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THE ROLE OF CELLULAR AGING IN THE REGULATION OF FREE FATTY ACID 

INDUCED CELLULAR INFLAMMATION BY LIVER X RECEPTOR ALPHA 

 

By Charles Scott Schwartz, B.S.  

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2019 

 

Director: Edmund O. Acevedo, Interim Associate Dean for Finance and Administration, College 

of Humanities and Sciences 

 

Purpose: This study examined the impact of an acute bout of exercise on LXRα mRNA 

expression in isolated PBMCs from aerobically fit middle-aged males, and its associations with 

cellular inflammation. Furthermore, association between cellular age and LXRα were 

investigated. Methods: LXRα mRNA, plasma free fatty acids, IL-6, and MCP-1 responses were 

quantified following acute moderate intensity exercise and throughout recovery. To examine 

LXRα’s associations with cellular inflammation, PBMCs were stimulated with palmitate. 

Finally, telomere length was quantified as an indicator of cellular age. Results: LXRα mRNA 

expression was reduced at 90 minutes of recovery and did not influence systemic inflammation. 

Palmitate induced increases in LXRα were negatively associated with IL-6 and MCP-1. 

Furthermore, cellular age was associated with pre exercise palmitate induced LXRα. 

Conclusion: Palmitate induced LXRα response demonstrated the role of physical activity and 

cellular aging on the ability of LXRα to regulate cellular inflammation in immune cells.
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Chapter 1: Introduction 

It is estimated that over 40% of the United States population will be diagnosed with 

cardiovascular disease (CVD) by 2030, accounting for a $1.1 trillion financial burden to the 

healthcare system.1 The pathophysiology of CVD is largely attributed to chronic inflammation 

within the vasculature.2 Aging, an inevitable process that increases the risk for CVD, is 

accompanied by the chronic elevation of low-grade, systemic inflammation known as inflamm-

aging that typically manifests between the ages of 40-64.3,4 Specifically, elevations of systemic 

inflammation develop, in part, through the accumulation of centrally located visceral adipose 

tissue (VAT) that can occur without a change in body weight.5,6 Therefore, the identification of 

mechanistic targets related to adiposity and aging that may slow and potentially reverse age 

related CVD pathology is of paramount importance. 

VAT possesses a low capacity to store fatty acids (FA), eliciting an increase in systemic 

saturated fatty acids (SFA), such as palmitate,5 that interact with toll-like receptor 4 (TLR4) on 

monocytes.7,8 Palmitate ligation to TLR4 on monocytes initiates an intracellular signaling 

pathway that triggers the nuclear translocation of the nuclear factor-κB (NF-κB) transcription 

factor, and consequently, the production of pro-inflammatory cytokines (i.e., interleukin-6 [IL-

6]) and chemokines (i.e., monocyte chemoattractant protein-1 [MCP-1]).7,8 Furthermore, chronic 

exposure to the age-related pro-inflammatory milieu predisposes circulating monocytes to a pro-

inflammatory phenotype referred to as M1, and to the increased infiltration and differentiation of 

monocytes to resident macrophages inside VAT, 9,10 thereby enhancing the inflamm-aging 

phenotype that is directly involved in the development and pathology of age-related CVD.11–13  

Furthermore, cellular age can enhance the cellular shift towards proinflammatory subsets. 

Leukocyte telomere length is a cellular marker of biological age, and may be a more accurate 
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indicator of disease risk than chronological age.14 Telomeres are gene poor regions located at the 

ends of chromosomes, which protect genomic DNA from damage during cellular replication.15 

Although telomere lengths shorten naturally due to cellular replication, the accumulation of 

stressors over time enhance telomere attrition and accelerate age-related ailments.16 More 

worrisome, once telomeres reach critical length, the cell may enter into an irreversible state of 

cell cycle arrest known as senescence.17 Cellular senescence promotes a pro-inflammatory 

environment, referred to as a senescence-associated secretory phenotype (SASP), which is driven 

by an overactivation of NFkB, following exposure to a pathogen, further contributing to 

inflamm-aging.16,17  

A key protein along a mechanistic pathway to inflammation is liver x receptor α (LXRα), 

a nuclear transcription factor found in monocytes and monocyte-derived macrophages, in 

addition to other metabolic tissues.18 While LXRα mRNA expression is elevated in M1 

macrophages during CVD pathology,19,20 animal studies have shown that the genetic elimination 

of the LXRα gene accelerates cellular apoptotic death, impairs basic immune function, advances 

the progression of atherosclerosis, and decreases survival from bacterial infection.21,22 However, 

the reintroduction of LXRα from wild-type, genetically unmodified mice partially reverses this 

phenotype, supporting a cardioprotective role for LXRα.21 More specifically, elevated cellular 

mRNA expression of LXRα facilitates cholesterol efflux and prevents the excess accumulation 

of lipids via mechanistic regulation of cellular cholesterol transporters such as ATP binding 

cassette 1 (ABCA1), serving as a mechanism to reduce foam cell formation and cellular 

apoptosis during the formation of atherosclerotic plaques.23,24 In addition, LXRα is attributed to 

the inhibition of sequence-specific DNA binding by NF-κB following cellular exposure to the 

TLR4 ligand lipopolysaccharide (LPS),25 thereby reducing the immune cell production of pro-
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inflammatory cytokines and chemokines, including IL-6 and MCP-1, respectively.26,27 These 

findings suggest that increased expression of LXRα decreases systemic inflammation, and 

support the need to identify therapeutic strategies that could possibly increase LXRα to prevent 

the progression of CVD.  

Regular participation in moderate to vigorous physical activity is an anti-inflammatory 

behavior that exerts numerous metabolic benefits, and protects against CVD.28 Specifically, 

aerobic exercise training increases fatty acid oxidation, and helps reverse the inflamm-aging 

phenotype by reducing adipocyte size, inhibiting monocyte infiltration into VAT, and inducing a 

switch of resident macrophages from an inflammatory M1, to an anti-inflammatory M2, 

phenotype. 28–30 Collectively, these beneficial adaptations also decrease circulating 

concentrations of palmitate that may help maintain the appropriate immune function of 

circulating monocytes.28 Recently, it has been shown that 8 weeks of aerobic exercise training at 

a low to moderate intensity in young and middle-aged adults increases LXRα mRNA in 

circulating monocytes.31,32 In addition, cycling at 70% of VO2max for 45 minutes has been shown 

to increase LXRα mRNA expression in circulating peripheral blood mononuclear cells (PBMCs) 

following 90 minutes of recovery.33 Furthermore, the mechanism for increased activity of LXRα 

has been supported by increased ABCA1 mRNA expression at 3 hours of recovery33, and may 

also result in a reduction in pro-inflammatory cytokine production by monocytes, although no 

studies have been conducted to demonstrate this response.  

Recent evidence suggests that there are tissue dependent alterations in LXRα mRNA 

expression throughout aging in animal models.34–36 Although changes with aging have not been 

investigated in humans or in PBMCs, previous studies in animal models suggest a blunted LXR 

response in older individuals. Furthermore, in the presence of an LXRα ligand, cells with lower 
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expression of LXRα have reduced counter regulatory effects in response to an inflammatory 

stimulus.27 Therefore, it could be deduced that fit older individuals would have greater LXRα 

activity in response to an acute bout of exercise in comparison to unfit individuals, due to 

increased baseline mRNA expression of LXRα, which would lead to an attenuation of pro-

inflammatory cytokine production. This preliminary investigation of the underlying mechanisms 

involved with the regulation of inflammation by LXRα will focus on older fit individuals, who 

are susceptible to low-grade inflammation but should have an elevated LXRα response to acute 

exercise.  

More specifically, the purpose of this study is to investigate the effects of an acute bout 

of moderate-intensity exercise on LXRα mRNA expression from isolated PBMCs, and its 

association with systemic FFA and the pro-inflammatory proteins IL-6 and MCP-1 in aerobically 

fit middle-aged males. Furthermore, to determine the capacity of LXRα to regulate inflammation 

following exercise, isolated PBMCs will undergo a 4-hour ex vivo cell stimulation with palmitate 

before and after an acute bout of exercise. It is hypothesized that LXRα mRNA expression at 90 

minutes into recovery will be increased, compared to baseline. In addition, increased mRNA 

expression of LXRα will be associated with an attenuated in vivo and ex vivo pro-inflammatory 

milieu in trained middle-aged males. Finally, cellular age will predict LXRα mRNA expression 

and the pro-inflammatory response. 
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Specific Aims: 

1. To investigate the relationship of LXRα to cellular inflammation in PBMCs in response to an 

acute bout of moderate intensity exercise in middle-age fit males. 

Hypothesis- Compared to pre-exercise, LXRα mRNA expression will be increased 

following 90 minutes of recovery. Increased expression of LXRα will be associated with 

decreased systemic concentrations of IL-6, MCP-1, and FFA. 

2. To determine if LXRα mRNA expression is associated with palmitate induced production of 

IL-6 and MCP-1 from PBMCs isolated from middle-age fit males following acute moderate 

intensity exercise.  

Hypothesis- Increased expression of LXRα mRNA in PBMCs following exercise will be 

associated with attenuated production of IL-6 and MCP-1 following ex vivo palmitate 

stimulation. Furthermore, conflicting results in the literature limit the ability to make a 

directional hypothesis with regards to palmitate induced alterations in LXRα. 

3. To determine if chronological age, in months, or cellular age, as assessed by telomere length, 

predicts LXRα’s response to acute moderate intensity exercise in PBMCs. 

Hypothesis- Cellular age, but not chronological age will be associated with LXRα. More 

specifically, shorter telomere length will be associated with reduced LXRα mRNA 

expression at baseline, and in response to exercise, and increased levels of systemic IL-6, 

MCP-1 and FFA. Additionally, shorter telomere length will be associated with greater ex 

vivo production of IL-6 and MCP-1 in response to palmitate stimulation (see Figure 1 A 

and B). 
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Chapter 2: Literature Review 

1. Aging and Inflamm-aging 

Aging is an inevitable process that is linked to a myriad of diseases that are attributed to 

an increase in chronic, systemic, low-grade inflammation, known as inflamm-aging.4 Inflamm-

aging is the culmination of many inflammatory processes including altered energy metabolism, 

cellular senescence, and the overactivation of the pro-inflammatory arm of the innate immune 

system.4 Adipose tissue is a major source of inflammation during aging, and in many ways, the 

excess secretion of pro-inflammatory proteins derived from morphological changes of adipocytes 

influences immune cell function, and contributes to a feed-forward mechanism that exacerbates 

the pro-inflammatory state of the inflamm-aging phenotype.37 Therefore, determination of 

potential strategies to disrupt the feed-forward mechanism associated with adipose tissue 

inflammation is of tremendous importance.  

1.1 Adipocyte Morphology 

Adipose tissue plays an integral role in the storage and release of FFA in response to 

metabolic demand.38 In addition to storing FFA, adipose tissue is a large endocrine organ that 

releases hormones and adipokines to influence appetite, control energy balance, and regulate 

immune function.38,39 During the aging process there is a shift from peripherally located adipose 

tissue, to centrally located adipose tissue.5 Centrally located adipose tissue consists of 

subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). SAT is located below the 

skin, and is responsible for storage of lipids,40 whereas VAT is located within the abdominal 

cavity, providing support for the visceral organs, and has a dense capillary network.40 When SAT 

adipocytes hypertrophy, the capacity of SAT to expand and store lipids becomes limited. As a 
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result, VAT begins to accumulate, serving as an additional storage site for lipids.40 This 

accumulation and subsequent expansion of VAT is linked to a chronic, systemic pro-

inflammatory milieu, and is a potent risk factor for CVD and other metabolic diseases.41 In 

addition, hypertrophied VAT releases pro-inflammatory cytokines, such as IL-6 and TNFα, and 

chemokines, such as MCP-1.41 This pro-inflammatory signaling promotes the infiltration of 

adipose tissue by monocytes, which differentiate into resident adipose tissue macrophages 

(ATM).41 Additionally, VAT has a lower storage capacity for FFA when compared to SAT, 

allowing for FFA to spill over into circulation.5   

1.2 Immune Cell Distribution in Adipose Tissue 

Adipose tissues can be further broken down into adipocytes and the stromal vascular 

fraction (SVF).11,13,41 The SVF consists of monocyte derived macrophages, and adipose tissue 

stromal cells.13 During the aging process, there is an increased hypertrophy in VAT, stimulating 

a pro-inflammatory milieu.11,13 This is a result of macrophage phenotype within the SVF.13 ATM 

differentiate into one of two major phenotypes: the classically activated pro-inflammatory, M1, 

macrophage and the alternatively activated anti-inflammatory, M2, macrophage.42 More 

specifically, M1 macrophages release pro-inflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) 

and chemokines (i.e., MCP-1) that contribute to systemic inflammation, and further supporting a 

feed-forward mechanism by promoting monocyte infiltration and their subsequent differentiation 

into M1 macrophages. To the contrary, M2 macrophages release anti-inflammatory cytokines 

(i.e., IL-10 and tumor growth factor beta), thereby promoting the resolution of tissue 

inflammation.28 Recent studies have shown that total macrophages residing in aged adipose 

tissue does not differ from young adipose tissue,11,13 yet ATM are more likely to shift towards an 

M1 macrophage phenotype.13 Likewise, aged adipocytes have increased mRNA expression of 
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pro-inflammatory cytokines when compared to young adipocytes.11 While the extent to which 

the increased gene expression of these pro-inflammatory cytokines contribute to systemic 

inflammatory profiles is unknown,13 the resulting pro-inflammatory milieu associated with 

inflamm-aging predisposes circulating monocytes towards a pro-inflammatory macrophage 

phenotype upon their entry into tissues. 

1.3 Circulating Monocytes and Subset Shift 

Monocytes are a heterogeneous population of leukocytes that play an important role in 

modulating innate immunity and serve as the first line of host defense in response to 

pathogens.9,43 In humans, circulating monocytes are categorized as classical (CD14++CD16-), 

non-classical (CD14dimCD16+), and intermediate (CD14++CD16+).42 Immune cells, such as 

monocytes and monocyte derived macrophages express pattern-recognition receptors (PRRs) 

that detect pathogen-associated molecular patterns (PAMPs) and damage associated molecular 

patterns (DAMPs). TLR4 is a well characterized PRRs that preferentially binds to the endotoxin 

lipopolysaccharide (LPS) in a manner dependent upon CD14 and myeloid differentiation factor 2 

(MD2) surface expression. Upon ligation, this CD14-MD2-TLR4 complex activates myeloid 

differentiation factor 88 (MyD88) to initiate an intracellular signaling cascade that promotes the 

translocation of the nuclear factor (NF)-κB transcription factor into the cell’s nucleus. NF-κB is 

the primary transcription factor that stimulates the gene expression and release of the pro-

inflammatory cytokines IL-1β, IL-6 and TNFα.8,44 Interestingly, monocyte populations 

expressing CD16 are considered pro-inflammatory, expressing higher levels of TLR4 that are 

responsible for the increased production of pro-inflammatory cytokines compared to the 

classical monocyte subset. Furthermore, aging is accompanied by the increased proportion of 

non-classical, CD14lowCD16+, monocytes that may contribute to the inflamm-aging phenotype.45 
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Circulating SFA also activate TLR4 on monocytes, promoting the production of pro-

inflammatory cytokines.7 For example, a recent study by Pararasa and colleagues investigated 

the effects of aging on fatty acid profiles, and monocyte polarization.5 During healthy aging there 

is an increase in circulating concentrations of FFA, including total SFA.5 Briefly, FA were 

measured in plasma from young adults (24.16 ± 3.76 years) and middle age adults (57.53 ± 6.07 

years). There were significant increases in C14, and C24 SFA’s, whereas C16, the most 

prevalent SFA in circulation, was unaltered.5 Middle aged adults also had significantly higher 

concentrations of the pro-inflammatory cytokines IL-6 and TNFα, and significantly lower 

concentrations of the anti-inflammatory cytokine IL-10.5  Additional in vitro investigations using 

THP-1 cells, a model cell line that mimics the functions of monocytes, have shown that SFA, 

regardless of chain length, primed monocytes towards an M1, pro-inflammatory phenotype, 

while unsaturated FA primed monocytes towards an M2, anti-inflammatory phenotype.5 These 

results suggest that the spillover of SFA from VAT and the increase pro-inflammatory profiles of 

circulating monocytes exacerbate the progression of pro-inflammatory disease pathology, 

including CVD.  

2.4 Cardiovascular Disease 

Atherosclerosis is amongst the leading pathological contributors to CVD complications,46 

and is characterized by a pro-inflammatory milieu and an imbalance in cellular lipid metabolism 

that contribute to the accumulation of lipid laden macrophages within the arterial intima.47 

During the initial stages of atherosclerosis, low density lipoprotein (LDL) particles become 

trapped in the arterial intima, and are modified by oxidative stress or enzymatic cleavage.24 

Modified LDL particles, such as oxidized LDL (oxLDL), promote a pro-inflammatory 

environment that activate the vascular endothelium and increase the production and release of 
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chemoattractant proteins (chemokines).24 As a result, the release of chemokines creates a 

gradient that stimulates classical and intermediate monocytes to migrate towards the vascular 

endothelium, transmigrate into the endothelial space, and ultimately, differentiate into M1, pro-

inflammatory macrophages.24  

Resident M1 macrophages ingest the LDL particles through phagocytosis, and the uptake 

oxLDL via scavenger receptors contributes to the excess buildup of cholesterol within the 

macrophages and the formation of foam cells.24 Foam cells promote an atherosclerotic 

environment by enhancing the release of pro-inflammatory cytokines and chemokines, further 

influencing monocyte transmigration as a feed-forward loop.24 Improper cholesterol handling 

within foam cells may induce excess endoplasmic reticulum (ER) stress that results in cellular 

death by apoptosis and the formation of a necrotic core that is a hallmark characteristic of 

atherosclerotic lesions.24 The necrotic core continues to increase in size due to smooth muscle 

cell proliferation and apoptosis.24 As the necrotic core increases in size, it has the potential to 

decrease blood flow to downstream tissues, and more worrisome, the rupture of the necrotic core 

could potentially cause the complete occlusion of blood flow and tissue necrosis.24 Therefore it is 

important to investigate mechanistic targets, such as LXRs, that slow and potentially reverse the 

progression of atherosclerosis. 

2. Liver X Receptors 

Liver X Receptors (LXRs) are a family of ligand activated nuclear transcription factors 

that regulate cholesterol trafficking and the intracellular inflammatory signaling pathway within 

immune cells.48 LXRs are naturally activated by oxysterols and other byproducts of cellular 

cholesterol metabolism.48 There are two isoforms of LXRs; LXRα (NR1H3) and LXRβ 

(NR1H2).48 LXRα is found in most metabolic tissues, including the liver, kidneys, and 
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monocytes/macrophages, while LXRβ is present in nearly every tissue.48 Both LXRα and LXRβ 

have important roles in cholesterol efflux from macrophages by stimulating ATP binding 

cassette (ABC) A1, and ABCG1.48 The ability to influence cholesterol balance and inflammation 

highlighting the need to further study LXRs as a therapeutic target to protect against CVD.  

3.1 LXR and Cardiovascular Disease 

LXRα, and to a lesser extent LXRβ, have been shown to protect against the formation of 

atherosclerotic plaques in mice.21 Briefly, mice lacking LXRα had increased atherosclerotic 

lesion area when compared to mice expressing LXRα.21 However, atherosclerotic lesion size was 

reversed upon transplantation of bone marrow from mice expressing LXRα in LXRα null mice.21 

Likewise, studies investigating the impact of LXR signaling have demonstrated their direct 

atheroprotective effects. More specifically, synthetic LXR agonists, such as TO-901317 and 

GW3965, have been used in many in vitro and in vivo models to activate LXR.49 Although these 

LXR agonists increase fatty acid production in mice, resulting in hypertriglyceridemia and the 

formation of fatty liver diseases,49 in vitro models support  the efficacy of LXRs for regulating 

inflammation.26,27,50 For example, LXRnull mice injected with LPS present with increased 

circulating IL-6 compared to wild type controls.27 At the cellular level, pretreating the RAW 

264.7 macrophage cell line for 18 hours with LXR agonist, prior to infection with Escherichia 

coli or LPS stimulation, inhibits the production of inducible nitric oxide synthase (iNOS), and 

inflammatory markers cyclooxygenase-2, IL-1β, IL-6, and MCP-1.27 However, the inhibition of 

these inflammatory markers was reduced in LXRα and LXRβ knockout macrophages, and 

nonexistent in LXRnull macrophages.27 The potential anti-inflammatory effects of LXR ligands 

have been corroborated in human studies. For example, human mononuclear cells pretreated with 

LXR ligands for 0 or 6 hours prior to LPS stimulation secreted lower levels of MCP-1 and TNFα 
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compared to LPS stimulation alone.51 Likewise, similar studies in THP-1 derived macrophages 

have shown that pretreatment with an LXR agonist reduced mRNA expression of the 

inflammatory markers IL-1β, IL-6, and TNF-α in THP-1 derived macrophages.50 Pretreatment of 

adherent human monocytes with differing concentrations of an LXR agonist reduced 

inflammatory proteins including IL-1β, IL-6, IL-8, IL-10, TNF-α, IL-12p40, macrophage 

inflammatory protein (MIP) 1α, MIP-β, and MCP-1 in the cell supernatant, in a dose-dependent 

manner.26 MCP-1 and IL-10 were only influenced at the highest concentration of the LXR 

agonist.26 mRNA expression of IL-6, IL-8 and TNF-α were not influenced by LXR activation.26 

These results from in-vivo and in-vitro investigations highlight the novel role of LXRs as a 

regulator of innate immune function, and further indicate that an exogenous ligand to promote 

LXR signaling could prove to be beneficial for reducing and potentially reversing the 

accumulation of atherosclerotic plaques.  

Further studies indicate that LXRα is more important for regulating inflammation.22,26 

LXRα is the key isoform that protects bone marrow-derived and peritoneal macrophages from 

cellular apoptosis following exposure to listeria monocytogenes infection.22 Joseph et al. 

demonstrated that mice lacking LXRα (LXRα-/- and LXRαβ -/-) were more susceptible to listeria 

monocytogenes-induced cellular death by apoptosis compared to wild type, or mice that lack 

LXRβ (LXRβ-/-).22 Furthermore, LXRα mRNA expression in human monocytes is upregulated 

following LPS stimulation, whereas LXRβ was not influenced.26 Indicating that LXRα, but not 

LXRβ, plays a role in the innate immune response to an endotoxin.26 These results suggest that 

LXRα is an important mediator of inflammation during the innate immune response,22,26 and 

warrants additional research focusing on understanding the role of LXRα as a mechanistic target 

to reduce the inflammatory burden associated with the aging process.  
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3. Physical Activity 

Regular participation in aerobic physical activity is an anti-inflammatory behavior and is 

known to protect against CVD and other metabolic disorders.28 Many of the anti-inflammatory 

benefits can be attributed to exercise induced alterations to adipose tissue.28 For example, 

exercise training reduces VAT area, without changing body weight in obese humans.52 

Consequently, plasma FFA concentrations are also reduced following exercise training,52 

suggesting that physical activity aids in the regulation of lipid metabolism, or reduction of excess 

storage of fatty acids in adipose tissue.53 During aerobic exercise, trained males have increased 

mobilization, uptake, and oxidation of FFA when compared to their untrained counterparts 

working at the same relative workload.54 Furthermore aerobic exercise has been shown to reduce 

mRNA expression of pro-inflammatory proteins (e.g. RANTES, CCR5, TNF-α, and IL-6) in 

SAT from obese humans,55 inhibit the infiltration of monocytes into VAT, and elicit a 

phenotypical switch from M1 to M2 macrophages.30 These results suggest that aerobic exercise 

training could aid in reducing the chronic systemic low-grade pro-inflammatory milieu.  

Similar benefits have been observed following acute exercise, evidenced by reductions in 

IL-1β, TNF-α, and MCP-1 mRNA, and increased IL-10 mRNA in SVF and adipocytes in obese 

rats.29 Acute exercise has also been shown to elicit the increased expression of the M2 marker, 

macrophage galactose-type lectin-1 (MGL1), indicating a shift towards M2 macrophages.29 

While these results show the efficacy of exercise to help reduce the inflamm-aging phenotype, 

less is known about whether or not aerobic exercise supports the appropriate immune function by 

positively influencing LXR in circulating monocytes.  
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4.1 Chronic Aerobic Exercise and LXR mRNA Expression 

 In rodents, chronic endurance training increases LXRα mRNA expression in a variety of 

tissues, including the liver and skeletal muscle.56–58 Endurance training increases LXRα mRNA 

expression in the liver samples harvested from male Wistar rats.56,57 Furthermore, these 

adaptations occur in as little as 4 weeks.57 Conversely, adaptations to LXRα mRNA expression 

were not seen in hepatocytes harvested from female Sprague-Dawley rats following 8 weeks of 

endurance training, suggesting a gender specific adaptation to aerobic exercise training.59 In 

skeletal muscle, LXRα regulates the storage and oxidation of intramuscular triglycerides.60 More 

specifically, LXRα directly influences fatty acid synthase in rats overexpressing peroxisome 

proliferator-activated receptor γ coactivator 1α (PGC-1α; a signaling protein known to increase 

with exercise),58 supporting the role of LXR as a regulator of lipid metabolism in skeletal 

muscle, and may be a contributing factor to increased intramuscular triglyceride stores following 

exercise training.  

In humans, chronic aerobic exercise has been shown to increase LXRα mRNA expression 

in PBMCs following low and moderate intensity exercise.31,32 In a study by Butcher et al.,32 

thirty-four healthy, sedentary adults (18 males, 16 females; aged 45 ± 11.1 years old) completed 

10,000 steps on a treadmill at a self-selected pace, 3 times per week, for 8 weeks, resulting in the 

increased expression of LXRα mRNA in PBMCs.32 These changes were also linked to positive 

adaptations of cholesterol metabolism, evidenced by significant reductions in total cholesterol 

and increased concentration in HDL cholesterol.32 Additionally, Ruffino et al.31 showed 

significant increases in LXRα mRNA following 8 weeks of walking (55 - 69% of APHRM) for 

45 minutes, 3 times a week in nineteen sedentary adult females (aged 42 ± 11 years). 

Furthermore, gene expression of inflammatory markers in monocytes demonstrated a priming for 
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M2 differentiation, evidenced by significant increases in IL-10 and dectin-1 (M2 markers), and 

decreases in MCP-1 (M1 marker).31 These changes may also have positive effects on cholesterol 

trafficking as demonstrated by a reduction in triglycerides following the intervention.31  

 These results support the efficacy of regularly participating in moderate intensity aerobic 

exercise as a cardioprotective habit. Furthermore, there were positive effects on blood lipid 

profiles following training, which may be resultant of LXRα’s influence on cellular cholesterol 

metabolism. Reduction of M1 primed monocytes may also reduce the formation of foam cells, 

further reducing the risk of developing atherosclerotic plaques. However, no studies have 

investigated the LXRα’s ability to regulate inflammation in response to aerobic exercise training. 

Such studies would provide additional mechanistic insight into potential regulatory mechanisms 

to support the anti-inflammatory effects of chronic aerobic exercise training that contribute to the 

reduced risk of CVD. 

4.2 Acute Aerobic Exercise and LXR mRNA Expression 

Little is known about the impact of acute aerobic exercise on LXR expression and 

functional capacity. For example, a recent study by Davies & colleagues 61 demonstrated that 

acute exercise on a cycle ergometer (70% VO2max) for 45 minutes elicited a non-significant 

increase (p < 0.10) in LXRα mRNA expression at 3 hours post exercise in five physically active 

adult males.61 On the other hand, Thomas et al.33 observed significant increases in LXRα mRNA 

levels at 1.5 hours post exercise (45 minutes of aerobic exercise on a cycle ergometer at 70% 

VO2max) in nine healthy active, but not endurance trained, participants (32 ± 8 years old) 

following participation.33 Interestingly, these increases were not sustained at 3 hours post 

exercise, suggesting that either aerobic training status influences LXRα mRNA expression 

patterns following acute aerobic exercise or LXRα acts transiently during the initial phases of 



 

16 

 

recovery. Therefore, more evidence is necessary in determining whether acute exercise increases 

LXRα. Further investigation would help determine if LXRα potentiates the inflammatory 

response in PBMCs following acute exercise. Results from such studies would provide 

additional support for acute exercise as an effective LXRα agonist, providing a mechanistic 

understanding for this nonpharmacological approach to protect against CVD.  

4. Conclusion 

LXRα is a transcription factor which plays an important role in the progression of 

atherosclerosis via the regulation of pro-inflammatory signaling in circulating monocytes. 

Increased circulating SFA is associated with age related changes in VAT, and further contributes 

to inflamm-aging via TLR4 ligation. Exercise training is known to increase LXRα mRNA 

expression in PBMC’s, but this has not been associated with the regulation of pro-inflammatory 

proteins linked to age-related increases in circulating concentrations of SFA (Specific Aim 1). 

Likewise, while acute exercise has been shown to increase LXRα mRNA expression in PBMC’s, 

no studies have investigated how LXR expression relates to systemic inflammation in trained 

middle-aged adults in response to acute exercise (Specific Aim 1). Furthermore, no studies have 

investigated LXRα’s ability to regulate palmitate-induced inflammation in PBMC’s in an ex vivo 

model (Specific Aim 2). Finally, no studies have investigated the influence of age, cellular or 

chronological, on LXRα’s response to acute moderate intensity exercise (Specific Aim 3). 

Results from such study could provide further understanding of the role of LXRα in innate 

immunity, and its ability to potentially disrupt the feed forward inflammatory mechanisms 

associated with inflamm-aging.  
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Chapter 3: Methodology 

Subject Population 

Aerobically fit, middle-aged male runners between the ages of 40-65 were recruited for 

this study. Prior to all laboratory activities participants provided informed consent and completed 

a brief medical history questionnaire, and the International Physical Activity Questionnaire short 

form (IPAQ-SF)62. The IPAQ-SF was used to quantify participation in physical activity and 

categorize subjects as participating in high physical activity. Specifically, individuals who were 

categorized as participating in high levels of physical activity by the IPAQ-SF accumulated ≥ 

3000 MET-minutes · wk-1 of walking, moderate activity or vigorous activity, over 7 or more 

days, or accumulating ≥ 1500 MET-minutes · wk-1 of vigorous intensity physical activity over 3 

or more days.63 Furthermore, potential subjects were excluded from participation if they 

possessed a body mass index classification (BMI) ≥ 30 kg/m2, have any known or suspected 

cardiovascular, metabolic, rheumatologic, or other inflammatory diseases/conditions, or a history 

of cancer within the last ten years. Additionally, subjects taking medication known to alter the 

immune system or metabolism, users of tobacco products, or consumed greater than an average 

of ten alcoholic beverages per week were excluded from participation.  

 

Laboratory Procedures 

Participants arrived for both laboratory sessions between 6:30 and 7:30 AM, following an 

overnight fast for a minimum of 8 hours. In addition, subjects were instructed to abstain from 

caffeine, alcohol, painkilling medications, and intense exercise for at least 24hr. Upon arrival for 

their first visit, subject’s height and weight were recorded, and body mass index was calculated. 

In addition, waist and hip circumference was assessed using a Gulick tape and waist-to-hip ratio 
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was calculated, and visceral adiposity was measured across the sagittal plane at the horizontal 

levels of the L4 and L5 vertebrae.64 Finally, total body fat percentage was assessed using air 

displacement plethysmography with measured thoracic gas volume (Bod Pod; Cosmed, Concord, 

CA., USA).  

 

Exercise Testing Procedures 

 Session two took place a minimum of 72 hours following session one. Upon arrival, 

participants were fitted with a heart rate monitor (Polar Electro Oy, Kempele, Finland), and 

seated for a 15-minute rest period to determine resting heart rate and blood pressure. Participants 

then completed a 10-minute warmup, allowing for the prediction of maximal oxygen 

consumption (protocol listed below). Immediately following the warmup, participants completed 

30 minutes of treadmill exercise at 60% of their predicted VO2max. Exercise intensity was 

monitored using real-time oxygen consumption (VO2) values via open circuit spirometry 

(ParvoMedics, Sandy, UT) and was adjusted every 5 minutes to ensure a consistent workload.  

VO2max was predicted utilizing the protocol presented by Vehrs and colleagues.65 Briefly, 

subjects began with a short warm-up stage consisting of 5 minutes of walking at a self-selected 

pace, at 0% grade. Following the warm-up stage, the treadmill speed was increased to a self-

selected jogging pace between 4.3 and 7.5 mph. Subjects jogged at this pace for 3 minutes or 

until steady state HR is reached. Steady state HR was defined as a difference of ≤ 3 bpm, 

between two consecutive HRs over 30 seconds. Steady state HR and treadmill speed was input 

into the following equation for the calculation of VO2max: VO2max (mL · kg-1 · min-1) = 58.687 + 

(7.520 x Gender; 0 = female and 1 = male) + (4.334 x mph) – (0.211 x kg) – (0.148 x HR) – 

(0.107 x age. This prediction equation has been validated in individuals between the ages of 18 
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and 40 (R = 0.91, SEE = 2.52 mL · kg-1 · min-1)65 and has previously been used to estimate 

VO2max in men over 60 years.66 

 

Blood Collection and Preparation 

Whole blood samples were obtained from the subject’s antecubital vein using a 22G 

intravenous catheter (BD Nexiva™ closed IV catheter system, Sandy, UT) and collected into 

tubes containing K2 ethylenediaminetetraacetic acid (K2EDTA; BD Vacutainer, Franklin Lakes, 

NJ) prior to (PRE), immediately upon completion of exercise (POST), and 30 (R30) and 60 

(R60) and 90 (R90) minutes into recovery following exercise. Whole blood samples were 

centrifuged at 3000rpm for 20 minutes for plasma isolation. Plasma was stored at -80ºC in 

cryogenic tubes for the analysis of IL-6 and MCP-1 using enzyme linked immunosorbent assay 

(ELISA; R&D Systems, Minneapolis, MN, USA) techniques, and FFA using a commercial 

colorimetric assay (MAK044; Sigma-Aldrich, St. Louis, MO, USA).  

Following plasma aspiration, the leukocyte buffy coat was isolated and transferred to a 

conical tube, then diluted in saline to a final volume of 5mL. The white buffy coat suspension 

was then layered onto an equal amount of Histo-Paque (p=1.077 g/mL; Sigma-Aldrich, St. 

Louis, MO, USA) and centrifuged at 400g for 30 minutes. PBMCs were then collected and 

washed three times with saline. Isolated PBMCs were homogenized in TRIzol® reagent 

(Invitrogen, Carlsbad, CA, USA) for long-term storage at -20°C or resuspended in 1mL RPMI 

1640 media (Invitrogen, Carlsbad, CA, USA), manually counted by hemocytometer, and 

adjusted to a final volume of 2.0x106 cells/mL for cell culture (described below).  
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Preparation of Palmitate Solution for Cell Culture 

Palmitate solution was prepared as previously described.67–69 Briefly, sodium palmitate 

(Sigma Aldrich, St. Louis, MO, USA) was dissolved in 0.01 M sodium hydroxide (NaOH; Fisher 

Scientific; Hampton, NH, USA), at a final concentration of 8 mmol/L and incubated at 70ºC for 

30 minutes to ensure palmitate was fully dissolved. Palmitate was then conjugated with 1 

mmol/L fatty acid free bovine serum albumin (BSA; Sigma Aldrich, St. Louis, MO, USA) in 1x 

phosphate buffered saline (PBS; Fisher Scientific; Hampton, NH, USA)) for 15 minutes at 50ºC 

at an 8:1 fatty acid to BSA molar ratio.  

 

Cell Culture 

PBMCs were cultured in RPMI 1640 media supplemented with 5% fetal bovine serum 

(FBS; Invitrogen, Carlsbad, CA, USA), 1% penicillin, and 1% streptomycin (Life Technologies, 

Carlsbad, CA, USA) in a 6-well culture plate (Corning Incorporated, Corning, NY, USA) at 

2.0x106 cells/mL. Plated cells were stimulated with 200 μmol/L of palmitate solution or left 

unstimulated and incubated at 37ºC at 5% CO2 for 4 hours. This concentration of palmitate has 

been previously shown to induce the production of pro-inflammatory cytokines in PBMCs.67,70 

Unstimulated cells served as a time-course control. Following the 4-hour culture period, the cell 

culture supernatant was aspirated and centrifuged at 2000 rpm for 5 minutes at 4°C, to pellet any 

suspended PBMCs. Cell culture supernatant was transferred to cryogenic tubes and stored at -

80ºC for future analysis of IL-6 and MCP-1 using ELISA techniques (R&D Systems, 

Minneapolis, MN, USA). In addition, pelleted PBMCs were recombined with adherent cells, 

homogenized with TRIzol® reagent, and stored as previously described.  
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mRNA Isolation & Measurement 

 PBMCs (cultured and uncultured) homogenized in TRIzol® reagent were added to 

QIAshredder mini spin columns (Qiagen, Hilden, Germany) and centrifuged at 16,000g for 2 

minutes to ensure complete homogenization. Total RNA was then isolated as per the TRIzol® 

reagent manufacturer instructions. Total RNA quantification and purity were assessed using the 

NanoDrop lite (Thermo Scientific, Waltham, MA, USA). 1000ng of total RNA was reverse 

transcribed to complementary DNA (cDNA) using qScript cDNA synthesis kit (QuantaBio, 

Beverly, MA, USA) as according to manufacturer instructions. TaqMan probes (Applied 

Biosystems, Foster City, CA, USA) were used in conjunction with TaqMan gene expression 

master mix (Applied Biosystems, Foster City, CA, USA) for reverse transcription-polymerase 

chain reaction (RT-PCR) as according to manufacturer’s instructions. LXRα mRNA 

(HS00172885_m1) measurement was conducted using RT-PCR methods, with eukaryotic 18S 

(HS99999901_s1) as a reference gene. PCR thermocycler (C1000 Touch; Bio-Rad, Hercules, 

CA, USA) conditions were 50ºC for 2 minutes, 95ºC for 10 minutes, followed by 40 cycles of 

denaturation at 95ºC for 15 seconds and annealing at 60º for 60 seconds. All RT-PCR samples 

were run in triplicate. Relative LXRα expression was calculated using 2-ΔΔCt. 

 

Telomere Length Measurement 

Telomere length was quantified using relative T/S ratio, as described by Cawthon.71 

Briefly, DNA was isolated from PRE PBMCs homogenized in TRIzol reagent® as according to 

manufacturer’s instructions. DNA was quantified using the NanoDrop lite. PCR reactions were 

prepared using 2x SYBR green master mix (QuantaBio, Beverly, MA, USA), target primers 

(sequences as described by Cawthon71; Integrative DNA Technologies, Skokie IL, USA), 
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nuclease free water, and 15ng DNA. All PCR reactions were run in triplicate. PCR thermocycler 

(Applied Biosystems 7500; Foster City, CA, USA) conditions for telomeres were 95ºC for 2 

minutes, followed by 40 cycles of denaturation at 95 ºC for 15 seconds and annealing at 54ºC for 

2 minutes. PCR thermocycler conditions for 36B4 were 95 ºC for 2 minutes, followed by 40 

cycles of denaturation at 95ºC for 15 seconds, and annealing at 58 ºC for 1 minute. 

 

Statistical Analysis 

 All statistical analysis was performed using the Statistical Package for the Social 

Sciences (SPSS version 25.0). Data are presented as mean ± standard error of the mean (SEM) 

unless otherwise stated. Statistical significance was set as p ≤ 0.05.  

Aim 1: Changes in PBMC mRNA expression of LXRα and systemic concentrations of FFA and 

the pro-inflammatory proteins IL-6 and MCP-1 prior to and in response to exercise were 

analyzed using repeated measures analysis of variance (rmANOVA). Post-hoc analyses were 

conducted to determine differences between time points. Associations between LXRα mRNA 

expression and plasma SFA, IL-6, and MCP-1 concentrations were examined using Pearson’s 

correlation.  

Aim 2: Palmitate induced changes in LXRα were analyzed using paired t-tests. Furthermore, 

changes in LXRα due to exercise and palmitate were assessed using a two-way rmANOVA. 

Post-hoc analyses were conducted to determine differences between time points. Associations 

between palmitate induced cytokine production and LXRα expression were assessed using 

Pearson’s correlation.  

Aim 3: Associations between chronological age, and cellular age and LXRα, and cytokine 

responses were analyzed using Pearson’s correlation.  
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Chapter 4: Results  

Subject Characteristics  

Fourteen apparently healthy, aerobically fit, middle-aged runners (age 50 ± 8.28 years) 

participated in this study. All subjects participated in high levels of physical activity in 

accordance with IPAQ-SF (3600 ± 1282.34 MET-mins · week-1). Furthermore, subjects met 

BMI criteria for the study (24.26 ± 2.0 kg · m-2). Subject characteristics can be found in Table 1. 

Subject characteristics are displayed as mean ± sd. 

Exercise Session 

 All subjects completed the described exercise protocol. The average heart rate and 

treadmill speed to predict VO2max (50.97 ± 2.79 mL · kg-1 · min-1) were 134.07 ± 10.11 bpm and 

6.07 ± 0.49 mph, respectively. Furthermore, the workload completed (30.67 ± 1.76 mL · kg-1 · 

min-1) was 0.42 ± 1.57% of the target workload (30.56 ± 1.67 mL · kg-1 · min-1). Average 

exercise session variables are listed in Table 2. Moreover, 5-minute averages of exercise 

variables are listed in Table 3. All exercise session variables are displayed as mean ± sd. 

Exercise induced alterations of LXRα mRNA expression in circulating PBMCs, and 

associations with systemic markers of inflammation 

 LXRα mRNA expression in circulating PBMCs was significantly decreased at 90 

minutes into recovery (R90) compared to PRE (p = 0.037) and POST (p = 0.016) (Figure 2A). 

Furthermore, plasma FFA was significantly altered (increase then decrease) in response to 

exercise and throughout recovery (F[2,12]  = 7.167, p = 0.009) (Figure 2B). In addition, Plasma IL-

6 was significantly increased following exercise and throughout recovery (F[4,12] = 4.507, p = 

0.007) (Figure 3A). Likewise, plasma MCP-1 was significantly altered (increase then decrease) 
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following exercise and throughout recovery (F[4,10] = 3.988, p = 0.035) (Figure 3B). LXRα mRNA 

at R90 was negatively associated with plasma IL-6 concentrations at POST (r = -0.584, p = 

0.028) and R30 (r = -0.579, p = 0.030). In addition, this relationship approached significance at 

R60 (r = -0.530, p = 0.051), and R90 (r = -.450, p = 0.106) (Table 4). Furthermore, there were no 

associations between LXRα mRNA expression in circulating PBMCs and plasma FFA, nor 

plasma MCP-1 at any time point.  

Palmitate induced alterations of LXRα mRNA expression in ex vivo stimulated PBMCs, and 

associations with IL-6 and MCP-1 

  Ex vivo palmitate stimulation increased LXRα mRNA expression in PBMCs when 

compared to unstimulated conditions at every time point (p ≤ 0.05) (Figure 4A). Additionally, 

there was a significant interaction between time and palmitate stimulation when compared to 

unstimulated PRE cells (F[1.776,23.093] = 4.497; p = 0.026) (Figure 4B). Moreover, LXRα mRNA 

exhibited elevations that were approaching significance in unstimulated POST cells (p = 0.074) 

and were significantly increased in unstimulated R90 cells (p = 0.020) when compared to 

unstimulated PRE cells, demonstrating an exercise effect on LXRα (filled bars in Figure 4B). 

Furthermore, PBMC’s collected at R90 exhibited an exacerbated response (R90palm difference 

from unstimulated R90) following exposure to palmitate compared to POST (POSTpalm 

difference from unstimulated POST; p = 0.007), which was approaching significance PRE 

(PREpalm difference from unstimulated PRE; p = 0.076) demonstrating an additive effect of 

exercise and palmitate (Figure 4B). 

As expected, palmitate also increased IL-6 production in PBMCs collected at PRE (p = 

0.00), POST (p = 0.009), R30 (p = 0.009), R60 (p = 0.005), and R90 (p = 0.008) when compared 

to unstimulated PBMCs (Figure 5A). Likewise, palmitate significantly increased MCP-1 
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production in PBMCs collected at PRE (p = 0.007), POST (p = 0.013), R30 (p = 0.012), and R60 

(p = 0.020) and near significant at R90 (p = 0.052) when compared to unstimulated PBMCs 

(Figure 5B).  However, the exercise conditions did not demonstrate an altered response in IL-6 

and MCP-1.  

 Palmitate induced LXRα mRNA expression in PRE PBMCs were negatively correlated 

with IL-6 production in response to palmitate (IL-6 difference) at PRE (-0.623; p = 0.017), POST 

(-0.539; p = 0.047), R30 (-0.535; p = 0.048), and R60 (-0.549; p = 0.042), and this relationship 

approached significance at R90 (-0.515; p = 0.060) (Table 5A). Likewise, palmitate induced 

LXRα mRNA expression in POST PBMCs was negatively correlated with the IL-6 difference at 

POST (r = -0.654; p = 0.011), R30 (r = -0.0650; p = 0.012), R60 (r = -0.614; p = 0.019), and R90 

(r = -0.629; p = 0.016) (Table 5A). Palmitate induced LXRα mRNA expression in R90 cells 

were not significantly associated with IL-6 production. Furthermore, palmitate induced LXRα 

mRNA expression in POST PBMCs was negatively correlated with palmitate induced changes in 

MCP-1 (MCP-1 difference) at R90 (r = -0.537; p = 0.048) (Table 5B). 

Relationship between Chronological age, Cellular age and LXRα 

 No relationship existed between LXRα mRNA expression in circulating PBMCs and 

chronological age, in months, at any time point. Additionally, chronological age was not 

associated with the plasma FFA, plasma IL-6, or plasma MCP-1. Likewise, there were no 

relationships between chronological age and palmitate-induced LXRα or cytokine production 

(Table 6). Cellular age, as assessed by telomere length (T/S ratio), was positively associated with 

palmitate induced LXRα in PRE cells (r = 0.569; p = 0.034), however this relationship was not 

present in POST or R90 cells (Table 6). Moreover, telomere length was not associated with 

LXRα expression in circulating PBMCs, or plasma FFA, plasma IL-6 or plasma MCP-1. 
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Furthermore, there was no relationship between telomere length and palmitate induced cytokine 

production.   
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Chapter 5: Discussion 

This study sought to investigate the effects of an acute bout of moderate-intensity 

exercise on LXRα mRNA expression, and its association with systemic markers of inflammation 

in trained middle-aged males. Observations from this study show LXRα mRNA expression in 

circulating PBMCs was not increased 90 minutes into recovery as hypothesized, but instead, was 

decreased. Furthermore, a negative relationship existed between LXRα mRNA expression in 

circulating PBMCs collected at 90 minutes of recovery and plasma IL-6, but not plasma MCP-1 

or plasma free fatty acids. Ex vivo experiments exhibited increased LXRα mRNA expression 

following palmitate stimulation immediately before, after and at 90 minutes of recovery, and 

these increases were negatively associated with palmitate induced increases in IL-6 and MCP-1. 

This is the first study to demonstrate the relationship of LXRα to cellular inflammation in 

response to palmitate following an acute bout of exercise. 

Currently, the impact of an acute bout of exercise on LXRα mRNA in circulating PBMCs 

remains unclear. For example, LXRα mRNA expression has been shown to be significantly 

increased at 90 minutes into recovery following 45 minutes of cycling at 70% of VO2max, 

however returned to pre exercise levels at 3 hours of recovery.33 Conversely, the same exercise 

protocol elicited elevations in LXRα mRNA expression that approached significance at 3 hours 

of recovery, and was not reported at 90 minutes of recovery.61 Finally, the present data shows a 

reduction in LXRα mRNA expression in circulating PBMCs at 90 minutes into recovery after 30 

minutes of treadmill exercise at 60% of predicted VO2max. It is unknown what factors may 

influence LXRα following acute exercise, however it is possible that the acute bout of exercise 

used in the present study may not have been potent enough to elicit increased expression of 

LXRα mRNA in trained middle-aged individuals. Interestingly, when compared to unstimulated 
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PBMCs collected immediately before exercise, LXRα mRNA expression was increased in 

unstimulated PBMCs collected at 90 minutes of recovery, following 4 hours of ex vivo 

conditions. These results suggest that LXRα increases in response to exercise, although the 

response in circulating PBMCS may extend past the hypothesized 90 minutes of recovery, or 

may be influenced by an unknown LXRα mediator in circulation. Furthermore, the cellular 

mechanisms regulating LXRα in circulating PBMCs following acute exercise, in parallel with 

the immunoregulatory and metabolic pathways in monocytes and PBMCs, remain obscure. 

Results from the current study show plasma IL-6 increasing in response to an acute bout 

of exercise, and remaining elevated at 90 minutes of recovery. These results are consistent with 

those previously presented in a young, physically active population where 40 minutes of exercise 

at 55 or 65% of VO2max elicited significant increases in systemic IL-6 concentrations, and 

continued to increase until the end of exercise at 60 minutes.72 In addition, elevated systemic 

concentrations of IL-6 persisted until 3 hours of recovery, although it is unclear if the final 20 

minutes of exercise may have influenced IL-6 during recovery.72 Additionally, previous 

literature investigating untrained middle aged adults show no changes in serum IL-6, following 

30 minutes of walking at 50% of VO2max.
73 These results suggest that training may preserve the 

IL-6 response to acute exercise in middle aged individuals.  

Plasma MCP-1 was significantly increased at 30 minutes of recovery, then returned to pre 

exercise levels at 90 minutes of recovery. A number of studies indicate that changes in 

circulating MCP-1 following acute exercise may be dependent on fitness status, body 

composition, and exercise stimuli.74–76 For example, circulating MCP-1 was significantly 

increased in trained runners following 1 hour of treadmill running at 60% of VO2max, and 

remained elevated 1 hour following exercise.74 Furthermore, this response was exacerbated 
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following 45 minutes of downhill running at 60% of VO2max.
74 Additionally, 20 minutes of 

treadmill exercise at 70% of VO2max elicited decreases in circulating MCP-1 in sedentary normal 

weight individuals, whereas it was unchanged in those categorized as overweight-moderately 

obese and severely obese.75 Moreover, circulating MCP-1 remained unchanged in both 

overweight and obese and lean untrained individuals following a bout of cycling at 55-60% of 

their max heart rate for 120 minutes.76 The MCP-1 response in trained middle aged subjects in 

this study is similar to the response of the other trained groups supporting a training effect for 

MCP-1.  

Results from the present study demonstrate a negative association between relative LXRα 

expression in circulating PBMCs at 90 minutes of recovery, and plasma IL-6 concentrations 

immediately following exercise, and throughout recovery. Although these association exists, it is 

unknown if LXRα in circulating monocytes mediates the plasma IL-6 response following 

exercise. Furthermore, there is evidence that monocytes do not significantly contribute to 

changes in systemic IL-6 in response to exercise.77,78 Conversely, IL-6 has been shown to exert 

anti-inflammatory effects in response to an acute inflammatory stimulus. For example, exercise 

induced IL-6 or recumbent IL-6 infusion elicited a reduction in pro-inflammatory cytokine 

production following intravenous endotoxin infusion.79 Thus, it is possible that exercise induced 

increases in IL-6, likely released from the muscle, may attenuate downstream LXRα expression 

in trained middle-aged individuals, however this response has not been elucidated in the 

literature. 

LXRα’s pivotal role in the regulation of pro-inflammatory cytokine production in 

monocytes and macrophages has been well documented. In a murine RAW 264.7 macrophage 

cell line, cells pretreated with an LXR agonist, prior to infection with Escherichia coli, or LPS 
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stimulation, exhibited lesser production of many pro-inflammatory makers, including IL-6 and 

MCP-1.27 Furthermore, this response was attenuated in peritoneal macrophages harvested from 

LXRα knockout, and LXRnull mice.27 These potential anti-inflammatory effects of LXR ligands 

are supported in human studies. For example, in human mononuclear cells pretreated with LXR 

ligands for 0 or 6 hours prior to LPS stimulation produced lower concentrations of MCP-1 and 

TNFα, compared to LPS alone.51 Likewise, pretreatment with an LXR agonist reduced the 

mRNA expression of a number of pro-inflammatory markers, including IL-6, in THP-1 derived 

macrophages, and exposed to LPS.50 Additionally, when adherent human monocytes were 

pretreated with differing concentrations of an LXR agonist, inflammatory protein production was 

reduced in a dose dependent manner following exposure to LPS.26 In corroboration with previous 

findings, the results from the current study show that LXRα has a negative relationship with pro-

inflammatory cytokine production in response an inflammatory stimulus, such as palmitate. 

Moreover, this response was influenced by an acute bout of exercise evidenced by greater 

negative association immediately following exercise, and lack of associations at 90 minutes of 

recovery.  

Observed increases in LXRα mRNA expression following ex vivo palmitate stimulation 

in human PBMCs have not been shown previously, and differ from those presented in a murine 

cell line. Few studies have examined the influences of TLR-4 ligation on LXRα mRNA 

expression. Previous investigations have stimulated murine RAW264.7 cells with differing 

concentrations of palmitate (400 µM and 100 µM), and for a longer duration (16-20 hours, 

respectively) than the current study, and showed no LXRα response.80,81 Additionally, human 

PBMCs stimulated with LPS for 6 hours show increased expression of LXRα mRNA.26 

Conflicting results suggest that LXRα’s response to TLR-4 ligation may be due to differences in 
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cell type, however no studies have been done to elucidate this response. Specifically, previous 

literature has shown no correlation in the production of IL-6 between RAW264.7 macrophages 

and human PBMCs when comparing a variety of immunomodulators in response to LPS or E. 

coli.82  

Additionally, increased LXRα mRNA expression at R90 were exacerbated following 

palmitate stimulation, indicating that the LXRα response to palmitate is potentiated by exercise. 

The mechanisms responsible for this exacerbated response are unclear. However, it is possible 

that the exercise effect on LXRα occurred via intracellular mechanism such as peroxisome 

proliferator activated receptor gamma coactivator 1-alpha (PGC1α), which has been shown to be 

elevated following acute exercise and may be linked to increased LXRα activity in 

monocytes.33,61 In addition to the exercise effect, palmitate ligation to TLR4 likely further 

increased LXRα mRNA expression.26 It is unclear if this potentiated response may influence 

cellular inflammation in trained middle-age individuals.  

 As expected, chronological age was not associated with LXRα mRNA expression in 

circulating PBMCs, or plasma FFA, IL-6 or MCP-1, nor palmitate induced changes in LXRα 

mRNA expression, or IL-6 and MCP-1 production. Interestingly, cellular age was positively 

associated with palmitate induced increases in LXRα in cells collected immediately before but 

not post exercise, or 90 minutes into recovery. These results indicate that the LXRα response 

may be preserved in those with longer telomeres in response to TLR4, and this response is 

altered with exercise. The relationship between telomere length and LXRα is unknown, however 

there is evidence that inhibition of LXRα mRNA increases human telomerase reverse 

transcriptase (hTERT) which is responsible for maintaining telomere length.83 hTERT has been 

shown to be upregulated by NF-κB activation, which may explain increased hTERT expression 
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after LXRα inhibition.84 While this is the case, there may be a reduced need for hTERT in 

PBMCs from trained individuals, as telomere length may be preserved due to the anti-

inflammatory milieu resultant of chronic exercise. Furthermore, previous investigations in our 

lab have shown reduced hTERT expression following LPS stimulation in PBMCs from older 

individuals, who presented with shorter telomeres, however inflammatory cytokine production 

was unaltered, suggesting that shorter telomere length in circulating PBMCs may not influence 

inflammation.6 It may also be the case that the plethora of intracellular reactions that occur 

during exercise influence the interaction between telomeres length and LXRα. Further research is 

necessary to determine the influence of telomere length on cellular inflammation, and cell 

function.  

Future investigations should consider the following limiting factors when interpreting 

results from this investigation. Due to the omission of a comparison group, this investigation was 

unable to determine if age or fitness levels may influence the LXRα at baseline or in response to 

either exercise or palmitate, and how these responses are related to cellular age. In addition, this 

investigation did not utilize LXRα agonists or inhibitors, which would further elucidate the 

mechanisms involved with LXRα’s regulation of inflammation following exercise. Furthermore, 

this investigation only focused on the regulation of the pro-inflammatory cytokines in the 

inflammatory response, while LXRα may also regulate the anti-inflammatory cytokines.  

In conclusion, this investigation demonstrated that LXRα mRNA expression is altered in 

PBMCs following an acute bout of exercise in trained middle-aged males, albeit the mechanisms 

driving these alterations remain obscure. Additionally, results from the ex vivo experiments 

further support LXRα as a regulator of inflammation in PBMCs. Interestingly, exercise 

potentiated LXRα mRNA expression following palmitate stimulation. These observations are of 
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particular interest to older unfit individuals who present with increased visceral adiposity, 

increased resident M1 macrophages, and increased levels of circulating SFA. Specifically, 

participation in an acute bout of exercise which complies to public health recommendations may 

stimulate increases in LXRα activity in circulating monocytes, possibly extending to resident 

macrophages, and reduce systemic levels of pro-inflammatory cytokines. Furthermore, this study 

supports exercise as a stimulator of LXRα, and may be an alternative to pharmacological 

interventions which may have negative health implications.  
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Table 1.  Subject Characteristics (n = 14)

Characteristic Mean ± SD Range

Age (years) 50.64 ± 8.28 41.0 - 65.0

Age (months) 614.29 ± 98.39 498.36 - 789.96

Height (cm) 178.34 ± 6.25 167.3 - 188.0

Weight (kg) 77.16 ± 7.67 64.3 - 87.9

BMI (kg · m
-2

) 24.26 ± 2.0 21.0 - 28.4

Saggital Diameter (cm) 23.5 ± 1.86 21.0 - 28.0

Body Fat (%BF) 19.0 ± 5.61 10.0 - 26.9

Waist (cm) 85.21 ± 4.86 77.0 -93.0

Hip (cm) 96.82 ± 3.78 90.0 - 101.5

Waist : Hip Ratio 0.88 ± 0.04 0.8 - 0.95

IPAQ (MET-mins · week
-1

) 3600 ± 1282.34 1653.0 - 5892.0

Resting HR (bpm) 57.5 ± 3.08 54.0 - 62.0

Resting Systolic BP (mmHg) 114 ± 6.47 104.0 - 130.0

Resting Diastolic BP (mmHg) 79.43 ± 6.63 64.0 - 90.0

Predicted VO2max (mL · kg
-1

 · min
-1

) 50.97 ± 2.79 44.9 - 55.9

Realtive Telomere Length (T/S ratio) 1.02 ± 0.24 0.74 - 1.46

Note: Data are presented as mean ± SD. BMI: body mass index; IPAQ: 

international physical activity questionnaire;  HR: heart rate; BP: blood pressure; 

VO2max: maximal oxygen uptake. 
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Table 2.  Exercise Session Variables (n = 14)

Variable Mean ± SD Range

Prediction HR (bpm) 134.07 ± 10.11 116.0 - 145.0

Prediction speed (mph) 6.07 ± 0.49 5.2 - 7.1

Target VO2 (mL · kg
-1

 · min
-1

) 30.56 ± 1.67 26.9 - 33.5

Exercise VO2 (mL · kg
-1

 · min
-1

) 30.69 ± 1.76 26.65 - 33.5

Percentage of Target VO2 0.42 ± 1.57 -1.57 - 3.69

Exercise HR (bpm) 135.54 ± 10.48 113.3 - 149.3

Peak HR (bpm) 142.00 ± 10.86 117.0 - 154.0

Exercise RER (VCO2 · VO2
-1

) 0.86 ± 0.42 0.80 - 0.92

Kcal burned 343.74 ± 38.23 287.46 - 398.53

Note: Data are presented as mean ± SD. HR: heart rate; VO2: oxygen 

consumption; RER: respiratory exchange ratio

Five Ten Fifteen Twenty Twenty-five Thirty

Variable Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD  Mean ± SD

HR (bpm) 131.07 ± 10.15 132.76 ± 10.21 134.4 ± 10.97 136.56 ± 11.04 138.71 ± 11.04 139.79 ± 11.33

RPE 10.36 ± 1.78 10.36 ± 1.95 10.29 ± 2.13 10.5 ±  2.07 10.57 ± 2.10 10.71 ± 2.13

Absolute VO2 (L · min
-1

) 2.41 ± 0.27 2.35 ± 0.25 2.35 ± 0.25 2.35 ± 0.28 2.38  ± 0.27 2.36 ± 0.26

RelativeVO2 (mL · kg
-1

 · min
-1

) 31.23 ± 1.48 30.51 ± 1.99 30.45 ± 1.86 30.46 ± 2.03 30.8 ± 1.85 30.65 ± 1.73

RER (VCO2 · VO2
-1

) 0.88 ± 0.05 0.86 ± 0.04 0.86 ± 0.04 0.85 ± 0.05 0.85 ± 0.05 0.84 ± 0.05

 Time (min)

Table 3.  Exercise Session Variables: 5 Minute Averages

Note: Data are presented as mean ± SD. HR: heart rate; RPE: rating of perceived exertion, borg scale; VO2: oxygen consumption; RER: respiratory 

exchange ratio
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PRE POST R30 R60 R90

r = -0.415 r = -0.403 r = -0.398 r = -0.390 r = -0.346

p  = 0.14 p  = 0.154 p  = 0.159 p  = 0.168 p  = 0.225

r = -0.529 r = -0.562* r = -0.557* r = -0.533* r = -0.488

p  = 0.052 p  = 0.037 p  = 0.039 p  = 0.050 p  = 0.077

Plasma IL-6 pg/mL

Table 4. Associations among relative LXRα expression and plasma IL-6 concentrations

* indicates a significant relationship between relative LXRα expression and plasma IL-6 

concentrations (p  ≤ 0.05)

R90 LXRα

POST LXRα 
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PRE POST R30 R60 R90 

r = -0.623* r = -0.539* r = -0.535* r = -0.549* r = -0.515

p  = 0.017 p  = 0.047 p  = 0.048 p  = 0.042 p  = 0.060

r = - 0.654* r = -0.650* r = -0.614* r = -0.629*

p  = 0.011 p  = 0.012 p  = 0.019 p = 0.016

r = -0.411

p  = 0.145

PRE POST R30 R60 R90 

r = -0.183 r = -0.178 r = -0.332 r = -0.325 r = -0.375

p  = 0.531 p = 0.543 p  = 0.246 p  = 0.256 p  = 0.187

r = -0.510 r = -0.491 r = 0.418 r = 0.537*

p = 0.062 p  = 0.075 p = 0.137 p = 0.048

r = -0.285

p = 0.324

* indicates a significant relationship between palmitate induced LXRα expression and relative 

differences in IL-6 & MCP-1 (A and B respectively; p  ≤ 0.05)

PRE LXRα

POST LXRα

R90 LXRα 

Table 5. Associations among palmitate induced LXRα and relative differences in IL-6 & MCP-1

PRE LXRα

POST LXRα

R90 LXRα 

B. Relative difference in MCP-1

A. Relative difference in IL-6

Table 6. Associations among palmiate induced LXRα expression, cellular age, and telomere length

PRE POST R90

r = 0.351 r = 0.203 r = -0.043

p  = 0.219 p  = 0.486 p  = 0.885

r = 0.569* r = 0.009 r = 0.087

p = 0.034 p  = 0.977 p = 0.766

* indicates a significant relationship between palmitate induced LXRα expression and telomere 

length (p  ≤ 0.05)

(Relative T/S Ratio)

Telomere Length 

Palmitate Induced LXRα Expression

Chronological Age 

(Months)
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