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Abstract 
 

PrediXcan is a recent software for the imputation of gene expression from genotype data alone. 

Using an overlapping set of transcriptome datasets from postmortem brain tissues of donors with 

alcohol use disorder and neurotypical controls, which were generated by two different platforms (e.g., 

Arraystar and Affymetrix), and an additional unrelated transcriptome dataset from lung tissue, we 

sought to evaluate PrediXcan’s ability to impute gene expression and identify differentially expressed 

genes. From the Arraystar platform, 1.3% of matched genes between the measured and imputed 

expression had a Pearson correlation ≥ 0.5. Our attempt to replicate this finding using the expression 

data from the Affymetrix platform also lead to a similarly poor outcome (2.7%). Our third attempt using 

the transcriptome data from lung tissue produced similar results (1.1%) but performance improved 

markedly after filtering out genes with a low predicted R2, which was a model metric provided by the 

PrediXcan authors. For example, filtering out genes with a predicted R2 below 0.6 led to 16 genes 

remaining and a Pearson correlation of 0.365 between the measured and imputed expression. We were 

unable to reproduce similar performance gains with filtering the Arraystar or Affymetrix alcohol use 

disorder datasets. Given that PrediXcan can impute a narrow portion of the transcriptome, which is 

further reduced significantly by filtering, we believe caution is warranted with the interpretation of 

results derived from PrediXcan.  
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Chapter 1 

Introduction 

 
 Assessing gene expression via high-throughput expression platforms is becoming an increasingly 

ubiquitous approach to study the molecular underpinnings underlying complex phenotype differences 

between clinical samples. In hybridization (i.e. microarray) experiments, RNA is reverse transcribed to 

copy DNA (cDNA), labeled with a fluorescent tag, and allowed to hybridize to complementary probes on 

a microarray platform; thus, the expression of a gene can be assessed by detecting the presence of the 

label at specific probe sites. As such platforms contain numerous probes, they are able to quantify the 

expression of tens of thousands of genes per sample, which make these platforms attractive for an 

unbiased assessment of gene expression patterns. However, microarray platforms can only detect the 

presence of known transcripts and are known for being sensitive to technical artefacts. For instance, one 

study found that between 50.5% to 82.8% of all probes, using either an Affymetrix or Agilent platform, 

correlated significantly with array batches (Leek, 2010). This sensitivity can be explained by seemingly 

minuscule factors, such as ozone levels that meet the Environmental Protection Agency’s standard for 

“good” air quality, having been shown to effect expression measurements (Byerly, 2009).  

 RNA-sequencing is another popular method to assess expression levels, which isn’t as sensitive 

to background noise (Su, 2014). By reverse transcribing the RNA sample to DNA, amplification via 

polymerase chain reaction, and then sequencing, RNA-sequencing is able to provide a more 

comprehensive measurement of the transcriptome, which also includes detection of alternative and 

unknown transcripts. Unfortunately, measuring differential expression of various phenotypes is 

hampered by small effect sizes caused by the reliance on clinical assessments, high genetic 

heterogeneity, and co-regulation of genes unrelated to the phenotype of interest. Additionally, RNA is 
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quite prone to degradation, which frequently leads to differential degradation among species of RNA 

(Garneau 2007; Ferrer 2008). Consequently, these factors add noise, which researchers often overcome 

with larger sample sizes. However, for psychiatric illnesses, where researchers are limited to post-

mortem samples, as the disease organ is the brain, procuring sufficient samples is fraught with difficulty 

and high costs.  

 One such psychiatric ailment is alcohol use disorder (AUD). As defined by the Diagnostic and 

Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013), AUD is 

measured by its severity (mild, moderate, or severe) based on the cumulative sum of eleven different 

symptoms; such symptoms include alcohol interfering with one’s job or family, being fixated on drinking 

alcohol, and drinking more in order to reach a desired effect. For Americans over the age of 18, the 

average rate of AUD was high for twelve-month (13.9%) and lifetime (29.1%) prevalence (Grant, 2015); 

when one considers white men, the rates for twelve-month (17.6%) and lifetime (36.0%) are even more 

despairing. Additionally, two meta-analyses of global epidemiology studies have estimated AUD relative 

risk for all-cause mortality for both sexes to be 3.45 (2.96-4.02) and 3.55 (2.48-5.09) (Laramee, 2015; 

Roerecke, 2013). Much of this can be explained by the numerous physical ailments strongly associated 

with alcoholism (e.g. liver cirrhosis, heart disease, etc). But despite the significant health effects, it is 

estimated that only 24.1% of those with alcohol dependency will receive treatment in their lifetime 

(Hasin, 2007). 

 Unfortunately, AUD treatment is limited as there are only 3 unique Food and Drug 

Administration approved agents for the treatment of alcohol abuse, with the last one being approved in 

2004 (Ray, 2018). Combinational treatments (therapy and pharmacological intervention) have shown 

efficacious results, but such treatments have failed a large portion of participants and the longevity of 

abstinence is questionable; for instance, one combinational trial (naltrexone, acamprosate, and 

cognitive behavioral therapy) reached an abstinence rate of 67% but only spanned 84 days (Feeney, 
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2006). Thus, when one considers alcohol abuse’s prevalence, mortality risk, and lack of pharmaceutical 

options, the necessity to find additional treatments becomes apparent. But because of the challenges 

face with differential expression, elucidating these complex psychiatric phenotypes has been 

challenging.  

 

1.1 PrediXcan 

PrediXcan is a recent software developed for predicting expression levels from genotype data alone 

(Gamazon, 2015). It accomplishes this by building upon the idea of an expression quantitative trait loci 

(eQTL) analysis, which finds associations between expression levels and single nucleotide 

polymorphisms (SNPs), which represents sites of genomic variability. But instead of using an ordinary 

least square regression to find such associations, PrediXcan utilizes an elastic net, which combines two 

penalizing regression methods. The first is ridge regression, which down weights correlated predictors 

and hence is able to account for linkage disequilibrium, which is the non-random association of alleles, 

without pruning/clumping highly correlated SNPs (Malo, 2008). The second is lasso regression, which 

uses shrinkage i.e., the values of nonmeaningful variables are shrunk towards a central point (usually the 

mean) and eventually eliminated from the model, creating a more parsimonious model (Waldmann, 

2013). But as lasso regression performs poorly in certain situations, such as with highly correlated 

variables, it does not necessarily perform better than ridge regression in performance (Zou, 2005). Thus, 

the elastic net model essentially amounts to a compromise between ridge regression and lasso 

regression.  

By utilizing elastic net methodology and a transcriptome dataset, which contain both genotype and 

expression data, the authors of PrediXcan have been able to ascribe weights to the genotype 
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components (i.e. SNPs), which corresponds to the expression of select genes. These weights have been 

made available by the authors, in the form of an SQLite file, to be used by PrediXcan. When a user runs 

PrediXcan with unrelated genotype data, PrediXcan will match SNPs in the unrelated genotype data to 

the weights in the SQLite file. And when matches are found, those weights will be used to add/subtract 

from the expression value of the corresponding gene of a given individual. In doing so, PrediXcan is able 

to impute gene expression from unrelated genotype data at the individual level.  

One of the most popular and comprehensive transcriptome datasets is the Genotype-Tissue 

Expression (GTEx) project, which aims to include the genotype and tissue specific expression of over 900 

deceased donors (The GTEx Consortium, 2013). Currently, version 7 is the most recent release of GTEx 

and incorporates the genotype and expression data from 635 donors. The authors of PrediXcan have 

taken this data, adjusted it to account for sex and experimental/population confounders, used the 

elastic net methodology to calculate the expression weights for the genotypic components, and made 

the SQLite weights files available on predictdb.org.  

Additionally, the authors utilized 10-fold cross-validation to derive quality measure for each gene 

model. With this procedure, a subset of expression data was extracted out, the elastic net was 

conducted, and the model’s imputed results was compared against the extracted expression. This step 

was repeated 9 more times and thus allowed the model to be evaluated using the same transcriptome 

dataset. From the cross-validation, several quality measures were calculated and provided in the GTEx 

version 7 SQLite weights files. One quality measure is “rho_avg”, which is the average Pearson 

correlation between the imputed and measured expression for each of the hold out folds during cross 

validation; this measure will be referred to as predicted correlation. The square value of this measure is 

labeled “pred.perf.R2” and will be referred to as predicted R2. Another quality measure is 

“test_R2_avg”, which is the average coefficient of determination for each of the cross-validated models 

and will be referred to as model R2.  
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Considering the stability and “immutability” of DNA i.e., DNA does not change from one tissue to 

another, means one can obtain genetic information from peripheral tissues like whole blood or buccal 

tissue. In contrast, gene expression various among tissues and thus may be more burdensome to obtain, 

especially from internal organs. And with the GTEx transcriptome dataset, the authors of PrediXcan have 

been able to create SQLite weights files for 53 different tissues, with 13 originating within the brain. 

Thus, PrediXcan offers an alternative to circumvent the difficulties associated with generating gene 

expression data from difficult to obtain organs (such as brain) and thus may aid in the study of 

psychiatric ailments.  

 

1.2 PrediXcan in Recent Literature 

As of March 25, 2019, google scholar reported 374 citations for the nature genetics’ publication of 

PrediXcan. Many of these studies referenced the increase power of PrediXcan as the inspiration for their 

study. As users are testing each gene once, with any number of SNPs for a given gene, the multiple 

testing burden is significantly reduced when compared to a single variant eQTL analysis. This count 

potentially reduces the number of tests from the millions to the thousands, depending on the number of 

SNPs in the genotype data and the genes included in the SQLite weights file (Li, 2018). Thus, for many 

studies, PrediXcan is an exploratory tool that was used to confirm measured differential expression and 

find newly differentially expressed genes, which past studies were underpowered to find.  

Many studies take a critical examination of PrediXcan, which is reassuring considering how new this 

software is. One such study examined individuals with amyloid deposition in the brain, which is a risk 

factor for Alzheimer’s Disease, against the GTEx cohort (Hohman, 2018). As this study required a more 

stringent prediction R2 of ≥ 0.15, the authors show restraint in utilizing PrediXcan. More importantly, the 
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authors replicate their findings in another cohort and examined how the results conformed to past 

findings. Lastly, the discussion highlighted many of the limitations with the GTEx transcriptome dataset 

and reiterated the need for the newly identified differentially expressed genes to be validated further.  

 Other studies are far more ambitious in their use of PrediXcan. One study conducted a trans-

ethnic meta-analysis on SNPs associated with breast cancer risk despite that the GTEx transcriptome 

data largely originated from Caucasian donors (Hoffman, 2017). Additionally, they reported significantly 

differentiated genes regardless of the model’s strength; one such gene was DHODH, whose gene model 

had a predicted R2 value of 0.026. But the most concerning element of these studies is that their results 

may be referenced in other papers without sufficient attention to the imputation methodology. One 

such study found that lower expression of RPRD1B was associated with cisplatin-induced peripheral 

neuropathy using PrediXcan (Dolan, 2017). A systematic review of cisplatin toxicity reported the study’s 

findings on RPRD1B with no mention of PrediXcan, imputation, or the elastic net methodology 

(Chovanec, 2017). Thus, there is the possibility that that the results will be given similar weight and 

attention to non-imputation results. If PrediXcan accurately imputes gene expression, such 

interpretations aren’t problematic. But if PrediXcan’s accuracy is low or limited, such interpretations 

could incorrectly define the narrative and hinder scientific inquiry.  

 

1.3 Concerns about PrediXcan Methodology 

Considering PrediXcan ability to overcome limitations with differential expression analysis, it’s use 

has grown overtime. But with any new methodology, it’s important that alongside its benefits, its 

limitations are also considered. Here, 4 such concerns have been identified.  
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I. For the GTEx transcriptome dataset, PrediXcan only includes cis-SNPs (within 1Mb of gene 

start or end) within the model. While testing for cis-SNPs is typical with eQTL analysis, as a 

consequent of the multiple-testing burden (Nica, 2013), large twin studies have asserted 

that trans-SNPs may play a larger role. One study found that only 10% of the genetic 

variance for skin tissue was explained by cis-SNPs (Grundberg, 2012). Additionally, during 

the model-building procedure, ambiguous SNPs (e.g. A/T) were removed so that the 

software could identify and correct genotype dosages given by the user. Thus, a 

considerable amount of genotype information had been eliminated prior to deriving each 

model, which could affect PrediXcan’s performance. 

II. For GTEx v7, the authors required each gene model to have a predicted correlation above 

0.10. Additionally, the p-value for that correlation must be below 0.05. Hence, these quality-

control measures reduced the number of genes within each tissue-specific SQLite weights 

file. For GTEx v7 whole blood, the tissue-specific weight file with the highest average 

predicted R2, only 6,297 genes were included.  

III. Only the top 9 GTEx tissues, which had the largest sample sizes, were evaluated in the 

original manuscript. Both the predicted R2 and model R2 were low for these models. For 

instance, the average predicted R2 for all gene models for whole blood was 0.118 (median 

0.074). Additionally, the average model R2 for all the gene models for whole blood was 

0.096 (median 0.050).  

IV. While the GTEx cohort is fairly inclusive with only a handful of exclusionary criteria, like 

metastatic cancer (GTEx, 2013), the cohort is largely European, skews towards older adults, 

and does not include expression measurements for all donors. For PrediXcan’s tissue-

specific weight files, derived from GTEx v7, only European donors were selected and the 

average number of donors per weight file was around 185. Thus, there is a question about 
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how well PrediXcan’s methodology can capture the expression differences found in less 

common ailments and populations, which may have not been sufficiently represented in the 

GTEx cohort or tissue-specific samples. Additionally, the general heterogeneity of the cohort 

may lead to higher expression variance and thus limit the power of any models derived from 

it.  

 

1.4 An Opportunity to Evaluate PrediXcan: 

A transcriptome dataset has been made available from deceased donors diagnosed with alcohol 

dependence (n=32) and neurotypical controls (n=31). The tissue was obtained by the Australian Brain 

Donor Program and include Caucasian male (n=54) and females (n=9) that met the inclusion criteria, 

which excluded individuals with infectious disease, significant head trauma, long agonal, and long delays 

in procuring the tissue (McMichael, 2019, pre-print: https://doi.org/10.1101/583203, under review). The 

expression data was obtained from the nucleus accumbens of these donors, which animal models have 

strongly implicated in pavlovian reward-related learning (Day, 2011) and addictive drug behaviors 

(Scofield, 2016). Additionally, eQTL analysis of the nucleus accumbens have shown differential 

expression for those with alcoholism (Mamdani, 2015), including for this particular dataset (McMichael, 

2019). Thus, not only is the organ appropriate for finding differential expression of alcoholics, such 

findings have been demonstrated for hundreds of genes.  

As the PrediXcan authors have made the SQLite weights file available for the nucleus accumbens, 

which was derived from the GTEx version 7 transcriptome dataset, there is an opportunity to assess 

PrediXcan’s methodology. Twin studies have estimated the heritability of alcohol use disorder to range 

from 48-58% (Prescott, 1999). Given this is a disease with a large genetic component, which PrediXcan’s 
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methodology models, the use of PrediXcan for this phenotype is appropriate. Furthermore, studies 

evaluating PrediXcan for assessing psychiatric phenotypes are rare and, to the best of my knowledge, 

have not focused on alcoholism.  

As the nucleus accumbens was not evaluated in the original PrediXcan manuscript and considering 

the general concerns/performance surrounding GTEx weights files, we hypothesize that PrediXcan will 

impute the expression for most genes, which are associated with alcohol use disorder, poorly. That 

being said, the PrediXcan authors calculated the heritability of their Depression Gene Networks model, 

which is based on whole blood samples, and found that the predicted R2 increased with higher 

heritability (Gamazon, 2015). This observation isn’t unusual as the effect sized of cis-eQTLs increase with 

a gene’s heritability (Grundberg, 2012). Additionally, it has been shown that the heritability of gene 

expression is primarily explained by cis loci ---not trans--- in tissues with a heterogenous mixture of cell 

types, as is common with the GTEx datasets (Price, 2011). Thus, it seems reasonable that PrediXcan, 

which utilized models built on cis associations, may be able to accurately impute expression values for 

highly heritable gene. And while heritability estimates for GTEx are unavailable, the fact that heritability 

and predicted R2 are correlated means that predicted R2
 can be used as a surrogate. Hence, it is also 

hypothesized that the accuracy of PrediXcan imputation will increase by selecting genes with a high 

predicted R2 model.  
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Chapter 2 

Measuring Differential Expression 

 To gauge PrediXcan’s accuracy, one must first measure the differential expression between 

donors diagnoses with alcohol use disorder and neurotypical controls. The expression measurements of 

the 63 donors were obtained using Arraystar Human LncRNA Array v3.0 (Rockville, MD, USA). This 

platform detects 61,464 transcripts encompassing both protein coding genes and long noncoding RNAs. 

As Arraystar limits information concerning their proprietary probe designs, annotation information was 

available for only 11,810 of those genes (19%) that were found to be differentially expressed (t-value ≥ 

|0.5|) as determined by the methodology of the original manuscript for this transcriptome dataset 

(McMichael, 2019). Additionally, those differential expression results were made available, were labeled 

manuscript results within this work, and were used as a comparison to this work’s methodology.  

 Differential expression analysis was conducted with R version 3.5.1 with the tidyverse package, 

which was used for data wrangling and visualization, and the Linear Models of Microarray Data (Limma) 

package, which handled the statistical elements (Smyth, 2004). Essentially, limma follows the traditional 

approach of determining group differences by building a linear regression model for each probe. But 

instead of using a simple t-test, Limma employs empirical Bayes methodology to “borrow strength” from 

the other probes (Ritchie, 2015). In other words, limma utilizes all probes within the dataset to calculate 

the variance of each individual probe, which ultimately increases the power of the model. But before 

using limma’s toptable function, which produced the results, several considerations were taken into 

account. 
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 First, the raw data was log2-transformed, background corrected using normexp, and had 

controls probes removed from further consideration. Second, each array was examined for irregularities 

utilizing a MA-plot. No irregularities were found, which was likely a result of the transcriptome dataset 

including only arrays used in the final analysis of the original manuscript (i.e. the dataset had 

problematic arrays filtered out). Next, normalization was applied, which reduces the variances found 

between arrays so that they can be compared (Quackenbush, 2002). It should be noted that there is 

considerable debate concerning the best normalization procedure. Quantile normalization, which is 

limma’s default procedure for single-channel arrays, forces each array to have the same distribution. As 

there is no biological reason to expect that the bulk expressed transcriptome will show stark expression 

differences between alcoholics and neurotypical controls, quantile normalization seemed appropriate 

and was selected. 

 Demographic information (age of death, sex, brain weight, hemisphere of sample, 

neuropathology, and smoking status), experimental conditions (Batch, pH of sample, postmortem 

interval from procuring sample, and RNA integrity number) were collected for all samples and checked 

for outliers; no outliers were found, which was expected as the transcriptome dataset has been pre-

screened. As these elements may influence differential expression or measurements of differential 

expression, it is prudent to account for them within the model. But while correcting for confounding 

variables can lead to increased power and more accurate results, over adjusting a model can lead to 

lower power (Kahan, 2014). Thus, a principal component analysis (PCA) was conducted, which captures 

the variance of potential demographic/experimental confounders as principal components (PCs).  

R’s prcomp function was used to conduct the PCA. A scree plot was used to identify the 

inflection point of the PCs’ eigenvalues. The 3 PCs to the left of the inflection point were retained as 

those PCs explained a substantial amount of variance in the demographic/experimental data. R’s 

varimax function was used on the loadings of each PC in order to aid in interpreting and verification of 
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the PCA results. The correlation between each of the potential confounding variables and the retained 

PCs with varimax rotation are displayed in Table 1.   

 

Variable PC1 PC2 PC3 
Batch -0.661 0.240 0.382 
Age of Death -0.362 -0.153 0.203 
Sex -0.828 0.164 -0.097 
Brain Weight 0.620 0.310 0.108 
pH 0.147 -0.165 -0.796 
Postmortem Interval -0.053 -0.587 0.112 
Hemisphere 0.166 -0.191 0.676 
Neuropathology  -0.135 -0.683 0.200 
Smoking Status -0.116 0.591 0.225 
RNA Integrity 0.464 0.214 -0.609 

Table 1: Correlation between potential confounding variables and retained principal components, which 
were produced by the prcomp function and manual varimax rotation.  

 

 The differential expression of each gene was tested using a robust linear regression, which was 

adjusted with the top three unrotated PCs. t-values were selected to make comparisons between 

limma’s results and the manuscript results. The histograms of both approaches can be seen in figure 1. 

The Pearson correlation between the t-values of both approaches was 0.92 and the corresponding 

scatter plot can be viewed in figure 2. Note: whitespace found in the manuscript’s histogram and scatter 

plot were caused by the incomplete annotation.  
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Figure 1. Histogram of t-values calculated by 
Limma, using empirical Bayes methodology, and 
the manuscript’s methodology.  

Figure 2. Scatter plot of comparable t-values 
calculated by Limma, using empirical Bayes 
methodology, and the manuscript’s 
methodology. 

 

 A Venn diagram was provided in Figure 3, which compared t-values ≥ |3.25| from Limma’s 

empirical Bayes methodology and the manuscript’s methodology; this roughly corresponds to a False 

Discovery Rate p-value of 0.05. As there was a strong Pearson correlation between both techniques, 

these initial results suggest that the empirical Bayes test is slightly inflating the t-values. That being said, 

it’s imperative to test this inclination.  

 

Figure 3. Venn diagram of t-values ≥ |3.25| with Limma, using the empirical Bayes methodology, and 
the manuscript’s methodology.  
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2.1 Limma without Empirical Bayes 
 In order to perform differential expression, Limma interacts with an expression object, which is 

modified at each step. The toptable function, which outputs the results, is dependent on the empirical 

Bayes function to calculate and apply certain test-statistics (t-values, p-values, and log-odds) onto the 

expression object. Thus, Limma does not offer a way to disable the empirical Bayes methodology. But by 

manually calculating and applying those test-statistics to the expression object, one can circumvent the 

Bayes methodology with another. Thus, the same methodology was followed except a simple t-test was 

performed and the necessary test-statistics were manually added to the expression object prior to using 

the toptable function.  

  A histogram (Figure 4), scatter plot (figure 5) and Venn diagram (figure 6) of Limma without the 

empirical Bayes methodology are provided below. The Pearson correlation between comparable t-

values was 0.92. Thus, the differences between the two methods were minor, suggesting that the 

empirical Bayes methodology was not responsible for the inflation of t-values. In fact, there was a slight 

increase of t-values ≥ |3.25| with the simple t-test, suggesting that the empirical Bayes methodology 

was deflating ---not inflating--- the t-values. This could be caused by a number of probes having an 

unusually low variances, which Limma was correcting. 
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Figure 4. Histogram of t-values calculated by 
Limma, using a simple t-test, and the 
manuscript’s methodology.  

Figure 5. Scatter plot of comparable T-values 
calculated by Limma, using a simple t-test, and 
the manuscript’s methodology. 

 

 

 

Figure 6. Venn diagram of t-values ≥ |3.25| with Limma, using a simple t-test, and the manuscript’s 
methodology.  

 

2.2 Limma using NCSS Derived Principal  Component Analysis. 
 The manuscript methodology differed from this work in several ways which included its handling 

of normalization, accounting for batch effect, and removal of probes. That being said, batch effect tends 

to be one of the most prominent confounding elements in microarray platforms and the prcomp 

function (Table 1) did not appear to account for much of the batch variance. Thus, there were concerns 

that the original PCA did not properly account for confounding variables. Following the manuscript as a 
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rough guideline, NCSS version 12 was used to perform a robust PCA with a varimax rotation. The top 3 

PCs were still retained. As the NCSS software utilizes a version of the modern QL algorithm, it’s was 

expected to produce different loadings from the prcomp function. The correlation between the 

variables and the 3 rotated PCs are displayed in Table 2. Additionally, a histogram (Figure 7), scatter plot 

(figure 8) and Venn diagram (figure 9) of Limma with the empirical Bayes methodology with NCSS PCA 

were also provided. 

 

Variable PC1 PC2 PC3 
Batch 0.755 -0.051 -0.300 
Age of Death 0.490 0.181 0.048 
Sex 0.791 -0.037 0.024 
Brain Weight -0.348 -0.390 0.044 
pH -0.204 0.002 0.836 
Postmortem Interval 0.001 0.636 0.096 
Hemisphere -0.189 0.264 -0.642 
Neuropathology  -0.051 0.727 -0.141 
Smoking Status 0.168 -0.458 -0.437 
RNA Integrity -0.501 -0.426 0.435 

Table 2: Correlation between potential confounding variables and retained principal components, which 
were produced by NCSS’s robust PCA with varimax rotation.  

 

  
Figure 7. Histogram of t-values calculated by 
Limma (left) and manuscript’s methodology 
(right).  

Figure 8. Scatter plot of comparable t-values 
calculated by Limma and the manuscript’s 
methodology.  

 
Note: Limma utilized empirical Bayes methodology. The model was adjusted utilizing PCs derived 
from NCSS. 
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Figure 9. Venn diagram of t-values ≥ |3.25| with Limma and the manuscript’s methodology. Limma 
utilized empirical Bayes methodology. The model was adjusted utilizing PCs derived from NCSS. 

 The Pearson correlation slightly improved to 0.94 and the number of probes, with a t-value ≥ 

|3.25|, decreased. That being said, the differences between prcomp and NCSS were not substantial, 

highlighting that the original analysis (Limma, empirical Bayes, prcomp) had an adequate PCA. 

Additionally, the original analysis produced a Pearson correlation of 0.92 and a non-significant Wilcoxon 

rank sum test (p-value = 0.97). Thus, while there may be substantial nonoverlapping in the Venn 

diagram, that result was caused by slight variations ---not stark differences--- in the t-values. Considering 

those factors, the original analysis seemed appropriate and was used as a base comparison for 

PrediXcan.  
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Chapter 3  

Evaluating Imputed Expression 
 The genotype data of the transcriptome dataset, which included donors with alcohol use 

disorder, originated from the Affymetrix Genome-Wide Human SNP Array 6.0 platform. The data had 

been pre-imputed and filtered to exclude SNPs with a low (≤ 0.01) minor allele frequency (MAF). In total, 

3,703,165 autosomal SNPS were provided with annotations. The GTEx version 7 nucleus accumbens 

SQLite weight file was downloaded from predictdb.org, which was built using the genotypic and 

expression data from 114 donors. This file contains weights for 113,923 SNPs that were associated with 

3,633 genes; 2,641 were protein-coding (73%), 485 were long non-coding RNAs (13%), and 507 were 

pseudogenes (14%).  

 Python 3.7 was used to transform the genotype data into a PrediXcan dosage files, which are 

chromosome-specific compressed files containing the genotype information and SNP annotations. 

Because PrediXcan cannot handle NA values, which relate to unknown calls, SNPs with any NAs were 

removed from further consideration. This reduced the initial number of SNPs to 2,217,199 (60% of the 

original dataset). Finally, a sample file, which helps PrediXcan identify samples, and a phenotype file, 

which is used during PrediXcan’s association test, were created.  

Several quality checks were conducted before running PrediXcan. First, GTEx used the human 

genome reference GRCh37; thus, the genotype annotation was compared to ensure both the SNP 

position and allele information matched Ensembl’s GRCh37 build. R version 3.5.1 with the biomaRt 

package (Durinck, 2011) was used to retrieve and compare annotations. No discrepancies were found. 

Secondly, the SQL weight files do not follow the alternative/reference convention due to annotation 

discrepancies between different databases. Instead, the weight file reference the “effect allele” and only 

include non-complementary SNPs, which allows PrediXcan to correct dosages if the other allele was 
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coded for. Still, the transformed genotype files were checked against the SQLite weight file for coding 

discrepancies; none were found.  

Python 2.7 on Ubuntu 18.04.1 LTS was used to run PrediXcan, which produced imputed 

expression levels for each individual. Several steps were taken so that the imputed expression could be 

compared against the measured expression. First, the PrediXcan output included Ensembl gene IDs, 

which were not available in the Arraystar annotation. Thus, Python 3.7 with the MyGene package (Xin, 

2016) was used to convert the IDs into gene symbols. Secondly, a handful of genes, which were found in 

the measured expression, had duplicate probes (n=11). The median values of those probes were taken. 

Finally, PrediXcan works in an additive fashion where all genes start with an initial value of zero. If the 

output of a gene includes zeros for all imputed individuals, that indicates that the genotypic data lacked 

matching SNPs in the weights file. Thus, these genes were removed (n=411) as they weren’t informative.  

As the gene models were trained on log2 inverse-rank normalized data, the measured 

expression data was transformed in the same manner. Thus, the imputed expression results could be 

negative and would indicate that the predicted expression was lower than the average expression of the 

GTEx cohort, which was used to create the model. For genes in both datasets, a Pearson correlation was 

used to compare measured expression values and imputed expression values (Table 3). Additionally, the 

genes with the highest Pearson correlation are highlighted in Figure 10.  
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 ALL PR2≥0.1 PR2≥0.2 PR2≥0.3 PR2≥0.4 PR2≥0.5 PR2≥0.6 
Number of Genes: 975 546 262 142 69 25 10 
First 5 with AUD:        

1 -0.042 -0.065 -0.039 0.031 -0.116 -0.148 0.195 
2 -0.007 -0.030 -0.098 -0.069 -0.087 0.095 0.131 
3 0.004 0.049 0.019 -0.027 0.011 0.037 -0.234 
4 -0.017 -0.051 -0.104 -0.114 -0.097 -0.091 -0.280 
5 0.014 0.017 0.114 0.137 0.177 0.387 0.751 

        
First 5 Controls:        

1 0.011 0.017 0.001 -0.031 0.006 0.022 0.076 
2 -0.002 -0.026 -0.078 -0.104 -0.051 0.169 0.826 
3 0.013 0.044 0.100 0.081 -0.016 0.128 -0.019 
4 -0.027 -0.035 -0.038 -0.133 -0.032 -0.272 -0.504 
5 -0.005 0.022 0.016 -0.010 -0.117 -0.114 -0.251 

        
Mean (All Donors) 0.021 0.012 0.016 0.022 0.003 0.054 0.043 

SD (All Donors) 0.193 0.219 0.256 0.286 0.323 0.320 0.317 
Table 3. Pearson correlation of matching genes between measured expression and imputed expression 
for a given individual. The first 5 donors with alcohol use disorder and neurotypical controls were 
highlighted. Pearson correlation of matching genes were also calculated at certain predicted R2 
thresholds (≥0.1, ≥0.2,  ≥0.3, ≥0.4, ≥0.5, or ≥0.6). 
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Figure 10: Examples of well predicted genes. The predicted R2 for SPSB2, ELAC2, SMYD4, and LRRC37A 
was 0.418, 0.323, 0.139, 0.531. 

 

 The results show that only 975 genes were matched between the imputed expression and 

measured expression. Overall, the correlation was poor and did not significantly improve by selecting 

genes with a specified predicted R2. There were a handful of well correlated genes (Figure 10) but only 

13 genes had a Pearson correlation ≥ 0.5 (1.3% of all matched genes). And while most of those genes 

had a predicted R2 above the average gene model, which was 0.16 for the nucleus accumbens, none of 

those genes had a strong predicted R2. 

 Additionally, some of the well correlated genes had defined striations, which suggests that 

much of the imputed expression was defined by a single SNP. For example, the most likely explanation 

for ELAC2’s results would be a single SNP, with a high weight coefficient, and a somewhat even-
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distribution of the three genotypes (homozygous major, heterozygous, and homozygous minor). The 

jittering of those lines was likely the result of other SNPs with a lower weight coefficient. This 

observation is further supported by the fact that ELAC2 has only 7 SNPs in its gene model (on average, 

nucleus accumbens’ gene models contained 31 SNPs).  

 

3.1 Selecting Genes with Model R2  

 In the SQLite weight files for GTEx version 7, the model R2 quality metric was added. This metric 

is the average coefficient of determination for each of the cross-validated models. As such, it expresses 

how much variance a particular model is able to account for. Thus, the metric may be a stronger 

indicator of a model’s accuracy and was used to select genes (Table 4). Overall, the correlations did not 

improve by selecting genes with a higher model R2. The differences between the model R2 and the 

predicted R2 were not substantial.  
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 ALL MR2≥0.1 MR2≥0.2 MR2≥0.3 MR2≥0.4 MR2≥0.5 MR2≥0.6 
Number of Genes: 975 343 188 98 46 19 6 
First 5 with AUD:        

1 -0.042 -0.060 0.045 -0.077 -0.093 -0.160 0.168 
2 -0.007 -0.071 -0.062 -0.129 0.082 0.188 0.041 
3 0.004 0.030 -0.023 -0.023 -0.113 0.032 -0.328 
4 -0.017 -0.089 -0.090 -0.092 -0.102 -0.148 -0.229 
5 0.014 0.045 0.167 0.173 0.123 0.409 0.935 

        
First 5 Controls:        

1 0.011 0.000 0.009 -0.080 -0.022 0.024 0.284 
2 -0.002 -0.026 -0.092 -0.107 -0.012 0.240 0.933 
3 0.013 0.078 0.101 0.065 -0.025 0.285 -0.021 
4 -0.027 -0.033 -0.106 -0.122 -0.179 -0.325 -0.450 
5 -0.005 0.002 0.024 -0.020 -0.074 -0.162 -0.324 

        
Mean (All Donors): 0.021 0.022 0.031 0.002 -0.021 0.026 -0.012 

SD (All Donors): 0.193 0.237 0.271 0.298 0.323 0.294 0.383 
Table 4. Pearson correlation of matching genes between measured expression and imputed expression 
for a given individual. The first 5 donors with alcohol use disorder and neurotypical controls were 
highlighted. Pearson correlation of matching genes were also calculated at certain model R2 thresholds 
(≥0.1, ≥0.2,  ≥0.3, ≥0.4, ≥0.5, or ≥0.6). 

 

3.2 Recoding Missing SNPs 

 As PrediXcan cannot handle missing values, SNPs with any NAs were removed from further 

consideration. Thus, a single NA would cause all genotypic data for that SNP to be disregarded, which is 

reflected in the fact that 40% of the genotypic data was removed. As PrediXcan depends on matching 

SNPs to the SQLite weight file, there was a strong possibility that the filtering step eliminated predictive 

information and hampered PrediXcan’s accuracy. Thus, recoding missing values was attempted by 

assigning them the value [2 X Population’s Effect Allele]. This step ascribes a neutral estimator to each 

missing SNP by assuming the sample’s genotype matched the allele frequency in its population.  

The National Center for Biotechnology Information (NCBI) provides comprehensive information 

about each SNP, including allele frequencies for different populations. Additionally, the URL of a given 

SNP is predictive, allowing one to automate the retrieval of relevant information. Thus, a virtual private 
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server running ubuntu 18.04.2 LTS executed a bash script, which visited and extracted allele frequencies 

for 1,485,966 SNPs. Considering that the donors were Caucasian Australians, the European population 

was chosen. Information relating to 973,016 SNPs had allele frequencies for the European population. 

That information was checked against the annotations for mismatch alleles and nonsensical results (i.e. 

same nucleic acid for the reference and alternative allele); 7,931 results were removed due to quality-

control measures. Thus, 965,085 SNPs were able to be recoded, which increased the total number of 

SNPs available for PrediXcan to 3,182,284 (86% of the original dataset).  

The results of the recoding are highlighted in table 4. As more SNPs were included, there were 

less genes removed for having all imputed zeros (n=333) and slightly more matching genes (n=999). And 

while filtering by predicted R2 brought a slight improvement in the mean correlation, PrediXcan accuracy 

remain poor and only 14 genes had a Pearson correlation ≥ 0.5 (1.4% of all matched genes). Additionally, 

the genes with the highest correlation did not change. Thus, recoding missing values brought minor 

improvements. 

 

 

 

 

 

 

 

 



25 
 

 ALL PR2≥0.1 PR2≥0.2 PR2≥0.3 PR2≥0.4 PR2≥0.5 PR2≥0.6 
Number of Genes: 999 558 265 144 70 25 10 
First 5 with AUD:        

1 -0.041 -0.052 -0.037 0.000 -0.153 -0.233 0.249 
2 0.031 0.009 -0.042 -0.036 -0.084 0.088 0.181 
3 0.020 0.074 0.068 0.031 0.086 0.101 -0.083 
4 -0.035 -0.045 -0.098 -0.114 -0.132 -0.087 -0.132 
5 0.032 0.039 0.098 0.101 0.153 0.278 0.722 

        
First 5 Controls:        

1 0.020 0.010 -0.008 -0.035 -0.030 0.070 0.117 
2 -0.009 -0.042 -0.121 -0.186 -0.207 -0.086 0.580 
3 0.014 0.027 0.064 0.069 -0.032 0.142 0.058 
4 -0.006 -0.009 -0.016 -0.102 - 0.047 -0.262 -0.595 
5 -0.017 0.017 0.015 0.006 -0.066 -0.055 -0.175 

        
Mean (All Donors): 0.025 0.020 0.024 0.031 0.025 0.060 0.050 

SD (All Donors): 0.194 0.219 0.253 0.283 0.318 0.323 0.309 
Table 5. Pearson correlation of matching genes between measured expression and imputed expression 
for a given individual. Missing dosages in genotype data was recoded prior to using PrediXcan. The first 5 
donors with alcohol use disorder and neurotypical controls were highlighted. Pearson correlation of 
matching genes were also calculated at certain predicted R2 thresholds (≥0.1, ≥0.2,  ≥0.3, ≥0.4, ≥0.5, or 
≥0.6). 

 

3.3 Association Test 

If given a phenotype file, to distinguish what group each sample belonged to, PrediXcan can run 

an association test. Thus, a linear association test was performed using the data that had missing SNPs 

recoded. The Benjamani and Hochberg adjusted p-values were calculated with the p.adjust function in R 

version 3.5.1. None of the genes reached significance (≤0.05).  

For exploratory reasons, genes with significant (≤0.05) unadjusted p-values were examined. In 

total, 164 genes were identified and 49 of those genes were represented in the Arraystar annotation. Of 

those 49 genes, only 2 (NOC3L and IFITM4P) were significant in the differential expression analysis of 

the measured expression. Additionally, those genes’ Pearson correlations, which compared the imputed 

and measured expression, are shown in Figure 11. Both of those genes had a modest Pearson 
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correlation and poor predicted R2. Thus, the association test performed poorly, which is understandable 

given the poor imputation of expression.  

 

  
Figure 11. Pearson correlation of two genes, which were significant in the differential expression 
analysis (p-value adjusted) and PrediXcan association test (p-value unadjusted). The Pearson correlation 
and predicted R2 for NOC3L (0.057) and IFITM4P(0.050) were low.  
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Chapter 4 

Affymetrix Expression 

 As part of another study on the same population, expression data was collected utilizing the 

Affymetrix GeneChip Human Genome U133A 2.0 platform, which measured the expression of 18,400 

human transcripts and variants. Only a subset of the neurotypical controls (n=18) and donors with 

alcohol use disorder (n=18). While there are numerous differences between the two platforms, 

including RNA preparation and scanner, one impactful difference is the size of the probes. Affymetrix 

utilizes 25-mer oligonucleotide probes whereas the Arraystar platform are more than double in length 

(60 nt). As shorter probes tend to be more sensitive and longer probes have a higher rate of cross-

hybridization (Chou, 2004), discrepancies may exist between different platforms. 

 Thus, PrediXcan was evaluated against the Affymetrix array using the same procedure as 

described in chapter 3 with several exceptions. First, the data was not log2 transformed, background 

corrected, or normalized, as it was already done as described in the data’s publication (Mamdani, 2015). 

Secondly, the annotations for the platform were created using Affymetrix’s batch query web app 

(https://www.affymetrix.com/analysis/netaffx/batch_query.affx). Additionally, the genotypic data with 

recoding of missing SNPs was used. The results are highlighted in table 6. 
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 ALL PR2≥0.1 PR2≥0.2 PR2≥0.3 PR2≥0.4 PR2≥0.5 PR2≥0.6 
Number of Genes: 1500 832 390 193 91 36 9 
First 5 with AUD:        

1 0.049 0.057 0.050 0.137 0.189 0.301 0.442 
2 0.084 0.104 0.128 0.108 0.171 0.049 0.036 
3 0.022 0.031 0.107 0.121 0.105 0.261 0.403 
4 0.026 0.029 0.060 0.078 -0.019 0.164 0.050 
5 -0.005 -0.039 0.006 0.029 -0.007 0.092 0.098 

        
First 5 Controls:        

1 0.006 0.012 0.027 0.054 0.014 -0.198 -0.010 
2 -0.004 0.020 0.008 0.014 -0.026 0.074 0.328 
3 0.045 0.061 0.090 0.088 0.076 -0.077 -0.229 
4 0.054 0.095 0.072 0.053 0.075 0.213 0.576 
5 -0.027 0.007 0.003 0.011 0.006 0.119 0.192 

        
Mean (All Donors): 0.025 0.033 0.046 0.058 0.054 0.026 0.099 

SD (All Donors): 0.239 0.264 0.301 0.336 0.374 0.423 0.415 
Table 6. Pearson correlation of matching genes between the Affymetrix measured expression and 
imputed expression for a given individual. Missing dosages in genotype data was estimated prior to 
using PrediXcan. The first 5 donors with alcohol use disorder and neurotypical controls were highlighted. 
Pearson correlation of matching genes were also calculated at certain predicted R2 thresholds (≥0.1, 
≥0.2,  ≥0.3, ≥0.4, ≥0.5, or ≥0.6). 

  

 The fact that only 1,500 genes matched between the Affymetrix platform and the PrediXcan 

results were surprising for several reasons. First, the nucleus accumbens weight file included 2,641 

protein coding genes. Additionally, the Affymetrix platform attempts to capture the entire protein 

coding transcriptome, which may only total 19,000 genes for humans (Ezkurdia, 2014), and more 

importantly, makes the full annotations available. Thus, the protein coding genes within the weight file 

were examined further; numerous protein coding genes included read-throughs, putative and variant 

genes were discovered, which explained the lower than expected matching.  

The correlation between Imputed expression and Affymetrix expression are show in Figure 12 

and show the top correlated genes all had a predicted R2 above the average (i.e. 0.16). But overall, the 
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accuracy of PrediXcan was poor and increasing the predicted R2 did not bring a substantial gain in 

performance. Only 41 genes (2.7% of all matched genes) had a Pearson correlation ≥ 0.5. 

 

 

  

  
Figure 12: Examples of well predicted genes. GPNMB, LINC00339, SLC35F2, and GSTM5 had a predicted 
R2 of 0.308, 0.521, 0.390, and 0.494.  
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Chapter 5 

Lung cohort 

 While PrediXcan’s performance was evaluated on two different platforms, the poor correlation 

may have been the consequence of any number of coding errors (i.e. incorrect annotations, incorrect 

dosage file format, etc) rather than a true measure of PrediXcan’s accuracy. Unfortunately, the GTEx 

transcriptome dataset is not readily available, which prevented us from reproducing the findings of the 

original PrediXcan paper. Thus, to evaluate the previous chapters’ methodology, the NCBI’s Gene 

Expression Omnibus (GEO) was used to find a transcriptome dataset that offered the greatest likelihood 

of validating PrediXcan’s imputation. This meant selecting a dataset that would be used alongside one of 

PrediXcan’s more robust models (i.e. included a higher number of samples in the model), one that 

matched the donors used in PrediXcan’s models (i.e. Europeans), and one that included healthy tissue.  

The genotypic and small airway epithelium expression data from 15 healthy non-smoking 

European donors were selected from a larger publicly available transcriptome dataset (Butler, 2011). 

This dataset was downloaded from NCBI’s GEO site on February 7th, 2019 (GEO ID: GSE22047). 

Additionally, this dataset contained similar platforms for the genotypic data (Affymetrix Genome-Wide 

Human SNP 5.0 Array) and expression data (Affymetrix Human Genome U133 Plus 2.0 Array). In total, 

preprocessed genotypic data pertaining to 443,816 SNPs and expression data pertaining to around 

47,000 transcripts was provided. The lung SQLite weights file was selected, which utilized the GTEx v7 

transcriptome dataset and incorporated information from 333 donors. The file included weights for 

209,035 SNPs, which were associated with 7,968 genes; 6,145 were protein-coding (77%), 940 were long 

non-coding RNAs (12%), and 883 were pseudogenes (11%). Compared to the nucleus accumbens’ 



31 
 

weights file, there were substantially more GTEx donors incorporated in the gene models (192%) and 

more genes (119%). 

The methodology for this chapter closely follows chapter 3 with a few exceptions. First, the data 

was not background corrected or normalized as those steps were conducted as specified in the dataset’s 

manuscript (Butler, 2011). Secondly, the expression annotation provided on the dataset’s GEO page was 

used. As this annotation included the Ensembl stable IDs, those IDs were used instead of gene symbols 

for comparisons between the imputed and measured expression.  

Prior to comparing the results, the imputed expression of 1,374 genes were removed due to all 

individuals having a value of zero (i.e. non-informative imputation). In total, 3,735 genes matched, which 

is likely the consequence of many more genes modeled in the SQLite weights file. The results are 

highlighted in table 7 and show a consistent improvement in the correlation by using predicted R2 for 

filtering. The top 4 genes, with the highest Pearson correlation, are shown in figure 13; the gene models 

for these genes all had a substantially higher predicted R2 than the average predicted R2 in the lung 

SQLite weights file, which was 0.11. Only 41 genes (1.09% of matched genes) had a Pearson correlation 

≥ 0.5. 

Overall, the results highlight PrediXcan’s ability to predict some genes well and validate the 

notion of using predicted R2 as a metric to increase imputation quality. It should be noted that the GTEx 

expression data comes from tissue found 1 cm below the pleural surface of the lung, which is a 

heterogenous mixture of different cell types. As the expression data originated from a particular cell 

type (small airway epithelium), the results also give support to PrediXcan’s methodology, which has 

been used to model genes within heterogenous tissue. 
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 ALL PR2≥0.1 PR2≥0.2 PR2≥0.3 PR2≥0.4 PR2≥0.5 PR2≥0.6 
Number of Genes: 3735 1450 626 320 158 69 16 
First 5 Individuals:        

1 0.049 0.084 0.102 0.149 0.218 0.169 0.200 
2 0.035 0.091 0.126 0.217 0.220 0.309 0.502 
3 0.007 0.033 0.082 0.131 0.079 0.146 0.300 
4 0.023 0.018 0.095 0.101 0.208 0.176 0.348 
5 0.054 0.063 0.119 0.173 0.163 0.103 0.344 

        
Mean (All Donors): 0.049 0.088 0.124 0.181 0.213 0.268 0.365 

SD (All Donors): 0.275 0.301 0.318 0.313 0.314 0.320 0.378 
Table 7. Pearson correlation of matching genes between the measured expression and imputed 
expression of lung tissue for a given individual. The first 5 donors were highlighted. Pearson correlation 
of matching genes were also calculated at certain predicted R2 thresholds (≥0.1, ≥0.2,  ≥0.3, ≥0.4, ≥0.5, 
or ≥0.6). 

 

  

  
Figure 13: Examples of well predicted genes. CECR1, FAM118A, MARCH2, and SLC7A9 had a predicted R2 
of 0.306, 0.703, 0.365, and 0.267. 
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Chapter 6 

Discussion 

 From the onset of this study, there had been two main goals. Firstly, evaluating PrediXcan ability 

to identify differential expression between donors with alcohol use disorder and neurotypical controls 

and secondly, assessing whether the predicted R2 metric can be used to improve imputation quality. On 

both accounts the performance of PrediXcan was poor regardless of phenotype and tissue origins. 

However, the results did not invalidate PrediXcan’s methodology altogether. PrediXcan was able to 

predict a handful of genes well and those genes largely had a predicted R2 metric above the average 

gene model, which indicates that the well-predicted genes are not a factor of chance alone. Additionally, 

the lung dataset demonstrated that the predicted R2 metric could be used to filter out poorly 

performing gene models and improve imputation. Considering that predicted R2 is a surrogate for 

heritability, the results show that the strong performance of select genes is a consequence of high 

heritability.  

 Despite some of the propitious results of this study, there are apparent limitations to PrediXcan 

that urge a cautionary approach. Most apparent is the fact that the majority of the genes are not 

represented within each of the PrediXcan’s tissue specific weights file. Additionally, the overall 

imputation quality with the alcohol use disorder dataset and lung dataset was poor. And if one utilizes a 

quality metric to limit genes with a high predicted R2 or model R2, the number of genes quickly is 

reduced. For instance, only 36 genes in the lung dataset could be compared when selecting gene models 

with a predicted R2 ≥ 0.5. On this basis alone, PrediXcan cannot replace traditional differential 

expression studies.  
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But even if one accepted those limitations, the well predicted genes highlight another concern. 

Despite these genes having predicted R2 metrics above the average gene model in their weights file, 

these genes often did not have a strong predicted R2. Put in another way, genes with higher quality 

metrics were not imputed with greater accuracy. This shortcoming can also be seen in the lung dataset, 

where the improved correlations markedly fell short of the predicted R2 quality metric. As that metric is 

itself a correlation2, one would expect the opposite. Additionally, it is worth mentioning that only a small 

percentage of compared genes (1.1%-2.7%) had a Pearson correlation ≥ 0.5 between the measured and 

imputed expression. Thus for the lung tissue, where the average correlation improved by filtering out 

genes with a low predicted R2, that average was largely being driven by weak to modest correlations. 

Together, these factors not only highlight the rarity of strong models but an inability to discern strong 

models from weak models, which may lead to spurious results and mislead researchers.  

While the notion of imputing gene expression from genotypic data alone may seem unreliable, 

especially considering the dynamic nature of gene expression, we did observe some limited success in 

the results. Thus while PrediXcan will likely not replace traditional approaches to measure gene 

expression, the authors nonetheless have laid a foundation for future development. For example, 

EpiXcan is another recent software, which builds upon that concept by incorporating epigenomic data 

into its models and reportedly outperforms PrediXcan (Zhang, 2019, pre-print: 

https://dx.doi.org/10.1101/532929). However, we have not tested EpiXcan here.  

Given the merit in PrediXcan’s methodology, it is our intention to continue to understand and 

explore ways to improve PrediXcan’s imputation. Recently, we’ve been given access to genotypic and 

expression data from 326 Australian twins (Powell, 2012). As this cohort is from the same population as 

those in the alcohol use disorder dataset, it will allow us to also calculate narrow sense heritability of 

gene expression and thus circumvent the need for a surrogate quality metric. Additionally, we’ve 

applied for and have obtained access to the GTEx v7 transcriptome dataset. With this data, we will be 
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able to rebuild PrediXcan models, enact different quality control metrics, and attempt to improve the 

results of PrediXcan. Also, our access to the GTEx dataset may allow us to understand why the nucleus 

accumbens tissue performed so poorly. While the lower number of donors included in the elastic net 

methodology are a prime suspect, this can be tested by creating a lung model with the same number of 

donors and observing the outcome.  
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Appendix 
 

Arraystar AUD Cohort: Gene SNPS in Model Predicted R2 Pearson Correlation 
 ELAC2 7 0.323 0.697 
 SPSB2 22 0.418 0.691 
 SMYD4 38 0.139 0.643 
 LRRC37A 38 0.531 0.615 
 CNGA1 33 0.403 0.597 
 XRCC1 16 0.079 0.576 
 SNX31 23 0.287 0.568 
 ZNF626 23 0.056 0.559 
 ZNF880 50 0.712 0.554 
 HBS1L 65 0.146 0.528 
 LINC00667 19 0.339 0.527 
 DUS3L 16 0.328 0.522 
 POMZP3 60 0.581 0.520 
 L3HYPDH 48 0.385 0.502 

Table 8. Well predicted genes (Pearson correlation ≥ 0.50 between imputed and measured expression) 
for Arraystar alcohol use disorder cohort with recoding of missing SNPs.  
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Affymetrix AUD Cohort: Gene SNPS in Model Predicted R2 Pearson Correlation 
 GPNMB 13 0.308 0.775 
 LINC00339 21 0.521 0.766 
 SLC35F2 7 0.390 0.729 
 APIP 103 0.660 0.708 
 GSTM5 24 0.494 0.708 
 PILRB 56 0.591 0.677 
 NMRK1 54 0.497 0.674 
 KNOP1 49 0.498 0.656 
 ALDH8A1 71 0.330 0.646 
 TMEM80 33 0.328 0.629 
 GSTM3 49 0.241 0.625 
 SLC27A2 11 0.300 0.613 
 ERMAP 7 0.285 0.607 
 STAG3L4 24 0.495 0.604 
 TYW1 41 0.415 0.590 
 MTMR3 41 0.195 0.585 
 DHRS11 47 0.237 0.579 
 CHAF1A 42 0.278 0.573 
 HBS1L 65 0.146 0.573 
 C1GALT1 47 0.303 0.571 
 HPR 14 0.587 0.571 
 LIN7C 12 0.053 0.568 
 LXN 46 0.132 0.566 
 SNRPC 66 0.367 0.566 
 SPATA20 8 0.611 0.556 
 TCFL5 191 0.205 0.544 
 MED17 13 0.048 0.542 
 LARS2 41 0.298 0.539 
 RPS18 7 0.047 0.539 
 MARCH2 35 0.417 0.532 
 MTCH2 24 0.226 0.527 
 POLI 137 0.454 0.526 
 UROS 45 0.579 0.517 
 TRAPPC4 10 0.493 0.516 
 MFF 64 0.256 0.515 
 PMS2P3 40 0.160 0.513 
 LDAH 6 0.400 0.512 
 ST7L 17 0.053 0.512 
 PIGZ 81 0.392 0.510 
 XRCC1 16 0.079 0.508 
 TOR1B 18 0.064 0.504 
     

Table 9. Well predicted genes (Pearson correlation ≥ 0.50 between imputed and measured expression) 
for Affymetrix alcohol use disorder cohort.  
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Affymetrix Lung Cohort: Gene SNPS in Model Predicted R2 Pearson Correlation 
 CECR1 38 0.306 0.858 
 FAM118A 30 0.703 0.795 
 MARCH2 34 0.365 0.709 
 SLC7A9 45 0.267 0.708 
 PLD1 45 0.172 0.704 
 GSTT2 42 0.608 0.687 
 SNAPC1 13 0.108 0.685 
 TRIOBP 21 0.051 0.676 
 SAR1A 29 0.289 0.652 
 DHX8 44 0.019 0.651 
 ARSA 7 0.311 0.649 
 TFRC 42 0.036 0.636 
 POMT2 33 0.093 0.632 
 TMEM230 63 0.216 0.619 
 TIE1 22 0.111 0.614 
 CATSPERG 39 0.243 0.614 
 MOV10L1 22 0.016 0.605 
 CDIP1 17 0.084 0.600 
 TFIP11 68 0.015 0.598 
 GDPD3 20 0.074 0.591 
 PPIL2 34 0.276 0.585 
 MTMR3 27 0.165 0.583 
 MKRN2 61 0.088 0.577 
 CHMP2B 41 0.010 0.572 
 CPNE3 49 0.107 0.571 
 OXT 30 0.025 0.570 
 IL27RA 16 0.049 0.568 
 HSD17B7P2 20 0.102 0.564 
 SIRT4 21 0.079 0.557 
 ASB4 119 0.145 0.554 
 WAC 13 0.055 0.533 
 CECR5 32 0.015 0.532 
 TUBB4A 10 0.043 0.525 
 DAPP1 33 0.060 0.524 
 RBM6 52 0.439 0.523 
 EIF4B 17 0.111 0.522 
 CACNA1I 9 0.016 0.520 
 LIN7B 10 0.081 0.516 
 TTC19 34 0.149 0.514 
 GRAMD1A 28 0.120 0.502 
 CD22 36 0.251 0.501 

Table 10. Well predicted genes (Pearson correlation ≥ 0.50 between imputed and measured expression) 
for Affymetrix lung cohort.  
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