
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2019

ASSESSING THE QUALITY OF SOFTWARE DEVELOPMENT ASSESSING THE QUALITY OF SOFTWARE DEVELOPMENT

TUTORIALS AVAILABLE ON THE WEB TUTORIALS AVAILABLE ON THE WEB

Manziba A. Nishi

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Software Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/6072

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarscompass.vcu.edu%2Fetd%2F6072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6072?utm_source=scholarscompass.vcu.edu%2Fetd%2F6072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Manziva Akanda Nishi, December 2019

All Rights Reserved.

ASSESSING THE QUALITY OF SOFTWARE DEVELOPMENT TUTORIALS

AVAILABLE ON THE WEB

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

MANZIBA AKANDA NISHI

Student degree with university - Dates

Director: Kostadin Damevski,

Assistant Professor, Department of Computer Science

Virginia Commonwewalth University

Richmond, Virginia

December, 2019

i

Acknowledgements

First, I would like to acknowledge and express my sincere gratitude to my hon-

orable advisor Dr. Kostadin Damevski, for his direction, assistance, and guidance.

I would like to thank Dr. Preetam Ghosh, Dr. Bridget Thomson-McInnes, Dr.

Eyuphan Bulut, Dr. Nicholas A. Kraft and Dr. Hui Chen for their kind approval

to join my dissertation committee and for providing guidance and valuable feedback.

I would like to thank my family members especially my husband and my mother,

for their continuous support, encouragement and sacrifices they have made for me in

my Ph.D journey. I would also like to thank my cute little son for being extremely

patient while I was working on my dissertation.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . v

List of Figures . vii

Abstract . ix

1 Introduction . 1

1.1 Motivation . 3

1.2 Contribution of the Research . 7

1.3 Organization of the Dissertation 9

2 Background and Related Work . 11

2.1 Quality of Online Software Development Resources 11

2.2 Code Clone Detection . 14

2.3 Code Clone Search . 16

2.4 Valid Version Range of Software Development Resources 17

3 Web-Scale Textual Code Clone Search 21

3.1 Contribution . 23

3.2 Problem Formulation of Code Clone Search 25

3.3 Code Clone Detection . 25

3.3.1 Problem Formulation of Code Clone detection 25

3.4 Adaptive Prefix Filtering Technique 26

3.4.1 Prefix Filtering . 27

3.4.1.1 Property . 28

3.4.1.2 Related Examples . 29

3.4.2 Token Position Based Filtering 29

3.4.2.1 Property . 29

3.4.2.2 Related Examples . 30

3.4.3 Adaptive Prefix Filtering . 30

iii

3.4.3.1 Related Examples . 31

3.4.3.2 Property and Lemma 31

3.5 System Design for Adaptive Prefix Filtering 32

3.5.1 Delta Inverted Index . 32

3.5.2 Cost Calculation . 33

3.5.3 Code Clone Search . 39

3.6 Experimental Results . 40

3.6.1 Performance of Adaptive Prefix Filtering (RQ1) 42

3.6.2 Accuracy of Adaptive Prefix Filtering (RQ2) 46

3.6.3 Applicability Towards Code Clone Search (RQ3) 48

3.7 Characterizing Duplicate Code Snippets between Stack Over-

flow and Tutorials . 49

3.7.1 Research Methodology & Experimental Setup 51

3.7.2 Research Findings . 54

3.7.2.1 Understanding Code Snippets Copied from Tuto-

rials to Stack Overflow 54

3.7.2.2 Properties and Evolution of Copied Code Snippets . . 56

3.7.2.3 Threats to validity . 59

3.8 Conclusions . 60

3.9 Future Work . 61

4 Automatic Identification of Valid Version Range of Tutorials 62

4.1 Empirical Study . 66

4.1.1 Manual Annotation Procedure 70

4.1.2 Analysis of Findings . 72

4.1.3 Threats to Validity . 73

4.2 Automated Versioning of Software Development Tutorials 73

4.2.1 Versioning Workflow . 74

4.2.2 Features . 76

4.2.2.1 Noun Similarity . 77

4.2.2.2 Text Similarity . 78

4.2.2.3 Structural Similarity 78

4.2.2.4 Parameter Similarity 80

4.3 Experimental Analysis . 81

4.3.1 Experimental Setup . 81

4.3.2 Results . 85

4.3.3 Additional Feature Based on Word Embeddings 88

4.4 Versioning Video Tutorials . 89

iv

4.5 Conclusions and Future Work . 92

5 Final Conclusions . 98

References . 100

Vita . 120

v

LIST OF TABLES

Table Page

1 Types of code clones [80]. 23

2 Code snippets for running example. 27

3 Tokenized code snippets sorted based on global token ordering. Each token

x is represented as x
{m}
{l,g} where m is the global position (the position after

sorting all the tokens of all the code snippets based on global frequency), l

is the local frequency of the token in the code snippet, while g is the global

frequency of token x in the corpus . 28

4 Prefix filtering of CB1 and CB2 . 29

5 Adaptive prefix filtering for CB1 and CB2 31

6 Calculation of filter cost for CB1 . 35

7 Calculation of candidate set size for CB1 39

8 Calculation of total cost for CB1. 39

9 Comparison of execution time (in seconds) between adaptive prefix

filtering and SourcererCC (10,000 files). 44

10 Snippets of false positive clone pair identified by our technique. 48

11 Performance of code clone search using adaptive prefix filtering. 49

12 Curated set of Android tutorials (as of 21 January, 2019). 52

13 Rationale for copying code snippets from tutorials to Stack Overflow posts. 55

14 Timespan of edits for the copied code snippets. 59

15 The set of different Android versions, corresponding API levels, and

number of removed and deprecated classes. [120] [117] [118] 69

vi

16 Range of valid versions of the tutorials in our set. 71

17 Results using tutorials as units. (-These tutorials have no positive fields.) 94

18 Results using mentions as units. 95

19 Results of multi instance classification. 95

20 Comparison of the true and predicted version ranges of tutorials. 95

21 Results of using tutorials as units with the additional word embedding-

based feature. 96

22 Comparison of the true and predicted version ranges of tutorials with

the additional word embedding-based feature. 96

23 Results of Video tutorials using mentions as units. 96

24 Results of Video tutorials using tutorials as units. 97

25 Comparison of the true and predicted version ranges of Video tutorials. . 97

vii

LIST OF FIGURES

Figure Page

1 Portion of an Android tutorial utilizing the deprecated API android.util.FloatMath [15]. 4

2 Code snippet copied between a tutorial (lower portion) and a Stack

Overflow (upper portion) post with different licensing terms [16], [17]. . . 5

3 Delta inverted index data structure for CB1 to CB5 34

4 Comparison of execution time for different input sizes between adaptive

prefix filtering and SourcererCC. 43

5 Comparison of number of candidate pairs between adaptive prefix filtering

and SourcererCC (10,000 files). 45

6 Popularity distribution of Stack Overflow posts containing code clones . . 57

7 The number of versions of posts containing copied code snippets 58

8 Portion of a tutorial discussing the startActivityForResult Android

API [116] . 67

9 Portion of a tutorial utilizing the deprecated API android.util.FloatMath [15]. 68

10 Lifecycle of an API element. 72

11 Overview of our technique for automated versioning of software devel-

opment tutorials. 76

12 The distribution of the added versions across all the tutorial (log scale). . 82

viii

Abstract

ASSESSING THE QUALITY OF SOFTWARE DEVELOPMENT TUTORIALS

AVAILABLE ON THE WEB

By Manziba Akanda Nishi

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2019.

Director: Kostadin Damevski,

Assistant Professor, Department of Computer Science

Both expert and novice software developers frequently access software develop-

ment resources available on the Web in order to lookup or learn new APIs, tools and

techniques. Software quality is affected negatively when developers fail to find high-

quality information relevant to their problem. While there is a substantial amount of

freely available resources that can be accessed online, some of the available resources

contain information that suffers from error proneness, copyright infringement, secu-

rity concerns, and incompatible versions. Use of such toxic information can have a

strong negative effect on developer’s efficacy. This dissertation focuses specifically on

software tutorials, aiming to automatically evaluate the quality of such documents

available on the Web. In order to achieve this goal, we present two contributions:

1) scalable detection of duplicated code snippets; 2) automatic identification of valid

version ranges.

Software tutorials consist of a combination of source code snippets and natural

ix

language text. The code snippets in a tutorial can originate from different sources,

perhaps carrying stringent licensing requirements or known security vulnerabilities.

Developers, typically unaware of this, can reuse these code snippets in their project.

First, in this thesis, we present our work on a Web-scale code clone search technique

that is able to detect duplicate code snippets between large scale document and source

code corpora in order to trace toxic code snippets.

As software libraries and APIs evolve over time, existing software development

tutorials can become outdated. It is difficult for software developers and especially

novices to determine the expected version of the software implicit in a specific tutorial

in order to decide whether the tutorial is applicable to their software development

environment. To overcome this challenge, in this thesis we present a novel technique

for automatic identification of the valid version range of software development tuto-

rials on the Web.

x

CHAPTER 1

INTRODUCTION

During software development, developers often rely on external documentation, such

as tutorials, blogs, and Q&A forums, to learn information on software artifacts, frame-

works, libraries, and services [1, 2, 3]. However, research studies have shown that

sometimes these resources fail to provide high quality information crucial to pro-

ducing reliable software efficiently. While maintaining a high quality information

corpus in popular Q&A sites, such as Stack Overflow, is challenging [4], consistent

quality in other software development resources, such as software development tuto-

rials, development blogs, etc., is even more difficult as such resources do not have a

community-driven quality control system.

Among these software development resources, online tutorials are a particularly

valuable source of community created information. For many popular technologies,

tutorials present the definitive source of information on how to complete a task; they

are often the means by which a vendor describes how their API should be used for

a specific purpose. Tutorials provide information in an incremental fashion, using

alternating segments of code, natural language descriptions, or diagrams, which can

teach developers how to perform a specific task or a new skill more systematically

than e.g. Q&A posts. Experienced software developers can share their procedural or

how to knowledge in the form of software development tutorials.

There is no standard set of rules on how tutorials should be composed, so each

varies based on the author’s preferences. Tutorials can also be presented in differ-

ent mediums, such as written documents, interactive programs, or screen recordings

1

(audio or video) [5]. Assessing the quality of software development resources is im-

portant as developers find it difficult and time consuming to distinguish among a

huge number of similar documents, and, therefore, developers typically rely on sim-

ple cognitive heuristics such as the location of content and how much screen space

is occupied [6]. The growing amount of low-quality content available online, e.g.,

in Q&A communities like Stack Overflow, can be potentially attributed to specific

groups of contributors (e.g help vampires, noobs and reputation collectors) [7]. Auto-

matically evaluating and recommending high quality software development resources

for specific developers is a challenging task as the documents are complex and their

quality can be decomposed across several dimensions, e.g. version incompatibility,

license violations, security vulnerabilities etc.

Once written, tutorials are rarely actively updated (or removed) and can become

dated over time. Some tutorials reference APIs that change rapidly, and deprecated

classes, methods and fields can render tutorials inapplicable to newer releases of the

APIs. Newer tutorials may not be compatible with older APIs that are still in use.

Some tutorials direct developers towards poorly written or poorly maintained APIs.

Developers often assume perfection behind APIs, rarely taking the time to evaluate

the quality of APIs their software relies on. Use of highly unstable and rapidly

changing APIs can be threat to the success and security of implemented apps or

software, and as a result, bugs in these unstable APIs can drastically impact the

source code quality [8]. Therefore, it is important that software development tutorials

reflect the most up to date and high quality APIs for a specific purpose.

Source code is an integral part of software development tutorials. One research

study reports that 70% of software development tutorials contain source code exam-

ples [5]. Developers often reuse (i.e., copy and paste) code available on tutorials into

their projects. Changes in APIs can also make the example source code snippets

2

present in tutorials outdated, perhaps containing API misuses that lead to program

crashes, resource leaks, and incomplete actions [9]. Some tutorials are poorly written

to begin with. Buggy, unreliable, harmful code snippets present in tutorials can have

an adverse downstream effect on software systems [10, 11, 12, 9]. Out of 1.3 million

analyzed Android applications, 15.4% contain security related code snippets reused

from Stack Overflow. Alarmingly, 97.9% of these applications contain at least one

insecure code snippet [12].

License violations are another negative side effect of poor tutorials. Analyses

conducted by researchers indicate developers are often unaware of the license of code

snippets avialable on the Web [13] [14]. For instance, a large portion of Stack Overflow

answerers (69%) and visitors (66%) never checked for license conflicts. Further, 138

out of 201 highly reputed participants (answerers) of a survey are unaware of checking

licensing conflicts between code snippets reused or copied in their software projects

and Stack Overflow’s CC BY-SA 3.0 license. More alarmingly, 73 out of 87 Stack

Overflow visitors are not even aware of its CC BY-SA 3.0 license [10].

This dissertation contributes to the state of the art in assessing the quality of the

software development tutorials. While many researchers have contributed to evalua-

tion of the quality of content on Q&A websites such as Stack Overflow and invented

several quality measures, limited research thus far has focused on the evaluation of

the quality of software development tutorials [5].

1.1 Motivation

Evaluating the quality of the software development tutorials is a potentially im-

pactful area of research. However, quality can be expressed in different ways depend-

ing of the type of software and its domain as well as on individual perspective and

interest [18]. Our perspective is that the quality of the software development tutorial

3

…

…

Fig. 1.: Portion of an Android tutorial utilizing the deprecated API

android.util.FloatMath [15].

depends on the API mentions, code snippets and corresponding information present

in them. Presence of outdated APIs and code snippets with known security problems

and license restrictions degrade the overall quality of tutorials. In other words, the

inapproprateness of the APIs mentioned in the tutorial can render the coding exam-

ple and the corresponding information of the software development tutorials obsolete

or even toxic.

According to a recent survey of developer, the second most popular suggestion

made by software developers towards content quality on Stack Overflow is to intro-

4

Fig. 2.: Code snippet copied between a tutorial (lower portion) and a Stack Overflow

(upper portion) post with different licensing terms [16], [17].

duce a mechanism to detect outdated content. For instance, one developer suggested:

“Have explicit mechanisms for dealing with content that goes out of date due to plat-

form or language changes” [19]. Some other developers suggested a traceability link

between each code snippet and the API version under which it will work, stating:

“Clear associates between the codes snippets the versions of the API under which it

will work. This is particularly when working with APIs that change frequently, like

iOS and Unity”. Furthermore, developers also wanted outdated answers to be dep-

recated and removed “Make date important in marking outdated code, and deprecate

those snippets via the community” [19].

While prior research exists on aspects of quality of posts in Stack Overflow, far

fewer approaches have focused on software development tutorials [19], which present

many notable differences to Stack Overflow, the most notable of which is the lack

5

of community driven quality control (via up/down votes, accepted answers, etc.).

As the same time, this software documentation source is very widely used, as many

development tasks are difficult without the help of an appropriate tutorial.

As a motivating example, a portion of an Android tutorial is shown in Figure 9,

where the tutorial shows an example code snippet that utilizes the FloatMath class.

This class was deprecated in Android API level 22 and removed in level 23. At the

time of writing, the most recent level of Android API is 28, showing clearly a large

gap in the applicability of the code snippet in the tutorial. While this class is not

the focal point of this tutorial, reusing the code snippet that references it can lead

to difficulty and wasted time looking for alternative classes or tutorials. The tutorial

prominently displays that it was written in 2013 and has not been updated since,

which is perhaps an indicator of dated information, but there are numerous cases

where the tutorial’s age is not so easy to discern.

A complimentary motivating example focusing on code snippet licensing is shown

in Figure 2, showing a duplicate code snippet appearing in both a tutorial and Stack

Overflow. In either of these sources there is no reference to the other, from which

it could be understood where the tutorial originates from. Stack Overflow is avail-

able using the terms of one license: Creative Commons Attribute - ShareAlike 3.0

Unported (CC BY-SA 3.0). The specific tutorial licenses its code snippets according

to the Eclipse Public License 2.0. While both licenses are fairly unrestrictive, and

impose only minor constraints on reuse, a developer reusing this code has to inter-

pret which license takes precedence. Many other tutorial sources impose much more

restrictive terms on code reuse, which could lead to even larger problems when code

is reused.

The two highlighted examples are just ones of many, while other similar problems,

such as known security violations disseminated via tutorials, also exists. Therefore,

6

in this dissertation, as a broad goal, we target improving the quality of tutorials. The

techniques we describe address this goal in part, focusing mainly on the perspective of

a developer who is reading the tutorial, who we aim to inform of the quality concerns

with the source. An alternative approach is to inform the tutorial writer, but, we

have observed that in many cases the writer is difficult to reach while, at times, the

tutorial can still be valid for a small audience that e.g., still uses a very old version

of an API.

1.2 Contribution of the Research

The contributions of this dissertation to the problem of assessing the quality of

software tutorials are the following:

• Web-Scale Textual Code Clone Search.

We focus on improving the scalability of Web-scale textual code clone search,

relative to current state of the art techniques. We target searching and ex-

tracting similar or near similar source code snippets between known quality

sources (e.g. official API documentation is a high quality source, while a known

software vulnerability database has code snippets of low quality) and unknown

quality sources like tutorials. Due to the volume of the information available

on the Web, it is important to detect source code snippets with reasonable

speed and scalability. We propose a novel approach Web-Scale Textual Code

Clone Search based on the adaptive prefix filtering technique. Our proposed ap-

proach improves the performance of code clone search and code clone detection,

for many common execution parameters, when tested on common benchmarks.

The experimental results exhibit improvements for commonly used similarity

thresholds of between 40% and 80%, in the best case decreasing the execution

7

time up to 11% and increasing the number of filtered candidates up to 63%.

• Characterizing Duplicate Code Snippets between Stack Overflow and Tutorials.

Developers are usually unaware of the quality and lineage of information avail-

able on popular Web resources, leading to potential maintenance problems and

license violations when reusing code snippets from these resources. In this dis-

sertation, we study the duplication of code snippets between two popular sources

of software development information: the Stack Overflow Q&A site and soft-

ware development tutorials. Our goals are to empirically understand the scale

of repeated information between these two sources, to gain insight into why de-

velopers copy information from one source to the other, and to understand the

evolution of duplicated information over time. To this end, we correlate a set of

nearly 600 tutorials on Android available on the Web to the SOTorrent dataset,

which isolates code snippets from Stack Overflow posts and tracks their changes

over time. Our findings reveal that there are over 1,400 duplicate code snippets

related to Android on Stack Overflow. Code that was duplicated on the two

sources is effective at answering Stack Overflow questions; a significant number

(31%) of answers that contained a duplicate code block were chosen as the ac-

cepted answer. Qualitative analysis reveals that developers commonly use Stack

Overflow to ask clarifying questions about code they reused from tutorials, and

copy code snippets from tutorials to provide answers to questions.

• Automatic Identification of Valid Version Range of Software Development Tu-

torials on the Web.

To detect both updated and outdated information of the software development

resources it is important to evaluate the version or range of versions of the infor-

mation present in it. The high-level information cloud contains most relevant,

8

authentic as well as updated information. At the same time high-level informa-

tion cloud stores previous versions of the information that helps us to evaluate

the versions of information present in the low-level software development re-

sources such as software tutorials. We propose a novel approach of automatic

identification of valid version range of software development tutorials on the

Web.

We first empirically study the tutorial versioning problem, confirming its pres-

ence in popular tutorials on the Web. We subsequently propose a technique,

based on similar techniques in the literature, for automatically detecting the

applicable API version ranges of tutorials, given access to the official API docu-

mentation they reference. The proposed technique identifies each API mention

in a tutorial and maps the mention to the corresponding API element in the offi-

cial documentation. The version of the tutorial is determined by combining the

version ranges of all of the constituent API mentions. Our technique’s precision

varies from 61% to 89% and recall varies from 42% to 84% based on different

levels of granularity of API mentions and different problem constraints. We

observe API methods are the most challenging to accurately disambiguate due

to method overloading. As the API mentions in tutorials are often redundant,

and each mention of a specific API element commonly occurs several times in a

tutorial, the distance of the predicted version range from the true version range

is low; 3.61 on average for the tutorials in our sample.

1.3 Organization of the Dissertation

Chapter 2 presents the background and related work of our research. We discuss

existing and prevalent methodology, techniques, research studies and surveys con-

cerning the information quality of popular software development resources, scalable

9

code clone search and detection techniques, and versioning of software development

resources.

Chapter 3 presents a detailed explanation about our proposed Web-scale textual

code clone search technique, discussing types of code clones, problem formulation

of code clone search and detection, related properties and lemmas. We have also

presented experimental results compared to existing techniques. We also present

the characterization and properties of the duplicate code snippets in between Stack

Overflow and software tutorials. Using qualitative analysis we examined these code

clone pairs to understand why developers usually copy code snippets between Stack

Overflow and software tutorials. We have also presented several research findings

based on the evolution of copied code snippets.

Chapter 4 presents the detailed methodology and result of an empirically study

of the tutorial versioning problem. We discuss the workflow of our proposed approach

of automatic identification of range of versions of tutorials, various machine learning

features we have utilized, corresponding machine learning algorithms we have applied

and a discussion of the experimental results.

Chapter 5 presents our future research plan. Finally, Chapter 6 presents the

conclusions of our dissertation.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

Numerous software development channels (e.g., developer blog posts, bug reports,

mailing lists, code reviews, API documentation and Q&A forums) are available on the

Web, enabling developers to communicate with each other regarding various program-

ming language concepts, current state-of-art tools and technologies, programming

problems, known bugs, etc. The body of software development resources available on

the Web provides a great opportunity for developers to quickly learn or lookup an-

swers to pressing software development problems. [20]. Online information is accessed

multiple times daily by both seasoned and novice software developers. Effective search

of the most relevant information online for a particular problem has become a relevant

development skill. However, assessing the quality of that information is harder than

finding it, while neglecting its quality can lead to lost productivity, technical debt or

other downstream issues in the quality of the produced software.

2.1 Quality of Online Software Development Resources

Software development resources available on the Web can be deficient in a few

ways: redundant content, outdated or incompatible information, content that is ir-

relevant or off topic, and information that may not be explained clearly or is mainly

opinion-based. Such negative aspects of software documentation make readers impa-

tient, confused, and uninterested to use these resources in the future [22].

Researchers have proposed several models and metrics to quantitatively and ob-

jectively evaluate the quality of these software development resources available on

11

the web. These models and metrics can measure the quality of the software devel-

opment resources based on different dimensions such as trustworthiness, correctness,

relevancy, comprehensiveness, and stability [18]. In addition, various features have

been introduced to quantitatively assess the quality of Q&A websites such as Stack

Overflow. Some of these features include textual or word-based representations of

posts such as size of a question, size of an answer, similar words between a question

and its answer, length ratio between a question and its answer. Quality is also mea-

sured based on the activity of the participants such as his/her communal interactions,

reputations and popularity. Moreover, on Stack Overflow, the number of up votes,

down votes, best answers, accepted answers, quality ratings as well as editor and

user’s reputations are useful attributes to measure post quality [23].

Software continuously evolves and this can make existing software development

resources obsolete. Changes of API versions can make the existing source code snip-

pets in software-related documents no longer applicable. Although questions about

new APIs generally attract more attention, well thought out answers need more time

to emerge and be recognized by the community [24].

Code snippets are an important factor for assessing the quality of software de-

velopment resources. In Q&A sites, the questions elaborated with at least one code

snippet usually get multiple good quality answers [25]. Answering problem specific

questions is extremely difficult if no code snippet is included [26]. Developers of-

ten find it problematic to reuse the source code snippets on platforms such as Stack

Overflow due to the lack of quality assessment [19]. The reuse of the outdated code

snippets present in the software development resources can impose potential risk of

security vulnerabilities [27], while developers face difficulty recognizing obsolete code

snippets that are not appropriate to their specific configuration [19]. Moreover, de-

velopers are also at potential risk of violating license agreement when they simply

12

copy and paste the code snippets from one project to another without considering li-

cense agreements. Outdated code snippets, code snippets that are violating software

licenses, and code snippets with security vulnerabilities are referred as toxic code

snippets. The presence of such obsolete code snippets has a strong negative effect on

the quality of online resources [27] [10] [28].

A recent survey finds that significant number (1,279) of code snippets copied

from Stack Overflow to Android apps potentially violate the software license [10] [13].

Although Stack Overflow participants are usually notified of the outdated code snip-

pets present, almost 19% of them never fix these code snippets [27]. The quality of

content of Q&A website also degrades due to improper curation, e.g., when incorrect

tags are assigned to the posts or if the topic of the contents is no longer applicable or

highly subjective. A high quality question is an important factor for a high quality

answer [25].

Researchers have also revealed that a significant number(29%) of security related

code snippets of Stack Overflow have potential security breaches, while having been

reused by over 1 million Android apps on Google play [12] [9] and out of 217,818

analyzed Stack Overflow posts, around 67,543 posts may have potential API usage

violations that may impose the risk of producing unexpected output and behavior [9].

Recently researchers have evaluated the security susceptibility of the Stack Overflow

code snippets in terms of social coding properties such as questions, answers, code

snippets, different user attributes, badges as well as attributes related to code content

such as APIs, function names, method names. The research study reveals different

types of security risks are associated to defective code snippets. Among these, Android

Manifest Configuration imposes the most dominating security breach (28.73%) when

code snippets are copied from Stack Overflow. The Android apps are in danger

of potential security concerns because insecure code snippets often request several

13

unnecessary permissions. The second most dominating security risk is related to data

security (23.05%) which often leads to password sniffing attacks [29].

2.2 Code Clone Detection

The problem of finding problematic code snippets can be formulated as similarity-

based search, where a code snippet with a known issue is compared to the corpus of

code snippets in online resources. Code clone detection is a research area that focuses

on finding similar code pairs. In order to match a problematic code snippet across a

large corpus, e.g., Stack Overflow, only very scalable code clone detection algorithms

suffice.

Scaling code clone detection to work across multiple repositories is a specific area

of interest among researchers. Popular and notable examples of large-scale code clone

detection include CCFinderX [36], which is one of the foremost token based code clone

detection tools able to scale up to large repositories and detect Type-1 and Type-2

code clones. In [37], an inverted index-based approach was first proposed, detecting

Type-1 and Type-2 clones. Deckard [38] is another tool that aims to scale to large

source code repositories. It uses a tree-based data structure and detects clones by

identifying similar subtrees and is able to detect up to Type-3 code clones. NiCad [39]

is a scalable code clone detection tool that can detect Type-3 clones using a technique

based on parsing, normalization and filtering. When compared using similar execution

parameters, CCFinderX scales up to 100 million lines of code, Nicad scales up to 10

million lines of code, while Deckard scales up to 1 million lines of code [40].

Parallel, distributed or online (i.e. incremental) techniques add another dimen-

sion in examining scalable code clone detection technique. For instance, iClone [41]

is the first incremental code clone detection technique that detects code clones in the

current version of code repository by leveraging executions on previous versions of

14

the same repository. It uses a suffix tree-based and token-based approach that can

detect Type-1 and Type-2 code clones. A scalable distributed code clone detection

tool named D-CCFinder was proposed in [42], which can scale code clone detection

in a distributed environment to detect Type-1 and Type-2 clones. In [43] a scalable

code clone detection technique has been introduced where input files are partitioned

into smaller subsets and a shuffling framework is utilized to allow the clone detection

tool to execute on each of the subsets separately, enabling it to detect code clones in

parallel.

Recently, the SourcererCC [40] code clone detection tool proposed a token-based

prefix filtering code clone detection technique, which greatly reduces the number of

candidate code clone pairs, enabling it to detect up to Type-3 clones in Internet-scale

source code repositories. SourcererCC is the best scaling tool on a single machine that

we are aware of. The approach described in our prposed technique extends Sourcer-

erCC with an adaptive approach that allows for even greater gains in performance

for large-scale source code datasets.

SourcererCC is based on two filtering heuristics, prefix filtering and token position

filtering, which reduce the number of candidate pairs that require costly pairwise

comparison of all of their tokens [44, 45]. These two filtering heuristics attempt to

rapidly, with few token comparisons, detect pairs of code blocks that diverge very

significantly from each other. To perform this task, a subset (or prefix) is isolated in

each of the two code blocks, where if there are no matching tokens in the subsets then

we can safely reject them as a candidate pair, without proceeding further, and without

attempting to compare all of their tokens. On the other hand, a single matching token

in the subset allows the pair to proceed to further scrutiny as a code clone.

Recently, an extremely scalable code clone detection tool VUDDY [46] has been

presented. VUDDY’s purpose is to detect vulnerable code clones for security improve-

15

ment. While VUDDY has been shown to be significantly faster than SourcererCC it

is designed to only detect Type-1 and Type-2 code clones. So far, the precision and

recall of VUDDY has only been evaluated for relatively few instances of code with

security vulnerabilities.

Wang et al. [47] recently proposed an additional filtering heuristic to those used

in SourcererCC, called adaptive prefix filtering. This technique posits that deeper

prefix lengths, which attempt more aggressive filtering at a higher performance cost,

can achieve good performance on some types of input. An adaptive prefix filtering

technique attempts to estimate the right level of filtering for each candidate by opti-

mizing the trade-off between the cost of deeper filtering with the benefit of reducing

the number of candidates. We have applied adaptive prefix filtering to code clone

detection, and evaluates it’s adequacy.

2.3 Code Clone Search

In this section we describe some of the previous approaches directed towards code

clone search, which are significantly fewer than those that target code clone detection.

Our technique targets both code clone detection and code clone search.

Multidimensional indexing structures have previously been proposed for code

clone search. The technique proposed by Lee et al. [30] captures semantic information

via a characteristic vector containing the occurrence counter of each syntactic element.

This technique also retrieves a ranked list of code clones for each query, similar to

typical information retrieval techniques. Another code clone search approach that

uses multi-level indexing to detect Type-1,Type-2, Type-3 code clone was proposed

by Kelvanloo et al. [31].

SeClone is a technique that targets code clone search [32] using a complex work-

flow, which includes the creation of Java ASTs for each file, two types of indices (code

16

pattern index and type usage index), a tailored search algorithm for code search, and

a post-processing step that leverages clone pair clustering and grouping. Another

complex technique Internet scale code clone search technique has been recently pro-

posed, performing an abstracted code search for working code examples for reuse [33].

This technique uses an abstract representation of code snippets (using p-strings [34]),

which are searched using frequent itemset mining. The result set of working code

example is ranked using relevance of code patterns, popularity of abstract solutions,

and similarity of code snippets to the output code snippets [33].

A clone search technique proposed by Koschke et al. [35] detects clones between

two different systems. The technique uses a suffix tree to represent the code base that

is smaller between the two. Subsequently, every file of the other system is compared

against the suffix tree. A hash-based technique is additionally used for reducing the

number of file comparisons. The technique only detects Type-1 and Type-2 code

clones.

All of the above approaches towards code clone search utilize complex data struc-

tures to represent code blocks and (or) leverage complicated indexing schemes. Differ-

ent from code clone detection, code clone search techniques typically do not optimize

the index building time, since it is considered to be a fixed cost. Our proposed

approach applies to both code clone search and code clone detection. Unlike other

approaches for code clone search, it uses simple token-based code block representation

that is fast and scalable to build and also maintains the ability to produce reasonable

detection accuracy for Type-1, Type-2 and Type-3 code clones.

2.4 Valid Version Range of Software Development Resources

To our knowledge, there is no prior research that focuses specifically on the

validity of tutorials with respect to versions of APIs they reference. We can divide

17

the related research into two categories: 1) studies of API deprecation and versioning

of APIs referenced in various contexts; and 2) techniques for extracting API mentions

from different types of formal and informal documentation. We discuss each of these

categories in turn.

Many studies of API deprecation focus on source code. Leveraging data in soft-

ware repositories, a recent tool called ApiDiff detects the API changes between

two versions of Java libraries [48]. ApiDiff serves as a warning system for client

applications that rely on these libraries. The tool extracts syntactic changes in the

evolution of a software repository, reporting a set of predefined breaking and non-

breaking changes in API types, methods, and fields. Targeting Android application

binaries distributed via the app store, the MAD-API framework detects API mis-

uses, using a reverse engineering toolchain [49]. MAD-API detects API misuses

based on a gold set of Android APIs, including per-version removals, deprecations,

and additions. The APIs in the binary that are misused are detected and reported.

Both of these tools focus on detecting API versioning problems in source code, a

very different domain from versioning software development tutorials that consist of

a combination of source code and natural language text.

The recently proposed framework Deprecation Watcher [50] detects depre-

cated APIs in the source code snippets of StackOverflow posts. Since StackOverflow

posts are concise and focus on a single topic [51, 50], a lightweight tool like Depre-

cation Watcher can be effective in detecting deprecated API while disregarding

the natural language context of the post. However, researchers have pointed out

that the content of the surrounding text is especially important in high quality an-

swers on StackOverflow [51]. Our technique focuses on API versioning of tutorials,

which are significantly more complex, often weaving together multiple related topics.

The code snippets in tutorials are also much more complex, which makes the regu-

18

lar expression based technique in Deprecation Watcher potentially inadequate.

However, more importantly, the natural language context in tutorials is much larger

than StackOverflow posts and ignoring it is likely to lead to poor results.

Detecting API mentions in informal documentation is an active area of research,

as, once detected, the API mentions can be used to improve documentation lookup

efficiency or serve as the basis for a variety of recommendation systems. For in-

stance, Ye et al. proposed a technique for detecting API mentions, despite difficulties

introduced by polysemy and sentence-format variations in the informal documenta-

tion [52]. Ye et al. also utilized a conditional random fields classifier to detect the fully

qualified names of API mentions, obtaining high precision and recall [53]. However,

the chosen approach relies heavily on hints that are specific to the Q&A conversations

in StackOverflow, such as the question title, StackOverflow tags (used to eliminate

non-relevant candidates), as well as tags embedded in HTML to find out types (class

and interface). These techniques are too specific to StackOverflow and therefore are

not completely applicable to our problem.

A recently proposed tool also targeting StackOverflow mentions, named ANACE [54],

leverages a number of generic features that could be applied to any informal docu-

mentation source. We modeled our features on some of the features shown to be

effective by ANACE, however, our workflow is significantly simpler relative to this

tool. Finally, we also differ from ANACE in targeting versioning of tutorials, rather

than just API mention detection in StackOverflow posts.

Recodoc is a tool proposed to extract code-like terms in documents linked to

API elements. The tool is based on a number of filtering heuristics [55], and relies on

a parser to identify code-like terms, which can miss terms with formatting inconsis-

tencies and result in false positives on similar terms (e.g URLs). ACE is a tool that

uses local context extracted from a single document and global context extracted from

19

the corpus to discover code-like terms in informal documentation [56]. The tool relies

on tags to filter out those posts that do not represent APIs of interest and introduce

noise [54]. ACE also uses an island parser and relies on a set of regular expressions

which can be language or source specific. Recodoc was later applied in finding rel-

evant tutorial segments for a given API element [57, 58]. Both of these approaches

only consider class and interface level granularity, but not method or field. To detect

API versions of a tutorial, we need to consider all API element, including classes (or

interfaces), fields and method. Therefore Recodoc is not directly applicable to the

tutorial versioning problem.

An unsupervised approach FRAPT [59] has recently been proposed to recom-

mend relevant tutorial fragments of APIs. FRAPT relies on HTML tags and special

keywords to identify API names, which can be unreliable, and does not do anything

to resolve the ambiguity in common API names. FRAPT [59] was later used to

implement a framework named SOTU [60] that aims to find answers to API related

natural language questions by utilizing fragments of API tutorials and StackOverflow.

Zhang et al. devised a recommendation system that links API official documen-

tation to the API related questions in StackOverflow [61]. They utilized the lexical

similarity between StackOverflow questions and API description and the resolved his-

tory of prior answered questions on StackOverflow. An API recommendation tech-

nique called RACK [62] has been proposed to discover appropriate APIs for a given

natural language query by utilizing crowdsourced knowledge mined from StackOver-

flow in the form of keyword-api association. While utilizing API mention discovery in

their workflow, both of these recommendation techniques aim at completely different

software engineering problems than the tutorial versioning problem that is the focus

of our research work.

20

CHAPTER 3

WEB-SCALE TEXTUAL CODE CLONE SEARCH

Source code snippets in software development resources on the Web are important to

the quality of these documents. Given a known toxic code snippet, it is challenging

to use existing tools and techniques to find similar toxic source code snippets in

online software development resources, due to the large volume of information in these

sources. In this thesis, we propose a technique for Web-scale textual code clone search

that can be used for retrieving similar source code snippets in software development

resources on the Web. Most existing code clone search and detection techniques have

difficulty scaling up to extremely large corpora of source code [43, 76].

Traditionally, developers introduce clones in a code base mainly when reusing

existing code snippets without significant alteration, or when certain code snippets

are implemented by developers following a common mental macro [63, 64, 36]. Re-

searchers have shown that developers tend to perform software maintenance tasks

more effectively when they are searching for code clones and have the results of code

clone detection [65, 66]. Empirical studies have noted that code clones are widespread,

and that a significant portion of source code (between 5% and 20%) is copied or mod-

ified from already implemented code snippets [63, 67, 68].

Performing code clone detection across numerous software repositories is a com-

mon use case. Specific applications for large scale code clone detection include query-

ing library candidates [69], categorizing copyright infringement and license viola-

tions [70, 71], plagiarism detection [71, 70], finding product lines in reverse engineer-

ing [72, 71], tracing the origin of a component [73], searching for code snippets in

21

large software repositories [74, 31], and spotting analogous applications in Android

markets [75, 40].

Similar or nearly similar source code snippets that encode the same algorithm are

called code clones [40]. Code clone search is an area of research where a single code

snippet is supplied as a query to be matched in large source code corpus, retrieving

a list of code clones. Unlike conventional code clone detection, code clone search

requires the source code to be pre-indexed and for the similarity threshold between the

query block and it’s clones to be specified at query time, instead of, at indexing time.

This twist makes it challenging for typical code clone detection to be used without

modification, and requires a more flexible data structure. During the development

process, software developers often use code clone search to locate reusable similar or

nearly similar source code snippets from other related projects [30].

Types of Code Clones. A continuous portion of source code is referred to as code

snippet [40]. Based on the nature of the similarity between code snippets, the software

engineering community has identified four types of code clones, by which code clone

detection techniques can be organized.

• Type-1 (T1): Syntactically equivalent code snippets are called Type-1 clones.

These code snippets may have differences in whitespace, layout and comments.

• Type-2 (T2): Code snippets that are syntactically comparable but are slightly

contrasting in terms of variable names, function names, or identifier names.

• Type-3 (T3): If two code snippets contain statements that have been inserted,

altered, expunged, there is a gap in statements, or statement order differs, then

these are called Type-3 clones.

• Type-4 (T4): Semantically equivalent code snippets are called Type-4 clones.

22

As an example, Table 1 shows Type-1, Type-2, Type-3 and Type-4 code clone of the

original code snippet [80].

// Or i g ina l Code
Snippet

i f (a==b)
{
c=a*b ; //C1
}
e l s e
c=a/b ; //C2

//Type−1 Code
Clone

i f (a==b)
{
//comment1
c=a*b ;
}
e l s e
//comment2
c=a/b ;

//Type−2 Code
Clone

i f (g==f)
{//comment1
h=g* f ;
}
e l s e
//comment2
h=g/ f ;

//Type−3 Code
Clone

i f (a==b)
{//comment1
c=a*b ;
// New Stat .
b=a−c ;
}
e l s e
//comment2
c=a/b ;

//Type−4 Code
Clone

switch (t rue)
{//comment1
case a==b :
c=a*b ;
//comment2
case a!=b :
c=a/b ;}

Table 1.: Types of code clones [80].

3.1 Contribution

Among the tools aimed towards large scale code clone search and detection, a

common limitation is in the complexity of differences among clones they can de-

tect. For instance, scalable token based approaches [36, 37, 69] have difficulty de-

tecting near miss (Type-3) code clones, which can occur more frequently than other

types of clones [76, 77, 78]. Parallel and distributed clone detection techniques like

D-CCFinder [42] can be more burdensome to manage, requiring specialized hard-

ware or software support, while tree based code clone detection technique, such as

Deckard [38], place higher demands on memory. The restrictions of these existing

tools and techniques motivated us to propose a Web-scale textual code clone search

technique that can work in very large source code repository and other software de-

velopment resources on the Web, with high speed and low memory cost.

We propose a token-based code clone search technique aimed at scalability and

detecting Type-3 clones, consisting of two main steps: filtering and verification. In

the filtering step we aim to significantly reduce the number of code snippets for com-

parison, removing from consideration snippets that do not have any possibility of

23

being code clones. In the verification step we determine whether candidate pairs that

survived the filtering step are really code clones. This two step process greatly reduces

the runtime of code clone search and code clone detection, allowing the technique to

scale up to very large corpora. This technique is based on the adaptive prefix filtering

heuristic [47], which is an extended version of prefix filtering heuristic [44] [45] previ-

ously applied towards code clone detection in SourcererCC [40]. To our knowledge,

SourcererCC is the best scaling code clone detection tool able to detect Type-3 clones.

We demonstrate improvements in execution time relative to SourcererCC, while ob-

taining the same accuracy, for many common similarity thresholds, when evaluated

on a large scale inter-project source code corpus [79].

We have presented a separate novel idea, the effective application of our technique

to code clone search, without modification, in addition to code clone detection. Code

clone search is a related problem to code clone detection where the user specifies

a single code snippet (i.e. query block) to search for in a corpus of many code

snippets. Once indexed, the corpus should be able to serve numerous such queries.

Ours is among few techniques that can be applied to both of these problems. The

contributions of our research work are the following:

• A novel code clone detection technique that can scale to very large scale source

code repositories (or sets of repositories) with the ability to detect Type-1,

Type-2, and Type-3 code clones, while maintaining high precision and recall.

• An extension of our proposed technique so that it can be effectively utilized for

code clone search without modification.

24

3.2 Problem Formulation of Code Clone Search

Two syntactically or semantically equivalent code snippets are called code clone

to each other. This pair of code snippets are called clone pairs and are denoted as

P (CB1, CB2, t) where CB1 and CB2 are similar code snippets and t is the type of

clone [40].

Given a very large source code repository R, that contains collections of source

code snippets (CB1, CB2, CB3, CB4, ..., CBn) and a single query code snippet CQ,

code clone search technique extracts each pair of code clones P (CB,CQ). In other

words, code clone search technique extracts the code snippets (CB1, CB2, ..., CBk)

where each of these code snippets CB is code clone of query code snippet CQ.

3.3 Code Clone Detection

Code clone detection is a well-known software engineering problem that aims

to detect all the groups of code snippets that are functionally equivalent in a code

base. It has numerous and wide ranging important uses in areas such as software

metrics, plagiarism detection, aspect mining, copyright infringement investigation,

code compaction, virus detection, and detecting bugs [63]. A scalable code clone

detection technique, able to process large source code repositories, is crucial in the

context of multi-project or Internet-scale code clone detection scenarios.

3.3.1 Problem Formulation of Code Clone detection

Given a pair of code snippets CB1 and CB2, and a similarity function f , a

threshold value θ, a code clone detection technique detects whether this pair of code

snippets, P (CB1,CB2) is code clone or not.

In other words, given two large source code repositories, Rx and Ry, a similarity

25

function f and a threshold value θ, a code clone detection technique finds all the code

snippet pairs or set of code snippet pairs CB1 and CB2 such that f(CB1, CB2) ≥⌈
θ ·max(|CB1|, |CB2|)

⌉
. For intra source code repository similarity Rx and Ry are

same [40].

3.4 Adaptive Prefix Filtering Technique

Our proposed technique, centers on the combination of three filtering heuristics,

two of which have been previously proposed for token-based code clone detection:

prefix filtering, token position filtering and adaptive prefix filtering. Prefix filtering

was proposed by researchers so that number of candidate pairs in token based code

clone detection can be significantly reduced, improving performance and scalability.

As a complement to prefix filtering, token position filtering utilizes the position of the

tokens in the code snippet to further reduce the number of candidate pairs. The third

heuristic, adaptive prefix filtering is an extended version of prefix filtering that looks

for beneficial opportunities to filter candidate pairs even more aggressively, aimed

at even further improving performance and scalability to large datasets. Sourcer-

erCC [40] has implemented the first two heuristics, while in our proposed code clone

detection technique we have applied all three heuristics. In this section, we describe

the context for token-based code clone detection, followed by an explanation of each

of the three filtering heuristics. As a running example that helps clearly explain our

approach we use 5 code snippets shown in Table 2.

For a token-based approach of code clone detection, at first, we must convert the

source code into a set of tokens. To this end, we extract the set of string literals,

keywords, and identifiers in each code snippet, removing all the special characters,

operators and comments. Each of the extracted tokens can occur several times in a

code snippet so we annotate each token with it’s local occurrence frequency. The sum

26

//Code Snippet 1 (CB1)

pub l i c s t a t i c i n t
f a c t o r i a l (i n t r e s u l t)
{

i f (r e s u l t <= 1) return 1 ;
re turn r e s u l t * f a c t o r i a l (r e su l t −1);
}

//Code Snippet 2 (CB2)

pub l i c s t a t i c i n t
f a c t o r i a l (i n t n)
{

i n t r e s u l t = 1 ;
f o r (i n t i =1; i<=n ; i++)
{

r e s u l t = r e s u l t * i ;
}
re turn r e s u l t ;
}

//Code Snippet 3 (CB3)

pub l i c s t a t i c i n t
f a c t o r i a l (i n t n)

{
i f (n >= 0)
{

r e s u l t [0] = 1 ;
f o r (i n t i =1; i<=n ; i++)
{

r e s u l t [i]= i * r e s u l t [i −1] ;
}
re turn r e s u l t [n] ;
}

}

//Code Snippet 4 (CB4)

pub l i c s t a t i c void main
(St r ing [] args)
{

i n t r e s u l t = 5 ;
i n t f a c t o r i a l = r e s u l t ;
f o r (i n t i=r e su l t −1; i >1; i−−)
{

f a c t o r i a l = f a c t o r i a l * i ;
}

}

//Code Snippet 5 (CB5)

pub l i c i n t f a c t o r i a l (i n t r e s u l t)
{

i f (r e s u l t == 0)
{

re turn 1 ;
}
e l s e
{

re turn r e s u l t * f a c t o r i a l (r e su l t −1);
}

}

Table 2.: Code snippets for running example.

of the local occurrence frequencies for a specific token across all the code snippets

in the corpus is it’s global occurrence frequency. We sort all the tokens, in each

code snippet, based their global frequency in ascending order. When there is a tie,

the tokens are arranged in alphabetical order. For instance, in Table 3 we show the

sorted token-based representation of the code snippets from Table 2.

3.4.1 Prefix Filtering

According to this heuristic, if the sorted tokens (as shown in Table 3) of a pair of

code snippets match at least one token in their prefix then these snippets are a code

27

Code
Snip-
pet

Sorted Tokens

CB1 if
{9}
{1,3} static

{10}
{1,4} public

{11}
{1,5} return

{13}
{2,6} factorial

{14}
{2,9} 1

{15}
{3,12} int

{17}
{2,14} result

{18}
{4,19}

CB2

for
{8}
{1,3} static

{10}
{1,4} public

{11}
{1,5} n

{12}
{2,6} return

{13}
{1,6} factorial

{14}
{1,9} 1

{15}
{2,12} i

{16}
{4,14}

int
{17}
{4,14} result

{18}
{4,19}

CB3

0
{7}
{2,3} for

{8}
{1,3} if

{9}
{1,3} static

{10}
{1,4} public

{11}
{1,5} n

{12}
{4,6} return

{13}
{1,6} factorial

{14}
{1,9} 1

{15}
{3,12}

i
{16}
{6,14} int

{17}
{3,14} result

{18}
{4,19}

CB4

5
{1}
{1,1} String

{2}
{1,1} args

{3}
{1,1} main

{5}
{1,1} void

{6}
{1,1} for

{8}
{1,3} static

{10}
{1,4} public

{11}
{1,5}

factorial
{14}
{3,9} 1

{15}
{2,12} i

{16}
{4,14} int

{17}
{3,14} result

{18}
{3,19}

CB5

else
{4}
{1,1} 0

{7}
{1,3} if

{9}
{1,3} public

{11}
{1,5} return

{13}
{2,6} factorial

{14}
{2,9} 1

{15}
{2,12} int

{17}
{2,14}

result
{18}
{4,19}

Table 3.: Tokenized code snippets sorted based on global token ordering. Each token x is

represented as x
{m}
{l,g} where m is the global position (the position after sorting all the tokens

of all the code snippets based on global frequency), l is the local frequency of the token in
the code snippet, while g is the global frequency of token x in the corpus

clone candidate pair, which we verify whether are really code clone to each other in

a subsequent verification step. On the other hand, if not a single token is matched,

then we can discard them from further consideration.

Given two code snippets CB1 and CB2 and threshold value θ we calculate the

the prefix of each code snippet is of size |t| −
⌈
θ|t|
⌉

+ 1 where |t| is the total number

of tokens in the corresponding code snippets. Now, we only test whether at least one

token is matched in the two prefixes to determine if they need further scrutiny or if

they can be filtered out.

3.4.1.1 Property

We generalize this to Property 1 as follows.

Property 1: If two code snippets CB1 and CB2 consist of t terms each, which follow

an order O, and if |CB1 ∩ CB2| ≥ i, then the sub-block CBsb1 consisting of the first

t− i + 1 terms of CB1 and the sub-block CBsb2 consisting of first t− i + 1 terms of

CB2 must match at least one token.

28

3.4.1.2 Related Examples

In Table 4 we show the prefixes of two code snippets from our running example,

assuming a similarity threshold value θ=0.8. For CB1, whose size is |t| = 16, Table 4

shows that it’s prefix is computed as |t|−
⌈
θ|t|
⌉
+1 = 16−0.8∗16+1 = 4. In the fourth

column of this table all the extracted tokens within the prefix of CB1 are shown. It

is worth mentioning that although the prefix length is four we have extracted five

tokens because this metric ignores repeated tokens in the last position. Since return

(last token with 1-prefix length) has repeated twice in CB1 it is similarly included

in the prefix.

Code
Snip-
pet

Size of
Code
Snip-
pet

1-Prefix Scheme Tokens within Prefix

CB1 |t| = 16 |t| −
⌈
θ|t|
⌉

+ 1 = 16− 0.8 ∗ 16 + 1 = 4 {if static public return return}
CB2 |t| = 21 |t| −

⌈
θ|t|
⌉

+ 1 = 21− 0.8 ∗ 21 + 1 = 5 {for static public n n}

Table 4.: Prefix filtering of CB1 and CB2

3.4.2 Token Position Based Filtering

For the second heuristic, token position filtering, we derive an upper bound by

summing of the number of current matched tokens and minimum number of unseen

tokens between two code snippets. If this upper bound is smaller than the needed

threshold we can safely reject this code snippet pair.

3.4.2.1 Property

We derive property 2 for token position filtering, as follows.

Property 2: Let snippets CB1 and CB2 be ordered and ∃ token t at index i in CB1,

such that CB1 is divided in to two parts, where CB1(first) = CB1[1...(i − 1)] and

CB1(second) = CB1[i...(|CB1|)]. Now if |CB1| ∩ |CB2| ≥ θ * max(|CB1|, |CB2|),

29

then ∀ t ∈ (CB1 ∩ CB2), |CB1(first) ∩ CB2(first)| + min(|CB1(second)|,

|CB2(second)|) ≥ θ ∗max(|CB1|, |CB2|).

3.4.2.2 Related Examples

For code snippets CB1 and CB2, if we examine the position of the first match-

ing token static, we see that it is in position 2 for both code snippets. At position

2, the minimum number of unseen tokens is 14 for code snippet CB1 and 19 for

code snippet CB2, since the total number of tokens is 16 and 21 for code snippets

CB1 and CB2 respectively. We compute the upper bound between CB1 and CB2 as

{1 +min(14, 19)} = 15, to communicate the number of matching tokens, in the best

case scenario, given the position of the match in the static token. The upper bound

in this case is lower than the required number of tokens (17) we needed to match,

assuming the similarity threshold value of 0.8 (θ*{length(CB1), length(CB2)}=0.8 ∗

max(16, 21) = 17). Therefore, we can reject this pair of code snippets without pro-

ceeding further.

3.4.3 Adaptive Prefix Filtering

Adaptive prefix filtering heuristic is the extended version of prefix filtering where

rather than matching one token in the prefixes of code snippets, we match more,

while deepening the size of the prefixes. For example, instead of matching only the

token static in the prefix of CB1 and CB2 we can match multiple tokens. This variant

defines an `-prefix (instead of a 1-prefix scheme), where ` is the number of tokens we

want to match. The size of the prefix (i.e. number of tokens within prefix) changes

from |t| −
⌈
θ|t|
⌉

+ 1 to |t| −
⌈
θ|t|
⌉

+ `. Adaptive prefix filtering reduces the number

of candidates more aggressively, at the cost of more comparisons in the filtering step.

An advantageous value of ` can be selected based on the cost calculation framework

30

for each of the code snippet, discussed in Section 3.5.2.

3.4.3.1 Related Examples

In Table 5 we have shown how the 1-prefix scheme in Table 4 can be prolonged to

2-prefix and 3-prefix schemes. For instance, for CB1 in Table 5 the length of 2-prefix

scheme is |t| −
⌈
θ|t|
⌉

+ 2 = 16− 0.8 ∗ 16 + 2 = 5 resulting in the shown set of tokens.

Code
Block

2-Prefix
Scheme

Tokens within
2-Prefix Scheme

3-Prefix
Scheme

Tokens within
3-Prefix Scheme

CB1
|t| −

⌈
θ|t|
⌉

+ 2 =
16− 0.8 ∗ 16 + 2 = 5

{if static public
return return

factorial factorial}

|t| −
⌈
θ|t|
⌉

+ 3 =
16− 0.8 ∗ 16 + 3 = 6

{if static public
return return

factorial factorial
1 1 1}

CB2
|t| −

⌈
θ|t|
⌉

+ 2 =
21− 0.8 ∗ 21 + 2 = 6

{for static
public n n return}

|t| −
⌈
θ|t|
⌉

+ 3 =
21− 0.8 ∗ 21 + 3 = 7

{for static public
n n

return factorial}

Table 5.: Adaptive prefix filtering for CB1 and CB2

Here, factorial is the new token added in 2-prefix scheme which was not included

in 1-prefix scheme. For the 2-prefix scheme of CB1 and CB2, the number of similar

tokens between the prefixes is 3. These similar tokens are static, public and return.

It is worth mentioning that although return has repeated two times in CB1 it has

occurred only once in CB2 so we have to count it only once. According to adaptive

prefix filtering, for CB1 if we take 2-prefix scheme then we will keep CB1 and CB2 as

candidate pairs because at least `=2 tokens are matched in the prefixes of CB1 and

CB2.

3.4.3.2 Property and Lemma

This is generalized in Property 3 for adaptive prefix filtering and Lemma 1, which

assert that we can freely use an `-prefix scheme in place of a 1-prefix scheme.

Property 3: If snippets CB1 and CB2 consisting of t terms each, which follow an

order O, and if |CB1 ∩ CB2| ≥ i, then the sub-block CBsb1 consisting of the first

31

t − i + ` terms of CB1 and the sub-block CBsb2 consisting of first t − i + ` terms of

CB2 will match at least ` tokens.

Lemma 1: For any code snippet pair (CB1, CB2) if P`(CB1) ∩ P`(CB2)<` then

|CB1∩CB2|<
⌈
θ|t|
⌉

where t = max{length(CB1), length(CB2)} and θ is user defined

threshold value [47].

Here P`(CB1) and P`(CB2) denote the `-prefix set of CB1 and CB2 which are

the subsets of CB1 and CB2 respectively, and where each subset consists of the first

|t| −
⌈
θ|t|
⌉

+ ` elements.

3.5 System Design for Adaptive Prefix Filtering

In this section, we describe how a system that uses adaptive prefix filtering can

be implemented in practice, which is crucial to making this technique useful. A

delta inverted index presents an efficient data structure for clone candidate filtering,

while prefix cost calculation is important in determining the size of the prefix ` that

optimizes the tradeoff between greater reduction in candidate pairs and the added

cost of deeper filtering. Both the data structure and cost calculation are crucial steps

in implementing the adaptive prefix filtering heuristic in practice.

3.5.1 Delta Inverted Index

An inverted index data structure is commonly used to retrieve matching doc-

uments (i.e. code snippets) using a particular token as a query (implemented in

popular tools such as Apache Lucene [81]). For prefix filtering and token position

filtering only a single inverted index data structure is required. Instead of creating

index for each document, inverted index is created based on each token where it stores

all the documents which contain that particular token. That’s why it is named as

inverted index. However, adaptive prefix filtering requires a separate inverted index

32

for each of the ` prefix schemes. A delta inverted index [47] overcomes the repetition

that would occur if a simple set of inverted indices were used for adaptive prefix

filtering. We describe this data structure.

The requirement for inverted list I`(e) is to store all the code snippets whose

`-prefix set contains the token e. Similarly, I`+1(e) stores all code snippets whose

`+ 1 prefix set contains e, and I`(e) ⊆ I`+1(e). A delta inverted index ∆I`+1(e) data

structure eliminates repetition by only storing the different code snippets between

I`(e) and I`+1(e). At the outset, inverted index ∆I1(e) = I1(e), and as l increases we

create delta inverted indexes ∆I2(e), ∆I3(e), . . . , ∆It(e) for I1(e), I2(e), I3(e), . . . ,

It(e) where (1≤`≤t-1).

The delta inverted index up to ` = 3 is shown in Figure 3 for threshold value

0.8. Each of the three large boxes, ∆I1, ∆I2 and ∆I3, represents a delta inverted

index that can be queried separately, which contains a set of tokens mapped to their

respective containing code snippets. ∆I2 contains code snippets that are not present

in I1 but present in I2. Index ∆I3 contains code snippets that are not in I1 and I2 but

are present in I3. As an example, for token return inverted index I1(return) contains

CB1 and inverted index I2(return) contains CB1, CB2 and CB5, while delta inverted

index ∆I2(return) contains CB2 and CB5.

3.5.2 Cost Calculation

In order to select the appropriate prefix length for each of the code snippets,

we need to optimize the trade-off between filtering cost (i.e. the cost of looking

up tokens deeper in the delta inverted index) and verification cost (i.e. the cost

of determining if a pair of code snippets are actual clones by comparing all of the

necessary tokens). The adaptive prefix filtering technique iteratively estimates the

cost for `-prefix scheme and ` + 1-prefix scheme, and if ` + 1-prefix scheme’s cost is

33

if

CB1

CB3

CB5

∆I1

if static

CB1

CB2

CB3

public
CB1

CB2

CB3

CB5

return

CB1

for

CB2

CB3

n

CB2

0

CB3

CB5

5

CB4

String

CB4

args main void else

CB4 CB4 CB4 CB5

∆I2

return

CB2

CB5

for

CB4

n

CB3

factorial

CB1

∆I3

1

CB1

factorial
CB2

CB5

return

CB3

static
CB4

Fig. 3.: Delta inverted index data structure for CB1 to CB5

greater than `-prefix scheme cost then we select `-prefix scheme for that particular

code snippet. Otherwise we continue to compute the next prefix scheme’s cost. Prior

results include the fact that this technique selects a global minimum for the optimal

prefix scheme [47]. Algorithm 1 lists steps of cost calculation which is integral part

of adaptive prefix filtering technique. Without cost calculation this technique is not

adaptive at all.

Suppose that for each code snippet CB ∈ R, where R is the repository of all

code snippets, F`(CB) is the filtering cost and V`(CB) is verification cost. Therefore,

for code snippet CB, we can derive following general equation for the cost:

Total Cost` = F`(CB) + V`(CB) (3.1)

For each code snippet CB ∈ R, it is necessary to query the inverted list of each

token e ∈ P`(CB), where P`(CB) denotes the prefix set for the ` prefix scheme for

code snippet CB. We introduce a new notation Φ`(CB) to denote the set of all delta

inverted indices for `-prefix scheme used in the filtering step of code snippet CB such

that Φ`(CB) = {∆Ii(e)|e ∈ P`(CB), 1 ≤ i ≤ `}. Similarly, let ∆Φ`(CB) denote the

set of additional delta inverted lists to be processed in ` prefix scheme comparing

34

to ` − 1 prefix scheme. Assume C`(CB) is the candidate set of code snippet CB,

containing the code snippets that appear at least ` number of inverted lists of the

elements in P`(CB).

Also, let costv(CB) be the average cost of verifying the candidate CB. Using

these abstractions, we can derive filter cost and verification cost using the following

equations:

F` =
∑

e∈P`(CB) |I`(e)|

V` = costv(CB) · |C`(CB)|

As delta inverted index contains only the different code snippets in between `-

prefix scheme and ` + 1-prefix scheme, we do not need to calculate the filtering cost

from scratch every time, converting the previous filter cost equation to the following

variant.

F`(CB)=F`−1(CB) +
∑

∆I(e)∈∆Φ`(CB) |∆I(e)|

Prefix Scheme Filter Cost
1-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|

=3+3+4+1=11
2-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|+

|I1(factorial)|+ |∆I2(if)|+ |∆I2(static)|+
|∆I2(public)| + |∆I2(return)|+ |∆I2(factorial)|
=11+2+1=14

3-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|+
|I1(factorial)|+|I1(1)| + |∆I2(if)|+ |∆I2(static)|+
|∆I2(public)| + |∆I2(return)|+ |∆I2(factorial)|+
|∆I2(1)|+|∆I3(if)| + |∆I3(static)|+ |∆I3(public)|+
|∆I3(return)| + |∆I3(factorial)|+ |∆I3(1)|
=14+1+1+2+1=19

Table 6.: Calculation of filter cost for CB1

In Table 6 we show the calculation of filter cost for different prefix schemes for

our running example, CB1. For instance, to calculate the filter cost for prefix scheme

` = 2 we can use filter cost from prefix scheme ` = 1. So the filter cost for prefix

scheme ` = 2 (14) is the summation of filter cost of prefix scheme ` = 1 (i.e. 11) and

the size of the delta inverted index of the tokens: {if, static, public, return, factorial}.

35

Algorithm 1 Pseudo-code of the cost calculation for each code snippet.
Input: CB=code snippet represented as a bag-of-tokens with tokens sorted according to their global frequency, ∆Φ`(CB)=set of ad-

ditional delta inverted indices for `-prefix scheme comparing to (`-1)-prefix scheme of code snippet CB , Φ`(CB)={∆Ii(e)|e ∈ P`(CB),
1 ≤ i ≤ `} where ∆Ii(e)=delta inverted index of i-prefix scheme, n=user-defined maximum threshold scheme

Output: Total Cost of code snippet CB, prefix scheme ` with lowest cost for code snippet CB
Variables: T`=Total Cost of `-prefix scheme; F`=Filter Cost of `-prefix scheme; V`=Verification Cost of `-prefix scheme;

C`(CB)=candidate set of `-prefix scheme; H[CB]= Hashmap storing the number of processed lists that contain code snippet CB;
S=union set of multiple ∆I`(e); costv(CB)=average cost of verifying the candidate CB; C=

`−1(CB)=set of code snippets that occur

at least (`− 1) lists in Φ`−1(CB); C>
`−1

(CB)=set of code snippets that appear in more than (`− 1) lists in Φ`−1(CB);

1: function Cost Calculation(CB,∆Φ`(CB))

2: H[CB] = 0

3: `=1

4: S=∅
5: while (` <= n) do

6: C=
`−1(CB)=∅

7: C>
`−1

(CB)=∅

8: tokensToBeIndexed = |CB| −
⌈
θ|CB|

⌉
+ `

9: for each token e∈CB[1:tokensToBeIndexed] do

10: F`=F`(CB) = F`−1(CB) +
∑

∆I(e)∈∆Φ`(CB) |∆I(e)| . calculation of filter cost

11: if (` == 1) then

12: C`(CB) = C`(CB) ∪∆I`(e)

13: for each code snippet CB ∈ ∆I`(e) do

14: H[CB] = H[CB] + 1

15: end for

16: else

17: S = S ∪∆I`(e) ∈ ∆Φ`(CB)

18: for each code snippet CB ∈ S do

19: if (H[CB] > (`− 1)) then

20: C>
`−1

(CB)= C>
`−1

(CB) ∪ CB

21: end if

22: if (H[CB] == (`− 1)) then

23: C=
`−1(CB)= C=

`−1(CB) ∪ CB

24: end if

25: end for

26: for each ∆I`(e) ∈ ∆Φ`(CB) do

27: for each code snippet CB ∈ ∆I`(e) do

28: H[CB] = H[CB] + 1

29: end for

30: end for

31: |C(`)(CB)| = |C>
(`−1)

(CB)| + |C=
(`−1)(CB) ∩

⋃
∆I(e)∈∆Φ`(CB) ∆I(e)|

32: end if

33: end for

34: V`=costv(CB) · |C`(CB)| . calculation of verification cost

35: T`= F` + V` . calculation of total cost

36: if (T` > T`−1) then return T`−1, (`− 1)

37: end if

38: `++

39: end while

40: end function

36

The average cost of verifying a code snippet CB is costv(CB). We compute this

cost using su and sl, the upper bound and lower bound of the sizes of all the code

snippets within code repository R. We express this via following equation:

costv(CB) = |CB|+
s|u| + s|l|

2

The average cost of verifying CB1, costv(CB1)=16+
16 + 28

2
=38. Here, 16 and

28 are the lower and upper bound of the size among the five code snippets in our

running example.

To estimate the candidate set size of 1-prefix scheme, C1(CB), we simply calcu-

late the number of code snippets which appear in at least one inverted list using the to-

kens within 1-prefix scheme. In Table 7, the first row shows that CB1,CB2,CB3,CB5

have appeared in at least one inverted index of tokens within 1-prefix scheme of CB1,

and, therefore, the candidate set size is 4. For computing the candidate set size

|C`+1(CB)| of (` + 1)-prefix scheme we can utilize the candidate set size of `-prefix

scheme |C`(CB)|.

Those code snippets that appear in more than ` number of inverted lists of tokens

within `-prefix scheme, also appear in the candidate set of (`+ 1)-prefix scheme. All

other code snippets which appear in at least ` number of inverted lists of tokens

within `-prefix scheme can also appear in the candidate set of (` + 1)-prefix scheme

if and only if these code snippets appear in the additional delta inverted lists of the

(` + 1)-prefix scheme. We take the summation of the size of these two sets where

one set contains the intersection of the code snippets appearing both in the `-number

of inverted lists in `-prefix scheme and the additional delta inverted lists of (` + 1)

prefix scheme and the other set contains the code snippets appearing in more than `

number of inverted lists in `-prefix scheme.

37

Let C=
` (CB) represents the set of code snippets that occur at least ` list in

Φ`(CB) and let C>
` (CB) represents the set of code snippets that appear in more

than ` lists in Φ`(CB). Using these, we can define the following candidate set equa-

tion.

|C(`+1)(CB)| = |C>
` (CB)|+ |C=

` (CB) ∩
⋃

∆I(e)∈∆Φ`+1(CB) ∆I(e)|

In Table 7 we show how we utilize the candidate set size |C1(CB1)| of 1-prefix

scheme to derive the candidate set size |C2(CB1)| of 2-prefix scheme for code snippet

CB1. For estimating candidate set size |C2(CB1)| first we have to calculate the

number of code snippets which appear in more than one inverted lists of tokens

within the 1-prefix scheme. In this case, we only need to consider those code snippets

which appear in ∆I2 which is the delta inverted list for 2-prefix scheme of CB1. If

we check all the tokens {if, static, public, return, factorial} within 2-prefix scheme

of CB1, we see only tokens {return ,factorial} are in CB1,CB2,CB5 in the delta

inverted list ∆I2. Since CB1,CB2,CB5 have appeared in at least 2 inverted lists

of the tokens within 1-prefix scheme of CB1, these code snippets are the elements

of set C>
1 (CB1). Therefore code snippets CB1,CB2,CB5 should be included in the

candidate set C2(CB1) of 2-prefix scheme of CB1.

Those code snippets which appear only in one inverted list of the tokens of 1-

prefix scheme, are the elements of set C=
1 (CB1). If those code snippets of C=

1 (CB1),

also appear in the additional delta inverted list ∆Φ2(CB1) of 2-prefix scheme then

these code snippets are the elements of the candidate set C2(CB1) of 2-prefix scheme.

Therefore we have to take the intersection between two sets where one set, C=
1 (CB1),

contains the code snippets appearing in one inverted list and the other set contains

the code snippets appearing in the additional delta inverted list ∆Φ2(CB1). For CB1

38

there are no code snippets that appear only in one inverted list, and the intersection

of these two sets is ∅.
Prefix Scheme Candidate Set Size

1-Prefix {|∆I1(if)|, |∆I1(static)|, |∆I1(public)|, |∆I1(return)|}=
{|(CB1, CB3, CB5)|,|(CB1, CB2, CB3)|
|(CB1, CB2, CB3, CB5)|,|(CB1)|}=
{|(CB1, CB2, CB3, CB5)| }=4

2-Prefix |C2(CB1)| = |C>1 (CB1)|+ |C=
1 (CB1) ∩

⋃
∆I(e)∈∆Φ2(CB1) ∆I(e)|

= |C>1 (CB1)|+ |C=
1 (CB1) ∩ {∆I2(if) ∪∆I2(static) ∪∆I2(public)∪

∆I2(return) ∪∆I2(factorial) ∪∆I1(factorial)}|
=|C>1 (CB1)|+ |C=

1 (CB1) ∩ {CB2 ∪ CB5 ∪ CB1}|
=|C>1 (CB1)|+ |∅ ∩ {CB2 ∪ CB5 ∪ CB1}|
=|{CB1, CB2, CB5}|+ |∅ ∩ {CB2 ∪ CB5 ∪ CB1}|
=3 + 0 = 3

3-Prefix |C3(CB1)| = |C>2 (CB1)|+ |C=
2 (CB1) ∩

⋃
∆I(e)∈∆Φ3(CB1) ∆I(e)|

= |C>2 (CB1)|+ |C=
2 (CB1) ∩ {∆I3(if) ∪∆I3(static) ∪∆I3(public)∪

∆I3(return) ∪∆I3(factorial) ∪∆I3(1) ∪∆I2(1) ∪∆I1(1)}|
=|C>2 (CB1)|+ |C=

2 (CB1) ∩ {CB4, CB3, CB2, CB5, CB1}|
=|C>2 (CB1)|+ |∅ ∩ {CB4, CB3, CB2, CB5, CB1}|
=|{CB1, CB2, CB3, CB5}|+ |∅ ∩ {CB4, CB3, CB2, CB5, CB1}|
=4 + 0 = 4

Table 7.: Calculation of candidate set size for CB1

Prefix Scheme Filter Cost Verification Cost Total Cost
1-Prefix 11 costv(CB) · |C1(CB)| =38*4.0=152.0 163.0
2-Prefix 14 costv(CB) · |C2(CB)| =38*3.0=114.0 128.0
3-Prefix 19 costv(CB) · |C3(CB)| =38*4.0=152.0 171.0

Table 8.: Calculation of total cost for CB1.

Finally we take the summation of the size of those two sets. In Table 8, we

show the calculation of verification cost and total cost for our running example. To

calculate the verification cost of CB1 we have multiplied the average verification cost

by the candidate set size. As the 2-prefix scheme cost is smaller than the 3-prefix

scheme cost, we stop here and take ` = 2 as the preferred prefix scheme.

3.5.3 Code Clone Search

The adaptive prefix filtering technique can also be utilized for code clone search,

where a user-specified code snippet (i.e. the query) is matched in a corpus consisting

of numerous code snippets. In code clone search, different from code clone detection,

39

we do not pre-specify the similarity threshold value before the index is built from

the corpus, as we would like for the same index to be able to serve different queries

with different threshold values. Therefore, the index structure should be able to deal

with any threshold value, 1 <= |s| <= 10, where |s| is the maximum threshold value

the index could serve. As a naive approach, we can build an index for all possible

threshold value from 1 to |s| for each code snippet. However, this would take up huge

space and be very time consuming.

Instead of building delta inverted indices for each threshold value from 1 to l,

we can build delta inverted indices for the maximum threshold value |s|, i.e. for

100% similarity (threshold value 10). With this maximum threshold value we build

delta inverted indices, ∆I1, ∆I2, ∆I3 and so on, until we reach the maximum prefix

scheme. For example for code block CB1 from Table 3, ∆I1 contains the token if,

∆I2 contains the token static, ∆I3 contains the token public and so on. We continue

to populate the delta inverted indices until ∆I8, which contains the final token for

this specific code snippet, result. We continue this process for all of the code snippets

in the corpus. At retrieval time, we use this data structure as the means to answer

code clone search queries with retrieval-time similarity thresholds. Apart from this

modification to the data structure, the algorithm follows the same logic as in code

clone detection.

3.6 Experimental Results

Our goal is to implement a code clone detection and search tool that can scale

to massive inter or intra project source code repositories and overcome limitations in

many existing tools, such as, unsustainable execution time, inadequate system mem-

ory, restrictions in inner data structures, and exhibiting errors due to their design not

expecting a large input [40, 43, 82]. In evaluating our tool, we focused on answering

40

the following set of research questions.

• RQ 1: Does adaptive prefix filtering achieve better performance at scale than

the best state of the art tool SourcererCC?

SourcererCC is a recent code clone detection tool aimed at scalability on a single

machine [40]. The adaptive prefix filtering heuristic presented in our research

work, extends the filtering heuristics used by SourcererCC, so a comparison

between the two is both natural and necessary.

Several code clone detection tools have been benchmarked in recent papers [83,

84]. Among all of the measured tools, four publicly available tools achieve

exceptional scalability and accuracy in code clone detection: CCFinderX [36],

Deckard [38], iClones [41] and NiCad [85]. In turn, SourcererCC has been

measured to outperform these four publicly available and popular tools [40].

Recently, several popular code clone detection tools were compared [46], includ-

ing VUDDY [46], SourcererCC [40], CCFinderX [36] and Deckard [38]. Sourcer-

erCC outperformed CCFinderX [36] and Deckard [38]. VUDDY outperformed

SourcererCC, however, it only detects Type-1 and Type-2 clones.

• RQ 2: Does adaptive prefix filtering achieve reasonable accuracy in clone de-

tection?

This research question aims to determine whether the adaptive prefix filtering

heuristic can achieve reasonable precision and recall, and whether it can serve

as a replacement to SorcererCC.

• RQ 3: Does the application of adaptive prefix filtering to code clone search

achieve acceptable query response time?

41

Searching for similar code snippets in very large scale source code repository

within reasonable amount of time is a challenging problem. In using our tech-

nique for code clone search, we want to determine whether this application

produces reasonable response time, which is key for it to be useful in practice.

3.6.1 Performance of Adaptive Prefix Filtering (RQ1)

In this section we discribe a comparison of the scalability of adaptive prefix fil-

tering technique relative to SourcererCC [40]. To answer this research question we

rely on publicly available large-scale evaluation datasets, which have recently become

available. The IJaDataset 2.0 [79] is a large inter-project Java repository contain-

ing 25,000 open source projects with 3 million source files and 250MLOC. It is mined

from SourceForge and Google Code [40]. To compare SourcererCC with adaptive pre-

fix filtering, both tools were benchmarked on a standard workstation with 3.50GHz

quad-core i5 CPU, 32.0 GB of RAM memory, and 64-bit windows operating system.

The execution of both tools was scripted to measure the run-time of both tools 5

times for each input and report the average. For adaptive prefix filtering, we used the

2-prefix scheme in constructing the delta inverted index. In order to measure the per-

formance at different input sizes, we blindly selected a subset of the Java source files

in IJADataset [79] ranging from 10,000 to 160,000 files, approximately from 1MLOC

to 17MLOC, such that the selected files at smaller input sizes were also contained in

the larger inputs. This ensures a stable measurement since code clone technique exe-

cution time may be reliant on clone density [40]. Both techniques consumed extreme

amounts of time (>10 hours) at 160,000 files(approximately 17MLOC), and therefore

we did not attempt using larger input sizes. And for same reason we limited similarity

degree from 70% to 90% in comparison. But for smaller dataset(1MLOC) we have

experimented on all similarity degrees(from 10% to 100%).

42

Figure 4 shows a comparison in execution time for adaptive prefix filtering tech-

nique and SourcererCC for threshold values 7, 8, and 9 (i.e. 70%-90% similarity). For

threshold values 7 and 8 adaptive prefix filtering is showing an improvement relative

to SourcererCC, but not at threshold value 9. As the the input size increases toward

160,000 files, the difference in execution time between SourcererCC and adaptive

prefix filtering becomes wider for threshold values 7 and 8.

20000 40000 60000 80000 100000 120000 140000 160000

Number of Files

101

102

103

104

105

E
x
e
cu

ti
o
n
 T

im
e
 i
n
 S

e
c.

 (
lo

g
 s

ca
le

)

adaptive, threshold=7

SourcererCC, threshold=7

adaptive, threshold=8

SourcererCC, threshold=8

adaptive, threshold=9

SourcererCC, threshold=9

Fig. 4.: Comparison of execution time for different input sizes between adaptive prefix
filtering and SourcererCC.

In Table 9 we show the execution times for SourcererCC and adaptive prefix

filtering technique for a fixed input of 10,000 files(approximately 1MLOC), but at

varying threshold values. We show both raw execution times as well as the percentage

improvement of adaptive prefix filtering technique in the rightmost column. Adaptive

prefix filtering performs better than SourcererCC for threshold values ranging from

4 to 8. For threshold value 1, 2, 3, 9 and 10 the execution time of adaptive prefix

filtering technique is larger. We argue that the similarity degrees from 40% to 80%

43

Threshold Value Adaptive Prefix Filtering SourcererCC % Improvement
1 4982.23 4452.31 -10.64%
2 5357.54 5339.58 -0.34%
3 4499.14 4478.93 -0.45%
4 3001.19 3015.76 0.49%
5 1627.95 1652.18 1.49%
6 712.45 740.16 3.89%
7 222.68 249.27 11.94%
8 58.84 64.25 9.19%
9 27.25 23.99 -11.96%
10 23.25 21.89 -5.85%

Table 9.: Comparison of execution time (in seconds) between adaptive prefix filtering

and SourcererCC (10,000 files).

are more commonly used. Exact or near-exact similarity (i.e. 90% and 10%) do not

make sense for detecting Type-2 and Type-3 code clones, while code clones detected

with 10% to 30% similarity are likely to contain a very large number of false positives.

To better understand the effect of the more aggressive filtering performed by

adaptive prefix filtering, and understand the rationale behind the performance num-

bers in Table 9, we compared the number of candidate pairs (in log scale) of Sourcer-

erCC and adaptive prefix filtering technique in Figure 5 for 10000 files. The can-

didate pairs are the number of remaining code clone candidates after the filtering

that both techniques perform. A reduction in the number of candidates translates to

improvement in execution time, after the penalty for the more sophisticated indexing

structure and cost calculation of adaptive prefix filtering is factored in. We observe

the strongest reduction in the percentage of candidate pairs in the similar thresholds

of 4 to 9 where we observed improvements in execution time. Threshold value 9 has a

large percentage reduction in candidate numbers, but the actual reduction numbers

are very low1 and insufficient for offsetting the penalty of more aggressive filtering.

For threshold value 10 (100% similarity) the percentage decrease is 0. This is logical

1Note that it is a log scale graph.

44

1 2 3 4 5 6 7 8 9

1
0

Threshold Value

104

105

106

107

108

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

 P
a
ir

s
(l

o
g
 s

ca
le

)
1%

4%
11%

20%
29%

41%

54%

64%

63%

0%

SourcererCC

Adaptive Prefix Filtering

Fig. 5.: Comparison of number of candidate pairs between adaptive prefix filtering and
SourcererCC (10,000 files).

because with complete similarity adaptive prefix filtering reduces to regular prefix

filtering as there is no room to extract a deeper prefix.

Memory Usage. Fitting with the limited memory budget available on commodity

machines is an important factor in scalable code clone detection. For our adaptive

prefix filtering technique we use a deeper prefix scheme, resulting in a larger index

that will clearly consume more memory than SourcererCC. We measured the memory

requirement for both SourcererCC and adaptive prefix filtering for 1 MLOC in the

indexing and clone detection phases. While varying the threshold value, we mea-

sured how much memory is consumed in each iteration of the indexing process and

recorded the maximal amount of memory consumed. The resulting memory require-

ment was 103 MB for threshold value 1 and 60 MB for threshold value 10, which

45

is 60% and 20% higher relative to SourcererCC’s maximal memory footprint in in-

dexing. The memory usage is smaller for the larger threshold value because as the

threshold value is increasing the prefix length is decreasing, so fewer tokens need to be

stored in the index structure. In the subsequent clone detection phase we measured

the memory requirement for each query block, again, selecting the maximum amount

of memory required. We obtained 316 MB for adaptive prefix filtering and 204 MB

for SourcererCC. In conclusion, although adaptive prefix filtering technique requires

higher amount of memory compared to SourcererCC, the memory requirement of

both techniques is relatively small and would not impact most deployments. Part

of the reason for the small footprint is the efficient allocation of memory by Apache

Lucene, which was used as to store the inverted index by both SourcererCC and our

implementation.

3.6.2 Accuracy of Adaptive Prefix Filtering (RQ2)

We use precision and recall for measuring the accuracy of adaptive prefix filtering

technique as these are the two most commonly used metrics used to determine the

quality of a code clone detection technique [80]. Measurement of clone recall and preci-

sion has been greatly aided by recent datasets and frameworks like BigCloneEval [86].

This framework can be used for the evaluation of code clone detection tools based on

the BigCloneBench clone detection benchmark [87]. BigCloneBench contains a large

set of known clones from the inter-project software repository IJaDataset 2.0 [78, 40],

which we used in RQ1. Note that SourcererCC and adaptive prefix filtering produce

the same clones as output due to the inherent similarity in the techniques.

Recall. For measuring recall of adaptive prefix filtering we use file level granular-

ity, which means the clone pairs are actually pair of two Java source files that are

detected as code clones to each other. The evaluation of SourcererCC was at the

46

method level [40]. In measuring recall using BigCloneBench, Type-3 and Type-4

code clones are separated in four categories because it is difficult to separate Type-3

and Type-4 since there is no consent on the smallest similarity of Type-3 [78]. These

four categories are: Very Strongly Type-3 (VST3) clones that has range of syntactical

similarity from 90% to 100%, Strongly Type-3 (ST3) that has range of syntactical

similarity from 70% to 90%, Moderately Type-3 (MT3) that has range of syntac-

tical similarity from 50% to 70% and Weakly Type-3 (WT3/T4) that has range of

syntactical similarity from 0% to 50%, which are often Type-4 code clones [40].

For this evaluation we used a similarity threshold of 70% in executing adaptive

prefix filtering, which is the default setting for BigCloneEval. Our technique produced

very high recall for Type-1 code clones (97%), and detected Type-2 code clones with

a reasonable recall of 77%. For Type-3 clones, the recall decreases significantly, from

60% for the VST3 category, 26% for ST3, 16% for MT3 and less than 1% for WT3/T4.

The Weakly Type-3/Type-4 clones have low syntactic similarity which makes it very

hard for our technique to detect at the 70% threshold, so this result is not unexpected.

Precision. The adaptive prefix filtering technique detects the same code clones as

SourcererCC, and therefore it’s precision (and recall) will be same as SourcererCC.

SourcererCC’s precision was previously evaluated via a set of 390 clone pairs, which

were manually identified by several researchers with high mutual inter-agreement.

Out of these 390 clone pairs, 355 were true positives while 35 were found false posi-

tives, resulting in a precision of 91% computed at method level granularity [40].

The value of the precision metric, unlike recall, is influenced by the number of

false positives. For token based code clone detection techniques, a common source

of false positive clones stems from the fact that these techniques commonly treat the

input as a bag of words, ignoring the ordering of tokens in the input. To illustrate this

point we show a false positive clone pair identified by our technique (and likely most

47

other token based techniques), snippets of which are shown in Table 10. The pair

of code snippets constituting the false positive example are: 1) a code snippet that

implements password validation and 2) a code snippet that implements password

encryption. Although these two code snippets have 70% similar tokens they are

functionally dissimilar. In fact, the pair of code snippets have significant differences

at the line level and their different purpose would be easily observed by a human.

However, both of the code snippets are dealing with passwords there are significant

number of similar tokens. Some of these are: password, passwordInDb, MessageDigest,

update.

//Password Va l idat ion

byte [] digestInDb =
new byte [pwdInDb . l ength − SALT LENGTH] ;

System . arraycopy (pwdInDb , SALT LENGTH, digestInDb , 0 , digestInDb . l ength) ;
i f (Arrays . equa l s (d ige s t , digestInDb)) {

re turn true ;
} e l s e {

re turn f a l s e ;
}

//Password Encryption

pwd = new byte [d i g e s t . l ength + SALT LENGTH] ;
System . arraycopy (sa l t , 0 , pwd , 0 , SALT LENGTH) ;
System . arraycopy (d iges t , 0 , pwd , SALT LENGTH, d i g e s t . l ength) ;
re turn byteToHexString (pwd) ;

Table 10.: Snippets of false positive clone pair identified by our technique.

3.6.3 Applicability Towards Code Clone Search (RQ3)

We showed that the adaptive prefix filtering technique can easily be extended

so that it can support similarity search. In this section, we examine the practicality

of code clone search based on this technique by measuring the performance of this

variant. Our goal here is to show that the use of our technique for code clone search is

practical, but not to show that our technique outperforms those that specialize solely

on the code clone search problem. Table 11 shows the time it takes to construct the

48

index, and, more importantly, the average query time for 1000 files randomly selected

from IJADataset with similarity degree 80% (i.e. threshold value 8). By index time,

we refer to the time required to build the special indexing structure given a maximum

similarity threshold of 100%. After creating this index, we use a random selection of

1000 Java source files, from the files used to construct the index, performing a code

clone search for each file. We report the average search time for different input sizes.

In examining the performance of our technique in Table 11, we observe sub-

second response times for each queries, even at the larger corpus sizes. This is likely

to be reasonable performance for many applications.

Number of Files Similarity Index Time (in sec.) Query Time (in sec.)
10000 80% 70.52 0.046
20000 80% 160.12 0.095
40000 80% 351.29 0.177
80000 80% 736.93 0.368

Table 11.: Performance of code clone search using adaptive prefix filtering.

3.7 Characterizing Duplicate Code Snippets between Stack Overflow and

Tutorials

Nowadays, developers frequently consult online resources to learn new skills,

expand or refresh their knowledge, or avoid repetitive tasks [88]. Code snippets (or

code blocks) available on many sources of software development related information

on the Web are easy to reuse and incorporate into existing projects. While reusing

online code snippets improves the speed of development, it has possible negative

side-effects on code quality and maintainability [89, 90]. For instance, reusing online

code snippets is susceptible to introducing bugs and software vulnerabilities [91, 92]

and exposing security risks as a result of outdated or poorly written code [12, 93].

Additionally, by copying and pasting code snippets with unknown origin, unaware

49

developers can cause license violations [94, 13].

One of the largest and most visited sources of reusable code snippets is Stack

Overflow, a Q&A website with a large and active community of 9.9 million users, and a

corpus of 17 million questions and 26 million answers2. Each Stack Overflow question

pertains to a specific technical problem, and contains one or more answers that often

include code blocks implementing a solution to the problem. While Stack Overflow

provides answers to a large set of development problems and has a permissive license

permitting reuse of posted code snippets by developers in their projects, studies show

that a significant amount of posted code does not originate on this platform, but is

reproduced from elsewhere [13, 10, 27].

Different from Stack Overflow, online tutorials provide step-by-step instructions

on a specific development topic often introducing a practical application as a running

example and including numerous code snippets accompanied by a rich and detailed

description [95, 96]. Code snippets on tutorials are usually longer, and often several

code snippets form a logical sequence interspersed with natural language explana-

tions [20]. No tutorial source with the scale of Stack Overflow exists, and each small

scale source uses its own licensing scheme.

In this study, we analyze the duplication of code snippets between tutorials and

Stack Overflow, with the goal of 1) characterizing developer rationale behind repro-

ducing snippets from source to source; and 2) understanding the scale and properties

of duplicate snippets, including their evolution over time. Our findings lead towards

better understanding of this phenomenon and how the two sources can be best engi-

neered to clearly display the origin of snippets available for reuse by developers, and

to improve the design of tools that mine code snippets.

2Data as of 21 January, 2019.

50

3.7.1 Research Methodology & Experimental Setup

In order to obtain easily discernible code snippets and their edit histories, we

leverage the SOTorrent dataset, which provides the version histories for over 40 mil-

lion posts, based on the official Stack Overflow data dumps, including 122 million

text block versions and 77 million code snippet versions [97]. Stack Overflow data is

distributed with the Creative Commons Attribute - ShareAlike 3.0 Unported (CCBY-

SA 3.0) license. This indicates that developers must reference the original post when

reusing code and must use a similar license for any derivative work.

Separately, we curated a list of 599 Android tutorials available on 5 popular

software development related websites1. Some of the tutorial sites provided explicit

licenses, while others used non-standard language or provided no specific license, as

shown in Table 12. We extracted the code snippets from the Android tutorials based

on a set of HTML tags, obtained by manually examining the patterns used to display

snippets in each individual site. The HTML tags specifically focused on extracting

Java code, ignoring other code blocks commonly present in Android tutorials, e.g.,

written in XML. As this approach failed to filter all non-Java code snippets, we

used regular expressions and manual analysis to ensure that only Java code snippets

remained. Following this filtering step, the tutorial corpus consisted of a total of

2,504 code snippets, ranging from 1 to 626 lines of code, and a median of 19 lines of

code. Unlike the SOTorrent dataset, the edit histories of tutorials were not possible

to reconstruct and, while some tutorials displayed dates of last modification, we found

several examples where the dates were not updated and therefore unreliable.

In order to extract code snippets from Stack Overflow, we executed SQL queries

on the BigQuery [98] interface to the SOTorrent dataset (2018-12-09 version) [97].

We filtered posts based on the android Stack Overflow tag, obtaining 3,114,844 code

51

Table 12.: Curated set of Android tutorials (as of 21 January, 2019).

Tutorial Source Number of Tuto-
rials

Number of Java
Code Snippets

Code Snippet License

vogella.com 70 626 Eclipse Public License 2.0
stacktips.com 154 296 restrictive; non-standard language (all

copying disallowed)
androidtutorialpoint.com 82 622 licensing unclear
tutorialspoint.com 82 525 restrictive; non-standard language

(only learning use permitted)
sitepoint.com 211 435 licensing rights remain with post cre-

ator
Total 599 2,504

snippets (min = 1 LOC; max = 1,090 LOC; median = 9 LOC) with a creation date

ranging from January, 2008 to January, 2018. As we already filtered the XML snippets

in the tutorials, it was unnecessary to perform that step for the Stack Overflow snippet

corpus.

Considering the large corpora of code snippets recovered from Stack Overflow

and tutorials, in order to detect all the duplicate code snippet pairs, we applied

our proposed adaptive prefix filtering based scalable code clone detection tool, able to

rapidly process a large corpora of code [99]. For scalability, the code clone detection

tool uses a textual representation of source code. We used a similarity threshold

value of 0.8, i.e., detecting all the code clones that have at least 80% similar terms.

The threshold value of 0.8 was used in similar studies in the past [90], as it retains

the flexibility of detecting Type-1, Type-2 and Type-3 code clones while producing

few false positives [78] [100]. As a means to further reduce possible false positives

that could occur with small code snippets, we disregarded clone pairs where one of

the snippets had fewer than 10 lines of code. Following this step, we observed 4,718

duplicate code pairs between the tutorial and Stack Overflow code snippets.

In examining the detected duplicate Android code snippets, we observed a high

occurrence of clone pairs that represented standard Android generated (i.e. template)

code. Clearly, these snippets were not copied from either source, but rather repre-

52

sented well-known patterns that the Android Studio IDE generates for a few common

Android classes, e.g., Activity, Fragment. In order to filter these, we observed that the

automatically generated (or template) code snippets tend to occur more frequently as

code pairs between the two sources. Based on this observation, we selected a cut-off

point of a maximum of 3 tutorial snippets that a single Stack Overflow snippet can

map to. Larger numbers of tutorial matches were usually produced by templates. We

used the course grained filtering as a guide, and examined the dataset manually to

further detect template snippets. Our final set of duplicate code pairs between tu-

torials and Stack Overflow consists of 2,148 duplicate pairs, representing 346 unique

tutorial snippets, and 1,488 unique Stack Overflow code snippets extracted from the

SOTorrent dataset.

Developers copy code snippets due to various reasons. To identify the commonly

occurring motives for code reuse between software development tutorial and Stack

Overflow posts, two of the authors independently analyzed 100 randomly selected

posts from Stack Overflow, including 50 questions and 50 answers, that were classified

as code clones originating from tutorials. Based on the examined posts, each author

devised a list of reasons (or categories) explaining why developers copied a code

snippet and assigned one of them to each code clone. Differences between authors’

annotation schemes were resolved via in-person discussion.

Due to the lack of reliable modification timestamps of the tutorials, we could not

automatically discern which source contained the original code snippet and which

source contained a copy. In many of our findings, where the source is unknown to

us, we report on duplicate snippets. However, during the qualitative analysis of why

snippets are copied, we were able to use contextual clues to relatively reliably predict

where the snippet originated from. Such clues included links or references, existence

of more context or code on one of the platforms, or notions of date or time.

53

3.7.2 Research Findings

In this section, we present the results of our analysis of duplicate code snippets

between Stack Overflow posts and Android tutorials; we first describe developers’

motives for copying code snippets followed by analysis of a few properties of the

identified duplicates inluding evolution over time.

3.7.2.1 Understanding Code Snippets Copied from Tutorials to Stack

Overflow

We used qualitative study techniques to build a taxonomy of rationales for code

copying following the procedure described in Section 3.7.1. Based on the analysis of

contextual information of the copied code blocks, the authors determined that all of

the randomly sampled snippets in the qualitative study were copied from tutorials to

Stack Overflow. We were unable to observe any snippets copied from Stack Over-

flow to tutorials, which could have been due to the specific parameters we used, e.g.

minimum of 10 lines of code for a duplicate snippet. The final set of rationales for

duplication, identified by two of the authors, is presented in Table 13. Note that

depending on whether a Stack Overflow question or answer was examined, differ-

ent non-overlapping sets of reasons for code reuse were discovered, hence we used

questions and answers as the primary dimension in displaying the results.

The majority of cases when tutorial code snippets are copied to Stack Overflow’s

questions are related to experiencing an error or exception (28 out of 50 questions),

or when the code does not work as intended by a developer (13 out of 50 questions).

This result may be a consequence of many factors, such as e.g. errors in tutorials or

a misconfigured IDE, although while analyzing questions’ description, we often noted

that developers tried to first modify the code from tutorials and once failed, they

54

T
ab

le
13

.:
R

at
io

n
al

e
fo

r
co

p
y
in

g
co

d
e

sn
ip

p
et

s
fr

om
tu

to
ri

al
s

to
S
ta

ck
O

ve
rfl

ow
p

os
ts

.

D
e
v
e
lo

p
e
r
’s

R
a
ti

o
n

a
le

C
a
te

g
o
r
y

#
P

o
st

s
E

x
a
m

p
le

P
o
st

Q
u

es
ti

o
n

s

F
a
ci

n
g

ex
ce

p
ti

o
n

s
o
r

er
ro

rs
in

th
e

co
d

e
E

rr
o
r/

E
x
ce

p
ti

o
n

2
8

/
5
0

I’
m

tr
y
in

g
to

p
u

t
d

a
ta

to
m

y
li

st
vi

ew
[.

..
]

u
si

n
g

n
a

vi
ga

ti
o

n
d

ra
w

er
.

I
cr

ea
te

d
a

li
st

vi
ew

a
n

d
d

efi
n

ed
th

e
a

d
a

p
te

r
bu

t
w

h
en

I
ru

n
it

I
go

t
n

u
ll

po
in

te
r

in
th

e
lo

gc
a

t.
[.

..
]

[c
od

e
sn

ip
pe

t]

L
o
o
k
in

g
fo

r
h

el
p

d
u

e
to

u
n

-
ex

p
ec

te
d

b
eh

a
v
io

r
U

n
ex

p
ec

te
d

b
eh

a
v
io

r
1
3

/
5
0

I
h

a
ve

A
p

p
1

a
n

d
A

p
p

2
.

A
p

p
1

h
a

s
th

e
d

a
ta

ba
se

in
th

e
co

n
te

n
t

p
ro

vi
d

er
a

n
d

A
p

p
2

w
il

l
in

se
rt

d
a

ta
in

d
a

ta
ba

se
o

f
A

p
p

1
,

bu
t

w
h

en
I

ca
ll

ge
tC

o
n

te
n

tR
e-

so
lv

er
()

.i
n

se
rt

(.
..

),
it

a
lw

a
y
s

re
tu

rn
n

u
ll

a
s

u
ri

.
[c

od
e

sn
ip

pe
t]

P
le

a
se

le
t

m
e

kn
o

w
th

e
m

is
ta

ke
,

so
I

ca
n

so
lv

e
it

.

A
sk

in
g

a
b

o
u

t
im

p
le

m
en

ta
-

ti
o
n

o
f

a
sp

ec
ifi

c
fu

n
ct

io
n

-
a
li
ty

F
u

n
ct

io
n

a
li
ty

7
/

5
0

T
h

e
p

ro
bl

em
is

w
h

en
I

ro
ta

te
th

e
ce

ll
p

h
o

n
e,

th
e

m
u

si
c

st
a

rt
s

a
ga

in
,

h
o

w
ca

n
I

p
re

ve
n

t
th

a
t?

[.
..

][
co

d
e

sn
ip

pe
t]

A
sk

in
g

fo
r

h
el

p
a
s

a
co

d
e

sn
ip

p
et

is
n

o
t

w
o
rk

in
g

w
it

h
a

p
a
rt

ic
u

la
r

v
er

si
o
n

o
f

A
n

-
d

ro
id

A
P

I

V
er

si
o
n

co
m

-
p

a
ti

b
il
it

y
2

/
5
0

I
w

a
n

t
to

in
st

a
ll

a
li

br
a

ry
to

u
se

P
re

fe
re

n
ce

F
ra

gm
en

tC
o

m
pa

t
o

r
a

n
y

cl
a

ss
th

a
t

re
p

la
ce

s
a

n
d

ro
id

.a
p

p
.P

re
fe

re
n

ce
F

ra
gm

en
t

so
m

y
a

p
p

ca
n

w
o

rk
in

A
P

I
1

1
a

n
d

lo
w

er
.

C
a

n
a

n
y
o

n
e

p
le

a
se

gi
ve

m
e

so
m

e
d

et
a

il
s

su
ch

a
s

w
h

ic
h

li
br

a
ry

sh
o

u
ld

I
u

se
a

n
d

h
o

w
to

in
st

a
ll

it
in

m
y

A
S

p
ro

je
ct

?
[c

od
e

sn
ip

pe
t]

A
n

sw
er

s

P
ro

v
id

in
g

a
so

lu
ti

o
n

/
ex

-
a
m

p
le

im
p

le
m

en
ti

n
g

re
-

q
u

es
te

d
fu

n
ct

io
n

a
li
ty

E
x
a
m

p
le

/
S

o
lu

ti
o
n

4
8

/
5
0

Y
o

u
n

ee
d

to
o

ve
rr

id
e

o
n

S
a

ve
In

st
a

n
ce

S
ta

te
(B

u
n

d
le

sa
ve

d
In

st
a

n
ce

S
ta

te
)

a
n

d
w

ri
te

th
e

a
p

p
li

ca
ti

o
n

st
a

te
va

lu
es

y
o

u
w

a
n

t
to

ch
a

n
ge

to
th

e
B

u
n

-
d

le
pa

ra
m

et
er

li
ke

th
is

[c
od

e
sn

ip
pe

t]

F
ix

in
g

er
ro

rs
in

th
e

co
d

e
a
ft

er
d

ev
el

o
p

er
m

o
d

ifi
ed

co
d

e
fo

rm
tu

to
ri

a
l

F
ix

in
g

th
e

co
d

e
1

/
5
0

H
er

e
is

th
e

fi
xe

d
se

tu
p

,
n

ex
t

ti
m

e
y
o

u
n

ee
d

to
d

o
th

e
im

po
rt

s
fo

r
ea

ch
o

bj
ec

t:
[fi

xe
d

co
d

e
sn

ip
pe

t]

P
ro

v
id

in
g

a
d

d
it

io
n

a
l

in
fo

r-
m

a
ti

o
n

to
su

p
p

o
rt

ex
p

la
n

a
-

ti
o
n

C
la

ri
fi

ca
ti

o
n

1
/

5
0

[Q
u

es
ti

o
n

:]
W

h
y

sh
o

u
ld

I
u

se
a

n
a

d
d

it
io

n
a

l
la

y
o

u
t

fi
le

to
p

re
se

n
t

a
L

is
tV

ie
w

?
[A

n
sw

er
:]

W
h

en
y
o

u
a

re
cr

ea
ti

n
g

a
si

m
p

le
L

is
tV

ie
w

:
[c

od
e

sn
ip

pe
t]

.
W

h
en

cr
ea

ti
n

g
a

cu
st

o
m

L
is

tV
ie

w
:

[c
od

e
sn

ip
pe

t]
.

In
th

is
ex

a
m

p
le

,
if

y
o

u
lo

o
k

a
t

th
e

li
n

e:
V

ie
w

ro
w

V
ie

w
=

in
-

fl
a

te
r.

in
fl

a
te

(R
.l

a
y
o

u
t.

ro
w

la
y
o

u
t,

pa
re

n
t,

fa
ls

e)
;,

th
e

R
.l

a
y
o

u
t.

ro
w

la
y
o

u
t

is
y
o

u
r

cu
st

o
m

la
y
o

u
t

u
se

d
to

sh
o

w
y
o

u
r

cu
st

o
m

L
is

tV
ie

w
.

R
ef

er
to

th
e

so
u

rc
e

li
n

k
a

t
th

e
to

p
o

f
th

e
a

n
sw

er
fo

r
a

d
et

a
il

ed
tu

to
ri

a
l

o
n

L
is

tV
ie

w
’s

.

55

were reaching to Stack Overflow community asking for help and some clarification.

Another rationale for copying code snippets is implementing a specific functionality

(7 cases), which occurs when a developer wants to extend the code found in a tutorial,

but has little knowledge on how to proceed. Additionally, we observed 2 questions

that arose due to API compatibility issues between different Android API versions.

Providing an exemplary implementation for a specific issues was a prevalent

motive for reusing code snippets from tutorials in Stack Overflow’s answers. In 48

out of 50 answers we observed that developers copied the code to either directly

resolve the question or to present a minimal working example. Additionally, we

noted a singular case of an answer fixing the code provided in the question, where the

code originated from the tutorial, indicating an unsuccessful attempt of modification.

Finally, we also observed one answer, categorized as clarification, when developer used

the copied code to provide an example supporting explanation to a posed question.

3.7.2.2 Properties and Evolution of Copied Code Snippets

We detected 2,148 duplicate snippets (346 snippets from tutorials and 1,488 snip-

pets from Stack Overflow) originating from 189 tutorials and 1,398 Stack Overflow

posts, including 909 questions and 489 answers.

To evaluate the popularity of reused code snippets, we studied the distribution

of the number of up and down votes for Stack Overflow posts. Among 1,398 posts

containing a duplicate code snippet, we found 637 up voted and 226 down voted

posts. Note that a post can be both up and down voted on Stack Overflow. Figure 6

shows the distribution of up and down votes with respect to the number of posts.

The majority of the up voted posts received between 1 and 4 votes, while about 64

posts gathered more than 5 up votes, including one post with over 2000 up votes.

The similar shape of distribution is observed for the down votes, with a peak for the

56

1 2-4 5-10 11-20 >20
Number of up votes

0

100

200

300

1 2-4 5-10 >10
Number of down votes

0

25

50

75

100

125

150
Nu

m
be

r o
f p

os
ts

Fig. 6.: Popularity distribution of Stack Overflow posts containing code clones

number of votes between 1 and 4, however less than 10 posts were down voted more

than 5 times. The relatively high number of up votes and the difference between the

number of up voted posts when compared to the number of down votes indicates that

code blocks copied from tutorials were considered as useful by the Stack Overflow’s

community. Moreover, we observed that 31% of answers containing copied code

snippet were accepted as solutions to a question.

We used SOTorrent dataset of Stack Overflow post versions to examine the edit

trends of the 1,488 duplicate code blocks. Note that a code block might not be edited

in all versions of a Stack Overflow post, hence we distinguish between a case when

two versions of a code block are the same (not-edited) or when they actually differ

(edited). As a point of reference, we used an evolution analysis of Stack Overflow post

blocks, including text and code blocks, presented by Baltes et al.[101]. Figure 7 shows

distribution of the code duplicates’ versions, considering both not-edited and edited

cases. Among all the unique duplicate code snippets, 650 (43%) have more than one

version, although only 256 of them (17%) have actually been modified. Most of the

57

1 2 3 4 >4
Number of versions

0

200

400

600

800

Nu
m

be
r o

f p
os

ts

Not edited
Edited

Fig. 7.: The number of versions of posts containing copied code snippets

edited code clones (86%) were modified only once and only 1% were modified more

than three times. Baltes et al.[101] reported a similar result, with 46.6% edited post

blocks. Although they did not provide separate analysis for the number of edited

code blocks, they observed on average 4.1 code blocks versions, whereas majority of

duplicate code snippets were edited only once. This may indicate that the reused

code snippets are less likely to be updated as they originated from a trustworthy

source, such as a tutorial.

To quantify the characteristics of modification, we measured the difference be-

tween the number of LOC and the number of characters comparing the first and the

last version of a code snippet. We observed that on average 17.4 LOC (min = 1, max

= 215, median = 5.5, std = 32.1) and 545.8 characters (min = 1, max = 8596, median

= 145.5, std = 1119.1) in the code block were modified (either added or deleted).

We analyzed the timespan between edits of the reused code blocks with respect

to the first and second time of the modification. The results are presented in Table 14.

Overall, the edits characteristics of copied code snippets follows general trend observed

for Stack Overflow posts as noted in [101], with first and second post edits occurring

58

Table 14.: Timespan of edits for the copied code snippets.

Same
year

After
1 year

After
2
years

After 3
years and
more

First edits 230 6 8 3
Second edits 33 1 4 3

the same year post was created with probability of 90.3% and 88.3% respectively.

In the case of copied code snippets, majority of the first edits (93%) take place in

the same year as the post creation, while changing the code snippet the next year

or later is rare, with respectively 2% and 5% of all cases. Similarly, the second edits

occur most often during the year of posting the code (81%), and are less likely to be

performed in the following year (2%) or later (17%). No copied code block was edited

after five years of the creation. These results indicate that the developers tend to edit

the reused code quickly, within a short period of time of posting the code snippets.

3.7.2.3 Threats to validity

Detection of code clones is potentially susceptible to several threats. One internal

threat is related to configuration of the code clone detection tool and the heuristic

used to filter false positives, as it directly affects the information we use for further

analysis. To mitigate this threat, we followed similar studies to configure the code

clone detection tool properly and examined false positive manually to find the most

suited approach to remove false positives. Another threat arises from the fact that we

did not explicitly check for duplication of code snippets within the tutorials or Stack

Overflow posts, thus these may affect the total number of detected code clones. The

results of the qualitative study pose an external threat since the observations were

concluded over a limited number of reused code blocks.

59

3.8 Conclusions

Our proposed technique can outperform the most recent scalable code clone

detection tool SourcererCC in terms of execution time within a certain range of

similarity thresholds (between 40% to 80%). Since the technique directly extends

SourcererCC, it produces the same output, duplicating the same high precision and

recall as SourcererCC. We have evaluated our proposed code clone detection tool by

randomly creating a subset of the IJaDataset 2.0 [79], a large code clone benchmark

that contains 250MLOC and 25,000 open source Java systems.

Our experimental results indicate that our adaptive prefix filtering based code

clone detection technique can be practically utilized in various code clone detection

related applications that require large source code repository to be processed on a

single machine. In our experiments we successfully performed code clone detection

on a 17MLOC Java code base within a reasonable time window of several hours.

To the best of our knowledge our approach is also among few code clone detection

techniques in the literature that can be additionally used for code clone search, which

is the related problem of retrieving similar code blocks to a single code block issued as

a query. Typically, code clone detection techniques make design decisions that allow

them to only operate in batch mode, while code clone search requires the flexibility to

answer numerous clone queries using a pre-built index. We show acceptable indexing

and querying times for this application of our technique.

This dissertation reports on the quantity, type and evolution of duplicated source

code snippets on Stack Overflow and Android tutorials. Our findings reveal some of

the likely rationale of developers in copying code snippets from tutorials to Stack

Overflow, the predominant direction of copying we encountered. Developers that

reproduce code snippets from software tutorials do so to ask queries related to ob-

60

served errors or unexpected outputs or behavior. Developers sometimes use code

snippets from tutorials to provide answers to Stack Overflow questions. The answers

are marked as accepted on Stack Overflow with significant ratio (31%). Our findings

also reveal that the duplicated code snippets between Stack Overflow and software

tutorials can evolve over time, usually within the first year of the initial post creation.

3.9 Future Work

Our research also attempts to provide numerous examples and practical imple-

mentation advice for future applications of adaptive prefix filtering. As future work,

we intend to better evaluate adaptive prefix filtering across a variety of languages

and applications. We also aim to attempt to parallelize the technique to distributed

memory architectures, which would greatly improve its scalability and extend its

applicability .

61

CHAPTER 4

AUTOMATIC IDENTIFICATION OF VALID VERSION RANGE OF

TUTORIALS

Software developers use various online resources like blogs, API documentation, mail-

ing lists, tutorials, Q&A forums, e-books, etc., so that they can quickly learn new

skills and techniques, expand knowledge which they have already obtained, or refresh

their memory by remembering something they forgot [102, 20]. They perform more

than twenty software development related Web searches every day [103]. Xia et al.

broke down developers’ Web search queries by development phase, observing that one

of the more frequent and difficult tasks for developers is to search for usage examples

or guidance on how to use third-party libraries/services [104].

Online tutorials are a valuable source of knowledge for software developers who

are learning to use development frameworks and API libraries/services or want to

master a specific development technique. Tutorials provide a step-by-step narrative

intertwined with examples, and, relative to most other sources of software documen-

tation on the Web, provide a larger quantity of information that takes a significant

amount of time to consume [105]. However, like other online software development

documentation, most tutorials do not explicitly specify their prerequisites, i.e. what

version of an API or framework tutorial is valid for. This causes problems both for

very old tutorials (which may use outdated or deprecated APIs) and new tutorials

(which use APIs that are not available for the developer’s target platform).

In our research, we posit that one of the problems with modern Web tutorials,

among other similar documentation types, is that they may not work with the de-

62

velopers’ target environment. We first motivate this problem by studying a corpus

of tutorials for the Android platform. We report how long each tutorial tends to be

valid for and what is most likely to cause a tutorial to become incompatible with new

versions of a library or service. Next, we develop an automated technique to infer

versions for online tutorials based on API documentation.

The primary source of the versioning problem in tutorials are mentions of API

elements that have been deprecated and removed in the version of the library the

developer is using, or mentions of API elements that have yet to appear. While APIs

have significantly improved software development productivity, they are continuously

changed in order to add new functionality or remove old and unnecessary functionality.

In certain fast changing domains, APIs are modified quickly. For instance, each

month, an average of 115 Android APIs are updated [106] and 3.6 APIs per month

are deprecated [107]. Developers typically do not adopt new APIs rapidly, which

is understandable because it requires additional effort and resources. For example,

developers take a significant amount of time (almost 14 months on average) to update

outdated APIs used in their software. Analyses show that 28% of Android API calls

are not compatible with the latest released version and have a median lag time to

update of 16 months. [106].

Although researchers have proposed approaches aimed at extracting the mentions

of API elements from Web resources [54], all of these techniques fail to manage the

existence of numerous API versions with removed or deprecated API elements [50].

Researchers have proposed tools that automatically detect the compatible versions of

a source code repository, but these tools are not appropriate for detecting versions

of documents like tutorials, which contain a combination of natural language text

and source code [49]. Moreover, the code segments available in tutorials are not

complete, and are often not compilable like the code segments present in a source

63

code repository.

We propose a technique to determine the valid version range of the online tuto-

rials. To the best of our knowledge, this is the first such attempt to deal with the

versioning problem as it applies to online tutorials. The contributions of our work

are following.

• empirical study of Android tutorials that confirms that version inadequacy is

indeed a problem that exists for popular tutorials;

• technique to automatically determine the valid ranges of the tutorials by ver-

sioning their API mentions;

• evaluation of the technique using several different formulations of the classifica-

tion task.

Developers commonly use online tutorials to study new or unfamiliar APIs,

spending considerable amount of time to follow a tutorial step-by-step or to decide

exactly which parts of a tutorial are relevant to their ongoing tasks [5, 108, 109]. Ex-

pert developers share their procedural or ”how to” knowledge, creating new tutorials

that support various development activities. Tutorials targeting software development

can use various media, taking the form of written documents, interactive programs,

or screen recordings [5]. In this research we only consider written online tutorials

available on the Web.

Researchers have studied the effects of API deprecation and removal in var-

ious development ecosystems, leveraging online resources like Stack Overflow and

GitHub [110, 111, 112]. For instance, researchers have examined why APIs change [113]

and how API changes affect developers [114]. Researchers studying whether changes

in APIs trigger StackOverflow questions detected a strong increase in the number

64

of questions asked about frequently changed API methods [115]. Studies have also

found that when developers ask questions about new APIs they get more answers,

but high quality answers take significant time to accumulate [24]. We were not able

to find any empirical studies of API deprecation or removal that examined the effect

of this phenomenon specifically in software development tutorials.

Software development tutorials commonly contain both natural language descrip-

tions and code segments, which provide examples to further clarify the narrative.

Often, tutorials mention APIs in the description and in code segments. Typical code

segments consist of several lines of codes, in some cases consisting of complete or

nearly complete classes or methods. When tutorials mention one or more APIs that

have been removed or deprecated, then the entire tutorial is no longer valid for the

current version of the API as many developers read these resources in their entirety.

Such tutorials often can give incorrect information to developers that use newer (or

older) APIs leading to loss of development productivity. In most cases, tutorials do

not specifically express or warn about version compatibility. In APIs with poor for-

ward and backward compatibility, tutorials quickly grow outdated. The aim of our

research is to automatically detect the API versions of tutorials, as it is very time con-

suming or even impossible to manually check every API of the tutorial to determine

their version compatibility.

Figure 8 shows a tutorial [116] that discusses Android’s startActivityForResult

API method, which is one of the most commonly used API methods in Android

app development. Although the tutorial authors inform their readers that there are

two variants of this method, there is no indication of the applicable API version

number. In fact, the first variant startActivityForResult (Intent intent, int

requestCode) was added in API level 1, while the other startActivityForResult

(Intent intent, int requestCode, Bundle options) was added much later, in

65

API level 16. Both APIs are still in use. However, the tutorial reader can easily be

confused by this discrepancy in the valid API versions of these two similar methods,

e.g. resulting in difficulties when maintaining legacy applications.

A complementary motivating example is in the tutorial in Figure 9, where the

tutorial shows an example code segment that utilizes the FloatMath class (on line

22). This class was deprecated in API level 22 and removed in level 23. While this

class is not the focal point of this tutorial, reusing the code snippet that references it

can lead to difficulty and waste time looking for alternative classes or tutorials. The

tutorial prominently displays that it was written in 2013 and has not been updated

since, which is perhaps an indicator of dated information, but there are numerous

cases where a tutorial’s age is not so easy to discern.

If the developers are informed of corresponding versions of APIs mentioned in

tutorial and the version range in which the tutorial is active or working, then they

can make quick decisions whether the tutorials are worth reading and whether code

segment examples of this tutorial are worth reusing. In some cases developers may

be willing to adjust the API level of applications to fit the tutorial, but perhaps in

the majority of cases developers would search for a different resource to learn from.

In yet other cases, developers are specifically interested in learning which APIs have

been removed or deprecated, information that would also be available to readers if

tutorials published their valid API levels.

4.1 Empirical Study

To understand the scope of the tutorial versioning problem, we conducted an

empirical study using Android tutorials available on the Web. We selected Android

as its APIs have exhibited a lot of churn in recent years. Table 15 shows the release

dates of each Android version. New releases are frequent and API changes, including

66

Fig. 8.: Portion of a tutorial discussing the startActivityForResult Android

API [116]

additions, deprecations and removals, are considerable between pairs of releases. New

Android APIs are often added to support new features that are to be available in new

types of mobile devices or to support enhancements in the OS or runtime. However,

as most devices available in the marketplace are older, to reach the widest audience

applications have to be able to support older version of the API.

The lifecycle of an API is shown in Figure 10. After a new API class method or

field is added, it can go through three separate lifecycle stages: an API can continue

to be valid, be deprecated, or removed. Deprecation is a stage intended to warn

developers that an API element will be soon removed. Based on the lifecycle, for each

API we can associate an added version, removed version and depreciated version. To

illustrate this point, Table 15 also shows the number of removed classes and number

of deprecated classes in each version of Android. In version 5.0-5.1.1, the highest

number of classes (400) were deprecated and in version 4.1-4.3.1 highest number of

67

…

…

Fig. 9.: Portion of a tutorial utilizing the deprecated API

android.util.FloatMath [15].

classes were removed. We used the listing of Android APIs provided by the Android

Official Documentation [117], Android API Differences Report [118], and Android

Support Library API Differences Report [119].

The goal of our study is to determine if tutorials available on the Web may suffer

from the problem of being only applicable to specific versions of APIs. To measure

this, we collected a large set of Android tutorials from several different sources using

stratified sampling based on 1) the source of the tutorial; and 2) the published year of

the tutorial. We ended up with 13 tutorials that spanned 4 sources and 5 years (2013

- 2017). The year of publishing of the tutorial is usually reported by the tutorial

itself. We selected tutorials that had prominently displayed modification dates that

68

Code

Name

Version

Number

Initial

Release

API

Level

Number of

Removed

Classes

Number of

Deprecated

Classes

Base 1.0 10/2008 1 - -

Base 1.1 02/2009 2 - -

Cupcake 1.5 04/2009 3 0 5

Donut 1.6 09/2009 4 2 4

Eclair 2.0-2.1 10/2009 5-7 0 39

Froyo 2.2-2.2.3 05/2010 8 0 1

Gingerbread 2.3-2.3.7 12/2010 9-10 9 0

Honeycomb 3.0-3.2.6 02/2011 11-13 6 10

Ice Cream

Sandwich

4.0-4.0.4 10/2011 14-15 0 5

Jelly Bean 4.1-4.3.1 07/2012 16-18 38 43

KitKat 4.4-4.4.4 10/2013 19-20 0 2

Lollipop 5.0-5.1.1 11/2014 21-22 0 400

Marshmallow 6.0-6.0.1 10/2015 23 36 7

Nougat 7.0-7.1.2 08/2016 24-25 3 37

Oreo 8.0 08/2017 26-27 4 12

Android P[18] 9 07/2018 28 9 41

Table 15.: The set of different Android versions, corresponding API levels, and num-

ber of removed and deprecated classes. [120] [117] [118]

69

appeared consistent. However, in one tutorial, we still observed some minor errors in

the reported dates, which we were able to manually correct based on related context.

The task of determining the valid API version for a specific tutorial can be

reduced to determining the version of all the API mentions in each tutorial. To this

end, we created a list of tokens that contains all the API names (i.e. methods, classes,

fields, packages) by parsing the Android Official Documentation [117]. Using this list

of Android API tokens we performed string matching with all of the text (including

source code and natural language) in the 13 tutorials in order to extract all of the

potential API mentions. We ignored the text fonts and formatting, as these were

specific to each tutorial. The matched tokens contained numerous false positives.

Next, we manually annotated each matched mention in order to validate whether it

is truly an Android API that is being referred to, and, if so, determine its version.

4.1.1 Manual Annotation Procedure

For the task of determining, if potential API mentions in the 13 tutorials are

valid and determining the exact API class, method, or field, that is being referred to,

we recruited two Ph.D. and two M.S. students, who had taken a course on Android

and had several years of Java experience. We instructed the annotators to begin

by reading through the whole tutorial in order to get a good grasp on the context.

Following this, they were to examine each potential mention, focusing on the text

and code context surrounding it, and determine whether this is truly a mention or

just a spurious match. For each validated mention the annotators were to identify

the specific API element, by identifying the corresponding URL in the latest Android

documentation.

During the annotation, there were mentions where a method name or field name

has different variants. For instance, multiple methods with same name can have

70

Tutorial Title & Source Website Year
Published

Ratio of
Valid
Mentions

Valid
Version
Range

Learning to Parse XML Data in Your Android
App

6/7/2013 36% [1-28]

– sitepoint.com –
Navigation Drawer Android Example 10/16/2013 35% [22-27]
– stacktips.com –
How to Get all Registered Email Accounts in An-
droid

4/7/2014 40% [5-22]

– stacktips.com –
Scheduling Background Tasks in Android 4/30/2014 37% [3-28]
– sitepoint.com –
Android Lollipop Swipe to Refresh Example 1/27/2015 33% [22-28]
– stacktips.com –
Android Navigation Drawer for Sliding Menu /
Sidebar

12/15/2015 32% [25-28]

– androidtutorialpoint.com –
Building Android applications with Gradle - Tu-
torial

4/18/2016 10% [1-28]

– vogella.com –
Android Facebook Login Tutorial – Integrating
Facebook SDK 4

5/2/2016 37% [26-28]

– androidtutorialpoint.com –
Using ViewPager to Create a Sliding Screen UI in
Android

8/31/2016 45% [25-28]

– sitepoint.com –
Retrofit, a Simple HTTP Client for Android and
Java

1/11/2017 27% [25-28]

– sitepoint.com –
Convert Speech to Text in Android Application 1/30/2017 36% [26-28]
– stacktips.com –
Android Chat Bubble Layout with 9 patch Image
using ListView

3/22/2017 30% [25-28]

– androidtutorialpoint.com –
Understanding Androids Parcelable - Tutorial 4/20/2017 42% [1-28]
– vogella.com –

Table 16.: Range of valid versions of the tutorials in our set.

71

API

Added or

Changed

API

Removed

API

Deprecated

Fig. 10.: Lifecycle of an API element.

different parameters and return types, while mentions with same name can belong

to different classes or packages. The annotators were asked to pay special attention

to these cases, and to carefully disambiguate them. Since the annotators only used

the latest version of the API, there were cases where they were not able to locate

the appropriate API for a mention in the tutorial. For these cases, after annotators

completed the annotation procedure, the authors checked over the difficult to disam-

biguate cases in order to confirm they were correctly annotated and corrected the

errors.

4.1.2 Analysis of Findings

We present an overview of the findings of the empirical study, including the title,

source, published data, ratio of valid mentions, and the valid version range of the 13

tutorials in Table 16. We observe a variety of valid version ranges for the tutorials.

There is no observable consistency in the API-levels used in the tutorials based on

the publication years, tutorial sources, or the topics discussed in the tutorials. In

3/13 tutorials, the version range encompasses all currently known releases of the

Android API, but many others are significantly constrained; 8/13 lack full backward

72

compatibility and 2/13 lack both full forward and full backward compatibility. We

also observe in Table 16 that the ratio of the valid mentions varies from 10% to

45%, never approaching high proportions for any of our tutorials. This indicates that

finding out API names from tutorials is more challenging than simple string matching

because almost half of the tokens that are matched to API names are not actual API

mentions.

4.1.3 Threats to Validity

Our empirical study suffers from several threats to its validity. One threat is in

the correctness of the manual annotations. This risk is mitigated by the fact that the

annotators possess sufficient skills in Android and Java, as well as by the fact that the

authors manually re-checked the correctness of difficult annotations. Another threat

to validity is in the selection of tutorials for the study. We used stratified sampling

based on two features. However, we only randomly sampled a single tutorial for a

feature pair, which could have lead to bias. There also may have been other relevant

tutorial features that we did not consider in our sampling.

4.2 Automated Versioning of Software Development Tutorials

By automatically determining the version of a tutorial, from a set of official doc-

umentation for the APIs that the tutorial is describing, we could convey information

that developers would be able to use to quickly determine whether a tutorial is com-

patible with their environment. Each tutorial contains a set of terms, located in code

examples and in the surrounding narrative, that match API element names. Deter-

mining the version of these terms is required in order to determine the version of the

tutorial. However, some of these matches are spurious and should be ignored. For

instance, a API method named run() would produce a false positive match with a

73

sentence in the tutorial narrative that uses the verb run. Therefore, extracting the

range of versions for a tutorial is a two step process:

1. Differentiate valid from spurious API mentions in the tutorial.

2. Uniquely map each valid API mention to its exact API element (i.e. class, field

or method).

Once we disambiguate and resolve the valid API mentions, it is pretty straight-

forward to extract the corresponding API version number of the mention and subse-

quently the entire tutorial. In our research, we apply natural language and machine

learning based methodology that can identify valid mentions of the tutorial as well

as disambiguate among the multiple occurrences of the APIs which have same name

but have different signatures.

4.2.1 Versioning Workflow

Figure 11 shows the workflow of our approach for automated tutorial versioning.

The input to our technique is (1) official API documentation for each API version and

a (2) tutorial whose version range we would like to determine. There is no standard

way to obtain API documentation, so we developed an Android specific parser that

extracts API information from the Android Official Documentation [117], Android

API Differences Report [118], and the Android Support Library API Differences Re-

port [119] available on the Web. Our parser extracts the signature and summary of

all the added, removed and deprecated API elements. We store the parsed documen-

tation in the form of a database for convenient access.

In the next step of the workflow, we tokenize the tutorial using white spaces, re-

move all punctuation, and perform simple string matching of the tutorial’s tokens to

the API element names of the Android Official Documentation [117]. The matching

74

tokens constitute a list of candidate API mentions in the tutorial. For each of the

candidate mentions we also obtain the context, consisting of a bag of words repre-

sentation of the surrounding lines of text in the tutorial. We use a threshold of one

line before and after the candidate mention, including the line where the candidate

mention occurs.

Each candidate mention can have one or more potential API elements that it can

be mapped to. Our task is to disambiguate which API the mention truly refers to.

However, it is also possible that the candidate mention is only spuriously matching an

API element - i.e. it is an invalid mention. For the disambiguation task, we compute

a set of four features that highlight natural language and source code aspects of each

mention, and use these features as input to a classifier. Once the classifier maps the

candidate mention to its correct API, or marks it as not a valid mention, we aggregate

the versions of all the mentions in a tutorial to determine that tutorial’s valid API

version range. To find out the valid version range of the tutorials, it is important to

detect whether tutorial contains APIs which are already removed or deprecated and

its corresponding removed or deprecated versions. To detect removed or deprecated

APIs, we have used Android API Differences Report [118], and Android Support

Library API Differences Report [119].

To calculate the valid version range of a tutorial using all of the disambiguated

mentions in the tutorial, we apply the following rules:

1. If there are no mention of a removed or deprecated APIs in the tutorial, the

valid version of the tutorial ranges from the most recent version when all of the

mentions were present in the API to the most recent available version of the

API.

2. If there is only one removed or deprecated API mention in the tutorial, the

75

API
Docs

Tutorial

API
Dataset

List of
Candidate
Mentions

and Context
Features

Noun

Similarity

Text

Similarity

Structural

Similarity

Parameter

Similarity

Tutorial
Version
Range

Spurious
Mentions

Valid
Mentions

Classifier

Fig. 11.: Overview of our technique for automated versioning of software development

tutorials.

valid version ranges from the most recent version when all of the mentions were

present in the API up to the version prior to the API removal.

3. If there are multiple removed or deprecated API mentions in the tutorial, the

valid version ranges from the most recent version when all of the mentions

were present up to one version prior to the minimum of all the versions of the

removed/deprecated APIs that were mentioned.

4.2.2 Features

We selected four features to extract and uniquely characterize candidate API

mentions that occur in tutorials. These are: (1) Noun Similarity, computed between

the candidate API mention’s context (from the tutorial) and an API element’s de-

scription (from the API documentation), (2) Text Similarity, computed using a vector

space model (i.e. tf-idf) of the mention’s context and API document description, (3)

Structural Similarity, computed between the mention’s context and structurally re-

76

lated members of the API; and (4) Parameter Similarity, computed directly between

the candidate mention and API element. In the following, we discuss each of these

features in more detail and use an example – a mention to API element pair from

Figure 8 – to illustrate each feature.

4.2.2.1 Noun Similarity

The motivation behind selecting the Noun Similarity metric is that the noun

words in the surrounding context play an important role in identifying tutorial men-

tions that describe a specific API [54]. To be clear, as nouns we also consider the

names of classes, packages, fields and methods. Our hypothesis is that nouns that

occur in the description of the API in the Android Official Documentation tend to

appear more in surrounding context of corresponding mentions in Android tutorials.

We calculate the Noun Similarity measure using Jaccard similarity of the nouns in

the bag of word context captured for each mention and the nouns occurring in the

description of the candidate APIs from the official documentation:

NounSimilarity(m,API) = |nouns(mcontext) ∩ nouns(APIdesc)|
|nouns(mcontext) ∪ nouns(APIdesc)|

,where mcontext is the surrounding tokens of each mention (i.e. the context) and

APIdesc is the descriptive text for each API element that can be found in the official

documentation.

As an example, consider the potential mention-API element pair of: 1) the

startActivityForResult mention on line 1 of Figure 8 and 2) the API method

startActivityForResult(Intent intent, int requestCode) in the Android Of-

ficial Documentation. The Noun Similarity measure computes the similarity in the

nouns occurring in the mention’s context in the tutorial, e.g., [’help’, ’android’,

’method’, ’result’, ’activity’, ’information’, ...] and the nouns occur-

77

ring in the description of this method in the API documentation, e.g., [[’Intent’,

’int’, ’Bundle’, ’options’].

4.2.2.2 Text Similarity

Noun Similarity focuses on one aspect of aligning the natural language context

of an API mentioned in a tutorial and its textual description in the official documen-

tation. In order to capture the influence on any remaining, yet important, terms,

we use the Text Similarity metric, which first computes the term frequency - inverse

document frequency (tf-idf) score of each matching term, and then computes the sum,

as follows:

TextSimilarity(m,API) =
∑

t∈ (terms(mcontext) ∩ terms(APIdesc)) tf(t) ∗ idf(t)

,where mcontext is the surrounding tokens of each mention (i.e. the context) and

APIdesc is the descriptive text for each API element that can be found in the official

documentation.

For the potential mention-API pair of the startActivityForResult mention on

line 1 of Figure 8 and startActivityForResult(Intent intent, int requestCode)

the Text Similarity measure computes the similarity among all of the terms in the

mention’s context (as can be observed in Figure 8) and the description of the star-

tActivityForResult(Intent intent, int requestCode) API method, which is as follows:

”Same as calling startActivityForResult(android.content.Intent, int, android.os.Bundle)

with no options.”

4.2.2.3 Structural Similarity

Some API elements have common names, increasing the number of potential

APIs in the official documentation for each candidate mention in the tutorial. In

78

order to help disambiguate these cases, we introduce a metric based on program

structure, which often works when tutorial authors include snippets of code. Using

the code context of a mention, we can extract related package and class names and

try to match them in the API documentation.

For instance, in the tutorial shown in Figure 8, the android.app.Activity class

is imported, which can provide a hint that the startActivityForResult method

belongs to android.app.Activity class. Although the effect of this metric can be

strong, there are many cases where sufficient hints are not available in the surrounding

code.

To compute Structural Similarity, similar to Uddin et al. [54], we use an island

parser to process the surrounding code segments of a mention in order to identify

either fully qualified or unqualified names of variable types. Different from the other

metrics, here we look more broadly, using several lines in the tutorial text, for sur-

rounding code snippets. In the found code snippets, we extract the types using import

statements, class declarations, and interfaces or extended classes. We use this list of

types to compare to related types in the official API documentation. For the API

documentation we gather the entire type hierarchy of the class (or of the containing

class for a candidate field or method). A definition of Structural Similarity is as

follows:

StructuralSimilarity(m,API) =
|types(mbigcontext) ∩ types(API)|

|types(mbigcontext)|

,where mbigcontext is the larger set of surrounding tokens of each mention, while typesc

are the set of type names in the API hierarchy, as specified in the official documen-

tation, or encountered in a code segment found in the tutorial mention’s surrounding

context.

Since the mention to startActivityForResult on line 1 of Figure 8 has no

79

source code in its vicinity, this Structural Similarity will be zero.

4.2.2.4 Parameter Similarity

Methods are the most common API element we encounter in tutorials. A method’s

parameters can be a crucial feature in disambiguating multiple methods with same

name. Method overloading is supported in many languages and is a common pattern

found in many APIs. Considering again the mention of startActivityForResult

in Figure 8 we observe that both variants of this method are part of the Activity

class. The different parameter number and types are the only aspect distinguishing

the two APIs being referred to by this mention, and for this purpose we introduce

the Parameter Similarity feature.

Parameter Similarity is computed between the method parameters of a mention

in the tutorial and those of the candidate APIs in the official documentation. For

efficiency, in matching, we first consider the number of parameters and then we at-

tempt to match their types, assuming that type information is available. The metric

is binary, producing a value of 1 if the parameters of the API in the two sources

match, and 0 otherwise. A definition of this feature is as follows:

ParameterSimilarity(m,API) =


1, if types(param(mcontext)) = types(param(API))

0, otherwise

,where types(parametersc) specifies the types of the parameters found in method

definitions in the API or method invocations in the tutorial.

As for the Structural Similarity, when a mention has no source code in the

surrounding text, as startActivityForResult on line 1 of Figure 8, its Parameter

Similarity is also zero.

80

4.3 Experimental Analysis

Each tutorial contains a number of potential API mentions. Each of these API

mentions needs to be disambiguated and mapped to the exact API member it corre-

sponds to, or marked as a spurious match that is not a true mention. Subsequently,

to find out the range of versions of a tutorial we can compute the valid ranges for

the constituent API mentions. The aim of our experimental study are the following

research questions:

• RQ 1: Does our technique for automatic versioning of software development-

related tutorials accurately map mentions to their corresponding APIs?

• RQ 2: Is our technique for automatic versioning of software development-

related tutorials effective at determining valid version ranges?

The effectiveness of our technique in RQ2 is dependent on achieving a reasonable

accuracy on RQ1.

4.3.1 Experimental Setup

In this section we describe the method and metrics we use to evaluate the research

questions. Our evaluation dataset is the one constructed with the empirical study

described in Section 2.1. It consists of 13 tutorials sampled via stratified sampling

with 75879 potential API mentions and the Android API documentation scraped from

official Web pages. From these, 1268 are actual API mentions consisting of 744 classes,

54 fields and 470 methods. We used Python to implement our technique, leveraging

the popular natural language processing libraries NLTK [121] and TextBlob [122].

For island parsing of the code snippets embedded in tutorials we used the SrcML

parser [123].

81

1 3 5 11 14 16 21 22 24 25 26
API Version Added

100

101

102

103

Nu
m

be
r o

f
Oc

cu
rre

nc
es

Fig. 12.: The distribution of the added versions across all the tutorial (log scale).

The versions when API mentions in our tutorial dataset were initially introduced

in Android follow the distribution shown in Figure 12. A few Android releases (e.g.

1, 11, and 22) introduced popular API members that are commonly referenced in

our tutorials. However, many other Android releases mostly contributed additional

or specialized functionality referenced by few (or no) mentions in our tutorial set.

Therefore, the problem of determining which API versions are supported by a tutorial

is skewed by commonly occurring API elements.

The constituent problem of matching a mention to an API element (i.e. a specific

class, method or field) is naturally formulated as binary classification. That is, for

each potential mention in a tutorial we consider a binary decision of whether it belongs

to each, out of sometimes several, possible APIs with the same name. This task

is also heavily skewed by common API names, for which the classification task is

significantly more difficult. For instance, the toString() API method occurs in 669

different Android classes. On the other hand, the replacement() method occurs in

only 2 different classes, CharsetEncoder and CharsetDecoder. So some mentions

in our dataset are very hard to disambiguate, while others are straightforward. To

measure our approach’s effectiveness and answer RQ1, we use metrics common in

binary classification problems.

82

• Precision – measures the ability of a classifier in labeling positive samples as

positive and avoid labelling positive samples as negative [124]. High preci-

sion indicates that our technique does not misclassify mentions as wrong APIs,

or classify spurious mentions as mentions. In other words, precision is a good

metric to evaluate a model when the cost for false positives is high. [125]. Down-

stream, low precision could result in our technique selecting an overly restrictive

version range for a tutorial.

• Recall – measures a classifier’s ability to find all the positive samples [124]. High

recall is indicative of our technique’s ability to recognize all of the API mentions

in a tutorial, missing few or none. Recall is used to evaluate a model when the

cost of false negatives is high [125]. Downstream, low recall could result in our

technique not being restrictive enough in versioning tutorials.

• F1-Score (binary) – is a popular metric that combines precision and recall. We

compute the binary F1-score, which is applicable in problems like ours when

the predicted or target class is binary [126].

For RQ2, we require a metric that contrasts the true version range of a tutorial,

as determined using manual annotation, from the set of versions of the set of disam-

biguated mentions in that tutorial. Therefore, for comparing two version ranges we

use the following metric:

• Manhattan Distance – measures the distance between two points as the sum

of the absolute differences of their Cartesian coordinates [127]. We use the

Manhattan Distance to assess the difference between the predicted and actual

version range of a tutorial, as the measure follows intuitive notions of a distance

between two version ranges. For instance, it penalizes errors in underestimating

and overestimating the range equally.

83

For this supervised learning problem, we explore two different train-test split

strategies: (1) using mentions as a unit; and (2) using tutorials as a unit. In the first

strategy a randomly chosen portion of mentions is used in the training set and the

remainder constitutes the test set. Likely this results in some portion of the mentions

of each tutorial (from our set of 13) to be placed in each set. In the second strategy, we

examine using all of the mentions from a portion of the tutorials as the training set,

leaving the remaining whole tutorials as the test set. The second strategy is meant to

convey a more realistic deployment of our technique, where the trained classifier has

not seen any of the mentions of the new, previously unseen, tutorial whose version it

determines.

Classification Algorithms. For the binary classification problem we choose the

Random Forest Classifier, which has been shown to produce good results on a vari-

ety of problems [128]. We use the default settings for the Random Forest Classifier:

numTrees = 1500. In addition, in order to better address the problematic popu-

lar mentions, where numerous possible API matches exist (e.g. toString()) for a

mention in a tutorial, we reformulate the classification task as multi-instance classi-

fication. In multi-instance classification [129], there are multiple instances that are

grouped together in a bag, and the algorithm’s task is to predict the label of the bag

taking into account all of the instances that comprise it. That is, the classifier first

predicts whether a bag corresponds to a spurious vs. non-spurious mention. Subse-

quently, if it is a real mention, the highest expressed instance within the bag should

correspond to the specific API we map the mention to.

To make this clearer, consider a case where the candidate mentions in the tu-

torial are denoted as m1,m2,m3, ...,mn. Each of these mentions has a set of po-

tential candidate APIs c1, c2, c3, ..., ck, extracted from the official API documenta-

84

tion. In our classification task, we consider a mention-candidate pair as an instance,

(m1, c1), (m1, c2), (m1, c3), ..., (m1, ck), (m2, c1), (m2, c2), (m2, c3), ..., (m2, ck), (mn, c1),

(mn, c2), (mn, c3), ..., (mn, ck). If we consider the classification problem as binary clas-

sification then each instance is independent and a positive prediction means that a

mention is mapped to a specific API element. If none of the mention’s APIs match,

then we consider the mention to be spurious. In multi-instance classification, all of

the instances that belong to a particular mention m form a bag. The number of bags

is equal to the number of mentions, while the number of instances in each bag is equal

to the number of API candidates of this particular mention. The classification task

marks a bag as positive if it contains an instance (m, cj) that maps to an API. We

identify this to be the instance with the highest sum of the normalized features within

the positive bag. On the other hand, if a bag is predicted as negative, it is a spurious

match and all of its instances are negative. As an implementation of a multi-instance

classifier, we use the multi-instance Support Vector Machines (mi-SVM) [130], with

its default settings (i.e. kernel=linear and maximum iterations=5000).

4.3.2 Results

We first present our results evaluating RQ1 with mentions as units. The evalua-

tion uses the Random Forest classifier and 10-fold cross validation and a training set

consisting of the same type of API element (i.e. method, class, field or combined).

Table 18 shows the results split across different types of API elements, classes (or

interfaces), methods, and fields. For a combination of API elements our technique

shows higher precision (79%), lower recall (62%), with F1 score of 69%. Considering

the different types of API elements, our technique performs best on fields, followed

by classes, with methods performing the poorest, with an F1-score of 58%.

We also evaluate our technique using tutorials as units, where we use mentions

85

of a specific API type from 12 of the 13 tutorials as a training set and use the final

tutorial as the test set.

The results of this evaluation are shown in Table 17. Again, we present the

classifier’s output divided into different types of API elements and combined. We

observe high effectiveness on classes and fields, but much low values for method

(average F1-score of 44%) or combined (average F1-score of 36%).

The low values on method across both of the evaluations motivate the formulation

of the problem as multi-instance classification, which groups instances belonging to

the same mention instead of treating them separately as in the previous formulations.

Using bags to represent each unique mention in the tutorial and instances to

represent each mention - API element pair, the results for multi-instance classification

are shown in Table 19.

For train test splits, we use the tutorials as units. The number of fields in the

dataset was insufficient to produce results using this method so these results are

omitted. Using this formulation of the problem we observe reasonable results at

the bag level for methods and classes and at the instance level for classes. The per

instance method results and the combined results were weaker than class or field,

as in the binary classification. However, compared to the binary classification we

observe slight improvements in the results on methods, with F1-score of 51% ,and on

the combination of all API elements, with an F1-score of 54%.

Based on these results, we cannot answer RQ1 strongly in the affirmative for

all API elements. While the results are sufficiently strong for fields and classes, the

results for methods and for a combined mix of all API elements still miss a large set

of mentions.

Next, for RQ2, we examine how the technique performs in determining the

version ranges of the tutorials in our experimental set. While RQ1 is a prerequisite

86

for RQ2, we observe a high redundancy in mention types in a tutorial, which makes

it possible to have reasonable results on RQ2 even with subpar results on RQ1.

For instance, startActivityForResult is mentioned numerous times in the tutorial

listed in Figure 8.

The results for RQ2 are shown in Table 20. Our method predicts the correct

version ranges for three of the thirteen tutorials. For the ones whose versions are

incorrectly predicted, the majority, ten out of twelve, are missed with very small

margins of 1 or 2 versions. For two of the tutorials the predicted versions are signif-

icantly distant from the true ranges. This shows that even though some individual

API mentions and their corresponding API-levels are incorrectly predicted by our

technique, due to redundancy of mentions inherent in the tutorials, the upper and

lower bound of the predicted version ranges are quite similar to the corresponding

true version ranges. Tiny variances in the predicted version ranges are unlikely to

significantly hinder the use of our technique.

Error Analysis. We qualitatively examined the results of our technique, focusing

specifically on instances where our technique performed poorly. The tutorial Learning

to Parse XML Data in Your Android App is one where we misclassify the version by

a large margin, predicting 26 where the true minimum version of the APIs mentioned

in this tutorial is 1. Examining all the potential mentions of this tutorial we observe

that in the following textual segment of the tutorial, the word write is considered a

potential mention.

[...] With the help of these APIs you can easily incorporate XML

into your Android app. The XML parsers do the tedious work of parsing

the XML and we have to just write the code to fetch the appropriate

information from it and store it for further processing. [...]

87

In this case, the mention to write clearly does not refer to an API, however, it is

misclassified as the call the Android write API method:

void AsynchronousSocketChannel.write(ByteBuffer src, A attachment,

CompletionHandler<Integer, ? super A> handler)

This occurs because there are tokens in the method’s API description text that

match tokens in the context of this mention in the tutorial, providing a positive value

for the Text Similarity feature. With this value for this feature, and the remaining

features as zero, the classifier produces a false positive. As the write method is

introduced in Android API 26, this results in a large error for this tutorial. Mitigating

errors like the one described here likely requires introducing additional features as

improvements to the classifier seem unlikely to be helpful, since many true positive

mentions have the same feature values. This specific error persisted for both of the

classifiers we applied in our research. One additional feature that can be explored to

improve this error is using word embeddings computed on a large external corpus, e.g.

on Stack Overflow, to enrich the text of the API documentation with additional terms

and improve the quality of the matching. Too often, we found that the Android API

descriptions were very brief which made resulted in zeros for many of the features, as

was the case here.

4.3.3 Additional Feature Based on Word Embeddings

To improve the precision and recall of our tutorial versioning technique, we

added an additional feature that computes similarity based on word embeddings.

By using a word embeddings model trained on a corpus of Stack Overflow posts,

SO word2vec [131], we can semantically extend both the official API description and

context of potential mentions of the tutorials and then calculate the cosine similarity

88

between them. Table 21 shows the evaluation results with this additional feature

when using tutorials as unit. We observe that using word embeddings, the precision

and recall have improved significantly on the combined dataset with 61% precision,

55% recall and 55% F1-score and using the Random Forest Classifier (numTrees=

1500).

Table 22 shows the overall tutorial versioning effectiveness with the additional

word embeddings features. The results show that although the new feature increases

precision, recall and F1 score, the average distance of predicted version range is

slightly larger (5.84) than the multi-instance classifier using the base set of features.

The reason for this discrepancy is just that the misclassified APIs using the new

features happen to introduce a higher penalty to the overall versioning accuracy.

4.4 Versioning Video Tutorials

Online video tutorials are also a popular source of information for software de-

velopers. Like conventional text-based tutorials, video tutorials provide step-by-step

information for a particular development topic. Video tutorials target developers that

can learn quickly with visual and auditory cognition [132]. Video is preferred by some

developers as they provide deeper context, more examples and the ability to observe

all changes made to the source code. By observing the IDE and OS environment,

developers can clearly relate the output to the source code [105].

In the following, we have extended our research study to exampine our versioning

technique’s applicability towards online video tutorials. We again focus our experi-

mentation on Android (video) tutorials.

As before, we aim to select a set of tutorials for experimentation using stratified

sampling. For this purpose we gathered a corpus of Android tutorials freely available

on the Web and extracted their metadata including information related to the video

89

tutorial’s Title, Publish Date, Number of Views, and Number of Likes. We applied

stratified sampling based only on the Publish Date and Number of Views randomly

selecting 7 tutorials for annotation, one per category. After manually annotating these

7 tutorials, our evalation dataset contains approximately 40,000 (Mention,Candidate)

pairs.

Before annotating the tutorials, we preprocessed them to extract the textual

representation of their contents (textual representations of sound and images) using

the following set of steps.

• We apply the Google2Sr [134] tool to generate text files of video transcript.

There are 7 transcripts for each of the 7 tutorials.

• We apply the FFMPEG [135] tool to extract video frames. The video frames

of tutorials have been extracted every 10 seconds. From our 7 tutorials, we

extracted 302 video frames. Most of these frames contain repetetive content.

We have manually filtered the video frames that contain unique information,

keeping a set of 22 video frames that contain different information from each

other.

• After extracting video frames we apply the TESSERACT-OCR [136] tool to

extract text files that contain source code and natural language text/description

from the images.

• Finally we annotate these text files to extract API mentions.

To determine the versions of each API mentioned in the video tutorials, we train

a Random Forest classifier, and evaluate with 7-fold cross validation. We experiment

with different types of API elements (i.e. method, class, field) or a combination of

all three. Table 23 shows the results of this experiement. Our technique exhibits a

90

high precision (81%), recall (81%), and F1-score (81%) for a combination of all API

elements, performing best on fields, followed by classes, with methods performing the

lowest, with an F1-score of 71%.

We also evaluate our technique using tutorials as units, where we use mentions of

a specific API type from 6 of the 7 tutorials as a training set and use the final tutorial

as the test set. The results are shown in Table 24. For this configuration we observe

lower results than when using all mentions without regard for tutorial boundaries.

Although precision and recall are moderate for classes and fields, we observe extremely

poor values for method level (average F1-score of 9%) and combined (average F1-

score of 32%) dataset. Considering the implication of API classification to the overall

tutorial versioning, we observe that the average distance of true and predicted version

range is very large, around 13, as shown in Table 25.

We argue that the low precision, recall of our technique when using tutorial

as unit implies the difficulty of extracting the information (source code and text

context) of video tutorials rather than the applicability of our proposed approach.

By examining the results, we construct two main reasons why our methodology is

giving low precision and recall.

• Lack of natural language context: Video tutorials do not have the advantage

of in-depth explanation like text tutorials. Therefore, they lack sufficient nat-

ural language descriptions. Usually, video tutorials provide information to the

learners with visual and auditory cues [132], therefore, a detailed textual expla-

nation does not exist in the video. As a result, our technique fails to extract

meaningful textual features from many video tutorials.

• Difficulty in extracting source code and descriptions: Text extracted from video

tutorials is extremely noisy. We have used an OCR tool on the video frames,

91

however, the output of such tools can be succeptible to noise [137]. A high

amount of noise can occur because the background of the video frames is some-

times difficult to process and because the quality of the video frames can also

be very low [105]. When code snippets used in the video tutorials are inter-

spersed with application execution then it is very difficult to derive structural

features and parameter features [132]. In some video tutorials, code is written

incrementally while the author provides step by step explanations on each line.

Some explanations cause the author to quickly jump through the code base,

showing dissimilar portions of code in different video frames. In these cases,

it is difficult to extract relevat information related to API mentions from each

video frame. [105].

4.5 Conclusions and Future Work

In this chapter, we proposed a novel idea of inferring the version of informal

software documentation avaiable on the Web, focusing specifically on textual and

video tutorials available on the Web. Tutorials are read by numerous developers,

especially by novices, and a system that can warn developers of version incompatibil-

ities is likely to improve productivity by reducing the time spent struggling to learn

a difficult development-related concept.

We perform a motivational study producing a manually-annotated corpus of 13

Android tutorials, obtained using stratified sampling that considers the source and

year of publishing. Our study finds several tutorials with limited Android API version

compatibility, including both dated tutorials that are not compatible with recent API

releases and newer tutorials that are incompatible with older APIs.

We then focus on a developing a workflow that automates the task of version-

ing tutorials given (versioned) official API documentation. We decompose this task

92

into two subtasks, one of determining whether a term that matches an API element

(class, field, or method) is an actual API mention and the second of disambiguating

a overloaded API name to the specific element it refers to. For these two tasks, we

express a set of features and experimentally study different classification algorithms

and problem setups to understand their effect on this problem. We find that classes

and fields are straightforward to disambiguate, but that common API method names

can be very challenging. However, we also find that tutorials possess sufficient redun-

dancy in their API mentions and even with imperfect per-mention classification, the

overall tutorial version can often be accurately recognized. Therefore, we observed

that our approach is effective at determining the final valid version ranges of many

of the Android tutorials we examined.

In the future, we plan to extend our research by exploring additional features

that reflect the popularity of a particular API, as developers often mention popular

APIs without much additional context. We also plan to experiment on larger and

more diverse collections of tutorials. We also plan on exploring how version hints

can be integrated into development environments and how developers perceive such

suggestions.

To improve the results of versioning video tutorials specifically, we plan to apply

additional techniques to reduce noise of videos and correctly extract source code

and textual description. This is an area where new tools, based on latest artificial

intelligence techniques, are continuously becoming available. We aim to experiement

with cutting edge tools, as improvements with converting videos to text should lead

to strong downstream improvements in our ability to version these types of tutorials.

93

Tutorial Name Precision Recall F1-score

Learning to Parse XML Data in Your Android
App

41% 31% 35%

— Class 82% 74% 78%
— Field 100% 100% 100%
— Method 83% 24% 37%
Navigation Drawer Android Example 29% 48% 36%
— Class 58% 80% 67%
— Field – – –
— Method 66% 32% 43%
How to Get all Registered Email Accounts in An-
droid

85% 55% 67%

— Class 76% 100% 86%
— Field 100% 100% 100%
— Method 85% 50% 62%
Scheduling Background Tasks in Android 53% 32% 40%
— Class 84% 76% 80%
— Field 90% 60% 72%
— Method 100% 42% 60%
Android Lollipop Swipe to Refresh Example 17% 67% 27%
— Class 67% 89% 76%
— Field – – –
— Method 27% 61% 32%
Android Navigation Drawer – for Sliding Menu /
Sidebar

25% 44% 32%

— Class 58% 83% 68%
— Field 100% 100% 100%
— Method 80% 25% 38%
Building Android applications with Gradle - Tu-
torial

12% 29% 17%

— Class 61% 100% 75%
— Field 100% 100% 100%
— Method 57% 88% 69%
Android Facebook Login Tutorial - Integrating
Facebook SDK 4

40% 26% 32%

— Class 69% 87% 77%
— Field 85% 100% 91%
— Method 34% 30% 32%
Using ViewPager to Create a Sliding Screen UI in
Android

54% 39% 45%

— Class 77% 100% 87%
— Field – – –
— Method 40% 20% 27%
Retrofit, a Simple HTTP Client for Android and
Java

14% 28% 19%

— Class 75% 93% 83%
— Field 50% 66% 57%
— Method 29% 68% 41%
Convert Speech to Text in Android Application 12 % 19% 15%
— Class 80% 43% 56%
— Field 83% 83% 83%
— Method 66% 13% 22%
Android Chat Bubble Layout - with 9 patch Image
using ListView

70% 46% 55%

— Class 79% 84% 81%
— Field 100% 50% 66%
— Method 59% 39% 47%
Understanding Androids Parcelable - Tutorial 60% 40% 48%
— Class 95% 72% 82%
— Field – – –
— Method 76% 66% 71%
Average Combined 39% 38% 36%
— Average Class 74% 82% 76%
— Average Field 89% 84% 85%
— Average Method 61% 42% 44%

Table 17.: Results using tutorials as units. (-These tutorials have no positive fields.)
94

API Elements Precision Recall F1 score

Class 87% 74% 80%
Field 94% 78% 84%

Method 69% 50% 58%
Combined 79% 62% 69%

Table 18.: Results using mentions as units.

Bag Level Instance Level
API Elements Precision Recall F1

Score
Precision Recall F1

Score

Class 73% 100% 84% 99% 73% 84%
Field – – – – – –

Method 83% 79% 79% 56% 48% 51%
Combined 79 % 29% 42% 60% 50% 54%

Table 19.: Results of multi instance classification.

Tutorial Name Version
Range

Predicted
Version
Range

Manhattan
Distance

Learning to Parse XML Data in Your
Android App

[1-28] [26-28] 25

Navigation Drawer Android Example [22-27] [25-27] 3
How to Get all Registered Email Ac-
counts in Android

[5-22] [5-22] 0

Scheduling Background Tasks in An-
droid

[3-28] [1-21] 9

Android Lollipop Swipe to Refresh Ex-
ample

[22-28] [24-28] 2

Android Navigation Drawer - for Slid-
ing Menu / Sidebar

[25-28] [24-28] 1

Building Android applications with
Gradle - Tutorial

[1-28] [1-28] 0

Android Facebook Login Tutorial - In-
tegrating Facebook SDK 4

[26-28] [25-27] 2

Using ViewPager to Create a Sliding
Screen UI in Android

[25-28] [25-26] 2

Retrofit, a Simple HTTP Client for
Android and Java

[25-28] [26-28] 1

Convert Speech to Text in Android Ap-
plication

[26-28] [25-28] 1

Android Chat Bubble Layout - with 9
patch Image using ListView

[25-28] [26-28] 1

Understanding Androids Parcelable -
Tutorial

[1-28] [1-28] 0

Average Distance 3.61

Table 20.: Comparison of the true and predicted version ranges of tutorials.

95

API Elements Precision Recall F1 score

Class 74% 79% 74%
Field 63% 52% 53%

Method 61% 41% 44%
Combined 61% 55% 55%

Table 21.: Results of using tutorials as units with the additional word embedding-

based feature.

Tutorial Name Version
Range

Predicted
Version
Range

Manhattan
Distance

Learning to Parse XML Data in Your
Android App

[1-28] [26-28] 25

Navigation Drawer Android Example [22-27] [24-27] 2
How to Get all Registered Email Ac-
counts in Android

[5-22] [5-22] 0

Scheduling Background Tasks in An-
droid

[3-28] [1-21] 9

Android Lollipop Swipe to Refresh Ex-
ample

[22-28] [25-28] 3

Android Navigation Drawer – for Slid-
ing Menu / Sidebar

[25-28] [24-28] 1

Building Android applications with
Gradle - Tutorial

[1-28] [1-21] 7

Android Facebook Login Tutorial – In-
tegrating Facebook SDK 4

[26-28] [24-27] 3

Using ViewPager to Create a Sliding
Screen UI in Android

[25-28] [25-26] 2

Retrofit, a Simple HTTP Client for
Android and Java

[25-28] [26-28] 1

Convert Speech to Text in Android Ap-
plication

[26-28] [3-28] 23

Android Chat Bubble Layout – with 9
patch Image using ListView

[25-28] [26-28] 0

Understanding Androids Parcelable -
Tutorial

[1-28] [1-28] 0

Average Distance 5.84

Table 22.: Comparison of the true and predicted version ranges of tutorials with the

additional word embedding-based feature.

API Elements Precision Recall F1 score

Class 85% 85% 85%
Field 93% 93% 93%

Method 71% 71% 71%
Combined 81% 81% 81%

Table 23.: Results of Video tutorials using mentions as units.

96

API Elements Precision Recall F1 score

Class 46% 61% 47%
Field 60% 55% 56%

Method 12% 7% 9%
Combined 40% 33% 32%

Table 24.: Results of Video tutorials using tutorials as units.

Tutorial Name Version
Range

Predicted
Version
Range

Manhattan
Distance

Generating Random Number [24-28] [1-28] 23
Android ListView With Image [21-28] [1-28] 20
Android Intents Example [1-28] [28-28] 27
Android Intents Send Image from
Drawable Folder

[19-28] [24-28] 5

Androidtutorial Enable Up Navigation
for your Android application

[1-28] [1-28] 0

Create HelloWorld Android applica-
tion

[1-28] [1-28] 0

Introduction to Android Notifications [17-21] [1-22] 17
Average Distance 13.14

Table 25.: Comparison of the true and predicted version ranges of Video tutorials.

97

CHAPTER 5

FINAL CONCLUSIONS

Software development tutorials, available in abundance on the Web, are very popular

among software developers due to their applicability to a variety of software develop-

ment problems. This dissertation presents a novel approach of assessing the quality

of software development tutorials. While quality is subjective, we defined in terms

of several practical scenarios where tutorials can fail developer’s expectations: out-

dated or incompatible software versions, license conflict and security breaches in the

tutorial’s code snippets. Outdated tutorials waste development time as the developer

takes time to realize the incompatibility exist. Code snippets that carry strict li-

censes or software vulnerabilities present an even more serious problem, as developers

reusing tutorial contents can propagate these issues into their project.

To address these problems, this dissertation describes two techniques: Web-scale

textual code clone search that can detect duplicate code snippets with reasonable

speed and scalability in order to detect their origin; and automatic identification of

valid version ranges that can use the official API documentation as a trusted source

to detect a tutorial’s version.

For the automatic identification of valid version of API we experiment with

tutorials for the popular Android platform. In Android, existing APIs are often

removed or deprecated and new APIs are added to keep pace with new tools and

technologies. The removed or deprecated APIs, when used in source code snippets

or in the textual description of the tutorials, make the tutorials not compatible with

the most updated versions. Our approach to extract the version compatibility of the

98

software development tutorials uses a two step process. As the first step, we extract

all the API mentions of the tutorials differentiating API mentions from similar verbs

or nouns. As the second step, we disambiguate the overloaded APIs. Our results

show that disambiguation of method level APIs is more challenging than class or field

granularity, due to the high number of synonymous API methods lacking substantial

description both in the official API documentation and the surrounding texts of the

code snippets of tutorials. However, despite this difficulty of determining versions of

some method level APIs, we have effectively extracted versions at other granularity

levels such as classes and fields, so, overall, our proposed approach can usually predict

the overall tutorial version range with reasonable accuracy.

The dissertation also describes an application of our scalable code clone detection

technique for the empirical study of properties and characterization of duplicate code

snippets between Stack Overflow and tutorials. Our qualitative analysis reveals that

developers often copy code snippets between Stack Overflow and Android tutorials in

order to gain insights about copied code snippets. They often need help as the copied

code snippets may not be functional as there exists errors or unexpected outcomes

during execution or developers need clarification about the copied code snippets.

Moreover they need help to implement specific functionality. Code snippets are also

usually copied in the Stack Overflow as solution to a particular problems.

99

REFERENCES

[1] Ivan Srba and Maria Bielikova. “A Comprehensive Survey and Classification

of Approaches for Community Question Answering”. In: ACM Trans. Web

10.3 (Aug. 2016), 18:1–18:63. issn: 1559-1131. doi: 10.1145/2934687. url:

http://doi.acm.org/10.1145/2934687.

[2] Jacob Krüger et al. “Empirical Studies in Question-answering Systems: A

Discussion”. In: Proceedings of the 5th International Workshop on Conduct-

ing Empirical Studies in Industry. CESI ’17. Buenos Aires, Argentina: IEEE

Press, 2017, pp. 23–26. isbn: 978-1-5386-1546-1. doi: 10.1109/CESI.2017.6.

url: https://doi.org/10.1109/CESI.2017.6.

[3] C. H. Kao. “Collaboration framework for software development based on ques-

tion and answer sites”. In: 2018 IEEE International Conference on Applied

System Invention (ICASI). 2018, pp. 310–313. doi: 10.1109/ICASI.2018.

8394595.

[4] Pradeep Kumar Roy et al. “Finding and Ranking High-Quality Answers in

Community Question Answering Sites”. In: Global Journal of Flexible Systems

Management 19.1 (2018), pp. 53–68. issn: 0974-0198. doi: 10.1007/s40171-

017-0172-6. url: https://doi.org/10.1007/s40171-017-0172-6.

[5] Rebecca Tiarks and Walid Maalej. “How Does a Typical Tutorial for Mobile

Development Look Like?” In: Proceedings of the 11th Working Conference

on Mining Software Repositories. MSR 2014. Hyderabad, India: ACM, 2014,

pp. 272–281. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597106. url:

http://doi.acm.org/10.1145/2597073.2597106.

100

https://doi.org/10.1145/2934687
http://doi.acm.org/10.1145/2934687
https://doi.org/10.1109/CESI.2017.6
https://doi.org/10.1109/CESI.2017.6
https://doi.org/10.1109/ICASI.2018.8394595
https://doi.org/10.1109/ICASI.2018.8394595
https://doi.org/10.1007/s40171-017-0172-6
https://doi.org/10.1007/s40171-017-0172-6
https://doi.org/10.1007/s40171-017-0172-6
https://doi.org/10.1145/2597073.2597106
http://doi.acm.org/10.1145/2597073.2597106

[6] Keith Burghardt et al. “The myopia of crowds: Cognitive load and collective

evaluation of answers on Stack Exchange”. In: PLoS ONE 12.3 (2017).

[7] I. Srba and M. Bielikova. “Why is Stack Overflow Failing? Preserving Sustain-

ability in Community Question Answering”. In: IEEE Software 33.4 (2016),

pp. 80–89. issn: 0740-7459. doi: 10.1109/MS.2016.34.

[8] Mario Linares-Vásquez. “Supporting Evolution and Maintenance of Android

Apps”. In: Companion Proceedings of the 36th International Conference on

Software Engineering. ICSE Companion 2014. Hyderabad, India: ACM, 2014,

pp. 714–717. isbn: 978-1-4503-2768-8. doi: 10.1145/2591062.2591092. url:

http://doi.acm.org/10.1145/2591062.2591092.

[9] Tianyi Zhang et al. “Are Code Examples on an Online Q&A Forum Reli-

able?: A Study of API Misuse on Stack Overflow”. In: Proceedings of the 40th

International Conference on Software Engineering. ICSE ’18. Gothenburg,

Sweden: ACM, 2018, pp. 886–896. isbn: 978-1-4503-5638-1. doi: 10.1145/

3180155.3180260. url: http://doi.acm.org/10.1145/3180155.3180260.

[10] Chaiyong Ragkhitwetsagul et al. “Toxic Code Snippets on Stack Overflow”.

In: arXiv preprint arXiv:1806.07659 (2018).

[11] Y. Acar et al. “You Get Where You’re Looking for: The Impact of Informa-

tion Sources on Code Security”. In: 2016 IEEE Symposium on Security and

Privacy (SP). 2016, pp. 289–305. doi: 10.1109/SP.2016.25.

[12] Felix Fischer et al. “Stack overflow considered harmful? the impact of copy&paste

on android application security”. In: Security and Privacy (SP), 2017 IEEE

Symposium on. IEEE. 2017, pp. 121–136.

101

https://doi.org/10.1109/MS.2016.34
https://doi.org/10.1145/2591062.2591092
http://doi.acm.org/10.1145/2591062.2591092
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/3180155.3180260
http://doi.acm.org/10.1145/3180155.3180260
https://doi.org/10.1109/SP.2016.25

[13] Le An et al. “Stack overflow: a code laundering platform?” In: Software Anal-

ysis, Evolution and Reengineering (SANER), 2017 IEEE 24th International

Conference on. IEEE. 2017, pp. 283–293.

[14] Sebastian Baltes and Stephan Diehl. “Usage and Attribution of Stack Over-

flow Code Snippets in GitHub Projects”. In: arXiv preprint arXiv:1802.02938

(2018).

[15] JASON MCREYNOLDS. Android Tutorial: Implement A Shake Listener.

http://jasonmcreynolds.com/?p=388. 2013.

[16] Stack Overflow Code Snippets. https://stackoverflow.com/questions/

15577307/how-to-extend-sqlitedatabase-class/15577409#15577409.

March, 2013.

[17] Tutorial Code Snippets. https://www.vogella.com/tutorials/AndroidSQLite/

article.html. July, 2017.

[18] M. Allahbakhsh et al. “Quality Control in Crowdsourcing Systems: Issues

and Directions”. In: IEEE Internet Computing 17.2 (2013), pp. 76–81. issn:

1089-7801. doi: 10.1109/MIC.2013.20.

[19] Yuhao Wu et al. “How do developers utilize source code from stack overflow?”

In: Empirical Software Engineering (2018). issn: 1573-7616. doi: 10.1007/

s10664-018-9634-5. url: https://doi.org/10.1007/s10664-018-9634-

5.

[20] Preetha Chatterjee et al. “What information about code snippets is avail-

able in different software-related documents? an exploratory study”. In: Soft-

ware Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th In-

ternational Conference on. SANER 2017. Klagenfurt, Austria: IEEE, 2017,

102

http://jasonmcreynolds.com/?p=388
https://stackoverflow.com/questions/15577307/how-to-extend-sqlitedatabase-class/15577409#15577409
https://stackoverflow.com/questions/15577307/how-to-extend-sqlitedatabase-class/15577409#15577409
https://www.vogella.com/tutorials/AndroidSQLite/article.html
https://www.vogella.com/tutorials/AndroidSQLite/article.html
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1007/s10664-018-9634-5

pp. 382–386. isbn: 978-1-5090-5501-2. doi: 10.1109/SANER.2017.7884638.

url: https://ieeexplore.ieee.org/document/7884638.

[21] software-development-resources. https://www.qasymphony.com/blog/101-

software-development-resources/. 2018.

[22] MohammadReza Tavakoli, Abbas Heydarnoori, and Mohammad Ghafari. “Im-

proving the Quality of Code Snippets in Stack Overflow”. In: Proceedings of

the 31st Annual ACM Symposium on Applied Computing. SAC ’16. Pisa,

Italy: ACM, 2016, pp. 1492–1497. isbn: 978-1-4503-3739-7. doi: 10.1145/

2851613.2851789. url: http://doi.acm.org/10.1145/2851613.2851789.

[23] Hapnes Toba et al. “Discovering high quality answers in community question

answering archives using a hierarchy of classifiers”. In: Information Sciences

261 (2014), pp. 101–115.

[24] David Kavaler and Vladimir Filkov. “Determinants of quality, latency, and

amount of Stack Overflow answers about recent Android APIs”. In: PloS one.

Vol. 13. 3. Bremen, Germany: Public Library of Science, 2018, e0194139. doi:

10.1371/journal.pone.0194139. url: https://doi.org/10.1371/

journal.pone.0194139.

[25] Antoaneta Baltadzhieva and Grzegorz Chrupa la. “Question quality in com-

munity question answering forums: a survey”. In: Acm Sigkdd Explorations

Newsletter 17.1 (2015), pp. 8–13.

[26] Muhammad Asaduzzaman et al. “Answering Questions About Unanswered

Questions of Stack Overflow”. In: Proceedings of the 10th Working Conference

on Mining Software Repositories. MSR ’13. San Francisco, CA, USA: IEEE

Press, 2013, pp. 97–100. isbn: 978-1-4673-2936-1. url: http://dl.acm.org/

citation.cfm?id=2487085.2487109.

103

https://doi.org/10.1109/SANER.2017.7884638
https://ieeexplore.ieee.org/document/7884638
https://www.qasymphony.com/blog/101-software-development-resources/
https://www.qasymphony.com/blog/101-software-development-resources/
https://doi.org/10.1145/2851613.2851789
https://doi.org/10.1145/2851613.2851789
http://doi.acm.org/10.1145/2851613.2851789
https://doi.org/10.1371/journal.pone.0194139
https://doi.org/10.1371/journal.pone.0194139
https://doi.org/10.1371/journal.pone.0194139
http://dl.acm.org/citation.cfm?id=2487085.2487109
http://dl.acm.org/citation.cfm?id=2487085.2487109

[27] Chaiyong Ragkhitwetsagul, Jens Krinke, and Rocco Oliveto. “Awareness and

Experience of Developers to Outdated and License-Violating Code on Stack

Overflow: An Online Survey”. In: arXiv preprint arXiv:1806.08149 (2018).

[28] D. M. German et al. “Code siblings: Technical and legal implications of copy-

ing code between applications”. In: 2009 6th IEEE International Working

Conference on Mining Software Repositories. 2009, pp. 81–90. doi: 10.1109/

MSR.2009.5069483.

[29] Yanfang Ye et al. “ICSD: An Automatic System for Insecure Code Snippet

Detection in Stack Overflow over Heterogeneous Information Network”. In:

(2018).

[30] Mu-Woong Lee et al. “Instant Code Clone Search”. In: Proceedings of the

Eighteenth ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering. FSE ’10. Santa Fe, New Mexico, USA: ACM, 2010, pp. 167–

176. isbn: 978-1-60558-791-2.

[31] Iman Keivanloo, Juergen Rilling, and Philippe Charland. “Internet-scale real-

time code clone search via multi-level indexing”. In: Reverse Engineering

(WCRE), 2011 18th Working Conference on. IEEE. 2011, pp. 23–27.

[32] Iman Keivanloo, Juergen Rilling, and Philippe Charland. “Seclone-a hybrid

approach to internet-scale real-time code clone search”. In: Program Compre-

hension (ICPC), 2011 IEEE 19th International Conference on. IEEE. 2011,

pp. 223–224.

[33] Iman Keivanloo, Juergen Rilling, and Ying Zou. “Spotting Working Code

Examples”. In: Proceedings of the 36th International Conference on Software

Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 664–675. isbn:

978-1-4503-2756-5.

104

https://doi.org/10.1109/MSR.2009.5069483
https://doi.org/10.1109/MSR.2009.5069483

[34] Brenda S Baker. “A theory of parameterized pattern matching: algorithms

and applications”. In: Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing. ACM. 1993, pp. 71–80.

[35] Rainer Koschke. “Large-scale inter-system clone detection using suffix trees

and hashing”. In: Journal of Software: Evolution and Process 26.8 (2014),

pp. 747–769.

[36] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. “CCFinder: a multi-

linguistic token-based code clone detection system for large scale source code”.

In: IEEE Transactions on Software Engineering 28.7 (2002), pp. 654–670.

[37] Benjamin Hummel et al. “Index-based code clone detection: incremental, dis-

tributed, scalable”. In: Software Maintenance (ICSM), 2010 IEEE Interna-

tional Conference on. IEEE. 2010, pp. 1–9.

[38] Lingxiao Jiang et al. “DECKARD: Scalable and Accurate Tree-Based Detec-

tion of Code Clones”. In: Proceedings of the 29th International Conference

on Software Engineering. ICSE ’07. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 96–105. isbn: 0-7695-2828-7.

[39] James R Cordy and Chanchal K Roy. “The NiCad clone detector”. In: Pro-

gram Comprehension (ICPC), 2011 IEEE 19th International Conference on.

IEEE. 2011, pp. 219–220.

[40] Hitesh Sajnani et al. “SourcererCC: Scaling Code Clone Detection to Big-

code”. In: Proceedings of the 38th International Conference on Software En-

gineering. ICSE ’16. Austin, Texas: ACM, 2016, pp. 1157–1168. isbn: 978-1-

4503-3900-1.

105

[41] Nils Göde and Rainer Koschke. “Incremental clone detection”. In: Software

Maintenance and Reengineering, 2009. CSMR’09. 13th European Conference

on. IEEE. 2009, pp. 219–228.

[42] Simone Livieri et al. “Very-Large Scale Code Clone Analysis and Visualization

of Open Source Programs Using Distributed CCFinder: D-CCFinder”. In:

Proceedings of the 29th International Conference on Software Engineering.

ICSE ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 106–

115. isbn: 0-7695-2828-7.

[43] Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K Roy. “Scaling classical

clone detection tools for ultra-large datasets: An exploratory study”. In: Pro-

ceedings of the 7th International Workshop on Software Clones. IEEE Press.

2013, pp. 16–22.

[44] Sunita Sarawagi and Alok Kirpal. “Efficient set joins on similarity predicates”.

In: Proceedings of the 2004 ACM SIGMOD international conference on Man-

agement of data. ACM. 2004, pp. 743–754.

[45] Rares Vernica, Michael J Carey, and Chen Li. “Efficient parallel set-similarity

joins using MapReduce”. In: Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of data. ACM. 2010, pp. 495–506.

[46] Seulbae Kim et al. “VUDDY: A Scalable Approach for Vulnerable Code Clone

Discovery”. In: Security and Privacy (SP), 2017 IEEE Symposium on. IEEE.

2017.

[47] Jiannan Wang, Guoliang Li, and Jianhua Feng. “Can we beat the prefix filter-

ing?: an adaptive framework for similarity join and search”. In: Proceedings of

the 2012 ACM SIGMOD International Conference on Management of Data.

ACM. 2012, pp. 85–96.

106

[48] Aline Brito et al. “APIDiff: Detecting API breaking changes”. In: 2018 IEEE

25th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER). SANER ’18. Campobasso, Italy: IEEE Computer Society,

2018, pp. 507–511. isbn: 978-1-5386-4970-1. doi: 10.1109/SANER.2018.

8330249. url: http://doi.ieeecomputersociety.org/10.1109/SANER.

2018.8330249.

[49] Tianyue Luo et al. “MAD-API: Detection, Correction and Explanation of API

Misuses in Distributed Android Applications”. In: Artificial Intelligence and

Mobile Services – AIMS 2018. Cham: Springer International Publishing, 2018,

pp. 123–140. isbn: 978-3-319-94361-9. doi: 10.1007/978-3-319-94361-

9_10. url: https://link.springer.com/chapter/10.1007\%2F978-3-

319-94361-9_10.

[50] Jing Zhou and Robert J. Walker. “API Deprecation: A Retrospective Analysis

and Detection Method for Code Examples on the Web”. In: Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. FSE 2016. Seattle, WA, USA: ACM, 2016, pp. 266–

277. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.2950298. url: http:

//doi.acm.org/10.1145/2950290.2950298.

[51] SM Nasehi et al. “What makes a good code example?: A study of program-

ming Q&A in StackOverflow”. In: Software Maintenance (ICSM), 2012 28th

IEEE International Conference on. ICSM 2012. Trento, Italy: IEEE, 2012,

pp. 25–34. isbn: 978-1-4673-2312-3. doi: 10.1109/ICSM.2012.6405249.

url: https://ieeexplore.ieee.org/document/6405249.

[52] Deheng Ye et al. “Learning to extract api mentions from informal natural lan-

guage discussions”. In: Software Maintenance and Evolution (ICSME), 2016

107

https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330249
http://doi.ieeecomputersociety.org/10.1109/SANER.2018.8330249
http://doi.ieeecomputersociety.org/10.1109/SANER.2018.8330249
https://doi.org/10.1007/978-3-319-94361-9_10
https://doi.org/10.1007/978-3-319-94361-9_10
https://link.springer.com/chapter/10.1007\%2F978-3-319-94361-9_10
https://link.springer.com/chapter/10.1007\%2F978-3-319-94361-9_10
https://doi.org/10.1145/2950290.2950298
http://doi.acm.org/10.1145/2950290.2950298
http://doi.acm.org/10.1145/2950290.2950298
https://doi.org/10.1109/ICSM.2012.6405249
https://ieeexplore.ieee.org/document/6405249

IEEE International Conference on. ICSME 2016. Raleigh, NC, USA: IEEE,

2016, pp. 389–399. isbn: 978-1-5090-3806-0. doi: 10.1109/ICSME.2016.11.

url: https://ieeexplore.ieee.org/document/7816484.

[53] Deheng Ye et al. “APIReal: an API recognition and linking approach for online

developer forums”. In: Empirical Software Engineering. New York, NY, USA:

Springer, 2018, pp. 1–32. doi: 10.1007/s10664-018-9608-7. url: https:

//doi.org/10.1007/s10664-018-9608-7.

[54] Gias Uddin and Martin P. Robillard. “Resolving API Mentions in Informal

Documents”. In: CoRR abs/1709.02396 (2017). arXiv: 1709 . 02396. url:

http://arxiv.org/abs/1709.02396.

[55] Barthélémy Dagenais and Martin P. Robillard. “Recovering Traceability Links

Between an API and Its Learning Resources”. In: Proceedings of the 34th In-

ternational Conference on Software Engineering. ICSE ’12. Zurich, Switzer-

land: IEEE Press, 2012, pp. 47–57. isbn: 978-1-4673-1067-3. doi: 10.1109/

ICSE . 2012 . 6227207. url: http : / / dl . acm . org / citation . cfm ? id =

2337223.2337230.

[56] Peter C. Rigby and Martin P. Robillard. “Discovering Essential Code Ele-

ments in Informal Documentation”. In: Proceedings of the 2013 International

Conference on Software Engineering. ICSE ’13. San Francisco, CA, USA:

IEEE Press, 2013, pp. 832–841. isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.

2013.6606629. url: http://dl.acm.org/citation.cfm?id=2486788.

2486897.

[57] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. “Discovering

Information Explaining API Types Using Text Classification”. In: Proceedings

of the 37th International Conference on Software Engineering - Volume 1.

108

https://doi.org/10.1109/ICSME.2016.11
https://ieeexplore.ieee.org/document/7816484
https://doi.org/10.1007/s10664-018-9608-7
https://doi.org/10.1007/s10664-018-9608-7
https://doi.org/10.1007/s10664-018-9608-7
https://arxiv.org/abs/1709.02396
http://arxiv.org/abs/1709.02396
https://doi.org/10.1109/ICSE.2012.6227207
https://doi.org/10.1109/ICSE.2012.6227207
http://dl.acm.org/citation.cfm?id=2337223.2337230
http://dl.acm.org/citation.cfm?id=2337223.2337230
https://doi.org/10.1109/ICSE.2013.6606629
https://doi.org/10.1109/ICSE.2013.6606629
http://dl.acm.org/citation.cfm?id=2486788.2486897
http://dl.acm.org/citation.cfm?id=2486788.2486897

ICSE ’15. Florence, Italy: IEEE Press, 2015, pp. 869–879. isbn: 978-1-4799-

1934-5. doi: DOI:10.1109/ICSE.2015.97. url: http://dl.acm.org/

citation.cfm?id=2818754.2818859.

[58] He Jiang et al. “A more accurate model for finding tutorial segments explain-

ing APIs”. In: 2016 IEEE 23rd International Conference on Software Anal-

ysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE. 2016, pp. 157–

167.

[59] He Jiang et al. “An Unsupervised Approach for Discovering Relevant Tutorial

Fragments for APIs”. In: Proceedings of the 39th International Conference on

Software Engineering. ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017,

pp. 38–48. isbn: 978-1-5386-3868-2. doi: 10 . 1109 / ICSE . 2017 . 12. url:

https://doi.org/10.1109/ICSE.2017.12.

[60] Di Wu et al. “Automatically Answering API-related Questions”. In: Pro-

ceedings of the 40th International Conference on Software Engineering: Com-

panion Proceeedings. ICSE ’18. Gothenburg, Sweden: ACM, 2018, pp. 270–

271. isbn: 978-1-4503-5663-3. doi: 10.1145/3183440.3194965. url: http:

//doi.acm.org/10.1145/3183440.3194965.

[61] Jingxuan Zhang et al. “Recommending APIs for API Related Questions in

Stack Overflow”. In: IEEE Access. IEEE ’13. Piscataway, NJ, USA: IEEE,

2013, pp. 6205–6219. doi: 10.1109/ACCESS.2017.2777845. url: https:

//ieeexplore.ieee.org/abstract/document/8121986.

[62] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. “Rack: Au-

tomatic api recommendation using crowdsourced knowledge”. In: 2016 IEEE

23rd International Conference on Software Analysis, Evolution, and Reengi-

neering (SANER). SANER ’16. Suita, Japan: IEEE Press, 2016, pp. 349–

109

https://doi.org/DOI: 10.1109/ICSE.2015.97
http://dl.acm.org/citation.cfm?id=2818754.2818859
http://dl.acm.org/citation.cfm?id=2818754.2818859
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1145/3183440.3194965
http://doi.acm.org/10.1145/3183440.3194965
http://doi.acm.org/10.1145/3183440.3194965
https://doi.org/10.1109/ACCESS.2017.2777845
https://ieeexplore.ieee.org/abstract/document/8121986
https://ieeexplore.ieee.org/abstract/document/8121986

359. isbn: 978-1-5090-1855-0. doi: 10.1109/SANER.2016.80. url: https:

//ieeexplore.ieee.org/document/7476656.

[63] Chanchal Kumar Roy and James R Cordy. “A survey on software clone detec-

tion research”. In: Queen’s School of Computing TR 541.115 (2007), pp. 64–

68.

[64] Ira D Baxter et al. “Clone detection using abstract syntax trees”. In: Software

Maintenance, 1998. Proceedings., International Conference on. IEEE. 1998,

pp. 368–377.

[65] Debarshi Chatterji et al. “Effects of cloned code on software maintainability:

A replicated developer study”. In: Reverse Engineering (WCRE), 2013 20th

Working Conference on. IEEE. 2013, pp. 112–121.

[66] Debarshi Chatterji et al. “Measuring the efficacy of code clone information

in a bug localization task: An empirical study”. In: Empirical Software Engi-

neering and Measurement (ESEM), 2011 International Symposium on. IEEE.

2011, pp. 20–29.

[67] Chanchal K Roy and James R Cordy. “An empirical study of function clones

in open source software”. In: Reverse Engineering, 2008. WCRE’08. 15th

Working Conference on. IEEE. 2008, pp. 81–90.

[68] Brenda S Baker. “On finding duplication and near-duplication in large soft-

ware systems”. In: Reverse Engineering, 1995., Proceedings of 2nd Working

Conference on. IEEE. 1995, pp. 86–95.

[69] Tomoya Ishihara et al. “Inter-project functional clone detection toward build-

ing libraries-an empirical study on 13,000 projects”. In: Reverse Engineering

(WCRE), 2012 19th Working Conference on. IEEE. 2012, pp. 387–391.

110

https://doi.org/10.1109/SANER.2016.80
https://ieeexplore.ieee.org/document/7476656
https://ieeexplore.ieee.org/document/7476656

[70] Rainer Koschke. “Large-scale inter-system clone detection using suffix trees”.

In: Software Maintenance and Reengineering (CSMR), 2012 16th European

Conference on. IEEE. 2012, pp. 309–318.

[71] Daniel M German et al. “Code siblings: Technical and legal implications of

copying code between applications”. In: Mining Software Repositories, 2009.

MSR’09. 6th IEEE International Working Conference on. IEEE. 2009, pp. 81–

90.

[72] Armijn Hemel and Rainer Koschke. “Reverse engineering variability in source

code using clone detection: A case study for linux variants of consumer elec-

tronic devices”. In: Reverse Engineering (WCRE), 2012 19th Working Con-

ference on. IEEE. 2012, pp. 357–366.

[73] Julius Davies et al. “Software bertillonage: finding the provenance of an en-

tity”. In: Proceedings of the 8th working conference on mining software repos-

itories. ACM. 2011, pp. 183–192.

[74] Takanobu Yamashina et al. “SHINOBI: A real-time code clone detection

tool for software maintenance”. In: Nara Institute of Science and Technol-

ogy (2008), p. 26.

[75] Kai Chen, Peng Liu, and Yingjun Zhang. “Achieving accuracy and scalability

simultaneously in detecting application clones on android markets”. In: Pro-

ceedings of the 36th International Conference on Software Engineering. ACM.

2014, pp. 175–186.

[76] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. “The vision of soft-

ware clone management: Past, present, and future (keynote paper)”. In: Soft-

ware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on. IEEE. 2014, pp. 18–33.

111

[77] Chanchal K Roy and James R Cordy. “Near-miss function clones in open

source software: an empirical study”. In: Journal of Software: Evolution and

Process 22.3 (2010), pp. 165–189.

[78] Jeffrey Svajlenko et al. “Towards a big data curated benchmark of inter-

project code clones”. In: Software Maintenance and Evolution (ICSME), 2014

IEEE International Conference on. IEEE. 2014, pp. 476–480.

[79] Ambient Software Evoluton Group. IJaDataset 2.0. http://secold.org/

projects/seclone. June 2017.

[80] Abdullah Sheneamer and Jugal Kalita. “A Survey of Software Clone Detec-

tion Techniques”. In: International Journal of Computer Applications (2016),

pp. 0975–8887.

[81] Apache Lucene. https://lucene.apache.org/core/. June 2017.

[82] Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K Roy. “Big data clone

detection using classical detectors: an exploratory study”. In: Journal of Soft-

ware: Evolution and Process 27.6 (2015), pp. 430–464.

[83] Jeffrey Svajlenko and Chanchal K Roy. “Evaluating clone detection tools

with bigclonebench”. In: Software Maintenance and Evolution (ICSME), 2015

IEEE International Conference on. IEEE. 2015, pp. 131–140.

[84] Jeffrey Svajlenko and Chanchal K Roy. “Evaluating modern clone detection

tools”. In: Software Maintenance and Evolution (ICSME), 2014 IEEE Inter-

national Conference on. IEEE. 2014, pp. 321–330.

[85] Chanchal K Roy and James R Cordy. “NICAD: Accurate detection of near-

miss intentional clones using flexible pretty-printing and code normalization”.

112

http://secold.org/projects/seclone
http://secold.org/projects/seclone
https://lucene.apache.org/core/

In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE International

Conference on. IEEE. 2008, pp. 172–181.

[86] BigCloneEval. https://github.com/jeffsvajlenko/BigCloneEval. June

2017.

[87] BigCloneBench. https://github.com/clonebench/BigCloneBench. June

2017.

[88] C. S. Corley, F. Lois, and S. Quezada. “Web usage patterns of developers”. In:

2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME). 2015, pp. 381–390. doi: 10.1109/ICSM.2015.7332489.

[89] Joel Brandt et al. “Two Studies of Opportunistic Programming: Interleaving

Web Foraging, Learning, and Writing Code”. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. CHI ’09. Boston, MA,

USA: ACM, 2009, pp. 1589–1598. isbn: 978-1-60558-246-7. doi: 10.1145/

1518701.1518944. url: http://doi.acm.org/10.1145/1518701.1518944.

[90] Di Yang et al. “Stack Overflow in github: any snippets there?” In: Mining

Software Repositories (MSR), 2017 IEEE/ACM 14th International Confer-

ence on. IEEE. 2017, pp. 280–290.

[91] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. “On code reuse from

stackoverflow: An exploratory study on android apps”. In: Information and

Software Technology 88 (2017), pp. 148–158.

[92] Emad Shihab et al. “An industrial study on the risk of software changes”.

In: Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. ACM. 2012, p. 62.

113

https://github.com/jeffsvajlenko/BigCloneEval
https://github.com/clonebench/BigCloneBench
https://doi.org/10.1109/ICSM.2015.7332489
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
http://doi.acm.org/10.1145/1518701.1518944

[93] Y. Acar et al. “You Get Where You’re Looking for: The Impact of Informa-

tion Sources on Code Security”. In: 2016 IEEE Symposium on Security and

Privacy (SP). 2016, pp. 289–305. doi: 10.1109/SP.2016.25.

[94] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. “Attribution required:

Stack Overflow code snippets in GitHub projects”. In: Proceedings of the 39th

International Conference on Software Engineering Companion. IEEE Press.

2017, pp. 161–163.

[95] Luca Ponzanelli et al. “Too Long; Didn’T Watch!: Extracting Relevant Frag-

ments from Software Development Video Tutorials”. In: Proceedings of the

38th International Conference on Software Engineering. ICSE ’16. Austin,

Texas: ACM, 2016, pp. 261–272. isbn: 978-1-4503-3900-1. doi: 10.1145/

2884781.2884824. url: http://doi.acm.org/10.1145/2884781.2884824.

[96] Rebecca Tiarks and Walid Maalej. “How Does a Typical Tutorial for Mobile

Development Look Like?” In: Proceedings of the 11th Working Conference

on Mining Software Repositories. MSR 2014. Hyderabad, India: ACM, 2014,

pp. 272–281. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597106. url:

http://doi.acm.org/10.1145/2597073.2597106.

[97] Sebastian Baltes, Christoph Treude, and Stephan Diehl. “SOTorrent: Study-

ing the Origin, Evolution, and Usage of Stack Overflow Code Snippets”. In:

Proceedings of the 16th International Conference on Mining Software Repos-

itories (MSR 2019). 2019.

[98] BigQuery. https://cloud.google.com/bigquery/. 2018.

[99] Manziba Akanda Nishi and Kostadin Damevski. “Scalable code clone detec-

tion and search based on adaptive prefix filtering”. In: Journal of Systems

and Software 137 (2018), pp. 130–142.

114

https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1145/2884781.2884824
http://doi.acm.org/10.1145/2884781.2884824
https://doi.org/10.1145/2597073.2597106
http://doi.acm.org/10.1145/2597073.2597106
https://cloud.google.com/bigquery/

[100] H. Sajnani et al. “SourcererCC: Scaling Code Clone Detection to Big-Code”.

In: 2016 IEEE/ACM 38th International Conference on Software Engineering

(ICSE). 2016, pp. 1157–1168. doi: 10.1145/2884781.2884877.

[101] Sebastian Baltes et al. “The Evolution of Stack Overflow Posts: Reconstruc-

tion and Analysis”. In: arXiv preprint arXiv:1811.00804 (2018).

[102] Joel Brandt et al. “Two Studies of Opportunistic Programming: Interleaving

Web Foraging, Learning, and Writing Code”. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. CHI ’09. Boston, MA,

USA: ACM, 2009, pp. 1589–1598. isbn: 978-1-60558-246-7. doi: 10.1145/

1518701.1518944. url: http://doi.acm.org/10.1145/1518701.1518944.

[103] Lingfeng Bao et al. “Tracking and Analyzing Cross-Cutting Activities in De-

velopers’ Daily Work (N)”. In: Proceedings of the 2015 30th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE). ASE ’15.

Washington, DC, USA: IEEE Computer Society, 2015, pp. 277–282. isbn:

978-1-5090-0025-8. doi: 10.1109/ASE.2015.43. url: http://dx.doi.org/

10.1109/ASE.2015.43.

[104] Xin Xia et al. “What Do Developers Search for on the Web?” In: Empirical

Softw. Engg. 22.6 (Dec. 2017), pp. 3149–3185. issn: 1382-3256. doi: 10.1007/

s10664-017-9514-4. url: https://doi.org/10.1007/s10664-017-9514-

4.

[105] Luca Ponzanelli et al. “Too Long; Didn’T Watch!: Extracting Relevant Frag-

ments from Software Development Video Tutorials”. In: Proceedings of the

38th International Conference on Software Engineering. ICSE ’16. Austin,

Texas: ACM, 2016, pp. 261–272. isbn: 978-1-4503-3900-1. doi: 10.1145/

2884781.2884824. url: http://doi.acm.org/10.1145/2884781.2884824.

115

https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
http://doi.acm.org/10.1145/1518701.1518944
https://doi.org/10.1109/ASE.2015.43
http://dx.doi.org/10.1109/ASE.2015.43
http://dx.doi.org/10.1109/ASE.2015.43
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1145/2884781.2884824
http://doi.acm.org/10.1145/2884781.2884824

[106] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. “An empirical study

of api stability and adoption in the android ecosystem”. In: Software Main-

tenance (ICSM), 2013 29th IEEE International Conference on. ICSM ’13.

Eindhoven, Netherlands: IEEE, 2013, pp. 70–79. isbn: 978-0-7695-4981-1.

doi: 10.1109/ICSM.2013.18. url: https://ieeexplore.ieee.org/

document/6676878.

[107] Deokyoon Ko et al. “API document quality for resolving deprecated APIs”. In:

Software Engineering Conference (APSEC), 2014 21st Asia-Pacific. APSEC

’14. Buenos Aires, Argentina: IEEE, 2014, pp. 27–30. isbn: 978-1-4799-7426-

9. doi: 10.1109/APSEC.2014.87. url: https://ieeexplore.ieee.org/

document/7091210.

[108] Andrew J. Ko, Robert DeLine, and Gina Venolia. “Information Needs in

Collocated Software Development Teams”. In: Proceedings of the 29th In-

ternational Conference on Software Engineering. ICSE ’07. Washington, DC,

USA: IEEE Computer Society, 2007, pp. 344–353. isbn: 0-7695-2828-7. doi:

10.1109/ICSE.2007.45. url: https://doi.org/10.1109/ICSE.2007.45.

[109] Janice Singer et al. “An Examination of Software Engineering Work Prac-

tices”. In: CASCON First Decade High Impact Papers. CASCON ’10. Toronto,

Ontario, Canada: IBM Corp., 2010, pp. 174–188. doi: 10.1145/1925805.

1925815. url: http://dx.doi.org/10.1145/1925805.1925815.

[110] André Hora et al. “How do developers react to API evolution? The Pharo

ecosystem case”. In: Software Maintenance and Evolution (ICSME), 2015

IEEE International Conference on. ICSME ’15. Bremen, Germany: IEEE,

2015, pp. 251–260. isbn: 978-1-4673-7532-0. doi: 10 . 1109 / ICSM . 2015 .

7332471. url: https://ieeexplore.ieee.org/document/7332471.

116

https://doi.org/10.1109/ICSM.2013.18
https://ieeexplore.ieee.org/document/6676878
https://ieeexplore.ieee.org/document/6676878
https://doi.org/10.1109/APSEC.2014.87
https://ieeexplore.ieee.org/document/7091210
https://ieeexplore.ieee.org/document/7091210
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1145/1925805.1925815
https://doi.org/10.1145/1925805.1925815
http://dx.doi.org/10.1145/1925805.1925815
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1109/ICSM.2015.7332471
https://ieeexplore.ieee.org/document/7332471

[111] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. “Web API growing

pains: Stories from client developers and their code”. In: Software Mainte-

nance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Soft-

ware Evolution Week-IEEE Conference on. CSMR-WCRE ’14. Antwerp, Bel-

gium: IEEE, 2014, pp. 84–93. isbn: 978-1-4799-3752-3. doi: 10.1109/CSMR-

WCRE.2014.6747228. url: https://ieeexplore.ieee.org/document/

6747228.

[112] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. “On the re-

action to deprecation of 25,357 clients of 4+ 1 popular Java APIs”. In:

2016 IEEE International Conference on Software Maintenance and Evolu-

tion (ICSME). ICSME ’16. Washington, DC, USA: IEEE, 2016, pp. 400–

410. isbn: 978-1-5090-3806-0. doi: 10.1109/ICSME.2016.64. url: https:

//ieeexplore.ieee.org/document/7816485.

[113] D. Hou and X. Yao. “Exploring the Intent behind API Evolution: A Case

Study”. In: 2011 18th Working Conference on Reverse Engineering(WCRE).

Vol. 00. 2011, pp. 131–140. doi: 10 . 1109 / WCRE . 2011 . 24. url: doi .

ieeecomputersociety.org/10.1109/WCRE.2011.24.

[114] Pradeep K Venkatesh et al. “What Do Client Developers Concern When Using

Web APIs? An Empirical Study on Developer Forums and Stack Overflow”.

In: 2016 IEEE International Conference on Web Services (ICWS). ICWS’ 16.

Washington, DC, USA: IEEE Computer Society, 2016, pp. 131–138. isbn: 978-

1-5090-2675-3. doi: 10.1109/ICWS.2016.25. url: https://ieeexplore.

ieee.org/document/7557994.

[115] Mario Linares-Vásquez et al. “How Do API Changes Trigger Stack Overflow

Discussions? A Study on the Android SDK”. In: Proceedings of the 22Nd

117

https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://ieeexplore.ieee.org/document/6747228
https://ieeexplore.ieee.org/document/6747228
https://doi.org/10.1109/ICSME.2016.64
https://ieeexplore.ieee.org/document/7816485
https://ieeexplore.ieee.org/document/7816485
https://doi.org/10.1109/WCRE.2011.24
doi.ieeecomputersociety.org/10.1109/WCRE.2011.24
doi.ieeecomputersociety.org/10.1109/WCRE.2011.24
https://doi.org/10.1109/ICWS.2016.25
https://ieeexplore.ieee.org/document/7557994
https://ieeexplore.ieee.org/document/7557994

International Conference on Program Comprehension. ICPC 2014. Hyder-

abad, India: ACM, 2014, pp. 83–94. isbn: 978-1-4503-2879-1. doi: 10.1145/

2597008.2597155. url: http://doi.acm.org/10.1145/2597008.2597155.

[116] Android StartActivityForResult Example. https://www.javatpoint.com/

android-startactivityforresult-example. 2018.

[117] Android Official Documentation. https://developer.android.com/reference/.

2018.

[118] Android API Differences Report. https://developer.android.com/sdk/

api_diff/../changes. 2018.

[119] Android API Differences Report For Support Library. https://developer.

android.com/sdk/support_api_diff/.../changes. 2018.

[120] Android Version History. https://en.wikipedia.org/wiki/Android_

version_history. 2018.

[121] NLTK 3.3 Documentation. https://www.nltk.org/. 2018.

[122] TextBlob: Simplified Text Processing. https://textblob.readthedocs.io/

en/dev/. 2018.

[123] SrcML Tool Documentation. https://www.srcml.org/. 2018.

[124] Sklearn Metrics Precision Recall Fscore Support. http://scikit-learn.

org/stable/modules/generated/sklearn.metrics.precision_recall_

fscore_support.html. 2018.

[125] Accuracy, Precision, Recall or F1? https://towardsdatascience.com/

accuracy-precision-recall-or-f1-331fb37c5cb9. 2018.

[126] Sklearn Metrics Precision Recall F1score. http : / / scikit - learn . org /

stable/modules/generated/sklearn.metrics.f1_score.html/. 2018.

118

https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1145/2597008.2597155
http://doi.acm.org/10.1145/2597008.2597155
https://www.javatpoint.com/android-startactivityforresult-example
https://www.javatpoint.com/android-startactivityforresult-example
https://developer.android.com/reference/
https://developer.android.com/sdk/api_diff/../changes
https://developer.android.com/sdk/api_diff/../changes
https://developer.android.com/sdk/support_api_diff/.../changes
https://developer.android.com/sdk/support_api_diff/.../changes
https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history
https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://www.srcml.org/
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html/
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html/

[127] Taxicab Geometry. https://en.wikipedia.org/wiki/Taxicab_geometry.

2018.

[128] Random Forest Classifier. http://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html. 2018.

[129] Multi Instance Classifier. https://github.com/garydoranjr/misvm. 2018.

[130] Stuart Andrews, Thomas Hofmann, and Ioannis Tsochantaridis. “Multiple

Instance Learning with Generalized Support Vector Machines”. In: Eighteenth

National Conference on Artificial Intelligence. Edmonton, Alberta, Canada:

American Association for Artificial Intelligence, 2002, pp. 943–944. isbn: 0-

262-51129-0. url: http://dl.acm.org/citation.cfm?id=777092.777234.

[131] url: https://github.com/vefstathiou/SO_word2vec.

[132] Chunyin Nong et al. “FVT: a fragmented video tutor for dubbing software de-

velopment tutorials”. In: Proceedings of the 41st International Conference on

Software Engineering: Software Engineering Education and Training. IEEE

Press. 2019, pp. 95–99.

[133] Luca Ponzanelli et al. “CodeTube: extracting relevant fragments from soft-

ware development video tutorials”. In: Proceedings of the 38th International

Conference on Software Engineering Companion. ACM. 2016, pp. 645–648.

[134] url: https://sourceforge.net/projects/google2srt/.

[135] url: https://ffmpeg.org.

[136] url: https://github.com/tesseract-ocr/.

[137] Jordan Ott et al. “A deep learning approach to identifying source code in

images and video”. In: 2018 IEEE/ACM 15th International Conference on

Mining Software Repositories (MSR). IEEE. 2018, pp. 376–386.

119

https://en.wikipedia.org/wiki/Taxicab_geometry
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://github.com/garydoranjr/misvm
http://dl.acm.org/citation.cfm?id=777092.777234
https://github.com/vefstathiou/SO_word2vec
https://sourceforge.net/projects/google2srt/
https://ffmpeg.org
https://github.com/tesseract-ocr/

VITA

Manziba Akanda Nishi is a Ph.D. student at Department of Computer Science, Vir-

ginia Commonwealth University. She is working as research assistant in Software

Improvement (SWIM) Lab. Her research interest includes the area of software engi-

neering, machine learning, natural language processing, data mining. She completed

her B.Sc. and M.S. in Computer Science and Engineering from University of Dhaka,

Bangladesh.

Publications.

1. Manziba Akanda Nishi, and Kostadin Damevski. ”Scalable code clone de-

tection and search based on adaptive prefix filtering.” Journal of Systems and

Software 137 (2018): 130-142.

2. Preetha Chatterjee, Manziba Akanda Nishi, Kostadin Damevski, Vinay Au-

gustine, Lori Pollock, and Nicholas A. Kraft. ”What information about code

snippets is available in different software-related documents? an exploratory

study.” In Software Analysis, Evolution and Reengineering (SANER), 2017

IEEE 24th International Conference on, pp. 382-386. IEEE, 2017

3. Manziba Akanda Nishi, and Kostadin Damevski. ”Automatically Identifying

Valid API Versions of Software Development Tutorials on the Web.” Accepted

in Journal of Software: Evolution and Process. July, 2019

4. Manziba Akanda Nishi, Agnieszka Ciborowska and Kostadin Damevski.

”Characterizing Duplicate Code Snippets between Stack Overflow and Tuto-

rials.” Proceedings of the 16th International Conference on Mining Software

Repositories, MSR ’19, 2019, pp.240–244, IEEE Press, Piscataway, NJ, USA

120

5. Ashis Kumar Chanda, Swapnil Saha, Manziba Akanda Nishi, Md Samiullah,

and Chowdhury Farhan Ahmed. ”An efficient approach to mine flexible peri-

odic patterns in time series databases.” Engineering Applications of Artificial

Intelligence 44 (2015): 46-63.

6. Manziba Akanda Nishi, Chowdhury Farhan Ahmed, Md Samiullah, and

Byeong-Soo Jeong. ”Effective periodic pattern mining in time series databases.”

Expert Systems with Applications 40, no. 8 (2013): 3015-3027.

7. Md Samiullah, Chowdhury Farhan Ahmed, Manziba Akanda Nishi, Anna

Fariha, S. M. Abdullah, and Md Rafiqul Islam. ”Correlation mining in graph

databases with a new measure.” In Asia-Pacific Web Conference, pp. 88-95.

Springer, Berlin, Heidelberg, 2013.

121

	ASSESSING THE QUALITY OF SOFTWARE DEVELOPMENT TUTORIALS AVAILABLE ON THE WEB
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Contribution of the Research
	Organization of the Dissertation

	 Background and Related Work
	Quality of Online Software Development Resources
	Code Clone Detection
	Code Clone Search
	Valid Version Range of Software Development Resources

	 Web-Scale Textual Code Clone Search
	Contribution
	Problem Formulation of Code Clone Search
	Code Clone Detection
	Problem Formulation of Code Clone detection

	Adaptive Prefix Filtering Technique
	Prefix Filtering
	Property
	Related Examples

	Token Position Based Filtering
	Property
	Related Examples

	Adaptive Prefix Filtering
	Related Examples
	Property and Lemma

	System Design for Adaptive Prefix Filtering
	Delta Inverted Index
	Cost Calculation
	Code Clone Search

	Experimental Results
	Performance of Adaptive Prefix Filtering (RQ1)
	Accuracy of Adaptive Prefix Filtering (RQ2)
	Applicability Towards Code Clone Search (RQ3)

	Characterizing Duplicate Code Snippets between Stack Overflow and Tutorials
	Research Methodology & Experimental Setup
	Research Findings
	Understanding Code Snippets Copied from Tutorials to Stack Overflow
	Properties and Evolution of Copied Code Snippets
	Threats to validity

	Conclusions
	Future Work

	 Automatic Identification of Valid Version Range of Tutorials
	Empirical Study
	Manual Annotation Procedure
	Analysis of Findings
	Threats to Validity

	Automated Versioning of Software Development Tutorials
	Versioning Workflow
	Features
	Noun Similarity
	Text Similarity
	Structural Similarity
	Parameter Similarity

	Experimental Analysis
	Experimental Setup
	Results
	Additional Feature Based on Word Embeddings

	Versioning Video Tutorials
	Conclusions and Future Work

	 Final Conclusions
	References
	Vita

