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Abstract 

Methods for Joint Normalization and Comparison of Hi-C data 

By John C. Stansfield 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at 
Virginia Commonwealth University. 

Virginia Commonwealth University, 2019 

Major Director: Mikhail G. Dozmorov, Ph.D., 

Assistant Professor, Department of Biostatistics 

The development of chromatin conformation capture technology has opened new avenues of study into the 3D 
structure and function of the genome. Chromatin structure is known to influence gene regulation, and 
differences in structure are now emerging as a mechanism of regulation between, e.g., cell differentiation and 
disease vs. normal states. Hi-C sequencing technology now provides a way to study the 3D interactions of the 
chromatin over the whole genome. However, like all sequencing technologies, Hi-C suffers from several forms 
of bias stemming from both the technology and the DNA sequence itself. Several normalization methods have 
been developed for normalizing individual Hi-C datasets, but little work has been done on developing joint 
normalization methods for comparing two or more Hi-C datasets. To make full use of Hi-C data, joint 
normalization and statistical comparison techniques are needed to carry out experiments to identify regions 
where chromatin structure differs between conditions. 

We develop methods for the joint normalization and comparison of two Hi-C datasets, which we then extended 
to more complex experimental designs. Our normalization method is novel in that it makes use of the distance-
dependent nature of chromatin interactions. Our modification of the Minus vs. Average (MA) plot to the Minus 
vs. Distance (MD) plot allows for a nonparametric data-driven normalization technique using loess smoothing. 
Additionally, we present a simple statistical method using Z-scores for detecting differentially interacting 
regions between two datasets. Our initial method was published as the Bioconductor R package HiCcompare 
http://bioconductor.org/packages/HiCcompare/. 

We then further extended our normalization and comparison method for use in complex Hi-C experiments with 
more than two datasets and optional covariates. We extended the normalization method to jointly normalize 
any number of Hi-C datasets by using a cyclic loess procedure on the MD plot. The cyclic loess normalization 
technique can remove between dataset biases efficiently and effectively even when several datasets are 
analyzed at one time. Our comparison method implements a generalized linear model-based approach for 
comparing complex Hi-C experiments, which may have more than two groups and additional covariates. The 
extended methods are also available as a Bioconductor R package 
http://bioconductor.org/packages/multiHiCcompare/. Finally, we demonstrate the use of HiCcompare and 
multiHiCcompare in several test cases on real data in addition to comparing them to other similar methods 
(https://doi.org/10.1002/cpbi.76). 

 

 

 

 

 

 

http://bioconductor.org/packages/HiCcompare/
http://bioconductor.org/packages/multiHiCcompare/
https://doi.org/10.1002/cpbi.76
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Chapter 1: Introduction 

1.1 Motivation 

Only ~2% of the human genome encodes genetic information used to make proteins, the building blocks of 
cells. Even more surprising is that the relatively static genomic information gives rise to the observed diversity 
of tissues and cell types. This diversity is partly explained by the discovery of epigenomic (Greek for on top of 
the genome) modifications such as DNA methylation (Bernstein et al. 2007). In contrast to the static genome 
sequence, epigenomic modifications are dynamic, with each cell type characterized by a distinct epigenomic 
signature (Hemberger et al. 2009; Shipony et al. 2014). These epigenomic modifications are associated with 
gene expression changes, and are currently regarded as a well-established regulatory layer (e.g., an increase 
of DNA methylation in a gene promoter will typically lead to a decrease in gene expression) (Bird 2002). 

The Three-dimensional (3D) chromatin structure of the genome is emerging as a unifying regulatory framework 
orchestrating gene expression by bringing transcription factors, enhancers and co-activators in spatial 
proximity to the promoters of genes (Franke et al. 2016; Symmons et al. 2014; Sexton and Cavalli 2015; Li et 
al. 2012; Papantonis and Cook 2013; Laat and Grosveld 2003; Mora et al. 2016; Mifsud et al. 2015; Shavit and 
Lio’ 2014a; Osborne et al. 2004). Together with epigenomic profiles, changes in chromatin interactions shape 
cell type-specific gene expression (Fernandez et al. 2012; Liu et al. 2008; Jin et al. 2013a; Lieberman-Aiden et 
al. 2009a; Sanyal et al. 2012; Schmitt et al. 2016; Nora et al. 2012), as well as misregulation of oncogenes and 
tumor suppressors in cancer (Taberlay et al. 2016a; Hnisz et al. 2016a; Franke et al. 2016; Lupiáñez et al. 
2016a). Identifying changes in chromatin interactions is the next logical step in understanding genomic 
regulation. 

The first sequencing technologies that allowed for the study of the 3D structure of the genome were Chromatin 
Conformation Capture (3C) methods (Dekker et al. 2002a). 3C methods can only capture the structure of a 
subset of the genome at a single time. The development of 3C then led to several extensions of the method 
including 4C and 5C, which allowed for more of the genome to be captured at one time. Finally, the 
introduction of Hi-C technology by Lieberman-Aiden allowed for the capture of all vs. all long-distance 
chromatin interactions across the entire genome (Lieberman-Aiden et al. 2009a). Hi-C captures the 
conformations of the chromosomes by first crosslinking cells with formaldehyde. Then the DNA is digested with 
a restriction enzyme that leaves a 5’-overhang. The 5’-overhangs are filled with a biotinylated residue, and then 
the blunt-end fragments are ligated that favor ligation events between cross-linked DNA fragments. The ligated 
DNA samples produced are the joined fragments of DNA that were in close spatial proximity inside of the 
nucleus. The junction of the fragments are marked with biotin. A Hi-C library can then be created by shearing 
the DNA and selecting the fragments containing biotin. The library is then sequenced to produce the raw Hi-C 
data which can then be further analyzed (Lieberman-Aiden et al. 2009a). 

Study of the 3D chromatin structure of the human genome has proven it to be highly organized (Dixon et al. 
2012; Rao et al. 2014a) into (Fraser et al. 2015; Sexton et al. 2012) chromosome territories (Cremer and 
Cremer 2010), topologically associated domains (TADs) (Dixon et al. 2012; Jackson and Pombo 1998; Ma et 
al. 1998; Nora et al. 2012; Sexton et al. 2012), smaller sub-TADs (Phillips-Cremins and Corces 2013a; Rao et 
al. 2014a) and, on the most local level, chromatin loops (Rao et al. 2014a; Dowen et al. 2014a; Ji et al. 2016a). 
These structural units of the chromatin aid in coordinated gene expression (Franke et al. 2016; Symmons et al. 
2014; Sexton and Cavalli 2015; Li et al. 2012; Papantonis and Cook 2013; Laat and Grosveld 2003; Mora et al. 
2016; Mifsud et al. 2015; Shavit and Lio’ 2014a; Osborne et al. 2004; Schoenfelder et al. 2010). The 
organization of the chromatin plays a role in cell type-specific gene expression (Dowen et al. 2014a; Ji et al. 
2016a; Phillips-Cremins and Corces 2013a; Rao et al. 2014a; Vietri Rudan et al. 2015), recombination 
(Jhunjhunwala et al. 2009) and X chromosome inactivation (Nora et al. 2012; Crane et al. 2015). 

Hi-C data allows for the production of chromatin contact maps (Hi-C matrices) in which each cell of the matrix 
represents a pair of interacting genomic regions. To produce a Hi-C matrix, the genome is divided up into 
“bins” of a specific size. The number of basepairs in each bin represents the “resolution” of the matrix. Typical 
resolutions of Hi-C data are 1 megabase (MB), 500 kilobase (KB), 100KB, 50KB, 40KB, 10KB, 1KB, and, most 
recently achieved, a resolution of 750bp (Bonev et al. 2017). Each bin represents a specific genomic region 
and the number of times regions are sequenced together is the value in each cell of the matrix. This value is 
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known as the interaction frequency (IF) for that pair of regions. Higher IFs represent regions that were closer in 
proximity to each other when sequenced while low or zero value IFs represent regions with low levels of 
interaction. Figure 1.1 displays a representation of a Hi-C matrix. The cartoon chromosomes on the X and Y-
axes indicate the genomic regions in the bins. It is important to note that Hi-C matrices are square and 
symmetric due to the all vs. all nature of the data. 

 

Figure 1.1 Illustration of a chromatin contact map derived from Hi-C data. Each cell of the matrix represents 
the interaction frequency of a pair of genomic regions. 

Hi-C data is strongly distance dependent. Each off-diagonal trace of a Hi-C matrix represents an increase of 
one unit distance (where unit distance is the resolution of the data) between the pairs of interacting regions. 
Naturally, interactions occurring at shorter genomic distances are more likely and thus tend to have larger IFs, 
while interactions occurring at long distance are less likely to occur and correspondingly tend to have smaller 
IFs. The regions near the diagonal of a Hi-C matrix have the highest intensity of IFs while the corner of the 
matrix tends to experience much higher sparsity. As distance increases the values of the IFs generally 
decrease; however, there is a good deal of variation between samples and even chromosomes (Figure 1.2). 
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Figure 1.2 Distance-dependent decay of interaction frequencies in Hi-C data. Data from HMEC, IMR90, and 
NHEK cell lines at 500KB resolution. Black line represents the ideal power-law fit. Each colored line is from a 
separate chromosome showing that there is variation in the decay between cell lines and chromosomes. 

The resolution of Hi-C data also plays a large role in an analysis. Low-resolution data (1MB, 500KB) tend to 
have much larger IFs due to the sheer size of the genomic bins used while high-resolution data (50KB, 10KB, 
etc.) exhibit high degrees of sparsity. Because high-resolution data has many more bins, it also means there is 
a greater range of unit distances, and thus the distance-dependent decay of IFs plays a larger role in high-
resolution data. Improvements in sequencing technology have allowed for higher resolution Hi-C data, however 
much of this data still suffers from sparsity, especially for long-range interactions, which presents many 
challenges for analysis. 

Soon after public Hi-C datasets became available, it was clear that technology- and DNA sequence-driven 
biases substantially affect chromatin interactions (Yaffe and Tanay 2011a). The technology-specific biases 
include cutting length of a restriction enzyme (HindIII, MboI, or NcoI), cross-linking conditions, circularization 
length, etc. (O’Sullivan et al.a; Cournac et al. 2012). The DNA sequence-driven biases include GC content, 
mappability, nucleotide composition (Yaffe and Tanay 2011a). Discovery of these biases led to the 
development of methods for normalizing individual datasets (Lieberman-Aiden et al. 2009a; Imakaev et al. 
2012a; Yaffe and Tanay 2011a; Knight and Ruiz 2012a). Although normalization of individual datasets 
improves reproducibility within replicates of Hi-C data (Imakaev et al. 2012a; Yaffe and Tanay 2011a; Hu et al. 
2012a), these methods do not consider biases between multiple Hi-C datasets. 

Accounting for the between-dataset biases is critical for the correct identification of chromatin interaction 
changes between, e.g., disease-normal states, or cell types. Left unchecked, biases can be mistaken for 
biologically relevant differential interactions. While DNA sequence-driven biases affect two datasets similarly 
(e.g., CG content of genomic regions tested for interaction differences is the same), technology-driven biases 
are poorly characterized and affect chromatin interactions unpredictably. Importantly, another source of 
chromatin interaction differences are large-scale genomic rearrangements, such as copy number variations 
(Harewood et al. 2017; Servant et al. 2015), a frequent event in cancer genomes (Zink et al. 2004; Rickman et 
al. 2012a). Accounting for such biases is needed for the detection of differential chromatin interactions 
between Hi-C datasets. 

After normalization of biases between datasets, there is a need for methods to perform comparisons. It is of 
interest to detect differences in the 3D structure of the chromatin between different cell types. Past studies 
have attempted to compare Hi-C datasets using simple overlap analyses where “significant interactions” within 
a single Hi-C matrix are overlapped with those from another matrix (Durand et al. 2016a). Other studies have 
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used correlation between eigen vectors and Euclidean distance of IFs as methods to compare Hi-C matrices 
(Battulin 2015). To the best of our knowledge, only four methods attempt the comparative analysis of multiple 
Hi-C datasets. The diffHic method is an extension of the general differential expression analysis operating 
on individual raw sequencing data (Lun and Smyth 2015a). diffHic leaves the user with the challenges of 
sequencing data storage, the computational burden of processing, normalization, summarization, and other 
bioinformatics heavy lifting. The HiCCUPS algorithm (Rao et al. 2014a) detects chromatin interaction “hotspots”, 
chromatin interactions enriched relative to the local background, in individual Hi-C datasets. Hotspots are then 
compared between datasets by simply overlapping them. This approach does not distinguish “hotspots” 
detected due to local biases and does not quantify the significance of the differences. One of only two methods 
to statistically compare processed Hi-C dataset is ChromoR (Shavit and Lio’ 2014a). However, in our tests, it 
failed to detect any differential chromatin interactions in real Hi-C data, perhaps due to the use of the 
parametrically constrained model, an approach that has been criticized (Witten and Noble 2012). The second 
method for statistical comparison of processed Hi-C data is FIND. FIND uses a spatial Poisson process to 
detect differences between two Hi-C experimental conditions (Djekidel et al. 2018a). FIND is presented as a 
tool for high-resolution Hi-C data and treats interactions as spatially dependent on surrounding interactions, but 
relies on standard individual normalization techniques. 

Due to a sparsity of methods, very few differential analyses of Hi-C data have been performed. Of the 
previously performed differential analyses, the majority are focused on comparing cancer and normal Hi-C 
datasets, which contain large-scale genomic rearrangements that can easily be detected. Cell- and tissue-
specific 3D differences in other cell types and tissues, such as among immune cell types and brain tissues, 
remain virtually uncharacterized. The brain consists of well-defined anatomical and functional structures each 
responsible for distinct neurological tasks and represents an interesting topic of study in the field of 3D 
genomics. However, the study of the 3D chromatin structure of the human brain has been further hampered 
due to a limited sample availability and ethical considerations related to the collection of brain tissue. Although 
gene expression and epigenomic programs from different regions of the human brain have been outlined 
(BrainSpan, CommonMind, NIH Roadmap Epigenomics), the systematic understanding of the regulation 
mechanism that drives them - the 3D chromatin structure - is lacking. Our proposed research on defining 
chromatin regions differentially interacting across brain regions will further enrich and complement existing 
“omics” data on the brain and enable the holistic understanding of the brain’s genomics. 

1.2 Current methods for Hi-C data processing 

1.2.1 Normalization methods 

Several normalization methods have been developed for dealing with bias in Hi-C data. Many of these 
methods are designed to only normalize a single contact map at a time and remove technological or biological 
dependent biases. These individual normalization methods can help researchers study the interactions within a 
single cell type or biological condition and have been used in many previous studies. However, these individual 
methods are not suitable for the comparison of Hi-C datasets, which is necessary to discover differences in the 
3D structure of the genome between different cellular conditions. 

Common individual normalization methods include the ChromoR method (Shavit and Lio’ 2014a) which applies 
the Haar-Fisz Transform (HFT) to decompose a Hi-C contact map. HFT assumes the IFs in the contact map 
are distributed as a Poisson random variable. After HFT decomposition, wavelet shrinkage methods for 
Gaussian noise are applied for de-noising. The contact map is then reconstructed with the inverse HFT. The 
ChromoR R package provides the correctCIM function to perform this normalization. 

ICE (iterative correction and eigenvector decomposition) normalization (Imakaev et al. 2012a) functions by 
modeling the expected 𝐼𝐼𝐹𝐹𝑖𝑖𝑖𝑖 for every pair of regions (i,j) as 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖, where 𝐵𝐵𝑖𝑖 and 𝐵𝐵𝑖𝑖 are the biases and 
𝑇𝑇𝑖𝑖𝑖𝑖 is the true matrix of normalized IFs. The maximum likelihood solution for the biases 𝐵𝐵𝑖𝑖 is obtained by 
iterative correction. It attempts to make all regions equally visible and was shown to perform as well as the 
explicit bias correction method by Yaffe and Tanay (Belton et al. 2012). ICE normalization can be performed 
using the HiTC R package’s normICE function or as a step of the Hi-C processing pipeline HiC-Pro. 
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KR (Knight-Ruiz) normalization (Knight and Ruiz 2012a) is another “equal visibility” algorithm that balances a 
square non-negative matrix 𝐴𝐴 by finding a diagonal scaling of 𝐴𝐴 such that 𝑃𝑃 = 𝐷𝐷1𝐴𝐴𝐷𝐷2 sums to one. The KR 
algorithm uses an iterative process to find 𝐷𝐷1 and 𝐷𝐷2 scaling matrices by alternately normalizing columns and 
rows in a sequence of matrices using an approximation of Newton’s method. The KR normalization method was 
re-implemented in R using the published matlab code (Knight and Ruiz 2012a) and is included in the 
HiCcompare package as the KRnorm function. KR normalization can also be performed as a function of the 
Juicer Hi-C processing pipeline. 

SCN (Sequential Component Normalization) (Cournac et al. 2012) is a method that is broadly generalizable to 
many Hi-C experimental protocols. It attempts to smooth out biases due to GC content and circularization. SCN 
works by first normalizing each column vector of a Hi-C contact matrix to one using the Euclidean norm. Then 
each row of the resulting matrix is normalized to one using the row Euclidean norm. This process is repeated 
until convergence (usually 2 to 3 iterations). The SCN method was re-implemented in R and included in the 
HiCcompare package as the SCN function. 

MA (Minus Average normalization) (Lun and Smyth 2015a) is a commonly used joint normalization method for 
genomic data. It is based on the MA plot (a variant of the Bland-Altman plot) where the data is plotted 
according to the Average log counts (or counts per million) and the log Minus (difference) between the two 
data sets. A loess model is then fit to this plot, and the residuals for the fit can be used to smooth the data sets. 
MA normalization was implemented in R and included in the HiCcompare packages as the MA_norm function. MA 
normalization is also used within the diffHic R package. 

1.2.2 Comparison methods (aka differential analysis) 

The diffHic method (Lun and Smyth 2015a) is an extension of edgeR, an R package originally designed for 
RNA sequencing experiments. diffHic operates on unprocessed Hi-C data in the form of .BAM files. This 
requires the user to download and convert the raw sequencing output of a Hi-C library in order to make use of 
the package (a time and storage consuming task) whereas many public Hi-C datasets are available already in 
a processed contact map format such as the data available from the Aiden lab website or from cooler 
(http://cooler.readthedocs.org/en/latest/). diffHic uses the generalized linear model framework of edgeR to 
compare Hi-C data between different cellular conditions. 

The HiCCUPS algorithm (Rao et al. 2014a) detects chromatin interaction “hotspots” within a Hi-C contact map. 
HiCCUPS operates on data in the .hic file format, the final product of the Juicer Hi-C pipeline developed by 
the Aiden Lab. .hic files are compressed containers for Hi-C contact maps, which can be extracted into a 
plain text format. HiCCUPS operates on a Hi-C contact map by finding peak “pixels” with higher intensity than 
the surrounding area. To compare peaks between different datasets, they perform a simple overlap analysis of 
the significant peaks. Since no joint normalization is performed before HICCUPS, it is possible many of the 
differences in peaks could be due to biases between datasets. There is also no way to measure the 
significance of the differences in the peaks between datasets. 

chromoR is an R package (Shavit and Lio’ 2014a) with functions for normalization and difference detection of 
processed Hi-C data. Unlike diffHic, chromoR takes its input in the form of processed Hi-C contact maps. 
This removes the challenges of processing the raw data for the user. chromoR uses a wavelet variance 
stabilization method for normalizing the data. To detect differences, it uses a wavelet Poisson change point 
detection algorithm. However, in our tests, it failed to detect differential chromatin interactions in real Hi-C data, 
perhaps due to the use of the parametrically constrained model, an approach that has been criticized (Witten 
and Noble 2012). 

FIND is an R package (Djekidel et al. 2018a) providing tools for the comparative analysis of Hi-C data. FIND 
focuses on finding differences between experimental conditions in extremely high-resolution data (1KB - 5KB). 
FIND treats interactions as spatially dependent on surrounding interactions by using a spatial Poisson process 
to detect differences. In our testing of FIND, we found that it suffers from very long run times and does not 
seem to function at all on Hi-C data at resolutions in the range of 100KB - 10KB, perhaps due to increased 

http://cooler.readthedocs.org/en/latest/
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sparsity of Hi-C data at these resolutions. Additionally, since most Hi-C data is not sequenced at a deep 
enough level to support < 5KB resolution contact maps the results of FIND are questionable. 

1.3 Aims 

Our goal is to develop methods for the joint normalization and comparison of Hi-C datasets. First, we will focus 
on the joint normalization and comparison of two Hi-C datasets. This method will then be applied to a set of Hi-
C data for two regions of the human brain. Finally, we will develop methods for the joint normalization and 
comparison of Hi-C data when there are multiple replicates for each experimental condition. These methods 
will be developed into R packages that will be freely available for the scientific community to use. 

1.3.1 Aim 1: Joint normalization and difference detection for two Hi-C datasets 

The production of Hi-C data requires large amounts of money, time, computational power, and storage space. 
These constraints drastically limit the sample sizes and number of replicates for experiments. Many Hi-C 
experiments already in the public domain only have a single replicate for each cellular condition. Thus, there is 
a need for a method to compare Hi-C data between two conditions when only a single replicate is available for 
each condition. Additionally, when there are replicates available it is common practice to combine (pool) these 
replicates to produce a single contact map that will have a lower level of sparsity (Won et al. 2016). We jointly 
normalize Hi-C datasets using loess regression on what we term the MD plot (Minus vs. Distance plot). After 
normalization, we perform difference detection to identify the pairs of regions that are interacting significantly 
differently between the experimental conditions. We compare our normalization and difference detection 
methods to the existing methods. The methods will be compiled into an R package, HiCcompare and released 
on Github and Bioconductor. 

1.3.2 Aim 2: Analysis of Brain data with HiCcompare 

The human brain is a complex organ composed of distinct anatomical and functional regions and cell types. 
Being the central organ for human cognition, it is also one of the most difficult organs to study (Birdsill et al. 
2011; Popova et al. 2008). While gene expression and epigenomic changes across human brain regions and 
cell types have been characterized (Kang et al. 2011; Strand et al. 2007; GTEx Consortium 2013), the 
dynamics of 3D chromatin interactions integrated with “omics” changes remain undefined. We will use 
HiCcompare to detect differences between Hi-C datasets generated from the amygdala and the prefrontal 
cortex. Brain region-specific gene expression and epigenomic differences (ENCODE, Roadmap, GTeX, etc. 
data) will be tested for association with the 3D changes using functional enrichment analysis. 

1.3.3 Aim 3: Joint normalization and difference detection with replicate Hi-C datasets 

As sequencing costs further decrease and Hi-C methods become more refined, it is natural that more and 
better quality Hi-C data will become available. This will allow for more replicates of experimental conditions to 
be produced and necessitate a need for methods to make use of them. We will develop a distance-centric 
cyclic loess normalization method for the joint normalization of multiple Hi-C datasets. Next, we will develop a 
general linear model (GLM) approach for the differential analysis of replicate Hi-C data. This aim proposes a 
Bayesian approach for “borrowing” information across Hi-C replicates. These methods will be implemented into 
an additional R package that will be released on Github and Bioconductor. 

Chapter 2: Aim 1 - Joint normalization and difference detection for two Hi-C datasets 

2.1 Introduction 

The 3D chromatin structure of the genome is emerging as a unifying regulatory framework orchestrating gene 
expression by bringing transcription factors, enhancers and co-activators in spatial proximity to the promoters 
of genes (Mifsud et al. 2015; Sexton and Cavalli 2015; Li et al. 2012; Papantonis and Cook 2013). Changes in 
chromatin interactions shape cell type-specific gene expression (Jin et al. 2013a; Lieberman-Aiden et al. 
2009a; Schmitt et al. 2016; Nora et al. 2012), as well as misregulation of oncogenes and tumor suppressors in 
cancer (Taberlay et al. 2016a; Hnisz et al. 2016a; Franke et al. 2016) and other diseases (Li et al. 2012). 
Identifying changes in chromatin interactions is the next logical step in understanding genomic regulation. 
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Evolution of Chromatin Conformation Capture (3C) technologies into Hi-C sequencing now allows the detection 
of “all vs. all” long-distance chromatin interactions across the whole genome (Lieberman-Aiden et al. 2009a; 
Sanborn et al. 2015). Soon after public Hi-C datasets became available, it was clear that technology- and DNA 
sequence-driven biases substantially affect chromatin interactions (Yaffe and Tanay 2011a). The technology-
specific biases include the cutting length of a restriction enzyme (HindIII, MboI, or NcoI), cross-linking 
conditions, circularization length, etc. The DNA sequence-driven biases include GC content, mappability, 
nucleotide composition. Discovery of these biases led to the development of methods for normalizing individual 
datasets (Cournac et al. 2012; Lieberman-Aiden et al. 2009a; Imakaev et al. 2012a; Yaffe and Tanay 2011a; 
Knight and Ruiz 2012a). Although normalization of individual datasets improves reproducibility within replicates 
of Hi-C data (Imakaev et al. 2012a; Yaffe and Tanay 2011a), these methods do not consider biases between 
multiple Hi-C datasets. 

Accounting for the between-dataset biases is critical for the correct identification of chromatin interaction 
changes between, e.g., disease-normal states, or cell types. Left unchecked, biases can be mistaken for 
biologically relevant differential interactions. While DNA sequence-driven biases affect two datasets similarly 
(e.g., CG content of genomic regions tested for interaction differences is the same), technology-driven biases 
are poorly characterized and affect chromatin interactions unpredictably. Importantly, another source of 
chromatin interaction differences stems from large-scale genomic rearrangements, such as copy number 
variations (Servant et al. 2015), a frequent event in cancer genomes (Rickman et al. 2012a). Accounting for 
such biases is needed for the accurate detection of differential chromatin interactions between Hi-C datasets. 

We developed an R package, HiCcompare2, for the joint normalization and comparative analysis of multiple 
Hi-C datasets, summarized as chromatin interaction matrices. Our method is based on the observation that 
chromatin interactions are highly stable (Dixon et al. 2012; Fudenberg et al. 2016; Rao et al. 2014a; Schmitt et 
al. 2016), suggesting that the majority of them can serve as a reference to build a rescaling model. We present 
the novel concept of the MD plot (𝑀𝑀inus, or difference vs. 𝐷𝐷istance plot), a modification of the MA plot (Dudoit 
et al. 2002a). The MD plot allows for visualizing the differences between interacting chromatin regions in two 
Hi-C datasets while explicitly accounting for the linear distance between interacting regions. The MD plot 
concept naturally allows for fitting the local regression model, a procedure termed loess, and jointly normalizing 
the two datasets by balancing biases between them. The distance-centric view of chromatin interaction 
differences allows for detecting statistically significant differential chromatin interactions between two Hi-C 
datasets. We show improved performance of differential chromatin interaction detection when using the jointly 
vs. individually normalized Hi-C datasets. Our method is broadly applicable to a range of biological problems, 
such as identifying differential chromatin interactions between tumor and normal cells, immune cell types, and 
normal tissues/cell types. 

2.2 Methods 

2.2.1 Visualization of the differences between two Hi-C datasets using an MD plot 

A chromosome-specific Hi-C matrix is a square matrix of size 𝑁𝑁 × 𝑁𝑁, where 𝑁𝑁 is the number of genomic 
regions of size 𝑋𝑋 on a chromosome. The size 𝑋𝑋 of the genomic regions defines the resolution of the Hi-C data. 
Each cell in the matrix contains an interaction frequency 𝐼𝐼𝐹𝐹𝑖𝑖,𝑖𝑖, where 𝑖𝑖 and 𝑗𝑗 are the indices of the interacting 
regions. For this study, data in the sparse upper triangular format from the GM12878 and RWPE1 cell lines 
were used (Appendix 1 Supplemental Methods). 

The first step of the HiCcompare procedure is to convert the data into what we refer to as an MD plot. The MD 
plot is similar to the MA plot (Bland-Altman plot) commonly used to visualize gene expression differences 
(Dudoit et al. 2002a). 𝑀𝑀 is defined as the log difference between the two data sets 𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼𝐹𝐹2/𝐼𝐼𝐹𝐹1), where 
𝐼𝐼𝐹𝐹1 and 𝐼𝐼𝐹𝐹2 are interaction frequencies of the first and the second Hi-C datasets, respectively. 𝐷𝐷 is defined as 
the distance between two interacting regions, expressed in unit-length of the 𝑋𝑋 resolution of the Hi-C data. In 
terms of chromatin interaction matrices, 𝐷𝐷 corresponds to the off-diagonal traces of interaction frequencies 
(Figure 2.1). Because chromatin interaction matrices are sparse, i.e., contain an excess of zero interaction 
frequencies, by default only the non-zero pairwise interaction are used for the construction of the MD plot with 
an option to use partial interactions, i.e., with a zero value in one of the matrices and a non-zero IF in the other. 
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2.2.2 Joint normalization of multiple Hi-C data using loess regression 

After the transformation of the data into an MD plot, loess regression (Cleveland 1979) is performed with 𝐷𝐷 as 
the predictor for 𝑀𝑀. The fitted values are then used to normalize the original IFs: 

�
𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼�̂�𝐹1𝐷𝐷) = 𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼𝐹𝐹1𝐷𝐷) + 𝑓𝑓(𝐷𝐷)/2
𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼�̂�𝐹2𝐷𝐷) = 𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼𝐹𝐹2𝐷𝐷) − 𝑓𝑓(𝐷𝐷)/2

 

where 𝑓𝑓(𝐷𝐷) is the predicted value from the loess regression at a distance 𝐷𝐷. The 𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼�̂�𝐹) values are then anti-
logged to obtain the normalized IFs. Note that for both Hi-C datasets the average interaction frequency 
remains unchanged, as 𝐼𝐼𝐹𝐹1 is increased by the factor of 𝑓𝑓(𝐷𝐷)/2 while 𝐼𝐼𝐹𝐹2 is decreased by the same amount. 
Any normalized IFs with values less than one are not considered in further analyses. The joint normalization 
was tested against five methods for normalizing individual Hi-C matrices, ChromoR (Shavit and Lio’ 2014a), ICE 
(Imakaev et al. 2012a), KR (Knight and Ruiz 2012a), SCN (Cournac et al. 2012), MA (Lun and Smyth 2015a). 

2.2.3 Excluding potentially problematic regions from the joint normalization 

The between-dataset biases may occur due to large-scale genomic rearrangements and copy number variants 
(CNVs), a frequent case in tumor-normal comparisons (Rickman et al. 2012a). Similar to removing other 
biases, the joint loess normalization removes CNV-driven biases by design, allowing for the detection of 
chromatin interaction differences within CNV regions. However, CNVs introduce large changes in chromatin 
interactions (Servant et al. 2015), which may be of interest to consider separately. Therefore, unless 
cells/tissues with normal karyotypes are compared, we provide functionality for the detection and removal of 
genomic regions containing CNVs from the joint normalization. The QDNAseq (Scheinin et al. 2014) R 
package is used to detect and exclude CNVs from the HiCcompare analysis. Alternatively, CNV regions can be 
detected separately and provided to HiCcompare as a BED file. Additionally, the HiCcompare package 
includes the ENCODE blacklisted regions for hg19 and hg38 genome assemblies, which can be excluded from 
further analysis. 

2.2.4 Detection of differential chromatin interactions 

After joint normalization, the chromatin interaction matrices are ready to be compared for differences. Again, 
the MD plot is used to represent the differences 𝑀𝑀 between two normalized datasets at a distance 𝐷𝐷. The 
jointly normalized 𝑀𝑀 values are centered around 0 and are approximately normally distributed across all 
distances (Appendix 1 Supplemental Methods). 𝑀𝑀 values can be converted to Z-scores using the standard 
approach: 

𝑍𝑍𝑖𝑖 =
𝑀𝑀𝑖𝑖 − 𝑀𝑀
𝜎𝜎𝑀𝑀

 

where 𝑀𝑀 is the mean value of all 𝑀𝑀’s on the chromosome and 𝜎𝜎𝑀𝑀 is the standard deviation of all 𝑀𝑀 values on 
the chromosome and 𝑖𝑖 is the 𝑖𝑖th interacting pair on the chromosome. 

2.2.5 Filtering low-abundance interaction pairs 

During Z-score conversion, the average expression of each interacting pair is considered. Due to the nature of 
𝑀𝑀, a difference represented by an interacting pair with IFs 1 and 10 is equivalent to an interacting pair of IFs 10 
and 100 with both differences producing an 𝑀𝑀 value of 3.32. However, the average expression of these two 
differences is 5.5 and 55, respectively. Differences with higher average expression are supported by the larger 
number of sequencing reads and are therefore more trustworthy than the low average expression differences. 
Thus, we filter out differences with low average expression by setting the Z-scores to 0 when average 
expression (𝐴𝐴) is less than a user set value of 𝐴𝐴 (Appendix 1 Supplemental Methods). Filtering takes place 
such that the 𝑀𝑀 and 𝜎𝜎𝑀𝑀 are calculated using only the 𝑀𝑀 values remaining after filtering. The Z-scores can then 
be converted to p-values using the standard normal distribution. 
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2.2.6 Multiple testing correction 

Analyzing Hi-C data for differences necessarily involves testing of multiple hypotheses. Multiple testing 
correction (False Discovery Rate (FDR) by default) is applied on a per-distance basis by default, with an option 
to apply it on a chromosomal basis. 

2.2.7 Benchmarking the differential chromatin interaction detection 

As there is no “gold standard” for differential chromatin interactions, we created such a priori known differences 
by introducing controlled changes to replicate Hi-C datasets (Dozmorov et al. 2010a). To introduce these a 
priori known differences, we start with two replicates of Hi-C data from the same cell type. It is assumed that 
any differences in these replicates are due to noise or technical biases. Next, we randomly sample a specified 
number of entries in the contact matrix. These sampled entries are where the changes will be introduced. The 
IFs for each of these entries in the two matrices are set to their average value between the replicates, and then 
one of them is multiplied by a specified fold change. This introduces a true difference at an exact fold change 
between the two replicates. The benefit of using joint normalization vs. individually normalized datasets was 
quantified by the improvement in the power of detecting the pre-defined chromatin interaction differences. 
Standard classifier performance measures (Appendix 1 section 5), summarized in the Matthews Correlation 
Coefficient (MCC) metric, were assessed. The results of the HiCcompare analysis were further compared with 
those obtained with the diffHiC method (Lun and Smyth 2015a). 

2.2.8 Example HiCcompare analysis using mouse neuronal differentiation 

As an example case for the usage of HiCcompare, we performed an analysis to compare the 3D structure of 
the chromatin between mouse embryonic stem cells (ESC), neural progenitor cells (NPC), and neurons. The 
data was obtained from a study by Fraser et al. (Fraser 2015) deposited on GEO [GSE59027]. The Hi-C 
matrices for each cell type were downloaded at 100KB resolution and read into HiCcompare. We performed 
three comparisons between the cell types, ESC vs. NPC, NPC vs. neuron, and ESC vs. neuron. In each 
comparison, the data were normalized, low average expression interactions were filtered out, and the 
differences between the cell types were detected. We also performed a functional enrichment analysis of 
genes located in differentially interacting regions using KEGG and Gene Ontology analyses using EnrichR. 

2.2.9 Comparison with diffHic 

To compare HiCcompare with diffHic, we performed a HiCcompare analysis on RWPE1 Hi-C data (Rickman 
et al. 2012a) using HiCcompare. This was compared to the analysis performed in the diffHic paper (Lun and 
Smyth 2015a). We performed the analysis at a 1MB resolution as done by Lun et al. Because diffHic takes 
unaligned Hi-C data as input it was not possible to directly compare our method to diffHic using introduced 
known changes. We performed an overlap analysis of the regions detected by our method with the regions 
detected by diffHic (courtesy to Drs. Gordon Smyth and Aaron Lun). Additionally, we compared the fold 
changes and average expression values of the regions detected by each method. 

2.2.10 Comparison with FIND 

To make a comparison with FIND (Djekidel et al. 2018a) we first repeated their comparison of the GM12878 
and K562 using HiCcompare. Data from GM12878 and K562 were obtained from GEO (GSE63525, samples 
GSM1551574, GSM1551575, GSM1551620, and GSM1551623) (Rao et al. 2014a). First, the maximum 
resolution of each dataset was calculated using Juicer (Durand et al. 2016a). Next, replicates for each cell 
type were combined and then input into HiCcompare for joint normalization and differential analysis. This was 
performed at resolutions of 1MB, 100KB, 50KB, 10KB, and 5KB. The differential regions were intersected with 
the locations of all genes using BEDtools. Then the genes enriched in the differential regions were input into a 
KEGG pathway enrichment analysis using EnrichR (Edward Y Chen and Ma’ayan 2013). 

Additionally, the two replicates of GM12878 were used as the basis for comparing HiCcompare and FIND when 
a priori known differences were introduced into these replicates. For the data to be entered into FIND, we used 
the VC squared normalization method from Juicer as described in the FIND paper and the raw data was 
entered into HiCcompare. We performed this analysis at resolutions of 1MB (we encountered issues due to 
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extremely long run times of FIND when attempting comparisons at higher resolutions) with fold changes of 2, 3, 
and 5 for the true changes. Standard classifier performance measures were calculated for each method, and 
MD plots showing where each method was detecting differences were produced. 

2.2.11 Concordance between A/B genomic compartments 

To assess the effect of normalization of the detection of A/B compartments, they were defined using the 
Principal Components Analysis (PCA) method (Lieberman-Aiden et al. 2009a) using the raw, jointly and 
individually normalized RWPE1 Hi-C data (Rickman et al. 2012a). The concordance of compartment detection 
was evaluated using three metrics: 1) the Pearson correlation coefficient between the vectors of principal 
components (PCs) detected from raw and normalized data, 2) the overlap of signs of PCs defining A (positive) 
and B (negative) compartments, and 3) the Jaccard overlap statistics. 

2.2.12 Parallelization 

The biggest advantage of loess - the ability to model any biases in the data without explicitly specifying them - 
comes at the cost of increased computation. We implemented a parallelization strategy for processing 
chromosome-specific chromatin interaction matrices on multiple cores, improving the total run time (Appendix 
1 Supplemental Figure 3.1). The parallelization strategy makes use of the Bioconductor BiocParallel R 
package. 

2.2.13 Software availability 

HiCcompare is available on Bioconductor at https://bioconductor.org/packages/HiCcompare/ or on GitHub at 
https://github.com/dozmorovlab/HiCcompare. The package includes vignettes with test data and 
documentation for all functions, as well as code to generate all results referenced in this manuscript. 
HiCcompare is released under the MIT open source software license. 

2.3 Results 

2.3.1 The off-diagonal concept of distance between regions in chromatin interaction matrices 

Our study focuses on the joint analysis of multiple Hi-C datasets represented by chromatin interaction 
matrices, where rows and columns represent genomic regions (bins), and cells contain interaction counts 
(frequencies). The values on the diagonal trace represent interaction frequencies (IFs) of self-interacting 
regions. Each off-diagonal trace of values represents interaction frequencies for a pair of regions at a given 
unit-length distance. The unit-length distance is expressed in terms of resolution of the data (the size of 
genomic regions, typically measured in millions (thousands) of base pairs, MB (KB)). The concept of 
considering interaction frequencies at each off-diagonal trace is central for the joint normalization and 
differential chromatin interaction detection (Figure 2.1). 

https://bioconductor.org/packages/HiCcompare/
https://github.com/dozmorovlab/HiCcompare
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Figure 2.1. Distance-centric (off-diagonal) 
view of chromatin interaction matrices. 
Each off-diagonal vector of interaction 
frequencies represents interactions at a given 
distance between pairs of regions. Triangles 
mark pairs of genomic regions interacting at 
the same distance. Data for chromosome 1, 
K562 cell line, 50KB resolution, spanning 0 - 
7.5Mb is shown. 

The interaction frequency drops as the distance between interacting regions increases. Numerous attempts 
have been made to parametrically model the inverse relationship between chromatin interaction frequency and 
the distance between interacting regions. However, Hi-C data are affected by technology- and DNA sequence-
driven biases (Yaffe and Tanay 2011a; Cournac et al. 2012; Imakaev et al. 2012a), unpredictably altering 
chromatin interaction frequencies. Consequently, parametric approaches fail to model interaction frequencies 
across the full range of distances (Sanborn et al. 2015), confirmed by our observations (Figure 1.2). 

2.3.2 Elimination of biases in jointly, but not individually, normalized Hi-C data 

Discovery of biases in Hi-C data led to the development of numerous methods for normalizing individual 
datasets (Lieberman-Aiden et al. 2009a; Imakaev et al. 2012a; Knight and Ruiz 2012a; Cournac et al. 2012). 
Although normalization of individual datasets improves reproducibility of replicated Hi-C data (Imakaev et al. 
2012a; Yaffe and Tanay 2011a), these methods do not explicitly account for biases between multiple Hi-C 
datasets. The between-dataset biases are particularly problematic when comparing Hi-C datasets between 
biological conditions (Appendix 1 section 4). When the detection of chromatin interaction differences due to 
biology, not biases, is important, normalization that removes the between-dataset biases is critical. 

To assess the between-dataset biases, we visualize two Hi-C datasets on a single MD plot (see Methods). 
Briefly, differences in chromatin interaction frequencies (Minus) are visualized on a per-unit-length distance 
basis. Chromatin interactions are highly conserved (Dixon et al. 2012; Fudenberg et al. 2016; Rao et al. 
2014a); thus, the majority of the M differences should be centered around zero. The MD plot visualization 
allows us to identify systematic biases appearing as the offset of the cloud of M differences from zero. 
Visualizing replicates of Hi-C data (Gm12878 cell line) showed the presence of biases in the individually 
normalized datasets (Figure 2.2, Appendix 1 section 4), suggesting that the performance of individual 
normalization methods may be sub-optimal when comparing multiple Hi-C datasets. 

To account for between-dataset biases, we developed a non-parametric joint normalization method that makes 
no assumptions about the theoretical distribution of the chromatin interaction frequencies. It utilizes the well-



21 
 

known loess (locally weighted polynomial regression) smoothing algorithm - a regression-based method for 
fitting simple models to segments of data (Cleveland 1979). The main advantage of loess is that it accounts for 
any local irregularities between the datasets that cannot be modeled by parametric methods. Thus, loess is 
particularly appealing when normalizing two Hi-C datasets, as the internal biases in Hi-C data are poorly 
understood (Figure 2.2). 

 
Figure 2.2. MD plot data visualization and the effects of different normalization techniques. MD 
plots of the differences M between two replicated Hi-C datasets (GM12878 cell line, 
chromosome 11, 1MB resolution, DpnII and MboI restriction enzymes) plotted vs. distance D 
between interacting regions. (A) Before normalization, (B) after loess joint normalization, (C) 
ChromoR, (D) Iterative Correction and Eigenvector decomposition (ICE), (E) Knight-Ruiz (KR), (F) 
Sequential Component Normalization (SCN). 

Existing Hi-C data at high-resolutions (e.g., 10 kb) still suffer from a limited dynamic range of chromatin 
interaction frequencies, with the majority of them being small or zero, especially at large distances between 
interacting regions. This sparsity places limits on loess joint normalization, as it builds a rescaling model from 
many non-zero pairwise comparisons. A way to alleviate this limitation is to consider interactions only within a 
range of short interaction distances, where genomic regions interact more frequently, and the proportion of 
zero interaction frequencies is the lowest. Our evaluation of loess joint normalization showed it performs best 
at resolutions between 1MB and 50KB (Appendix 1 section 4, Appendix 1 section 7). The issue of sparsity 
limiting the usefulness of loess normalization will be alleviated as sequencing techniques continue to improve 
and Hi-C datasets with deeper sequencing become available. 

2.3.3 Detecting differential chromatin interactions 

To benchmark our detection of significant chromatin interaction differences, we introduced a priori known 
chromatin interaction differences in replicate data from the GM12878 cell line. The benefits of the joint 
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normalization vs. individually normalized datasets were evaluated in detecting the known differences. 
HiCcompare can detect most of the added differences with a relatively low number of false positives across the 
range of fold changes (Table 2.1, Appendix 1 section 5). 

Table 2.1. Evaluation of the effect of normalization on differential chromatin interaction detection. 
Matthews Correlation Coefficient of detecting 200 controlled differences in jointly (HiCcompare) vs. individually 
normalized Gm12878 datasets, chromosome 1, 1KB resolution. Matrices were normalized with methods 
corresponding to column labels; differences were detected using HiCcompare. 

Fold change HiCcompare MA ICE SCN KR ChromoR 
2 0.847 0.823 0.835 0.768 0.748 0.149 
3 0.973 0.934 0.802 0.721 0.764 0.380 
4 0.995 0.98 0.953 0.881 0.868 0.532 

2.3.4 Example HiCcompare analysis using mouse neuronal differentiation 

As expected, the ESC vs. neuron had the largest number of differentially interacting regions at 951 (FDR < 
0.05). The ESC and NPC had 279 differentially interacting regions, and the NPC and neuron had only 127 
differentially interacting regions. These differences expectedly suggest that the undifferentiated ESCs and fully 
differentiated neurons have many chromatin interaction differences, while the intermediate neural progenitor 
cells have fewer differences when compared with either ESCs or neurons. These observations suggest that 
the chromatin structure plays a key role in the process of cell differentiation. 

The enrichment analysis for the ESC vs. the neuron found genes enriched in protein binding function, ion 
channel regulator activity, and “Axon guidance” pathway among others (Appendix 2). The enrichment of these 
pathways outlines the ESC-to-neuron differentiation processes that are governed by changes in the 3D 
structure of the genome. When comparing the ESC and NPC cells, genes were found to be enriched in 
voltage-gated calcium channel activity, ion transporters, and serotonin metabolic processes (Appendix 3). The 
enrichment results between the NPC and neuron had fewer results but included IgG receptor activity and 
binding and cytoskeletal protein binding (Appendix 4). These results indicate that the changes in the chromatin 
structure contain functionally relevant genes for the cell differentiation process. 

The results of this HiCcompare analysis show that our methods are capable of detecting biologically 
meaningful differences in chromatin conformation when comparing different cell types. Together with the 
results of Fraser et al. (Fraser 2015), the HiCcompare results indicate that the cellular differentiation process 
involves structural changes of the chromatin, likely leading to the changes in gene expression and the 
associated biological pathways. 

2.3.5 Comparison with diffHiC 

The diffHiC pipeline was designed to process raw Hi-C sequencing datasets and detect chromatin interaction 
differences using the generalized linear model framework developed in the edgeR package (Lun and Smyth 
2015a). We compared the results of Hi-C data analyzed in the diffHiC paper (human prostate epithelial cells 
RWPE1 over-expressing the EGR protein or GFP (Rickman et al. 2012a)) with the results obtained by 
HiCcompare. 

To compare HiCcompare with diffHic, we performed a HiCcompare analysis on the RWPE1 Hi-C data 
(Rickman et al. 2012a). This was compared to the analysis performed in the diffHic paper (Lun and Smyth 
2015a). We performed the analysis at a 1MB resolution as described in the diffHic paper. diffHic detected a 
total of 5,737 significant differences (FDR < 0.05), while HiCcompare tended to be more conservative, 
detecting 680 differences (FDR < 0.05) and 5,215 differences when multiple testing correction was not applied 
(p-value < 0.05). Of the 680 differences, 208 overlapped with the regions detected by diffHic. Surprisingly, 
although diffHiC used CNV correction in their analysis, 2,567 (44.7%) of the detected differentially interacting 
regions overlapped with CNV regions detected in our analysis or blacklisted regions. diffHic tended to detect 
differentially interacting regions with smaller fold changes as compared to HiCcompare, and at shorter 
distances between interacting regions, while HiCcompare can detect differences across the full range of 
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distances (Section 6, Additional File 1). These results suggest that detecting chromatin interaction differences 
represented in the MD coordinates, as implemented in HiCcompare, may be useful in detecting large 
chromatin interaction differences across the full range of distances, potentially having a more significant 
biological effect. 

2.3.6 Comparison with FIND 

The recently published FIND tool uses a spatial Poisson process to detect differences between two Hi-C 
experimental conditions (Djekidel et al. 2018a). FIND is presented as a tool for high-resolution Hi-C data and 
treats interactions as spatially dependent on surrounding interactions. To compare HiCcompare with FIND, we 
performed a comparative analysis between Hi-C data from K562 and GM12878 cells lines (Appendix 1 section 
7) as done in the FIND paper (Djekidel et al. 2018a). The maximum resolution of each Hi-C matrix was 
calculated using the calculate_map_resolution.sh function from Juicer (Durand et al. 2016a). Briefly, two 
replicates for each cell line were obtained (see Methods), and the replicate contact matrices were combined for 
the HiCcompare analysis. HiCcompare was used to jointly normalize the data between the cell lines and then 
detect differences. HiCcompare analyses were performed at 1MB, 100KB, 50KB, 10KB, and 5KB resolutions. 
Additionally, the analyses of GM12878 and K562 were used to compare the run times of HiCcompare and 
FIND (Appendix 1 section 7). 

The number of differences detected by HiCcompare at 5KB resolution was much lower than the number FIND 
detected (~150,000) (Djekidel et al. 2018a). The drop off of the number of differential interactions detected at 
high-resolution by HiCcompare can be explained by the sparsity and the limited dynamic range of interaction 
frequencies at 5KB resolution. Additionally, the large number of differences detected by FIND at 5KB resolution 
is questionable given that the maximum resolution of the K562 and GM12878 data was found to be ~39KB and 
~9KB, respectively (Appendix 1 section 7). 

The differentially interacting regions detect by HiCcompare at different resolutions were intersected with gene 
locations, and a KEGG pathway enrichment analysis was performed. The enrichment analysis showed that 
many of the differential regions contained genes involved in the immune system (Table 2.2). We also found 
that the enrichment analyses of HiCcompare-detected differences at each resolution were relatively consistent 
further indicating the strength of HiCcompare at detecting biologically relevant differences across data 
resolutions. Despite the differences in resolution of data used for differential analysis (5 kb for FIND and 50 kb - 
1 Mb for HiCcompare) the enrichment analysis of HiCcompare-detected differences identified pathways related 
to the immune system, similar to the results of the FIND analysis. These observations suggest that both 
methods can detect biologically significant differences. 

Table 2.2. Gene enrichment results for HiCcompare analyses. KEGG pathways and their corresponding 
FDR-corrected p-values for the enrichment analyses of HiCcompare-detected differences at 1MB, 100KB, and 
50KB resolutions. Differentially interacting regions detected by HiCcompare were intersected with gene 
locations, and the overlapping genes were tested for enrichment using EnrichR (Edward Y Chen and Ma’ayan 
2013). 

Pathway 1MB 100KB 50KB 
Systemic lupus erythematosus 3.807e-06 6.302e-17 1.025e-02 
Antigen processing and presentation 3.807e-06 6.808e-01 9.974e-01 
Staphylococcus aureus infection 8.170e-03 2.354e-01 7.604e-01 
Viral myocarditis 8.170e-03 1.038e-01 9.657e-01 
Allograft rejection 8.170e-03 1.518e-01 9.974e-01 
Viral carcinogenesis 3.327e-02 3.659e-08 3.273e-01 
Pathways in cancer 9.162e-01 2.236e-02 9.409e-01 

To compare the performance of FIND and HiCcompare we used replicated data for GM12878 cells. The 
GM12878 replicates are expected to contain minimal differences, thus suitable for introducing a priori 



24 
 

controlled changes (see Methods) and applying both tools to detect these changes. HiCcompare successfully 
detected the majority of the controlled changes while FIND detected smaller differences and was missing most 
of the introduced controlled changes (Appendix 1 section 7). Additionally, we found that the run time of FIND 
on Hi-C matrices at resolutions between 100KB and 10KB was extremely long (>72 hours) even when run in 
parallel on 16 cores, while HiCcompare was able to complete an analysis within minutes (Appendix 1 
Supplemental Figure 3.1). These results further strengthen the notion that HiCcompare detects large chromatin 
interaction differences potentially having a larger biological impact on genome structure, and does it across the 
full range of distances. 

2.3.7 Preservation of A/B compartments 

A/B compartments are the best known genomic structures that can be detected from Hi-C data (Lieberman-
Aiden et al. 2009a). A/B compartments are large genomic features which can be detected in Hi-C contact 
matrices. A compartments correspond to open chromatin and gene expression and B compartments are 
associated with closed chromatin and low gene expression. To understand the consequences of the joint 
vs. individual normalization methods on the detection of A/B compartments we compared principal components 
defining compartments in raw vs. normalized data. A/B compartments detected following joint normalization 
were the most similar to those detected in the raw data (Table 2.3). These results suggest that the joint 
HiCcompare normalization preserves properties of Hi-C data needed for the accurate detection of A/B 
compartments. 

Table 2.3. Similarity between A/B compartments detected following various normalization methods. 
“Correlation” - Pearson correlation coefficient between principal components defining A/B compartments in raw 
vs. normalized Hi-C data; “Prop. Match Sign” - the proportion of regions with matching signs defining A/B 
compartments; “Jaccard A/B” - Jaccard overlap statistics between A/B compartments, respectively. All values 
represent averages over all chromosomes. 

Comparison Mean Absolute Correlation Mean Percentage Jaccard A Jaccard B 
Loess vs. Raw 0.9954 0.8537 0.7971 0.7823 
MA vs. Raw 0.9950 0.8539 0.7881 0.7706 
ICE vs. Raw 0.9795 0.7850 0.6731 0.6277 
KR vs. Raw 0.9489 0.7771 0.5945 0.5000 
SCN vs. Raw 0.9309 0.8083 0.6134 0.5495 
ChromoR vs. Raw 0.8093 0.6810 0.5210 0.4803 

Taken together, our results demonstrate the importance of joint normalization when comparing Hi-C datasets. 
We introduce the concept of a distance-centric view of Hi-C data, implemented as an intuitive distance-centric 
visualization of two Hi-C datasets on the MD plot. The MD plot representation allows for joint loess 
normalization that improves power in detecting true chromatin interaction differences and preserves data 
properties needed for the accurate detection of A/B compartments. The HiCcompare R package implements 
the visualization, joint normalization, and differential chromatin interaction detection algorithms, allowing for the 
comparison of Hi-C data. 

2.4 Discussion 

This work introduces three novel concepts for the joint normalization and differential analysis of Hi-C data, 
implemented in the HiCcompare R package. First, we introduce the representation of the differences between 
two Hi-C datasets on an MD plot, a modification of the MA plot (Dudoit et al. 2002a). Importantly, we consider 
the data on a per-distance basis, allowing the data-driven normalization of global biases without distorting the 
relative distribution of interaction frequencies of the interacting regions. Second, we implement a non-
parametric loess normalization method that minimizes bias-driven differences between the datasets. There is 
compelling evidence that non-parametric normalization methods, such as quantile- and loess normalization, 
are particularly suitable for removing between-dataset biases (Shao et al. 2012; Bolstad et al. 2003), confirmed 
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by our application of loess to the joint normalization of Hi-C data. Third, we develop and benchmark a simple 
but rigorous statistical method for the differential analysis of Hi-C datasets. 

The importance of joint normalization in removing between-dataset biases has been demonstrated using the 
MA normalization introduced in the diffHiC R package (Lun and Smyth 2015a). MA normalization uses a 
similar concept of representing measures from two datasets on a single plot (Lun and Smyth 2015a), except it 
uses the Average chromatin interaction frequency as the X-axis instead of the Distance. MA normalization 
performed second to HiCcompare (Table 2.1, Appendix 1 section 5). This may be due to the power-law decay 
of interaction measures leading to the limited dynamic range of average chromatin interaction frequencies and 
making fitting a loess curve difficult. Instead, the more balanced representation of chromatin interaction 
differences M (Y-axis) as a function of distance D (X-axis) improves the performance of loess fit for the joint 
normalization and the subsequent detection of chromatin interaction differences. 

The discrepancy of differential chromatin interaction detection between diffHiC and HiCcompare (Appendix 1 
section 6) could arise from multiple factors. diffHiC’s implementation of MA normalization favors differences 
at shorter distances and small fold changes while HiCcompare’s loess fitting through the MD plot allows for the 
detection of large chromatin interaction differences across the full range of interaction frequencies (Appendix 1 
section 6). diffHiC operates on logCPM counts while HiCcompare uses log interaction frequency counts. 
diffHiC uses enzyme cut sites to define bins when partitioning the genome while HiCcompare uses fixed bin 
sizes. diffHiC uses median inter-chromosomal interaction frequency to filter low-abundance bin pairs while 
HiCcompare filters based on average IFs of the chromosome being considered. Finally, the RWPE1 data 
analyzed by diffHiC is relatively sparse even at 1MB resolution, potentially interfering with HiCcompare’s 
statistical analyses. In summary, diffHiC and HiCcompare may provide complementary views on chromatin 
interaction differences, with HiCcompare being better suited for removing the between-datasets biases and the 
detection of biology-driven chromatin interaction differences. 

In our comparison with FIND (Appendix 1 section 7), we found that HiCcompare performed better than FIND on 
data at resolutions between 1MB and 10KB. As most publicly available Hi-C data is too sparse to make 
meaningful inferences at resolutions greater than this, HiCcompare looks to be the better choice for detecting 
differences on most currently available data. In the case of extremely high-resolution Hi-C data, FIND may be 
able to pull out more significant differences between two experimental conditions albeit at the expense of 
significantly longer run times. Comparing our gene enrichment results for GM12878 vs. K562 with those 
presented in (Djekidel et al. 2018a), both methods were able to detect differences in regions involved in the 
immune system as would be expected to occur for these cell types. 

Despite the ability of Hi-C technology to simultaneously capture all genomic interactions, current resolution of 
Hi-C data (1MB - 1KB) remains insufficient to resolve individual cis-regulatory elements (~100b-1KB). 
Alternative techniques, such as ChiA-PET (Fullwood et al. 2009), Capture Hi-C (Mifsud et al. 2015) have been 
designed to identify targeted 3D interactions, e.g., between promoters and distant regions. These data require 
specialized normalization (Cairns et al. 2016) and differential analysis (Lareau and Aryee 2017) methods. Our 
future goals include extending the loess joint normalization method for chromosome conformation capture data 
other than Hi-C. 

Chapter 3: Aim 2 - Application of HiCcompare to human brain data 

3.1 Introduction 

The human brain is a complex organ composed of distinct anatomical and functional regions and cell types. 
Being the central organ for human cognition, it is also one of the most difficult organs to study (Birdsill et al. 
2011; Popova et al. 2008). While gene expression and epigenomic changes across human brain regions and 
cell types have been characterized (Kang et al. 2011; Strand et al. 2007; GTEx Consortium 2013), the 
dynamics of 3D chromatin interactions integrated with “omics” changes remain undefined. It is of interest to 
determine if there are 3D structural differences between distinct regions of the brain. Differences in chromatin 
structure could be integral to the tissue differentiation observed between the brain regions. These structural 
changes in the chromatin found between regions of the brain can then be associated with differences in gene 
expression or enrichment of other epigenomic features using standard enrichment techniques. To study the 



26 
 

links between 3D structure and tissue differentiation we have collected Hi-C data for the amygdala and the 
prefrontal cortex (PFC) of a single human fetal brain. 

The amygdala is a distinct anatomical region of the brain located deep within the temporal lobes. It is 
associated with memory and emotional responses. The amygdala is part of the limbic system, which plays a 
role in several cognitive functions including long-term memory, emotion, and olfaction. This brain region is also 
implicated in fear responses, which are linked to the expression of certain signaling pathways.  The amygdala 
is an older structure of the brain on the evolutionary scale and is present in most complex vertebrates. 

The prefrontal cortex is the region of the cerebral cortex in the frontal lobe. This region of the brain is involved 
in many higher functions of cognition. It is thought to be involved in planning complex behaviors and decision 
making. The prefrontal cortex is involved in top-down processing of behaviors, which are the product of 
sensory input or thoughts that are subject to rapid changes (Miller EK 2001). The prefrontal cortex is highly 
interconnected, with links to most other regions of the brain. The classic case showing the functions of the 
prefrontal cortex is that of Phineas Gage. Gage had an iron rod driven through his left frontal cortex in an 
accident but survived. His personality changed after the accident yet his memory and motor functions were not 
affected. 

A previous study by Won et al. (Won et al. 2016) performed a Hi-C analysis on samples from the developing 
human brain. Briefly, they took samples from the cerebral cortex at the peak of neurogenesis from the 
subcortical plate and the germinal zone. They compared the contact profiles and found them to be similar 
between replicates and individuals. Additionally, they observed switching between type A and type B 
compartments (type A compartments are associated with open chromatin and gene expression, type B 
compartments with closed chromatin and low expression). They found that regions associated with promoters 
and enhancers were more likely to be interacting in 3D space. However, for their comparisons, they used ICE 
normalization. ICE is not a joint normalization technique, which could mean the data still contained inter-
dataset biases. Furthermore, their identification of interacting regions was performed only considering a single 
Hi-C matrix at a time. They declared significance for a given Hi-C contact based on the probability of observing 
a stronger contact under a fitted Weibull distribution matched by chromosome and distance (Won et al. 2016). 
This is a widely used approach for finding significant contacts within a Hi-C matrix; however, it does not give a 
statistical measure of the differences in IFs between Hi-C datasets. 

Here we propose to use our methods developed in Aim 1, HiCcompare, to compare the amygdala and the 
prefrontal cortex Hi-C data from a human fetal brain. Joint normalization as implemented in HiCcompare will 
help to remove between dataset biases and aid in comparison. Additionally, we will be able to directly look for 
differences in the Hi-C contacts of the amygdala and the prefrontal cortex. Finding such statistical differences 
as opposed to merely overlapping regions determined as significant from a single Hi-C matrix will allow for a 
better comparison of the regions of the human brain. 

3.2 Methods 

3.2.1 Generation of Hi-C libraries 

Samples were obtained from the amygdala and the dorsolateral prefrontal cortex of a single human fetal brain. 
Two Hi-C libraries were produced using the samples, one from the amygdala and one from the prefrontal 
cortex (PFC). The initial replicate from the PFC was not sequenced deep enough, so an additional replicate 
was produced. The Sau3AI restriction enzyme (cuts at the GC-balanced site “GATC”) was used for generating 
the Hi-C libraries. Quality of the data (overrepresented sequences, GC content, percent deduplicated, total 
reads) were assessed using FastQC (Andrews 2010). 

3.2.2 Processing of raw Hi-C data 

The raw Hi-C data was processed using the HiC-Pro pipeline (Servant et al. 2015). The HiC-Pro pipeline was 
used to align the raw data to the hg19 reference genome, perform quality control measures, and produce 
contact matrices. The built-in ICE normalization procedures of HiC-Pro were not used as we will use 
HiCcompare’s normalization functionality instead. Only intrachromosomal contact matrices were used for this 
study. Contact matrices were produced in resolutions of 1MB, 500KB, 100KB, 50KB, 20KB, and 10KB. 
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3.2.3 Determining the maximum resolution of the data 

The maximum usable resolution for each dataset was calculated using our modified version of the algorithm 
described for calculating map resolution in (Rao et al. 2014a). Briefly, to determine the maximum resolution, 
we use a very high-resolution dataset, i.e., 100bp. A vector composed of the number of reads for every region 
in the genome is created. This is equivalent to taking the row (or column) sums of the genome-wide Hi-C 
matrix. 

Next, the percentage of regions with a count greater than 1,000 was calculated. If this percentage is less than 
80%, the bins were combined and their counts were summed to bump the resolution of the matrix up to the 
next step. The number of new bins and the number of current bins being combined is calculated as follows. 

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑔𝑔(𝐺𝐺/𝑅𝑅) 

Where 𝐺𝐺 is the total genome length and 𝑅𝑅 is the new resolution determined by the original resolution + the step 
size. 

𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝 𝑏𝑏𝑖𝑖𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑔𝑔(𝑁𝑁𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏) 

Where 𝑁𝑁𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 is the previous number of bins. These new bins are then assigned to the original bins (if 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 
is not a multiple of 𝑁𝑁𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏, the final bin will contain a number of combined bins less than 𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝 𝑏𝑏𝑖𝑖𝑛𝑛). The counts for 
the new bins are calculated simply by summing all counts of the original bins being combined. Then once 
again the percent of bins with a count greater than 1,000 is calculated. This process of combining bins and 
increasing the resolution is repeated until the percent of bins with counts greater than 1,000 is 80% or more. 
The resolution once this condition is met is the minimum resolution that the Hi-C dataset can support. The 
maximum resolutions for the amygdala dataset was 17KB, the first replicate of the PFC data was 33KB, and 
the second replicate of the PFC data was 17KB. 

3.2.4 CNV Analysis 

CNVs can potentially change the structure of the DNA, and thus it is important to map where they occur. In 
some cases, it may be necessary for CNV regions to be filtered out from the Hi-C data as they could potentially 
result in false positives. The wrapper function included in HiCcompare for the QDNAseq R package was used to 
detect copy number variations (CNVs) (Scheinin et al. 2014) in our Hi-C data. CNVs were checked for in all the 
datasets to be analyzed at resolutions of 1MB, 100KB, and 10KB. The CNV regions were compared against 
regions known to contain repetitive sequences. CNV regions were not excluded from the HiCcompare analysis. 

3.2.5 HiCcompare analysis 

HiCcompare was used to jointly normalize the datasets and perform three comparisons, amygdala vs. PFC 
replicate 1, amygdala vs. PFC replicate 2, and PFC 1 vs. PFC 2 at resolutions of 1MB, 100KB, and 20KB. 
Briefly, HiCcompare’s loess normalization was performed on the MD plots for each of the three comparisons. 
Filtering based on the Average (𝐴𝐴) expression values of the interaction frequencies was performed. For the 
1MB and 20KB resolution comparisons, the bottom 10th percentile of 𝐴𝐴 values were filtered out. For the 100KB 
comparisons, interactions with 𝐴𝐴 < 8 were filtered out. To determine the filtering level, we first copy the real Hi-
C matrix then add in random noise to simulate a technical replicate. Then a specified number of differences at 
a controlled fold change are added into the fuzzed matrix, and the HiCcompare difference detection algorithm 
is used to check for the true differences added to the matrix. This process is repeated over a range of minimum 
𝐴𝐴 values so that an optimal filtering level can be determined where the Matthews Correlation Coefficient (MCC) 
is maximized without filtering too much of the data. After filtering, the normalized 𝑀𝑀 values were then converted 
to Z-scores and compared to the standard normal distribution. False discovery rate (FDR) multiple testing 
correction was applied on a per-distance basis to the p-values. See section 2.2 for a full description of the 
methods used in HiCcompare. 
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3.2.6 Enrichment analysis 

The regions detected as differentially interacting by the HiCcompare analysis were exported as .BED files and 
intersected with a list of the regions for all human genes using BEDtools. This was performed separately for 
each the 1MB, 100KB, and 20KB analyses. The resulting genes enriched in the differential regions were 
entered into an enrichment analysis. First, these genes were tested for enrichment in KEGG pathways using 
the enrichR R package. The top most significant pathways were reported. Next, we produced enrichment dot 
plots using the clusterProfiler R package for the most significant KEGG pathways. The pathways found to 
be enriched in the significant regions were assessed for their fit to the data. 

3.2.7 Regions detected multiple times 

We used Manhattan plots to identify “hotspot” regions which interact significantly multiple times. The genome 
was broken down into a list of all linear bins at each analyzed resolution (1MB, 100KB, 20KB) and the number 
of times each bin was involved in a significant differential interaction was counted. This was performed for each 
of the three comparisons. The regions detected ≥ 2 times were determined to be hotspot regions. These 
regions were further investigated for enrichment of genomic and epigenomic features. The genes enriched in 
the hotspot regions were overlapped in Venn diagrams to look for similar genes appearing between the three 
comparisons. 

3.2.8 RNA-seq on regions of the brain 

As we were not able to obtain RNA-seq data directly from the same samples used to produce the Hi-C data, 
we downloaded RNA-seq data from a total of 229 samples from the human brain that were publicly available 
on the GTEx Portal. The GTEx 2016 dataset contained 100 samples from the amygdala and 129 samples from 
the frontal cortex. We input this RNA-seq data into edgeR to perform a differential expression analysis. Reads 
were filtered and normalized, and the Quasi-likelihood F-test was performed to test for differential expression 
between the brain regions. The top 1,000 DE genes (FDR < 0.0001) were input into a KEGG enrichment 
analysis to check for enrichment in pathways. 

3.2.9 TAD analysis 

Topologically Associated Domains (TADs) are organized units of chromatin structure that are characterized by 
groups of genomic loci with high levels interacting within the group and low levels of interaction outside the 
group (Dixon et al. 2012; Kellen G Cresswell 2019). We used SpectralTAD (Kellen G Cresswell 2019) to detect 
hierarchical TADs on the amygdala and PFC Hi-C data. We then calculated the Jaccard overlap between the 
TAD boundaries of the two datasets to determine the amount of overlap in TADs between the two brain 
regions. To determine if the differential regions detected by HiCcompare are occurring within TAD boundaries 
we checked for their enrichment within the TAD boundaries using the permutation test functionality provided by 
multiHiCcompare (John C Stansfield 2019). 

3.3 Results 

3.3.1 Exploratory analysis 

Shown in Table 3.1, the quality of sequencing was generally good; however, the first round of sequencing of 
the PFC had a lower number of reads compared to the amygdala. Due to the poor sequencing quality of the 
PFC, the library was sequenced again at a deeper level. 
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Table 3.1. Quality Control for Brain Hi-C Data. Only the Amygdala and the second replicate of the PFC data 
are displayed. R1 and R2 indicate the number of the file for the pair end fastq files input into FastQC. 

File Basic Statistics Overrepresented sequences GC Content Deduplicated Total Reads 
Amygdala R1    87.60% 414,846,218 
Amygdala R2    88.98% 414,846,218 
PFC R1    81.89% 612,633,643 
PFC R2    84.65% 612,633,643 

The maximum resolution of the Hi-C data for each dataset was obtained. The amygdala and second cortex 
replicate were determined to have a maximum resolution of 17KB while the first PFC replicate was determined 
to have a maximum resolution of 33KB. Thus, 20KB was chosen as the maximum resolution to be used for the 
HiCcompare analyses. The results of the comparison between the amygdala and PFC 1 should not be 
considered as strongly as the results from the comparison between the amygdala and PFC 2. For the 1MB 
data, the proportion of interactions with an IF = 0 was calculated in addition to the total number of reads. These 
results are displayed in Table 3.2. 

Table 3.2. Proportion of 0 and total number of reads by Hi-C dataset at 1MB resolution. The cortex combined 
file represents the combination of the two cortex replicates into a single contact map. 

  Proportion 0 Number of reads 
PFC 1 0.05865 70572018 
PFC 2 0.05624 136825141 

PFC Combined 0.05617 205336613 
Amygdala 0.05583 131329303 

3.3.2 CNV regions 

At 1MB resolution, 16 CNVs were detected which occurred on chromosomes 9 and 19. At 100KB resolution, a 
total of 367 CNVs were detected. At 10KB resolution, a total of 5,029 CNVs were detected. The distribution of 
the CNVs at 100KB and 10KB resolution are displayed in Table 3.3. The CNV regions detected were not 
filtered out for the HiCcompare analysis. 
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Table 3.3. Distribution of CNVs at 100KB and 10KB resolution. 

 

resolution chr CNV Freq 
100KB chr1 130 
100KB chr2 35 
100KB chr5 17 
100KB chr9 139 
100KB chr10 31 
100KB chr11 15 
10KB chr1 812 
10KB chr2 558 
10KB chr3 21 
10KB chr4 31 
10KB chr5 273 
10KB chr6 34 
10KB chr7 358 
10KB chr8 186 
10KB chr9 1118 
10KB chr10 334 
10KB chr11 48 
10KB chr12 3 
10KB chr14 106 
10KB chr15 355 
10KB chr16 319 
10KB chr17 141 
10KB chr19 28 
10KB chr20 72 
10KB chr21 69 
10KB chr22 163 

3.3.3 Regions differing between the amygdala and prefrontal cortex 

HiCcompare was used to jointly normalize the datasets for the following comparisons: amygdala vs. PFC 1, 
amygdala vs. PFC 2, and PFC 1 vs. PFC 2. These comparisons were performed at 1MB, 100KB, and 20KB 
resolution. After joint normalization, differences were detected between the datasets. The differences detected 
for each comparison are listed in Tables 3.4-3.6. Except for the 1MB resolution comparison, more differences 
were found between the amygdala and PFC than between the two PFC replicates. A similar number of 
differences were found between the amygdala vs. PFC 1 and amygdala vs. PFC 2 comparisons. At 20KB 
resolution, there were very few differences found between the amygdala vs. PFC 1 and PFC 1 vs. PFC 2 
comparisons compared to the amygdala vs. PFC 2 comparison. This is likely due to the fact that the maximum 
resolution of PFC 1 was 33KB and thus the PFC 1 dataset was too sparse to find many meaningful 
differences. 
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Table 3.4. Number of differences detect by HiCcompare for each chromosome by each comparison at 1MB 
resolution. 

Chr amygdala vs PFC 1 amygdala vs PFC 2 PFC 1 vs PFC 2 
chr1 74 59 217 
chr2 49 59 88 
chr3 19 7 91 
chr4 41 29 83 
chr5 25 11 77 
chr6 53 31 93 
chr7 27 21 47 
chr8 25 19 58 
chr9 73 53 121 

chr10 7 7 47 
chr11 23 22 42 
chr12 17 21 58 
chr13 8 10 24 
chr14 9 8 34 
chr15 10 4 23 
chr16 20 16 33 
chr17 11 11 25 
chr18 11 18 19 
chr19 4 7 17 
chr20 19 23 14 
chr21 6 2 23 
chr22 3 2 8 
chrX 30 20 63 

Table 3.5. Number of differences detect by HiCcompare for each chromosome by each comparison at 100KB 
resolution. 

Chr amygdala vs PFC 1 amygdala vs PFC 2 PFC 1 vs PFC 2 
chr1 368 336 170 
chr2 401 394 232 
chr3 342 344 218 
chr4 447 344 254 
chr5 332 278 183 
chr6 288 314 214 
chr7 261 221 184 
chr8 248 254 162 
chr9 197 174 160 

chr10 192 175 137 
chr11 212 182 146 
chr12 209 203 149 
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chr13 228 186 139 
chr14 146 156 113 
chr15 112 130 75 
chr16 135 93 68 
chr17 85 66 77 
chr18 193 148 117 
chr19 82 89 45 
chr20 121 73 67 
chr21 84 47 42 
chr22 48 56 38 
chrX 170 163 73 

Table 3.6. Number of differences detect by HiCcompare for each chromosome by each comparison at 20KB 
resolution. 

Chr amygdala vs PFC 1 amygdala vs PFC 2 PFC 1 vs PFC 2 
chr1 1 234 5 
chr2 1 19 1 
chr3 3 0 1 
chr4 2 177 3 
chr5 1 82 8 
chr6 0 156 6 
chr7 0 26 4 
chr8 0 122 2 
chr9 2 6 2 

chr10 0 128 5 
chr11 0 33 3 
chr12 0 45 4 
chr13 0 51 7 
chr14 0 33 6 
chr15 1 57 1 
chr16 8 4 5 
chr17 0 2 2 
chr18 0 72 7 
chr19 4 8 0 
chr20 1 2 2 
chr21 0 0 5 
chr22 1 0 0 
chrX 1 164 12 

We also checked for differentially interacting regions that were highly active. The number of times each region 
in the genome was found to be involved in a significant differential interaction was counted. Some regions were 
detected as many as eight times while the majority of regions were detected zero or one times. We set 
detection of 2 or more times as the criteria for a region to be called a highly differentially interacting region. 
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Figure 3.1 displays a Manhattan plot of the number of times each region was detected on chromosome 1. The 
highly differentially interacting regions were then used for the enrichment analysis. 

 

Figure 3.1. Manhattan plot for the number of times each region on Chromosome 1 was detected as 
significantly differentially interacting in the amygdala vs. PFC 2 comparison at 100KB resolution. 

3.3.4 Genes located in highly interacting regions show relevant pathways 

We listed all genes whose genomic coordinates intersected with the regions detected two or more times by 
HiCcompare. We then performed an enrichment analysis on these genes. The top pathways from the 
enrichment analysis are listed in Table 3.7. Many of the pathways detected by the enrichment analysis are 
signaling pathways. This indicates that differences in the 3D conformation of the DNA could influence cell 
signaling and the cellular differentiation processes. We found the “Axon guidance”, “Oxytocin signaling”, and 
“regulation of actin cytoskeleton” pathways were enriched in these differential regions. This further suggests 
that differences in the 3D DNA structure could be related to the differences observed between regions of the 
human brain. The differential regions enriched for the oxytocin signaling pathway may represent one of the 
ways DNA structure influences the differences of function between the amygdala and PFC. Oxytocin signaling 
in the amygdala has been found to be required for male mice to have a sexual preference for female mice (Yao 
2017). Additionally, oxytocin signaling in the amygdala of rats was linked to the expression of context-
conditioned fear responses (Emma J. Campbell-Smith and Westbrook 2015). However, in humans diagnosis of 
major depressive disorder and bipolar disorder has been associated with high mRNA expression of oxytocin 
receptors in the PFC compared to control subjects (Lee et al. 2018). These other studies suggest that oxytocin 
signaling is normal in the amygdala, but high expression of oxytocin receptors in the PFC could be related to 
disease. This explains why DNA regions associated with oxytocin signaling may have different structural 
conformations in the amygdala compared to the PFC. 
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Table 3.7 KEGG pathway enrichment results using the genes contained in the regions detected as 
differentially interacting. 

Pathway P-value Q-value 
TNF signaling 2.954e-06 2.112e-04 
Regulation of actin cytoskeleton 6.753e-06 3.863e-04 
MAPK signaling pathway 1.769e-05 7.978e-04 
Focal adhesion 2.791e-05 8.261e-04 
Adrenergic signaling in cardiomyocytes 7.185e-05 1.514e-03 
Rap1 signaling pathway 8.948e-05 1.599e-03 
Adherens,junction 1.466e-04 2.466e-03 
Oxytocin signaling pathway 6.196e-04 6.563e-03 
NF-kappa B signaling pathway 3.114e-04 3.872e-03 
Axon guidance 9.145e-04 9.341e-03 

3.3.5 Differential genes share similar pathways as Hi-C data 

We performed a differential expression analysis between samples from the amygdala and the frontal cortex 
using data acquired from GTEx Portal. The differential genes were detected and the top 1,000 genes with an 
FDR < 0.0001 were input into a KEGG enrichment analysis. Several pathways detected using the genes 
enriched in differential regions detected by HiCcompare were also found to be enriched by the differential 
genes detected in the RNA-seq analysis (Tables 3.7 & 3.8). Many of the pathways enriched by the DE genes 
are relevant to brain function such as axon guidance, Dopaminergic synapse, and oxytocin signaling along with 
several other signaling pathways (Table 3.8). The overlap we observed between the pathways for the genes 
enriched within the differential regions as detected by Hi-C and the differentially expressed genes as detected 
by RNA-seq suggests that 3D DNA structure is indeed associated with gene expression. 

Next, we checked if the DE genes from the RNA-seq analysis were enriched in the differential regions detected 
by HiCcompare using the multiHiCcompare permutation test functionality for checking enrichment of genomic 
features in differentially interacting regions. The DE genes were not significantly enriched in the differential 
regions compared to randomly selected regions of the genome in the 1MB, 100KB, and 20KB resolution 
results (P = 0.096, P = 0.59, P = 0.29, respectively). A reason for this could be that the RNA-seq data was not 
taken from the same samples used to generate the Hi-C data. Additionally, the Hi-C data was taken from the 
dorsolateral prefrontal cortex while the RNA-seq data was from just the frontal cortex. 
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Table 3.8 KEGG pathway enrichment results using differentially expressed genes from the RNA-seq analysis. 

Description GeneRatio BgRatio pvalue p.adjust qvalue 
Calcium signaling pathway 30/339 188/7840 0.0000000 0.0000001 0.0000001 
Adrenergic signaling in cardiomyocytes 22/339 145/7840 0.0000002 0.0000297 0.0000223 
Dopaminergic synapse 20/339 131/7840 0.0000007 0.0000643 0.0000482 
Salivary secretion 15/339 90/7840 0.0000060 0.0003681 0.0002759 
Glutamatergic synapse 17/339 114/7840 0.0000070 0.0003681 0.0002759 
cAMP signaling pathway 24/339 212/7840 0.0000135 0.0005813 0.0004357 
Circadian entrainment 15/339 97/7840 0.0000155 0.0005813 0.0004357 
Aldosterone synthesis and secretion 15/339 98/7840 0.0000176 0.0005813 0.0004357 
Type II diabetes mellitus 10/339 46/7840 0.0000203 0.0005949 0.0004459 
GABAergic synapse 14/339 89/7840 0.0000245 0.0006457 0.0004840 
Oxytocin signaling pathway 19/339 153/7840 0.0000301 0.0006963 0.0005219 
Morphine addiction 14/339 91/7840 0.0000316 0.0006963 0.0005219 
Taste transduction 13/339 83/7840 0.0000500 0.0010149 0.0007608 
Neuroactive ligand-receptor interaction 31/339 338/7840 0.0000545 0.0010272 0.0007700 
Axon guidance 20/339 181/7840 0.0001005 0.0017680 0.0013253 
Arginine biosynthesis 6/339 21/7840 0.0001953 0.0032228 0.0024158 
Retrograde endocannabinoid signaling 17/339 148/7840 0.0002080 0.0032303 0.0024214 
cGMP-PKG signaling pathway 18/339 166/7840 0.0002820 0.0039324 0.0029477 
Amyotrophic lateral sclerosis (ALS) 9/339 51/7840 0.0002891 0.0039324 0.0029477 
Insulin secretion 12/339 86/7840 0.0002997 0.0039324 0.0029477 

3.3.6 Amygdala and PFC share similar TAD structure 

SpectralTAD detected a total of 10,970 TADs in the amygdala of which 2,927 were level 1 TADs, 4,098 were 
level 2, and 3,945 were level 3. For the PFC data, SpectralTAD detected a total of 10,833 TADs of which 2,912 
were level 1, 4,044 were level 2, and 3,877 were level 3. Thus, the total number of TADs and TAD hierarchy 
lined up fairly well between the two regions of the brain. The Jaccard overlap between the TAD boundaries 
was found to be 0.549. Another study found that the average Jaccard overlap between different tissues was 
0.416 (Natalie Sauerwald 2018), suggesting that the TAD structure of the amygdala and PFC are more similar 
than would be expected for most tissues. 

To test if the differentially interacting regions detected by HiCcompare were enriched in TAD boundaries, we 
performed permutation tests to compare overlap of the differential regions to randomly selected regions. The 
regions detected in the 1MB resolution comparison were significantly enriched in the amygdala TAD 
boundaries (P = 0.019); however, they were not significantly enriched in the PFC TAD boundaries (P = 0.073). 
The 100KB differential regions were again found to be significantly enriched in the amygdala TAD boundaries 
(P = 0.003) but not in the PFC boundaries (P = 0.057). At 20KB resolution, the differential regions were not 
significantly enriched for either the amygdala or PFC TAD boundaries (P = 0.50 & P = 0.24). 

3.4 Discussion 

Using comparative analysis techniques, we detected several significantly different interactions in the 3D 
structure of the DNA between the amygdala and PFC. As expected, we found more differences between the 
amygdala and PFC samples than were found between the PFC replicates. The enrichment analysis of the 
differentially interacting regions revealed some biologically interesting results. We found several signaling 
pathways that were enriched within the DNA regions detected as differentially interacting. Activation of certain 
signaling pathways has been found to determine the fate of stem-cells (Blank 2008). As our data came from 
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fetal brains, the cellular differentiation process may still have been ongoing, which could be responsible for the 
enrichment of these signaling pathways. 

The enrichment of the axon guidance pathway was also found in the study of Hi-C data from the human brain 
by Won et al. (Won et al. 2016). This suggests that the differential regions we found enriched for the axon 
guidance pathway is a true structural difference of the DNA influencing differentiation between the amygdala 
and PFC. Won et al. additionally found enrichment of cell adhesion and cytoskeleton protein binding as we did 
in our enrichment analysis. The RNA-seq differential gene expression analysis also produced DE genes 
enriched in several of the same pathways found in the Hi-C analysis. The results of our comparative analysis 
are consistent with those of this previous study, suggesting that HiCcompare can detect biologically relevant 
differences in the 3D structure of the DNA. 

In our TAD analysis, we found that the TAD hierarchy and structure were consistent between the amygdala 
and PFC. The Jaccard overlap between TADs of the regions was higher than in other studies (Natalie 
Sauerwald 2018). Additionally, we found that the differential regions were significantly enriched in the 
amygdala TAD boundaries at 1MB and 100KB resolution, but not in the PFC TADs or either at 20KB 
resolution. The reason for no enrichment in 20KB resolution data could be due to the lower quality and sparsity 
of the data at this high of a resolution. It is also possible that many of the differences detected had to do with 
TAD boundaries changing in just the amygdala, thus explaining why significant enrichment was only found for 
these TAD boundaries and not in the PFC boundaries. 

One main limitation of this study was the small sample size and the resolution of the data. As we had only one 
sample for the amygdala and two technical replicates of different sequencing quality for the PFC, our analyses 
were limited. The quality of the sequencing and low sample size limited the results of this study and prevented 
any broad conclusions. Additionally, as the sequencing depth was not sufficient, we could not make much use 
of the data at high-resolution. Further study of the 3D structure of brain DNA data should require more samples 
per tissue type at higher resolutions. Further study will help to characterize the regulatory nature of the DNA 
interactions in the brain differentiation process. 

Chapter 4: Aim 3 - Joint normalization and difference detection for replicate Hi-C datasets 

4.1 Introduction 

The advent of Chromatin Conformation Capture (3C) technology allowed for the first insights into the three-
dimensional (3D) interactome of the genome (Dekker et al. 2002b). Following 3C, 4C and 5C, a high-
throughput technology, Hi-C, was introduced as a means for the capture of all vs. all interactions across the 
entire genome (Lieberman-Aiden et al. 2009b).  The structure and interactions of the DNA in 3D space inside 
the nucleus has been shown to shape the gene expression of cells and define cellular identity (Dowen et al. 
2014b; Ji et al. 2016b; Phillips-Cremins and Corces 2013b; Rao et al. 2014b; Vietri Rudan et al. 2015; Jin et al. 
2013b) and in the regulation of tumor suppressors and oncogenes (Valton and Dekker 2016; Rickman et al. 
2012b; Taberlay et al. 2016b; Hnisz et al. 2016b; Lupiáñez et al. 2016b). The dynamic nature of the 3D 
structure of the genome prompted significant attention to the comparative analysis of multiple Hi-C datasets 
(Dixon et al. 2015; Bonev et al. 2017). 

Soon after Hi-C data became available, it became clear that the data contained biases which affected the 
construction and analysis of chromatin contact maps (Yaffe and Tanay 2011b). These biases fall into two 
categories: DNA sequence-driven and sequencing technology-driven. The sequence-driven biases that can be 
explicitly modeled include GC content, chromatin accessibility, nucleosome occupancy, repetitive elements 
and other properties of the DNA sequence (Yaffe and Tanay 2011b; O’Sullivan et al.b), and are consistent 
across datasets. The much less understood and hard-to-model technology-driven biases include cross-linking 
preferences, the choice of restriction enzymes (e.g., HindIII, MboI, DpnII), biotin labeling, chromatin 
fragmentation, and sequencing depth, among others. These biases affect Hi-C datasets unpredictably, 
justifying the need for joint normalization of multiple datasets. Early studies tended to focus on normalizing 
individual Hi-C datasets (Lieberman-Aiden et al. 2009b; Imakaev et al. 2012b; Yaffe and Tanay 2011b; Knight 
and Ruiz 2012b). These individual methods improve the reproducibility of replicated datasets (Imakaev et al. 
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2012b; Yaffe and Tanay 2011b; Hu et al. 2012b). However, these methods leave the problem of different 
biases between multiple Hi-C datasets unaddressed. 

Early methods for normalizing and comparing Hi-C datasets were developed to normalize individual datasets 
and overlap them. The most notable example is the HiCCUPS algorithm (Rao et al. 2014b), which detects 
chromatin interaction “hotspots” in individually normalized Hi-C datasets. Hotspots, i.e., chromatin interactions 
enriched relative to the local background, are then compared between datasets by simply overlapping them. 
This approach does not distinguish hotspots detected due to local biases and does not quantify the 
significance of the differences. Several papers utilized individually normalized Hi-C datasets and overlap-based 
methods to reveal important insights into the dynamics of the 3D structure of the genome (Dixon et al. 2015; 
Bonev et al. 2017). However, the overlap-based methods are severely limited in detecting statistically 
significant chromatin interaction changes. 

To the best of our knowledge, only four methods approach a statistically grounded comparison of Hi-C 
datasets. The diffHic method is an extension of a negative binomial distribution-based analysis operating on 
count data (Lun and Smyth 2015b). As such, it leaves a user with challenges of sequencing data storage, the 
computational burden of processing, normalization, summarization, and other bioinformatics heavy lifting of Hi-
C data. The HOMER method uses a binomial model to compare individually normalized Hi-C datasets (Heinz et 
al. 2010). The ChromoR method (Shavit and Lio’ 2014b) uses a Poisson model to compare Hi-C datasets. The 
latest method, FIND, exploits a spatial Poisson process to consider spatial dependency between chromatin 
regions when detecting differentially interacting loci (Djekidel et al. 2018b). However, in our tests, these 
methods failed to detect consistent differential chromatin interactions. Furthermore, all but diffHic methods 
use individually normalized Hi-C datasets, leaving the technology-driven biases unaccounted for. Thus, the 
problem of normalization and statistical comparison of multiple Hi-C datasets remains unsolved. 

Our method, HiCcompare (Stansfield et al. 2018), was one of the pioneering normalization methods to 
consider between dataset biases; however, it is limited to only joint normalization and comparison of two 
datasets. As sequencing costs continue to decrease and availability of Hi-C sequencing data increases, this 
method will fall short for Hi-C experiments involving comparison of multiple datasets. 

We present a method, multiHiCcompare, for joint normalization and comparison of multiple Hi-C datasets. 
Our method is based on a distance-centric view of Hi-C data, accounting for the fact that chromatin interaction 
frequencies (IFs) decay with the increasing distance between interacting regions. Our method utilizes cyclic 
loess regression-based normalization to jointly normalize Hi-C datasets between replicates and conditions. We 
then present a differential chromatin interaction analysis framework based on a general linear model (GLM)-
based approach (McCarthy et al. 2012; Robinson et al. 2010). Our framework operates on interaction counts 
subset in a distance-centric manner to produce RNA-seq-count-like matrices that can be directly analyzed 
using the GLM approach. As an output, genomic coordinates of differentially interacting regions are reported in 
text format, and the results are compatible with Juicer (Durand et al. 2016b) for easy visualization. This 
method, implemented in the multiHiCcompare R package, represents a streamlined and well-documented 
pipeline for the joint normalization and comparative analysis of multiple Hi-C experiments. 

4.2 Methods 

4.2.1 Hi-C data format 

multiHiCcompare works on processed Hi-C data in the form of sparse upper triangular matrices, in plain text 
format. A typical sparse Hi-C matrix is stored in a separate file for each chromosome and contains three 
columns - the start location for the first interacting regions, the start location for the second interacting region, 
and the interaction frequency for that interaction. When importing data to use in multiHiCcompare, an 
additional column needs to be added indicating the chromosome number, as the first column. The original 
HiCcompare package provides functions for converting between full and sparse matrices (Stansfield et al. 
2018). 
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4.2.2 Filtering 

Pairs of chromatin regions showing zero interaction frequency (IF) across all samples are not considered in all 
analyses. Additional filtering options include filtering out interacting pairs of regions with the average IF below a 
pre-defined threshold and/or the proportion of zero IF values larger than a pre-defined threshold across 
multiple datasets. Filtering helps to increase the computational speed when normalizing and comparing the 
data. Additionally, it removes interactions with low variability and high numbers of zero IFs that may create 
problems when estimating the parameters of the negative binomial distribution in the comparative analysis step 
(Lun and Smyth 2017). Furthermore, filtering helps to increase power by reducing the effect of the multiple 
testing correction. By default, interaction pairs with an average IF less than 5 and the proportion of zero IFs 
larger than 80% are filtered out. 

4.2.3 Cyclic loess normalization 

We previously developed a loess regression-based method for normalizing two Hi-C datasets (Stansfield et al. 
2018). Briefly, the method is based on representing the data on an MD plot. The MD plot is similar to the MA 
plot (Bland-Altman plot) (Dudoit et al. 2002b) which is commonly used for the visualization of gene expression 
differences. 𝑀𝑀 is defined as the log difference between the two data sets 𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑔𝑔2(𝐼𝐼𝐹𝐹2/𝐼𝐼𝐹𝐹1), where 𝐼𝐼𝐹𝐹1 and 𝐼𝐼𝐹𝐹2 
are interaction frequencies of the first and the second Hi-C datasets, respectively. 𝐷𝐷 is defined as the distance 
between two interacting regions, expressed in unit-length of the resolution of the Hi-C data. A loess regression 
curve is fit through the MD plot and used to remove global biases by centering the 𝑀𝑀 differences around 𝑀𝑀 = 0 
baseline (Stansfield et al. 2018). In our previous work, we show that joint loess normalization on the MD plot is 
superior to other common Hi-C normalization methods (ICE, KR, MA) for the purpose of comparison between 
experimental conditions (Stansfield et al. 2018). We also performed an additional comparison of cyclic loess 
with HiCNorm (Hu et al. 2012b) (Appendix 5 Figure S1). 

Here, we adapt our method to normalizing multiple Hi-C datasets, a procedure termed “cyclic loess” (Ballman 
et al. 2004). The cyclic loess algorithm proceeds through the following steps: 

1. Choose two out of the 𝑁𝑁 total samples then generate an MD plot. 
2. Fit a loess curve 𝑓𝑓(𝑑𝑑) to the MD plot. 
3. Subtract 𝑓𝑓(𝑑𝑑)/2 from the first dataset and add 𝑓𝑓(𝑑𝑑)/2 to the second. 
4. Repeat until all unique pairs have been compared. 
5. Repeat until convergence. 

Cyclic loess typically requires two to three iterations for convergence, which is reached when the fitted values 
stop changing (Ballman et al. 2004). The order in which pairs are selected may negligibly affect the speed of 
convergence; however, there should be no effect on normalization results. (Ballman et al. 2004). 

Cyclic loess is computationally intensive; however, it naturally lends itself to parallelization.  If a parallelization 
option is specified, normalization for each chromosome is distributed to a different processor. 
multiHiCcompare makes use of the BiocParallel parallelization methods. 

Additionally, we implemented a modified version of the fast linear loess (“fastlo”) method (Ballman et al. 2004) 
that is adapted to Hi-C data on a per-distance basis. To perform “fastlo” on Hi-C data, we first split the data into 
𝑝𝑝 pooled matrices. “Progressive pooling” is used to split up the Hi-C matrix by unit distance such that distance 
0 is its own pool, distances 1 and 2 are pooled, distance 3, 4, 5 are pooled, and so on until all unit distances 
belong to one of 𝑝𝑝 pools. 𝑝𝑝 is calculated as follows 𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑔𝑔 ��8𝑛𝑛𝑑𝑑+1−1

2
� where 𝑐𝑐𝑑𝑑 is the number of unit 

distances. The solution for the number of pools follows from the quadratic formula solution for triangular 
numbers. Progressive pooling is required for the fastlo and difference detection steps because each off-
diagonal trace of the matrix gets progressively smaller than the last. Thus, progressive pooling allows for 
normalization and analysis to be performed in a distance-centric manner while maintaining a similar number of 
contacts in each pool. These pooled contacts are assembled into matrices of interaction frequencies. Each 
matrix will have an 𝐼𝐼𝐹𝐹𝑔𝑔𝑖𝑖 value with 𝑔𝑔 interacting pairs for each of the 𝑗𝑗 samples. These 𝑝𝑝 matrices can then be 
input into the “fastlo” algorithm using the following steps: 



39 
 

1. Create the vector 𝐼𝐼�̂�𝐹𝑝𝑝𝑔𝑔𝑖𝑖, the row means of the 𝑝𝑝𝑡𝑡ℎ matrix. This is the equivalent of creating an average IF 
at distance pool 𝑝𝑝. 

2. Plot 𝐼𝐼�̂�𝐹𝑝𝑝 versus (𝐼𝐼𝐹𝐹𝑝𝑝𝑔𝑔 − 𝐼𝐼𝐹𝐹�̂�𝑝) for each sample 𝑗𝑗. This is equivalent to an MA plot at a genomic distance pool 
𝑝𝑝. 

3. Fit a loess curve 𝑓𝑓(𝑥𝑥) to the plot. 
4. Subtract 𝑓𝑓(𝑥𝑥) from sample 𝑗𝑗. 
5. Repeat for all remaining replicates. 
6. Repeat until the algorithm converges. 

The above steps are performed on the log2-transformed IFs. If a parallelization option is specified, the “fastlo” 
algorithm is parallelized by splitting up the 𝑝𝑝 matrices and sending them to multiple processors. Similarly to 
cyclic loess, fastlo typically converges within two iterations, which is defined as the point when the row means 
no longer change (Ballman et al. 2004). Additionally, fastlo has been shown to provide similar normalized 
values as quantile normalization while being almost as fast computationally (Ballman et al. 2004). Both the 
cyclic loess and fastlo methods are included in the multiHiCcompare package. 

After joint normalization, any negative IFs are automatically set to values of 0. All IFs that started with a zero 
value are reverted to zero after normalization is complete. This is because we are unable to determine if zeros 
in Hi-C matrices represent a missing value or an actual absence of contact between the pair of regions. 

4.2.4 Detection of chromatin interaction differences 

After normalization of the data, we can then proceed to the differential analysis. The primary goal of the 
differential analysis is to detect the maximal number of true differences while minimizing false positives. 
Approaches that utilize information across replicate high-throughput data (microarrays, RNA-seq, ChIP-seq) 
have been shown to improve the power of differential analysis (Smyth 2004; Sartor et al. 2006; Phipson et al. 
2016; Yu et al. 2011). Adopting the distance-centric view of Hi-C data (the off-diagonal vectors in chromatin 
interaction matrices, Figure 1), a comparison with other sequencing technologies can be drawn. Similar to 
RNA-seq read counts, Hi-C IFs may have differing amounts of biological variation across replicates. 

As Hi-C reads forming pairwise interaction frequencies are count based, the IFs can be modeled using a 
Negative Binomial distribution (Robinson and Smyth 2007) (Appendix 5 Figure S2). The distributions of 
distance-centric vectors of interaction counts can be approximated by the NB distribution, and this 
approximation holds at different resolutions of Hi-C data and different distances between interacting regions. 
Thus, the general linear model (GLM) framework of differential gene expression analysis developed for RNA-
seq (McCarthy et al. 2012; Auer and Doerge 2010; Anders and Huber 2010; Baggerly et al. 2003, 2004; 
Hansen et al. 2011; Lu et al. 2005; Robinson and Smyth 2007, 2008; Robinson et al. 2010) can be adapted for 
differential analysis of interaction frequencies. We adapted this framework to process interaction frequencies 
represented as 𝑝𝑝 “progressively pooled” distance-centric matrices with 𝑔𝑔 rows (indices for interacting pairs of 
regions) and 𝑖𝑖 columns (indices for replicates, Figure 1). The “progressive pooling” strategy is aimed to 
increase the robustness of statistical estimates across the whole range of distances between interacting 
regions. Its adaptation for the GLM framework is described in the next section. 

4.2.5 Adaptation of differential detection statistics for Hi-C data 

To detect chromatin interaction differences between multiple Hi-C datasets, we define 𝑗𝑗 = 1,2 as an 
experimental condition for which replicated Hi-C datasets were produced. The goal is to identify differential 
chromatin interactions between condition 𝑗𝑗 = 1 vs. condition 𝑗𝑗 = 2. The IF value for a specific interacting pair of 
regions, 𝑔𝑔, at distance pool, 𝑑𝑑, from sample 𝑖𝑖 will be denoted 𝑦𝑦𝑑𝑑𝑔𝑔𝑖𝑖 ∼ 𝑁𝑁𝐵𝐵(𝑀𝑀𝑑𝑑𝑖𝑖𝑝𝑝𝑑𝑑𝑔𝑔𝑖𝑖 ,𝜙𝜙𝑑𝑑𝑔𝑔), where 𝑀𝑀𝑑𝑑𝑖𝑖 is the total 
number of reads in sample 𝑖𝑖 at distance pool 𝑑𝑑, 𝑝𝑝𝑑𝑑𝑔𝑔𝑖𝑖 is the proportion of interaction counts 𝑔𝑔 in sample 𝑖𝑖 from 
experimental condition 𝑗𝑗, and 𝜙𝜙𝑑𝑑𝑔𝑔 is the dispersion. The NB distribution can be parameterized with the mean 
𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖 = 𝑀𝑀𝑑𝑑𝑖𝑖𝑝𝑝𝑑𝑑𝑔𝑔𝑖𝑖 and variance 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑑𝑑𝑔𝑔𝑖𝑖) = 𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖 + 𝜙𝜙𝑑𝑑𝑔𝑔𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖2  (Robinson et al. 2010). Dividing by 𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖2  obtains the 
total coefficient of variation 𝐶𝐶𝐶𝐶(𝑦𝑦𝑑𝑑𝑔𝑔𝑖𝑖)2 = 1/𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖 + 𝜙𝜙𝑑𝑑𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑖𝑖𝑐𝑐𝑣𝑣𝑙𝑙 𝐶𝐶𝐶𝐶2 + 𝐵𝐵𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑐𝑐𝑣𝑣𝑙𝑙 𝐶𝐶𝐶𝐶2  It follows that the 
biological CV is �𝜙𝜙𝑑𝑑𝑔𝑔. For difference detection, the parameters of interest are 𝑝𝑝𝑑𝑑𝑔𝑔𝑖𝑖 and 𝜙𝜙𝑑𝑑𝑔𝑔. 
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The easiest way to obtain the NB variance parameter is to estimate it globally across all distance-specific 
interaction frequencies, i.e., set 𝜙𝜙𝑑𝑑𝑔𝑔 = 𝜙𝜙𝑑𝑑 (Robinson and Smyth 2008; Anders and Huber 2010; Hansen et al. 
2011). The common dispersion can be estimated through the maximizing the likelihood function 𝐿𝐿(𝜙𝜙𝑑𝑑) =
1
𝐺𝐺
∑ 𝐿𝐿𝑔𝑔𝐺𝐺
𝑔𝑔=1 (𝜙𝜙𝑑𝑑), where 𝐺𝐺 is the number of interaction counts at a given distance pool 𝑑𝑑. Intuitively, it allows for 

prioritizing interaction frequencies that behave consistently across replicates, hence representing the more 
reliable measures. This approach works well when the number of replicates is small (Robinson and Smyth 
2007; Kal et al. 1999), as will be the case in most Hi-C experiments. An extension of this simplified approach is 
to consider the dependence between the variance function and the mean of IFs, so that all IFs with the same 
expected count have the same variance. Frequency-specific dispersions can then be estimated using an 
empirical Bayes approach using the quasi-likelihood (Baggerly et al. 2004; Tjur 1998), weighted likelihood 
(Robinson and Smyth 2007) or Cox–Reid adjusted profile likelihood (McCarthy et al. 2012), to be then used for 
moderation of outlier variances. 

To test for differences in chromatin interactions between two cellular conditions a likelihood ratio test can be 
used. We are primarily interested in testing the null hypothesis 𝜇𝜇𝑑𝑑𝑔𝑔,𝑖𝑖=1 = 𝜇𝜇𝑑𝑑𝑔𝑔,𝑖𝑖=2. The expense and sequencing 
depth required for generating Hi-C data means that the number of replicates for each condition will typically be 
very small. Thus, we estimate the common dispersion at distance pool 𝑑𝑑, 𝜙𝜙𝑑𝑑, as described (Robinson and 
Smyth 2008; Anders and Huber 2010; Hansen et al. 2011). Using the estimated common dispersion for a 
distance pool 𝑑𝑑, we can then perform an exact test similar to Fisher’s exact test (Robinson and Smyth 2008). 
The cyclic loess normalization will allow the IFs for interacting pairs to be treated as identically distributed 
negative binomial random variables. For each pairwise interaction 𝑔𝑔, at a distance pool 𝑑𝑑, we can calculate the 
total sum of experimental groups 𝑗𝑗 = 1,2 and compare it to the group-wise totals to calculate a 2-sided p-value. 

To analyze data from more complex experimental designs (three or more groups, covariates), generalized 
linear models (GLMs) have been extensively used for differential analysis of non-normally distributed count 
data (Tjur 1998; Baggerly et al. 2004; Lu et al. 2005; Auer and Doerge 2010; Anders and Huber 2010; 
McCarthy et al. 2012; Robinson et al. 2010). Assuming that an estimate is available for 𝜙𝜙𝑑𝑑𝑔𝑔, so the variance 
can be calculated for any 𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖, the vector of covariates (e.g., experimental condition assignment) 𝑥𝑥𝑖𝑖 can be 
linked with 𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖 through a log-linear model 𝑙𝑙𝑙𝑙𝑔𝑔(𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖) = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽𝑑𝑑𝑔𝑔 + 𝑙𝑙𝑙𝑙𝑔𝑔(𝑀𝑀𝑑𝑑𝑖𝑖), where 𝛽𝛽𝑑𝑑𝑔𝑔 is a vector of regression 
coefficients by which the covariate effects are mediated for interaction frequency 𝑔𝑔, and 𝑙𝑙𝑙𝑙𝑔𝑔(𝑀𝑀𝑑𝑑𝑖𝑖) is a log-
transformed total number of reads in sample 𝑖𝑖 at distance 𝑑𝑑 that accounts for sequencing depth variability. 𝛽𝛽𝑑𝑑𝑔𝑔 
can be estimated as 𝑋𝑋𝑇𝑇𝑧𝑧𝑑𝑑𝑔𝑔, where 𝑋𝑋 is the design matrix with columns 𝑥𝑥𝑖𝑖 and 𝑧𝑧𝑑𝑑𝑔𝑔𝑖𝑖 = (𝑦𝑦𝑑𝑑𝑔𝑔𝑖𝑖 − 𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖)/(1 +
𝜙𝜙𝑑𝑑𝑔𝑔𝜇𝜇𝑑𝑑𝑔𝑔𝑖𝑖). Importantly, for Hi-C replicates generated using different enzymes the design matrix 𝑋𝑋 may contain a 
covariate column for an enzyme, naturally accounting for the variability introduced through differences in DNA 
digestion. The GLM framework was implemented into multiHiCcompare and can be used to detect differential 
interactions from replicated Hi-C data. 

4.2.6 Benchmarking multiHiCcompare 

To accurately benchmark a method, data with ground truth differences are required (Dozmorov et al. 2010b). 
As there is no gold standard for differential interactions in Hi-C data, we used technical replicates from HCT-
116 colorectal cancer cell line at 100KB resolution for chromosome 22 (Rao et al. 2017) to generate a set of 
4x4 Hi-C matrices with ground truth differences. To create this dataset, we used four technical replicates 
(“Normal; Biological Sample 2”) (Appendix 5 Table S1) and created an additional four Hi-C datasets by adding 
random noise to each of them. Noise was estimated by fitting the distributions of the differences between the 
replicate dataset’s IFs. The differences were found to follow a roughly normal distribution with means near 0 
and standard deviations between 8 and 11. Thus, to add noise to our “simulated” replicates, we sampled from 
a normal distribution with mean 0 and standard deviation of 10. The noise matrix was then added to the real 
Hi-C data to produce the simulated replicates. This created a total of eight semi-simulated replicate datasets, 
suitable for the 4x4 group comparison. 

A pre-specified number of ground truth differences were added in randomly to the chromatin interaction 
matrices. The randomly selected interacting pairs had their IFs set to the mean of all samples, and then 
Gaussian noise sampled from a 𝑁𝑁(0,𝜎𝜎) distribution was added to the IFs. 𝜎𝜎 is defined by fitting a linear 
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regression between average IF and standard deviation of IFs. Finally, the IFs for one of the experimental 
conditions were multiplied by a pre-specified fold change. This method produces an average fold change 
difference between the conditions while still preserving some variation in the IFs from different samples. 

To illustrate the benefits of replicated Hi-C data, two parameters of comparative analysis were tested - 1) the 
number of replicates, and 2) the fold change. Additionally, we investigated the effect of the resolution of Hi-C 
data (finer resolution is expected to have a lower dynamic range and the higher proportion of zero IFs). We 
also compared the performance of multiHiCcompare with the original HiCcompare method (Stansfield et al. 
2018). Using the ground truth differences as a reference, we performed an ROC analysis as well as assessed 
other standard performance classifiers. 

4.2.7 Comparison with FIND 

To compare the performance of multiHiCcompare with that of FIND, we used FIND’s generateSimulation() 
simulation function to generate datasets with varying numbers of replicates for two conditions. A 300x300 Hi-C 
contact map with a 0.002 probability of differential interactions at fold changes of 3, 5, and 10 were generated 
for each replicate. Differential chromatin interactions detected by FIND and multiHiCcompare were compared 
against the ground truth, and the ROC analysis and standard performance classifiers were assessed. 

4.2.8 Comparison with diffHic 

To compare the performance of multiHiCcompare with that of diffHic, we performed an analysis of the Hi-C 
data used in the diffHic paper (Lun and Smyth 2015b). The data was from human prostate epithelial cells 
RWPE1 over-expressing the ERG protein or GFP protein, generated in replicates (Rickman et al. 2012b) 
(Appendix 5 Table S1). The sequencing data were processed into BAM files using HiCUP (Wingett et al. 2015) 
and then converted to contact maps using juicer tools (Durand et al. 2016b). The contact maps for the Hi-C 
libraries were then inputted into multiHiCcompare. The data were jointly normalized with cyclic loess, and the 
exact test was used to detect differences between the two conditions. The results of the multiHiCcompare 
analysis were then compared with those from the diffHic analysis. 

4.2.9 Comparison of auxin-treated vs. untreated Hi-C datasets 

As a case example of multiHiCcompare, we performed a differential analysis of Hi-C data from (Rao et al. 
2017). The data from HCT-116 colon carcinoma cell line had 7 samples from 2 biological sources for the 
untreated condition and 7 samples from 2 biological sources for the auxin treatment group (Appendix 5 Table 
S1). We jointly normalized all replicates using multiHiCcompare. We then input the data into the GLM 
framework to detect differences between the two conditions while controlling for the biological source. The 
regions that were detected as differentially interacting were assessed for enrichment in HCT-116-specific 
transcription factor binding sites (Appendix 5 Table S3). 

4.2.10 Analysis of CTCF depleted cells 

As an additional example of the functionality of multiHiCcompare, we performed a differential analysis of Hi-C 
data from (Jessica Zuin 2014) at 40KB resolution. The experiment was performed on HEK293 cells which had 
CTCF siRNA knockdowns compared to control cells. Two control samples and two CTCF knockdown samples 
(Appendix 5 Table S1) were normalized and compared using multiHiCcompare. The regions that were 
detected as differentially interacting were assessed for enrichment in HEK293 specific transcription factor 
binding sites (Appendix 5 Table S5). 

4.2.11 Software availability 

multiHiCcompare is freely available as an R package on Bioconductor at 
https://bioconductor.org/packages/multiHiCcompare and Github at 
https://github.com/dozmorovlab/multHiCcompare. The package includes a vignette and test data along with 
documentation for all functions. multiHiCcompare is released under the MIT open source software license. 

https://bioconductor.org/packages/multiHiCcompare
https://github.com/dozmorovlab/multHiCcompare
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4.2.12 Data Access 

For our benchmarking of multiHiCcompare, we used 14 samples from HCT-116 human colorectal carcinoma 
cell line (Rao et al. 2017). For the comparison with diffHic, we used data from RWPE1 prostate cancer 
epithelial cell lines over-expressing the ERG protein or GFP protein (Rickman et al. 2012b). For the enrichment 
analysis of differentially interacting regions in HCT-116 and HEK293 cells, we used ChIP-seq transcription 
factor binding sites from CistromeDB (Mei et al. 2017). All data sources are presented in Appendix 5 Tables 
S1, S3, and S5. 

4.3 Results 

4.3.1 multiHiCcompare method outline 

multiHiCcompare is an R package for the joint normalization and detection of chromatin interaction 
differences in multiple Hi-C datasets. A basic multiHiCcompare analysis will start with pre-processed Hi-C 
data from two or more experimental conditions for which each condition has one or more samples (technical or 
biological replicates). The whole-genome Hi-C data should be provided as a single file in the form of plain text 
four column sparse upper triangular matrices. The data is then jointly normalized using either our cyclic loess 
or fastlo methods. Finally, the experimental conditions can be compared using either an exact test or a 
generalized linear model (GLM) framework, depending on the complexity of the experimental design. The 
flowchart in Figure 4.1 shows a typical multiHiCcompare workflow. 
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Figure 4.1. Flowchart for a multiHiCcompare analysis. Pre-processed Hi-C data is read in and then normalized 
using the cyclic loess (or fastlo) methods. Then, “progressive pooling” of the off-diagonal (distance-centric) IFs 
into a matrix format is performed for input into either an exact test or GLM. Finally, the results of the 
comparison are shown on a composite MD plot indicating where the differences occurred. 

4.3.2 Replicates of Hi-C data improve the power of detection of differential chromatin interactions 

The performance of multiHiCcompare was quantified by using varying numbers of replicates per condition 
with added true differences at varying fold changes (see Methods). multiHiCcompare was able to detect the 
majority of the introduced differences with relatively low numbers of false positives, and the power of detecting 
differential interactions increased dramatically as the number of replicates in each experimental condition and 
the fold change increased (Figure 4.2). These results emphasize the utility of the GLM for differential chromatin 
interaction analysis. 
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The performance of multiHiCcompare was also tested against the original HiCcompare, which is designed to 
compare two datasets. We found that both methods performed well in detecting the added differences; 
however, HiCcompare had a larger area under the ROC curve in cases with one replicate per experimental 
condition (Figure 4.2). This is likely due to the limitations in calculating the dispersion factor for the negative 
binomial model used in multiHiCcompare when no replicates are available. Therefore, for 1x1 dataset 
comparison, we recommend using the original HiCcompare method, while when multiple replicates are 
available multiHiCcompare is more powerful at detecting true differences. 

 

Figure 4.2. ROC analysis of the performance of multiHiCcompare and HiCcompare over various fold 
changes for introduced differences. The ROC curves demonstrate the increase in power in detecting 
differential chromosome interactions as the number of replicates per experimental condition increases from 1 
to 4 compared with the performance of HiCcompare at 2, 4, 6-fold changes, panels A, B, C, respectively. 

4.3.3 multiHiCcompare outperforms FIND 

To compare the performance of multiHiCcompare with FIND, a recently published method for differential 
chromatin interaction detection (Djekidel et al. 2018b), we generated simulated Hi-C matrices with true 
differences at 2, 4, and 6-fold changes. To test the effect of the number of replicates for each of these fold 
changes, we performed 2x2, 3x3, and 4x4 analyses. We found that over the range of fold changes, 
multiHiCcompare detected more true positives with less false positives than FIND (Appendix 5 Table S2) and 
showed a larger area under the ROC curve performance (Appendix 5 Figure S3). The Matthews Correlation 
Coefficient (MCC) for multiHiCcompare was also higher than that of FIND for the majority of tested examples 
(Figure 4.3). At the higher fold changes tested, multiHiCcompare was able to detect nearly two times the 
amount of true differences compared to FIND (Appendix 5 Table S2). These results demonstrate that 
multiHiCcompare outperforms FIND in the detection of differential chromatin interactions at different fold 
changes and different numbers of replicates. 
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Figure 4.3. Comparison of Matthews Correlation Coefficient (MCC) between multiHiCcompare and FIND over 
various fold changes and 2x2, 3x3, and 4x4 numbers of replicates per condition, panels A, B, C, respectively. 
𝑀𝑀𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇×𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)
. 

4.3.4 multiHiCcompare identifies similar chromatin interaction differences detected by diffHic 

We compared the performance of multiHiCcompare with the diffHic method (Lun and Smyth 2015b). We 
used the Hi-C data from human prostate epithelial cells (RWPE1 cells) overexpressing the ERG protein or a 
GFP control, analyzed in the diffHic paper (Rickman et al. 2012b). multiHiCcompare found 1,752 
differences (FDR < 0.05) between the ERG and GFP conditions, more than was found in the original 
HiCcompare analysis (Stansfield et al. 2018), yet less than the 5,737 differences (FDR < 0.05) detected by 
diffHic. As shown in Figure 4.2, multiHiCcompare might have gained some additional power over 
HiCcompare by making use of the two Hi-C libraries (the multiHiCcompare analysis was a 2x2 analysis, 
compared to the 1x1 analysis of HiCcompare). However, both HiCcompare and multiHiCcompare seem to be 
more conservative than diffHic. The overlap between the multiHiCcompare-detected and diffHic-detected 
differences was significant (1,254 overlapping regions, Fisher’s exact test p-value < 2.2𝑥𝑥10−16). This overlap is 
expected as both methods utilize the same GLM framework, while multiHiCcompare applies it with respect to 
the distance between interacting regions. Additionally, multiHiCcompare was able to detect all but one 
differential interactions validated by Fluorescence In Situ Hybridization (FISH) (Table 4.1), further confirming 
the power of multiHiCcompare in detecting biologically relevant chromatin interaction differences. 

Table 4.1. Differential interaction statistics from multiHiCcompare and diffHic for chromatin interaction 
differences experimentally validated by FISH. “Interaction” - the genes interacting identified by FISH, “logFC” - 
the log2 fold change of interaction frequency difference between conditions, “logCPM” - the between-
conditions average log counts per million of the IFs, for multiHiCcompare and diffHic results, respectively. 

 multiHiCcompare    diffHic    
Interaction logFC logCPM p-value FDR logFC logCPM p-values FDR 
FYN - MOXD1 -2.113 10.093 <0.001 0.007 0.733 1.134 0.002 0.042 
HEY2 - MOXD1 1.232 11.182 <0.001 <0.001 0.67 2.625 <0.001 0.002 
SERPINB9 - 
MOXD1 

-2.227 9.621 0.008 0.356 -1.27 -0.151 0.001 0.016 

FYN - HEY2 -2.113 10.093 <0.001 0.007 -1.545 0.621 <0.001 <0.001 

4.3.5 multiHiCcompare is robust to the resolution of Hi-C data 

Typically, Hi-C data at higher resolution (smaller size of chromatin regions tested for interactions) have a lower 
dynamic range and a higher proportion of zero IFs (sparsity). To examine the effect of resolution on the 
performance of multiHiCcompare, we calculated the Matthew’s Correlation Coefficient (MCC) at resolutions of 
50KB, 10KB, and 5KB (Appendix 5 Figure S5). multiHiCcompare encountered some difficulties at detecting 
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the added in differences at 2-fold changes in the very high-resolution data. However, at fold changes of 4 or 
greater, multiHiCcompare performed well at all resolutions. Evaluation of other performance metrics 
confirmed this conclusion (Appendix 5 Table S4). These results indicate that sparsity of the Hi-C data might 
hinder the detection of small differences at high-resolution, but overall multiHiCcompare appears to perform 
well even in sparse conditions. 

4.3.6 multiHiCcompare detects regions associated with loss of chromatin loops in auxin-treated cells 

We compared data from HCT-116 cells treated with auxin to those not treated (Rao et al. 2017). The auxin 
treatment is thought to eliminate chromatin loops, thus changing many chromatin interactions. The untreated 
group contained seven samples from biological replicates 1 and 2. The auxin-treated group contained seven 
samples from biological replicates 1 and 2 treated with auxin for 6 hours (Appendix 5 Table S1). All samples 
were jointly normalized, and differentially interacting chromatin regions were detected. The biological replicate 
number was entered as a covariate, and the main effect of auxin treatment was evaluated. This analysis was 
aimed at identifying regions associated with loss of chromatin loops. 

We found a total of 417,145 differentially interacting pairs between the normal cells and the auxin treatment 
(FDR < 0.05). The auxin treatment is known to destroy the RAD21 protein of the cohesin complex and thus 
degrade chromatin looping. Therefore, we hypothesized that the regions detected by multiHiCcompare as 
differentially interacting should be enriched with RAD21 binding sites, and their interaction frequency should be 
decreased in auxin-treated condition. To test the significant differentially interacting regions for the enrichment 
of transcription factor binding sites, we performed permutation tests where a random set of genomic regions of 
the same size as the significant regions were sampled and compared for enrichment against the significant 
regions. Analysis of the most significant differentially interacting regions (FDR < 10−15) showed that they were 
significantly enriched for RAD21 binding sites (permutation p-value < 0.001, Appendix 5 Table S3). 
Additionally, the regions enriched for RAD21 mostly exhibited lower IF values compared to the normal cells. 
Notably, we detected SMC1A, another structural maintenance protein of the cohesin complex reported to be 
affected by the auxin treatment (Rao et al. 2017), to be enriched in these regions (permutation p-value = 0.04). 
Consistent with the original findings, SMC1A enriched regions also exhibited lower IF values compared to the 
normal cells (Appendix 5 Table S3). Further, consistent with the original findings, we found that HCT-116 cell-
specific CTCF sites were not enriched in the detected regions. These results indicate that multiHiCcompare is 
capable of detecting biologically relevant differences in chromatin conformation between experimental 
conditions. 

In addition to the expected decrease in RAD21 and SMC1A binding sites, and no change in CTCF binding, we 
tested whether regions differentially interacting in auxin-treated condition are enriched in other HCT-116-
specific transcription factors (Appendix 5 Table S3). The rationale here was to detect other transcription factors 
that may be responsible for chromatin loop formation. Notably, we detected strong enrichment in TCF4 binding 
sites (Table 4.2), a transcription factor previously linked to SMC3, a known component of the cohesin complex 
(Ghiselli et al. 2003). Furthermore, we observed enrichment of the heterochromatin protein HP1𝛾𝛾 (also known 
as CBX3) and other proteins responsible for chromatin structure (Table 4.2). Expectedly, chromatin interaction 
frequency was decreased in these regions, confirming that auxin treatment leads to loss of chromatin loops 
formed by the cohesin complex (Rao et al. 2017). These findings confirm that multiHiCcompare allows for 
deeper insights into the biology of differential chromatin interactions. 
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Table 4.2. Transcription factors (TFs) significantly (p-value <0.05) enriched in the differentially interacting 
regions in HCT-116 auxin-treated cells. The Stouffer-Liptak method of combining p-values (Stouffer 1949) was 
used to obtain a summary p-value for each TF, as many TFs were represented by multiple datasets. “Number 
of experiments” - the number of ChIP-seq tracks supporting the enrichment, “Mean logFC” - the between-
conditions average log fold change of regions overlapping with a transcription factor, “Stouffer-Liptak p-value” - 
enrichment p-value summarized using Stouffer-Liptak method (sorted by). 

Transcription Factor Number of experiments Mean logFC Stouffer-Liptak p-value 
TCF4 8 -1.07 1.38E-07 
CBX3 7 -0.60 2.95E-04 
EP300 1 -0.89 9.99E-04 
FOSL1 1 -0.89 9.99E-04 
CEBPB 1 -0.87 9.99E-04 
JUND 1 -0.87 9.99E-04 

RAD21 1 -0.87 9.99E-04 
KMT2B 1 -0.84 9.99E-04 

SRF 1 -0.83 9.99E-04 
TCF7L2 1 -0.83 9.99E-04 

MAX 1 -0.82 9.99E-04 
TEAD4 1 -0.82 9.99E-04 
USF1 1 -0.79 2.00E-03 
ATF3 1 -0.79 3.00E-03 

ZBTB33 1 -0.58 4.00E-03 
ZC3H8 1 -0.73 6.99E-03 

YY1 1 -0.78 1.10E-02 
ELF1 1 -0.76 1.10E-02 
EGR1 1 -0.75 2.10E-02 

SMC1A 1 -0.85 4.40E-02 
SP1 5 -1.13 4.41E-02 

AFF4 7 -0.19 4.87E-02 
MECP2 2 -0.85 4.92E-02 

We further hypothesized that the differentially expressed (DE) genes detected in (Rao et al. 2017) would be 
enriched within the regions detected by multiHiCcompare as differentially interacting. The list of DE genes 
was obtained from GEO (GSE106886) and matched with the corresponding regions by genomic coordinates. 
The DE genes (FDR < 0.05) were checked for enrichment within the most significant differentially interacting 
regions (FDR < 10−15). We found that these genes were significantly enriched within the regions detected by 
multiHiCcompare (permutation p-value = 3.9 ∗ 10−4). In summary, these results demonstrate that 
multiHiCcompare is a powerful tool to detect biologically relevant chromatin interaction differences. 

4.3.7 multiHiCcompare detects regions associated with siRNA knockdown of CTCF 

Similar to the analysis performed on the auxin-treated cells, we used multiHiCcompare to analyze an 
experiment of CTCF siRNA knockdown in HEK293 cells (Jessica Zuin 2014). CTCF is thought to play a role in 
shaping the 3D organization of the genome, especially in relation to topologically associated domains (TADs) 
(Phillips and Corces 2009; Vietri Rudan et al. 2015), and its knockout led to the reduction of intra-domain 
interactions with the concurrent increase in inter-domain interactions. Thus, it was expected that knockdown of 
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CTCF should lead to changes that can be detected by multiHiCcompare. We detected a total of 640 (FDR < 
0.05) differences between the control and CTCF siRNA knockdown cells. 448 (70%) of the differentially 
interacting regions had positive fold changes (mean log fold-change 2.8), potentially reflecting the increased 
inter-domain interactions. 

Knockdown of CTCF is expected to “free” its binding sites from the insulator effect of CTCF and allow the 
associated chromatin regions to interact. Indeed, the original study found that the promoters of genes 
differentially expressed after CTCF knockdown were enriched in CTCF binding sites (Jessica Zuin 2014). 
Analysis of the significant differentially interacting regions detected by multiHiCcompare showed that they 
were significantly enriched for CTCF binding sites (permutation p-value < 0.001, Table 4.3, Appendix 5 Table 
S5). Members of cohesin complex were also found to be enriched following CTCF knockdown (Jessica Zuin 
2014); consequently, SMC3 member of cohesin complex was also found to be enriched in the differential 
regions (permutation p-value < 0.001, Table 3). These findings mirror the original results (Jessica Zuin 2014), 
further confirming that multiHiCcompare can detect known biological differences in Hi-C data. 

We also detected strong enrichment of POLR2A binding sites in the differential regions identified by 
multiHiCcompare, not reported in the original study. Notably, upregulation of Polymerase genes, including 
POLR2A, following knockdown of TFII-I, an interacting partner of CTCF, has been reported (Marques M 2015). 
Their results suggest that the increase in inter-domain interactions followed by CTCF depletion is likely 
accompanied by an increase in transcription driven by RNA Polymerase II. In summary, these results suggest 
that multiHiCcompare can detect known and new findings in the comparative analysis of Hi-C data. 

Table 4.3. Transcription factors significantly (p-value <0.05) enriched in the differentially interacting regions in 
HEK293 CTCF knockdown cells.  

Transcription Factor Number of experiments Mean logFC Stouffer-Liptak p-value 
POLR2A 32 2.5403 6.87E-68 
FOXM1 12 2.6438 1.38E-26 
XRN2 9 2.6961 1.77E-20 

TRIM28 8 3.1365 3.34E-18 
MYC 9 3.674 1.07E-12 
CDK9 3 2.2834 4.33E-08 
CTCF 3 2.7039 4.33E-08 
EP300 3 2.913 4.33E-08 
TET3 3 2.7027 4.33E-08 
BRD4 5 3.2043 6.64E-08 
ELK4 3 1.0881 8.45E-08 
WDR5 3 3.6028 8.45E-08 
BAHD1 3 3.1755 6.19E-06 

CREBBP 2 2.7888 6.19E-06 
JMJD6 2 2.4619 6.19E-06 
NCOR1 2 3.2093 6.19E-06 
BRD1 4 3.2242 1.07E-05 

C17orf96 2 4.3094 1.16E-04 
RYBP 2 0.5388 5.42E-04 

FANCD2 2 3.3978 7.63E-04 
EMX1 2 3.5324 7.82E-04 
BRD2 1 2.7475 9.99E-04 
BRD3 1 1.4877 9.99E-04 
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CBX4 1 1.1606 9.99E-04 
DCP1A 1 2.7263 9.99E-04 
DDX21 1 2.7353 9.99E-04 
DPPA2 1 3.1886 9.99E-04 
HCFC1 1 2.5906 9.99E-04 
PHF8 1 2.3149 9.99E-04 
SMC3 1 2.7747 9.99E-04 
TBL1X 1 2.2675 9.99E-04 
TET2 1 3.0843 9.99E-04 
TTF2 1 2.6618 9.99E-04 

ZNF143 1 3.3148 9.99E-04 
ZNF263 1 2.9817 9.99E-04 
RNF2 2 -0.374 1.15E-03 
BMI1 2 3.2265 4.97E-03 

C10orf12 2 4.3306 2.50E-02 
PCGF6 1 5.5337 3.10E-02 
AFF4 1 0.9309 3.50E-02 

4.3.8 Runtime evaluation 

In our testing, both cyclic loess and fastlo normalization methods perform reasonably equally in regards to 
difference detection (Appendix 5 Figure S4); however, fastlo offers quicker computational speeds (Appendix 5 
Figure S6A). We provide cyclic loess method as a conceptually straightforward and illustrative algorithm of the 
joint normalization of multiple datasets and recommend fastlo as the default joint normalization method. 

When compared to FIND, multiHiCcompare showed a much faster runtime. We found that FIND was 
extremely slow on any Hi-C matrices that were relatively complete (low proportion of zeros). For example, at 
resolutions of 20KB - 50KB FIND runtimes were more than 72 hours, while multiHiCcompare can perform a 
comparable analysis in under 10 minutes (Appendix 5 Figure S6A). Thus, multiHiCcompare represents a fast 
and scalable method for joint normalization and detection of chromatin interaction differences. 

The memory footprint expectedly increased with the increased resolution of the data and the number of 
replicates (Appendix 5 Figure S6B). However, the memory footprint depends on the sparsity of the data; 
hence, the high-resolution data may take less memory due to the increased sparsity. In summary, the whole-
genome Hi-C data analysis can be performed on a desktop computer. 

4.4 Discussion 

As Hi-C datasets begin to be generated in multiple replicates, methods for the joint analysis of them are 
becoming crucial. Our methods address this need by providing a software implementation for the joint 
normalization of multiple datasets and the detection of differential chromatin interactions. As with any 
sequencing technologies, Hi-C data are unpredictably affected by technological biases, hindering the detection 
of chromatin interaction differences. While methods for normalization of individual Hi-C datasets have been 
developed (Lieberman-Aiden et al. 2009b; Imakaev et al. 2012b; Yaffe and Tanay 2011b; Knight and Ruiz 
2012b), methods for joint normalization and comparative analysis of Hi-C data remain immature. We present 
the first method for jointly normalizing multiple Hi-C datasets by extending our HiCcompare loess regression-
based method (Stansfield et al. 2018) and adapting the GLM-based difference detection method (McCarthy et 
al. 2012; Robinson et al. 2010) for the comparative analysis of multiple Hi-C datasets. multiHiCcompare can 
detect a priori known changes in replicate data with a low rate of false positives, and its power only increases 
with the increasing number of Hi-C replicates. We demonstrate that multiHiCcompare can detect biologically 
relevant regions associated with loss of chromatin loops in auxin-treated cells (Rao et al. 2017) and CTCF 
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knockdown cells (Jessica Zuin 2014) . We believe that if replicates of Hi-C data are available, they should be 
used in multiHiCcompare to gain the most power in detecting chromatin interaction differences. 

The diffHic method (Lun and Smyth 2015b) pioneered the use of the negative binomial distribution and the 
GLM framework, originally implemented in the edgeR package (Robinson et al. 2010), for the comparative 
analysis of two Hi-C datasets. Other tools, such as HiBrowse (Paulsen et al. 2014), diffloop (Lareau and 
Aryee 2018), also utilized this framework. We further confirm the suitability of the negative binomial distribution 
for Hi-C data modeling (Appendix 5 Figure S2) and extend the edgeR functionality with the distance-centric 
view of Hi-C data. Our previous results (Stansfield et al. 2018) and the current implementation demonstrate 
that the distance-centric analysis of Hi-C data is a powerful approach to detect true chromatin interaction 
differences. 

Interestingly, when comparing multiHiCcompare against FIND, multiHiCcompare performed much better 
than FIND even when using FIND’s simulation function. This may be because FIND excels at detecting large 
fold changes (e.g., 10-fold or 20-fold changes) (Djekidel et al. 2018b), while multiHiCcompare performs well 
at fold changes as small as 2. Thus, besides being much faster than FIND (see “Runtime evaluation” results), 
multiHiCcompare is better suited for the detection of chromatin interaction differences across the whole range 
of fold changes. 

In comparison with diffHic, multiHiCcompare showed similar performance in our analysis of the RWPE1 
data. Although multiHiCcompare detected a smaller number of differences than diffHic, there was a 
significant overlap in the detected lists of regions. This is expected as both multiHiCcompare and diffHic 
use the GLM framework for difference detection but differ in the normalization approach and distance-based 
considerations implemented in multiHiCcompare. We feel that the distance-centric approach for joint 
normalization and difference detection, as implemented in multiHiCcompare, is better suited for the analysis 
of multiple Hi-C datasets. 

In summary, the multiHiCcompare R package provides user-friendly methods for the joint normalization and 
comparative analysis of multiple Hi-C datasets. Our methods have been shown to perform similarly or better 
than other available methods. To date, multiHiCcompare is the only method for the joint normalization of 
multiple Hi-C datasets, which has been shown to outperform the commonly used methods for normalizing 
individual datasets (Stansfield et al. 2018). Finally, since multiHiCcompare is designed as a Bioconductor R 
package, it can be easily installed and used on all operating systems. 

Chapter 5: Discussion 

5.1 Conclusions 

In this dissertation, we have outlined novel approaches for the normalization and comparison of Hi-C data. 
Additionally, our analysis of human brain data has provided some novel insights into the links between 3D 
chromatin interactions, gene expression, regulation, and tissue differentiation. In Chapter 2, we introduce a 
novel method for the normalization and comparison of two Hi-C datasets. HiCcompare represented one of the 
first methods for specific joint normalization and direct statistical comparison of Hi-C data between 
experimental conditions. HiCcompare is, however, limited in that it can only compare two Hi-C datasets at a 
time even if larger sample sizes are available. The R package, now published on Bioconductor, provides the 
scientific community a user-friendly method for the comparison of two Hi-C datasets. 

In Chapter 3, we performed a comparative analysis on Hi-C data from two regions of the human brain. This 
analysis provides some novel insights into how differences in the 3D structure of the genome may influence 
gene expression and tissue differentiation in humans. We linked genes located within the highly differentially 
interacting regions with pathways relevant to brain function. Several of these pathways also overlapped with 
pathways enriched by the differential genes from the RNA-seq analysis. Additionally, the differential regions 
were found to be enriched in the amygdala TADs indicating that a change in TAD boundaries may be 
associated with tissue differentiation. 
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Chapter 4 presents the extension and generalization of our methods developed in Chapter 2 for working with 
Hi-C experiments that have larger sample sizes and other covariates. multiHiCcompare represents a full 
statistical framework for which to jointly normalize and compare complex Hi-C experiments. multiHiCcompare 
has also been published as a Bioconductor R package thus providing the community with an intuitive software 
package for analyzing complex Hi-C experiments. Additionally, we have written an R tutorial paper for Current 
Protocols in Bioinformatics (John C. Stansfield 2019) which provides detailed step-by-step documentation for 
how to use multiHiCcompare in an example analysis along with several downstream interpretation steps. 

The methods developed in this dissertation provide a much-needed tool set for researchers working with Hi-C 
data. There are few available methods for the joint normalization and comparison of Hi-C data. Of the few 
currently available tools for comparing Hi-C data, many of them suffer from poor documentation and long run 
times. The tools presented here have been extensively documented and made with user-friendliness in mind. 
We hope that our methods developed here will become widely used in the study of chromatin conformation. 

5.2 Future work 

It is currently unknown how the properties of Hi-C data, e.g., resolution, distance, sparsity influence the power 
of a comparative analysis of the 3D structure of the genome. To design more effective experiments using Hi-C 
data, it will be essential to determine how these factors influence the power of a comparative analysis. A goal 
of future work should be to establish general guidelines for comparative Hi-C experiments such as the sample 
sizes and levels of sparsity required to achieve 80% power. 

In this future work, the sparsity of many Hi-C datasets should be quantified at different resolutions. The rate of 
false positives will also need to be calculated in technical and biological replicates. This will give a baseline 
level of false positives to be expected when analyzing data. Analysis of technical and biological replicates can 
also further help understand how the variance of Hi-C data differs between different biological samples 
compared to technical replicates. 

Finally, power will need to be estimated over varying experimental conditions. This can be achieved using 
technical and biological replicate data and introducing true differences at specified fold changes similar to the 
methods described in Chapters 2 and 4. Performing these comparisons over various sample sizes will allow us 
to estimate the required sample size to reach 80% power. We will also be able to estimate the power of an 
experiment given a predetermined sample size, sparsity, fold change of expected differences, etc. 
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Appendix 

Appendix 1 Supplementary materials for Chapter 2: Aim 1. This PDF file contains supplemental methods 
(Section 1), a computation performance evaluation of HiCcompare (Section 3), additional validation of methods 
used in HiCcompare, and extended comparisons with diffHic and FIND (Section 6 & 7). 

Appendix 2. Table of gene enrichment results for ESC vs neuron. This excel file contains a worksheet for the 
GO MF, GO BP, and KEGG pathway analysis results for the gene enrichment analysis between the ESC and 
neuron discussed in the results section. 

Appendix 3. Table of gene enrichment results for ESC vs NPC. This excel file contains a worksheet for the 
GO MF, GO BP, and KEGG pathway analysis results for the gene enrichment analysis between the ESC and 
NPC discussed the in the results section. 

Appendix 4. Table of gene enrichment results for NPC vs Neuron. This excel file contains a worksheet for the 
GO MF results for the gene enrichment analysis between the NPC and Neuron. The GO BP and KEGG 
pathway analysis did not return any significant results and thus are not included here. 

Appendix 5. Supplemental figures and tables for results of multiHiCcompare. 
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