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Capillarity is often exploited in self-cleaning, drag reducing and fluid absorption/storage 

(sanitary products) purposes just to name a few. Formulating the underlying physics of 

capillarity helps future design and development of optimized structures. This work reports on 

developing computational models to quantify the capillary pressure and capillary forces on the 

fibrous surfaces. To this end, the current study utilizes a novel mass-spring-damper approach to 

incorporate the mechanical properties of the fibers in generating virtual fibrous structures that 

can best represent fibrous membranes. Such virtual fibrous structures are then subjected to a 

pressure estimation model, developed for the first time in this work, to estimate the liquid entry 

pressure (LEP) for a hydrophobic fibrous membrane. As for accurate prediction (and not just 

estimation) of the capillary pressure, this work also presents an energy minimization method, 

implemented in the Surface Evolver code, for tracking the air–water interface intrusion in a 

hydrophobic fibrous membrane comprised of orthogonally oriented fibers. This novel interface 

tracking algorithm is used to investigate the effects of the membrane’s microstructure and 

wetting properties on its resistance to water intrusion (i.e., LEP). The simulation method 

developed in this work is computationally affordable and it is accurate in its predictions of the 



air–water interface shape and position inside the membrane as a function of pressure. 

Application of the simulation method in studying effects of fiber diameter or contact angle 

heterogeneity on water intrusion pressure is reported for demonstration purposes.  

Capillary forces between fibrous surfaces are also studied experimentally and numerically via the 

liquid bridge between two parallel plates coated with electrospun fibers. In the experiment, a 

droplet was placed on one of the polystyrene- or polyurethane-coated plates and then 

compressed, stretched, or sheared using the other plate and the force was measured using a 

sensitive scale. In the simulation, the liquid bridge was mathematically defined for the Surface 

Evolver finite element code to predict its 3-D shape and resistance to normal and shearing forces, 

respectively, in presence of the contact angle hysteresis effect. Despite the inherent non-

uniformity of the fibrous surfaces used in the experiments and the simplifying assumptions 

considered for the simulations, reasonable agreement was observed between the experiments and 

simulations. Results reveal that both normal and shear force on the plates increase by increasing 

the liquid volume, or decreasing the spacing between the plates. 
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Chapter 1. Introduction 

1.1 Background information 

Capillarity is the driving force that plays an important role in the displacement of one fluid (e.g., 

air) by another (e.g., water) at the microscale in a porous media. Two important measure of 

capillarity are the capillary pressure and capillary force. Materials with positive capillary pressure 

are hydrophobic and can be used for self-cleaning or drag reducing applications [1–4] whereas 

materials with negative capillary pressure are hydrophilic and are more suitable for fluid 

absorption/storage (hygiene products) [5–10]. Capillary forces are results of surface tension forces 

between two immiscible fluids, as well as different interactions of the solid surfaces of the porous 

media with each of the fluids. Capillary force is responsible for adhesion of wet surfaces/layers to 

one another. Frogs and insects employ a capillary force to climb a vertical surface [11-13]. It is 

also of great importance in many industrial applications like printing, papermaking and atomic 

force microscopy [14-18].  

Brief background information about surface tension, Young-Laplace contact angle, modeling 

capillary-controlled liquid intrusion inside a fibrous surface, and capillary (adhesion) forces 

between fibrous coatings are discussed in the following subsections. 

1.1.1 Capillarity, surface tension, contact angle  

Capillarity is the most important factor in characterizing the nature of fluid interaction with a 

porous material at the microscale. It is caused by the surface tension forces between the two 

immiscible fluids, as well as the affinity of the solid surface of the porous medium for one fluid 

over the other. Surface tension of a fluid-fluid interface is a fluid property which causes the 
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interface to shrink into a surface with the minimum surface area possible. Because of the 

differences between solid-liquid and solid-gas surface tensions, contact angle forms when a liquid-

gas interface (LGI) intersects with a solid-liquid interface (SLI). Contact angle is the angle that the 

tangent to the LGI makes with tangent to the SLI at the triple phase contact line. For ideal surfaces 

this contact angle is referred to as intrinsic contact angle or the Young-Laplace contact angle 

(YLCA). Considering the balance of forces on the triple phase contact line, one can relate the 

contact angle to surface tension as [19,20]:  

cos 𝜃YL =
𝜎SG−𝜎SL

𝜎𝐿𝐺
                      (1.1)  

Here 𝜃YL is the YLCA, 𝜎𝐿𝐺 (also referred to as 𝜎), 𝜎SG , and 𝜎SL are the liquid-gas, solid-gas, solid-

liquid surface tensions, respectively. Another important quantity in the context of capillarity is the 

Laplace pressure, which is the pressure difference across the liquid-fluid interface. The Laplace 

pressure can be related to the curvature of the liquid-fluid interface through the Young-Laplace 

equation:  

Δ𝑝 = 2𝜎𝐻                    (1.2) 

here 𝐻 is the interface mean curvature. In other words, the liquid-fluid interface reaches an 

equilibrium configuration in which capillary forces are balanced with the forces from the Laplace 

pressure. Young-Laplace equation subjected to different boundary conditions has attracted 

researchers to solve interfacial phenomenon problems [21-24].   

YLCA is a material property, and determines the extent of a surface wettability and is only defined 

for ideal surfaces. In practice, because of the surface roughness, the contact angle that a liquid 
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makes with a surface departs from the ideal YLCA. The observed contact angle (with the naked 

eye) from imaging is called the apparent contact angle.  

Surfaces with an apparent contact angle of less than 90° are called hydrophilic, and those with 

apparent contact angles of larger than 90° are referred to as hydrophobic. An interesting category 

of hydrophobic surfaces is the superhydrophobic surfaces (contact angle larger than 150°), which 

are known for their ability to reduce the wetted area (contact area between liquid and the solid 

surface). The reduced contact area makes such surfaces suitable for applications such as self-

cleaning, drag-reduction and anti-icing [1-4] among many others.  

1.1.2 Liquid entry pressure  

Superhydrophobic surfaces are often produced by microfabrication of small roughness on a 

smooth surface and addition of a hydrophobic chemistry to the surface [25,26]. A cost-effective 

approach is via coating the smooth surface with a porous hydrophobic material, e.g., Polystyrene 

fibers or aerogel particles [4,27-31]. A droplet on a rough surface may exhibit two stable wetting 

states; Cassie (almost dry) or Wenzel (Wetted) state [32-35]. In other words, Wenzel corresponds 

to the state where surface asperities are completely submerged in the liquid, while Cassie represent 

the state where a layer of air is entrapped underneath the liquid between the peaks of the asperities 

[2,36-38]. The pressure at which a surface starts departing from the Cassie state is referred to as 

the critical pressure or the Cassie-Wenzel transition pressure [39], where the entrapped air is 

dissolved into water resulting in the wetting of the surface. Closely related to the concept of Cassie-

Wenzel transition is the liquid entry pressure (LEP) in fibrous membranes. Fibrous membranes are 

alternatives to porous films for many separation applications thanks to their high porosity and 

mechanical strength [40–51]. When a hydrophobic fibrous membrane is in contact with water, the 
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hydrophobic fibers resist against water intrusion into the void space between fibers inside the 

membrane. When a hydrophobic fibrous membrane is submerged in water, it cannot remain dry 

under excessive pressures. This is because the AWI (the interface between the water outside the 

membrane and the air inside the membrane) becomes unstable under elevated pressures, which in 

turn results in water entering the pores of the membrane (i.e., the membrane’s capillary pressure 

fails to balance the intrusion pressure) [2-3,42-43,51-52]. The pressure at which water enters the 

membrane is generally referred to as LEP. Understanding effects of a membrane’s microstructural 

and wetting properties on the LEP is of great importance for engineering the next generation of 

fibrous membranes to ensure a maximum entry pressure while remaining highly porous.  

Predicting the shape and location of the AWI inside a fibrous membrane requires solving the 

Young-Laplace equation. While there exist analytical and numerical solutions of the Young-

Laplace equation for simple geometries such as 2-D or axisymmetric problems, it is extremely 

challenging to solve for a group of fibers (in the fibrous membranes) orthogonally oriented or 

structures comprised of randomly oriented fibers. For such cases the energy minimization method 

of the public domain Surface Evolver (SE) finite element code [53] is a promising alternative for 

solving the Young-Laplace equation and predicting the equilibrium AWI. This approach is on the 

basis of dividing the AWI into small triangles (called facets), and iteratively moving the nodes 

(vertices) of these facets to minimize the energy of the system given as:  

𝐸 = 𝑝∭ 𝑑𝑉 + 𝜎∬ 𝑑𝐴𝐿𝐺 − 𝜎∑ cos𝜃𝑖 ∬ 𝑑𝐴𝑆𝐿
𝑖

𝐴𝑆𝐿
𝑖

𝑛
𝑖=1𝐴𝐿𝐺𝑉

              (1.3) 

where p, 𝜎, and 𝜃𝑖  are pressure difference across the AWI, surface tension, and the YLCA of fiber 

i, respectively. Subscripts S, L, and G refer to solid, liquid, and gas, respectively. The minimized 

energy of Equation 1.3 corresponds to the equilibrium air-water interface.   
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1.1.3 Capillary forces between fibrous surfaces 

The wet adhesion forces (capillary forces) between two surfaces are seen in nature, e.g., frogs, 

insects, or geckoes create an adhesion force to climb a wall [11–13] or in building sand castles wet 

beach sands adhere to one another by the adhesion between sand particles [54]. Adhesion force 

has also industrial applications like printing, papermaking, or atomic force microscopy [14–18] 

just to name a few.  

The capillary force between two surfaces happens with the aid of a column of liquid between them 

referred to as the liquid bridge. Therefore, the study of the adhesion force requires solving the 

Young-Laplace equation for the liquid bridge subjected to the boundary conditions on the triple 

contact line on each surface. There exist extensive relevant works solving Young–Laplace 

equation for the liquid bridge between different geometries such as flat plates, cylinders or spheres 

[55-63] and predicting the forces acting on the liquid bridge as a function of the spacing between 

the surfaces or their wetting properties. The shortcoming of all these studies is that they all assigned 

a single equilibrium contact angle to the liquid–air interface at the contact line. However, in 

practice, because of the surface roughness [64] or heterogeneity [65], a surface shows a range of 

contact angles (with the minimum and maximum values this range being referred to as the receding 

and advancing contact angles and the difference between these values being called as the contact 

angle hysteresis, CAH) rather than a single value. The receding contact angle is seen when the 

contact line is shrinking/receding, and the advancing value is seen when it is advancing/ 

expanding. Most of the works in the literature was devoted to the case of a moving contact line 

with a single-valued contact angle (advancing or receding) as the boundary condition, when 

studying the compression or stretching of a liquid bridge between parallel plates. In other words, 
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the adhesion force-spacing plots were made up of a single θ-constant line. The only work to 

incorporate the CAH in modeling the liquid bridge was developed by Chen et al. [66–68]. These 

authors used a pinned contact line boundary condition, when the contact angle was between the 

receding and advancing values, and a moving (unpinned) contact line boundary condition, when 

the contact angle had reached the advancing or receding values. As per importance of the force-

spacing plots in the aforementioned applications and in understanding the state of the liquid bridge 

at different spacings, in this study, we employ the algorithm of [66] to describe how contact line 

pinning/unpinning affects the behavior of a liquid bridge between parallel plates coated with 

electrospun fibers during compression or stretching using R-constant (pinned TCLs) and θ-

constant (moving TCLs) lines. As will be discussed later in this work, such R-constant and θ-

constant lines are crucial components to map the compression–stretching process and to predict 

the fate of the liquid bridge under a compression–stretching cycle.  

Another significance of the capillary forces is the tangential wet adhesion forces which can result 

in reducing surface friction. It is deemed that ancient Egyptians employed wet adhesion by creating 

capillary bridges upon pouring water on sands. Using this approach, they could reduce surface 

friction and move heavy statues and pyramid stones. [69]. Prediction of the tangential wet adhesion 

force is not a trivial task, as the solution of the Young–Laplace equation becomes challenging 

when the contact angle varies around the contact line due to liquid bridge profile becoming 

asymmetric during the shearing process. The current study is also devised to measure and predict 

the tangential adhesion force for the first time and to simulate shearing of the liquid bridge to better 

understand the forces in this process. This is done by programming the liquid contact line along 

with some simplifying assumptions in the Surface Evolver finite element code and solving the 

Young–Laplace equation via the energy minimization method.   
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1.2 Overall Objectives of This Thesis 

This dissertation is intended to investigate the capillary forces/ capillary pressure in fibrous 

coatings. More specifically, to understand effects of surface microstructural and wetting properties 

on the capillary pressure (e.g., entry pressure for a liquid to penetrate a fibrous structures) as well 

as the capillary forces (wet adhesion forces) between fibrous surfaces. To this aim, this study 

consists of distinct objectives as 1) Modelling the morphology of 3-D fibrous structures comprised 

of soft fibers and developing an approach to estimate the entry pressure in such structures. 2) 

Developing a framework for modeling liquid (or air) intrusion inside a fibrous structure saturated 

with air (or water) to predict the entry pressure. 3) Modeling and measuring the capillary forces in 

the axial and tangential directions between fibrous surfaces.    

 

First, a novel method to characterize 3-D fibrous structures with no unrealistic fiber-fiber 

interpenetration is developed. The idea behind structure generation in most of the previous work 

was adding randomly oriented rigid cylinders inside a structure until the desired solid volume 

fraction (i.e. ratio of solid volume to the structure volume) was obtained, which obviously the 

fiber-fiber overlaps were inevitable at high SVFs. The algorithm in the current study, on the other 

hand, does not need SVF as an input. Instead one can input the basis weight and bending rigidity 

and obtain the SVF and thickness as the outputs of the algorithm. The algorithm is on the basis of 

treating each fiber as an array of point masses interconnected to one another by springs and 

dampers, and is used to investigate the effects of fiber rigidity, diameters, and orientation on the 

SVF and thickness of the fibrous structure. The generated structures are then used to estimate the 

liquid entry pressure for separation membrane applications to investigate the effects of different 

parameters on the pressure at which water enters the membrane. This is discussed in details in 
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Chapter 2. 

Chapter 3 reports on tracking the air–water interface (AWI) intrusion in an orthogonally-layered 

hydrophobic fibrous membrane via an energy minimization method, implemented in the Surface 

Evolver code. The developed simulation method is computationally affordable compared to 

methods in literature as it only considers the interface. It is accurate in its predictions of the entry 

pressure for heterogeneous structures, i.e. structures comprised of fibers with different wettabilities 

(fibers of different polymers). Furthermore, as will be discussed later in this work, the current 

interface tracking method is capable of simulating the breakup of interface into smaller parts as it 

penetrates inside a fibrous membrane. The simulation method also provides information about the 

relationship between intrusion pressure and depth of water penetration into the membrane which 

is of great significance for designing the microstructure of a fibrous membrane to maximize its 

LEP. The framework elaborated in Chapter 3, while addressing the AWI instabilities and breakup 

inside a fibrous structure could be applied to more complex structures (e.g., those generated in 

Chapter 2), which is beyond the scope of this study and can be investigated in a future work.   

 

Chapter 4 investigates the capillarity of fibrous surfaces by reporting on the capillary forces 

between surfaces coated with electrospun polystyrene- or polyurethane fibers. This is done by 

studying the forces applied to a liquid bridge between surfaces both experimentally and 

computationally. To this aim one of the coated plates was compressed, stretched, or sheared using 

the other plate, and the forces applied to the plates were measured throughout the process. As for 

the computational component, the liquid bridge along with appropriate boundary conditions on 

each plate is mathematically programmed in the Surface Evolver finite element code to predict its 

3-D shape and resistance to normal and shearing forces, respectively, in presence of the contact 
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angle hysteresis effect. In addition, the hysteresis behavior of a liquid bridge during a compression- 

stretching process is mapped in an energy or force diagram versus spacing between the plates using 

radius-constant and angle-constant lines describing the triple contact line. Finally, the overall 

conclusions of this dissertation are presented in Chapter 5. 
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Chapter 2. Characterizing nonwoven materials via realistic microstructural modeling 

2.1 Introduction  

Fibrous materials are unique in possessing three different attributes simultaneously: they are 

porous, they are flexible, and they are strong. For this reason, fibrous materials have been used in 

a variety of applications including, but not limited to, air or liquid filtration (see e.g., [70–74]), 

membrane separation (see e.g., [43,46,48-49]), and fluid absorbency (see e.g., [7,75-76]) to name 

a few. Engineering the next generation of fibrous materials for the above applications will have to 

rely on the ability to model the microstructure of the media and to optimize it for the specific 

environment of the targeted application. In the context of particle/fluid filtration modeling, the first 

journal publication to report the use of 3-D fibrous structures as the simulation domain was the 

work of Wang et al. [77] in 2006. In this work (and a series of proceeding publications focused on 

particle filtration [78–85], fluid absorption [86,87], or heat insulation [88,89]), the fibrous media 

were treated as an un-bonded web of loose fibers, in which cylindrical objects (resembling rigid 

fibers) were dispersed in a 3-D domain with random in-plane and/or through-plane orientations. 

With the size of the computational domain held constant, the number of fibers was increased 

incrementally to reach the desired solid volume fraction (SVF) for the virtual media. In generating 

such fibrous structures, one could allow the fibers to interpenetrate into one another (unrealistic of 

course) or prevent that by monitoring the minimum distance between the fibers during fiber 

generation. Overlapping fibers are not of much concerns in simulations aimed at modeling fluid, 

particle, or heat transfer in the space between the fibers (e.g., [77–88]), but they should not be 

allowed when fiber–fiber contact plays an important role, e.g., in modeling heat conduction 

through fibers (e.g., [90]) or mechanical strength of the material (e.g., [91–93]). In a recent 
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publication, a new method to create virtual fibrous structures with reduced (but not prevented) 

fiber–fiber overlaps and arbitrary random curvatures has been reported in [94]. Generating 

nonoverlapping fibrous structures using a random-walk algorithm has also been reported in [95] 

and used as a computational domain in some subsequent studies (e.g. [96-98]). However, 

resemblance of a structure created by the trajectory of a randomly moving particle to the 

microstructure of a real fibrous material is not immediately obvious. It is also not clear how 

mechanical properties of a fiber or the effects of the process by which the fibrous material is 

manufactured can be simulated by a random-walk-based model. It is worth mentioning that there 

exist some image-based approaches to obtain a realistic computational domain for fluid flow 

simulation in fibrous media (see e.g., [8,99-105]). However, the very basic requirement of an 

image-based method is that the material should exist (so that it can be imaged) before the model 

can be constructed, which obviously negates the whole notion of using simulation as a design tool 

for manufacturing new materials. The only work to report an algorithm to generate fibrous 

materials comprised of non-overlapping fibers with curvatures obtained from a physics-based 

calculation is the work of Venkateshan et al. [106]. Treating the fibers as an array of beads 

connected to one another with springs and dampers, these authors simulated the effects of fiber 

rigidity on thickness and porosity of thin electrospun coatings. In the current study, the mass-

spring-damper (MSD) model of [106] is further enhanced to simulate the effects of external forces 

(e.g., hydrodynamic forces) on the fibers and thereby model the morphology of “bonded” 

nonwoven fabrics. We also use these virtual media for simulating liquid entry pressure (LEP) in 

fibrous membranes to demonstrate an example for the utility of such virtual media in designing 

real fibrous media.  
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In the remainder of this chapter, we first present our virtual structure generation algorithm in 

Section 2.2, and then move on to discuss our proposed LEP calculation method in Section 2.3. 

Results of our numerical simulations are presented and discussed in Section 2.4 followed by the 

conclusions drawn from the study in Section 2.5. 

 

2.2 Virtual fibrous media with realistic microstructures 

 

As mentioned earlier, unlike almost all previously reported studies, the structure generation 

algorithm developed in this work can produce fibrous media with non-overlapping fibers (no fiber-

fiber interpenetration) and with fiber curvatures obtained from a physics-based calculation method 

that takes the bending rigidity of the fibers into account. More specifically for the current study, 

we developed virtual structures by sequentially depositing fibers on top of one another and 

allowing the fibers to bend at the crossovers whenever needed without creating non-physical fiber-

fiber overlaps (see Figure 2.1). 
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Fig. 2.1: An example of our virtual fibrous structures having a fiber diameter of 10 µm, a basis weight of 76 g/m2, 

and a SVF of 0.18. 

 

 

Generating such realistic-looking virtual structures was made possible by treating a fiber as a 

viscoelastic material, modeled as an array of beads having a diameter equal to that of the fiber and 

connected to one another with springs and dampers as shown in Figure 2.2a (see [106] for more 

details). Upon writing the balance of forces acting on each bead Pi in a fiber (see Figure 2.2b) and 

solving the resulting coupled system of 2nd order ordinary differential equations (ODEs) 

numerically, one can obtain the speed and position of the fiber.  
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Fig. 2.2: A schematic illustration of our mass-spring-damper model and a free body diagram for the forces acting on 

a single bead are shown in (a) and (b), respectively. 

 

To do so, each of the 2nd order ODEs is decomposed into two 1st order ODEs for the bead’s position 

and velocity as, 

𝑑

𝑑𝑡
[
�⃗�𝑖
�⃗�𝑖
] = [

𝑓𝑖
𝑛𝑒𝑡

𝑚𝑖

�⃗�𝑖

]                         (2.1)  

where �⃗�𝑖,  �⃗�𝑖 , and 𝑚𝑖  are position, velocity and mass of bead i, respectively. 𝑓𝑖
𝑛𝑒𝑡  is sum of forces 

applied to bead i, which can be derived as,  

𝑓𝑖
𝑛𝑒𝑡 = 𝑓𝑖,𝑖−2

𝑠 + 𝑓𝑖,𝑖−1
𝑠 + 𝑓𝑖,𝑖+1

𝑠 + 𝑓𝑖,𝑖+2
𝑠 + 𝑓𝑖,𝑖−2

𝑑 + 𝑓𝑖,𝑖−1
𝑑 + 𝑓𝑖,𝑖+1

𝑑 + 𝑓𝑖,𝑖+2
𝑑 − 𝐹𝑖𝑒�̂�                    (2.2) 

The damper and spring forces can be calculated as, 

𝑓𝑖,𝑖+1
𝑑 = −𝑘𝑑(�⃗�𝑖 − �⃗�𝑖+1)              (2.3) 

𝑓𝑖,𝑖+1
𝑠 = −𝑘𝑠(‖�⃗�𝑖 − �⃗�𝑖+1‖ − 𝑙𝑟)

(�⃗�𝑖−�⃗�𝑖+1)

‖�⃗�𝑖−�⃗�𝑖+1‖
              (2.4) 
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where 𝑘𝑑 , 𝑘𝑠 are damping and spring constants, respectively, and 𝑙𝑟 is the un-stretched length of 

the spring. 𝐹𝑖 is a body force applied to each bead in the z-direction, and it can represent the forces 

acting on the fiber during media manufacturing (e.g., electrostatic force in electrospinning, or the 

aerodynamic/hydrodynamic force in nonwoven manufacturing methods like wet-laying, air-

laying, melt blowing, …). The system of ODEs given in Equation 2.1 is solved using a 4th order 

Runge–Kutta method with a time step of 10 ns. To ensure that the fibers do not interpenetrate as 

they deposit on each other, one should check whether there is a collision between the beads of a 

depositing fiber and those of the already deposited fibers at each time step. If the distance between 

two beads is less than a fiber diameter, then the beads are interpenetrating and their positions 

should be adjusted to remove the overlap. 

 In generating the virtual structures considered in this study, fibers having different orientations, 

characterized by their in-plane and through-plane angles, fall toward a horizontal flat substrate 

with an initial vertical velocity of 5 m/s. Unless otherwise stated, these angles are obtained from 

normal-variate random distributions with a zero mean value for the in-plane and through-plane 

angles (𝜇i.p = 0 and 𝜇t.p = 0). Also, the standard deviation is taken to be 45° for the in-plane and 

10° for the through-plane angles (σi.p = 45° and σt.p = 10°). The computational domain 

generated with the abovementioned approach can be composed of fibers of the same or different 

contact angles (or diameters) which corresponds to unimodal and multi-modal media. The present 

study considers only unimodal and bimodal fibrous media for the sake of brevity. 

 

2.3 Liquid entry pressure calculation 

Capillary pressure or capillarity is often used as a measure of a material’s tendency to absorb, 

repel, or retain a body of fluid. Capillarity is the driving force behind immiscible fluids (e.g., air 
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and water) replacing one another in a fibrous material and was first formulated using the Lucas–

Washburn (LW) equation [107,108]. Typical Lucas–Washburn models treat a porous medium as 

groups of parallel cylindrical pores having a single Young–Laplace contact angle (YLCA) [109-

111]. This is a crude approximation, as there is actually no cylindrical pore in a 3-D fibrous 

structure (and the fibers may have different YLCAs) and so such approaches have been criticized 

in the literature [109-113]. Accurate alternatives to LW models for fluid transport prediction in a 

porous material are the Lattice Boltzmann (LB) [114,115] and the Volume of Fluid (VOF) methods 

[116-118]. Both LB and VOF are numerical methods to solve the partial differential equations 

(PDEs) describing the flow of immiscible fluids in a porous medium (time-dependent 3-D two-

phase flow calculations). The obvious shortcoming of the LB and VOF simulations is their 

prohibitively expensive computational time, even with the current high-speed CPUs. A 

breakthrough in developing affordable (CPU-friendly) 3-D fluid flow simulations in porous media 

was the development of the Full Morphology (FM) method in which a quasi-static distribution of 

wetting and non-wetting phases in a 3-D domain was obtained via a purely geometric approach 

[119-121]. FM relies on a sphere-caging algorithm to relate the size of the largest sphere that can 

fit into the void space between the fibers at any point in the 3-D domain to a fictitious capillary 

pressure obtained from the Young–Laplace equation written for a capillary tube. By marking the 

fraction of the total void space that is made up of “pores” of certain diameter, the FM method 

obtains a capillary pressure–moisture content relationship for the whole medium [8,86-

87,100,122]. Using the FM method, one can find a moisture content fraction for a given capillary 

pressure by dividing the volume made up of the spheres of a certain diameter (corresponding to 

the given capillary pressure) by the total void volume in the structure. Repeating this procedure 

for different pressures, one can obtain a capillary pressure–moisture relationship for porous media 
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[8,86-87,100,122]. Despite its very desirable CPU time, the FM method is a geometry-based 

approximate method that ignores the actual wetting properties (i.e., contact angle) of the fibers 

constituting the media. This is in contrast to the physics-based air–water interface (AWI) tracking 

method of [123-125] where formation, breakup, and coalescence of AWI inside fibrous structures 

comprised of parallel or orthogonal fibers with heterogeneous contact angles were simulated 

realistically. Unfortunately, however, generalizing the model of [123-125] to fibrous structures 

comprised of fibers with random orientations or curvatures is a very formidable task. The approach 

considered in the current work is an approximate method that can be used to obtain some insight 

into the capillarity of a fibrous medium comprised of fibers with different contact angles or 

complex morphology, where the other methods are not applicable or become computationally 

expensive. For simplification, we ignore the actual shape (or the breakup) of the AWI inside the 

media i.e., we assume a planar AWI for the penetrating fluid front. We calculate local capillary 

pressures at different horizontal planes slicing the media at different depths (scanning the entire 

thickness of the media) and consider the largest pressure as an estimate of the LEP for that specific 

structure. We start by assuming that the medium is initially filled with air (wetting phase). The 

medium is then put into contact with a fictitious reservoir of pressurized water such that water can 

penetrate into the medium and fill the pores with a capillary pressure smaller than the intrusion 

(reservoir) pressure. Increasing the intrusion pressure incrementally, water eventually replaces the 

air in the medium. As was mentioned earlier, we assume the AWI to be planar in this work to 

simplify an otherwise challenging computational task. In reality, the AWI conforms to a three-

dimensional shape around an inclined (or vertical) fiber, and our assumption of planar AWI is 

merely a simplification considered to ease the LEP calculation in fibrous geometries with 

disordered 3-D structures. We consider symmetric boundary conditions for the sides of our 
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computational domain (all having fixed in-plane dimensions of 800×800 µm but a thickness 

ranging from 250 to 550 µm depending on the inputs used for the structure generation) for its 

simplicity. Clearly, there is no plane of symmetry in a real fibrous medium having disordered 

fibers. However, if the in-plane size of the simulation domain is large and the simulations are 

repeated over an ensemble of statistically identical structures, one can significantly reduce (or 

eliminate) the edge effect error in the results (see [86-90]). Considering the balance of forces acting 

on a planar AWI inside a fibrous structure, one expects the capillary forces from the fibers to 

balance the intrusion force at the equilibrium [122-125], i.e., 

∑ 𝐹𝑖
𝑛
𝑖=1 = 𝑝(𝐴 − ∑ 𝐴𝑖

𝑛
𝑖=1 )              (2.5) 

where the right-hand side is the force caused by the intrusion pressure, and the left-hand side is the 

summation of the vertical components of the capillary force provided by the fibers. In a recent 

study, Raufaste and Cox [126] investigated deformation of the AWI by an inclined fiber for 

different values of inclination and YLCAs. They concluded that the net force on an inclined fiber 

is in the vertical direction and its magnitude is obtained by 

𝐹 =
𝜎𝜋𝑑 cos𝜃

cos𝛼
                 (2.6) 

where 𝜎, 𝑑, 𝜃 and 𝛼 are surface tension, fiber diameter, YLCA, and inclination angle (the angle 

between the fiber and the z-axis), respectively. Substituting Equation 2.6 into Equation 2.5, one 

can obtain an expression for the intrusion pressure as, 

𝑝 =
𝜎𝜋∑

𝑑𝑖 cos(𝜃𝑖)

cos(𝛼𝑖)
𝑛
𝑖=1

𝐴−∑ 𝐴𝑖
𝑛
𝑖=1

                 (2.7) 

Here 𝛼𝑖 and 𝐴𝑖 are the local inclination angle with the z-axis and the inclined cross-sectional area 

of fiber i. To obtain 𝛼𝑖 and 𝐴𝑖 for each and every fiber in the domain, we have developed a unique 
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algorithm as described in the next subsection. Note that, as can be seen in Equation 2.7, fibers with 

an inclination angle of 𝛼𝑖 = 90° (fibers lying perfectly in one horizontal plane across the entire 

simulation domain) cannot be handled with the method proposed here. Given the curvature of the 

fibers however, this happens very seldom (see Figure 2.1). 

 

2.3.1 Parametric representation of fibers 

Consider an individual fiber in a medium as shown in Figure 2.3a (a fiber near the top for better 

illustration). The center of mass positions for the beads constituting this fiber are shown in Figure 

2.3b. Our strategy to obtain 𝛼𝑖 and 𝐴𝑖 is to produce an accurate curve fit to these points so that the 

centerline of the fiber can mathematically be presented in a 3-D Cartesian coordinates system. 

Repeating this procedure to have the shape of every fiber in the domain represented by an equation, 

it is then easy to obtain i and Ai for each fiber by intersecting that fiber with a horizontal plane. In 

generating our fibrous structures, fibers enter the simulation domain as straight cylinders but they 

bend upon depositing on the fibers below them. Therefore, the fibers in the resulting mats do not 

have any significant horizontal curvatures (main curvatures are in vertical planes) as can be seen 

in Figure 2.3b. The plane of each fiber however, is different from that of the others. Unit normal 

vector of these planes can be obtained from a vector product of any two non-parallel vectors made 

using any of the beads on that fiber, i.e., 

�̂� =
�⃗⃗�1×�⃗⃗�2

‖�⃗⃗�1×�⃗⃗�2‖
                (2.8) 

where �⃗�1 and �⃗�2 are two non-parallel vectors. The fiber in this plane can mathematically be 

presented as 𝑧 = 𝑧(𝑥, 𝑦). To further simplify the curve fitting process, we rotate the fiber data 

points around some vertical axis on that plane so that the transformed points will be in an 𝑦′ =

const. plane, as shown with a green plane in Figure 2.3c (having a unit normal vector of �̂� =
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(0,1,0)). The axis of this rotation must exist in both the red and green planes, and it should be 

perpendicular to the normal unit vectors of both planes �̂� and �̂�,  respectively, i.e., �̂� = �̂� × �̂�. 

The angle of rotation 𝜙 can be obtained from 𝜙 = arccos (�̂�. �̂�). Knowing the axis, and the angle 

of rotation, the transformation matrix can be defined as: 

 

𝑅�̂�(𝜙) = [

𝑢1𝑢1(1 − cos𝜙) + cos𝜙 𝑢1𝑢2(1 − cos𝜙) − 𝑢3 sin𝜙 𝑢1𝑢3(1 − cos𝜙) + 𝑢2 sin𝜙

𝑢2𝑢1(1 − cos𝜙) + 𝑢3 sin𝜙 𝑢2𝑢2(1 − cos𝜙) + cos𝜙 𝑢2𝑢3(1 − cos𝜙) − 𝑢1 sin𝜙

𝑢3𝑢1(1 − cos𝜙) − 𝑢2 sin𝜙 𝑢3𝑢2(1 − cos𝜙) + 𝑢1 sin𝜙 𝑢3𝑢3(1 − cos𝜙) + cos𝜙
]       (2.9) 

where 𝑢1, 𝑢2, and 𝑢3 are the 𝑥, 𝑦, and 𝑧 components of vector �̂�, respectively. For instance, for 

the special case of rotation around the x-axis, one can simply substitute the unit vector (𝑢1 =

1, 𝑢2 = 0, 𝑢3 = 0) in Equation 2.9.  

Following this procedure, the coordinates of the beads along the fiber will be in the form of 

(𝑥′, const, 𝑧′)after the transformation, and so the curve fitting process will be in the form of 𝑧′ =

𝑧′(𝑥′, const). We then curve fit a multi-term Sine function to the transformed data points 𝑥′and 𝑧′ 

(see Figure 2.3c), as, 

𝑧′ = ∑ 𝑎𝑖 sin(𝑏𝑖𝑥′ + 𝑐𝑖)
8
𝑖=1             (2.10)    
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Fig. 2.3: Our curve fitting process is shown with an example where a fiber is single out and colored blue in (a). The 

center of mass for the beads constituting the blue fiber is shown in their original plane (b) and after transformation to 

the 𝑥′, 𝑦′, 𝑧′coordinates system (c). The inset Figure in (b) is a magnified view of the curve-fit relative to the original 

data points. 

 



22 

 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 with 𝑖 = 1,… ,8 are coefficients of the curve fit equation. The coordinates of 

the rotated points are in forms of (𝑥′, const, ∑ 𝑎𝑖 sin(𝑏𝑖𝑥′ + 𝑐𝑖)
8
𝑖=1 ). With the curve fitting task 

completed, one has to rotate the data back to the original plane, using an inverse transformation 

matrix. This produces the points in a parametric form of 𝑥 = 𝑥(𝑥′), 𝑦 = 𝑦(𝑥′), 𝑧 = 𝑧(𝑥′), i.e.,  

 [
𝑥
𝑦
𝑧
] = 𝑅𝑢

−1(𝜙) [
𝑥′

const
∑ 𝑎𝑖 sin(𝑏𝑖𝑥′ + 𝑐𝑖)
8
𝑖=1

]          (2.11) 

This parametric curve can now serve as a curve fit to the fiber in the original red plane (Figure 

2.3b). 

 

2.3.2 Fiber intersection with a planar air–water interface  

 

With each and every fiber presented mathematically, it is now easy to intersect them with different 

horizontal planes (planar AWIs corresponding to different horizontal sections in the media) to 

obtain 𝛼𝑖 and 𝐴𝑖 for Equation 2.7. Intersecting the fibers with a horizontal plane 𝑧(𝑥′) − z0 = 0 is 

in fact a root finding exercise which can be performed using a built-in function (e.g., fzero 

command) in MATLAB. The Newton– Raphson-based root finding methods such as fzero require 

an initial guess at the location of the root. We used the minimum x-coordinate of the points 

constituting the fiber as our initial guess. However, since a typical fiber can have more than one 

intersection point with the slicing plane, our initial guess was incrementally moved along the 

length of the fiber, and the root finding procedure was repeated in every step to find all possible 

intersection points. Once all the roots were found, those outside the computational domain (or 

those recorded more than once) were discarded. The 𝑥′ roots from solving 𝑧(𝑥′) − z0 = 0 were 

then substituted in Equation 2.11, to calculate the x–y coordinates of the intersection points 
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between the fiber and the plane. For instance, consider the blue fiber shown in Figure 2.3a. This 

fiber intersects with the 𝑧 = 405 μm plane at four points (see Figure 2.4a) with the elliptical cross-

sections as shown in the magnified inset in Figure 2.4a. Dimensions of these ellipses were obtained 

by knowing the local inclination angle of the fiber at the intersection point (i.e., the angle between 

the z-axis and the tangent to the fiber at the intersection point). The tangent unit vector for a fiber 

represented in the parametric form of 𝑟(𝑥′) = (𝑥(𝑥′), 𝑦(𝑥′), 𝑧(𝑥′)) can be obtained as, 

�̂�(𝑥′) =
 𝑟′⃗⃗⃗⃗ (𝑥′)

‖ 𝑟′⃗⃗⃗⃗ (𝑥′)‖
              (2.12)                   

Substituting the 𝑥′ roots in Equation 2.12, one can find the local inclination angle of the fiber 

from 𝛼𝑖 = acos (�̂�. �̂�𝑘), where �̂�𝑘 is the unit vector in the z-direction. With this information, the 

major axis, minor axis, and the area of the elliptical cross-sections can be obtained as 𝑎𝑖 =

𝑑𝑖/ cos 𝛼𝑖, 𝑏𝑖 = 𝑑𝑖, and 𝐴𝑖 = 𝜋𝑎𝑖𝑏𝑖/4, respectively (see Figures 2.4b and 2.4c). The sum of 𝐴𝑖 

obtained for each intersecting fiber was then used to estimate the intrusion pressure.  
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Fig. 2.4: The curve-fit function representing the blue fiber of Figure 2.3a is shown in (a) as it intersects with a 

horizontal plane. Shown in the inset is the resulting fiber elliptical cross-sections. An example of a slicing AWI is 

shown in (b) along with the resulting fiber elliptical cross-sections in (c). 
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As mentioned earlier, to find the LEP for each structure, we cut the structure with horizontal planes 

of different z-levels, and calculate an average pressure at each plane using Equation 2.7. The 

maximum pressure obtained from this calculation corresponds to the plane with highest number 

of fiber intersections, and hence, smallest planar pore area. For simplicity, we refer to this pressure 

as the LEP for that structure. 

 

2.4 Results and discussion 

 

In this section, we study the effects of fiber diameter and contact angle heterogeneity on LEP as 

an example of the enabling capabilities provided by our structure generation algorithm. For all 

simulations reported in this chapter, an in-plane domain size of 800 µm × 800 µm was considered. 

An initial fiber deposition velocity of 5 m/s as well as spring and damping constant of 𝑘𝑠 𝑚𝑖⁄ =

2 × 1010
N

m.kg
 and 𝑘𝑑 𝑚𝑖⁄ = 5 × 106

N.s

m.kg
 are also arbitrarily chosen for this study. Each data point 

reported in this study represents an ensemble of no less than three statistically identical 

simulations. An example of such simulations is given in Figure 2.5 where effects of through-plane 

angle on SVF and LEP are presented for media with different fiber diameters but a basis weight 

of 45 g/m2. Note that a unique feature of the simulation method presented being a required input, 

which has been the case for all previous structure generation algorithms (e.g., [80-89]). It is 

interesting to note in Figure 2.5 that both the LEP and SVF decrease with increasing the fiber 

diameter. This counterintuitive result is due to the ability of the fibers to deform (bend) during the 

deposition process (fine fibers are softer and so they bend more). Figure 2.5 also shows that 

decreasing fibers’ through-plane angle results in a denser structure leading to a higher LEP. This 

is because at higher SVFs, the “pores” in the media are smaller and so a higher intrusion pressure 

is required for the AWI to penetrate into the structure. In other words, a higher SVF generally 
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translates to a larger number of fiber–AWI intersections, and so a greater capillary force. For 

illustration purposes, two sample fibrous structures having an identical basis weight of 45 g/m2 

and a fiber diameter of 10 µm but different random through-plane angles are also shown in Figure 

2.5. Through-plane angles in both structures are characterized by zero mean value (𝜇t.p = 0), but 

different standard deviation of σt.p =15 and 30°.  

 

 

 

Fig. 2.5: Effects of fibers’ through-plane orientation (characterized by a mean value of 𝜇t.p = 0 but standard deviation 

ranging from σt.p =10 to 30°) on SVF and LEP for media with a basis weight of 45 g/m2 and a YLCA of 120°. Two 

sample structures with a fiber diameter of 10 µm but different standard deviation of σt.p =15, and 30° are also shown 

for illustration. 
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Effects of contact angle heterogeneity (e.g., media made of different polymers) on LEP are also 

investigated in this study. For the sake of brevity, we only consider media with only two different 

YLCAs (bimodal media) but there is no limit on the number of YLCAs that can be considered. 

Figure 2.6a presents LEP for media with an SVF of 𝜖 = 0.16 and a fiber diameter of 𝑑1 = 5 μm, 

but two different YLCAs of 𝜃1 = 150° and 𝜃2 = 120° randomly assigned to the fibers. It can be 

seen that intrusion pressure increases with increasing the volume fraction of the more hydrophobic 

fibers (denoted with  𝑣1
𝜃). This is because more hydrophobic fibers have less affinity to water and 

a higher pressure is needed for the water to penetrate into membranes composed of such fibers 

(see also Equation 2.7). It is interesting to note that the data shown in Figure 2.6a can all be derived 

from a single point if the pressure values are divided by a scaling factor obtained by weight 

averaging the cosines of the YLCAs. i.e., 

𝑝 = 𝑝1𝑓𝑝              (2.13) 

with 𝑓𝑝 = 𝑣1
𝜃 + (1 − 𝑣1

𝜃)
cos𝜃2

cos𝜃1
. In this equation, 𝑝 is the LEP of the bimodal structure having a 

species-1 volume fraction 𝑣1
𝜃, and 𝑝1 is the capillary pressure of the same structure but when 𝑣1

𝜃 =

1. This indicates that one can scale the LEP obtained for a given membrane with a single YLCA 

to estimate an LEP for media composed of fibers with the same fiber diameter but different 

YLCAs. It should however be noted that, the above simple scaling rule was achieved only after 

approximating the AWI as a planar interface which remains intact as it penetrates into the structure 

(see [124,125] for more discussion on AWI breakup in fibrous media). To generate virtual 

structures comprised of intimately blended fibers of different diameters (here bimodal for 

simplicity), we first estimate the number of randomly oriented fine and coarse fibers that are 

required to satisfy the desired basis weight and species volume fractions. We then deposit the fibers 

with the right diameter successively. Examples of media with bimodal diameters (10 and 15 µm) 
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but different volume fractions are shown in Figure 2.6b. This figure also presents simulation results 

obtained for media with a basis weight of 45 g/m2, comprised of fibers with a YLCA of 𝜃 = 120°. 

As expected, LEP is higher for media with larger volume fractions of fine fibers (denoted with 

 𝑣1
𝑑). This is because fine fibers tend to bend more at fiber–fiber crossovers resulting in media with 

higher SVFs and consequently higher LEPs, as discussed earlier (see also Equation 2.7). 
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Fig. 2.6: LEP results for media comprised of fibers with a diameter of 5 µm but two different YLCA of 120 and 150° 

are given in (a). SVF and LEP results media comprised of fibers with two different diameters of 10 and 15 µm but a 

common YLCA of 120° are given in (b). Examples of bimodal media studied in (b) are also given for better illustration. 
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Figure 2.7 shows the effects of in-plane angle on LEP and SVF for structures of different 

diameters. It can be seen that decreasing fibers’ in-plane angle increases the SVF of the resulting 

structure as fibers can better pack in each layer, and this in turn increases the LEP of the media. 

Examples of such media are given in Figure 2.7 for better illustration. As mentioned earlier, our 

structure generation algorithm can also incorporate the presence of additional forces acting on the 

fibers during deposition. These forces can resemble the air/water drag force on fibers during 

manufacturing (e.g., in air-laying, melt-blowing, or wet-laying processes) or electrostatic attraction 

force in electrospinning process, to name a few. 
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Fig. 2.7: Effects of fibers’ in-plane orientation (characterized by a mean value of 𝜇i.p = 0  but standard deviations of 

𝜎i.p = 22 and 45°) on SVF and LEP for media with a basis weight of 45 g/m2 and a YLCA of 120°. Also shown in 

this figure are two sample structures with a fiber diameter of 15 µm but different in-plane fiber orientations. 
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Figure 2.8 shows how a non-zero downward body force (taken arbitrarily as 0.012 N/kg) can result 

in structures with higher SVFs and so higher LEPs (compare the thickness of the sample structures 

given in Figure 2.8 for F= 0 and F= 0.012 N/kg). 

 

 

 

Fig. 2.8: Effects of an external body force on SVF and LEP for media with a basis weight of 45 g/m2 and a YLCA of 

120°. Morphology of the structures in the absence and presence of a body force (albeit chosen arbitrarily at F= 0.012 

N/kg) are also shown for comparison. 
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2.5 Conclusions 

 

In this chapter, we presented a physics-based model to generate virtual fibrous structures. Treating 

each fiber as an array of beads, this model can realistically simulate bending of the fibers at fiber–

fiber crossovers, and is therefore capable of avoiding fiber–fiber overlaps. We have also developed 

a model to estimate a liquid entry pressure (LEP) for hydrophobic fibrous media. This model uses 

the balance of forces acting on the air–water interface (AWI) to relate media’s capillary resistance 

to intrusion pressure. The analysis is based on a simplifying assumption that the AWI remains both 

planar and intact as it penetrates inside the media. This assumption makes it possible to estimate 

an LEP for media with complex morphological or wetting properties (an otherwise very 

challenging problem). For model demonstration, we have investigated the effects of varying 

microstructural parameters of a fibrous medium (e.g., fiber diameters, fiber contact angles…) on 

its LEP. Our results show that the LEP of a fibrous membrane increases upon decreasing the 

diameter or increasing the contact angle of its constituting fibers. 
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Chapter 3. A new approach to modeling liquid intrusion in hydrophobic fibrous membranes 

with heterogeneous wettabilities 

3.1 Introduction  

Capillarity is the major factor in characterizing the nature of fluid interaction with a porous 

material. Fibrous materials with positive capillary pressure are hydrophobic and they can be used 

as a membrane or as a water-resisting barrier for a variety of applications [40-51]. Precise capillary 

pressure prediction is also important for proper design of gas diffusion layers (GDLs) for fuel cells 

[127-131] or for applications involving fluid–fluid or fluid–gas separation [71,72,132,133]. 

Fibrous membranes are promising alternatives to porous films for many separation applications 

due to their coupled high porosity and mechanical strength [40-51]. When a hydrophobic fibrous 

membrane (e.g., a distillation membrane used in direct contact membrane distillation) is brought 

into contact with water, the hydrophobic fibers resist against water intrusion into the pores of the 

membrane (space between the fibers). Nevertheless, a submerged hydrophobic membrane cannot 

remain dry under elevated pressures. This is because the interface between the water outside the 

membrane and the air inside the membrane becomes unstable under excessive pressures, leading 

to water entering the pores of the membrane (i.e., the membrane’s capillary pressure fails to 

balance the intrusion pressure) [2,3,42,43,51,52]. The pressure at which water enters the 

membrane is generally referred to as liquid entry pressure (LEP). While LEP is an easy-to-use 

single number to characterize hydrophobic membranes, it does not provide much information 

about the relationship between intrusion pressure and depth of water penetration into the 

membrane (important for engineering the microstructure of a membrane to maximize LEP while 

remaining highly porous). Extensive research has been conducted in the past decades to simulate 
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the intrusion of a non-wetting fluid into a 3-D fibrous membrane. Methods such as Lattice 

Boltzmann (LB) and Volume of Fluid (VOF) [53,114,116-118,128-130,134] are among the most 

popular numerical methods utilized for such simulations. The LB and VOF methods both solve 

the flow field in the wetting and non-wetting phases in a porous media and can be used directly to 

simulate penetration of a fluid in porous materials as a function of time and space. Such 

calculations however, are very time consuming, especially in 3-D, even with the current high-

speed CPUs. A breakthrough in developing affordable (CPU-friendly) 3-D fluid flow simulations 

in porous media was the development of the Full Morphology (FM) method in which a quasi-static 

distribution of wetting and non-wetting phases in a 3-D domain was obtained via a purely 

geometric approach [119-121]. The FM method uses a sphere caging algorithm to produce a range 

of intrusion pressures that would have been needed for a non-wetting fluid to enter a 3-D structure 

if it was made up of a series of fictitious “cylindrical pores” with different diameters. By marking 

the fraction of the total void space that is made up of “pores” of certain diameter, the FM method 

obtains a capillary pressure–saturation relationship for the whole media using the Laplace equation 

written for a cylindrical pore [29,86,100,119-122]. The FM method, while extremely attractive 

from the viewpoint of saving the CPU time, is nonetheless a geometry-based approach that 

approximates the irregular void space between the fibers with straight cylindrical pores. In 

addition, the FM method is not sensitive to wetting properties of the individual fibers (although 

improved recently [135]). In reality, the 3-D shape and position of the interface between the 

wetting and non-wetting phases (needed for instance to correctly simulate the breakup of the 

interface inside the media) depends strongly on both the local geometry and the wettability of the 

surfaces involved. The simulation method presented in this chapter is based on minimizing the 

surface energy of the three-phase system (wetting phase, non-wetting phase, and solid surface), 



36 

 

and thereby obtaining the shape and position of the interface inside the membrane as a function of 

intrusion pressure. This method only tracks the interface between the phases, and so it is 

computationally faster than the VOF or LB methods, but it is still not as fast as FM method. Unlike 

the VOF and LB methods (but similar to the FM method), the energy minimization method cannot 

simulate the dynamics of capillary intrusion (the calculations are time independent). The energy 

minimization method is programmed in the Surface Evolver (SE) finite element code, but the 

solver requires the specific volume and energy integrals as well as a series of constraints for each 

solid object in the domain. It is also important to mention that the implementation presented here 

is limited to simple 3-D fibrous geometries (e.g., straight fibers aligned in the x or y directions) 

due to complexities involved in modeling air–water interface (AWI) near fiber–fiber intersection 

points in purely three-dimensionally random structure. In the remainder of this chapter, we 

continue by discussing popular methods of interface tracking in fibrous media in Section 3.2. In 

Section 3.3, we discuss how interactions between two interfaces or between a solid surface and an 

interface have been handled in the current work. Section 3.4 discusses our simulation method in 

details and presents some validation studies. Our simulation results are discussed in detail in 

Section 3.5 followed by the conclusions in Section 3.6. 

 

3.2 Interface tracking: force balance vs. energy minimization 

 

Consider the simple case of an interface between two parallel horizontal fibers with different 

Young–Laplace contact angles (YLCAs). Upon applying a pressure, the interface deforms to the 

shape of a circular arc with a radius of curvature that can be obtained using the Laplace equation: 

𝑝𝑐 = 𝜎 (
1

𝑅1
+

1

𝑅2
) = 2𝜎𝐻              (3.1) 
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where p is pressure, 𝑅1, and 𝑅2 are principal radii of curvature of the interface, 𝜎 is surface tension, 

and 𝐻 is the interface mean curvature (note that 𝑅1 = ∞ for an interface between parallel fibers). 

Considering the balance of vertical forces acting on this interface (capillary forces at the contact 

points with the fibers balancing the pressure from top), one can obtain (see Figure 3.1), 

𝑝𝑐𝐿(𝑠𝑓 − 𝑟𝑓𝑠𝑖𝑛𝛼1 − 𝑟𝑓𝑠𝑖𝑛𝛼2) = 𝜎𝐿 (cos (
3𝜋

2
− 𝛼1 − 𝜃1) + cos (

3𝜋

2
− 𝛼2 − 𝜃2))      (3.2) 

Simplifying Equation 3.2, one can find the capillary pressure: 

𝑝𝑐 = −𝜎
sin(𝛼1+𝜃1)+sin(𝛼2+𝜃2)

𝑠𝑓−𝑟𝑓(sin𝛼1+sin𝛼2)
             (3.3) 

 

 

Fig. 3.1: Free body diagram of the forces acting on the AWI between two horizontal parallel fibers. 

 

Here 𝜃𝑖,𝑠𝑓, and 𝑟𝑓 are contact angle, center-to-center spacing between the fibers, and fiber radius, 

respectively. Parameters 𝛼1 and 𝛼2 denote the intrusion angle on each fiber, and they can be found 

using the method described in [124]. The maximum pressure obtained from Equation 3.3 is often 

referred to as the critical pressure (corresponding to a critical air–water interface radius of 

curvature), and it is the pressure above which no stable meniscus can exist between the fibers 

[122,124]. The 2-D approach described by Equations 3.2 and 3.3 is only a special case of a much 

more sophisticated problem of tracking AWI in a 3-D space between randomly oriented fibers (in 

a 2-D model the fibers are parallel with one another and the interface radius of curvature in the 

Water

Air
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fibers’ direction approaches infinity). Representing the local z-coordinate (height) of the interface 

as 𝑧 = 𝑓(𝑥, 𝑦), the Laplace equation results in a nonlinear partial differential equation for the shape 

and location of the interface inside a fibrous medium [4]: 

𝑓𝑥𝑥(1 + 𝑓𝑦
2) + 𝑓𝑦𝑦(1 + 𝑓𝑥

2) − 2𝑓𝑥𝑦𝑓𝑦𝑓𝑥 =
𝑝𝑔

𝜎
(1 + 𝑓𝑥

2 + 𝑓𝑦
2)

3

2        (3.4) 

Subscripts 𝑥, and 𝑦 denote the partial derivative with respect to x and y, respectively. The only 

attempt in solving Equation 3.4 for the shape of an AWI in a 3-D disordered medium is the work 

reported in [136]. These authors solved Equation 3.4 numerically for the AWI between 

hydrophobic fibers with random or orthogonal in-plane orientations using a Dirichlet boundary 

condition. While the Dirichlet boundary condition simplifies the numerical solution procedure, it 

limits the interface tracking simulations to the case of very thin coatings, where displacement of 

the three-phase contact-line in the thickness direction is negligibly small, and so the AWI can be 

assumed to be “pinned” to the first layer of the fibers (see [125] for solving Equation 3.4 for an 

un-pinned AWI using the Neumann boundary condition). In a more recent study, Bucher et al. 

[125], used the energy minimization method, implemented in the Surface Evolver finite element 

code, to obtain a critical pressure for superhydrophobic coatings comprised of orthogonally-

oriented fibers in ordered configurations. Using this method, they could simulate both the 

deflection and the displacement of the AWI through the top four layers of fibers in their 

superhydrophobic coatings. The simulation methodology developed in the present work however, 

is not limited to the structure’s top layers (to thin fibrous membrane as in [4]). Interface tracking 

in a thick membrane comprised of semi-ordered fibers (albeit perfectly orthogonal) is a more 

challenging problem as different parts of the interface in such structures interact differently with 

one another (e.g., coalesce), and this can raise the complexity of the problem at hand significantly 

(see the next section). 
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3.3 Numerical treatment of interface–interface or interface–solid interactions 

 

As mentioned earlier, AWI tracking in a thick (i.e., comprised of many layers of fibers) medium 

comprised of randomly distributed fibers involves developing numerical treatments for when the 

interface comes into contact with itself or with solid objects not previously in touch with the 

interface (in addition to singularities at the fiber–fiber intersection points). For the case of fluid 

invasion in a porous medium modeled as a 2-D array of disks arranged in ordered configurations, 

various numerical percolation-based models have been developed in the past decades [137-140]. 

In these studies, the interface motion is modeled by a sequence of stable meniscus configurations 

reached either by incrementally increasing the pressure difference between the invading and 

defending phases (non-wetting and wetting phase), namely pressure controlled invasion, as in 

[137], or by a flow-rate-controlled invasion model as in [138,139]. Following the terminology used 

in such percolation-based 2-D models for meniscus instability, we use “burst”, “touch”, and 

“coalescence” (overlap) as the three basic treatments of interface–interface or interface–solid 

interactions. Figure 3.2a shows the burst mechanism. If the prescribed pressure is more than the 

critical pressure for the AWI between two parallel fibers (Equation 3.3), the AWI grows without 

reaching an equilibrium position/shape and eventually bursts. This is because the AWI curvature 

continuously decreases, and so the meniscus expands indefinitely (the pressure can no longer be 

balanced by the interface curvature) unless it touches neighboring fibers. This usually results in 

the AWI moving forward (at a given intrusion pressure) to reach out to neighboring fibers. As can 

be seen in Figure 3.2a, the interface between fibers 3 and 4 expands (indefinitely) until it bursts 

and leaves an open path for the fluid to flow out of the media, the so-called bubble-point [100]. As 

an AWI moves inside the media, it comes into contact with new solid surfaces. Such interface–

solid surface interactions are referred to here as “touch” interactions, following the terminology of 
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[137-140]. When an AWI comes into contact with a new fiber, a new AWI is formed and it obeys 

the YLCA of the new fiber at the new contact line at equilibrium. Depending on the number of 

fibers involved, the AWI may break up into two or more menisci in the pore space between the 

fibers (see the interface between fibers 1 and 2 in Figure 3.2b before and after coming into contact 

with fiber 4). Similar to the burst instability, touch instability is treated individually for each pair 

of fibers, and each new interface must acquire an equilibrium curvature corresponding to the 

applied capillarity; this was also discussed in [124]. When two neighboring AWIs come into 

contact with one another, they are treated as “coalescing” interfaces. In this case, the fiber in 

contact with both interfaces (fiber 1 in Figure 3.2c) will be submerged, and no longer plays a role 

in the capillarity of the system. The resultant equilibrium shape and position of the interface is 

obtained by temporarily removing this fiber from the simulation domain and repeating the same 

interface-tracking step (without that fiber) [124]. As will be seen later in Section 3.4.2, an AWI 

penetrating through a porous medium may leave island-like patches of dry fibers behind. To 

simulate this, we have considered two main possibilities as described in Figure 3.2d and 3.2e. The 

first case happens (especially in regions with densely packed fibers) when AWIs reach their 

equilibrium shapes between a group of fibers (e.g., fibers 1, 2, and 3 in Figure 3.2d) without 

coalescing with one another, and further penetration of the AWI into the media does not impact 

the stability of the island formed between this group of fibers. The second scenario is when the 

coalescing AWIs are not in contact with a common fiber as illustrated in Figure 3.2e. 
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Fig. 3.2: Burst instability mechanism is shown in (a) for the AWI between fibers 3 and 4. The touch instability 

mechanism is shown in (b) for the interface that comes into contact with fiber 4. The coalescence instability 

mechanism is shown in (c) for the two interfaces meeting each other under fiber 1. Formation of an island between 

three and two fibers is shown in (d) and (e), respectively. 

 

3.4 Simulation method and experimental validation 

 

We use Surface Evolver to predict the shape and location of the AWI in our virtual fibrous media. 

The basis of SE calculations is to divide the AWI interface into small triangles (facets), and to 

move the vertices of these facets iteratively to minimize the energy of the air water solid system 

given with the following equation [141]. 

𝐸 = 𝑝∭ 𝑑𝑉 + 𝜎∬ 𝑑𝐴𝐿𝐺 − 𝜎∑ cos𝜃𝑖 ∬ 𝑑𝐴𝑆𝐿
𝑖

𝐴𝑆𝐿
𝑖

𝑛
𝑖=1𝐴𝐿𝐺𝑉

   (3.5) 
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where p, 𝜎, and 𝜃𝑖  are pressure difference across the AWI, surface tension, and the YLCA of fiber 

i, respectively. Subscripts S, L, and G refer to solid, liquid, and gas, respectively. The first term in 

this equation refers to the work done by intrusion pressure on the AWI, the second term is the 

surface energy of the AWI, and the last term is the solid surface energy on the fibers. The state of 

minimum energy for a given pressure corresponds to the equilibrium shape of the interface at that 

pressure. Calculation of system energy requires the integrand dASL in Equation 3.5 to be derived 

for each fiber. Considering an elemental area of the fiber, we have 

𝑑𝐴 = 𝑟𝑓𝛼𝑑𝑥   (3.6) 

where 𝑟𝑓 is fiber radius, and the 𝛼 is the intrusion (or immersion) angle given as (see Figure 3.3a),  

𝛼 = arctan (
𝑦−𝑦0

𝑧−𝑧0
)              (3.7) 

Calculation of the volume integrand in Equation 3.5 is not straightforward. Surface Evolver 

calculates the volume between the AWI and the 𝑧 = 0 plane (the volume with a cross-sectional 

area shown with ABCD in Figure 3.3b), but ignores the volume above the fiber (the volume with 

a cross-sectional area shown with ADEF in Figure 3.3b). We therefore modified the above-

mentioned volume integrand by subtracting the volume shown with the cross-sectional area of 

OAF from the one with the trapezoidal cross-section OADE, i.e., 

𝑑𝑉 =
1

2
((𝑧 + 𝑧0)(𝑦 − 𝑦0) − 𝛼𝑟𝑓

2)𝑑𝑥        (3.8) 

With this modification, the volume of the non-wetting phase (water) can correctly be predicted by 

SE. The area and volume integrands for fibers aligned in the y-direction, can be derived in a similar 

way and programmed in SE. 
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Fig. 3.3: Geometric variables used in Equations 3.5–3.8 are shown in (a) using a schematic drawing of the air–water 

interface in contact with a fiber. Modifications needed for correct non-wetting phase volume calculation in Surface 

Evolver is shown graphically in (b). 

 

 To examine the accuracy of our energy minimization-based simulations, we considered two 

validation studies. In the first validation, we produced 3-D printed two-layer structures composed 

of orthogonal fibers, and spray-coated them with a hydrophobic coating. The two-layer media were 

then used in a custom-made water entry pressure setup to image the AWI at different intrusion 

pressures and compare them to their numerical counterparts (Section 3.4.1). For the second 

validation, we obtained the shape and location of the AWI in a 2-D domain as a function of 

pressure. These predictions were then compared to those obtained in a previous study by Bucher 

et al. [124] using a force balance approach (Section 3.4.2). 

 

3.4.1 Comparison with experiment 

 

For the sole purpose of model validation, we produced a series of 3-D printed fiber layers and 

spray coated them with a hydrophobic coating, Ultra-Ever Dry from Ultratech Company. Before 

a)

 )
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applying the hydrophobic coating, an adhesive coating was applied to the fibers and the fibers 

were allowed to dry in ambient atmosphere for about 45 min. The coating was sprayed in a fine 

mist and as consistent as possible to maximize the uniformity of the coating. The coated fibers 

were left to dry for a full day before being used in an experiment. The same coating was also 

applied to a microscope slide and a YLCA of 123 degrees was observed with deionized water. The 

experimental setup is similar to the one described in [142], and it consists of an acrylic cylindrical 

vessel fed with water (dyed with food coloring for better imaging) through a u-tube mounted on 

an adjustable height gauge. The height gauge was used to adjust the pressure in the vessel by 

slowly raising the free end of the tube. The top of the vessel is comprised of a holder where the 

fibers can be mounted and sealed (see Figure 3.4). The height gauge was set to zero once the water 

level reached up to the fibers’ surface (detected through a microscope) and the water level in the 

u-tube manometer became stable. The hydrostatic pressure applied to the fibers can be obtained as 

𝑝 = 𝜌𝑔ℎ, where 𝜌 is water density, 𝑔 is the gravitational acceleration, and ℎ is the height of the 

water level column in the tube. The free end of the u-tube was slowly elevated and water 

penetration into the fiber-layer was monitored through the microscope. The elevated hydrostatic 

pressure at which water broke through the fiber-layer was then taken as the coalescence pressure. 
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Fig. 3.4: The experimental setup used for validating our numerical simulation is shown in the top left figure. Average 

fiber diameter and fiber-to-fiber spacing are about 250 and 1000 μm, respectively. The figures on the top right show 

the air–water interface at a pressure of about 320 Pa (slightly below the failure pressure) at two different 

magnifications. The bottom figures show the air–water interface from numerical simulation at a pressure of about 300 

Pa (slightly below the failure pressure). A YLCA of about 123° was measured experimentally and used in the 

simulations. 

 

 

For printed geometries comprised of orthogonal fibers with an average diameter of 250 µm and an 

average center-to-center fiber spacing of 1000 µm, we observed an average failure pressure of 

about 330 Pa with a standard deviation of 10 Pa (330 ± 10 Pa). These values were then compared 

with the numerical simulation results obtained for virtual fiber-layers with identical geometry. 
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Predictions of our numerical simulations were found to be within 10% of their experimental 

counterparts. Figure 3.4 shows examples of simulated and imaged AWIs near their failure 

pressures (320 Pa in experiment and 300 Pa in the simulation). The factors contributing to the 

mismatch between experimental and numerical results include, but are not limited to, non-

uniformity of the coating, inconsistencies in zeroing the height gauge when water level touched 

the surface of the fibers, and imperfection in the geometry of the 3-D printed fiber-layers (surface 

roughness, non-circular fiber cross-section…). 

 

3.4.2 Comparison with previous 2-D simulations 

 

As mentioned earlier, Equations 3.1–3.3 were used in [124] to track the penetration of a pressurized 

non-wetting fluid into 2-D fibrous structures filled with a wetting fluid. The predictions of the 

force balance approach of [124] are compared to those of our current approach in this section. 

Consider a 2-D virtual medium composed of unidirectional fibers with a solid volume fraction 

(SVF) of 0.15 and a fiber diameter of 10 µm in a 500×667 µm simulation domain. Assume the 

fibers to be made of two different materials having YLCAs of 35° and 65° with the wetting phase 

(or 145° and 115° with the non-wetting phase). Figure 3.5a shows the AWI reported in [124] at 

pressure of about 6600 Pa. Figure 3.5b shows similar simulation conducted using our energy-

minimization method for the same fibrous domain and at the same exact pressure. Excellent 

agreement between the two simulation methods is evident from the figure. 
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Fig. 3.5: Comparison between the AWIs obtained from force balance method reported in [124] (a) and the current 

energy method (b) for a unidirectional fibrous structure with an SVF of 0.15 and a fiber diameter of 10 µm at an 

intrusion pressure 6.6 kPa. Red and black fibers have different YLCAs of 35° and 65° with the wetting phase (145° 

and 115° with the non-wetting phase), respectively. 

 

 

3.5 Results and discussion 

 

3.5.1 Interface modeling in membranes with semi-ordered orthogonal parallel fibers 

 

In this section, we demonstrate how the proposed energy-minimization method can be used to 

obtain the shape and position of the AWI in a multi-layer fibrous structure with orthogonally 

oriented fibers. For structures considered in this chapter, number of fibers does not change 

dramatically from one layer to the other (SVF of each layer is almost a constant number). To 

generate orthogonally oriented layers of semi-ordered parallel fibers, we first distributed the fibers 

in an orderly fashion, but then moved them randomly in the neighborhood of their original 
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positions (without changing their orientation) by adding an arbitrary “noise” to their locations. We 

considered a noise amplitude obtained from Equation 3.9 as was described previously in [122]. 

𝛿 = min(
(
𝐿

𝑛
)−𝑑

2
, 𝜂𝑑)              (3.9) 

In this equation 𝐿, 𝑛, and 𝑑 are the in-plane size of the domain, number of fibers in the layer, and 

fiber diameter, respectively, and 0 < 𝜂 < 1 is a computer-generated random number. Note that in 

implementing this method, special care was paid to exclude fiber positions resulting in a fiber–

fiber overlap (non-physical) [122]. As mentioned earlier, the simulation method presented in this 

work is both accurate in terms of foundational physics and CPU friendly. We considered a 

computational domain having in-plane dimensions of 210×210 µm and a thickness of 150 µm (z-

direction), corresponding to 15 layers of fibers with a diameter of 10 µm (resulting in a solid 

volume fraction of 23%) and an YLCA of 150 degrees. While the periodic boundary condition is 

the most appropriate type of boundary condition for the kind of study considered here, we chose 

to use symmetric boundary conditions for the lateral boundaries of our computational domain to 

ease the interface tracking in SE. Obviously, there is no plane of symmetry in a fibrous medium 

comprised of semi-ordered (albeit perfectly orthogonal) fibers. Therefore, special care should be 

taken to ensure that the in-plane dimensions of the simulation domain are large enough to 

statistically represent a real fibrous structure (negligible edge effects). Nevertheless, with finite 

computational power, simulations with a given set of parameters have to be repeated on an 

ensemble of statistically identical structures to ensure confidence in the results. The results 

presented in this study are averaged over an ensemble of no less than three structures. Figures 3.6a 

through 3.6d show examples of AWI shape and position inside the membrane under different 

intrusion pressures. The structures are assumed to be filled initially with air, and water is then 

pushed into them by incrementally increasing the intrusion pressure. It can be seen that the AWI 



49 

 

continues to penetrate into the structure with increasing the pressure from 6.5 to 12.5 kPa. With 

such detailed information about the shape and location of the AWI, one can calculate the average 

AWI penetration depth at any prescribed pressure (see Figure 3.6e). It can be seen in this figure 

that higher pressures are needed to force the AWI deeper into the membrane. The horizontal axis 

is the dimensionless penetration depth z* (average penetration depth divided by equivalent fiber 

diameter). To investigate the effects of YLCA on intrusion pressure, simulation results for a 

membrane with identical structures but a YLCA of 120 degrees are also added to Figure 3.6e. As 

expected, intrusion pressure is less when the fibers are less hydrophobic. As was discussed earlier, 

interface tracking in a semi-ordered membrane is a challenging task due to meniscus instabilities. 

Conducting simulations like those reported in Figure 3.6 require close attention to the stability of 

the AWI as it penetrates through the structure. 
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Fig. 3.6: Simulation of AWI inside a structure with an SVF of 0.23, a fiber diameter of 10 µm, and a YLCA of 150° 

at different intrusion pressures from 6.5 kPa through 12.5 kPa shown in (a) through (d), respectively. The intrusion 

pressure vs. penetration depth simulation results are given in (e). 
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Figure 3.7a shows a magnified view of an AWI undergoing the burst instability near the bottom 

of the membrane previously discussed in Figure 3.6 (the fibers accommodating the bursting AWI 

are shown in green for better illustration). Figure 3.7b, shows a magnified view of two AWIs in 

contact with a common fiber (shown in green) undergoing coalescence instability. Coalescence of 

these AWIs results in the submersion of the green fiber in the wetting phase (the green fiber will 

be fully wet). It is important to mention that, for the sake of simplicity, we have assumed that the 

entire length of a fiber is submerged in the wetting phase once only a segment of its length is 

submerged (due for instance to AWI coalescence). This assumption helps to alleviate an otherwise 

challenging problem of modeling contact-line motion along the length of the fibers. We 

acknowledge that this approximation detracts from the versatility of the model as it relies on the 

geometrical regularity of the structure.  

 

Fig. 3.7: The burst and coalescence failure mechanisms are shown in (a) and (b), respectively. 
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Our intrusion pressure simulation procedure is summarized in a flowchart shown in Figure 3.8. 

The simulations start by placing an AWI on the surface of the membrane for a very low intrusion 

pressure, and end once a local AWI burst is detected on the bottom side of the structure as the 

pressure is incrementally increased. 

 

Fig. 3.8: Flowchart for the simulation algorithm. 

 

3.5.2 Intrusion pressure vs. penetration depth 

 

In this section, we study the effects of fiber size or contact angle heterogeneity on the intrusion 

pressure of fibrous media. We limit our study to fibrous membrane comprised only of two different 

species for the sake of brevity, but our approach can also be applied to membrane with multiple 

fibrous species. We use the terms Bimodal-D or Bimodal-CA to refer to a membrane with bimodal 

diameter or bimodal contact angle distributions, respectively. Fig. 9a and b show the AWI at an 
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intrusion pressure of 𝑝 = 5 kPa in two Bimodal-D structures with an SVF of ε = 0.23, and a fixed 

YLCA of 𝜃 = 120°. These structures are comprised of fine (shown in red) and coarse (shown in 

blue) fibers with a diameter of 𝑑 = 10 and 20 μm, respectively. The fine fiber volume fraction is 

50% for the structure shown in Figure 3.9a, and 25% for the one shown in Figure 3.9b. It can be 

seen that AWI penetrates deeper in the structure for which the fine-fiber volume fraction is less 

(Figure 3.9b), as the pores are generally larger in such media. Figure 3.9c shows the intrusion 

pressure versus dimensionless penetration depth for the above Bimodal-D membrane having 

different fine-fiber volume fractions (denoted as 𝑣1
𝑑). Note that the horizontal axis in Figure 3.9c 

is the dimensionless penetration depth (average AWI penetration depth divided by equivalent 

diameter), and it refers to the average number of layers that are submerged in water. For structures 

considered here, the equivalent diameter is equal to 10 µm, 13.33 µm, 13.33 µm, and 20 µm for 

the 𝑣1
𝑑 = 1, 𝑣1

𝑑 = 0.5, 𝑣1
𝑑 = 0.25, and 𝑣1

𝑑 = 0, respectively. 
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Fig. 3.9: Simulation of AWI inside Bimodal-D structures with an SVF of 0.23 but different volume fractions of fine 

(10 µm) or coarse (20 µm) fibers. The YLCA of the fibers is assumed to be 120° and the intrusion pressure is set at 5 

kPa. Volume fraction of fine fibers is 50% and 25% in (a) and (b), respectively. The intrusion pressure vs. penetration 

depth simulation results are plotted in (c). 
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Consider a Bimodal-CA fibrous structure with an SVF of 0.23 and a fixed fiber diameter of 10 

µm. The structure is comprised of fibers with YLCAs of 𝜃1 = 150° (66% volume fraction) and 

𝜃2 = 120° (34% volume fraction) shown with red and blue colors, respectively, in Figure 3.10a. 

This figure also shows the AWI at an intrusion pressure of 9.5 kPa. Figure 3.10b shows the AWI 

at the same intrusion pressure for the same structure but with fibers’ YLCAs swapped. It can 

clearly be seen that the AWI penetrates deeper in the structure with less hydrophobic fibers (Figure 

3.10b). Note also in Figure 3.10a that AWI penetration is less in regions where the fibers are closer 

to one another. Defining the volume fraction of the more hydrophobic fibers in a Bimodal-CA 

medium as 𝑣1
𝜃, effects of 𝑣1

𝜃 on intrusion pressure–depth relationship is shown in Figure 3.10c. 

Comparing the results shown in Figures 3.9c, and 3.10c, indicates that intrusion pressure of a 

fibrous medium depends on fiber diameter more strongly than it depends on YLCA. 
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Fig. 3.10: Simulation of AWI inside Bimodal-CA structures with an SVF of 0.23 and a fiber diameter of 10 µm but 

different fiber YLCAs of 150 and 120 degrees. The intrusion pressure is set at 9.5 kPa. Volume fraction of more 

hydrophobic fibers is 66% and 34% in (a) and (b), respectively. The intrusion pressure vs. penetration depth simulation 

results are given in (c). 
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A more realistic scenario is when both the YLCA and fiber diameter vary in a bimodal fibrous 

structure (referred to as Bimodal-D-CA). The inset in Figure 3.11 shows an example of our AWI 

tracking (for an intrusion pressure of 7.5 kPa) in a Bimodal-D-CA membrane with an SVF of 0.23, 

made of two types of fibers, one with a YLCA of 150° and a diameter of 10 µm (shown in red) 

and the other with a YLCA of 120° and a diameter of 20 µm (shown in blue). The intrusion 

pressure–depth relationship for this membrane is plotted in Figure 3.11. The volume fraction of 

each species is arbitrarily chosen to be 0.5. 

 

Fig. 3.11: The intrusion pressure vs. penetration depth results for Bimodal-D-CA membranes with an SVF of 0.23. 

Simulation of AWI inside Bimodal-D-CA membranes with an SVF of 0.23 at an intrusion pressure of 7.5 kPa is shown 

in the inset. The structures are composed of fibers with a diameter 10 µm and a YLCA of 150 (shown in red) and 

fibers with a diameter 20 µm and a YLCA of 120 (shown in blue). 
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3.6 Conclusions 

 

Intrusion pressure for fibrous membranes comprised of orthogonally-oriented layers of semi-

ordered parallel fibers was simulated in this work using an interface tracking approach 

implemented in the Surface Evolver finite element code. For model validation, we compared the 

predictions of our interface tracking method with those obtained from analytical force balance 

method (e.g., [124]) or experiment but for simpler fibrous geometries. The main advantage of the 

simulation method developed in this work is the ability to resolve the shape and position of the 

air–water interface as the interface penetrates into the membrane, which includes the breakup of 

an interface into smaller interfaces. Moreover, the proposed method can predict the effects of fiber 

diameter or contact angle dissimilarity on intrusion pressure with a reasonable CPU time. The 

main disadvantage of the method on the other hand, is that it is very sensitive to the internal 

geometry of the membranes, making it hard to apply the method to membrane comprised of purely 

random fibrous structures. The advantages and shortcomings of the energy method are also 

discussed relative to those of some other methods like VOF, LB, or FM. For demonstration 

purposes, we simulated the effects of fiber diameter or fiber contact angles on membrane intrusion 

pressure. It was shown that increasing the volume fraction of the fine fibers, or fibers with a higher 

YLCA, leads to an increase in the intrusion pressure of the resulting media [4,125]. 
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Chapter 4. On liquid bridge adhesion to fibrous surfaces under normal and shear forces 

4.1 Introduction 

Formation of a liquid column between two surfaces is often referred to as a liquid bridge.  Liquid 

bridges are seen in nature, e.g., in frogs, insects, or geckoes climbing a wall [11–13] or in wet 

beach sands adhering to one another [54], and in industrial applications like printing [14-15], 

microstereolithography [143-144], papermaking [16], filtration [145], or atomic force microscopy 

[17–18]. Pioneering research on liquid bridges dates back to 1805, when Young created a liquid 

bridge between two flat plates to study surface tension [20]. Later, Laplace formulated the pressure 

difference across an interface between two immiscible fluids in terms of the curvature of the 

interface, i.e., the Laplace pressure [19], and it was then presented by Gauss in the form of the 

Young–Laplace equation [146]. The Young–Laplace equation has been solved analytically for the 

simple case of a liquid bridge between two similar [55–56] (or dissimilar [57]) flat plates in the 

absence of gravity, or numerically for a liquid bridge between a sphere and a flat plate [58], 

between two spherical particles [59-61], or between two cylindrical fibers [62-63]. These studies 

were mainly aimed at predicting the forces acting on a liquid bridge as a function of the spacing 

between the surfaces or their wetting properties. Despite the differences in the methods used to 

solve the Young–Laplace equation (or the geometries considered), the above investigations shared 

one important attribute: they all assigned a single equilibrium contact angle (CA) to the liquid–air 

interface at the liquid–solid–air triple contact-line (TCL). This is obviously an idealization as in 

practice, owing to surface roughness [64] or heterogeneity [65], a surface often shows a lower CA, 

when the TCL is receding, and a higher CA, when it is advancing (with the difference between 

them being referred to as the contact angle hysteresis, CAH).  



60 

 

Liquid bridges formed between two identical parallel plates were classified as the R-bridges (where 

the interface is pinned to the circumference of a circular plate) or the θ-bridges (where a CA is 

assigned to a moving TCL) by Fortes [147] who reported the possibility of observing more than 

one equilibrium profile for a liquid volume between two parallel plates. Most published studies in 

the literature have considered a moving TCL (with a single-valued CA) as the boundary condition, 

when studying the compression or stretching of a liquid bridge between two parallel plates. De 

Souza et al. [148–150] were the first to consider two θ-constant lines, corresponding to the 

advancing and receding CAs of the surface, in simulating a liquid bridge compression or 

stretching, and Chen et al. [66–68] were the first to systematically incorporate a CAH in liquid 

bridge modeling. These authors used a pinned TCL boundary condition, when the CA was between 

the receding and advancing values, and a moving (unpinned) TCL boundary condition, when the 

CA had reached the advancing or receding CAs. In the present study, we describe how TCL 

pinning/unpinning affects the behavior of a liquid bridge between two parallel plates during 

compression or stretching using R-constant (pinned TCLs) and θ-constant (moving TCLs) lines on 

force–spacing plot. We use this new approach to describe the moment of transition from one mode 

of liquid–surface interaction to the other via insightful energy plots. We also use the R-constant 

and θ-constant lines to map the compression–stretching process and to predict the fate of the liquid 

bridge under a compression–stretching cycle.  

The remainder of this chapter is organized as follows. Section 4.2 presents our experiments 

including our test setup and surface coating methods. The underlying physics of the problem at 

hand as well as our simulation approaches are discussed in Section 4.3, and are followed by a 

validation study in Section 4.4. Section 4.4 also presents our computational and experimental 
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results for liquid bridge under varying degrees of compression, stretching, and shear. The 

conclusions drawn from our study are given in Section 4.5. 

4.2 Experimental Setup and Materials  

4.2.1 Test Setup 

As shown in Figure 4.1, our experimental setup is comprised of two flat plates on which the test 

surfaces (or coatings) were mounted. The lower plate was placed on a sensitive scale (Mettler 

Toledo XSE105DU) with an accuracy of 0.01 mg while the upper plat was mounted on a height 

gauge. A glycerol-in-water solution with a glycerol concentration of 15% by weight was 

considered as our test fluid (glycerol was added to DI water to help lowering the rate of evaporation 

without affecting the surface tension 𝜎 = 0.072 N/m and density 𝜌 = 1,039 kg/m3 of the DI 

water). Droplets with a volume of 7 μL were deposited on the lower plate using a New Era NE-

300 syringe pump, and the scale was zeroed after each droplet placement. The upper plate was 

lowered incrementally until it touched the droplet and formed a liquid bridge between the plates 

(the scale was observed to show a negative weight, corresponding to the attraction forces exerted 

on the droplet by the upper plate, at the moment of contact). The upper plate was then moved to 

first compress and then stretch the liquid bridge while the forces on the lower plate was being 

recorded by the scale. The entire process of liquid bridge formation and compression/stretching up 

to the moment of breakup was captured by a high-speed camera (Phantom Miro Lab 340) equipped 

with a Tokina 100mm F 2.8 D lens. Special care was taken to ensure that the experiment was 

conducted slowly so that the compression–stretching process could be treated as a quasi-static 

process. The quasi-static assumption was also justified on the basis on small Capillary and Weber 

numbers (Ca =
𝜇𝑈

𝜎
= 2.13 × 10−7 ≪ 0.1  , We =

𝜌𝑈2𝑟

𝜎
= 1.7 × 10−9 ≪ 1, with 𝑈 as the velocity 
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of the upper plate, r  as the characteristic length of the liquid bridge, taken as the radius of a sphere 

with the same volume of liquid, and  𝜇, 𝜎, and 𝜌 as the viscosity, surface tension, and density of 

our glycerol-in-water solution, respectively) that were obtained for the experiment.    

 

Fig. 4.1: Schematic drawings for the setup used for liquid bridge experiments. 

 

4.2.2 Electrospinning Fibrous Coatings 

Electrospinning is a simple method of producing nanofiber coatings from a charged solution [151-

153]. We employed this process to produce fibrous coatings with different wettabilities. To create 

a hydrophobic fibrous coating, a Polystyrene (PS) solution was produced by dissolving PS pellets 

in a 70–30 wt% mixture of Toluene and Tetrahydrofuran (THF) to obtain a 25 wt% PS solution 

(to ensure homogeneity, the solution was stored in a refrigerator for a day before being used for 

electrospinning) [154]. A positive voltage of 5.5 kV, with respect to a grounded target, was applied 

to the tip of a syringe mounted on a syringe pump with an infusion rate of 2.5 μL/ min. Under the 

influence of the electrostatic force, microscale fibers were ejected toward a substrate (a microscope 

cover glass purchased from McMaster Carr) mounted on a drum (grounded target) located 85 mm 
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away from the syringe tip. Drum was given axial and rotational motions with velocities of 15 mm/s 

and 1,200 rpm, respectively. This allowed us to produce electrospun coatings comprised of aligned 

fibers. In this study, three-layer orthogonal PS electrospun coatings with spinning time of 5 min 

for each layer were produced (see Figure 4.2).  

 

Fig. 4.2: Schematic drawings for the setup used for polystyrene electrospinning. The inset SEM image is 

an example of our PS coatings comprised of orthogonally-layered fibers. 

 

4.3 Theoretical Analysis 

4.3.1 Balance of Forces on A Liquid bridge 

Consider the liquid bridge between the plates shown in Figure 4.3. Forces acting on the bridge are 

the TCL forces (acting along the TCL on the upper and lower plates), the force from the Laplace 

pressure on both plates, and the gravitational force. The significance of the gravitation force is 

often judged using the Bond number Bo =
Δ𝜌𝑔𝑟2

𝜎
 (with Δ𝜌 density difference between the two 

phases i.e., air and water, 𝑔 the gravitational acceleration, and 𝑟 the characteristic length, taken as 

the radius of a sphere with the same volume of liquid). For small droplets, where Bo < 1, the effects 

of gravity are negligible, and the vertical adhesion force on the upper plate is the same as that on 

the lower plate. When gravity is important, the Laplace pressure Δ𝑃 (and hence the mean curvature 
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of the liquid bridge 𝐻) varies in the z-direction (i.e., Δ𝑃(𝑧) = Δ𝑃L − 𝜌𝑔z , and 𝐻(𝑧) = 𝐻L −

𝜌𝑔z/2σ). 

              

Fig. 4.3: Free body diagram for a liquid bridge between two horizontal plates. 

 

In other words, the lower plate experiences a higher pressure than the upper plate (the difference 

being the hydrostatic pressure), when the gravity is not negligible. Considering the balance of 

vertical forces on a liquid bridge, we can write (see Figure 4.3),   

∑𝐹𝑧 = 𝐹CL,z
𝑈 − 𝐹p

𝑈 − 𝐹CL,z
𝐿 + 𝐹p

𝐿 −𝑚𝑔 = 0                     (4.1) 

where 𝐹CL,z and 𝐹p  are the TCL and pressure (from the Laplace pressure) forces, respectively, 

and they can be calculated as, 

𝐹CL,z
𝑗

= 2𝜋𝑅𝑗𝜎 sin 𝜃𝑗               (4.2) 

𝐹p
𝑗
= 𝜋𝑅j

 2Δ𝑃𝑗                (4.3) 
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In these equations, 𝑅 refers to TCL radius, 𝜃 is the CA, and subscripts U and L denote the upper 

and lower plates, respectively. It can be seen from Equation 4.1 that the vertical adhesion force on 

the upper plate (i.e. 𝐹U = 𝐹CL,z
𝑈 − 𝐹p

𝑈) is larger than its counterpart on the lower plate. Calculating 

the adhesion forces between a liquid bridge and its hosting plates requires accurate information 

about the equilibrium shape of the liquid bridge, which is obtained here by solving the Young–

Laplace equation with proper boundary conditions. Two different boundary conditions may 

become necessary in describing the liquid bridge compression–stretching process mathematically. 

The first scenario is when the TCL is fixed and the CA is free to vary between the advancing 𝜃a 

and receding 𝜃r CAs (referred to as the pinned TCL). The second scenario is when at a constant 

CA (receding or advancing), the TCL is allowed to freely move on the surface (referred to as the 

unpinned or moving TCL). Obviously depending on the choice of boundary conditions, the 

equilibrium shape of a liquid bridge and the adhesion forces on the plates, vary with varying the 

spacing between the plates.    

4.3.2 Numerical Simulation 

As discussed earlier, studying the forces acting on the plates during the compression and stretching 

of a liquid bridge requires detailed information about the instantaneous AWI shape of the liquid 

bridge. Quasi-static process is considered in this work (i.e. the compression and stretching of the 

liquid bridge is performed slowly), which is different from the dynamics of the liquid shape and 

its interfacial deformation that are often investigated via molecular dynamics approaches [155-

157]. Simulation of the quasi-static process is achieved here through solving the Young–Laplace 

equation via the Surface Evolver (SE) finite element code [141]. SE predicts the equilibrium shape 

of a fluid–fluid interface, e.g., air–water interface (AWI), by dividing the AWI into small triangular 

facets, and moving the vertices of these facets to minimize the total energy of the system 
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iteratively, while also satisfying a set of constraints (e.g., a pinned or moving TCL) [123,158-159]. 

The total energy of the solid–liquid–gas system for a liquid bridge can be defined as, 

𝐸 = ∭ (𝑝L − 𝜌𝑔𝑧
𝑉

)𝑑𝑉 + 𝜎∬ 𝑑𝐴LG𝐴LG
− 𝜎 cos 𝜃L∬ 𝑑𝐴SL𝐴SL

L − 𝜎 cos 𝜃U∬ 𝑑𝐴SL𝐴SL
U      (4.4) 

The first term in Equation 4.4 is the work done on the liquid–gas interface by the liquid bridge 

internal pressure (the sum of the Laplace and hydrostatic pressures), and the second term is the 

surface energy of the liquid–gas interface. The last two terms on the RHS incorporate the Young 

equation (i.e. 𝛾SG − 𝛾SL = 𝜎 cos 𝜃) to calculate the solid surface energy on the lower and upper 

plates. For the case of moving TCLs (with a known CA), the Young–Laplace equation should be 

solved for the TCL radius, with the surface receding or advancing CAs assigned to 𝜃L or 𝜃U in 

Equation 4.4. In addition, the solid–liquid differential area element 𝑑𝐴SL for the upper and/or lower 

plate(s) should also be defined for SE as,  

𝑑𝐴SL = 𝑥𝑑𝑦       (4.5) 

The liquid bridge equilibrium solid–liquid area 𝐴SL will be then obtained by minimizing the energy 

of the system (Equation 4.4) iteratively. For the case of pinned TCLs (known TCL radius) on the 

other hand, the Young–Laplace equation should be solved for the CA. This was done here by 

considering a circular TCL for the liquid bridge with its parametric representation in the polar 

coordinates given as,     

𝑥 = 𝑅𝑖 cos𝜙       (4.6) 

𝑦 = 𝑅𝑖 sin𝜙       (4.7) 

𝑧 = 𝑧𝑖       (4.8) 
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where, subscript 𝑖 can represent the lower or the upper plate. Once the minimum energy of the 

system is reached through iterations, the equilibrium CA of the liquid bridge on the plates will be 

predicted by iteratively minimizing the energy of the system. The volume of the liquid bridge is 

found by adding up the individual volumes of the vertical prism between each facet and the lower 

plate (z = 0 plane). To account for the upper plate in SE calculations, the differential volume 

element 𝑑𝑉 should be programed in SE as,   

𝑑𝑉 = 𝑧U𝑥𝑑𝑦         (4.9) 

Figure 4.4 shows a simulated liquid bridge between two horizontal plates. The facets adjacent to 

the lower plate (the xy-plane) are shown in red. CA is defined for the simulations as the angle 

between the normal to the facet and that to the plate. Assuming that the normal vector to a facet 

on the TCL to be �̂� = (𝑣1, 𝑣2, 𝑣3), the CA for the lower plate can be found as,        

𝜃L = acos( 
𝑣3

√𝑣12+𝒗𝟐𝟐+𝒗𝟑𝟐   
)                                                                                                                                         (4.10) 

Similarly, for the facets adjacent to the upper plate,   

𝜃U = acos( 
−𝑣3

√𝑣12+𝑣22+𝑣32   
)                                                                                                                                         (4.11) 

Although a coarse mesh size was used in Figure 4.4 for illustration, special attention was paid to 

ensure that the mesh size used for the simulations was fine enough to produce grid-independent 

results.  
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Fig. 4.4: A virtual liquid bridge between two horizontal plates with the facets on the lower TCL shown in 

red.  

 

Throughout the simulations, we calculated the CAs of the liquid bridge and compared them to the 

measured advancing and receding CAs. Contact angles greater (or smaller) than the advancing (or 

receding) CAs were replaced by their limiting values when the TCL was unpinned. On the other 

hand, if the CAs happened to be between the advancing and receding CAs, then the TCL was 

assumed to be pinned. Either way, the interface shape was recalculated after any modifications to 

the TCL condition. We incrementally decreased the distance between the plates down to a 

minimum distance of 𝑆min (compression) and recalculated the CAs on each plate at each increment 

to check if they were between the limiting values of advancing and receding CAs. Once the 

minimum distance was reached, we then separated the plates incrementally (stretching) up to a 

point where no equilibrium shape could be found. This was also seen in the experiment, where at 

some distance near the end of the stretching process, a spontaneous (irreversible) liquid bridge 

breakup had occurred. Note that CAs were recalculated every time the spacing between the plates 

was varied (to decide on whether pinning/unpinning condition for the TCL- line should be used).   
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4.4 Results and Discussion 

4.4.1 Liquid Bridge between PS-Coated Horizontal Plates under Compression or Stretching 

We start this section with an insightful discussion on the variation of the surface energy of a liquid 

bridge during compression and stretching. This is also accompanied with a validation study 

through comparing our results with those reported previously by Chen et al. [66].  

Our simulations started with an initial spacing of 1,100 µm, a volume of 2 µL, and a YLCA of 60˚ 

on both plates, i.e., average of the advancing and receding CAs (we used the advancing and 

receding CAs of the surface in our simulations to determine which of the pinned or unpinned TCL 

was to be considered for a given spacing). The outputs of the SE simulations were the equilibrium 

shape of the liquid bridge and the mean curvature of the liquid bridge interface (hence the Laplace 

pressure), which were used to find the forces on the lower plate 2𝜋𝑅L𝜎 sin 𝜃L − 𝜋𝑅𝐿
  2Δ𝑃𝐿. Figure 

4.5 shows liquid bridge profiles during the compression and stretching steps. The spacing between 

the plates and the radius of the bridge are given below each subfigure.  
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Fig. 4.5: Snapshots of a liquid bridge with a volume of 2 µL are shown at different spacing distance between 

two identical plates with advancing and receding CAs of 80 and 40˚, respectively. Spacing between the 

plates, radius of the contact area, and the liquid CA are given underneath each subfigure.  

 

Figure 4.6a shows the surface energy (𝜎𝐴LG − 𝜎 cos 𝜃L 𝐴SL
L − 𝜎 cos 𝜃U 𝐴SL

U ) of the liquid bridge 

at different spacings while Figure 4.6b presents the same process on a force–spacing plot. For the 

latter, we also included the force predictions of Chen et al. [66] for comparison. Also, added to 

these figures are the 𝜃-constant (unpinned TCL) and 𝑅-constant (pinned TCL) lines to map the 

compression–stretching process and provide insight into the physics of the problem. During the 

initial stages of the liquid bridge compression from point A (where both surfaces have an average 

CA of 60˚ and lay on the 𝜃 = 60˚ line), the TCL was pinned (compression takes the liquid bridge 
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along the 𝑅 = 866 μm line) while the CA was allowed to increase and reach the advancing CA at 

a distance of 900 µm at point C, which is the intersection of the 𝑅 = 866 μm line and advancing 

CA line (i.e., 𝜃 = 80˚ line)  (note the increase in the surface energy of the system during the pinned 

compression process from A to C). The TCL was then unpinned and allowed to move with the 

advancing CA until a minimum spacing of 600 μm was reached at point F (note the decrease in 

the system energy; almost all the energy stored by the system during the pinned compression was 

spent in this process). The stretching process started from point F with an initially pinned TCL. 

The CA decreased along the F-to-H travel to reach the receding CA at point H. Note the decrease 

in system’s surface energy moving down even to negative values (meaning that the negative 

surface energy of the solid–liquid dominates the positive surface energy of the liquid–gas 

interface). Further stretching from this point resulted in TCL shrinking with the receding CA (from 

point H to point L). Note that the surface energy of the system was increased from H to L meaning 

that some work was done on the system. It is interesting to note that point L has a lower energy 

compared to that of point A. This means that after one compression-stretching cycle, the liquid 

bridge will be at a lower energy state. Also seen is that for any two points with identical spacing 

(e.g., B-K or C-J), state of energy during stretching is lower than that during compression. It should 

be noted that the liquid bridge shape variations are reversible from point F to H or on any other 𝑅-

constant lines. For instance, liquid bridge reverts to the same point along the same path (point F) 

if one increases the spacing between the plates from 600 μm to 700 μm (from point F to point G) 

and then back to 600 μm. On the other hand, the shape variations are irreversible on the 𝜃-constant 

lines when reducing the spacing from 900 μm to 600 μm (point C to point F), and then stretch 

back to the same height. In this case, the liquid bridge does not retrieve its initial state at point C, 

but instead takes the F-H-J path to point J. Evidently, the 𝜃-constant and 𝑅-constant lines also 
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predict the pinning span in the compression or stretching processes. For instance, stretching the 

liquid bridge from point E, the TCL remains pinned up to the height at which the 𝑅 = 976 μm 

line intersects with the 𝜃 = 40° line (the receding line).  

 

Another important behavior to point out is the TCL pinning at the end of the stretching process, 

which often happens for hydrophilic surfaces. In such cases, the TCL recedes until its radius 

decreases to a minimum value 𝑅min (was also discussed in the model of [66] and the experiments 

of [160]). 𝑅min depends on liquid volume as well as the receding CA of the surface. For the liquid 

bridge considered in Figure 4.6, the minimum contact radius of 𝑅min = 939 μm was obtained. 

Hence, the pinning at the end of the stretching process starts at the intersection of the  𝜃r = 40° 

and 𝑅min = 939 μm lines, and the CA increases with further stretching (from point N to point P). 

Note that since the 𝜃-constant and 𝑅-constant lines approach one another at higher spacing values, 

the choice of pinned vs. unpinned TCL becomes less significant for force prediction (but it is 

important in predicting the liquid bridge profile). The R-constant (or θ-constant) lines are obtained 

from separate simulations with the assumption of a constant contact-line radius (or CA) for all 

spacing. Such simulations can be repeated for different CAs and contact-line radius to fabricate a 

mapped force-spacing plot. Such a plot allows the user that needless of running simulation (or 

solving the Young-Laplace equation), just using the surface advancing and receding CA and the 

Rmin lines with the abovementioned discussion, predict the adhesion force (as well as the liquid 

bridge profile) at any spacing. 
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Fig. 4.6: Surface energy of the system is given in (a). Also, shown in (a) is the R-constant and 𝜃-constant 

lines. Comparison between the current numerical simulations and those from [66] are given in (b) in a 

force–spacing diagram. 

As mentioned earlier, our experimental setup was comprised of two flat plates. The lower plate 

was placed on a sensitive scale while the other one was mounted on a height gauge. For the 
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experiment, a droplet was deposited on the lower plate and the scale was immediately zeroed. 

When compressing or stretching the liquid bridge, the force exerted to the lower plate by the liquid 

bridge was recorded by the scale. For the experiments reported in this section, we used plates 

coated with PS fibers. PS electrospun coatings are known for their superhydrophobicity, and 

depending on the spacing between the fibers, fiber diameter, and the chemistry of the PS fibers 

(e.g., choice of solvent or solution concentration) a water droplet may exhibit a behavior associated 

with the Cassie (almost dry) or the Wenzel (wetted) state. A droplet at the Cassie state is mainly 

in contact with air and requires less force to move on the surface compare to a droplet at the 

Wenzel. In our liquid bridge experiment, we believe that droplets cannot remain in the Cassie state 

during the compression process even though they may also not reach a fully-wetted (fully Wenzel) 

state [4,154,161-165]. To assign advancing and receding CAs to these surfaces, we used the 

inflation–deflation method, i.e., we incrementally increased the volume of a droplet on the surface 

(upon injecting more liquid into the droplet by a syringe) and monitored its profile using a camera. 

The CA at which droplet’s TCL moved on the surface was then taken as the advancing CA for that 

droplet–surface combination. Similarly, we decreased the volume of the droplet (upon taking in 

some portion of the droplet back to the syringe), and monitored the TCL motion. The angle at 

which droplet’s TCL started shrinking was taken as the receding CA. Figures 4.7a and 4.7b present 

experimental and computational results for when the upper and lower plates were coated with 

electrospun PS (hydrophobic) fibers. For these simulations, we considered an advancing CA of 

131˚ for both the upper and lower surfaces at a spacing of 1,240 µm in the presence of gravity. 

The droplet was compressed to a spacing of 940 µm and then stretched till the breakup point.  
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Fig. 4.7: Snapshots of a liquid bridge between two horizontal plates coated with electrospun PS fibers (with 

advancing and receding CAs of 131˚ and 125˚, respectively) are given in (a) along with their computational 

counterparts in (b) at different spacing.  

 

Figure 4.8a compares the force exerted on the lower plate from simulation with that from 

experiment. The discrepancy between the predicted and measured forces can be attributed to the 

non-uniformity of the PS coating (see the inset of this figure), which can introduce inconsistency 

in our advancing/receding CA measurements (inputs to the model). Different 𝜃-constant lines are 

also added to the figure for the sake of illustration. 𝑅-constant lines are not plotted, since in the 

presence of gravity the radius of the TCL on the upper plate is different from that on the lower one 

and assigning a single 𝑅-constant is not relevant. It can be seen in Figure 4.8b that, 𝐹p becomes 

larger than 𝐹CL at low spacing values, which provides a negative net force on the lower plate (i.e., 

liquid bridge exerts a compressive force on the lower plates at small spacing). Stretching the liquid 

bridge causes the force to change sign at some point. 
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Fig. 4.8: The measured and predicted adhesion forces on the lower plate are shown in (a). Predicted 

capillary and pressure forces on the lower plate are compared with one another in (b).  

 

Figure 4.9a presents simulation results for the effects of minimum spacing between the plates on 

the force exerted by the liquid bridge. It is interesting to note that the equilibrium shape of the 

liquid bridge during stretching can be different from that during compression for a given spacing 

(e.g., see the two different liquid bridge profiles at S = 1,090 µm in Figure 4.7b) due to CAH. This 

results in a force–spacing path during stretching different from that during compression (Figure 
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4.9a). Effects of varying liquid volume on force–spacing behavior were also simulated and are 

shown in Figure 4.9b. It can be seen that increasing liquid volume results in an increase in the 

force magnitude. This is because a larger droplet has a longer TCL (for a given spacing between 

the plates), which results in a larger capillary force.   

 

Fig. 4.9: Panel (a) shows the predicted adhesion force on the lower plate for when a liquid bridge with a 

volume of 7 µL is compressed to different minimum spacing values before stretching. Panel (b) shows 

similar results for liquid bridge with different volumes but an identical minimum spacing of 940 µm. 
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The results presented in Figures 4.5 through 4.9 quantitatively describe the relative importance of 

parameters like advancing and receding CAs in describing the interaction of a droplet with plates. 

Note that liquid interaction with a plate is different from that with fibers where because of fibers’ 

round geometry, pinning is not crucial and that interaction is often described with a single YLCA 

value [166-167].  

It is also interesting to compare the force exerted on the plates near the moment of liquid bridge 

breakup with that required to detach a sessile droplet from the same (or similar) surface. Following 

the work of [168], we deposited a water-based ferrofluid droplet with a volume of 7 µL on one of 

our PS-coated plates and placed the assembly on the scale. We zeroed the scale and detached the 

droplet vertically by bringing a permanent magnet close to the droplet from above. The force 

recorded by the scale (minus droplet weight) was then taken as the force of detachment for the 

droplet. To account for the differences between the physical properties of the water-based 

ferrofluid and the liquid used in our liquid bridge experiments (15% glycerol in DI water), we 

scaled the measured force using droplets bond number ratios [169-170],  

𝐹𝑤𝑔 = 𝐹𝑓 (
𝜎𝑤𝑔

𝜎𝑓
)

1

2 𝜌𝑓

𝜌𝑤𝑔
(
𝑉𝑓

𝑉𝑤𝑔
)

2

3
              (4.12) 

where subscripts 𝑓 and 𝑤𝑔 denote ferrofluid and water–glycerol solution, respectively. 𝐹𝑓 is the 

detachment force from the experiment with the ferrofluid droplets, and 𝐹𝑤𝑔 is the scaled value. 

The force applied by the magnet was measured to be 𝐹𝑓 = 200±30 µN, which scales to 𝐹𝑤𝑔 = 

214±32 µN for a water–glycerol droplet. The force applied to the lower plate at the moment of the 

liquid bridge breakup was found to be 170 µN on average for the PS-coated plates, which is within 

20% of the force of sessile droplet detachment. The difference between these two values can be 
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attributed to the differences between the profile of a detaching sessile droplet and that of a liquid 

bridge near the breakup moment. A similar difference was also reported in [158] for droplet 

detachment from a single fiber using a magnet as opposed to using another fiber (i.e., a liquid 

bridge between two fibers).   

4.4.2 Liquid Bridge between PU-Coated Vertical Plates under Shear 

In this section, we study how a liquid bridge behaves in response to a tangential (shear) force. For 

this study, we slightly modified our test setup to move the plates in a direction parallel to one 

another. We also mounted the plates vertically so that the shear force could be measured by the 

scale (see Figure 4.10).  

 

Fig. 4.10: Schematic drawings for the setup used for liquid bridge shear experiment. 

 

In this section, we consider Polyurethane (PU) electrospun coatings as the PS coatings seemed to 

remain at a near-Cassie state with the extent of wetting dependent strongly on the spacing between 

the plates, non-uniformity of the coatings, size of the droplet, and other practical factors (leading 

to drastic variation in the results from one experiment to the other). PU coatings were produced by 

electrospinning from a PU-in-THF solution with a concentration of 5% at an infusion rate of 8.33 
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μL/min using a positive voltage of 12 kV on Aluminum substrates. The experiment started by 

depositing a droplet with a given volume on one of the plates (for a droplet with a volume less 

than 9 µL, pinning of the fibrous surfaces was large enough to keep the droplet from sliding down 

or falling in our experiments). The other plate was then brought into contact with the droplet and 

compressed it to a spacing of  𝑆. The scale was then zeroed and the shearing process was started 

by moving the plate mounted on the height gauge relative to the one placed on the scale. The 

changes in the scale readings were recorded at each displacement 𝛿 and attributed to the shear 

force. We also simulated the process of shearing a liquid bridge to better understand and analyze 

the forces involved in this process. Unlike the case of a liquid bridge subjected to vertical forces, 

the liquid bridge literature is very scarce when it comes to modeling shearing forces. This is in part 

because solving the Young–Laplace equation becomes challenging when the CA varies around the 

TCL due to liquid bridge profile becoming asymmetric when the shear forces are vertical. We have 

therefore considered some simplifying assumptions to ease the simulation problems. Based on our 

experimental observations, we have assumed that the TCL on the stationary plate (left plate) 

remains pinned, and the wetted area on this plate has a circular shape mathematically described by 

𝑥 = 𝑅S cos𝜙, 𝑦 = 0, and  𝑧 = 𝑅S sin𝜙. Moreover, we have assumed that the wetted area on the 

moving plate is also circular with a radius of 𝑅M when 𝛿 = 0. The center of this circular area is 

assumed to be below the origin by a distance of Δ𝑧𝑖. Upon moving the right plate, the length of 

wetted area is assumed to become elongated in the direction of motion (the z-direction), but to 

remain almost unchanged in the lateral direction (the x-direction). We therefore, considered an 

elliptical contact area for the bridge on the moving plate with a minor axis of 𝑏(𝛿) = 2𝑅M and a 

major axis of 𝑎(𝛿) = 2𝑅M + 𝛿. In the parametric form therefore, one can write, 

𝑥 = 𝑅M cos𝜙                (4.13) 
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𝑦 = 𝑆                (4.14) 

𝑧 = (𝑅M + 𝛿/2) sin𝜙 + (𝛿 − Δ𝑧𝑖)                 (4.15)    

Therefore, 𝑅S, 𝑅M, and Δ𝑧𝑖 should be estimated before the liquid bridge profile between the plates 

can be predicted at each 𝛿. To this aim, we start with a given liquid volume having a spherical cap 

profile with an YLCA of 97° (average CA for a droplet on the PU coatings) to estimate the radius 

of the TCL, 

𝑎 = (
3𝑉

𝜋(2+cos𝜃)(1−cos𝜃)2
)
1/3

sin 𝜃                            (4.16)    

where 𝑎 is the radius of TCL as shown in Figure 4.11. 

 

Fig. 4.11: Geometrical assumptions considered in setting up a numerical simulation to predict the behavior 

of a liquid bridge under shear and in the presence of gravity. 

 

We then use this radius to simulate the equilibrium shape of a droplet on a vertical wall under the 

influence of gravity. With the droplet shape obtained, we slice the droplet profile with a vertical 
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plate located at a distance of 𝑆 from the left plate (based on the setting from experiment) to obtain 

the abovementioned wetted area on the moving plate at 𝛿 = 0. The elliptical wetted area on the 

moving plate can then be calculated for any displacement 𝛿 using Equations 4.13–4.15. Figure 

4.12 compares simulation results for a liquid bridge with a volume of 7 µL between PU coatings 

with a spacing of S =1,400 µm at different displacements 𝛿 to those from experiment. It should be 

mentioned that the best matching liquid bridge profiles from experiment (Figure 4.12a) and 

simulation (Figure 4.12b) were not observed at the same exact 𝛿 values. We believe this is because 

of our simplifying assumptions considered for the simulations (e.g., elliptical contact area) as well 

as the errors associated with liquid wicking into the pores of the PU coatings during the 

experiments. Despite the less-than-perfect agreement between the simulated and imaged bridge 

profiles, our simulations can be used to estimate the force of adhesion between the plates during 

the experiment.  
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Fig. 4.12: Snapshots of the experiment with a liquid bridge with a volume of 7 µL between two vertical 

plates having a spacing of 1,400 µm and coated with electrospun PU fibers are shown in (a). Predictions of 

the liquid bridge profile from our numerical simulations are given in (b) for different plate displacements.  

 

Note however that, the force calculation formula discussed earlier (Equations 4.2–4.3) cannot be 

used here for shear force calculation. Also, note that the pressure force (Laplace pressure) has no 

component in the tangential (vertical) direction, and so the shear force is merely the summation of 
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capillary forces around the TCL. Therefore, to calculate these forces we have developed a new set 

of equations. Let �̂� = (𝑣1, 𝑣2, 𝑣3) be the normal vector of the facet along the TCL (shown in red 

or blue in Figure 4.13a) and �⃗⃗⃗� = (𝑒𝑥, 𝑒𝑦, 𝑒𝑧) be the vector of the line segment connecting two 

consecutive grid points on the TCL. Then, the direction in which the surface tension force applies 

is the vector normal to �̂� and �⃗⃗⃗�, which can be found as 𝑙 = �̂� × �⃗⃗⃗�. The angles this direction make 

with the x-, y-, z-axes are 𝛼 = acos(𝑙. 𝑖̂),  𝛽 = acos(𝑙. 𝑗̂) and 𝛾 = acos(𝑙. �̂�), respectively. 

Therefore, balance of the forces on the plate (left or right) can be written as (see Figure 4.13a),   

∑𝐹𝑥 = ∑ 𝜎 cos𝛼𝑖 √𝑒𝑥,𝑖
2 + 𝑒𝑧,𝑖

2
𝑖 = 0      (4.17) 

∑𝐹𝑦 = ∫ 𝑥(𝑝𝑜 − 𝜌𝑔𝑧)𝑑𝑧
CL

− ∑ 𝜎 cos𝛽𝑖 √𝑒𝑥,𝑖
2 + 𝑒𝑧,𝑖

2
𝑖 = 0                  (4.18) 

∑𝐹𝑧 = 𝐹𝛿 − ∑ 𝜎 cos 𝛾𝑖√𝑒𝑥,𝑖
2 + 𝑒𝑧,𝑖

2
𝑖 = 0                 (4.19) 

Therefore, the component of the force in the shear direction (𝐹𝛿) can be found as, 

𝐹𝛿 = ∑ 𝜎 cos 𝛾𝑖 √𝑒𝑥,𝑖
2 + 𝑒𝑧,𝑖

2
𝑖                                                                                                                                       (4.20) 

The subscript i denotes the distance between two consecutive grid points on the TCL with 𝑒𝑥 and 

𝑒𝑧 being its components in the x and z directions, respectively (note that 𝑒𝑦 = 0). The total shear 

force can then be obtained by summing all the individual forces along the TCL for each plate. The 

shear force calculated for the left and right plates are shown in Figure 4.13b. As expected from the 

free body diagram shown in the inset, the difference between these forces at any displacement is 

equal to the weight of the droplet. Figure 4.13c shows the effects of spacing on the measured shear 

force for plates coated with electrospun PU coatings. It can be seen that, for a given volume of 𝑉 =
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7 μL, decreasing the spacing between the plates results in an increase in the shear force. This is 

because decreasing the spacing increases the wetted area (and the length of TCL) on the plates, 

which results in larger force transfer between the plates. Note that, we zeroed the scale prior to 

displacing the second plate (and so the recorded forces start from zero). To mimic the effect of 

zeroing the scale when reporting the simulation results, the computed tangential force at 𝛿 =0 is 

subtracted from the simulation data shown in Figure 4.13c. Note from the balance of forces that, 

 𝐹𝛿
𝑅 = 𝐹𝛿

𝐿 +𝑚𝑔 (and 𝐹𝛿=0
𝑅 = 𝐹𝛿=0

𝐿 +𝑚𝑔), and therefore, the changes in the shear force on the left 

plate (shown on the vertical axis in Figures 4.13c and 4.13d) are the same as those on the right 

plate, i.e.,  𝐹𝛿
𝑅 −  𝐹𝛿=0

𝑅 = 𝐹𝛿
𝐿 −  𝐹𝛿=0

𝐿 . Effects of liquid volume on the shear force are shown in 

Figure 4.13d, and they clearly show that shear forces are larger for larger liquid volumes. This is 

because for a given spacing, larger droplets will form larger TCLs and so larger adhesion forces. 

Simulation results for each droplet volume is also shown with solid lines.  
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Fig. 4.13: Illustration of the facets on the TCL (red) considered to find the local direction of the surface 

tension forces around the TCL is given in (a) along with a free body diagram for the forces acting on a 

liquid bridge under vertical shear. Tangential forces exerted from left and right to a liquid bridge with a 

volume of 7 µL placed between two vertical plates coated with electrospun PU fibers with a spacing of 

1,400 µm are shown in (b). Shear force exerted on the left plate by a liquid bridge with a volume of 7 µL 

at different spacings are shown in (c). Shear force exerted on the left plate by liquid bridges with different 

volumes but for a fixed spacing of 1,200 µm between the plates are given in (d). The solid lines are the 

force predictions from simulations (obtained with the assumption of pinned TCL throughout the process) 

and the symbols are from experiment.  
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4.5 Conclusions 

Liquid bridge and the adhesion force between fibrous surfaces made of PS or PU fibers were 

investigated in this work both experimentally and numerically. This was achieved by placing a 

water droplet (containing 15% glycerol) on a plate coated with PS or PU fibers and compressing, 

stretching, or shearing it using another coated plate. The axial or tangential forces exerted on the 

plates were measured using a sensitive scale and they were compared to their numerical 

counterparts obtained from the Surface Evolver code modified to include the CAH effect in the 

simulations. Reasonable agreement was achieved between the measured and simulated forces, 

despite the inherent non-uniformity of the fibrous coatings and the simplifying assumptions 

considered to make numerical simulations affordable. While it is not very noticeable from the 

experiments with fibrous coatings (due to experimental noise), our simulations clearly show that 

the force-spacing trajectory of a liquid bridge during a compression–stretching process on a surface 

with CAH follows θ-constant (unpinned CL) and R-constant (pinned CL) lines. It was also shown 

that the force–spacing trajectories during compression and receding processes are closer to one 

another when the surface CAH is smaller. Positive forces (attraction) were obtained for the 

hydrophilic surface for any spacing values, while for the hydrophobic surface both negative 

(repulsion) and positive (attraction) were measured (and predicted) depending on the spacing 

between the plates. Our simulations also show that surface energy of the system varies inversely 

with the magnitude of the attraction force between the liquid bridge and the surface. When shearing 

the liquid bridge, it was observed that the shear force increases with relative displacement between 

the plate until it reaches a plateau. Our results also revealed that increasing the liquid volume, or 

decreasing the spacing between the plates, leads to an increase in the shear force on the plates.   
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Chapter 5. Overall Conclusion 

The main goal of this thesis was to develop simulation method to predict capillary pressure/ 

capillary forces in fibrous surfaces. Two different modeling approach was used in this work to predict 

capillary pressure in fibrous structures. we first presented a physics-based model to simulate the 3-D 

structure of fibrous mats on the basis of treating each fiber as an array of point masses connected 

to one another via springs and dampers. This allowed us to generate the most realistic virtual 

fibrous structures and solved the problem with most literature structure generation approaches by 

avoiding the unrealistic fiber-fiber overlaps. We then developed a model to estimate a LEP for 

hydrophobic fibrous membrane based on a simplifying assumption that the AWI remains both 

planar and intact as it penetrates inside the media, which makes it possible to estimate an LEP for 

media with complex morphological or wetting properties (an otherwise challenging problem). Our 

results revealed that the LEP of a fibrous membrane increases upon decreasing the diameter or 

increasing the contact angle of its constituting fibers. For the purpose of accurate prediction of the 

LEP of fibrous membranes, in this work, we also developed an interface tracking approach 

implemented in the Surface Evolver finite element code. We applied this method to fibrous 

structures comprised of orthogonally-oriented layers of parallel fibers. Our interface tracking 

method approach was able to resolve the shape and position of the AWI inside a fibrous membrane, 

as the approach was benchmarked with experimental results and 2-D simulations in the literature. 

Our simulation results showed that increasing the volume fraction of the fine fibers, or fibers with 

a higher YLCA, results in an increase in the intrusion pressure of the media. The simulation method 

also provided information about the relationship between intrusion pressure and depth of water 

penetration into the membrane which is of great significance in designing and optimizing the 

microstructure of a fibrous membrane to maximize LEP while being highly porous. The interface 
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tracking approach presented in this work could be a framework for future studies as one needs to 

apply the method to more complex structures like those generated by our mass-spring-damper 

approach.  

Regarding the capillary forces on fibrous surfaces, we used the liquid bridge between fibrous 

surfaces (surfaces coated with PS or PU electrospun fibers) to measure or predict the adhesion 

force during compressing, stretching, or shearing of a 15% water-glycerol droplet laying on a plate 

using another plate. A sensitive scale was used in our force measurements and the results were 

compared to simulations obtained from a Surface Evolver code, which was modified to include 

the CAH and hence the contact line pinning or unpinning. Our simulation results showed that the 

force-spacing trajectory of a liquid bridge during a compression–stretching process on a surface 

with CAH follows θ-constant (unpinned CL) and R-constant (pinned CL) lines. Regarding the 

effects of surface wettability it was shown that hydrophilic surfaces reveal positive forces 

(attraction) at any spacing values during the compression-stretching of the liquid bridge, while for 

hydrophobic surfaces could reveal both negative (repulsion) and positive (attraction) forces 

depending on the spacing between the plates. The surface energy of the solid-liquid-gas system 

was also studied in this work and was shown that the surface energy varies inversely with the 

magnitude of the attraction force between the liquid bridge and the surface. To shed some light on 

the tangential adhesion forces, the process of shearing the liquid bridge was also studied 

experimentally and numerically. Both measured and predicted results revealed that the shear force 

increases with relative displacement between the plate until it reaches a plateau. It was also seen 

that the shear force on the plates increases by increasing the liquid volume, or decreasing the 

spacing between the plates. 
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