
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2020 

Validation of Ninein as an Ethanol-related Quantitative Trait Gene: Validation of Ninein as an Ethanol-related Quantitative Trait Gene: 

Reassessment, Design, and Functional Validation of Reference Reassessment, Design, and Functional Validation of Reference 

Genes for qPCR Analysis of Brain Tissue in Mice Genes for qPCR Analysis of Brain Tissue in Mice 

Jessica L. Jurmain 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Behavioral Neurobiology Commons, Molecular Genetics Commons, and the Other Genetics 

and Genomics Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6270 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/56?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/32?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/32?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6270?utm_source=scholarscompass.vcu.edu%2Fetd%2F6270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 

© Jessica Jurmain  2020 
All Rights Reserved 



 

Validation of Ninein as an Ethanol-related Quantitative Trait Gene: 
Reassessment, Design, and Functional Validation of Reference Genes for 

qPCR Analysis of Brain Tissue in Mice 
 
 
 
 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University 

 
 

by 
 

Jessica Jurmain 
Bachelor of Arts, Florida International University, 2011 

 
 
 
 
 
 

Director, Jennifer T. Wolstenholme, Ph.D., 
Assistant Professor, Department of Pharmacology and Toxicology 

 
 
 
 
 
 
 
 
 
 
 

Virginia Commonwealth University 
Richmond, Virginia 

April 3, 2020 



 

Table of Contents 

Acknowledgements ................................................................................................................................................ i 

Clarification of Contributions ................................................................................................................................ iv 

List of Tables .......................................................................................................................................................... v 

List of Figures ........................................................................................................................................................ vi 

Abstract ................................................................................................................................................................. 1 

Chapter 1 Introduction and Background ................................................................................................................ 3 

Neurobiology of Alcohol Use Disorders ................................................................................................................ 3  
Genetics of Alcohol-Related behavior .................................................................................................................. 4 
Validating Quantitative Trait Genes from microarray data using quantitative real-time polymerase chain 
reaction (qPCR) ..................................................................................................................................................... 6 

Chapter 2 Reassessment and Design of Reference Genes for Comparison of Gene Expression in B6 and D2 Mice 
Exposed to Acute Ethanol .................................................................................................................................... 10 

Introduction ............................................................................................................................................................. 10  

Methods and Materials ........................................................................................................................................... 11 
In-silico evaluation .............................................................................................................................................. 11 
In vivo validation ................................................................................................................................................. 14  

Results ..................................................................................................................................................................... 18  
In silico Analysis .................................................................................................................................................. 18  
In vivo validation ................................................................................................................................................. 24  

Discussion ................................................................................................................................................................ 36  

Chapter 3 Ninein Characterization as a Functional Validation of the Use of Proper Reference Genes .................. 40 

Introduction ............................................................................................................................................................. 40  

Methods and Materials ........................................................................................................................................... 43 

Results ..................................................................................................................................................................... 45  
Functional validation of reference genes for measuring basal gene expression in B6 and D2 mice .................. 45 
Detailed characterization of Ninein expression in B6 and D2 mice .................................................................... 45 

Discussion and Future Directions ............................................................................................................................ 50 

References ........................................................................................................................................................... 55 

Appendix 1 qPCR Temperature Gradient Protocols .............................................................................................. 59 

Appendix 2 Ninein Primer Sequences .................................................................................................................. 60 

 



 i 

Acknowledgements 
 
 I would first and foremost like to thank Dr. Jennifer Wolstenholme, my advisor.  

You have been an excellent scientific mentor and personal supporter from the very 

beginning of my time at VCU.  You have treated me with respect, trained me in the lab, 

fostered my penchant for thoroughness and detail, played a massive part in my ability to 

think critically about all phases of the scientific process, and truly helped me develop 

into an independent scientist.  You’ve also been an incredible champion of my efforts 

and self-preservation when I couldn’t find the confidence to do so myself.  I do not know 

if I can truly express in words how forever-grateful I will be to you for that, and for 

sticking with me through this entire journey.   

 I would also like to acknowledge my committee members, past and present.  Dr. 

Jill Bettinger and Dr. Gretchen Neigh-McCandless, I wanted you both on my committee 

to begin with because I know that you are tough, thorough, and committed to helping 

trainees in their academic endeavors.  You have both instilled a desire in me to consider 

both the “bare-bones” facts and bigger-picture context of scientific results in a 

meaningful way.  I could not be prouder to have my final thesis committee composed of 

three hard-working, fierce female scientists who have given me excellent examples of 

how to successfully navigate what sometimes feel like a very intimidating career path.  

Dr. S. Steve Negus, you have really inspired my interest and love for pharmacology and 

behavioral science.  I am especially thankful for your support in my commitment to the 

integrity and robustness of data, and the nerve to challenge the status-quo.  Dr. 

Grotewiel, I truly value your insistence upon not just the focus of my thesis work, but 

also my ability to turn my degree into a successful career that I am satisfied with.  Dr. 



 ii

Shelton, you gave me a work environment to land in after a very difficult decision in my 

academic career, and reminded me what it is like to be treated as a respected, 

independent scientist.  This was invaluable to me at a time when I had forgotten what 

that meant, and I will never forget your help during that time. 

 Dr. William Dewey and Dr. Hamid Akbarali, I want to thank you for providing and 

maintaining a department and graduate student body that emphasizes independent 

development and collaboration, as well as an ultimate commitment to improving the 

lives of people who suffer from substance use disorders and other physiological 

ailments.  Your commitment to the progress of trainees, faculty, and staff has been very 

helpful.  I also want to acknowledge your handling of my concerns and transition when I 

needed to make a change in my trajectory, and honoring my needs when I wanted to 

take a break.  I could not have gotten to this point without that support. 

 I’d also like to thank Dr. Michael Miles’ laboratory for providing me with the 

resources to complete this project.  Dr. Kristin Mignonga and Dr. Andrew van der Vaart, 

you’ve been much-needed colleagues, friends, and cheerleaders during the roller 

coaster that is graduate school.  I couldn’t have made it without you.  Dr. Jim Bogenpohl 

and Dr. Maren Smith, you both helped me in and out of the lab, and kept things fun 

even when things seemed overwhelming.  Guy Harris and Dr. Rory Weston, thank you 

for your help in the lab and your comradery outside of it. 

 Personally, I would like to thank my mom, dad, and Justin.  You’ve supported 

me, encouraged my inquisitive nature, and made it possible for me to pursue whatever I 

wanted in life.  Alain, this entire thing would have been impossible without you.  You’ve 

supported me through thick and thin, helped me realize my true value, made me a 



 iii

better person, and I cannot wait to explore our future together.  Ana, your love and 

support have kept me sane during this last push to the finish line.  The rest of the 

Seattle clan, you’ve provided great relief in the thick of all this stress.  I love you all. I’d 

also like to thank Micaela Magazzu-Alaman, Shih Tang, Beth Parsons and the rest of 

the people at PEP San Diego and VCU UCS for giving me the tools I needed to 

overcome my personal struggles, without which this thesis would have been much more 

difficult. 

 And last, but certainly not least, I want to pay tribute to my fur-children: Kia and 

Shiloh (may they rest in peace), Marceline, and Hayley.  They have all provided 

company, comfort, light, and a reason to enjoy coming home every day.  I couldn’t have 

managed without them. 

  



 iv

Clarification of Contributions 
  
I am honored to have had help from several colleague during the course of the work 

presented in this thesis.  Contributions not cited in the text are detailed below.  All other 

work was performed entirely by me in the laboratory of Dr. Michael Miles. 

 

Chapter 2 

The nucleus accumbens data set used in the initial overlap analysis was 

generated by Dr. Michael Miles using existing microarray data from the laboratory 

(Kerns et al., 2005).  Alejandro Andrade ran the qPCR to generate standard curves for 

Canx and Sort1 primers.  

 

Chapters 2 and 3 

All animal care was performed by Virginia Commonwealth University’s 

Department of Animal Resources.  Dr. Jennifer Wolstenholme, Dr. James Bogenpohl, 

Lorna Macleod, and Guy Harris assisted with brain dissections for samples used in both 

chapters. 

 

  
  



 v

List of Tables 
 
Table 2.1 Websites used for bioinformatic analyses of candidate reference genes ...................13 

Table 2.2 Primer design criteria ................................................................................................13 

Table 2.3 Nucleus Accumbens Microarray Data for Candidate Reference Genes ....................21 

Table 2.4 Nucleus Accumbens Microarray Data for Candidate Reference Genes (continued) ..22 

Table 2.5 New and Existing Reference Gene Primer Sequences .............................................27 

Table 3.1 Targeted Ninein transcript variants and protein isoforms ...........................................42 



 vi

List of Figures 
 
Figure 2.1 Overlap of Candidate Reference Gene Sets ............................................................20 

Figure 2.2 Workflow for Candidate Gene Selection ..................................................................23 

Figure 2.3 New and Existing Primer Alignments .......................................................................25 

Figure 2.4 New and Existing Primer Alignments (continued) ....................................................26 

Figure 2.5 RNA Quality Asessment of Samples Used for Standard Curves ..............................28 

Figure 2.6 Gel electrophoresis of Ublcp1 primer products ........................................................30 

Figure 2.7 Standard Curves for Candidate Reference Genes in NAc and Amygdala ................31 

Figure 2.8 Mean Cq of Candidate Reference Genes Across Ethanol Doses and Strains In 

Amygdala ...........................................................................................................................32 

Figure 2.9 Mean Cq of Candidate Reference Genes in Saline-treated B6 and D2 Nucleus 

Accumbens ........................................................................................................................33 

Figure 2.10 GeNorm Ranking of Most Stable Reference Genes in Amygdala ..........................34 

Figure 2.11 GeNorm Ranking of Most Stable Reference Genes in Nucleus Accumbens ..........35 

Figure 2.12 Ppp expression in NAc Normalized to Ublcp1 .......................................................39 

Figure 3.1 Actb1 and Ublcp1 as Reference Genes for B6 and D2 Nucleus Accumbens ...........47 

Figure 3.2 Characterization of Ninein Expression in Nucleus Accumbens and Amygdala ........48 

Figure 3.3 Sequenced PCR Product Overlap with Nin Transcript Variants ...............................49 



 1

Abstract 

The increasing use of quantitative real-time polymerase chain reaction (qPCR) as a method for 

quantifying gene expression has led to an increased demand for standardization of data 

analysis methods to ensure accurate reporting and robust, reproducible results.  The 

exponential nature of qPCR amplification results in the potential magnification of what are 

usually very small sources of error.  Relative gene expression calculations circumvent this issue 

by normalizing target gene expression data to within-sample expression of a previously 

validated, stably expressed reference gene or genes.  Multiple studies discussed herein have 

found that qPCR data are more reliable and reproducible when multiple reference genes are 

used, and that they are validated prior to use in experiments with new conditions.  In this thesis, 

existing reference genes are evaluated to ensure they meet these criteria in experimental 

paradigms used frequently in our laboratory.  Existing work on ethanol’s anxiolytic-like effects in 

our laboratory utilized microarrays to identify Ninein as a cis-regulated, quantitative trait gene for 

these effects in nucleus accumbens (NAc) of BXD recombinant inbred mice and their 

progenitors, C57BL6/J (B6) and DBA/2J (D2) mice.  Contrasting behavioral responses to 

ethanol in these mouse strains make them a frequent subject of study for determining genetic 

components underlying those behaviors.  In the first data chapter, the case is made for 

eliminating one reference gene typically used for qPCR data normalization in qPCR 

experiments assessing strain differences in NAc gene expression in the laboratory, Ppp2r2a.  

The reference genes subsequently validated for use in qPCR analysis in ethanol-naïve NAc and 

amygdala of saline and ethanol-treated B6 and D2 mice are then used in an in-depth 

characterization of Ninein expression in B6 and D2 NAc and amygdala.  Furthermore, evidence 

is provided for the first in vivo observation of murine Ninein transcript variant 6 in adult neural 

tissue.   The data presented make the case for a more thorough re-evaluation of reference 
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genes for future qPCR experiments in the laboratory, as well as a potential mechanism for 

Ninein’s involvement in variation of anxiolytic-like responses to ethanol in B6 and D2 mice. 
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Chapter 1 Introduction and Background 
 
Neurobiology of Alcohol Use Disorders  

It has been recently estimated that 1 in every 19 people aged 12 or older in the United 

States suffer from an alcohol use disorder (AUD) (SAMHSA, 2019).  In the Diagnostic and 

Statistical Manual of Mental Disorders (APA, 2013), AUDs are characterized by persistent 

alcohol use despite negative personal, social, psychological and/or physiological consequences, 

as well as craving, tolerance, and withdrawal. Neurobiologically, increased activity in the 

mesolimbic dopamine system - including the nucleus accumbens (NAc), ventral tegmental area 

(VTA), and prefrontal cortex (PFC) - mediates the acute rewarding effects of ethanol and other 

drugs of abuse.  Neuroplasticity in these regions over a period of consistent alcohol use is 

thought to be the underlying factor in the transition from acute alcohol abuse to the chronic, 

compulsive drinking behavior seen in AUD (see Volkow & Koob, 2010 for review).  Thus, 

existing work in the laboratory has focused on the mesocorticolimbic reward circuit due to the 

extensive evidence for its role in drug reward and dependence.   

The extended amygdala also plays a key role in behavioral responses to both acute and 

chronic ethanol exposure.  The amygdala has extensive interconnectivity with the mesolimbic 

system, including afferent projections from the PFC and hypothalamus, as well as efferent 

projections to the PFC, NAc, hypothalamus, and BNST.  Changes in activity or plasticity in the 

amygdala have been associated with the rewarding effects of drugs and the preoccupation or 

craving associated with the late stages of addiction (Volkow & Koob, 2010), and acute doses of 

ethanol have been shown to alter c-Fos expression in the central amygdala and bed nucleus of 

the stria terminalis (BNST) (Davis et al., 2009; Sharko et al., 2016).   In addition, both amygdala 

and BNST have been implicated in phasic and sustained fear in both rodents and humans 

(Davis et al., 2009).  Together, these data suggest that activity in the amygdala could play a 

crucial role in the anxiolytic-like effect of ethanol.  
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Genetics of Alcohol-Related behavior 

Twin studies show that approximately 48%-58% of the liability for AUD risk is associated 

with genetic factors (Prescott & Kendler, 1999; Tawa et al., 2016).  Given the complex nature of 

AUD-related symptoms and behaviors, it is not surprising that multiple genetic loci have been 

associated with this risk (see Tawa et al., 2016 for review).  Rodent models have become one of 

the prevailing methods for studying the genetic components underlying complex ethanol-related 

behavioral phenotypes due to divergent behavioral responses to acute and chronic ethanol in 

existing inbred strains with known genotypes.  C57BL/6J (B6) and DBA2/J (D2) mice are two 

such examples of these contrasting behaviors.  In multiple chronic drinking paradigms, B6 mice 

drink more and have a greater preference for ethanol than D2 mice (Crabbe et al., 1999; 

McClearn & Rodgers, 1959; Moore et al., 2010).  B6 mice are also less sensitive to the 

locomotor activating (Phillips et al., 1994) and sedative-hypnotic (Linsenbardt et al., 2009) 

effects of ethanol, whereas D2 mice are less sensitive to ethanol's anxiolytic-like effects 

(Putman et al., 2016).  Because of their extensive behavioral characterization, B6 and D2 mice 

have been used as progenitor strains for the BXD recombinant inbred (BXD RI) line of mice, 

comprised of more than 100 inbred strains with known B6 or D2 alleles at almost 7500 

polymorphisms across all chromosomes (Taylor, 1978; Williams et al., 2001).  Correlating 

variation in genotype with variation in behavior among these strains has allowed for quantitative 

trait locus (QTL) mapping of several ethanol-related phenotypes including withdrawal (Buck & 

Finn, 2001; Crabbe et al., 1999), hypnotic sensitivity measured with loss of righting reflex 

(Radcliffe et al., 2000),  locomotor activation and motor incoordination (Demarest et al., 1999; 

DuBose et al., 2013; Phillips et al., 2010), metabolism (Grisel et al., 2002), anxiolysis measured 

in the elevated zero maze (Cook et al., 2015), and anxiolysis measured in the light-dark box 

(Putman et al., 2016).     

Associations between anxiety and alcohol use have long been reported in scientific 

literature, and patients with AUD often cite the anxiolytic properties of ethanol as the reason for 



 5

persistent use and abuse (Newlin & Thomson, 1990). As such, it is not surprising that pre-

existing anxiety disorders are associated with an increased risk for the onset of comorbid 

alcohol dependence (Crum et al., 2013; Swendsen et al., 2010).  With mounting evidence for 

heritable components of both AUD and anxiety disorders (Hodgson et al., 2016; Prescott & 

Kendler, 1999), our laboratory sought to identify behavioral QTL (bQTL) and expression QTL 

(eQTL) underlying the anxiolytic effect of ethanol. 

Ethanol-induced anxiolysis QTL 1 (Etanq1) was identified in nucleus accumbens using the 

BXD recombinant inbred panel of mice in the light-dark transition model of anxiety (Putman et 

al., 2016).  Light-dark transition assays rely on the innate tendency of rodents to avoid bright 

lights or open fields (Buccafusco, 2009).  In brief, a mouse is placed in a chamber with an open, 

brightly lit compartment and an enclosed dark compartment.  Increases in time spent or 

distance traveled in the light compartment after a given experimental treatment are interpreted 

as anxiolytic-like behaviors.  A mixed-model behavioral QTL analysis, incorporating the effects 

of genotype and treatment on percent distance traveled (%DTL) and percent time spent (%TSL) 

in the light after treatment with 1.8 g/kg ethanol or saline, was used to identify Etanq1 on 

chromosome 12.  Because of a potential interaction with a second QTL on Chr 1, the QTL was 

further refined using six additional BXD strains with either B6 or D2 alleles at its peak marker, 

and balanced for B6 and D2 alleles at a chromosome 1 locus with an epistatic interaction with 

Etanq1.  Differences in %DTL after ethanol treatment were still significant despite variation at 

the Chr1 locus.  Fine-mapping of the initial 18 Mb support interval, using 3 additional BXD 

strains with recombination events within Etanq1, narrowed the interval to about 3 Mb that 

includes 41 protein coding genes and genes with non-coding RNAs. Of 10 missense SNPs 

identified in this interval, the only SNP predicted to alter protein function in a deleterious manner 

(rs29159683) was within Ninein (Nin).  To determine whether BXD genotype affected mRNA 

expression, microarrays were performed with tissue from prefrontal cortex (PFC), nucleus 

accumbens (NAc), and ventral midbrain (VMB).  Genes within Etanq1 whose expression varied 
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with genotype, i.e. had cis-eQTLs, included Sos2 in VMB, and Nin, Atp5s, Trim9, and Sos2 in 

NAc.  When correlating candidate gene expression with ethanol-induced anxiolysis, only Nin, 

Sos2, and Trim9 expression in the NAc were significantly correlated with %DTL after ethanol 

injection.  Relative expression of Nin, Trim9, and Sos2 in NAc of B6 and D2 mice were 

measured using qPCR, and only Nin was differentially expressed between strains.  Allele 

specific qPCR in B6D2F1 mice revealed higher expression of mRNA containing the D2 allele, 

confirming its cis-regulation, and western blots show higher expression of two provisional NIN 

protein isoforms in D2 NAc as compared to B6 (Putman et al., 2016).  

 

Validating Quantitative Trait Genes from microarray data using quantitative real-time 

polymerase chain reaction (qPCR) 

qPCR is frequently used to validate microarray results because of its high sensitivity, 

specificity, and wider dynamic range.  In the context of quantitative trait gene (QTG) validation, 

qPCR serves as a less expensive and more rapid parallel method for evaluating expression 

differences of a smaller number of candidate genes between progenitor strains with more 

biological replicates for higher statistical power.   

There are two widely used fluorescence methods available for these purposes, namely 

SYBR Green and TaqMan technologies.  SYBR green dyes are non-specific and intercalate all 

double stranded nucleic acids.  Thus, qPCR experiments utilizing this method rely on the 

assumption that the only double stranded products in the reaction are those produced by primer 

binding to a single specific target.  In contrast, probes in TaqMan reactions contain a reporter 

fluorophore and corresponding quencher in close proximity.  During the extension phase of the 

PCR reaction Taq polymerase cleaves the probe, separating the fluorophore from the quencher 

and allowing it to fluoresce.  For this reason, TaqMan reactions are capable of amplifying 

targets with very low copy numbers, while the sensitivity of SYBR Green reactions is reliant 

upon the specificity and binding efficiency of target primers.  The utilization of different 
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fluorophores on TaqMan probes for different targets can also allow for quantification of multiple 

targets in a single reaction, which can be useful when starting RNA quantities are very low.  

Reactions with SYBR Green dyes, on the other hand, are limited to amplification of a single 

target per reaction.  The complex nature of TaqMan probes, however, are often cost prohibitive 

and frequently limited to pre-designed probes.  Primers for SYBR Green PCR are typically much 

cheaper, allowing for quick, user-based design of primers for a variety of targets.  As a result, 

SYBR Green is often the method of choice when using qPCR to quantify expression of multiple 

target QTGs. 

The primary focus of behavioral QTL and QTG validation is usually quantifying relative 

differences in expression of target genes between experimental groups.  In other words: Is the 

direction of variation in expression of the target gene directly or inversely correlated with the 

direction of variation in magnitudes of the behavior of interest? As opposed to: What specific 

copy number of a target mRNA corresponds to a specific magnitude of behavior?  In cases 

where absolute quantification is either unnecessary or not possible due to the lack of standards 

with known copy number, relative quantity (Ct method) or normalized expression (2-Ct 

method) is used.  Relative quantity is calculated as the fold change relative to either an 

"untreated" control sample or to a standard curve with serial dilutions of known cDNA mass.  

Relative quantity calculations rely on the assumption that the starting amount of cDNA template 

in all reactions is identical, which is often not the case due to small variations in quantity 

introduced during total RNA quantification prior to reverse transcription, and pipetting error 

during the setup of PCR reactions.  To compensate for this error, the 2-Ct method employs a 

previously validated internal control gene(s), or "reference gene", to normalize sample Ct values 

of target genes.  The 2-Ct method uses target gene Ct values normalized to reference gene Ct 

values to compare target gene expression in a treatment sample to an untreated control, where 

Ct is the cycle threshold of fluorescence in a given sample, Ct is the difference between target 
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gene Ct and reference gene Ct for the same sample, and Ct is the difference between the 

Cts of the treated sample and a control  (Livak & Schmittgen, 2001).   

The wide variety of RNA isolation methods, qPCR fluorophores, thermocycler protocols, and 

data analysis methods paired with the variation in reporting of validation methods and data often 

results in low reproducibility of qPCR experiments within and between labs.  As a result, the 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE 

Guidelines) were developed (Bustin et al., 2009).  The MIQE guidelines are recommendations 

for the submission of data collected at multiple phases of qPCR experiments prior to and after 

the actual target amplification, including experiment design, sample preparation, nucleic acid 

extraction methods, reverse transcription methods, target gene information, primer and 

reference gene validation, thermocycler protocol, reagents used, and data analysis methods.  

One of the MIQE guidelines most frequently missing from publications is the validation of 

reference genes used for normalization (Bustin et al., 2013).  The selection of appropriate 

reference genes is vital given their function in data normalization.  In order for a reference gene 

to be valid, it must be stably expressed across all experimental groups and/or tissues being 

investigated, and its amplification efficiency should be comparable to that of the target gene 

(Livak & Schmittgen, 2001).  Frequently, qPCR data are presented normalized to a single 

reference gene presumed to be stably expressed in all tissues, such as Actb or Gapdh 

(Czechowski et al., 2005).  Use of a single, non-validated reference gene can lead to the 

appearance of expression differences 3- to 6-fold higher than are actually present (Hellemans & 

Vandesompele, 2014).  Vandesompele and colleagues (2002) developed a method and 

software for calculating expression stability of candidate reference genes called GeNorm.  

GeNorm utilizes the pairwise variability of relative quantities of candidate reference genes 

between samples to designate the most stably expressed genes, as well as the minimum 
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number of reference genes necessary to accurately quantify target gene expression across all 

experimental groups. 

The primary goal of the work in this thesis is to find suitable reference genes for comparison 

of gene expression between in the NAc and amygdala of B6 and D2 mice treated with acute 

doses of ethanol.  Re-assessment and further characterization of Ninein expression, the 

suspected QTG underlying the QTL for ethanol-induced anxiolytic-like response to ethanol in 

mice (Etanq1), will be presented as a functional validation of the use of proper reference genes 

for qPCR experiments.  
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Chapter 2 Reassessment and Design of Reference Genes for Comparison of Gene 
Expression in B6 and D2 Mice Exposed to Acute Ethanol 
 

Introduction 

 Quantitative real-time polymerase chain reaction (qPCR) is a widely used method for 

measuring gene expression in a broad variety of cell types and tissues.  Although absolute 

quantification of target mRNA copy number is possible, it requires the availability of calibrated 

external standards with known copy number or concentration. These standards can be obtained 

from plasmids containing the gene of interest (GOI), synthetic nucleotides with the sequence of 

the amplicon desired, or cell lines with known expression levels of the GOI (see Arya et al., 

2005 for review).   This can be problematic when these resources are either unavailable or 

costly to produce, and is often unnecessary in experiments where the research question is 

based on relative expression of a GOI between treatment or time groups.  In these instances, 

measurement of relative quantities (Ct) or normalized expression(2-Ct) is used in lieu of 

absolute quantification (Livak & Schmittgen, 2001). 

The use of the Ct method for reporting gene expression is limited by the assumption 

that the amount starting quantity of template in each reaction well is equal.  Instrumental error in 

nucleic acid quantification and pipetting error often introduce small variations in starting quantity 

that render this assumption invalid.  As a result, the 2-Ct method has been widely adopted as 

an alternative.  In this method, GOI Cts in all experimental samples are normalized to reference 

gene Cts in the same samples prior to group comparisons in order to eliminate the error 

produced by small variation in starting quantities.  Reference genes in these experiments 

require prior validation of stable expression across all experimental groups, and their primers 

must have amplification efficiencies similar to GOI primers (Livak & Schmittgen, 2001).   

Because the expression level of a particular gene can vary across strains, sexes, 

tissues, cell types, and treatment groups, it is important to verify that the reference gene and 
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primers used meet both of these criteria.  When the expression level of a reference gene is very 

low, primer efficiency can be greatly impacted.  A reference gene proven to be stably expressed 

across, for instance, PFC in B6 and D2 mice with and without ethanol exposure may not be 

stably expressed in NAc under the same conditions.   Similarly, a reference gene that is stably 

expressed between strains in basal conditions may not be stably expressed in the presence of 

drug treatment, or throughout development.  Unfortunately, much of the existing qPCR literature 

utilizing reference genes for data normalization do not report validating these conditions prior to 

performing their experiments (Bustin et al., 2013).  It is also common practice to use a single 

reference gene, when in reality qPCR data normalization is typically more accurate with the use 

of at least three (Derveaux et al., 2010; Vandesompele et al., 2002). 

In an attempt to keep with these standards, this chapter describes the use of publicly 

available bioinformatic tools and published genome-wide datasets to identify candidates for use 

as reference genes in qPCR experiments comparing gene expression in B6 and D2 amygdala 

and NAc with and without an acute dose of ethanol.  This is followed by experimental validation 

of these reference genes and their primers using relative quantification and GeNorm software. 

 

Methods and Materials 

 
In-silico evaluation 

Databases, Bioinformatic Tools, and Software 

Robust Multi-array Average (RMA) values and S-scores from nucleus accumbens (NAc) 

were obtained from GeneNetwork databases GN154, GN155, GN156, containing Affymetrix 

GeneChip Mouse Genome 430 2.0 arrays from B6, D2, and BXD male mice dissected four 

hours after an IP injection with saline or 1.8g/kg ethanol (Kerns et al., 2005).  RMA values from 

basolateral amygdala were obtained from GeneNetwork database GN323, containing pooled 

Affymetrix GeneChipTM Mouse Gene 1.0 ST arrays from untreated male and female mice 



 12

(Mozhui et al., 2010).  Microarray data from amygdala in ethanol treated mice were not 

available. 

NCBI Primer BLAST tool was used to generate potential primer sequences, using the 

RefSeq accession number for one or all transcripts for target genes.  NCBI Nucleotide BLAST, 

UCSC in-silico PCR and UCSC BLAT tools were used to scan for overlap of mRNA and primer 

sequences in non-specific locations.  IDT UNAfold was used to evaluate the secondary 

structures of primers.  Websites for all databases and in silico tools used are listed in Table 2.1 

 

Candidate gene ID 

The genes evaluated for potential use as reference genes were pooled from an overlap 

between those used in the mouse GeNorm kit (n = 10) available from Primerdesign Ltd. 

(Camberley, UK), genes currently used as reference genes in the laboratory (n = 8), and a BXD 

gene set from microarrays in NAc filtered for ethanol S-scores between -2 and 2 and with mas4 

scores above 100 (n = 4985).   

Candidate genes from the resulting list were eliminated if: 

 B6 and D2 mice had different RMA values for that gene in NAc and/or amygdala, 

suggesting differential expression levels between the strains. 

 Either strain had a significant S-score (|S-score|>2) when comparing saline to 

ethanol-treated mice, suggesting ethanol regulates expression of the gene, 

 B6 and D2 mice had significantly different (|S-score|>2) S-scores for the target gene 

 More than 30% of the target gene sequence shared greater than 80% sequence 

identity with other genes, other gene transcripts, or non-coding chromosomal regions 

 The target gene had pseudogenes 
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Table 2.1 Websites used for bioinformatic analyses of candidate reference genes 

 
 
 
 
 
Parameter Target Value 

Product size Minimum: 70 bp  
Maximum: 400 bp 

Primer Melt Temperature Minimum: 57  
Optimum: 60 

 
Maximum: 65  
Maximum Difference: 2 

Exon junction overlap At least one primer must span an exon exon junction 

Organism ID Mus musculus (taxid: 10900) 

Primer Length Minimum: 19 bp  
Optimum: 20 bp 

 
Maximum: 25 bp 

Primer GC Content Minimum: 20% 
 

Maximum: 65% 

3' GC clamp 1 

Max Self Complementarity Any: 5.00  
3': 3.00 

Max Pair Complementarity Any: 5.00  
3': 3.00 

SNP Handling Primer binding site may not contain a known SNP 

Table 2.2 Primer design criteria 

Bioinformatics Tool URL 

GeneWeaver https://geneweaver.org/  

GeneNetwork http://www.genenetwork.org/webqtl/main.py  

NCBI PrimerBLAST https://www.ncbi.nlm.nih.gov/tools/primer-blast/  

UNAfold https://www.idtdna.com/UNAFold?  

NCBI Nucleotide BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi  

UCSC BLAT http://genome.ucsc.edu/cgi-bin/hgBlat  

UCSC in-silico PCR http://genome.ucsc.edu/cgi-bin/hgPcr?db=hg38  

NCBI RefSeq https://www.ncbi.nlm.nih.gov/refseq/  

GeNorm https://genorm.cmgg.be/  

RefSeq https://www.ncbi.nlm.nih.gov/refseq/  
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Primer Design 

Existing primer pairs in the laboratory were redesigned if NCBI nucleotide BLAST, 

UCSC in-silico PCR, or UCSC BLAT searches revealed one or both primers: 

 Were located in the 3'-untranslated region of a transcript 

 Did not overlap an exon junction 

 Had non-specific binding sites  

 Did not bind all known mRNA transcript variants of the given gene 

Otherwise, new primer pairs were designed with NCBI's PrimerBLAST using the default search 

parameters except for the criteria listed in Table 2.2.  Primer annealing temperature, PCR 

product length, primer length, GC content, and self-complementarity were chosen in order to 

maximize efficiency in PCR reactions using SYBR Green Master Mix.  Target mRNA specificity 

was optimized by eliminating primers that overlapped strain-polymorphisms (dbSNP) and 

requiring at least one primer to overlap an exon junction.  Potential primer secondary structures 

and their melting points were evaluated using IDT-UNAfold, and primer sequences were 

discarded if the melt temperature of those secondary structures was not significantly less than 

the predicted annealing temperature of the primer.   

 

In vivo validation 

Animals 

 Eight-week old male C57BL6/J and DBA2/J mice were obtained from Jackson 

Laboratories (Bar Harbor, ME).  Mice were housed four per cage on ventilated racks with Teklad 

Sani-Chip bedding (currently Envigo, Cumberland, VA) and cotton nesting material.  Animals 

were subject to a 12-hour light-dark cycle and had ad-libitum access to Teklad LM-485 7012 

standard rodent chow and tap water.  Two weeks after their arrival, mice were administered 

0.9% saline, 1.8 g/kg or 4 g/kg ethanol via intraperitoneal injection.  Four hours following the 
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injection, mice were sacrificed via cervical dislocation and decapitation in order to obtain brain 

tissue for dissection.  All procedures were approved by the Virginia Commonwealth University 

Institutional Animal Care and Use Committee in accordance with National Institute of Health 

guidelines. 

 

Tissue Collection 

Immediately after sacrifice, whole brains were removed and dissected as described by 

Kerns et al. (2005).  In brief, whole brain tissue was chilled for 1 minute in 1X phosphate buffer 

on ice, then dissected to isolate amygdala, nucleus accumbens, prefrontal cortex, caudate 

putamen, septum, hypothalamus, cerebellum, entorhinal cortex, and ventral midbrain.  Tissue 

sections were placed in individual tubes, flash frozen in liquid nitrogen, and stored in a -80C 

freezer until RNA extraction. 

 

Nucleic acid extraction and evaluation 

 Total RNA was isolated from amygdala and nucleus accumbens tissue as described 

previously (Kerns et al., 2005) using homogenization in STAT-60 (Tel-test, Inc., Friendswood, 

TX, USA) followed by RNA purification with a Qiagen RNeasy Mini Kit (Qiagen, Redwood City, 

CA, USA).  RNA concentration in each sample was quantified based on UV-Vis absorbance at 

260nm using a ThermoFisher Nanodrop 2000 Spectrometer. Sample quality was assessed 

using RNA Quality Indicator values acquired from analysis with a Bio-Rad ExperionTM 

Automated Electrophoresis System with Experion RNA StdSens analysis kits using the included 

protocol.  Per the Bio-Rad ExperionTM software protocol, samples with RNA quality indicator 

(RQI) values lower than 7.0 were not included in qPCR experiments. 
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Quantitative Real Time PCR (qPCR) 

cDNA was synthesized from 1g total RNA using an iScript cDNA Synthesis kit (Bio-

Rad, Hercules, CA, USA), and qPCR was performed using iQ SYBR Green Supermix Kit and 

CFX Connect Real Time System (Bio-Rad, Hercules, CA, USA).  All qPCR amplifications were 

carried out in sealed Bio-Rad hard-shell, semi-skirted, 96-well PCR plates with clear shells and 

white wells.  All reaction mixtures were 20 L; detailed parameters for each PCR experiment 

protocol can be found in the results section and Appendix 2.  In brief, for each primer pair, 

temperature gradients were carried out with one technical replicate of one sample per strain 

across a temperature range of 54C to 64C.  Optimum annealing temperature was determined 

based on gel electrophoresis experiments described below.  Standard curves were obtained 

using 3 technical replicates of one sample per region per strain in 1:5 serial dilutions with 

nuclease free water resulting in cDNA quantities of 0.04ng, 0.2ng, 1ng, and 5ng. The annealing 

temperature in the thermocycler protocol for standard curves was set to the optimum 

temperature for each primer pair as determined in temperature gradient qPCR experiments.  In 

order to obtain preliminary data, temperature gradients and standard curves were carried out 

using one biological replicate per region per strain.  In future primer validation studies, it is vital 

that at least three biological replicates per region per strain are used for robust results and 

proper quantification of limit of detection (LOD) and limit of quantification (LOQ). 

 

Gel Electrophoresis 

Optimum annealing temperature for each primer pair was determined using agarose gel 

electrophoresis.  Following qPCR, five microliters of reaction mixture from each sample at each 

temperature were run with 4% agarose and 1X GelRed (Biotium, Fremont, CA) in 1X TBE at 

90 volts.  Bands were visualized using a Kodak Image Station and Kodak 1D Image Analysis 

Software (Eastman Kodak, Rochester, NY).  Optimum annealing temperature for a primer pair 
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was selected if the run temperature of a given reaction mixture produced a single band at the 

predicted molecular weight of the product, appeared to have the highest quantity of product 

relative to other run temperatures, and had no visible bands indicating the presence of primer 

dimers at low molecular weights.  Primer pairs that did not meet all of these criteria were 

discarded. 

 

Data Analysis 

 For standard curves, Cq values were calculated using the Bio-Rad CFX Manager 3.1 

Software Single Threshold determination mode.  Cq data and standard curves were analyzed 

and plotted using Microsoft Excel 2016 for Mac.  Efficiency was calculated using the following 

equation: 

% Efficiency (E)= -1+10
ቀିଵ

ௌ  ௦௧ௗௗ ௨௩ൗ ቁ
∗ 100 

 

The final candidate genes and total number of reference genes to be used were selected using 

the GeNorm macro V3.5 for Microsoft Excel previously downloaded from the GeNorm website.  

Although this version is no longer available from its originators, the updated version is included 

as part of Biogazelle's qbase+ software available at http://www.qbaseplus.com/. 
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Results 

In silico Analysis 

In silico analyses reveal five candidate reference genes. 

 Overlap analyses of the three gene sets revealed twelve genes in common between at 

least two of the sets (Figure 2.1).  In addition to these twelve genes, Ppp2r2a was included as a 

candidate gene in further bioinformatic analyses due to its use as the sole reference gene for 

previously published qPCR experiments from our laboratory.  This resulted in a total of thirteen 

genes used in the following bioinformatic analyses of candidate reference genes. 

Reference genes (n=13) were evaluated for potential use in experiments comparing 

nucleus accumbens in B6 and D2 male mice exposed to saline or 1.8 g/kg ethanol, and 

amygdala from ethanol-naïve animals.  As a preliminary screen, available nucleus accumbens 

microarray data from previously published experiments (Kerns et al., 2005) were examined for 

evidence of differential expression of candidate genes (n=13) between strains and ethanol dose 

group.  The results of this analysis are summarized in Table 2.3 and Table 2.4.  One Actb 

probeset located in the last two exons of the transcript indicated differential regulation of Actb by 

ethanol between B6 and D2 mice in nucleus accumbens (|SscoreDBA/2J – SscoreC57BL/6J| > 2). 

Available RMA values from microarrays in ethanol-naïve B6 and D2 mice indicate no difference 

in basal expression of any of the thirteen genes in amygdala(Mozhui et al., 2010). 

 Candidate genes (n=13) and their associated transcripts (n=27) were assayed for 

sequence similarity with unintended targets using the BLASTn algorithm.  Of the original 13 

candidate genes, five were eliminated due to overlap of their gene sequences with non-specific 

transcripts or chromosomal areas, while an additional three were eliminated because one or 

more of their transcript variants overlapped non-specific targets.  This resulted in a list of five 

candidate genes remaining: B2m, Canx, Ndufv1, Sdha, and Sort1.  None of these had 

pseudogenes.  The workflow used and its results are shown in Figure 2.2. 
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Primer design 

The laboratory had previously designed primers for four out of five of the final candidate 

genes – B2m, Canx, Ndufv1, and Sort1.  In order to avoid binding of primers to parent gene loci 

on potential genomic DNA contamination of samples, primer pairs were discarded if neither 

primer overlapped an exon junction or one of the primers was located in the 3'-untranslated 

region of a target transcript.   Existing primers for B2m were the only primers that did not require 

redesign based on these criteria.  New primers for Canx, Ndufv1, Sort1, and Sdha were 

designed using NCBI PrimerBLAST, and subsequently evaluated using UCSC in-silico PCR, 

UCSC BLAT and/or NCBI BLAST, and IDT-UNA Fold.  The alignment of all primers to their 

target mRNAs are shown in Figure 2.3 and Figure 2.4; primer sequences are listed in Table 2.5. 
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Figure 2.1 Overlap of Candidate Reference Gene Sets 
Sets of genes from our laboratory (n=8), GeNorm kits (n=10), and an analysis of nucleus 
accumbens (NAc) microarray data from our laboratory filtered for genes with high expression 
levels (RMA values greater than 6.64) and no differential expression with acute ethanol 
exposure (within-strain saline vs. 1.8g/kg ethanol |Sscores|<2) (n=4985). 



 21

Gene 
Symbol 

ProbeSetID / RecordID ProbeTarget 
Saline RMA Ethanol RMA 

Ethanol vs Saline 
Sscore 

C57BL/6
J 

DBA/2
J 

C57BL/6
J 

DBA/2
J 

C57BL/6J DBA/2J 

Actb 

1419734_at mid 3' UTR 10.277 10.299 10.255 10.153 -0.053 -0.714 

1436722_a_at exon 3, 4, 5 and proximal 3' UTR 14.491 14.306 14.556 14.302 0.814 -0.729 

AFFX-b-
ActinMur/M12481_3_at 

last two exons (Affymetrix control, 3'-most probe set used to calculate 3':5' 
ratio) 

14.526 14.422 14.589 14.346 1.120 -1.160 

AFFX-b-
ActinMur/M12481_M_at 

exon 3 (Affymetrix control, middle probe set used to compute 3':5' ratio) 13.911 13.659 13.956 13.665 0.955 -0.661 

AFFX-b-
ActinMur/M12481_5_at 

exons 2 and 3 (Affymetrix control, 5'-most probe set used to calculate 3':5' 
ratio) 

14.036 13.780 14.081 13.805 1.018 -0.377 

Atp5b 1416829_at exons 8 and 9 14.144 14.109 14.109 14.114 0.140 -0.372 

B2m 

1427511_at first intron 5.773 5.779 5.817 5.737 0.461 0.150 

1452428_a_at two exons 11.047 10.896 11.057 10.919 0.046 0.404 

1449289_a_at last two exons and 3' UTR 11.052 10.898 11.035 10.979 -0.168 1.056 

Canx 

1445045_at NA 4.992 5.032 5.006 5.049 -0.089 -0.274 

1428935_at NA 8.775 8.737 8.784 8.672 -0.228 -0.684 

1415692_s_at mid 3' UTR 12.380 12.382 12.300 12.430 -0.348 0.265 

1422845_at last exon and proximal 3' UTR 10.972 10.874 10.809 10.995 -1.073 0.719 

Eif4a2 1450934_at last exon and 3' UTR 13.856 13.880 13.821 13.883 0.293 -0.465 

Ndufv1 

1456015_x_at last exon and 3' UTR 11.987 12.076 12.011 12.064 0.464 -0.181 

1415966_a_at last exon 12.274 12.370 12.296 12.397 0.307 0.047 

1415967_at exons 7, 8, and 9 (of 10) 12.181 12.270 12.186 12.256 0.365 -0.187 

Ppp2r2
a 

1429715_at NA 8.088 8.078 8.092 8.078 -0.273 -0.024 

1437730_at NA 12.097 11.940 12.065 11.900 0.079 -0.647 

1453260_a_at last exon and last intron 10.998 10.773 10.944 10.825 -0.026 0.495 

Rpl13a 

1433928_a_at NA 10.789 10.942 10.809 10.977 0.108 0.280 

1455001_x_at NA 11.659 11.730 11.736 11.759 0.682 -0.293 

1455485_x_at last three exons 13.888 13.842 13.947 13.848 0.794 -0.196 

1435873_a_at last two exons 13.841 13.832 13.915 13.840 0.892 -0.055 

1417608_a_at exons 3 and 4 13.302 13.236 13.324 13.238 0.905 0.300 

Table 2.3 Nucleus Accumbens Microarray Data for Candidate Reference Genes 

The Actb probe highlighted in red shows differential regulation by ethanol in B6 and D2 mice. 
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Gene 
Symbol 

ProbeSetID / RecordID ProbeTarget 
Saline RMA Ethanol RMA Ethanol vs Saline Sscore 

C57BL/6J DBA/2J C57BL/6J DBA/2J C57BL/6J DBA/2J 

Sdha 

1426689_s_at mid-distal 3' UTR 12.012 12.066 12.015 12.033 0.172 -0.301 

1426688_at last two exons and proximal 3' UTR 12.496 12.481 12.497 12.503 0.277 -0.062 

1445317_at intron (not expressed) 7.600 7.481 7.655 7.400 0.278 -0.045 

1433293_at intron 1 (expressed) 8.686 8.671 8.807 8.656 0.934 0.318 

Sort1 

1423363_at proximal 3' UTR 9.480 9.190 9.339 9.452 -0.800 1.069 

1450955_s_at proximal 3' UTR 9.450 9.198 9.307 9.449 -0.579 0.992 

1423362_at distal 3' UTR 11.856 11.817 11.794 11.811 -0.465 -0.252 

Ubc 

1432827_x_at only coding exon 13.946 14.030 13.949 14.069 0.330 -0.124 

1420494_x_at only coding exon and 3' UTR 13.433 13.457 13.485 13.513 0.676 0.134 

1425966_x_at only coding exon and 3' UTR 12.196 12.205 12.206 12.233 0.113 0.109 

1437666_x_at only coding exon and 3' UTR 13.486 13.507 13.503 13.531 0.763 -0.128 

1425965_at NA 7.721 7.600 7.649 7.577 -0.186 -0.541 

1438137_at NA 6.971 7.050 7.039 7.065 0.914 -0.444 

1458507_at NA 7.332 7.509 7.443 7.479 0.113 -0.043 

Ublcp1 Data Not Available 

Ywhaz 

1416103_at far 3' UTR 10.592 10.596 10.604 10.566 -0.110 0.125 

1436971_x_at distal 3' UTR 13.694 13.703 13.681 13.702 0.352 -0.336 

1448218_s_at mid distal 3' UTR 13.189 13.191 13.096 13.157 -0.179 -0.557 

1439005_x_at multiple probe targets (antisense to human Ywhaz sequence) 10.293 10.092 10.262 10.040 0.076 -0.126 

1436981_a_at antisense probe set in mid 3' UTR of Ywhaz (LTR element homology) 10.981 10.905 11.059 10.856 0.499 -0.008 

1416102_at mid-proximal 3' UTR 12.626 12.479 12.520 12.557 -0.341 0.012 

1448219_a_at mid 3' UTR 13.411 13.237 13.328 13.297 -0.235 -0.073 

1443893_at intron 2 5.354 5.325 5.432 5.399 -0.161 -0.068 

 

Table 2.4 Nucleus Accumbens Microarray Data for Candidate Reference Genes (continued)
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Figure 2.2 Workflow for Candidate Gene Selection 
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In vivo validation 

RNA Sample Quality  

Canx, Sort1, and Ndufv1 primers were analyzed first due to their immediate availability.  

Ppp2r2a and Ublcp1 were also evaluated because of their broader applicability to ongoing 

experiments in the laboratory.  RNA sample quality for B6 and D2 amygdala and nucleus 

accumbens was assessed prior to any qPCR experiments.  Figure 2.5 shows the virtual gel 

electrophoresis images and resulting RNA quality indicator (RQI) numbers from Experion runs 

of the four samples used to produce temperature gradients and standard curves.  

Primer evaluation  

Annealing temperatures of primer pairs were evaluated using a 3-step qPCR protocol 

with a plate temperature gradient spanning 10C and centered around the predicted melt 

temperature of the primers as the annealing step. In order to reduce the number of agarose gels 

run, qPCR products from sample reactions at the annealing temperature with the lowest Cq and 

no-template control reactions at the lowest annealing temperature were evaluated.  Primer pairs 

Ublcp1 F/R2, and Ublcp1 F/R3, were discarded because more than one distinct band was 

visible in the sample qPCR products (Figure 2.6).  Standard curves were produced with 

samples from one B6 and one D2 mouse using the annealing temperature with the lowest Cq 

from remaining primer pairs for all genes except Canx and Sort1.  Efficiency and R2 were 

determined for each strain and brain region separately (Figure 2.7).  Ndufv1 F/R2 primers were 

excluded from further analyses in amygdala because both efficiencies were not between 80-

100%.  The remaining primers (Canx F/R3, Sort1 F/R2, Ppp2r2a F/R, and Ublcp1 F/R4) were 

used in subsequent experiments evaluating candidate reference genes in amygdala.  Canx 

F/R3, Sort1 F/R2, Ndufv1 F/R2, and Ublcp1 F/R4 were evaluated in NAc. 
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Figure 2.3 New and Existing Primer Alignments 

Primers are displayed as two arrows flanking the intended amplicon.  The direction of the arrow indicates the direction of the primer.  
Primers or amplicons highlighted in red indicate that they did not meet primer design criteria. 
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Figure 2.4 New and Existing Primer Alignments (continued) 

Primers are displayed as two arrows flanking the intended amplicon.  The direction of the arrow indicates the direction of the primer.  
Primers or amplicons highlighted in red indicated that they did not meet primer design criteria. 
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Existing Primers 

Target Gene Primer Pair Name Forward Primer (5' to 3') Reverse Primer (5' to 3') 

B2m B2m F/R1 GGAGAATGGGAAGCCGAACA TCTCGATCCCAGTAGACGGT 

Canx Canx Fwd/Rev TGGCAGTCAAGATGAGGAAG GAAGGGGAGGGAGAGGAAAT 

Ndufv1 Ndufv1 Fwd/Rev GACCGTGCTAATGGACTTCG GGCATCTCCCTTCACAAATC 

Sort1 Sort1 Fwd/Rev TTTATCAGTATGCCCCGAAT CCATCAAACACAGGGACTCA 

Ublcp1 Ublcp1 F2/R2 GCTAAAATGAAAGAGCTGGGCG ACACCAAGAGGCTTCACGTC 

New Primers 

Target Gene Primer Pair Name Forward Primer (5' to 3') Reverse Primer (5' to 3') 

Canx 
Canx F2/R2 CAGATGACTGGGATGAAGACGC TTCCTTGGTTTCCAGATTCCCTG 

Canx F3/R3 GCTTTGCCAGTGTTCCTTG ATTTCATCCTCCTCTGCTTTAGG 

Ndufv1 Ndufv1 F2/R2 ATGTGTTTGTGGTGCGTGGG GGCATCCAAACACTCCCACATC 

Sdha Sdha F1/R1 AACTACAAGGGACAGGTGCTG CCTCCCCACAGGCATACAG 

Sort1 Sort1 F2/R2 CTCTATACCACCACAGGCGG GAAGGCTGCACTCGTTCTTG 

Ublcp1 
Ublcp1 F3/R3 AATGAAAGAGCTGGGCGTGA CCCAAATGACACCAAGAGGC 

Ublcp1 F4/R4 TCCTGGTGCTGGATGTTGAC TCACGCCCAGCTCTTTCATT 

Table 2.5 New and Existing Reference Gene Primer Sequences 
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Strain Region 
Sample 
Name 

RNA 
Area 

RNA 
Concentrati
on (ng/𝛍L) 

Ratio 
[28S:18S] 

RQI 
RQI 

Classification 

D2 NAc 9084N 20.48 152.02 1.33 9.4  

D2 Amygdala 9084A 50.96 59.91 1.57 8.9  

B6 NAc 9071N 148.34 74.15 1.17 8.8  

B6 Amygdala 9071A 65.49 32.74 1.14 9.3  
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Figure 2.5 RNA Quality Asessment of Samples Used for Standard Curves 

a) Virtual gel image from NAc and amygdala of a B6 mouse 
b) Virtual gel image from NAc and amygdala of a D2 mouse 

a) b) 
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Canx and Sort1 are optimum reference genes to use in experiments evaluating gene expression 

in ethanol dose-response experiments with B6 and D2 mice  

Variability in expression of candidate reference genes was examined in amygdala from 

B6 and D2 mice i.p. injected with 0 g/kg, 1.8 g/kg, or 4 g/kg ethanol (n = 7-8 per group).  Mean 

Cq values for each gene in amygdala are shown in Figure 2.8.  No significant differences were 

found between experimental groups for any of the genes in amygdala (two-way ANOVA, α = 

0.05).  GeNorm analysis of these results determined the optimum number of reference genes to 

be 2-3 (V2/3 = 0.121, V3/4 = 0.189) and Canx and Sort1 to have the lowest amount of variability in 

expression across experimental groups among the genes tested (M = 0.345, Figure 2.10).  In 

NAc from saline treated B6 and D2 mice, no significant differences were found between Mean 

Cq for any of the genes studied (Figure 2.9); the most stable genes were Canx and Ublcp1 

(Figure 2.11). 
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Ubclp1 FR3; 131 bp 
Ubclp1 FR2; 128 bp 

Figure 2.6 Gel electrophoresis of Ublcp1 primer products 

Red arrows show location of potential unintended product.  N = 
nucleus accumbens, A = amygdala. Note: The ladder and samples 
shown in each image were run on the same gel.  The whole gel 
images have been cropped to remove wells with samples from 
unrelated experiments 
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Figure 2.7 Standard Curves for Candidate Reference Genes in NAc and Amygdala 

 
Mean Cq ± SEM of three technical replicates of one sample per strain in each brain region.
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Figure 2.8 Mean Cq of Candidate Reference Genes Across Ethanol Doses and Strains In 
Amygdala 

Data are presented as mean ± SEM (n=6-8 per group). No significant differences were identified 
with two-way ANOVA with Tukey's post-hoc tests (α = 0.05). 
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Figure 2.9 Mean Cq of Candidate Reference Genes in Saline-treated B6 and D2 Nucleus 
Accumbens 

Data are presented as mean ± SEM (n=6-8 per group). No significant differences were identified 
with two-way ANOVA with Tukey's post-hoc tests (α = 0.05) 
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Figure 2.10 GeNorm Ranking of Most Stable Reference Genes in Amygdala 

Average expression stability values of candidate reference genes in amygdala (n=46) from B6 and D2 
mice exposed to saline, 1.8g/kg ethanol, or 1.4 g/kg ethanol. 
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Figure 2.11 GeNorm Ranking of Most Stable Reference Genes in Nucleus Accumbens 

Average expression stability values of candidate reference genes in nucleus accumbens (n=14) from 
saline treated B6 and D2 mice 
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Discussion 

 
 Prior to the evaluation and collection of the data presented in this chapter, the most 

commonly used reference genes to evaluate target gene expression in NAc and other brain 

regions of ethanol treated B6 and D2 male mice in our laboratory were Ppp2r2a and Ublcp1.  

These genes and their primers were chosen based on prior experiments validating their use as 

reference genes in ventral midbrain samples (Megan O’Brien, Miles laboratory; data not shown).  

In light of the developing standards for reference genes proposed by (Vandesompele et al., 

2002), and in an effort to comply with MIQE guidelines (Bustin et al., 2009), new and existing 

laboratory reference genes were assessed for use in future experiments in both amygdala and 

NAc of B6 and D2 mice.  Of the 13 genes initially considered, only B2m, Canx, Ndufv1, Sdha, 

and Sort1 met all of the in-silico criteria used for selection of optimum candidates.   Primers 

were then designed and validated in B6 and D2 NAc and amygdala using melt curves and 

standard curves to determine efficiency.      

 Based on GeNorm analyses, Canx and Sort1 were the two genes with the least 

variability in amygdala of B6 and D2 mice from an acute ethanol dose-response experiment.  At 

a minimum, these two reference genes should be used in further qPCR experiments comparing 

gene expression in amygdala from ethanol treated mice of these strains, followed in order by 

Ublcp1 and Ppp2r2a.  In NAc, candidate reference genes were only evaluated from saline-

treated B6 and D2 mice.  For experiments comparing basal gene expression in NAc of B6 and 

D2 mice, Ublcp1 and Sort1 are the most stably expressed between strains, followed in order by 

Canx and Ndufv1.  Any comparison of B6 and D2 gene expression in NAc involving ethanol 

exposure will require further evaluation of candidate reference gene stability under those 

conditions.   

It is important to note that Ppp2r2a was not present in the NAc microarray data from 

saline and ethanol treated BXD strains filtered for genes that were not differentially regulated by 
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ethanol (Kerns et al., 2005), particularly because of its use as the sole reference gene in 

previous experiments in NAc of B6 and D2 mice in the laboratory.  In fact, qPCR data from 

ethanol-naïve B6 and D2 NAc suggests Ppp2r2a could be differentially expressed between the 

strains (Figure 2.12).  Furthermore, ~50% of each of four Ppp2r2a transcript variants has 

greater than 90% sequence homology with a non-coding area of Chromosome 12, which makes 

it very difficult to design primers that will bind specifically to cDNA from Ppp2r2a transcripts in 

the presence of genomic DNA contamination.  This would be less of an issue if total RNA 

samples were DNAse-treated prior to reverse transcription, but unless that is a laboratory-wide 

practice, target sequence similarity with genomic DNA needs to be considered when designing 

primers.  Regardless, because of the apparent differential expression of Ppp2r2a in B6 and D2 

NAc under basal conditions, it is the recommendation of the author that Ppp2r2a no longer be 

used as a reference gene in NAc for comparison of B6 and D2 gene expression.   Similarly, 

existing qPCR experiments comparing gene expression in B6 and D2 NAc that use Ppp2r2a as 

a reference gene should be repeated with appropriately validated reference genes. 

 The difference in Ndufv1 primer efficiency between NAc and amygdala in both strains, 

and the apparent differential expression between strains of Ppp2r2a in NAc, but not amygdala 

highlights the need for validation of reference genes as well as their primers for any experiments 

with new or unique conditions.  Ndufv1 may be stably expressed in amygdala, but the low total 

expression level of this gene makes that impossible to quantify in this region.  Consequently, 

reference gene primers validated in one experimental condition (in this case, brain region) may 

not be appropriate for another.   Conversely, the elimination of a candidate reference gene 

because of variability between groups in one experiment does not preclude its use in a different 

experiment where, for example, the same strains are used but a different brain region is being 

examined.  Perhaps the most important conclusion gathered from this work is that accurate 

reporting of gene expression differences using relative quantification in qPCR requires 
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evaluation of multiple reference genes across all groups for the specific experimental 

paradigm being used. 
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Figure 2.12 Ppp expression in NAc Normalized to Ublcp1 

 
Data are presented as mean ± SEM (n=4 per strain). Pstudent's-t = 0.45
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Chapter 3 Ninein Characterization as a Functional Validation of the Use of Proper 
Reference Genes 
 

Introduction 

Ninein was identified by our laboratory as a quantitative trait gene for ethanol induced 

anxiolytic-like behavior in BXD mice.  Ninein is a microtubule associated protein (MAP) typically 

found at the minus end of microtubules in the centrosome, but has recently been identified in 

the cytoplasm of all parts of embryonic cortical neurons in mice, playing a role in axon outgrowth 

and branching (Srivatsa et al., 2015).  There are 3 known NIN protein isoforms, and 6 known 

Nin transcript variants in mice (Table 3.1).  The D2 allele at a potentially deleterious SNP 

(rs29159683) and another missense SNP (rs29192398) in these variants results in the creation 

or alteration of an exon splice enhancer sequence that promotes the splicing of exon 18 

(RefSeq NR_104397.2).  The absence of exon 18 has been shown to result in the dissociation 

of NIN peptides from the centrosome, and the presence of another exon (exon 29) results in 

diffusion of NIN peptides throughout the cytoplasm.  Perhaps more striking, NIN peptides 

translated from these alternatively spliced variants are present almost exclusively in 

differentiated neurons (Zhang et al., 2016).  In NCBI’s current genome assembly, Nin transcript 

variants containing exon 29 are labeled non-coding because the presence of this exon creates a 

downstream frameshift resulting in a ‘premature’ stop codon, making these transcripts 

suspected targets for nonsense-mediated mRNA decay.  While the stop codon present in 

transcript variants containing exon 29 is upstream of stop codons in other variants, the findings 

of Zhang et al. suggest that the resulting protein is not dysfunctional, but rather localizes 

differently than other isoforms.  This may be problematic in mitotic cells where the primary 

function of NIN is in the centrosome, but non-deleterious in post-mitotic cells such as neurons 

where the stability of microtubules in or near dendritic spines plays an integral role in synaptic 

plasticity.   
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The provisional proteins NIN4 and NIN5 (see figure 7c in Putman et al. 2016), that were 

differentially expressed in NAc of B6 in D2 mice, have molecular weights corresponding to the 

predicted protein products of Nin transcript variants 5 and 6, containing exon 29.  However, as 

of the time of this writing, there is no evidence for the presence of either of these transcripts in 

amygdala or nucleus accumbens of B6 or D2 mice in vivo. 

 In this chapter, basal expression of specific Nin transcript variants is examined in both 

nucleus accumbens and amygdala of B6 and D2 mice using appropriately selected reference 

genes from the previous chapter.  The aim of these experiments is to validate the use of proper 

reference genes while providing a structural/functional basis for the role of Ninein in Etanq1-

related behaviors. 
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Primer Set 
Exon(s) 

Amplified* 
Variant(s) 
Targeted 

Protein Product Functional Significance 
Tissue 

Presence 
NinEx5,6,7 5,6,7 All Varies Varies Varies 
NinEx16,1

7 
16,17 

("large exon") 
1-5 Varies Localizes Nin to centrosome 

Somatic, 
Nervous 

NinTV1  1 NIN isoform 1 
Microtubule anchoring at 

centrosome 
Somatic, 
Nervous 

NinTV2,3  2,3 NIN isoform 2 
Microtubule anchoring at 

centrosome 
Somatic, 
Nervous 

NinTV4  4 NIN isoform 3 
Microtubule anchoring at 

centrosome 
Somatic, 
Nervous 

NinTV5,6 29 5,6 Unknown 
Peptides localize away from 

centrosome; 
Neurons 

NinTV6 
Absence of 
"large exon" 

6 Unknown 
Peptides localizes away from 
centrosome AND throughout 

cytoplasm 
Neurons 

Table 3.1 Targeted Ninein transcript variants and protein isoforms
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Methods and Materials 

Experimental Subjects 

C57BL/6J (n=8) and DBA/2J (n=8) male mice were obtained at 8 weeks of age from 

Jackson Laboratories (Bar Harbor, ME) and housed 4 per cage on ventilated racks with Teklad 

Sani-Chip bedding and cotton nesting material.  All animals had ad libitum access to Teklad LM-

485 7012 standard rodent chow and water under a 12-hour light-dark cycle.  After two weeks, 

animals were sacrificed via cervical dislocation followed by decapitation. Immediately following, 

whole brains were removed and dissected as described in Kerns et. al, 2005. Tissue sections 

were placed in individual tubes, flash frozen in liquid nitrogen, and stored in a -80C freezer until 

further use.  All experimental procedures were approved by Virginia Commonwealth University 

Institutional Animal Care and Use Committees in accordance with NIH guidelines.   

 

Nucleic acid extraction and evaluation 

 Total RNA was isolated from amygdala tissue as described previously (Kerns et al., 

2005) using homogenization in STAT-60 (Tel-test, Inc., Friendswood, TX, USA) followed by 

RNA purification with a Qiagen RNeasy Mini Kit (Qiagen, Redwood City, CA, USA).  RNA 

concentration in was quantified based on UV-Vis absorbance at 260nm using a ThermoFisher 

Nanodrop 2000 Spectrometer. Sample quality was determined using RNA quality indicator 

(RQI) values acquired from a Bio-Rad ExperionTM Automated Electrophoresis System with 

Experion RNA StdSens analysis kit.  Samples with RQI values lower than 7.0 were not included 

in qPCR experiments. 

 

qPCR 

cDNA was synthesized from 500 ng total RNA using Bio-Rad iScript cDNA Synthesis Kit.  

RT-qPCR was performed using Bio-Rad Universal SYBR Green Supermix in conjunction with 
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Bio-Rad CFX Connect Thermocycler. Bio-Rad CFX Manager Software was used for calculation 

of Cq values and relative normalized expression.  Cqs were determined using the single 

threshold method, and relative normalized expression was determined using ΔΔCq method with 

two reference genes: Ublcp1 and Canx.  Target gene and transcript primers were designed and 

validated using the same procedure described in 0.  Specific primer sequences can be found in 

Appendix 2. 

 

PCR Product Isolation and Sequencing 

Following qPCR, reaction mixture from one amygdala sample containing primers that 

would amplify Nin transcript variant 6 was run with 4% agarose and 1X GelRed (Biotium, 

Fremont, CA, USA) in 1X TBE at 90 volts.  Bands were visualized using a Kodak Image Station 

and Kodak 1D Image Analysis Software (Eastman Kodak, Rochester, NY).  The resulting band 

corresponding to the predicted molecular weight of an exon-18-lacking product was isolated 

using a QIAquick Gel Extraction Kit (Qiagen, Redwood City, CA, USA).  Purified qPCR product 

and transcript variant 6 qPCR primers were sent to Eurofin Genomics DNA sequencing services 

(Louisville, KY, USA) for sequencing.  The resulting sequence overlap was analyzed using 

NCBI Nucleotide BLAST. 

 

Statistical Analyses 

All statistical analyses were performed using JMP Pro 13 statistical software (SAS, Cary, 

NC, USA).  Strain-mean relative normalized expression for each gene was compared using 

student’s t-tests, and groups were considered significantly different if p<0.05. 
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Results 

 
Functional validation of reference genes for measuring basal gene expression in B6 and 

D2 mice 

 
qPCR was used to compare two reference genes in nucleus accumbens (NAc) of 

ethanol-naïve B6 and D2 male mice.  Figure 3.1a shows the mean Cq values for Actb and 

Ublcp1 in these samples.  Although the strain-mean Cq difference does not reach statistical 

significance (p=0.3081, student's t-test), the variability of Actb expression between both mouse 

strains results in the appearance of otherwise non-existent strain differences in expression of a 

target transcript, Ninein transcript variant 1 (NinTV1), when it is used as a reference gene.  

Figure 3.1b shows the same NinTV1 qPCR data (Cq) normalized to Actb, both Actb and Ublcp1, 

and Ublcp1 alone.  The significant difference in expression between strains observed when Actb 

is used as a reference gene alone (p=0.0016), and paired with Ublcp1 (p<0.0001), is no longer 

evident when Ublcp1 is used as the sole reference gene (p=0.3002).  In addition, when Actb is 

paired with Ublcp1 the M-value reflecting pair-wise reference gene stability is higher than the 

recommended value for heterogenous samples (MActb/Ublcp1 = 1.2063).  Further, a two-way 

ANOVA revealed a significant effect of reference gene(s) used (p=0.0003) and a significant 

interaction of reference gene(s) used with strain effect (p=0.0069) on relative normalized 

NinTV1 expression.  The significance of this interaction is eliminated when examining target 

genes that exhibit much larger differences in expression between strains, as is the case with 

Stab2 (Figure 3.1c, preference gene(s)=0.6796, pstrain<0.0001, pinteraction=0.5539). 

 

Detailed characterization of Ninein expression in B6 and D2 mice 

Basal expression of all six Nin transcript variants, exons of interest, and total Nin 

expression was also examined via qPCR in nucleus accumbens and amygdala.  Basal 

expression of these targets normalized to Ublcp1 in nucleus accumbens is shown in Figure 
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3.2a.  Nin transcript variant 4 is the only transcript with significant differences in expression 

between strains in NAc (p=0.02638).  Additionally, total Nin, transcript variants 2 and 3 together, 

and transcript variants 5 and 6 together had near significant differences in expression in nucleus 

accumbens (pTotalNinein=0.0649, pNinTV2,3=0.0890, pNinTV5,6=0.0886).  In all cases, expression of 

these transcripts was higher in D2 NAc than B6 NAc.  Of particular importance is the 

amplification of transcript variants 5 and 6, which have not been previously observed in this 

brain region in vivo in adult mice.  

After seeing amplification of Nin transcript variants 5 and 6 in NAc, new primers were 

designed specifically to target transcript variant 6 in amygdala.  The forward primer of this set 

overlapped the junction between the exon immediately upstream and immediately downstream 

of the "large exon" present in Nin transcripts 1-5.  This exon is responsible for the localization of 

Ninein at the centrosome, and its absence results in re-localization of Ninein away from the 

centrosome in neurons in vitro (Yu et al., 2009; Zhang et al., 2016).  As of this writing, we are 

aware of no published record of this transcript found in vivo in amygdala in adult mice.  

Expression of the large exon in Ninein and transcript variants 1, 4, 5, and 6 normalized to Canx 

and Ublcp1 is shown in Figure 3.2b.  Significant differences between strains were found for 

NinTV1 (p=0.0028) and NinTV5,6 (p=0.0024).  NinTV6 primers amplified a product in both 

strains, and while there was a small difference between strains it did not reach statistical 

significance (p=0.2827).  The product of this reaction was isolated and sequenced; its sequence 

overlap with Nin transcript variants is shown in Figure 3.3.  NCBI's BLAST algorithm identified a 

99% overlap, including one mismatch and zero gaps, with 100% of the sequenced PCR product 

with the intended NinTV6 target.  The next five closest matches are with NinTVs 1-5 in regions 

that share exons with NinTV6 downstream of the junction covered by the forward primer.   
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Figure 3.1 Actb1 and Ublcp1 as Reference Genes for B6 and D2 Nucleus Accumbens 

Data are presented as strain-mean ± SEM.  a) Strain-mean Cq of Actb and Ublcp1 in nucleus accumbens. No significant differences were 
observed using student’s t-test (α=0.05).  b) and c) Comparison of expression of NinTV1 and Stab2 normalized to Actb alone, Actb and 
Ublcp1, and Ublcp1 alone.  Significance determined using two-way ANOVA with Tukey’s post-hoc tests (α=0.05).  *p<0.05, **p<0.01, 
****p<0.0001. 
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Figure 3.2 Characterization of Ninein Expression in Nucleus Accumbens and Amygdala 

Strain means ± SEM of relative normalized expression of Ninein exons and transcript variants.  
Significant differences determined using student’s t-tests with α=0.05.  *p<0.05, **p<0.01, ~p<0.1 
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Figure 3.3 Sequenced PCR Product Overlap with Nin Transcript Variants 

The PCR product isolated from PCR in B6 amygdala uniquely overlaps the sequence of NinTV6, which excludes the "large exon" 
responsible for localization of NIN to the centrosome.  Thick blue bars represent exons, while thin arrowed lines represent introns.  It 
should be noted that due to limitations in the ability to incorporate multiple features in the file type necessary to display these images, 
that the single mismatch present at chr12:70055152 is not shown in this diagram. 
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Discussion and Future Directions 

 
Proper selection of reference genes for a particular qPCR experiment is vital for 

obtaining accurate results.  In the case of Ninein in B6 and D2 nucleus accumbens and 

amygdala, quantifying differences in expression of specific exons or transcripts requires the 

ability to detect very small differences in target quantities.  When comparing Actb and Ublcp1 as 

reference genes in nucleus accumbens it is clear that, despite the lack of statistical significance, 

higher variability in expression of a reference gene such as Actb greatly alters the appearance 

of strain differences in expression of Ninein transcript variant 1.  This is true even when paired 

with Ublcp1, which has less variability in mean Cq across strains.  On the other hand, small 

variability in reference gene expression across experimental conditions is less relevant when 

observing targets with very large differences in expression. For example, in the case of Stab2, 

the change in expression between B6 and D2 mice is apparent regardless of the reference 

gene(s) used for normalization.  Identifying small differences in gene expression will be crucial 

in ethanol-related behavioral experiments where the differences in single gene expression are 

often less than 30%, and the response of the network of genes that are co-regulated with a GOI 

likely contributes more to a given behavioral phenotype than the GOI alone (Kerns et al., 2005; 

van der Vaart et al., 2017; Wolen et al., 2012). 

Interestingly, the Bio-Rad CFX Manager software used for calculating normalized 

expression of targets relative to reference genes shows a higher coefficient of variance (CV) for 

Ublcp1 compared to Actb, which suggests higher variability in Ublcp1 expression across 

samples.  This is notable because, when looking at the mean Cq data, the standard deviation of 

mean Cq of Ublcp1 across all samples (0.536) is almost three-fold less than that of Actb 

(1.461).  It is also clear in the comparisons shown in Figure 3.1b that the inclusion of Actb as a 

reference gene dramatically changes the conclusions that can be drawn from looking at 

normalized gene expression data. This discrepancy highlights the need for careful examination 
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of data and calculations produced by qPCR analysis software, rather than a blind reliance on its 

output.  Perhaps more importantly, this further illustrates the need for validation of more than 

two potential reference genes when normalized expression is to be used as the primary metric 

for comparing target gene expression across experimental conditions.  Because the analysis of 

Ninein in nucleus accumbens was done prior to the evaluation of multiple other reference 

genes, Actb and Ublcp1 were run based on their previous use for similar experiments in the 

laboratory.  qPCR data regarding detailed nucleus accumbens Nin characterization in this 

chapter are presented normalized only to Ublcp1.  Future experiments aiming to reproduce or 

expand upon these results in nucleus accumbens from control and ethanol treated animals 

should be preceded by a more thorough evaluation of potential reference genes in all 

experimental groups, as described in the previous chapter.    

That said, basal D2 expression of NinTV4 in nucleus accumbens was significantly 

greater than B6 expression.  This was accompanied by similar trends towards higher D2 

expression of total Nin, Nin variants 2 and 3 together, and Nin variants 5 and 6 together.  In 

amygdala, B6 expression of NinTV1 was significantly greater than that of D2, while D2 

expression of Nin variants 5 and 6 together was higher than B6.  There was also a small trend 

towards greater expression of NinTV4 in D2 amygdala versus B6.  First, it is important to verify 

that the expression of these transcript variants does correspond to expression of the associated 

proteins which can be verified by western blot.  While the general function of known Ninein 

isoforms 1 through 3 is minus-end microtubule anchoring to the centrosome (Bouckson-

Castaing et al., 1996; Mogensen et al., 2000), there is little known about the differences in 

function or localization, if any, between these 3 isoforms.  Assuming gene expression and 

protein expression are directly related, the expression differences of Nin variants 2 and 3 

(Ninein isoform 2) and variant 4 (Ninein isoform 3) contrasted with the differences in NinTV1 

expression (Ninein isoform 1) in both NAc and amygdala provides a basis for the hypothesis 

that there is some functional difference between the isoforms.  Because Nin transcript variants 
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1-4 were initially observed in fibroblasts (Bouckson-Castaing et al., 1996; Mogensen et al., 

2000), then characterized in epithelial cells (Moss et al., 2007), and cortical neural progenitor 

cells and post-mitotic neurons (Zhang et al., 2016) during embryonic development, it is difficult 

to elucidate implications regarding strain differences in these transcripts in adults without further 

cell-specific experiments.   

 Prior to the experiments in this chapter, the only evidence of Nin transcript variants 5 

(TV5) and 6 (TV6) was confined to embryonic cortical neurons in vitro (Zhang et al., 2016).  

While the difference in expression of NinTV5,6 relative to NinTV6 suggests, at a minimum, the 

presence of TV5, the data presented do not directly confirm this.  Sequencing of the amplified 

product of NinTV6, however, does directly confirm the presence of this transcript despite it being 

labeled as a target for nonsense mediated decay (NMD) in the most recent version of the 

mouse genome (GRCm38.p6, 2017).  Although it is possible that the NinTV5,6 and NinTV6 

products we see in these qPCR experiments are just present prior to being removed via NMD, 

Putman et al. (2016) suggests otherwise.  A western blot in nucleus accumbens using an 

antibody that binds to Ninein isoforms 1-3, and what would be the predicted protein products of 

NinTV 5 and 6 shows more than the three bands that would be expected if known Ninein 

isoforms were the only proteins translated from existing transcripts.  In this blot, there are two 

visible bands between 117KDa and 170KDa that could correspond to the predicted molecular 

weight of the protein product of NinTV6 (~147KDa) labeled NIN4 and NIN5.  Further, D2 mice 

have significantly higher levels of both of these provisional proteins, which parallels the higher 

levels of NinTV5,6 observed in NAc.  Evaluation of strain differences in NinTV6 expression in 

NAc via qPCR and sequencing of the proteins at bands NIN4 and NIN5 are needed to further 

validate this theory. 

Because we know that peptides resembling Nin variants 5 and 6 are unique to 

differentiated neurons (Zhang et al., 2016), higher expression of these variants in D2 mice could 

imply either a greater quantity of neurons or a greater potential for plasticity in existing neurons.  
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In amygdala, the significant difference in expression of NinTV5,6 versus the lack of significance 

in expression of NinTV6 alone suggests that a majority of the difference observed results from 

differences in expression of NinTV5.  Since NinTV6 is a splice variant of NinTV5, it is impossible 

to quantify NinTV5 directly using qPCR with a single fluorophore; multiplex qPCR would be 

better suited for this task.  Splicing of the "large exon" of NinTV5 to form NinTV6 results in 

dissociation of Ninein from the centrosome and diffuse localization throughout the cytoplasm.  

This also highlights the importance of the ratio of NinTV5 to NinTV6.  If there is a higher quantity 

of NinTV5 relative to NinTV6, and this ratio is larger in D2 mice than in B6 mice, this suggests a 

greater potential for either quick axonal outgrowth and branching in nascent adult neurons, or a 

greater potential for synaptic plasticity in D2 mice due to increased stabilization of microtubules 

in newly formed dendritic spines or axon terminals.  In these scenarios, NinTV5 would act as a 

readily available precursor for NinTV6 that is spliced and translated upon cellular responses to a 

stimulus that result in the formation of new synapses or neurons guided by microtubule 

outgrowth and stabilization.  It would be interesting to look at expression of known Ninein 

transcription and splice factors such as Sip1 and Qki5, respectively (Hayakawa-Yano & Yano, 

2019; Srivatsa et al., 2015) in order to shed more light on whether NinTV6 in adult NAc and 

amygdala plays a role in adult neurogenesis or in synaptic plasticity in postmitotic neurons.   

Validating Ninein as a quantitative trait gene for ethanol-induced anxiolytic-like behavior 

will require characterization of Nin transcript variant expression in nucleus accumbens before 

and at different time points after restraint stress, ethanol exposure, and both.  It will also require 

validation of the NIN4 and NIN5 sequence.  In addition, incorporating female mice into these 

experiments is pertinent given the sex and sex*strain effects on anxiety-like behavior in certain 

BXD strains with and without an acute dose of ethanol (Putman, 2008).  One study in rats 

identified different light-dark transition-related behavioral QTL not only between sexes, but also 

across estrous cycle stages (Izídio et al., 2011), which raises the possibility that Etanq1 may not 

be reproducible in female mice of the same BXD strains.  This suggests that female anxiolytic-
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like response to ethanol may be mediated by a different and/or more complicated mechanism 

than occurs in males. 
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Appendix 1 qPCR Temperature Gradient Protocols 
 

Ndufv1F2/R2, Ublcp1 F2/R2, Ublcp1F3/R3, Ublcp1 F4/R4 

 
 
 
Canx F2/R2, Canx F3/R3, Sort1 F2/R2 

 

Denaturation 

Annealing 
Extension 

Denaturation 

Annealing 
Extension 

Melt Curve 

Melt Curve 
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Appendix 2 Ninein Primer Sequences 
 
Primer Set Forward (5' -> 3') Reverse (5' -> 3') 

NinEx5,6,7 TGGTTTCCATCTGCGAACAG CATCGAAAGACTGCATAGAGAGA 

NinEX16,17 AGTTAGGCAAAAAGACGCCC AGCTTTTCAGATTCATATCTCAGGA 

NinTV1 CTGCCCGAGTTTCAAGAGTC ATTCAGGTCATCTGGGTTCC 

NinTV2,3 ACAGGTGAGACTGGACGAGAA AGCAAAGCCTGTGGTGTGTT 

NinTV4 GAAGAAACAGATGCAGCCCCT TTCAGAGGTGCCCAATCCTTCT 

NinTV6 TCCAGGAGGGAAGATATGAATCTG GGGAGTTCTTTTGGCTGAGTTC 
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