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Abstract

The motivation of this study is to investigate the size dependent properties of Gadolinium
silicide nanoparticles and their potential applications in Biomedicine. We use two approaches in
our investigation - size dependence and possible exchange interaction in a core-shell structure.
Past results showed GdsSi; NPs exhibit significantly reduced echo time compared to
superparamagnetic iron oxide nanoparticles (SPION) when measured in a 7 T magnetic
resonance imaging (MRI) system. This indicates potential use of GdsSi; ferromagnetic

nanoparticles as T2 contrast agents for MRI.

Until recently most contrast agents (CA) that are used in Magnetic Resonance Imaging (MRI)
studies have been paramagnetic. However, ferromagnetic CAs are potentially more sensitive as
T2 CAs than T1 paramagnetic compounds due to their large magnetic moments. Furthermore,
the need for better MRI images without the need of upgrading to the higher magnetic field
strength can be achieved using better CA such as GdsSi; NP. The quality of the image contrast in
MRI is improved by shortening T1 and T2 relaxation times at the site or close proximity to the
CA. In this study, effect of GdsSis; NP of varying sizes and with different concentrations are

investigated on T1, T2 and T2* (effective/observed T2) relaxations times.

Further study was carried out on possible exchange interaction between Fe304 and GdsSis to
enhance the magnetic properties of the GdsSi; which could be later used to synthesize core-
shell structures. Exchange interaction / bias is a phenomena associated with the exchange
anisotropy created at the interface between the two magnetic materials. Therefore, thin films

of varying thickness was deposited and studied for their magnetic properties.



Introduction

Early study of magnetic nanoparticles (MNPs) were motivated by geological and cultural
heritage dating, while today's interest is focused mainly in biomedicine. Presently, biomedical
field is a multidisciplinary area where research and development is largely focusing on
applications in imaging, diagnostics and therapy. One of the most challenging problem in
biomedicine is early detection of disease so that treatment could be delivered before the
disease cause damage. Early biomedical imaging was done with X-rays, however imaging inside
the organs was not possible since water and organic media provided little contrast within the

tissue as they were transparent to X-rays. Therefore, new technologies were urgently needed.

MRI's for clinical applications were commercially introduced by GE in the 1980s [22]. In MRI, a
strong magnetic field pulse is applied to a body causing water protons to be excited. The rate of
the following relaxation is recorded and transferred into an image. The contrast between
different tissues is determined by the rate at which excited atoms return to the equilibrium
state. It was found that among other parameters, two major MRI parameters- spin relaxation
time (T1) and lattice relaxation time (T2) of the water protons, could be affected by contrast
agents (CA). The first MRI contrast agents were based on Gd complexes [27]. However, these
are paramagnetic at body temperature. The signal-to-noise ratio can be significantly increased
for NPs that are ferromagnetic. To enhance the contrast effect in MRI, MNPs are required to
have optimum magnetic properties, which are strongly related to size, crystallinity, structure,

and composition of MNPs.



A number of diagnosis methods based on MNPs are being developed for clinical use. The
magnetism in nanoparticles is used due to their effect on nuclear magnetic relaxation (NMR)
that is used to produce contrast enhancement in magnetic resonance imaging (MRI) images. In
the last two decades, NP CAs have gained high importance in imaging and a large number are in

preclinical testing and medical research [22].
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[Zz]Fig. 1 Growth of the nanoparticle research in biomedical imaging.

Fig. 2 Modern MRI machine with a image inset showing MRI brain images. (Source: GE
Healthcare)



Size dependent properties

MNPs exhibit size-dependent magnetism. As the physical size of the specimen decreases from
bulk to NP, an MNP shows a transition from multidomain structure to single-domain structure
within, then the exchange forces may dominate and even in the presence of demagnetization
energy, and the absence of any applied field, the particle is uniformly magnetized. The size at
which the particle is single domain is called it's critical size, and is determined by the innate
magnetic anisotropy energy of the material and usually falls in the range of tens of

nanometers[24][25].

For a group of single-domain MNPs, their overall magnetization (M) reaches saturation (Ms)
when their magnetization directions are aligned parallel to an applied magnetic field (H). The
resistance to this magnetization alignment is measured by susceptibility (M/H). These
magnetized NPs can retain some collective remnant magnetization even if the applied magnetic
field is removed, similar to bulk ferromagnetic materials and reversing the external field in the

opposite direction (coercive field / coercivity Hc), will fully demagnetize these MNPs. Further

reduction of MNP size leads |
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Fig. 3 Magnetic state of Magnetic nanoparticles as function of size [26].



MRI and Contrast agent

MRI works on the principal of nuclear magnetic relaxation (NMR) of water protons. When the
magnetic field is applied, the protons align in two ways in an MRI scanner: parallel (low energy
state) and antiparallel (high energy state). The population difference between these two states
depends on the field strength. When the resonance electromagnetic radio-frequency (RF) pulse
is applied perpendicular to the magnetic field direction, the protons absorb the energy and
then jump to an antiparallel state. Subsequent removal of this RF irradiation causes spin to
return to its equilibrium state — a process called spin relaxation. The process leading to
moment increase in longitudinal direction is called T1 relaxation, while that leading to moment
decrease in transverse direction is called T2 relaxation. These relaxation process are used to
generate a bright (71 - weighted) and a dark (72 - weighted) image, respectively. The image
contrast depends on local variation of relaxation time, resulting from the proton density and

the physiological environment of specimen [27].
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Fig. 4 Schematic illustrations of spin relaxation process of water protons [28].



Secondary magnetic field produced by MNPs can shorten the T2 of the surrounding protons.
Therefore, MNPs can act as a T2 contrast agent (CA). The sensitivity of a T2 CA is given by the
relaxation rate, R2 = 1/T2 (s™}) , and the relaxivity, r2 = R2 / [concentration] (mM~ts7Y). The

relaxation rate of the MINPs contrast agent in solution is given by,

- (256m°y* 1405) V" M+

T, D(1+L/r)

where y is the proton gyromagnetic ratio, V* is the volume fraction, Ms is magnetic saturation,
r is the radius of MNP core, D is the diffusivity of water molecules, and L is the thickness of an
impermeable surface coating. Reading from the above equation, an MNP would make an ideal
CA if it has high Ms, large r, and small L (thin coating). Furthermore, MNPs with narrow size

distribution and an overall hydrodynamic size smaller than 50nm (long circulation time)

[28][29].



Synthesis and ball-milling

Arc Melting is used for melting metals to synthesize alloys. A standard Tungsten Inert Gas (TIG)
welding unit is used as a power source which initiates electric arc with the solid elements
placed in a crucible in the copper hearth under argon atmosphere. Heat generated by the
electric arc melts the elements to form alloy. The metals can be heated to a temperature in
excess of 2000°C. Many batches of alloys can be produced in a single evacuation depending on
the available crucibles in the hearth. Amount of alloys also depends on the size of the crucible.
There are three main parts to the system: power source, chiller and vacuum unit. The vacuum
unit with rotary and diffusion pumps can attain a vacuum of 10° mbar. The cold circulation

water from the chiller cools both the copper hearth and the electrodes.

High energy Ball-milling is an top-down approach where a mechanical deformation process is
used for producing nanopowders. The mechanical reduction of the particle size of a solid
sample is done by crushing with one or more inert balls usually a ceramic, flint or stainless steel
of 2-8 mm diameter, rotating at high speed of up to 650 rpm around a horizontal axis. A high-
speed agitator is used to increase the speed of the balls which are held in vacuum or in an inert
gas like Argon or Nitrogen. This process has been successfully used to produce metals with
minimum particle sizes from 4 to 26 nm. This process has the advantage of being relatively
inexpensive and can be easily scaled up to produce large quantities of material. However, a
major concern of this technique is the contamination from milling balls and atmosphere which
could be mitigated by the usages of surfactants, alloy-coated milling media, and inert
atmospheres. A conventional high energy ball mill can initiate chemical reactions and structural

changes in the sample during the process.



The synthesis process of GdsSis NPs has been described in details by Hadimani et al. [4]. GdsSi4
material was synthesized by arc-melting of the stoichiometric mixture of gadolinium and silicon
on a water-cooled Cu-hearth under Ar atmosphere. To ensure homogeneity the sample was
repeatedly arc melted six times. No further heat treatment was done on the as-cast sample.
The as-cast bulk material is then grounded in an agate mortar and screened to obtain powders
with particle size of 53 um or smaller. To further reduce the particle size, the powder is then
processed by high-energy ball milling in a magneto ball-mill (Uni-Ball-Mill 5) operating under
high impact mode without adding any liquid processing agent. In a typical milling procedure, 4 g
of bulk powder was milled with ~14.5 g of stainless-steel balls consisting of 2 balls of 11.1 mm
diameter and 4 balls of 6.3 mm diameter. To prevent contamination with the metallic iron from
the steel balls and the container, a milling time of 20 minutes was used. No further annealing of

milled powders was performed before physical property measurements.

Horizontal section

Movement of the
supporting disc

Centrifugal
force

Rotation of the milling bowl

Fig. 5 (left) Schematic view of motion of the ball and powder mixture. (right) Arc melting system
equipped with a single crucible in the copper hearth (source: Materials Research Furnaces) [21].



Properties of Gadolinium silicide - GdsSi,;, GdsSi; and GdSi

Gadolinium (electronic configuration: [Xe] 4f7 5d1 6s2) has the highest spin-only magnetic
moment among all other atoms in the periodic table and has one of the lowest
magnetocrystalline anisotropy among the rare-earths, making it a soft rare-earth ferromagnetic
material close to room temperature [1]. Gadolinium ion (Gd3+) has seven unpaired electrons in
its 4f orbitals, a high magnetic moment (u2 = 63 BM2) and exhibit long proton spin-lattice
relaxation time (T1 = 107 sec) at field strengths routinely used in medical MRI (De
Ledn-Rodriguez 2015, Richards 1960). These unique properties resulted in chelated gadolinium
complexes as being the most widely used T1 CA in MRI [18]. Since, these Gadolinium
compounds are paramagnetic at human body temperature they are more suitable for use as T1

CA [4][23].

There are three identified phases of Gadolinium silicide in the NPs. Use of commercial grade
precursors - Gd and Si leads to the formation of a smaller amount of GdsSi; and GdSi impurity in
the predominantly GdsSis matrix [3]. While GdsSi4 is orthorhombic and ferromagnetic, GdsSis

and GdSi are paramagnetic at room temperture.



Methods and characterization

Methods are described in details elsewhere [18]. Briefly, Gadolinium silicide (GdsSiz) was
synthesized by arc-melting of the stoichiometric mixture of gadolinium and silicon under Ar
atmosphere. GdsSi; NPs were then prepared by high energy ball milling of the crushed ingot.
The synthesis process is described in detail elsewhere [4],[5],[6]. In order to separate NPs, one
gram of the ball milled powder was added to 26 ml of ethyl alcohol. The suspension was
sonicated for 4 hours to achieve thorough dispersion. Size separation was carried out by time
sedimentation under applied dc magnetic field using NdFeB grade N52 permanent magnets

placed below the beaker.

Eight fractions (S1, S2, S3, S4, S5, S6, S7 and S8) separation of 3.25 ml each of the suspension
were extracted from the bottom after 3, 10, 45, 180, 600, 1440, and 4320 minutes of
sedimentation, with the last fraction S8 being supernatant residue after the seventh extraction.
After each extraction, the left over solution was sonicated for 30 minutes between S1 and S3
and 15 hours sonication for the rest in order to maintain good dispersion. The separated
solutions were then evaporated at room temperature to obtain the powders. Magnetic
properties were measured in vibrating sample magnetometer (VSM, Quantum Design Versalab)
in a constant magnetic field of 100 Oe between 50Kand 350K and hysteresiswas measured in

magnetic fields ranging -3T and 3T at 300 K.
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The morphology and sizes of the NPs observed under Scanning Electron Microscopy (SEM
Hitachi Su-70) show irregularly shaped NPs with definite size distribution within each fraction
(refer Fig. 6). The average particle size distribution is determined by measuring the diameters of
the particles individually using image analysis software from the SEM digital images. The figure

inset with the SEM images display particle size distribution within each of those fractions.

Quantitative elemental analysis of the NPs was performed using spatially resolved energy
dispersive X-ray spectroscopy (EDX), it confirms that there is no iron contamination in GdsSiy
ingot from the production process (Fig. 7). X-ray diffraction (XRD) analysis (PANalytical X'Pert
PRO) measurements indicate the presence of major phase GdsSi; and minor phase GdsSis (Fig.

8). The obtained patterns for GdsSis and GdsSis are in good match with the reference peaks of

Cougdanma EDAX ZAF Quantification (Standardless)
7ok |SiKa Element Normalized
SEC Table : Default
Element Wt % At % K-Ratio Z A F
0.8k CHK 16.89 62.77 0.0423 1.2720 0.1970 1.0000
= SikK 10.46 16.62 0.0561 1.2353 0.4342 1.0004
GdL 72.65 20.62 0.6303 0.8538 10161 1.0000
Gdla 1otal 100.00 100.00
: Ka
10| 6k
4k

3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 keV

Fig. 7 Elemental analysis of a fraction (S3) in EDX [18]
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the respective phases. The primary reference files for GdsSi; and GdsSiz matching reference
peaks is sourced from "Calculated from ICSD using POWD-12++, (2004)" which are based on
reported structure Refs. 15 and 16. The phase content in S7 and S8 fractions are largely
amorphous. The deficit of Si in the particle has come from the bulk material. The bulk material
was prepared by arc-melting which was reported in the reference number. The deficit in Si in
the bulk material could have been a result of incongruent melting of Gd and Si elements in the
arc-melter, difference in vapor pressures of the Gd and Si, splintering of individual elements in
the arc-melting process due to uneven heat transfer and low thermal conductivity of Gd and Si

[18].

13
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Average particles Standard error
size (nm)

S1 688.30 30.71
S2 615.60 35.40
S3 555.54 36.15
S4 468.23 16.80
S5 341.15 8.97
S6 222 7:11
S7 83.84 2.43
S8 82.89 3.81

Standard error of the mean = Standard deviation / V(Sample size)

(b)

Table. 8 (b) Average particle sizes decrease across fractions [18].
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Fig. 9 (a) M-T curve for all fractions and pre-filtered sample (b) Curie temperatures (Tc) for each

fraction (S1-S6) GdsSis powder[18].
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Fig. 9 (c) M-H curve for all fractions and pre-filtered sample; the figure inset showing coercivity

(Hc) with respect to fractions. [18].

The magnetization as a function of temperature measurements indicate descending transition
temperature for GdsSis phase from 316 K for S1, S2 to 312 K for S3, S4 to 310 K for S5, S6 (Fig.
9(a)(b)). Fractions S7 and S8 shows no presence of GdsSi; phase which supports with XRD

analysis.

The Tc of all the present phases in the fractions are determined by the intersection point of the
steepest tangent (dM/dT) to the M-T curve with the T axis. Tc is observed at 110 K in all

separation stages indicating presence of GdsSi; phase with the volume fraction of this phase

16



increasing in subsequent fractions at the expense of GdsSi; phase. This is inferred from a
gualitative observation made by comparison of the approximate analysis of heights of the M-T
curve at the curie temperatures of the respective phases. The increase in Tc of GdsSiz from 70 K
at its bulk form to 110 K in powdered form also reported by Hadimani et al. [4] needs further
exploration in order to fundamentally understand the cause for the significant shift in its Curie
temperature. Another Curie temperature is observed at 290 K for all fractions indicating the
presence of minuscule amount of elemental gadolinium. Presence of elemental gadolinium in
the samples may be counter-intuitive as it oxidizes in oxygen rich environments however, the
gadolinium oxide forms a barrier shell on the surface preventing further oxidation. Hence,
gadolinium can be detected in our M-T measurements. The M-H curves at 300 K exhibits
ferromagnetic behavior descending to paramagnetic as we move from S1 to S8 fraction.
Coercivity (Hc) obtained from hysteresis plots show (inset of Fig. 9(c)) that it increases with
decrease in particle size across fractions. This agrees with reports in the literature, where the
coercivity increases with decrease in particle size until it reaches single domain and then

decreases toward zero where it becomes superparamagnetic [18].
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MRI studies

Advancing MRI magnetic technology is necessary for high resolution in biomedical imaging, high
detection sensitivity and development of new classes of nanomaterials for use as CAs. CAs that
are used in MRI today are mostly based on paramagnetic chelated gadolinium compounds as T1
CAs or superparamagnetic iron oxides (Fes04) as T2 CAs. Also, available CAs have limited
effectiveness in high magnetic fields [31]. Until recently most CA that are used in MRI studies
have been paramagnetic. However, ferromagnetic CAs are potentially more sensitive as T2 CAs
than T1 paramagnetic compounds due to their large magnetic moments. Previous study has
shown that ferromagnetic GdsSi; NP could be a better T2 CA for MRI with significantly reduced
echo time (TE) compared to Superparamagnetic Iron Oxide Nanopartilces (SPION) which are
currently the most widely used T2 CA [1]. Furthermore, the need for better MRI images without
the need of upgrading to the higher magnetic field strength can be achieved using better CA
such as GdsSis NP. The quality of the image contrast in MRl is improved by shortening T1 and T2
relaxation times at the site or close proximity to the CA. The efficiency of a T1 CA is defined by
its relaxivity, rl, which is field and temperature dependent. While, T2 agents are defined by
their relaxivity, r2, which is dependent on both the saturation magnetization (Ms) value and the
effective radius of the NPs [1, 2]. Here, effect of GdsSis NP of varying sizes and with different
concentrations are investigated on T1, T2 and T2* (effective/observed T2) relaxations times of

proton using high field (21.1 T) MRI.

Prior to MRI measurements, NPs are diluted in solution with low-temperature 2% agarose with

the following dilutions - 1:20, 1:200, 1:2000 and 1:20000. The high dilution factors were chosen
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based on solution MRI with lower dilution factors (data not shown) that exhibited extremely
strong contrast at 21.1 T and unquantifiable results. Each nanoparticle layer was separated with
a 1% agarose layer. MR images were acquired on the 21.1 T (900 MHz) magnet at the National
High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The magnet is equipped with
Bruker Avance lll console and Paravision 6.0.1 (Bruker, Ettlingen Germany). For all acquisition a
10-mm birdcage coil was used together with a 63-mm (inner diameter) gradients capable of
producing a peak gradient strength of 600 mT/m (Resonance Research Inc., Billerica MA).
Measurements were performed to quantify T,, T, and T,* relaxation times for each sample and
dilution. For T; measurements, a turbo spin echo (TSE) sequence was used with two rare
factors. The echo time (TE) was 8.8 ms and ten incrementing (12000 - 26 ms) repetition times
(TR) were used. T, relaxation were acquired with a multi slice multi echo (MSME) sequence
using a TR=5000 ms and 20 incrementing echo time (7.5 — 150 ms). For T,*, a 2D gradient echo
(GRE) sequence were used with TR=5000ms and eight incrementing TE (1.5 — 28.5 ms).
Common acquisition parameters for T, and T, sequences were 2 averages, matrix = 110x200,
FOV = 1.1x 2.0 cm resulting in a 100x100 @m in plane resolution using a 1-mm slice while the 2D
T,* sequence were acquired with 2 averages and a matrix of 100x55 resulting in a 200x200 Em
in-plane resolution. Magnitude images were analyzed in Paravision using region-of-interest
(ROIs) to cover each agarose layer as well as spacing layers. The average signal intensities were
extracted and analyzed in Matlab using the Levenberg-Marquardt algorithm. For T, a three-
parameter exponential growth function were used while for T, and T,* a three-parameter

exponential decay function were employed.

The results indicate higher concentrations of NPs shortens the T2 and T2* relaxation times and

the contrast disappears rapidly with any higher dilutions. Furthermore, fractions with higher
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Fig. 10 MRI images of three fractions indicating T1, T2 and T2*. NPs are diluted in solution with

low-temperature 2% agarose prior to MRI measurements at 21.1 T (900 MHz) magnet.

(bottom) Table. - T1, T2 and T2* relaxation times of different NP sizes and at different

concentrations.
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noParticles

3207.43
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Fig. 11 - T4, T, and To* MRI images and relaxation times of S1, S2, S3and S4 fractions.
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ferromagnetic GdsSis phase volume fraction and larger average particle size seems to have
comparatively higher relaxation times than fractions with paramagnetic GdsSiz and GdSi phases.
The results in Fig. 11 indicate effective T2 (T2*) decays much faster than the natural T2
suggesting large field inhomogeneities which could be caused by various factors such as
imperfections in magnet or susceptibility effect induced field distortions from the material [30].
Furthermore, the measurements show decreasing NP sizes increases T2* relaxation time due to

decrease in the net magnetization of the smaller particles resulting in longer T2*.

However, it should be noted that NPs have combination of all Gadolinium silicide phases
present in them in different volume percentage. It is unknown how a NP with both
ferromagnetic and paramagnetic components from different phases present in individual NPs
affects the relaxation times of water protons. Therefore, further study is needed inorder to
establish the cause in shortened relaxation times in smaller paramagnetic Gadolinium silicide
(GdsSiz and GdSi) NPs and higher relaxation times in larger ferromagnetic Gadolinium silicide

(GdsSis) NPs.
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Magnetic properties of ferromagnetic GdsSi, - Fe304 bilayer thin film
heterostructure

Introduction

Thin films are used in wide variety of high technology and industrial applications like data
storage, batteries, sensors and microelectronics. There has been significant developments in
magnetic thin films materials and fabrication in recent years. Thin films can be deposited with
different processes such as spraying, spin-coating, dip-coating, chemical vapor deposition

(CVD), evaporation, and sputtering.

Intrinsic magnetic properties such as magnetic saturation (Ms), Curie temperature (Tc) etc can
be significantly different in thin films and in the bulk due to finite size effect [32]. Furthermore,
it has been observed an exchange interaction results at the interface between a ferromagnetic
material and an anti-ferromagnetic / ferrimagnetic material [33][34]. The exchange bias
appears when the curie temperature of the ferromagnet is above the Neel temperature of the
anti-ferromagnet / ferrimagnet [33]. This phenomena is exploited in data storage technology.
In this paper we present deposition of Fe304 and GdsSis films using RF Magnetron sputtering.
Although Fes0, deposition with RF/DC sputtering has been widely reported, GdsSis thin film

deposition with this method has never been reported thus far.

Fe304 has an inverse spinel crystal structure with two cation sites- Fe?* and Fe* ions that are
encircled by oxygen ions to form tetrahedra and octahedra structures. Fes0, is ferrimagnetic
whose magnetic property is influenced by the Fe?* and Fe* ions as the spin of these ions at

these two cation sites are anti-parallel coupled by super-exchange effect. Fes0, is reported to
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exhibit high Curie temperature (~860 K) [4]. GdsSis is ferromagnetic material with a reported
transition temperature for PLD deposited thin film at 342 K [36]. It has an orthorhombic

structure [37].

Methods

The samples were deposited on silicon substrate using RF magnetron sputtering using a pure
FesO, and GdsSi; ceramic targets. The apparatus is lab assembled unit equipped with RF
generator, and a pumping system composed of a mechanical pump coupled with a turbo
molecular pump. The base pressure of the growth chamber was on the order of 4 x 10 Torr.
The apparatus is lab assembled unit equipped with RF generator, and a pumping system
composed of a mechanical pump coupled with a turbo molecular pump. The distance between
the target and the substrates was 55 mm and the RF power supply was set at 80 W for Fe30,
deposition and 40 W for GdsSi,; deposition. RF bias power densities of 0 W/cm2 were applied to
the substrate. The gas used in this study was argon and the working pressure was kept at a
value of 12 mTorr and 37 mTorr respectively. The flow was kept constant at a rate of 20 sccm
for Fes04 and 25 sccm for GdsSiy. Initial deposit was made with FesO4 followed by a top layer of
GdsSi; to complete the bilayer structure. The surface roughness of this both layers was
measured by atomic force microscopy. Furthermore, five samples of varying thickness of
monolayers were deposited separately: 3 Fes0, films of deposition times of 15 minutes (S1), 30
minutes (S2) and 60 minutes (S3) and 2 Fes0,4 - GdsSis bilayer films of deposition times of 30
minutes for Fes04 and 1 hour of GdsSis (S4) and 1 hour each of Fe;0,4 followed by GdsSiy (S5).

Film thicknesses were measured using a Zeiss Auriga Crossbeam FIB - SEM dual system. Part of
24



the film was removed from top down to the substrate and the film thickness was thus
measured with the sample slanted. Phase composition of the films were studied with PHI
VersaProbe Il Scanning XPS system. Morphology and microstructure of the as-deposited
samples were examined by Dimension FastScan atomic force microscopy (AFM) and Hitachi SU-
70 S/TEM. Finally, Magnetic properties were characterized with Quantum design Physical

Property Measurement System (PPMS) system.

A

|

Fig. 12 RF / DC Magnetron system used for sputter deposition of the films.
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Results and discussion

To observe the thicknesses, the samples were first coated with Pt in order to protect the
specimens surface during milling. Then the specimens were milled to upto 5 um depth using a
Zeiss Auriga focused ion beam (FIB). The FIB milling voltage is set to 2 kV to minimize damage
from implanted Ga. Specimens observed under SEM shows (Fig. 13) films thicknesses of 58 nm
for S1, 96 nm for 52, 228.91 nm for $3, 83 nm of Fe304 and 90 nm of GdsSi, for S4 and finally
110 nm of Fe304 and 175 nm of GdsSi, for S5. The thickness of the films are linearly proportional
to the deposition times provided other parameters in the RF Magnetron sputtering remains the

same.

Fig. 13 SEM images of the specimen S1 - S4 (viewed at 54° angle). The bright top layer is the protective
Pt layer and the darker bottom layer is the silicon substrate.
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Fig. 14 SEM image of the specimen S5. Note contrast visible at the interface between the Pt

layer on top and the silicon substrate. GdsSi, is deposited on Fe30;,.

The roughness of the both the Fes04 and GdsSis film surface was found to be 0.738 nm, and
3.02 nm, respectively, as measured by atomic force microscopy (AFM), shown in Fig. 15 and Fig.
16. Silicon wafer used as the substrate in this experiment and its surface is regarded to be
“flat”. Interfacial topographies and surface morphology observed in SEM and AFM reveals non-
homogeneous thickness in films and also significant void fraction in GdsSi4 film. During growth,

stress relaxation in between film interfaces strongly alters growth characteristics of the
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following film deposition [43]. The respective surface roughness esp. at the interfacial layer will
influence the global magnetic interaction as the physical contact area between two rough
surface will depend on the roughness. Therefore, the amount of disorder at the
surface/interface can also influences magnetic properties of thin magnetic films, such as

coercivity, magnetic domain structure, and magnetization reversal. Also, surface/interface

Fig. 15 AFM images (Height, Phase and 3D) of the Fe;0, thin film shows surface roughness of 7.38 nm.

The surface roughness was analyzed with Nanoscope analysis software.



Height Sensor

Fig. 16 AFM images (Height, Phase and 3D) of the Fe304 - GdsSis thin film. Analysis shows

surface roughness of 3.02 nm.

roughness has been shown to have a significant influence on the demagnetizing field [43][44].

XPS surface characterization analysis shows elemental composition and phases. The XPS survey
scan of the Fes04 thin film deposited on Si (100) substrate is shown in Fig. 16 , we have
observed that only Fe and O are present with very small contribution of C which was expected
because film surface was exposed to air before XPS measurements. The positions of various
photoemission peaks are marked in the spectrum for elements present in the film. Further
detailed scan have performed for Fe 2p core level spectra to determine charge/electronic state

of elements present in the film.
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Fig. 17 XPS Survey spectrum of Fes0,4 film indicating presence of carbon. Analysis reveals
presence of phases other than Fe304. (right) FesO4 (XPS SPECTRUM) - Region: Fe2p3 spectrum

curve fitted to identify peaks.

Fig. 17 depicts the high-resolution scan of the Fe 2p core level. The deconvoluted spectrum

shows the presence of two peaks at 710.18 eV attributed to Fe304 phase and 712.35 eV.

The survey scan of the GdsSi; deposited on Fe304 is shown in Fig. 18 Gd 4d core-level XPS
spectrum of thin film is shown in Fig. 18. The features of Gd are fitted with Gaussian—Lorentzian
functions which reveals binding energies of 142.50 eV, 147.98 eV and 152.69 eV. O 1s core level
spectra has binding energy position at around 531.42 eVand for the Si 2p binding energy at
101.51 eV. All XPS core level spectra were fitted using PHI MultiPak data reduction and

interpretation software package.
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Fig. 18 XPS SPECTRUM - Region: Gd4d/3 spectrum curve fitted to identify peaks. (bottom)

Region: 01s/3 spectrum curve fitted to identify peaks.
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Fig. 19 XPS SPECTRUM - Region: Si2p/3 spectrum curve fitted to identify peaks.

The hysteresis (M-H) curves for the Fe3z04 thin films and Fe304/GdsSi, bilayer films are shown in
Fig. 20, 21, 22, 23 and 24. The magnetic hysteresis plots of film at the room temperature and 50
K to 400 K were measured using QD PPMS. It can be seen that the Fe;0, film deposited on glass
substrate shows higher saturation magnetization (Ms = 8 emu), while the films deposited on

Si(100) show lower saturation magnetizations (Ms = 2.6 emu for S1 and Ms = 2.9 emu for S2).
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Fig. 20 Hysteresis graph of 58 nm thick FesO; on glass. Fes04 (S1) thin film exhibit

ferromagnetic behavior with magnetic saturation at around 8 emu. The diamagnetic features in

32



observed is due to glass/silicon substrate. (right) M-T Curve shows shift in moment by 0.60

emu at the temperature of 280K indicating possible transition.

This is because S1 is deposited on glass substrate while the S2 and S3 are deposited on Si(100),
hence nature of the substrate surface plays a vital role in the synthesis of thin films and the
inherent characteristics of substrate are very important [35][46]. Surface properties of glass and
silicon have distinct influence on nucleation and growth processes of thin films [44]. There is
large lattice mismatch of substrates (Si, a = 5.404 A) and films (Fe;04, a = 8.397 A). The Curie
temperature (Tc) was obtained from differentiating magnetic moments with respect to the

temperature. Tc for Fes04 specimens were observed at 281 K for S1, 378 K for S2 and 300 K for

S3.
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Fig. 21 M-H curve of the 96 nm thick Fe304 (S2) thin film on silicon showing magnetic saturation

(Ms) at about 2.6 emu and Tc at 378 K.
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Fig. 22 M-H curve of the 228.91 nm thick Fes04 (S3) thin film on silicon showing magnetic

saturation (Ms) at about 2.9 emu and Tc at about 300 K.
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Fig. 23 M-H curve of the GdsSi; - FesO4; (S4) bilayer thin film heterostructure retains
ferromagnetic behavior. The magnetic saturation (Ms) is about 1.58 emu. Transition
temperatures are observed at around 148 K, 240 K and 300 K. Note GdsSis has Tc = 318 K and

Fe;0,4 has Tc = 858 K [18][35].
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Fig. 24 M-H curve of the GdsSi; - Fes0O4 (S5) bilayer thin film heterostructure retains
ferromagnetic behavior. The magnetic saturation (Ms) is about 3 emu. Transition temperatures
are observed at around 243 K and 265 K. Note GdsSis has Tc = 318 K and Fe30,4 has Tc = 858 K

[18] [35].

Specimen S4 exhibited Tc at around 148 K, 240 K and 300 K while for S5 Tc is observed at 300 K
and 378 K. Further work is under progress to understand the origin of these magnetic
transitions. All magnetic measurements were carried out with specimens oriented 90° in
respect of the direction of external magnetic field. It becomes evident, the missing
characteristic signature in the shift of Curie temperatures observed in M-T curve that is
between the curie temperatures of the bilayer materials [47], we conclude no exchange
interaction was observed between Fe304 - GdsSis bilayer film. This can be attributed to the
formation of other phases due to possible reaction between the films and/or substrate and

oxygen in the air, leading to changes in magnetic properties of the deposited materials.
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Conclusion and future work

The phase and size separation of GdsSi; nanoparticles was successfully carried out with the time
sensitive sedimentation technique under applied dc magnetic field using a N52 NdFeB
permanent magnet. Average nanoparticle sizes decreased as the sedimentation time increased
across fractions. Applying dc magnetic field in the separation process resulted in separation of
phases (ferromagnetic GdsSis phase from paramagnetic GdsSis phase and other impurities).
Curie temperature of major phase GdsSi; decreased from 316 K to 310 K across fractions
indicating decrease in average GdsSis particle sizes while the Curie temperature remained
constant at 110 K and 290 K for GdsSi; phase and elemental gadolinium phase respectively

being unaffected by particle size variation.

MRI studies indicate relaxation time increases with dilution and decreases with NP sizes with
paramagnetic properties. Effective T2 (T2*) decays much faster than the natural T2 and
decreasing NP sizes increases T2* relaxation time due to decrease in the net magnetization of

the smaller particles resulting in longer T2*.

Future work should focus on further improvement on size separation method is required for
e.g. with continous field flow fractionation to achieve monodispersity so that narrow particles
size range is present in each size separated fractions. Also, sythesis process improvement is
necessary to mitigate formation of other phases of GdsSis. Ball milling produces irregular shapes

which has a different effect on relaxation time and hence shape control is also needed.

Also, Fe304 and Fe304-GdsSiy bilayer thin films of various thicknesses on Glass/Si (100) substrate

by RF Magnetron sputtering technique have successfully been deposited. Our results indicate
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magnetic property is dependent on substrate and thickness of the deposited material. There is
an observation of high porosity and surface roughness in both the films. No exchange
interaction was observed between Fe;04-GdsSi; bilayer film due to formation of different
phases. Further improvement in the deposition process is necessary to reduce surface
roughness and promote larger physical contact to enhance magnetic interaction between the

two layers. Also, phase preservation needs to be achieved for the deposited films.
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Appendix

NIST XPS database reference

General:

Element: Fe

Formula: Fe304

XP5 Formula

Name: iron(II) diiron(III) tetraoxide
CAS Registry No: 1317-61-9

Classes: catalyst, mineral, oxide
Author Name(s): Tan B.]., Klabunde K.J., Sherwood P.M.A.
Journal: Chem. Mater. 2, 186 (1990)
Data Type: Photoelectron Line

Line Designation: 2p3/2

Quality of Data: Adequate

Binding Energy (V) 710.2

Enersv Uncertainty: 0.2

Background Subtraction Method: other

Peak Location Method: data

Full Width at Half-maximum Intensity 4.8

(eV): '

Gaunssian Width (eV):

Lorentzian Width (eV):

Measurement Information:

Use of X-ray Monochromator: No

Excitation Energy: Mg

X-ray Energy:

Overal Energy Resolution (eV):

Calibration: Other, Fe2p3 = 706.86
Charge Reference: Adventitious carbon

Energy Scale Evalution: Reliable, with one-point correction of energy scale

Specimen Information:

Specimen:
Method of Determining Specimen

Composition:
Method of Determiming Speciumen

Crystallinity:
Specimen Temperature (K): 300
Sample Quality- Adequate
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Element: Si

Formula: Gd5Si3

XPS Formula:

Name: pentagadolinium trisilicide

CAS Registry No: 12024-95-2

Classes: IV semiconductor, lanthanide, rare earth, silicide
Author Name(s): Puppin E., Lindau I., Abbati I.

Joumal: Solid State Commun. 77, 983 (1991)
Data Type: Photoelectron Line

Line Dezignation: 2p

Quality of Data: Adequate

Binding Energy (V) 08.1

Energy: Uncertainty: 0.05

Backeround Subtraction Method:

Pezk Location Method: data

Full Width at Half-maximum Intensity

(eV):

Gaussian Width (eV):

Lorentzian Width (eV):

Measurement Information:

Use of X-ray Monochromator: No
Excitation Energy: Mg
X-ray Energy:

Overal Energy Resolution (eV):

Calibration: FL = Fermi level

Charge Reference: Conductor

Enersy Scale Evalution: Reliable (reported energy within 300 eV of a reference energy)
Specimen: polycrystalline, scraped

Method of Determining Specimen

Composition:

Method of Determining Specimen
Crystallinity:

Specimen Temperature (K): 300

Sample Qualify: Adequate

Comment:

Notes: The sample was prepared by melting pure elements.

X-ray Diffraction
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Element: Si

Formula: Gd3sis

XP3 Formula

Name: trigadolinium pentasilicide

CAS Registry No: 12435-34-6

Classes: IV semiconductor, lanthanide, rare earth, silicide
Anthor Name(s): Puppin E., Lindau I., Abbati I.

Journal: Solid State Commun. 77, 983 (1991)
Data Type: Photoelectron Line

Line Dezignation: 2p

Quality of Data: Adeguate

Binding Energy (eV) 98.9

Energy Uncertainty: 0.05

EBackeround Subtraction histhod:

Pezk Location Method: data

Full Width at Half maximum Intensity;

eV

Ganzzian Width (V-

Lorentzian Width (W

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Enerpy: Mg
Xoray Energy:

Overzal Enerpy Resclution (eV):

Calibration: FL = Fermi level

Charpe Reference; Conductor

Energy Scale Evalution: Reliable {reported energy within 300 eV of a reference energy)
Specimen: palycrystalling, scraped

Method of Determining Spacimen

Compozition:

}—".ieTtm.Di.r [?_ﬂmij—SF—emer' ¥-ray Diffraction

Crystallimity;:

Specimen Temperature (K): 300

Sample Qualify: Adequate

Comment:
Notes: The sample was prepared by melting pure elements.
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Element: Si

Formula: GdSi

XP3 Formmula:

Name: gadolinium silicide

CAS Registry No: 12024-82-7

Classes: IV semiconductor, lanthanide, rare earth, silicide
Anthor Name(s): Fuppin E., Lindau I., Abbati I.

Journal: Solid State Commun. 77, 983 (1991)
Diata Type: Photoelectron Line

Line Dezignation: 2p

Quality of Data: Adeguate

Binding Energy (eV) 98.6

Energy Uncertainty: D.05

Backeround Subtraction hethod:

Pezk Locaticn Method: data

Full Width at Half maximum Intensity;

Al L.

Ganzsian Width (23):

Lorentzian Width (%)

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Enerpy: Mg
Xoray Energy:

Overzl Enerpy Resolution (eV):

Calibration: FL = Fermi level

Charge Reference: Conductor

Energy Scale Evalution: Reliable {reported energy within 300 eV of a reference energy)
Specimen: polycrystalline, scraped

Method of Determining Specimen

Compozition:

]."-.-'_e‘-tl'.l'_\ll.l'_‘i.- I_].etermlmng_Spetlmet: X-ray Diffraction

Crystallimity:

Specimen Temperature (K 300

Sample Qualify: Adequate

Comment:
Notes: The sample was prepared by melting pure elements.
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Formula: Gd203

XPS Formula:

Name: gadolinium{III) trioxide

CAS Bepistry No: 12064629

Classes: lanthanide, oxide, rare =arth
Author Name(s): Raiser D., Deville 1.P.
Joumal: 1. Electron Spectrosc. Relat. Phemon. 57, 91 (1991)
Data Type: Photoelectron Line

Line Desipnation: 15

Quality of Data:

Binding Enerev (V) 531.4

Energy Uncertainty:

Backeround Subtraction Method:
Peak ocation hethod:

Full Width at Half maximum Intensity

TS

A A
Ganzzian Width (V-
Lorentrian Width (2V):

Measurement Inform ation:

Use of X-ray Monochromator: Mo
Excitation Enerpy:

-ray Energy:

Overzl Energy Resolution (eV):

Calibration: Cls=284.0

Charpe Reference: Adventitious carbon

Energy Scale Evalution: Two-point correction of energy scale

Specimen powder {(when a special point is made in the article)
Method of Determining Specimen

Composition:

Method of Determining Specimen

Crystallinity:

Specimen Temperature (K):
Sample Quality:
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Element: Gd

Formula: Gd5si3

XPS Formula:

Name: pentagadolinium trisilicide

CAS Registry No: 12024-95-2

Classes: IV semiconductor, lanthanide, rare earth, silicide
Author Name(s): Fuppin E., Lindau I., Abbati I.

Joumal: Solid State Commun. 77, 983 (1991)
Data Type: Photoelectron Line

Line Diesignation: 4d5/2

Quality of Diata: Adeguate

Binding Energy (V) 141.6

Energy Uncertainty: 0.2

Backeround Subtraction hethod:

Pezk Location Method: data

Full Width at Half maximum Intensity

A ¥ T

Ganzzian Width (V-

Lorentrian Width (2V):

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Enerpy: Mg
-ray Energy:

Overzl Energy Resolution (eV):

Calibration: FL = Fermi level

Charpe Reference: Conductor

Energy Scale Evalution: Reliable {reported energy within 300 eV of a reference energy)
Specimen: polycrystalline, scraped

Method of Determining Specimen

Composition:

Ik.'_efl'_u:u:_ni.r [_].etermlmng_Spetlmet X-ray Diffraction

Crystallinity:

Specimen Temperature (K): 300

Sample Quality: Adequate

Comment:
Notes: The sample was prepared by melting pure elements.
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Element: Gd

Formula: GdSsi

XP3 Fommula:

Wame: gadolinium silicide

CAS Registry No: 12024-82-7

Classes: IV semiconductor, lanthanide, rare earth, silicide
Anthor Name(s): Puppin E., Lindau I., Abbati I.

Journal: Solid State Commun. 77, 983 (1991)
Data Type: Photoelectron Line

Line Designation: 4d5/2

Quality of Data: Adeguate

Binding Energy (eV) 141.5

Energy Uncertainty: 0.2

EBackeround Subtraction histhod:

Pezk Location Method: data

Full Width at Half maximum Intensity;

eV

Ganzzian Width (V-

Lorentzian Width (W

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Enerpy: Mg
Xoray Energy:

Overzal Enerpy Resclution (eV):

Calibration: FL = Fermi level

Charpe Reference; Conductor

Energy Scale Evalution: Reliable {reported energy within 300 eV of a reference energy)
Specimen: palycrystalling, scraped

Method of Determining Spacimen

Compozition:

}—"."eTtm.ﬁ [_]_HMJME—SF—ECMEE ¥-ray Diffraction

Crystallimity;:

Specimen Temperature (K): 300

Sample Qualify: Adequate

Comment:
Notes: The sample was prepared by melting pure elements.
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Element: Gd

Formula: Gd203

XP5 Formula:

Mame: gadolinium{III) trioxide

CAS Registry No: 12064629

Classes: lanthanide, oxide, rare earth
Author Name(s): Raiser D., Deville 1.P.
Joumnal: 1. Electron Spectrosc. Relat. Phemon. 57, 21 (1991)
Data Type: Photoelectron Line

Line Designation: 4d3/2

Quality of Data:

EBinding Energy (V) 148.10

Energy Uncertzinty:

Backeround Subtraction hMethod:
Peak I ocation hMethod:

Full Width at Half-maximum Intensity;
eV

Ganzsian Width (V-

Lorentzian Width (V-

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Energy:

X-ray Energy:

Overal Enerpy Resolution (eV):

Calibration: Cls=284.0

Charge Reference: Adventitious carbon

Energy Scale Evalution: Two-point correction of energy scale

Specimen: powder {when a special point is made in the article)
Method of Determining Specimen

Composzition:

Method of Determining Specimen

Cryatallimity:

Specimen Temperature (K):
Sample Quality:
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Element: Gd

Formula: Gd203

XP3 Fommula:

Name: gadolinium{III) trioxide

CAS Bepistry No: 12064629

Classes: lanthanide, oxide, rare =arth
Author Name(s): Raiser D., Deville 1.P.
Joumnal: 1. Electron Spectrosc. Relat. Phemon. 57, 91 (1991)
Data Type: Photoelectron Line

Line Designation: 4d5/2

Quality of Data:

EBinding Energy (V) 142.70

Energy Uncertainty:

Backpround Subtraction hethod:
Peak [ ocation hiethod:

Full Width at Half- maximum Intensity;

(W)

A A
Ganzsian Width (W)
Lorentzian Width (%)

Measurement Information:

Use of X-ray Monochromator: Mo
Excitation Enerpy:

X-ray Energy:

Overal Enerpy Resolution (eV):

Calibration: Cls=284.0

Charge Reference; Adventitious carbon

Energy Scale Evalution: Two-point correction of energy scale

Specimen: powder (when a special point is made in the article)
Method of Detfermining Specimen

Compozition:

Method of Determining Specimen

Crystallimity;:

Specimen Temperature (K):
Sample Cuality:
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Investigating phase transition temperatures of size
separated gadolinium silicide magnetic nanoparticles
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Gadolinium silicide (GdsSis) nanoparticles (NPs) exhibit different properties com-
pared to their parent bulk materials due to finite size, shape, and surface effects. NPs
were prepared by high energy ball-milling of the as-cast GdsSis ingot and size sepa-
rated into eight fractions using time sensitive sedimentation in an applied dc magnetic
field with average particle sizes ranging from 700 nm to 82 nm. The largest GdsSi,
NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be
ascribed to a GdsSiz impurity. As the particle sizes decrease, the volume fraction of
GdsSi3 phase increases at the expense of the GdsSi4 phase, and the ferromagnetic tran-
sition temperature of GdsSiy is reduced from 316 K to 310 K, while the ordering of the
minor phase is independent of the particle size, remaining at 110 K. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5007686

INTRODUCTION

Elemental gadolinium (electronic configuration: [Xe] 4f7 5d' 6s) has the largest spin-only
magnetic moment among all other atoms in the periodic table." Its trivalent ion Gd** with seven
unpaired 4f electrons has long proton spin-lattice relaxation time (T1 = 107 sec) at field strengths
routinely used in medical Magnetic Resonance Imaging (MRI).? This unique feature of gadolinium
resulted in chelated gadolinium complexes being the most widely used T1 contrast agents (CA)
in MRL'? However, these compounds are paramagnetic at human body temperature making them
suitable for use only as T1 CA.*!*

An alternative class of CA referred to as T2 is based on spin-spin relaxation process. Currently,
superparamagnetic iron oxide nanoparticles (SPIONs) are beginning to be used as T2 CA. However,
for continued improvement of biomedical imaging, there is an increasing need for improved CAs.?
Ferromagnetic gadolinium silicide (GdsSis) nanoparticles are shown to be useful as potential T2
CA for MRI with significantly reduced echo time (TE) compared to SPIONs.! The production of
the GdsSiy NPs via chemical synthesis routes has been challenging due to high oxygen affinity of
gadolinium leading to significantly reduced magnetization. Therefore, top-down approach in an inert
atmosphere is adopted not only to mitigate the oxidation of gadolinium but also increase yield through
high scalability.

Furthermore, advances in nanotechnology are leading to the development of nanoscale materials
with specifically engineered properties that differ from their bulk counterparts.® NPs pharmacokinet-
ics in vivo are largely influenced by their physicochemical properties such as morphology, size and
other surface properties.”'! The physicochemical properties in turn influence the magnetic behavior

#Email: rhadimani@ veu.edu

2158-3226/2018/8(5)/056428/6 8, 056428-1 © Author(s) 2018 ©'
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of individual NPs, since the magnetic properties of the NPs emerge from finite size and surface
effects.'?

High imaging performance of CAs in MRI depends on their increased relaxivity coefficients
(rl and r2). In our recent publication we have shown that image contrast in MRI can be enhanced
by higher saturation magnetization (M;) of GdsSis nanoparlicles.2 In this study, the size dependent
magnetic properties of GdsSis NPs are investigated.

s5nmr My 1 S6/(nm)

FIG. 1. SEM images of fractions. The figures inset shows average particle size distribution for each fraction.
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METHODS

Gadolinium silicide (GdsSis) was synthesized by arc-melting of the stoichiometric mixture of
gadolinium and silicon under Ar atmosphere. GdsSiy NPs were then prepared by high energy ball
milling of the crushed ingot. The synthesis process is described in detail elsewhere.>®!2 In order to
separate NPs, one gram of the ball milled powder was added to 26 ml of ethyl alcohol. The suspension
was sonicated for 4 hours to achieve thorough dispersion. Size separation was carried out by time
sedimentation under applied dc magnetic field using NdFeB grade N52 permanent magnets placed
below the beaker. Eight fractions (S7, S2, S3, $4, §5, §6, S7 and S8) separation of 3.25 ml each of
the suspension were extracted from the bottom after 3, 10, 45, 180, 600, 1440, and 4320 minutes
of sedimentation, with the last fraction S8 being supernatant residue after the seventh extraction.
After each extraction, the left over solution was sonicated for 30 minutes between S/ and S3 and
15 hours sonication for the rest in order to maintain good dispersion. The separated solutions were
then evaporated at room temperature to obtain the powders.

Magnetic properties were measured in vibrating sample magnetometer (VSM, Quantum Design
Versalab) in a constant magnetic field of 100 Oe between 50 K and 350K and hysteresis was measured
in magnetic fields ranging -3T and 3T at 300 K.

RESULTS AND DISCUSSION

The morphology of the nanoparticles was characterized by Scanning Electron Microscopy (SEM,
Hitachi Su-70) and quantitative elemental analysis of the nanoparticles was performed using spatially
resolved energy dispersive X-ray spectroscopy (EDX). The images reveal irregularly shaped NPs
with certain size distribution within each fraction. The advantage of such irregular shaped NPs
over spherical shaped ones are that they are found to have better pharmacokinetics and possibly
greater cell binding affinity.” Diameters of the particles were individually measured using image
analysis software (ImagelJ) from the SEM digital images in order to determine the average particle
size distribution. The resulting histogram is embedded with the SEM images of fractions. The SEM
images show noticeable size variation along the fractions as shown in Fig. 1. EDX analysis confirms
that there is no iron contamination in GdsSis ingot from the production process (Fig. 2). X-ray
diffraction (XRD) analysis (PANalytical X Pert PRO) measurements reveal (Fig. 3) the presence of
major phase GdsSis and minor phase GdsSi3. The obtained patterns for GdsSi4 and GdsSis are in
good match with the reference peaks of the respective phases. The primary reference files for GdsSiy
and GdsSi3 matching reference peaks is sourced from "Calculated from ICSD using POWD-12++,
(2004)" which are based on reported structure Refs. 15 and 16. The phase content in S7 and S8

% anea EDAX ZAF Quantification (Standardless)
[1ox |SiKa Element Normalized
SEC Table : Default
Element Wt % At ¥ K-Ratio Z A F
A CK 16.89 62.77 0.0423 1.2720 0.1970 1.0000
‘ SiK 10.46 16.62 0.0561 1.2353 0.4342 1.0004

GdL  72.65 20.62 0.6303 0.8538 1.0161  1.0000
Gdla  rotal 100.00 100.00

3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 keV

FIG. 2. Elemental analysis of a fraction (S3) in EDX.
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FIG. 3. (a) XRD patterns obtained from fractions. Reference peaks of GdsSis and Gds Si3 (bottom) maiches with the patterns.
(b) Average particle sizes decrease across fractions.

fractions are largely amorphous. The deficit of Si in the particle has come from the bulk material.
The bulk material was prepared by arc-melting which was reported in the reference number.* The
deficit in Si in the bulk material could have been a result of incongruent melting of Gd and Si
elements in the arc-melter, difference in vapor pressures of the Gd and Si, splintering of individual
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FIG. 4. (a) M-T curve for all fractions and pre-filtered sample (b) Curie temperatures (Tc) for each fraction (S7-56) Gds Siy
powder. (¢) M-H curve for all fractions and pre-filtered sample: the figure inset showing coercivity (Hc) with respect to
fractions.
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elements in the arc-melting process due to uneven heat transfer and low thermal conductivity of Gd
and Si.

The VSM measurements show changing Curie temperature for GdsSiy phase from 316 K for
S1, 52 to 312 K for §3, §4to 310 K for S5, 56 (Fig. 4(b)). Fractions §7 and S8 shows no presence of
GdsSiy phase which corroborates with XRD analysis.

The Curie temperatures of all the phases present in the fractions are determined by the inter-
section point of the steepest tangent (dM/dT) to the M-T curve with the T axis. Curie temperature
is observed at 110 K in all separation stages indicating presence of GdsSiz phase with the volume
fraction of this phase increasing in subsequent fractions at the expense of GdsSiy phase. This is
inferred from a qualitative observation made by comparison of the approximate analysis of heights
of the M-T curve at the curie temperatures of the respective phases. The increase in Curie temper-
ature of GdsSi3 from 70 K at its bulk form to 110 K in powdered form also reported by Hadimani
et al.* needs further exploration in order to fundamentally understand the cause for the significant
shift in its Curie temperature. Another Curie temperature is observed at 290 K for all fractions indi-
cating the presence of minuscule amount of elemental gadolinium. Presence of elemental gadolinium
in the samples may be counter-intuitive as it oxidizes in oxygen rich environments however, the
gadolinium oxide forms a barrier shell on the surface preventing further oxidation. Hence, gadolin-
ium can be detected in our M-T measurements. The M-H curves at 300 K exhibits ferromagnetic
behavior descending to paramagnetic as we move from S/ to §8 fraction. Coercivity (Hc) obtained
from hysteresis plots show (inset of Fig. 4(c)) that it increases with decrease in particle size across
fractions. This agrees with reports in the literature, where the coercivity increases with decrease
in particle size until it reaches single domain and then decreases toward zero where it becomes
superparamagnetic.”! %17

CONCLUSION

The study reveals phase and size separation of GdsSis nanoparticles could be successfully car-
ried out with the time sensitive sedimentation technique under applied dc magnetic field using a N52
NdFeB permanent magnet. Average nanoparticle sizes decreased as the sedimentation time increased
across fractions. Applying dc magnetic field in the separation process resulted in separation of phases
(ferromagnetic GdsSi4 phase from paramagnetic GdsSi3 phase and other impurities). Curie temper-
ature of major phase GdsSis decreased from 316 K to 310 K across fractions indicating decrease in
average GdsSiy particle sizes while the Curie temperature remained constant at 110 K and 290 K
for GdsSiz phase and elemental gadolinium phase respectively being unaffected by particle size
variation.
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Nanoparticles (NP) exhibit different properties from their parent bulk materials due to finite size & surface effects. In this study, size dependent magnetic
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ABSTRACT BODY:

Digest Body: Until now most contrast agents (CA) that are used in Magnetic Resonance Imaging (MRI) studies have
been paramagnetic. However, ferromagnetic CAs are potentially more sensitive as T2 CAsthanT 1 paramagnetic
compounds due to their large magnetic moments. Previous study has shown that ferromagnetic gadolinium silicide
(Gd58i4) nanoparticles (NP) could be useful as potential T2 CA for MRI with significantly reduced echo time (TE)
compared to Superparamagnetic Iron Oxide Nanopartilces (SPION) which are currently the most widely used T,, CA
[1]. Furthermore, the need for better MRI images without the need of upgrading to the higher magnetic field strength
can be achieved using better CA such as GdSSi 4 NP. The quality of the image contrast in MRI is improved by
shortening T1 and T2 relaxation times at the site or close proximity to the CA. The efficiency of a T1 CA is defined by
its relaxivity, r 1 which is field and temperature dependent. While, T2 agents are defined by their relaxivity, r2, which is
dependent on both the saturation magnetization (Ms) value and the effective radius of the NPs [1, 2]. In this study,

effect of GdSSi 4 NP of varying sizes and with different concentrations are investigated on T 1 T2 and T2*

(effective/observed T2) relaxations times.

Gd_Si , was synthesized by arc-melting of the stoichiometric mixture of gadolinium and silicon under Ar atmosphere
and then the GdSSi 4 NPs were prepared by high energy ball milling of the crushed ingot. The synthesis process is
described in detail elsewhere [3,4]. Ferromagnetic GdSSi 4 is extracted with NdFeB grade N52 permanent magnets
placed below the beaker containing the ball milled powder in ethyl alcohol before size separating the NPs through time
sedimentation process that provided three fractions (named S1, S2 and S3) with average sizes of 586 nm, 287 nm
and 135 nm respectively as analyzed from SEM images (Fig. 1). XRD analysis on pre-separated sample show that Gd
SSi4 is the major phase while GdSi and Gd58i3 is the minor phases present in all fractions (Fig. 1). Magnetic
properties measured in VSM reveal that the Curie temperature (Tc) decreases for GdSSi 4 phase from 312 K for S1 to
304 K for S2 and is undetectable in S3. Another Tc observed at 105 K can be atfributed to Gd58i3 phase. The M-H
curves at 300 K exhibits ferromagnetic behavior descending to paramagnetic as we move from S1 to S3 fraction (Fig.
1).

Prior to MRl measurements, NPs are diluted in solution with low-temperature 2% agarose with the following dilutions -
1:20, 1:200, 1:2000 and 1:20000. The high dilution factors were chosen based on solution MRI with lower dilution
factors (data not shown) that exhibited extremely strong contrast at 21.1 T and unquantifiable results. Each
nanoparticle layer was separated with a 1% agarose layer. MR images were acquired on the 21.1 T (900 MHz)
magnet at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The magnetis equipped with
Bruker Avance Il console and Paravision 6.0.1 (Bruker, Ettlingen Germany). For all acquisition a 10-mm birdcage coil
was used. Measurements were performed to quantify T 1 T2 and T2* relaxation times for each sample and dilution.
For T 1 measurements, a turbo spin echo (TSE) sequence was used with two rare factors. The echo time (TE) was 8.8
ms and ten incrementing (12000 - 26 ms) repetition times (TR) were used. T2 relaxation were acquired with a multi
slice multi echo (MSME) sequence using a TR=5000 ms and 20 incrementing echo time (7.5 — 150 ms). For T2", a2b
gradient echo (GRE) sequence were used with TR=5000ms and eight incrementing TE (1.5 — 28.5 ms). Common
acquisition parameters for T, and T, sequences were 2 averages, matrix = 110x200, FOV = 1.1x 2.0 cmresultingin a

1 2

100x100 mm in plane resolution using a 1-mm slice while the 2D T, sequence were acquired with 2 averages and a

2
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matrix of 100x55 resulting in a 200x200 mm in-plane resolution. Magnitude images were analyzed in Paravision using
region-of-interest (ROIs) to cover each agarose layer as well as spacing layers. The average signal intensities were
extracted and analyzed in Matlab using the Levenberg-Marquardt algorithm. For T1 a three-parameter exponential
growth function were used while for T2 and T2* a three-parameter exponential decay function were employed.

The results shown in Table 1 indicate higher concentrations of NPs shortens the T, and T " relaxation times and the
contrast disappears rapidly with any higher dilutions. Fraction S2 at 1/20 dilution show notable shortened T 1 and T2
relaxation times compared to the other two fractions. Although S1 has more GdSSi 4 phase volume fraction and larger
average particle size compared to S2, further investigation is needed inorder to establish the cause in shortened
relaxation times compared to S1 fraction.
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Fig. 1 (Top row) SEM images of fractions S1 - S3. (Bottom row) (a) XRD patterns obtained from fractions. Reference

peaks of Gdssi e Gd58i3 and GdSi matches with the patterns. (b) M-H curve for all fractions. (c) M-T curve for all
fractions.
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IMAGE CAPTION: Fig. 1 (Top row) SEM images of fractions S1 - S3. (Bottom row) (a) XRD patterns obtained from
fractions. Reference peaks of GdSSi , Gd_Si, and GdSi matches with the patterns. (b) M-H curve for all fractions. (c)
M-T curve for all fractions. Table. 1 - T1, T2 and T2* relaxation times of S1, S2 and S3 fractions at different
concentrations.
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