߠ

        ܻ = ݎ  sin ߮ sin  (9)           ߠ

       ܼ = ݎ cos ߮                     (10) 

The world point vector X (6) is replaced by its spherical coordinate equivalent elements from 

equations (8), (9), and (10) resulting in (11).  The initial (r, θ, φ) points are substituted into (11) 

along with the estimated Kc, R’, and t matrices and the projection point is calculated, the cost 

function f(x) is then minimized. 
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ଵ , where n is the number calibration boards, P(xi) is the projected 

calibration board center, and ei is the extracted calibration board center.  The cost function is the 

Euclidian distance between the projected calibration board center point and the extracted value in  

the image.  The n calibration board re-projection points are then used to triangulate the camera  

center. Equation (11) represents the calibration equation directly in the (r, θ, φ) framework, and is 

used to find the re-projected calibration points, and the fitness function f(x) is then minimized 

using Levenberg-Marquardt approach.   It is the relationship between the intrinsic, extrinsic 

parameters and the camera geometry. 

 

Figure 10.  Spherical Coordinate Diagram: 
Showing the relationship between Spherical Coordinates and Cartesian 

coordinates representing (8), (9), (10). 
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STEP 3: MEASURE THE GRID CORNER (4 OUTSIDE) INTERSECTION POINTS. 

Our method of selecting the four outside corners as a starting point and applying our algorithm 

to find the position of the calibration board center worked significantly, on the order of 40X, better 

than the baseline methods.  The baseline methods saw errors on the order of 81 pixels compared 

to ours at 2 pixels.  The baseline methods struggled with the low resolution IR images which either 

introduced larger error, or failed completely to converge.  The calculated coordinates of the center 

of the calibration board was then used to directly calculate the spherical coordinates and the 

projected radius to the center of the camera was found by minimizing the re-projection error. 

The four corners of each calibration grid in the data set images, Fig. 11, are clicked on by the 

user with a corner assist algorithm, and the pixel coordinates of the corners are extracted and the 

central point of the grid (green square at the center of the distorted corners box) is approximated 

by geometry of the four image points.   

We first attempted the MATLAB automatic corner selection [32] used in [31], but this method 

broke down on our lower quality IR images necessitating our modified approach. The internal 

extrapolation failed and the internal points being out of position resulted in the error solution going 

out of bounds in some of the images.  This necessitated us to estimate the center from the geometry  

of the four outside corners which worked much better. The image coordinates of the entire 

calibration board center points are then used to find the θ, φ, and r value of the calibration board 

centers which are then substituted into (11) and the difference between the projected points and 

the observed image points are minimized.  θ, and φ are the angles to the center of the capture board 

grid observed from image coordinates, and r is the distance from the center of the camera to the 

center of the capture board in pixel coordinates obtained from equations (1-4). The value of r is 

found by r = sqrt(xp
2 + yp

2), and xp and yp are the pixel coordinates of the grid center in the image.  
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The θ, φ and r values are substituted into (11) from step 2.    

 

Figure 11. Calibration Board Capture 
Calibration Board center approximation using the four outside corners (circles) the center 

shown by the green square is found. 

STEP 4: SOLVE FOR THE CAMERA INTRINSIC PARAMETERS (KC). 

The Kc matrix (5) is then solved for and the results displayed.  The (rc, θc) is re-projected on the 

image and the error is minimized to find the solution to (11).  This DSC direct approach has the 

best calibration results when compared to the Baseline1 (distortion) and 2 (single viewpoint 

spherical) methods, but with smaller error.  Baseline 3 (generic) had much higher error and went 

out of bounds on the dense data set. 

STEP 5: SOLVE FOR THE CAMERA EXTRINSIC PARAMETERS. 

The calibration process then finds the R’ and t matrices such that a least square error function is 

minimized to best match the mapping, and the process iterated until convergence or threshold is 

met.   
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Table 12.  Five Process Steps for DSC 

Steps Step Details 

Step 1 Establish a thermal calibration grid 2D Planer Pattern with thermally reflective grid of known 

geometry, which consisted of five rows of seven squares or a total of 48 corner points. (needed 

for Baseline methods) The grid was constructed on a white board with a cross pattern of silver 

reflective tape.  The calibration boards were then used at different angles and distances from the 

camera. (DSC only used the outside corners) 

Step 2 Direct Spherical Calibration (DSC)  

Establish the DSC Camera Model in terms of (r, θ, φ) 

݉ߚ = ܭ

ە
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Step 3 Measure the grid corner (4 outside) intersection points at different unknown positions which are 

related to the sensor coordinate system by a rotation matrix R’ = [R’x, R’y, R’z] and translation 

matrix t = [tx, ty, tz], the extrinsic parameters 

Step 4 Solve for the camera intrinsic parameters Kc 

ܭ = 
௫ߛ ݏ ݑ
0 ௬ߛ ݒ

0 0 1
൩  

Where s is the skew and is a function of α the camera aspect ratio and the focal length, γ is the 

focal length, and u0, v0 is the principal point. 

Step 5 Solve for the camera extrinsic parameters  

R’ = (R’x, R’y, R’z)T , R’ is the camera rotation about the x, y, z axis.  t = (tx, ty, tz)T, t is the 

translation of the camera along the three x, y, z axis. 

Step 6 Iterate steps 2 - 5 until convergence since the intrinsic and extrinsic parameters influence each 

other. 
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STEP 6: ITERATE STEPS FOUR AND FIVE UNTIL CONVERGENCE. 

Since the intrinsic and extrinsic parameters are related we iterate steps four and five until the 

minimized re-projection errors converge.  The six steps are summarized in Table 12.  The results 

of our DSC method and the three Baseline methods will be presented in Section 2.4.2. 

3.1.3. Optimal number selection of image capture of calibration boards 
We will use Pareto optimization as an analysis tool to find the optimum calibration approach 

and number of calibration board images.  This section determines the effect of the number of 

calibration board images on the calibration results.  The methodology used to find the optimum 

number of calibration capture boards is to find the optimal calibration condition when minimizing 

the error during the determination of the intrinsic camera matrix Kc (5), and also minimizing re-

projection error. To accomplish this optimization, we will use a MATLAB Pareto optimization to 

find the min. function that best satisfies error, ratio of calibrated to actual and time minimization. 

Fig. 11 describes the Pareto optimization concept which is for the minimization of multiple 

objective factors. In an optimization problem it is typically the evaluation of decision variables by 

minimizing a cost function. 

However, in most real life optimization problems the cost function is multi-dimensional trying to 

satisfy multiple objectives.  This is our case, the example shown in Fig. 8, the two cost objectives 

are re-projection error εd and time t.  The Pareto Frontier curve shown represents the set of 

solutions that satisfy the minimization of both constraints according to the fitness function f.  In 

the Fig. 12 example f(εd1, t2) as well as f(εd2, t1) are both optimum solutions, and lie on the pareto 

optimized frontier.  We will use a three objective fitness function to simplify the Pareto optimum 

frontier, where the three objectives are the ratio of calibrated to actual (RCA) of distance and angle 

distribution in the polar coordinate, re-projection error (ϵd), as obtained from the calibration 

process, and process time (t).  While time (t) is not important from an operational viewpoint since 
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the calibration is done off-line, it was chosen as a comparison parameter between the three  

methods. 

 

 

 

 

The Pareto optimization would find all points (RCA, ϵd, t) in the objective space that satisfy our 

scalar fitness function, equation (12). 

݃ݎܣ = ݂(ܴ, ,ௗߝ (ݐ = ඥ(|ܴ − 1|ଶ + ௗߝ
ଶ +   ଶ)        (12)ݐ

We used the MATLAB Pareto Optimization Tool Box to find the global optimum for the four 

methods and data sets.  Ratio of Calibrated to Actual data is given as RCA.  An example of the 

concept is shown in Fig. 13 with perfect desired RCA given as the blue circle with RCA = 1.0.  The 

red curve represents the actual RCA and varies around the perfect ratio of RCA = 1.0.  The RCA is 

given by equation (13),   

 

Figure 12. Pareto Optimization Diagram: 
Showing an example Multi-objective optimization space and the Pareto frontier curve 

representing the loci of points satisfying both objectives (εdi, t) optimal number selection of image 

capture of calibration boards. 
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ܴ =
(ோೃାோಲ)

ଶ
       (13) 

 Equation (13) is used as a common shape factor.   Where RR is the ratio of calibrated to 

measured radius and RA is the ratio of calibrated to measured angle.  

The evaluation criteria for RCA will be the absolute value of the difference between the ratio of 

calibrated to measured (RCA) and the perfect correspondence of 1.0 as |(RCA)-1|. The error 

parameter is the mean of the re-projection error as a function of the diameter of the plotted re-

projection circle.  εd is given by equation (14) as a re-projection error.   

ௗߝ = ݉݁ܽ݊ ቀቚݐݎݍݏ൫݀௧௨ − ݀ି௧ ൯
ଶ

ቚቁ     (14) 

The last parameter time (t) is the period during the calculation of the calibration modules 

proposed in Section IV.B and is given by t = (time at finish – time at start).  The relationship 

 

Figure 13. Ratio Calibrated to Actual: 
 Ratio of calibrated to measured data as a shape factor, where RCA =1.0 is perfect 

correspondence and is represented by the blue circle.  The red curve is the actual 

variation RCA about the blue circle. 
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between the Ratio of Calibrated to Actual (RCA), error (εd), and time (t) will be explored in the 

experimental results section. 

3.1.4. Comparison to other methods - Baselines 1,2,3  
In this chapter our method plus three existing methods for identifying checkerboards on 

calibration images were analyzed.  The four methods are compared in Table 13. 

From the three, two Baseline methods were chosen as the best candidates to modify for the O-D 

IR camera calibration, and the best methods of both were combined with our methodology for an 

improved method for calibrating IR omnidirectional cameras.  An exhaustive comparison of other 

methods was not the purpose of this work. The methods chosen then served as the starting point 

for the adapted and improved DSC method described in Section 2.4.  Due to the quality of thermal 

images the edge boundaries were not as crisp as visual images.  As a result, the automatic corner 

finders had marginal performance.  Often all three comparison methods would provide poor results 

when the corners were poorly selected even in the manual mode with corner assist. This required 

extensive manual tuning in the Baseline 1 (distortion) and 3 (generic) methods.  The Baseline 2 

(single viewpoint spherical) method used the four outside corners as a starting point but still 

calculated the internal grid points which took more time and was prone to error with the IR images 

if the points weren’t well chosen.  In the dense data set case all three baseline methods had trouble 

Table 13.  Methodology Comparison 

Criteria Baseline 1  

distortion 

[7-8] 

Baseline 2 

single viewpoint 

spherical[9] 

Baseline 3 

generic 

[36-37] 

DSC 

Model  Distortion Spherical Distortion Spherical 

Points Re-projected  25 x 48 25 x48 25 x 20 25 x 1  

(centroid) 

Mirror Spherical Spherical Spherical Spherical 

Approach Poly-nominal 

Approx. 

Single Viewpoint Generic Direct Spherical 
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with the partially obscured calibration boards due to the camera structure.  This caused an extensive 

amount of rework making these methods not practical for the lower quality IR images 

The DSC direct spherical method used the four outside corners of the calibration grid to find the 

calibration board center point and this pixel spherical coordinate was then used to directly calibrate 

using the one spherical point for each calibration board.    The geometric center of the whole grid 

is then calculated from these four geometric points and the spherical coordinates of the center of 

the grid is used in the calibration.  This avoids the errors introduced by finding a best fit of the line 

matching of the individual grid square elements (which does not work well in the IR case) to 

establish the calibration geometry.  Our results show that this improves the calibration accuracy, 

and requires less data entry time.  The method also has the best computational performance. 
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3.2. Technical Approach for Index and Region Segmentation for Sensor 
Fusion of Omnidirectional Far-infrared Camera and Visual Camera 
for Vegetation Detection 

The fusion of the O-D Color visual and O-D IR data was used to enable the robotic perception 

system to adapt to different lighting and environmental conditions.   In this chapter we focus on 

the fusion of O-D far-IR and visual stream with the System approach shown in Fig 14.  

We compare our results to [89-91] in section 3.4 Experimental Results.   [89] presents a 

Compressive Data Fusion approach for multi-sensor fusion. [90] studied land cover changes using 

Normalized Difference Vegetation Index from 2005-2015 to assess impact of changes in 

 
Figure 14.  Baseline Fusion Block Diagram 
Technical Approach consist of the following subsections: 3.3.1 Omni- Direction Camera Setting, 3,3,2 

Visual and IR Index Based Vegetation Detection, 3.3.3 IR Stream Segmentation using Region based 

Thermal Analysis, and Thresholded Region Fusion (TRF). 
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watershed on ground cover.  Results included shrub 0.67-0.737, secondary forest 0.737-0.804, and 

primary forest 0.804-0.876.  [91] used a UAV to gather Lidar and Hyperspectral data.  The Lidar 

point cloud determined canopy structure and the hyperspectral identified species specific spectral 

signatures.  The data was fused to achieve overall 0.76 accuracy. [92-94] show results for false 

positives (FP) ranging from 32.5% -61.29% with FP peaks as high as 77.4%. 

Our proposed system architecture applies texture and frequency analysis (segmentation and 

signature) to images from low cost, O-D visual and IR sensors to provide object detection, 

classification, and tracking.   The final approach is the fusion of visible and IR perception systems 

using O-D sensors.  Each block in the Fig. 14 diagram represents the subsections as follows: 

 Section 3.2.1 discusses the O-D Camera System and the O-D Coordinate System setting.   

 Section 3.2.2 develops the computational foundation for a new approach to multi-spectral 

sensor fusion that identifies semantically significant object classes based on spectral and 

thermal signatures using visual and IR spectrum decomposition, finally. 

 Section 3.2.3 discusses the method for IR region segmentation using region based thermal 

threshold analysis, and discusses the TRF method. 

3.2.1. Omni-direction Camera Setting 
Using spherical reflecting surfaces, a projected 360-degree field of view is created and 

transformed into a single 360 linear plane.  With a single Omni-vision approach, reconstructions 

of scenes create a reduced set of unknowns in the equations as compared to the many camera 

approach.  With improved Omni systems, the corrections required are reduced to create 360 

fusions, the computation requirements are reduced and sources of error are improved for electro-

optical cameras.  Additionally, multi-spectral sources can be fused with reduced error and the 

calculations errors for sensor fusion does not propagate forward in the perception system world 
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model.   

The transformational relationship between rectangular coordinates and spherical coordinates 

was shown in Section 2.3.1 Fig. 2 and described in the equations (1-4). 

In O-D optical flow the difference between flow fields in rectangular space and spherical space 

can be used to extract semantics from the O-D image.  Translation in rectangular space maps to 

arcs in the spherical space in the direction of flow and is why O-D vision is useful for determining 

ego-motion. Note that translation has focus of expansion (FOE) and focus of contraction (FOC) 

points in the image where rotation does not.  Translation flow is from the Focus of Expansion 

(FOE) to the Focus of Contraction (FOC).  This motion can be calculated.  The rotation motion is 

preserved as circles on the surface of the mirror in the spherical coordinates.  Vertical lines in the 

rectangular space map to radial lines in the spherical image space. 

In Fig. 15, x and y are the image plane coordinates of the pixel, P is the point in space being 

observed by the O-D camera, and the parameter z traces the surface of the mirror.  In the spherical 

coordinate system, θ and φ define the direction of the ray and r is the distance to the origin of the 

mirror.  The orientation θ ranges from 0° to 360° around the edge of the mirror, and the pitch φ, 

ranges from 0° when pointing straight down, to 90° when pointing at the horizon.  The calibration 

parameter h and the calibration process were presented in [1] where the camera was calibrated.  
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3.2.2. Visual and IR Index Based Vegetation Detection 
The classical vegetation detection looks at red color bands in the visual spectrum and compares 

this to near-IR spectrum.  The NDVI feature works well in chlorophyll rich vegetation, but doesn’t 

do as well in dry vegetation or desert scenes.  It also was a problem when operating in new areas 

that were not trained.    Our approach hopes to use the thermal threshold for vegetation fused with 

the color vision modified NDVI (MNDVI) to improve performance in dry vegetation and false 

detects. 

Our approach modifies the NDVI to look at the red band and far-IR band difference and fuse 

this with the thermal characteristics of the vegetation.  Vegetation is detected based on the ratio of 

red reflectance and far-IR reflectance.  This technique allows us to take advantage of the physical 

properties of vegetation and how they reflect and absorb light.  This is influenced both by the 

absorption of the chlorophyll and the water content in the vegetation.  These techniques apply the 

band ratio of the far-IR bands and red band in the visual range.   The water content of vegetation 

absorbs light above 1400 nm, and the chlorophyll absorbs the red and blue bands leaving the green 

band.  The result is that vegetation shows a high reflectance in the green and IR bands.  Several 

vegetation indices have been developed; these are: 

 

Figure 15.  Geometry Relationship 
a) geometry of the O-D camera, b) Translation, c) Rotation. 
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The Normalized Difference Vegetation Index (NDVI) is given as (15), which is the ratio of the 

difference and sum of the NIR reflectance and the RED reflectance. 

NDVI = (INIR - IRED) / (INIR + IRED)     (15)   

Several other indices are also used such as the Difference Vegetation Index (DVI) as  

DVI = INIR - IRED,   which is the difference between   NIR reflectance and the RED reflectance.  

The Perpendicular Vegetation Index (PVI) is given as PVI = sin (α) INIR – cos (α)IRED.  Where 

PVI is the difference between the NIR reflectance times sin(α) and RED reflectance times cos(α), 

and represents the perpendicular distance from the NIR reflectance point to the soil line.  The angle 

alpha (α) is the angle between the soil line and the near infrared reflectance axis. 

We use the Normalized Difference Vegetation Index (NDVI), where NDVI = (INIR - IRED) / (INIR 

+ IRED) modified for far-IR (16).  

MNDVI = (IIR - IRED) / (IIR + IRED)      (16) 

The MNDVI was fused with the region based IR signature explained in section 3.3.3. to enhance 

the semantic segmentation of the IR/Vision stream.  We are using potentially low cost IR and 

visual sensors to achieve multiband spectral signatures. Fig. 16 shows the location of a point of 

interest in the O-D IR sensor, unwrapped image and extracted IR and visual images.    
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Figure 16.  Spherical-Cartesian Coordinates 
The O-D geometry, (a) shows 360-degree O-D image with the r, θ geometry overlaid. (b) 

The cropped IR region of interest, (c) the visual cropped region of interest (d) shows the 

unwrapped rectangular image, and the X, Y, Z geometry axis. 

We looked at multispectral bands and region based IR spectral analysis to better characterize the 

spectral signature of different materials.  This work looks at the effectiveness of the MNDVI and 

Region Based IR method as compared to the classical NDVI approach to more fully characterize 

the signatures of vegetation and other materials.  The indices value is then used as a threshold to 

detect vegetation.  There are issues with false detects in the areas where the bands overlap when 

using just the MNDVI.   We used the MNDVI approach on our data in Fig. 17 below to show the 

effect of this approach and the number of false detects. 
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Figure 17.  MNDVI Approach 
MNDVI Approach: (a) Original image, (b) Processed image using MNDVI vegetation index 

approach.  This result has a relatively high number of false detects. 

We as humans are accustomed to using color to distinguish materials.  The color and reflectivity 

are important indicators of the material composition of an object.   

The spectral signature of the material or material reflectance spectrum ρ(λ) is related to the 

reflected light or spectral radiance Ls(λ) and the impending scene radiance Li(λ) by the following 

(17):             

           (17) 

This can be rearranged into the reflectance spectrum ρ (λ) in terms of the ratio of spectral 

radiance Ls (λ) to the scene radiance Li (λ) as given in (18) 

                 (18) 
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This wavelength λ is filtered into k spectral bands.   Fig. 18 shows a representative Cumulative 

Density Function (CDF) for the three primary color bands (red, blue, green) in the visible spectrum.  

The 360 color camera is the humingbird360 with a Point Gray Flea3 with 12 bits and 8.8-

megapixel camera.  The CDF is defined as the accumulation of pixels in the histogram of each 

color band. 

The approach we are developing is to fuse the red band visible and IR region spectrum and 

utilize these spectral signatures to extract scene semantics from the O-D IR and visual images. We 

demonstrate that each material has a characteristic visual and thermal spectral signature from 

which to classify the material.  We then compare the MNDVI red band approach to the combined 

MNDVI red band and IR region based thermal signature approach, and finally compare the fused 

 

 

Figure 18.  Cumulative Density Function 
Representative Cumulative Density Function (CDF) for the three color bands in the image is a summation of the 

probabilities of each intensity at the different wavelengths 
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results to the baseline MNDVI indexed based approach. 

3.2.3. IR Stream Segmentation using Region based Thermal Analysis 
To address the issue of false detects in the index based approach, semantic extraction based on 

thermal regions will be investigated to accentuate vegetation detection and reduce the number of 

false positives. 

Fig. 19 is the IR region segmentation using region based thermal segmentation analysis 19) a is 

the original image, 19)  b shows that all of the vegetation is at the same temperature, and 19) c 

shows that the hard concrete road and sidewalks are at a different temperature.  The sky is dark 

and has not absorbed any temperature. 

Fig. 19 shows the region based segmentation of the IR image. The areas of similar gray level 

(same temperature) will be segmented and matched to the spectral signature for that region and 

then classified based on the spectral content and thermal characteristics.  For instance, the sky is 

dark with no thermal content, the vegetation is dark gray due to its water content causing it to pick 

up less heat than the sidewalks or pavement, and the pavement and sidewalks are white due to 

picking up heat during the day.  These thermal based material regions can then be correlated with 

the material spectrum to aid in identifying the material. 

Fig. 19) a is the original unwrapped thermal image, 19) b shows the vegetation region segmented 

and has the formula for the region over laid.  The sky is the background and has the background 

CDF times the background variance squared at threshold T1, and the vegetation has the Foreground 

CDF and foreground variance at threshold T2.  Fig. 19) c shows the pavement and sidewalk regions 

segmented at Foreground CDF and Variance at threshold T3.  After segmenting the various 

material regions and extracting the spectral signature for the regions, the two results will be fused 

by the union of the two sets. 

 



60 
 

 

a) Original IR Image and Region 1 background = sky 

 

b) Region 2 Vegetation Region all at same temperature 

 

c) Region 3 Sidewalk and road at different temperature 

Figure 19.  IR Region Segmentation 
IR Segmentation using region based Spectral Analysis (a) is the original image, (b) shows that all of the 

vegetation is at the same temperature, and (c) shows that the hard concrete road and sidewalks are at a 

different temperature.  The sky is dark and has not absorbed any temperature. 

The thermal image has similar materials clustered in the same region of the IR thermal space.  

At different ambient temperatures these materials will shift in color but will remain clustered.  The 

nF(T2) σF(T2) 

nF(T3) σF(T3) 
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thermal signature of certain terrain types and vegetation will have different emissivity, but the 

behavior is characteristic of the material.  By extracting this region based signature from the 

thermal behavior and fusing it with color multispectral signature the different types of vegetation 

and terrain can be classified.   During the day vegetation is cooler than the soil and is darker in the 

IR image.  At night vegetation and soil reverse and the vegetation is lighter.  Personnel and vehicles 

that are emitting heat can easily be picked out of the thermal image.  They are also visible in the 

IR image when the visual is obscured by dust or fog. These attributes are an advantage of using 

the thermal information 

Using the O-D IR image we performed region based spectral analysis to group like materials 

together, and extract region based semantics from the IR signature.  This is used with the multi-

spectral signature and thermal map thresholds to identify the semantics of the scene. 

Representing the gray scale of the IR image as histograms, we partitioned the image 

(segmentation) into homogeneous regions representing areas of similar temperature.  During the 

day the ground and other solid objects absorb heat faster than vegetation so the vegetation areas 

will be lighter than the ground.  At night this reverses and the foliage will look darker.  Considering 

this grayscale image, we let the number of times gray level i occur as ni.  The probability P that a 

pixel at (r, θ, φ) will be at level i is given as (19). 

          (19) 

where l is the total number of gray levels in the image, and n is the total number of pixels.  So 

the probability of intensity i at a given (r, θ, φ) location is the ratio of the number of pixels at 

intensity i or ni to the total number of pixels’ n Pr,θ,φ(i) is the image histogram for pixel i, the value 

is normalized to [0,1].   We define the Cumulative Density Function (CDF) as (20) 
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 2D-3D Feature Fusion 

 Laser Remission 

 NDVI-Laser Fusion
 

 SVM Multi-Cam Fusion 

 Multi-Cam NDVI Fusion 

   (20) 

 

The CDF is the summation of the probabilities for the intensity at each pixel. Using (21), for 

optimal thresholding, to segment regions we achieve a mapping of regions of like thermal 

intensity.  Different materials absorb heat differently and thus we can use this in conjunction with 

the Spectral signature to determine the regions of similar material.     

            (21) 

where ηB is the background histogram CDF,  

 

where ηF is the foreground histogram CDF. 

 

 

    σB is the variance of the pixels in the background (<T) 

 

 

σF is the variance of the pixels in the foreground (>T) 
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where hp is the histogram value at the pixel of interest and hAvg is the average value of all the 

pixels above the threshold for foreground or below the threshold for background.  The optimum 

threshold for Fig. 18, 19, and 20 is determined by a combination of the triangle threshold method 

and the optimization for T of equation (21) plus the statistical extent of the thermal IR region.  

3.2.4. Genetic Algorithm 
A genetic algorithm was applied to find the optimal threshold and the optimal clustering of thermal 

regions.  The genetic algorithm is an optimization process that is based on natural selection, and selects the 

fittest individuals for reproduction of the next generation.   It is an adaptive heuristic search algorithm that 

selects the best parents from which to generate the children based on a fitness cost function.  The algorithm 

modifies the next generation based on the genes of the parents that are randomly mutated.  Each generation 

the process selects the best parents based on a clustering cost function with an upper and lower threshold.  

The thresholds are optimized to cluster the regions.  The genetic algorithm ran for 50 generations and 

generated 10,400 mutations. 

Equation (21) is used as input to the fitness function for a genetic algorithm which optimizes the 

regions of interest in the given image.  For a starting T the standard deviation and variance of the 

foreground and background histogram is calculated.  The CDF above and below that threshold is 

also calculated.  These are then combined in equation (21) to find the standard deviation of the 

region of interest.  This is tested against the thermal band for vegetation and iterated using the 

genetic algorithm until the optimum thresholds for the vegetation region are found.  

3.2.5. Thermal Region Fusion 

The overall process is shown in Table 18.  The two algorithms will be applied and the results 

fused using the TRF approach:  

 MNDVI index based modified for far-IR vegetation detection. 
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 Region based thresholded thermal segmentation augmented with a genetic algorithm to 

optimize the selection of the region of interest. 

The experimental results are presented below in Chapter 4 Section 4.3. 

Table 14.  Proposed TRF Algorithm: Sensor Fusion of MNDVI Vegetation Index and Region Based IR 

Steps Step Details 

Step 1 Apply the MNDVI vegetation index to extract regions of vegetation 

 MNDVI = (IFIR - IRED ) / (IFIR + IRED) 

Step 2 Apply thresholding to the IR image to identify regions of similar temperature 

Step 3 Apply region growing using a genetic algorithm to find all of the areas with the same temperature 

within the optimum threshold band. 

Step 4 Fuse the MNDVI vegetation highlight with the IR region based thermally detected vegetation 

area to minimize false detects in the MNDVI signature  

Step 5 Compare the   vegetation index based results, with the combined MNVDI and Thermal Region 

Threshold Segmentation Fusion results. 

 

Fig. 20 shows the fusion of the region in 20) b representing the vegetation thermal signature with 

the MNDVI result in 20) c.  It still has some false detects but they are significantly reduced.  Fig. 

20 second row is the fusion of the MNDVI result with the thermal region representing the non-

vegetation region.  In this second application of the algorithm, this time the non-vegetation thermal 

region 20) f is fused with the MNDVI result 20) g.  

Fig. 21 is a comparison for two original images a) and b), and for each image the following are 

shown: the original image with ground truth labeling, the IR image, the MNDVI image, and the 

Thermal Region Fusion (TRF).  The images show the false detects in the MNDVI image and the 

reduction in those false detects in the TRF image.  We used the MIT LabelMe website [47] to label 

the vegetation and non-vegetation regions shown in Fig. 21. 

)()()()( 22
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 Utilizing (11) along with the triangle threshold method to find the threshold for the 

vegetation region, (11) is minimized to find the extent of the region.  We also applied a Genetic 

Algorithm to find the region of interest.  We first apply the modified vegetation index using far-

IR instead of near-IR.  We next apply thresholding and region growing techniques to identify the 

regions of vegetation and non-vegetation.  The results of the MNDVI and thermal region extraction 

are then fused to minimize false detects and the results are presented. 

The contribution of this work is a computational foundation for a new approach to multi-spectral 

 

 

 

 

 

 

 

 

 

 

 

 

a) Original image 1, O-D IR excerpt, MNDVI           b) Original image 2, O-D IR excerpt, MNDVI 

and TRF results.                                                           and TRF results. 

Figure 20.  MNDVI and TRF Comparison O-D and Kinect 

Two original images a) and b) and for each image the following are shown:  the original image with ground 

truth labeling, the IR image, the MNDVI solution, and the Thermal Region Fusion. The vegetation detection 

and false positive reduction for the IR and Kinect visual images are shown.   
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sensor fusion that identifies semantically significant object classes using sensor fusion of the O-D 

vision (Electro-Optical) and O-D IR sensors, applying the two streams into a thresholded 

segmentation and fusion genetic algorithm for the fusion of the IR and visual Spectral content to 

extract the regions of vegetation and other materials.  Our algorithm applies both a modified 

segmentation Feature Extractors into the input fusion / classification.  We will evaluate the TRF 

architecture against the baseline index based vegetation detection. 

Fig. 22 shows two different images of different scenes with the original O-D visual and O-D 

IR image shown for each case.  The unwrapped O-D images are then shown with the MNDVI and 

TRF detected vegetation regions overlaid.  In each case the MNDVI image shows significant false 

detects.  In Fig. 22) a the TRF method shows good vegetation detection and also has good false 

positive rejection.  However, in Fig. 22) b while the false positive rejection is still good, the 

vegetation detection is less accurate than the MNDVI, but is still in the range of other methods 

(see Table IX below).  It can be seen that there is a registration problem between the sidewalk in 

the visual image and the TRF overlay.  The authors believe this is due to the difference in viewing 



67 
 

angle from the two cameras.   The effects of this mismatch can be seen in Fig. 31 b). 

  

              

a) Good vegetation detection with good false              b) Good false positive rejection, but less 

       positive rejection.                                                          vegetation detection accuracy. 

Figure 21.  MNDVI and TRF Comparison O-D Cameras 

Two sets of data each showing the original omnidirectional visual image, omnidirectional IR image, the 

unwrapped O-D visual and O-D IR images with the MNDVI vegetation detection with the Thermal 

Region Fusion vegetation detection results overlaid.  Note that in a) TRF fused image shows a good 

capture of the vegetation and rejection of false positives. While in b) It has good FP rejection, but less 

accurate vegetation detection. 
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3.3. Technical Approach for Vegetation Detection through Deep Learning 
Sensor Fusion of Omnidirectional (O-D) Far-infrared and O-D Visual 
Stream 

Section 3.3. introduces the proposed system approach, which consists of the utilization of a CNN 

semantic feature extraction of the two streams coupled with deep learning to fuse the signatures 

from both the O-D vision and O-D Infrared cameras, and the application of a high-level fusion 

using DeepFuseNet.  Two fusion networks will be applied to the individual sensor feature 

extraction, first using two Autoencoders feeding a CNN to output the vegetation features such as 

texture and color, and second, two CNN bottleneck feature extractors feeding the CNN-DCN 

Fusion Network (DeepFuseNet). 

3.3.1. Overview of Technical approach for Deep Sensor Fusion 

The proposed system architecture is to apply texture and frequency analysis (segmentation and 

signature) to images from low cost, O-D visual and IR sensors to provide vegetation detection, and 

classification.   The final approach will be the fusion of visible and infrared perception systems 

using O-D sensors.  Each block in the Fig 23. diagram represents the four subsections as follows: 

 Section 3.3.2 discusses the O-D Camera System and the O-D Coordinate System setting.   

 Section 3.3.3 Visual and Infrared Index, Histogram, and Segmentation Based Vegetation 

Detection 

Table 15.  Deep Fusion Network for o-d ir and visual stream 

STEPS STEP DETAILS 
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  Section 3.3.4 discusses the Autoencoder - feature extraction of the O-D IR thermal regions 

with the O-D Visual (Electro-optical) Multi-spectral signature for the regions of interest 

from the sensor streams. 

 Section 3.3.5 discusses the Convolutional Neural Network (CNN) and Deep Learning (DL) 

tradeoffs and fine tuning. 

 Section 3.3.6 discusses our DeepFuseNet architecture and the application of deep learning, 

transfer learning, and fine-tuning to solving the vegetation detection problem.  Section 

3.3.6  develops the computational foundation for a new approach to multi-spectral sensor 

fusion that identifies semantically significant object classes based on deep learning of the 

spectral and thermal signatures using DeepFuseNet to fuse the visual and IR spectrum 

components., finally. 

The overall process is shown in Table 15. 

STEP 1 Apply the M  NDVI vegetation index to extract vegetation  regions. 

STEP 2 MNDVI = (IFIR - IRED ) / (IFIR + IRED) 

STEP 3 Apply thresholding to the IR image to identify regions with similar temperature within 

the vegetation band. 

(ܶ)௪௧ߪ = ߪ(ܶ)ܨܦܥ
ଶ(ܶ) + ிߪ(ܶ)ிܨܦܥ 

ଶ(ܶ) 

STEP 4 Fuse results of Step 1 and 2 (Thermal Region Fusion) 

STEP 5 Apply transfer learning with ImageNet and DL architectures along with Autoencoder 

Feature Extractors or Bottleneck Feature Extractors to find best network and 

parameters.   

STEP 6 Apply DeepFuseNet architecture to fuse the O-D IR and Visual streams using the best 

architecture fed into a fully connected (Dense) CNN and pixel region classifier. 

STEP 7 Compare Step 4 and Step 6 results 
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The fusion of visual and IR O-D data will be used to enable the robotic perception system to 

adapt to different lighting and environmental conditions. In this work we will focus on two deep 

learning approaches and will compare them to the NDVI plus region segmentation fusion 

approach, the Autoencoder Feature Extraction, and the CNN fusion of O-D Far Infrared and visual 

stream with the System approach shown in Fig 23.  

 

 

 

 

 

 

 

Figure 22.  Deep Fusion Network Block Diagram 
Technical Approach consist of the following subsections: III.A O-D Camera Setting, 

III.B) Visual and Infrared Index Based Vegetation Detection, III.C) Infrared Stream 

Segmentation using Region based Thermal Analysis, and III.D) Autoencoder – CNN 

Fusion of O-D IR and Visual Stream 
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3.3.2. Omni-direction Camera Setting 

     In this work we utilize spherical reflecting surfaces to achieve a projected 360-degree field of 

view.  With these improved O-D systems, the 360-degree image is produced directly and does not 

require the fusion of multi-camera images. The transformational relationship between rectangular 

coordinates and spherical coordinates as shown in Section 3.1.1 Fig. 6 and described in equations 

(1-4). 

3.3.3. Visual and Infrared Index, Histogram, and Segmentation Based 
Vegetation Detection 

In [44] we evaluated the effectiveness of two approaches, 1) the classical index based 

Normalized Difference Vegetation Index (NDVI) approach to vegetation detection which looks at 

the red color bands in the visual spectrum and compares this to near IR spectrum.  The NDVI 

approach has a relatively high rate of false positives, and 2) a sensor fusion approach merging the 

NDVI and a thermal region segmentation approach.  The NDVI feature works well in Chlorophyll 

rich vegetation, but doesn’t do as well in dry vegetation or desert scenes.  Our approach will use 

the DeepFuseNet deep learning approach described in Section 4.3.3 for sensor fusion and 

vegetation detection, and to improve performance in dry vegetation and false detects. We will 

compare this with the color vision MNDVI-region segmentation approach we used in [135]. 

The modified NDVI with thermal regions segmentation looks at the red band and far IR (FIR) 

band difference and fuses this with the thermally segmented region characteristic of the vegetation. 

Vegetation is detected based on the ratio of red reflectance and FIR reflectance fused with the 

limited thermal region of the vegetation.  These techniques apply the band ratio of the FIR bands 

and red band in the visual range.  Revisiting section 3.1, we use the Normalized Difference 
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Vegetation Index (NDVI), where NDVI = (INIR - IRED) / (INIR + IRED) modified for far-infrared (15) 

MNDVI = (IIR - IRED ) / (IIR + IRED)  We are using low cost O-D IR and O-D visual sensors to 

achieve better fused vegetation classification. Fig. 16 section 3.2.2 shows the location of a point 

of interest in the O-D IR and O-D visual sensor.  The unwrapped IR image and the extracted 

relevant section from the IR and visual images are also presented. The MNDVI and TRF methods 

will be compared against our deep learning fusion approach called DeepFuseNet. 

There are issues with false detects in the areas where the bands overlap when using just the 

MNDVI. We used the MNDVI approach on our data in Fig. 24 below to show the effect of this 

approach and a relatively large number of false detects. 

      

a) Original Image                                                b) MNDVI Overlay Image                                        

Figure 23.  MNDVI False Detects 
MNDVI Approach: (a) Original image, (b) Processed image using MNDVI vegetation index approach.  This result 

has a high number of false detects.  

We as humans are accustomed to using color and texture to distinguish materials. The color 

and reflectivity are important indicators of the material composition of an object.  The approach 

we demonstrated in [132] was to fuse the MNDVI (5) and thermal IR region (22), 



73 
 

௪௧ߪ (ܶ) = ߪ(ܶ)ܨܦܥ
ଶ(ܶ) + ிߪ(ܶ)ிܨܦܥ 

ଶ(ܶ)      (22) 

where, CDFB (T) is the cumulative density function of the background below threshold T, σB
2(T) 

is the variance of the background histogram at T, and CDFF (T) is the cumulative density function 

of the foreground above the threshold (T), and σF
2(T) is the variance of the background histogram 

at T. We then utilize the fused signatures to extract scene semantics from the O-D IR and visual 

images. We demonstrated that each material has a characteristic visual and thermal signature from 

which to classify the material.  In this work, we compare the results from the MNDVI red band 

approach and the fused IR region based thermal segmentation approach, and finally compare these 

two methods to two deep learning approaches presented in Section 4.3.3. 

     In [132] we address the issue of false detects in the index based approach, using semantic 

extraction based on thermal regions to accentuate vegetation detection and reduce the number of 

false positives.  The thermal image has similar materials clustered in the same region of the infrared 

color space.  At different ambient temperatures these materials will shift in color but will remain 

clustered.  By using deep learning to recognize and learn this region based color signature and to 

also learn the thermal behavior we can merge the features learned by the two networks. During the 

day vegetation is cooler than the soil and is darker in the IR image. At night vegetation and soil 

reverse and the vegetation is lighter.  They are also visible in the IR image when the visual is 

obscured by dust or fog. These attributes are an advantage of applying deep learning to both the 

visual and the thermal information.  

3.3.4. Autoencoder - Convolution Neural Network  

     The contribution of this work is a computational foundation for a new approach to multi-

spectral sensor fusion, that identifies semantically significant object classes using sensor fusion of 
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O-D Vision (Electro-optical) and O-D IR sensors applying the two streams into two Sparse 

Autoencoder Feature Extractors (SAFE) with a CNN back end for the fusion of the IR and Visual 

Spectral content to extract the regions of vegetation and other materials. Our algorithm will apply 

several Sparse Autoencoder Feature Extractors into the input of the CNN for fusion / classification.  

We will evaluate the SAFE-CNN architecture against the baseline index based vegetation 

detection.   

Our algorithm will apply several multilayer kernel filters into the input of the Fusion CNN 

(DeepFuseNet). We will evaluate two deep learning architectures against the baseline index and 

thermal region based fusion, which are,  

 An Autoencoder / Convolution Neural Network 

 DeepFuseNet – two Conv Neural Networks which apply transfer learning merged into a 

final output network.  

3.3.4.1. Auto-encoder Neural Network 

The first architecture will feed the two visual and IR input streams into two respective Autoencoder 

networks that will feed forward the input image and minimize the difference between the input 

and output to learn the features of the materials in the scene. These two Autoencoder outputs will 

then be fed into a CNN to fuse their features and provide a fused sensor output. 

     Two kernel filters will be applied:  

 MNDVI based vegetation detection kernel pre- filter 

 Region based segmentation kernel pre-filter 
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The Sparse Autoencoder architecture Fig. 25 will feed the two visual and IR input streams into 

two respective Sparse Autoencoder networks that will feed forward the input image and minimize 

the difference between the input and output to learn the features of the materials in the scene.  

These two Autoencoder outputs will then be fed into a CNN to fuse their features and provide a 

fused sensor output.  The overall process was given in Table 22 in Section 4.3.  

     The Autoencoder will be built up of a network of basic “Neuron” nodes (Fig. 25) and will apply 

unsupervised learning that will approximate the kernel feature map of the scene.   

 

Figure 24.  Autoencoder Layers 

Shows a three-layer Neural Network with a hidden layer that is sparse or constrained which forces the network to 

learn certain features in making the output match the input.  This is an Autoencoder. 
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3.3.4.2. Sparse Auto-encoder  

In our approach we will use an unsupervised learning algorithm where the neural network will be 

an Auto-encoder (Fig. 25). An Auto-encoder is a Neural Network that applies backpropagation in 

unsupervised learning where it is trying to match the output to the input.  We start with a set of 

unlabeled training data {x1, x2, x3, xn} where xi Ԑ Rn and the network learns by matching the output 

to the input, or by setting yi = xi. As the weights and biases and activations are set to minimize the 

error between the two, the hidden/ feature layers will learn patterns in the image set. The Auto-

encoder will try to learn the output function h, such that hWb(x) ≈ x’ is satisfied to make the output 

match the input, which means that it is trying to approximate the identity function. 

By putting constraints on the Auto-encoder Neural Network the Auto-encoder will learn some 

of the structure in the data. For instance, if some of the features are correlated the Auto-encoder 

will detect this pattern.  There are several ways to put constraints on the network. One is to limit 

the number of units in the hidden layer. Another is to place a sparsity constraint on the hidden units 

in the network.  With a sparsity constraint the Auto-encoder will still be able to detect interesting 

structures in the data even if the number of hidden units is large. If we use a sigmoid function (23), 

 ܽ
 =

ଵ

(ଵାషೣ)
       (23) 

 as our activation parameter we can think of a given feature as being active if its activation for 

feature i at layer l, ai
l is close to 1 and inactive if it is close to0.  We want each feature node in the 

hidden layer to be inactive most of the time.  We want that location to be activate only when there 

is sufficient correlation in the data. Therefore, we will put a constraint on the cost function that 

drives this condition. This sparsity constraint parameter will be added to our cost function to place 

a penalty on a neuron activating if the image is not correlated in the region of interest. This will be 
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the case if the feature is not present. The activation ai
l represents the activation of the hidden node 

at the lth layer for a given input x (i), as shown in (24). 

ఫෝ     =
ଵ


∑ ܽ


ୀଵ  (24)        ()ݔ

     We will then enforce the constraint that ఫෝ =  where ρ is the sparsity parameter and we will ߩ

constrain it to be small and close to zero, such that the outputs match the input within the 

convergence error. Our Cost function will then be (25) 

,ܹ)ܬ    ܾ; ,ݔ (ݕ =  
ଵ

ଶ
ฮℎௐ,(ݔ) − ฮݕ

ଶ
       (25) 

     We will apply the Kullback-Liebler (KL) divergence (26) constraint to penalize ఫෝ  the farther 

it diverges from zero. 

∑ ߩ)ܮܭ
ୀଵ |หߩఫෝ ൯ = ∑ ߩ ݈݃

ఘ

ఘണෞ

ୀଵ + (1 − (ߩ ݈݃

(ଵିఘ)

(ଵିఘണෞ)
   (26)  

This will force ఫෝ ≈  .and our cost function becomes (27) ߩ

,ܹ)௦௦ܬ ܾ) = ,ܹ)ܬ ܾ) + ߚ ∑ ߩ)ܮܭ
ୀଵ  ො)      (27)ߩ||

      To learn the weights for the nodes in the network we will conduct a forward pass with initial 

weights, and then use backpropagation to refine the weights to match the output to the two input 

streams from the O-D infrared and visual cameras. Backpropagation will be used to adjust the 

weights as follows (28). 

ߜ 
 = ቆ(∑ ܹ


ୀଵ ߜ

ାଵ) + ߚ ቀ−
ఘ

ఘෝ
+

ଵିఘ

ଵିఘෝ
ቁቇ పݖ)݂

ሖ )     (28) 



78 
 

Because of the sparse constraint on the network, as the network converges to the optimum it learns 

the new weighting on the hidden layers to match the output to the input. Since it is constrained, it 

will find the features in the data and key structures in the two input streams will  

emerge.  These key structures will then be fed into a pre-trained CNN to fuse the features. This 

architecture is shown in Fig. 26. 

3.3.5. Convolution Neural Network (CNN)   

 The CNN will consist of two conv kernel layers. Each conv layer will be followed by a 

Rectified Linear Non-Linearity (ReLU) layer, and then a max pooling layer.  

  

Figure 25.  Autoencoder Fusion 

Shows the first fusion architecture with two Autoencoders feeding into a two-layer CNN  with 

max pooling layers. 
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At each conv layer the feature map from the previous layer is convolved with the learnable kernel 

two filter for the current layer and input into the activation function to form an output feature map 

and the ith feature map in layer l Yi
l, is denoted by (29). 

  ܻ
 = ܤ)݂

 + ∑ ܻ
ିଵ ∗ ܭ

భ
షభ

ୀ )      (29) 

 Where the output at layer l, Yj
l, is a function of the matrix Bj

l which is the matrix of bias at 

each layer l added to the sum of the spatial conv of the output of layer l-1, Yi
l-1) with the matrix of 

Kernel, Kij
l at layer l over an i x j window 

  The size of the output feature map is given by (30). 

௫ܯ   
 =

ெೣ
షభିೣ



ௌೣ
 ାଵ

+ ௬ܯ  ;1
 =

ெ
షభି



ௌ
 ାଵ

+ 1    (30)  

Where each layer has M maps of equal size (Mx, My).   The kernel filter is shifted over the image 

such that it does not go outside the image. The kernel is of size (Kx, Ky), where the index l indicates 

the layer number, and each map in layer Ll is connected to a subset of maps in the previous layer 

L(l-1). 

     The max pooling layer is a down-sampling layer that reduces the dimensionality of the image. 

It also improves the spatial invariance by reducing the resolution of the image. The pooling 

window is a k x k window. In our case we will take the maximum value and apply it to the k x k 

kernel patch utilizing (31). 

    ݉ = ݔܽ݉
௫

( ݉
௫ݑ(݇, ݇))       (31)  
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where, mj is the max value that each pixel in the max pooling window is set to after the search of 

the window u (k x k) for the max value.  Each of the kernel layers will represent a refinement of 

the image representation with each layer being more invariant than the previous. These kernel 

layers will represent the feature maps of the image.  

Each of these kernel image feature maps will have normalized coordinates both in the image and 

the Hilbert Space (H).  The higher dimension kernel feature map is the dot product of close layer 

features. Applying the multilayer convolutional kernel to the image feature map will result in 

patches of like features and the fusion of the kernel pre-filters. This represents a spatial conv over 

the image. The resulting semantic feature vector will be the input to the 2D vegetation 

classification algorithm. 

 The following parameters characterize each conv layer: size and number of maps, the 

kernel window size, the stride (step over or skipping factor), and the connection strategy. The conv 

layers of our network have the following key parameters in line with the findings of [27]. 

Stride – The spacing between patches where features will be extracted or in other words the number 

of pixels skipped before again applying the receptive field. The results showed the best 

performance at S=1 with a clear downward trend in performance as step size increases.  This is a 

trade-off between accuracy and computation time. 

Kernel Size – the Kernel Size is the window or field size over which the features are extracted.  

[27] used 6, 8, and 12 pixels. Generally, 6 pixels worked best. We will use 2, 3, and 6 pixels 
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Number of Features - [27] evaluated 100, 200, 400, 800, 1200, and 1600 leaned features. On 

average, the algorithms performed better by learning more features, although the increase above 

800 was gradual.   

We did a study looking at the performance of various model architectures and parameters.  We 

evaluated the following architectures and parameters.  Architectures evaluated were AlexNet, 

SqueezeNet, ResNet50, VGG16, ResNet101, ResNet152. Parameters evaluated were Learning 

Rate(LR) η, and Momentum m.  Learning Rate η is the rate at which the weights are updated the 

weight update process is shown in (32). 

ݓ   
௨ௗ௧
ርۛۛ ሲۛ ݓ − ߟ

డ(௫,௬)

డ௪
       (32) 

We evaluated LR of 1e-1, 1e-2, 1e-3, 1e-4, and 1e-5.  The learning rates were adjusted to minimize 

overfitting.  Where 
డ(௫,௬)

డ௪
 is the backpropagation method of updating the weights in the network 

by comparing the actual output to the desired output with the partial derivative of the error with 

respect to the weights, and L(x,y) is the cross-entropy loss function and is given by (33) 

,ݔ)ܮ (ݕ = −ሾݕ ݈ + (1 − (ݕ 1)݈݃ −   ሿ      (33)(ݔ

Momentum m – we evaluated momentum values of 0.9, 0.8, 0.75, 0.7 utilizing the above 

architectures trained on ImageNet.  Dropout d was applied to reduce overfitting by randomly 

dropping out neurons in the network at probability p. 

3.3.6. Deep Learning Fusion Network (DeepFuseNet)  

Our architecture (functional depiction Fig. 27), for the deep learning fusion network 

(DeepFuseNet) will use two feature extractors fed into two deep learning VGG 16-layer deep 
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learning convolution networks trained on ImageNet, one for the visual and IR streams. We then 

apply transfer learning by freezing the lower 15 layers and training a new fully connected top layer, 

the new head model, on our smaller data set.  Each layer will perform conv followed by ReLU 

non-linear layer and a max pooling layer with a 2x2 window and down-sample.  We conducted a 

series of experiments to fine tune the parameters of the new top of the DeepFuseNet vegetation 

learning network.  We feed either two Autoencoder feature extracting networks or two bottleneck 

feature extracting networks into the two learning networks before concatenating into the final top 

two fusion network and classifier layers.  Fig. 27 presents the functional architecture for the two 

parallel VGG 16 DeepNet models with five convolutional / max pooling blocks and the 

concatenated input into the final vegetation detection classification layers.  The output is then fed 

into a vegetation region pooling block.  The final step is to generate the vegetation mask over the 

image. Fig 6 in chapter 1 section 7 shows a high level depiction of the deep learning training and 

deployment setup.  Each leg of the network generates 21.1 million parameters of which 14 million 

are trainable and the rest are frozen with imagenet weights and are not trainable. The total 

DeepFuseNet merged model generates 42 million parameters.  The saved weights are then fed into 

the deployed system so they do not have to be relearned. 
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Figure 26.  Merged Model Functional Block Diagram 

Merged Model functional block diagram with two VGG16 Deep Networks with two inputs, one from visual 

camera and one from IR camera. 

The two concatenated networks are fed into a top network of two dense conv layers and a 

softmax classifiers.  Fig 28 represents the concept depiction of the DeepFuseNet.  Fig. 28 shows 

the visual and IR image each being fed into a feature extractor and then feeding the DeepFuseNet. 

The output of the network is then fed into a softmax classifier to output the image with the 

vegetation areas detected and classified. 
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Figure 27.  Deep Fusion Network (DeepFuseNet) 

Shows the DeepFuseNet fusion architecture with two CNN feature extractors feeding into 

a seven-layer CNN with max pooling and a classification layer  

3.3.7. Validation Methodologies 

The validation approaches typically used are generating a train/validation/test split from the 

dataset.  Typically, the train/validation/test split is 60%/20%/20% respectively.  To improve the 

robustness of the data set the training, validation and test sets can have random augmentation 

methods applied.  The augmentation approach randomly picks images and changes them in some 

way.  Several methods are to rotate the image by some angle, or flip the image. 

Advantages of train/val/test split: 

 Runs K times faster than K-fold cross-validation 

o This is because K-fold cross-validation repeats the train/test split K-times 

 Simpler to examine the detailed results of the testing process 

Another approach to validating the results for a small data set is to do K-fold cross-

validation.  This approach takes the entire data set and does a moving validation and then 

averages the K-fold ensamble results.  Say K = 5, the data set is split into five smaller data sets 
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each 20% of the data.  For the first run, K1 is the validation data set and K2-K5 are the training 

set.  At the end of the training the results are validated against K1.  The next run a different Ki is 

used for validation and the remaining for training until all combinations have been run.  Then the 

five validation ensambles are averaged to get the overall validation result.   

Advantages of K-fold cross-validation: 

 More accurate estimate of out-of-sample accuracy 

 More "efficient" use of data 

o This is because every observation is used for both training and testing 

We used the standard train/validation/test split for our data. 

3.3.8. Visulization of Network Filters 
We utilized network filter visualization techniques [41] to visualize what features were activating 

the network activation filters.  Fig. 29 a) is the original image, b) channel 3 is activating on vertical 

edges, c) channel 13 is activating on the sky and road surface, d) is activating on vegetation texture.  

The conv filter maps for the first conv layer and three representative channels are presented in Fig 

29.  In Fig. 29.b) the filter is learning vertical edges in the vegetation. In Fig. 29.c) the filter is 

learning primarily the sky and road surface which are both a gray color in this example. Finally, 

in Fig. 29.d) the filter is learning tree trunks and splotches of leaves.   
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a) Original Image                                    b) Conv1-3 feature map                       

 
c) Conv1-13 feature map                         d) Conv1-19 feature map 

Figure 28.  Convolution Layer Feature Map Visualization 

First conv layer feature maps for three out of the 32 channels.  a) Original image, b) 

Feature map for layer 1 channel 3, c) Feature map for layer 1 channel 13, and d) 

Feature map for layer 1 channel 19 

Fig. 30 shows the activation filter maps for several layers in the network.  Fig. 30.a) are the 32 

filters for convolution layer 1, Fig. 30.b) are the 32 filters for convolution layer 5, and Fig. 30.c) 

are the 128 filters for the 8th Max Pooling layer.  It can be seen from Fig. 29 and 30 that the various 

activation filters are learning(activating) on different feature sets.  In Fig 30 the various filters are 

showing that certain features are beginning to dominate. 
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a) Conv Layer 1 

 
b) Conv Layer 5 

 
c) Max Pooling 8 

Figure 29.  Activation Filter Map Visualization 

Activation filters for two convolution layers and a max pooling layer. 
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4. Chapter – Experimental Results for the Three Methods 

4.1. Direct Spherical Calibration Experimental Results 
Section 4.1 describes the data setting for the evaluation.  Section 4.1.1 applies the DSC  

methodology presented in Section 3.1, Section 4.1.2 compares DSC to the three Baseline 

methodologies, Section 4.1.3 presents the error analysis of four methods, and 4.1.4 presents the 

results of the optimum number for capture of calibration boards.  

4.1.1. Calibration data setting for evaluation 

 In the use of the omnidirectional IR camera, a camera calibration process is required just as 

in a conventional vision system.  The O-D camera operational setting is shown in Fig. 31 and is 

an example of an omnidirectional IR camera mounted on our Pioneer robot; the figure shows a) 

the camera on the robot, b) a sketch of the internal mirror, and c) a representative IR output.   A 

car, a truck, and three people can be seen in the image. This work is laying out the calibration 

approach and initial experimental results using data gathered with our camera mounted on the 

robot.  The resulting images were visually inspected to determine if the quality and clarity of the 

images were sufficient for the calibration work.   The images were also evaluated to determine 

if the vertical support bars of the camera significantly obscured the view of the calibration 

boards. 
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Table 16. describes the characteristics of the three calibration data sets used for the evaluation.   

obscuration from the support bars on the camera, and moderate clarity.  The moderate data sets 

had good quality and good clarity.   

The dense data set had marginal quality.  The moderate set had no images obscured while the 

dense had the most partial obscuration with ten out of forty-seven of the calibration board views.  

These rankings were subjectively determined by visual observation of the images. 

Table 16.  Calibration Image Sets 

Image set # Image Resolution Obscured Clarity 

Sparse Set  10  61% Four partial 4 of 10 clear 

Moderate Set  25  70.4% Five Partial  16 of 25 clear 

Dense Set 47  53% Fourteen Partial  28 of 47 clear 

 

The three data sets were taken in separate setups.  The sparse set had fair quality, some partial 

 

Figure 30. Robot and Camera Setup: 
Robot with Omnidirectional IR camera showing a) the Robot, b) the IR camera, c) the camera solid model showing 

the hemispherical mirror, and d) a representative output showing 3 people, a truck, and a car. 
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                a) Re-projection on grid                     b) Zoomed in calibration grid 

Figure 31. Calibration Re-projection points: 

Example of re-projection points in the Baseline 1 (distortion) method with a) Grid 

points chosen for calibration and re-projection of points onto the calibration pattern. 

b) Zoomed in view of the calibration grid. 

Fig. 32 shows a sample of calibration points picked by the operator using the Baseline 1 

(distortion): Scaramuzza et al. methodology, and a typical re-projection of the calibration points 

onto the original pattern.   We modified the plot to show the theta and phi directions on the plot.  

The heat lamps can be seen in the images as well as the reflected calibration grids.  Utilizing the 

four methods; our DSC method, the Baseline 1 (distortion) method [10 - 12], the Baseline 2 (single 

viewpoint spherical) method [13], and the Baseline 3 (generic) method [41-42]; each calibration 

methodology was applied to the IR catadioptric camera using a calibration pattern of a white board 

with thermal reflective tape making a grid pattern that could be used to create a thermally reflective 

pattern on the board. 

The checkerboard pattern was required by the three Baseline methods.  As a result, the DSC 

method used the same checkerboard pattern that was used for the three Baseline methods for a 

more direct comparison. Even though our method only used the outside corners to find the center, 
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we wanted to be able to compare to the results for the other methods directly without introducing 

additional factors.   The images were then captured and the four methodologies applied.  The 

experimental result comparisons are presented in Section 2.4.2 and 2.4.3.  Fig. 33 is the data setting 

and shows the extrinsic projection of the three data set positions around the camera.   

     

a) Sparse data set.                                     b) Moderate data set.                                    c) Dense data set. 

Figure 32. Extrinsic Mapping: 
Extrinsic mapping of the three data sets, a) sparse data set with 10 calibration images, b) moderate data set with 

25 calibration images, c) dense data set with 47 calibration Images, 

4.1.2. DSC calibration  
Our DSC approach was adapted to more effectively work with an omnidirectional IR camera, 

and to improve the accuracy over the Baseline methods.  The DSC methodology approach to the 

corner selection dramatically reduced the error introduced by the Baseline corner and blob 

selection approaches due to their algorithm failing when given the low resolution of the IR image, 

and Fig. 34 presents the comparison of the DSC to the baseline methods for the sparse (10 

calibration images) data set. 

     The plots in Fig. 34 represent the average error of the four methodologies across the calibration 

boards.  The error for the DSC method was the smallest and was on the order of 0.2 to 0.5 x 10-4 

pixels for all of the sparse data set.  Baseline 2 (single viewpoint spherical) was next best with 1-

2 pixel error, Baseline 1 (distortion) with 2-3 pixel error, and finally Baseline 3 (generic) with 

error on the order of 8-19 pixels of error.   
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Figure 33.  Sparse Data Set Error 
Comparisons of the re-projection error for the three Baseline methods with our DSC method.  The 

results are shown for the sparse data set case.  The DSC method has the lowest error followed by 

Baseline 2 (spherical), then Baseline 1 (distortion) and finally Baseline 3 (generic) as the worst. 

Note that Baseline 1 (distortion) and 3 (generic) both tended to go out of bounds due to poor 

geometry selection with the lower quality IR images and required an inordinate amount of hand 

adjustment to get them to work.  Fig. 35 shows the comparison of the four methods for the 

moderate data set blurred IR images. The calibration images were captured and processed using 

our DSC methodology.  The corner selection methodology was an initial manual selection with 

corner assist to find the entire capture board grid and then find the center of the grid.  We used the 

direct spherical coordinates of this calculated center point for each calibration board grid as the  
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Figure 34.  Moderate Data Set Error 
Comparisons of the re-projection error for the three Baseline methods with our DSC method.  

The results are shown for the moderate data set case.  The DSC method has the lowest error 

followed by Baseline 2 (single viewpoint spherical), then Baseline 1 (distortion) and finally 

Baseline 3 (generic) as the worst. 

input to the DSC calibration.  This worked much better for the IR images and significantly cut 

down the analysis time.  This method was more robust to the poor edge quality of the IR image.   

4.1.3. Comparison to other Baseline calibration methods 
Among the existing color vision omnidirectional camera calibration methodologies, we chose 

the two best performing methods plus one more generic method for comparison.   

The Baseline 1 (distortion) omnidirectional camera calibration methodology, [7], [8], [9] 

proposed a polynomial approximation distortion model with 2D patterns approach.  

In the Baseline 2 (single viewpoint spherical) methodology [10], single view point re-projection 

method uses a distortion model of the camera properties with a single viewpoint spherical 

projection model where the world points are projected onto the unit sphere.  They then use a 

secondary projection onto a normalized plane.   

In the Baseline 3 (generic) methodology [34-35] was chosen as a more generic method intended 
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for a wide range of camera types.  It uses a generic model of the camera properties that could 

handle different types of cameras including conventional perspective, central omnidirectional 

(including catadioptric, fish-eye, and generic central lens), and finally non-central cameras.  The 

approach utilizes two Fourier series polynomial distortion terms in the calibration process.  The 

distortion model is more generic and not based on the perspective projection. 

The three Baseline calibration methodologies were compared to our DSC methodology.  As the 

data for the DSC shows the smallest error with the moderate data set having 22 out of 25 calibration 

boards with error less than 1 x 10-4 pixels with a couple of sub-pixel error outliers.  The DSC 

moderate data set has three outliers at 0.34, 0.54, and 0.69 pixels.   

Again the Baseline method 1 and 3 methods   required many tries at getting the solution not to 

go out of bounds and this was very labor intensive since the automatic corner finding routine was 

optimized for visual omnidirectional images and wouldn’t work with the lower quality IR images, 

this made the method 1(distortion) and 3 (generic) methods automatic selection of points 

unreliable.  Additionally, the manual corner selection was error prone causing the routine to blow 

up and fail necessitating rework.  This was quite time consuming and took about a week of 5-6 

hours a day making manual corrections to the corner coordinates for Baseline 1 (distortion) and 

similar timeframe with Baseline 3 (generic) trying to get the solution to work.    This still did not 

correctly find all the corners.   This required us to go into the images and manually reposition 

about a third of the corners on about half of the images.  After this correction the max and average 

errors behaved much better.  Fig. 35 shows that the error comparison for the moderate data set 

was similar to the sparse case with DSC best, Baseline 2 (single viewpoint spherical) next, 

Baseline 1 (distortion) next with 2-3 pixel error, and finally Baseline 3 (generic) with 13-25 pixel 

error.   
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Fig. 36 shows the comparison of the methods for the dense data set.  We were not able to show 

the Baseline 3 (generic) since after a week of attempting to get it working the program would 

crash when trying to find the calibration points in the low quality IR image. 

 

Figure 35.  Dense Data Set Error 

Comparisons of the re-projection error for the three Baseline methods with our 

DSC method.  The results are shown for the dense data set case.  The DSC method 

has the lowest error followed by Baseline 2 (spherical), then Baseline 1 

(distortion) and finally Baseline 3 (generic)as the worst. 

As before with the sparse and moderate data sets DSC is the best with sub pixel error with only 

two outliers near 0.1 pixel and the rest less than 10-5.  Baseline 2 (single viewpoint spherical) is 

next with 1-2 pixel error, and Baseline 1 (distortion) with 1-4 pixel error.  Again Baseline 3 

(generic) would blow up. 
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4.1.4. Error analysis of four methods 
In Fig. 37 we compare the x, y error scatter for the four methodologies.  a) DSC error as a 

function of x, y scatter, the DSC is displayed at a different scale so the scatter can be seen.  b) 

Baseline 1 (distortion) error as a function of x, y scatter, c) Baseline 2 (spherical) error as a   

function of x, y scatter d) Baseline 3 (generic) error as a function of x, y scatter.  It can be seen 

                                 

                           a) DSC Error as a fcn of x, y                            b) Baseline 1 (distortion) Error as a fcn. of  

                               Scatter                                                                    x, y Scatter                         

                                          

                         c) Baseline 2 (spherical) Error                                    d) Baseline 3 (generic) Error  

          as a fcn. of x, y Scatter    as a fcn of x, y Scatter  

Figure 36.  Error Scatter Plot 

Comparison of the error as a function of x, y scatter for the four methods.  Only the moderate 

data set is shown.  a) DSC method (different scale to show scatter), b) Baseline 1 (distortion) 

Method, c) Baseline 2 (single viewpoint spherical) method, d) Baseline 3 (generic) method. 
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that the least error scatter is for the DSC method, the worst for Baseline 3 method then Baseline 1 

and finally Baseline 2.  Unlike the other methods, the DSC has one error point per calibration  

 board, where the others have points for the total number of intersections in the calibration 

boards. 

Fig. 38 shows the error data as a function of radius for the four methodologies.  The blue curve 

in Fig. 38 represents the median of the scatter data for each method.  Fig. 38a) DSC error as a 

                       
                        a) DSC Error as a                                                      b) Baseline 1 (distortion) Error  

                           function of Radius    as a function of Radius                       

                            

 

                        c) Baseline 2 Error                                      d) Baseline 3 Error  

                           (single viewpoint spherical)                                    (generic) 

                           as a function of Radius              as a function of Radius                        

Figure 37.  Error vs Radius Plot 
Comparison of the error as a function of radius for the four methods.  Only the moderate data set is shown.  

a) DSC method (different scale to show scatter), b) Baseline 1 (distortion) Method, c) Baseline 2 (spherical) 

method, d) Baseline 3 (generic) method The mean of the error scatter is overlaid as the blue curve. 
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function of radius, the DSC is displayed at a different scale so the scatter can be seen.  38b) 

Baseline 1 (distortion) error as a function of radius, 38c) Baseline 2 (single viewpoint spherical) 

error as a   function of radius 38d) Baseline 3 (generic) error as a function of radius.  The blue 

curve in Fig. 38a) represents the median of the error data and is near zero for the DSC 

methodology.   Again the DSC method has one point per calibration board.  It can be seen that the 

DSC has a similar but smaller spread in angle, but an order of magnitude smaller spread in radius 

error. 

The average error for Baseline 1 (distortion) is 2 pixels where the max scatter is up to 10 pixels, 

and Baseline 2 (single viewpoint spherical) average error is 0.94 pixels and the max error is about 

7 pixels. The DSC error is sub pixel and on the order of a thousandth of a pixel.  The DSC, Baseline 

1 (distortion), and Baseline 2 (single viewpoint spherical) methods track fairly close in finding the 

center. 

  Baseline 1 and 2 methods found the center within 4 pixels, and the DSC was within 1 pixel. 

With the Baseline 3 (generic) method, the center is off by 68.8 pixels in the y direction.  The actual 

center is about 324, 241 which is matched closest by the DSC method at 323.75, 240.86. There is 

a 5% delta in focal length.  The uncertainty associated with the average errors is lowest for DSC 

at 0.00192 followed by BL2 at 0.05819, BL1 at 0.1011, and finally BL3 at 0.4707. 

The DSC methodology is better than the other three Baseline methods with smaller error and 

less uncertainty. as shown in Table 15.   

We have included in Table 17 a fourth column showing the Baseline 3 methodology [35,36] that 

had much higher errors compared to the other two Baseline methods and it didn’t work well with 

the IR data.  Also, it can be seen in Fig. 37 that the Generic method’s error is on the order of 30 

pixels and is much higher than the other two Baseline methods chosen for comparison.  Also, 



99 
 

Baseline 3 (Generic) missed the center by 68.8 pixels. It can be seen from Table 15. that the DSC 

method is the best performer. 

4.1.5. Optimal number selection of image capture of calibration boards 
We did an analysis to determine the optimum number of calibration boards.  We compared Ratio 

of Calibrated to Actual, error, and computation time.  Fig. 39 is our plot of the three methodologies 

in polar form showing the relative comparison of the   r, theta polar points obtained from the three 

methodologies.  φ was nominally 90 degrees and relatively constant for all methods so it was not 

presented.  

Fig 39 shows the RCA in a comparison polar line plot for the moderate data set.  The moderate 

case has the best match to the actual data for the four methods.  The three Baseline methods did 

not originally present this data, but we added it to all of their routines for comparison.    The polar 

plot shows the comparison of the best three methodologies in finding the r, θ (theta) points for 

each of the data sets.  The baseline 3 (generic) method had an average 19% error (peak 64%) in r, 

θ compared to ground truth measurements, so it wasn’t included in the polar plot. The sparse data 

set with only ten (10) calibration boards had the least consistency between the three methods. For 

Table 17.  Methodology Numerical Comparison 

Framework DSC BL1 
distortion 

BL 2 
single viewpoint 
spherical 

BL3 
generic 

Average  

Error 

0.00265 2.0057 0.94 16.5660 

Standard Deviation 0.013 0.6928 0.3557 13.9032 

Uncertainty 0.00192 0.1011 0.05819 0.4707 

Calibration 

Time 

0.017 2.09 53.43 325.2127 

Center 323.75, 240.86 321.02,  

239.96 

323.50,  

244.34 

322.7239 

309.8056 

Focal 

Length 

264.99, 

264.99 

N/A, 

N/A 

251.01, 

253.75 

313.0189 

253.9237 
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the DSC and Baseline 1 and 2, all three matched the ground truth r, θ within about 5% with DSC 

at 0.05147, B1 at 0.04755, and B2 at 0. 05083.  Both the moderate and dense track relatively 

closely with each other and with the r, θ pairs matching fairly well to ground truth.  The dense set 

is slightly better.   

   

 

 

  

 

      

a) Sparse data set      b) Moderate data set 

 

 

 

 

 

 

 

c) Dense data set 

Figure 38.  Comparison Polar Plot 

Comparison polar plot of the r, θ for DSC compared to the two Baseline methodologies.  For a) sparse data 10, b) 

moderate data 25, and c) dense data 47 calibration board images.  The main three data sets r, θ compare reasonably 

well with the ground truth with the delta being roughly 5% for all three. 
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The results of the values for RCA, εd, t are given below in Table 18. 

Table 18 shows the average RCA for all four methods and data sets.  Baseline 2 had the most 

consistency between data sets.  The differences in RCA were not sufficient to influence the final f 

(RCA, ϵd, t) result.  

The results for RCA are shown in Fig. 40 and both RCA and |RCA – 1| are summarized in Table 

18, which shows that the RCA has the most variance for the sparse and dense cases, and the 

moderate is closest to actual for all four methods. 

Both the moderate and dense are due to outliers with the bulk of the data being comparable to 

the sparse case.  The difference between the results for the moderate and dense data sets (25 and 

47 calibration boards) is so small that it isn’t significant.   Also, the larger number of calibration 

boards allows for room to throw out the outliers.   This result shows that 10 images are adequate 

from an error standpoint.  The benefit of 25 or 47 images is that if there are any problem images 

they can be deactivated and not used in the calibration.   

Table 18.  Ratio Calibrated to Actual(Rca) Comparison 

RCA sparse moderate dense 

DSC 1.1278 0.9783 0.97086 

Baseline 1 (distortion) 2.0285 0.98198 0.9855 

Baseline 2 (single viewpoint 

spherical) 

1.1142 0.976033 0.9762 

Baseline 3 (generic) 2.7058 1.05831 Failed 

|RCA-1|| sparse moderate dense 

DSC 0.089742 0.05147 0.0541 

Baseline 1 (distortion) 1,0285 0.047553 0.0532 

Baseline 2 (single viewpoint 

spherical) 

0.1465 0.05083 0.0535 

Baseline 3 (generic) 1.7058 0.19132 Failed 
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Figure 39.  Ratio Calibrated to Actual (RCA) 
Comparison ratio of calibrated to actual (RCA) for DSC method compared to the three Baseline methodologies for 

the moderate data set. 

The results for the three comparison methods error are summarized in Fig. 41.  The best error 

result is the sparse data set at 10 images with 1.526 x 10-5 the dense at 0.00265, and the moderate 

at 0.0628-pixel error. 

The maximum error of Baseline 1 (distortion) and 2 (single viewpoint spherical) is on the order 

of one to two pixels, the Baseline 3 is about 16 pixels, while the DSC method is sub-pixel and near 

zero.  Of the three methods the DSC has the lowest error less than 0.01, followed by Baseline 2 

(single viewpoint spherical) at about 1 pixel and Baseline 1 (distortion) at 1.5 to 2 pixels of error, 

and finally Baseline 3 (generic) at 16.566 pixels of error.  The added complexity of Baseline 1 and 

Baseline 2 are not required as the simpler DSC method gets better accuracy and comparable 

calibration results.   
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Table 17 in Section 3.1.5 shows the comparison of error, standard deviation, computation time, 

center, and focal length for the four methodologies.  Again DSC method has the lowest 

computation time at under 0.032 seconds for the sparse case, 0.084 for moderate case and 0.17 for 

the dense case.  The DSC computation time is then followed by the Baseline 1 (distortion) 

methodology at about 2 seconds.  The Baseline 2 (single viewpoint spherical) methodology had a 

computation time at 12 to 54 seconds.  Finally, the Baseline 3 (generic) computation time was 933 

seconds. 

Optimizations utilizing the four methodologies for three values Ratio Calibrated to Actual RCA, 

error ϵd, and t are considered using (11) in Section 2.3.2.   The results of Pareto optimization are 

shown in Fig. 42 and Table 19. 

 

Figure 40.  Methods - Error Bar Chart 
A comparison plot of the error for the three data sets; sparse, moderate, and dense with 10, 25, and 47 images 

respectively. The plot compares the average error of the four methods with DSC being near zero, Baseline 1 

(distortion) and 2 (single viewpoint spherical) on the order of one to two pixels. Baseline 3  (generic) between 

14 and 16 pixels for sparse and moderate datasets   However, the Baseline 3 method did not work for the Dense 

data set and did not converge. 
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Fig. 42 shows the plot of the Pareto Optimization for the fitness function (12) for the four methods 

and the three data sets.  The plot results are summarized in Table 9 and it can be seen from the plot 

that the DSC method has the best results for the fitness function followed by Baseline 1, and 2  

 
with Baseline 3 being the least fit.  Table 19 results show that f (RCA, ϵ, t) was lowest for the DSC 

moderate data set.  Under this image set, the Pareto-optimization provided a better RCA match, 

but the sparse case had the lowest error.  This resulted in the overall lowest value for f (RCA, ϵ, t).  

Thus the moderate data set is optimum for calibration in this case. 

Table 19.  Optimality Comparison 

f ( RCA , ϵ, time) sparse moderate dense 

DSC 0.11796 0.0499 0.05326 

Baseline 1  

(distortion) 

4.0827 2.6580 21.4600 

Baseline 2 

(single viewpoint spherical) 

1,969 6.4555 52.7600 

Baseline 3 

(generic) 

18.130 94.70 Failed 

 

Figure 41.  Pareto Optimization Plot 
Plot of the Pareto Optimization results for the fitness function from Section III.C equation (12) for the 

four methodologies and three data sets.   



105 
 

4.2. Index Based and Thermal Region Fusion Experimental Results  
The experimental results section follows the organization of section 4.2 and utilizes the 4.2.1. 

Describes the Omni-direction Camera and Data Setting; 4.2.2 Describes the results Visual and IR 

Index Based Vegetation Detection; 4.2.3 IR Stream Segmentation using Region based Thermal 

Analysis – Describes the results of the combination of the MNDVI and thermal region based stream 

segmentation approaches, using Region Based IR thresholding with thermal analysis and region 

growing threshold segmentation fusion of O-D IR and Visual Stream.  

4.2.1. Omni-direction Camera and Data Setting 
Data was captured from the O-D far-IR camera and Kinect camera systems; we later captured 

additional data from our O-D IR and O-D visual camera. The data sets are presented in Table 20. 

We then processed the data with the two approaches, the MNDVI, and the TRF fused, and compare 

their results.   A representative sample was used from data set 1 (IR) and dataset 2 (Kinect) to 

produce Fig 34. O-D IR and O-D Visual samples from Data Set 3 and 4 were used to produce Fig 

35.  In Fig. 34 and 35, the visual image, the IR image and the Thermal Fused image are shown  

Table 20.  Camera Data Settings 

Data Set Image Type Size Sensor 

1 far-IR O-D 640 x480 O-D IR  

2 Visual Kinect Various Kinect Visual 

3 O-D IR  640 x 480 

Unwrapped to  

181 x1760 

O-D IR 

4 O-D Visual 640 x 480 

Unwrapped to  

181 x1760 

O-D Visual 
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along with the RGB and IR histograms.  Both figures have the vegetation region threshold values 

superimposed.  Fig. 43 and 44 second plot shows the spectral bins in the thermal signature. 

Fig. 43 using datasets 1 and 2, shows the relationship between the red, blue, and green bands and 

IR grayscale bins for a representative sample of a segment of the unwrapped O-D IR, and Kinect 

images.   It also shows the fused image, and the histograms have the thresholds overlaid. 

 

Figure 42.  RGB and IR Histogram for O-D IR and Kinect Camera 

Using datasets 1 and 2. A representative input Kinect visual and O-D IR images.  The first plot is the 

histogram distribution of the blue, green and red bands of the input image shown above.  The second plot 
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Fig. 44 using datasets 3 and 4 (o-D IR and O-D Visual) shows the same relationship for a 

representative unwrapped O-D color and O-D IR sensors along with the fused image showing the 

detected vegetation region.   Again, Fig. 44 the RGB and Gray scale histograms with thresholds 

overlaid are shown. 

4.2.2. Visual and IR Index Based Vegetation Detection 

In this section we present the results from the index based MNDVI approach.  One of the key 

issues with the current implementations of vegetation index based processes is the false positives 

that it produces. It particularly struggles with synthetic materials that have high red absorption.  

The vegetation index approach has known failures in areas such as manmade materials and paints 

that have high red absorption and behave similar to vegetation.  Since the index based approach 

 

Figure 43.  RGB and IR Histogram for O-D IR and O-D Visual Cameras 

Using datasets 3 and 4.  A representative unwrapped input O-D visual and O-D IR images.  The first 

plot is the histogram distribution of the blue, green and red bands of the input image shown above.  

The second plot is the gray scale histogram of the IR image with the thresholds annotated.   
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compares the difference of the red band with the IR it can be seen how the MNDVI approach will 

be confused by this information.   Applying MNDVI index based vegetation detection alone has a 

high incidence of false positives.   

 Fig. 45 and 46 compare MNDVI True Positives (TP) with TRF TP and MNDVI FP with 

TRF FP for the two different camera setups. We can see the relationship of true positives versus 

false positives in Fig. 46 for the O-D IR and Kinect cameras using datasets 1 and 2.    

 

 Similarly, we can see in Fig. 46 the relationship of true positives versus false positives for 

the O-D IR and O-D visual cameras. 

 

Figure 44.  O-D IR and Kinnect MNDVI and TRF Comparison 

O-D IR with Kinect cameras (Datasets 1 and 2) comparison of MNDVI and TRF 

true positive compared to false positive rates. 
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It can be seen in Table 21 that the MNDVI approach has an average accuracy of 86.74% 

of the true positives compared to the false positives at 32.5% with some as high as 40 – 70%.  The 

visual MNDVI vegetation detection is shown in Row 1 - 3 of Table 21, and the fusion of the index 

based vegetation detection and the IR thermal based Region Fusion TRF results are shown in Row 

4 - 6 of Table 21.  As a result, we need a more robust method to detect the vegetation which we 

propose as our Deep Learning Fusion Network (DeepFuseNet) presented in Chapter 4.   

4.2.3.  IR Stream Segmentation using Region based Thermal Analysis 
 The IR Thermal Region Fusion results are shown in Fig. 45 and 46 above.  Table 21. show the 

comparison of the MNDVI and TRF approach for the overall experiment averaging the O-D Kinect 

and O-D IR and O-D visual camera setup.  Table 21. summarizes the results for the thermal region 

based analysis segmentation and fusion. The segmentation finds the regions of similar temperature 

 

Figure 45.  O-D IR and O-D Visual MNDVI and TRF Comparison 

O-D IR and O-D visual cameras (Datasets 3 and 4) comparison of MNDVI and TRF 

true positive to false positive rates. 



110 
 

which can then be fused with the index based results in section 3.4.2   

The MNDVI approach has an average true positive rate of 86.75% average across all four data 

sets.  However, the false positive rate is high with an average of 32.5% and a peak of 68.5%.  The 

TRF approach has an average overall accuracy of 75.16% for the true positives compared to the 

average false positives at 11.5% with a peak as high as 40%. The TRF method has a better false 

positive rejection rate, but has less accurate recognition. The TRF true positive rate is mid-range 

of the NDVI spread in Table 19 and therefore this is not considered a major detractor.  The authors 

believe that this degradation in performance is a result of the camera’s not being co-linear with the 

same viewing axis.  This could be improved with a better choice and design of the cameras. This 

could be further improved by the application of deep learning to the vegetation detection problem.  

The ROC curves for the MNDVI and the TRF fused visual and far-IR streams to extract salient 

vegetation features is presented in Fig. 47 and 48.  

Table 21.  Thermal Segmented Region Fusion Results -  Comparison of MNDVI to TRF 

Attribute Data Set True % Positive False % Positive Ratio 

FP/TP 

Peak 

FP/TP 

MNDVI 1-2 81.12 25.00 0.3082 0.7400 

MNDVI 3-4 92.35 39.72 0.4301 0.6300 

MNDVI Avg. 86.74 32.5 0.3731 0.6850 

TRF 1-2 74.00 9.00 0.1216 0.2800 

TRF 3-4 76.31 14.49 0.1899 0.3990 

TRF Avg. 75.16 11.75 0.1563 0.3940 
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 The TRF approach was better at false positives but had a lower true recognition rate, identifying 

the vegetation regions with fewer false positives than the baseline MNDVI approach.  The positive 
Table 22.  Other Method Comparison Results 

Comparison of Other Methods to our MNDVI to TRF 

Attribute True % Positive False % Positive Ratio 

FP/TP 

Peak 

FP/TP 

Reflectance NDVI [51] 95.2 32.5 0.3412 0.8124 

MODIS-NDVI 

[52] 

72.6 35.5 0.4889 0,5510 

NDVI[53] 47.7 61.29 1.2849 1.7442 

MNDVI 

datasets 1 - 4 

86.74 32.5 0.3747 0.8623 

TRF 

datasets 1 - 4 

75.16 11.5 0.1533 0.3940 

  

Figure 46.  Receiver Operator Curve (ROC) O-D IR and Kinnect 

ROC curves for the MNDVI and TRF approaches using the OD IR and Kinect cameras 

(Datasets 1 and 2). It can be seen that the TRF has fewer false detects but slightly worse 

recognition of the vegetation areas. 
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impact of using TRF is that it effectively captures the vegetation pattern and fuses the two input 

streams from the O-D IR and vision cameras while rejecting false positives.  The better overall 

performance is demonstrated by less false positives, and reasonable computation time.  The 

Receiver Operating Curve (ROC) plots the true positive rate (TPR) or (sensitivity) against false 

positive rate (FPR) or (1-specificity).  The ROC is commonly used to visualize the performance 

of a binary classifier.   Fig. 47 shows the ROC curves for the MNDVI compared to the segmented 

TRF for the O-D IR and Kinect camera setup (Datasets 1 and 2), and Fig. 48 captures the ROC 

curves for the O-D IR and O-D visual camera setup (Datasets 3 and 4).  It can be seen that the TRF 

thermal region segmentation also does not capture as much of the vegetation region as the MNDVI, 

but has fewer false detects.  The ratio of false positive to true positive for MNDVI is 0.37 where 

TRF is 0.15.  This again highlights the need for a new fusion method.  It can be seen that the 

relationship between true positive and false positive is best for the TRF fusion approach.  

 
Figure 47.  Receiver Operator Curve for O-D IR and O-D Visual 
ROC curves for the MNDVI and TRF approaches using the O-D IR and O-D visual cameras (Datasets 3 and 4). It 

can be seen that the TRF has fewer false detects but slightly worse recognition of the vegetation areas. 
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Table 22 lists other methods and how we relate in this context.  Our accuracies are consistent with 

the average of the other methods, however, our false positive rates are reduced.  The first three 

references used provided no data from which we could estimate false positive rate, so the authors 

found three additional references with data. And have referenced their results in Table 22. 

Fig. 38 summarizes the results in a bar chart showing the average percent across the datasets for 

True Positive (TP), percent False Positive (FP), and the ratio of FP/TP along with the peak FP/TP.  

Overall the TRF approach performs the best.  However, the results still need improvement, leading 

us to the need for a deep learning approach applied in Chapter 4.3. 
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4.3. DeepFuseNet Experimental Results 

     The experimental results section follows the organization of section 4.2 and 4.3 and utilizes the 

4.3.1. Data Setting, 4.3.2. Describes the results of using the baseline Far-infrared - Visual Modified 

Vegetation Index approach, 4.3.3. Describes the results of the combination of the MNDVI and 

thermal region based stream segmentation approaches, using Region Based IR thresholding with 

thermal analysis and region growing, and 4.3.4. Describes the results of stream fusion of O-D 

infrared and visual stream using our  Autoencoder - CNN Fusion of O-D IR and Visual Stream.  

4.3.1. Omni-direction Camera Setting 
Table 23.  Camera Data Settings 

Data Set Image Type Size Sensor 

1 Far-infrared  O-D IR  

2 Visual Kinect  Kinect 

3 Visual O-D V  O-D V 

4 ImageNet  Both 

5 Web Scrapper  Both 

     Two sets of data were captured from the O-D Far-infrared camera and Kinect camera systems; 

we later captured additional visual data from our O-D visual camera. The data sets are presented 

in Table 23. 

  We then process the data with the tree approaches, the MNDVI, the Infrared Thermal 

based Region Segmentation (ITRS), and then Autoencoder-CNN fusion network, and compare the 

results. 
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4.3.2.  Visual and Infrared MNDVI and TRF Vegetation Detection 
     In this section we present the results from the index based MNDVI and Thermal Region Fusion 

based approaches. The results are shown in Fig 49 and 50 and are summarized in Table 24. One 

of the key issues with the current implementations of vegetation index based processes is the false  

positives that it produces. 

 

Figure 48.  RGB and IR Histogram 

Representative RGB and IR histogram for visual and IR images. 

It particularly struggles with synthetic materials that are green in color. Fig. 50 the spectral 

relationship between the red, blue, and green bands for a representative sample. The vegetation 

index approach has known failures in areas such as manmade materials and paints that have high 

red absorption and behave similar to vegetation. Applying MNDVI index based vegetation 

detection alone has a high incidence of false positives.  

 

a) Visual O-D image 
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b) IR O-D image 

 

c) TRF fusion results 

Figure 49. TRF Fusion Results 

 Fig. 50 is the results of the TRF method, visually showing the relationships of the results.  It can 

be seen that while the TRF reduces the false Positives it does not completely capture the vegetation 

region.  The ratio of false positive to true positive for MNDVI is 0.3749, and for TRF it is 0.1563.  

The loss in accuracy for the TRF method highlights the need for a new fusion method which is 

why we moved to deep learning approach.  We can see the relationship of true positives versus 

false positives.  The results are summarized in Table 24 for this section and the next two sections. 

     It can be seen that the MNDVI approach has an accuracy of 85.6% of the true positives 

compared to the false positives at 32.5.  The TRF approach has an accuracy of 75.16% of the true 

positives compared to the false positives at 11.75%.   %.  From this and our work in chapter 3, we 

need a more robust method to detect the vegetation.   

4.3.3. Autoencoder - Convolution Neural Network Fusion of O-D IR 
and Visual Stream 

     The application of the Autoencoder Feature Extractor applies an Autoencoder and Bottleneck 

CNN to extract salient features from the image and the training and loss results are presented in 

Fig. 51.  

The unsupervised learning SAFE-CNN Autoencoder approach captured the features well, it was 

not as effective when trained with the fusion network.  The results are shown in Fig. 51 and the 
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training is only achieving an accuracy of about 80%.  We are continuing to explore why this 

occurred and how we can fine-tune the model to better utilize these features.  

The positive impact of using unsupervised learning with two Sparse Autoencoder Neural Network 

Feature 

Extractors (SAFE) into a CNN is that it was hypothesized to more effectively captures the 

vegetation pattern.  Once successful we believe this will provide better performance and less false 

positives. 

 

Figure 50.  VGG16 Autoencoder Accuracy and Loss 

Training loss and accuracy for VGG16 Autoencoder trained on 

ImageNet. Dataset[42] and fine-tuned on our vegetation set in order to 

extract vegetation features. 
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Fig. 15  

Figure 51.  Autoencoder Fusion Accuracy and Loss 

Fusion model trained with Autoencoder input. 

4.3.4. Convolution Neural Net (CNN) 

Since we did not have a large dataset from which to train, we applied transfer learning to the 

problem.   We utilized the large ImageNet [42] data set with over 1.2 million images and 1000 

classes to get an initial trained model and then applied transfer learning and fine-tuning to refine 

the model to our smaller dataset.  The transfer learning process freezes the weights of the lower 

layers of the network and adds a new top fully connected section which is trained on the smaller 

data set.  This allows the network to retain the learned features of the lower activation filters, and 

refine the learning based on the new smaller data set.  We looked at several models to determine 

the best for our transfer learning experiment.   
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Figure 52.  ResNet Accuracy and Loss Fine-tuning 

Training loss and accuracy for ResNet  trained on ImageNet data set. 

 Fig. 53 is a representative model trained on ImageNet showing the loss and accuracy after fine 

tuning the learning rate starting at 1e-3, 1e-4 and finally 1e-5.  We initially used a bottleneck CNN 

as a feature extractor for the starting weights of our process. Fig. 54 shows results for the 

Bottleneck Feature Extractor (BFE).  It can be seen that the BFE does not perform as well as the 

SAFE only capturing Fig. 54 shows the training / test accuracy and loss for the VGG16 based 

bottleneck feature extractor.   The BFE only achieves 94% feature extraction compared to  
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Figure 53.  VGG16 Bottleneck Feature Extractor 
Training loss and accuracy for VGG16 based bottleneck feature extractor leveraging 

ImageNet transfer learning and fine tune trained on our vegetation dataset. 

the 99% for the SAFE approach. 

The comparison results for the AlexNet, SqueezeNet, ResNet50, ResNet101, VGG16, and ResNet 

152 models evaluated are presented in Fig 55, 56, and 57. We trained several models to find the 

best performance for our transfer learning experiment.  Fig. 55 is the Rank 1 accuracy.  The Rank 

1 accuracy is the percentage of the assessments that the target is in the highest probability class 

prediction.  Based on our literature search we initially were thinking that we wanted to use the 

deeper networks of ResNet50 or ResNet101.  However, after this comparison we saw that 

ResNet50, ResNet101 and VGG16 all had similar performance with VGG16 having less 

overfitting. 
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AlexNet and SqueezeNet had lower performance than the other models.  We then looked at 

the deeper ResNet models, and varied the momentum to see if that would time.  The Rank 1 results 

for the four models we were evaluating were in the range of 70-72% accuracy.  For these 

assessments we held the learning rate the same (1e-3) and initially compared all the models at a 

Momentum = 0.9.  There were slight increases but not significant enough to accept the increased 

processing. 

 

Figure 54.  R5 Accuracy Comparison 

R5 Accuracy across the various models with different momentum. 

Fig. 56 is the Rank 5 accuracy.  The Rank 5 accuracy is the percentage of the assessments that 

the target is in the top five highest probability predictions.  Again the results were fairly repeatable 

with the accuracy ranging from about 90-92%. 
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Fig. 57 presents the training and validation Cross-Entropy Loss for the models being evaluated.  

Only the training and validation loss are shown since test is a prediction based on input image and 

does not have a loss component.  Again other than AlexNet and SqueezeNet, the performance is 

very comparable.  Again there were slight improvements for the deeper models at Momentum = 

0.75 and 0.70.   The performance for the deeper models is consistent. 

 

Figure 55.  Cross-Entropy Loss Comparison 

Cross-Entropy Loss across the various models with different momentum. 

 We did a number of fine-tuning experiments with VGG16, ResNet50 and ResNet101 and settled 

in on using VGG16 for our transfer learning and fine-tuning adaptation.  We initially trained the 

models on ImageNet data and then did transfer learning to train on our smaller data set.  The results 

will be presented in the next section. 
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4.3.5. DeepFuseNet 

For our DeepFuseNet approach, we merged two VGG16 models one for the visual images and 

one for the IR images.  The outputs of the two models were then concatenated and provided into 

two fully connect Dense layers and a softmax classifier. 

 

Figure 56.  Fine-tuned Merged Model 

Fine-tuned merged model trained on vegetation data. 

Fig. 58 shows the training results for the merged model.   The training accuracy achieves 95% in 

50 epochs.  The validation test accuracy is about 92%. 

 Fig. 59 shows representative samples of vegetation recognition.  It can be seen that the 

capture accuracy is high at 95.6%.  The false positives are very much improved over the baseline 

MNDVI approach or the TRF approach reducing it to on the order of 1-2%. 
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Table 24.  Baseline and DeepFuseNet Results 

 ACC Loss Val 
ACC 

Val 
Loss 

% False 
Positive 

MNDVI 86.74 N/A N/A N/A 32.5 

TRF 75.16 N/A N/A N/A 11.5 

DeepFuseNet   95.6 0.1 92 0.2 1-2 

 

   
a) Tree lined street image                        b) Vegetation Mask 1 

   
c)  VCU entrance image 2                          d) Vegetation Mask 2 

   
d) City scape image3                               e) Vegetation Mask 3 

   
e) Forest image 4                                     g) Vegetation Mask 4 

Figure 57.  Vegetation Detection Results 
Vegetation detection results. 
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Table 24 shows the comparison between the base MNDVI approaches, the union fused MNDVI 

and IR Vegetation Region (ITVR), the SAFE-CNN, and the DeepFuseNet approaches. The visual 

MNDVI vegetation detection is shown in row 1 of Table 24, and the union fusion of the index  

based vegetation detection and the Infrared thermal based Region Segmentation (ITRS) results are 

shown in row 2 of Table 24, and finally the SAFE-CNN and DeepFuseNet results are shown in 

the last two rows of the table.  The relationship between true positive and false positive is found 

to be best for the DeepFuseNet fusion approach. The DeepFuseNet has an improvement in 

accuracy finding 95.6% of the true positives and reducing the false positives to less than 2%, which 

is an 16x improvement over the index based alone.   
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5. Chapter – Conclusion 
The conclusion chapter includes four sections; one for each of the evaluated methods as 

follows.  In Section 5.1, the conclusion for the Direct Spherical Calibration method is presented.  

In Section 5.2 is the conclusion for the index based and region segmentation based methods is 

presented.  In Section 5.3 the conclusion for the Deep Fusion Network (DeepFuseNet) is 

presented.  Finally, in Section 5.4 The summary conclusion is presented. 

5.1. Direct Spherical Calibration (DSC) Conclusion 
We developed a Direct Spherical Calibration (DSC) methodology which used the four corners 

of the calibration board to find the center of the calibration board, and then used the direct spherical 

coordinates of the center of the calibration board as the re-projection points matrix was used to 

iteratively find the calibration parameters.  Of the four methods evaluated, the DSC method had 

the least time, a simpler corner extraction methodology, more reliable calibration board coordinate 

capture, and sub pixel accuracy compared to the other three Baseline methodologies.   Due to the 

robustness and the simplification of the DSC, it was demonstrated that it is not necessary to use 

the more complex methods.   

When using the DSC methodology, it was found that the lowest error could be found with the 

sparse data set.  Both the moderate and dense data sets had outliers caused by the occlusion of 

some of the grid points and poor IR edge quality.  The advantage of the larger data sets would be 

the ability to throw out outliers and possibly achieve better performance as shown in the Pareto 

optimization analysis.  However, the DSC with moderate data set had the overall optimum 

performance. 

The elimination of outliers was not explored in this research.  The results from this calibration 

implementation will be applied in our follow on research utilizing the omnidirectional IR and 

visual cameras.  This calibration approach is required as a foundation for our further research into 
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the application of these instruments for the measurement of scene material visual properties 

through the fusion of the O-D IR and visual streams, and ultimately to the use of a convolution 

neural network deep learning approach to a semantic scene reconstruction model.  

 

5.2. Index Based and Thermal Region Fusion Methods Conclusion 
We presented a TRF Fusion approach for O-D IR and vision stream and compared the results to 

our modified normalized difference vegetation index (MNDVI) approach and a fusion of the 

MNDVI and IR Thermal Region based approaches to detect and classify vegetation. Table 20 

summarizes the baseline sensor fusion results with MNDVI having an 86.73% detect rate, but it 

had a 32.5 % False Positive rate.  The IR Thermal Region (IRTR) fused with the visual index 

based lowered the false detect rate to 11.5%, but was not as good at detecting vegetation dropping 

to 75.16%.  The method of determining the thermal region was a threshold region growing and 

segmentation.  We demonstrated a 64 % improvement in false positive but resulted in a 14.5% 

reduction in true positive with our TRF fusion approach.  The reduction in true positive results is 

still mid-range of the NDVI results presented in [49] and Table 22.  The authors hypothesize that 

the reduction in true positive recognition was due to the two cameras not having the same vertical 

viewing axis.  Also, the IR and Visual cameras did not have the same vertical viewing angle and 

could not be fully registered. While our TRF approach made a significant reduction in false 

positives, it lost ground in true positive recognition.  However, the authors feel that these proof of 

concept results merit further work in this area.  The approach had reasonable performance in 

varying lighting conditions, but was not robust to the different viewing angle of the two cameras.   

This demonstrates a need to use a learning approach that will address the issue of camera quality.   

The follow on work will fuse the O-D IR and O-D Visual streams utilizing the application of 

deep learning through Convolution Neural Networks   and context based reasoning algorithms to 
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discriminate between objects in a spatial scene (grass-wall, rock-bush, puddle-hole, and door-

window).  This will then be applied to a robot platform for object detection classification and 

tracking. 

5.3. DeepFuseNet Conclusion 
    The three methods ordered from worst to best are MNDVI, TRF, and DeepFuseNet.  It 

is clear that DeepFuseNet provides the best average results The Sparse Autoencoder Feature 

Extractor and CNN Fusion approach did not give good initial results so we are still exploring that 

approach and will present it in a future paper. results to our modified normalized difference 

vegetation index (MNDVI) approach and a union based fusion of the MNDVI and Infrared 

Thermal Region based approaches to detect and classify vegetation. We demonstrated a 95.6% 

accuracy for true positives and a 93.8% reduction in false positive with our DeepFuseNet 

approach. We have adapted the approach to our pioneer robot platform for follow on experiments. 

The application of the BFE extractor and the Deep CNN fusion of the O-D infrared and visual 

streams have laid a foundation for a significant improvement in the intelligent perception of robot 

platforms. This is due to deep layers of feature encoding that employ a large spatial context for 

labelling the vegetation and non-vegetation. 

Future studies will refine the method, further explore the SAFE-CNN approach and also use 

texture analysis and context based reasoning algorithms to discriminate between objects in a spatial 

scene (grass-wall, rock-bush, puddle-hole, door-window). This will then be applied to a robot 

platform for object detection classification and tracking. 

5.4.  Summary Conclusion 
In this dissertation, we propose an intelligent visual perception method for an unmanned 

ground vehicle (UGV) utilizing the Deep Sensor Fusion of an O-D IR sensor and an O-D visual 

sensor.  The O-D IR and O-D visual sensors provide for a wide field of view (FOV) for the UGV 
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to detect objects in the entire 360-degree environment around the platform.  The O-D IR sensor 

allows for the detection of thermal signature features in the image and the O-D visual sensor 

allows for the detection of color and texture features in the image. 

Table 25. Summary of Methodologies 

Methodology Contribution Data Type 

Direct Spherical Calibration (DSC) Improved calibration capture 

Sub-pixel accuracy 

OD-IR calibration grids in three data 

sets,  

Modified Normalized Difference 

Vegetation Index MNDVI 

 

86.73% detect rate, with a 32.5% 

False Positive rate.   

O-D IR – Kinect 

O-D IR – O-D visual 

Thermal Region Fusion (TRF) 75.16% detect rate, with a with a 

11/5% False Positive rate. 

O-D IR – Kinect 

O-D IR – O-D visual 

Deep Fusion Network 

(DeepFuseNet) 

95.6% detect rate, with a with a 2% 

False Positive rate. 

O-D IR – Kinect 

O-D IR – O-D visual 

The features and advantages of each methodology are listed below: 

Direct Spherical Calibration (DSC) 

o O-D IR sensor provides thermal signature information from the scene and a wide FOV. 

o O-D IR Sensor has more noise and less resolution than the standard visual sensors used 

by UGV 

o Developed a methodology which used the four corners of the calibration board to find the 

center of the calibration board, and then used the direct spherical coordinates of the 

center of the calibration board. 

o  The re-projection points matrix was used to iteratively find the calibration parameters. 

o  Compared to three baseline methods, the DSC method had the least time, a simpler 

corner extraction methodology, more reliable calibration board coordinate capture. 

o  DSC method resulted in sub pixel accuracy compared to the other three Baseline 

methodologies at 2 or greater pixel accuracy.    
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o Optimality Analysis showed that the optimum calibration performance was achieved by 

the DSC methodology and the moderate (25) dataset. 

Modified Normalized Difference Vegetation Index (MNDVI) 

o Normalized Difference Vegetation Index approach to vegetation detection has high false 

positive rates. 

o Modified NDVI from near IR to far IR 

o MNDVI results in an 86.73% detect rate, but it had a 32.5 % False Positive rate.   

Thermal Region Fusion (TRF) 

o We presented a Thermal Region Fusion (TRF) approach for O-D IR and vision stream and 

compared the results to our modified normalized difference vegetation index (MNDVI). 

o  Fusion of the MNDVI and IR Thermal Region based approaches to detect and classify 

vegetation.  

o The method of determining the thermal region was a threshold region growing and 

segmentation.   

o TRF results in an 75.16% detect rate, but it had a 11.5 % False Positive rate.   

o Demonstrated a 64 % improvement in false positive but resulted in a 14.5% reduction in 

true positive.   

o The reduction in true positive results is still mid-range of the NDVI results presented in 

[49] and Table IX.   

o The authors hypothesize that the reduction in true positive recognition was due to the two 

cameras not having the same vertical viewing axis.  Also, the IR and Visual cameras did 

not have the same vertical viewing angle and could not be fully registered.  

o This demonstrates a need to use a learning approach that will address the issue of camera 
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quality.   

Deep Fusion Network (DeepFuseNet) 

o Fused the O-D IR and O-D Visual streams utilizing the application of deep learning 

through Convolution Neural Networks.    

o The combination of the O-D IR and O-D visual sensors allowed for a richer feature 

vector to be extracted from the data.   

o In our work we looked at vegetation index based and region fusion methods and then 

compared them to our DeepFuseNet approach.   

o DeepFuseNet approach achieved a 95.6% true positive recognition rate while also 

showing a 92% reduction in false positives over the classical NDVI approach. 

o Our first step was to look at feature extraction to establish the feature vector to be fed into 

the network.   

o We looked at two approaches for the feature extractor.  First an Autoencoder feature 

extractor, and second a VGG16 Bottleneck feature extractor.   

o We found that the Autoencoder Feature Extractor didn’t perform as well in the overall 

system as the Bottleneck Feature Extractor.   

o We then followed the feature extractor by a residual network utilizing transfer learning 

from the ImageNet data set to our smaller data set.   

o The next step was the fine-tuning of the network.   

o The final was a fully connected network to predict the region areas and concatenate the 

final feature mask.  

The project described in this book has resulted in the following three major contributions: 

1. Development of an improved Direct Spherical Calibration for low resolution O-D IR cameras.. 
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2. Comparison of MNDVI, TRF and DeepFuseNet results. 

3. Accomplishment of a high level of vegetation detection and false positive rejection by using 

more efficient transfer learning, fine-tuning, and deep learning when compared to classical index 

based vegetation detection.   

For our future work, we plan to implement additional deep learning approaches such as 

residual, recurrent, and semantic segmentation models to evaluate their application to enhanced 

robotic vision.  We will also extend and evaluate the efficacy of the approach while the robot is 

moving in its environment.   

 

APPENDIX A 

REPRESENTATIVE MATLAB AND PYTHON CODES 
 

The source codes are implemented in the platform of MATLAB® 7.10.0, R2017a(*) and Python 

3.6.  The MATLAB codes developed are built on top of the Image Processing Toolbox 

Version 2.10(*).  *http://www.mathworks.com. 

The M-codes in Appendix A include some comments, and extract the core parts of M-codes, 

representing the corresponding algorithms in the dissertation.  The Python codes in Appendix A 

are built on top of KERAS and Tensorflow-gpu as a backend.  

The Chapter 2 source codes for Direct Spherical Calibration are as follows: 

A.1 Calibration GUI (omni_calib_gui_normal_s.m) 
A.2 Go_omni_calib (go_omni_calib_itr_s.m)  
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A.3 Spherical Coordinates (Spherical_s.m) 
A.4 Multi objective optimization (simple_multiobj2.m) 
A.5 Compute Omnidirectional Error (comp_omni_error_s.m) 
A.6 Error Analysis (analyse_err_s.m) 

 

A.1 Calibration GUI (omni_calib_gui_normal_s.m) 
function omni_calib_gui_normal_s 
missing = 1; 
cell_list = {}; 
%-------- Begin editable region -------------% 
%-------- Begin editable region -------------% 
% 
%         Modified by David Stone Apr 2014 
fig_number = 1; 
title_figure = 'Omni Camera Calibration Toolbox - Improved Version'; 
cell_list{1,1} = {'Mirror type','paramEst = mirror_type();'}; 
cell_list{1,2} = {'Load images','images = data_calib();'}; 
cell_list{1,3} = {'Estimate camera intri.',['check_border_estimate;'... ... 
      'if ~missing '... 
      '[gen_KK_est,borderInfo] =' ... 
      ' border_estimate(images,paramEst);'... 
      'end' ]}; 
cell_list{1,4} = {'Extract grid corners',['tic;','check_click_calib;'... 
      'if ~missing '...  
      '[gridInfo,paramEst] ='... 
      'click_calib_s(images,gen_KK_est,gridInfo,paramEst);'... 
      'toc;'... 
            'end']}; 
 
cell_list{2,1} = {'Draw Grid Estimate',['check_click_calib;'... 
    'if ~missing '... 
    'drawImageWithPoints_s(images,gen_KK_est,gridInfo,paramEst);'... 
    'end']}; 
cell_list{2,2} = {'Calibration',['check_calib_optim;biased_calib=1;' ... 
      'if ~missing '... 
            'tic;'... 
      'paramEst = 
go_omni_calib_optim_iter_s(minInfo,images,gen_KK_est,gridInfo,paramEst);'... 
      'toc;'... 
            'end']}; 
cell_list{2,3} = {'Rm Calibration',['check_calib_optim;'... 
      'if ~missing '... 
      'paramEst = rm_calib(paramEst);'... 
      'end']}; 
cell_list{2,4} = {'Analyse error',['check_calib_optim;'... 
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      'if ~missing '... 
      'analyse_error_s(images,gridInfo,paramEst);'... 
      'end']}; 
 
cell_list{3,1} = {'Recomp. corners',['check_calib_optim;'... 
      'if ~missing '... 
      '[gridInfo,paramEst] ='...  
      'recomp_corner_calib_s(images,gen_KK_est,gridInfo,paramEst);'... 
      'end']}; 
cell_list{3,2} = {'Draw 3D',['check_calib_optim;'... 
      'if ~missing '... 
      'drawGrids3D_s(images,gen_KK_est,gridInfo,paramEst);'... 
      'end']}; 
cell_list{3,3} = {'Plot Pix/Rad errors',['check_calib_optim;'... 
      'if ~missing '... 
      'plot_omni_error_rho_s(images,gen_KK_est,gridInfo,paramEst);'... 
      'end']}; 
cell_list{3,4} = {'Add/Suppress images','images = add_suppress(images);'}; 
 
cell_list{4,1} = {'Show calib 
results','show_calib_results_s(images,gen_KK_est,paramEst,gridInfo);'}; 
cell_list{4,2} = 
{'Save','save_omni_calib(minInfo,borderInfo,images,gen_KK_est,gridInfo,paramEst);'}; 
cell_list{4,3} = {'Load','load_omni_calib;'}; 
cell_list{4,4} = {'Spherical', 'spherical_s;'}; 
cell_list{5,1} = {'Exit',['disp(''Bye. To run again, type omni_calib_gui_s.''); close(' 
num2str(fig_number) ');']}; %{'Exit','calib_gui;'}; 
 
show_window(cell_list,fig_number,title_figure); 
%-------- End editable region -------------% 
%------- DO NOT EDIT ANYTHING BELOW THIS LINE -----------% 
 
function 
show_window(cell_list,fig_number,title_figure,x_size,y_size,gap_x,font_name,font_size) 
 
if ~exist('cell_list'), 
    error('No description of the functions'); 
end; 
 
if ~exist('fig_number'), 
    fig_number = 1; 
end; 
if ~exist('title_figure'), 
    title_figure = ''; 
end; 
if ~exist('x_size'), 
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    x_size = 125; 
end; 
if ~exist('y_size'), 
    y_size = 16; 
end; 
if ~exist('gap_x'), 
    gap_x = 0; 
end; 
if ~exist('font_name'), 
    font_name = 'clean'; 
end; 
if ~exist('font_size'), 
    font_size = 8; 
end; 
 
figure(fig_number); clf; 
pos = get(fig_number,'Position'); 
 
[n_row,n_col] = size(cell_list); 
 
fig_size_x = x_size*n_col+(n_col+1)*gap_x; 
fig_size_y = y_size*n_row+(n_row+1)*gap_x; 
 
set(fig_number,'Units','points', ... 
        'BackingStore','off', ... 
        'Color',[0.8 0.8 0.8], ... 
        'MenuBar','none', ... 
        'Resize','off', ... 
        'Name',title_figure, ... 
        'Position',[pos(1) pos(2) fig_size_x fig_size_y], ... 
        'NumberTitle','off'); %,'WindowButtonMotionFcn',['figure(' num2str(fig_number) 
');']); 
 
h_mat = zeros(n_row,n_col); 
 
posx = zeros(n_row,n_col); 
posy = zeros(n_row,n_col); 
 
for i=n_row:-1:1, 
  for j = n_col:-1:1, 
    posx(i,j) = gap_x+(j-1)*(x_size+gap_x); 
    posy(i,j) = fig_size_y - i*(gap_x+y_size); 
  end; 
end; 
 
%disp('ok'); 
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for i=n_row:-1:1, 
    for j = n_col:-1:1, 
        if ~isempty(cell_list{i,j}), 
            if ~isempty(cell_list{i,j}{1}) & ~isempty(cell_list{i,j}{2}), 
                h_mat(i,j) = uicontrol('Parent',fig_number, ... 
                    'Units','points', ... 
                    'Callback',cell_list{i,j}{2}, ... 
                    'ListboxTop',0, ... 
                    'Position',[posx(i,j)  posy(i,j)  x_size   y_size], ... 
                    'String',cell_list{i,j}{1}, ... 
                    'fontsize',font_size,... 
                    'fontname',font_name,... 
                    'Tag','Pushbutton1'); 
            end; 
        end; 
    end; 
end; 
 

A.2 Go_omni_calib (go_omni_calib_itr_s.m)  
% This program is free software; you can redistribute it and/or 
% modify it under the terms of the GNU General Public License 
% as published by the Free Software Foundation, version 2. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program; if not, write to the Free Software Foundation, 
% Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                       % 
%      Minimisation function            % 
%      Modified by David Stone 4/2014   % 
%                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Main calibration function.  
% Computes the intrinsic and extrinsic parameters. 
% 
% Input: see "click_clib.m" 
% 
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% Output:  
%   adds variables to paramEst structure and modifies estimates 
%   for the extrinsic parameters : 
%     gammac: Camera focal length 
%     cc : Principal point coordinates 
%     alpha_c : Skew coefficient 
%     kc : Distortion coefficients 
%     KK : The camera matrix (containing gammac and cc) 
%     Tw : list of extrinsic translation parameters 
%     Qw : list of extrinsic rotation parameters 
%     y  : point reprojections 
%     ex : list of reprojection errors 
% 
% Method: Uses the LevenbergMarquardt algorithm to minimise the 
%         reprojection error in the least squares sense over the intrinsic 
%         camera parameters, and the extrinsic parameters (3D locations of the grids in space) 
% 
% Note: If the intrinsic camera parameters (gammac, cc, kc)  
%       where initialised thanks to the mirror border extraction. 
% 
% Note: The row vector active_images consists of zeros and ones. To deactivate an image, set 
the 
%      corresponding entry in the active_images vector to zero. 
% 
 
function [paramEst, images] = 
go_omni_calib_optim_iter_s(minInfo,images,gen_KK_est,gridInfo,paramEst) 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Minimisation properties 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
if ~exist('recompute_extrinsic'), 
  recompute_extrinsic = 1; % Set this variable to 0 in case you do 
                           % not want to recompute the extrinsic parameters 
      % at each iteration. 
end 
 
if ~exist('check_cond'), 
  check_cond = 1; % Set this variable to 0 in case you don't want to extract view dynamically 
end 
counterr = 0; 
errf = []; 
err = []; 
stt = []; 
 
persistent errt 
    if isempty(errt) 
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        errt = []; 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Parameters to estimate 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables : 
% [Qw Tw Dist alpha gamma c]; 
if ~isfield(images,'desactivated_images') 
  images.desactivated_images = []; 
end 
if ~isfield(paramEst,'est_dist') 
  % Estimate distortion 
  paramEst.est_dist = [1;1;1;1;0]; 
end 
if ~isfield(paramEst,'est_alpha') 
  % By default, do not estimate skew 
  paramEst.est_alpha = 0;  
end 
if ~isfield(paramEst,'est_gammac') 
  % Set to zero if you do not want to estimate  
  % the combined focal length  
  paramEst.est_gammac = [1;1]; 
end 
if ~isfield(paramEst,'est_aspect_ratio') 
  % Aspect ratio 
  paramEst.est_aspect_ratio = 1; 
end 
if ~isfield(paramEst,'center_optim') 
  % Set this variable to 0 if your do  
  % not want to estimate the principal point 
  paramEst.center_optim = 1; 
end 
 
est_xi = paramEst.est_xi; 
est_dist = paramEst.est_dist; 
est_alpha = paramEst.est_alpha; 
est_gammac = paramEst.est_gammac; 
est_aspect_ratio = paramEst.est_aspect_ratio; 
center_optim = paramEst.center_optim; 
 
nx = images.nx; 
ny = images.ny; 
n_ima = images.n_ima; 
 
active_images = images.active_images; 
ind_active = find(images.active_images); 
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% Load variables 
xi = paramEst.xi; 
if isfield(paramEst,'kc') 
  kc = paramEst.kc; 
end 
if isfield(paramEst,'alpha_c') 
  alpha_c = paramEst.alpha_c; 
end 
if isfield(paramEst,'gammac') 
  gammac = paramEst.gammac; 
end 
if isfield(paramEst,'cc') 
  cc = paramEst.cc; 
end 
 
% A quick fix for solving conflict 
if ~isequal(est_gammac,[1;1]), 
  est_aspect_ratio=1; 
end 
if ~est_aspect_ratio, 
  est_gammac=[1;1]; 
end 
 
if est_xi 
  fprintf(1,'Xi will be estimated (est_xi = 1).\n'); 
else 
  fprintf(1,'Xi will not be estimated (est_xi = 0).\n'); 
end 
 
if ~est_aspect_ratio, 
    fprintf(1,'Aspect ratio not optimized (est_aspect_ratio = 0) -> gammac(1)=gammac(2). Set 
est_aspect_ratio to 1 for estimating aspect ratio.\n'); 
else 
  if isequal(est_gammac,[1;1]), 
    fprintf(1,'Aspect ratio optimized (est_aspect_ratio = 1) -> both components of gammac are 
estimated (DEFAULT).\n'); 
  end 
end 
 
if ~isequal(est_gammac,[1;1]), 
  if isequal(est_gammac,[1;0]), 
    fprintf(1,'The first component of focal (gammac(1)) is estimated, but not the second one 
(est_gammac=[1;0])\n'); 
  else 
    if isequal(est_gammac,[0;1]), 
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      fprintf(1,'The second component of focal (gammac(1)) is estimated, but not the first one 
(est_gammac=[0;1])\n'); 
    else 
      fprintf(1,'The focal vector gammac is not optimized (est_gammac=[0;0])\n'); 
    end 
  end 
end 
 
if ~center_optim, % In the case where the principal point is not estimated, keep it at the center of 
the image 
  fprintf(1,'Principal point not optimized (center_optim=0). '); 
  if ~exist('cc'), 
    fprintf(1,'It is kept at the center of the image.\n'); 
    cc = [(nx-1)/2;(ny-1)/2]; 
  else 
    fprintf(1,'Note: to set it in the middle of the image, clear variable cc, and run calibration 
again.\n'); 
  end 
else 
    fprintf(1,'Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, 
set center_optim=0\n'); 
end 
 
if ~center_optim & (est_alpha), 
  fprintf(1,'WARNING: Since there is no principal point estimation (center_optim=0), no skew 
estimation (est_alpha = 0)\n'); 
  est_alpha = 0;   
end 
 
if ~est_alpha, 
  fprintf(1,'Skew not optimized (est_alpha=0) - (DEFAULT)\n'); 
  alpha_c = 0; 
else 
  fprintf(1,'Skew optimized (est_alpha=1). To disable skew estimation, set est_alpha=0.\n'); 
end 
 
if ~prod(double(est_dist))&exist('kc') 
  % If no distortion estimated, set to  
  % zero the variables that are not estimated 
  kc = kc .* est_dist; 
end 
 
if ~prod(double(est_gammac)), 
  fprintf(1,'Warning: The focal length is not fully estimated (est_gammac ~= [1;1])\n'); 
end 
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% Put the initial estimates in param 
if exist('gammac') 
  if ~est_aspect_ratio 
    gammac(1) = (gammac(1)+gammac(2))/2; 
    gammac(2) = gammac(1); 
  end 
  XI = [xi;kc;alpha_c;gammac;cc]; 
else 
  gammac = [gen_KK_est(1,1);gen_KK_est(2,2)]; 
  cc = [gen_KK_est(1:2,3)]; 
  if ~est_aspect_ratio 
    gammac(1) = (gammac(1)+gammac(2))/2; 
    gammac(2) = gammac(1); 
  end 
  % Initialise the distortions with 0 and the other values with 
  % the estimation using the mirror border 
  XI = [xi;zeros(5,1);0;gammac;cc]; 
end 
 
%XI 
 
param = [XI;zeros(7*n_ima,1)]; 
 
for kk = ind_active 
  if isempty(paramEst.Qw{kk}) 
    fprintf(1,'Extrinsic parameters at frame %d do not exist\n',kk); 
    return 
  end 
  param(11+7*(kk-1) + 1:11+7*(kk-1) + 7) = [paramEst.Qw{kk};paramEst.Tw{kk}]; 
end 
 
%-------------------- Main Optimization: 
 
fprintf(1,['\nMain calibration optimization procedure - Number of' ... 
    ' images : %d\n'], length(ind_active)); 
 
fprintf(1,'Gradient descent iterations : '); 
 
xi = XI(1); 
gammac = XI(8:9); 
cc = XI(10:11); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Optimisation settings %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iter = 0; 
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cond_thresh = 1e-30; 
 
VERS = version; 
VERS =  VERS(1); 
 
if(VERS=='7') 
  disp(['WARNING: removing singular matrix warning and managing it' ... 
 ' internally.']) 
  warning('off','MATLAB:nearlySingularMatrix') 
end 
   
emax1 = 1e-10; 
 
taux = minInfo.taux; 
nu = minInfo.nu; 
MaxIterBiased = minInfo.MaxIterBiased; 
recompute_extrinsic_biased = minInfo.recompute_extrinsic_biased; 
freqRecompExtrBiased = minInfo.freqRecompExtrBiased; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
% The following vector helps to select the  
% variables to update (for only active images): 
selected_variables = [est_xi;est_dist;est_alpha;est_gammac;center_optim*ones(2,1);... 
      reshape(ones(7,1)*active_images,7*n_ima,1)]; 
 
if ~est_aspect_ratio 
  if isequal(est_gammac,[1;1]) | isequal(est_gammac,[1;0]) 
    selected_variables(9) = 0; 
  end 
end 
 
ind_Jac = find(selected_variables)'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
 
[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
%JJ2_inv_old = inv(JJ3); 
%JJ2_inv_old = pinv(JJ3); 
 
mu = taux*max(max(JJ3)); 
found=(max(abs(ex3))<emax1); 
 
do_recomp = 1; 
 
while ~found&(iter<MaxIterBiased) 
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  fprintf(1,'%d...',iter+1); 
   
  if (mu==Inf)|(mu==NaN) 
    mu = 1; 
  end 
  JJ3 = JJ3+mu*eye(size(JJ3,1)); 
 
%  if rcond(JJ3)<cond_thresh 
%    disp('Matrix badly conditionned, stopping...') 
%    break 
% end 
 
  if ~est_aspect_ratio & isequal(est_gammac,[1;1]), 
    param(9) = param(8); 
  end 
  
  %size(JJ3) 
  JJ3_old = JJ3; 
  ex3_old = ex3; 
   
  JJ3 = JJ3(ind_Jac,ind_Jac); 
  ex3 = ex3(ind_Jac); 
   
  %hlm = -inv(JJ3)*ex3; 
  hlm = -pinv(JJ3)*ex3; 
   
  param_old = param; 
   
  param(ind_Jac) = param(ind_Jac)+hlm; 
  sfxp1 = buildValue_s(n_ima, gridInfo, param, ind_active); 
  sFx = norm(sfx)^2; 
  sFxp1 = norm(sfxp1)^2; 
   
  quote = (sFx-sFxp1)/(0.5*hlm'*(mu*hlm-ex3)); 
   
  if quote>0 
    [sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
    found=max(abs(ex3))<emax1; 
    mu=mu*max(1/3,1-(2*quote-1)^3); 
    nu=2;  
    do_recomp = 1; 
  else 
    JJ3 = JJ3_old; 
    ex3 = ex3_old; 
    param = param_old; 
    mu=mu*nu; 
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    nu=2*nu; 
  end 
       
  %% Second step: (optional) - It makes convergence faster, and the region of convergence 
LARGER!!! 
  %% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful 
sometimes) 
  %% The complete gradient descent method is useful to precisely update the intrinsic 
parameters. 
   
  if recompute_extrinsic&(mod(iter+1,freqRecompExtrBiased)==0) %==0,   
    if do_recomp 
      do_recomp = 0; 
      fprintf(1,'(r) '); 
 
      for kk = ind_active 
          
 Qw_current = param(11+7*(kk-1) + 1:11+7*(kk-1) + 4); 
 Tw_current = param(11+7*(kk-1) + 5:11+7*(kk-1) + 7); 
  
 xp = omniCamProjection_s(cell2mat(gridInfo.X{kk}),... 
          [Qw_current; Tw_current;param(1:11)]); 
  
 error_init = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
 
 [Qw_new,Tw_new,error,k] = fastOmniPnP(cell2mat(gridInfo.X{kk}), 
cell2mat(gridInfo.x{kk}),... 
           [Qw_current;Tw_current;param(1:11)]); 
  
 %error 
 xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
 error_new = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
  
    if check_cond 
   if error_new/error_init>5 
     active_images(kk) = 0; 
     fprintf(1,'\nWarning: View #%d is causing problems. This image is now set inactive. 
(note: to disactivate this option, set check_cond=0)\n',kk); 
%     deactivated_images = [deactivated_images kk]; 
     Qw_new = NaN*ones(4,1); 
     Tw_new = NaN*ones(3,1);  
     images.active_images = active_images; 
   end 
 end 
 param(11+7*(kk-1) + 1:11+7*(kk-1) + 4) = Qw_new; 
 param(11+7*(kk-1) + 5:11+7*(kk-1) + 7) = Tw_new; 
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      end 
    end 
    jj= iter; 
    errf(jj)= error_new; 
     
  end 
 
  iter = iter + 1;    
     
end 
 
fprintf(1,'done\n'); 
 
%%%--------------------------- Computation of the error of estimation: 
 
fprintf(1,'Estimation of uncertainties...'); 
 
%check_active_images; 
 
solution = param; 
 
% Extraction of the parameters for computing the right reprojection error: 
paramEst.xi = solution(1); 
paramEst.kc = solution(2:6); 
paramEst.alpha_c = solution(7); 
paramEst.gammac = solution(8:9); 
paramEst.cc = solution(10:11); 
 
for kk = ind_active 
  %1:length(ind_active) 
  %index = ind_active(kk); 
 
  paramEst.Qw{kk} = solution(11+7*(kk-1) + 1: 11+7*(kk-1) + 4); 
  paramEst.Tw{kk} = solution(11+7*(kk-1) + 5: 11+7*(kk-1) + 7); 
   
end 
 
% Recompute the error (in the vector ex): 
[err_mean_abs,err_std_abs,err_std,paramEst] = ... 
    comp_omni_error_s(images,gen_KK_est,paramEst,gridInfo); 
%comp_omni_sphere_error; 
 
[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
JJ3 = JJ3(ind_Jac,ind_Jac); 
JJ3 = 0.001*isnan(JJ3); 
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sigma_x = std(sfx(:)); 
 
%param_error = 3*sqrt(full(diag(inv(JJ3))))*sigma_x; 
param_error = 3*sqrt(full(diag(pinv(JJ3))))*sigma_x; 
 
index_val = 1; 
 
paramEst.xi_error = NaN; 
paramEst.kc_error = NaN*ones(5,1); 
paramEst.alpha_c_error = NaN; 
paramEst.gammac_error = NaN*ones(2,1); 
paramEst.cc_error = NaN*ones(2,1); 
 
if est_xi 
  paramEst.xi_error = param_error(1); 
  index_val = index_val+1; 
end 
 
for i=1:5 
  if est_dist(i) 
    paramEst.kc_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
if est_alpha 
  paramEst.alpha_c_error = param_error(index_val); 
  index_val = index_val + 1; 
end 
for i=1:2 
  if est_gammac(i) 
    paramEst.gammac_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
 
if center_optim 
  paramEst.cc_error = param_error(index_val:index_val+1); 
  index_val = index_val + 2; 
end 
 
% fprintf(1,'\n Average reprojection error computed for each chessboard [pixels]:\n\n'); 
%  
xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
%   
stt = (mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
  err =(mean(stt)); 
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    stderr = std(stt); 
%      
% for i=1:images.n_ima 
%    fprintf(' %3.4f ± %3.4f\n',err(i),stderr(i)); 
% end 
% n_ima = images.n_ima; 
%  
% avg_er = mean(err(:)); 
% avg_err = ones(size(ima_proc))* avg_er; 
%  
% figure (2) 
% plot(ima_proc, err(:), 'rd--'); 
% hold on 
% plot(ima_proc, avg_err, 'k.-'); 
%  
errt = [errt err]; 
figure (3); hold on; plot(errt); 
 
  % Initialise the distortions with 0 and the other values with 
  % the estimation using the mirror border 
  XI = [xi;zeros(5,1);0;gammac;cc]; 
 
%XI 
 
%param = [XI;zeros(7*n_ima,1)]; 
 
% for kk == ind_active 
%   if isempty(paramEst.Qw{kk}) 
%     fprintf(1,'Extrinsic parameters at frame %d do not exist\n',kk); 
%     return 
%   end 
%   param(11+7*(kk-1) + 1:11+7*(kk-1) + 7) = [paramEst.Qw{kk};paramEst.Tw{kk}]; 
% end 
 
%-------------------- Main Optimization: 
 
fprintf(1,['\nMain calibration optimization procedure - Number of' ... 
    ' images : %d\n'], length(ind_active)); 
 
fprintf(1,'Gradient descent iterations : '); 
 
xi = XI(1); 
gammac = XI(8:9); 
cc = XI(10:11); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% Optimisation settings %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iter = 0; 
cond_thresh = 1e-30; 
 
VERS = version; 
VERS =  VERS(1); 
 
if(VERS=='7') 
  disp(['WARNING: removing singular matrix warning and managing it' ... 
 ' internally.']) 
  warning('off','MATLAB:nearlySingularMatrix') 
end 
   
emax1 = 1e-10; 
 
taux = minInfo.taux; 
nu = minInfo.nu; 
MaxIterBiased = minInfo.MaxIterBiased; 
recompute_extrinsic_biased = minInfo.recompute_extrinsic_biased; 
freqRecompExtrBiased = minInfo.freqRecompExtrBiased; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
% The following vector helps to select the  
% variables to update (for only active images): 
selected_variables = [est_xi;est_dist;est_alpha;est_gammac;center_optim*ones(2,1);... 
      reshape(ones(7,1)*active_images,7*n_ima,1)]; 
 
if ~est_aspect_ratio 
  if isequal(est_gammac,[1;1]) | isequal(est_gammac,[1;0]) 
    selected_variables(9) = 0; 
  end 
end 
 
ind_Jac = find(selected_variables)'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
 
[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
%JJ2_inv_old = inv(JJ3); 
%JJ2_inv_old = pinv(JJ3); 
 
mu = taux*max(max(JJ3)); 
found=(max(abs(ex3))<emax1); 
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do_recomp = 1; 
 
while ~found&(iter<MaxIterBiased) 
  fprintf(1,'%d...',iter+1); 
   
  if (mu==Inf)|(mu==NaN) 
    mu = 1; 
  end 
  JJ3 = JJ3+mu*eye(size(JJ3,1)); 
 
%  if rcond(JJ3)<cond_thresh 
%    disp('Matrix badly conditionned, stopping...') 
%    break 
% end 
 
  if ~est_aspect_ratio & isequal(est_gammac,[1;1]), 
    param(9) = param(8); 
  end 
 
   %size(JJ3) 
  JJ3_old = JJ3; 
  ex3_old = ex3; 
   
  JJ3 = JJ3(ind_Jac,ind_Jac); 
  ex3 = ex3(ind_Jac); 
   
  %hlm = -inv(JJ3)*ex3; 
  hlm = -pinv(JJ3)*ex3; 
   
  param_old = param; 
   
  param(ind_Jac) = param(ind_Jac)+hlm; 
  sfxp1 = buildValue_s(n_ima, gridInfo, param, ind_active); 
  sFx = norm(sfx)^2; 
  sFxp1 = norm(sfxp1)^2; 
   
  quote = (sFx-sFxp1)/(0.5*hlm'*(mu*hlm-ex3)); 
   
  if quote>0 
    [sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
    found=max(abs(ex3))<emax1; 
    mu=mu*max(1/3,1-(2*quote-1)^3); 
    nu=2;  
    do_recomp = 1; 
  else 
    JJ3 = JJ3_old; 
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    ex3 = ex3_old; 
    param = param_old; 
    mu=mu*nu; 
    nu=2*nu; 
  end 
       
  %% Second step: (optional) - It makes convergence faster, and the region of convergence 
LARGER!!! 
  %% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful 
sometimes) 
  %% The complete gradient descent method is useful to precisely update the intrinsic 
parameters. 
   
  if recompute_extrinsic&(mod(iter+1,freqRecompExtrBiased)==0) %==0,   
    if do_recomp 
      do_recomp = 0; 
      fprintf(1,'(r) '); 
 
      for kk = ind_active 
          
 Qw_current = param(11+7*(kk-1) + 1:11+7*(kk-1) + 4); 
 Tw_current = param(11+7*(kk-1) + 5:11+7*(kk-1) + 7); 
  
 xp = omniCamProjection_s(cell2mat(gridInfo.X{kk}),... 
          [Qw_current; Tw_current;param(1:11)]); 
  
 error_init = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
 
 [Qw_new,Tw_new,error,k] = fastOmniPnP(cell2mat(gridInfo.X{kk}), 
cell2mat(gridInfo.x{kk}),... 
           [Qw_current;Tw_current;param(1:11)]); 
  
 %error 
 xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
 error_new = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
  
    if check_cond 
   if error_new/error_init>5 
     active_images(kk) = 0; 
     fprintf(1,'\nWarning: View #%d is causing problems. This image is now set inactive. 
(note: to disactivate this option, set check_cond=0)\n',kk); 
%     deactivated_images = [deactivated_images kk]; 
     Qw_new = NaN*ones(4,1); 
     Tw_new = NaN*ones(3,1);  
     images.active_images = active_images; 
   end 
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 end 
 param(11+7*(kk-1) + 1:11+7*(kk-1) + 4) = Qw_new; 
 param(11+7*(kk-1) + 5:11+7*(kk-1) + 7) = Tw_new; 
      end 
    end 
    jj= iter; 
    errf(jj)= error_new; 
     
  end 
 
  iter = iter + 1;      
   
end 
 
fprintf(1,'done\n'); 
 
%%%--------------------------- Computation of the error of estimation: 
 
fprintf(1,'Estimation of uncertainties...'); 
 
 
%check_active_images; 
 
solution = param; 
 
% Extraction of the parameters for computing the right reprojection error: 
paramEst.xi = solution(1); 
paramEst.kc = solution(2:6); 
paramEst.alpha_c = solution(7); 
paramEst.gammac = solution(8:9); 
paramEst.cc = solution(10:11); 
 
for kk = ind_active 
  %1:length(ind_active) 
  %index = ind_active(kk); 
 
  paramEst.Qw{kk} = solution(11+7*(kk-1) + 1: 11+7*(kk-1) + 4); 
  paramEst.Tw{kk} = solution(11+7*(kk-1) + 5: 11+7*(kk-1) + 7); 
   
end 
 
% Recompute the error (in the vector ex): 
[err_mean_abs,err_std_abs,err_std,paramEst] = ... 
    comp_omni_error_s(images,gen_KK_est,paramEst,gridInfo); 
%comp_omni_sphere_error; 
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[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
JJ3 = JJ3(ind_Jac,ind_Jac); 
JJ3 = 0.001*isnan(JJ3); 
   
sigma_x = std(sfx(:)); 
 
%param_error = 3*sqrt(full(diag(inv(JJ3))))*sigma_x; 
param_error = 3*sqrt(full(diag(pinv(JJ3))))*sigma_x; 
 
index_val = 1; 
 
paramEst.xi_error = NaN; 
paramEst.kc_error = NaN*ones(5,1); 
paramEst.alpha_c_error = NaN; 
paramEst.gammac_error = NaN*ones(2,1); 
paramEst.cc_error = NaN*ones(2,1); 
 
if est_xi 
  paramEst.xi_error = param_error(1); 
  index_val = index_val+1; 
end 
 
for i=1:5 
  if est_dist(i) 
    paramEst.kc_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
if est_alpha 
  paramEst.alpha_c_error = param_error(index_val); 
  index_val = index_val + 1; 
end 
for i=1:2 
  if est_gammac(i) 
    paramEst.gammac_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
 
if center_optim 
  paramEst.cc_error = param_error(index_val:index_val+1); 
  index_val = index_val + 2; 
end 
 
%fprintf(1,'\n Average reprojection error computed for each chessboard [pixels]:\n\n'); 
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%xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
  
%stt = (mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
%     err =(mean(stt)); 
 %   stderr = std(stt); 
     
% for i=1:images.n_ima 
%    fprintf(' %3.4f ± %3.4f\n',err(i),stderr(i)); 
%end 
%n_ima = images.n_ima; 
 
%avg_er = mean(err(:)); 
%avg_err = ones(size(ima_proc))* avg_er; 
 
%figure (2) 
%plot(ima_proc, err(:), 'rd--'); 
%hold on 
%plot(ima_proc, avg_err, 'k.-'); 
%  
 
fprintf(1,'done\n'); 
 
show_intrinsic(paramEst,err_mean_abs,err_std_abs); 
 
%%% Some recommendations to the user to reject some of the difficult unkowns... Still in debug 
mode. 
 
alpha_c_min = paramEst.alpha_c - paramEst.alpha_c_error/2; 
alpha_c_max = paramEst.alpha_c + paramEst.alpha_c_error/2; 
 
if (alpha_c_min < 0) & (alpha_c_max > 0) 
  fprintf(1,'Recommendation: The skew coefficient alpha_c is found to be equal to zero (within 
its uncertainty).\n'); 
  fprintf(1,'                You may want to reject it from the optimization by setting 
paramEst.est_alpha=0 and run Calibration\n\n'); 
end 
 
kc_min = paramEst.kc - paramEst.kc_error/2; 
kc_max = paramEst.kc + paramEst.kc_error/2; 
 
prob_kc = (kc_min < 0) & (kc_max > 0); 
 
if ~(prob_kc(3) & prob_kc(4)) 
 
  % Initialise the distortions with 0 and the other values with 
  % the estimation using the mirror border 
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  XI = [xi;zeros(5,1);0;gammac;cc]; 
end 
 
%XI 
 
param = [XI;zeros(7*n_ima,1)]; 
 
for kk = ind_active 
  if isempty(paramEst.Qw{kk}) 
    fprintf(1,'Extrinsic parameters at frame %d do not exist\n',kk); 
    return 
  end 
  param(11+7*(kk-1) + 1:11+7*(kk-1) + 7) = [paramEst.Qw{kk};paramEst.Tw{kk}]; 
end 
 
%-------------------- Main Optimization: 
 
fprintf(1,['\nMain calibration optimization procedure - Number of' ... 
    ' images : %d\n'], length(ind_active)); 
 
fprintf(1,'Gradient descent iterations : '); 
 
xi = XI(1); 
gammac = XI(8:9); 
cc = XI(10:11); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Optimisation settings %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iter = 0; 
cond_thresh = 1e-30; 
 
VERS = version; 
VERS =  VERS(1); 
 
if(VERS=='7') 
  disp(['WARNING: removing singular matrix warning and managing it' ... 
 ' internally.']) 
  warning('off','MATLAB:nearlySingularMatrix') 
end 
   
emax1 = 1e-10; 
 
taux = minInfo.taux; 
nu = minInfo.nu; 
MaxIterBiased = minInfo.MaxIterBiased; 
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recompute_extrinsic_biased = minInfo.recompute_extrinsic_biased; 
freqRecompExtrBiased = minInfo.freqRecompExtrBiased; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
% The following vector helps to select the  
% variables to update (for only active images): 
selected_variables = [est_xi;est_dist;est_alpha;est_gammac;center_optim*ones(2,1);... 
      reshape(ones(7,1)*active_images,7*n_ima,1)]; 
 
if ~est_aspect_ratio 
  if isequal(est_gammac,[1;1]) | isequal(est_gammac,[1;0]) 
    selected_variables(9) = 0; 
  end 
end 
 
ind_Jac = find(selected_variables)'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
 
[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
%JJ2_inv_old = inv(JJ3); 
%JJ2_inv_old = pinv(JJ3); 
 
mu = taux*max(max(JJ3)); 
found=(max(abs(ex3))<emax1); 
 
do_recomp = 1; 
 
while ~found&(iter<MaxIterBiased) 
  fprintf(1,'%d...',iter+1); 
   
  if (mu==Inf)|(mu==NaN) 
    mu = 1; 
  end 
  JJ3 = JJ3+mu*eye(size(JJ3,1)); 
 
%  if rcond(JJ3)<cond_thresh 
%    disp('Matrix badly conditionned, stopping...') 
%    break 
% end 
 
  if ~est_aspect_ratio & isequal(est_gammac,[1;1]), 
    param(9) = param(8); 
  end 
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  %size(JJ3) 
  JJ3_old = JJ3; 
  ex3_old = ex3; 
   
  JJ3 = JJ3(ind_Jac,ind_Jac); 
  ex3 = ex3(ind_Jac); 
   
  %hlm = -inv(JJ3)*ex3; 
  hlm = -pinv(JJ3)*ex3; 
   
  param_old = param; 
   
  param(ind_Jac) = param(ind_Jac)+hlm; 
  sfxp1 = buildValue_s(n_ima, gridInfo, param, ind_active); 
  sFx = norm(sfx)^2; 
  sFxp1 = norm(sfxp1)^2; 
   
  quote = (sFx-sFxp1)/(0.5*hlm'*(mu*hlm-ex3)); 
   
  if quote>0 
    [sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
    found=max(abs(ex3))<emax1; 
    mu=mu*max(1/3,1-(2*quote-1)^3); 
    nu=2;  
    do_recomp = 1; 
  else 
    JJ3 = JJ3_old; 
    ex3 = ex3_old; 
    param = param_old; 
    mu=mu*nu; 
    nu=2*nu; 
  end 
       
  %% Second step: (optional) - It makes convergence faster, and the region of convergence 
LARGER!!! 
  %% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful 
sometimes) 
  %% The complete gradient descent method is useful to precisely update the intrinsic 
parameters. 
   
  if recompute_extrinsic&(mod(iter+1,freqRecompExtrBiased)==0) %==0,   
    if do_recomp 
      do_recomp = 0; 
      fprintf(1,'(r) '); 
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      for kk = ind_active 
          
 Qw_current = param(11+7*(kk-1) + 1:11+7*(kk-1) + 4); 
 Tw_current = param(11+7*(kk-1) + 5:11+7*(kk-1) + 7); 
  
 xp = omniCamProjection_s(cell2mat(gridInfo.X{kk}),... 
          [Qw_current; Tw_current;param(1:11)]); 
  
 error_init = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
 
 [Qw_new,Tw_new,error,k] = fastOmniPnP(cell2mat(gridInfo.X{kk}), 
cell2mat(gridInfo.x{kk}),... 
           [Qw_current;Tw_current;param(1:11)]); 
  
 %error 
 xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
 error_new = mean(mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
  
    if check_cond 
   if error_new/error_init>5 
     active_images(kk) = 0; 
     fprintf(1,'\nWarning: View #%d is causing problems. This image is now set inactive. 
(note: to disactivate this option, set check_cond=0)\n',kk); 
%     deactivated_images = [deactivated_images kk]; 
     Qw_new = NaN*ones(4,1); 
     Tw_new = NaN*ones(3,1);  
     images.active_images = active_images; 
   end 
 end 
 param(11+7*(kk-1) + 1:11+7*(kk-1) + 4) = Qw_new; 
 param(11+7*(kk-1) + 5:11+7*(kk-1) + 7) = Tw_new; 
      end 
    end 
    jj= iter; 
    errf(jj)= error_new; 
     
  end 
 
  iter = iter + 1;    
     
end 
 
fprintf(1,'done\n'); 
 
%%%--------------------------- Computation of the error of estimation: 
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fprintf(1,'Estimation of uncertainties...'); 
 
%check_active_images; 
 
solution = param; 
 
% Extraction of the parameters for computing the right reprojection error: 
paramEst.xi = solution(1); 
paramEst.kc = solution(2:6); 
paramEst.alpha_c = solution(7); 
paramEst.gammac = solution(8:9); 
paramEst.cc = solution(10:11); 
 
for kk = ind_active 
  %1:length(ind_active) 
  %index = ind_active(kk); 
 
  paramEst.Qw{kk} = solution(11+7*(kk-1) + 1: 11+7*(kk-1) + 4); 
  paramEst.Tw{kk} = solution(11+7*(kk-1) + 5: 11+7*(kk-1) + 7); 
   
end 
 
% Recompute the error (in the vector ex): 
[err_mean_abs,err_std_abs,err_std,paramEst] = ... 
    comp_omni_error_s(images,gen_KK_est,paramEst,gridInfo); 
%comp_omni_sphere_error; 
 
[sfx,ex3,JJ3] = buildJacobian_s(n_ima, gridInfo, param, ind_active); 
JJ3 = JJ3(ind_Jac,ind_Jac); 
JJ3 = 0.001*isnan(JJ3); 
   
sigma_x = std(sfx(:)); 
 
%param_error = 3*sqrt(full(diag(inv(JJ3))))*sigma_x; 
param_error = 3*sqrt(full(diag(pinv(JJ3))))*sigma_x; 
 
index_val = 1; 
 
paramEst.xi_error = NaN; 
paramEst.kc_error = NaN*ones(5,1); 
paramEst.alpha_c_error = NaN; 
paramEst.gammac_error = NaN*ones(2,1); 
paramEst.cc_error = NaN*ones(2,1); 
 
if est_xi 
  paramEst.xi_error = param_error(1); 
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  index_val = index_val+1; 
end 
 
for i=1:5 
  if est_dist(i) 
    paramEst.kc_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
if est_alpha 
  paramEst.alpha_c_error = param_error(index_val); 
  index_val = index_val + 1; 
end 
for i=1:2 
  if est_gammac(i) 
    paramEst.gammac_error(i) = param_error(index_val); 
    index_val = index_val + 1; 
  end 
end 
 
if center_optim 
  paramEst.cc_error = param_error(index_val:index_val+1); 
  index_val = index_val + 2; 
end 
 
%fprintf(1,'\n Average reprojection error computed for each chessboard [pixels]:\n\n'); 
 
%xp = omniCamProjection(cell2mat(gridInfo.X{kk}),[Qw_new;Tw_new;param(1:11)]); 
  
%stt = (mean(abs(xp-cell2mat(gridInfo.x{kk})),2)); 
%     err =(mean(stt)); 
 %   stderr = std(stt); 
     
% for i=1:images.n_ima 
%    fprintf(' %3.4f ± %3.4f\n',err(i),stderr(i)); 
%end 
%n_ima = images.n_ima; 
 
%avg_er = mean(err(:)); 
%avg_err = ones(size(ima_proc))* avg_er; 
 
%figure (2) 
%plot(ima_proc, err(:), 'rd--'); 
%hold on 
%plot(ima_proc, avg_err, 'k.-'); 
%  
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fprintf(1,'done\n'); 
 
show_intrinsic(paramEst,err_mean_abs,err_std_abs); 
 
%%% Some recommendations to the user to reject some of the difficult unkowns... Still in debug 
mode. 
 
alpha_c_min = paramEst.alpha_c - paramEst.alpha_c_error/2; 
alpha_c_max = paramEst.alpha_c + paramEst.alpha_c_error/2; 
 
if (alpha_c_min < 0) & (alpha_c_max > 0) 
  fprintf(1,'Recommendation: The skew coefficient alpha_c is found to be equal to zero (within 
its uncertainty).\n'); 
  fprintf(1,'                You may want to reject it from the optimization by setting 
paramEst.est_alpha=0 and run Calibration\n\n'); 
end 
 
kc_min = paramEst.kc - paramEst.kc_error/2; 
kc_max = paramEst.kc + paramEst.kc_error/2; 
 
prob_kc = (kc_min < 0) & (kc_max > 0); 
 
if ~(prob_kc(3) & prob_kc(4)) 
fprintf(1,'done\n'); 
end 
show_intrinsic(paramEst,err_mean_abs,err_std_abs); 
 
%%% Some recommendations to the user to reject some of the difficult unkowns... Still in debug 
mode. 
 
alpha_c_min = paramEst.alpha_c - paramEst.alpha_c_error/2; 
alpha_c_max = paramEst.alpha_c + paramEst.alpha_c_error/2; 
 
if (alpha_c_min < 0) & (alpha_c_max > 0) 
  fprintf(1,'Recommendation: The skew coefficient alpha_c is found to be equal to zero (within 
its uncertainty).\n'); 
  fprintf(1,'                You may want to reject it from the optimization by setting 
paramEst.est_alpha=0 and run Calibration\n\n'); 
end 
 
kc_min = paramEst.kc - paramEst.kc_error/2; 
kc_max = paramEst.kc + paramEst.kc_error/2; 
 
prob_kc = (kc_min < 0) & (kc_max > 0); 
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if ~(prob_kc(3) & prob_kc(4)) 
  prob_kc(3:4) = [0;0]; 
end 
 
if sum(prob_kc), 
  fprintf(1,'Recommendation: Some distortion coefficients are found equal to zero (within their 
uncertainties).\n'); 
  fprintf(1,'                To reject them from the optimization set 
paramEst.est_dist=[%d;%d;%d;%d;%d] and run Calibration\n\n',est_dist & ~prob_kc); 
end 
 
return 
 
%function value=gain(hlm,mu,g) 
%value=1/2*hlm'*(mu*hlm-g); 
 
 

A.3 Spherical Coordinates (Spherical_s.m) 
 
function [theta phi r] = rect2sphere(X_avg,Y_avg,z,n_ima) 
% 
% Routine written by David L. Stone  
% 
%   Convert rectangular x, y, z coordinates to spherical 
%   R, theta, phi 
% 
 
r = sqrt(X_avg .^2 + Y_avg .^2); 
theta = atand(X_avg ./ Y_avg); 
phi = atand(r/z); 
 
for i = 1:n_ima 
    if X_avg(1,i)  >= 0 && Y_avg(1,i) >= 0  
        theta(1,i) = theta(1,i); 
    elseif X_avg(1,i)  > 0 && Y_avg(1,i) < 0  
        theta(1,i) = theta(1,i) + 180;  
    elseif X_avg(1,i)  < 0 && Y_avg(1,i) < 0  
        theta(1,i) = theta(1,i) + 180; 
    elseif X_avg(1,i)  < 0 && Y_avg(1,i) > 0  
        theta(1,i) = theta(1,i) + 360;     
    end 
 
end 
% Written by David Stone 4/2014 
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n_ima = images.n_ima; 
X_avg = zeros(n_ima); 
Y_avg = zeros(n_ima); 
 
%    Modified by David Stone Apr 2014 
%xc1 = 241; 
%yc1 = 324; 
 
z=1.0; 
 
x_avg = (gridInfo.x_mean - gen_KK_est(1,3)); 
y_avg = -(gridInfo.y_mean - gen_KK_est(2,3)); 
 
[theta_mean phi_mean r_mean] = rect2sphere(x_avg,y_avg,z,n_ima); 
 
if isfield(paramEst,'y') 
param_x = paramEst.y_mean(1,:); 
param_y = paramEst.y_mean(2,:); 
 
x_center = num2cell(gen_KK_est(1,3)*[ones(1,n_ima)]); 
y_center = num2cell(gen_KK_est(2,3)*[ones(1,n_ima)]);  
 
%x_center = mat2cell(x_center_tmp, 1, n_ima); 
%y_center = mat2cell(y_center_tmp, 1, n_ima); 
 
end 
 
x_avg_dsc = cellfun(@minus, param_x,x_center ); 
y_avg_dsc = -cellfun(@minus, param_y,y_center ); 
 
[theta_dsc phi_dsc r_dsc] = rect2sphere(x_avg_dsc,y_avg_dsc,z,n_ima); 
%r = 0.37 .*r; 
 
%x_avg_mei = cellfun(@minus, param_x_mean,x_center ); 
%y_avg_mei = -cellfun(@minus, param_y_mean,y_center ); 
 
%[theta_mei phi_mei r_mei] = rect2sphere(x_avg_mei,y_avg_mei,z,n_ima); 
%r = 0.37 .*r; 
 
%[theta_abs phi_abs r_abs] = rect2sphere(X_abs_avg,Y_abs_avg,z,n_ima); 
%r_abs = 0.37 .*r_abs; 
 
cal_data_out; 
 
yes_ready = input('are you ready? [] yes, other no '); 
if isempty(yes_ready); 
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    readmeasured; 
else 
end 
 

A.4 Multi-objective Optimization () 
 
function f = simple_multiobj2(x,a,b,c) 
x = x(:); a = a(:); b = b(:); c = c(:); % all column vectors 
f(1) = sqrt(1+norm(x-a)^2); 
f(2) = 0.5*sqrt(1+norm(x-b)^2) + 2; 
f(3) = 0.25*sqrt(1+norm(x-c)^2) - 4; 
 
%Then run this: 
 
a = zeros(2,1); 
b = [2;1]; 
c = [3;-.5]; 
fun = @(u)simple_multiobj2(u,a,b,c); 
[x,f,ef] = gamultiobj(fun,2) 
scatter3(f(:,1),f(:,2),f(:,3),'k.'); 
 
%how to use the scatteredinterpolant  
 
F = scatteredInterpolant(f(:,1),f(:,2),f(:,3),'linear','none'); 
sgr = min(f(:,1)):.01:max(f(:,1)); 
ygr = min(f(:,2)):.01:max(f(:,2)); 
[XX,YY] = meshgrid(sgr,ygr); 
ZZ = F(XX,YY); 
surf(XX,YY,ZZ,'LineStyle','none') 

A.5 Compute Omnidirectional Error (comp_omni_error_s.m) 
 

% This program is free software; you can redistribute it and/or 
% modify it under the terms of the GNU General Public License 
% as published by the Free Software Foundation, version 2. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. 
% 
% You should have received a copy of the GNU General Public License 
% along with this program; if not, write to the Free Software Foundation, 
% Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. 
% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%   Recomputes the reprojection error         % 
%      (based on version by JYB)              % 
%                                             % 
%   Created : 2005 (mod 11/03/06)             % 
%    Author : Christopher Mei                 % 
%    Modified by David Stone April 2014       % 
%                                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
 
% Input :  
%   see "click_calib.m" 
% 
% Output : 
%   err_mean_abs : mean absolute error 
%   err_std_abs : absolute standard deviation 
%   err_std : standard deviation 
% 
 
function [err_mean_abs,err_std_abs,err_std,paramEst] = 
comp_omni_error_s(images,gen_KK_est,paramEst,gridInfo) 
 
% Reproject the patterns on the images, and compute the pixel errors: 
ex = []; % Global error vector 
 
if ~isfield(paramEst,'gammac') 
  XI=[paramEst.xi;zeros(5,1);0;... 
      gen_KK_est(1,1);gen_KK_est(2,2); ... 
      gen_KK_est(1,3);gen_KK_est(2,3)]; 
else 
  XI=[paramEst.xi;paramEst.kc;paramEst.alpha_c;... 
      paramEst.gammac;paramEst.cc]; 
end 
 
active_images = images.active_images; 
ind_active = find(active_images); 
 
%for kk = 1:length(ind_active) 
%  index = ind_active(kk); 
 
%  if active_images(kk) & size(paramEst.Qw,2)>=kk & ~isempty(gridInfo.X{index}) 
for index=ind_active 
  V = [paramEst.Qw{index};paramEst.Tw{index};XI]; 
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  xp = omniCamProjection_s(gridInfo.X{index}, V); 
     
  part_ex = xp-cell2mat(gridInfo.x{index}); 
     
  paramEst.y{index} = xp; 
  paramEst.y_mean{1,index} = mean(xp(1,:)); 
  paramEst.y_mean{2,index} = mean(xp(2,:)); 
  paramEst.ex{index} = part_ex; 
         
  ex=[ex part_ex]; 
end 
%  end 
 

A.6 Analyse Error (analyse_err_s.m) 
 
% Modified version of 'analyse_error' from JYB 
% Modified by Dave Stone 
% The errors in X and Y of the pixel projections are plotted 
% to identify incorrect extractions. 
% 
% Using arrays and no longer X_i, x_i, ... values 
% 
 
function analyse_error_s(images,gridInfo,paramEst) 
 
biased_calib = 1; 
 
if ~isfield(paramEst,'gammac') 
  fprintf(1,'You should start by calibrating the sensor.'); 
  return 
end 
 
n_ima = images.n_ima; 
ex = paramEst.ex; 
y = paramEst.y; 
active_images = images.active_images; 
 
if n_ima ~=0, 
  if biased_calib 
    if ~exist('ex') 
      fprintf(1,['Need to calibrate before analysing reprojection' ... 
   ' error or load a Calib_Results.mat file.\n']); 
      return 
    end 
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  else 
    if ~exist('ex_sphere_pix_'), 
      fprintf(1,['Need to calibrate before analysing reprojection' ... 
   ' error or load a Calib_Results.mat file.\n']); 
      return 
    end 
  end 
end 
 
if ~exist('no_grid'), 
  no_grid = 0; 
end 
 
colors = 'brgkcm'; 
 
figure(5); 
 
for kk = 1:n_ima, 
  if images.active_images(kk)&exist('y')&~isempty(y{kk}) 
    if active_images(kk) & ~isnan(y{kk}(1,1)), 
       
      if ~no_grid, 
 XX_kk = gridInfo.X{kk}; 
 N_kk = size(XX_kk,2); 
  
 if ~isempty(gridInfo.n_sq_x{kk}) 
   no_grid = 1; 
 end 
  
 if ~no_grid 
   n_sq_x = gridInfo.n_sq_x{kk}; 
   n_sq_y = gridInfo.n_sq_y{kk}; 
   if (N_kk ~= ((n_sq_x+1)*(n_sq_y+1))), 
     no_grid = 1; 
   end 
 end 
      end 
       
      if biased_calib 
 plot(ex{kk}(1,:)',ex{kk}(2,:)',[colors(rem(kk-1,6)+1) '+'],'LineWidth',3,... 
    'MarkerSize',15); 
      else 
 plot(exsphere_pix{kk}(1,:)',exsphere_pix{kk}(2,:)', ... 
      [colors(rem(kk-1,6)+1) '+'],'LineWidth',3,... 
    'MarkerSize',15); 
      end 
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      hold on; 
    end 
  end 
end 
 
hold off; 
axis('equal'); 
if 1, %~no_grid, 
  title('Reprojection error (in pixel) - To exit: right button'); 
else 
  title('Reprojection error (in pixel)');    
end 
xlabel('Error in x (pixels)','fontsize',24,'fontweight','b'); 
ylabel('Error in y (pixels)','fontsize',24,'fontweight','b'); 
 
set(5,'color',[1 1 1]); 
set(5,'Name','error','NumberTitle','off'); 
 
ex_mat = cell2mat(ex); 
 
if n_ima == 0,   
  text(.5,.5,'No image data available','fontsize',24,'horizontalalignment' ,'center'); 
else 
  if biased_calib 
    err_std = std(ex_mat')'; 
    fprintf(1,'Pixel error:          err = [ %3.6f  ] (all active images)\n\n',err_std);  
  else 
    err_std_sphere_pix = std(ex_sphere_pix')'; 
    fprintf(1,'Pixel error:          err = [ %3.6f  ] (all active images)\n\n',err_std_sphere_pix);  
  end 
   
  b = 1; 
 
  while b==1, 
     
    [xp,yp,b] = ginput3(1); 
     
    if b==1, 
      if biased_calib 
        ddd = (ex_mat(1,:)-xp).^2 + (ex_mat(2,:)-yp).^2; 
      else 
        ddd = (ex_sphere_pix(1,:)-xp).^2 + (ex_sphere_pix(2,:)-yp).^2; 
      end 
         
      [mind,indmin] = min(ddd); 
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        done = 0; 
        kk_ima = 1; 
        while (~done)&(kk_ima<=n_ima), 
   %fprintf(1,'%d...',kk_ima); 
    
   if ~images.active_images(kk_ima) 
     kk_ima = kk_ima + 1; 
     continue; 
   end 
    
   if biased_calib 
     ex_kk = ex{kk_ima}; 
     sol_kk = find((ex_kk(1,:) == ex_mat(1,indmin))&(ex_kk(2,:) == ex_mat(2,indmin))); 
   else 
     ex_kk = exsphere_pix{kk_ima}; 
     sol_kk = find((ex_kk(1,:) == exsphere_pix(1,indmin))&(ex_kk(2,:) == 
exsphere_pix(2,indmin))); 
   end 
    
   if isempty(sol_kk), 
     kk_ima = kk_ima + 1; 
   else 
     done = 1; 
   end 
        end 
         
        xkk = gridInfo.x{kk_ima}; 
        xpt = xkk(:,sol_kk); 
         
        if ~no_grid 
             
   n_sq_x = gridInfo.n_sq_x{kk_ima}; 
   n_sq_y = gridInfo.n_sq_y{kk_ima}; 
    
   Nx = n_sq_x+1; 
   Ny = n_sq_y+1; 
             
   y1 = floor((sol_kk-1)./Nx); 
   x1 = sol_kk - 1 - Nx*y1; %rem(sol_kk-1,Nx); 
             
   y1 = (n_sq_y+1) - y1; 
   x1 = x1 + 1; 
             
   fprintf(1,'\n'); 
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   fprintf(1,'Selected image: %d\n',kk_ima); 
   fprintf(1,'Selected point index: %d\n',sol_kk); 
   fprintf(1,'Pattern coordinates (in units of (dX,dY)): (X,Y)=(%d,%d)\n',[x1-1 y1-1]); 
   fprintf(1,['Image coordinates (in pixel): (%3.2f,' ... 
       ' %3.2f)\n'],[xpt']);  
   if biased_calib 
     fprintf(1,'Pixel error = (%3.5f,%3.5f)\n',[ex_mat(1,indmin) ex_mat(2,indmin)]); 
   else 
     fprintf(1,'Pixel error = (%3.5f,%3.5f)\n', ... 
      [ex_sphere_pix(1,indmin) ex_sphere_pix(2,indmin)]); 
   end 
        else 
    
   fprintf(1,'\n'); 
   fprintf(1,'Selected image: %d\n',kk_ima); 
   fprintf(1,'Selected point index: %d\n',sol_kk); 
   fprintf(1,'Image coordinates (in pixel): (%3.2f,%3.2f)\n',[xpt']); 
    
   if biased_calib 
     fprintf(1,'Pixel error = (%3.5f,%3.5f)\n',[ex_mat(1,indmin) ex_mat(2,indmin)]); 
   else 
     fprintf(1,'Pixel error = (%3.5f,%3.5f)\n',[ex_sphere_pix(1,indmin) 
ex_sphere_pix(2,indmin)]); 
   end 
        end 
         
         
        if 
isfield(gridInfo,'wintx')&~isempty(gridInfo.wintx{kk_ima})&~isnan(gridInfo.wintx{kk_ima}) 
    
   wintx = gridInfo.wintx{kk_ima}; 
   winty = gridInfo.winty{kk_ima}; 
             
   fprintf(1,'Window size: (wintx,winty) = (%d,%d)\n',[wintx winty]); 
        end 
  
    end 
     
  end 
 
fprintf(1,'\n Average reprojection error computed for each chessboard [pixels]:\n\n'); 
 
err = sqrt(ex_mat(1,:).^2 + ex_mat(2,:).^2); 
stderr = std(err(:)); 
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for i=1:n_ima 
    fprintf(' %3.6f ± %3.6f\n',err(i),stderr); 
end 
 
avg_er = mean(err(:)); 
avg_err = ones(1,47)* avg_er; 
 
figure (6) 
plot([1:n_ima], err(:), 'gs--','LineWidth',3,... 
    'MarkerSize',15); 
hold on 
plot(1:n_ima, avg_err(:), 'k-','LineWidth',2); 
xlabel('Calibration Boards','fontsize',24,'fontweight','b'); 
ylabel('Error in Pixels','fontsize',24,'fontweight','b'); 
 
set(6,'Name','error plot','NumberTitle','off'); 
 
hold off 
 
disp('done'); 
 

 

The Chapter 3 source codes for MNDVI and TRF are as follows: 

A.7 Vegetation Detection IR Region (vegdetect_IRR.m) 
A.8 IR Region (IR_Region.m) 
A.9 Genetic Algorithm Clustering (GACluster.m) 
A.10 Clustering Cost Function (ClusteringCost2.m) 

 

A.7 Vegetation Detection IR Region (vegdetect_IRR.m) 
% 5/9/11 %% Import All Images  
% Modified by Dave Stone to add IR region growing, NDVI with blue vice red, 
% and visual / IR fusion  5/11/11 - 5/19/18  
% Also added error handling 
 
clc;    % Clear the command window. 
close all;  % Close all figures (except those of imtool.) 
imtool close all;  % Close all imtool figures. 
clear;  % Erase all existing variables. 
workspace;  % Make sure the workspace panel is showing. 
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fontSize = 14; 
 
tic 
link1='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\Veg\'; 
link2='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\IRimage\'; 
link3='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputRegion4Grow_2\'; 
link4='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\ODData\'; 
%link3='E:\VCU\Thesis\Transaction_Paper\PlantData\'; 
output1='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK\'; % 
Output NDVIR 
output2='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK2\'; % 
Output  NDVIB 
output3='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK3\'; % 
Output NDVIRB 
output4='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK4\'; % 
Output NDVIR_B 
output5='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK5\'; % 
Output PVI 
output6='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\outputODK6\'; % 
Output DVI 
%output4='E:\VCU\Thesis\Transaction_Paper\PlantData\PlantDataOut'; 
outputAnnotateB_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateB\CDF\'; 
outputAnnotateB_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateB\Hist\'; 
outputAnnotateR_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateR\CDF\'; 
outputAnnotateR_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateR\Hist\'; 
outputAnnotateRB_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateRB\CDF\'; 
outputAnnotateRB_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateRB\Hist\'; 
outputAnnotateR_B_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateR_B\CDF\'; 
outputAnnotateR_B_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateR_B\Hist\'; 
outputAnnotateP_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateP\CDF\'; 
outputAnnotateP_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateP\Hist\'; 
outputAnnotateD_CDF='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateD\CDF\'; 
outputAnnotateD_Hist='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\outputAnnotateD\Hist\'; 



172 
 

kk=0; 
% try       % Eror capture for image file not found 
%     vis = dir('link1');  
%  catch exception 
%     fprintf('image file not found') 
% end 
%      num1 = length(vis);  
% imC = cell(1, num1);  
%  
% for k = 1:num1  
%     imC{k} = imread(vis(k).name);  
%     
% end 
% try 
% infrared = dir('link2');  
% catch exception 
%     fprintf('IR image file not found') 
% end 
% try 
% num2 = length(infrared); 
% catch exception 
%     if num2 == 0  
%         fprint(' infrared index 0') 
%     end 
% end 
% irC = cell(1, num2);  
% for k = 1:num2  
%     string = ['ir/', infrared(k).name ];  
%     irC{k} = rgb2gray(imread(string));  
% end 
%  
% %% Mass Vegetation Detection  
% veg = cell(1, num1);  
% bin = cell(1, num1);  
% T = 0.5;  
% for k=1:num1 
%     [veg{k}, bin{k}] = massVeg(imC{k},irC{k},T); 
%     vegname = (['veg\veg',num2str(k),'.png']); 
%     imwrite(veg{k},vegname); 
%     binname = (['bin\bin',num2str(k),'.png']);  
%     imwrite(bin{k},binname);  
% end 
%% Vegetation Detection of One Image  
starting = 1; 
maxODim = 20; 
MNDVIArea = nan(1, maxODim); 
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trfArea = nan(1, maxODim); 
imgArea = nan(1, maxODim); 
vegGTarea = nan(1, maxODim); 
mndviFP = nan(1, maxODim); 
trfFP = nan(1, maxODim); 
 
 
TData(maxODim,4) = zeros; 
tLevel(maxODim,1) = zeros; 
% Import Images  
 
for i=starting:maxODim 
 
%im = double(imread('crouch_behind_bush.jpg'));  
%ir = double(rgb2gray(imread('ir/IRcrouch_behind_busha.png'))); 
 
% Read im and ir from veg and ir directories in Vegetation Data 
im = imread(strcat(link1,'IMin', num2str(i),'.jpg')); 
ir = imread(strcat(link2,'IRin', num2str(i),'.jpg')); 
irrg = imread(strcat(link3,'IRRG', num2str(i),'.jpg')); 
vegGT = imread(strcat(output1,'vegGT', num2str(i),'.jpg')); 
imOD = imread(strcat(link4,'IM_OD', num2str(i),'.jpg')); 
irOD = imread(strcat(link4,'IR_OD', num2str(i),'.jpg')); 
 
irrg =(rgb2gray(irrg)); 
irrg = imbinarize(irrg); 
 
% Read im and ir from OD Plant added by David L. Stone  12/11/17 
%im = imread(strcat(link3,'Dataset1\RGB_OD_vegetation', num2str(i),'.jpg')); 
%ir = imread(strcat(link3,'Dataset1\IR_OD_vegetation', num2str(i),'.jpg')); 
sizeir = size(ir); 
numrows = sizeir(1); 
numcols = sizeir(2); 
im = imresize(im,[numrows numcols]); 
 
% preallocate for speed 
 
T = 0.9;  
l = 12;  
% Write out the ir image to file 
imwrite(ir,(strcat(output2,'ir', num2str(i),'.jpg'))); 
%imwrite(ir,(strcat(output3,'ir', num2str(i),'.jpg'))); 
% Compare IR to R with vegetation index  
[biVeg] = irCompare(im,ir,T,'NDVI');  
%[biVeg] = irCompare(im,ir,T,'NDVIB');  %Added by David L. Stone 5/16/18 
% Flatten colors  
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[imFlat] = imageFlatten(uint8(im),l);  
% Select Green and Brown  
[biColor,gr,br] = colorCompare(im);  
[biColorFlat,grFlat,brFlat] = colorCompare(imFlat); 
 
% Proform morphological opperations  
[biMorph1] = morphOps(~biVeg,5,2);  
[biMorph2] = morphOps(~biColor,5,2); 
[biMorph3] = morphOps(biColorFlat,5,2);  
 
% Vegetation Highlighting  
biTotal1 = biColor | biVeg;  
biTotal2 = biColorFlat | biVeg;  
[biMorph4] = morphOps(~biTotal1,5,2);  
 
% Find Thermal Regions 
%J = IR_region(rgb3gray(ir)); 
[T1, T2, level, Iavg, thresholdvalue, binaryImage]= VThreshold(ir); 
J = irrg; 
 
%J = IR_region(ir, T1, T2); 
% Write out the threshold data 
TData(i,:) = [T1, T2, thresholdvalue, Iavg]; 
tLevel(i,:) = [level]; 
 
 
 
veg_final = and(biTotal1, J(:,:,1)); 
veg_final1 = and(biTotal1, not(J(:,:,1))); 
%veg_final = and(biTotal1, J(:,:)); 
%veg_final1 = and(biTotal1, not(J(:,:))); 
 
% Calculate the various areas 
 
imgsize = size (im); 
imgarea = imgsize(1) * imgsize(2); 
 
imgArea(i) = imgarea; 
vegGTarea(i) = nnz(imbinarize(rgb2gray(vegGT))); 
MNDVIArea(i) = nnz(biColor); 
 
trfArea(i) = nnz(veg_final);  
 
% Calculate the MNDVI false positives 
  
mndvifp = biColor -(imbinarize(rgb2gray(vegGT))); 
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if mndvifp < 0 
    mndvifp = 0; 
end 
 
mndviFP(i) = nnz(imbinarize(mndvifp)); 
 
% Calculate the MNDVI false positives 
  
trffp = veg_final -(imbinarize(rgb2gray(vegGT))); 
 
if trffp < 0 
    trffp = 0; 
end 
 
trfFP(i) = nnz(imbinarize(trffp)); 
 
% Construct identification images addid by David L. Stone 
[veg1] = vegHiglight(im,biVeg);  
[veg2] = vegHiglight(im,biColor); %MNDVI image 
[veg3] = vegHiglight(im,biColorFlat); 
[veg4] = vegHiglight(im,veg_final); %MNDVI merged with J region growing 
[veg5] = vegHiglight(im,veg_final1); 
[veg6] = vegHiglight(im,biMorph1);  
[veg7] = vegHiglight(im,biMorph2);  
[veg8] = vegHiglight(im,biMorph3);  
[veg9] = vegHiglight(im,biMorph4);  
 
% Plot the color histogram for each image added by David L. Stone 
    %Split into channels 
Red = im(:,:,1); 
Green = im(:,:,2); 
Blue = im(:,:,3); 
 
rcounts = histcounts(Red); 
rCDF = cumsum(rcounts)/sum(rcounts); 
 
gcounts = histcounts(Green); 
gCDF = cumsum(gcounts)/sum(gcounts); 
 
bcounts = histcounts(Blue); 
bCDF = cumsum(bcounts)/sum(bcounts); 
 
xrCDF = 1:1:length(rCDF); 
xgCDF = 1:1:length(gCDF); 
xbCDF = 1:1:length(bCDF); 
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%Get histValues for each channel 
[yRed, x] = imhist(Red); 
[yGreen, x] = imhist(Green); 
[yBlue, x] = imhist(Blue); 
xmax = length(x); 
maxYR = max(yRed); 
maxYG = max(yGreen); 
maxYB = max(yBlue); 
ymax = max([maxYR maxYG maxYB])+ 100; 
% Plot the full histogram 
 
nBins = 256; 
 
 
 
rHist = imhist(im(:,:,1), nBins); 
gHist = imhist(im(:,:,2), nBins); 
bHist = imhist(im(:,:,3), nBins); 
 
 
hFig1(i) = figure(kk+1); 
% plot(xrCDF, rCDF, 'Red',  xgCDF, gCDF, 'Green', xbCDF, bCDF, 'Blue'); 
% saveas(gcf, (strcat(outputAnnotateR_CDF,'CDF-Im', num2str(i),'.fig'))); 
 
% subplot(2,1,1) 
% imshow(mndvifp); 
% title('MNDVI FP'); 
%  
% subplot(2,1,2); 
% imshow(trffp); 
% title('TRF FP'); 
 
 
kk = kk + 1; 
%RGBHIST Histogram Plot yRed, 'Red', 
% hFig2(i) = figure(kk+2); 
% kk = kk + 2; 
 
% subplot(5,1,1);  
% imshow(im);  
% title('Input Image'); 
%  
% subplot(5,1,2);  
% imshow(ir);  
% title('IR Image'); 
%  
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% subplot(5,1,3);  
% imshow(veg4);  
% title('Fused Image'); 
%  
% subplot(5,1,4); 
% h(1) = area(1:nBins, bHist,  'FaceColor', 'b'); hold on;  
% h(2) = area(1:nBins, gHist,  'FaceColor', 'g'); hold on;  
% h(3) = area(1:nBins, rHist, 'FaceColor', 'r'); hold on;  
% plot( x, yBlue, 'Blue', x, yGreen, 'Green', x, yRed, 'Red');hold on; 
% axis([0 xmax 0 ymax]); 
% title('RGB image histogram'); 
%  
% subplot(5,1,5); 
% imhist(ir); 
 
% hFig2(i) = figure(kk+2); 
% kk = kk + 2; 
%  
subplot(3,2,1);  
imshow(imOD);  
title('Visual O-D Image'); 
 
subplot(3,2,2);  
imshow(irOD);  
title('IR O-D Image'); 
 
subplot(3,1,2); 
imshow(veg2); 
title('MNDVI Image'); 
 
subplot(3,1,3);  
imshow(veg4);  
title('TRF Image'); 
 
 
% Write out the original and processed images added by David L. Stone. 
imwrite(im,(strcat(output1,'IMin', num2str(i),'.jpg'))); %Orignial Image 
imwrite(ir,(strcat(output1,'IRin', num2str(i),'.jpg'))); %Orignial Image 
imwrite(veg2,(strcat(output1,'MNDVI', num2str(i),'.jpg'))); %Oribnial image with MNDVI 
overlay 
imwrite(veg4,(strcat(output1,'MNDVI+J', num2str(i),'.jpg'))); %Originalimage iwht MNDVI+J 
overlay% 
imwrite(veg5,(strcat(output1,'MNDVI+NotJ', num2str(i),'.jpg'))); %Originalimage iwht 
MNDVI+notJ overlay% 
imwrite(veg_final,(strcat(output1,'MJMask', num2str(i),'.jpg'))); %MNDVI+J Mask 
%imwrite(biColor,(strcat(output1,'vegGT', num2str(i),'.jpg'))); %ground truth 
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saveas(gcf, (strcat(outputAnnotateR_Hist,'Hist-Im', num2str(i),'.fig'))); 
 
% imwrite(im,(strcat(output3,'im', num2str(i),'.jpg'))); %Orignial Image 
% imwrite(veg2,(strcat(output3,'MNDVI', num2str(i),'.jpg'))); %Oribnial image with MNDVI 
overlay 
% imwrite(veg4,(strcat(output3,'MNDVI-J', num2str(i),'.jpg'))); %Original image iwht 
MNDVI+J overlay 
% imwrite(veg_final,(strcat(output3,'MJMask', num2str(i),'.jpg'))); %MNDVI+J Mask 
 
% Display: Can be changed to display any step of the process  
%figure(2); imshow(im); title('original image');  
%figure(3); imshow(veg2); title('MNDVI Overlay');  
%figure(4); imsnow(veg4); title('Final MNDVI Image merged with J thermal vegetation region'); 
%figure(5); imshow(veg_final); title('MNDVI Mask merged with J thermal non vegetation 
region '); 
%figure(6); imshow(veg_final1); title(' not(J) not thermal non vegetation region '); 
%figure(7); imshow(ir+J); title('IR Image + J thermal vegetation region'); 
%figure(8); imshow(ir+not(J)); title('IR Image + not(J)'); 
 
end 
% % Print out the mndvi and thermalregion areas and the image total area 
 
% xlswrite('vegDetStats.xls', imgArea, 'imgArea','B'); 
% xlswrite('vegDetStats.xls', MNDVIArea, 'MNDVIArea','C'); 
% xlswrite('vegDetStats.xls', trfArea, 'trfArea','D'); 
% xlswrite('vegDetStats.xls', mndviFP, 'mndviFP','E'); 
% xlswrite('vegDetStats.xls',trfFP,'trfFP','F'); 
fileid1 = fopen(strcat(output1, 'vegGTarea','.xls'),'w'); 
fprintf(fileid1, '%2.2f\n', vegGTarea); 
fileid2 = fopen(strcat(output1, 'MNDVIArea','.xls'),'w'); 
fprintf(fileid2, '%2.2f\n', MNDVIArea); 
fileid3 = fopen(strcat(output1, 'trfArea','.xls'),'w'); 
fprintf(fileid3, '%2.2f\n', trfArea); 
fileid4 = fopen(strcat(output1, 'imgArea','.xls'),'w'); 
fprintf(fileid4, '%2.2f\n', imgArea); 
fileid5 = fopen(strcat(output1, 'mndiFP','.xls'),'w'); 
fprintf(fileid5, '%2.2f\n', mndviFP); 
fileid6 = fopen(strcat(output1, 'trfFP','.xls'),'w'); 
fprintf(fileid6, '%2.2f\n', trfFP); 
 
 
fileid7 = fopen(strcat('thresholdData','.xls'),'w'); 
fprintf(fileid7, '%2.2f\n', TData,'TData', 'A'); 
fprintf(fileid7, '%2.2f\n', tLevel,'tLevel', 'E'); 
 
%xlswrite('thresholdData.xlsx', TData, 'TData', 'A'); 



179 
 

%xlswrite('thresholdData.xlsx', tLevel, 'TData', 'E'); 
 
 
% fileid1 = fopen(strcat(output3, 'MNDVIArea','.txt'),'w'); 
% fprintf(fileid1, '%2.2f\n', MNDVIArea); 
% fileid2 = fopen(strcat(output3, 'MNDVIJArea','.txt'),'w'); 
% fprintf(fileid2, '%2.2f\n', IRregion); 
% fileid3 = fopen(strcat(output3, 'imgArea','.txt'),'w'); 
% fprintf(fileid3, '%2.2f\n', imgArea); 
toc 
% end of section added by David L. Stone 
 
 

A.8 IR Region (IR_Region.m) 
function J = IR_region(I, T1, T2) 
% Function to find IR regions of similar temperature 
% using a seed point 
%   J = Logical output for region 
%    
%   I is the input image 
% 
%   David Stone 
% 
%   [J] = IR_region(I) 
 
% initialize variables 
%T1 = 100; 
%T2 = 150; 
thresVal = (T1 + T2)/2; 
maxDist = (T2 - T1);  
tfMean = true; 
tfFillHoles = true; 
tfSimplify = false; 
test = 0; 
v = 1; 
idx = 1; 
I = double(I); 
% let I be the image (either NxM or NxMx3): 
 
% the size: 
s = size(I); 
if length(s)==3 
   %RGB 
   I = reshape(I, s(1)*s(2), 3); 
else 
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   I = I(:); 
end 
 
[m,n] = size(I); 
% the random pixels: 
while test == 0 
    idx = randperm(m,1); 
    v = I(idx,:); % grab the value of the pixel 
 
    if and((v > T1), (v < T2)) 
        test = 1; 
    else 
        continue 
    end 
end 
% and reshape back 
I = reshape(I, s); 
 
[r,c] = ind2sub(size(I),idx); 
 
x1 = r; y1 = c; 
%x1=191; y1=181;  % Seed point in region 1  need to add thresholding to identify seed point 
%x1=102; y1=89;   % Seed point in region 2  need to add thresholding to identify seed point 
 
J = regiongrowing(I,x1,y1,30); 
 
%[P, J] = regionGrowing2(I, [r,c], thresVal, maxDist, tfMean, tfFillHoles,tfSimplify);   
 
%J2 = regiongrowing(I,x2,y2,0.2); 
 

A.9 Genetic Algorithm Clustering (GACluster.m) 
 
clc; 
clear; 
close all; 
ind=1; 
%% Problem Definition 
for ind = 1:20  % Do for twenty images 
% 
% Code to find the optimum threshold using a gynetic algorithm - Dave Stone 
% May 2018 
% 
% Read in a standard MATLAB gray scale image. 
%output_Region2Grow = 'C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\output_Region2Grow\'; 
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%output_Region3Grow = 'C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\output_Region3Grow\'; 
output_Region4Grow_2 = 'C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation 
Detection\output_Region4Grow_2\'; 
folder = 'C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\IRimage\';  
output1='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\output1\'; % 
Region 1 Output  
output2='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\output2\'; % 
Region 2 Output  
output3='C:\Users\stoneda\Documents\MATLAB\Thesis\Vegetation Detection\output3\'; % 
Region 3 Output   
baseFileName = strcat('IRin',num2str(ind),'.jpg'); % modified by David Stone 
fullFileName = fullfile(folder, baseFileName); 
% Get the full filename, with path prepended. 
fullFileName = fullfile(folder, baseFileName); 
if ~exist(fullFileName, 'file') 
 % Didn't find it there.  Check the search path for it. 
 fullFileName = baseFileName; % No path this time. 
 if ~exist(fullFileName, 'file') 
  % Still didn't find it.  Alert user. 
  errorMessage = sprintf('Error: %s does not exist.', fullFileName); 
  uiwait(warndlg(errorMessage)); 
  return; 
 end 
end 
 
% Read in the images 
ir = (imread(fullFileName)); 
img = double(imread(fullFileName)); 
[s1,s2,s3]=size(img); 
X1 = img(:,:,1);  
X2 = img(:,:,2);  
X3 = img(:,:,3);   
X = [X1(:) X2(:) X3(:)]; % [(s1*s2)x3] 
 
% Initialize variables 
 
k = 2; % no. of clusters 
outimg1 = zeros(s1,s2); 
outimg2 = zeros(s1,s2); 
outimg3 = zeros(s1,s2); 
 
% Setup the threshold parameters and call the clusteirng cost function 
 
[T1, T2, level, Iavg, thresholdvalue, binaryImage]= VThreshold(ir); 
[sigmaW, TO1, TO2] = OptimumThreshold(T1, T2, X); 
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CostFunction=@(m) ClusteringCost2(m, X, TO1, TO2, k);     % Cost Function m = [3x2] cluster 
centers 
 
% Determine the Variables Matrix Size 
 
VarSize=[k size(X,2)];  % Decision Variables Matrix Size = [k k-1] 
 
nVar=prod(VarSize);     % Number of Decision Variables = 12 
 
VarMin= repmat(min(X),1,k);      % Lower Bound of Variables [4x1] of[1x3] = [4x3] 
VarMax= repmat(max(X),1,k);      % Upper Bound of Variables [4x1] of[1x3] = [4x3] 
 
% Setting the Genetic Algorithms 
 
ga_opts = gaoptimset('display','iter'); 
 
% running the genetic algorithm with desired options 
[centers, err_ga] = ga(CostFunction, nVar,[],[],[],[],VarMin,VarMax,[],[],ga_opts); 
 
% Refine the returned values 
 
m=centers; 
 
    % Calculate Distance Matrix 
    g=reshape(m,k,k+1); % create a cluster center matrix(4(clusters) points in 3(features) dim 
plane)=[4x3] 
    d = pdist2(X, g); % create a distance matrix of each data points in input to each centers = 
[(s1*s2)x4] 
 
    % Assign Clusters and Find Closest Distances 
    [dmin, index] = min(d, [], 2); 
    % ind value gives the cluster number assigned for the input = [(s1*s2)x1] 
     
    % Sum of Within-Cluster Distance 
    WCD = sum(dmin);  
     
    z=WCD; % fitness function contain sum of each data point to their corresponding center value 
set (aim to get it minimum)     
    % z = [1 x 1]      
 
% Output the thresholded images 
outimg =reshape(index,s1,s2); 
 
% loop over the out image pixels and test for region k 
 
    for i=1:s1 
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        for j=1:s2 
            if outimg(i,j)== 1 
                outimg1(i,j)= 1; 
            elseif outimg(i,j)== 2  
                outimg2(i,j)= 1; 
%            elseif outimg(i,j)== 3  
%                outimg3(i,j)= 1; 
%            elseif outimg(i,j)== 4  
%                outimg(i,j)= 0; 
            end 
        end 
    end 
     
     
outimg1 = logical(outimg1); %region 1 Image 
outimg2 = logical(outimg2); %region 2 Image 
% outimg3 = logical(outimg3); %region 3 Image 
% outimg4 = logical(outimg3); %region 4 Image 
 
% Write out to file the thresholded image 
 
imwrite(outimg1,(strcat(output1,'irrg', num2str(ind),'.jpg'))); %write out region 1 Image 
imwrite(outimg2,(strcat(output2,'irrg', num2str(ind),'.jpg'))); %write out region 2 Image 
%imwrite(outimg3,(strcat(output3,'irrg', num2str(ind),'.jpg'))); %write out region 3 Image 
%imwrite(outimg3,(strcat(output3,'irrg', num2str(ind),'.jpg'))); %write out region 3 Image 
 
% Show the thresholded image 
 
figure;imshow(outimg1); 
figure;imshow(outimg2); 
%figure;imshow(outimg3); 
%figure;imshow(outimg3); 
 
end 
 

A.10 Clustering Cost Function (ClusteringCost2.m) 
function z = ClusteringCost2(m, X, TO1, TO2,k) 
%modified by Dave Stone May 2018 
    WCD =0.0; 
    % Calculate Distance Matrix 
    g=reshape(m,k,k+1); % create a cluster center matrix(k(clusters) points in k-1(features) dim 
plane)=[k x (k-1)] 
    d = pdist2(X, g); % create a distance matrix of each data points in input to each centers = 
[(s1*s2)xk] 
%    while (TO1 <= d <= TO2) 
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%        dw = d; 
%    end 
    % Assign Clusters and Find Closest Distances 
    [dmin, ~] = min(d, [], 2); 
    % ind value gives the cluster number assigned for the input = [(s1*s2)x1] 
     
    % Sum of Within-Cluster Distance 
    for i = 1:1:length(dmin) 
        if (TO1 <= dmin(i)) && (dmin(i) <= TO2) 
            WCD = WCD + dmin(i);  
        end 
    end 
    z=WCD; % fitness function contain sum of each data point to their corresponding center value 
set (aim to get it minimum)     
 
    % z = [1 x 1]   
end 
 
 
The Chapter 4 source codes for DeepFuseNet are as follows: 

A.11 Bottleneck Feature Extractor (veg_bottleneck.py) 
A.12 Autoencoder Feature Extractor (autoencode_feature.py) 
A.13 Vegetation Finetuneing (veg_finetune.py) 
A.14 Deep FusionNetwork (DeepFuseNet_Plants18.py) 

 

A11. Bottleneck Feature Extractor (veg_bottleneck.py) 
''' 
"image classification models using limited data" 
Bottleneck Feature Extractor 
created by David Stone Sept 2018 
In our setup, we: 
- created a plants18/ folder 
- created two sub folders /image and /IRimage each with below structure 
- created train/, validation/ and test/ subfolders inside plants18/ 
- created grass/ trees/ and vegetation subfolders inside train/ and validation/ and test/ 
- put the grass pictures index 0-1125 in image/train/grass 
- put the grass pictures index 721-1010 in image/validation/grass 
- put the trees pictures index 0-1125 in data/train/trees 
- put the trees pictures index 721-1010 in image/validation/trees 
- put the vegetation pictures index 0-720 in data/train/vegetation 
- put the vegetation pictures index 721-1010 in image/validation/vegetation 
 
So that we have 1125 training examples for each class, and 290 validation examples for each class. 
In summary, this is our directory structure: 
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``` 
plants18/ 
 images/ 
     train/ 
  trees/ 
      image001.jpg 
      image002.jpg 
      ... 
  vegetation/ 
      image001.jpg 
      image002.jpg 
      ... 
     validation/ 
  trees/ 
      image001.jpg 
      image002.jpg 
      ... 
  vegetation/ 
      image001.jpg 
      image002.jpg 
      ... 
``` 
''' 
import h5py as h5 
import numpy as np 
from keras.preprocessing.image import ImageDataGenerator 
from keras.models import Sequential 
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D 
from keras.layers import Activation, Dropout, Flatten, Dense, Input 
from keras.applications.vgg16 import VGG16 
from keras.models import model_from_json 
from keras import applications 
from keras.optimizers import RMSprop, SGD 
from keras.utils.np_utils import to_categorical 
from keras.utils import plot_model 
from keras import backend as K 
K.set_image_dim_ordering('tf') 
import matplotlib.pyplot as plt   
import math   
import cv2   
# dimensions of our images. 
img_width, img_height = 224, 224 
# path to the model weights file. 
#weights_path = 'vgg16_weights.h5' 
top_model_weights_path = 'bottleneck_fc_model.h5'   
train_data_dir = 'plants18/images/train' 
validation_data_dir = 'plants18/images/val' 
nb_train_samples = 2250 
nb_validation_samples = 690 
epochs = 50 
batch_size = 16 
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def save_bottleneck_features():    
    # build the VGG16 network 
    base_model = applications.VGG16(include_top=False, weights='imagenet') 
    print("model loaded.") 
    datagen = ImageDataGenerator(rescale=1. / 255) 
    print(base_model.summary()) 
    plot_model(base_model, show_shapes = True, to_file = 'base_veg_model.png') 
    generator = datagen.flow_from_directory( 
        train_data_dir, 
        target_size=(img_width, img_height), 
        batch_size=batch_size, 
        class_mode='categorical', 
        shuffle=False) 
    nb_train_samples = len(generator.filenames)   
    num_classes = len(generator.class_indices)      
    predict_size_train = int(math.ceil(nb_train_samples / float(batch_size)))      
    bottleneck_features_train = base_model.predict_generator(   
        generator, predict_size_train)      
    np.save('bottleneck_features_train.npy', bottleneck_features_train)   
    print("generator_train loaded.") 
    generator = datagen.flow_from_directory( 
        validation_data_dir, 
        target_size=(img_width, img_height), 
        batch_size=batch_size, 
        class_mode='categorical', 
        shuffle=False) 
    nb_validation_samples = len(generator.filenames)      
    predict_size_validation = int(math.ceil(nb_validation_samples / float(batch_size)))      
    bottleneck_features_validation = base_model.predict_generator(   
        generator, predict_size_validation)      
    np.save('bottleneck_features_validation.npy', bottleneck_features_validation)   
    print("generator_val loaded.") 
#    h5f= h5.File('veg_bottleNeck1.h5', 'w') 
#    h5f.create_dataset('bottleneck_features_train', data=bottleneck_features_train) 
#    h5f.create_dataset('bottleneck_features_validation', data=bottleneck_features_validation) 
#   h5f.close() 
def train_top_model(): 
    print("train_top_model...") 
#    h5f= h5.File('veg_bottleNeck1.h5', 'r') 
#    train_data= h5f['bottleneck_features_train'][:] 
#    train_labels= np.array([grass]*(nb_train_samples//3), [tree]*(nb_train_samples//3), 
[vegetation]*(nb_train_samples//3)) 
    # load the training data 
    datagen_top = ImageDataGenerator(rescale=1./255)   
    generator_top = datagen_top.flow_from_directory(   
            train_data_dir,   
            target_size=(img_width, img_height),   
            batch_size=batch_size,   
            class_mode='categorical',   
            shuffle=False)      
    nb_train_samples = len(generator_top.filenames)   



187 
 

    num_classes = len(generator_top.class_indices)      
    # load the bottleneck features saved earlier   
    train_data = np.load('bottleneck_features_train.npy')      
    # get the class lebels for the training data, in the original order   
    train_labels = generator_top.classes      
    # convert the training labels to categorical vectors   
    train_labels = to_categorical(train_labels, num_classes=num_classes)   
    print("loaded train data...") 
#    validation_data= h5f['bottleneck_features_validation'][:] 
#    validation_labels= np.array([grass]*(nb_validation_samples//3), [tree]*(nb_validation_samples//3), 
[vegetation]*(nb_train_samples//3)) 
#    h5f.close() 
    # load the validation data 
    generator_top = datagen_top.flow_from_directory(   
            validation_data_dir,   
            target_size=(img_width, img_height),   
            batch_size=batch_size,   
            class_mode='categorical',   
            shuffle=False)      
    nb_validation_samples = len(generator_top.filenames)      
    validation_data = np.load('bottleneck_features_validation.npy')       
    validation_labels = generator_top.classes   
    validation_labels = to_categorical(validation_labels, num_classes=num_classes)   
    print("loaded validation data...") 
#    validation_data = np.load(open('bottleneck_features_validation', 'r')) 
#    validation_labels = np.array( 
#        [0] * (nb_validation_samples // 2) + [1] * (nb_validation_samples // 2)) 
    top_model = Sequential() 
    top_model.add(Flatten(input_shape=train_data.shape[1:])) 
    top_model.add(Dense(256, activation='relu')) 
    top_model.add(Dropout(0.5)) 
    top_model.add(Dense(2, activation='softmax')) 
    # compile the model with a SGD/momentum optimizer 
    # and a very slow learning rate. 
    sgd = SGD(lr=0.00001, decay=1e-6, momentum=0.95, nesterov=True) 
    top_model.compile(loss='categorical_crossentropy', 
              optimizer=sgd, 
              metrics=['accuracy']) 
    print("compiled top_model") 
    print(top_model.summary()) 
    plot_model(top_model, show_shapes = True, to_file = 'veg_model.png') 
    history = top_model.fit(train_data, train_labels, 
              epochs=epochs, 
              batch_size=batch_size, 
              validation_data=(validation_data, validation_labels)) 
    print("fit_generator") 
    top_model.save('top_model.h5') 
    top_model.save_weights('top_model_weights.h5') 
    print("saved model and weights") 
    (eval_loss, eval_accuracy) = top_model.evaluate(   
        validation_data, validation_labels, batch_size=batch_size, verbose=1) 
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    print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))   
    print("[INFO] Loss: {}".format(eval_loss))    
    plt.figure(1)      
    # summarize history for accuracy      
    plt.subplot(211)   
    plt.plot(history.history['acc'])   
    plt.plot(history.history['val_acc'])   
    plt.title('model accuracy')   
    plt.ylabel('accuracy')   
    plt.xlabel('epoch')   
    plt.legend(['train', 'test'], loc='upper left')      
    # summarize history for loss      
    plt.subplot(212)   
    plt.plot(history.history['loss'])   
    plt.plot(history.history['val_loss'])   
    plt.title('model loss')   
    plt.ylabel('loss')   
    plt.xlabel('epoch')   
    plt.legend(['train', 'test'], loc='upper left')   
    plt.show()   
save_bottleneck_features() 
train_top_model() 
 

A12. Autoencoder Feature Extractor 
import h5py as h5 
import numpy as np 
import keras as K 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras import optimizers 
from keras.models import Sequential 
from keras.models import Model 
from keras.layers import Dropout, Flatten, Dense 
from keras.utils.np_utils import to_categorical 
from keras import backend as K 
K.set_image_dim_ordering('tf') 
from keras.utils import plot_model 
import matplotlib.pyplot as plt   
import math   
import cv2   
 
# path to the model weights files. 
weights_path = '../keras/examples/vgg16_weights.h5' 
top_model_weights_path = 'plants18/hdf5/top_model_weights.h5' 
# dimensions of our images. 
img_width, img_height = 224, 224 
 
train_data_dir = 'plants18/images/train' 
validation_data_dir = 'plants18/images/val' 
nb_train_samples = 2249 
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nb_validation_samples = 690 
epochs = 150 
batch_size = 16 
num_classes = 2 
 
# build the VGG16 network 
model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3)) 
print('Model loaded.') 
 
# build a classifier model to put on top of the convolutional model 
top_model = Sequential() 
top_model.add(Flatten(input_shape=model.output_shape[1:])) 
top_model.add(Dense(256, activation='relu')) 
top_model.add(Dropout(0.5)) 
top_model.add(Dense(2, activation='softmax')) 
 
# note that it is necessary to start with a fully-trained 
# classifier, including the top classifier, 
# in order to successfully do fine-tuning 
top_model.load_weights(top_model_weights_path) 
model = Model(inputs= model.input, outputs= top_model(model.output)) 
 
# add the model on top of the convolutional base 
 
print('Models added.') 
 
# set the first 15 layers (up to the last conv block) 
# to non-trainable (weights will not be updated) 
for layer in model.layers[:16]: 
    layer.trainable = False 
 
# compile the model with a SGD/momentum optimizer 
# and a very slow learning rate. 
model.compile(loss='categorical_crossentropy', 
              optimizer=optimizers.SGD(lr=5e-4, momentum=0.5), 
              metrics=['accuracy']) 
print("compiled model") 
 
# prepare data augmentation configuration 
train_datagen = ImageDataGenerator( 
    rescale=1. / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
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    class_mode='categorical') 
 
validation_generator = test_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='categorical') 
 
nb_validation_samples = len(validation_generator.filenames)   
    
validation_data = np.load('bottleneck_features_validation.npy')   
     
validation_labels = validation_generator.classes   
validation_labels = to_categorical(validation_labels, num_classes=num_classes)   
print("train and val generator") 
 
model.summary() 
 
# fine-tune the model 
history = model.fit_generator( 
    train_generator, 
    steps_per_epoch=nb_train_samples // batch_size, 
    epochs=epochs, 
    validation_data=validation_generator, 
    validation_steps=nb_validation_samples // batch_size, 
    verbose = 2) 
 
print("finetuned model") 
 
model.save('plants18/hdf5/veg_autoencode_model.h5') 
model.save_weights('plants18/hdf5/veg_autoencode_model_weights.h5') 
 
print("saved model and weights") 
 
#(eval_loss, eval_accuracy) = model.evaluate(   
#    history,  
#    steps=nb_validation_samples // batch_size, 
#    batch_size=16, verbose=1) 
 
#print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))   
#print("[INFO] Loss: {}".format(eval_loss))    
 
plt.figure(1)   
    
# summarize history for accuracy   
    
plt.subplot(211)   
plt.plot(history.history['acc'])   
plt.plot(history.history['val_acc'])   
plt.title('model accuracy')   
plt.ylabel('accuracy')   
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plt.xlabel('epoch')   
plt.legend(['train', 'test'], loc='upper left')   
    
# summarize history for loss   
    
plt.subplot(212)   
plt.plot(history.history['loss'])   
plt.plot(history.history['val_loss'])   
plt.title('model loss')   
plt.ylabel('loss')   
plt.xlabel('epoch')   
plt.legend(['train', 'test'], loc='upper left')   
plt.show()   
 
 
 

A.13 Vegetation Finetuning (veg_finetune.py) 
# veg_finetune.py 
import h5py as h5 
import numpy as np 
import keras 
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras import optimizers 
from keras.models import Sequential 
from keras.models import Model 
from keras.layers import Dropout, Flatten, Dense 
from keras.utils.np_utils import to_categorical 
from keras import backend as K( 
K.set_image_dim_ordering('tf') 
from keras.utils import plot_model 
import matplotlib.pyplot as plt   
import math   
import cv2   
# path to the model weights files. 
weights_path = '../keras/examples/vgg16_weights.h5' 
top_model_weights_path = 'plants18/hdf5/top_model_weights.h5' 
# dimensions of our images. 
img_width, img_height = 224, 224 
train_data_dir = 'plants18/images/train' 
validation_data_dir = 'plants18/images/val' 
nb_train_samples = 2249 
nb_validation_samples = 690 
epochs = 30 
batch_size = 32 
num_classes = 2 
# build the VGG16 network 
model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3)) 
print('Model loaded.') 
# build a classifier model to put on top of the convolutional model 
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top_model = Sequential() 
top_model.add(Flatten(input_shape=model.output_shape[1:])) 
top_model.add(Dense(256, activation='relu')) 
top_model.add(Dropout(0.5)) 
top_model.add(Dense(2, activation='softmax')) 
# note that it is necessary to start with a fully-trained 
# classifier, including the top classifier, 
# in order to successfully do fine-tuning 
top_model.load_weights(top_model_weights_path) 
model = Model(inputs= model.input, outputs= top_model(model.output)) 
# add the model on top of the convolutional base 
print('Models added.') 
# set the first 15 layers (up to the last conv block) 
# to non-trainable (weights will not be updated) 
for layer in model.layers[:16]: 
    layer.trainable = False 
# compile the model with a SGD/momentum optimizer 
# and a very slow learning rate. 
model.compile(loss='categorical_crossentropy', 
              optimizer=optimizers.SGD(lr=5e-4, momentum=0.5), 
              metrics=['accuracy']) 
print("compiled model") 
# prepare data augmentation configuration 
train_datagen = ImageDataGenerator( 
    rescale=1. / 255, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True) 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='categorical') 
validation_generator = test_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='categorical') 
nb_validation_samples = len(validation_generator.filenames)      
validation_data = np.load('bottleneck_features_validation.npy')       
validation_labels = validation_generator.classes   
validation_labels = to_categorical(validation_labels, num_classes=num_classes)   
print("train and val generator") 
model.summary() 
# fine-tune the model 
history = model.fit_generator( 
    train_generator, 
    steps_per_epoch=nb_train_samples // batch_size, 
    epochs=epochs, 
    validation_data=validation_generator, 
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    validation_steps=nb_validation_samples // batch_size, 
    verbose = 2) 
print("finetuned model") 
model.save('plants18/hdf5/veg_finetune_model.h5') 
model.save_weights('plants18/hdf5/veg_finetune_model_weights.h5') 
print("saved model and weights") 
#(eval_loss, eval_accuracy) = model.evaluate(   
#    history,  
#    steps=nb_validation_samples // batch_size, 
#    batch_size=16, verbose=1) 
#print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))   
#print("[INFO] Loss: {}".format(eval_loss))    
plt.figure(1)      
# summarize history for accuracy      
plt.subplot(211)   
plt.plot(history.history['acc'])   
plt.plot(history.history['val_acc'])   
plt.title('model accuracy')   
plt.ylabel('accuracy')   
plt.xlabel('epoch')   
plt.legend(['train', 'test'], loc='upper left')   
# summarize history for loss   
plt.subplot(212)   
plt.plot(history.history['loss'])   
plt.plot(history.history['val_loss'])   
plt.title('model loss')   
plt.ylabel('loss')   
plt.xlabel('epoch')   
plt.legend(['train', 'test'], loc='upper left')   
plt.show()  
 
 

A14. Deep Fusion Network (DeepFuseNet_plants18.py) 
 
# USAGE 
# python3 DeepFuseNet_plants18.py --dataset1 ./plants18/images --dataset2 ./plants18/IRimages --model 
./plants18/hdf5/veg_finetune_model.h5 
#   
 
# import the necessary packages 
 
from sklearn import preprocessing as prep 
from sklearn import model_selection 
from sklearn import metrics 
from sklearn.preprocessing import LabelBinarizer 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from pyimagesearch.preprocessing import ImageToArrayPreprocessor 
from pyimagesearch.preprocessing import AspectAwarePreprocessor 
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from pyimagesearch.datasets import SimpleDatasetLoader 
from pyimagesearch.nn.conv import FCHeadNet 
from imutils import paths 
import numpy as np 
import argparse 
import os 
 
import keras 
from keras.preprocessing.image import ImageDataGenerator 
from keras.optimizers import RMSprop 
from keras.optimizers import SGD 
from keras.applications import VGG16 
 
#from config import imagenet_resnet_config as config 
#from resnet101 import resnet101_model as ResNet 
from keras.models import Model 
from keras.layers import * 
from keras.layers import Flatten, Input 
from keras.layers.merge import concatenate 
from keras.layers import Add, Dense, Flatten 
from keras.layers.convolutional import Conv2D 
from keras.layers.pooling import MaxPooling2D 
from keras.backend import int_shape 
from keras.utils import plot_model 
from keras.callbacks import ModelCheckpoint 
 
import tensorflow as tf 
from keras.layers.core import Reshape 
from keras import backend as K 
K.set_image_dim_ordering('tf') 
import matplotlib.pyplot as plt   
import math 
import json   
import cv2   
from IPython.display import clear_output 
from livelossplot import PlotLossesKeras 
 
import matplotlib 
# Specifying the backend to be used before importing pyplot 
# to avoid "RuntimeError: Invalid DISPLAY variable" 
matplotlib.use('agg') 
import matplotlib.pyplot as plt 
import keras 
import numpy as np 
 
class TrainingPlot(keras.callbacks.Callback): 
          
    # This function is called when the training begins 
    def on_train_begin(self, logs={}): 
        # Initialize the lists for holding the logs, losses and accuracies 
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        self.losses = [] 
        self.acc = [] 
        self.val_losses = [] 
        self.val_acc = [] 
        self.logs = [] 
        try: 
            if first_call == True: 
                self.testdone = 0 
        except NameError: 
            self.first_call = True 
            self.testdone = 0  
 
    # This function is called when the training ends 
    def on_train_end(self, epoch): 
 
         # Make sure there exists a folder called output in the current directory 
         # or replace 'output' with whatever direcory you want to put in the plots  
         try: 
             if self.first_call == True: 
                 self.first_call = False 
                 self.testdone = 1 
         except NameError: 
             self.first_call = False 
             self.testdone = 1 
 
    # This function is called at the end of each epoch 
    def on_epoch_end(self, epoch, logs={}): 
 
        # Append the logs, losses and accuracies to the lists 
        self.logs.append(logs) 
        self.losses.append(logs.get('loss')) 
        self.acc.append(logs.get('acc')) 
        self.val_losses.append(logs.get('val_loss')) 
        self.val_acc.append(logs.get('val_acc')) 
 
 
        # Before plotting ensure at least 2 epochs have passed 
        if len(self.losses) > 1: 
 
            N = np.arange(0, len(self.losses)) 
 
            # You can chose the style of your preference 
            # print(plt.style.available) to see the available options 
            #plt.style.use("seaborn") 
 
            # Plot train loss, train acc, val loss and val acc against epochs passed 
            plt.figure() 
            plt.plot(N, self.losses, label = "train_loss") 
            plt.plot(N, self.acc, label = "train_acc") 
            plt.plot(N, self.val_losses, label = "val_loss") 
            plt.plot(N, self.val_acc, label = "val_acc") 
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            plt.title("Training Loss and Accuracy [Epoch {}]".format(epoch)) 
            plt.xlabel("Epoch #") 
            plt.ylabel("Loss/Accuracy") 
            plt.legend() 
         
            # Make sure there exists a folder called output in the current directory 
            # or replace 'output' with whatever direcory you want to put in the plots  
 
            if self.testdone == 0: 
                plt.savefig('output/Model1.png') 
                 
            if self.testdone == 1: 
                plt.savefig('output/Model2.png') 
#                plt.savefig('output/Model2_Epoch-{}.png'.format(epoch)) 
                  
# construct the argument parse and parse the arguments 
ap = argparse.ArgumentParser() 
ap.add_argument("-d1", "--dataset1", required=True, 
 help="path to input dataset1") 
ap.add_argument("-d2", "--dataset2", required=True, 
 help="path to input dataset2") 
ap.add_argument("-m", "--model", required=True, 
 help="path to output model") 
args = vars(ap.parse_args()) 
 
# construct the image generator for data augmentation 
aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1, 
 height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, 
 horizontal_flip=True, fill_mode="nearest") 
 
# grab the list of images that we'll be describing, then extract 
# the class label names from the image paths 
print("[INFO] loading images...") 
# setup image dataset 1 
imagePaths1 = list(paths.list_images(args["dataset1"])) 
classNames1 = [pt.split(os.path.sep)[-2] for pt in imagePaths1] 
classNames1 = [str(x) for x in np.unique(classNames1)] 
train_data_dir1 = 'plants18/images/train' 
val_data_dir1 = 'plants18/images/val' 
test_data_dir1 = 'plants18/images/test' 
# setup image dataset 2 
imagePaths2 = list(paths.list_images(args["dataset2"])) 
classNames2 = [pt.split(os.path.sep)[-2] for pt in imagePaths2] 
classNames2 = [str(x) for x in np.unique(classNames2)] 
train_data_dir2 = 'plants18/IRimages/train' 
val_data_dir2 = 'plants18/IRimages/val' 
test_data_dir2 = 'plants18/IRimages/test' 
# initialize the image preprocessors 
aap1 = AspectAwarePreprocessor(224, 224) 
iap1 = ImageToArrayPreprocessor() 
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# load the dataset from disk then scale the raw pixel intensities to 
# the range [0, 1] 
sdl1 = SimpleDatasetLoader(preprocessors=[aap1, iap1]) 
(data1, labels1) = sdl1.load(imagePaths1, verbose=500) 
data1 = data1.astype("float") / 255.0 
print("Data",data1,"labels",labels1) 
 
# partition the data into training and testing splits using 75% of 
# the data for training and the remaining 25% for testing 
(trainX1, testX1, trainY1, testY1) = model_selection.train_test_split(data1, labels1, 
 test_size=0.25, random_state=42) 
 
# convert the labels from integers to vectors 
trainY1 = prep.LabelBinarizer().fit_transform(trainY1) 
testY1 = prep.LabelBinarizer().fit_transform(testY1) 
 
ltrainX1 = len(trainX1) 
ltestX1 = len(testX1) 
batch_size = 64 
img_height = 224 
img_width = 224 
 
input_imgen = ImageDataGenerator(rescale = 1./255,  
                                   shear_range = 0.2,  
                                   zoom_range = 0.2, 
                                   rotation_range=5., 
                                   horizontal_flip = True) 
 
test_imgen = ImageDataGenerator(rescale = 1./255) 
 
# Here is the function that merges our two generators 
# We use the exact same generator with the same random seed for both the y and angle arrays 
def generate_generator_multiple(generator,dir1, dir2, batch_size, img_height,img_width): 
    genX1 = generator.flow_from_directory(dir1, 
                                          target_size = (img_height,img_width), 
                                          class_mode = 'categorical', 
                                          batch_size = batch_size, 
                                          shuffle=False,  
                                          seed=7) 
     
    genX2 = generator.flow_from_directory(dir2, 
                                          target_size = (img_height,img_width), 
                                          class_mode = 'categorical', 
                                          batch_size = batch_size, 
                                          shuffle=False,  
                                          seed=7) 
    while True: 
            X1i = genX1.next() 
            X2i = genX2.next() 
            yield [X1i[0], X2i[0]], X2i[1]  #Yield both images and their mutual label 
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inputgenerator=generate_generator_multiple(generator=input_imgen, 
                                           dir1=train_data_dir1,  
                                           dir2=train_data_dir2, 
                                           batch_size=batch_size, 
                                           img_height=img_height, 
                                           img_width=img_height)        
 
valgenerator=generate_generator_multiple(test_imgen, 
                                          dir1=val_data_dir1, 
                                          dir2=val_data_dir2, 
                                          batch_size=batch_size, 
                                          img_height=img_height, 
                                          img_width=img_height)  
      
testgenerator=generate_generator_multiple(test_imgen, 
                                          dir1=test_data_dir1, 
                                          dir2=test_data_dir2, 
                                          batch_size=batch_size, 
                                          img_height=img_height, 
                                          img_width=img_height)   
 
  
# load the VGG16 network, ensuring the head FC layer sets are left 
# offerror: 'rand' was not declared in this scope 
 
baseModel1 = VGG16(weights="imagenet", include_top=False, 
    input_tensor=Input(shape=(224, 224, 3))) 
 
input1 = baseModel1.input 
 
#baseModel = ResNet(weights_path ='./resnet101_weights_tf.h5')  
#include_top=False)     input_tensor = Input(shape=(224, 224, 3))) 
 
# initialize the new head of the network, a set of FC layers 
# followed by a softmax classifier 
headModel1 = FCHeadNet.build(baseModel1, len(classNames1), 256) 
 
# place the head FC model on top of the base model -- this will 
# become the actual model we will train 
model1 = Model(inputs=baseModel1.input, outputs=headModel1) 
 
# loop over all layers in the base model and freeze them so they 
# will *not* be updated during the training process 
for layer in baseModel1.layers: 
 layer.trainable = False 
 
# compile our model  
#(this needs to be done after our setting our 
# layers to being non-trainable 
print("[INFO] compiling model...") 
opt = SGD(lr=0.001, momentum=0.7, nesterov=False) 
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model1.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
 
# train the head of the network for a few epochs (all other 
# layers are frozen) -- this will allow the new FC layers to 
# start to become initialized with actual "learned" values 
# versus pure random 
print("[INFO] training head...") 
histories1 = [] 
histories1.append( 
    model1.fit_generator(aug.flow(trainX1, trainY1, batch_size=batch_size), 
    validation_data=(testX1, testY1), epochs=5, 
           callbacks = [TrainingPlot()], 
    steps_per_epoch=34, verbose=1)) 
 
#with open('plants18/json_out/file.json', 'w') as f: 
#    json.dump(hist.history, f) 
 
print("[INFO] compiling model1...") 
opt = SGD(lr=0.0001, momentum=0.7, nesterov=False) 
model1.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
 
# train the head of the network for a few epochs (all other 
# layers are frozen) -- this will allow the new FC layers to 
# start to become initialized with actual "learned" values 
# versus pure random 
print("[INFO] training head...") 
histories1 = [] 
histories1.append( 
    model1.fit_generator(aug.flow(trainX1, trainY1, batch_size=batch_size), 
    validation_data=(testX1, testY1), initial_epoch = 6, epochs=10, 
           callbacks = [TrainingPlot()], 
    steps_per_epoch=ltrainX1/64, verbose=1)) 
 
# evaluate the network after initialization 
print("[INFO] evaluating after training...") 
predictions = model1.predict(testX1, batch_size=batch_size) 
print(metrics.classification_report(testY1.argmax(axis=1), 
 predictions.argmax(axis=1), target_names=classNames1)) 
 
# now that the head FC layers have been trained/initialized, lets 
# unfreeze the final set of CONV layers and make them trainable 
for layer in baseModel1.layers[15:]: 
 layer.trainable = True 
 
# for the changes to the model to take affect we need to recompile 
# the model, this time using SGD with a *very* small learning rate 
print("[INFO] re-compiling model...") 
opt = SGD(lr=0.0001, momentum = 0.7, nesterov=False) 
model1.compile(loss="categorical_crossentropy", optimizer=opt, 
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 metrics=["accuracy"]) 
 
# train the model again, this time fine-tuning *both* the final set 
# of CONV layers along with our set of FC layers 
print("[INFO] fine-tuning model...") 
histories1 = [] 
histories1.append( 
    model1.fit_generator(aug.flow(trainX1, trainY1, batch_size=batch_size), 
 validation_data=(testX1, testY1), initial_epoch = 11, epochs=15, 
           callbacks = [TrainingPlot()], 
 steps_per_epoch=ltrainX1/64, verbose=1)) 
plt.close() 
 
# evaluate the first network on the fine-tuned model 
print("[INFO] evaluating first network after fine-tuning...") 
predictions = model1.predict(testX1, batch_size=batch_size) 
print(metrics.classification_report(testY1.argmax(axis=1), 
 predictions.argmax(axis=1), target_names=classNames1)) 
print(model1.summary()) 
 
#Plot the results 
#plt.figure(1)     
 
# summarize history for accuracy   
#plot_histories(histories1)    
 
output1 = model1.output 
#output1 = Reshape((224, 224,3)) 
#print(int_shape(output1)) 
 
################# 
 
classNames2 = classNames1 
# initialize the image preprocessors 
aap2 = AspectAwarePreprocessor(224, 224) 
iap2 = ImageToArrayPreprocessor() 
 
# load the dataset from disk then scale the raw pixel intensities to 
# the range [0, 1] 
sdl2 = SimpleDatasetLoader(preprocessors=[aap2, iap2]) 
(data2, labels2) = sdl2.load(imagePaths2, verbose=500) 
data2 = data2.astype("float") / 255.0 
print("Data",data2,"labels",labels2) 
 
# partition the data into training and testing splits using 75% of 
# the data for training and the remaining 25% for testing 
(trainX2, testX2, trainY2, testY2) = model_selection.train_test_split(data2, labels2, 
 test_size=0.25, random_state=42) 
 
# convert the labels from integers to vectors 
trainY2 = prep.LabelBinarizer().fit_transform(trainY2) 
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testY2 = prep.LabelBinarizer().fit_transform(testY2) 
 
ltrainX2 = len(trainX2) 
batch_size = 64 
img_height = 224 
img_width = 224 
#gen2 = ImageDataGenerator(horizontal_flip = True, 
#                         vertical_flip = True, 
#                         width_shift_range = 0.1, 
#                         height_shift_range = 0.1, 
#                         zoom_range = 0.1, 
#                         rotation_range = 40) 
 
# second network input 
 
#grayimg = tf.get_variable("grayimg",[224,224,3]) 
#grayimg_1 = tf.image.rgb_to_grayscale(Input(shape=(224, 224, 3))) 
#grayimg_2 = tf.image.rgb_to_grayscale(Input(shape=(224, 224, 3))) 
#grayimg_3 = tf.image.rgb_to_grayscale(Input(shape=(224, 224, 3))) 
#grayimg = tf.concat((grayimg_1, grayimg_2, grayimg_3), axis = -1) 
 
baseModel2 = VGG16(weights="imagenet", include_top=False, 
    input_tensor=Input(shape=(224, 224, 3))) 
 
for layer in baseModel2.layers: 
    layer.name = layer.name + str("_2") 
 
input2 = baseModel2.input 
output2 = baseModel2.output 
 
#baseModel = ResNet(weights_path ='./resnet101_weights_tf.h5')  
#include_top=False)     input_tensor = Input(shape=(224, 224, 3))) 
 
# initialize the new head of the network, a set of FC layers 
# followed by a softmax classifier 
headModel2 = FCHeadNet.build(baseModel2, len(classNames2), 256) 
 
# place the head FC model on top of the base model -- this will 
# become the actual model we will train 
model2 = Model(inputs=baseModel2.input, outputs=headModel2) 
 
# loop over all layers in the base model and freeze them so they 
# will *not* be updated during the training process 
for layer in baseModel2.layers: 
 layer.trainable = False 
 
# compile our model  
#(this needs to be done after our setting our 
# layers to being non-trainable 
print("[INFO] compiling model2...") 
opt = SGD(lr=0.001, momentum = 0.7, nesterov=False) 
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model2.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
 
# train the head of the network for a few epochs (all other 
# layers are frozen) -- this will allow the new FC layers to 
# start to become initialized with actual "learned" values 
# versus pure random 
print("[INFO] training head...") 
histories2 = [] 
histories2.append( 
    model2.fit_generator(aug.flow(trainX2, trainY2, batch_size=batch_size), 
    validation_data=(testX2, testY2), epochs=1, 
           callbacks = [TrainingPlot()], 
    steps_per_epoch=ltrainX1/64, verbose=1)) 
 
# compile our model  
#(this needs to be done after our setting our 
# layers to being non-trainable 
print("[INFO] compiling model2...") 
opt = SGD(lr=0.0001, momentum = 0.7, nesterov=False) 
model2.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
 
# train the head of the network for a few epochs (all other 
# layers are frozen) -- this will allow the new FC layers to 
# start to become initialized with actual "learned" values 
# versus pure random 
print("[INFO] training head...") 
 
histories2 = [] 
histories2.append( 
    model2.fit_generator(aug.flow(trainX2, trainY2, batch_size=batch_size), 
 validation_data=(testX2, testY2), initial_epoch = 2, epochs=2, 
        callbacks = [TrainingPlot()], 
 steps_per_epoch=ltrainX1/64, verbose=1)) 
 
# evaluate the network after initialization 
print("[INFO] evaluating after initialization...") 
predictions = model2.predict(testX2, batch_size=batch_size) 
print(metrics.classification_report(testY2.argmax(axis=1), 
 predictions.argmax(axis=1), target_names=classNames2)) 
 
# now that the head FC layers have been trained/initialized, lets 
# unfreeze the final set of CONV layers and make them trainable 
for layer in baseModel2.layers[15:]: 
 layer.trainable = True 
 
# for the changes to the model to take affect we need to recompile 
# the model, this time using SGD with a *very* small learning rate 
print("[INFO] re-compiling model...") 
opt = SGD(lr=0.00001, momentum = 0.7, nesterov=False) 



203 
 

 
model2.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
 
# train the model again, this time fine-tuning *both* the final set 
# of CONV layers along with our set of FC layers 
print("[INFO] fine-tuning model...") 
histories2 = [] 
histories2.append( 
model2.fit_generator(aug.flow(trainX2, trainY2, batch_size=batch_size), 
                validation_data=(testX2, testY2), initial_epoch = 3,epochs=3, 
                  callbacks = [TrainingPlot()], 
           steps_per_epoch=ltrainX1/64, verbose=1)) 
 
# evaluate the second network on the fine-tuned model 
print("[INFO] evaluating after fine-tuning second model...") 
predictions = model2.predict(testX2, batch_size=batch_size) 
print(metrics.classification_report(testY2.argmax(axis=1), 
 predictions.argmax(axis=1), target_names=classNames2)) 
plt.close() 
 
model2.get_layer(name='flatten').name='flatten_1' 
print(model2.summary()) 
 
#Plot the results 
#plt.figure(2)     
#plot_histories(histories2) 
 
output2 = model2.output 
#output2 = Reshape((224, 224,3)) 
#print(int_shape(output2)) 
 
#################################################################### 
 
#trainX1 = np.reshape(trainX1, (-1, 2217,2)) 
#trainX2 = np.reshape(trainX2, (-1, 2217,2)) 
#trainX1 = trainX1.reshape(trainX1.shape[1:]) 
#testX1 = testX1.transpose() 
#trainX2 = trainX2.reshape(trainX2.shape[1:]) 
#testX2 = testX2.transpose() 
#mergemodel = keras.layers.Add()([model1.output, model2.output]) 
mergemodel = Concatenate()([output1, output2]) 
 
print("line 1") 
#flat1 = Flatten()(mergemodel) 
 
print("line 2") 
# summarize layers 
# plot graph 
 
hidden1 = Dense(3, activation='relu')(mergemodel) 
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output = Dense(3, activation ='softmax')(hidden1) 
print("line 3") 
 
Finalmodel = Model(inputs=[input1, input2], outputs=output) 
#Finalmodel = Model(inputs=model1.inputs+model2.inputs, outputs=output) 
 
# summarize layers 
print(Finalmodel.summary()) 
# plot graph 
plot_model(Finalmodel, to_file='multiple_inputs.png') 
 
# compile our model  
#(this needs to be done after our setting our 
# layers to being non-trainable 
print("[INFO] compiling merged model...") 
 
opt = SGD(lr=0.000001,  momentum = 0.7, nesterov=False) 
Finalmodel.compile(loss="categorical_crossentropy", optimizer=opt, 
 metrics=["accuracy"]) 
print(Finalmodel.summary()) 
 
print("line 4") 
# train the head of the network for a few epochs (all other 
# layers are frozen) -- this will allow the new FC layers to 
# start to become initialized with actual "learned" values 
# versus pure random 
print("[INFO] training merged head...") 
print(classNames1) 
print(len(classNames1)) 
print(len(testX1)) 
print(len(trainX1)) 
print(len(testX2)) 
print(len(trainX2)) 
#Y=np.append(trainY1,trainY2, axis=0) 
#Ytest=np.append(testY1,testY2,axis=0) 
 
#history = Finalmodel.fit_generator(inputgenerator2, 
# validation_data=(testgenerator2), initial_epoch = 7,epochs=10, 
#        validation_steps=ltrainX2 // 64, 
#        steps_per_epoch=ltrainX2 // 64, verbose=1) 
print(trainX1[0].shape) 
print(trainX2[0].shape) 
print(trainY1[0].shape) 
print(testX1[0].shape) 
print(testX2[0].shape) 
print(testY1[0].shape) 
 
#history = Finalmodel.fit_generator([trainX1,trainX2], trainY1, 
#               initial_epoch = 4,epochs=4, 
#               callbacks = callback_tensorboard("plants18/logs/run_c"), 
#               validation_data = ([testX1,testX2], testY1)) 
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               #  use_multiprocessing=True, 
#classNames1=['tree', 'vegetation'] 
 
#history = Finalmodel.fit_generator(aug.flow([trainX1,trainX2], trainY1, batch_size=batch_size), 
#                validation_data=(testX1, testY1), initial_epoch = 3,epochs=3, 
#                  callbacks = callback_tensorboard("plants18/logs/run_b"), 
#           steps_per_epoch=ltrainX1/64, verbose=1) 
 
history=Finalmodel.fit_generator(inputgenerator, 
                        steps_per_epoch=ltrainX1/batch_size, 
                        epochs = 1, 
                        validation_data = valgenerator, 
                        validation_steps = ltestX1/batch_size, 
                        use_multiprocessing=True, 
                        shuffle=False) 
print(Finalmodel.summary()) 
 
#Plot the results 
plt.figure(3)     
    
# summarize history for accuracy   
    
plt.subplot(211)   
plt.plot(history.history['acc'])   
plt.plot(history.history['val_acc'])   
plt.title('merged model accuracy')   
plt.ylabel('accuracy')   
plt.xlabel('epoch')   
plt.legend(['train', 'val'], loc='upper left')   
    
# summarize history for loss   
    
plt.subplot(212)   
plt.plot(history.history['loss'])   
plt.plot(history.history['val_loss'])   
plt.title('merged model loss')   
plt.ylabel('loss')   
plt.xlabel('epoch')   
plt.legend(['train_loss', 'val_loss'], loc='upper left')   
#plt.show()   
plt.savefig('mergedmodel.png', bbox_inches='tight')  
print("line 5") 
 
# save the model to disk 
print("[INFO] serializing model...") 
#Finalmodel.save(args["mergemodel"]) 
Finalmodel.save('plants18/hdf5/plants18_finetune_model.h5') 
Finalmodel.save_weights('plants18/hdf5/plants18_finetune_model_weights.h5') 
 
# evaluate the merged network on the fine-tuned model 
print("[INFO] evaluating after final merge...") 
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n_classes = 3 
print("line 6") 
predictions = Finalmodel.predict([testX1,testX2], batch_size=batch_size) 
con_mat = tf.confusion_matrix(labels=['grass', 'tree', 'vegetation'], predictions=predictions, 
num_classes=n_classes, dtype=tf.int32, name=None) 
 
with tf.Session(): 
   print('Confusion Matrix: \n\n', tf.Tensor.eval(con_mat,feed_dict=None, session=None)) 
 
print(metrics.classification_report([testY1.argmax(axis=1), testY2.argmax(axis=1)], 
 predictions.argmax(axis=1), target_names=[classNames1, classNames2])) 
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