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Abstract 

 

Alcohol use disorder (AUD) is a prevalent neuropsychiatric disease with 

profound health, social, and economic consequences. With an estimated 50% 

heritability, identifying genes that engender risk and contribute to the underlying 

neurobiological mechanisms represents an important first step in developing 

effective treatments. Gene expression studies are an important source of candidate 

genes for studying AUD, providing windows into the molecular machinery 

engaged by the brain in response to ethanol. Published studies have identified 

chloride intracellular channel 4 (Clic4) as an ethanol-regulated gene in brain 

capable of modulating sensitivity to sedation in multiple species. The functions of 

Clic4 are not well understood but have been associated with diverse biological 

processes including ion channel activity, cellular stress, cytoskeleton remodeling, 

intracellular trafficking, and oxidoreductase reactions. In this series of studies, we 

have characterized gene expression changes specific to frontal cortex synapses 

after acute and repeated ethanol exposures. We additionally identified genes 

differentially regulated in response to knockdown of Drosophila ortholog Clic and 



xii 

deletion of Clic4 in mice, both implicating oxidation-reduction-related processes 

as potentially mechanistic to their involvement in ethanol sedation sensitivity. 

Lastly, we show that CLIC4 is robustly expressed in oligodendrocytes where 

deletion of Clic4 produces altered ethanol consumption and anxiety-like behaviors 

in mice. Considering its abundant expression in oligodendrocytes, induction by 

acute ethanol, and function in modulating ethanol consumption, our work here 

suggests that Clic4 has an important role in the molecular response to ethanol in 

brain and development of maladaptive ethanol-related behaviors. 
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Chapter 1 

Introduction 

 

1.1  Alcohol Use Disorder 

AUD is a neuropsychiatric disease characterized by the American 

Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders 5 

as a spectrum of chronic ethanol abuse and dependence (American Psychiatric 

Association, 2013). Individuals with AUD exhibit ethanol craving, poor self-

regulation, and damaging behaviors that lead to significant social, emotional, and 

physical harm. AUD is common in the United States, having an overall lifetime 

prevalence of 36% in males and 23% in females (Grant et al., 2015). AUD is the 

third leading cause of preventable death, following tobacco usage and poor diet 

and exercise (Mokdad, 2004). Associated damages to property and loss of 

productivity are estimated to cost the United States an excess of $249 billion dollars 

per year (Sacks et al., 2015). 

Relapse rates for AUD are similar to opiate dependence, being reported as 
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high as 90% (Hodgson, 1980), rendering the disease challenging to treat. While 

behavioral and pharmacological therapies exist for AUD, treatment efficacies are 

modest and, in many cases, ineffective. Naltrexone and Acamprosate, the current 

first line medications for treating AUD, have only been shown to reduce the 

number of individuals returning to heavy drinking by 10% over placebo (Jonas et 

al., 2014). Similarly, in a 16-week study employing cognitive behavioral therapy, 

individuals receiving treatment achieved only 6% more abstinent days than those 

without therapy (Anton et al., 2006). Since AUD has proven to be largely refractory 

to conventional treatments, further exploration into the etiology and 

pathophysiology of the disorder is necessary to better understand and successfully 

treat it. 

AUD, similar to other addictive disorders, develops as a progression from 

impulsivity to compulsivity where drug-seeking motivation is sustained by a 

balance between positive and negative reinforcement (George F. Koob, 2013). By 

lowering hedonic reward thresholds, alcohol exposure produces positive 

reinforcement that can lead to impulsive binge-like behaviors and loss of control 

over intake. Conversely, alcohol withdrawal produces an increased threshold for 

hedonic reward and a combination of negative physical and affective symptoms. 

Further alcohol consumption may relieve these symptoms, but in doing so, 

produces negative reinforcement. Following repeated bouts of heavy drinking, 
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hedonic reward becomes more and more difficult to achieve and positive 

reinforcement is diminished (George F. Koob, 2013). Simultaneously, a positive 

feedback loop known as kindling occurs whereby functional changes in the brain 

due to repeated alcohol withdrawal begin to drive progressively worse 

withdrawal states (Ballenger & Post, 1978). As severity of withdrawal increases, so 

does the value of negative reinforcement provided by compensatory alcohol 

consumption. As the cycle continues and motivation for alcohol consumption 

shifts from positive to negative reinforcement, hedonic reward-based impulsivity 

gives way to compulsivity and alcohol dependence is established. 

 

1.2  Risk Factors 

Most individuals that consume alcohol will not develop AUD, despite the 

cycle of positive and negative reinforcement even a single binge event can 

produce. It has been estimated that 48-58% of the risk for developing AUD is due 

to genetic factors, with the remainder resulting from environmental influences 

(Prescott & Kendler, 1999). As a consequence, a major priority in AUD research 

has been to identify genes influential in conferring this risk in order to better 

understand the etiology of the disorder and to develop more targeted 

pharmacological therapies. Human genetic studies originally sought to identify an 

“alcoholism gene” or limited set of alleles responsible for the majority of the 
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disorder’s heritability. The findings have been much less straightforward, 

identifying a large number of genetic variants each contributing only minor 

components of the overall risk. This characteristic defines complex genetic 

disorders and makes identification of therapeutically meaningful candidate genes 

difficult. Linkage and genome-wide association studies have identified tens to 

hundreds of genetic variants  (Deak et al., 2019), with the most reproducible being 

alcohol metabolism genes in the aldehyde and alcohol dehydrogenase gene 

families (Clarke et al., 2017; Tawa et al., 2016). Neurotransmitter receptor genes 

such as dopamine receptor D2 have also been identified by these approaches, 

however with less consistent reproducibility (Clarke et al., 2017; Tawa et al., 2016). 

One possible translational example is the drug disulfiram, which selectively 

inhibits aldehyde dehydrogenase producing severe alcohol withdrawal 

symptoms. Unfortunately positive treatment outcomes for disulfiram are less than 

first line drugs naltrexone and acamprosate (Jonas et al., 2014). 

Large scale human genetic studies have identified many promising 

candidate genes, some of which are currently undergoing further characterization. 

However, these studies have thus far failed to produce new pharmacological 

therapies more effective than current standard of care. One possible explanation 

is that selectively targeting heritable candidate genes only addresses a minor 

component of the combinatorial effects of multiple risk alleles in AUD. A different 
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perspective can be gained through transcriptomic approaches, which instead 

focus on the unique transcriptional landscape of AUD and complex web of 

biological processes and gene networks that underlie it. Here the goal is to target 

a gene “hub” whose expression is influential on networks of interacting genes 

related to the pathophysiology of AUD. Identifying candidate genes with this 

approach and evaluating them in transgenic animal models is an area of research 

active research, with many promising genes having already been identified (Liu 

et al., 2006). Animal models of AUD have also contributed candidate genes in this 

manner, while permitting a more direct and controlled evaluation of relationships 

between genes and behaviors(Kerns et al., 2005)(Kerns et al., 2005)(Kerns et al., 

2005)(Kerns et al., 2005)(Kerns et al., 2005). While animal models cannot perfectly 

recapitulate the human AUD disease process, they can be useful in studying the 

genetics underlying discrete behaviors such as ethanol sedation sensitivity and 

voluntary ethanol consumption.  

Ethanol-related behaviors can vary greatly between mouse strains and 

transcriptomic analysis of these differences can provide insight into which genes 

and networks of genes contribute to the expression of these behaviors. Using this 

approach, Kerns et al. performed gene expression analysis of two mouse strains 

with contrasting acute behavioral responses to ethanol and were able to identify 

genes differentially regulated in brain between strains (Kerns et al., 2005). Within 
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the more ethanol-sensitive strain, a cluster of myelin-related genes was found to 

be upregulated in response to acute ethanol. One of these genes, Clic4, is 

particularly interesting due to appearing in several other publications either 

reproducing its regulation by ethanol or showing broader involvement in the 

brain’s molecular response to ethanol.  

 

1.3  Chloride Intracellular Channel 4 

A growing body of literature has connected Clic4 to the brain’s molecular 

response to ethanol, making it a strong candidate for further investigation. Clic4 

expression is regulated by ethanol in the medial prefrontal cortex (mPFC) of 

mouse brain (Bhandari et al., 2012; Kerns et al., 2005; Marballi et al., 2016) and 

dysregulated in postmortem frontal cortex tissue of human alcoholics (Liu et al., 

2006). Clic4 is also part of an ethanol-responsive gene network in hippocampus 

(Farris & Miles, 2013) and is located in known quantitative trait loci (QTLs) for 

ethanol consumption (Tarantino et al., 1998) and anxiety (Kazuhiro Nakamura et 

al., 2003; Thifault et al., 2008) in mice. This is notable because anxiety is an 

important risk factor for AUD and a frequent co-morbidity (Morris et al., 2005). 

This collection of genomic evidence is strongly substantiated through Bhandari et 

al. (Bhandari et al., 2012), where ethanol sedation sensitivity was shown to be 

altered by disrupting chloride intracellular channel orthologs in invertebrates and 
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by overexpressing Clic4 in mouse mPFC. This study is particularly significant in 

light of the fact that sensitivity to ethanol is a strong risk factor in humans 

(Schuckit, 1994; Schuckit & Smith, 1996). Together, these findings highlight the 

potential importance Clic4 in the behavioral and molecular response to ethanol in 

brain. 

 

1.4  Improving Our Understanding of AUD 

There are many knowledge gaps in our current understanding of AUD. 

This is especially true of molecular events surrounding acute exposure to ethanol, 

which provide a glimpse into the first step of a chain of events leading to 

maladaptive changes in the brain and ethanol behaviors. There is a need for 

further research into identifying and characterizing genes responsive to acute 

ethanol and the functional brain regions, cell types, and subcellular compartments 

they are regulated in. This information will enrich our understanding of biological 

processes underlying acute ethanol exposure in brain and their potential 

contributions to the pathophysiology of AUD. In particular, the role of the acute 

ethanol-regulated gene Clic4 in ethanol consumption and sedation sensitivity, 

including its cellular type of action, needs to be characterized. Additionally, the 

scope of Clic4 function and genomic interaction needs to be defined in order to 

begin investigating the mechanisms by which it regulates ethanol-related 
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behavior. We hypothesize that Clic4 will be have an important role in modulating 

ethanol consumption behaviors in mice, possibly related to its activity in 

responding to cellular stress or performing oxidoreductase activities. The 

following body of work addresses many of the knowledge gaps that have been 

mentioned, characterizing the synaptic transcriptome following ethanol 

sensitization, profiling transcriptomic responses to deletion of mouse Clic4 and 

knockdown of Drosophila ortholog Clic, and evaluating the contributions of Clic4 

to ethanol and anxiety-related behaviors in mice. Our findings offer novel insight 

into behavioral and molecular responses to ethanol in brain and the unique role of 

Clic4. 
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Chapter 2 

Background 

 

2.1  Introduction  

The overall goal of this dissertation is to shed light on the molecular 

mechanisms leading to development of AUD. This is accomplished by examining 

gene expression changes in brain that follow acute ethanol exposure and by 

characterizing the role of Clic4 in influencing ethanol-related behaviors. Multiple 

brain areas are associated with the behavioral adaptations undergone during 

development of AUD and the pathology that follows chronic alcohol abuse. This 

chapter will review the relevant neuroanatomy and functional connectivity within 

this context, with a focus on medial mPFC, where Clic4 has shown ethanol 

regulation and an ability to modulate ethanol sedation sensitivity in mice 

(Bhandari et al., 2012). Discussed later in this dissertation, mPFC was targeted for 

specific genetic manipulations of Clic4 and gene expression profiling of acute 

responses to ethanol. This chapter will also provide a deeper review of Clic4 and 
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what is known about its biological functions. Lastly, a discussion on the use of 

model organisms for researching AUD will be provided, with an emphasis on the 

mouse strains and ethanol self-administration paradigms employed later in this 

dissertation. 

 

2.2  Medial Prefrontal Cortex  

2.2.1  Anatomy and Composition 

Prefrontal cortex (PFC), and especially mPFC, has been associated with 

decision making, impulsivity and compulsivity, motivation, learning, reactivity to 

stress, and salience attribution (Goldstein & Volkow, 2011). Because of these 

cognitive roles, PFC is thought to be a contributor to both the impulsive self-

administration seen in early stages of addiction, as well as the compulsive drug-

seeking seen in late stages (Crews & Boettiger, 2009; Volkow & Fowler, 2000). The 

mPFC is a cytoarchitecturally distinct region within the PFC, possessing unique 

network connectivity and functional roles setting it apart from other prefrontal 

cortical areas. mPFC is largely comprised of excitatory glutamatergic pyramidal 

neurons synapsing on distant brain regions as well as gamma aminobutyric acid 

(GABA) interneurons providing local inhibition to the same pyramidal neurons 

(George et al., 2012; A. Peters & Jones, 1984). There is also a sparse population of 
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corticotropin-releasing factor (CRF) interneurons that appear to serve roles in 

producing negative emotional states and responding to stressful stimuli (George 

et al., 2012; Swanson et al., 1983; Zorrilla et al., 2014).  

The layout and connectivity of the mPFC is relatively conserved among 

species, but varies greatly in the content of granular tissue (Ongür & Price, 2000; 

Petrides & Pandya, 1994). Rodents, unlike humans and monkeys, do not possess 

granular tissue in the PFC and were not initially considered to have a comparable 

frontal cortex region when originally mapped by Brodmann (Brodmann, 1910; 

Ongür & Price, 2000). In humans, mPFC conservatively includes Brodmann areas 

10, 24, 25, and 32, which other than non-homologous area 32, is similar in monkeys 

(Figure 2.1). Areas 24 and 32 form the anatomically distinct anterior cingulate 

cortex, which wraps the rostral face of the corpus callosum. Brodmann area 10, 

frontopolar PFC, and Brodmann area 25, subgenual area, constitute the rest of 

mPFC and are equivalent to prelimbic and infralimbic regions of rodent mPFC, 

respectively (Ongür & Price, 2000). 

 

2.2.2  Medial Prefrontal Cortex Networks and Connectivity 

Activity in mPFC is associated with complex behaviors such as decision 

making and expression of emotion, which requires extensive connectivity to 

different brain areas. This includes cortico-cortical, limbic, thalamic, striatal,   
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Figure 2.1: Subdivisions of mPFC. Mid-sagittal illustration of mPFC subdivisions 
according to Brodmann classification. Major regions include the anterior cingulate 
cortex (32), subgenual area (25) and frontopolar prefrontal cortex (10). 
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hypothalamic, and midbrain connections (Ongür & Price, 2000). Among cortico-

cortical connections, mPFC networks synapse bi-directionally with the sensory-

receptive orbitofrontal cortex (OFC) network (Carmichael & Price, 1995; Ongür & 

Price, 2000). Unlike mPFC, which has minimal direct sensory input, OFC receives 

and integrates multiple sensory modalities and is therefore able to involve mPFC 

in the sensorimotor information stream (Ongür & Price, 2000). Anterior cingulate 

cortex also contains reciprocal cortico-cortical connections, bridging Brodmann 

areas 24a and 24b with caudal cingulate areas 23a and 23b (Carmichael & Price, 

1995). Both of these areas have extensive connectivity with other limbic structures 

including amygdala, hippocampus, and parahippocampal cortex (Rosene & Van 

Hoesen, 1977; Vogt & Pandya, 1987). 

The mesolimbic reward pathway of the brain is integral to the addiction 

process, interconnecting the dopamine-producing ventral tegmental area (VTA) of 

the midbrain with the basal forebrain by way of the medial forebrain bundle. 

Excitatory activity along this pathway is associated with the rewarding properties 

of alcohol use, whereas withdrawal from alcohol is associated with depression of 

the pathway (Weiss et al., 1996). The principle basal forebrain structures along this 

pathway include the nucleus accumbens (NAc), amygdala, and PFC (George F. 

Koob et al., 2012). 
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Amygdala 

The mPFC possesses extensive interconnectivity with structures of the 

limbic system (Carmichael & Price, 1995). This includes the amygdala, an almond-

shaped structure located deep within the temporal lobes that has been linked to 

emotional learning and memory. The amygdala can be subdivided into distinct 

nuclei (Figure 2.2) including the basolateral amygdala (BLA), central nucleus of 

the amygdala (CeA), and intercalated cell masses (Lee et al., 2013). BLA is cortex-

like cytoarchitecturally and consists predominately of glutamatergic projection 

neurons (Carlsen, 1988; Lee et al., 2013). The CeA has a more striatum-like 

appearance and consists largely of GABAergic interneurons (Lee et al., 2013; 

McDonald, 1982). The BLA can be further subdivided into lateral amygdala (LA) 

and basal amygdala (BA), which in turn is subdivided into basolateral (BL) and 

basomedial nuclei (BM). The majority of amygdalar projections to mPFC originate 

within the BA, with far fewer projections originating in LA and CeA (Barbas & de 

Olmos, 1990; Carmichael & Price, 1995; Ongür & Price, 2000). BL and BM project 

to every area of mPFC. Unique to BL, there are OFC and mPFC projections 

originating in the same portion of the nucleus that subsequently share cortico-

cortical interconnections in the PFC (Carmichael & Price, 1995).  
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Figure 2.2: Nuclei of the amygdala. Cortex-like basal lateral amydala (BLA) 
includes lateral (LA) and basal (BA) amygdala with predominately glutamatergic 
projections. BA can be subdivided into basolateral (BL) and basomedial (BM) 
nuclei. Striatum-like central nucleus of the amygdala (CeA) is largely GABAergic. 
Intercalated cell masses (ITC) comprise the remaining amygdalar nuclei.  
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The majority of afferent fibers projecting to the amygdala originate in OFC 

and mPFC. These both receive reciprocal connectivity, largely returning 

projections to the originating BLA nuclei, but also non-reciprocal projections 

synapsing on additional amygdalar areas, including CeA (Aggleton et al., 1980; 

Carmichael & Price, 1995; M. J. Kim et al., 2011). Amygdala also receives 

projections from multiple sensory modalities, including projections from auditory 

and visual cortex (Barbas & de Olmos, 1990), and projects to hippocampus, basal 

ganglia, thalamus, and brainstem (Kandel et al., 2012). This unique array of 

connectivity is key for the amygdala to generate affective associations to sensory 

stimuli and drive motivational and somatic responses. 

 

Hippocampal Formation 

The hippocampal formation is another deep temporal lobe structure, lying 

caudal to the amygdala and also receiving projections from mPFC. Anatomically, 

it includes the hippocampus, subiculum, and dentate gyrus. The hippocampal 

formation is involved in the consolidation of episodic memory and the dentate 

gyrus 

is a major site of neurogenesis in adult brain (Kandel et al., 2012). Of these regions, 

only subiculum contains significant projections to mPFC (Carmichael & Price, 

1995). Subiculum acts as the major output pathway for pyramidal neurons of the 
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hippocampal formation, sending efferents to a multitude of structures including 

mPFC, parahippocampal area, amygdala, septum, thalamus, and hypothalamus 

(Rosene & Van Hoesen, 1977). Connectivity between subiculum and mPFC 

appears to be unidirectional and largely targeted to Brodmann areas 10, 25, and 32 

(Carmichael & Price, 1995; Ongür & Price, 2000; Rosene & Van Hoesen, 1977; Vogt 

& Pandya, 1987). 

 

Parahippocampal Cortex 

The parahippocampal cortex, which includes the entorhinal and perirhinal 

cortices, is another component of the limbic circuit and has reciprocal connections 

with the hippocampal formation (Kandel et al., 2012). Like the hippocampal 

formation, parahippocampal cortex is involved in formation of memory. 

Reciprocal connections exist between anterior cingulate and entorhinal cortex as 

well as areas of posterior parahippocampal cortex (Carmichael & Price, 1995). 

Although not part of parahippocampal cortex, the adjacent temporal polar region 

is also reciprocally connected to mPFC and is considered a component of the 

extended limbic system (Carmichael & Price, 1995; Olson et al., 2007). Temporal 

pole is an anatomically complex region where multiple cortical areas intersect. 

While not currently well understood, the temporal pole integrates multiple 
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sensory modalities and is believed to be involved in higher order social and 

emotional processing (Olson et al., 2007).  

 

Basal Ganglia 

mPFC also projects to basal ganglia, including components of ventral 

striatum (Haber et al., 1995). This encompasses substantial projections to medial 

ventral striatum and NAc, with more sparse efferents traveling to central ventral 

striatum (Haber et al., 1995). Projections from mPFC to NAc are partitioned into 

prelimbic efferents to NAc core and infralimbic efferents to NAc shell (Brog et al., 

1993). Ventral striatum, including NAc, is extensively interconnected with other 

limbic structures such as amygdala (Ongür & Price, 2000). As part of a striato-

pallido-thalamo-cortico circuit, regions of ventral striatum receiving mPFC 

efferents project onto globus pallidus, which in turn projects to the medial dorsal 

thalamic nucleus, which in turn has reciprocal projections to and from the mPFC 

(Ongür & Price, 2000; Ray & Price, 1993). The NAc has been implicated in encoding 

and anticipating rewarding and aversive states (Carlezon & Thomas, 2009; 

Wolfram Schultz et al., 1992) and its involvement in the striato-pallido-thalamo-

cortico circuitry is thought to contribute to a synthesis of multiple brain region 

reward representations (Wolfram Schultz et al., 1998). 

 



19 

Autonomic and Neuroendocrine Structures 

Extensive connectivity exists between mPFC and autonomic and 

neuroendocrine regions of the brain, including midbrain periaqueductal gray 

(PAG) and hypothalamus (Hurley et al., 1991; Ongür & Price, 2000). The PAG 

receives substantial projections from virtually all areas of mPFC (An et al., 1998). 

In addition to its well-established role in providing endogenous analgesia, PAG is 

also involved in coordinating autonomic and behavioral reactions to threatening 

stimuli (Depaulis et al., 1992). 

Projections from mPFC make up the majority of all cortical afferents in the 

hypothalamus (Ongür et al., 1998). Brodmann areas 25, 32, and to a lesser extent 

10, project all throughout the hypothalamus, but especially to the anterior and 

ventromedial regions. Through its extensive innervation of brain regions 

associated with the autonomic nervous system, mPFC is able to modulate visceral 

responses to stress and emotional stimuli (Hardy & Holmes, 1988; Hurley et al., 

1991; Resstel & Corrêa, 2006). 

 

Ventral tegmental area 

VTA is one of two major sources of dopamine in the brain and is an integral 

component of the mesolimbic reward pathway. Excited by unpredicted rewards 

and cues associated with predicted rewards, VTA neurons release dopamine into 
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the mesolimbic reward pathway and mediate positive reinforcement (Wolfram 

Schultz, 2002). The majority of VTA dopaminergic neuron efferents terminate on 

amygdala, NAc, and mPFC (Beier et al., 2015). VTA receives afferent input from 

various brain regions including NAc, lateral hypothalamus, CeA, pallidum, lateral 

dorsal tegmental area, and nearly all areas of mPFC (Watabe-Uchida et al., 2012). 

In an apparent top-down feedback loop, excitatory anterior cortical neurons, 

including mPFC, terminate on NAc projecting VTA dopaminergic neurons and 

drive positive reinforcement (Beier et al., 2015). This suggests the existence of an 

alternative reward circuit that is under higher order cortical control, which would 

not require excitatory inputs from hindbrain regions such as the 

pedunculopontine or lateral dorsal tegmental areas. 

 

2.3  Medial Prefrontal Cortex in Alcohol Use Disorder 

2.3.1  Associations with Alcohol Use Disorder 

The mPFC has been implicated in AUD through a combination of imaging, 

gene expression, and anatomical studies. For instance, functional magnetic 

resonance imaging studies in abstinent human alcoholics have shown increased 

activation of mPFC in response to alcohol-related visual cues (Grüsser et al., 2004; 

Heinz et al., 2007). Functional imaging studies of alcohol dependent individuals 
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have revealed losses in volume of grey and white matter in multiple brain areas, 

including mPFC, and these losses correlate with degree of cognitive impairment 

(Chanraud et al., 2007, 2010; Demirakca et al., 2011; Fein et al., 2002; Wobrock et 

al., 2009). These cognitive deficits, including decision making and working 

memory impairment, mirror those seen in individuals who have suffered injuries 

to the ventromedial PFC (Bechara, 2005; Bechara et al., 1994). 

On a molecular level, gene expression and proteomic studies of post 

mortem frontal cortex tissue from human alcoholics have revealed decreases in the 

expression of myelin proteins and N-Methyl-D-aspartic acid (NMDA) receptor 

subunits as well as genes associated with synaptic function, cell adhesion, and 

neurogenesis (Lewohl et al., 2005; Liu et al., 2006; Ridge et al., 2008). From the 

preponderance of anatomical, behavioral, gene expression evidence, it is clear that 

the PFC, and mPFC in particular, is intricately involved in the development and 

pathology of AUD. Additionally, white matter losses and gene expression changes 

may underlie some of the dysfunctional changes observed in cortex and contribute 

to cognitive deficits. 

 

2.3.2  Dopamine and the Mesolimbic Reward Pathway 

The reinforcing effects of alcohol have been associated with both dopamine-

dependent and dopamine-independent signaling pathways involving the mPFC. 
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The dopamine-dependent component involves the classical mesolimbic reward 

pathway, whereas the dopamine-independent routes are comprised of 

glucocorticoid and opioid peptide signaling (George F. Koob, 2013). Dopamine 

signaling through mesolimbic circuitry is associated with regulation of emotion, 

reinforcement, motivation, and learning (Gonzales et al., 2004). Within the 

mesolimbic reward system (Figure 2.3), the VTA of the midbrain provides 

dopaminergic projections to mPFC, NAc, and amygdala. These dopaminergic 

projections are tonically active but at low frequencies (W. Schultz et al., 1997). 

During presentation of a reward or reward-associated cue, dopaminergic neuronal 

firing rates are increased. However, if predicted rewards fail to be obtained, 

dopaminergic firing rates decrease (W. Schultz et al., 1997). It is therefore 

hypothesized that the VTA encodes a reward error predictor system, informing 

downstream targets of which stimuli encode actual rewards. 

With chronic exposure to ethanol, cellular and molecular changes occur 

within the mesolimbic reward pathway and contribute to dependence and 

ethanol-seeking behavior (Gonzales et al., 2004). During the early 

binge/intoxication stage of AUD, activity in the mesolimbic reward pathway is   
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Figure 2.3: Mesolimbic reward pathway. Principal components of the mesolimbic 
reward pathway and their primary neurotransmitter systems. Abbreviations: 
Nucleus accumbens (NAc), medial prefrontal cortex (mPFC), amygdala (AMG), 
ventral tegmental area (VTA).
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enhanced by ethanol exposure and extracellular dopamine concentrations are 

elevated downstream of VTA projections (Schier et al., 2013; Weiss et al., 1993). 

Validity for the dopamine-dependent positive reinforcement of ethanol has been 

demonstrated with co-administration of D1 agonists in rats (D’Souza et al., 2003). 

Acute withdrawal from chronic ethanol increases refractory periods and 

reduces firing rates of dopaminergic VTA neurons projecting to mesolimbic  

structures (Diana et al., 1993). This depression of VTA output coincides with the 

dysphoric behavioral state of withdrawal and its effects are reversible with 

renewed ethanol administration. Similarly, positron emission tomography studies 

have revealed decreased dopaminergic signaling and responding in mPFC of 

recently abstained human alcoholics (Narendran et al., 2014; Volkow et al., 2007). 

Considering the importance of dopamine in executive functions such as decision 

making (Bickel et al., 2012; Floresco & Magyar, 2006), withdrawal-induced 

decrement of cortical dopaminergic activity may itself be a factor in relapsing 

behavior (Narendran et al., 2014). This is also true of long abstained alcoholics who 

display cognitive deficits years later (Bergman et al., 1998; O’Leary et al., 1977), 

which impair decision making and increase risk for relapse. Although it is unclear 

which pathological changes associated with chronic ethanol use are responsible 
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for these sustained deficits, evidence from animal models of AUD point to 

involvement of the dopamine system. Rats given chronic intermittent ethanol  

vapor exposure (CIE) show deficits in mPFC dopamine-dependent tests of 

cognitive flexibility and impaired mPFC dopamine receptor D2 and D4 signaling 

at least four weeks after discontinuing access (Trantham-Davidson et al., 2014). 

 

2.3.3  Altered Pyramidal Neurons 

Short and long-term exposures to ethanol have different effects on mPFC 

pyramidal neurons. Acute exposure to ethanol significantly inhibits mPFC 

pyramidal neuron NMDA receptor-mediated excitatory postsynaptic potentials 

(Weitlauf & Woodward, 2008). In contrast, chronic intermittent ethanol vapor 

exposure enhances NMDA receptor-mediated excitatory postsynaptic potentials 

(Klenowski et al., 2016; Kroener et al., 2012) and produces extensive synaptic 

remodeling including increased apical and basal dendritic arborization, spine 

density, and NMDA receptor subunit NR2B expression (Holmes et al., 2012; A. 

Kim et al., 2015; Klenowski et al., 2016; Kroener et al., 2012). The exact mechanism 

driving mPFC synaptic remodeling is not known, but is thought to be a result of 

inputs from overactive basolateral amygdala (Bechara, 2005; Pfarr et al., 2015), 

which project to the apical dendrites of mPFC pyramidal neurons (Navarro & 

Mandyam, 2015). Glutamatergic hyperexcitability may lead to excitotoxicity in 
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mPFC and is a potential cause of alcohol-induced neurodegeneration in heavy 

drinkers (A. Kim et al., 2015). After 3 weeks of abstinence from CIE, rats continue 

to show increased mPFC apical but not basal dendritic arborization and no longer 

display increased spine density (Navarro & Mandyam, 2015). Prolonged 

abstinence from CIE also results in decreased phosphorylation of NR2B, 

suggesting NMDA receptors are being internalized, potentially as a compensatory 

measure against CIE-induced excitotoxicity (Navarro & Mandyam, 2015). 

 

2.3.4  Opioid Peptide Signaling in Withdrawal 

Dynorphins are endogenous opioid peptides possessing activity at all 

opioid receptors but highest affinity for receptors (Chavkin et al., 1982). 

Dynorphins are distributed widely throughout the central nervous system (Fallon 

& Leslie, 1986; Watson et al., 1982). They are capable of inducing negative affective 

states and their dysregulation has been implicated in substance addiction 

(Shippenberg et al., 2007; Wee & Koob, 2010). One of the proposed functions of the 

dynorphin-opioid receptor system is to negatively regulate the mesolimbic reward 

pathway in response to excessive releasing of dopamine. In the VTA, populations 

of neurons projecting to mPFC, but not NAc, are inhibited by opioid peptides, 

providing a mechanism for modulating dopamine output pathways (Margolis et 

al., 2006). Because dynorphin expression is induced by chronic ethanol exposure 
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in limbic tissues (Lindholm et al., 2000) and its activity at opioid receptors 

decreases dopamine activity and is associated with dysphoric negative emotional 

states, it is thought to play a role in alcohol withdrawal and negative reinforcement 

and thus promoting compulsive ethanol consumption (George F. Koob, 2013; 

Todtenkopf et al., 2004; Walker et al., 2011). Supporting this theory, administration 

of opioid receptor antagonists reduces dependence-induced self-administration of 

ethanol in rats (Walker et al., 2011; Walker & Koob, 2008). 

 

2.3.5  CRF Receptors and Amygdala Overactivation 

The transition from impulsive to compulsive ethanol consumption has been 

attributed to a combination of mPFC-associated cognitive dysfunction and CeA 

overactivation, driving negative reinforcement through negative affect states (G F 

Koob, 2008). Anxiety states in alcohol withdrawal can be sensitized by CRF 

receptor agonists or reduced by CRF receptor antagonism (Overstreet et al., 2004), 

and this activity can be traced to CeA (Heinrichs et al., 1995). In rats, acute 

abstinence after prolonged intermittent exposure to ethanol produces recruitment 

of CRF interneurons to mPFC and is associated with a functional disconnection 

between mPFC and CeA along with impaired working memory (George et al., 

2012). These effects were not observed in rats given continuous access or in rats 

receiving intermittent access but not in withdrawal. This supports the hypothesis 
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that alcohol withdrawal-induced negative affect states due to CeA overactivation 

can drive dysfunctional changes in mPFC and thereby impair executive function, 

potentially predisposing to compulsive behaviors. Further underscoring this idea, 

ethanol dependent rats given a CRF antagonist reduce ethanol self-administration 

following acute withdrawal (Funk et al., 2007). 

 

2.3.6  Dichotomous Projections to Nucleus Accumbens 

AUD is characterized by episodic relapses which can be triggered by the 

presence of alcohol-associated cues. Cue associations develop rapidly for 

rewarding effects of alcohol and are difficult to extinguish (Ciccocioppo et al., 

2001; Field & Duka, 2002; Lê & Shaham, 2002; Sinha & Li, 2007). Alcoholics with 

short and long term abstinence show increased functional magnetic resonance 

imaging blood-oxygen-level-dependent imaging responses in mPFC when 

viewing alcohol-associated cues visual cues compared to controls (Grüsser et al., 

2004; Heinz et al., 2007). Activation was highest in individuals that went on to 

relapse in the following 3 months and the degree of mPFC activation correlated 

with intake during relapse (Grüsser et al., 2004). Not limited to visual cues, alcohol 

gustatory cues alone are able to elicit substantial functional magnetic resonance 

imaging blood-oxygen-level-dependent responses in the mPFC of heavy alcohol 

drinkers (Filbey et al., 2008). 
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Targeted ablation of mPFC projections to NAc in rats eliminated cue-

induced reinstatement of alcohol seeking, suggesting alcohol-cue associations are 

given value and salience by mPFC, which is communicated to the mesolimbic 

reward system via NAc (Keistler et al., 2017). This reinstatement pathway appears 

to be shared with other drugs of abuse and involves cued activation of excitatory 

prelimbic mPFC neurons, which then release glutamate onto NAc core 

(Klenowski, 2018; McFarland et al., 2003). This circuitry is modulated by dopamine 

D1 receptor expression on NAc projecting prelimbic neurons, which enhance 

salience of drug-cue associations (Brenhouse et al., 2008; Kalivas et al., 2005).  

While the prelimbic mPFC tends to project to the NAc core, the NAc shell 

receives its mPFC afferents almost exclusively from the infralimbic area (Haber et 

al., 1995). In contrast to the prelimbic- NAc core projections, the infralimbic-NAc 

shell projections are modulated by dopamine D2 receptors (Zbukvic et al., 2016). 

Additionally, while prelimbic projections to NAc core act to increase drug-cue 

associations and reinstatement, infralimbic projections targeting NAc shell are 

associated with extinction of alcohol seeking behavior and inactivation of drug-

associated cues (J. Peters et al., 2008, 2009; Pfarr et al., 2015). Highlighting this 

inhibitory role, selective ablation of NAc-shell projecting infralimbic neurons 

causes excessive alcohol seeking in rats (Pfarr et al., 2015). 
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2.4  White Matter in Alcohol Use Disorder 

Oligodendrocytes have the capacity to wrap hundreds of neuronal axons 

with electrically insulating myelin, greatly increasing action potential fidelity and 

conduction velocity. While the majority of myelination occurs in early life, 

oligodendrocyte precursor cells continue to divide, differentiate, and myelinate in 

adult brain (Rivers et al., 2008). This process is important for plasticity of neural 

networks and has been observed in human adults learning new tasks (Bengtsson 

et al., 2005; Fields, 2005, 2010, 2015; Scholz et al., 2009). 

In rodent CIE models of AUD, a decrease in proliferation, differentiation, and 

survival of mPFC oligodendrocyte precursor cells is observed (A. Kim et al., 2015). 

Those changes are accompanied by synaptic alterations in dendritic arbors, spine 

densities, and NMDA receptor subunit expression. In human alcoholics, white 

matter volume loss and dysfunction are observed and coincide with cognitive 

deficits affecting decision making, learning, and memory (Chanraud et al., 2007; 

Demirakca et al., 2011; Pfefferbaum & Sullivan, 2005; Ryan & Butters, 1980). 

Likewise, decreased expression of genes involved in myelination, including 

proteolipid protein (PLP), myelin-associated glycoprotein (MAG), and myelin 
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basic protein (MBP) is seen in postmortem human brain tissue (Lewohl et al., 2005; 

Liu et al., 2006).  

  

Species Gene Identity 

Human CLIC1 67% 

Human CLIC2 66% 

Human CLIC3 51% 

Human CLIC4 - 

Human CLIC5 75% 

Human CLIC6 76% 

Mouse CLIC4 99% 

C. elegans EXC-4 25% 

C. elegans EXL-1 24% 

D. melanogaster CLIC 30% 

 

 
 
Table 2.1: Chloride intracellular channel gene family homology. 
Protein sequence identity for CLIC4 and the other 5 human chloride 
intracellular channel genes as well as CLIC4 orthologs in mouse, C. elegans, 
and D. melanogaster. Sequence identity obtained through protein BLAST. 
(https://blast.ncbi.nlm.nih.gov).   

https://blast.ncbi.nlm.nih.gov/
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2.5  Characteristics of Chloride Intracellular Channel 4  

Chloride intracellular channels are a small family of 6 highly conserved 

genes in vertebrates with orthologs in invertebrates (Table 2.1). Members of a rare 

class of metamorphic proteins, chloride intracellular channels can alter their three-

dimensional structure under specific redox conditions (Littler et al., 2004, 2005). 

Although the functions of these proteins are still being elucidated, repeated 

studies have documented that one of the best characterized members of this 

family, CLIC4, has diverse roles in development (Chalothorn et al., 2009), 

apoptosis (Fernandez-Salas et al., 2002; Suh et al., 2004), and membrane trafficking 

(Chou et al., 2016; Maeda et al., 2008). CLIC4 has been shown to translocate to the 

nucleus as an early responder to cell stress (Suh et al., 2004) and to modulate 

transcription in the transforming growth factor beta pathway (Shukla et al., 2009). 

The gene has highly localized patterns of expression in the nervous system, 

potentially including white matter tracts (V. Padmakumar et al., 2014), and has 

been implicated in ion channel activity (Harrop et al., 2001; Littler et al., 2004; Tulk 

et al., 2000) and membrane trafficking (Chou et al., 2016; Maeda et al., 2008). 

CLIC4 was first identified in 1987 as a p64 homolog (Howell et al., 1996) 

and its crystal structure was published in 2005 (Littler et al., 2005). CLIC4 is a 253 

amino acid, 29kDa protein, that like other members of the chloride intracellular 

channel family, has structural homology with the glutathione S-transferase (GST) 
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fold superfamily (Littler et al., 2010). GSTs classically catalyze the covalent transfer 

of glutathione to exogenous substances as part of phase II metabolism and 

detoxification. Like other GST proteins, chloride intracellular channels contain two 

major structural domains, an N-terminal mixed α-helix and β-sheet domain and a 

C-terminal all-helical domain. Unique to members of the Ω subclass of GST 

proteins, chloride intracellular channels possess a glutaredoxin-like motif and 

active cysteine in their N-terminal domain which in other members of the Ω-GST 

class, has been associated with enzymatic redox reactions in lieu of glutathione 

transferase activity (Board et al., 2000; Littler et al., 2005). This glutathione-

dependent oxidoreductase enzymatic activity has been demonstrated in vitro for 

multiple members of the chloride intracellular class, including CLIC4, and was 

capable of being inhibited by selective chloride channel inhibitors IAA-94 and A9C 

(Al Khamici et al., 2015). 

Perhaps the most unique characteristic of the chloride intracellular channels 

is their ability to spontaneously modify their tertiary structure in response to 

changes in the redox state of their environment. Metamorphic proteins possess 

multiple stable equilibrium conformations and appear to be capable of 

interconversion in a ligand-free environment (Goodchild et al., 2011). Chloride 

intracellular channels are prototypical of this behavior, possessing glutaredoxin-

like enzymatic activity in their soluble globular reduced state and becoming 
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membrane-integral when oxidized (Littler et al., 2005). Integration into 

membranes is thought to be facilitated by rearrangement of the N-terminal 

domain, which reveals an otherwise hidden, putative non-polar transmembrane 

domain (Harrop et al., 2001; Littler et al., 2005). In this oxidized state, CLIC4 

demonstrates the ability to conduct anions across artificial membranes similar to 

an ion channel, although this feature is lost with the application of a reducing 

agent (Littler et al., 2005). However, further electrophysiological evaluation of 

CLIC4 in artificial membranes suggests the protein forms poorly-selective 

channels that also permit cations, suggesting classification as a pore may be more 

accurate than channel (Singh & Ashley, 2007). The mechanisms by which chloride 

intracellular channels form these pores is currently unknown. Intriguingly, 

mutation of the N-terminal active site cysteine inhibits both the glutaredoxin-like 

enzymatic activity of reduced CLIC4 (Al Khamici et al., 2015) and the ability of 

oxidized CLIC4 to integrate into membranes and conduct ions (Littler et al., 2010). 

Expression of CLIC4 is fairly ubiquitous with high expression in 

vasculature, skin, liver, kidney, and brain (V. Padmakumar et al., 2014). 

Knowledge of regional and cell type-specific CLIC4 expression in brain is limited, 

but in situ hybridization data from Allen Brain Atlas suggest expression is highest 

in olfactory bulbs, cerebellum, and lateral septal complex (Lein et al., 2007; V. 

Padmakumar et al., 2014). CLIC4 has been identified in a variety subcellular 
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compartments, depending on specific cell type and conditions, but most 

commonly include cytoplasm, nucleus, mitochondria, plasma membrane, and 

intracellular membranes (Berry et al., 2003; Proutski et al., 2002; Suh et al., 2004). 

CLIC4 contains a nuclear localization sequence in its C-terminus and has been 

shown to translocate to the nucleus following TNF-α signaling and various 

cellular stresses including DNA damage, metabolic inhibitors, and inhibitors of 

transcription and translation (Fernandez-Salas et al., 2002; Suh et al., 2004). CLIC4 

also has a p53 response element in its promoter and is upregulated by p53 pro-

apoptotic signaling where its translocation to the nucleus accelerates apoptosis 

(Suh et al., 2004). CLIC4 has also been shown to translocate to the nucleus in order 

to promote TGF-β signaling by stabilizing phospho-SMAD transcription factors 

(Malik et al., 2010; Shukla et al., 2009). Considering its rapid induction following 

acute ethanol and ability to translocate to the nucleus during stress, it is possible 

Clic4 may act as a modulator of the gene expression response to ethanol in brain.  

  

2.6  Alcohol Use Disorder Studies in Model Organisms 

 Established animal models of AUD are numerous, ranging from 

invertebrates to non-human primates. Invertebrate model organisms such as 

Drosophila melanogaster and Caenorhabditis elegans are particularly well suited to 

high throughput mutation screens and evaluating acute ethanol behaviors such as 
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sensitivity to sedation and tolerance (Grotewiel & Bettinger, 2015). Rodents, 

including mice and rats, are commonly used to model more complex behaviors 

such as voluntary ethanol consumption, withdrawal, and reinstatement. With the 

abundance of available transgenic mice, candidate gene characterization studies 

are commonly carried out in mice. Two strains commonly used are the DBA/2J 

(D2) and C57BL/6J (B6) mice, which display different responses to acute ethanol, 

withdrawal, and voluntary ethanol consumption. D2 mice are more sensitive to 

ethanol and show longer periods of ethanol sedation, higher locomotor induction, 

and more severe withdrawal states compared to B6 mice (Linsenbardt et al., 2009; 

Lister, 1987; T. J. Phillips et al., 1994). While D2 mice show an aversion to ethanol 

consumption, B6 mice can show a higher preference for certain concentrations of 

ethanol over water (Belknap et al., 1993). Aversion in D2 mice appears to be a pre-

digestive sensory discrimination phenomena considering the strain will self-

administer ethanol if provided intravenously (Grahame & Cunningham, 1997). B6 

and D2 mice and crossed hybrid offspring are often contrasted in genomic studies 

to model diversity of ethanol sensitivity and preference in humans (Farris et al., 

2010; Gallaher et al., 1996; Kerns et al., 2005; Metten et al., 1998; Tamara J. Phillips 

et al., 1994, 1998; Tarantino et al., 1998; Wolen et al., 2012).  

Mouse models of voluntary ethanol consumption are diverse and include 

various manipulations such as continuous or intermittent access, multiple ethanol 
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concentration choices, and forced ethanol vapor or voluntary drinking. While each 

paradigm has its own advantages, intermittent ethanol access (IEA), which models 

frequent repeated binge-withdrawal cycles, produces a higher escalation and 

overall intake compared to continuous access paradigms (H. C. Becker & Ron, 

2014). Two-bottle choice, which pairs a bottle of water with an identical bottle of 

dilute ethanol, is the most commonly employed voluntary access methodology, 

but evidence suggests three-bottle choice (3BC) produces even higher escalation 

of intake (Melendez et al., 2006). Similar to humans, mice display sex differences 

in ethanol-related behaviors, although somewhat differently. Female mice tend to 

drink more ethanol than males, especially early in studies, have longer sedation 

periods, and show less severe withdrawal (J. B. Becker & Koob, 2016). In summary, 

mice make for useful models of AUD, displaying strain and sex-specific 

differences in ethanol-related behaviors and having an abundance of transgenic 

options available for investigating candidate genes.  

In the following chapters, a combination of model organisms will be 

applied in the task of characterizing the molecular and behavioral responses to 

acute ethanol. This will include the use of Drosophila for evaluating sensitivity to 

ethanol sedation and the gene expression responses to Clic knockdown. A 

combination of D2 and B6 mice will be used to evaluate acute and chronic ethanol 

exposure-related behaviors, the role of Clic4, and the accompanying transcriptome 
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modifications. Together these approaches provide novel characterization of gene 

expression contributions to the development of AUD. 
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Chapter 3 

Ethanol Sensitization and the Synaptic 

Transcriptome 

 

3.1  Introduction 

Alcoholism is a chronic disease characterized by compulsive drug-seeking 

undeterred by negative consequences, as well as cravings and potential for relapse 

that persist despite years of abstinence. The endurance of these pernicious 

behaviors supports the theory that addiction arises from progressive and lasting 

cellular and molecular adaptations in response to repeated ethanol exposure 

(Nestler, 2001; Nestler et al., 1993). A more complete comprehension of neuronal 

plasticity that underlies the transition to compulsive drug use could lead to novel 

therapeutic strategies for alcohol use disorders.  

The morphological specialization of neurons, where synapses appear to be 

regulated in an individual manner, advocates the need for local mechanisms 
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controlling synaptic function. Local synaptic protein synthesis is supported by the 

finding of synthesis machinery at post-synaptic sites, including ribosomes, tRNA, 

translation factors, endoplasmic reticulum, and Golgi apparatus (Steward & Levy, 

1982; Steward & Reeves, 1988). Furthermore, through in situ hybridization (Lyford 

et al., 1995; Poon et al., 2006) and studies characterizing synapse-enriched 

subcellular fractions (Chicurel et al., 1993; Matsumoto et al., 2007; Poon et al., 2006; 

Rao & Steward, 1993) and microdissected neuropil (Cajigas et al., 2012), a number 

of mRNA species have been identified at synapses. mRNA transport has been 

shown to occur in an activity dependent manner. For instance, mRNA of the 

immediate early gene, Arc, as well as GluR1 and GluR2 transcripts have been 

shown to be localized to dendrites following NMDA and metabotropic glutamate 

receptor activation, respectively (Grooms et al., 2006; Steward & Worley, 2001). 

Also, depolarization extends transport of mRNA for BDNF and its receptor, TrkB, 

to the distal processes in neuronal cell culture (Tongiorgi et al., 1997). Studies using 

protein synthesis inhibitors have shown that protein synthesis is required for 

behavioral and synaptic plasticity, assumedly for establishing enduring 

modifications (Kang & Schuman, 1996; Steward & Schuman, 2001). Thus, targeting 

of specific RNAs to dendrites may be an efficient way of rapidly localizing proteins 

involved in synaptic function. Alterations in dendritic mRNA transport, stability, 
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or translation could thus modulate synaptic plasticity (Chicurel et al., 1993; 

Steward & Banker, 1992).  

Previous research from our laboratory that examined ethanol regulation of 

gene expression across a variety of mouse strains has found significant enrichment 

of genes involved with synaptic functioning and plasticity, reproducibly amongst 

several brain regions (Kerns et al., 2005; Wolen et al., 2012). There is also evidence 

to support that adaptive responses underlying ethanol tolerance and dependence 

are synaptic in nature, in part involving changes in glutamate neurotransmission 

(Tsai & Coyle, 1998). Ethanol administration has been shown to induce structural 

synaptic plasticity as well. Alcohol-preferring rats exposed to 14 weeks of 

continuous access or subjected to repeated deprivations of ethanol exhibited 

decreased density and increased size of spines in a subpopulation of neurons in 

the NAc (Zhou et al., 2007). Cortical neurons exposed to chronic intermittent 

ethanol administration had significant increases in NMDA receptor surface 

expression (Qiang et al., 2007) and hippocampal cultures receiving prolonged 

ethanol exposures exhibited increased co-localization of PSD95 and f-actin 

(Carpenter-Hyland & Chandler, 2006) leading to enlargement of spine heads. 

Together these data suggest that dendritic spines may be an important target for 

the adaptive actions of ethanol. Therefore, we investigated whether ethanol 
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evoked changes to the synaptic transcriptome in a well-characterized model of 

behavioral plasticity, ethanol locomotor sensitization.  

It has been proposed that behavioral sensitization is a process that occurs 

following repeated drug exposure as the result of neuroadaptations in brain 

reward systems that contribute to such phenomenon as drug craving and relapse 

in alcoholics (Piazza et al., 1990; T. E. Robinson & Berridge, 1993). Intermittent 

administration of many drugs of abuse, including ethanol, propagates the 

development of long-lasting sensitized responses to their stimulant effects, often 

measured as augmented locomotor activation in rodent models (Hirabayashi & 

Alam, 1981; Masur et al., 1986; Shuster et al., 1975). Behavioral sensitization has 

been associated with neurochemical and molecular adaptions that effect 

neurotransmission (Kalivas & Stewart, 1991; Vanderschuren & Kalivas, 2000; 

White & Kalivas, 1998). There is also evidence that brain regions mediating 

reinforcement and reward undergo neuroadaptations with cocaine or 

amphetamine sensitization causing increased incentive salience and self-

administration of the drug (Horger et al., 1990; Piazza et al., 1990). Increased 

voluntary consumption of ethanol has also been observed following intermittent 

repeated exposure (Camarini & Hodge, 2004; Lessov et al., 2001).  

We therefore hypothesize that ethanol-induced sensitization, may result, at 

least in part, from alterations in the synaptic transcriptome, contributing to 
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synaptic remodeling and plasticity. Here we utilize synaptoneurosomes (Williams 

et al., 2009) prepared from ethanol sensitized DBA2/J mice to enrich for synaptic 

mRNAs for the purpose of RNAseq analysis. Our expression profiling reveals that 

repeated ethanol exposure elicits distinctive changes to the complement of mRNA 

present at the synapse. Furthermore, our detailed analysis identifies, for the first 

time, that ethanol behavioral sensitization produces a striking alteration in exon 

utilization in the synaptic compartment. This analysis of the synaptic 

transcriptome in response to ethanol sensitization increases our understanding of 

mechanisms underlying ethanol-induced synaptic plasticity and highlights the 

complexity of genomic regulation at the subcellular level. 

 

3.3   Materials and Methods 

Ethics Statement 

All procedures were approved by Virginia Commonwealth University 

Institutional Animal Care and Use Committee under protocol AM10332 and 

followed the NIH Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 80-23, 1996).  
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Animals 

Male D2 mice were purchased from Jackson Laboratories (Bar Harbor, ME) 

at 8-9 weeks of age. Animals were housed 4 per cage and had ad libitum access to 

standard rodent chow (#7912, Harlan Teklad, Madison, WI) and water in a 12-hour 

light/dark cycle (6 am on, 6 pm off). Mice were housed with Teklad corn cob 

bedding (#7092, Harlan Teklad, Madison, WI) and cages were changed weekly. 

Subjects were allowed to habituate to the animal facility for one week prior to 

starting behavioral experiments. Behavioral assays were performed during the 

light cycle between the hours of 8 am and 2 pm.  

 

Ethanol-Induced Behavioral Sensitization and Tissue 

Collection 

Ethanol behavioral sensitization was induced as previously described 

(Costin et al., 2013a;Costin et al., 2013b). Briefly, mice were divided into three 

treatment groups (n = 16 each): saline-saline (SS), saline-ethanol (SE), and ethanol 

- ethanol (EE). Mice were acclimated to the behavioral room for 1 hour prior to the 

start of the experiment on testing days. All locomotor activity was measured 

immediately following i.p. injection with either saline or ethanol during 10-minute 

sessions in sound-attenuating locomotor chambers (Med Associates, model ENV-
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515, St. Albans, VT). The system is interfaced with Med Associates software that 

assesses activity using a set of 16 infrared beam sensors along the X-Y plane. 

Animals received two days of saline injections and placement in the testing 

apparatus for habituation to the experimental procedure. On test day 3, acute 

locomotor responses to i.p. saline (SS, SE) or 2.0 g/kg ethanol (EE) were measured. 

On conditioning days 4-13, animals received daily i.p. injections in their home 

cages of either saline (SS, SE) or 2.5 g/kg ethanol (EE). On the final testing day 14, 

the SS group received saline and the SE and EE groups received 2.0 g/kg ethanol 

and all groups were subsequently monitored in activity chambers for 10 minutes. 

On day 14 of the behavioral sensitization paradigm, mice were sacrificed by 

cervical dislocation 4 hours following i.p. injection. Immediately afterward, brains 

were removed and chilled for one minute in ice-cold 1x phosphate buffered saline. 

The frontal pole was dissected by making a cut rostral of the optic chiasm and then 

removing the olfactory bulbs. Excised tissue was stored in a tube on ice for less 

than 8 minutes before processing for synaptoneurosome isolation.  

 

Synaptoneurosome Preparation 

The protocol for preparation of synaptoneurosomes was adapted from 

Williams et al., 2009 (Williams et al., 2009). Fresh tissue from 4 animals was pooled 

(approximately 0.45 g) and manually homogenized utilizing a 15 ml Potter-
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Elvehjem Safe-Grind® tissue grinder (#358009, Wheaton, Millville, NJ) and diluted 

1:10 in synaptoneurosome homogenization buffer. The buffer consisted of 0.35 M 

nuclease free sucrose (CAS #57-50-1, Acros Organics, NJ), 10 mM HEPES (#15630-

056, Life Technologies, Carlsbad, CA), and 1 mM EDTA (#AM9260G, Ambion, 

Carlsbad, CA), which was brought to a pH of 7.4 and filter sterilized. Immediately 

before use, 0.25 mM DTT (CAS #3483-12-3, Fisher Scientific, Waltham, MA), 30 

U/mL RNase Out (#10777-019, Invitrogen, Carlsbad, CA), and protease inhibitor 

cocktail containing AEBSF, Aprotinin, Bestatin, E64, Leupeptin, and Pepstatin A 

(#1862209, Halt, Thermo Scientific, Rockford, IL), were added to buffer. 

Centrifugation of whole homogenate (WH) at 500 x g for 10 minutes at 4˚C 

removed nuclei and cellular debris, yielding pellet, P1 and supernatant, S1. The S1 

fraction was passed through a series of nylon filters with successively decreasing 

pore sizes of 70, 35, and 10 µm (#03-70, #03-35, #03-10, SEFAR, Buffalo, NY). The 

filtrate was then diluted with 3 volumes of homogenization buffer and centrifuged 

at 2000 x g for 15 minutes at 4˚C to yield the synaptoneurosome enriched pellet 

(P2) and a cellular supernatant fraction (S2). Fractions were frozen on dry ice and 

then stored at -80˚C until further processing. Aliquots from each fraction of a 

synaptoneurosomal preparation were examined for the presence of contaminating 

nuclei using 4’, 6-diamidino-2-phenylindole (DAPI) staining. Representative fields 

at 20x magnification were assessed for nuclear content.  
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Transmission Electron Microscopy  

Morphological integrity of synaptoneurosomes was confirmed by 

transmission electron microscopy. The P2 fraction was washed in PBS and 

centrifuged at 2000 x g for 8 minutes. The supernatant was decanted and pellet 

was fixed with 2% glutaraldehyde in 0.1 M sodium cacodylate buffer at room 

temperature. After initial fixation, the sample was rinsed in 0.1 M cacodylate 

buffer for 5-10 minutes and then post-fixed in 1% osmium tetroxide in 0.1 M 

cacodylate buffer for 1 hour, followed by another 5-10-minute rinse in 0.1 M 

cacodylate buffer. Preparation continued with a serial dehydration with ethanol: 

50%, 70%, 80%, 95% - for 5-10 minutes each, followed by 100% ethanol for 10-15 

minutes (3x), and incubation in propylene oxide for 10-15 minutes (3x). The 

sample was then infiltrated with a 50/50 mix of propylene oxide and PolyBed 812 

resin (Polysciences, Inc., Warrington, PA) overnight, which was then replaced 

with pure resin once again overnight. The sample was embedded in a mold, placed 

in a 60˚C oven overnight, and then sectioned with a Leica EM UC6i Ultramicrome 

(Leica Microsystems, Wetzlar, Germany), stained with 5% Uranyl acetate and 

Reynold’s Lead Citrate, and examined on JEOL JEM-1230 transmission electron 

microscope (JEOL USA, Inc., Peabody, MA). Images of various magnifications 

(2,000x – 10,000x) were captured with the Gatan Ultrascan 4000 digital camera 

(Gatan, Inc., Pleasanton, CA). 
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Immunoblotting 

Pellets (P1 and P2) and liquid aliquots (WH, S1, and S2) from 

synaptoneurosomal preparations were used to perform semi-quantitative 

immunoblotting. Pellets were triturated with NuPAGE LDS (#NP0008, Life 

Technologies, Carlsbad, CA) diluted to 1x and containing protease inhibitor 

cocktail (#1862209, Halt, Thermo Scientific, Rockford, IL), while liquid aliquots 

were lysed directly with 4x LDS with added proteinase inhibitor. Samples were 

sonicated on ice water until no longer viscous. Protein concentrations were 

determined using the bicinchoninic acid assay (#23227, Thermo Scientific, 

Rockford, IL) and absorbance at 562nm. Sample concentrations were balanced 

using 1x LDS, 10x NuPAGE reducing agent (#NP0004, Life Technologies, 

Carlsbad, CA) and boiled for 10 minutes. For each synaptoneurosome fraction, 10 

µg of protein was loaded per lane on a 10% or a 4% - 12% NuPAGE bis-tris gel 

(#NP0303BOX, #NP0322BOX, Life Technologies, Carlsbad, CA). Electrophoresis 

was performed at 150V followed by transfer to 0.45 µm nitrocellulose membrane 

for 1.5 hours at 30V on ice. Membranes were incubated with Ponceau S for 10 

minutes, and densitometric analysis of staining was performed using ImageJ 

processing and analysis software (National Institutes of Health). Prior to primary 

antibody incubation, the membranes were blocked with 5% non-fat dried milk in 

1x TBST for 45 minutes. Primary and secondary antibody catalog numbers, 
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dilutions, and incubation times are provided in Table S1. Immunoblots were 

visualized on GeneMate Blue Autoradiography film (BioExpress, Kaysville, UT) 

using the Amersham ECL Western Blotting Detection Reagent (#RPN2106, GE 

Healthcare Life Sciences, Pittsburgh, PA) and quantified using ImageJ. All 

detected proteins were normalized to the total protein loaded per well as 

measured by Ponceau S staining. Statistical analysis of immunoblot data was 

performed by one-way ANOVA across synaptoneurosome fractions followed by 

Tukey’s post-hoc analysis. 

 

Quantitative Reverse Transcriptase PCR (qRT-PCR) 

Synaptoneurosomal fractions, S2 and P2, prepared from mice subjected to 

the sensitization protocol were assessed for enrichment of known dendritically-

trafficked and somatically-restricted transcripts using qRT-PCR. Total RNA was 

isolated the using guanidine/phenol/chloroform method (#Cs-502, Stat-60, Tel-

Test Inc., Friendswood, TX) and a Tekmar homogenizer as per the STAT-60 

protocol. RNA concentration was determined by measuring absorbance at 260 nm 

and RNA quality was assessed by electrophoresis on an Experion Analyzer (Bio-

Rad, Hercules, CA) and 260/280 absorbance ratios. All RNA samples had RNA 

quality indices (RQI) ≥ 7.6 and 260/280 ratios were between 1.97 and 2.06. cDNA 

was generated from 995 ng of total DNase-treated RNA and 5 ng of luciferase 
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mRNA (#L4561, Promega, Madison, WI) using Deoxyribonuclease I (#18068-015, 

Invitrogen, Carlsbad, CA) and the iScript cDNA kit (#170-8891, Bio-Rad, Hercules, 

CA) according to manufacturer’s instructions. qRT-PCR was performed using the 

iCycler iQ system (Bio-Rad, Hercules, CA) according to manufacturer’s 

instructions for iQ SYBR Green Supermix (#170-8880, Bio-Rad, Hercules, CA). 

Primer sequences, annealing temperatures, amplicon sizes, and cDNA dilutions 

used for each gene are listed in Table S3.1. Relative expression was calculated by 

comparing Ct values to a standard curve produced from S2 fraction cDNA 

(diluted 1:5, 1:25, 1:125, 1:625). Expression values were normalized to the 

exogenous internal reference mRNA, luciferase, to control for losses and 

inefficacies of downstream processing (Johnson et al., 2005). Statistical analysis of 

qRT-PCR data was performed using a Student’s t-test between the two fractions.  

 

RNAseq Library Preparation and Sequencing 

RNAseq data has been deposited with the Gene Expression Omnibus 

resource (GSE73018). Total RNA isolated for qRT-PCR was also used for gene 

expression profiling using RNAseq performed by the VCU Genomics Core 

Laboratory. To avoid non-biological experimental variation that arises from 

sample batch structure, supervised randomization of samples prior to each 

processing stage (RNA extraction, library amplification, and lane assignment) was 
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performed. A total of 4 biological replicates, each representing a pool from 4 

animals, was obtained for each treatment group/fraction (Figure 3.1; SSS, SES, EES, 

SSP, SEP, EEP). Preparation of cDNA libraries was conducted following standard 

protocols using TruSeq RNA Sample Preparation Kit (#RS-122-2001, Illumina, San 

Diego, CA). Briefly, mRNA was isolated from total RNA using poly-T oligo-

attached magnetic beads and then fragmented in the presence of divalent cations 

at 94˚C.Fragmented RNA was converted into double stranded cDNA followed by 

ligation of Illumina specific adaptors. Adaptor ligated DNA was amplified with 

15 cycles of PCR and purified using QIAquick PCR Purification Kit (#28104, 

Qiagen, Venlo, Netherlands). Library insert size was determined using an Agilent 

Bioanalyzer. Library quantification was performed by qRT-PCR assay using 

KAPA Library Quant Kit (#KK4835, KAPA, Wilmington, MA). RNAseq libraries 

were analyzed using Illumina TruSeq Cluster V3 flow cells and TruSeq SBS Kit V3 

(#FC-401-3001, Illumina, San Diego, CA), with six libraries of different indices 

pooled together in equal amounts loaded on to a single lane at a concentration of 

13 pM and sequenced (2 x 100 paired end reads) on an Illumina HiSeq 2000. 

Sample EE6_P2 was removed from subsequent analyses due to over-amplification 

artifacts. A summary of RNAseq metrics can be found in Table S3.2.  
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RNAseq Alignment 

FASTQ formatted sequence files were aligned using TopHat2 v2.0.8 (D. 

Kim et al., 2013) with GRCm38/mm10 reference genome and annotations obtained 

from the UCSC genome table browser (https://genome.ucsc.edu/cgi-bin/hgTables) 

(Karolchik, 2004). The B6 reference genome (mm10) was edited to include D2 

single nucleotide polymorphisms (Wang et al., 2016). Aligned BAM files produced 

by TopHat2 were validated for mapping quality with Samtools v0.1.9 (Li et al., 

2009) and for completeness using BamUtil v1.0.13 

(http://genome.sph.umich.edu/wiki/BamUtil). BAM files were converted to sorted 

SAM files for downstream feature count-based analysis with Samtools.  

 

Differential Gene Expression Analysis 

Raw read counts were produced from each SAM file using the python 

package HTSeq v0.6.1 (Anders et al., 2012) script htseq-count with the read overlap 

handler set to union. Resulting raw count files were analyzed for differential gene 

expression (DGE) between ethanol sensitized (EE) or acutely exposed (SE) animals 

and ethanol naïve (SS) animals within either the synaptic P2 fractions or the 

cellular supernatant S2 fractions using the R (https://www.R-project.org) package 

edgeR v3.10.2 (M. D. Robinson et al., 2010) with a negative binomial generalized 

log-linear model approach (McCarthy et al., 2012). Lowly expressed genes were 
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filtered out if not present in at least three libraries with counts per million of 3.4 or 

greater, corresponding with approximately 5 total counts in the smallest library. 

Genes meeting a false discovery rate (FDR) cutoff of 0.10 were considered 

significantly altered and used in downstream bioinformatic analysis. 

 

Differential Exon Usage Analysis  

A GFF annotation file containing collapsed exon counting bins was 

prepared from the UCSC GRCm38/mm10 GTF file using the DEXSeq v1.16.10 

(Anders et al., 2012) Python script dexseq_prepare_annotation.py, with gene 

aggregation disabled. The number of reads overlapping each exon bin were then 

counted using the DEXSeq Python script dexseq_count.py, the GFF file, and each 

sample’s SAM file. Differential exon usage (DEU) analysis was then carried out for 

the same contrasts studied in our differential gene expression analysis using the 

DEXSeq R package standard analysis workflow.  Ensembl transcript IDs produced 

in the DEXSeq results files were translated to gene symbols using the R package 

BiomaRt v2.32.0 (Durinck et al., 2009). Genes with transcripts possessing at least 1 

differentially utilized exon bin with an adjusted p-value (padj) less than 0.01 were 

considered to be significantly altered and were used in downstream bioinformatic 

analysis. 
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Bioinformatic Analysis 

Functional enrichment analyses for DGE and DEU results were performed 

using ToppFun, available as part of the ToppGene suite of web-based applications 

(toppgene.cchmc.org) (Chen et al., 2009). Mouse gene symbols were submitted 

and analyzed for over-representation of genes that belong to Gene Ontology (GO) 

categories (molecular function, biological processes, and cellular component), 

mouse phenotypes and biological pathway databases including the Kyoto 

Encyclopedia of Genes and Genomics (KEGG) (Carbon et al., 2019; Kanehisa, 2000) 

and Reactome (Jassal et al., 2020). Only categories with p-values less than 0.01 and 

possessing between 3 and 1000 total genes were considered. The webtool REVIGO 

(Supek et al., 2011) was used for data reduction by semantic similarity, and 

visualization of GO terms lists resulting from this analysis. 

 

RNA Binding Protein Enrichment Analysis 

Genes possessing DEU between EEP and SSP groups (padj < 0.01) were 

intersected with the genes possessing basal DEU between SSP and SSS groups 

(padj < 0.01) in order to produce a list of genes with synapse-specific DEU that was 

also regulated by ethanol sensitization.  The same was done to produce a synaptic 

sensitization-induced DGE gene list using FDR cutoffs of 0.1.  These two lists of 

genes were then intersected with gene list obtained from two public databases of 
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known and predicted RNA binding proteins (RNABP): RBPDB (Cook et al., 2011) 

and ATtRACT (Giudice et al., 2016).  The synaptic ethanol-sensitive DEU gene list 

was also intersected with a list of mRNA targets of the RNA binding protein fragile 

X mental retardation protein (FMRP), which was obtained from Table S3.2A of 

Darnell et al. (Darnell et al., 2011).  For RNABP and FMRP enrichment analyses, 

the R package GeneOverlap (version 1.16.0; http://shenlab-sinai.github.io/shenlab-

sinai/) was used to calculate odds ratios for relative enrichment of synaptic ethanol 

sensitive DEU genes and Fisher’s exact tests to calculate enrichment p-values. 

 

Sequence Motif Analysis  

Chromosomal coordinates for the differentially utilized exon bins from the 

synaptic sensitization-induced DEU gene lists used in the RNABP analysis were 

provided to BEDTools v2.26.0 (Quinlan & Hall, 2010) in order to obtain their 

respective nucleotide sequences. Sequences for the 475 exon bins (Table S12) 

containing a minimum of 8 base pairs were then supplied to the web-based motif 

discovery tool MEME (Bailey et al., 2009) to search for known or novel motifs 

common between them. Any motifs identified that met an E-value cutoff of 0.05 

were aligned to the CISBP-RNA database of RNABP motifs and specificities using 

the MEME Suite tool Tomtom (Gupta et al., 2007).  Database motif alignments 

were considered significant if the alignment score had an E-value ≤ 0.05. 
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3.4   Results 

3.4.1  Synaptoneurosome Fraction Characterization 

D2 mice were chosen for these studies due to their characteristic sensitivity 

to ethanol psychomotor stimulation and development of sensitization (T. J. 

Phillips et al., 1994). Distance traveled on test days 3 and 14 was compared and a 

significant increase in activity on day 14 was interpreted as an induction of ethanol 

sensitization (Figure 3.1a, b). Daily i.p. injections of 2.5 g/kg ethanol elicited an 

augmented locomotor response to 2.0 g/kg ethanol on day 14 as compared to day 

3 (two-way repeated measures ANOVA, FTreatment[2,45] = 96.76, p < 0.001, FDay[1.45] 

= 77.47, p < 0.001, FInteraction[2,45] = 16.89, p < 0.001, n = 16). Frontal pole brain tissue 

obtained from mice in this experiment was utilized in preparation of 

synaptoneurosome enriched samples.  

The synaptoneurosomal fractionation protocol (Figure 3.2a) was validated 

in preliminary studies by transmission electron microscopy (Figure 3.3a). As 

suggested previously (Williams et al., 2009), the intact pre- and post-synaptic 

terminals, identified by transmission electron microscopy, provide for selective 

extraction of synaptic mRNAs. Absence of intact nuclei throughout 

synaptoneurosomal fractions was verified by 4’-6-Diamidino-2-phenylindole 

(DAPI) staining (Figure 3.2b), while  
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Figure 3.1. Ethanol behavioral sensitization in male D2 mice.  
(a) Experimental protocol and timeline for induction of behavioral sensitization. 
(b) Repeated ethanol exposure induced behavioral sensitization as measured by 
locomotor activity on day 14 (EE) as compared to acute ethanol administered on 
day 3 (EE) and day 14 (SE). (c) Experimental groupings used for RNA sequencing 
and bioinformatic analysis were derived from ethanol treatment type and specific 
cellular fraction. (#p < 0.001 compared to SS within same day, $p < 0.001 compared 
to SE within same day, ∗p < 0.001 compared to same treatment on day 3, repeated 
measures two-way ANOVA with Tukey’s post hoc analysis) 
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Figure 3.2. Characterization of synaptoneurosome preparations. (a) Schematic 
depicting synaptoneurosome preparation. Whole homogenate (WH) processed 
from pooled frontal pole tissue of four mice was used in the 
centrifugation/filtration scheme depicted here. The initial pellet (P1) contained 
cellular debris and nuclei. The supernatant from the initial centrifugation (S1) was 
filtered and subjected to a second centrifugation. The pellet, P2, was enriched for 
synaptic elements and dendritically targeted RNA as compared to the 
supernatant, S2, which contained the remainder of the somatodendritic RNA. (b) 
DAPI staining of synaptoneurosome fractions at 20x magnification indicting that 
most, if not all the nuclei were removed during the initial centrifugation step to 
produce the P1 pellet. (c) Quantification of immunoblots probing subcellular 
protein markers across synaptoneurosome fractions (H4 = nuclear; LDH = 
cytosolic; PSD95 = post-synaptic; SYT = presynaptic). 
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Figure 3.3. Synaptoneurosomes display distinct RNA populations. (a) 
Representative electron micrograph from P2 fraction observed at 10,000x 
magnification. Post-synaptic density is labeled by red arrow and presynaptic 
elements with synaptic vesicles can be observed immediately adjacent. (b) RNA 
isolated from S2 and P2 fractions of behaviorally sensitized mice was assayed for 
transcripts of known subcellular localization to ensure enrichment of synaptic 
RNAs. Camk2a and Arc are transcripts known to be synaptically targeted, while 
Gapdh and Snrpn are somatically restricted. Paired Student’s t-test between 
fraction for each gene, Camk2a (t[7] = 6.941, ∗∗∗p = 0.0002), Arc (t[7] = 2.646, ∗p = 
0.0331), Gapdh (t[7] = 4.181, ∗∗p = 0.0041), Snrpn (t[7] = 8.439, ∗∗∗∗p < 0.0001), n = 8. 
(c) Top 10 GO Cellular Compartment categories according to p-value as derived 
from functional enrichment analysis of the untreated P2 enriched gene list (SSP vs. 
SSS), sorted by log2 of the categories’ odds ratio. 
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immunoblotting for subcellular protein markers was used to ascertain purity of 

the preparation (Figure 3.2c). Together these data indicate P2 fractions contain 

synaptic elements enriched for the synaptic protein markers, synaptotagmin and 

PSD-95 (one-way ANOVA, FSYT[4,10] = 9.83, p = 0.0017, FPSD95[4,10] = 11.09, p  

=0.0011, n =3), and are devoid of appreciable nuclear contamination (one-way 

ANOVA, FH4[4,10] = 125.3, p < 0.0001, n =3), 

To ensure enrichment in experimental tissues, total RNA isolated from S2 

and P2 fractions of mice subjected to the ethanol behavioral sensitization paradigm 

was evaluated by qRT-PCR (Figure 3.3b). P2 fractions had higher relative 

expression levels of known synaptically targeted transcripts, CamK2a and Arc 

(Burgin et al., 1990; Link et al., 1995; Lyford et al., 1995), while transcripts known 

to be somatically restricted, Gapdh and Snrpn (Litman et al., 1994; Poon et al., 2006), 

were more abundant in the S2 fraction (Student’s paired t-test, tCamK2a[7] = 6.941, p 

= 0.0002, tArc[7] = 2.646, p = 0.0331, tGapdh[7] = 4.181, p = 0.0041, tSnrpn[7] = 8.439, p < 

0.0001, n = 8).  

RNAseq was used to evaluate global gene expression in the S2 and P2 

fractions (Table S3.3). DGE analysis (Table S3.4, S3.5) demonstrated widespread 

and highly significant differences in P2 versus S2 samples at the gene level in saline 

control samples (SSP_SSS), with 1829 genes differentially expressed at an FDR ≤ 

0.1 and log2 fold-change ≥1 or ≤-1. Of these, 1408 were found to be enriched (>2-
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fold increased expression) in the P2 fraction (Table S3.5) and 421 enriched in the 

S2 fraction (Table S3.5). Of note, our RNAseq data faithfully replicated the qRT-

PCR results of Figure 3.3b, even though derived from a totally separate 

experiment and synaptoneurosome preparation (Table S3.6). This supports the 

rigor of our RNAseq studies. Functional enrichment analysis of the P2 enriched 

gene list revealed significant over-representation of cellular categories related to 

the structure of the synapse (Figure 3.3c) and molecular or biological categories 

relating to calcium ion binding, cell adhesion and growth factor binding among 

others relevant to the synapse (Table S3.5). In contrast, the S2 fraction showed 

cellular category enrichment relating to protein synthesis and mitochondria 

(Table S3.5). These results establish that, in contrast to the cellular supernatant S2 

fraction, the P2 synaptoneurosome fraction was enriched for mRNA relevant to 

synaptic function. 

 

3.4.2  Sensitization Alters the Synaptic Transcriptome  

To focus our attention on functional reorganization of the synapse 

occurring with acute ethanol or ethanol sensitization, we identified treatment-

responsive DGE within cellular fractions through a gene-level analyses in edgeR. 

For these analyses, we used only an FDR cutoff (≤0.1) without further filtering for 

fold-change. Figure 3.4a and Table S3.7 show that more than twice as many genes 
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Figure 3.4. DGE following acute ethanol exposure or sensitization. The number 
of genes found to be significantly altered (FDR < 0.1) by sensitization and acute 
exposure to ethanol treatments in the (a) P2 fraction and (b S2 fractions. 
Scatterplots of representative GO Biological Process categories derived from 
functional enrichment analysis of genes regulated by acute ethanol (c,e) or ethanol 
sensitization (d,f) in the P2 fraction (c,d) and S2 fraction (e,f). Scatterplots depict 
semantic similarity on axes, dispensability by size, and log10 p-value as color. 
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 responded to ethanol sensitization (EEP vs SSP; n=776) as to acute ethanol (SEP 

vs. SSP; n=375) in the P2 fraction. The S2 fraction (Figure 3.4b and Table S3.8) 

showed an even larger divergence between acute and repeated ethanol exposures 

with 686 genes regulated by sensitization (EES vs. SSS) and 126 responding to 

acute ethanol (SES vs. SSS).  

Functional over-representation analysis of these DGE groups showed 

striking divergence between responses to acute vs. sensitizing ethanol treatments 

within both the P2 and S2 compartments. REVIGO semantic similarity analysis 

was used to group similar GO Biological Process categories and thus reduce the 

complexity of the functional group analysis. Figure 3.4d demonstrates functional 

clusters relating to postsynaptic membrane potential, post-translational protein 

modification, protein folding and molecular chaperones and mitochondrial 

respiratory function in the EEP vs. SSP comparison. In contrast, none of these 

clusters are present in the SEP vs. SSP analysis of acute ethanol responses (Figure 

3.4d), which did show categories related to actin filament function and small 

GTPase signal transduction (Figure 3.4c). Similarly, the EES vs. SSS and SES vs. 

SSS comparisons showed functional dissimilarity with each other and the P2 

comparisons for the most part (Figures 3.4e, 3.4f) except for the occurrence of 

clusters relating to molecular chaperone function in the EES vs. SSS comparison, 

similar to that seen in the P2 sensitization response (Figure 3.4d). Complete details 



64 

of all functional over-representation studies for these group comparisons are 

contained in Tables S3.6 and S3.7. Overall, this gene level functional analysis 

suggests that ethanol sensitization produces a striking synaptic transcriptome 

response with changes in expression groups affecting energy production, protein 

trafficking/folding, and postsynaptic membrane currents. 

 

3.4.3  Sensitization is Accompanied by Differential Splicing 

Since differential splicing and transcript utilization are prominent in the 

nervous system, we performed an exon-level analysis of treatment effects within 

the P2 and S2 compartments using DEXSeq. We used a more stringent statistical 

threshold (adjusted p-value ≤ 0.01) to define DEU due to the nearly 30-fold greater 

number of exons detected (n = 356,131; Table S3.9) compared to the number of 

genes detected with edgeR (n = 11,764; Table S3.3). DEXSeq analysis revealed 

widespread alternative splicing events in the frontal pole S2 and P2 of ethanol 

sensitized mice. 1067 exons were differentially utilized in the P2 fraction following 

ethanol sensitization (EEP vs. SSP), representing 746 unique genes (Figure 3.5a, 

Table S3.10). In contrast, only 42 exons representing 36 genes were differentially 

utilized in the acute ethanol exposure group (SEP vs. SSP; Figure 3.5a, Table 

S3.10). In the somatic fractions of sensitized mice, 6179 exons representing 2627 

genes were differentially utilized (EES vs. SSS), whereas no  
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Figure 3.5. DEU following acute ethanol exposure or sensitization. The number 
of differentially utilized exons (padj < 0.01) and unique genes possessing a 
minimum of one differentially utilized exon observed in the P2 (a) and S2 (b) 
fractions following acute ethanol exposure or sensitization. GO reduction plots 
depicting clustering of top biological processes associated with ethanol 
sensitization and acute exposure induced DEU are displayed for the P2 (c) and S2 
(d) fractions.  
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exons passed our statistical threshold in the acute ethanol exposure group (Figure 

3.5b, Table S3.11). 

Functional enrichment analysis of P2 genes affected by ethanol 

sensitization-induced DEU revealed perturbed GO Biological Processes (p < 0.01) 

relevant to translation regulation, mRNA processing, protein stability, and 

synaptic function (Figure 3.5c, Table S3.10). In contrast, GO Biological Processes 

affected by sensitization (p < 0.01) in the S2 fraction were primarily involved in 

catabolism, autophagy, and regulation of cellular morphology (Figure 3.5d, Table 

S11).  Over-representation analysis was not performed for the acute ethanol 

exposure groups due to the low level of affected exons. 

 

3.4.4  Enrichment of RNA Binding Protein Targets 

To further evaluate the RNA processing and translation-related functional 

categories present in the ethanol sensitization-dependent P2 DEU functional 

enrichment analysis, the significant P2 DEU and DGE gene lists were analyzed for 

enrichment in RNA binding proteins using two publicly available databases, 

RBPDB and ATtRACT.  To focus more conservatively on synaptic mRNA 

regulated by ethanol sensitization, we used the intersection of EEP vs SSP and SSP 

vs. SSS gene or exon datasets for these analyses. The DGE (Table S3.4) and DEU 

(Table S3.12) gene lists showed a modest but significant overlap with each other 
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(OR = 2.3, p = 1x10-5) as did the databases of RBPDB and ATtRACT (OR = 8.8, p = 

9.6x10-63) (Figure 3.6a). However, the DGE list was not enriched for RNABPs from 

RBPDB (OR = 0.3, p = 1) or ATtRACT (OR = 1, p = 0.59) nor was the DEU list 

enriched for RNABPs from RBPDB (OR = 0.3, p = 1) or ATtRACT (OR = 1.3, p = 

0.22) (Figure 3.6a). 

The same sensitization-induced synaptic DGE and DEU gene lists were 

then evaluated for enrichment of RNA targets of a synaptically ubiquitous 

RNABP, FMRP.  FMRP has previously been identified as being involved in ethanol 

regulation of GABAB receptor membrane abundance (Wolfe et al., 2016). The DGE 

gene list was not found to be enriched in FMRP targets (OR = 1.4, p = 0.07) whereas 

the DEU gene list showed marked over-representation for FMRP targets (OR = 7.2, 

p = 1.1x10-56) (Figure 3.6b). 

Due to the lack of enrichment of RNABPs but over-representation of 

RNABP targets in the sensitization-induced synaptic DEU gene list, the possibility 

for novel or known sequence motifs governing RNABP target preference was 

investigated within the differentially utilized exon bins.  Exon bin sequences were 

supplied to the web-based motif discovery tool MEME and 5 novel sequence 

motifs were detected within the exon list having E-values ≤ 0.05 (Table 3.1, Table 

S3.13).  Of these, 4 were also found to have high sequence alignment with known  
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Figure 3.6. Synapse-Specific DEU is enriched in RNABP targets. Ethanol 
sensitization altered synaptic exon usage for targets of RNA binding proteins. 
Ethanol sensitization did not enrich gene expression or differential exon usage (a) 
of RNA binding proteins at synapses. Synaptic DEU but not DGE were enriched 
for targets of FMRP following ethanol sensitization (b) (∗p < 0.05, Fisher’s exact 
test). 
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Table 3.1. Sequence motif discovery. Motifs found in P2 ethanol sensitization-
regulated exons. Motifs are ranked by E-value and nucleotide letter sizes in logos 
are proportionate to relative frequency within motif sequence. Four of the novel 
motifs have high sequence similarity with known or predicted RNABP target 
sequence preferences (E-value ≤ 0.05). 
  

Table 3.1. Sequence Motif Discovery in P2 Ethanol Sensitization-Regulated Exons

Motif Logo E-v alue      Similar motifs

1 1x10-170 Gm10110

2 3.6x10-93 Srsf4

3 3.8x10-13

Celf3
Celf4

Hnrpll
Rbm38

4 1.2x10-8 None known

5 2.5x10-8 Hnrpdl
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RNABP sequence preferences (E ≤ 0.05) from the CISRNA-BP database. These 

findings suggest that a discreet set of RNABPs may regulate synaptic trafficking 

of ethanol sensitization-responsive transcripts. 

 

3.5  Discussion 

The studies contained here provided the first genomic analysis of acute 

ethanol and ethanol sensitization regulation of the synaptic transcriptome. Using 

a well-characterized synaptoneurosomal preparation, we validated enrichment of 

synapse-related mRNA. RNAseq analysis showed that both acute ethanol and 

ethanol sensitization, a model of behavioral plasticity, produced unique changes 

in the synaptic transcriptome. In particular, ethanol sensitization produced 

increased synaptic expression of genes that function in protein synthesis and 

folding and dendritic structure, among others. We also demonstrated, using an 

exon-level analysis, a striking preponderance of differential exon utilization 

occurring following ethanol sensitization. The genes showing DEU with ethanol 

sensitization were over-represented for targets of specific RNA binding proteins, 

including FMRP. Thus, ethanol sensitization has a major impact on the synaptic 

transcriptome in both regulation of gene expression and transcript composition. 

The genes identified here as regulated by ethanol sensitization in the synaptic 

transcriptome may provide unique understanding of the mechanisms underlying 
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synaptic plasticity contributing to behavioral changes occurring with chronic 

ethanol exposure. 

Neurons are highly specialized polarized cells, whose dendritic and axonal 

arborizations contain thousands of synapses that function and change 

individually in response to stimulation (Steward et al., 1998; Steward & Levy, 1982; 

Wallace et al., 1998). It has been proposed that activity-dependent synaptic 

plasticity requires the transport and translation of specific mRNA species, creating 

a unique complement of proteins that are able to function in response to a specific 

stimulus (Bramham & Wells, 2007). Comparing the somatic and synaptic 

transcriptomes in response to acute or sensitizing treatments of ethanol, we were 

able to detect compartmentalized differences in ethanol regulation of gene 

expression. Through our initial characterization studies, we are confident in our 

assessment that the differences observed when analyzing the P2 and S2 fractions 

are a survey of ethanol’s effect on gene expression in distinct subcellular locations. 

The exact means by which ethanol is exerting its regulation of the synaptic 

transcriptome has yet to be determined. Conceivably, ethanol could be affecting 

synaptic transcript abundances through overall modulation of gene expression 

that could have a global effect on mRNA levels within the cell, and ultimately, 

through the mere altered availability of transcript, results in changes at the 

synapse. Our data indicates that this is not an adequate explanation, as we were 
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able to detect distinct gene sets representing different biological function 

categories in the P2 and S2 fractions. Furthermore, there was a striking lack of 

overlap between functional categories regulated by acute versus sensitizing 

ethanol treatments, despite both assays being done at the same time frame post-

ethanol exposure. This is clear evidence of reorganization of the synaptic 

transcriptome with chronic ethanol exposure.  

The trafficking and localization of transcripts to the synapse offers another 

possible means of regulatory control. Synaptic tagging is a process whereby 

synaptic activation induces a transient synapse-specific change that allows the 

synapse to capture mRNA or proteins required for long-term plasticity, which has 

explicitly been studied for its role in long-term potentiation (Frey & Morris, 1997). 

The exact physical nature of the synaptic tag has not been absolutely defined, but 

candidate molecular tags that have been proposed include post-translation 

modifications to existing synaptic proteins, alterations to protein conformational 

states, initiation of localized translation or proteolysis, and reorganization of the 

local cytoskeleton (Doyle & Kiebler, 2011; Kelleher et al., 2004; Martin & Kosik, 

2002) (Martin and Kosik, 2002;Kelleher et al., 2004;Doyle and Kiebler, 2011). All of 

these mechanisms have the potential of being initiated by signaling events that 

result from membrane receptor activation. For instance, one pharmacological 

effect of ethanol is the release of dopamine in the NAc, which when acting at 
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dopamine D1-like receptors increases activity of adenylyl cyclase, thereby 

increasing cAMP levels and PKA activity. It has been shown that PKA activation 

is required for the formation of the synaptic tag (Barco et al., 2002; Casadio et al., 

1999). The premise that signaling cascades downstream of ethanol could alter the 

ability of activated synapses to capture dendritically targeted mRNA requires 

examination.  

Regardless of the exact mechanisms for synaptic localization of mRNA, our 

data here clearly suggests that differential activation or expression of RNA binding 

proteins by ethanol sensitization may be a major mechanism for restructuring the 

synaptic transcriptome to produce enhanced locomotor activation following 

repeated ethanol exposure. Our motif binding overrepresentation analysis of DEU 

results adds supportive evidence for ethanol sensitization utilizing specific mRNA 

binding proteins for modulating the synaptic transcriptome by identifying 5 novel 

consensus sequences with high similarity to known or predicted RNABP targets. 

Furthermore, this mechanism is strongly supported by our finding that genes with 

ethanol sensitization-induced DEU in the synaptic fraction are strongly over-

represented for targets of the mRNA binding protein FMRP. FMRP is a known 

RNA-binding protein involved in mRNA transport and regulation of synaptic 

protein translation, as well as dendritic spine development (Cruz-Martin et al., 

2012; Darnell et al., 2011; Michaelsen-Preusse et al., 2018).  Prior studies on ethanol 
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and FMRP have shown that the protein can regulate an acute ethanol-induced 

alteration in GABA type B receptor dendritic expression (Wolfe et al., 2016). 

Spencer and colleagues also showed that chronic ethanol exposure altered 

expression of NMDA, Kv4.2 and KChIP3 in hippocampus in a FMRP-dependent 

fashion, possibly by altering phosphorylation of FMRP and its translational 

inhibitory properties (Spencer et al., 2016). Our studies here greatly extend this 

connection between ethanol, FMRP and synaptic plasticity. Figure 3.6 

demonstrates that 20% (129/660; p=1.1x10-56) of the genes showing ethanol 

sensitization-induced DEU and enriched in the P2 fraction also overlapped with 

presumed FMRP target mRNA. This utilization of FMRP targeting by ethanol 

sensitization clearly implicates this subset of genes in mechanisms of ethanol-

induced synaptic plasticity and may have implications for overlap of AUD with 

other neurological disorders.  

Another major finding in these studies is that repeated dosing of ethanol to 

produce sensitization in D2 males induces substantially more differential gene 

expression than acute ethanol in both the P2 and S2 fractions. Strikingly, 

differential exon usage was almost exclusively seen in the ethanol sensitized mice. 

The bioinformatics analysis of our P2 candidate gene list indicated that transcripts 

altered in response to repeated ethanol are significantly enriched for biological 

functions associated with postsynaptic membrane potential, posttranslational 
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protein modifications, protein folding and molecular chaperones, and 

mitochondrial function. Previously our laboratory has shown that ethanol 

regulates transcription and mRNA abundance of molecular chaperones in vitro 

and in vivo (Kerns et al., 2005; Miles et al., 1991, 1994). The present study extends 

these findings by providing evidence that this regulation may be localized or at 

least occurring at the synapse. The robust expression response to ethanol 

sensitization is striking in that some of our prior studies have documented actual 

habituation of some expression responses (Sgk1) to acute ethanol following 

ethanol sensitization induction (Costin et al., 2013). Acute ethanol induced 

significantly fewer expression changes that represented distinct biological 

categories including actin filament and small GTPase signal transduction. In a 

similar study of synaptic transcriptional events following acute ethanol, Wolfe et 

al. evaluated hippocampal synaptoneurosome DGE and DEU 45 minutes after a 

single acute exposure to ethanol (2.4g/kg) in B6 mice (Wolfe et al., 2019). Despite 

using different mouse strains, ethanol doses, and time points, our findings have 

commonality including identification of altered GTPase-related processes in 

response to acute ethanol in the synaptic fractions. 

The large expression responses to both acute ethanol and ethanol 

sensitization with gene-level analysis of our RNAseq data was in striking contrast 

to our finding that ethanol sensitization alone led to robust alterations of exon 
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usage in both the synaptoneurosome and somatic fractions. Very few exons were 

differentially utilized following acute ethanol. However, the categories of genes 

altered by ethanol sensitization either at the gene level or exon utilization show 

functional overlap with biological processes of RNA translation, RNA processing, 

and cellular energetics. This functional over-representation is consistent with 

altered demands on synaptic activity and synaptic protein synthesis with 

sensitization. However, the striking predominance of exon utilization regulation 

by sensitization suggests that a form of transcriptional plasticity accompanying 

the synaptic and behavioral plasticity seen with repeated ethanol exposure. The 

mechanism(s) for such differential exon utilization may be linked to the need for 

trafficking mRNA to the synapse. Such a response is suggested by our finding that 

sensitization-responsive DEU genes were over-represented for FMRP target 

mRNA, but that at the gene level, sensitization did not evoke an over-

representation of FMRP targets in the synaptic transcriptome (data not shown). 

The mechanism whereby sensitization might alter promoter utilization, splicing 

or mRNA stability in producing such a robust DEU response at the synapse 

remains to be determined. 

In a prior study, Most et al. reported microarray analysis of expression 

changes in a synaptoneurosome preparation from amygdala in B6 mice following 

prolonged ethanol oral consumption (Most et al., 2015). That study also identified 
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changes relating to protein synthesis in the ethanol-regulated synaptic mRNA. 

However, there was no clear connection to a form of plasticity in their studies, 

although progressive ethanol consumption is thought to involve synaptic 

plasticity. Furthermore, those studies did not involve an exon-level analysis so 

direct comparison to our results here is not possible. Regardless, Most et al. did 

find a much more vigorous ethanol-responsive gene expression regulation in the 

synaptoneurosome as compared to a total cellular lysate. Their studies thus 

complement our findings on the dramatic response to ethanol at the level of the 

synaptic transcriptome. Together, our studies emphasize the importance of 

analyzing ethanol transcriptional responses at a more precise cellular and sub-

cellular level so as to more clearly identify biological mechanisms and 

consequences. A minor drawback to both our current studies and those of Most et 

al. is the lack of validation of RNAseq results by additional techniques such as 

qRT-PCR or Western blot analysis, or preferably, by cellular resolution techniques 

such as in situ hybridization or immunohistochemistry. Such studies were not a 

major goal of the current report, where we have focused on network- or pathway-

level finding rather that single genes. We did provide at least a partial cross 

validation of our molecular findings in our studies on select candidate genes 

shown in Figure 3b and Table S3.6. However, future detailed cellular validation 

studies are clearly needed. 
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Using expression analysis, our study is the first to characterize regulation 

of the synaptic transcriptome by ethanol (or any exogenous drug) in an in vivo 

model of synaptic plasticity. With repeated intermittent exposure to ethanol that 

resulted in a sensitized response, we observed changes to the complement of 

mRNA present at the synapse and alterations in the exonic composition of 

synaptic mRNA that we hypothesize contribute to the development of the 

behavioral phenotype in D2 mice. The individual genes and functional groups 

(e.g. molecular chaperones) identified in these studies provide important new 

information regarding the mechanisms of ethanol-induced synaptic plasticity. 

Perhaps most importantly, however, our studies have identified that ethanol 

sensitization uniquely regulates exon utilization at the synapse in a manner that 

implicates specific RNA binding protein targeting, such as by FMRP. Functional 

analyses will be required to further validate these results with the ultimate goal of 

disrupting synaptic targeting of specific transcripts or groups of transcripts in 

order to causally relate this mechanism to synaptic plasticity and modulation of 

ethanol behaviors.  

 

 

Supplemental Tables:  

https://www.frontiersin.org/articles/10.3389/fgene.2018.00402/full#supplementary-material  
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Chapter 4 

Drosophila Clic Knockdown Alters the 

Transcriptome 

 

4.1  Introduction 

CLICs are a family of evolutionarily conserved proteins with unique 

metamorphic properties and a host of highly diverse, yet poorly understood 

biological functions. Vertebrates possess 6 highly similar chloride intracellular 

channel paralogs and orthologs can also be found in invertebrates including 

Caenorhabditis elegans and Drosophila melanogaster (Littler et al., 2010). The 

biological functions of CLICs have been difficult to ascertain, but insight has been 

gained through knockout models in mice and C. elegans. Although viable, animals 

deficient for CLICs exhibit a diverse array of phenotypes including defective 

excretory canal formation in C. elegans (Berry et al., 2003) and impaired 

angiogenesis (Chalothorn et al., 2009; Ulmasov et al., 2009), and wound healing in 
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mice (V. C. Padmakumar et al., 2012). Work in knockout models has been 

complemented by in vitro studies and the overall list of functions associated with 

CLICs now includes roles in ion channel activity (Harrop et al., 2001; Littler et al., 

2004; Tulk et al., 2000), membrane trafficking (Chou et al., 2016; Maeda et al., 2008), 

apoptosis (Fernandez-Salas et al., 2002; Suh et al., 2004), TGF-beta signaling (V. C. 

Padmakumar et al., 2012; Rønnov-Jessen et al., 2002; Shukla et al., 2009), 

tubulogenesis (Berry et al., 2003; Chalothorn et al., 2009; Chou et al., 2016), innate 

immunity (He et al., 2011; Tang et al., 2017), and oxidoreductase enzymatic activity 

(Al Khamici et al., 2015) among others. Unfortunately, little progress has been 

made in identifying the molecular mechanisms by which CLICs engage in these 

diverse biological processes and much remains to be elucidated. 

As members of a rare class of metamorphic proteins, CLICs can alter their 

three-dimensional structure in a ligand-free environment in response to changes 

in redox conditions (Goodchild et al., 2011; Littler et al., 2004, 2005). Under 

oxidizing conditions, CLICs can rearrange their tertiary structure and 

spontaneously insert into membranes where they demonstrate an ability to 

conduct ions across membranes through an unknown mechanism (Harrop et al., 

2001; Littler et al., 2004; Tulk et al., 2000). The selectivity of CLICs for anions, let 

alone chloride, has been challenged suggesting the channels may better resemble 

membrane pores (Singh & Ashley, 2007). Under reducing conditions, CLICs tend 
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towards a soluble globular conformation which has been associated with 

enzymatic oxidoreductase activity in vitro (Al Khamici et al., 2015). This finding is 

not entirely surprising considering the structural homology of CLICs and omega 

class GST enzymes (Dulhunty et al., 2001; Harrop et al., 2001). General features of 

CLICs such as their resemblance to omega class GSTs, ability to interconvert 

structures and conduct ions across membranes are largely conserved between 

vertebrates to invertebrates (Littler et al., 2008). One major distinction between 

invertebrate and vertebrate CLICs is the presence of a two-cysteine redox active 

site, which is disrupted in C. elegans paralogs exl-1 and exc-4, but maintained in 

Drosophila Clic. This active site has been linked to binding of CLICs to lipid bilayers 

after oxidation, which is true of vertebrate and Drosophila CLICs, but not C. elegans 

(Littler et al., 2008). This active site motif may also be necessary for glutathione 

binding and oxidoreductase enzymatic activity (Al Khamici et al., 2015). 

Growing evidence has linked CLICs to ethanol-related behaviors and 

identified them as a potentially important risk factor for AUD. Expression of Clic4 

is downregulated in the brains of postmortem human alcoholics (Liu et al., 2006) 

and part of an ethanol-responsive gene network in mouse PFC (Farris & Miles, 

2013). Clic4 has been shown to be induced in mouse brain by acute ethanol 

(Bhandari et al., 2012; Kerns et al., 2005) and overexpression of Clic4 in PFC 

decreased sensitivity to ethanol sedation in D2 male mice (Bhandari et al., 2012). 
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In the same study, transposon disruption of Drosophila Clic and mutation of C. 

elegans exc-4 were also shown to decrease ethanol sedation sensitivity. In a separate 

study, RNAi knockdown of Drosophila Clic replicated these findings by reducing 

sensitivity to ethanol sedation (Chan et al., 2014). These findings are significant 

considering the possible role of low initial ethanol sensitivity as a risk factor in the 

development of AUD in humans (Schuckit, 1994; Schuckit & Smith, 1996). Similar 

to many of the other biological functions associated with CLICs, the molecular 

mechanisms by which they alter ethanol sensitivity is presently unknown. 

CLICs are a unique class of proteins with an increasingly diverse array of 

associated biological functions. With relevance to fields of development, AUD, 

cancer biology, and immunology, CLICs are a subject of increasing interest and 

biomedical research. Unfortunately, little is presently known about the molecular 

interactions of CLICs and it is unlikely the extent of their biological roles has been 

fully explored. The present study has taken steps to address these gaps by using 

the power of Drosophila genetics to knock-down Clic expression selectively in 

neurons and characterizing the consequent transcriptomic response. Since Chan et 

al. (Chan et al., 2014) have previously shown that this approach reduced sensitivity 

to ethanol sedation, we expected that study of transcriptome networks resulting 

from Clic knockdown would not only add to our knowledge on Clic function, but 

might also increase our understanding of the neurobiology underlying ethanol 
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sedation sensitivity in the fly. Our findings provide validation for published roles 

for CLICs, identify potentially novel functions and genetic interactions that shed 

light on the nature of chloride intracellular channel biology, and show a 

remarkable conservation across transcriptome responses relating to ethanol 

sedation sensitivity in Drosophila. 

 

4.2  Methods  

Drosophila Husbandry, Genetics, and Behavioral Studies 

Drosophila neuron-selective Gal4 driver strain elav/+ and Clic RNAi-

targeting strain v105975/+ were reared, crossed, and evaluated for sensitivity to 

ethanol sedation as previously described (Chan et al., 2014). Flies were placed in 

sealed plastic containers containing 95% O2 twice daily to induce hyperoxia. 

Survival following repeated hyperoxia exposures was evaluated as previously 

described (Jones et al., 2014). 

 

RNA Extraction and Microarray Preparation 

RNA was extracted from fly heads as previously described (Jones et al., 

2014). Microarray preparation performed per standard Affymetrix protocol using 

GeneChip Drosophila Gene 1.0 ST arrays (ThermoFisher Scientific #902155). 
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Hybridization, washing, and scanning performed per manufacturer specifications 

by VCU Massey Cancer Center Tissue and Data Acquisition and Analysis Core. 

 

Microarray Analysis 

All microarray data processing, statistical analysis, and bioinformatics were 

performed in R v3.5.1 (R Development Core Team & Team, 2016) using R Studio 

v1.1.456 (RStudio Team, 2016) unless otherwise stated. Microarray CEL files were 

preprocessed with the R package Oligo v1.44.0 (Carvalho & Irizarry, 2010) for 

quality control visualization and background subtraction and normalization was 

performed with the default robust multi-array average (RMA) method. Release 36 

of the corresponding Affymetrix Drosophila Gene 1.0 ST array transcript 

annotations were used. Differential gene expression analysis was performed with 

the R package Limma v3.36.5 (Ritchie et al., 2015) using gene-level linear model 

fitting and empirical Bayesian smoothing of standard errors per the default 

workflow. P-values were adjusted using the false discovery rate method 

(Benjamini & Hochberg, 1995) and a cutoff of less than or equal to 0.05 was applied 

for significant differential expression. Plotting for these analyses was performed 

with the R package ggplot2 v3.0.0 (Wickham, 2016). PCA plotting performed by 

ggbiplot R package v0.55 (Vu, 2011) with computed normal confidence ellipses 

feature enabled. 
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Bioinformatics 

Functional enrichment analysis of differentially expressed genes found 

with Limma analysis was performed using the web-based tool DAVID 

(https://david.ncifcrf.gov/) (Huang et al., 2009). Databases examined included the 

KEGG (Carbon et al., 2019; Kanehisa, 2000) and GO categories of Biological 

Processes, Cellular Components, and Molecular Functions. A p-value cutoff of 0.01 

was applied to all GO terms and terms with > 90% redundancy were removed. 

Significantly enriched terms were visually explored using the R package GOplot 

v.1.0.2 (Walter et al., 2015) to produce the representative plots in Figure 4.3. The 

web-based tool GeneWeaver (https://geneweaver.org/)was used to perform an 

integrative genomic analysis across multiple published Drosophila gene sets 

(Baker et al., 2012). Using the HiSim Graph tool, differentially expressed genes 

from the present Clic knockdown were found to have significant Jaccard similarity 

with four published Drosophila ethanol exposure (Kong et al., 2010; Morozova et 

al., 2006; Urizar et al., 2007) and sedation sensitivity (Morozova et al., 2007) gene 

sets (GS137794, GS75550, GS137795 , and GS75562 respectively). These four gene 

sets were combined to create a union set of ethanol-sensitive genes, which was 

then compared to the Clic knockdown-altered genes using a Fisher’s exact test-

based method provided in the R package GeneOverlap v.1.16.0 (Shen, 2013). 

Genes found to overlap between the ethanol-sensitive union and Clic knockdown 
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sets were submitted for bioinformatic analysis by DAVID in order to identify 

enriched functional terms common between ethanol and Clic knockdown-

sensitive genes.  

DRSC Integrative Ortholog Prediction Tool (https://www.flyrnai.org/cgi-

bin/DRSC_orthologs.pl) was used to obtain human orthologs for the Clic 

knockdown differentially expressed gene list (Hu et al., 2011). In cases where 

multiple orthologs were found for a single Drosophila gene, only the top ortholog 

according to parameters w_score, best_rev, sim_score, and identity was used. The top 

150 up and downregulated orthologs were then provided to the CLUE web-based 

tool for Connectivity Map (CMap) analysis (https://clue.io/), which compares the 

input transcriptomic signature with that of 476,251 transcriptomic signatures 

obtained from in vitro exposure of 9 human cell lines to 27,927 distinct chemical 

or RNAi perturbagens (Subramanian et al., 2017). Only perturbagen signatures 

having connectivity scores (tau) > 90 or <-90 are reported here. 

 

4.3  Results 

4.3.1  Differential Gene Expression Following Clic Knockdown 

A neuron-specific Gal4 expressing Drosophila strain (elav/+) was crossed to 

a UAS-dependent Clic-targeting RNAi strain (v105975/+), producing a neuronally-
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selective Clic knockdown strain (elav/v105975, Figure 4.1). To identify genes 

dysregulated by Clic knockdown, total RNA was extracted from fly heads for each 

strain and analyzed using Affymetrix Genome 2.0 Arrays, which quantifies 

expression of more than 18,500 Drosophila transcripts. Principal component 

analysis (PCA) of robust multi-array average (RMA) corrected probeset intensities 

revealed clear separation of the elav/v105975 knockdown and elav/+ control fly 

strain samples (Figure 4.2a).  

Differential gene expression analysis of the two strains identified 1,450 

genes with expression after applying an FDR cutoff of 0.05 (Figure 4.2b, Table 

S4.1). Differentially expressed genes represent 9.7% of the total genes assayed, and 

although split fairly evenly, show a trend towards overall downregulation. 

Human orthologs for the top 20 differentially expressed genes according to FDR 

include multiple cytochrome p450 enzymes (Cyp) as well as examples of 

membrane-bound (Abcg2, Elovl7, Ntm, and Glipr1l1) and translation-associated 

(Mrpl37 and Srsf3)  
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Figure 4.1. Overview of Clic knockdown approach. Schematic depicting breeding 
scheme for neuronal-specific Gal4 expression under the elav promoter driving 
UAS activated Clic-RNAi expression in Drosophila. 
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Figure 4.2. Clic knockdown-responsive gene expression. (a) PCA plot depicting 
expression profiles for control (elav/+) and Clic knockdown flies (elav/v105975) 
with normal confidence ellipses. (b) Volcano plot for complete differential gene 
expression results, highlighting significantly downregulated (blue) and 
upregulated (red) genes (FDR < 0.05). (c) Heatmap of top 20 differentially 
regulated genes, ranked by FDR. Fly genes are listed on left and corresponding 
human orthologs on right (NA indicates no clear ortholog). Clic expression added 
to bottom row of heatmap for clarity. 
  



90 

proteins (Figure 4.2c). The knockdown strain (elav/v105975) has twice the number 

of copies of selectable marker gene mini-white (w) as the control strain (elav/+), 

rendering it the top differentially expressed gene as expected. The knockdown 

target gene, Clic, was expressed at 59% of elav/+ control fly levels.  

To assess the possibility of RNAi expression leakage in the Gal4-UAS 

system, v105975/+ RNAi-only controls were run alongside the elav/v105975 

knockdown and elav/+ Gal4-only control strains during differential gene 

expression analysis. Unexpectedly, v105975/+ controls showed a 15% reduction in 

Clic expression compared to elav/+ controls, suggesting expression of RNAi 

molecules is occurring in the absence of a Gal4 driver (Table S4.1). While the 

knockdown magnitude was much lower than the elav/v105975 knockdown strain, 

it did result in substantial differential gene expression (Figure 4.3a). However, 

nearly all of genes altered by the v105975/+ RNAi-only control are also altered by 

the elav/v105975 Gal4-driven knockdown. Specifically, only 54 genes are 

differentially expressed between the v105975 RNAi-only control and elav/v105975 

knockdown strain, and only 14 of those are not also differentially expressed 

between the elav/v105975 knockdown and elav/+ control strains (Figure 4.3b). 

Effectively serving as a lower dose and less neuronally-specific knockdown, the 

v105975 RNAi-only control was omitted from the rest of the bioinformatic 

analyses to focus on the elav/v105975 knockdown.   
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Figure 4.3: Differential Gene Expression by Strain. (a) Differentially regulated 
genes (FDR < 0.05) for each possible fly strain contrast. (b) Genes differentially 
expressed between knockdown (elav/v105975) and RNAi-only control (v105975) 
are also altered in the knockdown vs Gal4-only control (elav/+) contrast. 
  



92 

4.3.2  Perturbed Oxidation-Reduction and Cytoplasmic 

Translation 

To objectively screen the large list of differentially expressed genes for 

meaningful biological patterns, functional over-representation analysis was 

performed using the GO classification system. Twenty-three non-redundant GO 

terms with p-values < 0.01 were identified from all three GO categories (Biological 

Processes, Molecular Functions, & Cellular Components) and reflected trends 

observed in the top 20 differentially expressed genes (Figure 4.4a, Table S4.2). The 

top 6 overrepresented GO terms according to p-value included Biological 

Processes Cytoplasmic Translation and Oxidation-Reduction Process, Molecular 

Functions Heme Binding, and Cellular Components Membrane, Cell Junction, and 

Nucleolus (Figures 4.4a-d). Differentially expressed genes localized to the 

nucleolus and those involved in cytoplasmic translation, oxidation-reduction 

processes, and heme binding are largely downregulated whereas those localized 

to membranes or cell junctions are mostly upregulated (Figures 4.4a-c).  

Despite having large z-scores for overall direction of regulation (Figures 

4.4a,b), terms such as Oxidation-Reduction Process and Cell Junction possess 

examples of genes with opposing directions of regulation, highlighting the 
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Figure 4.4. GO Terms Enriched by Clic Knockdown. (a) GO terms significantly 
affected by Clic knockdown with a p-value cutoff set to 0.01. Bubble radius is 
proportionate to term size in total number of genes and z-score represents overall 
direction of regulation of differentially expressed genes. (b) Circle plot depicting 
top 6 GO terms according to enrichment p-value. Outer ring corresponds to 
regulation of individual genes (logFC) within a term while inner ring corresponds 
to term enrichment p-value (bar height) and direction of regulation z-score (color). 
(c) Top 6 GO terms and top 50 differentially regulated genes from union of all 6 
terms’ gene sets, depicted by gene name. (d) Hierarchical clustering according to 
logFC expression value of all differentially expressed genes in the top 6 GO terms. 
GO terms are color coded for all figure panels. 
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complex but specific molecular responses to Clic knockdown (Figure 4.4c). For 

example, Cyp genes are particularly overrepresented among top Clic knockdown-

responsive genes, but show considerable variation in direction of regulation, 

despite a low overall z-score for their parent term Oxidation-Reduction Process. 

Unsupervised hierarchical clustering of the top 6 GO terms by gene expression 

reveals strong clustering within GO terms but clustering is also apparent between 

Cell Junction and Membrane and Heme Binding and Oxidation-Reduction Process 

terms (Figure 4.4d). This likely points to co-regulation of genes with similar or 

interacting biological functions. 

 

4.3.3  Overlap with Ethanol Regulated Genes 

To gain further insight into the biological functions associated with Clic, the 

knockdown gene expression profile was screened against the large database of 

other transcriptomic studies available through GeneWeaver (Baker 2012). The 

most similar gene sets identified, having significant Jaccard Index scores (p < 0.05), 

were obtained from 4 transcriptomic studies related to ethanol exposure (Kong et 

al., 2010; Morozova et al., 2006; Urizar et al., 2007) and sedation sensitivity 

(Morozova et al., 2007) in Drosophila (Figure 4.5a). A union of these ethanol-

responsive gene sets was intersected with the Clic knockdown-responsive gene set 

and a significant   
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Figure 4.5. Gene Sets Overlapping with Clic Knockdown. (a) Heatmap showing 
Jaccard similarity between the Clic knockdown-sensitive gene set and 4 
Drosophila ethanol-related gene sets obtained through GeneWeaver. Genes 
shared between the union of the 4 ethanol-related gene sets and the Clic 
knockdown-responsive gene set shown in (b) along with their GO functional 
enrichment analysis (c). (d) CMap analysis of perturbagen transcriptomic 
signatures with high positive (red, tau > 90) and negative (blue, tau < 90) 
connectivity with the Clic knockdown transcriptomic signature among 9 human 
cell lines. Assayed perturbagens include compounds (CP) and gene knockdowns 
(KD). 
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overlap of 366 genes (p = 1.8x10-29, OR = 2.2) was found (Figure 4.5b, Table S4.3). 

These genes were overrepresented in multiple GO terms and KEGG pathways, 

including metabolic and redox processes, sensory perception, protein processing, 

and transport among others (Figure 4.5c).  

How Clic modulates resistance to ethanol sedation is not known and being 

a member of generally poorly understand class of proteins, identification of 

selective pharmacological activators and inhibitors for more direct investigation is  

challenging. Using the cloud-based CLUE platform for CMap analysis, the 

transcriptomic signature of Clic knockdown was correlated with transcriptomic 

signatures of over 19,000 small molecules previously tested in human cell lines. 

This approach was an attempt to produce a list of small molecules with 

transcriptomic signatures positively or negatively connected to the signature of 

Clic knockdown, thereby identifying potentially novel pharmacological 

modulators of Clic function. The CMap screen was able to identify 22 

perturbagens, either chemical small molecules or RNAi, that showed significant 

connectivity (tau > 90 or < -90) with transcriptomic signature of Clic knockdown 

(Figure 4.5d). Among chemical perturbagens, Clic knockdown was positively 

connected with histone deacetylase inhibitors (HDI) apicidin, panobinostat, 

trichostatin-a, and vorinostat and negatively connected to immunosuppressant 

cyclosporin-a, unfolded protein stress response inducing brefeldin-a, dopamine 
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receptor antagonist amisulpride, and pro-apoptosis Bcl-2 inhibitor ABT-737 

(Figure 4.5d). RNAi knockdown signatures with high connectivity to Clic 

knockdown included genes associated with cytoskeleton and membrane 

dynamics (Josd1, Alms1, Tfg), apoptosis (Tnfaip3, Gsdmb, Tp53), metabolism (Pgm1, 

Acly, Etfb), and translation (Eif2s2) among others (Figure 4.5d). 

 

4.3.4  Ethanol Sensitivity Altered by Knockdown and 

Hyperoxia 

Considering the overrepresentation of differentially expressed genes 

related to oxidation-reduction processes (Figure 4.4), it is plausible that Clic 

knockdown flies may have a selective vulnerability or resistance to oxidative stress 

such as hyperoxia. However, under hyperoxic conditions, knockdown flies show 

only a slight resistance, having a mean survival time of 175 hours compared to 171 

hours for controls (Figure 4.6a). Having previously shown that Drosophila Clic 

knockdown increased resistance to ethanol sedation (Chan et al., 2014), Clic 

knockdown flies were next tested for a possible combined knockdown-hyperoxia 

effect on ethanol sedation sensitivity. While the control strain showed no change 

in resistance to ethanol sedation over 3 days in ambient conditions (Figure 4.6b), 

Clic knockdown flies replicated previous findings and showed an increased 

resistance to ethanol sedation across all days (Figure 4.7a-c). In contrast to ambient   
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Figure 4.6: Hyperoxia Survival. (a) Survival analysis for flies exposed to 
continuous hyperoxia grouped by strain. (b) Ethanol sedation times for control 
flies (elav/+) under ambient and hyperoxic conditions for 3 days. 
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Figure 4.7. Ethanol Sensitivity Under Hyperoxia. Time for 50% of tested flies to 
display sedation (ST50) after exposure to ethanol vapor and hyperoxia twice-daily 
for three days. (a) Day 1: Effect of Genotype (p<0.0001) but not hyperoxia 
(p=0.0950) and no interaction (p=0.0626). αEffect of genotype under ambient 
conditions: ST50 longer in v105975/+ and elav/v105975 compared to control elav/+ 
(p<0.0001-0.0477). (b) Day 2: Effects of hyperoxia (p<0.0001) and genotype 
(p<0.0001) with a significant interaction (p=0.0021). αEffect of genotype under 
ambient conditions: ST50 was longer in v105975/+ and elav/v105975 compared to 
control elav/+ (p<0.0001-0.0358). βWithin genotype, hyperoxia decreased ST50 
(p<0.0001-0.0003). (c) Day 3: Effect of hyperoxia (p<0.0001) but not genotype 
(p<0.0791), and a significant interaction (p=0.0001). αEffect of genotype under 
ambient conditions: ST50 was longer in v105975/+ and elav/v105975 compared to 
control elav/+ (p<0.0001-0.0172). βWithin genotype, hyperoxia decreased ST50 
(p<0.0001-0.0078). Strain and hyperoxia conditions evaluated with two-way 
ANOVAs and post-hoc testing performed with Bonferroni corrected t-tests. 
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conditions, Clic knockdown flies exposed to 1 day of hyperoxia did not show an 

enhanced resistance to ethanol sedation (Figure 4.7a). Furthermore, the blunting 

of resistance to ethanol sedation in the knockdown flies increased with day of 

exposure, ultimately lowering their resistance below that of control flies (Figure 

4.7a-c). For an additional genetic control in these sensitive behavioral tasks, an 

RNAi-only group lacking Gal4 (v105975/+) was also assessed and exhibited an 

intermediate phenotype between the Gal4 control (elav/+) and knockdown 

(elav/v105975) strains (Figure 4.7a-c).   

 

4.4  Discussion 

The present study constitutes the first published transcriptomic profiling of 

a chloride intracellular channel genetic manipulation. We targeted Clic, the sole 

Drosophila chloride intracellular channel gene, for RNAi knockdown and 

performed differential gene expression and bioinformatic analysis to gain insight 

into the genes and biological processes perturbed by Clic reduction and to better 

understand the role of this gene in acute ethanol sedation sensitivity. Chloride 

intracellular channels are an enigmatic class of proteins, having characteristics of 

metamorphic proteins (Littler et al., 2004), ion channels (Tulk et al., 2000), and 

redox enzymes (Al Khamici et al., 2015). While previous studies have sought to 

identify chloride intracellular channel functions through more direct lines of 
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investigation, such as in vitro assays of enzymatic reduction (Al Khamici et al., 

2015) and ion channel efflux capabilities (Tulk et al., 2000), the present study has 

taken a more discovery-oriented approach by seeking to identify genes that 

respond to a reduction in Clic expression. Impressively, a neuronally-selective 41% 

knockdown of Clic altered the expression over 9% of the known Drosophila 

genome. Over-representation analysis of these differentially regulated genes 

identified several enriched GO terms including Oxidation-Reduction Biological 

Process and Membrane Cellular Component as well as significant overlap with gene 

sets from Drosophila ethanol sedation sensitivity and exposure studies. Extending 

our findings from in silico to in vivo, we evaluated Clic knockdown flies for 

sensitivity to ethanol sedation in the presence of hyperoxia and observed a 

blunting of sensitivity. Taken together, the studies published here provide 

additional evidence for known chloride intracellular channel functions as well as 

potentially novel functions meriting further investigation. 

One potentially surprising finding from this study is the presence of altered 

gene expression and ethanol sedation sensitivity in the RNAi-only control fly 

strain. While inducible gene expression systems are invaluable for producing 

temporally and spatially precise genetic manipulations, they are often prone to 

leakage and the Gal4-UAS system is no exception.  Leakage has previously been 

described for both Gal4 inducers and UAS transgenes, but extent of leakage is 



102 

difficult to predict and can vary according to fly strain and age among other factors 

(Poirier et al., 2008). Here we observe an intermediate phenotype in RNAi-only 

controls that falls between the knockdown and Gal4 strains in terms of gene 

expression and sensitivity to ethanol sedation.  While the differential gene 

expression observed in the RNAi-only control is substantial, these are almost 

entirely the same set of genes differentially expressed in the knockdown strain. 

However, leaked expression does complicate interpretation of the neuron-

selectivity of the knockdown. Although the majority of the knockdown is 

occurring under the neuron-specific elav-Gal4 inducer, some component of the 

gene expression or ethanol sedation changes may be occurring in other cell types. 

This is an unfortunate caveat to many inducible genetic systems and must be 

interpreted carefully. 

Overrepresentation analysis performed on Clic knockdown-responsive 

genes yielded multiple enriched GO terms of interest that both highlight known 

functions related to chloride intracellular channels but also point to possibly novel, 

undescribed roles. Chloride intracellular channels are known to interact with 

membranes, forming intracellular channels (Littler et al., 2004; Weng et al., 2009), 

associating with membrane domains undergoing tubulogenesis (Berry et al., 2003; 

Bohman et al., 2005), and promoting membrane trafficking (Chou et al., 2016; 

Maeda et al., 2008). These activities correspond well to the GO term hits, Lipid 
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Particle and Membrane. Furthermore, CMap analysis identified knockdown of 

Josd1, Alms1, and Tfg, three genes with functions linked to cytoskeleton and 

membrane dynamics, as being highly connectivity to the Clic knockdown 

signature. A similar GO term hit, Cell Junctions, has relevance to vertebrate Clic 

orthologs, which have been shown to be enriched at junctions between dividing 

cells, where they are potentially regulating cytoskeletal organization (Berryman & 

Goldenring, 2003). 

The GO term Oxidation-Reduction Process was enriched by Clic 

knockdown-sensitive genes and may reflect a known role of chloride intracellular 

channels in carrying out oxidoreductase reactions (Al Khamici et al., 2015). 

Although evidence for this function is limited to observation in vitro, it has been 

long suspected based on the homologous omega class glutathione S-transferase 

structure of chloride intracellular channels (Harrop et al., 2001; Littler et al., 2010). 

Also reproducing known roles for chloride intracellular channels, Clic knockdown 

showed high connectivity on CMap analysis with the apoptosis-blocking drug 

ABT-737 and with pro-apoptosis gene p53. It has been shown that chloride 

intracellular channels have a p53 binding element in its promoter, upregulate in 

response to various cell stressors including DNA damage, and has been shown to 

traffic to the nucleus as an early responder to cell stress where it also participates 

in apoptosis (Fernandez-Salas et al., 2002; Suh et al., 2004). A potentially novel 
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association of Clic identified in this study is protein translation, for which 

Cytoplasmic Translation was the top GO term from the overrepresentation 

analysis and was enriched almost exclusively by downregulated genes. In 

concordance with this, CMap analysis showed a strong negative connectivity 

between the Clic knockdown signature and translation initiation factor, Eif2s2. 

Also potentially novel, CMap analysis identified multiple histone deacetylase 

inhibitors with strong connectivity to Clic knockdown. 

Chloride intracellular channels are highly conserved evolutionarily and 

vertebrates possess a family of 6 paralogs (Littler 2010). Drosophila Clic has high 

sequence similarity to vertebrate orthologs including Clic4, which has been shown 

to be regulated by ethanol (Bhandari et al., 2012; Kerns et al., 2005) and capable of 

decreasing ethanol sedation sensitivity when overexpressed in mouse brain 

(Bhandari et al., 2012). Neuronal Drosophila Clic knockdown has previously been 

shown to decrease ethanol sedation sensitivity (Chan et al., 2014), consistent with 

our findings here, showing a conservation of function between mouse and 

Drosophila orthologs. Of note, the decreased sensitivity to ethanol sedation is 

obtained through opposing genetic manipulations in mice and flies, 

overexpression and knockdown, respectively. As hypothesized previously, this 

difference in phenotype expression may be due to species-specific differences in 

number and presence of chloride intracellular channel paralogs or the 
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experimentally targeted cell types or brain regions (Bhandari et al., 2012). Novel 

to this body of work, we show that the while Clic knockdown decreases sensitivity 

to ethanol sedation, this effect is reversed by hyperoxia in a time-dependent 

manner. Considering hyperoxia had no effect on the control strain, this decrease 

in ethanol sedation sensitivity with time in the knockdown strain suggests that 

genes altered by Clic knockdown, which are otherwise protective against ethanol 

sedation, are also regulated on some level by hyperoxia. A possible mechanism for 

this interaction is the oxidoreductase enzymatic activity reported of vertebrate 

chloride intracellular channels in vitro (Al Khamici et al., 2015). Metabolism of 

ethanol produces ROS and cellular oxidative stress, which Clic may be protective 

against. This possibility is underscored by overrepresentation of genes related to 

GO oxidation-reduction processes in both the Clic knockdown-responsive gene set 

and GeneWeaver overlap analysis with ethanol-related Drosophila gene sets. A 

possible explanation for the interaction of effects between hyperoxia and Clic 

knockdown: Knocking down Clic upregulates genes and pathways related to the 

oxidative stress response, which translate to decreased vulnerability to ethanol-

related ROS and sensitivity to ethanol sedation. However, combining this 

upregulation of cellular stress pathways with those also responding to hyperoxia 

results in a maladaptive hyperresponsivity, resulting in increased cellular stress 

and sensitivity to ethanol sedation.  
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Remarkably, nearly one third of genes responsive to Clic knockdown were 

found to be shared with a union set of published ethanol sedation sensitivity-

related Drosophila genes. Three of these gene sets display ethanol regulation 

during acute exposure (Kong et al., 2010; Morozova et al., 2006; Urizar et al., 2007) 

while the fourth represents genes differentially expressed between strains 

artificially selected for high and low ethanol sedation sensitivity (Morozova et al., 

2007). This intersection between Clic knockdown-responsive and ethanol-

regulated genes suggests a role for Clic in molecular pathways governing ethanol 

sedation sensitivity and the acute response to ethanol. Functional enrichment of 

the shared gene set implicates a variety of possible processes including amino acid 

metabolism, oxidation-reduction, sensory perception, protein processing, and 

transport. 

Employing the Gal4-UAS gene-switch system, this study is the first to 

characterize the transcriptome following genetic manipulation of a chloride 

intracellular channel gene. Bioinformatic analysis of knockdown-induced 

differentially regulated genes provided support for existing evidence that Clic is 

involved in oxidation and reduction processes and has roles near cellular 

membranes. Novel to this work, we also identified an enrichment of Clic 

knockdown-sensitive genes related to cytoplasmic translation and heme binding 

and associated with the nucleolus and cell junction. We have also determined that 
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an interaction between hyperoxia and Clic expression modulates ethanol sedation 

sensitivity. Taken together, these studies add to the growing body of literature 

supporting Clic genes as important for ethanol-related behaviors and also being 

involved in redox-related processes. 

  

 

Supplemental Tables: 

Table S4.1: Differentially Expressed Genes 

Table S4.2: Enriched Gene Ontology Terms 

Table S4.3: GeneWeaver Ethanol Gene Sets 
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Chapter 5 

Clic4 Modulates Ethanol and Anxiety-like 

Behaviors 

 

5.1  Introduction 

Increasing evidence has linked chloride intracellular channels, and 

specifically vertebrate ortholog Clic4, with ethanol-related behavior and the 

brain’s molecular response to ethanol. Clic4 was found to be downregulated in 

postmortem frontal cortex tissue of human alcoholics that consumed more than 

80g/day of ethanol per day (6 standard drinks) when compared to abstinent or 

social drinking controls (Liu et al., 2006). Clic4 was also found to be part of ethanol-

responsive gene network in postmortem hippocampus tissue obtained from 

individuals meeting DSM-IV criteria for either alcohol abuse or dependence 

(Farris et al., 2015). In a microarray meta-analysis of multiple mouse strains 

displaying diverse levels of ethanol preference, mice predisposed to high levels of 



109 

voluntary alcohol drinking showed an increase in Clic4 expression in whole brain 

(Mulligan et al., 2006). F1 female B6 x FVB/NJ hybrid mice displayed upregulation 

of Clic4 in laser-captured VTA dopaminergic neurons following three weeks of a 

drinking in the dark binge model of voluntary ethanol consumption (Marballi et 

al., 2016). In male D2 mice, Clic4 is upregulated in PFC 4 hours after 2g/kg (Kerns 

et al., 2005) and 4g/kg (Bhandari et al., 2012) i.p. injections of ethanol. Additionally, 

mouse Clic4 is located in a quantitative trait locus QTL for alcohol preference 

(Ap3q) for a 15-day two-bottle choice voluntary ethanol consumption task 

(Tarantino et al., 1998). Mouse Clic4 is also positioned within two QTLs associated 

with anxiety-like behavior measured in elevated plus maze and open field tasks 

(Kazuhiro Nakamura et al., 2003; Thifault et al., 2008). 

Behavioral studies characterizing chloride intracellular channels are limited 

but what has been published implicates mouse Clic4 and invertebrate orthologs in 

ethanol sedation sensitivity. Two independent transposon disruptions of 

Drosophila ortholog Clic produced reduced sensitivity to ethanol sedation, an effect 

that was rescued by transposon reversion (Bhandari et al., 2012). This effect on 

ethanol sedation sensitivity has been replicated with a neuron-selective Clic RNAi 

(Chan et al., 2014). Mutation of C. elegans orthologs Exc-4 and Exl-1 produces 

different phenotypes, with Exc-4 mutation reducing sensitivity to ethanol sedation 

and Exl-1 increasing acute functional tolerance (Bhandari et al., 2012). In D2 mice, 
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neuron-selective overexpression of Clic4 in mPFC decreased sensitivity to ethanol 

sedation in a loss of righting reflex (LORR) task (Bhandari et al., 2012). 

Considering the mounting evidence supporting ethanol-regulated 

expression and modulation of ethanol sedation sensitivity with vertebrate Clic4 

and invertebrate orthologs, further investigation is merited to identify the extent 

to which Clic4 modulates ethanol-related behaviors and to initially characterize 

the cellular site(s) for such Clic4 action. This includes whether Clic4 modulates 

ethanol behaviors differently in males and females, if it influences voluntary 

ethanol consumption, and in which cell types and brain regions does it have roles. 

While D2 mice show altered ethanol LORR following Clic4 overexpression, that 

strain of mice is strongly averse to voluntary ethanol consumption. In the present 

study, we use ethanol preferring B6 mice to characterize ethanol and anxiety-like 

behaviors following Clic4 knockout specifically in oligodendrocytes. 

Oligodendrocytes were prioritized in this study due to evidence suggesting higher 

expression of Clic4 compared to other CNS cell types, which included in situ 

hybridization data (V. Padmakumar et al., 2014), single cell RNAseq databases 

(Marques et al., 2016; Zeisel et al., 2015), and confocal double-labeling 

immunofluorescence data (Chapter 6). Considering altered ethanol sedation 

sensitivity resulted from overexpression of Clic4 in D2 mice (Bhandari et al., 2012), 

we hypothesized oligodendrocyte-specific deletion of Clic4 in B6 mice would also 
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alter ethanol sedation sensitivity. Ethanol sensitivity is inversely correlated with 

risk of developing AUD in humans (Schuckit, 1994; Schuckit & Smith, 1996), 

therefore we also hypothesized Clic4 deletions would reduce voluntary ethanol 

consumption. 

 

5.2  Methods  

Ethics Statement 

All procedures were approved by Virginia Commonwealth University 

Institutional Animal Care and Use Committee under protocol AM10332 and 

followed the NIH Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 80-23, 1996). 

 

Animals 

Male and female mice were group housed on corn cob bedding (Teklad 

#7092) with a 12-hour light/dark cycle (7am on, 7pm off) and provided ad libitum 

access to food (Teklad #7912) and water with weekly cage changes. All animals 

taking part in behavioral studies were permanently transferred to Sani-Chips 

bedding a minimum of one week before testing. Clic4flox/flox animals were obtained 

on a mixed background from Dr. Stuart H. Yuspa at the National Cancer Institute 
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and backcrossed to B6 mice for 7 generations within our colony. Plp-promoted 

tamoxifen-inducible Cre mice on a 100% B6 background (Plp-Cre-ERT, Jackson 

Laboratory #005975) were crossed to Clic4-floxed mice to produce inducible global 

Clic4 deletions in oligodendrocytes. Experimental animals included homozygous 

Clic4-floxed mice either null (Cre-) or heterozygous for Cre (Cre+). Between 8-11 

weeks of age, oligodendrocyte-specific Clic4 deletions were induced through 

either stereotactic microinjection of adeno-associated virus (AAV) carrying Cre 

into Clic4-floxed mice or by i.p. tamoxifen injection into Clic4-floxed Plp-Cre-ERT 

mice. Tamoxifen (Sigma-Aldritch #T5648) was delivered through 5 daily 75mg/kg 

i.p. injections in a sunflower oil vehicle (Sigma-Aldritch #S5007) and provided to 

both Cre- and Cre+ animals. Injections of 0.5 μl of either AAV8-MBP-eGFP-T2A-

iCre (Vector Biolabs #1538, 1x1013 GC/ml) or AAV8-MBP-eGFP control (Vector 

Biolabs #1553, 1x1013 GC/ml) were performed under isoflurane anesthesia using a 

Neurostar robotic stereotaxic instrument. Injection coordinates for mPFC relative 

to bregma were 1.3mm rostral, 0.3mm bilaterally, and 1.75mm ventrally. Animals 

were then single housed after completion of tamoxifen injections or receipt of virus 

and given 4 weeks to recover before being used in behavioral studies. Effectiveness 

of viral vector to delete Clic4 was evaluated by immunolabeling CLIC4 protein in 

Cre+ and Cre- viral injected mice. Cell type-specificity of the viral vectors was 

validated by co-labeling eGFP with mature oligodendrocyte marker CC1. Viral-
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mediated deletions were validated for correct injection coordinates in all animals 

by visualizing eGFP expression in 40μm paraformaldehyde fixed and 

cryosectioned brain slices. Animals were dropped from the study if either of the 

bilateral injection locations were incorrect.  

 

Western Blotting 

Male and female Clic4-floxed Plp-Cre-ERT mice 4 weeks and 6 months post-

tamoxifen treatment were euthanized by cervical dislocation and decapitation and 

frontal cortex was microdissected and immediately flash frozen. Protein was 

extracted from frontal cortex in RIPA Buffer (Alfa Aesar #J63324) with Halt 

Protease and Phosphatase Inhibitor Cocktail (ThermoFisher Scientific #78440). 10 

μg of protein was loaded per well, separated by SDS-PAGE in a 4-12% Bis-Tris 

Polyacrylamide Gel (ThermoFisher Scientific #NP0329BOX), and transferred onto 

PVDF membrane. Membranes were air dried and blocked with LiCor Intercept 

(TBS) Blocking Buffer (#927-60001). Overnight primary antibody incubation and 

1-hour secondary antibody incubation were performed. Images taken with 

Odyssey Imaging Scanner and quantified with FIJI distribution (Schindelin et al., 

2012) of ImageJ  (Rasband, 2015). Expression values were normalized to loading 

control GAPDH and then to Cre- controls. Membranes were probed serially for 

CLIC4, MBP, and PLP with stripping performed in between. Stripping was 
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performed with LiCor NewBlot IR Stripping Buffer (#928-40028). Sample sizes 

include 5 animals per group. 

 

Immunofluorescence 

Mice were perfused with 1x PBS followed by 4% paraformaldehyde before brain 

extraction and 24-hour post-fixation. Cryoprotection performed in 30% sucrose 

and brains flash frozen then cut on a Leica 3050S cryostat at 20 μm per section, 

unless otherwise stated. Antigen retrieval performed for 15 minutes at 80°C in 

10mM citrate buffer (pH6) before blocking with a 10% goat serum and 0.2% Triton 

X-100 solution for 30 minutes at room temperature. Free floating sections 

incubated overnight with primary antibodies at 4°C and secondary antibodies 

applied for 2 hours at room temperature. Mounting performed using 

VECTASHIELD Hardset with DAPI (#H-1500). Sample sizes include 3 sections per 

animal and 3 animals per group. 

 

Antibodies 

The following antibodies were used for immunofluorescence: anti-CLIC4 (1:100; Cell 

Signaling Technology #D2A7D), anti-CC1 (1:200; Millipore, OP80), AlexaFluor 488 

anti-mouse (1:1000; ThermoFisher Scientific #A21121), and AlexaFluor 594 anti-

rabbit (1:300; ThermoFisher Scientific #A11012). 



115 

The following antibodies were used for Western blotting: anti-GAPDH (1:7500; 

Millipore #MAB374), anti-PLP (1:5000; Abcam #ab9311), anti-MBP (1:10000; 

Abcam #ab7349), 680LT Mouse IgG1 (1:50000; LiCor #926-68050), 800CW Mouse 

IgG2a (1:30000; LiCor #926-32351), 800CW Rabbit (1:30000; LiCor #926-32211), and 

800CW Rat (1:30000; LiCor #926-32219). 

 

Microscopy 

Confocal images were taken on a Zeiss LSM700 with a 63x oil objective. Pinhole 

was set to 1 airy unit and scan zoom set to 1x. Image processing performed with 

FIJI distribution (Schindelin et al., 2012) of ImageJ (Rasband, 2015).  

 

Behavioral Assays 

Three Bottle Choice Intermittent Ethanol Access (3BC-IEA) - Mice were given 

24-hour free access to three identical bottles containing 0%, 15%, and 30% ethanol 

in water (v/v) every other day for 5 weeks (below, ethanol access in blue). Access 

began two hours prior to onset of the 12-hour dark cycle. Due to well-established 

sex effects for ethanol behaviors in B6 mice, which were not the focus of this study, 

statistical testing was performed separately within males and females for this and 

other ethanol behavior tasks. First day of drinking was removed from analysis due 

to novelty effects. Ethanol consumption was analyzed using unpaired Student’s t-
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tests to compare Cre+ and Cre- average daily ethanol choice, total and 15% intake. 

15% ethanol choice was calculated as the ratio of g/kg consumed of 15% to 30%. 

Sample sizes for the Plp-Cre-ERT study include 15-22 per group. Sample sizes for 

the AAV8-MBP-Cre study include 4-9 per group. 

 

Tastant Preference Study – Mice were given 24-hour free access to two identical 

bottles containing water and either quinine or saccharin. Animals were 

randomized into two equal groups either drinking saccharin first or quinine first. 

Daily volume readings were taken and adjusted for evaporation. After 3 days of 

continuous access, tastant type was switched for both groups and 3 additional 

days of drinking was recorded. For the Plp-Cre-ERT mice 25µM quinine and 1mM 

saccharin were used. For AAV8-MBP viral injected mice, 50µM quinine and 1mM 

saccharin were used. Preference was calculated as the ratio of tastant volume to 

water consumed. Analysis of average daily preference values was performed 

using type III ANOVAs. Sample sizes for the Plp-Cre-ERT study include 7-9 per 

group and time point. Sample sizes for the AAV8-MBP-Cre study include 4-9 per 

group and time point. 

 

Ethanol Metabolism – Animals were given a 4g/kg i.p. injection of 20% w/v 

ethanol in normal saline and retro-orbital blood draws were taken using glass 
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capillary pipettes and EDTA-treated microtainer collection tubes (Becton Dickson 

#365974) at 15, 30, 60, and 90-minute time points, switching sides after each draw. 

Animals were euthanized following the final blood draw. Whole blood was 

centrifuged at 500g for 10 minutes at 4°C to pellet cells and supernatant was 

analyzed for blood ethanol content (BEC) using an Analox AM1 Analyser. BEC 

values were analyzed by computing a linear mixed model with the nlme R 

package (Pinheiro et al., 2020) and performing type III ANOVA Wald chi-square 

tests with the car package (Fox & Weisberg, 2019). Sample sizes for the Plp-Cre-

ERT study include 4-6 per group and time point. 

 

Light/Dark Box Test – Mice were habituated to the behavioral room for 1 hour 

before beginning task. Mice were then placed into separate Med Associates Inc. 

locomotor boxes with dark inserts for a single 10-minute testing period. Placement 

was in light chamber side with heads facing entry hole for dark chamber. Med 

Associates provided software was used to calculate time and distance traveled in 

each compartment based on infrared beam breaks. Percent time in light was 

calculated as the ratio of time spent in the light chamber to the total duration of 

the test. Analysis was performed within-sex during the first 5-minute bin of 

activity in the behavior boxes using unpaired Student’s t-tests to compare Cre+ 
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and Cre- animals. Sample sizes for the Plp-Cre-ERT study include 12-15 per group. 

Sample sizes for the AAV8-MBP-Cre study include 4-9 per group. 

 

Ethanol-Induced Anxiolysis - Mice were given a 2g/kg i.p. injection of 20% w/v 

ethanol in normal saline, placed in home cages for 5 minutes, and then evaluated 

for anxiety like behavior as described in the light/dark box test methodology. 

Analysis was performed within-sex on the first 5 minutes of activity in the 

behavior boxes using type III ANOVAs to evaluate effects of ethanol and genotype 

and Tukey’s HSD for post-hoc testing. Sample sizes for the Plp-Cre-ERT study 

include 3-6 per group. 

 

Loss of righting reflex (LORR) – Animals were given a 3.8g/kg i.p. injection of 

20% ethanol v/v in normal saline and time for LORR onset was recorded. Animals 

were then placed supine in V-shaped troughs and duration for return of righting 

reflex was measured. Animals with onset times greater than 4 minutes were 

considered LORR failures and removed the study. Statistical analysis was 

performed within-sex using unpaired Student’s t-tests to compare Cre+ and Cre- 

animals. Sample sizes for the Plp-Cre-ERT study include 14-17 per group. Sample 

sizes for the AAV8-MBP-Cre study include 4-9 per group. 
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Statistics – Statistical analysis was performed in R v3.6.2 (R Development Core 

Team & Team, 2016) using R Studio v 1.2.5033 (RStudio Team, 2016). Base R 

statistical functions were used unless otherwise noted and plotting was performed 

with the ggplot2 package (Wickham, 2016). An alpha level of 0.05 was set for 

determination of significance. 

 

5.3  Results 

5.3.1  Global Oligodendrocyte-specific Clic4 Deletion 

Clic4-floxed mice were crossed to mice possessing tamoxifen-inducible Cre 

under the mature oligodendrocyte-selective Plp promoter to produce an 

oligodendrocyte-selective, inducible Clic4 deletion model. Immunofluorescent co-

labeling of CLIC4 protein and mature oligodendrocyte marker CC1 qualitatively 

revealed most CLIC4 expression to be knocked down in oligodendrocytes by 1 

week and virtually all expression lost at 1-month post-tamoxifen (Figure 5.1). 

Similarly, Western blot analysis indicated a 40.5% knockdown of CLIC4 protein in 

Cre+ male (t(7.76) = -11.24, p < 0.001) and female (t(4.66) = -9.51, p < 0.001) mouse 

frontal cortex 1 month after tamoxifen administration (Figure 5.2a). Knockdown 

of CLIC4 protein levels was sustained 6 months after tamoxifen (Figure 5.2b), with 

Cre+ males showing a 34.3% reduction in expression (t(7.68) = -9.86, p < 0.001) and   
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Figure 5.1. Validation of Clic4 deletion. 63x Confocal microscope images 
depicting loss of CLIC4 protein expression in mature CC1+ oligodendrocytes in 
corpus callosum myelin ventral to PFC. Cre- controls (top) and Cre+ animals 
shown 1 week (middle) and 4 weeks (bottom) after tamoxifen administration.  
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Figure 5.2. Western blot assessment of Clic4 deletion. Western blots analysis of 
frontal cortex CLIC4 protein and major myelin proteins PLP and MBP expression 
1 month (a) and 6 months (b) after tamoxifen delivery to Clic4-floxed Plp-Cre-ERT 
mice and controls. Quantification plots for each time point depicted on right with 
expression values relative to GAPDH and Cre- controls (black bars). Box outlines 
surrounding Western blot scan images denote individual membranes. Within each 
membrane, serial stripping and re-probing was performed for each gene of interest 
with GAPDH being re-probed each time. Significance levels indicated by ***p< 
0.001. 
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females showing a 38.7% reduction (t(5.90) = -9.37, p < 0.001).  

To assess potential damage to myelin or myelinating oligodendrocytes, 

expression levels of the two most abundant myelin proteins, MBP and PLP, were 

also examined. PLP expression was unaffected by genotype at 1 month post-

tamoxifen (Figure 5.2a) in males (t(7.40) = 0.11, p = 0.91) and females (t(5.39) = 0.00, 

p = 1.00) and also at 6 months (Figure 5.2b) in males (t(7.14) = -1.13, p = 0.30) and 

females (t(7.79) = -0.05, p = 0.96). Similarly, MBP expression was unaffected by 

genotype at 1 months post-tamoxifen in males (t(7.60) = 1.73, p = 0.12) and females 

(t(6.28) = -0.16, p = 0.87) and at 6 months in males (t(7.79) = 1.84, p = 0.10) and 

females (t(7.49) = 1.14, p = 0.28). 

 

5.3.2  Ethanol Consumption Altered by Clic4 Deletion 

Male and female Plp-Cre-ERT Clic4-floxed mice were evaluated for 

voluntary ethanol consumption in a 3BC-IEA study for a period of 5 weeks. Female 

Cre+ mice consumed 2.3g/kg more total ethanol per day (Figure 5.3a-b) than Cre- 

controls (t(509.73) = 3.64, p < 0.001) whereas male mice did not show a significant 

difference (t(557.69) = -1.42, p = 0.16). This increase in total ethanol consumption 

in Cre+ females was largely due to a 4.2g/kg increase in daily 15% ethanol intake 

(Figure 5.3c, t(401.98) = 7.21, p < 0.001) and a 14.9% increase in 15% ethanol choice 

(Figure 5.3d, t(430.10) = 5.10, p < 0.001). While males did not show a difference   



123 

 
 
 
 
 

 
 
Figure 5.3. Ethanol consumption is altered by Clic4 deletion. (a) Total ethanol 
intake (15% + 30%) by drinking day using the 3BC-IEA voluntary consumption 
paradigm in Cre+ and Cre- animals. (b) Average daily total and 15% (c) ethanol 
intake across the entire study. (d) Ethanol choice as a ratio of 15% to 30% intake in 
g/kg. (e) Preference for saccharin or quinine over water in a three-day two-bottle 
choice voluntary consumption task. (f) Blood ethanol levels evaluated at 4 time 
points following a single 4g/kg i.p. injection of ethanol with displayed p-values 
indicating effect of time. Significance levels indicated by *p<0.05 & ***p< 0.001.  
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in 15% ethanol intake (Figure 5.3c, t(573.98) = 1.59, p = 0.11), similar to females, the 

Cre+ animals did show a 5.6% increase in 15% ethanol choice (Figure 5.3d, 

t(573.96) = 2.18, p = 0.03). Plp-Cre-ERT Clic4-floxed mice were evaluated for 

changes in taste preference, which could potentially skew ethanol preference and 

consumption in the 3BC-IEA study. There was a significant effect of tastant type 

on preference, such that mice had a higher preference for the non-caloric 

sweetener saccharin than bitter-tasting quinine (Figure 5.3e, F(1,30) = 193.3, p < 

0.001). However, there was no effect of sex (F(1,30) = 1.0, p > 0.05) or genotype 

(F(1,30) = 0.0, p > 0.05) and no interactions. Ethanol metabolism was also evaluated 

in these mice to ensure differences in ethanol-related behaviors due to genotype 

were not due to Clic4 deletion-related metabolic differences. Mice were given a 

4g/kg i.p. injection of ethanol and BEC values were measured at 15, 30, 60, and 90 

minutes. While there was a significant effect of time on BEC (Figure 5.3d, X2 = 

1583.2, p < 0.001), there were no differences in sex (X2 = 0.5, p < 0.001) or genotype 

(X2 = 0.3, p < 0.001). 

 

5.3.3  Anxiety-like Behavior Altered by Clic4 Deletion 

 Basal anxiety-like behavior was assessed in Cre+ and Cre- male and female 

mice using a light/dark box test. Cre+ male mice showed a 5.3% increase in time 

spent in light (Figure 5.4a, t(34) = 2.26, p = 0.03) compared to Cre- mice, while   
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Figure 5.4. Deletion of Clic4 alters anxiety-like behavior. (a) Basal anxiety-like 
behavior assessed as percent time spent in light chamber during first 5 minutes of 
light/dark box test and total distance traveled in all chambers in Cre+ and Cre- 
animals (b). (c) Percent time spent in light chamber and total distance traveled in 
all chambers (d) during first 5 minutes of light/dark box test after an i.p. injection 
of saline or 2g/kg ethanol. (e) Onset and duration (f) of LORR following a 3.8 g/kg 
i.p. injection of ethanol. Significance levels indicated by *p<0.05 & ***p< 0.001. 
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female mice showed no difference due to genotype (t(26.90) = 0.41, p = 0.69). In 

terms of total distance traveled in all chambers, there was no genotype effect in 

male (Figure 5.4b, t(23.75) = 0.042, p = 0.97) or female mice (t(27.99) = -1.90, p = 

0.07).  

To assess anxiolytic effects of ethanol in the absence of Clic4, male and 

female mice were given an i.p. injection of 2g/kg and evaluated with the light/dark 

box test. There was a large effect of treatment such that ethanol treated males spent 

56.8% more time in light than saline treated animals (Figure 5.4c, F(1,14) = 74.91, p 

< 0.001) and females spent 49.4% more time light (F(1,10) = 71.4, p < 0.001). In 

female mice, there was a significant interaction between treatment and genotype 

(F(1,10) = 8.04, p = 0.02), such that in the ethanol treated females, Cre+ mice spent 

more time light than Cre- animals by 35.1% (Tukey’s HSD; p = 0.01). Locomotor 

behavior was also assessed in the ethanol-induced anxiolysis task and was found 

to be unaltered by treatment (Figure 5.4d, F(1,10) = 0.17, p = 0.68) or genotype 

(F(1,10) = 1.91, p = 0.20) in females. In males, there was no effect of genotype on 

total distance traveled (F(1,14) = 0.02, p = 0.88), but ethanol treated animals showed 

minor locomotor depression, traveling an average of 3.1 fewer meters than saline 

treated (F(1,14) = 5.74, p = 0.03). 

LORR onset and duration were measured in male and female mice after a 

3.8g/kg i.p. injection of ethanol in order to evaluate ethanol sedation sensitivity. 
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LORR onset times did not differ between Cre+ and Cre- males (Figure 5.4f, t(28.83) 

= 0.08, p = 0.74) or females (t(27.17) = 1.02, p = 0.32). Similarly, LORR duration was 

unaffected by genotype in males (t(27.94) = -0.37, p = 0.72) or females (t(26.17) = -

0.16, p = 0.87). 

 

5.3.4  Ethanol Consumption Altered by mPFC Clic4 Deletion 

Having established that global Clic4 deletion in oligodendrocytes alters 

ethanol and anxiety-like behaviors, mPFC was targeted next to begin dissecting 

out brain regional contributions to these behaviors. AAV8-MBP-eGFP-T2A-iCre 

and control AAV8-MBP-eGFP viruses were injected into adult Clic4-floxed mouse 

mPFC in order to induce regionally, temporally, and cell type-specific deletions of 

Clic4 (Figure 5.5a). Successful deletion of CLIC4 was validated by visualizing 

immunolabeled CLIC4 protein in mPFC sections from Cre+ and Cre- viral vector 

injected animals (Figure 5.5b). Cell type-specificity was verified by co-labeling 

eGFP with mature oligodendrocyte marker CC1 (Figure 5.5c)  

Voluntary ethanol consumption was assessed in male and female virus 

injected mice using the 3BC-IEA model. Average daily total ethanol intake was 

reduced in Cre+ male mice by 2.8g/kg (Figure 5.6a-b, t(93.82) = -3.04, p = 0.003) but 

unaffected in females (t(183.46) = -0.88, p = 0.38). This reduction in total ethanol  
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Figure 5.5. Validation of mPFC deletion of Clic4 in oligodendrocytes. (a) AAV8-
MBP-eGFP-Cre and AAV8-MBP-eGFP control virus were microinjected into 
mPFC of Clic4-floxed mice. Targeting scheme (left, adapted from Allen Brain 
Mouse Atlas) and example eGFP fluorescence in mPFC (right; mPFC, 2.5x 
widefield). (b) CLIC4 immunofluorescence in mPFC for animals that received 
either Cre- or Cre+ virus (mPFC, 2.5x widefield). (c) Co-localization 
immunofluorescence microscopy for mature oligodendrocyte marker CC1 and 
eGFP expression from virus (mPFC, 40x water immersion widefield).   
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Figure 5.6. Characterization of mPFC oligodendrocyte Clic4 deletion. (a) Total 
ethanol intake (15% + 30%) by drinking day in a 3BC-IEA voluntary consumption 
paradigm in Cre+ and Cre- mice. (b) Average daily total and 15% (c) ethanol intake 
across the entire study. (d) Ethanol choice as a ratio of 15% to 30% intake in g/kg. 
(e) Preference for saccharin or quinine over water in a three-day two-bottle choice 
voluntary consumption task. (f) Basal anxiety-like behavior assessed as percent 
time spent in light chamber during first 5 minutes of light/dark box test and total 
distance traveled in all chambers in Cre+ and Cre- animals (g). (h) Onset and 
duration (i) of LORR following a 3.8 g/kg i.p. injection of ethanol. Significance 
levels indicated by **p<0.01 & ***p< 0.001.   
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consumption in Cre+ males was associated with less 15% ethanol intake (Figure 

5.6c, t(96.17) = -4.09, p < 0.001), but no change in 15% choice over 30% (Figure 

5.6d,t(228.37) = -0.65, p = 0.52). Female mice showed no change in 15% ethanol 

intake (t(157.82) = -1.36, p = 0.17) or choice in response to viral-mediated Clic4 

deletion (t(160.47) = -1.22, p = 0.22). 

Tastant preference was assessed in viral-injected animals to control for 

possible taste-related effects of the deletion which could bias ethanol consumption 

behavior. Preference for quinine and saccharin over water was assessed in a 3-day 

continuous access two-bottle choice task. There was an effect of tastant type with 

animals strongly preferring saccharin (Figure 5.6e, F(1,23) = 26.17, p < 0.001), but 

no effect of sex (F(1,23) = 0.50, p = 0.48), Clic4 deletion (F(1,23) = 0.40, p = 0.53), and 

no interactions. 

Basal anxiety-like behavior was assessed in ethanol-naïve viral injected 

mice using the light/dark box test. Time spent in light was unaffected by viral-

mediated deletion of Clic4 in mPFC oligodendrocytes for male (Figure 5.6f, t(10.0) 

= 0.59, p = 0.57) and female mice (t(8.56) = -0.46, p = 0.66). Locomotor behavior in 

the light/dark box test was also unaffected by Clic4 deletion in male (Figure 5.6g, 

t(9.55) = -1.76, p = 0.11) and female mice (t(13.92) = 1.65, p = 0.12). 

Ethanol sedation sensitivity was assessed by LORR following a 3.8g/kg i.p. 

injection of ethanol. Time to LORR onset was not affected by viral-mediated Clic4 
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deletion in males (Figure 5.6h, t(5.15) = 0.12, p = 0.91) or females (t(9.93) = 1.01, p = 

0.34). LORR duration was also unchanged between Cre+ and Cre- virus injected 

male (Figure 5.6i, t(5.52) = 0.52, p = 0.62) and female (t(12.44) = 1.41, p = 0.18) mice.  

 

5.4  Discussion 

This set of experiments represents the first published behavioral 

characterization of a chloride intracellular channel gene knockout in vertebrates. 

Global deletion of Clic4 in oligodendrocytes produced altered ethanol and anxiety-

like behaviors in male and female mice. This includes increased ethanol 

consumption in females and increased preference for 15% over 30% ethanol. Cre+ 

untreated male and ethanol-treated female mice showed less anxiety-like behavior 

in the light/dark box test compared to Cre- controls. These phenotypes did not 

result from altered taste preference or ethanol kinetics, which were evaluated 

separately. While ethanol sedation sensitivity has been previously associated with 

Clic4 overexpression in D2 mouse PFC (Bhandari et al., 2012) and disruption in 

invertebrates (Bhandari et al., 2012; Chan et al., 2014), this is the first study to show 

direct modulation of voluntary ethanol consumption by Clic4. Furthermore, the is 

the first study to identify Clic4 as a modulator of anxiety-like behaviors in mice, 

an interesting finding considering its location within two known QTLs associated 

with anxiety-like behavior in mice (K. Nakamura & Kubota, 1996; Thifault et al., 
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2008). Taken together, these experiments highlight the importance of Clic4 as a 

unique modulator of ethanol and anxiety-like behaviors. 

In considering the results of this study, support for our initial hypotheses is 

mixed. We were unable to detect altered sedation sensitivity through either global 

or mPFC-specific oligodendrocyte Clic4 deletions and this is likely a consequence 

of mouse strain or targeted cell type. The published study reporting altered 

sensitivity to ethanol sedation following overexpression of Clic4 was performed 

with D2 mice (Bhandari et al., 2012), which compared to B6 mice, have a much 

lower preference for ethanol consumption (Metten et al., 1998) and a higher 

sedation sensitivity to acute ethanol  (Linsenbardt et al., 2009; Lister, 1987). 

Additionally, the study involving D2 mice utilized a neuronal-selective approach 

whereas the present study targeted oligodendrocytes. In terms of ethanol 

consumption behaviors, our initial hypothesis that Clic4 deletion would decrease 

drinking was found to be true of male mice receiving mPFC-specific deletions but 

not for females or global oligodendrocyte deletions.  Considering that our initial 

hypothesis was based on results from mPFC-specific overexpression of Clic4, this 

latter result provides interesting new evidence for brain region-specific roles for 

Clic4. 

The mechanisms underlying Clic4 modulation of behavior do not appear to 

be accompanied by gross alterations of myelin or oligodendrocyte abundance and 
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survival, considering expression of the two most abundant myelin proteins, MBP 

and PLP, is unperturbed both at 1 and 6-months post-deletion of Clic4. We cannot, 

however, rule out ultrastructural changes that do not affect myelin abundance, 

which could be potentially assessed with electron microscopy. This otherwise 

raises the question of how Clic4 might be modulating ethanol and anxiety-like 

behaviors in oligodendrocytes, if not by affecting myelin abundance or stability. 

In addition to the role of supporting saltatory conduction of action potentials, 

another important role of myelin is providing trophic support to myelinated axons 

for long term stability. Oligodendrocytes support the highly metabolically active 

underlying axons by engaging in direct neurotransmission within the axon 

segment and shuttling proteins and glycolytic metabolites across the axo-myelinic 

space (Micu et al., 2018; Nave, 2010). The importance of the supportive role of 

myelin is highlighted by the effects of mutating myelin genes, which can lead to 

axon swelling and degeneration (Griffiths et al., 1998; Lappe-Siefke et al., 2003). 

Clic4 has associated functions in retromer complex-mediated vesicle trafficking 

(Chou et al., 2016) and cell surface expression of neurotransmitter receptors 

(Maeda et al., 2008), suggesting a possible role for Clic4 in supporting the axo-

myelinic synapse. Potentially supporting this idea, oligodendrocytes express 

glutamate neurotransmitter receptors on myelin (Micu et al., 2018) and the same 
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receptors are known to be trafficked to plasma membrane by the retromer-

complex, at least in neurons (Temkin et al., 2017) . 

Another possible mechanism by which Clic4 and other chloride intracellular 

channels may be altering ethanol-related behaviors is by responding to oxidative 

damage and cellular stress. Ethanol metabolism produces reactive oxygen species 

(ROS) capable of damaging various cellular components including proteins, DNA, 

and lipids. Cumulative ethanol-induced ROS from chronic intake can cause 

significant cellular damage and even neurotoxicity in the brain (Zhong et al., 2012). 

Notably, Clic4 has been shown to upregulate and translocate to the nucleus in 

response to various cellular stressors including ROS, metabolic inhibitors, TNF-

alpha, and DNA damage (Fernandez-Salas et al., 2002; Suh et al., 2004; Xu et al., 

2013). In an in vitro study of glioma cell apoptosis, Clic4 upregulated in response 

to H2O2 and RNAi knockdown of Clic4 enhanced apoptosis in its presence (Xu et 

al., 2013). Furthermore, chloride intracellular channels undergo redox-activated 

conformational changes (Littler et al., 2004, 2005, 2010) and have been shown to 

exhibit glutaredoxin-like activity in vitro by reducing oxidized dithiol groups (Al 

Khamici et al., 2015). Although the exact mechanism by which CLIC4 responds to 

oxidative damage has not been established, it appears to provide some level of 

protection either as a signal transducer for the cellular stress response or as an 

oxidoreductase enzyme. This role may be especially important in 
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oligodendrocytes, which show a particular vulnerability to oxidative stress, 

having a high basal burden of ROS due to the required rate of lipid metabolism 

needed to produce and maintain large networks of myelin (McTigue & Tripathi, 

2008).  

Intriguingly, narrowing the anatomical breadth of Clic4 deletion to just mPFC 

resulted in a very different set of behavioral alterations. The sustained increase in 

total ethanol consumption and preference for 15% ethanol, which was observed in 

female global oligodendrocyte Clic4 deletion mice, was not observed in the mPFC-

specific Clic4 deletion mice. In contrast, mPFC-specific Clic4 knockout mice 

showed a decrease in total ethanol consumption specifically in males. 

Additionally, anxiety-like behavioral phenotypes observed in the global Clic4 

deletions were absent in the mPFC-specific deletion. One possible explanation for 

the disparity in findings is that oligodendrocyte Clic4 is modulating ethanol and 

anxiety-like behaviors differentially in brain regions other than mPFC. This 

hypothesis is reasonable when considering that although CLIC4 expression is high 

in oligodendrocytes, mPFC is relatively sparse of oligodendrocytes, myelin, and 

Clic4 expression when compared to other brain regions (Figure 5.7). Not unique 

to PFC, Clic4 expression has also been shown to be ethanol-induced in VTA (Kerns 

et al., 2005; Marballi et al., 2016) and is part of an ethanol-responsive gene network 

in hippocampus (Farris et al., 2015). Likewise, the role of Clic4 in modulating 
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anxiety-like behaviors may instead be localized to other limbic structures such as 

amygdala, hippocampus, or NAc. Supporting this possibility, Clic4 profiling 

through the Genotype-Tissue Expression (GTEx) Project Portal 

(www.gtexportal.org) reveals significant expression in each of these regions and 

at higher levels than frontal cortex or anterior cingulate mPFC (Figure 5.8).  

In summary, global deletion of Clic4 in oligodendrocytes alters ethanol 

consumption and anxiety-like behavior in a sex-specific manner. This represents 

the sum of effects from deleting Clic4 in multiple brain regions, which are unlikely 

to be uniform considering the functional heterogeneity of the brain. Our results 

suggest at least part of the ethanol consumption phenotype is mediated by mPFC, 

but complex regulation of behavior by Clic4 is occurring in other brain regions as 

well. As such, Clic4 is a novel modulator of ethanol consumption and anxiety-like 

behavior in mice, exhibiting dichotomous functions between sexes and brain 

regions. 
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Figure 5.7. mPFC expression of Clic4. Mouse mPFC brain regions targeted for 
viral injection include anterior cingulate cortex, prelimbic, and infralimbic (left, 
shaded red). Clic4 (middle) and Mbp (right) in situ hybridization expression data 
from approximate location of atlas reference image. Images downloaded from 
Allen Brain Atlas Mouse Brain Atlas (Lein et al., 2007).  
 
 

 

 
Figure 5.8. Brain region-specific Clic4 expression. Human Clic4 mRNA 
expression data obtained from GTEx and plotted according to brain region. 
Dashed line indicates expression level of Clic4 in anterior cingulate cortex mPFC 
brain region for reference. Image downloaded from GTEx (Lein et al., 2007) and 
modified for font visibility.  
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Chapter 6 

Clic4 Gene Expression Characteristics 

 

6.1  Introduction 

Clic4 expression in various tissues and cell types has been fairly well 

documented with the exception of brain. Outside of brain, Clic4 displays a fairly 

ubiquitous pattern of tissue expression which is notably higher in heart, lung, 

liver, kidney, and skin (Fernández-Salas et al., 1999). CLIC4 protein has been 

identified in a variety of cell types, depending on organ system, but consistently 

shows high expression in vascular endothelial cells (V. Padmakumar et al., 2014). 

CLIC4 has been detected in multiple subcellular compartments, including 

cytoplasm, nucleus, mitochondria, plasma membrane, and intracellular 

membranes such as vesicles and endosomes (Berryman & Goldenring, 2003; Chou 

et al., 2016; Ponsioen et al., 2009; Proutski et al., 2002; Suh et al., 2004). CLIC4 

localization appears to be highly dynamic, showing subcellular translocation 

following redox changes (Littler et al., 2005), cellular stress (Fernandez-Salas et al., 
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2002; Suh et al., 2004; Xu et al., 2013), TGF-β signaling (Malik et al., 2010; Shukla et 

al., 2009), and RhoA-associated cytoskeleton remodeling (Elisabetta Argenzio et 

al., 2018; Ponsioen et al., 2009),  

Despite the wealth of published data on CLIC4 tissue-specific expression, 

little is known about CLIC4 expression in brain. What is known is largely limited 

to publications of single-cell RNAseq databases and tissue expression atlases. 

Based on Allen Brain Atlas in situ hybridization data (Lein et al., 2007), 

Padmakumar et al. noted that Clic4 expression in adult mouse brain is generally 

low and sparse in contrast to other tissues (V. Padmakumar et al., 2014). The group 

observed that Clic4 expression was highest along axonal tracks and in lateral septal 

nucleus, olfactory bulbs, and cerebellum. While it was not possible to ascertain cell 

type-specific expression characteristics the data, the authors hypothesized 

expression would be high in these areas due to the abundance of Clic4 along white 

matter tracts. Supporting this theory, web-based tools for interrogating single cell 

RNAseq expression databases consistently report myelinating oligodendrocytes 

as the highest Clic4 expressing cell type in brain (Marques et al., 2016; Zeisel et al., 

2015; Zhang et al., 2014). Despite this compelling evidence for expression in 

oligodendrocytes, direct experimental assessment of CLIC expression in brain is 

still lacking. 
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Clic4 has been shown to be up-regulated by acute ethanol in D2 mouse PFC 

(Bhandari et al., 2012; Kerns et al., 2005) but Kerns et al. showed little response or 

actual decreased Clic4 expression on microarray analysis in male B6 mice. 

Considering the ability of Clic4 to modulate ethanol behaviors in B6 mice 

discussed in Chapter 5, we might also expect to see ethanol-regulated expression 

in PFC of this strain as well. Furthermore, considering Clic4 translocates to the 

nucleus during cellular stress (Suh et al., 2004) and to enhance TGF-B pathway 

gene expression (Shukla et al., 2009), we believe Clic4 may be modulating ethanol-

related behaviors, at least in part, by influencing gene expression. We will evaluate 

both of these hypotheses in this chapter by employing a combination of qRT-PCR 

and microarray analysis in wild type and oligodendrocyte-specific Clic4 knockout 

B6 mice exposed to acute ethanol. The overall goal of the work described in this 

chapter is to 1) identify cellular expression characteristics of CLIC4 in PFC, 2) 

assess ethanol-responsiveness of Clic4 expression in B6 mouse PFC, and 3) 

characterize the transcriptomic signature of Clic4 in PFC and how it is affected by 

acute exposure to ethanol. 
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6.2  Methods  

Ethics Statement 

All procedures were approved by Virginia Commonwealth University 

Institutional Animal Care and Use Committee under protocol AM10332 and 

followed the NIH Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 80-23, 1996). 

 

Animals 

Male and female mice were group housed on corn cob bedding (Teklad 

#7092) with a 12-hour light/dark cycle (7am on, 7pm off) and provided ad libitum 

access to food (Teklad #7912) and water with weekly cage changes. All animals 

taking part in behavioral studies were permanently transferred to Sani-Chips 

bedding a minimum of one week before testing. Animals used in this study 

include wild type B6 mice (Jackson Laboratory #000664) and Clic4-floxed mice 

crossed to Plp-Cre-ERT mice (described in Chapter 5). Between 8-11 weeks of age, 

oligodendrocyte-specific Clic4 knockouts were induced in Plp-Cre-ERT mice 

through 5 daily 75mg/kg i.p. injections of tamoxifen (Sigma-Aldritch #T5648) in a 

sunflower oil vehicle (Sigma-Aldritch #S5007).  Tamoxifen was administered to 

both Cre+ and Cre- animals. 
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CLIC4 Protein Localization Studies 

Immunofluorescence – Wild type B6 mice were perfused with 1x PBS followed by 

4% paraformaldehyde before brain extraction and 24-hour post-fixation. 

Cryoprotection performed in 30% sucrose and brains flash frozen then cut on a 

Leica 3050S cryostat at 20 μm per section, unless otherwise stated. Antigen 

retrieval performed for 15 minutes at 80°C in 10mM citrate buffer (pH6) before 

blocking with a 10% goat serum and 0.2% Triton X-100 solution for 30 minutes at 

room temperature. Free floating sections incubated overnight with primary 

antibodies at 4°C and secondary antibodies applied for 2 hours at room 

temperature. Mounting performed using VECTASHIELD Hardset with DAPI 

(#H-1500). Sample sizes include a minimum of 3 sections per animal and 3 animals 

per group. 

 

Antibodies – Anti-CLIC4 (1:100; Cell Signaling Technology #D2A7D), anti-NEUN 

(1:500; Millipore #MAB377), anti-CAMKIIA (1:500; Cell Signaling Technology 

#50049), anti-NFH (1:1000; Abcam #ab4680), anti-CC1 (1:200; Millipore, OP80), 

anti-CNPase (1:400; Abcam #ab6319), anti-IBA1 (1:200; GeneTex #GT10312), anti-

GLUL (1:200; Abcam #ab64613), AlexaFluor 488 anti-mouse (1:1000; ThermoFisher 

Scientific #A21121), AlexaFluor 488 anti-chicken (1:300; ThermoFisher Scientific 
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#A11039), and AlexaFluor 594 anti-rabbit (1:300; ThermoFisher Scientific 

#A11012). 

 

Microscopy – Images taken on a Zeiss LSM700 with a 63x oil objective. Z-stacks 

sampled at Nyquist density with (43x43x130nm voxels) and a scan zoom set at 

either 1x or 4.6x (290x total). Deconvolution of 290x z-stacks performed with 

Scientific Volume Imaging Huygens Suite software v 19.04 using default settings 

and experimentally obtained point spread function files for each color channel 

generated using fluorescent beads. All additional image processing performed 

with FIJI distribution (Schindelin et al., 2012) of ImageJ  (Rasband, 2015). Images 

analyzed in this study were taken from PFC brain regions including prelimbic, 

infralimbic, and anterior cingulate cortex (Chapter 2). 

 

qRT-PCR Ethanol Gene Expression Studies 

Acute ethanol exposure qRT-PCR study – Wild type adult male and female B6 

mice were given i.p. injections of either normal saline, 0.5, 2.0, or 4.5 g/kg ethanol 

in normal saline (20% v/v). 4 hours after, animals were euthanized by cervical 

dislocation and decapitation and multiple brain regions including PFC were 

rapidly microdissected and flash frozen in liquid nitrogen. Further methodological 

details and data for gene targets not included in present study have been 
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previously published (van der Vaart, 2018). Sample sizes include 5-6 animals per 

group. 

 

Chronic ethanol exposure qRT-PCR study – Wild type adult male and female B6 

mice were single-housed and placed on a two-bottle choice paradigm with 

identical bottles containing water or 20% ethanol in water (v/v) provided for 24-

hour periods, every other day, starting 2 hours before the dark cycle. Bottle 

position was rotated each drinking day and on non-drinking days ethanol bottles 

were replaced with a second water bottle. Drinking was continued for 5 weeks and 

animals were euthanized on week 6 by cervical dislocation and multiple brain 

regions including PFC were microdissected and flash frozen in liquid nitrogen as 

above. Further methodological details and data for gene targets not included in 

present study have been previously published (van der Vaart, 2018). Sample sizes 

include 5-6 animals per group. 

 

qRT-PCR analysis – Total RNA was isolated from PFC by Qiagen RNeasy Mini 

Kit (#74104). RNA quality and concentration assessed by NanoDrop 

spectrophotometry and only samples with 260/280 ratios > 1.8 were analyzed 

further. cDNA was synthesized using the Bio-Rad iScript cDNA Synthesis Kit 

(#1708891). PCR performed with iQ SYBR Green Supermix (#1708880) and a Bio-
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Rad CFX Connect thermocycler. Expression values calculated by delta-delta Ct 

method using the relatively ethanol-insensitive Ublcp1 and B2M as reference 

genes. Statistical analysis was performed in R v3.6.2 (R Development Core Team 

& Team, 2016) using R Studio v 1.2.5033 (RStudio Team, 2016) and ggplot2 

package for plotting (Wickham, 2016). Within-sex one-way ANOVAs and Tukey’s 

HSD post-hoc testing was carried out for acute exposure data and unpaired 

Student’s t-test for chronic ethanol exposure data. 

 

Microarray Acute Ethanol Gene Expression Study 

Acute ethanol exposure for microarray analysis – 5 weeks after tamoxifen, adult 

male and female Clic4-floxed Cre+ and Cre- mice were given i.p. injections of either 

normal saline or 3.8 g/kg ethanol in normal saline (20% w/v). 4 hours after, animals 

were euthanized by cervical dislocation and decapitation and multiple brain 

regions including PFC were microdissected and flash frozen in liquid nitrogen as 

described above. Sample sizes were 5 animals per group (n=40 mice in total). 

 

RNA extraction and microarray preparation – Total RNA was extracted from PFC 

tissue using Qiagen miRNeasy Mini Kits (#217004) and a BeadBug 6 homogenizer 

using stainless steel beads (#D1033-28). Only samples with Bioanalyzer RIN scores 

> 7 and NanoDrop spectrophotometer 260/280 ratios > 1.8 were used for 
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microarray preparation. Purified RNA was processed with Clariom S Mouse 

Assays kits (ThermoFisher Scientific #902930) per manufacturer protocol to 

produce fragmented and labeled ss-cDNA. Microarray hybridization, washing 

and scanning was performed by Tana Blevins within the VCUHS Tissue & Data 

Acquisition & Analysis Core. Hybridization was performed in an Affymetrix 

Genechip Hybridization Oven 645 for 16 hours at 45°C, 60 rpm. Washing and 

staining was performed with Genechip Fluidics Stations 450 and 450DX. An 

Affymetrix Genechip scanner 3000 7G was used for chip scanning and Affymetrix 

GeneChip Command Console software for scan analysis. Clariom S Mouse arrays 

provide coverage of over 20,000 well-annotated mouse genes.  

 

Microarray analysis – Microarray data pre-processing and differential expression 

statistical analysis was performed with ThermoFisher Scientific Transcriptome 

Analysis Console Software (TAC) using default SST-RMA and Limma 

methodology. Default quality control metrics assessed by TAC include principal 

component analysis, analysis of hybridization and labeling controls, and area 

under the curve separation for positive and negative controls. Three female 

samples were dropped from further analysis due to one having a large air bubble 

on the scanned chip and two others being substantial outliers on PCA analysis. 

Due to minimal differential expression between males and females and males 
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having a larger sample size, analyses were largely focused on male mice. Separate 

TAC analyses were performed within male mice for the following contrasts: 1) 

Cre- mice treated with ethanol versus saline, 2) Ethanol-treated Cre+ versus Cre- 

mice, and 3) Saline-treated Cre+ versus Cre- mice. Differentially expressed genes 

from between-genotype contrasts 2 and 3 were filtered for unadjusted p-values < 

0.05 and fold change values < -1.4 or > 1.4. For contrast 1, an FDR cutoff of 0.2 was 

applied with no fold change cutoff. Further analysis and visualization of 

differentially expressed genes was performed in R v3.6.2 (R Development Core 

Team & Team, 2016) using R Studio v 1.2.5033 (RStudio Team, 2016). Gene set 

overlaps were visualized with Venn diagrams produced by R package Vennerable 

(github.com/js229/Vennerable) and compared for degree of overlap using Fisher’s 

exact tests.  

 

Bioinformatics – Functional enrichment analysis of differentially expressed genes 

was performed using the web-based tool ToppGene (https://toppgene.cchmc.org/) 

(Chen et al., 2009). Databases queried included KEGG (Carbon et al., 2019; 

Kanehisa, 2000) and GO categories of Biological Processes, Cellular Components, 

and Molecular Functions. Database terms that included < 2 or > 1000 annotated 

genes were not considered. A p-value cutoff of 0.01 was applied to all terms and 

GO terms with > 90% redundancy were removed. Significantly enriched terms 
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were visually explored using the R package GOplot v.1.0.2 (Walter et al., 2015) to 

produce representative plots in Figures 6.7-6.9. The web-based tool GeneWeaver 

(https://geneweaver.org/) was used to perform an integrative genomic analysis 

across multiple published ethanol-responsive gene sets (Baker et al., 2012). 

Through GeneWeaver, two independent ethanol-exposure microarray studies 

were identified (GS128107 and GS354531) and assessed for gene set overlap using 

Fisher’s exact tests. 

 

6.3  Results 

6.3.1  Expression Profile of CLIC4 in mPFC 

CLIC4 protein expression in mPFC was characterized in oligodendrocytes, 

neurons, astrocytes, and microglia using immunofluorescent labeling techniques 

and confocal microscopy. CLIC4 was detected in virtually all observed CC1+ and 

CNP+ oligodendrocytes (Figure 6.1a). CC1 and CNP are both expressed in mature 

oligodendrocytes and while CC1 is cytosolic, CNP is membrane and myelin-

associated (Snaidero et al., 2017). Dense punctate expression of CLIC4 was 

detected within cytosolic and nuclear compartments of oligodendrocytes as well 

as in punctate and linear patterns along CNP+ myelin (Figure 6.1b).  
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Figure 6.1. CLIC protein expression in oligodendrocytes. Confocal microscopy 
images depicting CLIC4 expression alongside oligodendrocyte markers CC1 and 
CNP in 63x slices (a) and 290x deconvolved z-stack maximum intensity projections 
(b). CNP+ myelin displayed in lower panel. Orange arrow indicates CLIC4+ 
endothelial cell.  
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CLIC4 expression was found to be sparse in NEUN+ and CAMKIIα+ neurons 

(Figure 6.2a) and largely restricted to cytosol (Figure 6.2b). In frontal cortex, 

NEUN has a pan-neuronal expression profile whereas CAMKIIα is limited to 

glutamatergic cells. NFH was labeled in order to identify axons and CLIC4 was 

occasionally found to be expressed adjacently and in a linear pattern that generally 

matched the same trajectory (Figure 6.2b).  

The majority of observed IBA1-labeled microglia displayed expression of 

CLIC4 protein (Figure 6.3a). Expression of CLIC4 in microglia tended to display a 

pattern of a single dense well-circumscribed region of cytoplasm (Figure 6.3b). In 

GFAP+ and GLUL+ astrocytes, CLIC4 was found to display a sparse punctate 

expression pattern (Figure 6.4a). While GFAP is a common marker for astrocytes, 

it labels only a small volume of the cell due its association with intermediate 

filaments of the cytoskeleton. The enzyme GLUL labels astrocytes more uniformly, 

having a diffuse cytosolic expression pattern. CLIC4 expression was not detected 

in all GFAP+ and GLUL+ cells, but was generally localized to the nucleus when 

observed (Figure 6.4b). Endothelial cells robustly expressed CLIC4 and were 

commonly detected and distinguished by morphology (Figures 6.1a, 6.2a, 6.3b, 

6.4a).  
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Figure 6.2. CLIC protein expression in neurons. Confocal microscopy images 
depicting CLIC4 expression alongside neuronal markers NEUN and CAMKIIα in 
63x slices (a) and CAMKIIα and axonal marker NFH in 290x deconvolved z-stack 
maximum intensity projections (b). Orange arrow indicates CLIC4+ endothelial 
cell. 
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Figure 6.3. CLIC protein expression in microglia. Confocal microscopy images 
depicting CLIC4 expression alongside microglial marker IBA1 in 63x slices (a) and 
290x deconvolved z-stack maximum intensity projections (b). Orange arrow 
indicates CLIC4+ blood vessel surrounded my microglial processes. 
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Figure 6.4. CLIC protein expression in astrocytes. Confocal microscopy images 
depicting CLIC4 expression alongside astrocyte markers GFAP and GLUL in 63x 
slices (a) and 290x deconvolved z-stack maximum intensity projections (b). Orange 
arrow indicates CLIC4+ endothelial cells encircled by astrocyte foot processes, 
displaying typical appearance of the blood-brain barrier. 
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6.3.2  PFC Clic4 Expression Following Ethanol Exposure 

Clic4 is known to be regulated by acute ethanol in D2 mouse PFC (Bhandari 

et al., 2012; Kerns et al., 2005), but this has not been thoroughly evaluated in B6 

mice. To investigate this possibility, qRT-PCR was performed on PFC tissue 

isolated from wild type male and female B6 mice 4 hours after an i.p. injection of 

saline, 0.5g/kg, 2.0g/kg, or 4.0g/kg ethanol. A significant overall effect of treatment 

on Clic4 expression was found in females (Figure 6.5a, F(3,19) = 14.77, p < 0.001) 

but not in males (F(3,20) = 1.87, p = 0.17). In females, Tukey’s HSD post-hoc testing 

revealed an upregulation of Clic4 in animals receiving a 4.0g/kg injection when 

compared to the 2.0g/kg (p = 0.002), 0.5g/kg (p = 0.001), and saline-treated (p < 

0.001) groups.  

Clic4 mRNA was also evaluated for altered expression in PFC following 

chronic ethanol exposure. Wild type male and female B6 mice were placed in a 

two-bottle choice intermittent ethanol access study for 5 weeks and paired with an 

equal number of control animals given access only to water. At the close of the 

study, neither male (Figure 6.5b, t(8.74) = 1.19, 0.27) or female (t(9.21) = 0.38, 0.71) 

chronic ethanol drinkers showed a difference in PFC Clic4 mRNA expression 

when compared to water-only drinking controls.   
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Figure 6.5. Clic4 mRNA expression after ethanol exposure. (a) qRT-PCR analysis 
of Clic4 mRNA in wild type B6 mouse PFC 4 hours after i.p. injection of saline or 
ethanol. (b) qRT-PCR analysis of Clic4 mRNA in wild type B6 mouse PFC 1 week 
following a 5-week chronic intermittent voluntary ethanol drinking study. Groups 
correspond to water-only drinkers ethanol drinkers. Significance levels indicated 
by **p<0.01. 
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6.3.3  Transcriptomic Response to Acute Ethanol and Clic4 

Deletion 

In order to gain deeper insight into the biological functions of Clic4 in brain, 

especially with regard to its role in the molecular response to ethanol, Clic4 was 

deleted in oligodendrocytes of adult B6 mice and RNA microarrays were run on 

PFC tissue after acute exposure to high dose ethanol (4 g/kg x 4 hours). 

Transcriptomes of ethanol-treated Cre+ male and female mice were compared to 

control Cre- and saline-treated mice. There were no significant differentially 

expressed genes resulting from the interaction of sex and ethanol treatment (Table 

6.1). Nine genes did show differential expression between Cre- ethanol-treated 

male and female mice, however, six of these were located on sex chromosomes 

(Table 6.2). The remaining three autosomal genes differentially regulated between 

sexes after ethanol treatment were Fkbp5 (fold change = -2.1, FDR = 0.05), Trp53inp1 

(fold change = -1.9, FDR = 0.01), and Tcam1 (fold change = 1.8, FDR = 0.07). Due to 

minimal sex-specific gene expression responses to ethanol and a lower relative 

sample size in females, additional analyses were directed towards males. 

Three male-only contrasts were focused on for further differential 

expression and bioinformatic analysis, 1) Cre- ethanol versus saline-treated mice, 

2) Saline-treated Cre+ versus Saline-treated Cre- mice, and 3) Ethanol-treated Cre+ 

versus Ethanol-treated Cre- mice. While ethanol-treated Cre- animals showed 
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robust gene expression changes when compared to saline-treated Cre- mice at an 

FDR cutoff of 0.20, differential expression across genotypes was more subtle. To 

improve detection power specifically in the two genotype contrasts, the alpha level 

was reduced to an unadjusted 0.05, but a fold change cutoff of < -1.4 or > 1.4 was 

implemented to maintain stringency. Utilizing these criteria, 544 genes were found 

to be differentially expressed due to genotype in saline-treated animals and 310 

genes due to genotype in acute ethanol-treated animals (Table 6.1, Table S6.1). In 

both cases, Clic4 deletion resulted in disproportionately more upregulated than 

downregulated genes. Applying an FDR cutoff 0.20, ethanol treatment was found 

to alter the expression of 593 genes in Cre- animals when compared to saline 

treatment, most of which were upregulated. Clic4 was among the significantly 

upregulated genes in the Cre- male ethanol versus saline contrast (fold change = 

2.9, FDR = 0.016). Significant overlap was noted between genes responding to 

ethanol in Cre- animals (Figure 6.6) and those responding to Clic4 deletion in 

ethanol (OR = 2.6, p = 2.3x10-4) and saline-treated (OR = 4.7, p < 2.2x10-16) animals. 

To a lesser extent, this was also the case when comparing genes responsive to Clic4 

deletion in ethanol and saline-treated animals (OR = 1.9, p = 0.023).  

To identify meaningful biological patterns within the large lists of 

differentially expressed genes, overrepresentation analysis was performed for GO  
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Genotype Treatment Sex Contrast Up Down Total 
Cre- Both Both Interaction 0 0 0 
Cre- Ethanol Both Sex 3 6 9 
Cre- Both Male Treatment 389 204 593* 
Both Saline Male Genotype 232 312 544* 
Both Ethanol Male Genotype 191 119 310* 

 

 
Table 6.1. Summary of differential gene regulation.  
Summary of contrast designs and differential gene expression results according to 
direction of regulation. Results are filtered by FDR < 0.2 in non-genotype contrasts 
and with p <0.05 and fold change < -1.4 or > 1.4 for genotype contrasts. Gene sets 
indicated by an asterisk were the focus of further bioinformatic analysis. 
  
 
 

Gene Chr FC FDR Description 
Trp53inp1 chr4 -1.86 0.0964 transformation related protein 53 

inducible nuclear protein 1 
Tcam1 chr11 1.81 0.0748 testicular cell adhesion molecule 1 
Fkbp5 chr17 -2.1 0.0536 FK506 binding protein 5 
Gm6121 chrX 2.23 0.0279 predicted gene 6121 
Eif2s3x chrX 1.74 0.0279 eukaryotic translation initiation factor 2, 

subunit 3, structural gene X-linked 
Kdm5d chrY -17.79 2.83e-10 lysine (K)-specific demethylase 5D 
Eif2s3y chrY -98.65 3.12e-11 eukaryotic translation initiation factor 2, 

subunit 3, structural gene Y-linked 
Uty chrY -57.73 1.87e-09 ubiquitously transcribed 

tetratricopeptide repeat gene, Y 
chromosome 

Ddx3y chrY -118.42 7.64e-11 DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 3, Y-linked 

 

 
Table 6.2. Ethanol differentially regulated genes between sexes.  
 Summary of genes differentially expressed between sexes (FDR < 0.20) after 
ethanol treatment. Columns include gene symbol, chromosome (Chr), fold change 
(FC), false discovery rate adjusted p-value (FDR), and gene description.  
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Figure 6.6. Summary of differential gene expression. Venn diagram depicting 
differentially expressed genes within each main contrast. Overlap between gene 
sets was evaluated by Fisher’s exact tests providing odds ratios (OR) and p-values. 
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categories. The effect of ethanol treatment over saline in Cre- animals produced 

altered expression of genes related in a variety of biological functions 

glucocorticoid, steroid hormone, and cAMP signaling and carboxylic acid 

transport (Figure 6.7, Table S6.2). These GO terms were largely enriched by 

upregulated genes. In saline treated animals, Clic4 deletion-responsive genes 

enriched processes related to cytoskeleton, cellular growth, and morphogenesis 

(Figure 6.8), including Axis Elongation (GO:0003401) and positive regulation 

growth (GO:0045927). These processes were mostly divided in gene regulation or 

downregulated with exception of Regulation of Neuron Death (GO:1901214), 

which showed marked overall upregulation. Genes responsive to Clic4 deletion in 

the presence of acute high dose ethanol were overrepresented in immune and 

inflammatory processes (Figure 6.9) such as myeloid dendritic cell activation 

(GO:0002277). Redox-related processes were also enriched, including positive 

regulation of oxidoreductase activity (GO:0051353). 

In an attempt to integrate our data with other published genomic studies of 

ethanol exposure, we compared our list of genes regulated by 4g/kg acute ethanol 

in Cre- mice with that of a 1.8g/kg low acute dose of ethanol study and also to a 

chronic ethanol drinking macaque study (Figure 6.10, Table S6.3). Significant 

overlap of ethanol-regulated genes was observed between all three gene sets, with 

the largest being between chronic drinking macaques and low dose treated mice.  
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 ID Name z-score Hits p-value 
GO:0051384 response to glucocorticoid 2.7 17/163 9.03E-07 
GO:0048545 response to steroid hormone 3.8 25/406 4.55E-05 
GO:0019933 cAMP-mediated signaling 2.1 19/278 9.59E-05 
GO:0071889 14-3-3 protein binding 1.6 6/31 1.44E-04 
GO:0001823 mesonephros development 2.1 11/115 1.66E-04 
GO:0046486 glycerolipid metabolic process 2.4 26/475 2.18E-04 
GO:0046942 carboxylic acid transport 0.9 22/373 2.36E-04 
GO:0045444 fat cell differentiation 2.7 17/251 2.45E-04 
GO:0051592 response to calcium ion 1.4 13/163 2.74E-04 
GO:0046943 carboxylic acid transmembrane transporter 

activity 
0.3 13/158 3.19E-04 

Figure 6.7. GO terms: Ethanol treatment in male mice. (a) Circle plot depicting 
differentially expressed genes (outer ring) overrepresented within top 10 GO 
terms by enrichment p-value. GO term enrichment p-value represented by inner 
circle bar size with fill color depicting z-score for overall direction of gene 
regulation. (b) Summary table for top 10 GO terms which includes gene hits out 
of total number of genes in terms. 

Downregulated

Fold c hange

Upregulated Decreasing Increasing

Z-score
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ID Name z-score Hits p-value 
GO:0014821 phasic smooth muscle contraction -0.4 5/26 7.70E-05 
GO:0003401 axis elongation 1.3 5/35 3.34E-04 
GO:0016331 morphogenesis of embryonic epithelium 0.9 11/181 3.55E-04 
GO:0008569 ATP-dependent microtubule motor activity, 

minus-end-directed 
-1.0 4/20 4.19E-04 

GO:0045927 positive regulation of growth -0.3 15/331 7.71E-04 
GO:2001182 regulation of interleukin-12 secretion -0.6 3/11 7.86E-04 
GO:0019933 cAMP-mediated signaling 0.3 13/278 1.28E-03 
GO:0048638 regulation of developmental growth -0.2 17/424 1.36E-03 
GO:1901214 regulation of neuron death 2.5 16/394 1.64E-03 
GO:0007171 activation of transmembrane receptor protein 

tyrosine kinase activity 
-0.6 3/14 1.67E-03 

Figure 6.8. GO terms: Clic4 deletion in saline-treated male mice. (a) Circle plot 
depicting differentially expressed genes (outer ring) overrepresented within top 
10 GO terms by enrichment p-value. GO term enrichment p-value represented 
by inner circle bar size with fill color depicting z-score for overall direction of 
gene regulation. (b) Summary table for top 10 GO terms which includes gene 
hits out of total number of genes in terms. 

Downregulated

Fold c hange

Upregulated Decreasing Increasing

Z-score
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ID Name z-score Hits p-value 
GO:1900120 regulation of receptor binding 1.0 4/28 9.78e-05 
GO:0001787 natural killer cell proliferation 1.7 3/14 2.22e-04 
GO:0002540 leukotriene production involved in 

inflammatory response 
0.0 2/3 2.26e-04 

GO:0002277 myeloid dendritic cell activation involved in 
immune response 

1.4 2/3 2.26e-04 

GO:0018158 protein oxidation 0.6 3/15 2.76e-04 
GO:0016540 protein autoprocessing -0.6 3/18 4.86e-04 
GO:0018198 peptidyl-cysteine modification -1.0 4/48 8.12e-04 
GO:0004720 protein-lysine 6-oxidase activity 1.4 2/5 8.17e-04 
GO:0051353 positive regulation of oxidoreductase activity 0.0 4/58 1.65e-03 
GO:0046580 negative regulation of Ras protein signal 

transduction 
0.0 4/58 1.65e-03 

Figure 6.9. GO terms: Clic4 deletion in ethanol-treated male mice. (a) Circle 
plot depicting differentially expressed genes (outer ring) overrepresented 
within top 10 GO terms by enrichment p-value. GO term enrichment p-value 
represented by inner circle bar size with fill color depicting z-score for overall 
direction of gene regulation. (b) Summary table for top 10 GO terms which 
includes gene hits out of total number of genes in terms. 
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Figure 6.10. Overlap of ethanol-responsive gene sets. Venn diagram depicting 
overlap of ethanol-responsive genes in Cre- males and two independent published 
studies. These include ethanol-responsive genes from mouse PFC, VTA, and NAc 
following an acute dose of 1.8gkg ethanol (GS354531) and macaque after 12 
months of chronic voluntary ethanol drinking (GS128107). Overlap between gene 
sets was evaluated by Fisher’s exact tests providing odds ratios (OR) and p-values. 
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(OR = 4.2, p < 2.2x10-16). Our high dose acute ethanol gene had 47 genes in common 

with the macaque study (OR = 1.8, p = 8.1x10-4) and 70 with the acute low dose 

treated mice (OR = 1.4, p = 0.03). Intriguingly, Clic4 is one of only two genes 

regulated in all three of these diverse ethanol exposure studies, with the other 

being intermediate filament family orphan 2 (Iffo2). 

 

6.4  Discussion 

The overall goal of this study was to characterize expression patterns of 

Clic4 RNA and protein in PFC, both basally and in response to ethanol exposure. 

This was the first study to examine CLIC4 protein expression by cell type and 

subcellular localization in brain and to show acute ethanol regulation of Clic4 

mRNA in B6 mouse PFC. Bioinformatic analysis of differentially expressed genes 

identified numerous biological processes associated with the molecular response 

to acute high dose ethanol and deletion of Clic4. Many of these process associations 

have been previously published but some are also novel. Taken together, the 

results from these studies provide a better foundation for interpreting the 

biological roles of Clic4 and especially with regard to the molecular response to 

ethanol. 

Confirming our initial hypothesis, CLIC4 was found to be highly expressed 

in CC1 and CNP+ myelinating oligodendrocytes in PFC. CLIC4 was also found to 
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be expressed on CNP+ myelin, suggesting it may have a role in myelin structure 

or function. Considering the lack of changes in MBP and PLP expression after Clic4 

knockout (Chapter 5), the latter is more likely. In neurons and astrocytes, CLIC4 

was expressed in most but not all cells observed and in a sparse punctate pattern. 

CLIC4 was occasionally found to be expressed in a linear pattern adjacent to 

axonal cytoskeletal protein NFH, also potentially suggesting expression within 

myelin sheaths. Microglia showed distinct well-circumscribed regions of 

cytoplasm highly expressing CLIC4. This was detected in nearly all observed 

IBA1+ microglia. This expression pattern may represent phagocytic CLIC4-

enriched oligodendrocyte debris or potentially functional expression of CLIC4 in 

microglial phagosomes. CLIC4 paralog CLIC1 has been observed in peripheral 

macrophages to associate with phagosomes where it promotes acidification (Jiang 

et al., 2012). Although not a direct aim of this study, CLIC4 was commonly 

detected in endothelial cells, which has been previously reported and CLIC4 has a 

known role in angiogenesis (Chalothorn et al., 2009; Ulmasov et al., 2009). 

While Clic4 mRNA has been shown to be ethanol-inducible in D2 mouse 

PFC, this has not been established in B6 mice. With qRT-PCR analysis, we 

identified significant upregulation of PFC Clic4 following 4g/kg i.p. injection of 

ethanol in wild type B6 female mice but only a trend towards increased expression 

in males. However, our microarray analysis identified significant Clic4 
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upregulation in both male and female B6 Cre- mice following a 4g/kg i.p. injection 

of ethanol, confirming our initial hypothesis. Collectively, these results extend the 

current understanding of Clic4-regulation by acute ethanol in PFC to include B6 

mice, which also exhibit Clic4-modulated drinking behavior (Chapter 5).  

Clic4 has been associated with a myriad of diverse biological functions from 

ion channel (Littler et al., 2005) and enzymatic activity (Al Khamici et al., 2015) to 

membrane tracking (Chou et al., 2016) and apoptosis (Suh et al., 2004). However, 

the mechanisms and molecular partners through which Clic4 carries out these 

functions are not well understood. Furthermore, the process by which Clic4 

modulates ethanol sedation sensitivity (Bhandari et al., 2012) and drinking 

behavior (Chapter 5) is also not known. Considering its rapid induction following 

acute ethanol, we speculated that Clic4 plays an influential and unique role in the 

brain’s molecular response to ethanol exposure. To gain insight into these 

processes, we performed microarray gene expression profiling of Clic4 deletion in 

PFC both in the presence and absence of acute ethanol.  Applying what we learned 

of CLIC4 expression characteristics in PFC, we specifically targeted 

oligodendrocytes for Clic4 deletion. We identified a large set of ethanol-responsive 

genes in Cre- mice which was enriched for genes involved in glucocorticoid and 

steroid hormone signaling. This is an interesting finding considering the well-

established associations between glucocorticoid signaling, HPA axis 
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dysregulation, and the risk for AUD development and relapse (Blaine & Sinha, 

2017; Costin et al., 2013; Kerns et al., 2005). Further highlighting this connection, 

glucocorticoid receptor antagonist Mifepristone has shown promising effects in 

reducing alcohol consumption in animal models (Vendruscolo et al., 2015) and is 

currently undergoing clinical trials in humans (“Mifepristone for the Prevention 

of Relapses of Alcohol Drinking,” 2004). Integrative genomic analysis of this gene 

set with published gene sets representing regulation by low dose acute ethanol in 

mice and chronic ethanol drinking in macaques showed significant overlap. This 

not only replicates our findings, but also provides evidence that common sets of 

genes respond to differing ethanol exposures, even across species. 

In saline-treated animals, Clic4 deletion altered expression of genes 

overrepresented in cytoskeleton, morphogenesis, and growth-related processes. 

This is noteworthy considering known associations of Clic4 with cytoskeleton 

(Elisabetta Argenzio et al., 2018; Ponsioen et al., 2009) and involvement in 

membrane reorganization and tubulogenesis (Chou et al., 2016; Ulmasov et al., 

2009). Clic4 deletion also led to a substantial upregulation of genes involved in 

regulating neuron cell death, a GO term that includes many genes related to 

apoptosis. This is noteworthy because Cic4 is known to be involved in cell stress 

and apoptotic pathways (Fernandez-Salas et al., 2002; Suh et al., 2004; Xu et al., 

2013).  
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Ethanol-treated animals displayed a unique set of differentially expressed 

genes responding to Clic4 deletion that overlapped only minimally with those 

responding to deletion after saline-treatment. These genes were enriched for 

biological processes associated with inflammation and innate immunity as well as 

redox processes. Considering the former, Clic4 has published roles in both, acting 

in an incompletely understood way to positively regulate inflammation (He et al., 

2011; Tang et al., 2017). Enrichment of redox-related processes is also significant 

considering CLIC4 undergoes oxidation and reduction-triggered conformational 

changes (Littler et al., 2005) and acts as an oxidoreductase enzyme in vitro (Al 

Khamici et al., 2015). Another interesting connection, our microarray analysis of 

Drosophila Clic knockdown identified an enrichment of genes in the similar GO 

term, Oxidation-Reduction Processes (Chapter 4). 

This study provides novel characterization of CLIC4 cellular and 

subcellular expression in PFC and evidence for acute ethanol-induced 

upregulation of Clic4 in B6 mouse PFC. Bioinformatic analysis of oligodendrocyte-

specific Clic4 deletion identified many known biological processes previously 

associated with Clic4 including redox activity, inflammation, cytoskeleton, and 

apoptosis. The novel pathways and genes identified here as regulated by Clic4 

deletion and ethanol exposure offer important new insight into the interactome 

surrounding Clic4. In summary, this study provides further evidence for an 
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involvement of Clic4 in the brain’s molecular response to ethanol and identifies 

several potential biological mechanisms through which it may be influencing 

ethanol-related behavior. 

 

 

Supplemental Tables: 

Table S6.1: Differentially Expressed Genes 

Table S6.2: Enriched Gene Ontology Terms 

Table S6.3: GeneWeaver Ethanol Gene Sets 
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Chapter 7 

Conclusions, Discussion, and Future 

Directions 

 

7.1  Ethanol and the Synaptic Transcriptome 

AUD is a complex neuropsychiatric disorder with a 48-58% genetic risk 

component (Prescott & Kendler, 1999). With a lifetime prevalence of 29% (Grant et 

al., 2015) and only moderately effective available treatments (Jonas et al., 2014), 

there is a strong interest in researching the molecular mechanisms underlying 

development of AUD. The hunt for an “alcoholism gene” has identified hundreds 

of genetic variants, each representing only a small portion of  the disorder’s overall 

genetic risk (Deak et al., 2019; Tawa et al., 2016). This large list of candidate genes 

is lengthened further by thousands of ethanol-responsive genes identified in 

transcriptomic studies from human post-mortem tissue and animal models of 

AUD (Farris et al., 2010; Kerns et al., 2005; Liu et al., 2006; Wolen et al., 2012). With 
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an almost overwhelming number of potential gene targets to explore, a next major 

task for researchers is to distill them down to the most reproducible and 

biologically meaningful genes in context of our understanding of AUD 

pathophysiology. The most promising of these candidate genes can then be taken 

to animal models of AUD for evaluation of targeted pharmacotherapies or genetic 

manipulations.  

This dissertation work began by taking a closer look at the synaptic 

transcriptome of frontal cortex neurons following acute and repeated intermittent 

ethanol exposures. Our goal was to identify differential gene expression and 

splicing events specifically associated with synaptic reorganization during 

ethanol-induced locomotor sensitization. Ethanol sensitization produced a more 

substantial differential gene expression response compared to acute ethanol and 

this was even more so the case with differential exon usage. Synaptic differential 

exon usage resulting from ethanol sensitization was enriched for RNA translation, 

RNA processing, and cellular energetics processes, which is consistent with 

sensitization-induced synaptic reorganization. As a possible mechanism for this 

shift in synaptic splice variants, we identified an enrichment of RNA binding 

protein targets and specific RNA-binding sequence motifs among our differential 

exon usage. From our findings, we hypothesize that repeated intermittent ethanol 

exposure, which induces locomotor sensitization, is mediating adaptive changes 
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in frontal cortex circuitry by way of specific synaptic reorganization events. An 

important follow up question this leaves is whether ethanol locomotor 

sensitization and associated synaptic remodeling can be blocked by temporary 

inhibition of specific molecular chaperones or RNA binding proteins identified in 

this study, such as FMRP. 

 

7.2  Clic4 in Ethanol and Anxiety-related Behavior 

Bhandari et al. showed that expression modulation of Clic4 and invertebrate 

orthologs alters sensitivity to ethanol sedation (Bhandari et al., 2012). However, 

the role of Clic4 in ethanol consumption had not been evaluated prior to the 

current set of studies. Using a 3BC-IEA paradigm, we found that global 

oligodendrocyte-specific deletion of Clic4 in B6 mice resulted in an increase in total 

ethanol and 15% ethanol intake in females and an increase in 15% choice over 30% 

ethanol in both sexes (Table 7.1). Clic4 deletion also resulted in altered anxiety-

like behavior, with males spending more time in the light in an untreated 

light/dark box task and females spending more time in the light after ethanol 

pretreatment in the light/dark box task.  

The behavioral effects of global deletion of Clic4 in oligodendrocytes were 

not reproduced by mPFC-specific Clic4 deletion in oligodendrocytes. With this 

narrowing of regional specificity, anxiety-like behaviors were unaltered and  
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Behavior Sex AAV8-MBP-Cre Plp-Cre-ERT 

Drinking Female - 
↑ total intake 
↑ 15%/choice 

Drinking Male 
↓ total intake 
↓ 15%/choice 

↑ 15% choice 

Sensitivity Female - - 

Sensitivity Male - - 

Anxiety Female - ↓ anxiety (EIA) 

Anxiety Male - ↓ anxiety (light/dark box) 

  

Table 7.1: Summary of behavioral changes following Clic4-deletion. Overview 

of behavioral changes resulting from Clic4 deletion in oligodendrocytes either 

broadly (Plp-Cre-ERT) or specifically in mPFC (AAV8-MBP-Cre). Behaviors 

evaluated include chronic ethanol intake in a 3BC-IEA task (Drinking), sensitivity 

to ethanol sedation in a LORR task (Sensitivity), and anxiety-like behavior 

(Anxiety) in a light/dark box task or during ethanol-induced anxiolysis (EIA). 

Arrows indicate direction of behavioral effect when comparing Clic4-deleted 

animals to controls. 
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ethanol consumption behaviors were altered in a different manner, such that only 

males were affected and displayed lower ethanol consumption. This lack of 

concordance between the deletion approaches is highly suggestive of regional 

differences in function of Clic4. Considering the low overall expression of Clic4 in 

brain with patterns of high regional expression (V. Padmakumar et al., 2014), the 

contributions of oligodendrocyte Clic4 to ethanol drinking and anxiety-like 

behavior identified in the global deletions would appear to be mediated in regions 

other than mPFC. The mPFC was chosen as an initial region of interest due to the 

observed regulation of Clic4 by acute ethanol in that brain region (Kerns 2005), and 

the altered ethanol sedation sensitivity of mPFC Clic4 overexpressing D2 mice 

(Bhandari et al., 2012). However, ethanol consumption and anxiety-like behaviors 

are linked to a number of other brain regions including NAC, VTA, hippocampus, 

and amygdala (Chapter 2). Future studies directed at further characterizing the 

role of Clic4 in ethanol-related behaviors might look in these brain areas, in 

particular the VTA where Clic4 has shown ethanol-regulation in dopaminergic 

neurons (Marballi et al., 2016), or hippocampus where Clic4 has been identified as 

part of an ethanol-responsive gene network (Farris et al., 2015). Another 

potentially interesting area to evaluate, the lateral septal complex shows high 

regional expression of Clic4 on in situ hybridization (Lein et al., 2007; V. 

Padmakumar et al., 2014) and ethanol regulation of Clic4 mRNA (Bogenpohl, 
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unpublished communication). The lateral septal complex is a component of the 

extended basal ganglia, is interconnected with the mesolimbic reward pathway, 

and has been reported to be involved in regulation of ethanol consumption 

(Ryabinin et al., 2008; Talishinsky & Rosen, 2012). 

 

7.3  CLIC4 Protein Expression in PFC 

Another major aim of this dissertation was to characterize the cellular 

expression profile of CLIC4 in mouse PFC, where it has previously been shown to 

be regulated by ethanol (Bhandari et al., 2012; Kerns et al., 2005) and to modulate 

ethanol sedation sensitivity (Bhandari et al., 2012). CLIC4 was observed 

incidentally but frequently in endothelial cells, which supports previous reports 

of its role in angiogenesis (Chalothorn et al., 2009; Ulmasov et al., 2009). CLIC4 

was also robustly expressed in mature oligodendrocytes and along myelin (Table 

7.2), which was previously suspected based on in situ hybridization data (V. 

Padmakumar et al., 2014). Microglia showed a unique pattern of expression 

localized to discrete cytoplasmic regions, possibly indicating phagosomes. In 

contrast, neurons and astrocytes displayed sparse punctate expression of CLIC4, 

which was not present in all cells observed. These co-localization studies of CLIC4 

are the first to assess cell type expression within the brain. However, they are 

largely qualitative and future studies should seek to quantify the relative  
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Cell Type Compartment Markers Expression 

Neurons Nucleus NEUN, DAPI No 

Neurons Cytosol NEUN, CAMKIIα Yes 

Neurons Axon NF-H Yes 

Oligodendrocytes Nucleus DAPI Yes 

Oligodendrocytes Cytosol CC1 Yes 

Oligodendrocytes Myelin CNP Yes 

Oligodendrocytes Plasma membrane CNP No 

Astrocytes Nucleus DAPI Yes 

Astrocytes Cytoskeleton GFAP No 

Astrocytes Cytosol GLUL, GFAP Yes 

Microglia Nucleus DAPI No 

Microglia Cytoplasm IBA1 (interior to) Yes 

Microglia Plasma membrane IBA1 No 

  

Table 7.2: Summary of CLIC4 protein expression in PFC. Expression 

characteristics of CLIC4 protein in wild type B6 mouse PFC identified through 

immunofluorescence and confocal microscopy techniques. 
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differences in CLIC4 expression between cell types using quantitative 

immunofluorescence or flow cytometry techniques. Considering not all neurons 

and astrocytes displayed CLIC4 expression, sub-classes of these cells, such as 

excitatory versus inhibitory neurons, may show differing expression patterns.  

Co-localization of CLIC4 with CNP+ myelin and adjacent to NFH+ axons 

suggests CLIC4 may be expressed and therefore have a function in myelin. 

However, the two most abundant myelin proteins, MBP and PLP, were not found 

to be altered after Clic4 deletion in oligodendrocytes, suggesting CLIC4 is not 

likely essential to overall myelin stability. However, this does not rule out 

ultrastructural changes which could affect myelin compactness, cytoplasmic 

channels, and axo-myelinic synapses. This possibility could be evaluated in future 

studies utilizing electron microscopy and specifically recent advances cryo-

electron microscopy, which better preserve aqueous uncompacted myelin 

domains  (Snaidero et al., 2017).  

If Clic4 is altering ethanol-related behaviors through oligodendrocytes, but 

not by affecting abundance of myelin, it may instead be influencing 

oligodendrocyte trophic support of ensheathed axons. Considering the potentially 

large distances extending between axon segments and their respective neuronal 

cell bodies, distally projecting axons have an uphill battle in order to maintain their 

metabolic requirements (Nave, 2010). While previously viewed as a highly 
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compact and inert insulating structure, myelin is now considered to be structurally 

dynamic with uncompacted cytoplasmic channels connecting the axo-myelinic 

space in the inner tongue of the myelin sheath to the oligodendrocyte cell body 

(Michalski & Kothary, 2015; Snaidero et al., 2014, 2017). Oligodendrocytes have 

been reported to shuttle glycolytic metabolites, RNA, and proteins across the axo-

myelinic space to support the metabolism and overall health of the underlying 

axon (Fünfschilling et al., 2012; Nave, 2010; Saab et al., 2016; Snaidero et al., 2017). 

The importance of this relationship is highlighted by the effects of disrupting 

myelin structure, which can directly lead to degeneration of axons (Griffiths et al., 

1998).  

Having observed that CLIC4 is expressed adjacent to NFH+ axons in CNP+ 

regions of myelin, it is possible that CLIC4 may be localized to uncompacted 

myelin supporting cytoskeletal dynamics or localizing to the axo-myelinic synapse 

itself. Potential evidence for  the former hypothesis comes from published 

associations of Clic4 with membrane dynamics and cytoskeleton remodeling (E. 

Argenzio et al., 2014; Ponsioen et al., 2009), which could be relevant to cytoplasmic 

channel patency, which is otherwise maintained under the antagonistic interplay 

of MBP and CNP (Snaidero et al., 2017). In terms of the latter hypothesis, Clic4 has 

known roles in membrane trafficking of vesicles and receptors (Chou et al., 2016; 

Maeda et al., 2008), which may provide support for signaling and transport at the 
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axo-myelinic synapse. While these hypotheses are highly speculative at present, 

an examination of CLIC subcellular localization within myelin ultrastructure 

through electron microscopy could resolve these questions. 

 

7.4  Clic4, Acute Ethanol, and the Transcriptome 

Our transcriptomic analyses provide novel characterization of the 

molecular response to high dose acute ethanol in Cre+ and Cre- Clic4-floxed mice. 

Our bioinformatic analyses identified several previously reported biological 

processes responding to ethanol treatment, including oxidation-reduction 

processes, inflammation and innate immunity, cytoskeletal processes, and 

apoptosis. These findings bring to light another possible mechanism by which 

Clic4 may be modulating ethanol consumption and that is through its associated 

roles in oxidation-reduction processes. This connection was noted both in the 

Drosophila Clic knockdown (Chapter 4) and the ethanol-treated mouse Clic4 

knockdown microarray (Chapter 6) analyses. Currently not well understood, Clic4 

has been reported in a number of oxidation-reduction related processes including 

oxidoreductase activity (Al Khamici et al., 2015). It is possible that Clic4 has an 

important role in buffering the response of either myelin or oligodendrocyte cell 

bodies to ROS damage, and modulation of its expression either experimentally or 

through human genetic variation, alters ROS vulnerability. This vulnerability may 
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not be outright lethal to oligodendrocytes, as suggested by our Western blot data 

showing consistent MBP and PLP expression for 5 months following Clic4 

deletion, but it may be sufficient to increase cellular stress and reduce effectivity 

of oligodendrocyte trophic support to myelin and underlying axons. This 

hypothesis is supported by our Clic knockdown Drosophila experiments, which 

under hyperoxic conditions, showed increased sensitivity to ethanol sedation. A 

potentially useful follow-up experiment would be to provide oligodendrocyte-

specific Clic4 knockout mice an oxidative stressor, such as paraquat, and evaluate 

their ethanol consumption. 

 

7.5  Concluding Remarks 

The studies presented in this dissertation attempt to shed light on the 

molecular responses and adaptations that follow acute ethanol exposure in brain, 

and particularly how these processes are influenced by Clic4. It is clear from our 

findings that oligodendrocyte Clic4 is an important modulator of ethanol 

consumption and anxiety-like behavior, although the exact brain regions where 

these effects are mediated remain to be determined. Our findings suggest 

oxidation-reduction related processes may be mechanistic, but future studies we 

will be needed for confirmation. As an acute ethanol-regulated gene and 

modulator of ethanol consumption and sedation sensitivity, Clic4 represents an 
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important candidate gene for investigating the biological mechanisms underlying 

the transition from casual ethanol consumption to AUD. Collectively, this 

dissertation has provided behavioral and gene expression characterization of 

acute and repeated ethanol exposures while also deepening our understanding of 

the candidate gene Clic4.  
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