
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2019 

ENGINEERING THE ALVEOLAR GAS EXCHANGE BARRIER WITH ENGINEERING THE ALVEOLAR GAS EXCHANGE BARRIER WITH 

EXTRACELLULAR MATRIX COATINGS FOR BIOENGINEERED EXTRACELLULAR MATRIX COATINGS FOR BIOENGINEERED 

LUNGS LUNGS 

Bethany M. Young 
VCU 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Biomaterials Commons, and the Molecular, Cellular, and Tissue Engineering Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5973 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5973&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/233?utm_source=scholarscompass.vcu.edu%2Fetd%2F5973&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/236?utm_source=scholarscompass.vcu.edu%2Fetd%2F5973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5973?utm_source=scholarscompass.vcu.edu%2Fetd%2F5973&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


1 
 

 

 

 

 

 

 

 

ENGINEERING THE ALVEOLAR GAS EXCHANGE BARRIER WITH EXTRACELLULAR 

MATRIX COATINGS FOR BIOENGINEERED LUNGS 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

 

By 

 

Bethany Marie Young 

B.S. in Biology, University of Richmond, 2014 

M.S. in Biomedical Engineering, Virginia Commonwealth University, 2016 

 

 

Director: Rebecca L. Heise, Ph.D.  

Associate Professor, Department of Biomedical Engineering 

 

 

 

 

  



2 
 

ACKNOWLEDGMENTS 

I would first like to thank Dr. Rebecca Heise for all your guidance and encouragement. 

You were one of my biggest advocates, and I am grateful that you never let me give up on research 

even during the hardest of times. My doctorate education would never have happened if you hadn’t 

shown me my full potential.  

I would also like to extend my appreciation to Dr. Daniel Weiss, Dr. Daniel Conway, Dr. 

Jenifer Puetzer, and Dr. MaryPeace McRae for being a part of my committee and giving valuable 

feedback to this work. Each member of my committee was an active mentor throughout my 

graduate research experience, whether it be with grant sponsorship and reviewing, figure legend 

format debates, antibody donations, career advice, or troubleshooting ECIS equipment. I was lucky 

to have had this committee to shape my doctoral experience. 

To the other members of the Heise Laboratory, Brittaney Ritchie, Keerthana Shankar, Mike 

Valentine, Patrick Link, Franck Kamaga Gninzeko, Sahil Chindal, Krista Powell, Cindy Tho, and 

Gabrielle Cotman, I am forever grateful for all your support and friendship over the years.  

Microscopy was performed at the VCU Microscopy Facility, supported, in part, by funding 

from NIH-NCI Cancer Center Support Grant P30 CA016059, and the VCU Nanomaterials Core 

Characterization Facility. Histology services in support of the research project were generated by 

the Virginia Commonwealth University Cancer Mouse Models Core Laboratory, supported, in 

part, with funding from NIH-NCI Cancer Center Support Grant P30 CA016059. Funding for this 

research was provided in part by NSF CAREER CMMI 135162 and NIH RO1AG041823.  

 Lastly, but most importantly, I would like to express my sincere appreciation to my family 

and boyfriend Benjamin Fowler, who have both been my rock throughout graduate school. I am 



3 
 

so lucky to have grown up in such a loving household that showed me the importance of education. 

Ben, I am incredibly grateful that you have been endlessly supportive and made sure that I have 

smiled every day that I have known you. I can’t wait to see what the future holds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 
 

TABLE OF CONTENTS 

COVER PAGE ………………..………………….....………..……….......................................... 1 

ACKNOWLEDGEMENTS……………………………………………………………………….2 

TABLE OF CONTENTS ………..……………………………..……..……….............................. 4 

LIST OF FIGURES……………………………………………………………………………..…6 

LIST OF TABLES……………………………………………………………………………...…9 

GLOSSARY ……..………………………………………...…..…..…..…..…............................ 10 

ABSTRACT…...………………………..………..…..…..…..…..…..…..…..…..……............... 11 

CHAPTER 1: INTRODUCTION ...………………………………..…...…...….......................... 13 

1.1 Rationale……………..………..……………………….............................................. 13 

 1.2 Objectives……….………..…………………………………......................................15 

CHAPTER 2: LITERATURE REVIEW ...………………………………..……..........................19 

2.1 Role of ECM in Lung Bioengineering.……….……………...................................... 19  

2.2 3D ECM Culture Systems……………………………………………………………25 

2.3 Lung Bioengineering.....…..…..…..………………………..….……..…..…….……29 

2.4 Bioreactors and Culture Methods of Lung Bioengineering…………………………..31 

2.5 Alveolar Epithelial Junction………………………………………………………….33 

CHAPTER 3: dECM CHARACTERIZATION ..…...….............................................................. 39 

Rationale …………..……………………………….…………....................................... 39 

Materials and Methods .………………...………………………..…..…..…..…….…… 42 

Results ………………………………………..……………..…..…..…..…..………….. 45 

Discussion ………………………………………..…………..…..…..……..………….. 53 

CHAPTER 4: IMPROVING ALVEOLAR JUNCTIONS ON dECM……………………..……58 

Rationale …………..…………………………………….................................................58 



5 
 

Materials and Methods .………………...………………………..…..…..…..…….…… 61 

Results …………………………………………..…………..…..…..…..…..………….. 66 

Discussion ………………………………………..…………..…..…..……..………….. 87 

CHAPTER 5: ROTATIONAL BIOREACTORS FOR LUNG RECELLULARIZATION …… 92 

Rationale …………..………………………….…………............................................... 92 

Materials and Methods .………………...………………………..…..…..……..………. 95 

Results …………………………………………..…………..…..…..…..…..……….…. 99 

Discussion ………………………………………..…………..…..…..……………….. 105 

CHAPTER 6: REPLENISHING MATRIX COMPONENTS IN dECM: PILOT STUDIES.....107 

Rationale …………..……………………………….…………......................................107 

Materials and Methods .………………...………………………..…..…..…..…….…...109 

Results …………………………………………..…………………..…..…..……..….. 113 

Discussion ………………………………………..…………..…..…..……………….. 120 

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS……...……………..……..…122 

APPENDIX A ………………………………………………………………………………….126 

REFERENCES ….….…………………………………….........................................................141 

CURRICULUM VITA ……………………..………………………….................................... 153 

  



6 
 

LIST OF FIGURES 

Figure 1.1. Overview of dECM characterization, processing, and utilization for engineering the 

gas exchange barrier within recellularized lungs………………………………….…………….. 15 

Figure 2.1. Lung ECM structure and changes in lung pathologies…………………….….…….. 20 

Figure 2.2. Collagen fibrillogenesis from cell-secreted procollagen…………………...…...…… 22 

Figure 2.3. Basement membrane assembly largely organized by laminin interaction with integrins 

and other BM proteins to form a dense mesh…………………….……………………………… 24 

Figure 2.4. Alteration in ECM structure and composition with lung decellularization…..……….28 

Figure 2.5. Traditional bioreactor designs for whole lung culture…………………………….… 33 

Figure 2.6. Epithelial cell junction formation……………………………………………….…... 35 

Figure 2.7. Hypothesized regulation of AJ and TJ structures through the ECM-mediated activation 

of the Epac/Rap1 pathway ……………………………...………………………..……………... 38 

Figure 3.1. dECM hydrogel and coating protein characterization. …………..…………………...46 

Figure 3.2. Duration of pepsin digestion alters ECM branching and resulting mechanical 

properties………………………………………………………………………………………... 47 

Figure 3.3. Longer pepsin digestion causes ECM fragmentation……………………………..…..49 

Figure 3.4. Collagen helical disassembly and fibronectin fragmentation with increasing digestion 

time…………………………………………………………………………….………………... 50 

Figure 3.5. Laminin and fibronectin addition to dECM and detection of proteins…………..……52 

Figure 4.1. Attachment and proliferation of MLE12 cells with respect to ECM coating……...…..67 



7 
 

Figure 4.2. The effect of dECM composition on alveolar epithelial barrier formation………..… 68 

Figure 4.3. AJ protein localization with variations in ECM coatings……………………..………70 

Figure 4.4. TJ protein localization with variations in ECM coatings. ………………………...…..72 

Figure 4.5. AF-6 localization with variations in ECM coatings………………………………..…73 

Figure 4.6. Changes in junctional gene expression and ZO-1 localization with dECM coatings 

dictates alveolar epithelial junction regulation……………………………….…………………. 76 

Figure 4.7. BESC barrier function and Epac/Rap1 pathway expression……………..…………...78 

Figure 4.8. Epac inhibition and activation effects on MLE12 cell attachment……………….…. 79 

Figure 4.9. Both Epac activation and inhibition cause ECM-dependent barrier function 

changes………...…………………………………………………………………………………81 

Figure 4.10. Effect of Epac inhibition on junction protein and gene expression………………... 83 

Figure 4.11. Junction reorganization with Epac agonist……………………………….………... 85 

Figure 5.1. Rotational seeding unit design……………………………………………….…….. 100 

Figure 5.2. Perfusion bioreactor design for long-term culture………………..………………… 101 

Figure 5.3. Cell distribution and viability within statically or dynamically seeded lung scaffolds. 

…………………………………………………………………………………………………..103 

Figure 5.4. Histological analysis of cell attachment after static or dynamic seeding…………….104 

Figure 6.1. dECM coating deposition in decellularized rat lungs …………………………..…...113 

Figure 6.2. Picogreen dsDNA quantification of A549’s cultured in decellularized lungs…........ 114 



8 
 

Figure 6.3. MLE12 resazurin viability with dECM coatings…………………………...………. 116 

Figure 6.4. Picogreen dsDNA concentration within dECM-coated and non-coated lungs...…… 117 

Figure 6.5. Histological analysis of dECM coated recellularized lung after 5 days of 

perfusion/ventilation culture……………….…………………………………………………... 118 

Figure 6.6. Cell-junction gene expression and dextran permeability of dECM coated recellularized 

lungs…………………………………………………………………………………….......…. 119 

Figure 7.1. Alveolar-specific ECM increases barrier function…………………………………. 123 

Figure 7.2. Basal epithelial cell differentiation varies with ECM composition……………..….. 124 

 

 

 

 

  



9 
 

LIST OF TABLES 

Table 4.1. Primer sequences used in qPCR analysis ……………………………….…………… 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



10 
 

GLOSSARY 

Keywords 

Lung Recellularization, Epithelial Barrier, Extracellular Matrix, Laminin 

 

Abbreviations 

AJ   Adherens Junction  

TJ  Tight Junction  

JAM  Junctional Adhesion Molecule  

ZO  Zonula Occluden   

ECM  Extracellular Matrix  

dECM   Decellularized Extracellular Matrix 

ARDS  Acute Respiratory Distress Syndrome 

COPD   Chronic Obstructive Pulmonary Disease  

IPF   Idiopathic Pulmonary Fibrosis  

CF  Cystic Fibrosis 

TEER   Transepithelial Electrical Resistance 

ECIS   Electric Cell-Substrate Impedance Sensing 

AF-6  Afadin 

MSC  Mesenchymal Stem Cell 

BESC  Basal Epithelial Stem Cell 

H & E  Hematoxylin and Eosin 

BM  Basement membrane 

EMT  Epitheilial to mesenchymal transition 

 

 

  



11 
 

ABSTRACT 

 

ENGINEERING THE ALVEOLAR GAS EXCHANGE BARRIER WITH EXTRACELLULAR 

MATRIX COATINGS FOR BIOENGINEERED LUNGS 

By 

Bethany Marie Young 

B.S. in Biology, University of Richmond, 2014 

M.S. in Biomedical Engineering, Virginia Commonwealth University, 2016 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

Director: Rebecca L. Heise, Ph.D.  

Associate Professor, Department of Biomedical Engineering 

 

Lower respiratory diseases are currently the third leading cause of death worldwide. For 

many end-stage patients with these diseases, there is no cure and a shortage of donor organs 

available for transplant. A promising solution is to design regenerative scaffolds or complete 

bioengineered lungs, using decellularized lung tissues as a template for regeneration. Recent 

advances in the field have made significant strides towards developing a transplantable lung. 

However, the current technology has not produced a functional lung for in vivo transplant due to 

immature gas exchange barriers. The mechanisms driving alveolar barrier maturation and role that 

extracellular matrix (ECM) plays within the strengthening of each type of junction are not fully 

understood. This research has characterized and tailored a decellularized ECM (dECM) coating 

for the in vitro study of dECM component depletion and potential effects on cell barrier function, 

attachment, and survival. Adjustments to dECM digestion duration drastically changed the 

resulting structural and biochemical properties for each cellular microenvironment. Shorter 

digestion time resulted in a dense branching of the ECM architecture and biomimetic mechanical 

properties needed for epithelial culture. Also, through systematic supplementation of essential 
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basement membrane (BM) proteins to dECM, we have found that supplementation with laminin 

enhanced barrier strength by ZO-1 junction stabilization. This indicates that dECM can promote 

barrier formation but may have lost vital proteins that need to be replenished. Laminin-mediated 

barrier function was determined to be caused by the upregulation of the Epac/Rap1 pathway. This 

pathway has previously been implicated in lung endothelial barriers but not alveolar epithelial 

junction strengthening. Finally, to establish the translatability of these findings to whole lung 

recellularization, the dECM coating was used to pre-treat the airways of decellularized lungs for 

recellularization. Culture of MLE12 mouse epithelial cells into dECM-coated lungs increased cell 

survival and distribution. In combination with dECM coatings, rotational cell seeding improved 

cell dispersal and viability. Altogether, these techniques, devised to promote healthy alveolar 

barriers, are vital to enhancing current lung recellularization strategies and the treatment of many 

edema-associated pulmonary diseases.  
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CHAPTER 1: INTRODUCTION 

 

1.2 Rationale 

The lung is susceptible to many incurable diseases, such as chronic obstructive pulmonary 

disease (COPD), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), that combined have 

become the third leading cause of death in the United States and worldwide. For many patients 

with these end-stage diseases, the only option is lung transplantation. With a shortage of donor’s 

lungs, a promising alternative is recellularization of decellularized lungs. Decellularized lungs 

offer the complex native architecture of the lung with minimal immune response. Research to date 

has been able to create highly recellularized organs, but the current technology is not yet able to 

develop viable, long-lasting, functional tissue [1]–[3]. After implantation, bioengineered lungs 

often suffer from severe edema, indicative of loss of alveolar-capillary barrier integrity. By 

understanding how the extracellular matrix (ECM) that is left behind interacts with the alveolar 

epithelium, this technology can be modified to encourage the formation of a functional gas-

exchange barrier.  

Within decellularized ECM (dECM), many matrix proteins are preserved, including 

collagens, elastin, laminins, fibronectin, and glycosaminoglycans (GAG)s, but there are reports of 

up to a 50% loss of most of these components compared to native ECM [3]–[7]. We hypothesize 

that by identifying ECM components that are highly integral to the maturing gas exchange barrier 

and by increasing the concentration those components at the airway and alveolar surfaces, we can 

promote attachment and barrier function within the bioengineered lung.  

dECM has been incorporated into a wide range of lung biomaterials including hydrogels, 

bioinks, scaffolds, and coatings; however, there has been little done to thoroughly characterize the 
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effect that functionality and composition of the ECM after decellularization have on cell response, 

and specifically barrier function. ECM hydrogels and coatings are widely used because they offer 

an in vitro tool to study cell-ECM interactions. Current methods use pepsin to increase the 

solubility of ECM proteins but do not consider the effect that further digestion has on dECM 

composition. We have chosen to utilize the dECM hydrogel and coating technology to replenish 

lost ECM components at the decellularized lung alveolar surface but to do that we must first 

identify the proper digestion duration and ECM supplementation to elicit the desired alveolar 

epithelial barrier formation. 

With the use of our tailored ECM coating, this research aims to better recapitulate the 

necessary microenvironment required for maturation of the epithelial air-liquid interface and 

proper gas exchange, which has not previously been investigated comprehensively. This approach 

utilizes the natural ECM structure of the decellularized lung as a blueprint for lung regeneration 

and replenishes valuable ECM components that can be lost during removal of donor cells. We will 

then evaluate cell attachment and barrier integrity through the maturation of cell-cell junctions in 

vitro and ex vivo. 
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1.2 Objectives 

Figure 1.1. Overview of dECM characterization, processing, and utilization for engineering 

the gas-exchange barrier within recellularized lungs. This schematic shows the porcine lung 

decellularization process that will produce the ECM powder used to form dECM coatings and 

hydrogels. The coating can then be perfused into a decellularized rat lung before repopulating with 

epithelial cells and conditioned within a bioreactor of long-term culture. 

 

Characterizing lung dECM and identifying the optimal ECM coating for natural alveolar 

epithelial barrier formation.  

Previous studies found that minor variations in ECM composition greatly affects epithelial 

differentiation. Collagen and fibronectin rich matrices support initial epithelial attachment but 

ultimately promote migration, while laminin enhances long-term barrier strength [8], [9]. 

Nevertheless, the effect of ECM composition after decellularization on both tight junction (TJ) 
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and adherens junction (AJ) protein modulation has not yet been investigated. Hypothesis 1: dECM 

structure and composition will facilitate attachment and maturation of alveolar epithelial cells by 

increasing cell-cell adhesion and therefore, barrier function. To control the fragmentation of 

coated proteins, protease digestion of dECM coatings will be tailored based on protein cleavage, 

collagen organization, gel storage modulus, and cellular interactions. dECM protein loss during 

decellularization and hydrogel processing are characterized by mass spectrometry, SDS-PAGE, 

and western blotting to compare to native tissue. Through the measurement of transepithelial 

electrical resistance (TEER) and fluorescently-labeled dextran membrane permeability assays, we 

have also determined if barrier strengthening is dependent on ECM coating compositions.  

 

Investigate the role of the Epac/Rap1/AF-6 pathway in barrier strengthening and junctional 

protein expression with respect to ECM substrate. 

Epac has been implicated in ECM-mediated signaling and strengthening of endothelial and 

epithelial barriers. Epac’s role in alveolar barrier strengthening by ECM interactions, however, is 

far less understood. Hypothesis 2: dECM causes upregulation and maturation of AJ and TJ 

proteins, mediated by integrin binding of ECM and modulation of Epac activation. Junctional 

protein staining and mRNA expression of cells cultured on various ECM coatings can shed light 

on which aspect of the cell-cell junction is causing barrier strengthening and how it can be 

manipulated. We have quantified expression of Rap1 and other associated genes with Epac 

inhibition and activation to confirm the mechanism of barrier modulation. 

  

Development of a rotational cell seeding bioreactor to improve dispersal and attachment of 

epithelial cells in 3D tissue engineering scaffolds.  
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Two main bioreactor designs are currently used for decellularized lung culture: a perfusion 

ventilation system [10] and a rotating wall (RWV) bioreactor [11]. Both systems offer delivery of 

nutrient-rich media and dynamic culture capabilities, yet, either sedimentation of cells or decreased 

attachment can occur. Hypothesis 3: By rotating the lung scaffold periodically during the first 

hours of culture, at a rate determined by cell type-specific attachment, overall cell surface 

coverage of the airways and alveoli structures will be improved. Resting intervals allow for cell 

focal adhesion formation, followed by the movement of unattached cells to a new region for 

adherence or unattached cells. With repetition of these movements and varying degrees of rotation, 

a defined percentage of cells will attach at each plane of the lung. Metabolic function and cell 

attachment have been assessed through resazurin staining, Picogreen dsDNA quantification, and 

histology of multiple regions throughout the re-epithelialized lung. 

 

Barrier assessment in ex vivo whole lung recellularization of dECM coated lung scaffolds.  

Whole lung recellularization has been geared towards improving attachment and 

differentiation of epithelial cells within a decellularized airway [11]–[13] but has yet to produce a 

functional transplant option due to lack of cell coverage and edema. Utilizing mechanisms 

uncovered through this research to improve the integrity of the epithelial barrier in combination 

the latest advancements in the field may bridge the gap within lung recellularization. Hypothesis 

4: Pre-treatment with concentrated dECM coatings to decellularized scaffolds prior to epithelial 

reseeding will increase attachment and decrease barrier permeability compared to 

recellularization without coatings. The previously mentioned rotational seeding unit for initial 

attachment and a traditional perfusion bioreactor for long term culture has been utilized for ex vivo 

epithelial lung culture of dECM coated rat lungs. Metabolic function and cell attachment were 
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assessed through resazurin staining, Picogreen dsDNA quantification, and histology. Alveolar 

barrier protein integrity was evaluated by junctional gene expression and a dextran permeability 

assay. 

Together, the completion of these objectives would offer tools to improve tissue 

engineering with dECM and engineering of functional lung gas exchange barriers in hopes of 

bringing transplant alternatives closer to the clinic.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 The Role of ECM in Lung Homeostasis 

ECM not only provides the macrolevel structural and mechanical support to tissues; it also 

offers biochemical cues that can guide cell morphology, function, and differentiation. There are 

two main classes of ECM proteins focused on in this research: 1) structural components such as 

collagens, which dictate most of the mechanical properties of the lung, and 2) basement membrane 

(BM) ECM, which creates the meshwork by which epithelial monolayers are formed.  

The lung-specific matrix is primarily comprised of collagens (types I, III, IV, V) and elastin 

that provide structural support and the elastic recoil of the lung. Large structural ECM fibers are 

predominantly found within the submucosal layer of the lung, creating a porous matrix for 

fibroblasts and smooth muscle cells. Directly above the submucosa is the BM that is composed 

mostly of collagen type IV, laminin, entactin/nidogen, and heparan sulfate [14], [15]. These 

proteins arrange themselves in a dense mesh to form a flat surface for epithelial cells. Other 

essential components are dispersed within both regions, including fibronectin, decorin, 

hyaluronan, tenascin-X/C, and many other glycosaminoglycans [6]. Within both regions, any 

dysregulation of ECM crosslinking, degradation, or production can be catastrophic to lung 

function and propagate lung sever pathologies [16] as seen in Figure 2.1. A delicate balance 

between ECM production and matrix metalloprotease (MMP) degradation continually regulate the 

subtle differences in ECM structure and composition that differentiate the properties and cells of 

each tissue. Excessive cleavage is necessary for natural renewal of ECM; however, over-

degradation of the ECM can release unnecessary growth factors and compromise structural 
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integrity.  Disproportionate production of any ECM component, primarily collagen, can lead to 

many pathologies, including fibrosis and cancer [17].  

 

Figure 2.1. Lung ECM structure and changes in lung pathologies. Healthy lung ECM is 

arranged into the mucosa and submucosa regions that provide both structural support and cellular 

biochemical cues. Reprinted from [16]. 

 

Collagens are the most abundant protein within the human body and have a significant 

effect on tissue mechanical properties [18]. 45 collagen genes encode for 28 collagen protein 

variations that all are comprised of a trimeric protein structure. Variations in monomer isotypes 

form homotrimers or heterotrimers that ultimately dictate collagen type. Each collagen peptide has 

a repeating Gly-C-Y sequence that allows for the highly conserved and organized arrangement of 
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the triple helix structure. Some collagens have interruptions in this repetitive sequence causing 

variations in collagen isoform structures. The fibrillar collagens are collagen I, II, III, V, and XI 

and make up 80 to 90 percent of collagen within the body [19]. Other collagens (IV, VI, VII, VIII, 

X) are either anchoring fibrils or form the basement membrane [20].  

Collagens are produced by cells in a procollagen form that is modified to form the 

monomer structure. Depending on mechanical requirements of the tissue, collagen monomers 

undergo fibrillogenesis to increase fiber size, as depicted in Figure 2.2. Resulting fiber diameter 

can be altered by several different factors: collagen sequence variations, post-transcriptional 

glycosylation levels [21], and nucleator presence [22]. Collagens also binds other molecules such 

as integrins, growth factors, other matrix proteins, MMPs and even water [23]–[25] that can 

enhance the triple helix conformation and can drastically change inherent properties of collagen. 

Without disruptions in collagen monomer sequences, ECM nucleators are essential to modulation 

of collagen structure, and the type of nucleator controls the resulting fibrillar structure. For these 

reasons, alterations in both fibrillar collagens and nucleators could disrupt fibrillogenesis in vivo 

and within dECM based biomaterials.  
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Figure 2.2. Collagen fibrillogenesis from cell-secreted procollagen. Post-translational 

modifications and removal of the N and C-propeptides take place before hydrogen bonding of 

monomer chains into the triple-helix structure. This image was reprinted with permission from 

[26]. 

 

Conversely, BM ECM is comprised of fewer load-bearing collagens and creates a dense 

network of laminins, fibronectin, nidogens, proteoglycans, and collagen IV. The ratio and isoform 

of each ECM component within the BM are tissue-specific and provides direct signals to epithelial 

cells for differentiation and homeostasis [27], [28]. When an injury has occurred, and cells are 
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displaced, the BM is left behind to guide regeneration [29]. This phenomenon is widely seen in 

neuromuscular junctions where, after injury, the BM separates the muscle and neuron spaces so 

that there is neuron-specific basal lamina to guide elongation [30]. For cells to distinguish the 

makeup of the BM and its structure, they must interact directly with ECM components via specific 

integrins.  

Integrins are primarily ECM adhesion receptors that also provide feedback to the cell from 

the extracellular environment [31]. Airway epithelium has a specific repertoire of 8 integrins to 

interact with environmental mediators at the airway lumen and to interact with the BM.  The 

integrins that specifically bind ECM proteins including, α2β1 specific to collagen, α3β1 and α6β4 

specific to laminins and matrix proteins in the BM, α9β1 specific to tenascin, α5β1 specific to 

fibronectin, and αvβ6 that binds both fibronectin and tenascin [31]–[33]. Integrins are not 

independent initiators of downstream signaling cascades, but instead are anchoring proteins for 

kinases and scaffolding proteins upon conformational changes caused by ligand binding (Figure 

2.3, [34]).  
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Figure 2.3. Basement membrane assembly largely organized by laminin interaction with 

integrins and other BM proteins to form a dense mesh. Variations in laminin isoform determine 

the integrins ECM that will bind. Reprinted with permissions from [15]. 

 

Laminin directs assembly of the BM by binding cells, other matrix proteins like collagen 

IV and nidogen, and itself to form the backbone of the BM. The interaction of collagen IV, 

nidogen, and laminin form a net-like sheet below the epithelial layer. Laminin is a glycoprotein 

composed of an α, β, and γ peptide chain that combine to make up to 16 mammalian isoforms [29]. 



25 
 

During development, elevated levels of laminin are found in the BM compared to collagen IV, and 

with age, the ratio of laminin and collagen IV will become equal [35]. The adult lung alveoli 

contain mostly laminin- α3, α4, and α5 isoforms [36], [37]. Studies have shown that laminin is a 

primary driver of barrier maturation within the lungs [35], [38], [39], and regulates epithelial to 

mesenchymal transition (EMT) [40]. Laminin is a critical regulator in epithelial differentiation, 

and its direct interaction with cells at the basal lamina make it an attractive option for alveolar 

barrier stabilization.  

Also of importance in the maintenance of cell phenotype is the regulation of fibronectin 

concentration within the extracellular environment. Fibronectin aids in cellular adhesion to the 

matrix with Arg-Gly-Asp (RGD), collagen, and heparin binding sites exposed under tension [29]. 

During initial attachment, cells preferentially adhere to areas with high fibronectin, laminin, 

collagen I, and collagen IV, but over time, cells do not proliferate or generate high resistance 

barriers on fibronectin [9], [41], [42]. This would suggest that fibronectin promotes initial 

attachment after injury, but growth and post-adherence interactions are less dependent on 

fibronectin [6]. After an injury or during cancer migration, an overabundance of fibronectin can 

drive EMT through TGF-B sequestration or fibrosis [43], [44]. These pathological consequences 

illustrate the importance of regulation of fibronectin and other ECM protein concentration in lung 

homeostasis.  

 

2.2 3D Decellularized ECM Culture Systems 

Decellularization of tissues was first pioneered in the late 1970s [45] to isolate the tissue-

specific basement membrane for cell culture. Over the years, several core groups, such as the 
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Badylak and Ott laboratories, have made great strides in the development of decellularization 

methods, extending to xenograft or allograft scaffolds of many different organs. This tissue-

specific scaffold would promote cell growth and differentiation of a patient’s cells as an option for 

transplant. Removal of cellular material is achieved with repetitive rinses of detergents, enzymes, 

or acidic solutions. Once cells are removed, the extracellular matrix that is left behind can be used 

as a scaffold for tissue engineering by providing the architecture of the native organ. The properties 

of the tissue determine the techniques and solutions that need to be used for the decellularization 

process, which includes, degree of cellularity, tissue density, lipid content, and architecture.  

 Removal of cellular material to produce a decellularized tissue can be done by chemical 

reagents, mechanical abrasion, or freeze-thaw procedures. The most common method includes 

perfusion of chemical reagents such as acids and bases, hypertonic or hypotonic solutions, non-

ionic detergents such as Triton X-100, ionic detergents such as sodium dodecyl sulfate (SDS) or 

sodium deoxycholate, Zwitterionic detergents such as CHAPS, or enzymatic solutions such as 

nucleases, trypsin, or dispase through both the trachea and vasculature. Some of the physical 

methods include pressure, electroporation, or agitation. Most protocols use a combination of 

various chemicals and mechanical processes to ensure removal of all cellular remnants within the 

tissue [2], [46], [47]. A gold standard for this procedure has not definitively been established 

because there are disadvantages to some reagents over others. Some reagents are more effective at 

removing cellular material such as SDS and sodium deoxycholate, but they can also cause damage 

to the ECM. Less harsh chemicals such as Triton X-100, Trypsin, or CHAPS do not disrupt the 

ECM composition but are inefficient at cellular removal.  

Each tissue requires tailoring of the decellularization protocol based on the tissue’s density 

or lipid content [48]. Lungs have a low lipid content, and the airway and vasculature arrangement 
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allows for efficient distributing of the reagents to all parts of the tissue, making it a great candidate 

for decellularization research. Quality control for removal of DNA, proteins, or α-galactosidase in 

cases of xenogeneic tissues, is essential to eliminate immunological reactions or other adverse 

effects. To be considered a fully decellularized scaffold, the lung must pass the standard of less 

than 50 ng dsDNA per mg ECM dry weight and less than 200 base pair DNA fragment length, 

with lack of visible nuclear staining [49]. These standards are confirmed by histological nuclei 

staining with DAPI or hematoxylin and eosin (H&E), and dsDNA quantification methods such as 

Picogreen assay, propidium iodide, or gel electrophoresis [49]. 

Absence of even one ECM component in the lung profile, such as laminin and fibronectin, 

can drastically change cell differentiation of barrier formation within tissue engineered scaffolds 

[9], [50]–[54]. Matrix proteins such as collagen, elastin, laminin, fibronectin, and 

glycosaminoglycans (GAGs) are preserved through the decellularization process, as shown by 

immunofluorescent staining of collagen1, laminin, and fibronectin before and after 

decellularization in Figure 2.4. However, there are reports of up to a 50% loss of most ECM 

components through the decellularization process compared to native ECM [3], [55]. Directly at 

the surface of decellularized lung alveoli and airways, there are more alterations to the ECM 

composition compared to deeper within the tissue because of direct exposure to decellularization 

detergents. Variations in ECM composition and stiffness can have a profound effect on cell 

phenotype, as well as cell attachment and barrier function [9], [56]–[58]. High collagen and 

fibronectin content promote cell attachment at the expense of suboptimal barriers, indicative of 

metastasis and fibrosis [6], [41], [43], [59]. Laminin is integral to both strong barrier formation 

and epithelial differentiation [35], [38], [40], [60]–[63].  
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Figure 2.4. Alteration in ECM structure and composition with lung decellularization. 

Histological sections of decellularized lung matrix show removal of all cells and presence but 

depletion of collagen I, laminin, and fibronectin. Reprinted with permission from [3]. 

 

Decellularization techniques are used to create partial or whole organ scaffolds for in vitro 

models and tissue engineering. Decellularized tissue is also a source of tissue-specific ECM for 

more advanced biomaterials including electrospun [64], [65] or lyophilized sheets [66], [67], 

microparticle powders [68], bioinks[69], [70], and self-assembling ECM hydrogels [71]–[73] from 

a variety of organs and tissue origins. Hydrogels specifically are a promising tool for translation 

to the clinic because the cells can be incorporated within the gel easily and it is in liquid form 

before injection to the site of interest but then will undergo gelation once in the body. In vivo 

studies with naturally derived ECM hydrogels for myocardial infarction [74], [75], nervous tissue 

[76], and lung [72], to name a few, show increased tissue function and minimal immune response. 

Incorporation of ECM into hydrogels or coatings can cause challenges because enzymatic 

digestion of the proteins is often necessary to achieve full solubilization. The implications of the 
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additional digestion step on the bioactivity and structure of the final ECM product has not been 

fully characterized and potentially compromises critical biophysical and biochemical cues. It has 

been confirmed that even with additional digesting, the resulting matrix retains tissue-specific 

composition, growth factors, matrikines, and matrix-bound vesicles that can direct tissue-specific 

cell behavior and differentiation [77].  

 

2.3 Lung Bioengineering 

End-stage chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis 

(IPF), or cystic fibrosis (CF) is the most common need for lung transplantation. Chronic lower 

respiratory diseases, such as these, have become the third leading cause of death in the United 

States, reported by the Center for Disease Control [78], [79]. Without a cure for these diseases, 

there were nearly 3,000 people added to the lung transplant waiting list each year in the United 

States; however, viable lung tissue only becomes available for 50% of those on the waitlist [80]. 

Of those patients that do receive lungs, all will remain on immunosuppressive drugs, and many 

will have lung failure within 5 years. With a shortage of donor's lungs, there is a critical need for 

a bioengineered transplant option. Recellularization of decellularized lungs offers a promising 

solution to this problem.  

There are currently two main unanswered questions in the field of lung recellularization. 

1) What are the best cell lines for recellularization that will differentiate into all cell types of the 

adult lung?  2) What are the best cell delivery and culturing methods to produce viable, long-

lasting tissues? Both sides of the gas exchange barrier, epithelial and endothelial, need to be 

recellularized fully to produce functional tissue. Heterogeneous populations of primary lung cell 

from a human donor can offer multiple cell types with the least amount of effort, but this will not 
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always result in the full cellular profile. One cell population that must be present within a 

bioengineered lung transplant is alveolar epithelial cells, which are difficult to culture and have 

low viability. Another promising option for epithelial recellularization are lung stem cells such as 

basal progenitor cells (Trp63+, Krt5+)[12], alveolar type 2 cells (sftpc +, sftpb+) [46], club cells 

(scgb1a1+, Cyp2f2-), induced pluripotent stem cells (IPSCs) [81], or resident mesenchymal stem 

cells (MSCs) from either a bone marrow or adipose lineage [82].  As for revascularization, similar 

cell options are available, such as heterogeneous mixture of vascular cells [83], human umbilical 

vein endothelial cells (HUVECs) [84], iPSCs, endothelial stem cells [85], [86] or MSCs. The ideal 

recellularization protocol has not been determined but will ultimately include multiple cell types 

at a perfect concentration, providing a physiological niche like the native lung. Even with an ideal 

cell type for repopulation, there is still debate regarding the number of cells needed to repopulate 

a lung. For mouse and rat lung scaffolds a range from 2 to 100 million cells [87]–[90] and 100-

500 million cells for human and porcine scaffolds [13], [90], [91] administered to either the trachea 

or vasculature.  

To improve recellularization, researchers have increased cells attachment with pre-

treatment of decellularized scaffolds with matrix proteins, immune cells, or native lung 

microbiome [12], [88], [92], [93], optimizing cell delivery techniques [94]–[96], and long-term 

culture with multiple cell installations [91], [93]. These improvements to recellularization methods 

have increase function and maturation but have resulted in only partial function; withstanding a 

maximum of one month in vivo [93], and most other attempts have resulted in much less. Most 

suffer from airway collapse and occlusion, insufficient cell coverage, and edema that has hindered 

their ability to perform gas exchange as needed. To overcome this challenge, it is imperative that 
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research is done to fully understand extensive physiology of the respiratory epithelium and 

endothelium with emphasis on the gas-exchange barrier.  

 

2.4 Bioreactors and Culture Methods of Lung Bioengineering 

A bioreactor is an overarching term to describe systems mimicking in vivo conditions, often 

for cell culture and maturation of bioengineered tissues. For the culture of tissue engineered 

constructs, bioreactors are used to improve several phases of regeneration: 1) cell seeding and 

dispersal, 2) delivery of fresh nutrients to enhance cell viability, and 3) application of a biomimetic 

mechanical stimulus to guide differentiation [97], [98]. Adequate simulation of healthy lung 

physiology depends on graft species origin and size. For rats specifically, in vivo, the maximum 

arterial flow rate would be between 10 and 20 mL/min and total lung capacity of 10-15 mL [99]. 

The output parameters of designed bioreactors may not need to be as high as seen in healthy tissue 

but must resemble similar dynamic conditions. To achieve this, the design specifications for a lung 

bioreactor include, design of a closed system to reduce contamination, ventilation with negative 

pressure to administer 0-15 breaths per minute, pulsatile perfusion at 4 mL/min, and constant 

oxygenation of a medium [100]. While ideal physiological conditions would ventilate the culturing 

lung with air through the trachea to achieve an air-liquid interface, during the initial stages of cell 

seeding, prematurely introducing air can cause epithelial detachment, and therefore ventilation 

with media is advised for the first several weeks of culture [101].  

Some of the most simple bioreactor systems are hollow fiber bioreactors that allow for 

basic perfusion of media or air around the structure for cell culture [102]. More complex and 

controlled bioreactors are whole lung perfusion systems equipped with artificial silicone pleura 

and functional monitoring (Fig. 2.5A-B) [103]. Cell distribution onto and within scaffolds is 
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improved by culturing in a dynamic bioreactor system to simulate the physiological environment 

and innovative protocols that allow for the most effective seeding of cells [12], [83], [95]. 

Bioreactors have also been automated for both decellularization and recellularization procedures 

to ensure reproducibility. With many minor variations, the most common system performs cell 

seeding and culture with pulsatile or continuous vascular perfusion and negative pressure breathing 

[10], [84].  

Histological sections of recellularized lungs show the regional distribution and lack of 

complete alveolar or airway cell coverage. This indicates that cell seeding and dispersal techniques 

still need to be optimized during the first few hours. The most common method is seeding within 

the perfusion bioreactor system is done without flow for the first 12 hours to 2 days to allow for 

seeding. With this method, gravity and cell settling can drastically affect cell dispersal. Within the 

same system, cellular seeding has also been done in the presence of either vascular or airway flow, 

continuously moving cells and media. This method would increase the dispersal of cells; however, 

suspension cultures can disrupt cell attachment rates [91], [104].  

Another bioreactor designed to increase cell dispersal is the rotating wall vessel (RWV) 

bioreactor system (Figure 2.5C, [11]). Within this system, scaffolds are perfused with cells, 

centrifuged to initially disperse cells throughout the lung, then cultured statically for 1 to 4 days 

before initiating rotation culture [11], [53], [105]. This system mainly increases nutrient flow and 

creates microgravity throughout the culture; however, since the lungs are statically cultured prior 

to horizontal rotation, the coating of cells throughout the lung is not possible and still suffer from 

sedimentation and regional seeding of cells. Even if the rotation began during the time of seeding, 

constant rotation at 20 RPM would not allow cells to remain stationary for long enough for cells 

to adhere to the matrix. For these reasons, this research has designed a bioreactor system that 
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combines some beneficial aspects of all methods, with intermittent rotation tailored to cell 

attachment rates, a period of static culture to allow adhesions to mature, and finally perfusion and 

ventilation culture for mechanical conditioning.  

Figure 2.5. Traditional bioreactor designs for whole lung culture. (A) Small rodent bioreactor 

systems with pulsatile vascular perfusion and negative pressure breathing (reprinted from [106]). 

(B) Large species (porcine and human) bioreactor design (reprinted with permission from [13]) 

equipped with silicone artificial pleural membrane and lung mechanics. (C) Rotation wall vessel 

(RWV) used to create microgravity and decrease cell sedimentation (reprinted from [11]).  

 

2.5 Alveolar Epithelial Junction Formation and Epac Regulation  

Molecule selectivity and homeostasis of the alveolar epithelial barrier is maintained by two 

main structures: tight junctions (TJ) and adherens junctions (AJ). Barrier development begins with 
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E-cadherin and nectin recruitment to form “primordial AJs” seen in Figure 2.6. Adherens play a 

crucial role in the maturation of the epithelial junction by then initiating the recruitment of TJ 

proteins [107]. TJs further reinforce the cell-cell adhesion with transmembrane claudins, occludin, 

and junctional adhesion molecules (JAMs). During junction maturation, AJ transmembrane 

proteins associate with afadin (AF-6) and catenins, while TJ transmembrane proteins associate 

with zonula occludins (ZO) to stabilize the connection from the extracellular environment to 

cytoskeletal elements [107]–[109]. Once cells have formed mature cell-cell contacts, epithelial 

cells will exhibit a cobblestone morphology with the cortical arrangement of junction proteins and 

the actin cytoskeleton. Protein deficiencies within these structures including, claudin-3, claudin-4, 

claudin-18, JAM-A, occludin, ZO, and E-cadherin have been known to cause barrier disruption 

and edema specific lung pathologies [107], [110]–[112]. This suggests that AJs and TJs must form 

sequentially and synergistically for proper barrier regulation. 
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Figure 2.6. Epithelial cell junction formation. Junctions are first composed of AJ structures, but 

with maturation, TJ structures are recruited, and both are stabilized by scaffolding proteins. During 

this time, the cell contact transition from a “zipper-like” cell-cell contact arrangement to a cortical 

organization. Reprinted from [113]. 

 

Many aspects of the cellular microenvironment, such as ECM composition and stiffness, 

can alter barrier formation and junction protein expression [9], [56]. Two main signaling molecules 

involved in barrier modulation are protein kinase A (PKA) and the exchange factor directly 

activated by cyclic AMP (Epac). PKA has traditionally been thought of as the primary regulator 

in cell-cell junctions by inhibiting RhoA/ROCK and stabilizing cell junctions [114]. However, 

inhibition of PKA does not attenuate cAMP driven barrier strengthening. The Epac/Rap1 pathway 
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alternatively, was identified as another critical junction regulator [115] that can be dependent on 

ECM interactions, such as laminin fragments [116], [117] and can affect multiple cell-cell 

adhesion structures. Epac is widely researched in endothelium and other tight barriers throughout 

the body; however, there is less information on the role of ECM in the regulation of this pathway 

within the alveolar epithelium.  

Rap1 has been implicated in cellular migration, metastasis, and junction disassembly, but 

depending on the mode of initiation and downstream activation, Rap1 can play an equally 

impactful role in actin arrangement, integrin expression, and cell-cell adhesion. Epac can act 

directly on the AJ formation factor, afadin (AF-6) [111], [118]–[120]. AF-6 interacts with p120-

catenin and E-cadherin of AJs to inhibit E-cadherin endocytosis [109], [118], promote 

dimerization with E-cadherin with neighboring cells, and the overall organization and maturation 

of AJs. AJ formation is proceeded by TJ formation and can also be controlled by Epac/Rap-1/AF-

6 signaling. AF-6 also associates with nectins, zona occludins (ZO), and junctional adhesion 

molecule A (JAM-A) to stabilize TJs [121], [122]. TJs have been studied at the alveolar barrier 

and are driven by ECM composition by increasing expression of lung-specific claudins, such as 

claudin-3, claudin-4, and claudin-18, JAM-A, ZO-1, and occludins [9], [110], [123]. The absence 

of any essential ECM protein in a scaffold will inhibit healthy TJ maturation, as seen by time-

dependent barrier impedances or increased attachment of epithelial cells on different ECM 

coatings [60], [61]. This suggests a strong correlation between ECM composition, the Epac/Rap1 

pathway, and the regulation of junctional proteins. Epac activation of Rap1 promotes junction 

formation and increased β1 integrin translocation to the membrane for further cell-matrix 

interactions [124]. Rap1 interacts with AF-6 and E-cadherin to increase attachment to ECM and 

stabilize AJs and TJs to the actin cytoskeleton [118], [120]. Further understanding of Rap1’s 
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influence on both AJ and TJ structures within alveolar epithelium has not yet been completed in 

extensive detail. A hypothesized compilation of the many identified roles of Epac and Rap1 within 

both endothelial and epithelial junctions is shown in Figure 2.7. This research aims to confirm the 

synergistic roles of Epac and ECM in the regulation of alveolar epithelial junctions that has yet to 

be demonstrated fully.  
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Figure 2.7. Hypothesized regulation of AJ and TJ structures through the ECM-mediated 

activation of the Epac/Rap1 pathway. α3β1 and α6β4 integrins recognize the laminin-enriched 

dECM coating composition at the alveolar BM of decellularized lungs. Integrin conformational 

changes increase cytoplasmic cAMP by G-protein coupled receptors. cAMP influx causes 

activation of Epac to modulate actin dynamics, gene expression, cytokine response, adhesion, 

proliferation, and barrier function. Epac then stimulates Rap1 to increase AF-6 stabilization of ZO-

1 and other scaffolding proteins at the epithelial junction [120], [125].   
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CHAPTER 3: dECM CHARACTERIZATION 

 

3.1 Rationale 

Decellularization is used to create partial or whole organ scaffolds for a variety of tissue 

engineering applications. Decellularized tissue is also a source of tissue-specific ECM for more 

advanced biomaterials including electrospun [64], [65] or lyophilized sheets [66], [67], 

microparticle powders [68], bioinks[69], [70], and self-assembling ECM hydrogels [72], [73] from 

a variety of organs and tissue origins. Incorporation of ECM into some applications, such as 

hydrogels or coatings, requires enzymatic digestion with pepsin, trypsin, or other degradative 

enzymes to achieve solubilization. However, even with significant digestion, the resulting 

solubilized material retains tissue-specific composition, growth factors, matrikines, and matrix-

bound vesicles that can direct tissue-specific cell behavior and differentiation [77]. The 

implications of the additional digestion step on the bioactivity and structure of the final ECM 

product has not been fully characterized and potentially compromises critical biophysical and 

biochemical cues. For these reasons, this research aims to further characterize hydrogel properties 

with increasing digestion to minimize adverse effects on the ECM and allow for tailorability for 

multiple tissue origins and applications.  

Current research with ECM hydrogels or coatings utilizes enzymatic digestion of the ECM 

within an acidic medium for at least 48 hours to achieve solubility [71]. Prior research has 

characterized several properties of hydrogels produced from a single digestion duration, including 

resulting scaffold pH, salt ion concentration, mechanics, and ability to be chemically crosslinked 

[126]. However, variability in these parameters caused by differing lengths of enzymatic digestion 
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has not been fully understood or optimized. Insoluble ECM proteins are progressively digested 

into the solution at a rate dependent on pepsin activity and particle surface area. At pepsin’s peak 

digestive pH range of 1.5 – 2.5, pepsin will continuously cleave proteins at relatively unspecific 

target sites. Digestion slows as the pH of the solution rises to 8 when it is terminally deactivated. 

As soluble proteins fragment into smaller peptide chains with prolonged digestion, the resulting 

biomaterial properties change significantly. By varying ECM hydrogel production, we may be able 

to tailor our preparation to a broader range of applications. 

The mechanical properties of ECM hydrogels are known to be an order of magnitude less 

or more than the tissue they are isolated from [72]. We believe this is caused by a loss of tertiary 

and quaternary collagen fibril organization, dissociation of tropocollagen, lack of cellular tension, 

and fragmentation of proteins. Pepsin first disrupts the collagen triple helix structure by cleavage 

of telopeptide and helical hydrogen crosslinks resulting in drastic weakening [18]. As digestion 

continues, pepsin will cleave beyond disassembly of the helix structure and can potentially 

influence binding sites and monomer protein size. If digestion progresses to this extent, hydrogel 

strength, crosslinking ability, and bioactivity will decrease drastically, potentially causing the 

exposure of cryptic binding sites [127], [128].  

Collagen I is the main component of all mammal tissue and therefore is the main 

component of lung ECM hydrogels and will dictate overall gel properties. Collagen fibrillogenesis 

and fiber diameter can alter several different factors: collagen sequence variations, post-

transcriptional glycosylation levels [21], and nucleator presence [22]. Collagen also binds other 

molecules such as integrins, growth factors, other matrix proteins, MMPs and even water [23]–

[25] that can enhance the triple helix conformation and can drastically change inherent properties 

of collagen. Without disruptions in collagen monomer sequences, ECM nucleators are essential to 



41 
 

modulation of collagen structure, and the type of nucleator controls the resulting fibrillar structure. 

For these reasons, alterations in both fibrillar collagens and nucleators could disrupt fibrillogenesis 

within ECM hydrogels. Characterization of ECM digestion by pepsin is needed to uncover any 

changes in resulting changes in hydrogel structure and bioactivity [19], [129]. 

While collagen I dictates mechanical, structural, and biochemical characteristics of the 

hydrogel, other less abundant ECM components can also play a crucial role in cell differentiation. 

The ability of decellularized ECM coatings to influence differentiation as well as promote specific 

cell morphology without providing a 3D hydrogel structure suggests that there are biochemical 

cues that are intact and active in these materials. The concern with over-digestion of the ECM is 

that loss of entire binding motifs and the complex fiber architecture may compromise vital cellular 

responses. It is currently undefined whether the degree of cellular response changes with ECM 

digestion and therefore we are interested in characterizing these aspects for further 

experimentation with epithelial culture. It is hypothesized that longer durations of pepsin digestion 

will increase ECM fragmentation and decrease collagen assembly. Furthermore, shorter digestion 

times would create more ideal microenvironments for epithelial culture. This work is more broadly 

relevant in the field of ECM biomaterials and addresses a significant gap in knowledge and 

methodology, reducing the effective translation and improvement of these materials.  
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3.2 Materials and Methods 

 

Decellularization, ECM Solubilization, and Hydrogel Formation 

Male and female porcine lungs were obtained from Smithfield-Farmland slaughterhouse 

or euthanized research pigs to produce dECM powder, as previously published by our laboratory 

[72], [130]. Quality control of dECM powders from different donors is performed by picogreen 

dsDNA quantification to ensure each has below 50 ng of dsDNA per mg of dry tissue. 1% (w/v) 

of decellularized ECM powder and 0.1% (w/v) of pepsin from porcine gastric mucosa (3450 

units/mg proteins, Sigma P68875G) was added to 0.01 M HCl. The digestion solution was 

uniformly agitated for 4, 12, 24, 48, and 72 hours. At each digestion time point, a fraction of the 

digestion solution was removed and chilled on ice for 2 minutes to avoid gelation upon addition 

of neutralizing reagents. 10% (w/v) chilled 0.1 M NaOH, and 11.11% chilled 10X PBS were then 

added to the extracted digest for neutralization. The digests solution is now considered a pre-gel 

or coating solution and can be stored at 4 ° C and used within 7 days. To produce a hydrogel, 220.5 

µl/cm2 of the pre-gel solution was added to a tissue culture plate and allowed to gel for 30 minutes 

to 1 hour at 37° C.  

 

Mass Spectrometry 

Mass spectrometry was performed according to previously developed protocols with 

decellularized tissue [3], [89]. Pre-gel solution after 48 hours of digestion was trypsinized for 

protein identification with MALDI mass spectrometer. Software analysis identified proteins 

detected with a 99 to 100% probability. 
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SEM Imaging, Interconnectivity, and Fiber Diameter Analysis 

In preparation for SEM imaging hydrogels digested for 4, 12, 24, 48, and 72 hours were 

fixed in 5% glutaraldehyde and 4% osmium tetroxide, and dehydrated to 100% ethanol. Scaffolds 

were then critical point dried and plasma sputter coated before visualization with JEOL JSM-

5610LV SEM or the Hitachi SU-70 FE SEM SEM. Representative images were taken at 10,000x. 

ImageJ was used to quantify the amount of branching and fiber diameter with a minimum of 3 

images per sample for each digestion time. The total number of interconnections for each image 

were averaged and divided by the total image area to present the data as network density using 

interconnections per um2. 

 

Rheometry  

Rheometry was used to assess the mechanical properties of the hydrogels after 4, 12, 24, 

48, and 72 hours of digestion. Rheometry was performed according to established protocol with 

dECM hydrogels [72].  

 

SDS-PAGE Protein Size Distribution Analysis 

To determine the resulting molecular weight profile from each length of digestion or 

laminin and fibronectin protein addition, SDS-PAGE gel size distribution was used. Coating 

solutions were further solubilized using a 1% SDS, 25 nM Tris, and 4.5 M urea solution and heated 

to 60 °C for 1 hour. The amount of each protein in each sample was quantified using Peirce BCA 

protein assay kit and a microplate reader and balanced to the lowest concentration. The protein 

was loaded into each well of a MiniPROTEAN TGX stain-free gel (BIO-RAD), and 200 V was 
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applied until the dye front reached the bottom of the gel using a Mini-PROTEAN tetra system 

(BIO-RAD). Resulting gels were imaged using a BIO-RAD gel imager, and band intensities were 

quantified using BIORAD ImageLab software. The sum of the band intensities above and below 

240 kDa for each experimental replicate was summed and compared at each digestion time.  

 

Western Blotting and Collagen I Helical Structure Analysis 

Resulting gels from SDS-PAGE were transferred to polyvinylidene fluoride (PVDF) 

membranes for western blotting. Fibronectin (Abcam) and collagen IA (Proteintech), and laminin 

(Abcam) antibodies were used for western blotting according to manufacturer’s protocols to 

determine the amount of each protein within the solution and the degree of degradation. Using 

BIORAD ImageLab software, intensities of bands at 400 kDa (Trimeric), 270 kDa (Dimeric), and 

140 kDa (Monomeric) were determined the percent of each quaternary structure relative to the 

total collagen I intensity of each digestion time. 

 

Statistical Analysis 

All data are presented as mean +/- standard deviation with an N ≥ 3 unless otherwise stated. 

Statistical significance was determined by a Two or One-way ANOVA and a Tukey’s multiple 

comparisons tests using GraphPad Prism.  
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3.3 Results 

 

dECM coating composition 

Total protein composition within the dECM powder, pregel/coating solutions, and 3D 

hydrogels from both porcine and human sources were detected using SDS-PAGE analysis (Figure 

3.1A). When comparing porcine to human dECM powder and pregel solution, there are only slight 

differences in intensity of bands, but there is an overall resemblance in the amount and location of 

bands. The differences between porcine powder and porcine pregel solutions indicate changes 

caused by protease digestion. A significant amount of bands remaining after digestion but with a 

drastic decrease in the amount of high molecular weight bands. Little differences are seen between 

the porcine pregel and porcine gel lanes, suggesting no change in protein digestion upon gelation. 

This is also supported by the proteomic analysis of the dECM pregel solution (Figure 3.1B), 

showing that several essential matrix proteins are abundant within the solution, even with 

digestion.  
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Figure 3.1. dECM hydrogel and coating protein characterization. (A) The SDS-PAGE analysis 

of porcine and human, dECM powder, pregel solution, and gel digested for 48 hours to show the 

size distribution of remaining proteins. (B) Mass spectrometry results of dECM pregel/coating 

solution. 

 

 

SEM Imaging and Calculating Hydrogel Interconnectivity 

 

The hydrogel structure resulting from each digest was investigated using SEM imaging. 

Images were taken of 4, 12, 24, 48, and 72-hour digests, shown in figure 12A, demonstrates 

changes in hydrogel network structure. Shorter time digest hydrogels have the most branched, 

interconnected, structure while longer digestion times leads to a less branched and more porous 

hydrogel organization. Using Image J analysis, we calculated the number of intersections over the 

area of the image, to quantify hydrogel interconnectivity. With three technical replicates per 

sample and three experimental replicates per time point, we were able to demonstrate a significant 
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reduction in network interconnectivity as the digest progressed, in figure 3.2 B. Rheological 

properties (Figure 3.2C) of dECM gels with respect to digestion time have decreased storage moduli with 

increasing digestion and resemble the trend seen with interconnectivity.   

 

 

Figure 3.2. Duration of pepsin digestion alters ECM branching and resulting mechanical 

properties. (A) Representative SEM images of hydrogels prepared from 4, 12, 24, 48, and 72-
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hour digests, from top to bottom respectively, show enzymatic digestion effects on matrix 

architecture (scale bar= 1μm). (B) Interconnectivity analysis of hydrogel fibers within SEM 

images was analyzed using ImageJ and correlate to (C) shear properties determined through gel 

rheometry of ECM hydrogels with varying digestion times. Data are shown as mean +/- standard 

deviation. N=3 separate experiments for each condition (n.s. p > 0.05, * p < 0.05, ** p < 0.01, 

*** p < 0.001, and **** p < 0.0001). 

 

SDS-PAGE protein size distribution 

The SDS-PAGE analysis of the digested ECM protein shown in figure 3.3A to 

qualitatively demonstrate how higher molecular weight bands are relatively depleted and lower 

molecular weight band become more pronounced as digestion time increases. Some higher 

molecular weight bands have become faint or disappeared entirely by 72 hours. Quantitative 

analysis of the molecular weight distribution seen in the SDS-PAGE gel (Figure 3.3B-C) also 

shows decreases in molecular weights above 240 kDa and increases in protein sizes below 240 

kDa, suggesting larger ECM proteins are being fragmented with longer digestion.  
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Figure 3.3. Longer pepsin digestion causes ECM fragmentation. (A) The SDS-PAGE analysis 

of dECM by digestion time (hours). Protein size quantification of band intensities (A) above and 

(B) below 240 kDa analysis using ImageJ. Data are presented as mean +/- standard deviation. N=2 

replicates. 

 

Western Blotting, Quantification, & Analysis 

Western blotting of collagen I (Figure 3.4A) confirms that increasing lower molecular 

weight band intensities seen with longer digestion times are partially due to collagen I trimeric 
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helical structure disassembly. Band quantification (Figure 3.4B) shows increased monomeric and 

decreased dimeric and trimeric collagen I after just 12 hours of digestion. Between 48 and 72 hours 

of digestion, another drastic increase in collagen monomers is seen. Fibronectin western blotting 

of lower molecular weights also shows increasing fragmentation with longer digestion. Molecular 

weights for intact fibronectin is not shown (MW=220 kDa) but is assumed to be present at least at 

shorter digestion times since digestion is not occurring until 48 hours.  

 

Figure 3.4. Collagen helical disassembly and fibronectin fragmentation with increasing 

digestion time. (A) Western blotting of collagen I with increasing digestion. Each lane is a 

different duration of digestion in hours. (B) ImageJ quantification of the 400, 270, and 140 kDa 

bands correspond to amount of collagen I trimeric, dimeric, and monomeric helical structures 
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respectively. Graphed band intensities are from one western quantification. (C) Fibronectin 

western blotting of fragmented molecular weights (below 220 kDa).  

 

4 Hour dECM Coating Composition with Laminin and Fibronectin Supplementation 

 Digestion duration of 4 hours was chosen for further experimentation based on increased 

small airway proliferation on ECM hydrogels digested for 4 hours [131] and increased branching, 

more resembling a dense BM for epithelial culture. SDS-PAGE (Figure 3.5A) analysis shows 

increasing band intensities at laminin and fibronectin molecular weights with the addition of 

laminin and fibronectin as expected. This confirms that 0.01 mg/mL addition of each laminin and 

fibronectin increases gel concentration sufficiently. Western blotting for laminin (Figure 3.5B) and 

fibronectin (Figure 3.5C) shows that the dECM coating alone has very minute amounts of laminin 

content and greater amounts of fibronectin content. Addition of laminin and fibronectin to dECM 

drastically increases both laminin and fibronectin band intensities. 
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Figure 3.5. Laminin and fibronectin addition to dECM and detection of proteins. (A) SDS-

PAGE of the dECM coating alone and with 0.01 mg/mL of either fibronectin or laminin 

supplementation. (B) LamB1 and (C) Fibronectin immunoblotting to determine the concentration 

within dECM and how much is replenished. 
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3.4 Discussion 

ECM hydrogels and coatings offer a unique insight into tissue-specific cell-matrix interactions by 

retaining many vital ECM proteins and creating a porous substrate for cell infiltration and 3D biophysical 

cues. ECM hydrogels have been developed for more than 15 different tissue applications; however, most 

characterization has been limited to high-level structural analysis with only one digestion time. 

Traditionally, pepsin digestion is performed for 48 to 72 hours, chosen for maximum solubility of ECM 

[71], [130]. We have shown in these data that the duration of digestion affects many of the inherent 

properties of the ECM hydrogel and may need to be adjusted for each application.  

Pepsin is a digestive protease naturally found within the stomach. Pepsin prefers to cleave proteins 

at sites after phenylalanine and leucine but rarely cleaves after histidine and lysine [132]; otherwise 

digesting proteins relatively nonspecifically but with consistent degrees of fragmentation [133]. Protease 

digestion is also affected by pH changes, with its optimal pH range for pepsin of 2.5. We have seen that 

with increases in digestion time, pH does increase to approximately 3.5 (data not shown), which still allows 

for pepsin activity but can potentially cause digestion to slow. Future experimentation would need to be 

conducted to determine if more digestion would occur if the pH was maintained at 2.5 throughout the 

digestion. With both collagen disassembly and fibronectin fragmentation after just 12 to 24 hours, optimal 

digestion time concerning protein disruption would be less than 24 hours.  

Both porcine and human dECM powder and gel composition were compared by SDS-

PAGE analysis. We did not detect drastic differences between the two species, supporting past 

evidence that ECM protein structure and reactivity is considered mostly homogenous across 

mammalian species, with only some differences in mechanics and composition [134]. Comparison 

of pregel to the powder shows that many matrix proteins are preserved through the decellularization 

and protease digestion process, including high mass proteins. These results are further supported 

by the proteomic analysis of the dECM solution digested for 48 hours, identifying collagen types 
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I and II, laminin, fibronectin, GAGs, and other less frequent proteins. We have identified fewer 

matrix proteins than those identified by other researchers with MS analysis of decellularized lung 

components and we speculate that this is because some of the fragments are not comparable to the 

whole protein library available with mass spectrometry. This also indicates that even with 48 hours 

of pepsin digestion, we can preserve major components of the ECM profile for cellular 

interactions.  

While achieving full solubility of the ECM is ideal, the level of protein fragmentation we 

have shown by SDS-PAGE and western blotting may cause adverse changes in mechanical and 

biochemical properties. Increases in protein sizes below 240 kDa were seen with digestion after 

just 24 hours, leading us to question whether this degree of disassembly or fragmentation may 

compromise the ability of ECM proteins to participate in gel crosslinking, seen by a decrease in 

gel interconnectivity with digestion.  

Identification of specific proteins within the fragmented matrix can be difficult, however, 

through western blotting and analysis of molecular weights associated with the collagen helical 

structures, we have more definitively characterized ECM structure with increasing pepsin 

digestion. At 12 hours, a drastic disassembly of collagen I into its dimeric and monomeric form 

occurs. The absence of fibrillar collagen within the gel would explain decreased gel stiffness due 

to less mechanically functional collagen. Since pepsin-digested collagen requires nucleators for 

fibral reformation, lack of fibrillogenesis can be due to nucleator or collagen 1 damage. Fibronectin 

fragmentation increased after 24 hours of digestion with prominent bands at 70 kDa, which would 

support the latter theory of fibrillogenesis inhibition [135], [136]. Collagen and fibronectin both 

have binding sites that are only present in their natural triple helix structure or opened by cellular 

interaction. Fibronectin fragments can destabilize collagen confirmation, allowing fibronectin 



55 
 

binding without confirmation and possibly rendering binding sites inactive for functional ECM 

proteins [137]. Fragmentation of fibronectin also exposes binding sites for other matrix proteins 

such as GAGs and can change the binding affinity of fibronectin to specific types of GAGs [138]–

[140]. Disassembly or fragmentation of either collagen or fibronectin may enhance or inhibit ECM 

assembly and fibrillogenesis, potentially disrupting the overall gel structure and bioactivity.  

Collagen fiber assembly within pepsin digested hydrogels can also be altered by variations 

in ECM nucleators other than fibronectin [22], [141], [142]. Previous studies have found that 

increasing concentrations of dermatan sulfate, heparin, and collagen VI during collagen 

fibrillogenesis decrease fiber density, delay fibril formation, and increase fiber thickness, while 

increases in chondroitin sulfate delay fibril formation promoting denser, thinner fibrils [141], 

[143]–[146]. Our results showing lower fiber interconnectivity with higher digestion times may 

suggest that digestion of PGs that increase fibrillogenesis, such as chondroitin sulfate, may be 

occurring after 4 hours, impacting fiber branching. Once branching PGs have been digested, PGs 

such as chondroitin sulfate could become most prominent, causing increased fiber diameter. 

Increased pepsin digestion could not only be breaking helical structures and render structural 

proteins inactive, but it can also be disabling fibrillogenesis nucleators. Differential pepsin 

digestion of ECM nucleators beyond their functional capacity could explain hydrogel fiber 

formation and mechanics.  

It is widely accepted that ECM elasticity and dynamic mechanical properties can directly 

affect cell differentiation through cell mechanotransduction [147], [148]. For this reason, when 

considering hydrogel response, 3D matrix mechanics must be evaluated. However, when assessing 

ECM coatings that would adopt the bulk mechanical properties of the coated substrate, the 

biochemical composition may be the primary modulator of cell response. By assessing the 
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mechanical behavior of the ECM hydrogel by rheometry, we have determined how the gel 

mechanics are altered by digestion. Properties derived from rheometry provide insight into 

crosslinking within the ECM structure that is resisting the shearing stresses, which account for the 

similarities between the trends of gel interconnectivity and storage modulus. The highest storage 

modulus with 4 hours of ECM digestion showing properties closer to native tissue [149]. 

From these data, we have observed that mechanical properties and protein structure can 

change drastically with digestion time. Showing that these properties can be altered by changing 

digestion time allows ECM hydrogels and coatings to be tailored for each application and cell 

origin. The structure and storage modulus of hydrogels and coatings produced from digestions 

shorter than 12 hours more closely resembled that of the BM, compared to longer digestion 

durations. Also, data evaluating SAEC attachment and proliferation over two days [131] 

determined that SAEC prefer shorter digestion times. With all of these data considered, for the 

purpose for further experimentation with ECM pre-gels in this research, we determined that the 4-

hour hydrogel would provide the preferred epithelial response and was used for the remainder of 

the studies.  

Further experimentation in this research will include supplementation with laminin and 

fibronectin. Therefore we also aimed to determine if the addition of 0.01 mg/mL of commercially 

available fibronectin and laminin would alter the ECM protein profile. Western blotting showed 

the dECM retained a relatively large amount of fibronectin, yet little laminin was detected. This 

may indicate that laminin supplementation within the coating solution is likely beneficial. Addition 

of fibronectin may also be necessary, but since residual levels were detected, there may be enough 

fibronectin within dECM to elicit cellular attachment and differentiation. Caution must be taken 

with the addition of fibronectin, as excessive amounts could mimic disease states [60]. Further 
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experimentation with cell behavior will aid in this determination. After supplementation, distinct 

bands at the appropriate molecular weights for intact and some fragmented proteins were detected 

for both laminin and fibronectin. We expect that this concentration of supplementation is 

appropriate according to similar in vitro comparisons [9], [12], [92]. 

The current digestion duration standard of 48 and 72 hours for ECM solubilization, may 

be over digesting the ECM. Desired gel properties vary for the chosen cell type and tissue 

application; however, for most applications’ digestion should be reduced to a range between 4 and 

24 hours. From a mechanical and structural standpoint, hydrogels produced from pepsin digestion 

between 4 and 24 hours more ECM-ECM interactions and similar mechanical characteristics as 

native lung tissue. Also, to minimize protein fragmentation, particularly of collagen and 

fibronectin, decreased digestion would be beneficial. For the culture of lung epithelial cells 

specifically, the 4 hour digestion time is ideal based on increased SAEC proliferation and denser 

fiber architecture.  
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CHAPTER 4: IMPROVING ALVEOLAR JUNCTIONS ON dECM 

 

4.1 Rationale 

Decellularized lung tissue engineering offers a promising regeneration strategy for patients 

with a variety of incurable pulmonary diseases. This technology can provide the native structure 

and biochemical cues of the lung to guide healthy maturation of functional tissue. Decellularized 

lungs are the gold standard scaffold for whole lung bioengineering; however, current approaches 

do not produce a long-term, functional lung replacement, indicated by severe edema after 

implantation. Insufficient recellularization and immature barriers keep this technology from the 

clinic. Most of the research to date has focused on assessments of stem cell differentiation and 

attachment [92], [94], [150], [151] or mimicking lung development during regeneration [12], [91]. 

More recently, researchers in this field have examined recellularization on a smaller scale by 

evaluating endothelial barriers [152]; however, there is little research on epithelial barrier 

formation with recellularized lungs. This research takes a unique approach to re-epithelialization 

of whole organ scaffolds by examining alveolar junction formation on a cellular level to then 

inform future recellularization strategies. Therefore, we are attempting to systematically determine 

which components are essential to the alveolar barrier function and develop a scaffold coating to 

replenish these essential matrix proteins. 

Homeostatic alveolar epithelial barrier function is maintained by two main structures: tight 

junctions (TJ) and adherens junctions (AJ). Both junctions provide tension resistance and selective 

permeability during resting mechanical load. Formation of substantial barriers relies on a highly 

regulated sequential recruitment of several main junction proteins including cadherins, claudins, 

zonula occludins (ZO), and junctional adhesion molecules (JAM)s [107], [108], [153]. Protein 
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kinase A (PKA) and exchange protein directly activated by cAMP (Epac) have both been identified 

as regulators of barrier function by activation of G-protein-coupled receptor and release of cyclic 

AMP (cAMP) [39], [118, p. 1], [120], [154], [155]. While PKA has traditionally been studied as 

the primary mediator of barrier function, inhibition of PKA does not result in substantial barrier 

disruption [115], [156], [157]. This has led to a recent transition into investigating the role of Epac 

within endothelial [115], [158]–[162] and less often, epithelial barriers [163]–[165]. After 

activation, Epac is rapidly translocated to the plasma membrane from the cytoplasm and nuclear 

membrane to activate Rap1 to regulate afadin (AF-6) stabilization of AJs, TJs, and integrins [166]. 

Within epithelial cells, Epac signaling has also been implicated in the inhibition of cell migration 

and EMT, [167] and promoting adhesion to laminin and fibronectin [116], [168], [169]. This 

suggests that epithelial junction mediation may be a function of Epac in response to specific ECM 

proteins; however, the direct causes and mechanisms of this within the alveolar epithelium are not 

fully understood. 

Decellularization techniques utilize several harsh detergents to ensure complete removal 

of cellular debris, but these detergents can drastically alter the ratio of ECM components that are 

left behind. Matrix proteins such as collagen, elastin, laminin, fibronectin, and 

glycosaminoglycans (GAGs) are preserved through the decellularization process, but there are 

reports of up to a 50% loss of most of these components compared to native ECM [3], [55]. 

Variations in ECM composition and stiffness can have a profound effect on cell phenotype, as well 

as cell attachment and barrier function [9], [56], [57]. High collagen and fibronectin content 

promote cell attachment at the expense of suboptimal barriers, indicative of metastasis and fibrosis 

[6], [41], [43], [59]. Laminin is integral to both strong barrier formation and epithelial 

differentiation [35], [38], [40], [60]–[63]. We hypothesize that the discrepancy between native 
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ECM and decellularized airway surface ECM can alter the epithelial cell-cell junction assembly 

during recellularization through activation of Epac. Understanding how and which ECM 

components modulate alveolar barriers, specifically TJs and AJs, is integral to producing a whole 

lung replacement that is functional on the cellular level. This research is the first step to creating a 

tailorable ECM environment within decellularized lungs by methodically replenishing BM 

proteins that promote alveolar barrier formation.   
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4.2 Materials and Methods 

 

Decellularization and Coating Preparation  

Male and female porcine lungs were obtained from Smithfield-Farmland slaughterhouse 

or euthanized research pigs to produce dECM coating solution as previously published by our 

laboratory [72], [130]. Quality control of dECM powders from different donors is performed by 

picogreen dsDNA quantification to ensure each has below 50 ng of dsDNA per mg of dry tissue. 

The dECM hydrogel solution is produced by pepsin digestion of 8 mg/mL dECM powder for 4 

hours. The solution was diluted to 0.1 mg/mL for use as a coating.  Type I collagen from bovine 

skin (Sigma) diluted to 0.1 mg/mL in PBS was used as a control coating solution. The collagen 

and dECM solutions were also supplemented with 0.01 mg/mL laminin (Sigma, L2020) and 

fibronectin (Sigma, F0895) from human plasma. Collagen and dECM coating concentrations were 

determined by literature review, and laminin and fibronectin concentrations were determined by 

literature review and qPCR dosing experiments (data not shown). TCP was coated overnight at 

4°C to avoid gelation, then rinsed 3 times with PBS or saline (for TEER experiments) prior to cell 

culture. 

 

Cell culture and reagents 

All cells were cultured at 37 °C with 5% CO2. Mouse alveolar type II cells (MLE12, 

ATCC) were cultured with HITES medium containing 2% fetal bovine serum according to the 

manufacturer’s protocols. MLE12s offer rapid doubling times and express lung surfactant proteins 

B and C. MLE12s were also chosen because primary differentiated human alveolar epithelial cells 
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are not commercially available, and slow proliferation of isolated cells would not be feasible. 

Primary human airway basal epithelial stem cells (BESCs, identified by integrin α6, KRT5, and 

KRT14) from healthy donors, in EpiX medium (Propagenix) were also used to demonstrate 

translatability to recellularization with stem cell populations [170]. Passages between 2 and 6 were 

used for experimentation. Longer culture periods were used for BESC experimentation to allow 

for differentiation and barrier formation to occur. BESCs and MLE12s on hydrogel coatings were 

treated with either ESI-09 (Sigma), a highly specific Epac inhibitor that does not affect PKA 

expression, or 8-pCPT-2-O-Me-cAMG-AM (007-AM, TOCRIS), an Epac agonist that does not 

discriminate between Epac1 or Epac2. 5 nM of each treatment or a DMSO vehicle control was 

added in media. Concentrations were determined by a dose response assay (data not shown), 

testing a range determined by a literature review [155], [171] for 8 to 24 hours. Antibodies for 

immunofluorescent staining included, ZO-1 (Invitrogen), Vinculin (Sigma), AF-6 (B-5, Santa 

Cruz Biotechnology), JAM-A (J10.4, Santa Cruz Biotechnology), E-cadherin (A42, Cell Signaling 

Technology), Epac (A-5, Santa Cruz Biotechnology), Rap1 (4C8/1, Santa Cruz Biotechnology), 

Alexa Fluor 488 Phalloidin (Invitrogen), and Alexa Flour 647 secondary antibody (Invitrogen). 

Stained cells were mounted using ProLong Gold Antifade with DAPI and dried overnight at 4° C. 

Images were acquired at 63x magnification on a Zeiss AxioObserver Z1 fluorescence microscope. 

 

Cell adhesion and spreading assay 

Cell Counting Kit-8 (CCK8, Dojindo Molecular Technologies) colorimetric assay was 

used to determine cell viability and proliferation on each coating. 4 and 24 hours after inoculating 

3.2 x103 MLE12 cells per cm2, media and unattached cells were aspirated from each well. The 

CCK8 and media solution was added to each well according to the manufacturer’s protocol. A 
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microplate reader detected the absorbance of each well. Data are shown as normalized absorbance 

to collagen. 

 

Transepithelial electrical resistance (TEER)  

96W10idf PET plates (Applied Biophysics) were coated overnight at 4ºC with each coating 

type then rinsed with media. BESCs and MLE12s seeded at a density of 200,000 cells/cm2 to 

achieve confluence shortly after the start of culture. Cell attachment and cell-cell junction 

resistances are quantified using electric cell-substrate impedance sensing (ECIS, Applied 

Biophysics). Wells were coated, and resistances were measured according to manufacturer 

instructions. Resistance is reported at low frequencies (4000 Hz) and longer time points to 

highlight cell-cell junction formation and shorter time points to show cell attachment. 

 

Fluorescently-labeled dextran membrane permeability assay  

Alveolar epithelial monolayers formed on 0.4 µm Transwells (Corning) coated with each 

ECM combination as previously stated prior to seeding of 200,000 cells/cm2. After 1 and 3 days, 

2 mg/mL of 4 kDa FITC-dextran in PBS (Sigma) was added to the apical chamber of the Transwell 

for 24 hours. 100 uL was taken from the bottom chamber of the well to measure fluorescent 

intensity using a microplate reader with excitation at 490 nm and emission at 520 nm. The intensity 

of media without FITC-Dextran was subtracted from each value to determine relative amounts of 

dextran that has passed through the barrier. 

 

Gene expression quantification 



64 
 

mRNA was extracted and purified from MLE12s and BESCs seeded onto each coating for 

5 days then treated with a DMSO vehicle control or Epac treatment for 4 hours, using an RNeasy 

Mini kit (Qiagen) and converted to cDNA using iScript cDNA synthesis kit (Biorad). qPCR was 

performed with primers designed for the desired target genes shown in Table 1.  After the previous 

examination of multiple housekeepers, 18s will be used to analyze further results.  

 

 

 

 

Target 

Protein 

 

Mouse Forward Primer Sequence 

Human Forward Primer Sequence 

E-cadherin 

 
 

For AACCCAAGCACGTATCAGGG -- 

Rev ACTGCTGGTCAGGATCGTTG -- 

Rap1A 

 
 

For GTCAACCCAAAATTGGCACCA ATTGTGTCCCCCACCCTTCA 

Rev GTCAGAGCAGACTTCCCCAC CCAGGGAACTTGTGCAAACC 

AF-6 

 
 

For CGCCAAGAGACTCGTCTGG CAGCCAATCCGAACAGACCT 

Rev CTGCCCACGCTTCAATAGC CCATGGGAAACACGCAGAAG 

Claudin-18 

 
 

For GTGCGATGACGTGATCTG TGA GGATCATGTCCACCACCACAT 

Rev GTTTATTGGGACTGGGGGCA TGGTCTGAACAGTCTGCACC 

JAMA 

 

For CTCTGCTCCTCCTGTTCGAC GACCAAGGAGACACCACCAG 

Rev ATGCTCCCCTGGAAGACGAT AAGGTCACC CGTCCTCATA 

Epac1 

 

For GCA ATATTCCCCATGAACG TCCGGCAAGATGAG AAAGC 

Rev GGATGGAGCAGACTGCCTTT TCCAGATCCAAGGGGAGAGG 

18s 

 

For TCCGGCAAGATCGAGAAAGC GCAATTATTCCCCATGAACG 

Rev GGATGGAGCAGACTGCCTTT GGGACTTAATCAACGCAAGC 

Table 4.1. Primer sequences used in the qPCR analysis. 
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Immunofluorescence and ZO-1 Quantification 

MLE12 cells were seeded onto sterilized glass coverslips or Transwell inserts coated with 

each of the ECM combinations and was cultured until a confluent monolayer was achieved. Cells 

were treated with either ESI-09, 007-AM, or the DMSO vehicle control for 4 hours. To 

permeabilize and fix, 0.5% Triton X-100 in 4% paraformaldehyde was applied for 2 min, then 

replaced with 4% paraformaldehyde for 20 min. After several rinses with PBS, the cells were 

blocked with 0.1% BSA before labeling with primary antibodies for 30 minutes at 37°C. 0.1% 

BSA was applied again before labeling with each with their respective secondary antibodies for 

30 minutes at 37°C. Images were acquired on a Zeiss LSM 710 confocal microscope using 

ZEN2011 software. 

Quantification of the ZO-1 staining was done using the AngioTool software developed 

by the NIH Center for Cancer Research. A minimum of 3 images per sample and 3 samples per 

group were used to create a map of the junction structure and then analyze spatial parameters. 

The number of cells per image was counted using ImageJ software. Number of junction 

endpoints or breaks per cell and mean lacunarity were used to characterize junction integrity 

for each sample. Lacunarity quantifies the degree of spatial order within the junction structure 

by comparing the variation in both the background and foreground pixel densities [172], [173]. 

 

Statistical Analysis 

All data are presented as mean +/- standard deviation with an N ≥ 3 unless otherwise stated. 

Statistical significance was determined by a Two or One-way ANOVA and a Tukey’s multiple 

comparisons tests using GraphPad Prism.  
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4.2 Results 

 

ECM coating modulation of attachment and barrier function 

Alveolar epithelial cell barrier formation on each dECM combination compared to dECM 

alone was examined by TEER and transwell permeability of MLE12 cells cultured onto matrix-

coated plates (Figure 4.2A-B). The first 12 hours indicates resistance predominately caused by 

attachment and spreading of the cells on each matrix, showing initially increased resistance by 

cells cultured on laminin alone, dECM with laminin, and dECM with fibronectin coatings. Cell 

viability at 4 and 24 hours using CCK8 also shows a significant increase of MLE12 attachment to 

fibronectin-enhanced matrices compared to all other substrates (Figure 4.1) This trend persisted 

through 24 hours when the highest resistance monolayer was produced by cells cultured on the 

combination of dECM and laminin. dECM with laminin has a significantly higher barrier function 

compared to collagen and fibronectin for the entire 3-day culture.  
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Figure 4.1. Attachment and proliferation of MLE12 cells with respect to ECM coating. 

Relative cell viability of MLE12 cells cultured on collagen I (C), dECM (D), laminin (L), or 

fibronectin (F) matrix combinations determined by a cck8 assay at 4 and 24 hours. Data are 

presented as mean +/- standard deviation. N=3 per group. * indicates p < 0.05. 

 

Small molecule permeability with 4 kDa dextran by MLE12 monolayers formed onto 

matrix-coated transwell supports was also examined. At two days of culture, both dECM with 

laminin and laminin alone have less permeability compared to collagen, but not significantly 
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different from dECM (Figure 4.2C). It is only after four days that cells cultured on laminin alone 

are less permeable compared to cells cultured on both collagen and dECM (Figure 4.2D). 

 

Figure 4.2. The effect of dECM composition on alveolar epithelial barrier formation. TEER 

of MLE12 cells cultured on collagen I (C), dECM (D), laminin (L), or fibronectin (F) ECM coating 

combinations over 72 hours is shown by (A) a representative real-time graph of one sample with 

3 experimental replicates and (B) binned at 12, 24, 48 and 72 hours with 3 experimental replicates 

to show statistical differences. MLE12 monolayer permeability to small molecules with respect to 

ECM coating after (C) 2 and (D) 4 days of cultures was determined by a 4 kDa FITC-Dextran 

Transwell permeability assay. Normalized dextran flux is shown as absorbance values from the 

bottom chamber of the Transwell, correlating to dextran transported across the membrane. Data 
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are normalized to the collagen control and presented as mean +/- standard deviation. N ≥ 3 for 

each coating condition. n.s, *, and ** indicates p > 0.05, p < 0.05, and p < 0.001, respectively.  

 

MLE12 junction expression on ECM coatings 

Increased barrier function with laminin led us to investigate the underlying mechanisms 

further by gene expression and immunofluorescent staining within both AJ and TJ complexes. 

Immunofluorescence staining of vinculin, E-cadherin, and F-Actin colocalization was done 

(Figure 4.3) to understand the maturity of tight junction structures on dECM and dECM with 

laminin coatings compared to collagen. This staining suggests that cells cultured on dECM, 

compared to collagen, had “healthier” barriers with vinculin localized to the junctions. dECM 

junctions had more abundant and linear staining of all three proteins at the junction, with less 

vinculin and E-cadherin within the cytoplasm. Since vinculin strengthens the links between E-

cadherin and the cytoskeleton, this could give insight into changes of TEER between collagen and 

dECM. The disconnect seen between the mRNA and protein levels of E-cadherin (Figure 4.6), 

with E-cadherin expression only being upregulated in the presence of laminin, suggests that other 

components within dECM may be causing inhibition of E-cadherin endocytosis or translocation 

to the junction instead of upregulation. Addition of laminin to dECM shows dense staining of both 

vinculin and E-cadherin throughout each cell, with only a few cells with enhanced localization at 

the junction. With upregulation of E-cadherin with laminin, there may be increased transcription 

of E-cadherin that has not fully assembled at the junction. 
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Figure 4.3. AJ protein localization with variations in ECM coatings. Representative 

immunofluorescent images of MLE12s cultured onto collagen, dECM or dECM with laminin with 

DAPI (blue), Vinculin (yellow), E-cadherin (red), and F-Actin (green) staining. Scale bar = 10 

µm. 

Subtle increases in JAM-A expression overall and at the junction between cells cultured 

on Collagen and dECM (Figure 4.4) match gene upregulation of JAM-A. All groups except 

collagen have distinct outlines of the cells with JAM-A, indicating that ECM proteins other than 

collagen and laminin are causing JAM-A localization at the cell interfaces.  
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Figure 4.4. TJ protein localization with variations in ECM coatings. Representative 

immunofluorescent images of MLE12s cultured onto collagen, dECM, dECM with laminin, or 

laminin alone with DAPI (blue), JAM-A (red), and F-Actin (green) staining. Scale bar = 10 µm. 

Immunostaining of AF-6 (Figure 4.5) shows distinct localization that the junction of all 

cells regardless of ECM.  dECM has some variability in staining across the monolayer, possibly 
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due to processing, but localization is considered to be similar to the other groups based on overall 

sample appearance.  
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Figure 4.5. AF-6 localization with variations in ECM coatings. Representative 

immunofluorescent images of MLE12s cultured onto collagen, dECM, dECM with laminin, or 

laminin alone with DAPI (blue), AF-6 (red), and F-Actin (green) staining. Scale bar = 10 µm. 

 

MLE12s were seeded on ECM coatings for 5 days to evaluate mRNA expression with 

qPCR (Figure 22A-F). The laminin concentration of 0.1 mg/mL was chosen based on decreased 

junction gene expression with higher coating concentrations (data not shown). We concluded that 

0.1 mg/mL laminin is the most effective concentration for further experimentation. Gene 

expression of Claudin 18, Epac, and AF-6 all increased with cells cultured onto laminin-

supplemented matrices. E-cadherin and JAM-A gene expression were highest with the 

combination of laminin and dECM. The Rap1 expression only had significant differences between 

cells cultured on dECM with laminin and dECM with fibronectin. More significant differences 

between other coating groups may be seen in Rap1 localization or activation. Expression of all 

genes was either decreased or not significantly different by cells cultured on coatings containing 

laminin compared to all other coating groups. Additionally, there is an increasing trend in 

expression of AF-6, JAM-A, and Rap1 with cells cultured on dECM compared to on collagen 

alone, suggesting that collagen alone is not enough to stimulate this pathway and the remnants of 

laminin or other proteins trigger Epac/Rap1 activation.  

Throughout all immunofluorescent staining of the epithelial junctions, the most 

considerable differences by coating type were seen in ZO-1 staining. ZO-1 protein expression 

(Figure 4.6G) shows a qualitative increase in the amount of ZO-1 stabilizing the junctions of 

MLE12s cultured on dECM with laminin and laminin alone. Compared to cells cultured on 

collagen, there is also more uniformity in cell and junctional morphology of MLE12s on both 
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dECM and dECM with laminin. Junction formed on dECM or collagen coatings both exhibit gaps 

within the ZO-1 lining the junction (indicated by arrows, Figure 4.6G), and a zipper arrangement 

of the ZO-1 at the junction. Alternatively, laminin coatings induce a more continuous, linear ZO-

1 formation at the junction. Overall, cell uniformity was quantified by lacunarity index (Figure 

4.6H), and while junction morphology is different between groups leading to higher error, overall 

cell shape is consistent within each coating, causing no significant difference. There still may be a 

difference between cell shape and uniformity between coating types, but this may not be 

considered with this lacunarity index analysis. A decrease in the number of junctions per cell with 

laminin added to the coating before culture has been confirmed quantitatively by ImageJ analysis 

(Figure 4.6).  
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Figure 4.6. Changes in junctional gene expression and ZO-1 localization with dECM coatings 

dictates alveolar epithelial junction regulation. MLE12 alveolar epithelial cells were cultured 

on TCP coated with collagen (C), dECM (D), laminin (L), fibronectin (F) or a combination of two 
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for 5 days before collecting mRNA. Gene expression of the (A-C) junction proteins, claudin-18, 

E-cadherin, and JAM-A, and (D-F) junction regulators, Epac, AF-6, and Rap1, were quantified 

using qPCR and normalized to collagen coating controls. Upon barrier formation by alveolar 

epithelial cells, (G, scale bar = 20 µm) immunofluorescent staining of ZO-1 (white) and Dapi 

(blue) shows stabilization of the junctions depending on coating type by a representative confocal 

image. Arrows indicate breaks within the cell junctions. Quantification of confocal images from 3 

experimental replicates using AngioTool determined the (H) lacunarity index and (I) the number 

of junction interruptions per cell. Data are presented as mean +/- standard deviation. N ≥ 3 with 2-

3 technical replicates for each coating condition. n.s, *, and ** indicate p > 0.05, p < 0.05, and p 

< 0.01, respectively.  

 

Epithelial progenitor cell barrier formation  

To determine if similar findings would translate to a progenitor cell population that is 

commonly used for lung tissue engineering, basal epithelial stem cell (BESC) junction formation 

through the Epac/Rap1/AF-6 pathway was probed. BESCs were cultured onto collagen, dECM, 

and dECM with laminin-coated TCP for a week prior to examination with TEER (Figure 4.7A-B). 

Initially, there were few differences in resistance means between BESCs cultured on dECM and 

dECM with laminin coatings. Changes were observed after 168 hours when the barrier function of 

cells cultured on dECM with laminin begins to reach higher resistances overall. Collagen shows 

meager resistance throughout the entire culture, caused by lack of BESC junction formation and 

persistence of a round morphology.  

Similar to MLE12s cultured on laminin coatings, dECM causes significant upregulation of 

JAM-A and Claudin-18, but not in Epac. Contrasting MLE12 gene expression, BESCs do not show 
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significant increases in AF-6 expression when cells are cultured on dECM and dECM with laminin 

compared to collagen.  

  

Figure 4.7. BESC barrier function and Epac/Rap1 pathway expression. TEER of BESCs was 

examined over 9 days after being cultured on collagen (C), dECM (D), or dECM + Laminin (D 

+L) coatings for 1 week. (A) A representative graph with adjusted means and (B) binned into 24-

hour periods with raw resistances are shown. (C) Gene expression of AF-6, Rap1, JAM-A, Epac, 

and Claudin-18 after 5 days of culture on each respective coating quantified with qPCR. Unless 

otherwise stated, all data are presented as mean +/- standard deviation. N ≥ 3 for each coating 

condition. * and ** indicates p < 0.05, and p < 0.01, respectively. 

 

Role of Epac in laminin-mediated attachment and barrier formation 
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Epac has been implicated in both barrier regulation and cell attachment. Relative amounts of cell 

metabolites detected by a CCK8 assay show that Epac treatment does affect MLE12 attachment 

(Figure 4.8). MLE12 cells normally exhibit relatively low attachment on collagen alone compared 

to dECM and dECM with laminin; however, when 007-AM Epac activator is added into the media, 

there is a significant increase in cell attachment onto collagen coatings. No effect is seen with ESI-

09 Epac inhibitor treatment. Unexpectedly, the opposite is seen with dECM compared to collagen, 

where 007-AM treatment causes decreases in cell attachment, but ESI-09 also causes no change. 

dECM and dECM with laminin have a similar attachment, as seen previously, but no change is 

seen when 007-AM is added while an increase is seen with ESI-09. Unanticipated changes in cell 

attachment to dECM and dECM with laminin coatings with Epac treatment could be caused by 

other ECM components within dECM could be causing feedback attachment responses that are 

not investigated within this research.  
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Figure 4.8. Epac inhibition and activation effects on MLE12 cell attachment. Relative cell 

viability determined by a cck8 assay at 4 hours. Data are presented as mean +/- standard deviation. 

N ≥ 3 per group. *, **, and *** indicates p < 0.05, p < 0.01 and p < 0.001, respectively.  

 

To more fully understand the effects of the Epac/Rap1 upregulation on laminin-rich 

matrices, inhibition or activation of Epac with ESI-09 or 007-AM, respectively, was used to 

evaluate if laminin-mediated barrier reinforcement could be abolished or induced. TEER analysis 

of MLE12 cells treated with EPAC inhibitor or agonist for 24 hours shows significantly decreased 

barrier resistance with ESI-09 Epac inhibition and barrier strengthening with 007-AM Epac 

activation over 24 hours (Figure 4.9A). Epac treatments were reversible upon media change, 

shown by the convergence of both groups with their DMSO counterpart.  

While TEER of cells cultured on dECM with laminin can be reduced with ESI-09, 4 kDa 

dextran permeability does not change significantly from DMSO (Figure 4.9B). However, a barrier 

disruption is seen when ESI-09 is added to MLE12 culture on laminin alone after 4 days, shown 

by an increase in dextran flux (Figure 4.9B) compared to the DMSO vehicle control. An increase 

in barrier resistance was also seen when ESI-09 was added to cells cultured on collagen. The reason 

for this is unknown, but we speculate that it could be caused by a feedback loop when laminin is 

not present. To determine if laminin-mediated barrier function can be induced in cells cultured 

without laminin supplemented coatings with Epac activation, similar dextran permeability assays 

were also conducted on collagen and dECM with 007-AM (Figure 4.9C). Treatment of cells on 

collagen and laminin with 007-AM after 2 days of culture were the only groups to show significant 

decreases in junction permeability.  
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Figure 4.9. Both Epac activation and inhibition cause ECM-dependent barrier function 

changes. (A) MLE12 cells cultured on dECM (D) or dECM with laminin (D + L) were treated 

with either ESI-09 Epac inhibitor or 007-AM Epac agonist for 24 hours to examine TEER. (B) 

Cells cultured on collagen I (C), dECM (D), dECM with laminin (D+ L) and laminin only (L) 

coatings were treated with ESI-09 to determine if barrier permeability to 4 kDa molecules can be 

abolished. (C) 4 kDa FITC-dextran permeability of cells cultured on collagen I (C), dECM (D), 

dECM with laminin (D+ L) and laminin only (L) coatings with 007-AM treatment was evaluated 

to determine whether barrier permeability of 4 kDa molecules could be further reduced. Dextran 

flux is defined as the amount of dextran that has permeabilized through the transwell support into 

the bottom chamber. Samples treated with the Epac inhibitor (ESI-09) and Epac agonist (007-AM) 

are reported as normalized values to their DMSO vehicle control counterparts. All data are 
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presented as mean +/- standard deviation. N ≥ 3 for each coating condition. * and ** indicates p < 

0.05, and p < 0.001, respectively.  

 

Delving further into the mechanisms of Epac, we also examined junctional gene and 

protein expression with Epac inhibition. All junctional gene expression was decreased 

significantly compared to the vehicle control except for Rap1, which showed a decreasing trend 

when treated with ESI-09 (Figure 4.10A). ZO-1 localization to the junction was also disrupted 

with the treatment of ESI-09 (Figure 4.10B). Additionally, F-actin arrangement and cell 

morphology were drastically altered with increased stress fiber formation and junctional 

degradation. This was confirmed quantitatively by image analysis (Figure 4.10C-D), showing 

decreased mean lacunarity with ESI-09; however, a non-significant decrease in the number of 

junction endpoints per cell potentially caused by lack of junctions. 
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Figure 4.10. Effect of Epac inhibition on junction protein and gene expression. (A) Gene 

expression of claudin-18, E-cadherin, JAM-A, Epac, AF-6, and Rap1 by MLE12 alveolar 

epithelial cells cultured onto TCP coated with dECM with laminin for 5 days before treatment with 

ESI-09 was quantified and normalized to the vehicle control. (B, scale bar = 20 µm) Upon 

confluency, MLE12s were treated for 4 hours with ESI-09 and stained for ZO-1 (white) and F-
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actin (green). Representative confocal images and AngioTool analysis junction outlines show 

disorganized junctions with Epac inhibition. Quantification of confocal images from 3 

experimental replicates using AngioTool determined (C) the lacunarity index and (D) the number 

of junction interruptions per cell with ESI-09 treatment. Data is presented as mean +/- standard 

deviation from 3 experimental replicates with a minimum of 2 technical replicates each and *, **, 

**** indicates p < 0.05, p< 0.01, and p < 0.0001, respectively. 

 

Conversely, Epac activation with 007-AM increases gene expression of both Rap1 and 

JAM-A (Figure 4.11A). Immunofluorescence staining cells cultured on collagen matrices with and 

without 007-AM staining shows ZO-1 localization to the junctions and f-actin cortical organization 

(Figure 4.11B), more resembling junctions formed on laminin-rich matrices. Image quantification 

characterizes these changes by finding an increase in cell shape uniformity (lacunarity, Figure 

4.11C) and a decrease in the number of junction-breaks per cell (Figure 4.11D). These data show 

that 007-AM increases expression while other AJ and TJ maturation may be caused by stabilization 

of ZO-1 or translocation to the junction.  
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Figure 4.11. Junction reorganization with Epac agonist. (A) Gene expression of claudin-18, E-

cadherin, JAM-A, Epac, AF-6, and Rap1 by MLE12 alveolar epithelial cells cultured onto TCP 

coated with collagen for 5 days before treatment with 007-AM was quantified and normalized to 

the vehicle control. (B, scale bar = 20 µm) Upon confluency, MLE12s were treated for 4 hours 
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with 007-AM and stained for ZO-1 (white) and F-actin (green). Representative confocal images 

show more organized junctions with 007-AM treatment. Quantification of confocal images from 

3 experimental replicates using AngioTool determined (C) the lacunarity index or the uniformity 

of junction formation and (D) the number of junction interruptions per cell with 007-AM treatment. 

Data are presented as mean +/- standard deviation from 3 experimental replicates with a minimum 

of 2 technical replicates each and *, **, *** indicates p < 0.05, p< 0.01, and p < 0.001, respectively. 
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4.4 Discussion 

This research aims to expand the basic knowledge of epithelial barrier physiology and to 

elucidate how decellularization can alter engineered alveolar barriers. To achieve this, we have 

investigated whether the epithelial barrier function can be improved by systematically replenishing 

laminin or fibronectin within dECM. Laminin and fibronectin were chosen for their abundance 

within epithelial basement membranes, and the drastic effects both can have on epithelial 

differentiation and propagation of disease pathologies if concentrations are dysregulated [17], [62], 

[174]–[177].  

Through TEER and dextran permeability studies, we have identified laminin as a critical 

protein in alveolar junction formation over collagen I and fibronectin. Fibronectin causes a 

prolonged decrease in barrier function but an increase in initial attachment rate, seen both in TEER 

before 12 hours and CCK8 viability assays at 4 and 24 hours. These results are constant with 

previous studies showing increased cell attachment onto fibronectin and laminin-rich matrices, but 

only laminin enhances barrier maturation within decellularized lungs and in vitro [9], [89]. 

Analysis of epithelial barrier formation on dECM shows some similarities in the characteristics of 

barriers formed on both fibronectin and laminin, yet at a fraction of the resistance. At earlier time 

points, dECM had a similar attachment rate to fibronectin, but a long-term slope resembled cells 

on laminin coatings. This confirms that previously identified concentrations of both laminin and 

fibronectin within dECM [7] are promoting initial attachment and steady increases in barrier 

resistance by alveolar epithelial cells. Nevertheless, to achieve prolonged barrier maturation, 

laminin would need to be added.  

Similarly, small molecule permeability with laminin coatings also decreased; however, 

dECM and dECM with laminin did not show significant changes from that of collagen, mainly 
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after 4 days of culture. Dextran permeability showed unexpected differences from the TEER 

results, but we postulate that after 4 days, collagen and dECM may have formed tight enough 

barriers concerning pore size and can also reflect transcellular transport, although the changes in 

TEER may give more insight into prolonged paracellular ion movement associated with edema 

[178].  

To further understand how laminin is increasing the barrier function of the alveolar 

epithelium, we sought to identify which junction structures are being regulated. Both AJ and TJ 

proteins, E-cadherin and JAM-A, and the stabilizing scaffold protein, vinculin, show the most 

significant changes in colocalization with dECM compared to collagen and laminin enriched 

coatings. Localization of vinculin within epithelial monolayers can help to distinguish the strength 

of focal adhesions or adherens junctions[179]. Vinculin has a high turnover rate and therefore, can 

make it difficult to visualize its behavior [180]. We suspect that other matrix proteins within dECM 

aid in the initial formation of these structures, but other scaffolding proteins must help to maintain 

and strengthen these junction complexes. JAM-A and E-cadherin are also closely associated with 

AF-6, as AF-6 aids in its recruitment to early junctions [181], [182]. AF-6 is also found at nectin 

and claudin complexes with ZO-1 to stabilize and recruit more junction proteins. Without AF-6 

present during junction formation, both cell junction formation and cell polarity are inhibited 

[183]. Even during very early stages of cell-cell contacts, AF-6 is at the junction to organize all of 

these structures and may be why there is AF-6 distinctly localized that the junction of all cells 

regardless of ECM, while collagen does not cause the same effect with other junction proteins. 

AF-6 is localizing to many structures at the junction even if the junctions are still immature and 

produce low resistance barriers. Upregulation of Claudin-18, JAM-A, Epac, AF-6 and E-cadherin 

gene expression with laminin or dECM with laminin matrices, but only very subtle changes in 
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protein localization suggest both TJ, AJ, and focal adhesion complexes are potentially altered by 

an alternative method to achieve the overall barrier strengthening with laminin-coated substrates. 

We believe this is due in part by the stabilization of multiple junction structures by the scaffolding 

protein ZO-1, seen by translocation of ZO-1 to the junction in a continuous band with laminin 

enriched coatings. Analysis of ZO-1 immunofluorescent staining at the cell junction showed that 

there was a significant decrease in the number of breaks in the ZO-1 junction staining per cell and 

a more linear junction morphology when cells were cultured on laminin. ZO-1 recruitment to the 

cell junction in an organized morphology is a strong correlation to alveolar permeability because 

it is required for assembly of AJs, TJs, and the actin cytoskeleton [63], [152], [184]–[186].  

MLE12 cells offer fully differentiated alveolar epithelial cells and high expansion rates for 

investigating these fundamental questions concerning alveolar epithelial junctions; however, lung 

bioengineering requires stem populations that can repopulate with more than 21 types of cells 

within the lungs. Several groups have identified basal epithelial stem cells (BESCs) as a promising 

multipotent stem cell candidate for lung regeneration [13], [151] that would differentiate into 

ciliated, club and pneumocyte populations [187], [188]. To demonstrate the potential translation 

of laminin treatments into stem cell repopulation of bioengineered lungs, we conducted similar 

coating experiments with BESCs with TEER and qPCR analysis. Like the MLE12 cells, BESCs 

formed higher resistance barriers on dECM and dECM with laminin compared to a complete lack 

of barrier formation on collagen-coated plates. Gene expression of JAM-A, EPAC, and claudin-

18 were increased with both dECM and laminin compared to collagen alone. These data suggest 

that laminin is a stimulator of Epac and junction formation within both stem cell and fully 

differentiated lung epithelial cell populations.  
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Epac is widely known as a driver of actin organization and barrier formation within the 

context of the endothelium, but less is known about Epac’s role in alveolar epithelial barrier 

formation. Initial assessment of gene expression with laminin and fibronectin showed upregulation 

of Epac and AF-6 with laminin coatings. Rap1 and AF6 were only upregulated in the presence of 

additional laminin, but not fibronectin, suggesting that laminin mediates barrier function causing 

upregulation of JAM-A, E-cadherin, and Claudin-18, as expected from previous literature linking 

Epac activation to TJ and AJ expression and stabilization [189]–[193]. These data led us to 

investigate further Epac’s role in laminin-mediated barrier function by inhibiting the interaction of 

Epac with downstream effectors. Epac inhibition can abolish laminin-mediated barrier resistance, 

as observed by TEER and ZO-1 localization.  

Also of interest is how we can apply Epac activation to enhance barrier formation without 

the addition of laminin. An Epac agonist, 007-AM was applied to collagen coatings, significantly 

increasing JAM-A and Rap1 gene expression, rearranging ZO-1 and the actin cytoskeleton 

cortically, and decreasing barrier permeability. 007-AM has recently been established as a long-

lasting treatment for endothelial barriers within bioengineered lungs [152] and treatment of 

vascular permeability within acute lung injury [155], [194].  These data now confirm that Epac 

activation and laminin-enriched ECM coatings can both benefit the epithelial barriers to produce 

functional lung biomaterials and potentially serve as therapies for edema-related diseases.  

Future studies will be conducted to confirm that these findings can be translated to ex vivo lung 

tissue engineering and in vivo treatment of diseases. However, this high throughput and definitive 

in vitro approach has allowed us to answer basic questions about junction physiology that would 

not be possible within a whole lung model. Also, while these experiments have definitively 

established the role of both laminin and fibronectin in alveolar epithelial barrier formation, the role 
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of other critical epithelial differentiators such as collagen IV, nidogens, GAGs, other glycoproteins 

will need to be investigated.  
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CHAPTER 5: ROTATIONAL BIOREACTORS FOR LUNG RECELLULARIZATION 

 

5.1 Rationale 

Designing methods for the culture of 3D tissue engineering requires strategies that do not 

typically apply to 2D culture. The intricate architecture necessary to create the natural tissue 

microenvironment, such as within decellularized lungs, involves consideration of adequate cell 

seeding to all alveoli, airways, and capillaries, delivery of fresh media to all cells, and tissue 

orientation during culture to ensure proper cell dispersal to all dimensions. Currently, there are 

several challenges hindering lung bioengineering from creating viable transplant alternatives, 

including insufficient scaffold cell coverage, partial cell differentiation, and lack of uniform organ 

function. Perfecting bioreactor designs and seeding techniques with the addition of cell-specific 

dynamic seeding protocols to current methods may aid in overcoming some of these challenges.  

The latest advances in both commercially available and custom lung bioreactor systems 

include artificial pleural membranes, gas exchange units, waste removal, real-time monitoring of 

oxygen and lung mechanics, and high-throughput automation [195]. These advancements have 

extended the length of culture and reproducibility; however, with insufficient cell attachment and 

differentiation, current efforts have not resulted in fully functional tissue even after one month of 

culture [196]. To accomplish bioengineered lung function, alternative seeding procedures need to 

be considered to combine with current bioreactor advancements [197].  

Specifically for recellularization of acellular lung scaffolds, two main bioreactor designs 

have been developed to apply media flow and cell dispersal; a perfusion bioreactor system [2] and 

a rotating wall vessel (RWV, [11]). These systems have been designed and commercialized for 

both rodent lung culture and more complex porcine and human-sized organs [10], [91], [100]. Both 



93 
 

designs have their limitations caused by cell settling during prolonged static culture periods or 

constant cell movement inhibiting attachment.  

The branching airway structures of the lungs are ideal for efficient delivery of fluids and 

cells, but challenges arise with keeping cells stationary for attachment throughout all dimensions 

of all alveolar structures. Alveoli are spherical structures lined with a very thin alveolar epithelium 

that is vital to the function of the lung. The 200 µm structure is spherical and would require 

attachment or migration of approximately ten, 20 µm type 1 epithelial cells around the entirety of 

the sphere [198]. Due to the complex 3D structure, distribution of the cells within the alveoli and 

throughout all alveoli may require dynamic seeding regimens [11]; however, during the first hours 

of culture, when cells are first attaching, periodically repositioning the lung may be needed for 

epithelial attachment.  

In vivo, migratory cells such as immune or metastatic cells require flow to initiate cell 

adhesion. In the case of epithelial cells, laminar flow can decrease the rate of attachment [104] and 

even increase metastatic potential [199]. Alternatively, to ensure sufficient epithelial attachment, 

periods of static culture are required to allow for cell adhesion complexes to be formed. Cells first 

make attachments to their ECM substrates through integrin-based focal adhesions. Epithelial cells 

then spread, reorganize their cytoskeleton, and initiate more integrin interactions with the ECM to 

strengthen adhesion over time. Adhesion complexes begin cooperatively binding after just one 

minute, but it takes up to 10 to 20 minutes after seeding for the cell adhesion structures to withstand 

substantial shear forces [200]. Once epithelial attachments have matured, fluid flow and shear 

stresses become an essential driver of cell differentiation. After attachment, a long-term culture 

within a perfusion bioreactor system is used to distribute nutrients and apply biophysical stimuli.  
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Static seeding protocols used for RWV and some perfusion culture systems cause extended 

cell settling and therefore, non-uniform cell attachment. Alternatively, other perfusion culture 

system methods include seeding with a constant flow of media and cells through the tissue. 

Constant fluid shear stress could disrupt adhesion complexes immediately upon formation. These 

two systems do provide beneficial advanced media dispersal and mechanical cues that aid in tissue 

maturation but may need refining concerning seeding procedures. Given the importance of 

maximum attachment of delivered cells throughout recellularized lungs, the goal of this study is 

to increase cell dispersal using a rotational seeding method for ex vivo culture of decellularized 

lungs.  
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5.2 Materials and Methods 

 

Bioreactor design 

A rotational seeding system designed for improved attachment and dispersal of cells within 

decellularized lung scaffolds. The rotational system supports a 50 mL conical tube on two long 

cylinders (Figure 5.1). One cylinder was attached to a stepper motor programmed using an Arduino 

Mega (See Appendix A for code) controller system to rotate the tissue every 20 minutes for 3 

hours. This rotation rate ensures uniform coverage of the airways over 4 hours using the cell 

coating routine illustrated in figure 5.1B. This rotation procedure allows attachment at every 45º 

angle of the lung throughout the entire culture. The degree of rotation between resting positions is 

large to allow for optimal cell movement throughout the tissue. After seeding completion, the lung 

was transferred into a perfusion bioreactor system (Figure 5.2) for static overnight culture without 

vascular or airway flow to ensure optimal cell adhesion. 24 hours after initial seeding, vascular 

perfusion through the pulmonary artery was initiated at 2 mL/minute by a pulsatile pump 

(CellMax). Media ventilation was also applied into the trachea at 1 breath/minute, driven by 

negative pressure within the main chamber, created by a syringe pump. One-way valves were 

placed into the breathing loop to allow new media exchange during ventilation. Pressure and pH 

were monitored by sensors also controlled by the Arduino system to ensure pressure did not vary 

more than 15 mmHg [106] from atmospheric pressure and oxygenation of the media was 

maintained.  
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Cell Culture 

Mouse alveolar type II cells (MLE12, ATCC) were cultured with HITES medium 

containing 2% fetal bovine serum at 37 °C with 5% CO2, according to the manufacturer’s 

protocols. Male and female Sprague Dawley rat lungs were decellularized without processing by 

lyophilization and milling, as previously mentioned in the decellularization section of Chapter 3. 

The trachea and pulmonary artery were cannulated for the addition of the cells and bioreactor 

attachment. Before recellularization, the lung was rinsed 3 times with PBS with 5% 

Antibiotic/Antimycotic. All bioreactor components were autoclaved, rinsed with PBS with 5% 

Antibiotic/Antimycotic for 1 day, and handled within a sterile hood before use. 50 x 106 MLE12s 

in 12 mL of media were perfused intratracheally. Inoculated lungs were either rotationally cultured 

for 4 hours in a 50 ml tube or placed directly into the perfusion bioreactor chamber for static culture 

overnight. After initial seeding on rotation bioreactor, as described in the bioreactor design, 

pulsatile vascular flow and media ventilation was administered for 24 hours. 

 

MLE12 cell attachment rate assay 

 250,000 cells/cm2 were seeded onto 0.1 mg/mL dECM or collagen I coatings as previously 

described in Chapter 4. Every 20 minutes for 3 hours, unadhered cells and media were aspirated 

from the well and rinsed gently before fixation with 4 % PFA. Cell nuclei were stained using DAPI 

Prolong Gold Antifade Mounting agent, and the number of nuclei was counted within 3 pre-

determined regions of each well using a Zeiss AxioObserver Z1 fluorescence microscope. Percent 

of cell attachment was calculated by dividing the number of cells attached by the number of cells 

seeded.  
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Resazurin Reduction Assay  

After 48 hours of perfusion culture, media was removed from the main chamber and 

replaced with 50 μM resazurin media solution. This solution remained within the lung for 4 hours 

until absorbance (544 nm (ex)/590 nm (em)) levels of the resazurin solution and qualitative images 

were taken to evaluate metabolic activity of the cells. Absorbance values were subtracted from the 

non-metabolized stock concentration of the 50 μM resazurin solution.  

 

Histology  

Each lung (right or left) was divided into dorsal or ventral portions, that were further 

divided into upper and lower regions. Dissected tissue for histology and other assays were chosen 

based on resazurin cell viability throughout the lung, to attempt to isolate regions with similar cell 

viability for histology and Picogreen. An entire ventral or dorsal portion of each lung was fixed 

with 4% paraformaldehyde, embedded, and sectioned through the frontal plane to see the 

distribution of cells throughout the entirety of the lung. Two histological sections, several 

millimeters apart were taken from each tissue region for staining with hematoxylin and eosin (H 

& E) and imaged using a Vectra Polaris Automated Quantitative Pathology Imaging System.  

 

dsDNA quantification  

A Picogreen dsDNA quantification assay (ThermoFisher) was performed on the remaining 

portions of the lungs not used for histological sectioning. Each sample was normalized to its wet 

weight and graphed as total dsDNA throughout the tissue or as maximum fold change between 

regions. Fold change of total dsDNA was determined by adding the dsDNA values within all 

regions of one sample and dividing by the average total dsDNA for all of the control group. To 
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calculate the maximum dsDNA concentration difference, the highest and lowest dsDNA values 

from one lung were subtracted from each other and then divided by the average maximum 

difference for all control lungs.  

 

Statistical Analysis 

All data are presented as mean +/- standard deviation with an N ≥ 3 unless otherwise stated. 

Statistical significance was determined by a Two or One-way ANOVA and a Tukey’s multiple 

comparisons tests using GraphPad Prism.  
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5.3 Results 

 

Bioreactor design  

To enhance cell dispersal and mimic the mechanics, temperature, and pH within the lungs, 

we have designed a novel bioreactor system. The first portion of the bioreactor system is a 

rotational seeding unit (Figure 5.1) that will turn the lung every 20 minutes in a pattern illustrated 

in figure 5.1B for 4 hours during the initial cell attachment period. Large degrees of rotation were 

used between resting periods to tumble the cells through multiple regions of the lungs before 

settling at the desired location. The duration of the resting periods was determined by the rate of 

MLE12 attachment (Figure 5.1A) to allow 10 percent of cells to attach at each position. This aided 

in the attachment of cells more evenly throughout the lung. Seeding efficiency was characterized 

by H & E staining and Picogreen dsDNA quantification. After 4 hours of cell attachment, the lung 

was moved to the perfusion bioreactor (Figure 5.2) for mechanical conditioning and media 

perfusion. The perfusion bioreactor design was adapted from a previously published design [10], 

[106] without the endothelial seeding chamber.  
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Figure 5.1. Rotational seeding unit design. (A) MLE12 rate of attachment was determined by 

counting the percentage of cells that had attached with respect to number seeded every 20 minutes 

for 4 hours. Attachment rate was used to inform our (B) programmed rotation schedule that will 

rest at every 45° angle of the lung for 20-minute intervals before turning to a new location. Large 

angles of rotation between each resting position allow for coating of the cells. (C) A schematic and 

(B) a picture of the actual system that was housed within a cell culture incubator is shown. An 

Arduino Mega within a protective box (1) powered and controlled the stepper motor (2). The 
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stepper motor actively turns one pipe (3) and through friction with the (5) 50 mL conical tube 

containing the seeded lung, the other pipe (4) will also turn.  

 

Figure 5.2. Perfusion bioreactor design for long-term culture. A previously designed perfusion 

bioreactor system (left, reprinted from [10]) was modified for our culture procedures. An image of 

the modified perfusion bioreactor system (right) includes a breathing loop that is controlled by a 

syringe pump and a vascular circuit driven by a pulsatile pump, but no endothelial seeding 

reservoir.  

 

Resazurin and Picogreen assessment of cell distribution within cultured lungs 

 50 million MLE12 cells were cultured into decellularized rat lungs with rotational or static 

seeding to assess if periods of dynamic culture can increase cell dispersal throughout the lung. 

Resazurin was perfused through the airways and cultured for 4 hours to allow for metabolites to 

gradually change the color of the resazurin solution from a dark blue to pink for whole-lung cell 

viability assessments. After 48 hours of culture, rotationally seeded lungs exhibited a more uniform 

pink or light purple color distribution, correlating to viable cells throughout, while static seeding 
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causes several distinct regions with either viable cells (pink) or dark purple to blue (less cellular 

metabolism, Figure 5.3A). Resazurin absorbance of the lung perfusate (Figure 5.3B) was collected 

from the tracheal cannula and showed increased cell viability with rotational seeding. There was 

no significant increase between rotationally and statically seeded lungs because the collection of 

the perfusate from the trachea had mixed with the resazurin from all regions of the lung upon 

removal. To better understand where cells attached with both seeding methods, after 48 hours of 

culture, the lung was dissected into several regions for assessment. Summing the dsDNA within 

all areas of each lung showed total dsDNA concentrations (Figure 5.3C) that resembled the results 

seen by resazurin absorbance, as expected. To assess regional differences, the maximum difference 

between dissected tissue regions was calculated (Figure 5.3D). There were no significant 

differences found because of a large degree of viability caused by an outlier within the static group 

that had little cell viability throughout.  
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Figure 5.3. Cell distribution and viability within statically or dynamically seeded lung 

scaffolds. (A) Images of regenerated lungs after resazurin perfusion (pink indicates viable 

regions). (B) Resazurin perfusate absorbance quantification after collection from the tracheal 

cannula and (C) overall Picogreen dsDNA concentration indicates whole lung viability. (D) 

dsDNA concentration differences between the dorsal and ventral regions of the right and left lung 

give insight into the regional distribution of cells with a static and dynamic culture. Data are 
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represented as mean +/- the minimum and maximum. N ≥ 3 for each condition with no significant 

changes seen between either group.  

 

Cell dispersal within dynamically culture lungs 

Histology was also done to verify the findings from resazurin and Picogreen cell distribution 

studies. After 48 hours of culture (Figure 5.4), there were increases in cell attachment and 

distribution. Cell morphology within both conditions does not show cell spreading with some 

clumping of cells within the airways, that may be attenuated with longer culture times.  

 

Figure 5.4. Histological analysis of cell attachment after static or dynamic seeding. 

Representative images from the histological sections from either the anterior or posterior regions 

of the left or right lungs are shown. Scale bars on larger images indicate 100 μm and scale bars on 

smaller, magnified images indicate 600 μm. 
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5.4 Discussion 

Several other groups have concluded that dynamic seeding of cells onto biomaterials is 

necessary to enhance cellular differentiation or cell dispersal throughout the entirety of a scaffold 

[13], [201]–[205]. Within whole lung bioengineering, implementation of these methods has faced 

challenges caused by cellular settling or premature detachment of cells by fluid flow. In this study, 

we have developed a seeding protocol that enhances cell dispersal to use in tandem with other 

long-term culture methods. This two-phase culture system includes a rotational cell attachment 

step, followed by traditional ex vivo lung perfusion culture. Alterations to rotation durations and 

speeds can create custom seeding routines based on cell attachment characteristics.  

Resazurin metabolic assays have been previously used as an efficient, non-invasive way to 

assess tissue viability during ex vivo culture [13], [206], [207]. With perfusion into the seeded 

scaffold, cells will encounter resazurin and undergo reduction into a pink colored resorufin. Pink 

and purple regions with high cellular viability will easily be distinguished from dark blue regions 

with little cell content. Rotationally seeded lungs exhibited pink and light purple regions 

throughout the lung scaffold while statically seeded scaffolds had some bright pink areas that 

rapidly transition to a dark purple or blue color. The average resazurin absorbance showed similar 

cell viability results between the two groups, but a closer examination of cell attachment by 

regional Picogreen measurements shows that dispersal was limited to small regions with static 

seeding. While Picogreen dsDNA concentration differences between static and rotationally seeded 

lungs are not significantly different, the fold change is decreased by an outlier within the static 

culture group. The outlier has little difference in dsDNA concentrations between each area because 

overall, there are very few cells throughout the lung.  
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To confirm our previous findings, histology through the frontal plane of the cultured lung 

shows a broader distribution of cells throughout dynamically seeded lungs. Cells within statically 

seeded lungs exhibit sedimentation in a small portion of the lung, that would limit overall function 

after long-term culture. Cell clumping within alveolar and airway spaces and rounded cell 

morphologies may indicate that longer culture times are needed. Various epithelial cell lineages or 

stem cell populations may also be used in the future to induce phenotypic morphologies and 

increase airway and alveoli coverage.  

Careful consideration of epithelial attachment in vitro was used to determine the ideal 

attachment rate within a whole lung scaffold and improved cell coverage. These studies help to 

inform all types of 3D culture methods and emphasize the importance of intermittent motion in 

cellular seeding. The development of a portable, rotation system that is not in direct contact with 

the lung or media allows for reduced contamination and adaptation of these methods to biomaterial 

applications. Overall, these are promising results highlighting the importance of dynamic culture 

in ex vivo cell culture to increase recellularization efficiency.  

 

  



107 
 

CHAPTER 6: REPLENISHING MATRIX COMPONENTS IN dECM: PILOT STUDIES 

 

6.1 Rationale 

Findings from this research and other groups [89], [208], [209] have demonstrated the 

importance of dECM structure and composition on the differentiation and homeostasis of lung 

tissues. Current decellularization protocols cause overall reductions in elastin, collagen, and BM 

ECM components, causing drastic changes in lung mechanics [150], [210]. While the lung is 

equipped with an efficient route for administering decellularization chemicals intratracheally and 

vascularly, ventilation decellularization preferentially strips the BM proteins from the airway and 

alveolar surfaces [211]. Depletion of some ECM proteins more than others can be detrimental if 

the resulting matrix profile recapitulates diseased or aged ratios [17]. Due to “dynamic reciprocity” 

between cells sensing and regulating the surrounding microenvironment, ECM alterations must be 

restored to ensure “healthy” regeneration  [212], [213]. We hypothesize that removal of these vital 

components, specifically at the airway and alveolar walls of decellularized lungs, may cause 

detrimental effects on the formation of the gas exchange barrier upon re-epithelialization and tissue 

maturation.  

Two approaches are being considered to promote a tissue-specific ECM environment 

within decellularization, either cell removal techniques can be further optimized, or the matrix can 

be artificially replenished. Several groups have attempted to add ECM components such as 

Fibrillin-2, Tenascin-C, collagen, [12], [88] or pretreatment with matrix-producing cells [92], [93], 

[214] and have improved recellularization efficiency. However, selectively reintroducing only a 

few ECM components may not address all ECM deficiencies and pre-treatment of cells may 

propagate negatively influenced dynamic reciprocity. We hypothesize that all ECM proteins must 
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be concentrated and deposited at the airway and alveolar surfaces to restore the BM profile and 

structure before a few selected differentiating proteins can further be supplemented. These proof 

of concept studies aims to translate the benefits of concentrated dECM coatings on the epithelial 

barrier that we have shown previously to whole lung epithelial regeneration.  
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6.2 Materials and Methods 

 

Decellularized rat lung dECM coating   

Mouse or rat lungs were decellularized without lyophilization and milling, as previously 

mentioned in Chapters 3 and 5. The trachea and pulmonary artery were cannulated for dECM 

coating pretreatment, the addition of the cells, and bioreactor attachment. The decellularized lungs 

were perfused intratracheally with 5 ml of 8 mg/mL dECM pregel solution [72], [130] and stored 

at 4° C overnight. The coated lung was rinsed 3 times with PBS containing 5% 

Antibiotic/Antimycotic and stored at 4° C until inoculated.  

 

Histology 

dECM coated or non-coated lungs, with and without recellularization were fixed with 4% 

PFA, embedded, and sectioned for H & E staining. As an attempt to represent the regional cell 

viability between end-point assessments, an entire ventral or dorsal portion of each lung was used 

for histology, and the remaining half of the lung was distributed between the remaining assays. 

The tissue was sectioned through the frontal plane to see the distribution of cells throughout the 

entirety of the lung. Two histological sections, several millimeters apart, were stained H & E and 

imaged using a Vectra Polaris Automated Quantitative Pathology Imaging System.  

 

Recellularization 

Preliminary static recellularization studies were performed with decellularized mouse 

lungs. Each dECM-coated and non-coated lung was seeded with 1 x 106 human alveolar basal 

adenocarcinoma cells (A549s) intratracheally. Seeded lungs were then placed into 15 mL conical 
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tubes and placed on a shaker in an incubator for 4 or 7 days. The A549 populated lungs were 

cultured in RPMI media containing 1% Antimycotic/Antibiotic and 10% FBS. 

For all other recellularization with perfusion bioreactor culture, decellularized rat lungs 

were cultured with mouse alveolar type II cell (MLE12, ATCC) in HITES medium containing 2% 

fetal bovine serum. Further experimentation was performed with rat lungs because of size 

limitations with smaller mice lungs. Also, MLE12s were chosen for further experimentation 

because they form more optimal barriers compared to A549s. dECM-coated and non-coated lungs 

were perfused with 12 ml of 50 x 106 MLE12 cells in media intratracheally. A 4 hour initial seeding 

period was completed on the rotation bioreactor as described in the bioreactor design of Chapter 

5. The recellularized lungs were then transferred to the perfusion bioreactor system, also described 

in Chapter 5, for 12 hours of static culture and 4 days of mechanical conditioning. Air was 

exchanged daily, media pH was monitored, and the media was exchanged a maximum of every 3 

days.  

 

Resazurin Reduction Assay  

After 3 and 5 days of perfusion culture, the media was removed from the main chamber, 

and a 50 μM resazurin solution in media was infused into the airways of the lungs and main 

chamber. This solution remained within the lungs for 4 hours before photos of the entire lung 

appearance were taken, and absorbance (590 nm) of the resazurin solution was measured using a 

microplate reader. Absorbance values were subtracted from the stock resazurin solution. After the 

resazurin assessment on the 3rd day, the residual resazurin solution was removed from the chamber, 

resazurin was rinsed from the lungs with media, and the bioreactor was refilled with new medium 

before resuming normal perfusion and ventilation. 
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dsDNA quantification  

DNA content of a portion of the lung section not utilized for histology was quantified using 

a Picogreen dsDNA quantification assay (ThermoFisher). The dsDNA concentration for each 

tissue was determined using the tissue’s initial wet weight. The summed dsDNA of all lung 

sections from each set of coated lungs was normalized to the non-coated lungs. 

 

qPCR  

mRNA was extracted using Trizol (ThermoFisher) from the remaining regenerated tissue 

not utilized for Picogreen or histology according to the manufacturer’s protocols. The mRNA was 

purified with an RNeasy Mini Kit (Qiagen) and quantified using a Pierce BCA protein assay kit 

(Thermo Fisher). After each sample was balanced to the lowest concentration, the mRNA was 

converted to cDNA with an iScript cDNA synthesis kit (Biorad). The cDNA was then used for 

qPCR analysis with the alveolar epithelium-specific junction primers found in table 1 of Chapter 

4.  

 

Ex vivo recellularized lung barrier permeability 

Previously mentioned 4 kDa FITC-labeled dextran (Chapter 4) was administered to the 

trachea of intact and recellularized lungs with or without coatings to assess leakage into the 

vasculature system. This method was adapted from previously tested protocols [94], [215]. 

Multiple fractions of PBS were run through the vasculature to collect any FITC-labeled dextran 

that has crossed the barrier. The immunofluorescence intensity of the PBS perfusate was assessed 
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using a fluorescent microplate reader with an excitation wavelength of 485 nm and an emission 

wavelength of 528mm. 

 

Statistical Analysis 

All data are presented as mean +/- standard deviation with an N ≥ 3 unless otherwise stated. 

Statistical significance was determined by a Two or One-way ANOVA and a Tukey’s multiple 

comparisons tests using GraphPad Prism.  
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6.3 Results  

 

dECM coating deposition 

To evaluate coating efficiency of the dECM, histology was performed on decellularized rat 

lungs with and without dECM coatings. H & E staining of dECM-coated and non-coated lungs 

(Figure 6.1) shows a denser matrix structure within the airways and alveoli throughout the 

histological section. This confirmed our method of coating provided efficient delivery throughout 

the tissue to proceed.  

 

Figure 6.1. dECM coating deposition in decellularized rat lungs. H & E staining of non-coated 

and dECM-coated rat lungs showing ECM distribution within the alveoli and airway structures. 
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Scale bar represents 800 μm in the low magnification images (top) and 200 μm in the higher 

magnification images (bottom). 

 

Non-bioreactor culture of dECM coated decellularized mouse lungs 

A preliminary recellularization study was done using decellularized mouse lungs with 

human alveolar basal adenocarcinoma cells (A549s) to assess attachment and proliferation. 

Picogreen DNA quantification was performed after 4 and 7 days of culture with ECM coated and 

non-coated mice lungs (Figure 6.2). The increase between dECM coated lungs and the control 

lungs was not significant after just 4 days, but after 7 days there was a significant increase in 

proliferation. This preliminary data supports our hypothesis that dECM may increase epithelial 

attachment and proliferation.  
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Figure 6.2. Picogreen dsDNA quantification of A549’s cultured in decellularized lungs. 

dECM-coated or non-coated mouse lungs were cultured for 4 and 7 days on a rocker. Each group 
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has a minimum sample size of 2-3 (4-day control has a sample size of 2) and is represented as 

mean +/- standard deviation. 

 

MLE12 recellularization with dECM coatings 

After 5 days of culture in the dynamic bioreactor system, the recellularized rat lungs that 

were coated with a dECM coating before MLE12 seeding showed higher cell viability throughout 

the lung, demonstrated by pink resazurin dye throughout the lung at day 3 and 5. Recellularization 

without the dECM coating has regions will severely reduce tissue viability at day 3 and decreases 

further by day 5 (Figure 6.3A). Resazurin absorbance of the tracheal perfusate by microplate reader 

confirmed increased absorbance of resazurin caused by increased cellular metabolic activity 

(Figure 6.3B). Picogreen dsDNA quantification (Figure 6.4) further confirms these findings with 

more cells engrafted within the lung at the conclusion of the 5-day culture. 
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Figure 6.3. MLE12 resazurin viability with dECM coatings. (A) Representative images of 

regenerated lungs with and without dECM coatings after resazurin perfusion (pink indicates viable 

regions). (B) Resazurin perfusate absorbance quantification after collection from the tracheal 

cannula. N ≥ 2. 
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Figure 6.4. Picogreen dsDNA concentration within dECM-coated and non-coated lungs. 

MLE12s were recellularized and cultured for 5 days. N=1 for non-coated controls and N=3 for 

dECM-Coated lungs. Data is represented as mean +/- the minimum and maximum.  

 

To then investigate the morphology of the cultured cells and the overall distribution within 

the lung, histological sections were stained with H&E (Figure 6.5). The culture within dECM-

coated lungs exhibited increases in cells attached throughout the lung, with denser regions of cells 

seen in the superior regions. Even in areas with lower cell density, cells were found anchored to 

the walls of many alveoli, with some instances of cell clumping in the alveolar and airway lumens.  
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Figure 6.5. Histological analysis of dECM coated recellularized lung after 5 days of 

perfusion/ventilation culture. Representative bright-field images from dECM-coated lungs 

cultured with MLE12 cells are shown with the magnification of several regions. Scale bars are 800 

μm, 200 μm, and 20 μm with increasing magnification, respectively. 

 

Lastly, to delve further into the function of the cells within the recellularized lungs, we 

evaluated cell junction gene expression and dextran permeability. MLE12 cells cultured in dECM-

coated lungs had increased gene expression of AF-6, Claudin 18, and E-cadherin compared to non-

coated lungs (Figure 6.6A), though more experiments are needed to reach a definitive conclusion. 
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We then performed a dextran ex vivo permeability assay by administering a dextran and PBS 

solution to the lung and collecting the perfusate from the pulmonary artery. PBS was rinsed through 

the trachea 5 to 6 more times to retrieve any dextran that had permeabilized to the vasculature. 

dECM-coated lungs had less dextran pass into the vasculature immediately after dextran perfusion 

compared to non-coated lungs. With additional PBS rinsing fractions, they both had similar levels 

of dextran permeability.  

 

Figure 6.6. Cell-junction gene expression and dextran permeability of dECM coated 

recellularized lungs. (A) qPCR analysis after 5 days of perfusion/ventilation culture. (B) Dextran 

permeability after perfusion of dextran into the trachea and collection of flow throughout of the 

PA. Fraction number indicates the number of PBS washes before and after initial dextran perfusion. 

Data are represented as the mean with a sample size of 1. 
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6.4 Discussion 

  Alterations to dECM composition by decellularization detergents can disrupt the tissue-

specific ECM profile that cells are accustom to in vivo. Adverse cellular responses to abnormal 

ECM environments can lead to the failure of regenerative materials [216]–[218]. Minor variations 

in ECM composition are expected between all non-homologous tissues throughout the body and 

are sensed by cells to properly redirect cell fate [53], [219], [220]. Even with tissue matching, 

decellularization can disrupt the matrix component ratio [211] in regions of the tissue that are 

repetitively and directly exposed to decellularization chemicals. Within decellularized lungs, the 

most damaged ECM region would be the BM because of its proximity to harsh chemicals. Since 

the structure and composition of the BM ECM is radically different the connective tissue within 

the submucosal layer [221], [222], seeding epithelium into decellularized lungs that have BM ECM 

partially removed could interrupt epithelial barrier formation. For these reasons, in this chapter, 

we have attempted to concentrate the tissue-specific matrix and apply it to decellularized lungs in 

a dense matrix coating before epithelial culture.  

 Preliminary studies utilizing the dECM coating with the non-bioreactor culture of 

decellularized lungs with A549 cells validated the hypothesis that even with basic culture methods, 

dECM can increase cell viability within recellularized lungs. Overall assessments of 

recellularization efficiency with dECM coatings by resazurin staining and Picogreen dsDNA 

quantification also showed that dECM coatings foster epithelial attachment and proliferation 

within a 3D whole organ system. A more detailed investigation into the reasons for increased 

recellularization by histological staining shows deposition of the dECM coating throughout the 

lung and increase cell attachment. The enhanced attachment could be attributed to overall increases 

in scaffolding for cells to attach to or the diversification of biochemical cues promoting attachment. 
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Some airway structures and alveoli show more dECM within the lumen of the airway and alveoli, 

indicating that the concentration of dECM may need to be reduced or rinsing procedures should 

be modified to decrease deposition. Similar studies applying collagen and Matrigel coatings to 

decellularized lungs show comparable matrix deposition and increased alveolar cell differentiation 

with ECM coatings [88], indicating that, even with alveolar and airway filling, additional tissue-

specific ECM can be beneficial for cell attachment or stabilizing cells within the airways and 

alveoli during culture.  

Also of interest was determining whether the dECM coatings could aid in barrier formation 

as seen in vitro. Preliminary gene expression studies show that cells are exhibiting characteristic 

epithelial gene expression and may be preparing junction complexes for barrier formation. 

Decreases in dextran permeability with dECM coatings are also promising evidence to support this 

hypothesis but are more likely caused by increased matrix or cellular coverage at this early stage 

in culture. Further implementation of strategies developed in Chapter 4 on barrier formation with 

dECM tissues may also improve functional outcomes of lung recellularization by supplementing 

laminin or other basement membrane proteins into the dECM pre-treatment coating.  

In conclusion, dECM coatings increased attachment, epithelial junction gene expression, 

and overall function of the lung that will aid in faster maturation and remodeling of the tissue. 

More importantly, the added insights uncovered from this work about epithelial attachment and 

junction expression within decellularized tissues will help to inform future research with 

decellularized ECM.  
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

Successful recellularization and culture of whole-organ grafts would expand the 

possibilities of regenerative medicine treatments exponentially. Increasing the number of available 

tissues for transplantation would also offer cures for hundreds of thousands of patients waiting for 

organ donations [223]. There is a critical need for innovation with this technology to overcome 

challenges that prevent final regeneration. Several main findings would help to complete this goal, 

including obtaining a more detailed understanding of cell-dECM interactions, development of 

long-term fully biomimetic culture systems, and enhanced cellular attachment of progenitor 

populations that can repopulate many cell phenotypes. The research within this dissertation aims 

to get a step further by answering some of these questions.  

During this investigation, we have thoroughly characterized hydrogels and coatings 

derived from lung extracellular matrix to understand the self-assembly and processing of dECM. 

Understanding how protease digestion can alter hydrogel and coating mechanical and biochemical 

characteristics is a valuable tool within biomaterials research that has yet to be examined. These 

findings informed our application of a minimally digested dECM coating for investigations into 

alveolar epithelial-matrix interactions. Barrier function assays and junction characterization 

uncovered that dECM aids in the formation of the epithelial gas exchange barrier; however, dECM 

has been depleted of vital basement membrane proteins, mainly laminin, that need to be 

replenished for natural regulation of ZO-1 scaffolding proteins.  

Each ECM protein plays a different but crucial role in the differentiation of every tissue, 

and that is why ECM is considered the “blueprint” of the lung. To exemplify that, a preliminary 

TEER study showing MLE12 barrier function on alveolar and airway enriched dECM shows that 

region-specific dECM can elicit increased barrier resistance from native cell types to that region 
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(Figure 7.1). Alveolar and airway enriched dECM was developed through careful dissection of 

each region after decellularization. Data finding increased barrier resistance on alveolar ECM 

sparks a need for future investigations into the composition of the dECM from the different tissues 

to inform dECM coating development. A logical next step within this research is to also apply 

similar systematic micro-level investigations to examine the effects of matrix proteins, such as 

GAGs and Collagen IV, in barrier formation, but also cellular differentiation and attachment. 

 

Figure 7.1. Alveolar-specific ECM increases barrier function.  TEER of MLE12 cells culture 

on region-specific dECM coatings for 5 days. N=1 with the mean +/- standard deviation of 3 

replicates shown.  

 

Finally, this research applied our initial in vitro findings to our ultimate goal of improving 

a whole-organ regeneration model. We aimed to progress lung recellularization in two ways: 1) 

by developing cell seeding techniques for ex vivo lung culture and 2) revitalize the ECM 

composition at the surface of the airways and alveoli that have been depleted by harsh 
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decellularization chemicals. dECM coatings offer concentrated ECM from throughout the lung 

that can be used to replenish the basement membrane of decellularized lungs for re-

epithelialization. Through this research, we developed a rotational seeding bioreactor and protocol 

for increased dispersal of cells throughout the lung. Secondly, we verified that dECM coatings are 

a promising technique to increase epithelial viability within ex vivo culture of decellularized lungs 

as a proof of concept study. The next stages of this research would be to apply the tailored dECM 

coatings to ex vivo culture with other identified recellularization investigations, such as stem cell 

differentiation. Bright-field images (Figure 7.2), TEER, and gene expression (Figure 4.8) of basal 

epithelial cells cultured for 10 days displays drastic differences in morphology and barrier 

formation on different dECM coatings. The limited investigation that this research has done into 

BESC barrier formation shows that the composition of dECM can elicit different behaviors from 

epithelial populations. Future experimentation is needed to fully understand the extent of BESC 

differentiation with these recellularization techniques ex vivo.  

 

Figure 7.2. Basal epithelial stem cell (BESC) morphology varies with ECM composition. 

Bright-field images from 3 different coated ECIS (electrodes seen in images) wells cultured with 

BESCs for 10 days is shown.  
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Understanding this mechanism of alveolar junction reinforcement not only improves the 

recellularization of ECM lung scaffolds but will also lead to a broader understanding of ECM 

protein interaction with epithelial cells in vitro and potential mediators for therapeutic targets. 

Increased function of recellularized lungs would be a significant step towards a lung replacement 

strategy for the thousands of patients with end-stage lung pathologies. To bring this research even 

closer to producing a viable lung replacement, these techniques can be scaled-up to a human lung 

with the help of established systems in other laboratories.  
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APPENDIX A 

 

A1. Rotation Bioreactor Arduino Code 

 

 

//***********************MAIN POWER SWITCH MUST BE IN ON POSITION TO 

UPLOAD****************************** 

// Used to check if switches have changed 

int PREVIOUS_STATE=0; 

int PRESENT_STATE=0; 

// Inputs 

int SwSA=7; // inputs for the left pin - this pin is backwards- HIGH is down 

int SwSB=4; // inputs for the right pin - this pin is correct- HIGH is up 

//leds  

int Speed0_LED=8; 

int Speed1_LED=9; 

int Speed2_LED=10; 

int Speed3_LED=11; 

int main_power=0; 

const int stepPin=13; //dictates the step size 

const int dirPin=12;  //dictates the direction 

const int onoff=2;  

int move_count=0;  
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unsigned long main_time=millis(); 

unsigned long break_time= millis(); 

unsigned long HOLD_TIME=0; 

 

void setup()  

{Serial.begin(9600); 

pinMode(main_power, OUTPUT); 

pinMode(Speed0_LED, OUTPUT); 

pinMode(Speed1_LED, OUTPUT); 

pinMode(Speed2_LED, OUTPUT); 

pinMode(Speed3_LED, OUTPUT); 

pinMode(SwSA, INPUT); 

pinMode(SwSB, INPUT); 

pinMode(dirPin, OUTPUT); 

pinMode(stepPin, OUTPUT); 

pinMode(onoff, OUTPUT); 

} 

 

/// ******************************************* 

///  Overall main power and code 

/// ******************************************* 

void loop()  

{ 
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if (digitalRead(main_power) == true) 

       { 

       reactor_state(); 

       digitalWrite(onoff, HIGH);  

       } 

       else 

       { 

       digitalWrite(onoff, HIGH);  

       Serial.print(" system off \n"); 

       main_time=millis(); 

       move_count=0; 

       case_leds(LOW, LOW, LOW, LOW); 

       } 

       delay(100);  

} 

 

/// ******************************************* 

///  Switch matching 

/// ******************************************* 

 

void reactor_state() 

{ 
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       PRESENT_STATE= switch_inputs(digitalRead(SwSA), digitalRead(SwSB));    // converts 

switches to cases for state machine 

       if (PREVIOUS_STATE != PRESENT_STATE) 

       { 

        main_time=millis(); 

        move_count=0; 

        HOLD_TIME=0; 

        PREVIOUS_STATE=PRESENT_STATE;                // Switch to the new State to monitor 

the switches 

        Serial.print(" reset state"); 

       } 

       else 

       { 

          case_outputs(PRESENT_STATE);                 // state machine to run the system 

        ///Serial.print("same state"); 

       } 

return;  

} 

 

/// ********************************************* 

// defines rotation speeds and directions 

/// ********************************************* 
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void reactor_rotation(int deg, int stepP, int dirP, bool dir) 

{ 

  delay(1000);                               //this gives a function to make the motor move that will have a 

set rate 

  digitalWrite(dirP, dir); 

  delay(1000); 

  for(int x=0; x < deg; x++)     

    {  

      digitalWrite(stepP, HIGH); 

      delay(10);               //THis is where you set the rate of the turn. You can increase the time 

between on and off 

      digitalWrite(stepP, LOW); 

      delay(10);  //delay(100); 

    } 

} 

 

/// ********************************************* 

// asigns led to switches  

/// ********************************************* 

void case_leds(bool speed0_led,  bool speed1_led, bool speed2_led, bool speed3_led) //this gives 

a function for the lights 

{     digitalWrite(Speed0_LED, speed0_led); 

      digitalWrite(Speed1_LED, speed1_led); 
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      digitalWrite(Speed2_LED, speed2_led); 

      digitalWrite(Speed3_LED, speed3_led); 

} 

 

/// ******************************************* 

///  Switch cases (roatation schemes)  

/// ******************************************* 

void case_outputs(int PRESENT_STATE)    

  { 

    ///Serial.print("  00  \n"); 

    switch(PRESENT_STATE)                                                                                                                                    

//int would return a value 

    { 

      case 0:  // pin9 orange both down - This will rotate every 20 min 

       { 

           digitalWrite(onoff, HIGH);   

           case_leds(LOW, HIGH, LOW, LOW);   

           ///Serial.print("  0  \n");     

 

           unsigned long time_since_break= millis()-break_time; 

           if (time_since_break >= HOLD_TIME) 

           { 

                   if (move_count == 0 || move_count ==8)   
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                      {       delay(1200000); //20 min  

                              digitalWrite(onoff, LOW); 

                              Serial.print(" move_count0 \n"); 

                              reactor_rotation(100, stepPin, dirPin, false);  //100= 180 degrees 

                              digitalWrite(onoff, HIGH); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; //HOLD_TIME -change this for different wait times 

                              break; 

                      }   

                   if (move_count == 1 || move_count ==9)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(50, stepPin, dirPin, false); 

                              Serial.print(" move_count1 \n"); 

                              digitalWrite(onoff, HIGH); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 

                      }   

                   if (move_count == 2 || move_count ==10)   

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(100, stepPin, dirPin, true); 
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                              digitalWrite(onoff, HIGH); 

                              Serial.print(" move_count2 \n"); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 

                      }   

                   if (move_count == 3 || move_count ==11)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(125, stepPin, dirPin, true); 

                              digitalWrite(onoff, HIGH); 

                              Serial.print(" move_count3 \n"); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 

                      }   

                   if (move_count == 4 || move_count ==12)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(100, stepPin, dirPin, true); 

                              digitalWrite(onoff, HIGH); 

                              move_count+=1; 

                              Serial.print(" move_count4 \n"); 
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                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 

                      }                       

                   if (move_count == 5 || move_count ==13)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(150, stepPin, dirPin, true); 

                              digitalWrite(onoff, HIGH); 

                              Serial.print(" move_count5 \n"); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 

                      }            

                   if (move_count == 6 || move_count ==14)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(100, stepPin, dirPin, true); 

                              digitalWrite(onoff, HIGH); 

                              Serial.print(" move_count6 \n"); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=1200000; 

                              break; 
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                      }                                                            

                   if (move_count == 7 || move_count ==15)    

                      {       digitalWrite(onoff, LOW); 

                              reactor_rotation(175, stepPin, dirPin, true); 

                              digitalWrite(onoff, HIGH); 

                              Serial.print(" move_count6 \n"); 

                              move_count+=1; 

                              break_time=millis(); 

                              HOLD_TIME=0; 

                              break; 

                      }    

          } 

       

           break; 

       } 

        

      case 1:  // pin9 yellowtop both down -- green light -This will rotate 40 degrees every 20 

minutes 

       { 

           digitalWrite(onoff, HIGH); 

           case_leds(LOW, LOW, LOW, HIGH); 

           //int CASE1_HOLDTIME= 12000000; //20 min 

           Serial.print("  1  \n"); 
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           unsigned long time_since_break= millis()-break_time; 

           if (time_since_break >= HOLD_TIME) 

           { 

                    digitalWrite(onoff, LOW); 

                    reactor_rotation(22, stepPin, dirPin, false); 

                    digitalWrite(onoff, HIGH); 

                    move_count+=1; 

                    break_time=millis(); 

                    HOLD_TIME=1200000; 

                    break; 

            }           

            break;                                        

       } 

        

      case 2:     //blue light - constant roation 1 turn per 30 min (12 degrees every minute) 

       { 

           digitalWrite(onoff, HIGH); 

           case_leds(LOW, LOW, HIGH, LOW); 

           Serial.print("  2  \n"); 

           //int CASE2_HOLDTIME= 60000; // 1 minute 

           unsigned long time_since_break= millis()-break_time; 

           if (time_since_break >= HOLD_TIME) 

           { 
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                    digitalWrite(onoff, LOW); 

                    reactor_rotation(7, stepPin, dirPin, false); 

                    digitalWrite(onoff, HIGH); 

                    move_count+=1; 

                    break_time=millis(); 

                    HOLD_TIME=60000; 

                    break; 

           }     

           break; 

        } 

 

      case 3:  // rotate 360 wait 30 min rotate back 360 and repeat 3x 

      { 

           digitalWrite(onoff, HIGH); 

           case_leds(HIGH, LOW, LOW, LOW); 

           Serial.print("  3  \n"); 

           //int CASE3_HOLDTIME= 1800000; // 30 minute 

           unsigned long time_since_break= millis()-break_time; 

           if (time_since_break >= HOLD_TIME) 

           { 

               if (move_count == 0 || move_count ==2 || move_count == 4)   

                   {digitalWrite(onoff, LOW); 

                    Serial.print(" move_count0 \n"); 
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                    reactor_rotation(200, stepPin, dirPin, false); 

                    digitalWrite(onoff, HIGH); 

                    move_count+=1; 

                    break_time=millis(); 

                    HOLD_TIME=1800000; 

                    break; 

                   } 

               if (move_count == 1 || move_count ==3 || move_count == 5)    

                   {digitalWrite(onoff, LOW); 

                    reactor_rotation(200, stepPin, dirPin, true); 

                    Serial.print(" move_count1 \n"); 

                    digitalWrite(onoff, HIGH); 

                    move_count+=1; 

                    break_time=millis(); 

                    HOLD_TIME=1800000; 

                    break; 

                   }        

            } 

           break; 

      } 

     

    default:  

    { 
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      case_leds(LOW, LOW, LOW, LOW); 

      break; 

    } 

  } 

} 

 

 

 

/// ********************************************* 

// Tests the case that the switches are in 

/// ********************************************* 

int switch_inputs(bool swsa, bool swsb)   //this will read what position the switches are in and 

give it a case number 

{ 

  int S_C; 

  if ((swsa) == HIGH && (swsb) == LOW) 

  { 

    S_C = 0; 

  } 

    if ((swsa) == HIGH && (swsb) == HIGH) 

  { 

    S_C = 1; 

  } 
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  if ((swsa) == LOW && (swsb) == LOW) 

  { 

    S_C = 2; 

  } 

 

  if ((swsa) == LOW && (swsb) == HIGH) 

  { 

    S_C = 3; 

  } 

 

  return(S_C); 

} 
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