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Abstract 

 

Characteristics of Alveolar Bone Marrow Cells from Patients Undergoing Dental Extractions or 

Dental Implant Therapy  

By: Meng Huan Lee D.M.D  

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Dentistry at Virginia Commonwealth University 

 

Virginia Commonwealth University, March 2020 

 

Thesis Advisor: Zhao Lin, B.D.S., M.S., M.M.Sc., Ph.D. 

 Associate Professor, Department of Periodontics 

 

Abstract: Alveolar bone marrow stromal cells (aBMSCs) play important roles in craniofacial 

wound healing. To establish an easy, efficient and reliable method to harvest aBMSCs, we 

compared three different methods: extraction socket aspiration, osteotomy aspiration and bone 

core digestion. Samples of aBMSC were collected from two groups of subjects. Group 1 (dental 

extraction): after dental extraction, 22.5-gauge needles were used to collect 0.5-1cc marrow 

aspirate. Group 2 (dental implant): during implant surgeries, bone core and 0.5-1cc marrow 

aspirate were obtained from the osteotomy. Samples were cultured in petri dishes and attached 

cells were expanded. The population doubling time (PDT), surface markers, and osteogenic 

differentiation potential of these cells were studied. In total 12 subjects were enrolled in the 
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study. The success rates of generating aBMSCs from extraction socket aspiration, osteotomy 

aspiration and bone core digestion were 42.8% (3/7), 40% (2/5) and 80% (4/5), respectively. 

Cells from extraction socket aspiration had the fastest proliferation rate among the three sample 

types, followed by bone core and osteotomy aspiration, as shown in PDTs and DNA fold 

changes. After isolation and expansion, all the aBMSCs expressed high levels of CD 73, CD90, 

and CD105, however, the expression of CD146 varied among the cells. Cells derived from bone 

core had the highest ALP activity after osteogenic induction, followed by cells from osteotomy 

aspiration, and then extraction aspiration. Taken together, bone core samples obtained during 

implant surgery is a more reliable source for generating aBMSCs and aBMSCs harvested from 

different methods may have different characteristics.    

 

Key words: Stem cell, alveolar bone marrow stromal cells, regeneration, implant therapy.  
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Introduction 

Untreated periodontitis may lead to progressive loss of clinical attachment, followed by 

destruction of the periodontal ligament and the supporting bone around the periodontium which 

may ultimately lead to tooth loss1. Tooth loss is a severe public problem, especially in the elderly 

population, that causes loss of chewing function, malnutrition, esthetic problems and decreased 

life quality. It is estimated that over 240 million people in the industrialized world are missing 

one or more teeth, and 40% of the Western population has lost at least one tooth2. Based on the 

National Health and Nutrition Examination Survey (NHANES) in 2004, seniors over 65 years of 

age lose an average of 10 teeth per person, and 27.7% of them have no remaining teeth2. Dental 

implants have become a standard of care for the replacement of missing teeth and over 1 million 

implants placed annually in the United States.  Although the long term success rate of dental 

implants is over 90%3–6, the clinical outcome of implant therapy is impacted by many systemic 

conditions, such as diabetes7, smoking8 and osteoporosis9,10, and local factors that include 

insufficient alveolar bone volume11.   

Regenerative medicine strives to repair organs and/or tissues affected by chronic disease12. 

Stems cells are applied in regenerative medicine and disease therapeutics, however, the function 

and nature of mesenchymal stem cells (MSCs) have gone through a number of paradigm 

shifts13,14. Currently, it is believed that MSCs contribute to tissue regeneration through two 

important functions; first, the ability to differentiate into distinct end-stage cell types that include 

bone, cartilage, muscle, tendons, ligaments, fat, dermis, and other connective tissues; second, the 

ability to initiate a broad spectrum of bioactive molecules that promote tissue regeneration in 

injured sites15. In regenerative medicine, embryonic stem cells (ESCs), tissue specific progenitor 
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stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone 

marrow stem cells (BMSCs), and induced pluripotent stem cells (iPSCs) have been widely 

studied 12. ESCs have been shown to treat spinal cord injuries16, promote macular defect 

recovery and vision restoration17, regenerate liver tissue after injuries18, and restore damaged 

cartilage in athletes19. TSPSCs have been used to regenerate cochlear20, ischemic myocardium21, 

and goblet mucosa in intestine22. UCSCs have been applied to the repair of injured tendons and 

cartilage23, the treatment of Hodgkin’s lymphoma and other cancers24, and the restoration of beta 

cell function in diabetes25. BMSCs have been utilized to treat AIDS26, neurodegenerative 

diseases27, and aplastic anaemia28. iPSCs have been shown to be promising in the treatment of 

diabetes, COPD and liver degeneration29. A shift of viewpoint acknowledges that MSCs affect 

damaged tissue repair through paracrine or cell-to-cell communication to stimulate host cells13.  

MSCs were traditionally isolated from the iliac crest bone marrow, which was first reported by 

Friedenstein in 197630. This method is generally adopted and widely used in regenerative 

medicine. However, the procedure involving iliac crest bone marrow aspiration makes routine 

isolation of MSC for craniofacial regenerative therapy difficult, especially in dental offices31. In 

addition, studies have suggested that site specific differences exist in MSCs derived from iliac 

crest compared to orofacial (maxilla and mandible) origins31. For craniofacial regeneration, cells 

from craniofacial tissues may be more beneficial compared to those from iliac crest32. 

Currently MSCs can be obtained from several different dental tissues33. Periodontal ligament is a 

fibrous and vascular tissue that contains progenitor cells that have features seen in mesenchymal 

stem cells34. MSCs can be harvested from periodontal ligament tissue of surgically extracted 

third molars35. Human dental pulp, apical papilla, and dental follicle are also potential sources 

for MSCs33. Dental tissue derived MSCs can promote craniofacial wound healing including 
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periodontal tissue regeneration. For example, periodontal ligament progenitors were 

demonstrated to enhance bony defect regeneration in animal models36, and improve clinical 

parameters in humans with deep intrabony defects37. Dental pulp stem cells were seen to 

improve mandibular bone defect repair after 3rd molar extraction when delivered in a collagen 

sponge38.  

MSCs derived from alveolar bone (aBMSCs) has emerged as another important stem cell 

population for regenerative dentistry and implant therapy. Such stem cells can be achieved 

through the use of bone cores and/or marrow aspiration during dental extractions or implant 

therapy39. aBMSCs have a better accessibility than other dental MSCs and are considered the 

primary cells responsible for extraction socket healing and implant osseointegration. Therefore, 

better understanding of aBMSCs may provide valuable information regarding important aspects 

of craniofacial and dental wound healing.     

A recent paper by Mason et al. described the standardization and safety of aBMSC isolation40. 

They isolated aBMSCs by alveolar bone marrow aspiration (~0.5cc) from 45 patients. Results 

from in vitro and in vivo experiments clearly demonstrated the reliability of using small volume 

aspiration to extract aBMSCs. However, they only collected samples from implant preparation 

sites, which significantly limits the application of this technique to implant patients only. Tooth 

extraction is a much more widely performed procedure in dentistry. It has been reported that 

aBMSCs may be isolated by bone marrow aspiration from 3rd molar extraction sites31, however, 

it is unknown if this would be as efficient when applied to other extraction sites. It is also not 

clear whether bone marrow aspiration from extraction sites will be as effective as other technique 

such as bone core harvesting. 
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Although the use of MSCs in regenerative medicine is well documented in the literature, 

research pertaining to the use of aBMSCs in periodontal regeneration is limited. Therefore, the 

cellular characteristics of aBMSCs derived from aspiration of the bone marrow from an alveolar 

post extraction sockets are largely unknown.  

The aims of this study were to extract mesenchymal stem cells from alveolar bone and evaluate 

their regenerative potential based on their osteogenic differentiation potential, population 

doubling time, surface marker characteristics and to investigate which method was more 

predictable in isolating MSCs from alveolar ridges. Once a reliable method is established, new 

studies can be developed to investigate the difference in MSCs derived from patients with 

different conditions such as diabetes and smoking.  
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Methods 

Clinical procedures and sample collection 

Approval for the study was granted by Virginia Commonwealth University Institutional Review 

Board (HM20013027). Patients in the Graduate Periodontics department who received routine 

dental extractions or dental implant treatment were screened by their primary provider. Patients 

that qualified for the study based on a checklist of inclusion and exclusion criteria (Figure 1) and 

were willing to participate the study were consented by the study coordinator. The patient then 

received either a dental extraction or implant placement by their primary provider using standard 

operating procedures.  

The following protocols were followed to collect samples during the surgical procedures:  

Group 1 (dental extraction): Following extraction of the tooth, the clinician inserted a 22.5-

gauge needle connected to a heparinized 1cc syringe into the extraction socket, and 

approximately 0.5-1 cc of marrow aspirate (blood) was obtained. The clinician then 

continued with the surgery and post-surgical management based on the clinical situation.  

Group 2 (dental implant): After elevation of a gingival flap at the position where the implant 

was planned to be placed, a bone core of 2×5 mm was harvested with a trephine bur as the 

step of initial osteotomy drilling. The bone core was stored in sterile saline before sending it 

the lab for analyses. Next, a 22.5-gauge needle connected to a 1cc heparinized syringe was 

inserted into the marrow space, and approximately 0.5-1 cc of marrow aspirate was obtained.  

Cell culture 
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Alveolar bone marrow tissue samples were re-suspended in cold minimum essential alpha 

medium (αMEM; Gibco, Carlsbad, CA, USA) and centrifuged at 600 g for 10 min at room 

temperature. The supernatant was removed and the cell pellet was re-suspended in 5 mL aMEM 

with 15% fetal bovine serum (FBS; Gibco). The cell suspensions were then transferred to T-25 

tissue culture flasks and allowed to sit undisturbed without media change for 5 days in a 37°C 

humidified tissue culture incubator at 5% CO2. Non-adherent cells were removed following 5 

days in culture, and medium was changed to aMEM-10% FBS and changed every 2 to 3 days 

thereafter. Once adherent cells reached 80% to 90% (approximately 10-14 days), the aBMSCs 

were then collected and subcultured up to passage 3. Human BMSCs from iliac crest were 

purchased from RoosterBio (Frederick, MD, USA) and cultured in expansion media until they 

were ready to in vitro experiments. Human gingival fibroblasts (HGFs) were primary cells from 

one donor. They were a courtesy of Dr. William Giannobile in University of Michigan and Dr. 

Martha Somerman from NIDCR, and maintained in DMEM with supplements of 10% FBS and 

1% Penicillin-Streptomycin. During the osteogenic experiments, same media were used for all 

the cells including hBMSCs and HGFs.  

Population doubling time (PDT) 

In order to evaluate the aBMSC proliferation and expansion rates in vitro, population doubling 

times were obtained for the samples. The average PDT was calculated between passage 1 (P1) 

and passage 2 (P2). An online website (https://doubling-time.com/compute.php) was used, which 

uses the following formula: 

 

https://doubling-time.com/compute.php
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Initial concentration = the seeding cell number 

Final concentration = the cell number in the flask at the time of harvest. 

The unit of duration is hour. 

Flow cytometry  

Flow cytometry was performed on samples to evaluate the expression of MSC markers 

according to the Mesenchymal and Tissue Stem Cell Committee of the International Society for 

Cell Therapy (ISCT). CD 73, CD 90, CD 105, CD 146, and CD 45 MSC markers were used. 

aBMSCs were harvested from T75 flasks by 0.25% Trypsin, transferred into tubes, washed with 

DPBS, and incubated with blocking solution. The cells were then incubated with specific 

antibodies conjugated with a fluorochrome or isotype control antibodies for 30-45 minutes. Cells 

were washed extensively at each step. For fluorochrome compensation, antibodies were added to 

UltraComp eBeads (eBioscience) according to manufacturer’s protocol. Analysis was performed 

on BD FACSAria™ II High-Speed Cell Sorter in VCU flow cytometry core. The list of 

antibodies included: 

 PE conjugated anti human CD45 antibody, R&D MSC Marker kit (FMC002)   

 Brilliant Violet 421 conjugated anti human CD73 antibody, #344007, Biolegends, 

San Diego, CA, USA 

 APC conjugated anti human CD90 antibody, R&D MSC Marker kit (FMC002) 

 PE/Cy7 conjugated anti human CD105 antibody, #323217, Biolegends, San Diego, 

CA, USA 
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 Brilliant Violet 711 conjugated anti human CD146 antibody, #323217, Biolegends, 

San Diego, CA, USA 

 PE/Cy7 conjugated anti mouse IgG1 k antibody, #400125, Biolegends, San Diego, 

CA, USA 

 APC conjugated anti mouse IgG2 antibody, R&D MSC Marker kit (FMC002)   

 PE conjugated anti mouse IgG1 antibody, R&D MSC Marker kit (FMC002)   

 

Osteogenic potential  

The osteogenic potential of the samples was evaluated by the level of alkaline phosphatase 

(ALP) activity. Briefly, cells from different donors were cultured in 24-well plates with growth 

media for 24 hours, at which time the media were changed. Full media (DMEM with 10% FBS, 

1% APS) was added to half of the plates. Osteogenic media (full media with the supplements of 

50 µg/ml ascorbic acid, 10 mM β-glycerophosphate, 10 nMdexamethasone) was added to the 

other half of the plates. Media were changed every 3-4 days. At day 0, 3, 7 and 14 days, cells 

were harvested with 200 ul 0.05% Triton X-100. Total cell DNA was measured by Picogreen 

assay (Promega) and protein content were quantified by Pierce BCA protein assay 

(Thermoscientific). The ALP activities of cell lysates were then measured as a function of p-

nitrophenol hydrolysis from p-nitrophenylphosphate at pH 10.2. The results were normalized to 

the total protein contents. 

Statistical analysis 

This was a pilot study to test the feasibility of different techniques, and therefore we were not 

able to perform statistical analysis on some of the experiments such as measuring PDTs. For 
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other in vitro experiment, only one donor was selected from each group. Statistical analysis was 

performed based on the results of 4 technical replicates of each cell type. The results were 

expressed as means ± standard error of the mean (SEM), and graphs were prepared using Graph 

Pad Prism 7.02 (Graph Pad Software, CA, USA). One-way analysis of variance (ANOVA) was 

conducted, followed by Tukey’s multiple-comparison test. P-value smaller than 0.05 was 

considered to be significance. P-values were indicated using asterisks as follows: * (p<0.05), ** 

(p<0.01), *** (p<0.001), **** (p<0.0001). Statistical analysis was not performed in the cell 

surface marker experiment because only one donor was selected in each cell type and there was 

no technical replicate.   
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Figure 1: Inclusion and Exclusion Criteria for patient selection 
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Figure 2: Flowchart summarizing patient selection and treatment groups. 
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 Table 1: Summary of 3 different harvesting techniques   
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Results 

Success rates of generating aBMSCs from different tissue sources 

Bone marrow aspiration samples from extraction sites were collected from 7 subjects and, of 

these, 3 were able to generate aBMSCs (Table 1 and Figure 2). Additionally, in 5 subjects who 

were receiving implant surgeries, bone marrow aspiration samples were collected from 

osteotomy sites and obtained the bone cores. aBMSCs were able to be generated from 3 marrow 

aspiration samples and from 4 bone cores. These cells had similar morphological characteristics, 

which were fibroblastic-like, and spindle-shaped. All of these cells were able to be expanded to 

passage 2 except for one osteotomy aspiration sample. Therefore, the success rates of generating 

aBMSCs from extraction aspiration, osteotomy aspiration and bone core were 42.8% (3/7), 40% 

(2/5) and 80% (4/5), respectively. Bone core samples obtained during implant surgery appeared 

to be the most reliable source for generating aBMSCs. 

Cell proliferation capability 

Cell proliferation capability was further assessed by calculating the PDT and a DNA assay. The 

average PDTs for samples from extraction aspiration, osteotomy aspiration and bone core were 

43.62 h, 54.72 h and 49.46 h, respectively (Table 1). Although no statistical analysis was 

performed due to the small sample size (only 2 samples from osteotomy aspiration), it appeared 

that the proliferation rate of aBMSCs derived from osteotomy aspiration was slower than other 

cells. We selected one subject from each sample type and measured the changes in DNA content 

after expansion. Similarly, we found that cells from extraction aspiration had the fastest 

proliferation rate among the three sample types, followed by bone core and osteotomy aspiration 

(Figure 3 and Figure 4). Similar results were seen both in growth medium (NT) and osteogenic 
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medium (OM). In this experiment, we also used BMSCs from long bone and gingival fibroblasts 

(HGFs) as controls. Interestingly, aBMSCs appeared to grow faster than long bone BMSCs, but 

slower than HGFs (Figure 4).        

MSC characterization by surface markers 

We also identified the cell surface markers by fluorescence-activated cell sorting (FACS) in each 

of the three types of samples. Following isolation and cell expansion (at passage 3), aBMSCs 

derived from extraction aspiration, osteotomy aspiration and bone core expressed high level of 

CD 73 (96.53%-97.89%), CD90 (98.19%-99.80%), and CD105 (85.02%-91.71%) (Table 2). 

Similar results were seen in the BMSCs from long bone and HGFs. However, the expression of 

another MSC marker, CD146, varied significantly among different samples. Long bone BMSCs 

exhibited the largest percentage (93.7%), followed by HGF (80.13%), osteotomy aspiration 

(75.02%), bone core (62.15%) and extraction aspiration (23.26%). The expression of CD45, a 

lymphocyte marker that was used as a negative selection marker, was very low in all of the cells 

(<6.12%). 

Osteogenic differentiation potential 

In the previously selected cells, osteogenic medium induced the cells to differentiate to 

osteoblast-like cells, which was characterized by increasing cellular ALP activities over time. 

HGFs were originally used as negative controls in this experiment. To our surprise, the HGFs 

that were used demonstrated a robust osteogenic potential demonstrated by the highest ALP 

activity in all samples (Figure 5). When focusing on the aBMSCs, cells from bone core had the 

highest ALP activity, followed by cells from extraction aspiration and osteotomy aspiration 

(Figure 6). Long bone BMSCs had a higher ALP activity than aBMSCs. 
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 CD73 (%) CD90 (%) CD105 (%) CD146 (%) CD45 (%) 

BMSC 

(iliac) 

99.96 99.43 99.19 93.70 0 

Ext  

(001) 

96.53 99.80 90.44 23.26 0.98 

Imp-BM 

(004) 

97.89 98.19 85.02 75.02 0 

Imp-BC 

(004) 

97.41 99.14 91.71 62.15 0.54 

HGF 98.80 97.53 96.88 80.13 6.12 

 

Table 2: Surface marker analysis using CD45, CD73, CD90, CD105 and CD146. BMSC represents human bone marrow stromal cells 

from iliac. Ext represents cells derived from extraction socket aspiration. 001 represents subject 001. Imp-BM represents bone marrow 

aspiration from implant osteotomy. Imp-BC represents bone core tissue from implant osteotomy. 004 represents subjects 004. HGF 

represents human gingival fibroblast.
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Figure 3: DNA contents on Day 0 and Day 3 of different samples. NT: no treatment. OM: osteogenic media. HGF2X represents 

human Gingival Fibroblast with 2X cell number. HGF1X represents human gingival fibroblast with 1X cell number. Ext-001: aspirate 

from extraction socket from subject 001. BC-004: bone core sample from subject 004. BM-004: bone marrow aspirate from osteotomy 

site from subject 004. R4: BMSCs from human iliac. DNA was measured in ng/ul. The mean of 3 or 4 replicates was presented 
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Figure 4: DNA fold changes. Rate of proliferation determined by the change of DNA content between Day 3 and Day 0, either under 

NT or OM treatment. NT represents the no treatment group. OM represents the osteogenic media group. HGF2X represents human 

Gingival Fibroblast with 2X cell number. HGF1X represents human gingival fibroblast with 1X cell number. Ext-001: aspirate from 

extraction socket from subject 001. BC-004: bone core sample from subject 004. BM-004: bone marrow aspirate from osteotomy site 

from subject 004. R4: BMSCs from human iliac.  
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Figure 5: ALP activities of 

different samples after 

normalized to total protein 

content (umol/ug/min). NT: no 

treatment. OM: osteogenic 

media. Ext-001: aspirate from 

extraction socket from subject 

001. BC-004: bone core sample 

from subject 004. BM-004: bone 

marrow aspirate from osteotomy 

site from subject 004. R4: 

BMSCs from human iliac. 

HGF1X represents human 

gingival fibroblast with 1X cell 

number, HGF2X represents 

human Gingival Fibroblast with 

2X cell number. The mean of 3 

or 4 replicates was presented. *: 

P < 0.05; **: P < 0.01; ***: P < 

0.001; ****: P < 0.0001.  
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Figure 6: Comparison of ALP activities of MSCs from alveolar bone and long bone (umol/ug/min). Figure 4 was reformatted after the 

removal of HGFs. NT: no treatment. OM: osteogenic media. Ext-001: aspirate from extraction socket from subject 001. BC-004: bone 

core sample from subject 004. BM-004: bone marrow aspirate from osteotomy site from subject 004. R4: BMSCs from human iliac. 

The mean of 3 or 4 replicates was presented. ****: P < 0.0001. 
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Discussion 

Historically MSCs haven been isolated from bone marrow of iliac crest15. Iliac crest harvest has 

been considered as the gold standard for obtaining MSCs, however, research has shown that the 

use of MSCs derived from different dental tissues may facilitate regeneration in animal models36. 

In this study different techniques were utilized to obtain MSCs through the use of bone core and 

marrow aspirate obtained during implant surgery as well as bone marrow aspirate obtained from 

extraction sockets. The results demonstrated different success rate of generating aBMSCs from 

different tissue sources, ranging from 40% to 80% with bone core samples being the most 

predictable sources in generating aBMSCs.  

Matsubara et al.31 also described the different success rates of generating aBMSCs from different 

techniques. They showed that extraction of wisdom teeth followed by marrow aspiration had 

greater success rates compared to dental implant aspiration after initial osteotomy. The authors 

suspected that this was related to the age of the subjects, as younger individuals were recruited 

for 3rd extraction compared to individuals recruited for implant surgery. The study did not 

examine bone core success rate at generating aBMSC. The results of the present study 

demonstrated that extraction aspiration success rates were slightly higher when compared to 

osteotomy aspiration, however, bone cores showed the highest success rates at generating 

aBMSC. This may be associated with the larger tissue volumes obtained from bone cores than 

those of marrow aspirates. 

In a study by Mason et al39 bone marrow samples were collected from 45 patients and aBMSCs 

were generated using three different techniques including; osteotomy aspiration, bone core, and 

bone core combined with osteotomy aspiration. The authors observed varying success rates with 
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the combination technique yielding a success rate of 100%, followed by the bone core technique 

at 97.5% and the osteotomy at 82% success rate. In comparison, success rates in the present 

study were lower with 40% for the osteotomy aspiration and 80% for the bone core technique. It 

is possible that the reduced success rates in the present study may be attributed to the small 

sample size of 12 patients. 

When comparing population doubling times (PDT), the results of this study demonstrated that 

aBMSCs from extraction aspirates had higher proliferation rates compared to those of osteotomy 

aspirates and bone cores (43.62h vs 54.72h vs 49.46h). When comparing the osteotomy aspirate 

versus bone core techniques, Mason et al.39 showed that proliferation was at least twice as fast 

for bone cores compared to osteotomy aspirates alone. These findings were supported by the 

present study in that bone core samples showed higher proliferation rates compared to the 

osteotomy aspirates however the rate was not twice as fast.  

MSC characterization was accomplished by studying different cell surface markers by using 

fluorescence-activating cell sorting in the three types of samples. All of the aBMSCs from 

extraction aspiration, osteotomy aspiration and bone core expressed high levels of CD 73 

(>96%), CD90 (> 98%), and CD105 (>85%). These results were also seen in long bone and 

HGFs. Mason et al.39 evaluated aBMSCs characteristics and found high levels of CD73, CD 90 

and CD105 in their samples. Matsubara et al.31 examined the difference between cell surface 

antigens of alveolar and iliac bone marrow stromal cells and showed that none of the cell surface 

antigens differed between the two groups. This was also the case in the current study with the 

exception that a large variance was observed in regard to CD146, in which iliac BMSCs showed 

higher expression than aBMSCs.   
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When comparing osteogenic potential Matsubara et al.31 showed that iliac BMSCs had similar 

ALP activity when compared to aBMSCs. The results of the current study suggest that ALP 

activity in iliac BMSCs was higher than that in cells from bone core, osteotomy aspiration, and 

extraction aspiration. Although this study used a small sample size, the results indicated that 

MSCs derived from jaw bones and long bones may have different properties. Originally, HGFs 

served as a negative control in the study. In unexpected results, the HGFs tested in this study 

demonstrated a robust proliferation potential and a much stronger ALP activity than each of the 

other cells. This difference may be attributable to the genetic background of this specific donor. 

Another possible explanation is that MSCs can also be found in gingival tissues41. In the future, 

it may be interesting to study the regenerative potential of HGFs. 

Several limitations were noted within this study. The sample size consisted of only 12 subjects, 

which is not an adequate size to achieve any statistical relevance. Although the study obtained 

samples in a standardized method, errors may possibly have occurred during collection, 

transportation, and/or analysis of the samples. Due to the small sample size it was not possible to 

evaluate the effects of sex, age, and health status on generating aBMSCs from different tissue 

sources. In addition, there was no attempt to account for differences in bone density among 

samples, grafted versus non grafted sites, maxilla versus mandible, and bone core volume. 

Another limitation was that in vivo bone formation of the MSCs obtained from the patients was 

not tested. It is also important to note that MSC can be obtained from PDL cells from during 

extraction of 3rd molars35,42,43 and from the dental pulp33. Finally, this study did not compare the 

differences between aBMSCs with MSCs from other dental tissues. 

Overall, this study compared three different techniques to obtain aMBSCs: extraction socket 

aspiration, osteotomy aspiration and bone core digestion. Further research is required to evaluate 



23 

 

the potential use of aBMSCs in periodontal regeneration and other regenerative procedures in 

dentistry. 
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Conclusion 

This study compared three different methods to obtain aBMSCs, including: extraction socket 

aspiration, osteotomy aspiration and bone core digestion. Bone core samples obtained during 

implant surgery may be a more reliable source for generating aBMSCs than extraction socket 

aspiration and osteotomy aspiration. MSCs derived from different methods may have different 

characteristics in regard to proliferation, differentiation potential and cell surface markers. 
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