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 The solid phase of an aquifer has an effect on the aqueous phase; if groundwater quality 

is degraded by the solid phase of an aquifer this is referred to as geogenic pollution. In this study, 

the Piney Point aquifer in the Virginia Coastal Plain was assessed for mechanisms that may 

release anions from the solid to aqueous phases and effect water quality. This was done by 

conducting leaching experiments modified from Balintova et al. (2013). Piney Point aquifer 

sediments and groundwaters were also analyzed to give a baseline for these experiments. 

Sedimentary analysis was found to be consistent with McFarland (2017) and groundwater anion 

concentrations were found to be less than the U.S. Environmental Protection Agency’s (EPA) 

established Maximum Contaminant Levels (MCL). Leaching experiments found that low pH 

environments may lead to the release of fluoride in association with phosphorus in sediments and 

general release of chloride. Nitrate release mechanisms in confined aquifers require further 

study, but it appeared as total inorganic carbon was dissolved, sedimentary total nitrogen 

concentrations increased. Sulfate concentrations in leaching experiments were found to be 

associated with sulfur concentrations in the solid phases. Furthermore, leaching experiments 
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showed that when sediments are exposed to oxic environments then re-exposed to groundwater, 

higher concentrations of anions were released to the aqueous phases. This could be a particular 

issue with sulfate concentrations, which were above the EPA MCL in the majority of sediment 

samples in all leachate treatments. 
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Introduction 

Groundwater quality is related to weathering, recharge rate, and the quality of the 

recharge water, as well as solid-aqueous interactions in the aquifer. Thus, groundwater chemistry 

typically reflects the composition of the solid phases of the aquifer, i.e. the stratigraphic 

formations from which it is derived, since the water is in contact with aquifer sediments for 

prolonged periods of time (Mora et al. 2017). Anthropogenic activities, such as mining, 

deforestation, and agriculture, as well as other aspects of industrialization and modernization, 

increase sedimentation and erosion which frequently leads to increased concentrations of 

pollutants in aquatic environments (Ayotte et al. 2011, Du Laing et al. 2009).  

While groundwaters are often polluted by anthropogenic processes, some groundwater 

systems can naturally contain pollutants as a result of the regional geologic setting; this is called 

geogenic pollution. One example is arsenic in Ganges Delta in Bangladesh. Wells were drilled in 

the 1970s to provide people of Ganges Delta with an alternative to contaminated surface water. 

The wells appeared to have potable water, however, at the time groundwater was not routinely 

analyzed for toxic metals and arsenic, and as a result, people ingesting water from these wells 

developed signs of chronic arsenic poisoning many years later (Younger 2007, Hasan et al. 

2009). A similar situation to that in Bangladesh is currently occurring in California’s Central 

Valley. California’s San Joaquin Valley supports a large agriculture industry and population that 

puts high water demand on the aquifers in the area; this has led to approximately 60 m of 

groundwater level declines in the past century and arsenic was present in ten percent of wells at 

concentrations higher than 10 ppb (World Health Organization maximum acceptable level) 

(Smith et al. 2018). Smith et al. (2018) found that arsenic concentrations in groundwater 

decreased as overpumping of aquifers was avoided. Therefore, geogenic pollution is often 
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exacerbated by groundwater withdrawal, particularly from overpumping. Overpumping causes a 

drawdown of the water table which alters the redox state of the sediments, and is a mechanism 

that leads to acid mine drainage (Younger 2007). 

Globally, arsenic and fluoride are the most common sources of geogenic pollution to 

groundwater; the former is an example of a toxic metal and while the latter is a naturally 

occurring anion (Younger 2007, Margat and van der Gun 2013). For this study, I will be 

assessing groundwater quality in terms of anion concentrations. 

Anions 

Groundwater quality is affected by the presence and concentration of different anions. 

Anions are negatively charged ions and are primarily nonmetals and nonmetal compounds 

(Younger 2007). Anion concentrations in groundwater often reflect the aquifer sediments from 

which they originated. Anions occur naturally in the earth’s crust and are readily dissolved into 

water. Examples of anions include: fluoride, chloride, bromide, nitrite, nitrate, sulfate, and 

phosphate (AWWA 2014). Typically, ions affect the salinity of groundwater and high salinity 

can increase risk of high blood pressure or hypertension (Mora et al. 2017). Elevated 

concentrations of nitrate in groundwater can cause methemoglobinemia or “blue baby 

syndrome,” and high concentrations of sulfate can have laxative effects (Mora et al 2017). 

Concentrations of fluoride less than 1 mg/L are beneficial to healthy teeth but higher 

concentrations may hinder bone development and cause fluorosis (Younger 2007, Brindha and 

Elango 2011).  

Mechanisms for release into groundwater 

Sediments are the main source of geogenic pollutants in aquifer systems and, depending 

on sediment surface area, can retain a million times more pollutants than an equivalent volume of 
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water (Fairbrother et al. 2007). Anions cannot be destroyed by biological or chemical processes, 

rather, they are transformed from one chemical state to another and their availability is highly 

dependent on sediment-water interactions (Ayotte et al. 2011). Groundwater frequently reflects 

the depositional conditions at the time of its formation. For example, ancient groundwaters 

trapped deep in sedimentary aquifers with high concentrations of chloride can denote ancient 

seawater trapped within the sediments (Younger 2007). Such is the case for the Chesapeake Bay 

impact crater where isolated groundwater is highly saline (McFarland 2010). 

Prolonged exposure of groundwater with adjacent aquifer soils promotes active surface 

mineral processing. These processes include ions adhering to (sorption) or releasing from 

(desorption) the mineral phases of the aquifer sediments. The sorption/desorption potential of 

aquifer sediments is referred to as cation-exchange capacity (CEC). Aquifer materials associated 

with the highest CEC are sedimentary organic matter, oxides and hydroxides of iron and 

manganese, and clay minerals (Younger 2007).  

When changes to aquifer chemistry occur, anions may dissociate from the solid phases of 

sediments and solubilize into groundwater. Factors that affect the CEC, and hence availability of 

anions, include pH, redox potential, and the presence of organic matter, as well as anthropogenic 

activities (Ayotte et al. 2011). Generally, in sediments, cationic elements will bind with solid 

mineral phases of sediment, while anionic elements tend to be located in the aqueous phase (i.e., 

pore water) (Fairbrother et al. 2007). Even minor alterations in the environmental parameters can 

mobilize these elements from solid phases to the aqueous phase. For example, at low pH the 

negative surface charge of organic matter, clay minerals, and Fe/Mn hydroxides is reduced, 

which prevents most anions from absorbing to the solid phase and promotes their release from 

the aquifer sediments’ surfaces. Cations will compete for bonds to the solid phases, which 
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stimulates the release of anions to the aqueous phase (Du Laing et al. 2009). Once dissolved in 

water, anions are more bioavailable and readily consumed by organisms relying on the 

groundwater (Centioli et al. 2008, Fairbrother et al. 2007).  

Groundwater quality may also be affected by the well infrastructure that is responsible 

for its transportation to the surface (Pieper et al. 2016). For the purpose of this study, I will focus 

solely on natural contamination of groundwater from sediments and will not be considering well 

infrastructure as a source of groundwater contamination.  

Objective 

As half the world’s population is dependent on groundwater for their primary drinking 

water source, it is important to have a fundamental understanding of the factors regulating the 

transfer of elements and compounds from the solid to the dissolved (or aqueous) phase in global 

aquifers (Margat and van der Gun 2013). This study will focus on the Piney Point aquifer in the 

Virginia Coastal Plain, which, as of 2002, accounted for five percent of groundwater used in the 

region (McFarland and Bruce 2006).  The primary objective of this study is to assess the 

potential groundwater quality in terms of anion concentrations of the Piney Point aquifer and to 

gain a mechanistic understanding of the release mechanisms of anions from the solid phases of 

the aquifer under varying pH conditions. 

A more comprehensive understanding of dissolved anion concentrations, as well as, their 

controlling environmental factors is essential for continued use of groundwater for human 

consumption and agriculture. A study of this kind has not been performed on the Piney Point 

aquifer sediments, so this study will be of importance to understand the concentrations of the 

anions present and their potential for mobility, which has implications for the health and safety 

of the citizens dependent on the Piney Point aquifer as a primary source of water supply. 
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Furthermore, if there are instances of anion concentrations not in compliance with the EPA 

drinking water standards, these might pose a risk to public health (Table 1). The EPA drinking 

water standards used in this study are Maximum Contaminant Level (MCL), the highest level of 

a contaminant that is allowed in drinking water before human health is potentially affected, and 

Secondary Drinking Water Regulations (SDWR) or Secondary Maximum Contaminant Level 

(SMCL), the highest level of a contaminant allowed in drinking water before aesthetic conditions 

(such as taste, color, and odor) are affected that may cause people to stop using public water 

(U.S. EPA 2018, U.S. EPA 2017). It is hypothesized that all anion concentrations in the Piney 

Point aquifer will be less than the EPA standards for drinking water since all wells tested in this 

study are routinely monitored by their respective water authorities. 

In the Piney Point aquifer, elevated concentrations of anions (if any) will most likely be 

caused by overpumping and associated alterations to the aquifer chemistry rather than runoff 

from agriculture and industry, since the wells sampled for this study draw from an area of the 

aquifer that is relatively deep and confined throughout its reach. The present study was carried 

out by conducting leaching experiments on the bulk sediments from the Piney Point aquifer and 

subsequently measuring the anion concentrations in leachate after pH had been manipulated. 

This was done to see how anion concentrations are affected by changes in pH. Groundwater and 

sediment samples from the Piney Point aquifer were collected and analyzed in order to 

understand the geochemistry and mineralogy of the solid and aqueous phases of the aquifer. 

Leaching experiments were meant to simulate redox changes due to water table drawn down via 

well water extraction and the resulting pH changes from aquifer sediments exposed to oxic 

conditions. The Piney Point aquifer was selected for this study since most of the groundwater is 

drawn from a productive limestone formation while the rest of the aquifer is typically not utilized 



 
 

6 
 

for drinking water. In the event of water table drawn down, water may be drawn from unwanted 

areas of the aquifer, and have an affect on drinking water quality. 

Furthermore, this study will be critical in assessing future impacts of climate change on 

groundwater quality. As surface water sources become depleted or salinized (via saltwater 

intrusion) and populations become more dependent on groundwater, it will become increasingly 

important to have a fundamental understanding of regional groundwater supplies and how they 

may change due to increased water exploitation (Margat and van der Gun 2013). 

Methods 

1. Study area 

The Virginia Coastal Plain has a temperate, humid climate and is generally heavily 

vegetated. The land surface is underlain by layers of unconsolidated to semi-consolidated 

sediments that increase in thickness eastward toward the Atlantic Ocean to depths of as much as 

6,000 feet before reaching bedrock (Figure 1; McFarland and Bruce 2006, McFarland 2017).  

The aquifer system of Virginia Coastal Plain consists of various geological formations 

formed by the layers of sediments that were deposited on the continental shelf between the 

Cretaceous to Quaternary age (McFarland 2010, McFarland 2017). In general, groundwater is 

primarily recharged by infiltration of precipitation. Groundwater in unconfined aquifers flows a 

relatively short distance before it is discharged into adjacent streams, however, small amounts of 

this groundwater may flow further downward and recharge the deeper confined aquifers.  In the 

Virginia Coastal Plain, this typically occurs along the Fall Zone and at divides between major 

river valleys (McFarland 2010). Due to the stratification of the Coastal Plain sediments, 

groundwater flow in its confined aquifers is generally lateral along the eastward dip toward the 

ocean and also around major withdrawal centers (Figure 1; McFarland 2010). Over the past 
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century, groundwater withdrawal in this area has continuously increased, with most large 

withdrawals controlled by the Virginia Department of Environmental Quality (VA DEQ). There 

are also estimated to be 200,000 small, unregulated withdrawals generally for “individual 

domestic use” (McFarland 2017). Cones of depression can be as deep as 150 feet below sea level 

and are centered around large industrial facilities in the cities of Franklin and West Point 

(McFarland 2017). Due to this increased groundwater withdrawal rates, the hydraulic gradient of 

the region has been redirected landward and is approximately double what it was pre-pumping 

(McFarland 2017). Additionally, rates of water table decline are currently estimated to be 

between 1-2 feet per year (McFarland 2017).  

Several hydrogeological units are present in the Virginia Coastal Plain forming a series of 

aquifers and confining units (Figure 1; McFarland 2017). As of 2003, the Potomac aquifer is the 

most heavily used accounting for seventy-four percent of groundwater withdrawals in the region, 

while the Piney Point accounted for five percent of groundwater withdrawals (McFarland and 

Bruce 2006). This is a significant amount considering yields are typically 10-50 gal/min from 

wells in the middle reaches of Northern Neck, Middle Peninsula, and York-James Peninsula, but 

can be as high as 400 gal/min in heavily used municipal wells, such as those in James City 

County (McFarland and Bruce 2006). These numbers are likely to increase with increasing 

populations in these areas.  

The Piney Point aquifer is considered confined throughout most of its reach. Outcrops of 

the Piney Point aquifer occur at steep slopes along the major river valleys on the western margin 

of the Coastal Plain, with the most significant in Virginia located along the Pamunkey River 

(McFarland 2017, Ward 1985). The Piney Point aquifer is present throughout the Virginia 

Coastal Plain and adjacent parts of Maryland and North Carolina. In Virginia, it is primarily 
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utilized as a groundwater source on the Northern Neck, Middle Peninsula, and York-James 

Peninsula, but is typically not utilized for groundwater south of James River, over the 

Chesapeake Meteor Impact, and on the Eastern Shore due to the presence of brackish water 

within the aquifer (McFarland and Bruce 2006, McFarland 2017). 

The Piney Point aquifer is comprised of several geological formations deposited under 

relatively uniform conditions on the marine Continental Shelf; these are closely connected 

hydraulically and assumed to function as a continuous uninterrupted medium for water to move 

through (McFarland and Bruce 2006, McFarland 2017). It is generally made up of medium to 

coarse-grained glauconitic, phosphatic, variably calcified, fossiliferous sands, that were 

deposited between 11-49 million years ago, during early Eocene to early Miocene (McFarland 

and Bruce 2006, Ward 1985). Additionally, McFarland (2010) cites the median pH of the Piney 

Point aquifer to be 8. Below is a description of each geologic formation within the Piney Point 

aquifer and those formations immediately above and below it (Figure 2).  

Only the uppermost formations in the Piney Point aquifer are continuous throughout its 

reach, most of the lower formations are not present across the Chesapeake Bay Meteor Impact 

(McFarland 2017).  For the purpose of this study, only formations present where groundwater 

samples and sediment samples were collected were described in detail. This study focused 

specifically on the Piney Point formation, as most of the groundwater used for public supply is 

drawn from this formation, from the productive ‘limestone’ (McFarland 2017). 

The Nanjemoy-Marlboro confining unit lies below the Piney Point aquifer for most of its 

extent and was deposited in the early Eocene. It consists of marine sediments that are silty and 

clayey, fine- to medium-grained glauconite with quartz sand and clay (McFarland 2017). The 

lower sediments of the Nanjemoy Formation Potapaco Member and the Marlboro Clay 
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underlying it make up the Nanjemoy-Marlboro confining unit, which are hydraulically similar 

and together impede horizontal flow. Within the Chesapeake Bay impact crater, the 

Chickahominy confining unit is below the Piney Point aquifer and is primarily composed of clay 

(McFarland 2017).  

The Nanjemoy Formation Woodstock Member is the deepest formation within the Piney 

Point aquifer and was deposited in the early Eocene. It is composed of marine sediments that are 

variably shelly and pebbly, medium- to coarse-grained quartz, and glauconite sand (McFarland 

2017). 

The Piney Point Formation is next lowest and most groundwater is withdrawn from this 

formation (McFarland 2017). It was deposited in the middle Eocene and is composed of marine 

sediments, which are variably shelly, pebbly, and calcite-cemented with medium- to coarse-

grained quartz and glauconite sand (McFarland 2017). The Piney Point Formation is composed 

of a productive ‘limestone’ and interbedded sands. Calcite cementation is developed well enough 

that it forms intervals of hardened limestone. Piney Point Formation limestone is composed of a 

low porosity massive structure that is solution-channeled and interbedded with uncemented sand 

(McFarland 2017).  

 Above the Piney Point Formation, lies the Old Church Formation, which was deposited 

in the late Oligocene. It is composed of marine sediments that are silty, variably shelly and 

pebbly with fine-to-medium grained quartz, glauconite, and phosphate sand (McFarland 2017). 

The Calvert Formation Newport News unit and basal part of the Plum Point Member 

comprise the top formation of the Piney Point aquifer. Though these two units are geologically 

distinct, they are hydraulically similar and are considered one geological unit composing the 

uppermost part of the Piney Point aquifer. These formations were deposited from early and 
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middle Miocene and are composed of marine sediments that are silty, variably shelly and pebbly 

with medium- to coarse-grained quartz and phosphate sand (McFarland 2017). 

The Calvert confining unit is above the Piney Point aquifer for most of its extent and is a 

silty, fine-grained quartz sand. The confining unit is made up of the fine-grained portion of the 

Plum Point Member that lies above the course-grains of the lower part of the formation member 

and the Calvert Beach Member, both of the Calvert Formation. These are hydrologically similar 

and together impede horizontal flow. The Calvert Formation fine-grained Plum Point Member 

was deposited in the middle Miocene and is composed of marine sediments that are silty and 

clayey, microfossiliferous, fine-grained quartz sand (McFarland 2017). In the southwestern part 

of its extent, the Piney Point aquifer is below the Saint Marys confining unit, which is a clay to 

clayey fine-grained quartz sand (McFarland 2017). 

2. Sampling 

a. Sediments 

Twenty-five sediment samples were selected from the USGS Banbury Cross borehole 

(Latitude: 37.365, Longitude: -76.721) at regular intervals and allowed to dry at room 

temperature. These core samples represent different depths within the Piney Point aquifer (from 

256-299 feet below land surface) and are from the Old Church, Piney Point, and Nanjemoy 

(Woodstock Member) formations (Table 2). Sediment samples were selected to be in as close to 

regular intervals as was possible with available samples, with representation from the Old 

Church (3 samples), Piney Point (18 samples), and Nanjemoy (Woodstock Member, 4 samples) 

formations.   
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b. Groundwater 

Piney Point aquifer groundwater samples were collected from 26 public wells that access 

the Piney Point aquifer (Figure 3). Groundwater samples were collected with the help of the 

Newport News Waterworks, Virginia Department of Environmental Quality, and James City 

County Service Authority. Wells were flushed for approximately 15 minutes prior to sampling 

and water samples were collected directly from spigots as close to the well as possible. Water 

samples were filtered in the field through a pre-rinsed Pall AcropakTM 1500 Supor® Membrane 

0.8/0.2 μm capsule filter. Sample containers, 40mL amber vials, were triple rinsed with filtered 

well water before collecting. Groundwater pH, temperature, and Eh were also collected in the 

field at each well site. Additionally, at one well site (Retreat; Latitude: 37.415, Longitude:           

-76.858) two 1L Nalgene bottles of raw well water were collected to be used as the Aquifer 

treatment for the leaching experiments. After collection, all groundwater samples were 

immediately placed on ice and stored in refrigeration (4ºC) in the lab until analyzed or utilized in 

leaching experiments.  

3. Laboratory Analysis 

a. Sediment Analysis 

Approximately 4g from each sediment sample was crushed with mortar and pestle into a 

fine powder. Bulk sediment chemistry was determined from crushed sediments by x-ray 

fluorescence (XRF) with a PanAnalytical Epsilon 3 XL at the VCU Nanomaterials Core 

Characterization Facility.  

Crushed sediment samples were also analyzed for total inorganic carbon (TIC), total 

organic carbon (TOC), and total nitrogen (TN) in the Environmental Analysis Lab at VCU. Total 

carbon (TC) and total nitrogen values were obtained by adding approximately 6mg of each 
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crushed sediment to tin capsules that were combusted with a Perkin-Elmer CHN analyzer. In 

order to obtain TOC and total nitrogen after HCl wash (TNHCl) values, approximately 1g of each 

crushed sediment sample was treated with HCl in order to remove all calcium carbonate and 

other inorganic carbon. Approximately 10mL of HCl was added to each sediment sample, 

stirred, and allowed to sit overnight. DI water (Milli-Q) was added to each sample, to dilute HCl, 

and the water-acid mixture was pored off. Remaining sediments were allowed to air dry at room 

temperature for one week and then placed in a drying oven (45°C) for 24 hours prior to being 

analyzed again with Perkin-Elmer CHN analyzer. TIC values were obtained by subtracting TC 

values from TOC values. 

b. Groundwater Analysis 

All 26 groundwater samples were analyzed for anion concentration with a Thermo 

Integrion ion chromatograph (IC) at the Research Instrumentation Facility of the Department of 

Chemistry, VCU. 

c. Leaching Experiments and Leachate Analysis 

Leaching experiments were carried out on the dried bulk sediments from nine core 

samples from the USGS Banbury Cross borehole, in stratigraphical order: two from below the 

Piney Point Formation, five from the Piney Point Formation, and two from above the Piney Point 

Formation (Table 3). Leaching experiments followed methods modified primarily from 

Balintova et al. (2013). Hasan et al. (2009), von Bromssen et al. (2008), and Yu et al. (2015) 

were also used as reference when constructing experiment design.  

Sediments were fully dried before initiation of leaching experiments to ensure they were 

fully exposed to an oxidized environment. Approximately 1g of each of the nine bulk sediment 

samples received one of the four treatments: acidic (pH 2.00), basic (pH 10.88), natural aquifer 
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water, and DI water (Milli-Q) (Table 4). The solutions for the basic and acidic treatments were 

mixed prior to the leaching experiments by adding 50% sodium hydroxide (NaOH) and ultrapure 

68% nitric acid (HNO3) to DI water, respectively. DI water was used as a control since it is free 

of anions and cations that may interfere with anion concentrations in the leachate.  Natural 

aquifer water was collected at the same time as groundwater samples were collected at the 

Retreat well (Latitude: 37.475, Longitude: -76.858) and was filtered in the lab through a pre-

rinsed Pall AcropakTM 1500 Supor® Membrane 0.8/0.2 μm capsule filter immediately prior to 

usage in leaching experiments.  

Approximately 40mL of treatment solution was added to each 1g sediment sample to 

create a sediment-water slurry ratio of 1:40. Sediment samples were thoroughly mixed with 

added solutions and allowed to sit for 96 hours, 72 hours greater than Balintova et al. (2013), to 

allow the sediments to fully saturate.  

The leachate was collected via vacuum filtration using glass mircofiber filter (Whatman 

GF/A pore size 1.6μm) and placed in a 40mL plastic vial, for anion analysis, and stored at 4°C. 

There was a total of 36 sediment leachate samples for anion analysis. Additionally, a 40mL vial 

of each treatment solution were set aside to be analyzed for anion concentrations. Therefore, 

there were a total of 4 treatment solutions for anion analysis. 

All leachate samples were analyzed for anion concentrations by a Thermo Integrion ion 

chromograph (IC) at the Research Instrumentation Facility of the Department of Chemistry, 

VCU. 
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4. Statistical Analysis 

Regression analysis was performed in Microsoft Excel for leaching experiments to 

determine possible relationships between sediment compound concentrations and anion 

concentrations in each leachate. 

Results and Discussion 

Sediments 

Elemental concentrations in sediments were collected as a baseline for solids of the 

aquifer to be used in leaching experiments. Sediment samples from the Banbury Cross borehole 

were analyzed for elemental concentrations with XRF at the Nanomaterials Core 

Characterization Facility and CHN analyzer at the Environmental Analysis Lab (Table 5). The 

solid phases were analyzed because they will likely have a significant effect on the concentration 

of anions in the aqueous phases of the aquifer. There were several general trends in elemental 

sediment concentrations tested in this study (Figure 4). In general, silicon (Si) and calcium (Ca) 

were the most abundant elements in sediment samples with ranges of 5.89-34.26% and 0.57-

49.65%, respectively. Samples from the younger Piney Point sediments tended to contain greater 

percentages of Ca than Si, which is consistent with location of the productive limestone 

(McFarland 2017). There did not appear to be any trends in total nitrogen (TN) before or after 

HCl wash (TNHCl; Table 5). TOC values ranged from 0.08-1.30% and had the highest 

concentrations in Old Church sediments. TIC values ranged from 0.05-10.24% and had the 

highest concentrations in Piney Point sediments, this is related to the limestone-like properties of 

the Piney Point formation (McFarland 2017). Sulfur ranged from 0.75-17.52% and was highest 

in younger sediments, those from Old Church sediments and younger Piney Point sediments. 
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These results could have significance as higher TOC and higher sulfur concentrations can lower 

the pH of water, while higher TIC concentrations can make water more basic. 

 Based on sediment TIC and sulfur concentrations, there appears to be a distinct difference 

between upper and lower Piney Point sediments (Figure 4). This is consistent with McFarland 

(2017). As described previously, the Piney Point Formation is made up of intervals of limestone 

and uncemented sands. It is likely that in sediments from the Banbury Cross borehole, the 

sediments that make up the upper part of the Piney Point formation consist primarily of 

limestone and the sediments of the lower part of the Piney Point formation consist primarily of 

uncemented sands as described in McFarland (2017). This is also consistent with the description 

of sediments used in this study from Table 3, which shows that in the Piney Point sediments 

there appears to be a change in color and a change from limestone to sand between samples 22 

and 26 (272 feet and 276 feet below land’s surface). 

Since McFarland (2017) describes the upper Piney Point sediments as limestone, these 

sediments are less porous. The presence of pyrite in the upper Piney Point sediments also 

indicates a reducing environment which was probably preserved due to calcification. McFarland 

(2017) also states that lower Piney Point sediments are sandy and, therefore, more porous. 

Therefore, sediments from the upper and lower Piney Point formation are different in terms of 

chemical and sedimentological characteristics. This data will serve as a baseline for leaching 

experiments since the solid phases of the aquifer will affect the aqueous phases. Since sediments 

were fully dried before XRF and CHN analysis these results represent a scenario is which the 

solid phases are exposed to oxic conditions. 
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Groundwater 

Groundwater samples were collected to give a current assessment of the aqueous phases 

of the aquifer. Twenty-six groundwater samples were analyzed for anion concentrations with ion 

chromograph (IC; Table 6). All anion concentrations were less than the EPA MCL values, so it is 

likely that currently there are no negative effects associated with these wells from excess 

fluoride, chloride, nitrate, and sulfate. One well (Surprise Hill) did exceed the EPA SMCL of 2 

ppm for fluoride. However, this is a VA DEQ monitoring well located on the Northern Neck 

where the Piney Point aquifer is typically not utilized as a drinking water source, so there is 

likely no associated health or aesthetic concerns with this well. Future possible changes to anion 

concentrations in the aqueous phases of the aquifer from overpumping and its associated 

geochemical changes are discussed below.  

Anions in Leaching Experiments 

 Fluoride 

Fluoride in groundwater is typically associated with compounds in solid phases of the 

aquifer that are naturally high in fluoride. Fluoride in groundwater is associated with the 

following compounds: fluorite, fluorapatite, apatite, fluormica, biotite, epidote, micas, clays, and 

phosphorite (Brindha and Elango 2011). Fluorite can occur in igneous and sedimentary rocks, 

particularly those of marine origin (like those of the Piney Point formation) (Brindha and Elango 

2011). In Virginia, fluoride in groundwater is associated with desorption from phosphatic 

sedimentary material (McFarland 2010).  

Fluoride concentrations higher than the recommended levels can cause dental and 

skeletal fluorosis (Brindha and Elango 2011, Younger 2007). In Virginia, there is a broad belt of 

high fluoride concentrations in the groundwater underlying Suffolk. While our study area was 
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not within this belt, sediments used in this study were deposited in a similar environment, 

particularly the presence of phosphatic sedimentary material in the Old Church Formation, from 

which fluoride can desorb (McFarland 2010, McFarland 2017). 

In general, fluoride concentrations did not appear to be affected by the different leachate 

treatments or sediment TOC, TIC, and sulfur concentrations. However, fluoride concentrations 

in acidic leachate samples from Old Church sediments were higher than in any of the other 

leachate (Figure 5). This could be related to the higher concentrations of TOC in Old Church 

sediments; there is also a strong relationship between fluoride concentrations in acidic leachate 

and TOC in sediments to support this (Figure 6; r2=0.7847). 

As described above, fluoride did not vary much in the different leachate treatments, 

except acidic. The lower pH environment likely caused dissolution of phosphate which released 

fluoride into leachate, as is described in Brindha and Elango (2011). Regression analysis could 

not be calculated on sediment phosphorous concentrations and fluoride concentrations in 

leachate as phosphorus was not present in enough sediment samples. Figure 5 shows that 

phosphate in sediments was detectable in Old Church sediments and the youngest sediment 

sample from the Piney Point formation, which is consistent with the higher concentrations of 

fluoride in acidic leachate samples from these sediments. Sediment phosphorus can be seen as a 

possible controlling environmental factor of aqueous fluoride. Therefore, the higher 

concentrations of fluoride in acidic leachate samples are likely due to the presence of phosphorus 

in sediments and possibly the presence of TOC. In terms of future possible effects to the Piney 

Point aquifer, if pH is lowered from the effects of overpumping, more fluoride may be released 

to the aqueous phase if phosphorus and TOC are present in the solid phases. As groundwater is 

drawn from formations other than the Piney Point within the aquifer, due to overpumping, more 
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fluoride may be released from sediments high in phosphorus and TOC. Therefore, there is a 

chance that fluoride concentrations may increase in the future. 

Chloride 

Natural sources of chloride in aquifers include solid-aqueous interactions and salt water 

intrusion in coastal areas (Panno et al. 2006, WHO 2013a). Increased chloride concentrations can 

increase the corrosivity of water: the chloride will react with metal ions and form soluble salts. 

This leads to increased metal concentrations in drinking water (WHO 2013a). 

As climate change worsens, the saltwater transition zone could move further inland; 

however, McFarland (2017) indicated that the area of the Piney Point aquifer surrounding the 

productive limestone appears to be far enough inland that as of 2015 there has not been an 

increase in chloride concentrations. Salt water intrusion does not currently appear to be 

contributing to chloride concentrations in the Piney Point aquifer, but there is a potential risk for 

this in the future. 

The chloride present in Piney Point wells is, therefore, likely from solid-aqueous 

interactions within the aquifer. The chloride present in the wells sampled, as well as the 

sediments, could be from marine inclusion, which makes sense since the Old Church, Piney 

Point, and Nanjemoy formations are made up of marine sediments (McFarland 2017). The 

sediments could possibly be preserving chloride, as well as other ions, from the time when the 

sediments formed the floor of an ancient sea. However, chloride concentrations do not appear to 

be affected by any sediment compounds concentrations or geological formations (Figure 7). The 

solid phases do not appear to be the mechanism for releasing chloride. 

Chloride concentrations were affected by the different leachate treatments (Figure 7). 

Acidic leachate had the highest chloride concentrations, while DI leachate had the lowest 
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chloride concentrations. Basic and aquifer leachate chloride concentrations were comparable, 

with chloride concentrations in basic leachate slightly higher than aquifer leachate chloride 

concentrations. Additionally, the two-fold higher release of chloride in acidic leachate is likely 

due to the dissolution of calcite (TIC), which is also a source of the preservation of ancient sea 

water. 

Future effects to the aquifer could be from either saltwater intrusion or overpumping. If 

aquifer pH is lowered as a result of overpumping, more chloride could be released to the aqueous 

phase of the aquifer from dissolution of TIC. Low pH likely releases more chloride to aqueous 

phases of the aquifer. As overpumping happens and pH changes occur in the aquifer more 

chloride could be released, possibly raising chloride concentrations in groundwater. This could 

become a problem especially if salt water intrusion begins occurring within the Piney Point 

aquifer. 

Nitrate 

 Nitrate occurs naturally as part of the nitrogen cycle and is a stable ion. In the USA, 

natural concentrations of nitrate in groundwater do not exceed 4-9 ppm and depends on soil type 

and geological situation (WHO 2011). The major sources of nitrate in groundwaters are 

inorganic fertilizers from agricultural activity and waste bi-products from human and animal 

excrement, so nitrate contamination is typically only an issue in shallow aquifers (WHO 2011, 

Majumdar and Gupta 2000). Possible human health effects from high concentrations of nitrate 

include methemoglobinemia or “blue baby syndrome,” gastric cancer, birth malformations, and 

hypertension (WHO 2011, Majumdar and Gupta 2000). However, since the Piney Point aquifer 

is deep and confined, nitrate from these sources should not be an issue. 
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Nitrate is not supposed to have high concentrations in deep aquifers. The concentrations 

of nitrate in DI, basic, and aquifer leachates are within the range (4-9 ppm) the WHO (2011) 

establishes for natural nitrate concentrations in groundwaters. Nitrate concentrations in all 

leachate treatments do appear to be influenced by geological formation (Figure 8). Nitrate 

concentrations are highest in all leachate treatments from Nanjemoy sediments. Nitrate 

concentrations are also similar in all leachate treatments from Old Church sediments. And nitrate 

concentrations are the lowest in all leachate treatments from Piney Point sediments. Additionally, 

this pattern appears to be an inverse relationship with TIC concentration in sediments for nitrate 

concentrations all leachates (except acidic) (Figure 9; DI: r2=0.6081; basic: r2=0.5877; aquifer: 

r2=0.7133). The poor relationship in acidic leachate could be due to the very high concentrations 

of nitrate due to the use of nitric acid. It is likely that the variation in nitrate is due to the nitric 

acid used to acidify leachate samples and create the acidic leachate treatment. This is likely the 

cause for the acidic leachate having several orders of magnitude higher nitrate concentrations 

than the other leachate treatments. The nitrate data from this study is therefore unreliable. In 

future leaching studies, if nitrate is going to be studied it would be best to use an acid other than 

nitric. 

Sediments were treated with HCl in order to remove TIC and, as a result, total nitrogen 

after HCl wash was calculated (TNHCl). It is possible that the increase in some sediment samples 

of TNHCl is due to TOC having a greater effect on sediments (Figure 8). Since the TIC was 

dissolved with HCl it is likely that the higher TNHCl concentrations are associated with TOC. 

There is a possible moderate relationship between nitrate in leachates (except acidic) and total 

nitrogen after HCl wash in sediments (Figure 10; DI: r2=0.3399; basic: r2=0.3442; aquifer: 

r2=0.3616). Overpumping may lead to release of nitrogen compounds from TOC in deep 
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sediments but more research is required. However, since sediments used in leaching experiments 

were not treated with HCl, it is not possible to know how nitrate concentrations will be affected 

by possible lowered pH due to overpumping within the Piney Point aquifer. Additionally, in 

order to better understand the mechanisms controlling nitrate in confined aquifers, further 

analysis of solid phases of the aquifer and possibly characterization of TOC and TN in aquifer 

sediments will need to be carried out, as well as a possible repeat of leaching experiments with 

sediments treated with HCl.  

The data suggests that if pH and redox changes occur in the Piney Point aquifer more 

nitrate may be released from dissolution of the limestone and sediment TOC may have a greater 

effect on the aqueous phases of the aquifer, but further analysis needs to be done.   

 Sulfate 

 Sulfate is the most stable form of sulfur in aqueous aerobic conditions and it is typically 

the most abundant anion in natural waters (Miao et al. 2012). Geogenic sources of sulfate in 

groundwater include: weathering of sulfide minerals, rainwater, and atmospheric deposition 

(Miao et al. 2012, Tostevin et al. 2016). In southern New Zealand, local basement rocks are rich 

in metamorphic sulfide minerals which contributes to sulfate in groundwater (Tostevin et al 

2016). There are many anthropogenic sources of sulfates to water systems, such as fertilizers, 

dyes, soaps, paper, textiles, and sewage (Tostevin et al. 2016, WHO 2013b); these are likely not 

affecting the Piney Point aquifer due to its depth and that it is confined throughout its reach in 

this study. 

High concentrations of sulfate are of concern in drinking water systems because they can 

have laxative effects, especially for infants (WHO 2013b, Miao et al. 2012). Sulfate was chosen 

for this study because of this health effect and since sulfur concentrations have important 
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implications for pH balance and redox potential of groundwaters, often associated with acid mine 

drainage (Tostevin et al. 2016, Miao et al. 2012). 

Sulfate concentrations in all leachate samples appear to follow a similar pattern to 

sediment concentrations of sulfur (Figure 11). Regression analysis shows a strong relationship 

between sulfate concentration in leachates and sediment sulfur concentrations (Figure 12; DI: 

r2=0.7466; acidic: r2=0.7657; basic: r2=0.7025; aquifer: r2=0.7270). This indicates that the sulfate 

is leached from the sediments. Sulfate concentrations in acidic and basic leachates from sediment 

sample 19 also appear to anomalously high. This could be due to high sediment TIC 

concentrations and the correlations suggest a moderate relationship between sulfate 

concentrations in acidic and basic leachate and TIC concentrations in sediments (Figure 13; 

acidic: r2=0.3407; basic: r2=0.2318).  

If overpumping of the Piney Point aquifer occurs as more sediments are exposed to oxic 

conditions, more sulfate may be released from them into the aqueous phase of the aquifer. This is 

suggested by the large difference between sulfate in groundwater samples and leachate samples 

(Table 6, Table 7). 

Conclusion 

This study was meant to help understand the mechanisms that release anions in the Piney 

Point aquifer from the solid phases of the aquifer, as leaching experiments have not been carried 

out on Piney Point aquifer sediments previously. It was found that in lower pH conditions, 

fluoride concentrations are affected by sediment concentrations of phosphorous, which is 

consistent with Brindha and Elango (2011). Chloride concentrations were affected the most by 

pH, with lower pH’s releasing the most chloride to the aqueous phase. Nitrate concentrations 

require further research, but it appears as TIC is dissolved from pH changes, TOC may have a 
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greater effect on nitrogen chemistry in the aquifer. Sulfate concentrations in leachate were found 

to be directly associated with sediment concentrations.  

Additionally, in general, all anions studied have higher concentrations in leachate than in 

groundwater samples (Table 6, Table 7). This implies that when sediments are exposed to oxic 

conditions they will release more anions to the aqueous phase of the aquifer. Additionally, 

sulfate concentrations in leaching experiments exceeded their EPA SMCL for nearly every 

sediment sample and nitrate concentrations were close to their EPA MCL in Nanjemoy 

sediments. Water quality may be affected if overpumping occurs and the solid phases of the 

Piney Point aquifer are exposed to oxic conditions. It is likely that sulfate will become an issue 

for water quality. If groundwater is drawn from the Nanjemoy formation as a result of 

overpumping nitrate levels will need to be carefully monitored, as they will be close to the EPA 

MCL. 

These findings establish an initial idea of how increased water exploitation may affect the 

groundwater quality of the Piney Point aquifer. Climate change may also worsen the effects of 

overpumping and further study is needed to more fully grasp the mechanisms releasing anions to 

aqueous phases of the aquifer.  
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Tables 

Table 1. US EPA Drinking Water Standards: Maximum Contaminant Level (MCL) and 

Secondary Drinking Water Regulations (SMCL) (U.S. EPA 2017, U.S. EPA 2018). 

 

 

 

 

 

 

 

 

Compound MCL (ppm) SMCL (ppm)

Aluminum - 0.05-0.2

Antimony 0.006 -

Arsenic 0.01 -

Barium 2 -

Beryllium 0.004 -

Cadmium 0.005 -

Chloride - 250

Chromium 0.1 -

Copper 1.3 1

Fluoride 4 2

Iron - 0.3

Lead 0.015 -

Manganese - 0.05

Mercury 0.002 -

Nitrate 10 -

Nitrite 1 -

Selenium 0.05 -

Sulfate - 250

Thallium 0.002 -

Uranium 30 (ppb) -

Zinc - 5
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Table 2. Depth below land surface and formation of sediment samples collected from the USGS 

Banbury Cross borehole. Samples in bold were used in leaching experiments. 

 

 

 

 

 

 

 

 

Sample Code

Depth below land 

surface (ft) Formation

5 255.9 Old Church

8 258.9 Old Church

10 260.9 Old Church

13 263.0 Piney Point

14 264.1 Piney Point

15 265.1 Piney Point

16 266.1 Piney Point

17 267.1 Piney Point

19 269.1 Piney Point

20 270.1 Piney Point

21 271.1 Piney Point

22 272.1 Piney Point

23 273.1 Piney Point

24 274.1 Piney Point

25 275.1 Piney Point

26 276.1 Piney Point

28 278.1 Piney Point

29 279.1 Piney Point

31 281.1 Piney Point

32 281.8 Piney Point

34 283.8 Piney Point

38 287.0 Nanjemoy

39 288.0 Nanjemoy

40 294.1 Nanjemoy

42 299.1 Nanjemoy
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Table 3. Descriptions of sediment samples used in leaching experiments. All lithological 

descriptions are from Powars 2014.  

Sample 

Number 

Depth 

(ft) Picture Lithological Description Stratigraphy 

5 255.9 

 

Very silty with clear sand 

burrows. 

 

5Y 3/1 

Old Church Formation 

8 258.9 

 

Very silty quartz sand with 

clear sand burrows. 

 

5Y 3/2 

Old Church Formation 

13 263.0 

 

Soft limestone. Pyritic. 

 

10YR 5/3 

Piney Point Formation 

19 269.1 

 

 

Soft limestone. Pyritic. 

 

10YR 7/3 

Piney Point Formation 

22 272.1 

 

Soft limestone. 

 

10YR 7/8 

Piney Point Formation 

26 276.1 

 

 

Muddy sand, highly 

burrowed. 

 

10 YR 5/5 

Piney Point Formation 

31 281.1 

 

 

Glauconitic, quartz sand, 

very silty to slightly silty. 

Pyritic. 

5G 4/1 

Piney Point Formation 

38 287.0 

 

Glauconitic, quartz clay silt. 

Bioturbated and clay filled 

burrows. 

5 Y 3/2 

Nanjemoy Formation 

Woodstock Member 

40 294.1 

 

Glauconitic, quartz clay 

silty. Burrowed and 

bioturbated. 

5 Y 3/2 

Nanjemoy Formation 

Woodstock Member 



 
 

27 
 

Table 4. Weight (in grams) of sediment samples used for leaching experiments that were added 

to 40mL of each leaching solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DI water        

pH 6.24

Acidic     

pH 2.00

Basic   

pH 10.88

Aquifer    

pH 7.48

5 255.9 5Y 3/1 1.0000 1.0064 0.9980 1.0233

8 258.9 5Y 3/2 1.0038 1.0185 1.0043 1.0078

13 263 10YR 5/3 1.0009 1.0029 0.9971 1.0207

19 269.1 10YR 7/3 1.0127 1.0063 1.0100 1.0229

22 272.1 10YR 7/8 1.0055 1.0046 0.9971 1.0075

26 276.1 10 YR 5/5 1.0188 1.0055 1.0133 1.0260

31 281.1 5G 4/1 1.0139 0.9978 1.0174 0.9980

38 287 5Y 3/2 1.0077 1.0199 1.0214 1.0023

40 294.1 5Y 3/2 1.0100 1.0664 1.0222 1.0158

Grams of sediment used in treament 

solutions

Munsell 

Color

B
an

b
u

ry
 C

ro
ss

Old Church

Piney Point

Nanjemoy

Core 

Location

Sample 

Code

Depth 

below land 

surface (ft) Formation
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Table 5. Total inorganic carbon (TIC), total organic carbon (TOC), total nitrogen (TN), and total nitrogen after HCl wash (TNHCl) 

results for sediment samples from the USGS Banbury Cross borehole, as well as XRF results for elements with the highest 

concentrations in sediments. Sample code and intervals in bold indicate those used in leaching experiments. Blank spaces indicate 

when the sediment compound was below detection limit. 

Si (%) Ca (%) S (%) Fe (%) Al (%) Mg (%) P (%) K (%)

Cl 

(ppm)

5 255.9 Old Church 0.48 1.30 0.09 0.20 33.73 4.53 3.80 1.24 3.15 0.10 1.32 0.55 828.8

8 258.9 Old Church 0.05 1.23 0.24 0.20 34.26 2.87 4.28 2.25 2.58 0.12 1.10 0.70 932.6

10 260.9 Old Church 1.22 0.23 0.20 0.07 29.51 6.62 4.77 2.63 2.73 0.12 2.21 0.86 814.6

13 263.0 Piney Point 9.39 0.23 0.16 0.06 11.63 34.87 4.91 3.45 2.01 0.25 1.75 0.43 780.9

14 264.1 Piney Point 9.12 0.65 0.10 0.05 8.91 39.32 5.99 4.67 1.63 0.27 0.30 1020.0

15 265.1 Piney Point 10.24 0.22 0.16 0.08 11.38 32.30 8.29 4.90 0.94 0.20 0.22 1080.0

16 266.1 Piney Point 4.23 0.34 0.03 0.20 5.89 49.47 4.87 2.39 0.79 0.30 0.16 1060.0

17 267.1 Piney Point 10.13 0.32 0.11 0.05 6.31 49.65 4.60 1.96 0.84 0.31 0.17 1160.0

19 269.1 Piney Point 10.18 0.11 0.27 0.13 6.88 47.06 5.18 2.51 0.94 0.28 0.21 912.3

20 270.1 Piney Point 9.71 0.13 0.09 0.05 8.84 39.31 7.51 3.06 0.99 0.25 0.28 904.1

21 271.1 Piney Point 5.81 0.11 0.09 0.07 7.47 19.43 17.52 6.73 1.27 0.14 0.38 364.4

22 272.1 Piney Point 7.00 0.09 0.10 0.06 14.20 33.30 2.04 8.90 1.80 0.26 0.58 1340.0

23 273.1 Piney Point 7.45 0.31 0.21 0.06 17.86 22.56 1.69 13.59 2.35 0.28 0.82 935.9

24 274.1 Piney Point 6.73 0.08 0.13 0.12 20.19 23.73 0.75 11.37 1.81 0.26 0.82 1100.0

25 275.1 Piney Point 4.16 0.18 0.15 0.12 29.76 9.89 2.67 5.83 2.79 0.20 1.23 1030.0

26 276.1 Piney Point 5.05 0.18 0.12 0.16 22.01 22.09 1.43 7.90 2.66 0.24 0.99 865.3

28 278.1 Piney Point 3.62 0.45 0.11 0.09 27.71 10.86 3.36 5.84 2.50 0.21 0.76 1.31 884.8

29 279.1 Piney Point 3.90 0.24 0.19 0.19 25.78 14.55 3.25 5.83 2.78 0.24 1.60 1200.0

31 281.1 Piney Point 2.10 0.15 0.11 0.05 30.01 6.11 3.31 6.84 3.21 0.27 1.92 998.6

32 281.8 Piney Point 4.48 0.27 0.07 0.08 26.22 16.02 1.91 6.18 2.65 0.26 1.61 1080.0

34 283.8 Piney Point 0.13 0.28 0.08 0.14 27.86 0.57 1.01 17.14 4.74 0.36 0.44 1.17 993.6

38 287.0 Nanjemoy 0.54 0.33 0.30 0.13 30.00 1.55 2.33 11.16 4.30 0.35 0.36 1.57 1080.0

39 288.0 Nanjemoy 0.16 0.42 0.10 0.14 26.53 0.96 3.53 13.84 5.12 0.40 0.36 1.29 792.8

40 294.1 Nanjemoy 0.31 0.50 0.10 0.25 26.37 1.18 2.94 13.62 6.08 0.38 0.33 1.37 728.8

42 299.1 Nanjemoy 0.28 0.23 0.08 0.16 29.04 0.80 1.33 14.21 4.59 0.32 0.43 1.96 906.7

Sample 

Code

Depth below 

land surface 

(ft)

Geologic 

Formation

XRF Data

TIC 

(%)

TOC 

(%)

TN    

(%)

TNHCl 

(%)
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Table 6. Anions present in groundwater samples from wells drawing water from the Piney Point 

aquifer. EPA Maximum Contaminant Level and Secondary Maximum Contaminant Level are 

listed at bottom. 

 

F
-

Cl
-

NO3 SO4

Chickahominy Haven 126 7.33 0.8930  2.7947  2.2832  10.3051  

Racefield 228 7.62 0.6322  2.8385  2.2782  10.4886  

New Kent Courthouse 228 7.71 0.3430  2.1768  n.a. 15.3313  

Retreat 230 7.51 0.5560  1.8977  n.a. 7.1740  

Stonehouse - Fieldstone Parkway 241 7.61 0.6179  1.4975  n.a. 7.3276  

Kings Village 250 7.67 0.5999  2.4469  n.a. 9.1086  

Stonehouse - Mill Pond Run 256 7.64 0.5969  2.7488  2.2025  10.2626  

Upper County Park 262 7.52 0.5743  2.3666  2.2971  10.1147  

Lightfoot Well #3 (Banbury Cross) 265 7.96 1.0546  3.0041  2.2517  12.1848  

Liberty Ridge 266 8.34 0.9611  5.6992  2.2031  9.7988  

Lightfoot Well #1 271 8.28 1.0431  2.5216  2.1848  9.0085  

Glenwood 272 7.76 0.7209  2.5281  n.a. 8.8019  

Westport 273 8.4 1.2594  7.9500  2.3277  10.5308  

Ware Creek 275 7.91 0.9115  2.1216  2.2501  8.2893  

1B - Owens-Illinois 275 7.59 0.6094  2.5537  n.a. 9.3274  

Owens-Illinois 277 7.61 0.6341  2.3903  2.1961  9.2641  

Lightfoot Well #5 280 7.27 0.8384  2.4463  n.a. 9.1362  

Kristiansand 282 7.92 1.6816  63.2899  2.2011  30.9164  

Ford's Colony 290 8.24 0.9279  4.4457  n.a. 8.4683  

Olde Towne Road 295 8.26 0.9303  2.9637  2.1899  9.2482  

Pottery 296 7.86 0.8891  9.5414  2.2955  13.7851  

Norge 297 7.55 0.7383  8.2363  2.2853  11.3128  

Canterbury Hills 298 8.28 1.3324  40.0518  2.2654  11.8596  

Ewell Hall 305 8.34 0.9903  2.6121  2.2192  9.0825  

Wexford 306 7.81 0.8020  2.2341  2.5835  6.9372  

Surprise Hill Well F 551 8.49 3.2356  3.2886  2.3346  12.1055  

EPA Maximum Contaminant Level - - 4 - 10 -

EPA SMCL - 6.5-8.5 2 250 - 250

Anions (ppm)

Well name

Well depth 

below land 

surface (ft) pH
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Table 7. Concentrations of fluoride, chloride, nitrate, and sulfate in leaching experiments for each sediment sample and leachate 

treatment. 

 

 

DI 

Leachate 

pH 6.24

Acidic 

Leachate 

pH 2.00

Basic 

Leachate 

pH 10.88

Aquifer 

Leachate 

pH 7.48

DI 

Leachate 

pH 6.24

Acidic 

Leachate 

pH 2.00

Basic 

Leachate 

pH 10.88

Aquifer 

Leachate 

pH 7.48

DI 

Leachate 

pH 6.24

Acidic 

Leachate 

pH 2.00

Basic 

Leachate 

pH 10.88

Aquifer 

Leachate 

pH 7.48

DI 

Leachate 

pH 6.24

Acidic 

Leachate 

pH 2.00

Basic 

Leachate 

pH 10.88

Aquifer 

Leachate 

pH 7.48

5 255.9 Old Church 1.21 3.50 1.12 1.35 4.92 14.78 10.64 12.03 6.29 1894.69 5.51 6.33 600.16 532.12 494.64 650.31

8 258.9 Old Church 1.08 2.74 1.12 1.25 4.18 13.35 11.05 9.69 6.64 1736.85 6.51 6.34 706.79 595.65 982.60 747.14

13 263.0 Piney Point 1.17 2.07 1.11 1.24 4.74 14.25 11.08 9.90 4.45 1837.20 4.07 3.73 1105.18 897.24 840.96 1028.80

19 269.1 Piney Point 1.11 1.36 1.07 1.19 5.19 13.60 10.61 9.35 4.40 1803.76 3.95 3.73 613.85 1545.49 1922.87 543.76

22 272.1 Piney Point 1.15 1.18 1.14 1.23 3.99 14.13 10.14 8.94 4.43 1836.67 4.18 3.94 144.29 99.79 91.25 102.20

26 276.1 Piney Point 1.18 1.19 1.19 1.26 4.23 14.01 10.33 8.82 4.61 1847.20 4.53 3.94 184.36 160.37 250.59 165.48

31 281.1 Piney Point 1.23 1.33 1.26 1.36 4.27 14.54 10.30 8.95 6.08 1892.20 5.45 5.50 293.77 261.63 423.81 309.63

38 287.0 Nanjemoy 1.34 1.29 1.33 1.42 4.10 14.70 10.34 9.37 9.11 1891.03 8.90 8.47 194.54 177.20 219.28 225.99

40 294.1 Nanjemoy 1.37 1.17 1.39 1.41 4.02 14.46 10.61 9.46 9.93 1871.00 9.55 8.75 341.59 279.26 373.39 301.27

SO4 in leachates (ppm)

Sample Code

Depth below 

land surface 

(ft) Formation

F in leachates (ppm) Cl in leachates (ppm) NO3 in leachates (ppm)
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Figures

 

Figure 1. Generalized hydrogeology of the Virginia Coastal Plain (McFarland 2017). 
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Figure 2. Hydrologic units of the Virginia Coastal Plain and geologic units that make up the Piney Point aquifer (McFarland 2017). 
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Figure 3. Location of wells from which groundwater samples were withdrawn.
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Figure 4. Total organic carbon (TOC), total inorganic carbon (TIC), and sulfur concentrations in sediment samples used for leaching 

experiments. 
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Figure 5. Fluoride concentrations in each leachate treatment and phosphorous and total organic carbon (TOC) concentrations in 

sediment samples.  
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Figure 6. Regression analysis of fluoride concentrations in acidic leachate and total organic carbon concentrations in sediments. 
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Figure 7. Chloride concentrations in leachate treatments and chlorine concentrations in sediments. 
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Figure 8. Nitrate concentrations in leachate samples and total nitrogen concentration with and without HCl wash in sediment samples. 
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Figure 9. Regression analysis of nitrate concentrations in DI, basic, and aquifer leachates and total inorganic carbon concentrations in 

sediments. 
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Figure 10. Regression analysis of nitrate concentrations in DI, basic, and aquifer leachates and total nitrogen concentrations after HCl 

wash in sediments. 
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Figure 11. Sulfate concentration in leachate treatments samples and sulfur concentration in sediment samples. 
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Figure 12. Regression analysis of sulfate concentrations in DI, acidic, basic, and aquifer leachates and sulfur concentrations in 

sediments. 
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Figure 13. Regression analysis of sulfate concentrations in acidic and basic leachates and total inorganic carbon concentrations in 

sediments. 
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