
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2019

Applying Hierarchical Tag-Topic Models to Stack Overflow Applying Hierarchical Tag-Topic Models to Stack Overflow

John J. Coogle
VCU

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5713

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5713?utm_source=scholarscompass.vcu.edu%2Fetd%2F5713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©John Coogle, February 2019

All Rights Reserved.

APPLYING HIERARCHICAL TAG-TOPIC MODELS TO STACK OVERFLOW

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science at Virginia Commonwealth University.

by

JOHN COOGLE

Bachelor of Science in Computer Science from Virginia Commonwealth University, 2017

Proposal Director: Dr. Kostadin Damevski,

Assistant Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

February, 2019

Acknowledgements

I would like to thank Dr. Kostadin Damevski for providing the initial direction

for this work, for his constant guidance throughout the work, and for his reviews and

suggestions on this work. Without these, this work would not have been possible.

I would like to thank Dr. Hui Chen for his many and varied contributions to

the research behind this work, for his great expertise, for sharing his many tools and

technologies for working with the L2H model, and for providing a server with which to

train the model. Without these, the quality of this work would have suffered greatly.

I would like to thank my family for without their support, my graduate studies

would not have been possible.

i

TABLE OF CONTENTS

Chapter Page

Acknowledgements . i

Table of Contents . ii

List of Tables . iii

List of Figures . iv

Abstract . vii

1 Introduction . 1

2 Background . 6

2.1 Question Tagging . 7
2.1.1 Prominent Tags . 8
2.1.2 Case Study of Question Tagging in Practice 11

2.2 Assisting Human Tagging . 14

3 Related Work . 16

3.1 Tag Recommendation . 18
3.1.1 Hierarchical Clustering Models 18
3.1.2 Probabilistic Topic Models . 20
3.1.3 Hierarchical Topic Models . 21

4 Methodology . 23

4.1 L2H . 23
4.1.1 Switching Probability . 25

4.2 L2H on Stack Overflow . 26
4.2.1 Preprocessing Considerations 28
4.2.2 Hyperparameter Selection . 30

4.3 Tag Synonyms . 31
4.3.1 Topic Distance . 31
4.3.2 Hierarchy Integration . 33

5 Evaluation . 36

5.1 Exploratory Search Effectiveness . 37

ii

5.1.1 Specificity and Diversity . 38
5.1.2 Experimental Results . 39

5.2 Tag Prediction . 40
5.2.1 Plausibility . 41

5.2.1.1 Concept . 41
5.2.1.2 Derivation . 43

5.2.2 Experimental Results . 44
5.3 Tag Synonym Identification . 46

5.3.1 Mathematical Constraints of Results 46
5.3.2 Influence of the Hierarchy . 48
5.3.3 ROC and Precision-Recall Curves 49
5.3.4 Optimal Thresholds . 50
5.3.5 Baseline Comparison . 51

6 Conclusion . 57

References . 60

iii

LIST OF TABLES

Table Page

1 Statistics for the top tags on Stack Overflow, with the Least Com-
mon Tag Prevalence (LCTP) and the Percentage Primary Technologies
Added (PPTA) computed. 9

2 Example results of tag synonym identification 56

iv

LIST OF FIGURES

Figure Page

1 An example of an active Stack Overflow question that demonstrates a
common successful tagging paradigm [12] 7

2 An example of an unanswered Stack Overflow question that demon-
strates some common tagging problems [13] 12

3 Graphical representation and description of L2H’s behavior, as presented
in [6] . 27

4 Specificity of concepts, i.e. Sn where n indexes a concept. The figure
only shows branches whose length is no less than 5 levels. 40

5 Average document divergence within a subset of documents selected us-
ing a concept, and average divergences and standard errors to the subset
of documents from using sibling concepts. 40

6 Tag prediction accuracy using a flat model and that using a concept
hierarchy. We consider a correct prediction when the tags of an unseen
question appears in N most significant topics/concepts/tags (or top N tags). 45

7 Tag prediction accuracy using a flat model and that using a concept
hierarchy. The accuracies shown are for top 5 tags (N=5). Each accuracy
measure is estimated for unseen questions whose length has an upper
bound of a specific length, e.g., (0− 50], (50− 100], etc. 45

8 Precision of tag synonym identification versus topic distribution distance
where the precision is defined as TP

TP+FP . 52

9 Recall of tag synonym identification versus topic distribution distance
where the recall is defined as TP

TP+FN . 52

10 F1 score of tag synonym identification versus topic distribution distance
where the F1 score is defined as 2TP

2TP+FN+FN 52

11 Topic distribution distance versus tree distance. 52

12 The Receiver Operating Characteristics (ROC) for tag-synonym identi-
fication using hierarchical model (L2H) and flat model (LLDA), respectively. 53

v

13 The Precision-Recall Characteristics (PRC) for tag-synonym identifica-
tion using hierarchical model (L2H) and flat model (LLDA), respectively. . 53

14 The F1 Scores for tag-synonym identification using hierarchical model
(L2H) and flat model (LLDA), respectively. 53

vi

Abstract

APPLYING HIERARCHICAL TAG-TOPIC MODELS TO STACK OVERFLOW

By John Coogle

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2019.

Director: Dr. Kostadin Damevski,

Assistant Professor, Department of Computer Science

Stack Overflow is a question and answer site for programming questions. It has

become one of the most widely used resources for programmers, with many programmers

accessing the site multiple times per day. A threat to the continued success of Stack

Overflow is the ability to efficiently search the site. Existing research suggests that

the inability to find certain questions results in unanswered questions, long delays in

answering questions, or questions which are unable to be found by future visitors to

the site. Further research suggests that questions with poor tag quality are particularly

vulnerable to these issues.

In this thesis, two approaches are considered for improving tag quality and search

efficiency: automatic tag recommendations for question authors, and organizing the

existing set of tags in a hierarchy from general to specific for Stack Overflow readers.

A hierarchical organization is proposed for it’s ability to assist exploratory searches of

the site.

L2H, a hierarchical tag topic model, is a particularly interesting solution to these

approaches because it can address both approaches with the same model. L2H is evalu-

ated in detail on several proposed evaluation criteria to gauge it’s fitness for addressing

vii

these search challenges on Stack Overflow.

viii

CHAPTER 1

INTRODUCTION

Modern software development is heavily reliant on the internet. In nearly any pro-

gramming task, there is some knowledge that the programmer does not have, but can

be found somewhere on the internet. Stack Overflow is a question and answer site

specifically for programming related questions and making the best answers immedi-

ately available for future viewers. In this sense, Stack Overflow can be viewed almost

like the programming equivalent to a site such as Wikipedia, where a programmer can

search for some question on Stack Overflow and find a community created answer that

often includes code related to the problem [1].

In filling this role, visits to Stack Overflow have become a vital part of everyday

programming [2]. However, the nature of Stack Overflow has posed a number of sus-

tainability challenges. Notably, the volume of questions and answers on the site makes

it difficult to search efficiently. The unique mixture of both text and code in Stack

Overflow is a challenge for common search algorithms and Natural Language Process-

ing (NLP) techniques. This is particularly problematic because if a question is hard to

find then it is both difficult for future visitors to benefit from it and difficult for experts

to contribute a meaningful answer. Thus, the ability to search the site efficiently is

vital to its overall usability.

In its current state, one of Stack Overflow’s most notable searching features is the

tag. In Stack Overflow, a tag is any user created word-or-phrase added to a question. Up

to 5 tags can be assigned to a given question, and questions that have a tag in common

are considered to share some similarity [3]. For example, two different questions that

both have the java tag are understood to both somehow involve the Java programming

language.

1

Tags are used in a variety of different ways on Stack Overflow. For example, they

can be used explicitly to filter questions with some combination of tags [4]. This could

allow an expert to easily find questions that are within their realm of expertise to

answer. Tags can also be used to complement a traditional search by narrowing it to

certain topics. Finally, tags can be used implicitly by a search algorithm to improve

the quality of results [5].

While tags are useful for searching, a major limitation is that they are entirely

human generated. If a question is tagged poorly, it becomes significantly more difficult

to find [5]. Furthermore, there is currently no way to improve a question’s tagging aside

from a person manually reviewing it and providing quality tags for the question.

Another limitation is tags can have vastly different levels of specificity. For ex-

ample, java is a very general tag that could apply to any question involving the Java

programming language. On the other hand, .htpasswd is a very specific tag, referring

to one particular file used specifically by Apache HTTP Server, and could apply to a

much narrower range of questions. This creates difficulty for someone tagging a ques-

tion: If a very specific tag like .htpasswd is used, then the question may be overlooked

by people only looking at related, but more general tags such as the apache tag which

applies to anything related to Apache HTTP Server. On the other hand, using very

general tags can make it more difficult for domain experts to find the question. Ideally,

the question would be well tagged with a mix of relevant general and specific tags, but

it is unlikely that an average Stack Overflow user will know all of the tags that are

relevant to their question. In practice, this means questions often have an incomplete

set of tags that do not fully represent the question [5].

The ideal solution would be total automatic tagging, where some algorithm can

look at any new question and automatically assign all appropriate tags correctly. In

practice, creating an algorithm that performs well enough to automatically tag posts

with sufficient accuracy is a very difficult problem. A more practical solution would be

2

using an algorithm or set of algorithms to assist human generated tagging. Specifically,

there are two key issues that should be addressed to improve human tagging:

1. Use an algorithm to recommend a set of potentially relevant tags that a human

can then manually select from. The primary role of the algorithm in this case is

not to have perfect tagging precision by itself, but rather to make human taggers

aware of other types tags that could be relevant to their question and ultimately

lead to better tag selection by the human tagger.

2. Organize tags in terms of their generality and specificity. With such an organiza-

tion, it could help a person manually find related tags that could be relevant to

their question. This could be especially useful to those who want a quick answer

to their question. They are more likely to seek out a mixture of both general and

specific tags [2] which is directly addressed by such an organization.

One possible way to address both issues is with a hierarchical tag-topic model such

as Label-to-Hierarchy, or L2H [6]. As input, L2H takes a set of text documents tagged

with some labels as training data. After training on those documents, it can then take

new text documents and predict which labels may apply to it. In theory, that could

address the first issue of recommending tags for a human tagger to use. However, L2H

has the additional benefit of creating a hierarchy of labels during training. The most

general tags are the root of the hierarchy, and more specific tags within that general

category are the children. In theory, that could address the second issue of organizing

tags by generality and specificity. Given both of these potential benefits, it is interesting

to explore L2H’s feasibility as a possible solution to both of those issues. Furthermore,

L2H was originally designed for multi-labeled documents with a potentially incomplete

set of human generated labels [6], implying L2H should be particularly suited for the

Stack Overflow dataset.

This thesis will examine the suitability of L2H for addressing these issues in Stack

3

Overflow. The focus shall be on the performance of L2H itself and its general suitability

as a candidate solution for these tagging issues. This thesis is based on work which has

been submitted in a paper for review [7]. The performance of L2H will be evaluated in

a variety of manners.

1. Does L2H produce a hierarchy organizing tags from general to specific? Metrics

will be defined to quantify specificity and generality. Those metrics will be applied

to ensure that deeper levels of the hierarchy are more specific and shallower levels

are more general.

2. How effective is the hierarchy in finding related tags from known tags? Metrics

will be defined to quantify how diverse the branches of a hierarchy are. Ideally,

sibling branches should show reasonable diversities, yet sufficient commonality. If

both this property is satisfied and the hierarchy is indeed organized from general

to specific, then the hierarchy can be considered to do an effective job of organizing

related tags near potentially known tags.

3. Does L2H predict similar tags to human chosen tags on unseen questions? L2H

will be used to predict tags for unseen Stack Overflow questions. The results will

be compared with the human created tags to ensure the tagging is similar.

4. How effective is L2H at recommending tags for human tagging? Additional met-

rics will be defined to examine whether a tag that disagrees with human tagging

is likely to be a plausible tag for the question. Producing more plausible tags will

be considered to be making more effective recommendations.

5. How effective is L2H at predicting tag synonyms? The L2H model will be used

to predict which tags are synonymous. The results will be compared with human

identified tag synonyms as a basic similarity metric to compare L2H’s under-

standing of tag meaning compared with human understanding of tag meaning.

4

Additionally, the results will be examined for how suitable L2H is for identify-

ing new tag synonyms, as well as what impact the hierarchy has on synonym

identification ability

5

CHAPTER 2

BACKGROUND

On Stack Overflow, the strongest individual factor behind unanswered questions is ques-

tion tagging [5]. In this chapter, the factors influencing tag quality are examined. From

that, various models are examined for their suitability to improve both the quality and

usage of tags with the ultimate goal of reducing the number of unanswered questions.

Stack Overflow is a community driven question and answer site specifically for

programming and software engineering. Since its inception in 2008, Stack Overflow has

grown to be one of the largest online programming resources in existence [8]. By the

nature of the question and answer format, the site is only useful to the readers if the

questions ultimately get answered. As Stack Overflow has gotten larger, an increasing

number of questions have gone unanswered, [9] which poses a potential challenge to the

long-term sustainability of the site.

Researchers have explored why questions on Stack Overflow are going unanswered

[5]. In some cases, the question is not appropriate for the site in some way and therefore

should go unanswered. However, it is much more common for a question to go unan-

swered because the asker does not pose the question effectively, such as not providing

enough details in the question for someone to answer it. The most common common

reason that a question goes unanswered is because it fails to attract an expert member

who can answer it. Furthermore, if a question doesn’t attract an expert, the most

common culprit is incorrect tagging of the question [5]. Then a logical starting point

to counteract the increasing number of unanswered question on Stack Overflow is to

improve the quality of question tagging.

6

Figure 1: An example of an active Stack Overflow question that

demonstrates a common successful tagging paradigm [12]

2.1 Question Tagging

Stack Overflow requires that a question have at least one tag, and allows a max-

imum of five tags. Most questions are somewhere in the middle, with 72 percent of

questions having between 2 and 4 tags. Active questions on Stack Overflow tend to

have a variety of tags that complement each other and relate to multiple aspects of

the question. A common tagging paradigm for active questions is one or two tags for

the most general and relevant technology for the question, and then possibly several

more specific tags detailing more specific elements relevant to that question [2]. The

question in Figure 1 is an active question that is a prime example of this paradigm. It is

tagged with java, which is a very general tag for the language in question (1.4 million

questions with the tag [3]). However, it is also tagged with the much more specific

tags of language-lawyer (4 thousand questions [3]), main (2,400 questions [3]) and

identifier (1 thousand questions [3]), which all bring emphasis to very specific, but

relevant details for the question. Other active questions also often demonstrate this

paradigm [10] [11].

In contrast, unanswered questions tend to have a variety of tags that do not nec-

7

essarily add to each other or the question. For example, a common tagging paradigm

among unanswered questions is to tag the question with each technology the asker is

using even when those technologies aren’t especially important to the question. It’s

also common for all tags in an unanswered question to be of a similar level of generality

or specificity with not much mixture. Finally, unanswered questions are often missing

some tags that are relevant to their question. An example of these types of questions

will be examined in section 2.1.2.

2.1.1 Prominent Tags

While the notion of a general tag is intuitive, it is not a well defined concept.

The concept of a prominent tag can be defined to better examine tagging behavior in

practice. A prominent tag is any tag that is more common than some threshold. For

example, one possible criteria is whether a tag is within the top N most common tags.

Prominent tags are defined as such to capture the intuition that a general tag is likely

to be common. Ideally, the threshold should be set such that an intuitively general tag

is likely to also be prominent and vice-versa. A question can then have its tags classified

as prominent or non-prominent as a well defined approximation to the intuitive notion

of general and specific tags.

A reasonable threshold must be chosen for prominent tags to be a useful concept.

As prominent tags are intended to approximate general tags, it is useful to look at the

known properties of a general tag for guidance in selecting a threshold. Specifically,

a general tag is known to be used on a large number of questions and is more likely

to be named after a specific technology (especially a primary technology, such as ios

as opposed to a specific aspect of that technology, such as uitableview, or specific

versions, such as ios-12). In contrast, specific tags tend to be used on fewer questions

and are more likely to be named after concepts rather than technology. Therefore, a

threshold can be selected by ensuring questions above the threshold are both sufficiently

8

Top X Primary Tech. Secondary Tech. Concepts LCTP PPTA

10 10 0 0 4.32% 100%

25 23 2 1 1.63% 86.7%

50 44 2 4 0.787% 84.0%

100 77 6 17 0.428% 66.0%

200 138 13 49 0.231% 61.0%

Table 1.: Statistics for the top tags on Stack Overflow, with the Least Common Tag

Prevalence (LCTP) and the Percentage Primary Technologies Added (PPTA) com-

puted.

common and sufficiently likely to be named after particular technologies.

We define two novel metrics to help further quantify this decision. For a given set

of tags, The Least Common Tag Prevalence (LCTP) is defined as the percentage of

all Stack Overflow questions that the least common tag within the set applies to. For

example, among the top 10 tags, the least common tag is ios, which is currently used

on 582,226 questions. As there are currently 13,472,769 questions on Stack Overflow,

the LCTP would then be 582,226
13,472,769 = 4.32%. Using this metric gives a sense of how

common tags are for a given threshold.

Additionally, let PT (X) be the number of tags in set X which are primary tech-

nologies, and let TT (X) be the total number of tags in set X. For two given sets of

tags, A and B, where B is a superset of A, the Percentage Primary Technologies Added

(PPTA) is defined PT (B)−PT (A)
TT (B)−TT (A) . This metric equates to what percentage of new tags in

set B are primary technology tags. Broadly, the higher the percentage in this metric,

the greater the percentage of purely general tags. Therefore, PPTA gives a sense of the

other criteria, that general tags tend to be named after specific technologies.

In Table 1, the results of several thresholds are computed. Each tag is counted as

9

either a primary technology, such as java or windows, a secondary technology, such as

uitableview or .htaccess which are components of larger primary technologies, or a

concept, such as class or sorting. Additional, both LCTP and PPTA are computed

for each threshold. PPTA is computed relative to the threshold above. For example,

the PPTA for the top 50 is relative to the top 25. For the top 10, PPTA is computed

against the empty set.

LCTP observes a power law decay with increasing tags. PPTA observes a more

irregular decay pattern with increasing tags. The drop between the top 10 and top 25

is expected, as the PPTA for the top 10 is compared against the null set. In contrast,

the drop between top 50 and top 100 is more significant because there is no a priori

reason to expect it.

Given this data, the threshold for a prominent tag is chosen as any tag within the

top 50 most common tags. Going beyond the top 50 has notable drawbacks on both

criteria. The drop off in PPTA beyond the top 50 means that a notable increase in

undesired tags are also included. By itself, that’s not necessarily undesirable as primary

technologies are still a strict majority of added tags. If going by PPTA alone, it might

be reasonable to accept this error and continue increasing the threshold until PPTA is

below 50%.

The other criteria, LCTP, suggests that increasing the threshold to that point may

not be reasonable. By definition, any tags added beyond the top 50 are used on fewer

than 0.787%, or 1 out of every 127, Stack Overflow questions. Although no strict

boundary for "uncommon" has been defined, such scarcity is nevertheless stretching the

intuition of a general tag being common.

An alternative data driven perspective is comparing to the LCTP of the top 10

tags, since the top 10 most frequent from a set of over 46,000 can reasonably be accepted

as common. Viewed like this, any tags added beyond the top 50 must be more than
4.32
0.787 ≈ 5.49 times as rare as the least common of the top 10 tags. Note this factor is

10

relative to the least common of the top 10, not the mean, median, or other metric for

centeredness. In other words, all such metrics would create a larger factor than this.

Beyond the top 100, tags must be more rare than a factor of 10.1, and beyond the top

200, more than 18.7.

Beyond the top 100, all tags added are already more than an order of magnitude

less common than any of the top 10 tags. That can be reasonably accepted as no longer

common. Between the top 50 and top 100, the added tags are between 5.49 times and

10.1 times as rare as the least common of the top 10 tags. Although not as clear cut

as beyond the top 100, that is nevertheless significantly less common than the top 10

tags. Considering those tags also experience a drop off in quality by PPTA, the relative

LCTP perspective also suggests the top 50 is a reasonable threshold for prominent tags.

The choice of threshold for prominent tags was ultimately made by human judge-

ment. Although data was gathered, examined and used as the basis of said judgement,

nevertheless caution is warranted as human judgement is imperfect. This is a potential

threat to validity of the following analysis based on prominent tags. A more rigor-

ous and mathematically sound examination of the data may find a different threshold

is more appropriate, or even that the current threshold is thoroughly insufficient for

unforeseen reasons. Either such finding would weaken the value of the next section.

Furthermore, an additional threat to validity is the changing usage of tags over

time. As various tags become more or less popular over time, it is possible that the

ideal threshold for prominent tags will also change over time. This analysis does not

account for that possibility.

2.1.2 Case Study of Question Tagging in Practice

The question in Figure 2 is an obscure, unanswered question that demonstrates

some of the tagging issues in unanswered questions. The text of the question is as

follows: "I am trying to implement Netflix Zuul for load balancing traffic between

11

Figure 2: An example of an unanswered Stack Overflow question that

demonstrates some common tagging problems [13]

different ELB’s in different regions. Can somebody suggest good tutorial or any alter-

native method for load balancing ELB traffic." Note particularly the second sentence,

which indicates that the question asker’s true intent is load balancing web traffic across

regions. It also makes no mention of what technology is being used to implement this

or what the intent of the task is.

While there are a number of issues with this question that are likely hindering it

from being answered [14], the focus here will be on how the tags hinder discoverability.

Particularly, consider that even a non-expert who stumbles upon the question could

leave a comment directing the asker on how to improve this question, at which point

many of the other issues will be solved or at least greatly reduced. This type of sug-

gestion is a common practice on Stack Overflow [15]. However, that cannot happen if

the question is not discovered, and tags are one of the most important components for

discoverability.

The tags for this question are amazon-web-services (64 thousand questions [3])

and netflix-zuul (772 questions [3]). In this case, the tags are simply a list of the

services involved in the question title. Notably, neither tag used is a prominent tag,

as per the definition of a prominent tag as any tag among the top 50 most commonly

used tags on Stack Overflow. There are also no tags specifying what technologies are

being used with the services, nor any tags suggesting that the true question is about

load balancing web traffic. There are other tags that could be added that are relevant

to the question. For example, the load-balancing tag is relevant and adds to the

12

question by showing what specifically about those technologies is in question.

For general tags, the tags dedicated to programming or markup languages are

among the most popular on Stack Overflow. In the top 10 most common tags, 7 are

dedicated to a specific programming or markup language. In the top 25 most common

tags, 15 are dedicated to a specific programming or markup language. In the top 50

most common tags, 22 are dedicated to a specific programming or markup language.

Presumably, the asker is using some programming or markup language in order to

use both of those services for their project. If the asker adds that tag to the question, it

is plausible at least some of the people following that language tag have had a similar

issue and could point the asker in a useful direction. Most importantly, it would bring

much more attention to the question. If the asker’s project is done in Java, for example,

then there are 1.4 million questions with that tag [3] The level of attention to that tag

is more than an order of magnitude greater than the next most popular tag used in the

question (amazon-web services, with 64 thousand questions).

Adding those two tags by themselves would be a significant improvement to the

question’s tagging, possibly enough to bring someone to the question who can either

answer it outright or direct the asker on how to improve the question further.

Questions like this which make all three tagging mistakes and remain undiscovered

are rare. It is much more common for a question to make one or two tagging mistakes

rather than all at once. Even among questions that do make all three, they often will

still be discovered and answered eventually. However, "eventually" is not enough. The

median response time for a question is 15 minutes [5], and this fast response time is

one of the most important factors in the success of Stack Overflow [8]. Furthermore,

the distribution of response times has a long tail that drops off significantly after the

first hours. If a question does not grasp immediate attention, it is reasonable to expect

multiple days to pass before it is answered. This can be seen in the average question

response time, 2 days and 10 hours [8], which is heavily skewed by the outlier questions

13

that are not swiftly answered. Therefore, it is desirable to improve discoverability even

for questions that may still eventually be answered, as that can make a very large

difference in the expected response time.

2.2 Assisting Human Tagging

Encouraging higher quality tagging on Stack Overflow questions is expected to

reduce the number of unanswered questions and expedite answers in general. Tags are

human generated by the question asker, so the most obvious approach is complementing

their tagging process. That raises the question: What hinders human tagging?

An obvious cause is sheer volume: At the time of writing, there are 46,300 unique

tags (i.e. has not been marked as a synonym for any other tag) on Stack Overflow that

have been used for at least 5 questions. It is virtually impossible for a typical Stack

Overflow user to know all or even most of those tags, much less efficiently select which

ones are relevant to their question.

Broadly speaking, there are two ways to address a data volume problem such as

this. The first is "searching," by providing some algorithm that can efficiently identify

which results are relevant for a given query. In this case, the question itself is the query,

and the algorithm seeks to find which tags are relevant.

The other approach is "sorting," by providing some efficient organization of the

dataset such that manually finding a desired element or set of desired elements is fast

and simple for the average human with their existing knowledge. This approach is

somewhat more challenging to apply in this case due to the question of what criteria

should be used to organize the data? For example, an obvious way to sort the tags

would be in alphabetical order. Although that does make it simple to find a tag on a

list assuming the name of the tag is known, it is useless for this problem because the

user does not know the name of the tag they desire. What the user does know is the

domain knowledge of their problem and the general scope and technologies involved.

14

A potentially useful organization, then, is a hierarchy of tags, with more specific

tags as the leaves of more general tags. It is likely there is a tag named directly after

the technology involved in the question and said tag can be readily identified by the

user. This is evidenced by tags named after technologies being among the most widely

used tags on Stack Overflow: 46 of the 50 most commonly used tags on Stack Overflow

are named after a technology of some kind. From there, the hierarchy might point

the user towards more specific tags for that technology, among which may be tags

relevant to their specific use case. Alternatively, if the user starts with a very specific

technology, the hierarchy could point the user towards more general tags encompassing

the user’s technology but are still relevant to the question. Existing evidence suggests a

hierarchical tag organization is beneficial for both contributing and for reading [4] [16]

[17]

Both of these are viable approaches to improving tagging quality. The remaining

question is what algorithm could efficiently identify relevant tags and present them to

the user, and what algorithm could organize the existing tags in a hierarchy of general

and specific tags.

15

CHAPTER 3

RELATED WORK

When someone asks a question on a site like Stack Overflow, the question itself typically

has a reasonable sized body of text detailing the subject of the question. The user is

likely to put a decent amount of effort into writing the question in effort to explain the

question effectively. Given these characteristics, the body of text appears to be a prime

input for some natural language processing (NLP) algorithm which can then predict

whether a tag is likely to apply to that particular question body or not.

There are a number of challenges with that, however, especially the fact that

questions on Stack Overflow aren’t truly natural language text. Many questions on

Stack Overflow will include some amount of code mixed in the question body, which

may or may not be separated from the normal language text. The code follows a very

different set of rules and grammar than natural language, which could be a challenge for

existing NLP algorithms. Certain words may have one particular meaning in natural

language but mean something entirely different in the context of code.

An example of this problem is the word "for". In English, the word "for" is a

preposition that indicates purpose. In many NLP problems, "for" provides so little

information that it is filtered out in preprocessing, and doing so will often improve the

accuracy of the NLP model. [18] By contrast, in the C programming language, "for" is

a keyword that indicates a specific type of iterative loop, and provides vital information

about what is happening in the program.

This issue is further complicated by the fact that there are many possible program-

ming languages that could be used in a Stack Overflow question, each with their own

syntax and keywords, which may or may not be shared across languages and may or

may not mean the same thing in different languages. The keyword "for" may refer to

16

a specific iterative loop in the C programming language, but in the Java programming

language, it might refer to that loop style or is may refer to a different so-called "for-

each" loop that examines each element in a specific data structure, depending on how

the keyword was used. Other languages often also include the "for" keyword, which

often means still different things and has different usages in those languages.

This is a significant challenge for a number of traditional NLP techniques and will

require special care to handle properly. Unfortunately, since code is such a vital compo-

nent to many Stack Overflow questions, it is not safe to simply ignore it. Nevertheless,

despite the challenges, it appears there should be some method in this style that could

predict tags from the question body.

The other question is how to create the tag hierarchy. There is no information in

the tags themselves that makes it obvious how they are related. By examining how the

tags are used with various questions, it should be possible to infer how tags are related.

A very simple example of this is noticing that the swing tag is rarely used without

the java tag, but the java tag is often used without the swing tag. From that, it is

reasonable to infer that swing is a more specific element of java.

By itself, this type of intuition is not enough. This simple example could be for-

malized by setting some thresholds and comparing tag occurrences and co-occurrences

to the thresholds. Unfortunately, doing so would produce a directed graph, not a hier-

archy. Mathematically, a directed graph is still a valid and useful organization for tags,

but such an organization no longer has the intended clear path between specific and

general, and is arguably less intuitive for human understanding. Therefore, it is not an

acceptable solution for this issue.

It should still be possible to use a similar style of model to ultimately produce

a hierarchy. It could be augmented to include some method of reducing the directed

graph into a hierarchy, for example.

An alternative approach is to use NLP models with the question body to associate

17

certain text with certain tags. The models for each tag could then be used to deduce the

correct ordering for a hierarchy. While more elaborate, it’s notable that this approach

has potential to better capture the tag meaning and thus produce a higher quality

hierarchy. It’s also notable that this approach is similar to the concept for predicting

new tags. If a similar model is used for both predicting new tags and generating a

hierarchy, then that would create logical consistency between tag predictions and tag

organization as both were generated from similar models.

From this, both questions ultimately reduce to what NLP techniques would be

applicable for producing tag predictions and generating a hierarchy.

3.1 Tag Recommendation

There have been a number of models that could predict labels for some form of

text document. For instance, Saha et. al. used a support vector machine for every label

that each classify whether that label applies to a given document or not [19]. Fang et.

al. used tensor factorization with a Gaussian kernel in a similar fashion [20]. Labeled

Latent Dirichlet Allocation has been used for tag recommendation [21] [22]. All of these

methods are based on non-trivial machine learning models and/or mathematics. While

each method has merits, they have the drawback of obfuscating some of the particular

nuances of the problem.

3.1.1 Hierarchical Clustering Models

A hierarchical clustering model is one of the simplest models that can potentially

be effective at tag recommendation [23] [24]. This model divides a set of documents into

clusters using some unsupervised machine learning technique. A range of techniques

could be used for forming the clusters, including both divisive and agglomerative (top-

down division and bottom-up merging) techniques. Regardless of clustering technique,

all resulting clusters are organized in a hierarchical fashion, with clusters at the root

18

being more general and encompassing more documents, while those at the leafs are

small, specific clusters, only including a small number of documents.

Once all documents have been assigned to a cluster, then documents within the

same cluster could be considered to share some intrinsic similarity. In the context of

the Stack Overflow problem, this type of model has some appealing properties. The

clusters produce groups of documents that share some intrinsic similarity, which is very

similar to what the concept of a tag is supposed to be. These clusters are also organized

in a hierarchy that goes from very general to very specific, addressing one of the key

issues mentioned in the introduction.

Despite this, the model falls short for this problem for several reasons. While the

clusters achieve a similar purpose to tags, there is not necessarily any correspondence

between an existing tag and a learned cluster. It’s even possible that the cluster has no

simple human understandable meaning, and is thus entirely irrelevant to this problem.

Furthermore, because the model is unsupervised, it has no way of taking the existing

tags into account while training. Even if by coincidence the clusters do end up cor-

responding to tags, there will be no way to determine which clusters map to which

tags beyond manually examining and labeling them. There has been some work to

solve this, however. Some variants allow some specificity in how clusters are formed,

meaning it would be possible to use tags as the groups for clustering [25] [26].

However, there is another significant issue with using hierarchical clustering for the

Stack Overflow tagging problem. Each document is only assigned to a single cluster

path, which creates an issue for documents with multiple tags. Even if each cluster

directly corresponded to an existing tag in Stack Overflow, this model would only be

able to handle documents if all tags were in the same cluster path. For example, this

question [27] is about interaction between python and java code, and is tagged with

both the python and java tags. Given that most java and python questions are

about issues within their respective languages, it is unlikely that a sane hierarchy will

19

place them in the same hierarchy path: java is not a generalized issue that encompasses

python, or vice-versa. Meaning, since these tags belong to disjoint positions in the

hierarchy, the hierarchical clustering model is fundamentally incapable of handling this

question correctly.

3.1.2 Probabilistic Topic Models

Another type of model that could potentially be useful for tag recommendation

is a probabilistic topic model. In a probabilistic topic model, there are a number of

groups, called topics, and each document is assigned some probability of belonging to

each topic. These models are applicable to any type of discrete data and is especially

popular for NLP tasks. This type of model is interesting for this problem because it

is fundamentally capable of assigning any document to any number or combination of

topics.

Like hierarchical clustering, probabilistic topic models are typically unsupervised.

For example, Latent Dirichlet Allocation (LDA) is reasonably well used topic model

and it is unsupervised, and a labeled variant of it has previously been used for this

problem [21] [22]. In a typical unsupervised topic model, the topics are learned rather

than specified, similar to how clusters are learned rather than specified in hierarchical

clustering. For this problem, that brings all the same issues as hierarchical clustering

had.

Additionally, some topics models offer methods to ensure tags would be meaning-

fully associated with the inferred topics, even if the model is fundamentally unsuper-

vised. Between this, probabilistic topic models avoid both of the significant issues with

hierarchical clustering.

While it solves those problems, there are also some new issues with probabilistic

topic models that didn’t exist with hierarchical clustering, the most notable of which

is the absence of a hierarchy. Without the hierarchy, there is no clear organization of

20

topics in terms of specificity or generality. Even outside the context of this particular

problem, a hierarchy could be desirable because it makes it simpler to interpret topic

meanings, particularly when the topics must be learned in an unsupervised model.

3.1.3 Hierarchical Topic Models

Hierarchical topic models work similarly to other probabilistic topic models, but

include some algorithm for organizing the learned topics in a hierarchy. On the surface,

this appears to combine the strengths of a probabilistic topic model with the strengths of

hierarchical clustering. However, many hierarchical topic models still maintain some of

the attributes that make hierarchical clustering or probabilistic topic models unsuitable

for the Stack Overflow problem.

A number of hierarchical topic models have been developed, such as the hSLDA

model [28] and the hLLDA model [29]. Similar to regular probabilistic topic models and

hierarchical clustering, hierarchical topic models are typically unsupervised. A number

of models, such as hierarchical LDA (hLDA), are only able to assign documents to one

topic in the hierarchy. Multiple other models have been proposed to address this and

more issues, but still many maintain attributes unsuited for this application.

One hierarchical topic model in particular, L2H [6], seems to address many of

the concerns with hierarchical topic models that are relevant to the Stack Overflow

problem. In particular, L2H is a supervised model, requiring a training dataset from

which it explicitly creates one topic for every tag. By doing so, L2H avoids any of the

issues with dissociation of learned concepts from existing tags.

While training the topics, L2H also builds a graph of the "concepts," which is

L2H’s term for tag/topic pairs. At the end of training, a hierarchy is built from the

graph organizing the concepts from most to least general. Notably, however, the graphs

weights are updated during training. This means associations between concepts are not

limited to estimating tag associations based on how the initial training data is tagged.

21

While that is used as an initial graph, L2H also learns new associations between concepts

during training even if the initial tags do not make it obvious [6]. This is an important

feature because if the original tagging is neither entirely complete nor entirely correct,

as in many human generated data sources, then L2H can still learn from it. A well-

trained L2H model can even predict novel tags for training data that may have been

absent, or identify tags in the training data that may be inaccurate.

L2H appears to combine the strengths of probabilistic topic models and hierarchi-

cal clustering while including very few of the attributes that are undesirable for this

problem. It provides an immediate answer to the issue of organizing tags in terms of

specificity with the hierarchy, while also providing an answer for tag recommendations

with the topic model. Unlike hierarchical clustering, a document isn’t assigned to one

specific path in the hierarchy, but rather is assigned probabilistically, avoiding the issue

of a document fitting in multiple paths. Also unlike hierarchical clustering, the tags

directly correspond to a component in the model, providing little chance of a mismatch

between tag and model. Finally, an additional bonus is the fact that L2H does not

assume the training data is entirely correct, making it especially suited for the Stack

Overflow data.

22

CHAPTER 4

METHODOLOGY

In this chapter, the details of how L2H works will be examined. The difficulties involved

in applying L2H to Stack Overflow will then be discussed, followed by a discussion of

how additional tag synonym predictions can be generated from the model.

4.1 L2H

For a given tag, every word has a certain probability of suggesting that tag is

relevant. This set of probabilities forms a discrete probability distribution, called a

topic, that is associated with that tag. The pair of tag and topic is referred to as a

concept. Concepts are organized internally as a weighted directed graph, with each

concept as an edge in the graph. If a document in the training set is tagged with two

different tags, then an edge is added between them with the weight equal to the number

of documents tagged with both tags versus the number of documents with the starting

tag alone. [6]

More formally, words are the most basic discrete unit of data under considera-

tion by L2H. Let w denote a word. A document is defined as a sequence of words

d = {w0, w1, w2...wNw} where Nw is the number of words in the document and

wi, 0 ≤ i ≤ Nw is a word in the document. A corpus is a collection of documents

D = {d0, d1, d2...dNd} where Nd is the number of documents in the corpus and di, 0 ≤

i ≤ Nd is a document in the corpus. For a given corpus, the set of all words that occur

at least once is the vocabulary, denoted as V = {w0, w1, w2, ...wNv}, where Nv is the

number of words in the vocabulary and wi, 0 ≤ i ≤ Nv is a word in the vocabulary.

A tag is a word that can be associated with specific documents. Let t denote a tag.

For any given document, there is a non-empty set of tags associated with it, denoted Ld.

23

For a given corpus, the set of all tags that occur at least once is the label vocabulary,

denoted as L = {t0, t1, t2...tNl} where NL is the number of tags in the label vocabulary

and ti, 0 ≤ i ≤ Nl is a tag in the vocabulary.

Over a given corpus’s vocabulary, V , and label vocabulary, L, topics and concepts

can be defined. A topic is a discrete probability distribution with the probability mass

function Pφ(w = wi) = Pφ,i where 0 ≤ i ≤ Nv and
Nv∑
i=0

Pφ,i = 1. Every topic is associated

with a tag, and there are no topics that are not associated with a tag. That is, if Φ

denotes the set of all topics, then the number of topics in set Φ equals the number of

tags in the label vocabulary, NL. There also is a one-to-one mapping between topics

and tags. For this, the notion of a concept is introduced. A concept is defined as a pair

(l, φ) where (l ∈ L) is a tag and (φ ∈ Φ) is a topic.

The task of L2H is to take a corpus of documents and the associated vocabulary

and label vocabularies and construct a hierarchy of concepts. Let G = (V,E) be

a weighted directed graph. Each vertex in this graph corresponds to a concept. The

initial weight for each edge from vertex Vi to Vj is the number of documents tagged with

both tag ti and tag tj, denoted Di,j, divided by the number of documents tagged with

tag tj, denoted Dj so weight(Vi, Vj) = Di,j/Dj. Finally, a background node is added

to the documents with zero initial weight on the edges going towards the background

node, so weight(x, background) = 0, where x is any vertex in V . The weight from

the background node to every other node equals the number of documents tagged with

tag ti, denoted Di, divided by the number of occurrences of the most common tag, so

weight(background, Vi) = Di/maxk(Dk), wheremaxk(Dk) is the number of occurrences

of the most common tag.

After the initial graph is generated, a Markov Chain Monte Carlo (MCMC) al-

gorithm is used to infer the final hierarchy from the training data [30]. The number

of possible hierarchies increases rapidly with the number of tags present. To practi-

cally perform inference on large datasets, it is essential to select a good prior hierarchy.

24

The prior hierarchy is constructed by using Chu-Liu/Edmonds’ algorithm [31] for the

maximum spanning tree on graph G. The background node is used as the root.

4.1.1 Switching Probability

The basic principle for learning in the L2H model is similar to that of the LDA

model. Each word in a document is considered to be generated by one of its topics. The

set of tags associated with a document, Ld indicates which topics are more likely to be

used. Defining the words of a document like this creates focused topics [32]. However,

it is not safe to assume the set of tags associated with a document is complete. It is

likely that users overlooked some tags. Furthermore, in the case of Stack Overflow,

users are limited to 5 tags per question. A question which has more than 5 applicable

tags is technically impossible to tag correctly.

To address this issue, there are two sets of tags used during learning. For each

document, the tags are divided into two subsets, L0 and L1. L1 includes both the

document’s inherent tag set, Ld, and all tags along the path from the root to any tag

in Ld. L0 is the complement of L1, containing all tags in L but not in L1.

L1 is defined as such because it captures relevant broader tags. For example, if

a question is tagged with android-toolbar then logically the tag android should

also be applicable because android is a superset of android-toolbar. Defining L1

with this broader information ensures it captures tags that should be relevant given the

human generated tag set, Ld. In contrast, this ensures L0 captures all tags that there is

no a priori reason to believe are directly relevant to the document. However, there may

be relevant tags to be discovered in L0, and it is possible some tags in L1 are actually

irrelevant. This is the same issue of imperfect tagging mentioned earlier, but this more

formal definition is amenable to a solution.

Let γ = (γ0, γ1) be a hyperparameter. For each document, a switching probability,

πd, is defined by a draw from the distribution πd = Beta(γ0, γ1). The switching proba-

25

bility specifies how likely a given token is to be generated by tags in L1 as opposed to

tags in L0. This avoids a strict requirement that all words in the document are gener-

ated by one of the human labeled tags or their related tags. Instead it only maintains

a soft preference for those tags and leaves open the possibility of incorrect human tags

or undiscovered additional tags. This is how L2H avoids assuming that documents are

tagged exhaustively.

Thus, the general procedure for sampling topics in L2H looks like this for each

document:

1. Assign a switching probability πd = Beta(γ0, γ1) to the document

2. For each token, randomly decide whether the label set will be L1 or L0 with

probability πd, then randomly select a tag/topic pair from that label set.

3. Compute the conditional probability of a word given the token via bottom-up

smoothing followed by top-down sampling [33] and update the topic accordingly.

Once the topics are updated, then the tree structure can be updated accordingly.

This is done via the Metropolis-Hastings algorithm [34]. For each vertex Vi in the

graph except the background node, randomly select an incoming node Vk that is not

currently considered a descendent node, with the probability weighted proportionally

by edge weights. Randomly decide whether or not the new node Vk is assigned as the

parent of node Vi.

Overall, the functionality of L2H can be summarized by Figure 3, as presented in

the original paper introducing L2H [6].

4.2 L2H on Stack Overflow

Applying L2H to Stack Overflow presents a number of challenges. The mixture of

natural language text with source code is a unique format that does not necessarily lend

itself to existing NLP techniques [35] [36] [37]. Additionally, human error is a significant

26

Figure 3: Graphical representation and description of L2H’s behavior, as presented in

[6]

factor among Stack Overflow text. While L2H has inherent mechanisms for addressing

the human error in tagging, the document text itself is likely to contain various forms

of human error. For instance, not all words will be spelled correctly. Sentences will not

necessarily use valid grammar. Vital details may not be explicitly written or stated in

the question. Answers may be outright incorrect or irrelevant.

Notably, some context and information may be left out if it is reasonable to expect

a human reader to understand that information a priori, but the algorithm does not

necessarily have that information. While this is true for many NLP problems, it is

especially prevalent in technical Q&A text such as Stack Overflow. For instance, the

term "query" will likely have a very different meaning when used in a question about

SQL (probably referring to a database lookup query or how to express something in

the SQL syntax) than it will in a question about jQuery (probably referring to either

the technology itself or how to use the API to access particular elements of a webpage).

If the text does not make it explicit which variant of the term "query" is being referred

to, it is difficult for an algorithm to infer the meaning of the term. That is particularly

problematic when determining whether or not to tag a question with the sql tag or

the jquery tag.

27

To some extent, L2H accounts for this. Probabilistic topic models such as L2H

can model uncertainty in their probabilities. Nevertheless, effectively preprocessing the

documents can have notable impact on the overall performance of the model and is

therefore an important consideration. There are three significant preprocessing deci-

sions for consideration.

4.2.1 Preprocessing Considerations

1. What text should constitute a document?

2. Which questions should be included in the training corpus for L2H?

3. What steps are necessary to adequately model the mixture of both code and

natural language text?

The first significant preprocessing decision is what text should constitute a doc-

ument? Possible choices include the question text by itself, the text of the answers if

present, the text of the comments, whatever text is exclusively natural language text

or exclusively code text, etc. Consider that one of the key purposes of applying the

model is to potentially provide tag suggestions while a user is asking a question. In

such a scenario, the model will only have access to the question text. Additionally, the

tags for a question are supposed to be decided based on their relevance to the question

itself, not necessarily how the question was answered, so it makes theoretical sense to

use just the question text. Given that, the question text is used by itself as the text for

L2H.

The next significant preprocessing decision is which questions should be included

in the training corpus for L2H? While it is theoretically possible to use the entirety of

Stack Overflow as the training corpus, the computational cost would be prohibitively

expensive. Furthermore, not all questions on Stack Overflow are necessarily quality

training samples. The text of a question that was closed for being "not a question," for

28

example, is unlikely to actually state any form of question, and therefore is unlikely to

be a useful training sample for the model. Likewise, questions that were moved to other

Stack Exchange sites may not be representative samples for questions that belong on

Stack Overflow.

In particular, however, questions with primarily uncommon tags are unlikely to

contribute to the model. 26.78% of tags occur less than 10 times. Such tags are almost

certainly difficult or impossible to build a valid and usable model for, and are of dubious

usefulness to the dataset as a whole. Furthermore, only 7.31% of tags occur more than

1,000 times, suggesting that a relative minority of the tags on Stack Overflow constitute

the majority of tag occurrences.

To take advantage of these insights, questions are selected in small batches starting

from a commonly occurring tag such as java or android. This ensures all questions

have at least one non-rare tag, and thus provide value to training the model. However,

it is still possible to include a question with a rare tag if such a tag occurs alongside

a common one. To avoid rare difficult tags, all tags that occur below some minimum

label frequency are filtered out and not used by the model. The end result is a usable

training corpus for building the model.

The final significant preprocessing decision is how to adapt for the mixture of both

code and natural language text. One seemingly obvious tool is the <code> html tag

which is supposed to be used in questions to format code blocks. Unfortunately, this

html tag is not consistently used to mark code, instead being used primarily when

special code formatting is desired, even if the text itself is natural language instead

of code. Therefore, it is not a reliable indicator of what is code and what is natural

language text. Nevertheless, it is a useful approximation and is used here to separate

code from natural language.

To properly represent both code and natural language, they are initially separated

by the code tag. Natural language text is divided into words using spaces and punc-

29

tuations as word boundaries, and frequent bigrams are merged and treated as a single

word. Any excessively rare or excessively common words are filtered out as not useful

for the model. Code is divided into words with a similar process, accounting for the

fact that valid symbol boundaries in natural language text are not necessarily valid

boundaries in code text. A similar process of merging common bigrams and removing

overly common or rare occurrences is also performed. Once this is finished, the sets

of words from the code and natural language portion together form the words for the

document.

With this, the initial corpus is selected, fully preprocessed, and ready for use in

training the model. While this preprocessing does not account for all known difficul-

ties with the Stack Overflow dataset, it does account for a practical subset of them.

Additionally, as discussed earlier, L2H has inherently useful properties for some of the

challenges in the Stack Overflow dataset. The current preprocessing should enhance

those properties and thus indirectly reduce the significance of those issues.

4.2.2 Hyperparameter Selection

In building L2H on this training dataset, hyperparameters must be appropriately

chosen. L2H has α, β, and γ hyperparameters as illustrated in Figure 3. All of these

hyperparameters are a form of prior: as the amount of training data increases, the

influence of the hyperparameter values on the final model decreases. The Stack Overflow

dataset, having tens of millions of unique posts is very large. Although the training

data is notably smaller than this, it is still a rather large number of training samples.

Given this, the recommended default hyperparameters from the segan library are used.

The expectation is both that segan’s default hyperparameter choice is reasonable for

this model and that hyperparameter choice will ultimately have minimal impact on the

final model. This expectation is supported by existing work [38]. It was further tested

in practice by building models on a separate sample and confirming that the resulting

30

models were well fitted via validation.

4.3 Tag Synonyms

Once the model is run on the training dataset for a number of iterations, it can

be validated in a number of ways. A topic model is most commonly validated by

using perplexity or predictive likelihood [39]. Model validation can be used to select

reasonable thresholds for filtering during preprocessing and ensuring hyperparameters

are reasonable.

An additional validation tool can be used in this case by using tag synonyms.

Stack Overflow has an existing dataset of human labeled tag synonyms created by

existing users of Stack Overflow. The finished model can be used to predict whether

or not two particular tags are synonymous and compare that prediction against the

human labels. If L2H’s tag synonyms are significantly different from human identified

tag synonyms, that indicates that L2H’s model of the tags is notably different from

human understanding of the tags. In such a case, even if L2H otherwise performs

well on predictions, the gap between the model’s understanding of tags and human

understanding of tags suggests it would not be useful for recommending tags to humans,

failing one of the primary purposes of applying L2H on Stack Overflow.

4.3.1 Topic Distance

L2H does not have an inherent mechanism for testing if topics are similar, so

an appropriate method must be determined. Once the L2H model is built, it has a

tag/topic pair, (l, φ), for every tag in the corpus. It is common to compare two topics

using the Kullbach-Leibler divergence (KL-Divergence) [40] [41] [42]. KL-Divergence

is defined as D(x, y) = −
n∑
i=0

x(i)log(y(i)
x(i)), where x and y are discrete probability

distributions of size n.

KL-Divergence is a desirable measure due to its roots in information theory and

31

probability, and it lends itself to theoretically sound methods for comparing two topics.

However, it is not a suitable measure for identifying tag synonyms. A basic property

of synonyms is they are symmetric: If A is a synonym of B, then B is also a synonym

of A. KL-divergence, by contrast, is not a symmetric measure. KL-Divergence of A to

B can give a very different number than KL-Divergence of B to A. What is instead

desired is a metric with similar information theoretic and probabilistic properties that

allow theoretically sound comparison, but is also symmetric.

An appropriate metric, then, is the Jensen-Shannon divergence [43] [44]. Intu-

itively, in desiring a measure with properties of KL-Divergence but with the addition of

symmetry, one might try simply taking the KL-Divergence for both possible directions.

For example, f(x, y) = 1
2D(x, y) + 1

2D(y, x). This does not suffice because it is possible

for D(x, y) to be infinity if y(i) is zero but x(i) is non-zero.

That problem can be avoided by using a mixture distribution. Let M(x, y) = (x+

y)/2 be a mixture distribution for probability distribution x and probability distribution

y. A notable property of M(x, y) is if either x(i) or y(i) is non-zero, then M(x, y)(i) is

also always non-zero. Given this, a function like g(x, y) = 1
2D(x,M(x, y))+1

2D(y,M(x, y))

will be symmetric and based on KL-divergence, but will no longer have issues of infinite

values. In fact, it is possible to show 0 ≤ g(x, y) ≤ log(2) for all x, y. g(x, y) is, in fact,

the definition of the Jensen-Shannon divergence. That is, JS(x, y) = g(x, y). Viewed

like this, one can intuitively see how the Jensen-Shannon divergence preserves the de-

sirable properties of KL-Divergence for this problem while resolving the undesirable

complications of asymmetric behavior and infinite values.

A tag synonym can then be identified by taking the Jensen-Shannon divergence of

two topics. Below some threshold, the topics are considered to be synonyms, while above

that threshold they are considered to not be synonyms. This is how L2H’s predictions

of tag synonyms are determined and ultimately compared with human identified tag

synonyms for validation.

32

4.3.2 Hierarchy Integration

It is notable that topic distance approaches to identifying tag synonyms makes no

usage of the hierarchy inferred by L2H, only the tag topic distributions. As L2H also

generates the hierarchy, and the hierarchy is supposed to provide useful information

about the tags and their relationship, it is logical that integrating the hierarchy into

the predictions should improve the ability to identify tag synonyms. However, the

correct way to integrate the hierarchy into the existing synonym identification scheme

is not necessarily obvious.

Intuitively, tags that are closer to each other in the hierarchy are more likely to

have related meanings. From this, a basic technique to utilize the hierarchy is with

graph distance. Let δ(φ0, φ1) be the shortest graph distance between two tag topics in

the hierarchy. Note that this graph distance is across the final generated hierarchy, not

across the weighted directed graph used to generate the hierarchy.

With the δ function, a simple threshold comparison can be done: If δ is above

a certain threshold, then the topics are considered to be too far apart to be synony-

mous. This is logical because topics that are very far apart in the hierarchy should

be conceptually unrelated, and therefore not synonyms even if the topic distribution

may look similar. Thus, overall, a tag can be considered synonymous if and only if

δ(φ0, φ1) ≤ ε0 ∧ JS(φ0, φ1) ≤ ε1, where ε0 is some threshold for maximum graph dis-

tance and ε1 is some threshold for maximum Jensen-Shannon distance.

This method of identifying synonyms is suboptimal. More generally, δ(φ0, φ1) and

JS(φ0, φ1) can be viewed as features for some unknown classifier, C, which is capable

of classifying an input as synonymous or not synonymous based on the input features.

Viewed as this, the issue of identifying tag synonyms becomes a separate machine

learning problem where the objective is to identify the best possible C for identifying

tag synonyms. While in theory any reasonably sound classifier could be used for C, it

is notable that the input features are ultimately based on L2H.

33

That reasoning can be taken a step further. The issue is then, why are δ(φ0, φ1)

and JS(φ0, φ1) specifically the features? Viewed even more generally, C is testing for

internal redundancy in the model generated by L2H: if two topics are truly synony-

mous, then learning separate representations for them is redundant. In fact, having

such redundancy reduces the power of the model because each of the synonymous rep-

resentations lost some potential training material to the other redundant topic.

Therefore, the internal state of L2H should be the feature set for C. Furthermore,

the classification scheme used by C should be based on the internal workings of L2H to

most accurately determine whether L2H is learning a redundant topic. In other words,

C is actually an extended component of L2H itself for checking redundancy.

Extending L2H with a redundancy checking component is a potentially useful

direction for future research. However, it is also outside the scope of this work.

For the purposes of this work, then, not all potential methods of identifying tag

synonyms will be able to be tested. Overall, four methods of identifying tag synonyms

have been proposed thus far.

1. JS(φ0, φ1) ≤ ε1

2. δ(φ0, φ1) ≤ ε0 ∧ JS(φ0, φ1) ≤ ε1

3. Classifier C with features δ(φ0, φ1) and JS(φ0, φ1)

4. Extend L2H with internal redundancy component

The cutoff decision can be viewed in terms of the complexity added by testing the

next method.

The additional complexity in method 2 compared to method 1 is a new measure,

δ(φ0, φ1) must be computed and a new threshold, ε0, must be determined. δ(φ0, φ1) is

computed by calculating shortest graph distance on the existing hierarchy.

The additional complexity in method 3 compared to method 2 is a new classifier,

C, must be trained with the existing features. Some machine learning model must

34

be selected for C. That may involve training and testing several models for C before

determining the best one, for some criteria. Furthermore, if C is based on a supervised

machine leaning model, then some training data must be created or generated in order

to build C.

The additional complexity in method 4 compared to method 3 is L2H must be

further studied for additional understanding of its behavior. Then an appropriate model

of that behavior for the purpose of identifying redundant topics must be identified and

captured, and said model should have theoretical grounding in L2H’s internal behavior

and accurately determine when redundant topics exist in general.

In terms of added complexity, methods 1 and 2 can be obviously tested without

going extensively out of scope for this work. Method 3 could theoretically be tested,

particularly if there was a clear candidate model for the task. In absence of such a

model however, the process of testing and identifying models to determine the best

tool for distinguishing tag synonyms is an involved enough process to warrant its own

research, and thus is not performed in this work. Therefore, methods 1 and 2 will be

tested and their performance for identifying tag synonyms will be compared. Methods

3 and 4 will not be tested as out of scope for this work.

35

CHAPTER 5

EVALUATION

In this chapter, several criteria for evaluating the effectiveness of L2H on Stack Overflow

will be defined. The results of several evaluation tests will be examined and used to

answer the evaluation criteria, providing an overall answer to L2H’s effectiveness on

Stack Overflow.

Evaluating the model centers on questions related to the two key criteria defined

and discussed throughout the paper. Namely, the issue of creating a hierarchy organiz-

ing tags from general to specific and creating a model that can recommend useful tags

for a human tagger. Additionally, the effectiveness of tag synonym prediction can be

examined as a potential additional benefit for the model. Overall then, the evaluation

criteria are:

1. Does L2H produce a hierarchy organizing tags from general to specific?

2. How effective is the hierarchy in finding related tags from known tags?

3. Does L2H predict similar tags to human chosen tags on unseen questions?

4. How effective is L2H at recommending tags for human tagging?

5. How effective is L2H at predicting tag synonyms?

All of these criteria require a L2H model. To create a usable model for evaluating

these criteria, all Stack Overflow posts between January 1, 2016 and March 13, 2017

are selected as prospective input data. Any tags used in more than 5,000 questions or

fewer than 1,000 are removed. This removes rare tags or cases of excessively abundant

tagging that would not be statistically distinct enough to build a usable model for. Note

36

that the threshold is balanced to avoid filtering out the most popular Stack Overflow

tags solely by virtue of being popular. If there is enough data to plausibly distinguish

them from other topics, then they will be included in the model as well.

Words are filtered out of questions if they appear in 40% or more of questions, or

if they appear fewer than 300 times. This is the same filtering step discussed in the

methodology section. A separate model was produced on a separate sample to verify

the quality of these thresholds.

After the remaining preprocessing is performed as detailed in the methodology

section, the resulting dataset contains 369 tags and 196 pairs of tag synonyms according

to Stack Overflow’s tag synonyms page [45].

The model hyperparameters are set at α = 10, β = 1000, and γ = (γ0 = 0.9, γ1 =

0.1). The model was then trained on the dataset and used for the remainder of the

evaluation.

5.1 Exploratory Search Effectiveness

One of the stated goals for applying the L2H model to Stack Overflow is providing

a hierarchy that is useful for exploratory searches. To do so, the hierarchy must score

well on evaluation criterion 1, 2, and 3.

Evaluation criteria 1 asks whether the hierarchy does in fact organize tags from

general to specific. A potential method of answering this is by using the concept of

prominent tags introduced in the background section. Unfortunately, prominent tags

only provide a binary classification of whether a tag is prominent or not prominent.

Such an evaluation would only be effective at levels of the hierarchy where the tags

tended to cross the threshold. It provides little insight into whether the tags continue to

become more general or more specific at other locations in the hierarchy. Furthermore,

prominent tags are intended as an approximation to the concept of general and specific

and are therefore not an entirely accurate method for formally evaluating the hierarchy.

37

5.1.1 Specificity and Diversity

Two metrics are used to quantify how well the hierarchy organizes tags from general

to specific: Specificity and Diversity [46]. Specificity is used to measure if a document

is specific to its subtree. The specificity of a set of documents is expected to increase as

tags become deeper in the hierarchy. Diversity is used to measure how different two sets

of documents are. Diversity is expected to increase when comparing entirely different

branches of the hierarchy.

Let θm,n be the weight of a concept for a particular document, where 1 ≤ m ≤ D

and 1 ≤ n ≤ K and D is the number of documents and K is the number of concepts. The

Shannon entropy can be estimated for each document asHm = −∑K
n=1 θm,n log2 θm,n, 1 ≤

m ≤ D. To illustrate that this is a useful measure for the problem at hand, consider

the case where a document has equal weights for all concepts. In such a case, Hm =

−∑K
n=1

1
K

log2
1
K

= − log2
1
K

= log2 K. Note that this is both the maximum value the

function can have for a document and it is also the point at which the document is most

diverse with the concepts. Conversely, consider a document that is entirely weighted to

a single concept. In this case the limit of Hm will be considered for correct evaluation:

Hm = − limθm,1→1 θm,1 log2 θm,1 −
∑K
n=2 limθm,n→0 θm,n log2 θm,n, 1 ≤ m ≤ D = 0 Note

that this is both the minimum value the function can have for a document and it is

also the point at which the document is the least diverse with the concepts. Thus, the

Shannon entropy estimate usefully captures information about document diversity.

Let θn be the average weight for a concept n across all documents, formally defined

as θn = 1
D

∑D
j=1 θj,n. Let Hm = −∑K

n=1 θm,n log2 θn, 1 ≤ m ≤ D. Hm estimates Shannon

entropy for the concept averages, but still using the document’s concept weights to

weight the terms. It equates to the amount of entropy expected if the document weights

are neutral. The difference between the true document entropy and the expected neutral

entropy for the document can be defined as Vm = Hm − Hm and is referred to as

the document divergence. The average document divergence across all documents is

38

V = 1
D

∑D
m=1 Vm and is the primary measure of Diversity.

A similar logic applies to the definition of concept specificity, defined as Sn =
1
D

∑D
m=1

θm,n

θn
log2

θm,n

θn
, 1 ≤ n ≤ K. This definition is based on the Shannon entropy

estimate with each weight normalized by the average concept weight. To illustrate that

this metric achieves its intended purpose, consider the case where a concept is equally

present in every document such that θm,n = θn. In this case, Sn = 1
D

∑D
m=1

θn

θn
log2

θn

θn
=

1
D

∑D
m=1 0 = 0. Note that this is the both the minimum value of the function and

the point where a concept is the least specific it could possibly be. Consider an-

other case where a concept is only present in a single document. In that case, θ1,n =

1, θm,n = 0for2 ≤ n ≤ D meaning θn = 1
D

and Sn = 1
D

(limθ1,n→1
θ1,n

θn
log2

θ1,n

θn
+∑D

m=2 limθm,n→0
θm,n

θn
log2

θm,n

θn
= 1

D
(D log2 D+∑D

m=2 0) = log2 D. Note that this is both

the maximum value of the function and the point where a concept is as specific as it

could possibly be. Thus, the concept specificity is a useful measure of how specific

concepts are and is the primary measure of Specificity.

5.1.2 Experimental Results

The results of measuring Specificity at various levels of the hierarchy can be seen in

Figure 4. The concepts at level 2 are clearly more specific than the concepts at level 1.

Concepts at deeper levels also tend to be more specific, although the precise trend is less

well defined due to less data. It seems evident that the increase in specificity is notably

more gradual deeper in the hierarchy, however. Overall, it is safe to conclude that going

deeper in the hierarchy does indeed result in more specific documents, although they

never get significantly more specific past level 2.

The results of measuring Diversity at various levels of the hierarchy can be seen in

Figure 5. For each branch at each level, the average document divergence is computed

against every sibling branch. Note that at every level, the sibling branches show an

increase in divergence. This indicates that different branches tend to capture different

39

0 1 2 3 4 5 6
Tree Level

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ec

ifi
cit

y

Figure 4: Specificity of concepts, i.e. Sn

where n indexes a concept. The figure

only shows branches whose length is no

less than 5 levels.

1 2 3 4 5
Tree Level

0.0

0.2

0.4

0.6

0.8

1.0

Di
ve

rg
en

ce

Selected
Siblings

Figure 5: Average document divergence

within a subset of documents selected

using a concept, and average diver-

gences and standard errors to the sub-

set of documents from using sibling

concepts.

sets of documents.

Between these two results, it can be concluded that the hierarchy does indeed

organize concepts from general to specific, affirmatively answering evaluation criteria

1. The data in Figure 4 and Figure 5 suggests that the hierarchy will be effective

for finding more specific or more general tags from a known tag and also be effective

at finding related sibling tags, but it will be most effective at level 2. This answers

evaluation criteria 2. Finally, it can be inferred that the hierarchy will be useful for

an exploratory search because of both the general to specific organization and because

different branches lead to different sets of documents as per Figure 5.

5.2 Tag Prediction

The L2H model was used to predict tags for a set of 23,000 unseen questions.

For each question, the number of true tags within the L2H model’s top N tags is

used to measure the accuracy of the model for various values of N . The same test was

40

performed with a Labeled LDA model as a point of comparison. The results are plotted

in Figure 6.

In both models, accuracy increases with respect to N . This is expected: with the

definition of accuracy used, it is impossible for accuracy to decrease with respect to N .

Assume for a given question, it has y true tags, x of which are predicted by a model

at threshold N . The accuracy of the model at threshold N will be A(x, y) = x
y
. At

threshold N + 1, there will be exactly 1 new tag predicted by the model. If this tag

is not one of the true tags, then the thresholds x and y will remain unchanged, and

by proxy the accuracy will be the same. If the tag is one of the true tags, then x

will increase to x + 1, making the new accuracy x+1
y

which is strictly larger than x
y
.

Therefore, increasing N will always result in greater or equal accuracy for the model.

5.2.1 Plausibility

Several observations can be made about the accuracy in Figure 6. For tight thresh-

olds (e.g. N < 10), accuracy is close to 45%. Much higher accuracy would be expected

at these thresholds if the model was perfectly emulating human tagging behavior. How-

ever, the objective of tag predictions is not to accurately emulate human tagging, but

to suggest relevant tags that may be overlooked by human taggers. In that context,

suboptimal accuracy can stem both from inaccurate predictions and from useful pre-

dictions that are typically overlooked by human taggers. The concept that a prediction

is useful independent of whether it is typically captured by human labeled datasets is

referred to as a prediction’s "plausibility."

5.2.1.1 Concept

Without a rigorous method for classifying a prediction as either inaccurate or use-

ful, the plausibility of the predictions cannot be directly measured. An indirect method

of measuring plausibility can be performed if the probability of a given prediction from

41

the model being correct can be known a priori.

To illustrate why, assume for a moment that there is a such a way to know the a

priori probability that a given prediction from the model will agree with a human tag.

Consider the case where there is a strong a priori probability of a prediction agreeing

with a human tag, and yet the prediction turns out to not match any human tags.

In such a case, it is much more likely for that prediction to be plausible than for the

prediction to be entirely inaccurate. This is so because the predictions from the model

are known to be consistent with some logic (that is, whatever math and logic govern

the model’s behavior) that largely agrees with human reasoning for tag selection. If

the logic did not largely agree with human reasoning, then it would not be able to have

a strong a priori probability of a prediction agreeing with a human tag. Furthermore,

the model is known to be operating in "good faith." That is, it is not doing anything to

artificially reduce the quality of its predictions, such as randomly returning known bad

predictions. From this, it can be inferred that the prediction is most likely plausible

because it was generated in good faith by a process that largely agrees with human

reasoning.

Consider the alternative case, where there is a very weak a priori probability of a

prediction agreeing with a human tag and the prediction does not match any human

tags. In such a case, it is much more likely for that prediction to be inaccurate. This is

so because by having such a weak a priori probability, it indicates that the model does

not usually agree with human reasoning in that case. As such, an incorrect prediction is

most likely completely divergent from human consideration, and therefore is inaccurate.

From these two cases, it can be inferred that the likelihood of a prediction being

plausible instead of inaccurate is directly proportional to the a priori probability of

the prediction agreeing with a human tag. Therefore, one possible way of indirectly

measuring plausibility is by measuring this a priori probability.

42

5.2.1.2 Derivation

It is possible to measure the probability of the model’s prediction at rank N agree-

ing with a human tag by examining the slope of accuracy with respect to N . The proof

of such is as follows:

For a given model, the probability that a prediction at rankN is a human prediction

can be denoted as P (N). By the frequentist definition of probability, P (N) = a
a+b ,

where a is the number of instances where a prediction at rank N truly agrees with a

human prediction, and b is the number of instances where a prediction at rank N does

not agree with any human prediction. Additionally, note that a + b = T , where T is

the total number of predictions made at rank N , and T is a constant.

The accuracy, as defined earlier, is A(x, y) = x
y
, where x is the number of tags

predicted by the model within the top N that agree with human predictions for a given

question, and y is the total number of tags given by humans for a given question. The

slope of accuracy with respect to N , then, is m(A,N) = A(x2,y2)−A(x1,y1)
N2−N1

=
x2
y2
−x1

y1
N2−N1

. As

y is constant, and N2 = N1 + 1, this simplifies to x2−x1
y

. Considering the definition of

x, x2 − x1, once summed over all questions, will equal the number of tags predicted

by the model at exactly rank N that agree with human tags. This is the definition of

a stated earlier. Thus, the slope of accuracy with respect to N is m(A,N) = a∑k

i=0 yi

,

where k is the total number of questions. Note that C = ∑k
i=0 yi is a constant, as

all y values are constant, as is k. Therefore the slope of accuracy with respect to

N can be further simplified m(A,N) = a
C

where C is a constant. Finally, P (N) =
a
a+b = Cm(A,N)

a+b = Cm(A,N)
T

= m(A,N)C
T
, and C

T
is a constant as it is a fraction of two

constants. Therefore, for a given model and given N , m(A,N) is directly proportional

to the probability that predictions at rank N agree with human predictions.

43

5.2.2 Experimental Results

Figure 6 can offer insights about the plausibility of the predictions for L2H and

LLDA. In the case of LLDA, the slope is largely flat after a small N . Therefore, it can be

inferred that the predictions from LLDA are likely to have low plausibility. Conversely,

L2H maintains a notable slope throughout the entire range examined, suggesting that

the predictions across the entire range are relatively plausible compared to LLDA. Addi-

tionally, L2H offers better accuracy than LLDA at all examined thresholds, suggesting

that L2H is an all around superior model for the task of tag recommendation.

Figure 7 shows how accuracy improves with respect to document length. The

accuracy of tags increases with respect to questions length for both models. This is a

logical result for topic models. Broadly speaking, each topic in a topic model captures

the statistical frequencies of words in a question that would be represented by that

topic. With more words, the statistical frequencies will be more accurate, and therefore

more accurately portray which topics should be relevant. L2H outperforms LLDA at

all examined document lengths.

The accuracy in Figure 7 is based on the top 5 tags. The results are potentially

misleading if LLDA can outperform L2H at different levels of top N . Figure 7 shows

that this is untrue in the general case, as L2H outperforms LLDA at all thresholds on

average. However, it is still possible for LLDA to outperform L2H at specific thresholds

with documents of a specific length. This possibility was not examined. It is believed

that with the existing data, any such result is more likely to be statistical noise than

anything meaningful, and therefore irrelevant. Nevertheless, if more data were to show

that LLDA does indeed outperform L2H in a specific case (e.g. if LLDA outperformed

LLDA in the case of top 10 tags with documents of length 120), this could offer a hint

at a potential weakness in the L2H model. This may be a potential direction for future

research. However, it is not considered a threat to validity because even in such a case,

it remains true that L2H outperforms LLDA on average.

44

0 5 10 15 20 25 30
N in top N tags

0%

10%

20%

30%

40%

50%

60%

70%

80%

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (%

)

Hierarchical
Flat

Figure 6: Tag prediction accuracy us-

ing a flat model and that using a con-

cept hierarchy. We consider a correct

prediction when the tags of an unseen

question appears in N most significant

topics/concepts/tags (or top N tags).

50 100 150 200 250 300 350
Document Length (# of Words)

0%

10%

20%

30%

40%

50%

60%

70%

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (%

)

Hierarchical
Flat

Figure 7: Tag prediction accuracy us-

ing a flat model and that using a con-

cept hierarchy. The accuracies shown

are for top 5 tags (N=5). Each accu-

racy measure is estimated for unseen

questions whose length has an upper

bound of a specific length, e.g., (0−50],

(50− 100], etc.

Overall, the results show that L2H performs effectively at tag prediction compared

to the baseline. The level of accuracy and plausibility shown in the results is sufficient

to give an affirmative answer to evaluation criteria 3, as L2H is indeed predicting similar

tags to humans for unseen questions, even if the tags are not precisely the same. The

plausibility also suggests that L2H’s recommendations should be effective even when

they don’t precisely match human tags, answering evaluation criteria 4.

Note that in highly accurate tag recommendation methods, individual models such

as L2H or LLDA are often not used directly. Instead, methods like LLDA are often

used in an ensemble of classifiers, such as the ensemble EnTagRec [47]. Based on the

results here, adding a model similar to L2H to such an ensemble should offer both

improvements to prediction accuracy and improvements to the plausibility of results

that do not match labels.

45

5.3 Tag Synonym Identification

In the methodology section, two potential methods of identifying tag synonyms

were selected. Method 1 simply uses the Jensen-Shannon divergence between two topics

and says they are synonyms if below a certain threshold. More specifically, two tags

with topics φ0 and φ1 respectively are synonyms if and only if JS(φ0, φ1) ≤ ε1 for some

appropriate threshold ε1.

Method 2 additionally requires that the two topics be near each other in the tag

hierarchy to be considered synonyms. More specifically, two tags with topics φ0 and

φ1 respectively are synonyms if and only if δ(φ0, φ1) ≤ ε0 ∧ JS(φ0, φ1) ≤ ε1 for some

appropriate thresholds ε0 and ε1.

To determine how effective tag synonym identification is, all
(

369
2

)
= 67, 896 pairs of

tags in the dataset are evaluated with both of these metrics. The results are compared

against the human labeled tag synonym pairs, where the precision, recall, and F1 score

are computed. For both methods, some threshold must be used for comparison. As the

ideal threshold is unknown, a variety of thresholds are tested and compared, shown in

Figure 9, Figure 8, and Figure 10.

5.3.1 Mathematical Constraints of Results

Overall, Method 2 performs better in terms of F1 and precision, while Method 1

performs better in terms of recall. As illustrated in Figure 9, reducing the maximum al-

lowed hierarchy distance also reduces recall across all possible choices for the threshold.

To some extent, this result is intuitive from the mathematics.

Recall is defined as R = TP
TP+FN , where TP is the number of true positives and FN

is the number of true negatives. According to the equation for Method 2, reducing the

hierarchy distance threshold ε0 can only produce more additional negative results as per

the definition of a logical and. Therefore, the false negatives can only be increased and

the true positives can only decrease with respect to the hierarchy distance threshold ε0.

46

Consider the case where a single false negative is added. The recall is changed to

R1 = TP
TP+FN+1 , meaning the net change in recall is ∆R1 = R1−R0 = TP

TP+FN+1−
TP

TP+FN .

This can be simplified to ∆R1 = −TP
(TP+FN)(TP+FN+1) . Note that ∆R1 is negative for all

positive non-zero integer values of TP and FN . Thus, increasing the number of false

negatives uniformly decreases the recall value.

Consider the case where a single true positive is removed. The recall is changed to

R2 = TP−1
TP+FN−1 , meaning the net change in recall is ∆R2 = R2−R0 = TP−1

TP+FN−1−
TP

TP+FN .

This can be simplified to ∆R2 = −FN
(TP+FN)(TP+FN−1) . Note that ∆R2 is negative for all

positive non-zero integer values of TP and FN . Thus, decreasing the number of true

positives uniformly decreases the recall value.

Therefore, decreasing the hierarchy distance threshold will always result in a smaller

or equal recall value. Figure 9 is therefore not surprising. This does not imply that

Method 2 is inherently inferior however because it is possible to increase the Jensen-

Shannon threshold ε1 to achieve higher recall. If Method 2 can achieve better precision

at a similar recall, then that would be a potential reason to prefer Method 2 in some

applications.

This may raise the question of whether Method 2 could even theoretically improve

on Method 1 on any of the given criteria. F1 score is computed from precision and

recall; thus Method 2 can be an improvement over Method 1 on the existing criteria if

and only if Method 2 can theoretically improve the precision.

Precision is defined as P = TP
TP+FP . As previously established, Method 2 cannot

increase the number of true positives. If a single true positive is removed, then the

precision is changed to P1 = TP−1
TP+FP−1 . Note that this equation is identical to R2 from

earlier, only with FP substituted for FN . Therefore, similar to R2, removing a single

true positive can only reduce the precision for all positive non-zero integer values of TP

and FP .

According to the equation for Method 2, reducing ε0 can only produce more nega-

47

tive results. Thus, false positives can only be decreased by Method 2. If a single false

positive is removed, then the precision is changed to P2 = TP
TP+FP−1 , meaning the net

change in precision is ∆P2 = P2 − P0 = TP
TP+FP−1 −

TP
TP+FP . This can be simplified to

∆P2 = TP
(TP+FP−1)(TP+FN) . Note that ∆P2 is positive for all positive non-zero integer

values of TP and FP . Thus, decreasing the number of false positives uniformly in-

creases the precision. Therefore, it is theoretically possible for Method 2 to improve

the precision for a given threshold, and so it is indeed possible for Method 2 to offer a

better result than Method 1 on the given criteria.

5.3.2 Influence of the Hierarchy

Figure 11 shows how distant topics are from each other for various possible tree

distances. As expected, topics farther apart in the hierarchy tend to also be farther

apart in topic distance. The variability at each tree distance is very large however,

implying that correlation between the tree distance and topic distance is not particularly

strong.

In theory then, if the hierarchy offers useful information, then Method 2 should in

some sense be superior to Method 1 due to incorporating more useful information in

its classification. The choice of metric for overall ability is somewhat complicated by

the nature of the problem. Specifically, there are significantly more non-synonym pairs

than synonym pairs. With an unbalanced dataset, a typical metric such as accuracy is

almost entirely useless.

The F1 score is another common metric that was not hindered by the data im-

balance issue in this case. The F1 score supports the hypothesis that Method 2 offers

a better overall classification ability, as demonstrated in Figure 10. If thresholds are

selected to optimize F1 score, then the best thresholds are at ε0 = 1, ε1 = 0.512 with

a score of 0.7325. In contrast, for method 1 the best thresholds are at ε1 = 0.49 with

F1 score of 0.6967. This result supports the notion that Method 2 can achieve better

48

precision for a given Jensen-Shannon threshold, and ultimately allows better overall

performance despite relaxing said threshold.

Nevertheless, there are a variety of strengths and weaknesses to both methods.

Method 1 still has a number of strengths compared to Method 2, including that is

is simpler to define and configure, requires less information to run (i.e. only needs

the topics, not the entire hierarchy), and it offers superior recall at every threshold.

Particularly, the fact that Method 1 does not depend on the hierarchy suggests that

this method could be applicable to other topic models even if those models do not

generate a hierarchy like L2H. By contrast, Method 2 could only potentially apply to

other models if they also generate a relevant hierarchy.

5.3.3 ROC and Precision-Recall Curves

Another way of quantifying the performance of tag synonym identification is with

the Receiver Operating Characteristic curve, plotting true positive rate versus false

positive rate as shown in Figure 12. This curve can be used to compare the possi-

ble performances of the L2H tag synonym identification schemes with that of a non-

hierarchical model. In this case, the LLDA model is used as a flat topic model for

comparison. LLDA tag synonym predictions are performed with the Jensen-Shannon

distance between topics, as in to Method 1. For the L2H based methods, both Method

1 (the δ =∞ model) and Method 2 (the δ = 1 model) are shown.

For all models, an ideal threshold would have a high true positive rate and a low

false positive rate. In this case, true positives increase rapidly with respect to false

positives, suggesting that such a threshold can indeed be chosen. Furthermore, both

L2H based methods appear to offer superior true positive rates compared to the LLDA

model. However, this analysis can be misleading due to the extreme class imbalance in

this problem.

An alternative to the ROC curve is the precision-recall curve, shown in Figure 13,

49

which is less sensitive to data imbalance issues. As before, both L2H models are repre-

sented and compared to the LLDA baseline. In this case, an ideal threshold has both

high precision and high recall. For all models, the precision remains relatively high up to

a certain recall level where it drops off. The LLDA models drops off significantly sooner

than either of the L2H models. Method 2 maintains better precision than Method 1 as

recall increases, as has been suggested earlier.

A number of observations can be made from Figure 13. It is significant that Method

1 with the L2H model outperforms the same tag synonym identification method applied

to the LLDA model. This observation suggests that topics learned in the hierarchical

fashion employed by L2H are superior for synonym identification compared to the same

topics learned in a flat, non-hierarchical fashion, even if the hierarchy itself is not used

in making the predictions. It further suggests that if the hierarchy is used to augment

the identification process, then superior results can be achieved. Note that only the

most extreme instances of hierarchy distance were compared in Figure 12 and Figure 13.

While this is sufficient to show the hierarchy is useful for tag synonym identification, it

is entirely possible that different thresholds or more sophisticated methods of including

the hierarchy in identification process could increase prediction performance further.

5.3.4 Optimal Thresholds

Overall, tag synonym identification with the outlined approaches requires careful

selection of thresholds. Different thresholds can optimize different types of error rates

in order to get the best performance for a desired application. Among the four metrics

considered in this analysis, precision, recall, F1 score, and accuracy, the thresholds that

optimize each are outlined in Table 2.

As indicated earlier, accuracy is a misleading metric to optimize for this problem

due to the extreme number of non-synonymous tag pairs compared to the few number

of synonymous tag pairs. The low precision at the optimal thresholds for accuracy

50

is particularly indicative of this. Optimizing for recall can also be trivially dismissed

as the resulting method is equivalent to classifying every pair as synonymous. The

precision at those thresholds is also extremely low.

Among the metrics examined, then, only the thresholds that optimize precision and

the thresholds that optimize F1 score would make reasonable sense in practice. Each

of them could be useful with different desired use cases. For example, if the purpose is

to identify a candidate set of potentially synonymous tags which will later be manually

verified, then the thresholds that optimize F1 score would likely be most effective.

If the thresholds that optimized precision were used instead, then fewer potentially

synonymous tags would need to be rejected, but a significantly larger number of true

tag synonyms would be rejected by the classifier.

Conversely, if the purpose is to automatically identify tag synonyms directly, then

the thresholds that optimize precision make the most sense. If the thresholds that opti-

mize F1 score were used instead, then more false positives will be present, increasing the

burden of rejecting false synonyms and devaluing the ability of automatic tag synonym

identification. The missed true synonyms are not as significant in this case, since it is

assumed they are likely to be manually identified later.

5.3.5 Baseline Comparison

The TSST tag synonym recommendation method by Beyer et. al. is a potential

point of comparison for the performance of the L2H based tag synonym identification

schemes [48]. Unlike the LLDA and L2H models previously examined, their approach

is based directly on tags themselves independent of what question content is used with

the tags. For example, the names of the tags algorithm and algorithms differ only

in plurality. Therefore, based on tag name alone, it is likely that they are synonyms.

They present a total of nine such strategies generally aimed at identifying tags that have

the same name written in different ways. The output of their model is a ranked list of

51

0.0 0.2 0.4 0.6 0.8 1.0
Topic Distribution Distance Threshold ()

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

g =
g = 1
g = 2
g = 3

Figure 8: Precision of tag synonym

identification versus topic distribution

distance where the precision is defined

as TP
TP+FP .

0.0 0.2 0.4 0.6 0.8 1.0
Topic Distribution Distance Threshold ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

g =
g = 1
g = 2
g = 3

Figure 9: Recall of tag synonym iden-

tification versus topic distribution dis-

tance where the recall is defined as
TP

TP+FN .

0.0 0.2 0.4 0.6 0.8 1.0
Topic Distribution Distance Threshold ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 S

co
re

g =
g = 1
g = 2
g = 3

Figure 10: F1 score of tag synonym

identification versus topic distribution

distance where the F1 score is defined

as 2TP
2TP+FN+FN .

Figure 11: Topic distribution distance

versus tree distance.

52

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Hierarchical (g = 1)
Hierarchical (g =)
Flat

Figure 12: The Receiver Operating

Characteristics (ROC) for tag-synonym

identification using hierarchical model

(L2H) and flat model (LLDA), respec-

tively.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Hierarchical (g = 1)
Hierarchical (g =)
Flat

Figure 13: The Precision-Recall Char-

acteristics (PRC) for tag-synonym

identification using hierarchical model

(L2H) and flat model (LLDA), respec-

tively.

0.0 0.2 0.4 0.6 0.8 1.0
Topic Distribution Distance Threshold ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 S

co
re

Hierarchical (g = 1)
Hierarchical (g =)
Flat

Figure 14: The F1 Scores for tag-

synonym identification using hierar-

chical model (L2H) and flat model

(LLDA), respectively.

53

possible synonyms for each given tag. They evaluate their model based on whether the

correct synonym is found within a certain number of rank positions from the top of the

list.

In their results, the correct synonym could be found within the top 15 suggestions

in 74.9% of instances. The correct synonym is the top suggestion in 45.9% of instances.

When tested on new synonyms not part of the known set, the synonyms are the top

suggestion in 20.0% of instances. As this method of evaluation is different from the

evaluation method used for L2H synonyms, these results are not directly comparable.

Nevertheless, some inferences can be made about how the L2H synonyms perform

relative to TSST.

As discussed earlier, when using the L2H synonymmodel for identifying a candidate

set of potentially synonymous tags, the thresholds that optimize F1 score will be most

appropriate. Therefore, the version of the model that optimizes F1 score will be the

focus for comparison. In that version of the L2H model, 88.47% accuracy is achieved for

identifying whether tag synonym pairs are synonymous. This figure compares favorably

with the TSST model even within the TSST’s top 15, with the caveat that TSST is

attempting to generate a list of synonyms for a given tag whereas the L2H model is

attempting to determine whether two specific tags are synonymous.

Despite the difference in evaluation methodology, it appears that the L2H model

performs at least comparably to the TSST model. This conclusion is based on the

superior accuracy figures compared with those reported for the TSST model, the fact

that the superior figures are achieved without caveats such as within a set of 15 tags,

and that the bounds of tag similarity afforded in the L2H model are typically much

smaller than a set of 15 tags.

There are some threats to the validity of this analysis. Although the L2H model

performs well in pairwise comparisons, it is possible that ranking tags by similarity may

result in the truly synonymous tag being ranked below multiple other tags, which would

54

harm performance if evaluated similarly to the TSST evaluation. This is mathematically

unlikely given the aforementioned tight bounds of tag similarity, however. Conversely,

there is a possibility that the TSST model may perform unexpectedly well if modified

to perform a pairwise synonym test similar to the L2H model evaluation. Given the

nature of the TSST model, it is unknown what performance would result or even if such

an evaluation is feasible. Either possible threat, if true, would undermine this analysis

and suggest inferior performance of the L2H model for tag synonym identification.

Overall, the proposed methods show that L2H can effectively identify tag synonyms

on at least a comparable level to existing methods, if not better, answering evaluation

criteria 5. While the topics alone are effective at this task, using the hierarchy for

predictions improves performance. A notable additional result is that the topics alone

are more effective than the same topics trained with a non-hierarchical model, even

when the hierarchy is not directly used for predictions.

55

Table 2.: Example results of tag synonym identification

Distribution Graph Optimal Performance

Threshold Threshold Metric Metrics

(δφ) (δg)

0.35 1 Precision=84.48% Precision=84.48%

Recall=25.00%

Accuracy=62.49%

F1 Score=38.58%

0.75 ∞ Recall=100.00% Precision=0.79%

Recall=100.00%

Accuracy=81.91%

F1 Score=1.58%

0.60 ∞ Accuracy=96.14% Precision=14.55%

Recall=84.69%

Accuracy=96.14%

F1 Score=64.59%

0.51 1 F1 Score=73.12% Precision=69.58%

Recall=77.04%

Accuracy=88.47%

F1 Score=73.12%

56

CHAPTER 6

CONCLUSION

This thesis examines the effectiveness of L2H for improving tagging quality on Stack

Overflow. Existing research suggests that higher quality tagging could result in an

overall improve Q/A experience for the site [5]. L2H is a particular interesting approach

to this issue because it offers two different potential solutions to the problem. Firstly,

L2H offers the ability to recommend relevant tags when a question is being asked.

Secondly, L2H offers the ability to organize the tags in a hierarchy from general to

specific which can assist in exploratory searching.

Five criteria were defined and investigated in detail to evaluate how well L2H

realize its apparent merits.

1. Does L2H produce a hierarchy organizing tags from general to specific? Based on

the Specificity metric used, the hierarchy does indeed organize tags from general

to specific. The effect is strongest at level 2, with deeper levels having smaller

differences in specificity.

2. How effective is the hierarchy in finding related tags from known tags? Based

on the Diversity metric and the Specificity metric, related tags tend to be placed

near potentially known tags. This is true in both the directions of parent to child

and vice versa, as well as between sibling branches. From this, it can be inferred

that the hierarchy is effective at identifying related tags based on known tags.

3. Does L2H predict similar tags to human chosen tags on unseen questions? Through-

out various experiments, L2H achieved higher accuracy at predicting human tags

compared to the baseline. From this, it can be said that L2H does predict similar

tags to humans even on unseen questions.

57

4. How effective is L2H at recommending tags for human tagging? Based on the

plausibility metric defined, the tags recommended by L2H which do not exactly

match human tags tend to be more plausible than baseline models. In effect, this

suggests that L2H will be effective at recommending tags for human tagging.

5. How effective is L2H at predicting tag synonyms? Between the methods of iden-

tifying tag synonyms examined, both were shown to be effective, although the

method that included the hierarchy was more effective overall.

Overall, L2H performed successfully at all criteria, suggesting that L2H is a po-

tentially effective solution for improving tagging quality on Stack Overflow. It is note-

worthy that although L2H achieves the criteria, usually it comes with caveats. For

example, while L2H does organize tags from general to specific, the most significant

difference is at level 2. This could be due to the limited sample size preventing quality

organization at deeper levels in the hierarchy. It may also be a hint at some unknown

limitations of the model. This could be a potential area for future research.

The hierarchy was deemed effective for identifying related, but unknown tags be-

cause it placed related tags near each other. This is believed to be an effective evaluation

because it follows from results in recent research on information retrieval. A potential

future research direction is obtaining further validation could by performing a human

trial confirming the hierarchy is useful in various use cases.

L2H was deemed effective at recommending tags because it achieved higher ac-

curacy and plausibility than a reasonably chosen baseline. This leaves ambiguity in

precisely how effective L2H is, as results were relative to an LLDA model. Comparing

L2H with more models could offer more insight into how L2H is performing relative to

other alternatives. A human evaluation where humans rate the quality of various sug-

gestions could offer additional insight into how the model performs. Both are potential

directions for future research. Additionally, it may be insightful to examine how L2H

performs as part of an ensemble of various models for tag recommendations.

58

Although two methods of identifying tag synonyms were examined and deemed

successful, two more sophisticated methods were left untouched. These include training

a classifier with topic and hierarchy distance as features as well as using the internal

logic of L2H to detect redundant topics. Additionally, if the evolution of tag usage over

time could be included in a synonym identification scheme, then even higher accuracy

could be achieved in this area. All of these are potential directions for future work.

Other future research directions may include applying L2H to sources outside of

Stack Overflow. In doing so, relevant Stack Overflow articles could be found for docu-

mentation and tutorials. On a higher level, automatically tagging software text could

start building an effective search method for untagged resources.

59

REFERENCES

[1] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. “An

Examination of Software EngineeringWork Practices”. In: CASCON First Decade

High Impact Papers. Riverton, NJ, USA: IBM Corp., 2010, pp. 174–188.

[2] C. Treude, O. Barzilay, and M. Storey. “How do programmers ask and answer

questions on the web?: NIER track”. In: 2011 33rd International Conference

on Software Engineering (ICSE). 2011, pp. 804–807. doi: 10.1145/1985793.

1985907.

[3] Stack Exchange, Inc. Tags. Available: https : / / stackoverflow . com / tags,

retrieved on November 15, 2018, 2018.

[4] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger.

“The Perfect Search Engine is Not Enough: A Study of Orienteering Behavior in

Directed Search”. In: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems. CHI ’04. Vienna, Austria: ACM, 2004, pp. 415–422. isbn:

1-58113-702-8. doi: 10.1145/985692.985745. url: http://doi.acm.org/10.

1145/985692.985745.

[5] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider. “Answering

questions about unanswered questions of Stack Overflow”. In: 2013 10th Working

Conference on Mining Software Repositories (MSR). 2013, pp. 97–100. doi: 10.

1109/MSR.2013.6624015.

[6] Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik, and Jonathan Chang.

“Learning a Concept Hierarchy from Multi-labeled Documents”. In: Proceedings

of the 27th International Conference on Neural Information Processing Systems

- Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014, pp. 3671–3679. url:

http://dl.acm.org/citation.cfm?id=2969033.2969236.

60

https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1145/1985793.1985907
https://stackoverflow.com/tags
https://doi.org/10.1145/985692.985745
http://doi.acm.org/10.1145/985692.985745
http://doi.acm.org/10.1145/985692.985745
https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1109/MSR.2013.6624015
http://dl.acm.org/citation.cfm?id=2969033.2969236

[7] Hui Chen, John Coogle, and Kostadin Damevski. “Modeling Stack Overflow Tags

and Topics as a Hierarchy of Concepts”. In: Journal of Systems and Software

Under Review.tbd (2019), tbd.

[8] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-

mann. “Design Lessons from the Fastest Q&a Site in the West”. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems.

CHI ’11. Vancouver, BC, Canada: ACM, 2011, pp. 2857–2866. isbn: 978-1-4503-

0228-9. doi: 10.1145/1978942.1979366. url: http://doi.acm.org/10.1145/

1978942.1979366.

[9] Ivan Srba and Maria Bielikova. “Why Is Stack Overflow Failing? Preserving

Sustainability in Community Question Answering”. In: 33 (July 2016), pp. 80–

89.

[10] Stack Exchange, Inc. Why does Haskell use Mergesort instead of Quicksort?

Available: https://stackoverflow.com/questions/52237695/why- does-

haskell-use-mergesort-instead-of-quicksort, retrieved on November 15,

2018, 2018.

[11] Stack Exchange, Inc. How to sort a list by a private field? Available: https:

//stackoverflow.com/questions/52149721/how-to-sort-a-list-by-a-

private-field, retrieved on November 15, 2018, 2018.

[12] Stack Exchange, Inc. Is main a valid Java identifier? Available: https : / /

stackoverflow.com/questions/52264638/is-main-a-valid-java-identifier,

retrieved on November 15, 2018, 2018.

[13] Stack Exchange, Inc. Netflix Zuul AWS Integration. Available: https://stackoverflow.

com / questions / 37120542 / netflix - zuul - aws - integration, retrieved on

November 15, 2018, 2018.

61

https://doi.org/10.1145/1978942.1979366
http://doi.acm.org/10.1145/1978942.1979366
http://doi.acm.org/10.1145/1978942.1979366
https://stackoverflow.com/questions/52237695/why-does-haskell-use-mergesort-instead-of-quicksort
https://stackoverflow.com/questions/52237695/why-does-haskell-use-mergesort-instead-of-quicksort
https://stackoverflow.com/questions/52149721/how-to-sort-a-list-by-a-private-field
https://stackoverflow.com/questions/52149721/how-to-sort-a-list-by-a-private-field
https://stackoverflow.com/questions/52149721/how-to-sort-a-list-by-a-private-field
https://stackoverflow.com/questions/52264638/is-main-a-valid-java-identifier
https://stackoverflow.com/questions/52264638/is-main-a-valid-java-identifier
https://stackoverflow.com/questions/37120542/netflix-zuul-aws-integration
https://stackoverflow.com/questions/37120542/netflix-zuul-aws-integration

[14] Stack Exchange, Inc. How do I ask a good question? Available: https://stackoverflow.

com/help/how-to-ask, retrieved on November 15, 2018, 2018.

[15] Stack Exchange, Inc. How long should we wait for a poster to clarify a question

before closing? Available: https : / / meta . stackoverflow . com / questions /

260263 / how - long - should - we - wait - for - a - poster - to - clarify - a -

question-before-closing, retrieved on November 15, 2018, 2018.

[16] S. Kairam, N. H. Riche, S. Drucker, R. Fernandez, and J. Heer. “Refinery: Visual

Exploration of Large, Heterogeneous Networks through Associative Browsing”.

In: Computer Graphics Forum 34.3 (), pp. 301–310. doi: 10.1111/cgf.12642.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12642.

url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12642.

[17] Kumaripaba Athukorala, bullet Antti, Oulasvirta bullet, Dorota Głowacka, bul-

let Jilles, Vreeken bullet, and Giulio Jacucci. Narrow or Broad? Estimating Sub-

jective Specificity in Exploratory Search. Nov. 2014. doi: 10.1145/2661829.

2661904.

[18] Teresa Gonçalves and Paulo Quaresma. Evaluating preprocessing techniques in a

text classification problem.

[19] Avigit K. Saha, Ripon K. Sahay, and Kevin A. Schneider. “A discriminative

model approach for suggesting tags automatically for Stack Overflow questions”.

In: 2013 10th Working Conference on Mining Software Repositories (MSR). 2013,

pp. 73–76. doi: 10.1109/MSR.2013.6624009.

[20] Xiaomin Fang, Rong Pan, Guoxiang Cao, Xiuqiang He, and Wenyuan Dai. “Per-

sonalized Tag Recommendation Through Nonlinear Tensor Factorization Using

Gaussian Kernel”. In: Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence. AAAI’15. Austin, Texas: AAAI Press, 2015, pp. 439–445.

62

https://stackoverflow.com/help/how-to-ask
https://stackoverflow.com/help/how-to-ask
https://meta.stackoverflow.com/questions/260263/how-long-should-we-wait-for-a-poster-to-clarify-a-question-before-closing
https://meta.stackoverflow.com/questions/260263/how-long-should-we-wait-for-a-poster-to-clarify-a-question-before-closing
https://meta.stackoverflow.com/questions/260263/how-long-should-we-wait-for-a-poster-to-clarify-a-question-before-closing
https://doi.org/10.1111/cgf.12642
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12642
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12642
https://doi.org/10.1145/2661829.2661904
https://doi.org/10.1145/2661829.2661904
https://doi.org/10.1109/MSR.2013.6624009

isbn: 0-262-51129-0. url: http://dl.acm.org/citation.cfm?id=2887007.

2887069.

[21] Glenn Boudaer and Johan Loeckx. “Enriching Topic Modelling with Users’ His-

tories for Improving Tag Prediction in Q&A Systems”. In: Proceedings of

the 25th International Conference Companion on World Wide Web. WWW ’16

Companion. Montréal, Québec, Canada: International World Wide

Web Conferences Steering Committee, 2016, pp. 669–672. isbn: 978-1-4503-4144-

8. doi: 10.1145/2872518.2890566. url: https://doi.org/10.1145/2872518.

2890566.

[22] Yong Wu, Yuan Yao, Feng Xu, Hanghang Tong, and Jian Lu. “Tag2Word: Using

Tags to Generate Words for Content Based Tag Recommendation”. In: Proceed-

ings of the 25th ACM International on Conference on Information and Knowl-

edge Management. CIKM ’16. Indianapolis, Indiana, USA: ACM, 2016, pp. 2287–

2292. isbn: 978-1-4503-4073-1. doi: 10.1145/2983323.2983682. url: http:

//doi.acm.org/10.1145/2983323.2983682.

[23] Michael Steinbach, George Karypis, Vipin Kumar, et al. “A comparison of doc-

ument clustering techniques”. In: KDD workshop on text mining. Vol. 400. 1.

Boston. 2000, pp. 525–526.

[24] Rui Xu and Donald Wunsch II. “Survey of clustering algorithms”. In: IEEE

Transactions on Neural Networks 16.3 (2005), pp. 645–678. issn: 1045-9227. doi:

10.1109/TNN.2005.845141.

[25] Eduardo C. Campos, Lucas B. L. de Souza, and Marcelo de A. Maia. “Searching

crowd knowledge to recommend solutions for API usage tasks”. In: Journal of

Software: Evolution and Process 28.10 (2016). JSME-14-0119.R2, pp. 863–892.

issn: 2047-7481. doi: 10.1002/smr.1800. url: http://dx.doi.org/10.1002/

smr.1800.

63

http://dl.acm.org/citation.cfm?id=2887007.2887069
http://dl.acm.org/citation.cfm?id=2887007.2887069
https://doi.org/10.1145/2872518.2890566
https://doi.org/10.1145/2872518.2890566
https://doi.org/10.1145/2872518.2890566
https://doi.org/10.1145/2983323.2983682
http://doi.acm.org/10.1145/2983323.2983682
http://doi.acm.org/10.1145/2983323.2983682
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1002/smr.1800
http://dx.doi.org/10.1002/smr.1800
http://dx.doi.org/10.1002/smr.1800

[26] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. “Live API Doc-

umentation”. In: Proceedings of the 36th International Conference on Software

Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 643–652. isbn: 978-

1-4503-2756-5. doi: 10.1145/2568225.2568313. url: http://doi.acm.org/

10.1145/2568225.2568313.

[27] Stack Exchange, Inc. Call and receive output from Python script in Java. Avail-

able: https://stackoverflow.com/questions/10097491/call-and-receive-

output-from-python-script-in-java, retrieved on November 15, 2018, 2018.

[28] Adler J. Perotte, Frank Wood, Noemie Elhadad, and Nicholas Bartlett. “Hierar-

chically Supervised Latent Dirichlet Allocation”. In: Advances in Neural Informa-

tion Processing Systems 24. Ed. by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,

F. Pereira, and K. Q. Weinberger. Curran Associates, Inc., 2011, pp. 2609–2617.

url: http://papers.nips.cc/paper/4313-hierarchically-supervised-

latent-dirichlet-allocation.pdf.

[29] Yves Petinot, Kathleen McKeown, and Kapil Thadani. “A Hierarchical Model of

Web Summaries”. In: Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies: Short Papers -

Volume 2. HLT ’11. Portland, Oregon: Association for Computational Linguis-

tics, 2011, pp. 670–675. isbn: 978-1-932432-88-6. url: http://dl.acm.org/

citation.cfm?id=2002736.2002866.

[30] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.

“An Introduction to MCMC for Machine Learning”. In: Machine Learning 50.1

(2003), pp. 5–43. issn: 1573-0565. doi: 10.1023/A:1020281327116. url: https:

//doi.org/10.1023/A:1020281327116.

[31] Jack Edmonds. “Optimum Branching”. In: Journal of Research of the National

Bureau of Standards 71B.4 (1967), 233–240.

64

https://doi.org/10.1145/2568225.2568313
http://doi.acm.org/10.1145/2568225.2568313
http://doi.acm.org/10.1145/2568225.2568313
https://stackoverflow.com/questions/10097491/call-and-receive-output-from-python-script-in-java
https://stackoverflow.com/questions/10097491/call-and-receive-output-from-python-script-in-java
http://papers.nips.cc/paper/4313-hierarchically-supervised-latent-dirichlet-allocation.pdf
http://papers.nips.cc/paper/4313-hierarchically-supervised-latent-dirichlet-allocation.pdf
http://dl.acm.org/citation.cfm?id=2002736.2002866
http://dl.acm.org/citation.cfm?id=2002736.2002866
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116

[32] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning.

Labeled LDA: A supervised topic model for credit attribution in multi-labeled

corpora.

[33] Amr Ahmed, Liangjie Hong, and Alexander J Smola. “The Nested Chinese

Restaurant Franchise Process: User Tracking and Document Modeling”. In: In-

ternational Conference on Machine Learning (ICML). 2013.

[34] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their

applications”. In: Biometrika 57.1 (1970), pp. 97–109. doi: 10.1093/biomet/

57.1.97. eprint: /oup/backfile/content_public/journal/biomet/57/1/10.

1093_biomet_57.1.97/1/57-1-97.pdf. url: http://dx.doi.org/10.1093/

biomet/57.1.97.

[35] Chatterjee Preetha, Manziba Akanda Nishi, Kostadin Damevski, Vinay Au-

gustine, Lori Pollock, and Nicholas A. Kraft. “What Information about Code

Snippets Is Available in Different Software-Related Documents? An Exploratory

Study”. In: IEEE 24th International Conference on Software Analysis, Evolution,

and Reengineering (2017).

[36] Dave Binkley, Dawn Lawrie, and Christopher Morrell. “The need for software

specific natural language techniques”. In: Empirical Software Engineering 23.4

(2018), pp. 2398–2425. issn: 1573-7616. doi: 10.1007/s10664-017-9566-5.

url: https://doi.org/10.1007/s10664-017-9566-5.

[37] P. C. Rigby and M. P. Robillard. “Discovering essential code elements in informal

documentation”. In: 2013 35th International Conference on Software Engineering

(ICSE). 2013, pp. 832–841. doi: 10.1109/ICSE.2013.6606629.

[38] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and

Donald B Rubin. Bayesian data analysis. Vol. 2. CRC press Boca Raton, FL,

2014.

65

https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
/oup/backfile/content_public/journal/biomet/57/1/10.1093_biomet_57.1.97/1/57-1-97.pdf
/oup/backfile/content_public/journal/biomet/57/1/10.1093_biomet_57.1.97/1/57-1-97.pdf
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1007/s10664-017-9566-5
https://doi.org/10.1109/ICSE.2013.6606629

[39] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L. Boyd-graber, and David

M. Blei. “Reading Tea Leaves: How Humans Interpret Topic Models”. In: Ad-

vances in Neural Information Processing Systems 22. Ed. by Y. Bengio, D. Schu-

urmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta. Curran Associates,

Inc., 2009, pp. 288–296. url: http://papers.nips.cc/paper/3700-reading-

tea-leaves-how-humans-interpret-topic-models.pdf.

[40] Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. “Ex-

ploring Topic Coherence over Many Models and Many Topics”. In: Proceedings of

the 2012 Joint Conference on Empirical Methods in Natural Language Process-

ing and Computational Natural Language Learning. EMNLP-CoNLL ’12. Jeju

Island, Korea: Association for Computational Linguistics, 2012, pp. 952–961.

url: http://dl.acm.org/citation.cfm?id=2390948.2391052.

[41] Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. “Automatic Labeling of

Multinomial Topic Models”. In: Proceedings of the 13th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. KDD ’07. San

Jose, California, USA: ACM, 2007, pp. 490–499. isbn: 978-1-59593-609-7. doi:

10.1145/1281192.1281246. url: http://doi.acm.org/10.1145/1281192.

1281246.

[42] Jey Han Lau, Karl Grieser, David Newman, and Timothy Baldwin. “Automatic

Labelling of Topic Models”. In: Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies - Vol-

ume 1. HLT ’11. Portland, Oregon: Association for Computational Linguistics,

2011, pp. 1536–1545. isbn: 978-1-932432-87-9. url: http : / / dl . acm . org /

citation.cfm?id=2002472.2002658.

[43] Jianhua Lin. “Divergence measures based on the Shannon entropy”. In: IEEE

Transactions on Information Theory 37.1 (1991), pp. 145–151. issn: 0018-9448.

doi: 10.1109/18.61115.

66

http://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models.pdf
http://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models.pdf
http://dl.acm.org/citation.cfm?id=2390948.2391052
https://doi.org/10.1145/1281192.1281246
http://doi.acm.org/10.1145/1281192.1281246
http://doi.acm.org/10.1145/1281192.1281246
http://dl.acm.org/citation.cfm?id=2002472.2002658
http://dl.acm.org/citation.cfm?id=2002472.2002658
https://doi.org/10.1109/18.61115

[44] Dominik M. Endres and Johannes E. Schindelin. “A new metric for probabil-

ity distributions”. In: IEEE Transactions on Information Theory 49.7 (2003),

pp. 1858–1860. issn: 0018-9448. doi: 10.1109/TIT.2003.813506.

[45] Stack Exchange, Inc. Create tag synonyms. Available: https://stackoverflow.

com / help / privileges / suggest - tag - synonyms, retrieved on February 15,

2018, 2018.

[46] Octavio Martínez and M Humberto Reyes-Valdés. “Defining diversity, special-

ization, and gene specificity in transcriptomes through information theory”. In:

Proceedings of the National Academy of Sciences 105.28 (2008), pp. 9709–9714.

[47] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik. “EnTagRec: An Enhanced

Tag Recommendation System for Software Information Sites”. In: 2014 IEEE

International Conference on Software Maintenance and Evolution. 2014, pp. 291–

300. doi: 10.1109/ICSME.2014.51.

[48] Stefanie Beyer and Martin Pinzger. “Synonym Suggestion for Tags on Stack

Overflow”. In: Proceedings of the 2015 IEEE 23rd International Conference on

Program Comprehension. ICPC ’15. Florence, Italy: IEEE Press, 2015, pp. 94–

103. url: http://dl.acm.org/citation.cfm?id=2820282.2820296.

67

https://doi.org/10.1109/TIT.2003.813506
https://stackoverflow.com/help/privileges/suggest-tag-synonyms
https://stackoverflow.com/help/privileges/suggest-tag-synonyms
https://doi.org/10.1109/ICSME.2014.51
http://dl.acm.org/citation.cfm?id=2820282.2820296

	Applying Hierarchical Tag-Topic Models to Stack Overflow
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Background
	Question Tagging
	Prominent Tags
	Case Study of Question Tagging in Practice

	Assisting Human Tagging

	 Related Work
	Tag Recommendation
	Hierarchical Clustering Models
	Probabilistic Topic Models
	Hierarchical Topic Models

	 Methodology
	L2H
	Switching Probability

	L2H on Stack Overflow
	Preprocessing Considerations
	Hyperparameter Selection

	Tag Synonyms
	Topic Distance
	Hierarchy Integration

	 Evaluation
	Exploratory Search Effectiveness
	Specificity and Diversity
	Experimental Results

	Tag Prediction
	Plausibility
	Concept
	Derivation

	Experimental Results

	Tag Synonym Identification
	Mathematical Constraints of Results
	Influence of the Hierarchy
	ROC and Precision-Recall Curves
	Optimal Thresholds
	Baseline Comparison

	 Conclusion
	References

